
Start

Oracle® Documaker

Internet Document Server
Guide
version 2.2

Part number: E14902-01

May 2009

Copyright © 2009, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable,
the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be
the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for
the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or
damage of any sort that you may incur from dealing with any third party.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

s

Notice

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://www.apache.org/).
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution under the Generic
BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages arising from the use of this software.
Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.
Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-1999 Erwin
Tratar. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN RISK! THE
AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.
THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE
Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer), and others.
(http://www.libpng.org)
The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed or implied,
including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages, which may result from the use of the PNG
Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CRYPTIX
FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BELIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved
It also includes materials licensed under Apache 1.1 and the following XPP3 license
THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The Ultimate
Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.
Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version 0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH REGARD TO
IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall University of
Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever) resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.
Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

ix

Contents

Chapter 1, Processing Documents Using the Internet

2 Overview

5 Architectural Changes in Version 2.x

6 Required Components

6 Components Available from Oracle Insurance

Chapter 2, Using the Internet Document Server

11 Overview

13 Creating Front-End Solutions

13 Using JSP

14 Using the IDSJSP JavaBean

15 Using the JSP Samples
15 Handling Multi-Part/Form-Data Forms
16 Using ASP

17 Using the IDSASP Object
19 Sending and Receiving Attachment Fields
22 Showing a PDF File
25 Using the ASP Samples
25 Using the HTTP Parsing and Uploading APIs
30 Using the XMLSession Rules
30 IDSASP Methods
32 IDSJSP Methods
34 XMLSession Rules

37 Using IDSXML
38 XMLTransformErrors
39 XMLTransformErrors2
40 XMLLoadINI
41 XMLLoadXML
41 XMLLoadXSL
42 XMLGetGroupOptionValue
42 XMLGetValue
42 XMLGetGroup

x

44 XMLUpdateGroup
45 XMLBuffer
45 XMLLoadProcessor
46 XMLAddParameterToXSL
46 XMLTransformWithXSL
47 XMLProcessWithXSL
48 XMLUpdateFormset
48 XMLProcessFormset

50 Using Multiple Servers

51 Determining if Your Transactions are CPU or I/O Intensive
52 Performance Measurements when Using Multiple Servers
53 Setting Up Additional Servers

54 Setting Up a Windows NT Service

55 Handling Multi-threaded Requests

57 Using the Java Test Utility

58 Using Rules Written in Other Scripting Languages

59 Using IDS as a Client to Another IDS

60 Using the IDSClientRule

64 Monitoring IDS with SNMP Tools

65 Monitoring Requests

66 Managing IDS Instances

75 Sending Results and Receiving Requests in Multiple Formats

76 Configuring and Deploying Marshallers

78 Logging and Tracing

81 Naming Logging Messages

84 Using Logging Categories

87 Logging Information about Requests

91 Querying Transaction Information
92 getMetaData
93 QueryTranLogs

94 Monitoring Performance Statistics

95 Generating a Logging Configuration File

95 Using Logging Categories to Access the Internal Format of Requests

97 Configuring IDS

98 Running IDSConfig

xi

98 Creating New Files
98 Adding Nodes
98 Adding Nodes with Text
99 Editing Nodes
99 Copying Nodes
99 Moving Nodes
99 Adding Attributes
100 Adding Comments
100 Adding Text
100 Adding a Request or Function
100 Adding an IDS Function
101 Converting DOCSERV.INI or DOCCLIENT.INI Files into

XML Format
101 Adding a Section or Entry
101 Locating Text
101 Importing Configuration Information
102 Configuring MQSeries Buffer Sizes
103 Testing File Transmission

106 Referencing Attachment Variables

107 Using Unicode in Attachment Variables

108 Using the Message Queues

108 Choosing the Right Queuing Options
109 Understanding the Router Process
110 How HTTP Queues are Handled
110 Using the Router Section

111 Using Multiple Queuing Systems

113 Using the Java Message Service (JMS)

113 Setting up JMS

116 Using WebSphere MQ

117 Setting Up WebSphere MQ
118 Using MSMQ

123 Using Security Exits

124 Using Client Connection Definition Tables

124 Using SSL Connections

125 Using the ReplyToQueueName and ReplyToQueueManagerName
Properties

126 Using HTTP

130 Using Multiple Bridges

xii

132 Submitting Batch Requests

134 Printing in Duplex Mode to PCL Printers

135 Using IDS to Distribute Email

135 Modifying the docserv.xml Configuration File
136 Modifying the DAP.INI File

138 Attachment Variables Used by Email Rules

139 Using Email Rules

141 Using the Email Bus

144 Using IDS to Run Documaker

145 Setting Up IDS
146 Setting up Multiple Internet Document Servers
146 Controlling Documaker

149 Setting Up Documaker
151 Naming Conventions for Output Files

152 Creating DPW Files

153 Accessing IDS Attachment Variables in GenData

153 Using TCP/IP Communications

155 Customizing the Execution of Documaker

158 Using the XML Messaging System

160 Client Request Messages
163 Server XML Response Messages

164 Using XML SOAP Outside of Messaging Systems

166 Connecting to an SQL Database

167 Differences between Microsoft’s ADO and IDSSQL
167 Setting up IDSSQL

167 IDSSQL Classes
167 IDSSQL.ADO
168 IDSSQL.IDSRC

168 Example Script

171 Using the Thin Client Forms Publisher

172 Pausing IDS

172 DSIQueryStatus
173 DSISetStatus

175 Executing Request Types at Run Time

177 Publishing Your Forms on the Web

xiii

177 FORMPUB

178 FD2HTW32

178 PTFMDW32

179 FAP2HTML
180 INI Options

182 Handling Multi-Part/Form-Data Forms

183 Formatting Text with XML Markup

184 Encrypting and Decrypting Data Files

185 Using Multiple Attachment Values with the Same Name

187 getEntries

188 Converting XML Files Using a Template

192 Customizing Your System

195 Handling Security Issues

195 Using Firewalls

195 Implementing Security for Web Applications

197 Using the FAP2XML Utility

198 Using LDAP Support

199 Using Default Time-outs for DSILIB-Based Client Applications

201 Running Timed Requests

202 In-Process Rendering for DPAView

202 DRLGetConfig

203 Using DAL Functions for WIP Column Access

205 Using Enterprise Web Processing Services

Chapter 3, Creating Output Files

208 Creating PDF Files

209 Setting Up the PDF Print Driver

212 Creating PDF Files with Unicode Support

212 Setting PDF Compression Options

213 Producing Optimal PDF Output

215 Handling Fonts
216 Not Embedding Fonts

xiv

217 Embedding Fonts
219 Handling Fonts with Multiple Width Tables

220 Using the PDF Print Driver with GenPrint
220 Changing the GenPrint Program
222 Generating Separate Files

223 Font Cross Reference File Tips
224 Embedding Fonts
226 Using the 14 Base Fonts Distributed with Acrobat Reader

227 Setting Up Bookmarks

229 Limitations

230 Creating HTML Files

235 Producing Table Information for TextMerge Paragraphs

236 Creating XML Output

Chapter 4, Using Print Preview

239 Touring Print Preview

245 Using the JSP Files

247 Customizing Print Preview

248 Using INI Options to Customize Print Preview Screens

249 Customizing the WIP List Page

250 Creating User Lists for Print Preview

251 Request Types for Print Preview

Chapter 5, Using Docucorp Publishing Services

256 DPS Object Properties

262 Setting Default Parameters

264 Sample VB Code

265 Sample C Code

267 Sample Java Code

269 Setting Up IDS

271 Setting Up Documaker

xv

Chapter 6, Customizing iDocumaker, iPPS, and WIP Edit

274 Setting Up a Favorites List for iDocumaker

276 Attaching Files to Transactions as Forms

276 Specifying the File Name and Type in IDS Attachment
Variables

277 Sending the File to IDS in a Message
277 Storing the File on a Disk Accessible to Documaker Bridge
278 Storing the File in a Documanage Repository
279 Error Messages
279 Specifying Duplex Options for the Attached Form
280 Debugging

282 Designating Read-Only Multi-Line Text Field Paragraphs

283 Printing on Your Workstation Printer

284 Preventing the Session from Expiring

285 Passing WIP Record IDs to the MergeWIP Rule

286 Automatically Updating iDocumaker

286 Configuring IDS to Update iDocumaker

287 Using the VERSUPD Utility

289 On the Client Side
290 Additional Utilities

291 Checking Version Information

292 Using the WIP Edit Plug-in

296 Controlling the Interface

302 Setting Up Custom Functions

303 Changing the User Associated with a Document

303 Sending Passwords

304 Requesting a Dictionary

305 Trapping Events

305 Tracking Session Information

307 Setting Up Printers

Chapter 7, Using the DP.DLL ActiveX Interface

312 Requirements

xvi

313 Setting Up the Configuration File

315 Properties

316 Methods

317 AddNameValuePair

317 Bin2Unicode

317 CleanCache

318 FileExists

318 GetMsg

318 GetUniqueString

318 Initialize

319 InitializeDefaults

319 ProcessTrn

319 PutMsg

320 ReadIniOptions

320 RequestValue

321 ResultValue

321 SetGUID

321 SOAPAddAttachment

322 SOAPGetAttachment

322 SOAPGetAttachmentAsBuffer

322 SOAPLoadAttachment

323 SOAPUnloadAttachment

323 Terminate

323 Trace

323 Unicode2Bin

324 WriteBinFile

324 WriteToLog

325 Examples

Appendix A, System Files

330 IDS Configuration Files

333 Sample Output Files

xvii

Appendix B, Error Messages

340 Displaying Error Messages

344 Internet Document Server Error Messages

346 Documaker Bridge Error Messages

350 Java Error Messages

351 Printstream Bridge Error Messages

352 AFP Error Messages

Appendix C, Choosing a Paper Size

356 US Standard Sizes

357 ISO Sizes

360 Japanese Standard Sizes

361 Printer Support for Paper Sizes

365 Paper Sizes for AFP Printers

367 Index

xviii

1

Chapter 1

Processing Documents
Using the Internet

Oracle Insurance offers a comprehensive range of
scalable high-performance products for every step in the
life cycle of a document. These include...

• Creation Solutions to capture data and create forms

• Publishing Solutions to volume produce
personalized documents

• Archival Solutions to intelligently store and retrieve
documents

• Management Solutions to control and network
documents

• Development Tools to customize your Oracle
Insurance solutions

Oracle Insurance’s Management Solutions give you the
ability to move and view your documents across the
enterprise. In addition to advanced document
networking communication products, Oracle Insurance
has Internet solutions for managing your documents.
Docupresentment’s Internet Document Server (IDS)
helps manage the flow of your documents.

IDS lets you access your documents with a web browser
from your intranet or the Internet. The standard web
browser interface includes security features, document
database lookup, and document viewing in PDF format
using the Adobe Acrobat Reader.

This chapter provides an overview of IDS, its concepts,
what it can offer you, as well as how it fits into the Oracle
Insurance’s family of solutions.

Chapter 1
Processing Documents Using the Internet

2

OVERVIEW For many years Oracle Insurance has been creating document solutions capable of
handling the high-volume, automated assembly needs of customers like you.

Through products such as Documaker and Documerge, Oracle Insurance has provided
clients in industries as diverse as insurance, finance, and utilities, with high-volume
document creation, processing, printing, and archiving solutions.

These solutions have typically concentrated on printed output although the real focus has
always been to deliver the high quality documents in the most cost-effective manner, and
to eliminate paper where ever possible.

The rapid acceptance of the Internet and in-house intranets has created a new and cost-
effective way to provide the timely, on-demand delivery of critical documents to remote
end-users equipped with only a minimum of standard software.

To address the need for Internet document processing, as well as other new technologies,
Oracle Insurance developed a line of products which support distributed documents. These
new products are collectively called Document Management Solutions and include
interfaces to document storage and retrieval systems, as well as WYSIWYG document
publishing and delivery via the Internet or your in-house intranet.

The foundation for document publishing and delivery, is Docupresentment’s Internet
Document Server. The server works with front-end thin clients via the Internet (or an
intranet) and executes back-end document processing applications.

Docupresentment supports several installable components, called bridges. These bridges
provide the software, interface document templates, and runtimes, necessary to process,
store, publish, and deliver your documents.

Internet
Browser Web ServerInternet

Docupresentment’s
Internet Document
Server

Docupresentment
bridges, rules,
runtimes, and
templates

Network File Server

Data

Overview

3

Currently, Oracle Insurance has released several bridges, such as the one to the
Documaker archive and the one to Documanage. These bridges provide retrieval and
PDF publishing of archived Documaker document sets and a bridge to Metacode and
AFP print streams.

In addition, Oracle Insurance also provides a way to distribute documents produced by
the GenPrint program, the print component of the Documaker system. With the PDF
Print Driver, Oracle Insurance gives Documaker users several ways to distribute
documents via the Internet:

• From Documaker’s archive component (the GenArc program)

• From Documaker’s print component (the GenPrint program)

The Internet Document Server and the bridges to Documaker and Documanage are the
first in a series of new products from Oracle Insurance. Over time, new product offerings
from Oracle Insurance will provide additional solutions in these areas.

• Internet and intranet-based document processing

• Client-server processing

• Workflow management

• Integration with existing document management and storage subsystems

...as well as other specialized applications that integrate with Windows and Microsoft’s
BackOffice.

The product architecture uses a layered hierarchy that provides for backward
compatibility to existing systems, while positioning for future product offerings.

• Management Solutions. Some components will provide totally new stand-alone
systems and capabilities, while others focus on leveraging and extending existing
Oracle Insurance applications. Internet Document Processing is an example of a new
component that can be used to leverage existing applications and data with extended
functionality.

• Docupresentment Bridges. These components are designed for use with existing
applications or other custom built interfaces. Oracle Insurance offers a wide range of
technical and professional services for designing and building custom bridges.

• Existing applications. These components cover a wide range of new and existing
products and applications from Oracle Insurance’s various divisions, as well as other
in-house or legacy systems.

Management
Solutions Internet Document Processing Future products

Bridges Bridge Bridge Bridge

Existing applications Documanage Documaker Other products

Chapter 1
Processing Documents Using the Internet

4

HTML vs. PDF The standard underlying delivery mechanism of the Internet and the World Wide Web is
HTML documents delivered via HTTP. HTML (Hyper-text Markup Language) files are
essentially simple text files, marked up with formatting commands which appear alongside
the text. The problem is that HTML focuses primarily on maintaining document content
and not the exact look-and-feel of the document.

The challenge for Oracle Insurance is to deliver a standardized solution in an area that is
Oracle Insurance’s strength—reproducing the exact look-and-feel of a document set, not
just the content, across multiple platforms.

In addition, another challenge is to provide a solution that supports the growing body of
thin client workstations attached to the Internet, requiring only a minimum of end-user
software.

To meet these and other challenges, Oracle Insurance stores and creates files in Portable
Document Format (PDF). the PDF file fomat is the industry standard, providing a
searchable, open format that maintains the look-and-feel of the original documents and
works across a variety of platforms.

In addition, using Adobe Software’s Acrobat Reader, a free application anyone can
download from the Internet, thin-client end users can easily view and print complete
document sets which are identical to the original documents.

NOTE: You can read more about Adobe’s Portable Document Format and download the
Adobe Acrobat Reader from Adobe’s web site at www.adobe.com.

http://www.adobe.com

Overview

5

ARCHITECTURAL CHANGES IN VERSION 2.X
The core architecture of Internet Document Server changed in version 2.0 to allow major
enhancements of current and future functionality. The single-tasking architecture of
Internet Document Server version 1.8 was replaced with a multi-tasking one that can
handle several tasks at once, allowing greater throughput and fewer pauses. Tasks now
handled concurrently include

• Handling of certain types of requests. Rules for requests that are written in a thread-
safe manner can be run at the same time in one instance of IDS.

• Purging of cached files that have expired. When processing requests, IDS can
produce temporary files, which are given a length of time to exist before they are
automatically deleted. IDS version 1.8 had to stop processing requests to periodically
purge these files; IDS version 2.x does not pause request processing to purge files.

• Receiving requests from a messaging queue.

• Sending results back to a different messaging queue.

• Handling multiple incoming and outgoing HTTP requests.

• Watching the running rules to see if they are taking too long.

• Looking for changes to the configuration file and restart IDS.

• Looking for changes to logging configuration and incorporate changes without
restarting IDS.

In addition to using HTTP as a transport of SOAP messages, IDS can respond to requests
formatted as a URL from a browser and display results in HTML. The XML result
produced by IDS is transformed by XSLT templates into HTML; there can be a different
XSLT template for each request, or a default will be used.

In addition to HTTP, WebSphere MQ and MSMQ, IDS version 2.x can use Java
Messaging Service (JMS) queues for sending and receiving messages. JMS is a standard for
messaging used by J2EE application servers, such as WebSphere, WebLogic and JBoss.

You can configure IDS version 2.x to handle requests from both message queues and
from HTTP in the same instance; version 1.8 could only do one or the other.

The format of requests coming in to IDS is configurable and extensible. If a third-party
application wants to send requests in formats other than SOAP, custom translators can
be installed in IDS. When IDS receives a request it will recognize the format and the result
will be sent back in the same format as it was received.

IDS can be monitored by the Simple Network Management Protocol (SNMP). This is the
standard protocol used by manufacturers of networking hardware (such as routers),
printers and computers to monitor uptime and usage statistics. IDS appears as another
piece of equipment to SNMP monitoring applications.

Version 2.x also enhances IDS’s error logging and tracing capabilities. Logging messages
can be assigned a severity level (DEBUG, INFO, WARN, ERROR or FATAL) and
logging messages can be routed to multiple destinations including the console screen,
files, the Windows event logger, the UNIX syslog daemon, and email. Logging options
can be changed without restarting IDS, making the diagnosing of problems easier.

Details on these features can be found in this manual and in the SDK Reference.

Chapter 1
Processing Documents Using the Internet

6

REQUIRED
COMPONENTS

To use Oracle Insurance’s Internet document processing solution, you need several
components. Some components are included in Oracle Insurance’s Internet Document
Server, while others are included in the various bridges. Other required components must
be provided by the end-user or the license-holder. The basic components are:

Provided by the end-
user

WEB BROWSER. An end-user workstation must have a working web browser that
supports Adobe Acrobat Reader version 7.0 or higher. Oracle Insurance has tested
successfully with Microsoft Internet Explorer 6.0 and higher. To download a copy of
Adobe Acrobat Reader, go to:

http://www.adobe.com

INTERNET ACCESS. An installed and working Internet (or intranet) connection,
including the necessary hardware and software, Internet provider account, modem, and
so on. The access should provide acceptable performance when downloading large files.

JAVA RUNTIME ENVIRONMENT. Java and the Java runtime environment (JRE) are
only required if you are using Java rules or a Java client. A Java Runtime Environment
(JRE) or the Java Software Development Kit (JDK), version 1.5 (‘Java 5’) is recquired.
You can download a free runtime environment at:

http://java.sun.com

To run certain rules, the Java Cryptography Extension is required. It is included in Java
runtimes version 1.5 and later.

Provided by the Oracle
Insurance license-

holder

SERVER. An installed and working server, such as Microsoft Windows (2000 or XP).

WEB SERVER. An installed and working web server, such as a web server with Windows
2000 Server or Windows 2003 Server and Microsoft Internet Information Server 5.0 (or
higher). While you can use Windows XP for development and testing purposes, do not
use it as a production web server.

NOTE: All of these components should be installed and working before you install IDS.
In general, end-users will be supported and trained on these applications by their
own experienced in-house Internet support group. Contact your Oracle
Insurance sales representative to inquire about the services and consulting
packages Oracle Insurance offers.

Components Available from Oracle Insurance

Internet Document
Server

This component includes:

• Internet Document Server

• Service administration rules and supporting HTML templates

• Example test rules and HTML templates

• Sample programs written in Java and C++

• Sample programs, rules and ActiveX components written in Microsoft Visual Basic.
(Windows only)

http://www.adobe.com
http://java.sun.com

Required Components

7

• Sample Microsoft Active Server Page (Windows only)

• Sample Java Server Page programs

• Documentation (see Using the Internet Document Server, beginning on page 9)

Documaker Bridge This optional component includes:

• The bridge PDF generator

• Base bridge rules for archive/retrieve/HTML templates

• Subset Documaker runtime to support archive/retrieve rules

• Documentation (see the separate manual entitled, Using the Documaker Bridge)

Printstream Bridge
(only for Windows)

This optional component includes:

• The bridge PDF generator

• Rules to support Documerge Metacode and AFP output and archive/retrieve/
HTML templates

• Sample HTML templates

• Utility for creating logo files

• Utilities for creating and checking fonts

• Documentation (see the separate manual entitled, Using the Printstream Bridge)

Documanage Bridge
(only for Windows)

This optional component includes:

• The bridge PDF generator

• Rules to support Documanage output archive/retrieve/HTML templates

• Sample archive/retrieve/HTML templates

• Documentation (see the separate Documanage manuals entitled, General Reference for
the Documanage Bridge and Rules Reference for the Doucmanage Bridge)

Docuflex Bridge This optional component includes:

• An IDS rule DLL (DFLXRULE.DLL)

• Documentation (see the separate manual entitled, Using the Docuflex Bridge)

PDF print driver This component includes tools which let you convert output from Documaker’s
GenPrint program into PDF files, which can be viewed using an Internet browser. For
more information, see Creating PDF Files, beginning on page 208.

HTML print driver This component lets you create HTML files by simply printing to the HTML print driver.
For more information, see Creating HTML Files on page 230.

Chapter 1
Processing Documents Using the Internet

8

DSI SDK Package This component includes:

• Software Developer Kit for the various bridges

• Source code to archive retrieval rules

• API documentation and technical reference for writing custom rules, Visual Basic
programs, Active X components and ASP components (see Using the Internet Document
Server SDK in the SDK Reference).

NOTE: The sample dialog templates use standard HTML language features found in
HTML version 2.0 and above. There are many ways you can customize these
templates to meet your company’s needs. The HTML language is well
documented in many commercially available books, and is supported by many
commercially available design tools. The HTML templates provided are designed
to be able to be maintained with most commercial HTML editors. Oracle
Insurance can provide services to customers needing assistance with HTML
template customization.

Users and customers need to be aware that due to the varying nature of browsers and their
continuously changing levels of support for the evolving HTML language, the use of
certain HTML tags in the templates and dialogs might limit the ability of users to display
certain aspects of the customized pages.

9

Chapter 2

Using the Internet
Document Server

This chapter provides information on the capabilities of
the Internet Document Server and its architecture. This
chapter also tells you how to set up the Internet
Document Server.

NOTE: For information on installing IDS, see the IDS
Installation Guide.

You’ll find this information:

• Overview on page 11

• Using Multiple Servers on page 50

• Setting Up a Windows NT Service on page 54

• Handling Multi-threaded Requests on page 55

• Using Rules Written in Other Scripting Languages
on page 58

• Using IDS as a Client to Another IDS on page 59

• Monitoring IDS with SNMP Tools on page 64

• Managing IDS Instances on page 66

• Sending Results and Receiving Requests in Multiple
Formats on page 75

• Logging and Tracing on page 78

• Configuring IDS on page 97

• Referencing Attachment Variables on page 106

• Using the Message Queues on page 108

• Using the Java Message Service (JMS) on page 113

Chapter 2
Using the Internet Document Server

10

• Using WebSphere MQ on page 116

• Using HTTP on page 126

• Using Multiple Bridges on page 130

• Submitting Batch Requests on page 132

• Printing in Duplex Mode to PCL Printers on page 134

• Using IDS to Distribute Email on page 135

• Using IDS to Run Documaker on page 144

• Using the XML Messaging System on page 158

• Connecting to an SQL Database on page 166

• Using the Thin Client Forms Publisher on page 171

• Pausing IDS on page 172

• Executing Request Types at Run Time on page 175

• Publishing Your Forms on the Web on page 177

• Handling Multi-Part/Form-Data Forms on page 182

• Formatting Text with XML Markup on page 183

• Encrypting and Decrypting Data Files on page 184

• Using Multiple Attachment Values with the Same Name on page 185

• Converting XML Files Using a Template on page 188

• Customizing Your System on page 192

• Handling Security Issues on page 195

• Using the FAP2XML Utility on page 197

• Using LDAP Support on page 198

• Using Default Time-outs for DSILIB-Based Client Applications on page 199

• Running Timed Requests on page 201

• In-Process Rendering for DPAView on page 202

• Using DAL Functions for WIP Column Access on page 203

• Using Enterprise Web Processing Services on page 205

Overview

11

OVERVIEW The Internet Document Server lets users connect to the server via the Internet. Executing
back-end applications, however, requires additional components. These additional
components are called bridges. These bridges provide bridge components, software rules,
document templates, and other files necessary to process documents.

The Internet Document Server lets users communicate via standard Internet methods
using a standard web browser. No other specialized client software is required to use the
Internet Document Server; however, additional bridge components may require
additional browser plug-ins, such as Adobe’s Acrobat Reader. The Internet Document
Server runs on a Microsoft Windows or Sun Solaris server running a web server package.

NOTE: See Processing Documents Using the Internet on page 1 for more information
on Oracle Insurance’s related products.

The following diagram shows you how the system operates.

Chapter 2
Using the Internet Document Server

12

World Wide
Web Client

Intranet Client

Local or
Batch Client

Web Server

CGI-based Client
Module

ActiveX-based
Custom Client

Module (Windows)

Custom Client
Module

Front-end components talk
to IDS via the DSI API.
These components provide
communications and an
interface which gather client
requests, translate those
requests for IDS, and then
translate the results for the
client’s use.

Java-based Custom
Client Module

DSI API

Document Processing Server

Internet

Back-End Components

Bridges Processing Rules Data, Document
Sets or Archives

Back-end components
include the bridges to other
applications, rules which
process the data, the data or
archives being processed,
and document sets. These
components communicate
with IDS via the DSI API.

Front-End (Client) Components

DSI API

Distributed Clients World Wide
Web Client

Document
Server

Active Server Pages
(ASP) Custom Client
Module (Windows)

Java Server Pages
(JSP) Custom Client

Module

HTML dialogs
and templates

Overview

13

CREATING FRONT-END SOLUTIONS

You can use either JSP (Java server pages), ASP (active server page) or CGI (common
gateway interface) to create front-end solutions, as shown in the previous illustration.
While CGI is good for some situations, to handle a high volume of transactions, JSP or
ASP is a more efficient choice.

NOTE: Keep in mind ASP is a Microsoft product and is not available on Solaris.

USING JSP
With JSP, the HTML content is included in the JSP page. There is no separate template.

To help you more quickly create your front end solutions, we provide the DSI JavaBean
to communicate with Internet Document Server. This bean is in IDSJSP.jar.

Internet Document
Server

Internet Document
Server

CGI

ASP

Web Server

Internet Information
Server (IIS)

(DCLTW32.EXE)

Internet Document
Server JSP

JSP-enabled application
server (such as Tomcat

or WebSphere)

Chapter 2
Using the Internet Document Server

14

USING THE IDSJSP JAVABEAN

As shown in this illustration, the IDSJSP bean collects requests and results. The bean has
the following properties and methods.

Properties

Methods

The DSI JavaBean

Application server with JSP support (such
as Tomcat, WebLogic, or WebSphere)

JSP

AddRequest ClearRequest ProcessRequest

Browser Browser
Browser

(IDSJSP.jar)

Internet Document Server

Property Description

waittime The time in between tries for ProcessRequests.

timeout The total time to wait for the ProcessRequest.

Method Description

AddRequest AddRequest(Object key, Object value)
Adds name/value fields to the record to send to the IDS rule.

AddAllRequest AddAllRequest(javax.servlet.ServletResponse request)
Adds all name/value fields from the request objects to the records to send
to the IDS rule.

Overview

15

USING THE JSP SAMPLES

The system includes several JSP files which you can use as a guide when building your
front-end solutions. You can also make copies of these JSP files and modify them to meet
your needs. This illustration shows how these pages work together:

NOTE: The search, record, and recips HTML pages are dynamically generated.

Handling Multi-Part/Form-Data Forms
JSP pages can process HTML forms encoded as multi-part/form-data. This encoding
enables file uploading from HTML pages to IDS for processing.

ProcessRequest ProcessRequest()
Sends all the name/value and request types to IDS rules. Processes the
IDS rule and gets return records from the IDS rule and returns them as
type HashMap.

GetResult GetResult(Object key)
Gets the return record value from the IDS rule index using the key from
the internal result.

ClearRequest ClearRequest()
Clears attachment variables out of the request. Use after ProcessRequest
and before the next set of AddRequest calls.

ClearResult ClearResult()
Clears the result.

Method Description

login.htm

Search HTML page

Record HTML page

Recips HTML page

PDF file

login.jsp

search.jsp

record.jsp

recips.jsp

printout.jsp

Select transaction

Retrieve document

PDF file

Log in

Retrieve

Chapter 2
Using the Internet Document Server

16

Here is a sample HTML form that includes uploading a file. The file is sent in the
IMAFILE attachment named in binary format along with the usual attachment variables
for a LGN request.

<FORM METHOD=POST ENCTYPE="multipart/form-data" ACTION="login.jsp">

 <INPUT TYPE="FILE" NAME="IMAFILE"/>

 <INPUT NAME="REQTYPE" value="LGN" TYPE="HIDDEN">

 <H3>

 User ID: <INPUT SIZE=10 MAXLENGTH=8 NAME="USERID"
value="FORMAKER">

 Password: <INPUT TYPE=PASSWORD SIZE=8 MAXLENGTH=8
NAME="PASSWORD" VALUE="FORMAKER"><P>

 Archive:

 <SELECT NAME="CONFIG">

 <OPTION VALUE = "UTILITY">Utility Company

 <OPTION VALUE = "FINANCE">Worldwide Financial

 </SELECT>

 <P>

 <INPUT TYPE="submit" VALUE="Login"> <INPUT
TYPE="reset" VALUE="Reset"><P>

 </H3>

 </FORM>

Using ASP
With ASP, the HTML page is included with the ASP page. There is no separate template.
Furthermore, the processing is done in each ASP page instead of in DCLTW32.EXE. On
the other hand, ASP also requires more coding effort.

To help you more quickly create your front end solutions, we created IDSASP
(IDSASP.DLL).

With IDSASP, you can use the ASP Session Collector and ProcessQ or you can bypass
the Session Collector using ProcessRQ, as shown in the following illustration.

Internet Document
Server IDSASP ASP

Internet
Information Server

(IIS)

Overview

17

USING THE IDSASP OBJECT

As shown in this illustration, the IDSASP object collects requests and results. To
communicate with IDS using ASP through DSIAPI, the system includes an ActiveX
DSO named IDSASP.DLL. This DSO has the following properties and methods.

Properties

Internet Document Server

The IDSASP Object

Internet Information Server (IIS)

ASP
Session Collector

Call AddToQueue/GetQueueRec

ProcessQ

AddReq ClearReq ClearRes

ProcessRQ

Request
Collection

Result
Collection

Browser Browser
Browser

(IDSASP.DLL)

Property Description

hInstance Type: Long
DSI Instance Handle is created by InitSession() in IDSASP.

oDSI Type: DSICoAPI
DSI Handle.

Request Type: Collection
Request Collection in IDSASP.

Result Type: Collection
Result Collection in IDSASP.

ShowAtt Type: Boolean
When set to True, the system prints the request and result when you call the
ProcessQ or ProcessRq method. Use this property for debugging.

Chapter 2
Using the Internet Document Server

18

Methods

WaitTime Type: Long
Retry time in the processing queue. The default is 1000 milliseconds.

TimeOut Type: Long
Time-out in milliseconds. The default is 15000 milliseconds.

Property Description

Method Description

AddReq Syntax: AddReq (ByVal Name As String, ByVal Value As String)
Call this method to add a request to IDSASP request collection.

ClearReq Syntax: ClearReq()
Call this method to clear the IDSASP request collection.

ClearRes Syntax: ClearRes()
Call this method to clear the IDSASP result collection.

OnEndPage Called by ASP when the object is instantiated.

OnStartPage Called by ASP when the object is released.

ProcessQ Syntax: ProcessQ()
Call this method to...
- Retrieve the name/value pair from the ASP session collection and add it to
the queue.
- Release the record into the queue for IDS to process.
- Read back the result from IDS. Retry time and time-out are defined in the
WaitTime and TimeOut properties.
- Store the results in the ASP session collection.

ProcessRq Syntax: ProcessRq()
Call this method to...
- Retrieve the name/value pair from the IDSASP request collection and add it
to the queue.
- Release the record into the queue for IDS to process.
- Read back the result from IDS. Retry time and time-out are defined in the
WaitTime and TimeOut properties.
- Store the results in the IDSASP result collection.

ReadBinFile Syntax: ReadBinFile(ByVal bFileName As String)
Call this method to read the binary file from the local hard disk and store as a
binary array.

Overview

19

For both ASP and the DCLTW32.EXE file, fields are passed between the browser and
ASP via a CGI query string, such as:

http://docucorp/asp/utility/search.asp?USERID=USERID&CONFIG=UTILITY

or in a form with the POST or GET method.

The differences between using ASP or the CGI-based client (DCLTW32.EXE) are:

• The HTML page is included with the ASP page instead of a separate HTML template

• Processing is done in each ASP page instead of only in the DCLTW32.EXE file

Sending and Receiving Attachment Fields
The IDSASP.DLL provides two ways to send and receive attachment fields to and from
DSIAPI: using the ProcessQ method and using the ProcessRq method.

Using the ProcessQ
method

Here is an example of using session collection with the ProcessQ method:

<%

CrLf = Chr(13) + Chr(10)

set DSI = Server.CreateObject("IDSASP.DSI")'create DSI handle

session.Abandon 'Clear Session

for i=1 to Request.Form.Count'Read Attachment and Create session
Collection

session(Request.Form.Key(i))=Request.Form(i)

next

DSI.ProcessQ 'Execute Request From Attachment

%>

<%

'Loop To display all of the records.

For i=1 to session("RECORDS")

 alink = "recips.asp"

 alink = alink & "?USERID=" &
Server.URLEncode(session("USERID"))

 alink = alink & "&ArcKey=" & Server.URLEncode(session("RECORDS"
& cstr(i) & ".ArcKey"))

 alink = alink & "&REQTYPE=RCP"

 alink = alink & "&CONFIG=" &
Server.URLEncode(session("CONFIG"))

 alink = alink & "&COMPANY=" &
Server.URLEncode(session("RECORDS" & i & ".Company"))

 alink = alink & "&LOB=" & Server.URLEncode(session("RECORDS" &
cstr(i) & ".Lob"))

 alink = alink & "&POLICYNUM=" &
Server.URLEncode(session("RECORDS" & cstr(i) & ".PolicyNum"))

 alink = alink & "&RUNDATE=" &
Server.URLEncode(session("RECORDS" & cstr(i) & ".RunDate"))

 Response.Write "<TR><TD>"

 Response.Write "" & session("RECORDS" &
i & ".Company") & "</TD>"

 Response.Write "<TD>" & session("RECORDS" & cstr(i) & ".Lob")
& "</TD>"

 Response.Write "<TD>" & session("RECORDS" & cstr(i) &
".PolicyNum") & "</TD>"

Chapter 2
Using the Internet Document Server

20

 Response.Write "<TD>" & session("RECORDS" & cstr(i) &
".RunDate") & "</TD>"

 Response.Write "</TR>" & CrLf

next

%>

Using the ProcessRq
method

Here is an example of using the IDSASP.DLL request and result collection properties
with the ProcessRq method.

<%

CrLf = Chr(13) + Chr(10)

set DSI = Server.CreateObject("IDSASP.DSI")'create DSI handle

'Read Input Parameter from INPUT FORM and send request to DSI

for i=1 to Request.Form.Count

DSI.AddReq Request.Form.Key(i),Request.Form(i)

next

DSI.ProcessRq 'Execute Request

%>

<%

'Loop display Response Pair

for i=1 to DSI.Result("RECORDS").Value

 alink = "recips.asp"

 alink = alink & "?USERID=" &
Server.URLEncode(DSI.Result("USERID").value)

 alink = alink & "&ArcKey=" &
Server.URLEncode(DSI.Result.Item("RECORDS" & cstr(i) &
".ArcKey").value)

 alink = alink & "&REQTYPE=RCP"

 alink = alink & "&CONFIG=" &
Server.URLEncode(DSI.Result("CONFIG").value)

 alink = alink & "&COMPANY=" &
Server.URLEncode(DSI.Result("RECORDS" & i & ".Company").value)

 alink = alink & "&LOB=" &
Server.URLEncode(DSI.Result.Item("RECORDS" & cstr(i) &
".Lob").value)

 alink = alink & "&POLICYNUM=" &
Server.URLEncode(DSI.Result.Item("RECORDS" & cstr(i) &
".PolicyNum").value)

 alink = alink & "&RUNDATE=" &
Server.URLEncode(DSI.Result.Item("RECORDS" & cstr(i) &
".RunDate").value)

 Response.Write "<TR><TD>"

 Response.Write "" & DSI.Result("RECORDS"
& i & ".Company").value & "</TD>"

 Response.Write "<TD>" & DSI.Result.Item("RECORDS" & cstr(i) &
".Lob").value & "</TD>"

 Response.Write "<TD>" & DSI.Result.Item("RECORDS" & cstr(i) &
".PolicyNum").value & "</TD>"

 Mh=Left(DSI.Result.Item("RECORDS" & cstr(i) &
".RunDate").value,2)

 Dt=Mid(DSI.Result.Item("RECORDS" & cstr(i) &
".RunDate").value,3,2)

 Yr=Right(DSI.Result.Item("RECORDS" & cstr(i) &
".RunDate").value,2)

 Dat=Cdate(Mh & "/" & Dt & "/" & Yr)

 Response.Write "<TD>" & FormatDateTime(Dat,1) & "</TD>"

 Response.Write "</TR>" & CrLf

Overview

21

next

%>

Sample Pages Here are some sample pages:

Page 1 This page sends a request from the browser with two file attachments.

Page 2 This page receives an HTTP request from page 1, parses the request, and uploads the files.

<form name="form" enctype="multipart/form-data" action="test.asp" method="post">

<table>

<tr><input name="key1" value="12345678" /></tr>

<tr><input name="key2" value="456" /></tr>

<tr><input name="key3" value="789"/></tr>

<tr><input name="empty" value=""/></tr>

<tr><input name="file1" type="file"/></tr>

<tr><input name="file2" type="file"/></tr>

<tr><input name="submit" type="submit"/></tr>

Chapter 2
Using the Internet Document Server

22

Showing a PDF File
ASP provides two ways to show a PDF file: using the Response.Redirect method and
using the Read ReadBinFile method.

Using the
Response.Redirect

method

Here is an example of showing a PDF file using the Response.Redirect method. You must
enter a URL.

<%@ Language=VBScript %>

<%

Set DSI = Server.CreateObject("IDSASP.DSI")'create DSI handle

session.Abandon 'Clear Session

For i=1 to Request.Form.Count'Read Attachment and Create session
Collection

session(Request.Form.Key(i))=Request.Form(i)

Next

DSI.ProcessQ 'Execute Request From Attachment

<%

 'create an instance of the object which calls parseData

 set o = server.CreateObject("IDSASP.DSI")

 'o.bDebug = true

 o.parseData()

 'write the element count in the request collection

 response.write "count=" & o.request.count & "

"

 'indicate if the request is a multipart request

 response.write "Multipart=" & o.bMultipart & "
"

 'taverse through the request collection and write the name / value pairs

 for i = 1 to o.request.count

 name = o.request.Item(i).Name

 value = o.getRequest(name)

 response.write "(" & name & ") = (" & value & ")
"

 next

 'if the request is a multipart request, then process the attachments

 if o.bMultipart = true then

 for each attachment in o.attachments

 if IsObject(attachment) then

 name = attachment.name

 response.write "attachment name=" &name & "
"

 file = attachment.file

 response.write "file name=" & file & "
"

 ftype = attachment.ftype

 response.write "file type=" & ftype & "
"

 encoding = attachment.encoding

 response.write "encoding=" & encoding & "
"

 buffer = attachment.buffer

 response.write "buffer length=" & Len(buffer) & "
"

 'write attachment to disk

 path = o.upLoad(name, "c:\inetpub")

 response.write "path returned by upLoad api = " & path & "
"

Overview

23

HostAddr=Request.ServerVariables("HTTP_HOST")'Get Host Name

PrintFile=session("REMOTEPRINTFILE")'Get Full Printed Filename
with Path

StartPoint=instr(1,PrintFile,"\")'Look for \ sign

NameWidth=len(PrintFile)-StartPoint'Filename Length

FileName=Mid(PrintFile,StartPoint+1,NameWidth)'Get Filename

Url="http://" & HostAddr & "/doc-html/" & Filename'Construct
URL

Set DSI = nothing

If instr(1,Request.ServerVariables("HTTP_USER_AGENT"),"IE")<>0
then

'Check IE Browser

%>

<HTML>

<BODY leftmargin=0 topmargin=0 scroll=no>

<embed width=100% height=100% fullscreen=yes src="<%=Url%>">

</BODY>

</HTML>

<%

Else

Response.Redirect Url

End If

%>

Chapter 2
Using the Internet Document Server

24

Using the Read
ReadBinFile method

Here is an example of showing a PDF file using the Read ReadBinFile method in the
IDSASP.DLL file, you must enter the local path.

<%@ Language=VBScript %>

<%

 Dim Stream

set DSI = Server.CreateObject("IDSASP.DSI")'create DSI handle

'Attach Input Parameter from INPUT FORM

for i=1 to Request.Form.Count

DSI.AddReq Request.Form.Key(i),Request.Form(i)

next

DSI.ProcessRq 'Send Queue to DSI

%>

<%

Response.Buffer=True

Pth=Request.ServerVariables("PATH_TRANSLATED")

DsiPath=left(pth,instr(4,pth,"\"))'Get Path of Docserv

PrintFile=DsiPath & DSI.Result("REMOTEPRINTFILE").Value

 Response.ContentType = "application/pdf"

 Stream = DSI.ReadBinFile(PrintFile)

Response.BinaryWrite(Stream)

Response.End

set DSI = nothing

%>

Overview

25

Using the ASP Samples
IDS includes several ASP files which you can use as a guide when building your own
front-end solutions. You can also make copies of these ASP files and modify them to
meet your needs. Keep in mind that all samples use the...

• ASP session collection method except for the World Wide Combo (Insure) sample
which uses the Request/Result collection in the IDSASP.DLL.

• Response.Redirect Method to view PDF except for the World Wide Combo (Insure)
sample which uses the ReadBinFile method.

NOTE: We use Chili!Soft to work with third-party vendors. For more information, visit
their web site: www.chilisoft.com.

The sample ASP files include:

• LOGIN.ASP

• SEARCH.ASP

• RECORD.ASP

• RECIPS.ASP

• PRINTOUT.ASP

This illustration shows how these pages work together:

For more information about Active Server Pages, consult your Microsoft documentation.

Using the HTTP Parsing and Uploading APIs
The following APIs in IDSASP let you parse HTTP requests into separate request and
attachments collections and provide a way to process multipart/form-data form requests.

LOGIN.HTM

SEARCH.HTM

RECORD.HTM

RECIPS.HTM

PDF.HTM

LOGIN.ASP

SEARCH.ASP

RECORD.ASP

RECIPS.ASP

PRINTOUT.ASP

Select transaction

Retrieve document

PDF file

Log in

Dynamic page

Retrieve

Dynamic page

Dynamic page

http://www.chilisoft.com/
http://www.chilisoft.com/

Chapter 2
Using the Internet Document Server

26

• parseData

• getRequest

• getAttachment

• getBuffer

• upLoad

Multiple file attachments are parsed into attachments collections in IDSASP. Files can
then be uploaded (written to disk) to the web server via the upLoad API.

Attachment objects can also be retrieved from the attachments collection via the
getAttachment API. Attachment objects contain properties for each attachment as well
as an attachment buffer that contains the actual file attachment contents.

You can also retrieve file attachment contents as buffers from the attachments collection
via the getBuffer API. The parseData API can also parse non multi-part/form-data
HTTP requests. Use the getRequest API to retrieve name/value pairs from the request
collection.

In addition, you can also see Sample Pages on page 21.

parseData Use this API to parse HTTP requests into separate request and attachments collections.
Regular name/value pairs in an HTTP request are parsed into request collection. File
attachments are parsed into an attachments collection. The parseData API can parse
multipart/form-data HTTP requests as well as non multipart/form-data requests. Call
this API at the beginning of an ASP script to parse the HTTP request from a submitted
form.

Parameters None

Returns Nothing

getRequest Use this API to retrieve name/value pairs from the request collection instead of the
Request.Form API calls.

Parameters

Returns A string value with the value in request collection for key name.

Parameter Description

name A string value that represents the name of a key in the request collection.

Overview

27

getAttachment Use this API to return an attachment object from the attachments collection. This API
retrieves not only the file attachment contents, but also its properties. The attachment
object returned contains these properties:

Parameters

Returns An attachment object containing the file attachment contents as well as properties for the
attachment.

getBuffer Use this API to retrieve attachments as buffers.

Parameters

Returns A string buffer containing the contents of the file attachment in the attachments
collection.

Property Description

name This is the actual name of the attachment in the HTTP request. Its value
corresponds to the value of the file form tag used to submit the attachment in the
HTTP request.

File A string value that contains the file name and extension of the attachment. Its
value corresponds to the file name of the File form tag used to submit the
attachment.

Ftype A string value that contains the extension (file type) of the attachment.

Buffer A string buffer holding the file attachment contents.

Encoding The actual encoding type used by the browser when the file attachment was
submitted.

Parameter Description

name A string value that represents the name of a key in the attachments collection.

Parameter Description

name A string value that represents the name of the attachment in the Attachment
object within the attachments collection. This value should be the same as that of
the file form tag name used to send an attachment in an HTTP request.

Chapter 2
Using the Internet Document Server

28

upLoad Use this API to write an attachment object's buffer contents from the attachments
collection to disk. This API lets you upload file attachments to disk on the web server.

Parameters

Returns The full path and file name of the file uploaded, if successful.

Sample Pages Here are some sample pages:

Page 1 This page sends a request from the browser with two file attachments.

Parameter Description

name A string value that represents the name of the attachment in the attachment object
within the attachments collection. This name is the same as the file form tag used
to send the attachment from the browser in an HTTP request.

Path A string value that specifies the full path where you want the attachment written.

<form name="form" enctype="multipart/form-data" action="test.asp" method="post">

<table>

<tr><input name="key1" value="12345678" /></tr>

<tr><input name="key2" value="456" /></tr>

<tr><input name="key3" value="789"/></tr>

<tr><input name="empty" value=""/></tr>

<tr><input name="file1" type="file"/></tr>

<tr><input name="file2" type="file"/></tr>

<tr><input name="submit" type="submit"/></tr>

Overview

29

Page 2 This page receives an HTTP request from page 1, parses the request, and uploads the files.

<%

 'create an instance of the object which calls parseData

 set o = server.CreateObject("IDSASP.DSI")

 'o.bDebug = true

 o.parseData()

 'write the element count in the request collection

 response.write "count=" & o.request.count & "

"

 'indicate if the request is a multipart request

 response.write "Multipart=" & o.bMultipart & "
"

 'taverse through the request collection and write the name / value pairs

 for i = 1 to o.request.count

 name = o.request.Item(i).Name

 value = o.getRequest(name)

 response.write "(" & name & ") = (" & value & ")
"

 next

 'if the request is a multipart request, then process the attachments

 if o.bMultipart = true then

 for each attachment in o.attachments

 if IsObject(attachment) then

 name = attachment.name

 response.write "attachment name=" &name & "
"

 file = attachment.file

 response.write "file name=" & file & "
"

 ftype = attachment.ftype

 response.write "file type=" & ftype & "
"

 encoding = attachment.encoding

 response.write "encoding=" & encoding & "
"

 buffer = attachment.buffer

 response.write "buffer length=" & Len(buffer) & "
"

 'write attachment to disk

 path = o.upLoad(name, "c:\inetpub")

 response.write "path returned by upLoad api = " & path & "
"

Chapter 2
Using the Internet Document Server

30

Using the XMLSession Rules
Use the XMLSession rules to save state information across multiple IDS servers and
across multiple web servers. Session information for each client session is saved as an
XML file on the server side. This also increases security as session information no longer
resides on the web server.

You can store, retrieve, and save files using the XMLSession rules. You can retrieve the
session information as rowset on the client side and it is also accessible using session
methods available in IDSASP and IDSJSP.

For more information about these methods and rules, see

• IDSASP Methods on page 29

• IDSJSP Methods on page 31

• XMLSession Rules on page 33

IDSASP Methods
Here are the IDSASP methods:

addSessionVar Use this method to add a name/value pair to the session collection. You can include these
parameters:

Here is an example:

dsi.addSessionVar "USERID", "FORMAKER"

getSessionVar Use this method to return a string containing the value of name in the session collection.
You can include these parameters:

Here is an example:

userid = dsi.getSessionVar("USERID")

removeSessionVar Use this method to remove a name/value pair from the session collection. You can
include these parameters:

Here is an example:

Parameter Description

name The name of the name/value pair to add to the session.

Value The value of the name/value pair to add to the session.

Parameter Description

name The name of the name/value pair to retrieve from the session.

Parameter Description

name The name of the name/value pair to remove from the session.

Overview

31

dsi.removeSessionVar "USERID"

addSessionObject Use this method to add a binary or text buffer to hold the contents for a file to the session
collection. You can include these parameters:

Here is an example:

dsi.addSessionObject "FILE1", buffer

getSessionObject Use this method to retrieve a buffer that holds the contents of a file from the session
collection. You can include these parameters:

Here is an example:

buffer = dsi.getSessionObject("FILE1", 1)

binBuf = dsi.getSessionObject("FILE2", 2)

removeSessionObject Use this method to remove an object from the session collection. You can include these
parameters:

Here is an example:

dsi.removeSessionObject "FILE1"

Parameter Description

name The name of the object name to add to the session.

Buffer A binary or text buffer holding the contents of a file to add to the session.

Parameter Description

name The name of the object to retrieve from the session.

Opt An integer value that indicates whether the object should be retrieved as a binary
or text buffer (1=text, 2=binary)

Parameter Description

name The name of the object to remove from the session.

Chapter 2
Using the Internet Document Server

32

IDSJSP Methods
Here are the IDSJSP methods:

addSessionVar Use this method to add a name/value pair to the session map. You can include these
parameters:

This method has no return value. Here is an example:

dsimsg.addSessionVar("USERID", "FORMAKER");

removeSessionVar Use this method to remove a name/value pair from the session map. You can include
these parameters:

This method has no return value. Here is an example:

dsimsg.removeSessionVar("USERID");

getSessionVar Use this method to retrieve a name/value pair from the session map. You can include
these parameters:

This method returns a string containing the value of the name/value pair in the session
map. Here is an example:

String userid = dsimsg.getSessionVar("USERID");

Parameter Description

name Enter a string that contains the name of the name/value pair to add to the session
map.

Value Enter a string that contains the value of the name/value pair to add to the session
map.

Parameter Description

name Enter a string that contains the name of the name/value pair to remove from the
session map.

Parameter Description

name Enter a string that contains the name of the name/value pair to retrieve from the
session map.

Overview

33

addSessionObject Use this method to add a file buffer to the to the session map. You can include these
parameters:

This method has no return value. Here is an example:

dsimsg.addSessionObject("FILE1", buffer1);

removeSessionObject Use this method to remove a file buffer from the session map. You can include these
parameters:

This method has no return value. Here is an example:

 dsimsg.removeSessionObject("FILE1");

getSessionObject Use this method to retrieve a file buffer from the session map. You can include these
parameters:

This method returns a byte[] array containing the buffer retrieved from the session map.
Here is an example:

byte[] buff = dsimsg.getSessionObject("FILE1");

Parameter Description

name Enter a string that contains the name of the file buffer to add to the session map.

Buffer A byte array holding the contents of a file.

Parameter Description

name Enter a string that contains the name of the file buffer to remove from the session
map.

Parameter Description

name Enter a string that contains the name of the file buffer to retrieve from the session
map.

Chapter 2
Using the Internet Document Server

34

XMLSession Rules
Here are the XMLSession rules:

initSession Use this rule to initialize a session. This rule generates a unique session ID and generates
a session file with unique ID. If a SESSION rowset is present in the request, the rule also
adds the rowset to the session file. If the SESSION rowset is missing in the request, a
blank unique session rowset is generated and added to the session file.

The SESSION rowset is returned in the result.

Input variables

Use this INI option to specify a global share for multiple IDS processes:

< GlobalData >

Path =

Output variables

termSession Use this rule to terminate a session. This rule removes the session file associated with the
unique ID.

Input variables

Use this INI option to specify a global share for multiple IDS processes:

< GlobalData >

Path =

Output variables

Variable Description

XMLSESSION (Optional) This variable contains a unique identifier for the
session. If present, it is used to generate a new session. Otherwise,
the rule generates a unique identifier for the new session.

XMLSESSIONTIMEOUT (Optional) Specifies the session timeout in seconds. The default is
1800 seconds.

Variable Description

XMLSESSION This variable contains the unique identifier for the session if the session is
valid. Otherwise, the value will be INVALID.

RESULTS Success or failure

Variable Description

XMLSESSION This variable contains the unique ID for the session to be removed.

Variable Description

XMLSESSION This variable contains the unique identifier for the session. This
attachment variable contains REMOVED if the session was terminated
successfully. Otherwise, the value will be INVALID.

Overview

35

updateSession Use this rule to update the unique session file with the SESSION rowset in the request
message and return the updated rowset in the result.

Input variables

Use this INI option to specify a global share for multiple IDS processes:

< GlobalData >

Path =

Output variables

purgeXMLSessions Use this rule to remove expired sessions.

Input variables None. Use this INI option to specify a global share for multiple IDS processes:

< GlobalData >

Path =

Output variables

RESULTS Success or failure

Variable Description

Variable Description

XMLSESSION This variable contains the unique ID for the session to be
updated.

XMLSESSIONTIMEOUT (Optional) Specifies the session timeout in seconds.The default is
1800 seconds.

Variable Description

XMLSESSION This variable contains the unique identifier for the session if the session is
valid. Otherwise, the value will be EXPIRED if the session has expired, or
INVALID if the session is no longer valid.

RESULTS Success or failure

Variable Description

RESULTS Success or failure.

Chapter 2
Using the Internet Document Server

36

saveFile Use this rule to save the contents of an XML node from a session file as a new file to disk
and to add an attachment variable to the result message with the full path and file name
of the file saved.

Input variables

Use this INI option to specify a global share for multiple IDS processes:

< GlobalData >

Path =

Output variables

Variable Description

XMLSESSION This variable contains the unique identifier for the session.

INPUTVAR The name of the SESSION rowset variable containing the data that is to be
saved to disk.

OUTPUTVAR The name of the attachment variable to add to the output message
indicating the full path and file name of the file saved.

PRINTPATH (Optional) Specifies the output path for the output file. If omitted, the
output file is written to the current IDS directory.

FILETYPE (Optional) Specifies the file type for the output file. If omitted, the default
extension DAT is used.

Variable Description

(variable) An attachment variable whose name is specified by OUTPUTVAR input
attachment variable - will hold a String value indicating the full path and file
name of the file saved to disk.

XMLSESSION This variable contains the unique identifier for the session if the session is
valid. Otherwise, the value will be will be EXPIRED if the session has
expired, or INVALID if the session is no longer valid.

RESULTS Success or failure

Overview

37

USING IDSXML
You can use IDSXML as a guide to processing the errors.xml file in a Microsoft ASP
environment.

NOTE: IDSXML is not a COM+ component so do not register it under the Component
Services Microsoft Management Console snap-in. The component should only
be registered under the current IDS directory on the IDS client (the web server).

Keep in mind IDSXML requires Microsoft XML parser 4.0 (MSXML 4.0). Please
make sure you have this before you use IDSXML.

IDSXML is a Win32 COM component. IDSXML provides XML parsing and XSL
processing APIs for ASP. Here is a description of the properties and APIs provided by
this component:

Properties This table shows you the properties:

Here is an example:

DEC PAGE,DEC PAGE.1.AGENT,DEC PAGE.1.COMPANY,

DEC PAGE.1.INSURED,DEC PAGE.q1snam,DEC PAGE.q1mdc1,DEC
PAGE.q1mdc2,DEC PAGE.q1mdc3, DEC PAGE.q1mdc3.1.INSURED

Methods IDSXML includes these methods:

• XMLTransformErrors on page 37

• XMLTransformErrors2 on page 38

• XMLLoadINI on page 39

• XMLLoadXML on page 40

• XMLLoadXSL on page 40

• XMLGetGroupOptionValue on page 41

• XMLGetValue on page 41

• XMLGetGroup on page 41

• XMLUpdateGroup on page 42

Name Type Description See also

Formset collection A collection of form objects XMLProcessFormset

FormsetSelectionList string A comma-delimited string of
options selected from a form
set. These values are expected:
- form
- form.copycount.recipient
- form.image
- form.image.copycount.
recipient

XMLUpdateFormset

Chapter 2
Using the Internet Document Server

38

• XMLBuffer on page 44

• XMLLoadProcessor on page 44

• XMLAddParameterToXSL on page 44

• XMLTransformWithXSL on page 45

• XMLProcessWithXSL on page 46

• XMLUpdateFormset on page 47

• XMLProcessFormset on page 47

XMLTransformErrors
Use this method to transform a result message into useful HTML output. This method
takes an XML buffer from a result message that contains errors, an errors XML file that
contains error descriptions, and an XSL template which is used to transform the XML
message into HTML output that describes errors returned by IDS.

Syntax XMLTransformErrors xmlbuf, xmlFile, xslFile

Example In this example, page one detects an error, captures the buffer that contains the error, and
redirects to the error processing page, which is page 2.

Page1: processRequest.asp

<%

set DSI = server.CreateObject("IDSASP.DSI")

For i=1 to Request.Form.Count

 DSI.AddReq Request.Form.Key(i), Request.Form(i)

Next

On Error Resume Next

DSI.ProcessRq

If Err.Number <> 0 Then

 Err.Clear

Parameter Description

xmlBuf Enter the name of the XML buffer that contains the message returned by IDS.
This message contains errors returned by IDS.

xmlFile Enter the name of the errors file that contains all error codes recognized by IDS.
This file is produced by IDS and contains additional information, causes, and
resolutions for each error.
The errors file is used by this method to transform the message returned by IDS
into useful HTML output. This is a file that ships with IDS (errors.xml).

xslFile Enter the name of the XSL template you want the method to use to transform
the XML buffer and errors XML file into HTML information about errors
returned by IDS.
This is a template that ships with IDS (errors.xsl).

Overview

39

End if

path = Request.ServerVariables("APPL_PHYSICAL_PATH")

results = DSI.Result("RESULTS").Value

errors = DSI.Result("ERRORS").Value

If Len(results) = 0 OR results <> "SUCCESS" OR CInt(errors) > 0 then

 Session("xmlbuf") = DSI.GetSOAPMessage

 set dsi = nothing

 Response.Redirect "error.asp"

End if

Set DSI = Nothing

%>

Page2: error.asp

<%

set o = Server.CreateObject("IDSXML.XML")

xmlbuf = Session("xmlbuf")

xmlFile = Server.MapPath("xml\errors.xml")

xslFile = Server.MapPath("xsl\errors.xsl")

o.XMLTransformErrors xmlbuf, xmlFile, xslFile

%>

XMLTransformErrors2
Use this method to transform a result message into useful HTML output. This method
takes as input an XML buffer from a result message from IDS that contains errors and an
XSL template which is used to transform the XML message into HTML output that
describes the errors returned.

Syntax XMLTransformErrors2 xmlbuf, xslfile

Example In this example, page one detects an error, captures the buffer that contains the error, and
redirects to the error processing page, which is page 2.

Page1: processRequest.asp

<%

Parameter Description

xmlBuf Enter the name of the XML buffer that contains the message returned by IDS.
This message contains errors returned by IDS.

xslFile Enter the name of the XSL template you want the method to use to transform
the XML buffer into HTML information that contains the errors returned by
IDS.
This is a template that ships with IDS (default.xsl).

Chapter 2
Using the Internet Document Server

40

set DSI = server.CreateObject("IDSASP.DSI")

For i=1 to Request.Form.Count

 DSI.AddReq Request.Form.Key(i), Request.Form(i)

Next

On Error Resume Next

DSI.ProcessRq

If Err.Number <> 0 Then

 Err.Clear

End if

path = Request.ServerVariables("APPL_PHYSICAL_PATH")

results = DSI.Result("RESULTS").Value

errors = DSI.Result("ERRORS").Value

If Len(results) = 0 OR results <> "SUCCESS" OR CInt(errors) > 0 then

 Session("xmlbuf") = DSI.GetSOAPMessage

 set dsi = nothing

 Response.Redirect "error.asp"

End if

Set DSI = Nothing

%>

Page2: error.asp

<%

set o = Server.CreateObject("IDSXML.XML")

xmlbuf = Session("xmlbuf")

xslFile = Server.MapPath("xsl\default.xsl")

o.XMLTransformErrors2 xmlbuf, xslFile

%>

XMLLoadINI
Use this method to load an XML INI file into memory. Use this method before calling
other methods that retrieve information from an XML document.

Syntax XMLLoadINI sIni

Here is an example of the format of the XML document:

Parameter Description

sINI Enter the full path and file name of the XML document you want to load. This
can also be a buffer that contains an XML document.

Overview

41

<GROUPS>

 <GROUP NAME="MQSERIES">

<QUEUEMANAGER>QALAB1</QUEUEMANAGER>

<CLIENT>YES</CLIENT>

<REQUESTQ>REQUESTQ</REQUESTQ>

<RESULTQ>RESULTQ</RESULTQ>

 </GROUP>

 <GROUP NAME="PRINTOPTIONS">

 <ALLRECIPIENTS></ALLRECIPIENTS>

<PRTDOWNLOADFONTS></PRTDOWNLOADFONTS>

<PRTTYPE>PDF</PRTTYPE>

<PRTSENDCOLOR></PRTSENDCOLOR>

<PRTPAGENUMBERS></PRTPAGENUMBERS>

<PRTPRINTVIEWONLY></PRTPRINTVIEWONLY>

<PRTTEMPLATEFIELDS></PRTTEMPLATEFIELDS>

 </GROUP>

 <GROUP NAME="TEST">

<policy>

<num>1</num>

</policy>

 </GROUP>

</GROUPS>

Example Here is an example:

set o = Server.CreateObject("IDSXML.XML")

sIni = Server.MapPath("ini.xml")

o.XMLLoadIni(sIni)

XMLLoadXML
Use this method to load an XML document into memory before an XSL transformation
occurs.

Syntax XMLLoadXML sXML

Example Here is an example:

sXML = Server.MapPath("xml\test.xml")

o.XMLLoadXML(sXML)

XMLLoadXSL
Use this method to load an XSL template into memory before an XSL transformation
occurs.

Syntax XMLLoadXSL sXSL

Parameter Description

sXML Enter the full path and file name of the XML document you want to load. This
can also be a buffer that contains an XML document.

Chapter 2
Using the Internet Document Server

42

Example Here is an example:

sXSL = Server.MapPath("xsl\test.xsl")

o.XMLLoadXSL(sXSL)

XMLGetGroupOptionValue
Use this method to return a value from an XML node. Use the XMLLoadINI method
before you use this method.

Syntax XMLGetGroupOptionValue sGroup, sOption

Example Here is an example:

set o = Server.CreateObject("IDSXML.XML")

sIni = Server.MapPath("ini.xml")

o.XMLLoadINI(sIni)

val = o.XMLGetGroupOptionValue("MQSERIES", "CLIENT")

set o = nothing

XMLGetValue
Use this method to return a value from a node in an XML tree using xPath. Use the
XMLLoadINI method before you use this method.

Syntax XMLGetValue xPath

Example Here is an example:

set o = Server.CreateObject("IDSXML.XML")

sIni = Server.MapPath("ini.xml")

o.XMLLoadINI(sIni)

val=o.XMLGetValue("//GROUP[@NAME='TEST']/policy/num")

set o = nothing

XMLGetGroup
Use this method to return an INI group as a buffer, as an object, or as a new file. Use the
XMLLoadINI method before you use this method.

Parameter Description

sXSL Enter the full path and file name of the XSL template you want to load. This can
also be a buffer that contains an XSL template.

Parameter Description

sGroup Enter the group name to use for retrieving a value.

sOption Enter the option name to use for retrieving a value.

Parameter Description

xPath Enter a fully qualified xPath value to the node in the XML document tree.

Overview

43

Syntax XMLGetGroup sGroup, iOption, sDir

Example Here is an example:

<%

set o = server.createobject("IDSXML.XML")

sIni = Server.MapPath("ini.xml")

o.XMLLoadINI(sIni)

'return MQSeries group as buffer

Buffer = o.XMLGetGroup("MQSERIES", 1, "")

'return MQSeries group as object

Set MQSeriesGroup = o.XMLGetGroup("MQSERIES", 2, "")

'traverse through the group object and print all pairs

For i = 1 to MQSeriesGroup.Count

 name = MQSeriesGroup(i).name

 value = MQSeriesGroup(i).Value

 response.write name & "=" & value & "
"

Next

'access a particular value

val = MQSeriesGroup("CLIENT").Value

'write the MQSeries group as a new file into cache directory

o.XMLGetGroup "MQSERIES", 3, "Cache"

'cleanup

set MQSeriesGroup = nothing

set o = nothing

%>

Parameter Description

sGroup Enter the name of the INI group you want returned.

iOption Choose one of these options:
1 - Return the INI group as a buffer.
2 - Return the INI group as an object.
3 - Save the INI group as a new file.

sDir Only include this parameter if you entered three (3) for the iOption parameter.
Enter the name of the directory in which you want the system to save the new
XML file.

Chapter 2
Using the Internet Document Server

44

XMLUpdateGroup
Use this method to update a group in an XML document via a Group Object parameter.
This method reads the group object's properties and updates the XML document's
matching group with the object's properties. The method then returns the updated XML
document as a buffer or saves it to disk. Use the XMLLoadINI method before you use
this method.

Syntax XMLUpdateGroup sGroup, oGroup, iOption, sOut

Example Here is an example:

<%

Set o = Server.CreateObject("IDSXML.XML")

sIni = Server.MapPath("ini.xml")

o.XMLLoadINI(sIni)

Set PrtOpt = o.XMLGetGroup("PRINTOPTIONS", 2, "")

PrtOpt("ALLRECIPIENTS").Value = "YES"

PrtOpt("PRTDOWNLOADFONTS").Value = "YES"

PrtOpt("PRTTYPE").Value = "XML"

PrtOpt("PRTSENDCOLOR").Value = "NO"

PrtOpt("PRTPAGENUMBERS").Value = "NO"

PrtOpt("PRTPRINTVIEWONLY").Value = "NO"

PrtOpt("PRTTEMPLATEFIELDS").Value = "YES"

'update the xml ini file and return the updated file as a buffer

Buffer = o.XMLUpdateGroup("PRINTOPTIONS", PrtOpt, 1, "")

'update the xml ini file and save it to disk

o.XMLUpdateGroup "PRINTOPTIONS", PrtOpt, 2, "POpt.xml"

'update the group and return the updated group as a buffer

Buffer2 = o.XMLUpdateGroup ("PRINTOPTIONS", PrtOpt, 3, "")

'update the group and save the updated group as a new file

o.XMLUpdateGroup "PRINTOPTIONS", PrtOpt, 4, "newPOpt.xml"

Parameter Description

sGroup Enter the name of the group you want to update.

oGroup Enter the name of the group object you want to use to update a matching group
in an XML document.

iOption Choose one of these options to indicate what you want done with the updated
file:
1 - Return the updated XML INI file as a buffer.
2 - Save the updated XML INI file as a file.
3 - Return only the updated group as a buffer.
4 - Save only the updated group as a file.

sOut Only use this parameter if the iOption parameter is set to two (2) or four (4).
Enter the full path and file name for saving the XML document.

Overview

45

'cleanup

Set PrtOpt = Nothing

Set o = Nothing

%>

XMLBuffer
Use this method to return a buffer for an XML document. Use XMLLoadINI method
before you use this method.

Syntax XMLBuffer sFile

Example Here is an example:

<%

set o = Server.CreateObject("IDSXML.XML")

InputFormset = Server.MapPath("xml\OriginalFormset.xml")

Buffer = o.XMLBuffer(InputFormset)

Response.write Buffer

set o = nothing

%>

XMLLoadProcessor
Use this method to load an XSL template into memory and to load the XSL processor based
on that template. Use this method before you call the XMLAddParameterToXSL or
XMLProcessWithXSL methods.

Syntax XMLLoadProcessor sXSL

Example Here is an example:

set o = server.createobject("IDSXML.XML")

template = Server.MapPath("xsl\test.xsl")

o.XMLLoadProcessor(template)

Parameter Description

sFile Enter the full path and file name of the XML document.

Parameter Description

sXSL Enter the full path and file name to an XSL template or a buffer that contains an
XSL template.

Chapter 2
Using the Internet Document Server

46

XMLAddParameterToXSL
Use this method to add a parameter to internal XSL processor. For instance, you can use
this method to add parameters before processing with an XSL template that expects
parameters. Use the XMLLoadProcessor method before you call this method.

Syntax XMLAddParameter2XL name, value

Example Here is an example:

<%

set o = Server.Createobject("IDSXML.XML")

sXML = Server.MapPath("xml\test.xml")

sXSL = Server.MapPath("xsl\test.xsl")

o.XMLLoadXML(sXML)

o.XMLLoadProcessor(sXSL)

o.XMLAddParameterToXSL "color", "blue"

o.XMLProcessWithXSL 1 , ""

set o = nothing

%>

XMLTransformWithXSL
Use this method to transform an XML document with an XSL template. Use the
XMLLoadXML and XMLLoadXSL methods before you call this method. Use this
method to process XML documents with XSL templates that do not expect parameters.

Syntax XMLTransformWithXSL Option, sPath

Parameter Description

name Enter the name of the parameter to add to the XSL template.

value Enter the value of the parameter to add to the XSL template.

Parameter Description

Option Choose one of these options:
1 - Return the transformation result as a string and write the result to the screen.
2 - Return the transformation result as a string.
3 - Write the transformation result to disk using the path specified by sPath
parameter. This also returns the transformation result as a string.

sPath Only include this parameter if you entered three (3) for the Option parameter.
Enter the full path and file name of the file you want to use for writing the
transformation result to disk.

Overview

47

Example Here is an example:

<%

set o = Server.Createobject("IDSXML.XML")

sXML = Server.MapPath("xml\test.xml")

sXSL = Server.MapPath("xsl\test.xsl")

o.XMLLoadXML(sXML)

o.XMLLoadXSL(sXSL)

o.XMLTransformWithXSL 1, ""

set o = nothing

%>

XMLProcessWithXSL
Use this method to transform an XML document using an XSL template that expects
parameters. You should use the XMLAddParameterToXSL method to add the
parameters expected by the style sheet before you call this method. Also use the
XMLLoadProcessor method before you call this method.

Syntax XMLProcessWithXSL Option, sPath

Example Here is an example:

<%

set o = Server.Createobject("IDSXML.XML")

sXML = Server.MapPath("xml\test.xml")

sXSL = Server.MapPath("xsl\test.xsl")

o.XMLLoadXML(sXML)

o.XMLLoadProcessor(sXSL)

o.XMLAddParameterToXSL "color", "blue"

o.XMLProcessWithXSL 1 , ""

set o = nothing

Parameter Description

Option Choose one of these options:
1 - Return the transformation result as a string and write the result to the screen.
2 - Return the transformation results as a string.
3 - Write the transformation result to disk using the path specified by sPath
parameter. This also returns the transformation result as a string.

sPath If you set the Option parameter to three (3), enter the full path and file name of
the file you want to use for writing the transformation result to disk.

Chapter 2
Using the Internet Document Server

48

%>

XMLUpdateFormset
Use this method to update an XML form set. This method takes as input a buffer that
contains an XML form set or a string that specifies the full path and file name for an XML
form set. The method uses the FormsetSelectionList property, which contains a comma-
delimited string of forms, images, and recipients, to modify the form set.

This method generates a unique name for the updated form set and saves it as a new XML
document. It returns the full path and name of the new XML document.

Syntax XMLUpdateFormset sXML

Example Here is an example:

<%

set o = Server.CreateObject("IDSXML.XML")

InputFormset = Server.MapPath("original.xml")

o.FormsetSelectionList = "DEC PAGE,DEC PAGE.1.AGENT,DEC
PAGE.1.COMPANY,DEC PAGE.1.INSURED,DEC PAGE.q1snam,DEC
PAGE.q1mdc1,DEC PAGE.q1mdc2,DEC PAGE.q1mdc3"

OutFormset = o.XMLUpdateFormset(InputFormset, "Cache")

set o = nothing

%>

XMLProcessFormset
Use this method to process a form set. This method takes as input a buffer that contains
an XML form set or a string that specifies the full path and file name of an XML form
set. The method parses the XML form set and converts it into a public form set collection
property. The form set collection contains form objects and each form object contains
images and recipients.

Syntax XMLProcessFormset xmlBuffer

Example Here is an example:

set o = Server.CreateObject("IDSXML.XML")

InputFormset = Server.MapPath("xml\OriginalFormset.xml")

Parameter Description

sXML Enter the full path and file name of an XML form set or a buffer that contains an
XML form set.

sDir Enter the name of a directory into which you want to save the updated form set.

Parameter Description

xmlBuffer Enter the full path and file name of an XML form set or a buffer that contains
the XML form set you want loaded and returned as a collection.

Overview

49

Buffer = o.XMLBuffer(InputFormset)

o.XMLProcessFormset Buffer

For i = 1 To o.Formset.Count

 formName = o.Formset.Item(i).NAME

 formID = Pad(formName)

 html = "<input type=checkbox name=SELECTION value=" & formID & _

 " onclick='FormSelect(this);'>" & formName

 form = "FORM." & CStr(i)

 oTree.Add "root", form, html, bExpand, "page.gif"

 html = "Recipients"

 FRPCS = "FRECIPIENTS" & CStr(i)

 oTree.Add form, FRPCS, html, bExpand, "mydoc.gif"

 For k = 1 To o.Formset.Item(i).Recipients.Count

 recipientName = o.Formset.Item(i).Recipients.Item(k).NAME

 recipientCnt = o.Formset.Item(i).Recipients.Item(k).CopyCount

 recipientID = formID & "." & recipientCnt & "." & recipientName

 html = "<input type=checkbox name=SELECTION value=" &
recipientID & _

 ">" & recipientName

 recipient = "RECIPIENT" & "." & CStr(i) & "." & CStr(k)

 oTree.Add FRPCS, recipient, html, bExpand, "n.gif"

 Next

 For j = 1 To o.Formset.Item(i).Images.Count

 imageName = o.Formset.Item(i).Images.Item(j).NAME

 imageID = formID & "." & imageName

 html = "<input type=checkbox name=SELECTION value=" & imageID
& ">" & _

 "" & imageName & ""

 image = "IMAGE." & CStr(i) & "." & CStr(j)

 oTree.Add form, image, html, bExpand, "help_page.gif"

 For k = 1 To o.Formset.Item(i).Images.Item(j).Recipients.Count

 recipientName =
o.Formset.Item(i).Images.Item(j).Recipients.Item(k).NAME

 recipientCnt =
o.Formset.Item(i).Images.Item(j).Recipients.Item(k).CopyCount

 recipientID = formID & "." & imageName & "." & recipientCnt
& "." & recipientName

 html = "<input type=checkbox name=SELECTION value=" &
recipientID & ">" & _

 recipientName

 recipient = "RECIPIENT" & "." & CStr(i) & "." & CStr(j)
& "." & CStr(k)

 oTree.Add image, recipientID, html, bExpand, "n.gif"

 Next

 Next

Next

Chapter 2
Using the Internet Document Server

50

USING
MULTIPLE
SERVERS

To further increase performance, you can set up multiple servers. Each server you set up
helps process client requests. You can set up additional servers in a variety of ways, as this
diagram shows:

To determine which server setup will work best for you, first determine if your
transactions are CPU or I/O (input/output) intensive. Then take a look at the test results
we have compiled.

IDS Server

Queue

IDS Server

Queue

IDS Server

Computer

Computer

IDS Server

Computer

With this server setup, a single IDS Server
processes requests from the queue. Both are
physically located on the same computer.

With this server setup, a multiple IDS Servers
processes requests from the queue. Both the
servers and the queue are physically located on
the same computer.

IDS Server

Queue

IDS Server

Computer

With this server setup,
a multiple IDS Servers
on multiple computers
process requests from
the queue.

Using Multiple Servers

51

Determining if Your Transactions are CPU or I/O Intensive
To determine if the transactions the server is processing are CPU or I/O intensive, look
at the Windows Task Manager:

• If the CPU gauge shows around 100% CPU usage with no other applications
running, the transactions are CPU intensive.

• If the CPU gauge shows less than 80% CPU usage, the transactions are, most likely,
I/O intensive (this includes network I/O).

Here are some scenarios and recommendations:

Scenario Recommended Server Setup

Low transaction
volume. Each
transaction takes a few
seconds to process.

No changes in configuration are required. One server should be able
to process all of the requests within reasonable period of time.

High transaction
volume. Each
transaction takes a few
seconds to process.

If clients are getting the time-out waiting for Server error message, increase
the time-out value for the clients. To do this, set TimeOut INI option
in the ReqType:XXX control group. You can set this option for each
request type. This lets you set it to a higher value for requests which
take longer to process. The default time-out for each request type is
60 seconds.
To increase total throughput, try adding a second server. Keep in
mind that adding a second server does not let you process twice as
many transactions. You will probably see a performance increase of
around 10-20 percent.

Any volume. Each
transaction takes a few
minutes to process.
Mostly I/O intensive.

You may see this scenario when the rules have to retrieve data from a
mainframe computer via ODBC or DB2, or when the rules have to do
a lot of file processing.*1
In this situation, try adding additional servers on the same computer
as the original server.

Any volume. Each
transaction takes minutes
to process. Mostly CPU
intensive.

You may see this scenario if you use a lot of calculation-intensive
rules. In this scenario, the best solution is to add a second server on a
separate computer. If you want to add more servers, add them on
separate computers so you end up with a computer for each server.

*1 The number of ODBC connections to MVS is limited by MVS and ODBC drivers. You
cannot exceed this limit.

Chapter 2
Using the Internet Document Server

52

Performance Measurements when Using Multiple Servers
To help you choose the right server setup for your needs, here are some test results
compiled from multiple server runs.

These tests were run with a specified number of servers and clients. The servers were
started from the command line, so there is no built-in web server overhead or limitations.
For these tests, all clients ran at the same time. In typical implementations, you seldom
have all users working on the server at the same time.

Clients Number of servers Number of transactions per hour

Short transactions, each takes about 1 second or less

20 1 1680

20 2 1825

20 3 1583 (note the performance degradation)

40 1 1211

Not CPU intensive transactions, each takes about 40 seconds

- 1 77

- 3 263

CPU intensive transactions (100% CPU usage in the NT task manager), each takes about 10
seconds

- 1 372

- 2 (same PC) 372 (no difference)

- 2 (different PC) 754

Using Multiple Servers

53

Setting Up Additional Servers
You can start multiple instances of IDS by default. Running multiple instances of IDS is
generally required for performance reasons.

You control the number of instances IDS starts using this Configuration option:

<section name=”DocumentServer”>

<entry name=”Instances”>2</entry>

</section>

The default is two (2). You can enter a number from 1 to 10.

Specifying the INI file
to use

You can specify the name and location of the DAP.INI file you want to use in the
DPRInit rule as shown here:

<section name=”REQTYPE:INI”>

<entry name=”function”>dprw32-
>DPRInit,500,d:\docserv\dap.ini</entry>

</section>

Separate parameters with commas.

The first parameter specifies the file cache. The default FAP file cache is 1000. The second
parameter specifies where to find the INI file. DAP.INI is the default file name.

NOTE: This approach does not work with the DPRCoLogin rule. Use the DPRLogin
rule instead.

Chapter 2
Using the Internet Document Server

54

SETTING UP A
WINDOWS NT

SERVICE

You can configure the Internet Document Server to run as a Windows service.

NOTE: Do not install the Internet Document Server and Internet Document Master
Server as a Windows NT service until you have checked to make sure the system
was properly installed.

To set up the Internet Document Server as a Windows service, go to the directory where
it is installed and run the batch file, DS-SERVICE.BAT. This will install IDS as a service
called Docupresentment Server.

To uninstall Internet Document Server as a Windows service, go to the directory where
it is installed and run the batch file, DS-SERVICE-UNINSTALL.BAT.

When running as a service, messages usually written to the console's standard output are
written to a text file named DS-STDOUT.TXT. The messages usually written to the
console's standard error are written to a text file named DS-STDERR.TXT.

Handling Multi-threaded Requests

55

HANDLING
MULTI-

THREADED
REQUESTS

IDS can run multiple requests at the same time in separate threads of execution. If the
requests run are safe to run in multiple threads and are mixed between I/O-based and
computation-based, then running some requests in multiple threads can be an alternative
to running multiple instances of IDS.

An instance of IDS has a main thread that initializes global data and is the default for
running all requests. You can configure IDS to start extra threads to run some requests.
This is done in the docserv.xml configuration file, in the ‘BusinessLogicProcessor’
section:

<entry name="RequestProcessors”>1</entry>

To specify that a request can be run in an extra thread, in the docserv.xml configuration
file, create a 'MultiThreadedRequests' subsection in the 'BusinessLogicProcessor' section:

<section name="MultiThreadedRequests">

<entry name="Request">FTPSEND</entry>

</section>

All requests mentioned in this section will be run in multiple threads if the
'RequestProcessors' entry is set up.

Each thread has its own separate input and output state to keep track of message variables
and attachments per request being run, so code in rules that read or change message
variables or attachments will not interfere with other requests running at the same time.
This includes calls to:

• DSIMessage.getMsgVar, DSIMessage.setMsgVar, and so on in the Java and scripting
rules.

• DSIJQueue.LocateAttachVar, DSIJQueue.AddAttachVar, and so on in the IDS
version 1.x Java rules.

• DSILocateAttachVar, DSIAddAttachVar, and so on in the C rules.

This does not mean all rules are safe to run in multiple threads, just that calls to the DSI
API code do not prevent rules from being run in multiple threads. For example,
Documaker code is not safe to run in multiple threads. If you need to run multiple
Documaker-related requests at the same time, you must run multiple instances of IDS.

Entry Description

RequestProcessors Indicates how many extra threads to set up to run requests. If the entry
is set to zero (0), no extra threads are set up and all requests are run
serially.

Chapter 2
Using the Internet Document Server

56

INI vs. THREADINI
control sections

IDS version 1.x has a INI control section where global data is created and destroyed.
Since IDS version 2.x can have multiple threads, you need a way to create and destroy data
needed by each thread. This is done with the THREADINI control section. The
THREADINI control section is run once for each thread as it is started and once for each
thread when it is stopped. An example of code needing this is COM setup in Windows;
every thread in Windows that will be running COM code needs to initialize COM for that
thread. Here is a sample INI and THREADINI control section:

<section name="ReqType:INI">

<entry name="function">irlw32->;IRLInit</entry>

<entry name="function">dprw32->;DPRInit</entry>

</section>

<section name="ReqType:THREADINI">

<entry name="function">DSICoRul->;Init</entry>

</section>

Threads and Inter-Rule
data in C rules

IDS rules written in C use the functions DSICreateValue, DSILocateValue, and
DSIDestroyValue to create data in one part of code to use in other parts of code.

A common usage of these functions is to allocate data in the DSI_MSGINIT part of a
function, use it in the DSI_MSGRUNF and DSI_MSGRUNR parts of a function, and
free the data in the DSI_MSGTERM part of a function. All this is done inside a single
request.

A less common usage is to set up data in the INI request used for the entire runtime of
IDS. Rules in the INI request type have their DSI_MSGINIT code run when IDS starts
and their DSI_MSGTERM code run when IDS shuts down. This means data allocated
with DSICreateValue in the DSI_MSGINIT part of a INI request rule function is
available for all other requests run by IDS. This data is usually read-only, for example
configuration information from the DAP.INI file and MRLs set up by the DPRInit
function.

Since IDS can run requests in multiple threads simultaneously, each thread needs it's own
set of data for running requests plus access to the global configuration information. And,
at the same time, each thread needs to remain compatible with C rules using the
DSICreateValue, DSILocateValue and DSIDestroyValue functions. This is done by
having two data contexts for data: global and thread-local.

Global context is when IDS is running rules in the INI request type. The INI rules are
run with DSI_MSGINIT before the other rule threads are created, and the rules are run
with DSI_MSGTERM after the other threads are destroyed. Thread-local context is when
all other requests are run.

When the functions DSICreateValue and DSIDestroyValue are called during global
context the values are put in global data; in thread-local context the values are put in
thread-local data.

When DSILocateValue is called in thread-local context, the thread-local data is first
checked to see if has the data. If the value is in thread-local data, it is returned. If not, then
global data is checked, and returned if it is there. Only if the value is missing in both places
will DSILocateValue indicate that the data is not found.

This allows C rules using DSICreateValue, DSILocateValue, and DSIDestroyValue to run
in multiple threads but remain compatible with previous versions of IDS.

Handling Multi-threaded Requests

57

Threads and Inter-Rule
data in Java and

scripting rules

Since Java rules are based on objects that have their own state, this use of the C DSI-Value
functions is not required. When Java rules are used with transaction scope, an instance of
the class will remain for the run of the request, so data can be put in member variables
and will remain. There are functions available that do the same thing for passing data from
one rule to another or for use in one rule if it is run in static scope.

The RequestState object passed in to a Java rule has the methods putObject, getObject,
and removeObject. Since each thread has its own RequestState object, you can use these
functions to keep track of data for each request. These functions let you store any type of
object, not just byte arrays like the C functions.

To pass data between C and Java rules, use the RequestState methods createVar,
locateVar, and destroyVar. These correspond to the C functions DSICreateValue,
DSILocateValue, and DSIDestroyValue, so they can only use byte arrays for passing data.
The data context setup is also the same as for these C functions.

To set up and use Java global data, use the GlobalVarStorage class from the
DocuCorpUtil library.

USING THE JAVA TEST UTILITY

IDS includes a Java threads test utility you can run to send requests to IDS using single or
multiple threads. It also supports attachments and rowsets. You can also feed it a debug
message file, such as a receive.msg file generated by IDS (see the ReceiveMessage log4j
category in the logconf.xml file under the docserv directory) which can contain more than
one transaction that was previously processed. This can be useful in recreating or
duplicating a set of transactions for testing.

You can invoke the test utility via the threads script shipped with IDS.

NOTE: If you invoke the test utility without any arguments, it displays usage information.
For more information, see the HTML documentation for the
com.docucorp.test.threads class that is included with Java SDK.

You must have Java version 5 or later installed to use this test utility.

Chapter 2
Using the Internet Document Server

58

USING RULES
WRITTEN IN

OTHER
SCRIPTING

LANGUAGES

IDS can run rules written in scripting languages. In addition to rules written in Java, C,
and Visual Basic, IDS adds rules written in scripting languages (Java Script, Python, and
so on) for debugging, fast prototyping, or rarely run rules.

In a REQTYPE section, add a rule entry such as:

<entry name="function">script;test.py;runRule</entry>

This rule entry uses the runRule function in the Jython script file (TEST.PY).

The following example programs do the same thing. The first is in JavaScript, the second
in Jython, a dialect of Python that runs under Java Virtual Machines. You can find
information about which languages are available and where to get them at:

http://jakarta.apache.org/bsf/index.html

Here is a JavaScript example rule:

function runRule(requestState, idsArgs, idsMessage) {

 switch (idsMessage) {

 case IDSConstants.init :

 break;

 case IDSConstants.runForward :

 break;

 case IDSConstants.runReverse :

 text = requestState.getOutput().getMsgVar("LANGUAGE");

 if (text == null) {

 text = "JavaScript";

 } else {

 text = text + " and JavaScript";

 }

 requestState.getOutput().setMsgVar("LANGUAGE", text);

 break;

 case IDSConstants.terminate :

 break;

 }

 return IDSConstants.success;

}

Here is a Jython example rule:

def runRule(requestState, idsArgs, idsMessage):

 if idsMessage == IDSConstants.runReverse:

 text = requestState.getOutput().getMsgVar("LANGUAGE")

 if text is None:

 text = "Jython"

 else:

 text = text + " and Jython"

 requestState.getOutput().setMsgVar("LANGUAGE", text)

 return IDSConstants.success

http://jakarta.apache.org/bsf/index.html

Using IDS as a Client to Another IDS

59

USING IDS AS A
CLIENT TO

ANOTHER IDS

You can set up an IDS installation running under Linux and use the RunRP rules to
archive data from Documaker output into a Documanage archive stored on a Windows
NT computer. To do this, you must set up your system as explained below.

NOTE: This solution can also be used for other situations, such as when you need to
execute rules across platforms.

The archive process The IDS client submits an XML extract file to IDS (IDS Server 1). On this request IDS
Server 1 executes the RunRP rules. After Documaker executes and prior to this
transaction being complete, IDS Server 1 has access to NA file, POL file, and NEWTRN
file. These files are attached to the request to IDS Server 2 (on Windows NT).

IDS Server 2 archives data into Documanage and returns the error code. IDS Server 1
receives the return code from IDS Server 2, adds all the attachment variables from IDS
Server 2 to the output attachment, and replies to the IDS client. IDS Server 2 does not
use GenArc or single-step GenData to archive, which reduces the number of resource
and setup files needed on Windows NT.

Archive
(Documanage)

Queues
(Set 1)

Queues
(Set 2)

IDS
Server 2

(multiple instances)

IDS
Server 1

(multiple instances)

IDS
Client

Documaker
(GenData)

Windows NT

Linux

Chapter 2
Using the Internet Document Server

60

The retrieval process The IDS client submits the request to retrieve data to IDS Server 1. IDS Server 1 submits
the request to get the DPA file to IDS Server 2. The IDS Server 2 gets the DPA file from
Documanage, attaches it to the SOAP message and sends the reply to IDS Server 1. IDS
Server 1 receives the Documaker file, runs rules to produce a PDF file and sends the PDF
file to the client (this can be done as a file on disk or attached to the SOAP message).

Keep in mind:

• MQSeries is used as a queuing system in both places

• Java rules are used to send messages from IDS Server 1 to IDS Server 2 so JVM has
to be available on Linux platform to execute Java rules.

• Some of the Documaker resources (like DFD files, INI files) must be available to
both IDS implementations and must be kept in sync. One way to synchronize
resources is by using mounted volumes from Windows NT to Linux to IDS Server
2 on Windows NT has access to the same physical files as IDS Server 1 on Linux.

• You use the IDSClientRule to make IDS act as a client to another implementation of
IDS. This rule is explained below:

Using the IDSClientRule
Use this rule to have IDS act as an IDS client to send a request to a second IDS. You can
set communications parameters to talk to the second IDS and request parameters to set
up request types and other attachment variables to send to the second IDS.

The attachment variables and files you want to send can be hard-coded or retrieved as
attachment variables from the first IDS. Attachment variables returning from the second
IDS can be put in the input or output queue of the first IDS.

If the second IDS returns files in its result, the files can be written to disk with unique
names and cached. The unique names of the files are stored in attachment variables for
use by other rules. The rule can be run on the run forward or run reverse message.

Keep in mind that only MQSeries setups are supported. This rule has transaction scope
and the method in the Java class is callRequest. The syntax of the function line in a request
is shown here:

Syntax function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
IDSClientRule;CALL;transaction;callRequest;ARG,MESSAGEFILE=call.pro
perties&REQUESTFILE=call.txt&TIMEOUTSEC=15&RUN=RUNF&DEBUG=Y&DESTINA
TION=OUTPUT

Parameter Description

MESSAGEFILE This parameter points to the file that holds the settings for communicating
with the second copy of IDS.

REQUESTFILE This parameter points to the file that holds attachment variables and files
that are sent as a request to the second IDS.

TIMEOUTSEC Indicates the number of seconds to wait for a reply from the second IDS.

RUN Indicates the request message during which the rule will run. This
parameter is either RUNF for the run forward message or RUNR for the
run reverse message.

Using IDS as a Client to Another IDS

61

You can set communications parameters to talk to the second IDS. This is done by setting
up the file referenced in the MESSAGEFILE rule parameter.

Here is a sample IDSClientRule communications properties file. Parameters are explained
by comment lines above the parameters:

This indicates the class that implements queuing, in this case MQSeries:

queuefactory.class=com.docucorp.messaging.mqseries.DSIMQMessageQueu
eFactory

This indicates the class that formats the DSIMessage to send to IDS. Uncomment this
line to communicate with IDS version 1.6, leave it commented for subsequent versions:

#marshaller.class=com.docucorp.messaging.data.marshaller.LegacyByte
ArrayDSIMessageMarshaller

The following are sample MQSeries parameters. This is the queue manager for system
hosting MQSeries:

mq.queue.manager=QM_pdtest

This specifies the MQSeries channel the messaging client and IDS use to communicate:

mq.queue.channel=SCC_pdtest

The MQSeries communication can be either in bindings mode (the program is running on
the same machine as the MQSeries server) or in client mode (the program is running on a
different machine and communicates with the MQSeries server through TCP/IP). If the
setting mq.tcpip.host is defined, the system uses client mode, otherwise it uses bindings
mode:

mq.tcpip.host=10.10.10.10

This specifies the TCP/IP port the MQSeries server is listening to. 1414 is most
commonly used.

mq.tcpip.port=1414

A client program sends requests out and gets results in:

mq.outputqueue.name=requestq

mq.inputqueue.name=resultq

This determines how long, in seconds, the MQSeries server keeps a message in the queue
if a program does not get it.

mq.outputqueue.expiry=120

Here is the complete example:

queuefactory.class=com.docucorp.messaging.mqseries.DSIMQMessageQueu
eFactory

#marshaller.class=com.docucorp.messaging.data.marshaller.LegacyByte
ArrayDSIMessageMarshaller

mq.queue.manager=QM_pdtest

DEBUG Determines if debugging messages are put in the Java rule log file. The
default is No.

DESTINATION This parameter says which queue will get the results back from the second
copy of IDS. The default is OUTPUT.

Parameter Description

Chapter 2
Using the Internet Document Server

62

mq.queue.channel=SCC_pdtest

mq.tcpip.host=10.10.10.10

mq.tcpip.port=1414

mq.outputqueue.name=requestq

mq.inputqueue.name=resultq

mq.outputqueue.expiry=120

Attachment variables and files to send can be hard coded or retrieved as attachment
variables from the first IDS. This is done in the file mentioned in the REQUESTFILE
parameter. The file can have these sections:

• [MESSAGES] for attachment variables in name=value pairs

• [TEXTFILES] for sending text files

• [BINARYFILES] for sending binary files

• [RECEIVEDFILES] for the handling of files returned from the second IDS

[TEXTFILES] and [BINARYFILES] have file ID=file location pairs, listing the name that
the file data can be identified by and where to get the file's information. Here is a sample
REQUESTFILE:

[MESSAGES]

REQTYPE=CUSTOMREQUEST

USERID=GUEST

[TEXTFILES]

TEXT1=/home/fap/text1.txt

TEXT2=/home/fap/text2.txt

[BINARYFILES]

BIN1=/home/fap/binary1.bin

BIN2=/home/fap/binary2.bin

You can use attachment variables from the current running state of IDS as values in any
of the above sections. For example:

~GetAttach VARIABLENAME,INPUT

will use an attachment variable from the input queue

~GetAttach VARIABLENAME,OUTPUT

will use an attachment variable from the output queue. If instead of the name of an
attachment variable, you use an asterisk (*), every attachment variable from that queue will
be sent. Here is an example

~GetAttachment *,INPUT

This tells the system to ignore the attachment variable name. If you use an asterisk (*), the
request type of the request to send is not changed. An explicit REQTYPE is required in
the REQUESTFILE file.

For the [RECEIVEDFILES] section, the string to the left of the equals sign (=) is the
name of the file coming back from the second IDS. To the right of the equals sign is the
name of the attachment variable that contains the unique name and path of the generated
file, the directory where the file will be stored, and, optionally, the number of seconds to
cache the file. The default cache is 3600. For text files, the system appends .txt. For binary
files, it appends .bin.

Here is a complete example of a request file:

Using IDS as a Client to Another IDS

63

[MESSAGES]

REQTYPE=CUSTOMREQUEST

DUMMY = ~GetAttach *, INPUT

[TEXTFILES]

TEXT1=c:\fap\text1

[BINARYFILES]

BIN1= ~GetAttach BINFILE, OUTPUT

[RECEIVEDFILES]

ZZZT=MYTEXT, ., 1800

ZZZB=MYBIN, c:\fap, 600

In this example after the run, if the current directory is c:\docserv, then the file sent in
ZZZT would be stored in

c:\docserv\1729530022133082002.txt

That file name would be stored in the attachment variable MYTEXT and the file sent in
ZZZB would be stored in:

c:\fap\6229680022133082002.bin

That file name would be stored in the attachment variable MYBIN. The text file,
(c:\docserv\1729530022133082002.txt) would be cached by IDS for 1800 seconds. The
binary file (c:\fap\6229680022133082002.bin) would be cached by IDS for 600 seconds.

Chapter 2
Using the Internet Document Server

64

MONITORING
IDS WITH

SNMP TOOLS

You can connect IDS to SNMP agents (SNMP server programs) so performance data can
be viewed by SNMP monitors (SNMP client programs). The connection is done with the
SNMP AgentX protocol, so you can use any SNMP agent program that supports AgentX.

If an AgentX-enabled SNMP agent is not available for a particular platform, IDS includes
a Java-based SNMP agent application you can use. This version includes a Management
Information Base (MIB) file, that can be used by SNMP monitor programs to map text
names and data types to the MIB number addresses for SNMP objects.

The primary server reports the number of instances of IDS that are running. Each
instance will report:

• The amount of time since it started running.

• The amount of time since the last restart.

• The number of successful transactions.

• The number of transactions that caused errors.

• The number of times the instance has been restarted.

• The amount of time needed to run the last transaction.

• The request type of the last transaction.

• The amount of time needed to run the longest transaction so far.

• The request type of the longest transaction so far.

• The number of transactions that have occurred in the last minute.

• The number of transactions that have occurred in the ten last minutes.

• The number of transactions that have occurred in the last hour.

To monitor IDS with SNMP tools, in the docserv.xml configuration file, create an SNMP
subsection under the DocumentServer, messaging subsection, as shown here:

<section name="DocumentServer">

<section name="SNMP">

<entry name="Enabled">yes</entry>

<entry name="MasterAddress">10.1.10.100</entry>

<entry name="MasterProtocol">UDP</entry>

<entry name="MasterPort">705</entry>

</section>

</section>

Entry Description

Enabled Determines whether or not SNMP support is enabled. The default is No.

MasterAddress Is the IP address of where the master SNMP agent program is running. The
default is localhost.

MasterProtocol Is the communications protocol for communicating with the SNMP agent
program. You can enter UDP for communicating with IDS's included agent
or TCP for communicating with other AgentX-based SNMP agent
programs, such as net-snmp. The default is UDP.

Monitoring IDS with SNMP Tools

65

MONITORING REQUESTS

The SNMP monitoring capabilities in IDS allow the monitoring of extra requests and
rules by performance monitoring applications, such as LoadRunner.

You can have up to five statistics monitors to measure performance by SNMP. Each
monitor measures either an entire request or an individual rule in a request. For each
monitor, the time it takes to execute each message part (initialization, run forward, run
reverse, and terminate) as well as the total time for execution is available.

NOTE: The MIB file can use these monitors, but it is not required.

To enable the statistics monitors, in the docserv.xml configuration file, in the
DocumentServer section, add a StatisticsMonitors subsection, as shown here:

<section name="DocumentServer">

 ...

 <section name="StatisticsMonitors">

 <entry name="Monitor">SCH</entry>

 <entry name="Monitor">RCP</entry>

 <entry name="Monitor">PRT</entry>

 <entry name="Monitor">PRT/7</entry>

 <entry name="Monitor">PRT/8</entry>

 </section>

</section>

Each Monitor entry can be the name of a request or the name of a request followed by a
slash (/) and a number. The number is the number of the active entry in the request
section. For example, for this request type...

<section name="ReqType:PRT">

 <entry name="function">atcw32->ATCLogTransaction</entry>

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <!-- This comment line is skipped -->

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRTermDB</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRRetrieveFormset</entry>

 <entry name="function">dprw32->DPRPrint</entry>

 <entry name="function">dprw32->DPRProcessTemplates</entry>

 <!-- -->

</section>

The monitor entry PRT/7 would refer to the DPRRetrieveFormset rule and PRT/8
would refer to the DPRPrint rule.

MasterPort Is the port the master SNMP agent program uses for the AgentX protocol.
The default is 705.

Entry Description

Chapter 2
Using the Internet Document Server

66

MANAGING IDS
INSTANCES

You can use the Watchdog process to manage and monitor IDS instances. The Watchdog
process is the one that is now started, stopped, and configured as a service and it in turn
is responsible for managing and monitoring the IDS instances. It monitors the health of
each instance and restarts it or stops it when needed. You can also configure the
Watchdog process through log4j to send email notifications when an instance encounters
a fatal or mission-critical error.

Watchdog also monitors the idle time for each instance and starts additional ones when
all running instances are under load. These options are supported:

Options Description

Instances (Optional) The number of IDS instances Watchdog
should start at startup. The default is two (2).

UseLoadBalancing (Optional) This option controls whether Watchdog
checks the idle time of the instances that are running and
starts additional ones when all of them are busy.
Instances are considered busy when their idle time is less
than the value provided in the MinIdleTimeSeconds
option. Watchdog uses the value provided in the
IdleTimeChecks option to determine the number of idle
time checks to run before it starts additional instances.
When additional instances are started for load balancing
purposes, they are shut down by Watchdog if their idle
time exceeds the value in the MaxIdleTimeSeconds
option.
The maximum number of instances running is the value
for the MaxInstances option (including the instances
configured in the Instances option). Watchdog checks
the idle time of the current instances at the interval
specified in the IdleTimeCheckIntervalSeconds and if all
are busy, it starts an additional number of instances equal
to the value provided in the IncrementCount option.
Please note that Watchdog does not start checking the
busy time of the current instances until the time provided
in the IdleTimeCheckDelaySeconds option is reached.
Make sure the value for the delay is ample enough to
provide for all instances to start and reach an idle time
equal to or greater than the value provided for the
MinIdleTimeSeconds option.
You can enter Yes (or True) or No (or False). The default
is Yes.

MaxInstances (Optional) This option controls the maximum number of
instances that can run when the UseLoadBalancing option
is enabled. The default is the number of processors times
two.

IncrementCount (Optional) This option controls how many additional
instances are started during the current check when all
instances running are busy and the UseLoadBalancing
option is enabled. The default is two (2).

Managing IDS Instances

67

IdleTimeCheckIntervalSeconds (Optional) This option controls how often Watchdog
checks the idle time of the instances that are running to
determine if they are busy so it can start additional ones
when the UseLoadBalancing option is enabled. The
default is 60 seconds.

IdleTimeCheckDelaySeconds (Optional) This option controls the initial delay before the
first idle time check is performed by Watchdog when the
UseLoadBalancing option is enabled. This time should be
ample enough to allow all instances to start and reach an
idle time equal to or greater than the value provided for the
MinIdleTimeSeconds option. The default is 120 seconds.

IdleTimeChecks (Optional) This option defines the number of consecutive
Idle time checks that must fail, meaning all instances were
busy during each check, before more instances are started
when the UseLoadBalancing option is enabled. Each
check takes place at the IdleTimeCheckIntervalSeconds
interval. The default is two (2).

MinIdleTimeSeconds (Optional) This option controls the minimum idle time for
each instance. The idle time represents how long it has
been since an IDS instance processed the last request. If
Watchdog detects an instance has an idle time less than the
value provided for this option, it considers it busy for the
purpose of load balancing. The default is five (5) seconds.

MaxIdleTimeSeconds (Optional) This option controls the maximum idle time
for an additional instance. The idle time represents how
long it has been since an IDS instance processed the last
request. If Watchdog detects an instance which was
started for the purpose of load balancing has reached an
idle time greater than the value provided for this option, it
sends the instance a shutdown request. The default is 120
seconds.

MaxTransactions (Optional) This option controls the maximum number of
transactions an instance can process before it is restarted
by Watchdog. Enter -1 to disable this option. The default
is 10000.

MaxReportIntervalSeconds (Optional) This option controls the maximum time
interval that can elapse without an instance reporting back
to Watchdog before it is restarted. The default is 120
seconds.

MaxUpTimeSeconds (Optional) This option controls the maximum time
interval an instance can run before it is restarted by
Watchdog. Enter -1 to disable this option. The default is
28800 seconds (8 hours).

Options Description

Chapter 2
Using the Internet Document Server

68

MaxRestarts (Optional) This option controls the maximum number of
restart attempts that can occur within a time interval
specified by the RestartIntervalSeconds option before
Watchdog shuts down.
Use this option to prevent Watchdog from attempting to
restart instances infinite times when they cannot be started
due to configuration errors and so on. The default is five
restarts.

RestartIntervalSeconds (Optional) This option controls the interval used with the
MaxRestarts option to determine if Watchdog is having a
problem starting instances and to prevent continuous or
infinite restart attempts. The default is 60 seconds.

MaxMemoryUsagePercent (Optional) This option controls the maximum percentage
of the total JVM memory that can be used by an instance
before Watchdog will restart it.
Note that the total memory used in this calculation does
not include any memory used by native code. This option
is used with the MemoryChecks option. The default is 95.

MemoryChecks (Optional) This option controls the total count of
consecutive memory checks that must be present, where
the memory usage by an instance exceeds the value
provided for the MaxMemoryUsagePercent option for
each check, at which point Watchdog will restart it.
The interval for each memory check is controlled by the
CheckIntervalSeconds option. The default is -1, which
disables this option.

CheckIntervalSeconds (Optional) This option controls the time interval used by
Watchdog to check the health of each instance. The
default is one (1) second.

UseJMX (Optional) This option controls whether JMX is used to
monitor additional health metrics for each instance.
Enabling this option lets Watchdog also monitor class
loading, memory usage, garbage collection, and deadlocks
in Java code for each instance.
Note that enabling this option requires an additional and
separate TCP/IP port for each instance so that it can be
started with a JMX agent.
You can enter Yes (or True) or No (or False). The default
is No.
Only use this option for debugging or testing purposes.
Do not use this option in production mode because it
causes extra overhead and it requires additional ports be
used.

Options Description

Managing IDS Instances

69

JMXPort (Optional) This option controls the starting JMX port to
use when starting each instance with a JMX agent if the
UseJMX option is enabled.
Note that the starting port value should consider that each
additional instance that is started will try to use a
continuous/incremental port number. The default starting
port value is 49163.

JMXCheckIntervalSeconds (Optional) This option controls the time interval used to
run JMX checks for each instance when the UseJMX
option is enabled. The default is 60 seconds.

JMXMemoryChecks (Optional) This option controls the total count of
consecutive JMX memory checks that must be present,
where the memory usage by an instance exceeds the value
provided for the MaxMemoryUsagePercent option for
each check, at which point Watchdog will restart it.
The interval for each check is controlled by the
JMXCheckIntervalSeconds option. The default is -1,
which disables this option.

JMXVerboseMemory (Optional) This option controls whether Watchdog turns
on verbose memory to output GC statistics for each IDS
instance when the UseJMX option is enabled. You can
enter Yes (or True) or No (or False). The default is No.

JMXVerboseClassLoader (Optional) This option controls whether Watchdog turns
on verbose class loading for each IDS instance when the
UseJMX option is enabled. You can enter Yes (or True) or
No (or False). The default is No.

WaitForShutdownSeconds (Optional) This option controls how long Watchdog waits
for an instance to shut down after it issues a shutdown
command and before it terminates the instance. The
default is 20 seconds.

OrderedRestartIntervalSeconds (Optional) This option controls the interval used for
restarting each of the IDS instances in a sequential/
ordered manner when the MaxTransactions or
MaxUpTime options are used.
Watchdog restarts one instance at a time and waits for an
amount of time equal to the value specified for this option
before it restarts the next one and so on until it has
restarted all of them.
If you set this option to less than 60 seconds, you can
negatively affect performance. The default is 60 seconds.

Options Description

Chapter 2
Using the Internet Document Server

70

Determining the
instance number of a

server

You can determine the exact instance number of the (IDS) server the rule is running on.
For instance, you can use this to determine which TCP/IP port to use when IDS has to
talk to the GenData process. This DSI variable can be accessed from an IDS rule:

IDSINSTANCE

The value is a character array of a zero-based value. For example, on the primary IDS the
value will be zero (0), on first secondary instance it will be one (1), and so on. To get the
value, the rule has to call DSILocateValue().

Categories and
appenders used by

Watchdog

Here are the Log4J categories and appenders used by Watchdog (see logconf.xml file
included in the docserv directory):

• These mail categories and appenders are used to send email notifications during
mission critical errors, such as when IDS has a fatal exception:

 <!--Used by Watchdog to send email notifications.-->

 <category name="EMAIL" additivity="false">

 <priority value="ERROR"/>

 <appender-ref ref="EMAIL"/>

 </category>

 <appender class="org.apache.log4j.net.SMTPAppender" name="EMAIL">

 <param value="1" name="BufferSize"/>

 <param value="10.1.20.148" name="SMTPHost"/>

 <!--Comment out the SMTPUsername and SMTPPassword parameters to skip
authentication.-->

 <!--

 <param value="" name="SMTPUsername"/>

 <param value="" name="SMTPPassword"/>

 -->

 <param value="support@acme.com" name="From"/>

 <!--Use a comma delimited string of email addresses for To, cc and
bcc.-->

 <param value="user@acme.com,user@acme.com" name="To"/>

 <param value="user@acme.com,user@acme.com" name="cc"/>

 <param value="user@acme.com,user@acme.com" name="bcc"/>

 <param value="Error Message" name="Subject"/>

 <param value="ERROR" name="threshold"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d-[%t]-%m\n"/>

 </layout>

 </appender>

• This category is used to log informational output by Watchdog:

 <!--Used to log Watchdog informational output.-->

 <category name="Watchdog.output" additivity="false">

 <priority value="INFO"/>

 <appender-ref ref="watchdog-stdout"/>

 <appender-ref ref="watchdog-allroll"/>

 </category>

• These categories and appenders are used to log debug and error messages by
Watchdog. Change the Priority value to 'DEBUG' to log debug messages.

 <!--Used to log Watchdog debug and error messages.-->

 <category name="com.docucorp.watchdog.Watchdog" additivity="false">

Managing IDS Instances

71

 <priority value="ERROR"/>

 <appender-ref ref="watchdog-stdout"/>

 <appender-ref ref="watchdog-allroll"/>

 </category>

 <!--Logs Watchdog messages to stdout.-->

 <appender name="watchdog-stdout"
class="com.docucorp.util.logging.IDSConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d-[%t]-%m\n"/>

 </layout>

 </appender>

 <!--Watchdog Appender.-->

 <appender name="watchdog-allroll"
class="com.docucorp.util.logging.IDSFileAppender">

 <param name="Append" value="true"/>

 <param name="File" value="watchdog.log"/>

 <param name="Encoding" value="ISO-8859-1"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d-[%t]-%m\n"/>

 </layout>

 </appender>

• These categories and appenders are used by each Watchdog instance monitor thread
to log information for each instance monitored separately. Change the Priority value
to 'DEBUG' to log debug messages.

 <!--Used to log each thread's Instance Monitor debug and error
messages.-->

 <category name="com.docucorp.watchdog.monitor.InstanceMonitor"
additivity="false">

 <priority value="ERROR"/>

 <appender-ref ref="instance-stdout"/>

 <appender-ref ref="instance-allroll"/>

 </category>

 <!--Logs Instance Monitor thread messages to stdout.-->

 <appender name="instance-stdout"
class="com.docucorp.util.logging.IDSConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d-[%t]-%m\n"/>

 </layout>

 </appender>

 <!--Logs Instance Monitor thread messages to separate file(s).-->

 <appender name="instance-allroll"
class="com.docucorp.watchdog.util.WatchdogFileAppender">

 <param name="Append" value="true"/>

 <param name="File" value="~THREADID.log"/>

 <param name="Encoding" value="ISO-8859-1"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d-[%t]-%m\n"/>

 </layout>

 </appender>

Chapter 2
Using the Internet Document Server

72

• These categories and appenders are used to log debug and error information for IPC
(Inter-Process Communication) messages between Watchdog and the instances.
Change the Priority value to 'DEBUG' to log debug messages.

 <!--Used to log IPCConnector debug and error messages.-->

 <category name="com.docucorp.watchdog.ipc.IPCConnector"
additivity="false">

 <priority value="ERROR"/>

 <appender-ref ref="connector-stdout"/>

 <appender-ref ref="connector-allroll"/>

 </category>

 <!--Logs IPCConnector debug and error messages to stdout.-->

 <appender name="connector-stdout"
class="com.docucorp.util.logging.IDSConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d-[%t]-%m\n"/>

 </layout>

 </appender>

 <!--Logs IPCConnector debug and error messages to a file.-->

 <appender name="connector-allroll"
class="com.docucorp.watchdog.util.WatchdogFileAppender">

 <param name="Append" value="true"/>

 <param name="File" value="~THREADID.log"/>

 <param name="Encoding" value="ISO-8859-1"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d-[%t]-%m\n"/>

 </layout>

 </appender>

A watchdog configuration file can contain multiple sections, each with its own set of
options. Here are some examples:

Watchdog section Here is an example of the Watchdog section:

<configuration>

 <section name="Watchdog">

 <entry name="UseJMX">No</entry>

 <entry name="JMXCheckIntervalSeconds">60</entry>

 <entry name="JMXMemoryChecks">3</entry>

 <entry name="JMXVerboseMemory">Yes</entry>

 <entry name="JMXVerboseClassLoader">Yes</entry>

 </section>

 <section version="2.2" name="DocumentServer">

 <entry name="StartCommand">java</entry>

 <entry name="StartArguments">-Djava.endorsed.dirs=lib/
endorsed -Xmx256m -Ddsimessage.debug=N -Dmarshaller.output=N -cp
.;lib/DocucorpStartup.jar -Dids.configuration=docserv.xml -
Dlogging.configuration=logconf.xml com.docucorp.startup.Startup
com.docucorp.ids.DocumentServer</entry>

 <entry name="StartDirectory">.</entry>

 <entry name="Instances">2</entry>

 <entry name="UseLoadBalancing">Yes</entry>

 <entry name="MaxInstances">10</entry>

 <entry name="IncrementCount">2</entry>

 <entry name="IdleTimeCheckIntervalSeconds">60</entry>

 <entry name="IdleTimeCheckDelaySeconds">120</entry>

Managing IDS Instances

73

 <entry name="IdleTimeChecks">2</entry>

 <entry name="MinIdleTimeSeconds">5</entry>

 <entry name="MaxIdleTimeSeconds">120</entry>

 <entry name="MaxTransactions">10000</entry>

 <entry name="MaxReportIntervalSeconds">60</entry>

 <entry name="MaxUptimeSeconds">28800</entry>

 <entry name="MaxRestarts">5</entry>

 <entry name="RestartIntervalSeconds">60</entry>

 <entry name="MaxMemoryUsagePercent">95</entry>

 <entry name="MemoryChecks">3</entry>

 <entry name="CheckIntervalSeconds">1</entry>

 <entry name="UseJMX">No</entry>

 <entry name="JMXPort">49163</entry>

 <entry name="JMXCheckIntervalSeconds">60</entry>

 <entry name="JMXMemoryChecks">3</entry>

 <entry name="JMXVerboseMemory">Yes</entry>

 <entry name="JMXVerboseClassLoader">Yes</entry>

 <entry name="WaitForShutdownSeconds">20</entry>

 <entry name="OrderedRestartIntervalSeconds">60</entry>

 </section>

</configuration>

These JVM options are supported:

Here are some examples:

Scenario 1 A platform contains a single CPU and the default values are used for the Instances option
and for load balancing.

In this case, the default value of Instances will be two (2) and the default value of
MaxInstances will also be two (2) so no load balancing will occur.

Scenario 2 A platform contains four CPUs and the default values are used for the Instances option
and for load balancing.

In this case the default value of Instances is two (2) and the default value of MaxInstances
is 8. The default increment count will be two (2), the default minimum idle time will be 5
seconds, and the default maximum idle time will be 120 seconds.

Load balancing will occur and Watchdog will check the idle time of any running instances
every 60 seconds. If each of the instances running has an idle time that is less than 5
seconds, Watchdog deems them all busy and starts two additional instances. Watchdog
then continues on to the next check interval.

Option Description

-Dwatchdog.configuration (Optional) The name of the XML configuration file for watchdog.
The default is docserv.xml.

-Dlog4j.configuration (Optional) The name of the XML configuration file for LOG4J.
The default is logconf.xml.

-Dwatchdog.prefix (Optional) A unique string that should be used as the prefix for all
Watchdog files/locks generated on disk.
Use this option when running more than one Watchdog instance
from the same directory.

Chapter 2
Using the Internet Document Server

74

These steps are repeated during each check interval until the total number of instances
running reaches eight. If any of the running instances were started for the purpose of load
balancing and reach an idle time greater than 120 seconds, they are shut down by
Watchdog.

Scenario 3 A platform contains four CPUs and the value for the Instances option is set to 20 and the
default values are used for load balancing.

In this case the value for MaxInstances will be eight but the value for the instances will be
greater than the value for the maximum instances that can be reached during load
balancing so no load balancing will occur.

Sending Results and Receiving Requests in Multiple Formats

75

SENDING
RESULTS AND

RECEIVING
REQUESTS IN

MULTIPLE
FORMATS

The HTTP-based and queue-based messaging systems in IDS can accept messages in
multiple formats and will return results in the same format as the request. This is done so
IDS can communicate with third-party products that would find it difficult to produce
messages in current IDS-compatible formats.

The translation is done by marshaller code that translates a foreign message format into the
message format used internally by IDS (com.docucorp.messaging.data.DSIMessage).

Marshallers are Java objects that implement the interface
com.docucorp.messaging.data.marshaller.DSIMessageMarshaller, which is documented in the
SDK Reference.

Objects of the DSIMessage class hold the message variables and attachments passed in as
input to IDS and the output message variables and attachments produced by processing
requests in IDS.

The most important functions for marshallers are shown here:

The messaging systems, both HTTP-based and queue-based, keep a list of marshallers for
formats that they recognize. When a message comes in from a client application, a
messaging system compares the message's format against the formats will recognizes
using the isType function for each marshaller.

If there is a match the incoming data is translated into a DSIMessage with the marshallers
unmarshall function and the DSIMessage, holding the request to be processed, is used as
input into the main request processing in IDS. This produces an output DSIMessage
holding message variables and attachments. The output DSIMessage is translated into the
same format as the input message and sent back to the client application.

As a default, the HTTP-based messaging system understands the SOAP with MIME
Attachments format. (See Using HTTP on page 125 for more information.) The default
marshallers for the queue-based messaging system understand the SOAP with MIME
Attachments format and the binary format used by IDS version 1.6 and earlier.

The queue-based messaging system currently works with WebSphere MQ, formerly
known as MQSeries, and Java Message Service based queues. Both queuing systems can
deliver messages as text (a Java string) and binary (a Java array of bytes), so marshallers
can work with either format. The HTTP-based messaging system only recognizes text
with HTTP headers, such as Content-length, so marshallers written to work with HTTP
must work within these limitations.

Marshaller Takes

marshall A DSIMessage as an input and produces an object that is suitable for sending to
a client application via messaging.

unmarshall An object from a client application and a DSIMessage, and uses the Object to
fill in data in the DSIMessage.

isType An object from a client application and determines if it is in the format of the
marshaller.

Chapter 2
Using the Internet Document Server

76

Configuring and Deploying Marshallers
To configure IDS to recognize custom marshallers, you can add a marshallers section to
either of these sections:

• 'BusinessLogicProcessor', subsection 'messaging', subsection 'queue'

• 'BusinessLogicProcessor', subsection 'messaging', subsection 'http'

For example, in the docserv.xml configuration file, in section 'BusinessLogicProcessor',
subsection 'messaging', subsection 'queue' create a 'marshallers' section and add these
entries:

<section name="marshallers">

 <entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.Lega
cyByteArrayDSIMessageMarshaller</entry>

 <entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.SOAP
MIMEDSIMessageMarshaller</entry>

</marshallers>

This sets up the queuing system to use these two formats for receiving and sending
requests. If no entries are specified then IDS defaults to SOAP with attachments and
legacy IDS byte format.

NOTE: If a custom marshaller list is added to the configuration file, the default
marshallers are not automatically added to the list. This allows greater
customization. If you want to also use the default marshallers in messaging, you
must add them to the marshallers list in addition to the custom marshallers.

To deploy your marshaller code, package the Java class files in a JAR file and put it in the
/lib subdirectory under where IDS was installed. The next time IDS starts your custom
marshallers will be available.

Using the DSIMessage
marshaller class

IDS version 2.1 added the DSIMessage marshaller class called
XSLTTemplateDSIMessageMarshaller.

For marshalling, the marshaller starts with the usual SOAP/XML format of a
DSIMessage, then uses that as the source of a XSLT transformation to convert the SOAP
message to a third-party XML format.

For unmarshalling, the marshaller starts with a third-party XML format and the XSLT
transformation converts it to the Docupresentment SOAP/XML format, which is then
unmarshalled into a DSIMessage object.

In addition to the usual marshalling methods, the marshaller adds methods to pass in the
files holding the XSLT templates, or the text of the XSLT template directly.

NOTE: This marshaller is mainly used in IDS rules, so there is no configuration-based
setup of XSLT templates for marshalling and unmarshalling. You set up the
XSLT with Java methods in the XSLTTemplateDSIMessageMarshaller class.

These methods set up XSLT templates for the marshaller:

Sending Results and Receiving Requests in Multiple Formats

77

• public void setMarshallerText(String text)

This method sets the XSLT text for marshalling messages (converting to a foreign
format).

• public void setMarshallerFilename(String filename)

This method sets the file that holds the XSLT for marshalling messages (converting
to a foreign format). The file is loaded into the marshaller filter.

• public void setUnmarshallerText(String text)

This method sets the XSLT text for unmarshalling messages (converting from a
foreign format).

• public void setUnmarshallerFilename(String filename)

This method sets the file that holds the XSLT for unmarshalling messages
(converting from a foreign format). The file is loaded into the unmarshaller filter.

Chapter 2
Using the Internet Document Server

78

LOGGING AND
TRACING

There are several ways you can configure IDS to log messages. For instance, you can
configure IDS to:

• Log only events based on their severity, from debug messages to fatal errors.

• Control where logging messages are sent, whether they go to files, the Windows
event logger, into emails, and so on.

• Include and format the relevant information, such as time of day, elapsed time since
IDS was started, where the message came from, which thread the code is currently
running in, and so on.

Logging in IDS is based on the Log4j logging library. A complete description of Log4j's
capabilities is available at

http://jakarta.apache.org/log4j

IDS logging is configured by the file specified in the Java system property
'logging.configuration'. If this property is not set, the default is to look for the logconf.xml
file in the current directory. This file is checked periodically for changes by IDS when it
is running, so it is possible to change logging options while IDS is running. IDS does not
need to restart when a logging change is made.

Severity levels Logging messages have a severity level assigned to them. This is used to determine if and
when a logging message is written. From least to most severe, the severity levels are:

• DEBUG

• INFO

• WARN

• ERROR

• FATAL

When setting up logging you can decide what kind of messages to receive by picking a
severity level. Any messages at that severity level and those more severe are output. For
example, if you choose a severity level of WARN, only WARN, ERROR, or FATAL
messages are sent, while DEBUG and INFO messages are suppressed. For diagnosing
problems, the severity level would be set to DEBUG to produce more messages.

Logging categories What messages to log and where to log them is determined by logging categories or loggers.
Categories are based on a hierarchy of names or words separated by periods. As an
example, DocumentServer would be a parent category to DocumentServer.output and
DocumentServer.error. When a parent category is assigned a severity level, all children
categories inherit it as their default. Children categories can override these defaults.

For example, if the DocumentServer category's severity level is set to WARN and the
DocumentServer.output category's severity is set to INFO, then only DocumentServer and
DocumentServer.error will use WARN.

http://jakarta.apache.org/log4j

Logging and Tracing

79

The DocumentServer.output category is where normal runtime messages for IDS are sent,
such as the startup message and how many transactions were completed at shutdown or
restart time. Common errors encountered during configuration and rule setup are sent to
the DocumentServer.error category. Since these messages are in logging categories, they can
be sent to multiple places in addition to being printed on the console. There are other
categories that have debugging messages and you may be asked to activate these by
Support.

NOTE: For additional information, see Using Logging Categories to Access the Internal
Format of Requests on page 94.

Logging appenders The destinations for logging messages are known as appenders, since new logging messages
are appended to the end of the file, event log, and so on. The most common appenders
are for the console and for files.

A category can send messages to multiple appenders. Like severity levels, appenders
inherit from parent categories, but unlike severity levels, appenders are added to the
parent appenders and do not override the parent category's settings. This inheritance can
be turned off, as shown in the logging example.

Logging formats In addition to the logging message itself, other information can be configured to be
output with the logging message, such as the date and time the logging occurred, the
severity level of the message, and so on. In Log4j the formatting strings are called conversion
patterns, which you will see in the logging example. You can arrange the formatting
commands in any order. Text not part of a formatting command is sent verbatim, so you
can use commas, dashes, and other characters to separate the formatted text.

You may want to set up conversion patterns for different appenders. For example, you
may want to include the date and time on a message going to a file but excluding it from
a message going to the Windows Event Log, since the message's date and time are logged
by the Event Logger.

Here are some of the common formatting commands:

Logging example This is an example logging configuration file. This table shows how the various categories
output messages:

Parameter Description

%m The actual message being logged.

%n A system-dependent newline character.

%c The category of the message.

%d Date and time, down to the millisecond, when the message was generated.

%r Elapsed time, in milliseconds, since the application was started.

%p Severity level (priority) of the message generated.

%t The name of the Java thread that generated the message.

Chapter 2
Using the Internet Document Server

80

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="false">

 <!-- An appender that writes messages to a file. -->

 <appender name="rollfile"
class="org.apache.log4j.RollingFileAppender">

 <param name="Append" value="true" />

 <param name="File" value="docserver.log" />

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern"

 value="%-5p [%t] %r: %c{1} - %m\n"/>

 </layout>

 </appender>

 <!-- An appender that writes messages to the console. -->

 <appender name="stdout"
class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value=" %d %-5p [%t]: %c{1}
%m\n"/>

 </layout>

 </appender>

 <!-- An appender that writes messages to the Windows Event Log. -->

 <appender name="ntevent"
class="org.apache.log4j.nt.NTEventLogAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value=" Docupresentment
Server: %m\n"/>

 </layout>

 </appender>

 <!-- The parent category for outputs and errors. -->

 <category name="DocumentServer">

 <priority value="WARN" />

 <appender-ref ref="stdout" />

 <appender-ref ref="rollfile" />

 <appender-ref ref="ntevent" />

 </category>

Category Outputs messages

DocumentServer With a WARN security level or higher

DocumentServer.output With an INFO security level or higher

DocumentServer.output That go to the console

DocumentServer.error That go to the console, a logging file, and to the Windows Event
Logger.

Logging and Tracing

81

 <!-- The "standard output" for DocumentServer - where regular
messages go. -->

 <category name="DocumentServer.output" additivity="false">

 <priority value="INFO" />

 <appender-ref ref="stdout" />

 </category>

 <!-- A debugging category, will be turned on and off. -->

 <category name="com.docucorp">

 <priority value="WARN" />

 <appender-ref ref="stdout" />

 </category>

 <root>

 </root>

</log4j:configuration>

NAMING LOGGING MESSAGES

IDS includes a Log4j Appender class lets you control the naming of the files logging
messages are written to. The full name of the class is:

com.docucorp.ids.serverutils.IDSFileAppender

When this class is used as part of the logging setup, you can use IDS-specific variables.
The IDS-specific variables are:

Variable Description

~INSTANCE The instance number of the server being run. A primary server has an
instance number of zero (0) and secondary instances are numbered
starting at one (1). For example, running three instances of IDS, one
primary and two secondary, the instances are numbered 0, 1, and 2.

~SERVERGUID A IDS GUID identifier unique to each IDS instance but not recycled
upon restart. When IDS is started, the primary instance and any
secondary instances are assigned a unique identifying string. These
strings are assigned to the same instance of IDS if it is shut down and
restarted. The GUID strings remain the same until the number of
instances is changed in the docserv.xml configuration file.

~THREADID Each thread in IDS is given a name. You can use this name as part of the
file name. Since the same code may run in different threads during the
lifetime of an IDS session, and since the thread ID can be printed during
a logging message, you would seldom need to use this option.
An exception is for debugging the HTTP subsystem of IDS, where each
HTTP message is run in a pool of threads.

~UPTIME The date and time of when the instance of IDS was started.

~LASTRESTART The date and time of the most recent restart of this instance of IDS.

~CURRENTTIME The current date and time. The time can be measured down to the
millisecond so this option is handy for debugging time-critical and
performance issues.

Chapter 2
Using the Internet Document Server

82

The ~UPTIME, ~LASTRESTART, and ~CURRENTTIME options are followed by a
formatting parameter which ends with a semicolon (;). The formatting options are based
on Java's SimpleDateFormat class. You can find full documentation for these formatting
options at:

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

The formatting characters are:

Here are some sample formats:

Symbol Meaning Presentation Example

G era designator Text AD

y year Number 1996

M month in year Text & Number July & 07

d day in month Number 10

h hour in am/pm (1~12) Number 12

H hour in day (0~23) Number 0

m minute in hour Number 30

s second in minute Number 55

S millisecond Number 978

E day in week Text Tuesday

D day in year Number 189

F day of week in month Number 2 (2nd Wed in July)

w week in year Number 27

W week in month Number 2

a am/pm marker Text PM

k hour in day (1~24) Number) 24

K hour in am/pm (0~11) Number 0

z time zone Text Pacific Standard Time

' escape for text Delimiter

'' single quote Literal '

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

Logging and Tracing

83

As a Log4j Appender, the IDSFileAppender has several parameters that are set in the
logging configuration file, usually named logconf.xml. The parameters are:

If the name of a file changes between two logging calls, for example if you are using
~LASTRESTART and IDS is restarted, or if you are using ~CURRENTTIME and the
time changes by a sufficient amount, the old file is automatically closed.

Using combinations of Append and Close can produce different effects. With Append as
False and Close as True, only one logging message will be in the file at any time. This can
be handy when debugging messages passed in and out of IDS.

If Append is True and Close is False, the file acts like a regular FileAppender. In fact, if
you are running only one instance of IDS and you do not want to change the file name,
use the regular FileAppender since it is slightly faster than the IDSFileAppender.
IDSFileAppender has to re-evaluate the file name for each logging message. Setting
Append to True and Close to True gives you an ever-growing file that you can move,
delete, edit, and so on.

Here are some examples:

The IDSFileAppender is used in the appender elements in the logging configuration.

<appender name="multiinstance"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="true" />

<param name="File" value="server-~INSTANCE .log" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern"

value="%-5p [%t] %r: %c{1} - %m\n"/>

</layout>

</appender>

Sample Explanation

MM-dd-yyyy Two digits for the month, two digits for the day, and four digits for
the year.

MMMM-dd-yyyy The month spelled out, two digits for the day, and four digits for
the year.

yyyyMMddHHmmssSSSS A 4-digit year, 2-digit month, 2-digit day, 2-digit hours in day, 2-
digit minutes in day, 2-digits seconds in a minute, and 4-digit
milliseconds in a second.
In this format, sorting alphabetically is the same as sorting by date.

Parameter Description

File The name of the file to write. This can be a static file name or a dynamic file name
created using the above options.

Append If True, the next logging message is appended to the end of the file. If false, the
file is first erased. The default is True.

Close If True, the file is closed after the message is written. This can be useful if you
want to edit, move, or delete the file while IDS is still running. The default is
False.

Chapter 2
Using the Internet Document Server

84

This produces a separate log file for each instance of IDS. If there are a total of three
instances running, a primary and two secondaries, these log files are created:

• server-0.log

• server-1.log

• server-2.log

<appender name="everyhour"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="true" />

<param name="File" value="server-~CURRENTTIME MMddHH;.log" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern"

value="%-5p [%t] %r: %c{1} - %m\n"/>

</layout>

</appender>

This produces a log file and which is written to until the hour changes. The system then
starts writing to a new file. The date/time formatting is for the month, day, and hour, so
on October 15, from noon until 1 pm, logging entries are written to the server-101512.log
file. From 1 pm to 2 pm, logging entries are written to the server-101513.log file, and so on.

USING LOGGING CATEGORIES

To make it easier to debug problems in IDS, you can use logging categories to sort
messages IDS receives from client programs and messages it sends to client programs.
You can have the system treat all messages the same or distinguish between messages
from message queues (WebSphere MQ or JMS) and messages from HTTP.

Combining the use of the message categories with options in the IDSFileAppender
provides the same functionality as the send.msg and receive.msg message debugging of IDS
version 1.8, but also allows other options.

The categories are as follows:

• SendMessage.queue

• ReceiveMessage.queue

• SendMessage.http

• ReceiveMessage.http

As with other Log4j categories, the categories are hierarchical, so using category names
SendMessage and ReceiveMessage will use the same category for both queue and HTTP-based
messages.

Since the messages are handled as Log4j categories, they can have all the destinations of
other categories, such as files, the NT Event logger, email, and so on.

Here are some examples. When looking at the examples, remember that for each request,
a message is first received by IDS then a message is sent.

Logging and Tracing

85

This combination of categories and appenders gives the same behavior as in IDS version
1.8. When the categories are set to DEBUG, any received messages are placed in the
receive.msg file. Any sent messages are placed in the send.msg file. When new messages
are processed, either by queues or HTTP, they are placed in the receive.msg and send.msg
files.

<appender name="receivemessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="receive.msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%m"/>

</layout>

</appender>

<appender name="sendmessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="send.msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%m"/>

</layout>

</appender>

<category name="ReceiveMessage">

<priority value="DEBUG" />

<appender-ref ref="receivemessage" />

</category>

<category name="SendMessage">

<priority value="DEBUG" />

<appender-ref ref="sendmessage" />

</category>

This set of categories and appenders puts the received messages and sent messages in the
same file, with one file for each instance of IDS that is running. Since Append is False for
receiving and Append is True for sending, this file is overwritten for each receive/send
pair. The header Received: is added in front of the received message and Sent: is placed in
front of the sent message.

<appender name="receivecombined"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="combined-~INSTANCE .msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="Received:%n%m%n"/>

</layout>

</appender>

<appender name="sendcombined"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="true" />

Chapter 2
Using the Internet Document Server

86

<param name="File" value="combined-~INSTANCE.msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="Sent:%n%m"/>

</layout>

</appender>

<category name="ReceiveMessage">

<priority value="DEBUG" />

<appender-ref ref="receivecombined" />

</category>

<category name="SendMessage">

<priority value="DEBUG" />

<appender-ref ref="sendcombined" />

</category>

In this example you distinguish between messages handled by the queues and messages
handled by HTTP. The queue messages are placed in receive.msg and send.msg, but since
the HTTP messages are handled simultaneously by multiple threads, the HTTP messages
include the thread ID in the file names.

The system also notes the categories and sub-categories. In the categories with HTTP,
additivity is set to False, meaning the HTTP categories should not use appenders from the
SendMessage and ReceiveMessage categories.

<appender name="receivemessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="receive.msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%m"/>

</layout>

</appender>

<appender name="sendmessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="send.msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%m"/>

</layout>

</appender>

<appender name="receivehttp"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="receive-~THREADID .msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%m"/>

</layout>

</appender>

Logging and Tracing

87

<appender name="sendhttp"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="send-~THREADID .msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%m"/>

</layout>

</appender>

<category name="ReceiveMessage">

<priority value="DEBUG" />

<appender-ref ref="receivemessage" />

</category>

<category name="SendMessage">

<priority value="DEBUG" />

<appender-ref ref="sendmessage" />

</category>

<category name="ReceiveMessage.http" additivity="false">

<priority value="DEBUG" />

<appender-ref ref="receivehttp" />

</category>

<category name="SendMessage.http" additivity="false">

<priority value="DEBUG" />

<appender-ref ref="sendhttp" />

</category>

LOGGING INFORMATION ABOUT REQUESTS

IDS lets you store information about a request in a database for later viewing or
processing. IDS logs information about a request (transaction) in any Java Database
Connectivity (JDBC) compliant database. You can find additional information about
JDBC at

http://java.sun.com/products/jdbc/

On Windows computers, Open Database Connectivity (ODBC) is available, and Java has
built-in drivers to ODBC connections.

Request logging automatically rolls over and starts new database tables on a daily or
weekly basis and you can configure IDS to automatically delete old database tables. The
configuration file can specify how many days or weeks of log tables to keep when purging
old tables.

http://java.sun.com/products/jdbc/

Chapter 2
Using the Internet Document Server

88

NOTE: Set up a separate database for IDS transaction logs. When purging old tables, all
tables that do not qualify as the most recent transaction logs are deleted from the
database.

IDS lets you use a browser to display request logs and sort and filter the requests. You can
display logs from just a single database table or from multiple tables.

When IDS sends result messages back to client programs, it includes these message
variables:

With this information you can track a message back to a particular instance of IDS
running on a particular machine, even if all messages are logged to a common place.

Request logging
configuration

To add this capability, go to the DOCSERV.XML configuration file and find the
BusinessLogicProcessor section. Then create a TransactionLogDatabase subsection, as
shown here:

<section name="TransactionLogDatabase">

 <entry name="class">sun.jdbc.odbc.JdbcOdbcDriver</entry>

 <entry name="URL">jdbc:odbc:TRAN_LOG</entry>

 <entry name="userid">sa</entry>

 <entry name="password"></entry>

 <entry name="time.type">weekly</entry>

 <entry name="time.count">2</entry>

 <entry name="time.startofweek">monday</entry>

 <entry name="close.database">N</entry>

 <section name="columns">

 <entry name="Reqtype">REQTYPE</entry>

 <entry name="UserID">USERID</entry>

 <entry name="Password">PASSWORD</entry>

 </section>

</section>

Variable Description

IDSHOSTNAME Contains the host name of the machine running IDS.

IDSGUID Cntains the unique ID for the running instance of IDS.

Parameter Description

class The JDBC Java class that connects to the database. In this example, we are
using Java's built in ODBC connectivity in Windows.

URL The JDBC-based name of the database that tables will be written into. This
will vary for different JDBC drivers, but somewhere will include the
database name, in this case TRAN_LOG. Consult your JDBC driver
documentation on setting up this URL.

userid The user name for logging in to the database.

password The password for the specified user name.

Logging and Tracing

89

Accessing the
transaction database

through IDS

IDS includes requests and HTML pages to let a user view the transaction log database
from a browser. To begin, start a web browser and go to this URL

http://localhost:49152/request?REQTYPE=LOGMETADATA

localhost:49152 refers to the IP address and port that IDS is set up for HTTP messaging.
You will see a screen similar to this:

The Transaction Log Date field specifies which day's worth of records that results will be
pulled from. Use the calendar button next to this field to pick another date. If data is being
collected in weekly mode, you can check the View All Log Entries field to select data from
all the records in a week's database table, not just the data for one day.

time.type Either daily or weekly, specifying how often to roll over into a new database
table.

time.count How many of the most recent tables in the database to keep when deleting
old tables. This will be either the most recent days or weeks worth of
information, depending on the time.type setting.

time.startofweek When time.type is weekly, this specifies what day of the week to start a new
database table.

close.database Whether or not to close the database after writing a transaction to the
transaction database. Setting this to Y or N will depend on how many
database connections are available to the database and how often
transactions are logged.

columns This subsection holds any number of entries specifying the column names
in the database. The entry name is the name of the column that will be
used in the database. The entry value is the name of the message variable
in the output that will be written in the column.

Parameter Description

Chapter 2
Using the Internet Document Server

90

The Field column lists all the data fields you can display. You can choose individual fields
or select them all. The numeric drop-down box next to each field name can be used to
select the display priority. The first fields to display will have a display priority of 1, then
all fields with a display priority of 2, and so on.

The Filter field lets you filter each field by a value. Enter a value for filtering, then choose
an operation to perform on the filter.

Use the Order By column to sort a column's information, ascending or descending. The
numeric drop-down box picks the ordering priority, with 1 having the highest priority.

After you pick the settings and click Submit, a screen similar to this one appears:

All the previously selected columns appear. Use the Previous and Next buttons to move
through the selected records. Click Return to Query to return to the selection page.

Accessing the
transaction database

directly

Since the transaction database is a regular JDBC compliant database it can be accessed
through any database program that uses JDBC or the database's native format. This
section explains the naming and data format conventions used in the transaction database.

The database name is just the name of the database set up by you or your database
administrator.

The names of tables in the database will all start with the string TRANLOG followed by
the date that data is first written into the table. The format is shown here:

TRANLOGyyyymmdd

Parameter Description

TRANLO
G

All tables start with this string.

yyyy Year

mm Month (01 - 12)

Logging and Tracing

91

For example, a table starting on September 1, 2003 would be named:

TRANLOG20030901

Each row in the database table begins with a column named TRANSACTIONTIME, a
23-character string that is the key for the row. In SQL, this is known as a CHAR(23). The
string is the time of the transaction, to millisecond precision, formatted in a way that
sorting the table on the column sorts the logs by date and time recorded. The format is:

yyyy/mm/dd:hh:nn:ss.xxx

The names of the other columns in the table row are generated from the IDS
configuration, and each column type is a variable-length string, known in SQL as a
VARCHAR(255).

QUERYING TRANSACTION INFORMATION

You can use the getMetaData and the QueryTranLogs Java rules to query transaction
information. These rules let you monitor information such as the amount of server time
spent for each request, the requests that failed, user IDs, and passwords.

These rules use the TransactionLogDatabase section in the docserv.xml file to build a
connection to the log database.

NOTE: See Logging Information about Requests on page 86 for information on how to
set up the transaction log database.

You can use the logmetadata and logrecords XSL templates with the version 2.x HTTP
server to query transaction information from the log database. Information can be found
by matching a table name based on the date specified in the web user interface, the time
type (daily or weekly) for the table, and the starting day for the table.

Here is an example of a URL that uses the web interface:

dd Day of the month (01 - 31)

Parameter Description

yyyy Year

mm Month (01 - 12)

dd Day of the month (01 - 31)

hh Hour in the day (00 - 23)

nn Minute in hour (00 - 59)

ss Second in minute (00 - 59)

xxx Millisecond in second (000 - 999)

Parameter Description

Chapter 2
Using the Internet Document Server

92

http://localhost:49152/request?reqtype=logmetadata

getMetaData
This rule displays meta-data about the log database. The rule returns the field count,
which is the number of fields available in each table. This information is set up in the
TransactionLogDatabase section of the docserv.xml file. The rule also returns each of the
field names that correspond to the field count and the TransactionLogDatabase section.

Field names are returned as attachment variables field1 through fieldn, where n is the field
count. The getMetaData rule also returns the table time type being used for the
transaction log database which can be daily or weekly.

This information is set up in the TransactionLogDatabase section of the XML file. The
rule also returns a table count which corresponds to the number of tables currently
present in the log database. Furthermore, the rule also returns each table name as
attachment variables table1 through tablen, where n corresponds to the table count value.

Input attachments

Output attachments

NOTE: Use this rule with the logmetadata xslt template and the HTTP server that comes
with version 2.x. Keep in mind you must first set up logging (see Logging
Information about Requests on page 86) before you can use this rule.

Here is a sample URL:

http://localhost:49152/request?reqtype=logmetadata

Here is a sample request type:

<section name="ReqType:LOGMETADATA">

<entry name="function">atcw32->;ATCLogTransaction</entry>

<entry name="function">java;com.docucorp.ids.rules.
IDSTransactionRule;;static;reportTimes;INCLUDEMS</entry>

<entry name="function">atcw32->;ATCLoadAttachment</entry>

Variable Description

REQTYPE LOGMETADATA

Variable Description

FIELDCOUNT The number of fields in each table within the transaction log database.

FIELD1...FIELDn The name of each field in the transaction log database tables, where n
corresponds to FIELDCOUNT.

TABLETIMETYPE The table time type, a setting in the TransactionLogDatabase section of
the docserv.xml file.

TABLECOUNT The number of tables present in the transaction log database.

TABLE1...TABLEn The name of each table present in the log database, where n corresponds
to TABLECOUNT.

Logging and Tracing

93

<entry name="function">irlw32->;IRLCopyAttachment</entry>

<entry name="function">java;com.docucorp.ids.rules.
TransactionLogRSRule;;transaction;getMetaData;</entry>

</section>

QueryTranLogs
Use this rule to query the transaction log database and return a recordset of transactions.

NOTE: See Logging and Tracing on page 77 for information on how to set up the
transaction log database.

Input attachments

Output attachments

Variable Description

REQTYPE The request type that contains the QueryTranLogs rule. This should
be LOGRECORDS when you are using the logrecords.xsl
template.

SQLCMD (Optional) An SQL select statement for the query.

SQLTABLENAME (Optional) The table name of the database log that is to be queried,
such as TRANLOG20030121.

SQLFIELDS (Optional) A comma delimited list of selection fields to use for to
the query. Here is an example:

reqtype,results,userid,password

SQLWHERE (Optional) The filters specified for the query. Here is an example:

reqtype like 'sss%' and userid = 'FORMAKER'
and password <> 'I'

SQLORDERBY (Optional) The sort order criteria to use in the query, such as:

reqtype asc, password desc, userid asc

SQLTIMEOUT (Optional) The SQL connection time-out, specified in seconds. The
default is 300 seconds.

SQLABSOLUTEPAGE (Optional) The current page to display for the query. This is used in
recordset paging. The default is one (1).

SQLPAGESIZE (Optional) The number of records to return for a query. The default
is 10.

SQLEXACTMATCH (Optional) Enter Yes if the system should only display the records
for the date specified. Enter No if you want it to display all the
records in the current table.

Variable Description

SQLCMD The generated SQL query string.

Chapter 2
Using the Internet Document Server

94

NOTE: Use this rule with the logrecords xslt template and the HTTP server that comes
with version 2.0 or higher.

By default the rule tries to use the SQLCMD input attachment. If it is not found or its
value is omitted, the rule then tries to build a select statement using the
SQLTABLENAME, SQLFIELDS, SQLWHERE, and SQLORDERBY input
attachment variables.

Here is a sample request type:

<section name="ReqType:LOGRECORDS">

<entry name="function">atcw32->;ATCLogTransaction</entry>

<entry name="function">java;com.docucorp.ids.rules.
IDSTransactionRule;;static;reportTimes;INCLUDEMS</entry>

<entry name="function">atcw32->;ATCLoadAttachment</entry>

<entry name="function">irlw32->;IRLCopyAttachment</entry>

<entry name="function">java;com.docucorp.ids.rules.
TransactionLogRSRule;;transaction;QueryTranLogs;</entry>

</section>

MONITORING PERFORMANCE STATISTICS

IDS lets you use Java Management Extensions (JMX) to monitor performance data. This
lets external JMX monitoring applications track performance data and is similar to SNMP
support.

JMX support is built-in to Java versions 1.5 and higher, but IDS includes JMX libraries
that let you monitor IDS with Java 1.4 versions. For Java 1.4 versions, IDS uses the JMX
Message Protocol (JMXMP), based on Sun's Reference Implementation of the JMX
Remote API.

In the docserv.xml configuration file, in the DocumentServer section, create a JMX
subsection, as shown here:

SQLPAGESIZE The number of records returned for the query.

FIRSTPAGE Returns True if the records returned for the query are the first page.
Otherwise, the system returns False.

LASTPAGE Returns True if the records returned for the query are the last page.
Otherwise, the system returns False.

SQLSELECTION
FIELDCOUNT

The number of fields used in the query.

SELECTIONFIELDS A rowset containing the names of each of the fields returned by the
query.

RECORD1....RECORDn Rowsets for each record returned in the query, where n is the last
record returned in the query. (this value should be equal to that of
SQLPAGESIZE if LASTPAGE is False)

Variable Description

Logging and Tracing

95

<section name="DocumentServer">

<section name="JMX">

<entry name="Enabled">yes</entry>

<entry name="JMXMPPort">9875</entry>

</section>

</section>

The Enabled entry determines whether JMX support is enabled. The default is No.

The JMXMP entry is the TCP/IP port where the JMX Messaging Protocol (JMXMP) will
be supported. Each instance of IDS will have its own JMXMP port starting with this
number. If you omit this entry, JMXMP support is not enabled.

In addition to compiling application-wide statistics automatically, IDS can also track
performance times for a specific request or for a specific function in a request. You can
set this up in the configuration. In the DocumentServer section, create a
StatisticsMonitors subsection, as shown here:

<section name="StatisticsMonitors">

<entry name="Monitor">SSS</entry>

<entry name="Monitor">SSS/5</entry>

</section>

To monitor an entire request, enter the request's name, such as SSS. To monitor a specific
function within a request, specify the request's name, a slash (/), and the line number of
the function inside the request, such as SSS/5.

For each monitor you list, IDS tracks the most recent timings for the Initialize, Run
Forward, Run Reverse, and Terminate messages, and the total time for all messages run.

For general information about JMX, see:

http://java.sun.com/products/JavaManagement/

GENERATING A LOGGING CONFIGURATION FILE

IDS includes a LogConfConvert.xsl template which you can use to generate a logconf.xml
file from the docserv.xml file.

The template takes into account the XMLMessage, XMLMessageAppend,
TransactionTime, and RuleTime options in the Debug section of the docserv.xml file
during the generation of the logconf.xml file.

A logconfcovert script file is also included in the docserv directory which you can use to
run the command necessary for the conversion process, as shown here:

Windows java -cp .;.\lib\DocucorpUtil.jar com.docucorp.util.XslTransformer
source=docserv.xml template=LogConfConvert.xsl output=logconf.xml

UNIX java -cp .:./lib/DocucorpUtil.jar com.docucorp.util.XslTransformer
source=docserv.xml template=LogConfConvert.xsl output=logconf.xml

USING LOGGING CATEGORIES TO ACCESS THE INTERNAL

http://java.sun.com/products/JavaManagement/

Chapter 2
Using the Internet Document Server

96

FORMAT OF REQUESTS

To make it easier to debug problems which can occur when translating requests and
results, the system includes logging categories you can use to see the internal data format
of received requests and sent results. The categories are as follows:

• DSIMessage.ReceiveMessage.queue

• DSIMessage.SendMessage.queue

• DSIMessage.ReceiveMessage.http

• DSIMessage.SendMessage.http

As with other Log4j categories, the categories are hierarchical so using category names
DSIMessage.SendMessage and DSIMessage.ReceiveMessage will use the same category
for both queue and HTTP-based messages.

Since the messages are handled as Log4j categories, they can have all the destinations of
other categories, such as files, the NT Event logger, email, and so on.

A combination of categories and appenders will add the internal data format of messages
to the end of receive.msg and send.msg files, adding useful information about how the
messages are translated.

Use the following Log4j appenders to add the internal data information to the receive.msg
and send.msg files:

<appender class="com.docucorp.ids.serverutils.IDSFileAppender"
name="dsireceivemessage">

<param value="true" name="Append"/>

<param value="receive.msg" name="File"/>

<param value="true" name="Close"/>

<layout class="org.apache.log4j.PatternLayout">

<param value="%m" name="ConversionPattern"/>

</layout>

</appender>

<appender class="com.docucorp.ids.serverutils.IDSFileAppender"
name="dsisendmessage">

<param value="true" name="Append"/>

<param value="send.msg" name="File"/>

<param value="true" name="Close"/>

<layout class="org.apache.log4j.PatternLayout">

<param value="%m" name="ConversionPattern"/>

</layout>

</appender>

Use these appenders with the following Log4j categories:

<category name="DSIMessage.ReceiveMessage.queue">

<priority value="DEBUG"/>

<appender-ref ref="dsireceivemessage"/>

</category>

<category name="DSIMessage.SendMessage.queue">

<priority value="DEBUG"/>

<appender-ref ref="dsisendmessage"/>

</category>

Configuring IDS

97

CONFIGURING
IDS

The IDSConfig program lets you perform the following tasks to make it easier to
configure IDS:

• Running IDSConfig on page 97

• Creating New Files on page 97

• Adding Nodes on page 97

• Adding Nodes with Text on page 97

• Editing Nodes on page 98

• Copying Nodes on page 98

• Moving Nodes on page 98

• Adding Attributes on page 98

• Adding Comments on page 99

• Adding Text on page 99

• Adding a Request or Function on page 99

• Adding an IDS Function on page 99

• Converting DOCSERV.INI or DOCCLIENT.INI Files into XML Format on page
100

• Adding a Section or Entry on page 100

• Locating Text on page 100

• Importing Configuration Information on page 100

• Configuring MQSeries Buffer Sizes on page 101

• Testing File Transmission on page 102

Chapter 2
Using the Internet Document Server

98

Running IDSConfig
To run the IDSConfig program, use the syntax shown below:

java -classpath <path to xerces.jar>;<path to xalan.jar>;<path to
DocuCorpUtil.jar>;<path to idsconfig.jar>
com.docucorp.idsconfig.idsconfig

Here is an example:

java.exe -classpath

d:\jars\xerces.jar;d:\jars\xalan.jar;d:\jars\DocuCorpUtil.jar;
d:\jars\idsconfig.jar; com.docucorp.idsconfig.idsconfig

NOTE: To run IDSConfig, you must have idsconfig.xml and idsrules.xml stored in the
working directory.

Creating New Files
To create a new file, follow these steps:

1 Select the File, New option.

2 Select the appropriate type of configuration file: client or server.

Depending on the type of configuration you chose, the system creates a new XML file
base or template file named either docservtp.xml or docclienttp.xml.

Adding Nodes
Follow these steps to add a node:

1 Choose one of these options:

Right click the parent node to which you want to add a child node.

Select the parent node, then choose the Edit, Add Node option.

Select the parent node, then click the Add Node button.

Select the parent node, then press INSERT.

2 Enter the name you want to assign to the node and click Ok.

3 Enter Text if you want to create a Text node. Otherwise, leave it blank.

Adding Nodes with Text
Follow these steps to add a node with text:

1 Choose one of these options:

Right click the parent node to which you want to add a child node.

Select the parent node, then choose the Edit, Add Node option.

Select the parent node, then click the Add Node button.

Configuring IDS

99

Select the parent node, then press INSERT.

2 Enter the name you want to assign to the node and click Ok.

3 Enter Text and click Ok.

Editing Nodes
Follow these steps to edit a node:

1 Click once to select the node. The system highlights the node.

2 Press F2 or click again to edit the node.

3 Press ENTER when finished or press ESC at any time to cancel editing.

Copying Nodes
Follow these steps to copy a node:

1 Click to select the node you want to copy.

2 Press and hold the CTRL key while dragging the source node onto the destination
node. Drop the source node by releasing the mouse button.

The system copies the source node and adds it as a child of the destination node.

Moving Nodes
There are two ways to move nodes:

Move as a child node 1 Select the node you want to move.

2 Drag and drop the source node onto the destination node.

The system adds the source node as a child of destination node.

Move as previous node 1 Select the node you want to move.

2 Press and hold the SHIFT key, then drag and drop the source node onto the
destination node.

The system inserts the source node before the destination node.

Adding Attributes
Follow these steps to add attributes:

1 Right click the attribute header.

2 Select the Add Attribute option.

3 Enter the value of the attribute and press ENTER.

Chapter 2
Using the Internet Document Server

100

Adding Comments
Follow these steps to add comments:

1 Choose one of these options:

Right click the node to which you want to add a comment and choose Add
comment from the popup menu

Select the node, then click the Add comment button.

Select the node, then press CTRL+M.

2 Enter your comment and click Ok when you are finished.

Adding Text
Follow these steps to add text:

1 Right click the node to which you want to add text.

2 Select the Add Text option.

3 Enter the text. Press ENTER when finished or ESC to cancel.

Adding a Request or Function
The IDSConfig program provides a quick way to add request types and functions. Follow
these steps:

1 Right click on the Configuration and select the Add Request option.

2 Enter the name of the request type and click Ok.

3 Right click on the section name you just added and select the Add Function option.

4 Type in the name of the function you want to add and press ENTER.

The new function is added to the request type node.

Adding an IDS Function
The IDSConfig program provides a quick way to add an IDS function.

NOTE: Be sure to store the functions you add in the idsrules.xml. file.

1 Right click on the node to which you want to add functions and select Add
IDSFunction. The Add IDS Function window appears.

2 Use the SHIFT and CTRL keys to select multiple functions in the Basic Functions area.
Once you have selected the functions you want to add, drag them into the
Destination area or click the >> button.

Configuring IDS

101

NOTE: You can rearrange the order of the functions in Destination area using your
mouse.

3 Click Ok when you are finished.

Converting DOCSERV.INI or DOCCLIENT.INI Files into XML
Format
You can use IDSConfig to convert a DOCSERV.INI or DOCCLIENT.INI file into an
XML format file.

1 Select the File, Convert INI file option.

2 Enter the following information:

The name of the INI file you want to convert

The name you want assigned to the XML output file

The name of the XSL file (DocumentClientConvert.xsl or
DocumentServerConvert.xsl) and the MQ Series Server if it exists

3 Click Start to start the conversion. Click Close when it finishes.

Adding a Section or Entry
Follow these steps to add a section or entry

1 Right click the node to which you want to add a section or entry.

2 Select the Add Section or Add Entry option.

If you are adding a section, enter the section name

If you are adding an entry, enter the entry name and text

3 Click Ok when you are finished.

Locating Text
You can use Find and Find Next to locate text.

1 Click to select the beginning searching node.

2 Press CTRL+F, then enter the text and click Find to start searching. The system
locates the matching text.

You can continue searching the same text by pressing F3.

Importing Configuration Information
You can import configuration information into your main configuration file. IDS lets you
import configuration information into either the older IDS version 1.x INI configuration
files or the newer IDS version 2.x XML configuration files.

Chapter 2
Using the Internet Document Server

102

Most control groups (INI) or sections (XML) of the imported configurations are added
to the end of the main configuration file. This means that if there are control groups or
sections with the same name in both the main configuration and in the imported
configurations, the entries in the control group or section in the main configuration takes
precedence. These control groups and sections, however, are exceptions to this rule:

• ReqType:INI

• ReqType:THREADINI

• ReqType:SAR

If these control groups or sections exist in the imported configurations, the entries in the
imported control groups and sections are merged into the corresponding control groups
or sections in the main configuration file — so in this case the entries in the imported file
take precedence.

Here is an example section from an XML-based configuration file:

<section name="configuration-imports">

<entry name="import">documanage_requests.ini</entry>

<entry name="import">ipps_requests.ini</entry>

</section>

NOTE: In version 2.1 and later, IDS detect changes to imported configurations via the
INIFiles or configuration-imports sections in the docserv.xml file and reload
them into memory when there is a change.

Configuring MQSeries Buffer Sizes
You can increase the default buffer size of MQSeries messages and make the buffer size
a setting you can maintain with a configuration entry.

• In server configuration files, the entry is put in the "BusinessLogicProcessor"
section, "messaging" subsection, "queue" subsection.

• In client configuration files, the entry is put in the "DocumentClient" section,
"messaging" subsection, "queue" subsection.

The entry is:

<entry name="mq.inputqueue.starting.buffer.size">131072</entry>

This setting indicates the initial size of the buffer allocated to hold an incoming message.
If the message is larger than this size, a buffer is allocated that is large enough to hold the
message and the application tries again. The default is 131072 (128K).

If you know that most of your messages will be smaller than 128k, you can decrease the
buffer size for lower overhead for memory allocation. If, however, the majority of your
messages will be larger, increase the buffer size to avoid situations where it takes multiple
getMessage calls to get a message.

Configuring IDS

103

Testing File Transmission
Use the DSITEST utility to test the transfer of files to and from IDS. Here is an example
of the syntax and parameters for this utility:

NOTE: By default, the DSITEST utility runs in Java mode. You can, however, run it in
C mode. To switch modes, open DSITEST in a text editor and follow the
instructions at the beginning of the script.

Syntax dsitestw /time /waitonlast / display /nowait /reqtype /msg /
notrans /noattachs /norcvs /atcfile /rcvfile

Neither the case nor the order of the parameters is important.

You can include these parameters on the command line or place them in an input file
named PARAMS.MSG. On the command line, separate parameters with slashes (/),
dashes (-), or spaces:

DSITESTW /time=yes

DSITESTW -time=yes

Parameter Description

Time Displays total seconds for all operations.
Do not include NoRCVs, ATCFile, or RCVFile with this parameter because
those parameters contain user prompts that affect the time.

WaitOnLast Waits on the last message before capturing the ending time.

Display Displays the resulting DSI Soap XML message that contains the name/value
pairs for each transaction.

NoWait Do not wait for the server before adding next message to queue.

ReqType The IDS request type. The default is SSS.

MSG The name of the file that contains the request name/value pairs.

NoTrans The total number of transactions to process.

NoAttchs The total number of file attachments to send per transaction using the
DSISendFile API. If you include this parameter, the program expects an input
file named SENDFILES.MSG that contains the information for each
attachment to send.

NoRCVs The total number of file attachments to receive per transaction via the
DSIReceiveFile API. If you include this parameter, the program expects an input
file named RECEIVEFILES.MSG that contains the information for each
attachment to receive.

ATCFile A single file attachment to send via the DSISendFile API. The program prompts
the user for the attachment ID, file name, and encoding type.

RCVFile A single file attachment to receive via the DSIReceiveFile API. The program
prompts the user for the attachment ID and file name.

Chapter 2
Using the Internet Document Server

104

DSITESTW time=yes

If you include the parameters in the PARAMS.MSG file, format them as shown in this
example of the PARAMS.MSG file:

time=yes

waitonlast=no

display=yes

nowait=no

reqtype=LGN

notrans=50

msg=prt.msg

noattchs=0

norcvs=0

atcfile=yes

rcvfile=yes

Here is an example of how you could execute this program from the command line:

dsitesw time=yes display=yes notrans=2 reqtype=prt msg=c:\prt.msg

Here is an example of the PRT.MSG file:

USERID=FORMAKER

Arckey=00345A0D5600000008

reqtype=PRT

config=UTILITY

company=1199999

lob=Lee

policynum=Roswell, Ga 30015

rundate=021705

printpath=\10.8.10.137\Websrvr_client\html

If the NoAttchs parameter is greater than zero, the program expects an input file named
SENDFILES.MSG which contains a list of the attachments to send. Use either
NoAttachs or ATCFile, but not both.

Use the ATCFile parameter when you only want to send one file attachment. The
ATCFile parameter uses command line parameters for the attachment ID, file name, and
encoding type. Here is an example of the ATTACHMENTS.MSG file:

name=UTILITYINI

file=X:\IDS\AddlSrvrs\utility.ini

type=TEXT

name=TESTPDF

file=X:\websrvr_client\html\test.pdf

type=BINARY

If the NoCRVs parameter is greater than zero, the program expects an input file named
RECEIVEFILES.MSG, which contains a list of attachments to receive. Include either
NoRCVs or RCVFile, but not both.

Configuring IDS

105

Use the RCVFile parameter when you only want to receive one attachment. The RCVFile
parameter uses command line parameters for the attachment ID and file name. Here is an
example of the RECEIVEFILES.MSG file:

name=PDFFILE1

file=X:\\IDS\\AddlSrvrs\\Output\\file1.pdf

name=PDFFILE2

file=X:\\IDS\\AddlSrvrs\\Output\\file2.pdf

If you omit the request type from the command line or the PARAMS.MSG file, the
program uses SSS as the default request type.

Chapter 2
Using the Internet Document Server

106

REFERENCING
ATTACHMENT

VARIABLES

IDS lets you reference the attachment variable from an INI file. You can use this
technique with the DAP.INI, CONFIG.INI and DOCSERV.XML files.

NOTE: This capability was previously added for the ATCSendFile and ATCReceiveFile
rules. With version 2.x, this capability should work for all requests and rules in
DOCSERV.XML, as well as the other sections imported from a DOCSERV.INI
file.

Here is an example of how you reference an attachment variable via an INI option:

< Group >

Option = ~GetAttach VARNAME,QUEUE

To reference a message variable in a configuration XML file use the following syntax:

<section name="Group">

<entry name="Option">~GetAttach VARNAME,QUEUE</entry>

</section>

The VARNAME is the name of the variable. QUEUE specifies which queue to search
for this value. For example, assume the attachment variable PRINTERTYPE specifies
the printer type to use for output. IDS rules use this configuration XML option to
determine the printer type (<Print>, PrtType =). In this case, you can modify the XML
file as shown here:

<section name="Print">

<entry name="PrtType">~GetAttach PRINTERTYPE,INPUT</entry>

</section>

So when the rule gets a configuration option, the value will equal the value of the input
queue variable PRINTERTYPE. When the rule gets a configuration XML option, the
value equals the value of attachment variable PRINTERTYPE.

NOTE: If ~GetAttach does not find the attachment variable it returns an empty string.

You can also use this to dynamically specify the file extension for the file created by
ATCReceiveFile rule when you want to import that file into Documanage. You can do
this as shown here in the DOCSERV.XML file:

<entry name="function">atcw32->ATCReceiveFile,IMPORTFILE,V2IMP,*.
~GetAttach FILETYPE,INPUT,KEEP</entry>

The ATCReceiveFile rule finds the attachment variable FILETYPE and uses its value as
the file extension of the generated file name. Note that there are no spaces between the
asterisk and period (*.) and the tilde (~) prefacing GetAttach. If you include a space there,
it will also be in the file extension.

Referencing Attachment Variables

107

NOTE: The IDS attachment variable contains the printer value for each recipient. Here
is an example:

AGENT_OUTPUT=PRINTER1

The client code should be able to find URLPRINTER1 to determine the output
file name.

USING UNICODE IN ATTACHMENT VARIABLES

IDS supports Unicode, via UTF-8 encoding, in the setting and retrieving of values from
attachment variables. The support is implemented via functions and defined constants in
the DSILIB library. These functions are:

DSIAddAttachVarEx

DSIAddToAttachRecEx

DSILocateAttachVarEx

DSIAttachVarLengthEx

DSIAttachCursorFirstEx

DSIAttachCursorNextEx

DSIAttachCursorPrevEx

DSIAttachCursorLastEx

DSIAttachCursorValueEx

DSIAttachCursorValueLengthEx

DSIEncryptValueEx

These functions are similar to the base versions of the functions, but have an extra
encoding parameter that you can set to either DSIENCODING_SINGLE_BYTE or
DSIENCODING_UTF_8.

For example, when adding an attachment variable you can use...

DSIAddAttachVar(hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue);

or

DSIAddAttachVarEx(hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_SINGLE_BYTE);

or

DSIAddAttachVarEx(hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_UTF_8);

When using the base versions of these functions, the default encoding is
DSIENCODING_SINGLE_BYTE, so the first two function calls would do the same
thing.

DSIENCODING_SINGLE_BYTE uses Codepage 1252 encoding, which has a one-to-
one mapping between bytes and Unicode characters between 32 and 255, except from 128
to 159, which maps some Unicode characters down into this range. For example, the
Unicode character for the Euro symbol (hex 20ac) is converted to a 128 (hex 80) and vice
versa. This makes IDS compatible with how Documaker handles the Euro symbol.

DSIENCODING_UTF_8 uses UTF-8 encoding, which is a way to translate Unicode
multi-byte characters into a format compatible with null-terminated C language strings
while retaining all the character information.

Chapter 2
Using the Internet Document Server

108

USING THE
MESSAGE

QUEUES

Docupresentment lets you use a queueing system that is based on an in-memory
operation. This eliminates the need to use MQSeries in low volume production systems.

Choosing the Right Queuing Options
Choosing the right queueing options for your company can be a difficult process. There
are several scenarios, as this table shows:

To evaluate your system, answer these questions:

1 Is it a production system?

If yes, go to step 5.

If no, go to step 2.

2 Do you intend to use this system for performance testing?

If yes, go to step 5.

If no, go to step 3.

3 How many users will your system be servicing?

If more than one, go to step 5.

If only one, go to step 4.

4 Your system is demo or development system and you can use a single PC with a
single server. You can use HTTP. You can also use JMS or MQSeries, as they are a step up
from HTTP queues.

5 Your system requires multiple servers. Go to step 6.

6 How many simultaneous users does your system need to handle? The common way
to determine this is calculate 5% of the maximum number of users.

If your system must handle more than five simultaneous users, go to step 8.

If it only needs to handle less than five simultaneous users, go to step 7.

7 Your system is a low volume production system and can be set up as a single PC with
multiple servers. For this scenario use JMS or MQSeries.

Installation Function

Single PC with a
single server

Used for demos and development. Not recommended for production use,
even with low volumes.

Single PC with
multiple servers

Here, multiple Docupresentment servers are set up on a single PC. This is
recommended for low volume production systems. IDS cannot be a single
point of failure because if one instance stops responding, the other
instances pick up the work.

Multiple PCs
with multiple
servers

Here, multiple Docupresentment servers are installed on multiple PCs. This
is recommended for high volume production systems.

Using the Message Queues

109

8 Your system is a high volume production system and should be set up as multiple
PCs with multiple servers. Use JMS or MQSeries.

This table summarizes the recommended queuing options:

NOTE: The default message queue handler for IDS 2.x is differs from that used for prior
versions. In prior versions, IDS used xBase queues which placed messages in a
physical file on disk. In version 2.0 or later, IDS uses a messaging system based
on HTTP.

You do not have to do anything for the message queue system to work. All queue
setup options have default values. Furthermore, any attempt to communicate
with IDS will cause IDS to start if it has not already been started. It is, however,
possible default port values may conflict with an application already in use, so you
may have to make modifications in some cases.

Understanding the Router Process
You can use the HTTP router application to enable the client to communicate with
multiple IDS servers. This application controls IDS processes and starts them as needed.
The client can start this process if it fails to connect to IDS. The router is a Java
application that can be started manually with the file idsrouter.bat (idsrouter.sh on UNIX
platforms).

Middleware queuing systems usually have the option to save messages that are not
successfully delivered to their destination. The IDS router application also has the option
to do this. Any messages it receives can be stored in a JDBC compliant database and they
are automatically removed when they are sent to an instance of IDS. If the IDS router is
stopped, any undelivered messages that are stored will be sent to IDS when the IDS router
is started up again. The HTTP connections to client programs would be severed at this
point, but the messages would still be processed by IDS (for example, to ensure archiving
operations are done).

The default database settings for the IDS router uses a file-based database, so no database
administration or startup of external processes are required. If you are going to use a
different database, you will need to obtain the JDBC drivers for the database from your
database administrator (usually in the form of JAR or ZIP files) and add these files in the
lib subdirectory under your IDS installation directory.

Under Windows platforms, the router process will have its own DOS window. If you
press CTRL+C inside this DOS window, the router terminates and shuts down any
instances of IDS it has started.

PCs Servers Use this queue

Single Single HTTP. You can also use JMS or MQSeries, as they are a step up
from HTTP queues.

Single Multiple JMS or MQSeries. HTTP can be used.

Multiple Multiple JMS or MQSeries. The use of HTTP queues is not recommended.

Chapter 2
Using the Internet Document Server

110

Under Unix platforms, the router process will write its process ID to a file named router-
pid. Sending a SIGINT (signal 2) to this process ID will cause the router to terminate and
shut down any instances of IDS it has started. This is usually done with the 'kill' command
in a separate terminal.

How HTTP Queues are Handled
Here is an overview of how the queues work by default:

1 When client tries to send a message it attempts to get a TCP/IP connection. If the
connection fails, the client tries to start the router.

2 The router starts IDS instances if necessary. Two IDS instances are started by
default.

3 The client program sends the message to the router process.

4 The router process gets the message and sends it to one of the instances of IDS.

5 IDS returns the response back to router.

6 The router process returns the message back to the client that initiated the
transaction.

Here is an overview of how the system typically gets an IP address and port number. Keep
in mind the HTTP queue system, by default, needs ports from 49152 to 49154 and all
default IP addresses are localhost.

1 The client tries to talk to the router process on port 49152.

2 When the client starts the router process, it passes port 49152 to it.

3 The router process listens on port 49152.

4 When router starts the first instance of IDS, it passes port 49153 to it.

5 The primary IDS listens on port 49153 as it was passed as a parameter from the
router.

6 The primary IDS starts the next IDS and passes port 49154 (incrementing its own
port address by one).

7 The secondary IDS listens on port 49154.

Using the Router Section
In the DOCSERV.XML file, the router program uses the same settings in
DOCSERV.XML as IDS, as much as possible, to simplify setup. The settings used by
both IDS and the router include the http port to listen to, the arguments for starting
instances of IDS, and the number of instances to start.

There is an additional Router section in the configuration file for enabling and setting up
the JDBC database that stores undelivered messages. This example shows the defaults:

<section name="Router">

 <section name="database">

 <entry name="enabled">no</entry>

Using the Message Queues

111

 <entry name="class">org.apache.derby.jdbc.EmbeddedDriver</
entry>

 <entry name="URL">jdbc:derby:global/router-db;create=true</
entry>

 <entry name="table">DOCUCORPROUTER</entry>

 <entry name="userid"></entry>

 <entry name="password"></entry>

 </section>

</section>

USING MULTIPLE QUEUING SYSTEMS

Prior to version 2.1, IDS would process requests that came in from HTTP and from one
queuing system, such as MQSeries or JMS. With version 2.1 or later, IDS lets you use
multiple queuing systems for processing messages, for example MQSeries and JMS
queues can both be used in one instance of IDS.

To enable this, you must add queue sections to the “BusinessLogicProcessor” and
“messaging” sections in the docserv.xml configuration file. Each queue section is
processed and used to open a new set of input and output queues for requests and results.

Here is an excerpt from a configuration with multiple queuing systems enabled:

<section name="BusinessLogicProcessor">

<section name="messaging">

<section name="queue">

<section name="marshallers">

<entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.SOAP
MIMEDSIMessageMarshaller</entry>

</section>

<entry
name="queuefactory.class">com.docucorp.messaging.mqseries.DSIMQMess
ageQueueFactory</entry>

<entry name="ReceiveRequestIntervalMillis">1000</entry>

<entry name="mq.queue.manager">queue1.manager</entry>

<entry name="mq.inputqueue.name">req</entry>

<entry name="mq.inputqueue.maxwaitseconds">5</entry>

Option Definition

enabled Determines whether the undelivered messages will be stored in a database for
later delivery.

class The JDBC Database driver class for the database being used. If the default
database is not used you will need to contact your database administrator to
obtain driver files.

URL The JDBC locator for the database being used. If the default database is
not used you will need to contact your database administrator for the
proper locator string for the database.

table The name of the table where the undelivered messages will be stored.

userid The user ID used to gain access to the database.

password The password for the user ID used to gain access to the database.

Chapter 2
Using the Internet Document Server

112

<entry name="mq.outputqueue.name">res</entry>

<entry name="mq.outputqueue.expiry">600</entry>

<entry name="mq.tcpip.host">10.1.10.123</entry>

<entry name="mq.queue.channel">SCC_queue1.atl3nt03</
entry>

<entry name="mq.tcpip.port">1415</entry>

<entry name="mqseries.tracing">0</entry>

</section>

<section name="queue">

<section name="marshallers">

<entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.Seri
alizationDSIMessageMarshaller</entry>

</section>

<entry name="mq.queue.manager">queue2.manager</entry>

<entry name="mq.inputqueue.name">requestq</entry>

<entry name="mq.inputqueue.maxwaitseconds">5</entry>

<entry name="mq.outputqueue.name">resultq</entry>

<entry name="mq.outputqueue.expiry">60</entry>

<entry name="mq.tcpip.host">10.1.10.234</entry>

<entry name="mq.queue.channel">SYSTEM.DEF.SVRCONN</
entry>

<entry name="mq.tcpip.port">1414</entry>

<entry name="mqseries.tracing">0</entry>

</section>

Using the Java Message Service (JMS)

113

USING THE
JAVA MESSAGE
SERVICE (JMS)

The Java Message Service API is a standard programming interface for sending and
receiving messages across applications. JMS itself is not a product — it is a standard that
implementers (businesses or open-source groups) develop their products for. Since it is a
standard, any JMS implementation can be used by IDS merely by changing configuration
information. No coding changes are required. You can find general information about
JMS at:

http://java.sun.com/products/jms/

JMS is part of the J2EE standard. This means that any J2EE-compliant application server,
such as WebSphere or WebLogic, has an implementation of JMS as part of the application
server. Other companies provide stand-alone implementations. You can find a partial list
of vendors at:

http://java.sun.com/products/jms/licensees.html

Use an enterprise queuing system, such as a JMS implementation or WebSphere MQ, if
your implementation has a high volume of use.

SETTING UP JMS
The JMS resources needed for IDS to communicate with client programs are called JMS
administered objects. The necessary administered objects are a queue ConnectionFactory and
two queues, one for requests (messages from clients to IDS) and one for results (messages
from IDS to clients.

Different vendors implement the JMS in different ways so you will have to refer to the
specific vendor’s documentation for setting up the queues and factory.

Since different vendors implement the JMS in different ways, there has to be a standard
way to access the location of the queues and factory. This is done by another Java
standard, the Java Naming and Directory Interface (JNDI). JNDI support is built into
IDS and clients but there are some names of resources that the JMS system administrator
will have to provide to you, such as...

• Initial Context Factory – This is a name of vendor-specific Java programming code
used to find the JMS administered objects.

• Provider URL – The location of the JMS administered objects.

• Security Principal (Optional) – The user ID, if required, needed to access the JMS
administered objects.

• Security Credentials (Optional) – The password, if required, needed to access the
JMS administered objects.

• Queue ConnectionFactory Name – The name of the queue ConnectionFactory
created during setup. The JMS implementation may have only one Queue
ConnectionFactory that it set up itself.

• Request and Result Queue Name – The names of the queues created for IDS
communication.

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Chapter 2
Using the Internet Document Server

114

For IDS, you must add these values to the docserv.xml file, in the
BusinessLogicProcessor section, messaging subsection, queue subsection. Here is an
example:

<section name="BusinessLogicProcessor">

 . . .

 <section name="messaging">

 <section name="queue">

 <entry
name="queuefactory.class">com.docucorp.messaging.jms.DSIJMSJNDIMess
ageQueueFactory</entry>

 <entry
name="jms.initial.context.factory">com.sun.jndi.fscontext.RefFSCont
extFactory</entry>

 <entry name="jms.provider.URL">file:///C:/docserv/jndi/jms/
IDS2</entry>

 <entry name="jms.security.principal">userid</entry>

 <entry name="jms.security.credentials">password</entry>

 <entry name="jms.qcf.name">IDS2QCF</entry>

 <entry name="jms.inputqueue.connectstring">jmsrequestq</entry>

 <entry name="jms.outputqueue.connectstring">jmsresultq</entry>

The entry queuefactory.class tells IDS you’ll be using a JMS queuing system. The next four
entries are for the standard JNDI entries. jms.qcf.name is for the name of the JMS Queue
ConnectionFactory. jms.inputqueue.connectstring and jms.outputqueue.connectstring are for the
names of the queues for communication. Since this is the server, it receives requests as
input and sends results as output.

Client programs use the file docclient.xml to store configuration information. Queue
information would go in the DocumentClient section, messaging subsection, queue
subsection. A client program that would use the same queues as this server would have
this setup:

<section name="DocumentClient">

 <section name="messaging">

 <section name="queue">

 <entry name="queuefactory.class">com.docucorp.messaging.jms.
 DSIJMSJNDIMessageQueueFactory</entry>

 <!-- Settings for JNDI JMS connection -->

 <entry name="jms.initial.context.factory">com.sun.jndi.
 fscontext.RefFSContextFactory</entry>

 <entry name="jms.provider.URL">file:///C:/docserv/jndi/jms/
 IDS2</entry>

 <entry name="jms.security.principal">userid</entry>

 <entry name="jms.security.credentials">password</entry>

 <entry name="jms.qcf.name">IDS2QCF</entry>

 <entry name="jms.inputqueue.connectstring">jmsresultq</entry>

 <entry name="jms.outputqueue.connectstring">jmsrequestq</
entry>

 </section>

 <!-- queue section -->

 </section>

 <!-- messaging section -->

</section>

<!-- DocumentClient -->

Using the Java Message Service (JMS)

115

For example, consider SwiftMQ, a JMS system that uses JNDI to let users find queues.
To add this capability go to the DOCSERV.XML configuration file and find the
BusinessLogicProcessor section. In the Messaging subsection, under the Queue
subsection, you would have these entries:

<section name=”queue">

<entry
name="queuefactory.class">com.docucorp.messaging.jms.DSIJMSJNDIMess
ageQueueFactory</entry>

<!-- SwiftMQ -->

<entry
name="jms.initial.context.factory">com.swiftmq.jndi.InitialContextF
actoryImpl</entry>

<entry name="jms.provider.URL">smqp://docserv:docserv@server:4001</
entry>

<entry name="jms.security.principal">userid</entry>

<entry name="jms.security.credentials">password</entry>

<entry name="jms.qcf.name">plainsocket@docservrouter</entry>

<entry name="jms.inputqueue.connectstring">requestq@docservrouter</
entry>

<entry name="jms.outputqueue.connectstring">resultq@docservrouter</
entry>

</section> <!-- queue section -->

Entry Description

queuefactory.class Specifies the IDS class that sets up JMS using JNDI.

jms.initial.context.factory Indicates the name of the Java class that interfaces a particular
vendor's JMS implementation.

jms.provider.URL Specifies how to connect to the vendor's JMS implementation.

jms.security.principal (Optional) Indicates the JMS term for a user ID.

jms.security.principal (Optional) Indicates the JMS term for a password.

jms.qcf.name Indicates the name of the vendor's queue connection factory, a JMS
term for how to find JMS queues.

jms.inputqueue.connectstring Indicates the name of the JMS input queue that will hold
requests.

jms.outputqueue.connectstring Indicates the name of the JMS output queue that will hold
results.

Chapter 2
Using the Internet Document Server

116

USING
WEBSPHERE

MQ

WebSphere MQ, formerly known as MQSeries, is an IBM product you can use to send
and receive messages across applications. You can find general information about
WebSphere MQ at:

http://www.ibm.com/software/integration/wmq/

Use an enterprise queuing system, such as a JMS implementation or WebSphere MQ, if
your implementation has a high volume of use.

For Windows and UNIX platforms, you can use the RUNMQSC tool to create queues
and queue managers. You can use the WebSphere MQ Explorer GUI tool on Windows
to create queues and queue managers on the local Windows and remote UNIX, Linux, or
Windows WebSphere MQ servers when configured for remote administration. When
WebSphere MQ installs on Windows, a queue manager is created if you select the option
to install default configuration.

Java support for WebSphere MQ is included in version 5.3 and later. The Java libraries
for WebSphere MQ can be used in either client mode (via TCP/IP) or in bindings mode
(where the Java application runs on the same machine as the MQSeries server), with the
exception of OS/390 which must be run in bindings mode.

NOTE: All queues are under a queue manager and there will be a queue manager for each
machine that uses WebSphere MQ Server. The queue managers communicate
with each another and pass the messages to the appropriate queue underneath.

When adding machines to the cluster, you can use a wizard through the WebSphere MQ
Explorer to set up the cluster. Even though the WebSphere MQ installation program
creates a default cluster that uses the network domain name, it does not create the cluster
sender channels needed to communicate between the repository machines.

http://www.ibm.com/software/integration/wmq/

Using WebSphere MQ

117

SETTING UP WEBSPHERE MQ
The WebSphere MQ resources needed for IDS to communicate with client programs are
two WebSphere MQ queues, one for requests (messages from clients to IDS) and one for
results (messages from IDS to clients).

For IDS, add these values to the docserv.xml file, in the BusinessLogicProcessor section,
messaging subsection, queue subsection. Here is an example:

<section name="BusinessLogicProcessor">

 . . .

 <section name="messaging">

 <section name="queue">

 <entry name="queuefactory.class">
com.docucorp.messaging.mqseries.DSIMQMessageQueueFactory</entry>

 <entry name="mq.queue.manager">queue.manager</entry>

 <entry name="mq.inputqueue.name">requestq</entry>

 <entry name="mq.inputqueue.maxwaitseconds">5</entry>

 <entry name="mq.outputqueue.name">resultq</entry>

 <entry name="mq.tcpip.host">10.1.10.1</entry>

 <entry name="mq.queue.channel">SCC_channel</entry>

 <entry name="mq.tcpip.port">1414</entry>

The entry queuefactory.class tells IDS you’ll be using a WebSphere MQ queuing system. The
following are names of WebSphere MQ objects required for communication:

• mq.queue.manager

• mq.inputqueue.name

Client programs use the docclient.xml file to store configuration information. Queue
information would go in the DocumentClient section, messaging subsection, queue
subsection. A client program that would use the same queues as this server would have
this setup:

<section name="DocumentClient">

 <section name="messaging">

 <section name="queue">

 <entry
name="queuefactory.class">com.docucorp.messaging.mqseries.DSIMQMess
ageQueueFactory</entry>

 <entry name="mq.queue.manager">queue.manager</entry>

 <entry name="mq.inputqueue.name">resultq</entry>

 <entry name="mq.inputqueue.maxwaitseconds">5</entry>

 <entry name="mq.outputqueue.name">requestq</entry>

 <entry name="mq.tcpip.host">10.1.10.1</entry>

 <entry name="mq.queue.channel">SCC_channel</entry>

 <entry name="mq.tcpip.port">1414</entry>

 </section>

 <!-- queue section -->

 </section>

 <!-- messaging section -->

</section>

<!-- DocumentClient -->

Chapter 2
Using the Internet Document Server

118

Using MSMQ
Use the DSIMSMQMessageQueue and DSIMSMQMessageQueueFactory classes to
communicate via asynchronous messages through MSMQ on Windows platforms.
Support is provided for path names and direct format names. These platforms are
supported:

• Windows 2000

• Windows XP

• Windows 2003 and later Windows operating systems

To enable MSMQ messaging, change the queue factory class in the configuration file to:

com.docucorp.messaging.msmq.DSIMSMQMessageQueueFactory

Please refer to the HTML documentation shipped with the Java SDK for a description of
the properties supported for the MSMQ message bus. In particular, see a description of
the setProperties method in the com/docucorp/messaging/msmq/
DSIMSMQMessageQueueFactory class.

Property settings Here is an example of the docserv.xml file:

<section name="queue">

<entry name="queuefactory.class">com.docucorp.messaging.msmq.
DSIMSMQMessageQueueFactory</entry>

<entry name="ReceiveRequestIntervalMillis">1000</entry>

<!-- Settings for MSMQ connection -->

<entry name="msmq.server.name">jr</entry>

<entry name="msmq.inputqueue.name">DIRECT=OS:jr\private$
\requestq</entry>

<entry name="msmq.outputqueue.name">DIRECT=OS:jr\private$
\resultq</entry>

<entry name="msmq.timeout">10000</entry>

</section>

Here is an example of the docclient.xml file:

<section name="queue">

<entry name="queuefactory.class">com.docucorp.messaging.msmq.
DSIMSMQMessageQueueFactory</entry>

<!-- Settings for MSMQ connection -->

<entry name="msmq.server.name">jr</entry>

<entry name="msmq.inputqueue.name">DIRECT=OS:jr\private$
\resultq</entry>

<entry name="msmq.outputqueue.name">DIRECT=OS:jr\private$
\requestq</entry>

<entry name="msmq.timeout">10000</entry>

</section>

Here is an example of the dsimessage.properties file:

queuefactory.class=com.docucorp.messaging.msmq.DSIMSMQMessageQueueF
actory

MSMQ for windows

msmq.server.name=jr

msmq.inputqueue.name=private$\resultq

msmq.outputqueue.name=private$\requestq

msmq.timeout=10000

Using WebSphere MQ

119

These components are required:

• DocucorpMsg.jar

• msmqlib.dll

Be sure to include the MSMQLIB.DLL in the system path so it is found at run time.

NOTE: Testing has shown that when using direct format names to private queues, the
queue used to read messages should be a local queue. This improves performance
significantly (about 10 times) and avoids the generation of unnecessary TCP
socket connections that is incurred when reading messages from a remote private
queue.

If the IDS client and IDS server components reside on separate boxes, configure
the client to read messages from a local private result queue. Configure the server
to read messages from a local private request queue.

Using correlation IDs IDS supports WebSphere MQ/JMS client applications that specify a correlation ID or a
message ID in a request.

Client applications can specify a correlation ID in a request and retrieve a response with
the same correlation ID. Client applications can also use the conventional method of
correlating a response with a request by specifying a message ID in a request and
retrieving a response with a correlation ID matching the message ID of the request.

Using the
ReceiveByCorrelationI

D API

IDS supports MSMQ 3.0 client applications that want to retrieve messages via the
ReceiveByCorrelationID API using the message ID property of the request message as
the parameter.

On the server side, IDS sets the Correlation ID property of a response message equal to
the value of the Message ID property of the request message when the UNIQUE_ID
value of the request message is blank. For this reason, client side applications that want to
retrieve a message by correlation ID, should make sure the UNIQUE_ID value of the
request message is blank.

Generating the
message ID

The message buses for IDS can generate the message ID for client applications during a
request. A message bus generates the message ID when the putMessage method of the
output queue provides a value of null or a blank value for the messageID argument.

The message ID generated by the message bus can then be retrieved through the
getMessageID method of the output queue and used as the ID argument in the
getMessage method of the input queue to retrieve a matching reply.

If a messageID value is provided to the putMessage method, then that value is used
instead, with one exception — the MSMQ message bus only supports message bus
generated message IDs.

Here is a Java example that lets the message bus generate the messageID for a client
request:

outputQueue.putMessage(null, reqObj);

String unique = outputQueue.getMessageID();

Object resObj = inputQueue.getMessage(unique, timeOutMillis, 3);

Chapter 2
Using the Internet Document Server

120

Here is a Java example that lets a client application define the message ID for a request:

UniqueStringGenerator usg = new UniqueStringGenerator();

String messageID = usg.generateUniqueString(32);

outputQueue.putMessage(messageID, reqObj);

Object resObj = inputQueue.getMessage(messageID, timeOutMillis, 3);

These message buses support this functionality:

• Java: HTTP, JMS, MSMQ, MQSeries, and Mail

The IDSJSP package (Java) also supports this feature when used with the
DSIJavaMsg and DocucorpMsg packages. Use the setUniqueId method of a dsi or
dsimsg bean to set the unique ID to null or a blank value to indicate you want the
message bus to generate the message ID during a client request.

• Csharp: HTTP, MSMQ, and MQSeries

The DSIInterface class in the DocucorpDSI assembly (Csharp) also supports this
feature when used with the DocucorpMsg assembly. Use the setUniqueId method of
the DSIInterface class to set the unique ID to null or a blank value to indicate you
want the message bus to generate the message ID during a client request.

Using MSMQ direct
format queue names

You can set up the MSMQ_FileConvert control group to recognize path names, format
names, and direct format names.

NOTE: Before version 2.0, only path names were supported in the INI file and were
converted into format names by the MSMQ API
MQPathNameToFormatName().

The system recognizes when you specify a format name in the INI file and skips the API
call to MQPathNameToFormatName. For example, private queues cannot be accessed
unless the direct name is used. So, if you are using a private queue but the IDS client and
server are on different PCs, you must use direct format names.

Here is an example of the INI options you would set:

< DBTable:RequestQ >

DBHandler = MSMQ

< DBTable:ResultQ >

DBHandler = MSMQ

< MSMQ_FileConvert >

;requestq = FSINTSRV08\JRREQQ

;resultq = FSINTSRV08\JRRESQ

requestq = DIRECT=TCP:10.8.10.137\PRIVATE$\JRREQQ

resultq = DIRECT=TCP:10.8.10.137\PRIVATE$\JRRESQ

;requestq = DIRECT=OS:JDOE\PRIVATE$\JRREQQ

;resultq = DIRECT=OS:JDOE\PRIVATE$\JRRESQ

;requestq = PUBLIC=dc7b9469-dbae-11d6-ae6c-00104bd359c1

;resultq = PUBLIC=dc7b946c-dbae-11d6-ae6c-00104bd359c1

;requestq = .\private$\JRREQQ

;resultq = .\private$\JRRESQ

;requestq = PRIVATE=cdb19274-6146-4ab9-8679-
6e998943a938\00000016

;resultq = PRIVATE=cdb19274-6146-4ab9-8679-6e998943a938\00000017

Using WebSphere MQ

121

< RequestQ >

Name = requestq

< RESULTQ >

Name = resultq

Keep in mind these definitions:

FORMAT NAMES. A format name is a unique name generated by MSMQ. The
MQPathNameToFormatName API normally converts a path name specified in the INI
file into a format name by looking up the format name in the MSMQ MQIS. The format
name is then used by the MQOpenQueue API to open a queue.

To avoid conversion of the path name into a format name, you can specify a format name
in the INI file. Here are some examples:

PUBLIC=dc7b9469-dbae-11d6-ae6c-00104bd359c1

PRIVATE=cdb19274-6146-4ab9-8679-6e998943a938\00000016

DIRECT FORMAT NAMES. You can also specify a direct format name to avoid the path name
to format name conversion and to skip the connection to the MQIS altogether. This, in
essence, generates a One-HOP direct connection from one MSMQ box to another, which
can be useful when you are connecting to a remote box that hosts private queues in an
MSMQ workgroup configuration. Here are some examples:

DIRECT=TCP:10.8.10.137\PRIVATE$\JRREQQ

DIRECT=OS:JDOE\PRIVATE$\JRREQQ

In the first example, the protocol specified is TCP and the IP address of the box hosting
the private queues is specified.

In the second example, OS indicates that the native protocol of the operating system
where the private queues reside should be used and the NetBIOS name is specified
instead of the IP address of the box hosting the queues. All connection information is
contained within the direct format names to avoid a connection to the MQIS.

NOTE: Direct format names are only supported in Windows NT 4.0 Service Pack 6a or
later.

QUEUE PATH NAMES. MQLIB also supports specifying normal queue path names in the
INI file by calling the MQPathNameToFormatName API to convert them into the
proper format name before calling the MQOpenQueue API. Here are some examples:

FSINTSRV08\JRREQQ

.\private$\JRREQQ

Chapter 2
Using the Internet Document Server

122

Queue pooling When setting up the messaging parameters in a Java application to talk to IDS, you can
specify that the message queues should be kept in a pool of queues and reused throughout
the life of the application. If a pooled connection is not used after 30 seconds, it may be
removed from the pool and the queue is closed automatically. You can also close pooled
connections manually.

Message pooling has these advantages:

• Reusing an existing, previously opened queue can be faster than opening a new queue
connection for every communication with IDS.

• In an application there can be more threads of execution than there are available
queue connections on the queuing server. Threads are automatically blocked until a
connection to a queue is available. This keeps you from having to limit the number
of threads to the number of available connections or creating some kind of multi-
threaded blocking.

This functionality is most useful in application servers, such as WebSphere, that host
long-running, multi-threaded Java clients such as JSPs or servlets. No extra configuration
is necessary on the web application, such as WebSphere.

To use queue connection pooling, you must make the following changes in your the client
configuration file. This can be a properties file such as dsimsgclient.properties, if you are
upgrading from IDS 1.x or a XML-based configuration file such as docclient.xml.

NOTE: IDS version 2.x detects which kind of configuration you have and loads it
automatically.

In both the DSIJavaMsg and DocucorpMsg libraries, the settings for queue connections
are passed to the libraries by Java properties objects. To enable and set up pooling, use
these options:

Here is an example of a client properties file that would enable an input and output pool
of 20 MQSeries connections. This file would normally be named dsimsgclient.properties.

pooling.enabled=Y

pooling.input.pool.size=20

pooling.output.pool.size=20

queuefactory.class=com.docucorp.messaging.mqseries.DSIMQMessageQueu
eFactory

mq.queue.manager=venus.queue.manager

mq.inputqueue.name=RESULTQ

mq.outputqueue.name=REQUESTQ

mq.outputqueue.expiry=120

mq.tcpip.host=10.1.10.1

mq.queue.channel=SYSTEM.DEF.SVRCONN

Option Description

pooling.enabled Set to Y to enable pooling. The default is N.

pooling.input.pool.size Number of input queue connections to pool. The default is 10.

pooling.output.pool.size Number of output queue connections to pool. The default is 10.

Using WebSphere MQ

123

mq.tcpip.port=1414

You must also make the following API changes if your implementation talks directly to
the DocucorpMsg library, whether it’s in Java or JSP, to use queue connection pooling.

If you are using the DocucorpMsg library, pooled connections can only be obtained
through the static method DocucorpMsgUtil.getQueueFactory(Properties props). This
method returns a DSIMessageQueueFactory that may be pooled, but is used in the same
manner as the previously unpooled DSIMessageQueueFactory objects.

If you are creating a multi-threaded command line program, any outstanding pooled
connection can be closed with the static method
DocucorpMsgUtil.closePooledConnections(Properties props).

NOTE: No code changes are needed for users of the DSIJavaMsg library.

USING SECURITY EXITS

You can attach custom security exits to WebSphere MQ queues. Security exits are external
libraries of code that can be installed and run in WebSphere MQ queues. For IDS, security
exits consist of a Java class in a .jar file, with an optional native component.

To have a security exit installed and run, you need to know the name of the Java class for
the security exit and the name of the .jar file that has the security exit.

In the docserv.xml configuration file, set up a queue section for WebSphere MQ queues.
In that section, add an entry similar to the one shown here:

<entry name="mq.customsecurityexit.classname">com.customer.
securityClassName<entry>

Substitute the name of the your security exit Java class name for:

mq.customsecurityexit.classname

You must load the .jar file that has the custom security exit code. For application servers
running Docupresentment client code, refer to the application server's documentation for
information on modifying the classpath for the web application or for including a .jar file
in a particular directory.

For Docupresentment server, you can either...

• Put the .jar file in the server's lib directory, or

• Modify how Docupresentment server is run by adding the System property

com.skywiresoftware.extraClasspath

with a reference to any .jar files needed to run the security exit.

For example, for the docserver.bat file, you could add an entry like the one shown here:

-Dcom.skywiresoftware.extraClasspath=/path/to/security.exit.jar

Chapter 2
Using the Internet Document Server

124

USING CLIENT CONNECTION DEFINITION TABLES

The WebSphere message bus can read connection information from Client Connection
Definition Table (CCDT) files. The code can then use any queue manager listed in the
CCDT file to establish a connection.

NOTE: Support for CCDT files in Java requires WebSphere MQ, version 6.0 or later.
Refer to the WebSphere MQ documentation for information about Client
Connection Definition Tables.

For additional information, see the description of the mq.ccdt.url property in the HTML
documentation for the
com.docucorp.messaging.mqseries.DSIMQMessageQueueFactory class. This
information is included with the Java SDK.

USING SSL CONNECTIONS

To use SSL connections the queue manager and server connection channel must be
configured to use SSL. SSL connections are only supported in MQ client mode (version
5.3 or later).

See the security guide for your version of WebSphere MQ for information on how to
configure a queue manager and server connection channel for SSL communication. A
Java key store must be available to IDS and it must contain a personal certificate issued
by a trusted Certificate Authority (CA). This trusted CA must be present in the key
repository used by the queue manager. The CA certificate must be part of the trusted
certificates in the key repository used by the queue manager.

Also, the same CA certificate must be present in the Java keystore. If the personal
certificate used by the queue manager was issued by another CA, then the CA certificate
for it must also be present in the Java key store so the SSL handshake can be negotiated
between the MQ Client (IDS) and the MQ Server (the queue manager).

If the server connection channel is configured to authenticate client certificates or to
verify the Distinguished Name of client certificates via the SSLPeer property, the personal
certificate in the Java key store must also contain the private key. The entry type in the
Java key store for the personal certificate should be 'keyEntry' instead of 'trustedCertEntry'
in this case.

See the HTML documentation for the DSIMQSeriesMessageQueueFactory class, which
is shipped with the IDS DSI Java SDK, for additional information on the MQ SSL
properties. In particular, see the description of the setProperties method.

Here is an example of these configuration properties:

<entry name="mq.ssl.cipherspec">RC4_MD5_US</entry>

<entry name="mq.ssl.keyrepository">c:\ibm\mq\ssl\key</entry>

<entry name="mq.ssl.peername">CN=ssl_qmgr, C=US, S=GA, L=Atlanta,
O=Docucorp International, OU=PD</entry>

<entry name="mq.ssl.socketFactory.class">
com.docucorp.messaging.mqseries.DSIMQSSLSocketFactory</entry>

<entry name="mq.ssl.protocol">SSLv3</entry>

Using WebSphere MQ

125

<entry name="mq.ssl.keystore">c:/docserv/keystore/
java_certificate_store</entry>

<entry name="mq.ssl.keystore.type">JKS</entry>

<entry name="mq.ssl.keystore.manager.type">SunX509</entry>

<entry name="mq.ssl.keystore.pwd">changeit</entry>

<entry name="mq.ssl.truststore">c:/docserv/keystore/
java_certificate_store</entry>

<entry name="mq.ssl.truststore.type">JKS</entry>

<entry name="mq.ssl.truststore.manager.type">SunX509</entry>

<entry name="mq.ssl.truststore.pwd">changeit</entry>

<entry name="mq.ssl.debug">true</entry>

USING THE REPLYTOQUEUENAME AND
REPLYTOQUEUEMANAGERNAME PROPERTIES

IDS checks for these MQ message properties during MQGET calls issued by IDS:

• replyToQueueManagerName

• replyToQueueName

If the properties are defined in the message, they are used to reply to a specific queue
manager and queue — MQPUT1 calls are used instead of MQPUT calls in this case. In
addition, if you are using the SOAP marshaller, reply messages will contain the
REPLYTOQUEUEMANAGER and REPLYTOQUEUE elements in the control
block.

If the replyToQueueName property is not defined in the message received by IDS, the
system uses the value defined in the mq.outputqueue.name property in the docserv.xml
configuration file.

To use this functionality, client applications submitting requests to IDS should make sure
the replyToQueueManagerName and replyToQueueName message properties are set.

Chapter 2
Using the Internet Document Server

126

USING HTTP In addition to processing requests received from enterprise queuing systems (WebSphere
MQ and JMS), IDS can receive requests through HTTP. You can configure IDS to use
HTTP-based messaging, queue-based messaging, or both.

HTTP messaging replaces the file-based xBase queues from earlier versions of IDS (prior
to 2.0) as the low-volume messaging system. Like the xBase queues from earlier versions,
there is no setup of an extra program to run the messaging system, plus HTTP messaging
does not have the 64K limit of xBase queues.

Although you can use HTTP-based messaging for lower-volume installations, an
enterprise-ready queuing system is recommended for higher-volume installations and in
situations where requests should not be lost if IDS or IDS clients are halted.

The default format of messages sent to HTTP-based messaging is the SOAP with
Attachments format. The request type and message variables are in an XML message
embedded into a SOAP envelope, and attachments are added in MIME format to the
message. For more information, see Using the XML Messaging System on page 152. You
can find more information about SOAP and attachments at:

http://www.w3.org/TR/SOAP/

http://www.w3.org/TR/SOAP-attachments

The combination of HTTP messaging and the SOAP format means that IDS can act as a
Web Services server for IDS requests. Web Services clients can send messages to IDS via
HTTP using the SOAP and SOAP With Attachments format. IDS processes the request
and sends the result back to the Web Services client in SOAP format. A Java sample
program, JAXMClient, is provided for testing and as a source code template so you can
create your own Web Services clients using Sun's Java API for XML Messaging. You can
find more information about the Java API for XML Message at:

http://java.sun.com/xml/jaxm/index.html

NOTE: No particular version of the SOAP protocol is required. In IDS version 1.8 and
version 2.x the system does manual XML parsing to extract information, so
versions are essentially ignored. No WSDL file is needed for a .NET client.

Setting up HTTP For IDS, add these values to the docserv.xml file, in the BusinessLogicProcessor section,
messaging subsection, http subsection:

<section name="BusinessLogicProcessor">

 ...

 <section name="messaging">

 <section name="http">

 <entry name="port">49152</entry>

 <entry name="WaitForResultMillis">30000</entry>

 <entry name="HttpProcessors">15</entry>

 <entry name="RequestPath">xslPath</entry>

 <entry name="HtmlPath">htmlPath</entry>

 </section>

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP-attachments
http://java.sun.com/xml/jaxm/index.html

Using HTTP

127

Client programs use the file docclient.xml to store configuration information. Queue
information would go in the DocumentClient section, messaging subsection, queue
subsection. A client program that would use the same queues as this server would have
this setup:

<section name="DocumentClient">

 <section name="messaging">

 <section name="queue">

 <entry name="queuefactory.class">com.docucorp.messaging.http.
 DSIHTTPMessageQueueFactory</entry>

 <entry name="http.url">http://localhost:49152</entry>

 </section>

 <!-- queue section -->

 </section>

 <!-- messaging section -->

</section>

<!-- DocumentClient -->

The entry queuefactory.class tells the client program to use HTTP to communicate. http.url
gives the name of the server machine and TCP/IP port to use.

NOTE: The http subsection is also used by IDS when it processes ordinary requests via
HTTP messaging. See Using IDS to respond to requests via a browser on page
127 for more information.

Responding to URL
requests

IDS can respond to requests formatted as a URL from a browser and display results in
HTML. You can customize the display for a particular request or use a default display
which shows message variables, rowsets, and any errors encountered. An example URL is

http://localhost:49152/
request?REQTYPE=SSS&USERID=USERID&PASSWORD=PASSWORD

Where localhost is the IP address to contact, and 49152 is the port number at the IP address
that IDS is using.

You can add any number of message variables to the URL but attachments are not
supported.

Entry Description

port Indicates the http port that the first instance of IDS will be accessible
from. If more than one instance is running they will use subsequent
ports, starting with this one.

WaitForResultMillis Indicates how long, in milliseconds, to wait for the request to be
processed before timing out.

HttpProcessors Indicates how many extra threads will be set up to accept http requests
from clients.

RequestPath Indicates where IDS will find customization XSL style sheets.

HtmlPath Indicates where IDS will find extra HTML-based information.

Chapter 2
Using the Internet Document Server

128

To use this capability you must make changes in the DOCSERV.XML configuration file.
First, find the BusinessLogicProcessor section, then locate the Messaging subsection. In
this subsection, create an HTTP subsection, as shown here:

<section name="http">

<entry name="port">49152</entry>

<entry name="WaitForResultMillis">30000</entry>

<entry name="HttpProcessors">15</entry>

<entry name="RequestPath">xslPath</entry>

<entry name="HtmlPath">htmlPath</entry>

</section>

Using IDS to respond
to requests via a

browser

IDS can respond to requests directly from a web browser and display the results
formatted as HTML. A web server is not needed for the display. This is useful for
debugging purposes. You can customize the formatting for each request type, otherwise
a default page appears showing any message variables and error messages for the request.

After a request is processed, the results are formatted in the SOAP with MIME
Attachments format. See Setting up HTTP on page 125 for more information. IDS looks
for an XSL style sheet named:

REQTYPE.xsl

where REQTYPE corresponds to the request type of the request. If this file is found, it
is used to transform the SOAP XML. If there is no XSL style sheet for that request, a
default style sheet is used. The default style sheet displays the message variables name/
value pairs in a table then lists any rowsets.

To have a request displayed in your browser, build a URL similar to:

http://localhost:49152/
request?REQTYPE=SSS&USERID=USERID&PASSWORD=PASSWORD

localhost and 49152 are the TCP/IP address and port number where IDS is running.
Message variables are entered as NAME=VALUE pairs, separated by an ampersand (&).
The only required variable is REQTYPE. Any number of message variables can be added
to the URL but attachments are not supported.

Here is an example:

Entry Description

port Indicates the http port that the first instance of IDS will be accessible
from. If more than one instance is running they will use subsequent
ports, starting with this one.

WaitForResultMillis Indicates how long, in milliseconds, to wait for the request to be
processed before timing out.

HttpProcessors Indicates how many extra threads will be set up to accept http requests
from clients.

RequestPath Indicates where IDS will find customization XSL style sheets.

HtmlPath Indicates where IDS will find extra HTML-based information.

Using HTTP

129

Configuring IDS to
handle HTTP requests

In the docserv.xml configuration file, in section 'BusinessLogicProcessor', subsection
'messaging' create an http subsection:

<section name="http">

 <entry name="port">49152</entry>

 <entry name="WaitForResultMillis">30000</entry>

 <entry name="HttpProcessors">15</entry>

 <entry name="RequestPath">xslPath</entry>

 <entry name="HtmlPath">htmlPath</entry>

</section>

The http subsection is also used by IDS when it processes ordinary requests via HTTP
messaging. See Using HTTP on page 125 for more information.

Parameter Description

port The HTTP port you access IDS from.

WaitForResultMillis How long, in milliseconds, to wait for the request to be processed before
timing out

HttpProcessors The number of extra threads to set up to process HTTP requests from
clients.

RequestPath Where IDS can find customization XSL style sheets. If you use a relative
path, keep in mind the current directory is where IDS was installed.

HtmlPath Where IDS can find extra HTML-based information. If you use a
relative path, keep in mind the current directory is where IDS was
installed.

Chapter 2
Using the Internet Document Server

130

USING
MULTIPLE
BRIDGES

You can set up multiple bridges to use a single server. These bridges include Documaker
Bridge, the Documanage Bridge, the Printstream Bridge, and the Docuflex Bridge. There
are two ways to do this:

• The simplest way is to combine all of the required INI options into the DAP.INI file,
which is loaded by the DPRInit rule.

• The more advanced and recommended way is to use the DPRSetConfig rule and
multiple INI files. This lets you set INI options specifically for each bridge (different
values for the same INI option for different bridges).

NOTE: The system expects to globally apply the values it finds in an INI file. You handle
this by switching the context based on the attachment variable CONFIG, using
the DPRSetConfig rule.

To accomplish this you need to use the CONFIG attachment variable. This attachment
variable can be passed from an HTML form (or link) from the browser to the CGI, or
added to the attachment list using a custom rule.

In the DAP.INI file, you specify which INI files should be used for each of the CONFIG
values, for example:

< Config:TIFF >

INIFile = tiff.ini

< Config:DAPARC >

INIFile = daparc.ini

The system supports multiple INI files, such as:

< Config:TIFF >

INIFile = tiff.ini

INIFile = myownini.ini

In the case of the usage of the DPRSetConfig rule and the appropriate INI values, for
example if the DAP.INI file includes this setting:

< Config:TIFF >

INIFile = tiff.ini

The actual INI context used in the rules and bridges, will include the INI values from the
TIFF.INI and DAP.INI files. When using multiple INI files with the same INI options,
but different values, the first INI value — the value from the first INI file — is returned
when the rules ask for the INI value.

The only thing you have to watch out for is when the system expects multiple INI values.
For example, Documaker Bridge rules look for multiple INI values for the AppIdx
options in the ArcRet control group. In this case, the system gets all of the matching
values from the first INI file (TIFF.INI in this example) and then gets all of the matching
INI values from the DAP.INI file.

Using Multiple Bridges

131

Here’s another example:

Assume IDS is installed with the Documanage and Printstream bridges. You create two
CONFIG values: TIFF and META. The DAP.INI file will include these options:

< Config:TIFF >

INIFile = tiff2pdf.ini

< Config:META >

INIFile = meta2pdf.ini

The Documaker-related INI options for each bridge should go into each of these INI
files. You can optionally place common INI options in the DAP.INI file. You should use
the DPRSetConfig rule in any rule list which includes request types and that intend to use
DPR, TPD, or MTC rules.

The DPRSetConfig rule is located in DPRW32.DLL and runs on MSG_RUNF. Here is
the example (from the DOCSERV.INI file of the rule list with this rule. This rule must
run before any other rules which use Documaker code and expect Documaker-related
INI options.

< ReqType:MTC >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = dprw32->DPRSetConfig

function = atcw32->ATCUnloadAttachment

function = mtcw32->MTCLoadFormset

function = dprw32->DPRRotateFormsetPages

function = mtcw32->MTCPrintFormset

NOTE: The TPDInitRule rule should be in the list after DPRInit rule.

Request types and
multiple bridges

When you install one bridge over another or develop a new bridge, keep in mind that
some of the request types listed in the DOCSERV.INI or DOCCLNT.INI files may
already be in use by another application or bridge.

If this happens, change your bridge or application to use an unused request type. The
length of the request type string is not limited to three characters. You can enter up to 19
characters. Do not include any special characters, instead limit it to alphanumeric
characters and underscores.

For example, suppose you are trying to use request type LGN, but it is already taken and
the list of rules in the DOCSERV.INI file for this request type is not the same as you
need.

In this situation, you could define your own request type, such as MYLGN and add the
rules you need to DOCSERV.INI file under the ReqType:MYLGN control group. Be
sure to change your application to use the MYLGN request type instead of LGN.

Chapter 2
Using the Internet Document Server

132

SUBMITTING
BATCH

REQUESTS

You can use the FILE2IDS utility to read a text file which contains a series of requests
and submit those requests to an IDS server. Each line of the text file equals one request.
You specify the request type on the command line and the attachment variables are
created from each line in the input file in this manner:

• Each line is broken into 1000 byte chunks (1000 is the default size, you can set the
size using the /L parameter)

• Each chunk is added as attachment variable RECORDLINEXX, where XX is the
sequence number of the chunk.

The attachment variable RECORDPARTS specifies how many chunks are added.

NOTE: The FILE2IDS is a Visual Basic program. You must have a VB runtime installed
to run this program. You can click the Help button when you run FILE2IDS to
see a summary of the various parameters.

To run the FILE2IDS utility, enter this command:

file2ids /C /D /I /L /K /R /T /Name /W

All parameters are passed in with the equals (=) sign, for example:

 /I=file.txt

If you run the utility with no parameters, it displays a window which lets you then enter
the parameters shown above.

Parameter Description

/C Specifies the value of the CONFIG attachment variable

/D Set to On to turns on the debugging window and wait for the result from IDS.

/I The name of the file

/K Enter Y or N to have the system wait or not wait for a key to be pressed in the
debug window.

/L Specifies the line length. The default is 1000.

/R The request type. The default is Email.

/T The length of time in milliseconds before IDS times out. The default is 15000.

/Name Lets you pass a name and value to the IDS rule in this format: /Name=Value. For
instance, /ABC=BCD adds the attachment variable ABC with the value BCD.

/W The length of time in milliseconds IDS will wait before retrying. The default is
1000.

Submitting Batch Requests

133

The utility returns one of the following values:

Value Description

0 The utility completed its task and no errors occurred.

1 No input file information was found.

2 The utility was canceled before it ran. Typically, this indicates you clicked Exit on the
window which asks for the parameters.

3 Other error.

Chapter 2
Using the Internet Document Server

134

PRINTING IN
DUPLEX MODE

TO PCL
PRINTERS

Windows does not let you print files that are a mixture of simplex and duplex pages from
Acrobat. The whole document has to be printed the same way. IDS, however, lets you
print a file to a local PCL printer which preserves the file’s duplex information. There are
two ways to do this:

• By inserting blank pages into a PDF file for the pages in simplex mode. This requires
the system to create two PDF files, one for printing and one for viewing.

• By creating the PCL file, compressing the file, downloading the file, and then
decompressing it for printing.

IDS can create compressed PCL files several ways:

• Using the IDS print rules. If you use the print rules, use the Compression attachment
variable to create a compressed file. When used by Print Preview, you must also pass
the Compression attachment variable to the DPRPrint rule. See the SDK Reference
for more information about these rules.

• Using Documaker. If you create the file via Documaker, you set INI options to create
the file. The PRTZCompressOutPutFunc function is called to compress the output
files. To use this function to compress an output file such as a PCL print batch file,
add these INI options:

< PrtType:PCL >

OutputMod = PRTW32

OutputFunc = PRTZCompressOutputFunc

• Using a Java application which can decompress the file and send it to a local printer.
The application is provided in the WindowsRawPrinter.jar file and it requires that
you install the DSIJWP.DLL file.

NOTE: The output is compressed, regardless of the file’s extension. You must
decompress the file before you can print it.

Using IDS to Distribute Email

135

USING IDS TO
DISTRIBUTE

EMAIL

You can use the Internet Document Server to distribute email. The following illustration
shows how it works with the GenData program, which is part of Documaker:

NOTE: Because the File2IDS utility is a Visual Basic program, the above scenario is only
available for Windows environments.

The following scenario, which is available for both Windows and UNIX environments,
shows how it works if you are using Documaker Bridge, but not the GenData program:

For either approach, to use the Internet Document Server to distribute email, you must
modify these files:

• DOCSERV.XML

• DAP.INI

MODIFYING THE DOCSERV.XML CONFIGURATION FILE

This configuration file must contain the following section. These rules are used to take
messages sent to IDS and send formatted email messages to an email server such SMTP.
The system supports text-based templates or HTML templates that can be sent as an
attachment or used as the message body.

<section name="ReqType:EMAIL">

 <entry name="function">atcw32->;ATCLogTransaction</entry>

 <entry name="function">atcw32->;ATCLoadAttachment</entry>

 <entry name="function">dprw32->;DPRParseRecord</entry>

GenData
program Recipient batch

used for email
IDS

File2IDS
Email

Service

IDS
client email

request
IDS Email

Service

Chapter 2
Using the Internet Document Server

136

 <entry name="function">dprw32->;DPRFindTemplate</entry>

 <entry name="function">dprw32->;DPRAdd2Attachment</entry>

 <entry name="function">dprw32->;DPRCreateEMailAttachment</entry>

 <entry name="function">dprw32->;DPRMail</entry>

 <entry name="function">atcw32->;ATCUnloadAttachment</entry>

</section>

Modifying the DAP.INI File
This INI file must contain the following control groups and options.

EmailDFD control
group

The DFD file specified by this option is used by the DPRParseRecord rule. The system
expects to receive the email data from the client in fixed-length records defined by this
DFD. Using a DFD to define the record layout increases flexibility. This DFD can be
identical to a batch recipient DFD, where the system is taking an output from the
GenData program and using it as input to the email server.

< EmailDFD >

File = .\dfd\attchdfd.dfd

Email2IDS control
group

This group is also used by the DPRParseRecord rule. The option (on the left) must match
a field name in the DFD defined under the EmailDFD group. The DPRParseRecord rule
copies the data to attachment variables used by other email rules (see the section on
attachment variables). This lets you take fields defined in the DFD whatever they are
named, and transfer the data to attachment variables that are used by other email rules.

< Email2IDS >

EmailAdd = ADDRESS

PullCode = REQTYPE

XML2Body control
group

This control group is used by the DPRFindTemplate rule. Templates are used to
predefine text for the body of an email, while variable data is inserted at indicated places
within the body of text. The XML2Body control group defines which template files are
used for the message body.

The options in the example below, such as e301, e302, and so on, are the values of the
ReqType used by the IDS. This value can come directly from the message the IDS
receives or from the DPRParseRecord rule. The system must have the ReqType either in
the ATTCHDFD.DFD file or set up in the Email2IDS control group.

< XML2Body >

e301 = .\tmpl\e301.txt

e302 = .\tmpl\e302.txt

e303 = .\tmpl\e303.txt

e304 = .\tmpl\e304.txt

e305 = .\tmpl\e305.txt

e306 = .\tmpl\e306.txt

e307 = .\tmpl\e307.txt

e308 = .\tmpl\e308.txt

e309 = .\tmpl\e309.txt

e310 = .\tmpl\e310.txt

e311 = .\tmpl\e311.txt

e312 = .\tmpl\e312.txt

Using IDS to Distribute Email

137

XML2Attach control
group

This control group is used when you need to use template processing to produce an
attachment. This group functions just like the XML2Body control group except the
output of the template processing is sent as an attachment.

< XML2Attach >

e301 = .\tmpl\e301.txt

e302 = .\tmpl\e302.txt

e303 = .\tmpl\e303.txt

e304 = .\tmpl\e304.txt

e305 = .\tmpl\e305.txt

e306 = .\tmpl\e306.txt

e307 = .\tmpl\e307.txt

e308 = .\tmpl\e308.txt

e309 = .\tmpl\e309.txt

e310 = .\tmpl\e310.txt

e311 = .\tmpl\e311.txt

e312 = .\tmpl\e312.txt

EmailAdd2Attachment
control group

The control group is used by the DPRAdd2Attachment rule to take values from the INI
file for the email rules (see section on predefined attachment variable names).

< EmailAdd2Attachment >

default = SUBJECT, Important notice

Mail and MailType
control groups

These control groups are used by the DPRMail rule to define the email protocol. See the
Documaker Workstation Supervisor Guide for information on setting up email support.

These options are identical to the ones set up in the FSIUSER.INI or FSISYS.INI files
for a Documaker Workstation.

< Mail >

MailType = SMTP

< MailType:SMTP >

Name = Send Mail

Module = SMMW32.DLL

MailFunc = SMMSendSMTP

ReplyTo = someone@docucorp.com

From = JoeJones@docucorp.com

AltFrom = Joe Jones

Port = 25

Server = 10.8.10.216

Debug = Yes

Option Description

Name Name of the system (identifies the system on internal dialogs).

Module Name of the Documaker DSO that supports the email system.

MailFunc Exported DSO function name of the email handler.

Chapter 2
Using the Internet Document Server

138

ATTACHMENT VARIABLES USED BY EMAIL RULES

Messages sent to the IDS are contain attachment variables. Attachment variables can also
be used to send information from one rule to another. Some INI options refer to
attachment variables. The attachment variables listed below are used by the email rules.
For more information on attachments and the email rules, see the SDK Reference.

ReplyTo For SMTP, this option lets you specify a reply-to address.
The system also lets you specify a different reply-to email address for each IDS
transaction. Use this built-in function to specify an attachment variable which
contains the value for the ReplyTo option:

< MailType:SMTP >

ReplyTo = ~GetAttach REPLYTO,INPUT

The value for the ReplyTo option is replaced by the value of the attachment
variable in the input attachment with the name REPLYTO.
The first parameter is the name of the attachment variable, the second is the
INPUT or OUTPUT, specifying which attachment is used.
You can use the built-in INI function in the DAP.INI file or in a particular
configuration INI file. You cannot use it in the DOCSERV.INI or DSI.INI files.

From For SMTP, this option lets you specify who the email was from.

AltFrom For SMTP, this option lets you specify an alternative from address, indicating
where the email was from.

Port Enter the port.

Server Enter the address of the server.

Debug Enter Yes to turn on debugging.

Variable Description

XMLTEMPLATTACH The DPRCreateEMailAttachment rule uses this variable to know
which file to open as the template for the attachment. This variable
is usually created by the DPRFindTemplate rule.

XMLTEMPLBODY The DPRCreateEMailAttachment rule uses this variable to know
which file to open as a template for the message body. This variable
is usually created by the DPRFindTemplate rule.

HTMLATTACHFILE The file name that contains the output from the template processing
used for the attachment. This variable is created by the
DPRCreateEMailAttachment rule and contains a path to a file
name—not the actual data.

HTMLBODYFILE The file name that contains the output from the template processing
used for the message body. This variable is created by the
DPRCreateEMailAttachment rule and contains a path to a file
name—not the actually data.

Option Description

Using IDS to Distribute Email

139

USING EMAIL RULES

You can use the following rules when working with email. For more information, see the
SDK Reference.

DPRParseRecord Use this rule to assemble an attachment into a record and then convert to an XML tree.
This rule expects the RECORDLINE## and RECORDPARTS attachment variables in
the message it receives. The rule performs the following operations.

1 Takes the data from each of the RECORDLINE## variables and appends them
together into one record.

2 The data from this record is converted into an XML tree with variable names in the
ATTCHDFD.DFD file used as the variable names for the XML tree.

3 The data from the DFD variables can be transferred to attachment variables.
Therefore you can use any variable defined in the DFD to set any of the specific
attachment variables listed in the previous section. The Email2IDS control group
maps the DFD variable names to the attachment variable names. So you have two
groups of variables; the attachment variables and the XML tree variables.

< Email2IDS >

DFD VARIABLE = ATTACHMENT VARIABLE

DPRFindTemplate Use this rule to specify the template file. It expects a REQTYPE variable name to in the
attachment. So the DPRParseRecord rule must be executed first to set the REQTYPE
variable. It uses the XML2Body control group to define the templates to create the
message body and the XML2Attach control group to set up email attachments.

RECORDLINE(##) The variable that contains raw data sent to IDS from the client. The
format of the data is defined by the DFD specified by the Path
option in the EmailDFD control group. There can be any number
of these variables but no variable can contain more than 1024 bytes
of data. The variables must be defined as follows:

(RECORDLINE00 RECORDLINE01…RECORDLINE99)

These variables must be created by the client program. These
variables are processed by the DPRParseRecord rule.

RECORDPARTS The number of RECORDLINE variables. Processed by the
DPRParseRecord rule.

REQTYPE The transaction identifier code. Used by the DPRFindTemplate and
DPRAdd2Attachment rules to determine which template to use for
a particular message.

ADDRESS The email address. Serves as input for the DPRMail rule.

MSGBODY The body of email. Serves as input for the DPRMail rule.

SUBJECT The subject of the email.

ATTACHMENT A file attached to the email—no template processing.

Variable Description

Chapter 2
Using the Internet Document Server

140

DPRAdd2Attachment Use this rule to set attachment variables from the INI file. It uses the
EmailAdd2Attachment control group in the INI file to set the variable names. It can use
a default setting in the INI file or it can use a specific request type, or multiple request
types.

< EmailAdd2Attachment >

e301 = SUBJECT, Warning Notice

e301 = ATTACHMENT, d:\ticket.doc

default = SUBJECT, Important notice

DPRCreateEMailAttach
ment

Use this rule to perform template processing. This rule can be used for the message body
as well an attachment. Template processing uses a text or HTML file to define constant
data. Variable data is then inserted at indicated places within the text.

Here is an example of a template text file. You must define the CurrentDate and
AcctName fields in the ATTCHDFD.DFD file.

Whether the template is used for the message body or an attachment depends on whether
the request type was listed under the XML2Body or the XML2Attach control group. This
is determined when the DPRFindTemplate rule is executed.

DPRMail Use this rule to transfer the data from the attachment variables to the email server. IDS
acts as a client to an email server such as Microsoft Exchange. The following attachment
variables should be considered as input to this rule.

• ADDRESS

• MSGBODY

• SUBJECT

• ATTACHMENT

• HTMLATTACHFILE

• HTMLBODYFILE

<%descendant::COLUMN[ATTRIBUTE::NAME="CurrentDate"],%>

Dear <%descendant::COLUMN[ATTRIBUTE::NAME="AcctName"],%>,

Thank you for opening a certificate of deposit with DeepGreen Bank.
You will receive documents pertaining to your account in the mail
shortly. If you have any questions, please email us at
accountinquiry@deepgreenbank.com or contact our Customer Care
Center at 1-888-888-8888.

Sincerely,

DeepGreen Bank

E301

Using IDS to Distribute Email

141

DPRLog Use this rule to confirm whether an email was sent by IDS. This rule stores information
in a log file from either the attachment variables or the XML document created by the
DPRParseRecord rule. The DPRMail rule puts the RESULTS attachment variable into
the output queue. If no RESULTS variable exists, then the DPRMail rule was not
executed and no mail was sent.

USING THE EMAIL BUS

IDS includes an email message bus you can use to receive request messages with or
without file attachments from an email inbox. Replies can be emailed asynchronously with
or without file attachments to the originators of the request messages.

You can also configure a reply email box as the default reply queue in the server or client
configuration files, in which case test utilities or client applications using DSILIB or
DocucorpMsg Java package can also communicate with IDS via the email message bus.

The main body part of a request should be formatted in plain text and should contain the
XML that should be used as the main body part of the MIME message. Here is an
example:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">

 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">

 <CTLBLOCK>

 <REQTYPE>SSS</REQTYPE>

 <UNIQUE_ID>f9db68c1b1c67998662b6cee85a5bdd2</UNIQUE_ID>

 </CTLBLOCK>

 <MSGVARS>

 <VAR NAME="REQTYPE">SSS</VAR>

 <VAR NAME="MAIL.MARSHALLER.XSL.TEMPLATE">sss.xsl</VAR>

 </MSGVARS>

 </DSIMSG>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The content of the main body part of a reply message can be formatted via an XSL
template that is accessible to IDS and that is supplied via input message variable
MAIL.MARSHALLER.XSL.TEMPLATE. If an XSL template is not provided, IDS
returns XML of a format similar to that in the example shown above for a request
message.

Malformed email requests are logged in a bad-soap.log file along with a reference ID and
IDS will change the request type to EML and send a response along with the same
reference ID back to the end user detailing the nature of the error.

For information on these properties, please see the HTML documentation shipped with
IDS. You will find this documentation in the following directory:

dsi_sdk\java\docs\com\docucorp\messaging\mail\DSIMailMessageQueueFa
ctory.html

Be sure to specify the MailDSIMessageMarshaller and the DSIMailMessageQueueFactory
classes for the marshaller and queue.factory properties.

Here is an example of a queue configuration section for IDS (docserv.xml):

Chapter 2
Using the Internet Document Server

142

<section name="queue">

 <section name="marshallers">

 <entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.Mail
DSIMessageMarshaller</entry>

 </section>

 <!-- input options -->

 <entry
name="queuefactory.class">com.docucorp.messaging.mail.DSIMailMessag
eQueueFactory</entry>

 <entry name="mail.input.server">pop.gmail.com</entry>

 <entry name="mail.input.port">995</entry>

 <entry name="mail.input.user">requestq</entry>

 <entry name="mail.input.password">pdtest123</entry>

 <entry name="mail.input.protocol">pop3</entry>

 <entry name="mail.input.queue">requestq@gmail.com</entry>

 <entry name="mail.input.use.authentication">no</entry>

 <entry name="mail.input.use.ssl">yes</entry>

 <entry
name="mail.input.ssl.socketFactory.class">com.docucorp.messaging.ma
il.ssl.input.DSIMailSSLSocketFactory</entry>

 <entry name="mail.input.ssl.socketFactory.fallback">false</
entry>

 <entry name="mail.input.ssl.protocol">SSLv3</entry>

 <entry name="mail.input.ssl.keystore">c:/docserv/keystore/
cacerts</entry>

 <entry name="mail.input.ssl.keystore.type">JKS</entry>

 <entry name="mail.input.ssl.keystore.manager.type">SunX509</
entry>

 <entry name="mail.input.ssl.keystore.pwd">changeit</entry>

 <entry name="mail.input.ssl.truststore">c:/docserv/keystore/
cacerts</entry>

 <entry name="mail.input.ssl.truststore.type">JKS</entry>

 <entry name="mail.input.ssl.truststore.manager.type">SunX509</
entry>

 <entry name="mail.input.ssl.truststore.pwd">changeit</entry>

 <!-- output options -->

 <entry name="mail.output.server">smtp.gmail.com</entry>

 <entry name="mail.output.port">465</entry>

 <entry name="mail.output.user">resultq@gmail.com</entry>

 <entry name="mail.output.password">pdtest123</entry>

 <entry name="mail.output.protocol">smtp</entry>

 <entry name="mail.output.queue">resultq@gmail.com</entry>

 <entry name="mail.output.use.authentication">yes</entry>

 <entry name="mail.output.use.ssl">yes</entry>

 <entry
name="mail.output.ssl.socketFactory.class">com.docucorp.messaging.m
ail.ssl.output.DSIMailSSLSocketFactory</entry>

 <entry name="mail.output.ssl.socketFactory.fallback">false</
entry>

 <entry name="mail.output.ssl.protocol">SSLv3</entry>

 <entry name="mail.output.ssl.keystore">c:/docserv/keystore/
cacerts</entry>

 <entry name="mail.output.ssl.keystore.type">JKS</entry>

Using IDS to Distribute Email

143

 <entry name="mail.output.ssl.keystore.manager.type">SunX509</
entry>

 <entry name="mail.output.ssl.keystore.pwd">changeit</entry>

 <entry name="mail.output.ssl.truststore">c:/docserv/keystore/
cacerts</entry>

 <entry name="mail.output.ssl.truststore.type">JKS</entry>

 <entry name="mail.output.ssl.truststore.manager.type">SunX509</
entry>

 <entry name="mail.output.ssl.truststore.pwd">changeit</entry>

 <!-- common mail options -->

 <entry name="mail.debug">yes</entry>

</section>

Chapter 2
Using the Internet Document Server

144

USING IDS TO
RUN

DOCUMAKER

You can set up IDS to run Documaker as a subordinate process, as shown below. Web
clients communicate with IDS using queues. IDS communicates with Documaker via
XML files called job tickets and job logs.

This diagram illustrates the process:

IDS can start or stop Documaker as needed, without user interaction. One IDS session
controls one Documaker process. You can, however, implement multiple IDS sessions
and have multiple Documaker processes as well.

Keep in mind these limitations:

• You can only run Documaker in single step mode. Consult the Documaker Server
System Reference for more information on single step processing.

• Different resource setups for Documaker are supported, but Documaker processing
restarts if resources are changed, eliminating the performance benefits. This should
not be a problem because it is unlikely multiple Documaker setups will be used with
a single IDS implementation. You can, however, experience problems testing a
system with multiple setups.

• During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

• IDS and Documaker must exist on the same node/server machine.

Web Client
IDS

Documaker

(GenData)

VB\COM\
Java Client

XML Job
Ticket

XML
Job Log

Using IDS to Run Documaker

145

SETTING UP IDS
To set up IDS to run Documaker, make these changes in the following configuration files:

docserv.xml file Make these changes in the docserv.xml file, or the configuration file the IDS is configured
to use. Here is an example of how to add a request type for Documaker:

<section name="ReqType:RPD">

<entry name="function">atcw32->;ATCLogTransaction</entry>

<entry name="function">atcw32->;ATCLoadAttachment</entry>

<entry name="function">atcw32->;ATCUnloadAttachment</entry>

<entry name="function">dprw32->;DPRSetConfig</entry>

<entry name="function">rpdw32->;RPDCheckRPRun</entry>

<entry name="function">rpdw32->;RPDCreateJob</entry>

<entry name="function">rpdw32->;RPDProcessJob</entry>

</section>

If necessary, add two more request types, one to check if Documaker is running and one
to stop Documaker. Here is an example:

<section name="ReqType:CHECK">

<entry name="function">atcw32->;ATCLogTransaction</entry>

<entry name="function">atcw32->;ATCLoadAttachment</entry>

<entry name="function">atcw32->;ATCUnloadAttachment</entry>

<entry name="function">dprw32->;DPRSetConfig</entry>

<entry name="function">rpdw32->;RPDCheckRPRun</entry>

</section>

<section name="ReqType:STOP">

<entry name="function">atcw32->;ATCLogTransaction</entry>

<entry name="function">atcw32->;ATCLoadAttachment</entry>

<entry name="function">atcw32->;ATCUnloadAttachment</entry>

<entry name="function">dprw32->;DPRSetConfig</entry>

<entry name="function">rpdw32->;RPDStopRPRun</entry>

</section>

Also add the following IDS rule to the ReqType:INI section:

<entry name="function">rpdw32->;RPDStopRPRun</entry>

DAP.INI file Add a configuration option for a the master resource library you will use. Here is an
example which is based on the RPEX1 master resource library:

< Configurations >

CONFIG = RPEX1

< Config:RPEX1 >

INIFile = RPEX1.INI

RPEX1.INI file Make these changes in the RPEX1.INI file (or the INI file you are using for your
configuration):

< IDSServer >

ExtrPath = e:\fap\mstrres\rpex1\extract\

PrintPath = e:\fap\mstrres\rpex1\data\

WaitForStart = 60

SleepingTime = 500

MaxWaitTime = 120

GENSemaphoreName = gendata

Chapter 2
Using the Internet Document Server

146

RPDSemaphoreName = rpdrunrp

PrintFileCacheTime = 7200

TextFileCacheTime = 7200

< RPDRunRP >

Executable = e:\rel101\shipw32\gendaw32.exe

Directory = e:\fap\mstrres\rpex1\

UserINI = e:\fap\mstrres\rpex1\fsiuser.ini

BaseLocation = http://10.8.10.69/fap/mstrres/rpex1/data/

< Printer >

PrtType = PDF

< Debug >

RPDProcessJob = Yes

Setting up Multiple Internet Document Servers
The semaphores used by IDS and Documaker are global for a computer, so if you need
multiple IDS processes on the same computer, each IDS process and subordinate
Documaker process should use different semaphore names.

Semaphore names are generated automatically by IDS for each instance. These names are
passed to Documaker as command line parameters. No user intervention is needed.

To specify naming conventions for these semaphores, change these INI options:

< IDSServer >

GENSemaphoreName =

RPDSemaphoreName =

Keep in mind the names must be unique for a computer, so two IDS servers will have to
use two different INI files specifying semaphore names.

Controlling Documaker
To control Documaker via IDS, use these IDS rules:

• RPDCheckRPRun - Makes sure Documaker is running. If Documaker is not
running, this rule starts it.

• RPDCreateJob - Finds the attachment variables for each of the values in the job
ticket and adds them to the XML tree. The XML tree is added to the RPDJobTicket
variable so the next rule can use it.

• RPDProcessJob - Gets the XML tree from the RPDJobTicket variable and writes it
to a file. This file is used as the job ticket which triggers the Documaker process.

• RPDStopRPRun - Receives the current process ID from the RPDRunProcess
variable and then terminates Documaker.

For more information about these rules, see the SDK Reference.

Using IDS to Run Documaker

147

If a critical error is
encountered

IDS restarts Documaker Server (GenData) if it encounters a critical error and resubmits
the transaction being processed when the error occurred. This helps you handle situations
where you have sporadic memory access problems in custom or 3rd-party code.

NOTE: Before the release of version 11.2 shared objects, when the GenData program
started, the RPDProcessJob rule communicated with GenData via TCP/IP,
sending the job ticket message to GenData and receiving a job log response. If
the TCP/IP communication failed, the RPDProcessJob rule forced GenData to
stop. This would prepare IDS for the next request.

Version 11.2 shared objects added the ability to automatically restart GenData
after the process described above. After it confirms that GenData has been
stopped, the RPDProcessJob rule calls the RPDCheckRPRun rule to restart
GenData and then calls itself to communicate with GenData and send the same
job ticket.

To keep a copy of each transaction, an eight-digit index number is added to the job ticket
and job log file names when they are downloaded for information in debug modes.

Also, the system includes these error messages which can appear if there is a TCP/IP
failure:

The system includes additional information in the log trace file in case of failure. This
includes the job ticket, the input attachment variables, and error messages. On the IDS
side, this file is named dprtrc.log. On the GenData side, this file is the trace file.

Message Description

RPD0011 Unexpected program termination of GenData.

RPD0012 Socket connection failure.

RPD0013 Can not unload job ticket to the msg buffer.

RPD0014 Can not load the msg buffer to the job log.

RPD0016 Socket time-out.

RPD0017 Time exceeded the MaxWaitForStart specification.

RPD0018 GenData failure.

Chapter 2
Using the Internet Document Server

148

Error file processing You can use INI options to turn on or off the recording of error information when using
IDS to run Documaker. This can help in debugging.

To create an error file and write errors into the error file, include these options in the
Debug control group:

< Debug >

RPDCheckRPRun = Yes

RPDCreateJob = Yes

RPDProcessJob = Yes

RPDErrFile = rpderr.dat

Returning record IDs When you use IDS to run Documaker with WIP and archive rules, the WIP and archived
record IDs are written to the print log (PrtLog) file. Furthermore, the first WIP record ID
and the first archived record ID are sent to a job log (JobLog) file and are also output as
the following attachment variables.

These XML elements are added to both the PrtLog and JobLog files:

<WIPRECORDID>12345</WIPRECORDID>

<ARCRECORDID>12345</ARCRECORDID>

Option Description

RPDCheckRPRun Enter Yes if you want to record any errors encountered when running this
rule. If you enter No, errors produced while this rule is run are not
recorded.

RPDCreateJob Enter Yes if you want to record any errors encountered when running this
rule. If you enter No, errors produced while this rule is run are not
recorded. Be sure to set this option to Yes to record GenData errors.

RPDProcessJob Enter Yes if you want to record any errors encountered when running this
rule. If you enter No, errors produced while this rule is run are not
recorded.

RPDErrFile Enter the name of the error file. The system does not create an error file
if you do not enter a name in this field.

Variable Description

WIPRECORDID The first WIP record ID.

ARCRECORDID The first archived record ID.

Using IDS to Run Documaker

149

SETTING UP DOCUMAKER

The first step is to set up Documaker to run in a single step mode. See the Documaker
Server System Reference for more information.

Keep in mind these considerations...

• If the Documaker programs and DSOs are located on the network, the start time for
Documaker can be significant. Keep in mind, however, that the start time only affects
the first transaction. Subsequent transactions will process much more quickly. If the
start time exceeds 10 seconds, consider changing the WaitForStart option to a higher
value.

• All of the standard Documaker performance-related INI options are available even
when IDS runs Documaker as a subordinate process. For best results, optimize
Documaker’s performance before using it with IDS.

• Documaker will run fastest if the resource files for Documaker, as well as input and
output files, are physically located on the computer where IDS and Documaker are
running.

• Documaker (GenData) automatically creates the XML export file from the
transaction and returns the name as XMLOUTPUT and URLXMLOUTPUT.

In addition, you will need to make changes to your FSISYS.INI or FSIUSER.INI files and
to your AFGJOB.JDT file.

FSISYS.INI or
FSIUSER.INI file

Be sure to turn off all Documaker stop options, as shown here:

< GenDataStopOn >

BaseErrors = No

TransactionErrors = No

ImageErrors = No

FieldErrors = No

< GenData >

ClearMsgFile = Yes

< PrintFormSet >

MultiFilePrint = Yes

LogFileType = XML

LogFile = .\data\printlog.xml

Option Description

GenDataStopOn control group

BaseErrors Enter No to prevent the system from stopping on base-level errors.

TransactionErrors Enter No to prevent the system from stopping on transaction-level errors.

ImageErrors Enter No to prevent the system from stopping on image-level errors.

FieldErrors Enter No to prevent the system from stopping on field-level errors.

GenData control group

Chapter 2
Using the Internet Document Server

150

These INI options are optional:

< IDSServer >

SleepingTime = 500

GENSemaphoreName = gendata

RPDSemaphoreName = rpdrunrp

< Debug >

RULServerJobProc = Yes

ClearMsgFile Enter Yes to clear the message file (MsgFile) before a job process starts.
This prevents the previous job’s information from being reused and is
necessary when running in single-step mode. The default is No.

PrintFormSet control group

MultiFilePrint Enter Yes to generate multiple print files which have a 46-byte unique
name.
To identify which recipients are in which print batch, enter No or omit
this option. This causes the PrintFormSet rule to save the printer for the
print batch along with its recipient information.
The MultiFilePrint option should only be used with the PDF, RTF,
HTML, and XML print drivers.

LogFileType Specify the type of the log file, such as XML or TEXT.

LogFile Specify the name and path of the log file, such as

\data\printlog.xml

If you omit the extension, the system uses the LogFileType option to
determine the extension.

Option Description

IDSServer control group

SleepingTime Enter the amount of time in milliseconds you want the system to wait
before it checks for a job ticket. The default is 1000 (1 second).

GENSemaphoreName Semaphore names are generated by IDS for each instance and are
passed to Documaker as command line parameters. Use this option
to specify naming conventions for semaphore names. The default is
gendata.
Keep in mind semaphore names must be unique for a computer, so
two IDS servers will have to use two different INI files specifying
semaphore names.

RPDSemaphoreName Semaphore names are generated by IDS for each instance and are
passed to Documaker as command line parameters. Use this option
to specify naming conventions for semaphore names. The default is
rpdrunrp.
Keep in mind semaphore names must be unique for a computer, so
two IDS servers will have to use two different INI files specifying
semaphore names.

Debug control group

Option Description

Using IDS to Run Documaker

151

AFGJOB.JDT file Prior to the release of version 11.1, you had to change the base rule from
RULStandardBaseProc, as shown here:

<Base Rules>

;ServerBaseProc;1;;

...

The ServerBaseProc rule replaced the RULStandardJobProc rule and let IDS run
Documaker as a separate, stay alive process. This meant Documaker only had to start once
and IDS could continue even if Documaker failed. For more information on the
ServerBaseProc rule, see the Rules Reference.

NOTE: If you are running Documaker version 11.1 or higher, you do not have to
substitute ServerBaseProc for RULStandardBaseProc.

Naming Conventions for Output Files
The output files from Documaker use the names generated by the IDS rules and
submitted to Documaker in the job ticket file. If you need different names, provide them
in the IDS request. In this case, you must make sure the names are unique or else they will
be overwritten. The names generated by IDS can consist of up to 45 characters and are
similar to the names generated by the DPRPrint rule in IDS.

The directory where the output files are created is determined in this manner:

• If the file name and path was provided, the system uses that information.

• If the file name was provided, but the path was omitted, the system looks for the path
in the PRINTPATH attachment variable.

• If the path is not in the PRINTPATH attachment variable, the system looks for the
PrintPath option in the DSIServer control group.

• If no path was specified in the PrintPath option, the system places the output file in
the current directory.

The extension of the output files is determined in this manner:

• If the name and extension was provided in the attachment, the system uses that
information.

• If the name and extension were omitted, the system generates a name and uses the
printer type as the extension for the print output files. For other files, the system
looks for the FileExt option in the IDSServer control group to find the extension.
The default is DAT.

RULServerJobProc Enter Yes to get a copy of the job ticket file before the system
removes it.

Option Description

Chapter 2
Using the Internet Document Server

152

CREATING DPW FILES

You can generate a DPW file from GenData or from an import file using IDS. The code
is structured as a print driver so setting it up is virtually the same as with print drivers.

The DPW library supports the INI2XML, WIP2DPW, and File2DPW control groups
used by the WIP Edit plug-in. To generate a DPW file from Documaker, include these
INI options:

< Printers >

PrtType = DPW

< Printer >

PrtType = DPW

< PrtType:DPW >

PrintFunc = DPWPrint

Module = DPWW32

Debug = No

Set the Debug option to Yes to capture additional debug information to the trace log.

The PrtType:DPW group can also contain variable names that correspond to index
element names in the DPW file. The values specified can be one of these formats:

name = val

The value will be used as provided, where val is the actual value provided.

name = ~GVM gvmname

If the DPW library is run under the GenData program, the value of the GVM variable
matching the name provided is used, where gvmname stands for the name provided.

name = ~GetAttach attachname

If the DPW library is run under IDS, the value of the attachment variable matching the
name provided will be used, where attachname stands for the name provided.

The system checks the index of the DPW file for the presence of any variables specified
in the PrtType:DPW control group and, if present, it updates their values with those
specified in the INI file.

Using IDS to Run Documaker

153

ACCESSING IDS ATTACHMENT VARIABLES IN GENDATA

There are times when the GenData program needs access to data passed from IDS which
is not in the extract file. To meet this need, the GenData program can access IDS
attachment variables as GVM variables. If a GVM variable with the same name already
exists, its value does not change.

Here is how it works:

On the IDS side The RPDCreateJob rule adds any input attachment variables to the XML tree (job ticket)
besides the existing variables, such as MsgFile, ErrFile, ExtrFile, LogFile, DbLogFile,
NaFile, PolFile, NewTrn, PrtLog, PrtType, ExtrPath, PrintPath, PrintBatches,
BatchFiles, IniOptions, EWPSRequest, EWPSResults, ShowErrors, WIPRECORDID,
XMLOUTPUT, and so on.

For example, if an attachment variable called RPDTEST is located and it has a value of
This is a test, it is added to the XML tree as shown here:

<DOCUMENT>

<JOBTICKET>

. . .

<RPDTEST>This is a test</RPDTEST>

</JOBTICKET>

</DOCUMENT>

On the Documaker side After the ServerJobProc rule receives the XML tree (job ticket), its child elements are used
to update INI values or create GVM variables or both.

USING TCP/IP COMMUNICATIONS

IDS and GenData use TCP/IP (socket) to replace the job ticket/job log file I/O
communication.

In IDS The RPDCheckRPRun rule sets up the host name and the port number for a GenData
configuration by checking the HOST name and PORT number from these INI options:

< IDSServer >

MaxConfigAllowed = 10

Host = localhost

Port = 49300

If you have multiple GenData configurations running over multiple IDS instances, the
port number is generated based on the IDS instance number and the base IP port number,
so you must decide the base IP port number and the range of IP port numbers. Note that
the total number of IP port numbers is decided by:

Option Description

MaxConfigAllowed Enter the maximum number of configurations you want to allow. The
default is 10.

Host Enter the host name. The default is localhost.

Port Enter the base IP port number. The default is 49300.

Chapter 2
Using the Internet Document Server

154

instances (IDS instance number) x MaxConfigAllowed (allowed to open GenDatas)

If the current configuration differs from the previous configuration, the current
configuration starts a GenData process with the assigned IP port number. Both the host
name and port number are saved in the configuration structure and are appended to the
configuration list. If the configuration exists, the configuration element is extracted and
uses the saved host and port number as current.

NOTE: TCP/IP communication is for shared objects 11.1 and above and can not be used
with early versions.This rule checks the version to decide whether TCP/IP or file
I/O communication should be used before it starts a GenData process.

The RPDProcessJob rule uses the host name and port number to establish
communication with GenData and sends a message that contains the XML document
(job ticket) to the server (GenData) when it detects that GenData has started. You can set
the maximum time to wait for GenData to start using this INI option:

< IDSServer >

WaitForStart = 30

After IDS detects that GenData has started, it sends a message in XML format (the job
ticket) and waits for GenData to finish and send back a response in XML format (the job
log file). You can set the maximum time to wait for GenData to respond using this INI
option:

< IDSServer >

MaxWaitTime = 30

If GenData does not start before the waiting time elapses, IDS displays this error message
on the IDS side:

Unexpected Program Termination of GenData

In GenData As soon as GenData starts, it initiates the communication between IDS and GenData
using the IP port number retrieved from the command line argument. It receives the job
ticket document sent by IDS and continues the GenData process. You can set the
maximum time to wait to receive a job ticket using this INI option:

< IDSServer >

MaxWaitTime = 30

Option Description

WaitForStart Enter the maximum time to wait for GenData to start in seconds. The default
is 30 seconds.

Option Description

WaitForStart Enter the maximum time to wait for GenData to respond in seconds. The
default is 30 seconds.

Using IDS to Run Documaker

155

After GenData finishes, the JOBLOG tree is unloaded into a message buffer and is sent
to client side as a response message.

You can use options in the Debug control group to determine whether to unload the job
ticket and job log files for reference purposes. On the IDS side, set this option to Yes to
keep a copy of the job ticket:

< Debug >

RPDProcessJob = Yes

On GenData side, set this option to Yes to keep a copy of the job log:

< Debug >

RULServerJobProc = Yes

CUSTOMIZING THE EXECUTION OF DOCUMAKER

When IDS runs Documaker in multi-step mode, you can introduce special steps which
occur between the GenTrn, GenData, and GenPrint steps. You can use these steps, for
instance, to

• Sort the TRNFILE or recipient batches

• Copy files to different locations

• Send files to the printer

• Notify an operator that steps were completed

The RPDRunRP rule can run a custom executable after each step in the process. Use
these INI options to define the custom executable name and path:

< RPRun >

PostGenTrnExecutable =

PostGenDataExecutable =

PostGenPrintExecutable =

By default, the following information is passed as parameters to each executable:

Option Description

MaxWaitTime Enter the maximum time to wait to receive a job ticket in seconds. The default
is 30 seconds.

Option Description

PostGenTrnExecutable Enter the name and path of the custom executable, such as a batch
file or shell script, you want the system to run after it completes the
GenTrn step.

PostGenDataExecutable Enter the name and path of the custom executable, such as a batch
file or shell script, you want the system to run after it completes the
GenData step.

PostGenPrintExecutable Enter the name and path of the custom executable, such as a batch
file or shell script, you want the system to run after it completes the
GenPrint step.

Chapter 2
Using the Internet Document Server

156

GenTrn – INI file, trnfile

GenData – INIfile, recipient batches

GenPrint – INI file, print file

These INI options are read from the FSIUSER.INI file to create the parameter list. The
FSIUSER.INI file is created by the RPDRunRP rule. This INI file is passed to
Documaker for each step. Internally, the RPDRunRP rule loads the FSIUSER.INI file
and gets parameter information from it.

GenTrn parameters

< Data >

TrnFile = (parameter trnfile)

GenData parameters

The system reads all of the options under the Print_Batches control group to determine
the recipient batches:

< Print_Batches >

Batch# = (paramter receipient batches)

GenPrint parameters

The system reads all of the print batches to determine the printer used and passes the port
value for the printer as the parameter.

< Print_Batches >

Batch1 = (value ignored)

< Batch1 >

Printer = Printer1

< Printer1 >

Port = (parameter print file)

If any of the INI options are missing, the system logs an error. It will, however, try to run
the post process without the missing parameter. Memory and list allocation errors result
in failure and the system will not attempt to execute the outside process. Here is a list of
the potential errors:

Error Severity

Could not get INI option <Data> TrnFile GenTrn step non-fatal

Could not create VMM list GenTrn step fatal

Could not load INI file GenTrn step fatal

Could not get INI context GenTrn step fatal

Could not create VMM list GenData step fatal

Could not load INI file GenData step fatal

Could not get INI context GenData step fatal

Could not create VMM list GenPrint step fatal

Could not load INI file GenPrint step fatal

Using IDS to Run Documaker

157

Could not get INI context GenPrint step fatal

Could not get INI option GenData step <group> <option> non-fatal

Could not start process: [executable name and command line] fatal

Memory re-allocation failed fatal

Memory allocation failed fatal

PROCStartProcess failed: [command line]

PROCWaitProcess failed: [executable name and command line] non fatal

PROCExitCodeProcess failed: [executable name and command line] non fatal

Error Severity

Chapter 2
Using the Internet Document Server

158

USING THE
XML

MESSAGING
SYSTEM

The XML messaging system is an open and documented queue control message format
based on XML and the evolving SOAP standard. The XML message format is supported
by the JMS, WebSphere MQ, and HTTP messaging systems.

You can find more information on the XML and SOAP on the W3C WEB site:

http://www.w3.org/

You can also find information about SOAP messages with attachments at:

http://www.w3.org/tr/soap-attachments

For information on using SOAP without a messaging system, see Using XML SOAP
Outside of Messaging Systems on page 158.

NOTE: Oracle Insurance will follow the evolving standards of SOAP and UDDI and
move toward universal messaging. The first version of the DSI message format
is based on XML and complies with many of the initial standards for SOAP
message envelopes. Later versions will move transactions and servers toward
fuller SOAP and UDDI compliance.

Oracle Insurance has used message queuing as a means of serializing requests and
responses between loosely coupled clients and servers without requiring one-to-
one connections.

Docupresentment includes the client and server sides of the DSI (document server
interface) system and of the Oracle Insurance Messaging Library system. These interface
layers help manage connections between multiple simultaneous clients and multiple
simultaneous servers.

The Oracle Insurance Messaging Library provides a logical abstract layer over the physical
process of accessing the queue, so one implementation can support and switch between
multiple queueing systems.

The DSI system provides a logical abstract layer over the physical process of assembling,
delivering, and parsing of a message, so the initiator of the message does not have to know
the physical format of the message, and is insulated from internal software changes to the
message format between product versions.

For instance, you can use the DSI messaging client with Documaker Workstation so
Documaker Workstation can...

• Interface with external systems via messaging middleware.

• Interface with IDS as a bridge to a legacy system to retrieve data for import.

The first ability means second is optional. You can also use your own internal programs
and interface using messaging middleware.

The advantage of having a logical abstract layer is that it lets you deploy applications for
different message queuing systems without requiring program changes. Only minimal
setup changes are required to test or deploy the same application with a different queuing
system.

http://www.w3.org/
http://www.w3.org/TR/SOAP-attachments

Using the XML Messaging System

159

By abstracting the message format, applications are insulated from internal changes to the
message format and can use the Oracle Insurance APIs to correctly assemble or
disassemble messages.

The disadvantage of message format abstraction is that non-Oracle Insurance
applications might be required to use Oracle Insurance APIs to communicate with Oracle
Insurance applications. On some platforms, it may not be practical to invoke these APIs.
The proprietary nature of the original message format further complicates the issue.

If you are integrating with IDS as the server, the message format documentation is not
necessary. If, however, you are integrating with another application, the message format
may be needed if you do not use IDS APIs.

The following topics outline the XML message file format.

The XML-based DSI
message format

The DSI message format complies with the following XML-based structure:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.017.0">

 <CTLBLOCK>

 <UNIQUE_ID> { guid hex string } </UNIQUE_ID> (required)

 <REQTYPE> { message request type } </REQTYPE> (required)

 <USERID> { user ID }</USERID> (optional)

 <RESULTQMGR> { remote queue manager } </RESULTQMGR>
(optional)

 <RESULTQ> { remote queue name } </RESULTQ> (optional)

 <ATTACHMENT TYPE="TEXT or BINARY"> (optional)

 <DELIMITER> { tag delimiter } </DELIMITER> (required
for ATTACHMENT)

 </ATTACHMENT>

 </CTLBLOCK>

 <MSGVARS> (required)

 <VAR NAME="VAR NAME 1"> { MSG VAR CONTENT 1 } </VAR>

 <VAR NAME="VAR NAME 2"> { MSG VAR CONTENT 2 } </VAR>

 <VAR NAME="VAR NAME 3"> { MSG VAR CONTENT 3 } </VAR>

 </MSGVARS>

 </DSIMSG>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

MIME headers

 ... Optional attached text data

 ... Example: a flat text extract file

 ... Example: an XML data file

 ... Example: a base64 (MIME) text encoded binary file

MIME headers

Chapter 2
Using the Internet Document Server

160

Please note:

• The essential component of the message format is the DSIMSG structure, which is
encoded inside SOAP-ENV envelope and body structures.

• The indentation of the elements is intended to make it easier to read. Actual messages
are not indented.)

• The message can contain attached files. Attached files are encoded inside a tagged
structure outside the SOAP-ENV structure. Note that once tagged outside of the
primary structure in this fashion, the message file itself is no longer well-formed
XML and cannot be viewed with some XML viewers. While it is not well-formed
XML, it is a valid SOAP with attachments format.

The DSI system manages the separation of the attached files from the message. Each
ATTACHMENT structure describes the controlling attributes of the attached files.
The TYPE attribute specifies the type and format of the attached file, either as TEXT
(the default) or BINARY (MIME format). The DELIMETER element specifies a
unique tag name, which is required to be inside the beginning and ending tag brackets
to delimit the file data.

• Request and response messages have identical formats. The current specification
does not require a distinction between requests sent by the client and responses returned
by the server.

• The client initiating the request generates the UNIQUE_ID. The server echoes the
same unique identifier in the response.

• The type of request is identified by the REQTYPE element. Client and server
applications must understand and agree on the identifier for the request, the nature
of the work to be performed as a result, and the response to be generated.

• The RESULTQMGR and RESULTQ elements are optional, but will appear based
on certain types of queue configurations.

• The MSGVARS structure provides the DSI attachment variables which would
previously have been encoded using the DSIAddAttachVar rule in the IDS SDK.

Client Request Messages
Here are several example client request messages in XML format:

Without attachments Here is an example of a client request message in XML format which does not include
attachments

Content-Type: text/xml

Content-Transfer-Encoding: 8bit

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.017.0">

<CTLBLOCK>

<UNIQUE_ID>a9ae6c91-1d1b-11d2-b21a-00c04fa357fa</UNIQUE_ID>

<REQTYPE>CLAIMS DATA</REQTYPE>

<USERID>JOHN DOE</USERID>

Using the XML Messaging System

161

</CTLBLOCK>

<MSGVARS>

<VAR NAME="CONFIG">FFIC</VAR>

<VAR NAME="KEY1">AUTO BI/UM</VAR>

<VAR NAME="KEY2">CONTACT</VAR>

<VAR NAME="KEYID">123 98 678245</VAR>

<VAR NAME="RUNDATE">20010908</VAR>

<VAR NAME="USERID">JOHN DOE</VAR>

</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

With attachments Here is an example of a client request message in XML format which does include
attachments:

Content-Type: multipart/related; boundary=IDSMessage

--IDSMessage

Content-Type: text/xml

Content-Transfer-Encoding: 8bit

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.017.0">

<CTLBLOCK>

<UNIQUE_ID>a9ae6c91-1d1b-11d2-b21a-00c04fa357fa</UNIQUE_ID>

<REQTYPE>CLAIMS DATA</REQTYPE>

<USERID>JOHN DOE</USERID>

<ATTACHMENT>

<DELIMITER>CLAIMS-DATA</DELIMITER>

</ATTACHMENT>

</CTLBLOCK>

<MSGVARS>

<VAR NAME="CONFIG">FFIC</VAR>

<VAR NAME="KEY1">AUTO BI/UM</VAR>

<VAR NAME="KEY2">CONTACT</VAR>

<VAR NAME="KEYID">123 98 678245</VAR>

<VAR NAME="RUNDATE">20010908</VAR>

<VAR NAME="USERID">JOHN DOE</VAR>

</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--IDSMessage

Content-Type: application/ids

Content-Transfer-Encoding: 7bit

Content-ID: CLAIMS-DATA

{…data in a structured COBOL record appears here …}

--IDSMessage--

Chapter 2
Using the Internet Document Server

162

Please note:

• The client initiates the request and generates the UNIQUE_ID. The server echoes
back the same unique identifier in the response.

• The MSGVAR structure in this example provides the key fields necessary to access
the claims data and create the exported data to be delivered to the client. A server
application can receive more variables than are needed and should be set up to ignore
those not applicable.

• The ATTACHMENT structure provides the delimiter element, which is used to
specify the delimiting string pattern that frames a data record passed as an attached
file as a part of the message.

With multiple
attachments

Here is an example of a client request message in XML format which has multiple
attachments:

Content-Type: multipart/related; boundary=IDSMessage

(Please note that this new line must be included.)

--IDSMessage

Content-Type: text/xml

Content-Transfer-Encoding: 8bit

(Please note that this new line must be included.)

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.017.0">

<CTLBLOCK>

<UNIQUE_ID>a9ae6c91-1d1b-11d2-b21a-00c04fa357fa</UNIQUE_ID>

<REQTYPE>CLAIMS DATA</REQTYPE>

<USERID>JOHN DOE</USERID>

<ATTACHMENT>

<DELIMITER>CLAIMS-DATA</DELIMITER>

</ATTACHMENT>

<ATTACHMENT TYPE="BINARY">

<DELIMITER>CLAIMS-BINARY</DELIMITER>

</ATTACHMENT>

</CTLBLOCK>

<MSGVARS>

<VAR NAME="CONFIG">FFIC</VAR>

<VAR NAME="KEY1">AUTO BI/UM</VAR>

<VAR NAME="KEY2">CONTACT</VAR>

<VAR NAME="KEYID">123 98 678245</VAR>

<VAR NAME="RUNDATE">20010908</VAR>

<VAR NAME="USERID">JOHN DOE</VAR>

</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

(Please note that this new line must be included.)

--IDSMessage

Content-Type: application/ids

Content-Transfer-Encoding: 7bit

Content-ID: CLAIMS-DATA

{…data in a structured COBOL record appears here …}

Using the XML Messaging System

163

--IDSMessage

Content-Type: application/ids

Content-Transfer-Encoding: base64

Content-ID: CLAIMS-BINARY

(Please note that this new line must be included.)

{…data in a base64 encoding form appears here …}

--IDSMessage--

Server XML Response Messages
Here is an example of the XML response message from the server:

Content-Type: multipart/related; boundary=IDSMessage

(Please note that this new line must be included.)

--IDSMessage

Content-Type: text/xml

Content-Transfer-Encoding: 8bit

(Please note that this new line must be included.)

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG>

<CTLBLOCK>

<UNIQUE_ID>a9ae6c91-1d1b-11d2-b21a-00c04fa357fa</UNIQUE_ID>

<REQTYPE>CLAIMS DATA</REQTYPE>

<USERID>JOHN DOE</USERID>

<ATTACHMENT>

<DELIMITER>DOCC-XML</DELIMITER>

</ATTACHMENT>

</CTLBLOCK>

<MSGVARS>

<VAR NAME="RESULTS">SUCCESS</VAR>

</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

(Please note that this new line must be included.)

--IDSMessage

Content-Type: application/ids

Content-Transfer-Encoding: 7bit

Content-ID: DOCC-XML

(Please note that this new line must be included.)

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT TYPE="RPWIP" VERSION="10.1">

<DOCSET>

<GROUP NAME1="AUTO BI/UM" NAME2="CONTACT">

<FORM NAME="DEC PAGE">

<DESCRIPTION>Common Policy Declarations</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>

<SHEET>

Chapter 2
Using the Internet Document Server

164

<PAGE>

<SECTION NAME="CPDEC~1">

<FIELD NAME="DELIVERY">DELIVERY NOTE</FIELD>

<FIELD NAME="ON_ARRIVAL">ON ARRIVAL NOTE</FIELD>

<FIELD NAME="CLAIMANT_NAME">SUSAN FRIEDEN</FIELD>

<FIELD NAME="CLAIMANT_ADDRESS">ADDRESS HERE</FIELD>

<FIELD NAME="POLICY_NUMBER">POLICY NUM 22222</FIELD>

<FIELD NAME="SALUTATION">SALUTATION FIELD</FIELD>

<FIELD NAME="INSURING_COMPANY">INSURING COMPANY N</FIELD>

<FIELD NAME="TAG_LINE">TAG LINE FOR THE IN</FIELD>

</SECTION>

</PAGE>

</SHEET>

</FORM>

</GROUP>

</DOCSET>

</DOCUMENT>

--IDSMessage--

Please note:

• The client generated UNIQUE_ID is echoed back in the response.

• The ATTACHMENT structure specifies the delimiter for the embedded XML
export file. In this example, the file is called DOCC-XML.

• The MSGVAR structure specifies the returned attachment variables, which include
the results from the requested operation, returned in the variable named RESULTS.
In this example, the result is SUCCESS. If there is an error, the result is an error code
and, typically, no XML export data is included.

• If you are transmitting messages between dissimilar platforms, say an EBCIDIC
platform such as an MVS-based server application which is submitting messages to
an ASCII platform such as a PC, you must set the message format attribute in the
message descriptor to string (text). This lets the MQ Series channel sender/receiver
perform the EBCDIC-to-ASCII translation. Likewise, the QSRLIB layer of the
Oracle Insurance system sets the request message format to string so the ASCII-to-
EBCDIC translation takes place. As a result, client and server applications are able to
see the message data in the proper format and do not have to perform the translation
themselves.

USING XML SOAP OUTSIDE OF MESSAGING SYSTEMS

Using the DSIGetSOAPMessage and DSIGetSOAPMessageSize functions, you can code
IDS client applications (such as iDocumaker) with common APIs using XML DOM of
the IDS SOAP XML message. See the SDK Reference for more information on these
functions.

These APIs let client applications access the DSI XML message as a buffer in memory.
Access to IDS XML message is provided as a buffer in memory because of possible issues
with the version of the DOM or XML parser the client application may be using.

Keep in mind the XML returned is a byte array using UTF-8 encoding.

Using the XML Messaging System

165

NOTE: The GetSOAPMessage is also available for the COM and Java APIs. (DSICO,
IDSASP and DSIJava).

Chapter 2
Using the Internet Document Server

166

CONNECTING TO
AN SQL

DATABASE

IDSSQL is a set of ActiveX® DSOs (IDSSQL.DLL and IDSSQLRL.DLL) which you
can use as a Microsoft ActiveX Data Objects (ADO) programming model.

These DSOs let you send SQL commands and receive records back from an SQL
database. Instead of communicating directly with the database as an object, the IDSSQL
DLLs go through an IDS rule. This illustration shows how it works:

IDS

SQL
Database

Application

(Could be a Visual Basic or ASP application)

DSI API

IDSSQL.DLL

IDSSQLRL.DLL

Connecting to an SQL Database

167

Differences between Microsoft’s ADO and IDSSQL
Keep in mind these differences between ADO and IDSSQL:

• IDSSQL does not implement all features of Microsoft’s ADO and record set.

• The connection between IDSSQL and the SQL database automatically opens and
closes on each execute.

• The new record insert into the database is made using the SQL insert command
instead of the insert and update method in the ADO record set.

• Errors are returned through IDS record sets. So it good to have a record set even if
the SQL command did not return any records.

Setting up IDSSQL
Follow these steps to set up IDSSQL:

1 Add these options to your DOCSERV.INI file:

< ReqType:IDSSQL >

Function = atcw32->ATCLoadAttachment

Function = DSICoRul->Invoke,IDSSQLRL.IDS->SQL

Function = atcw32->ATCUnloadAttachment

2 Set up the ODBC Data source name.

IDSSQL CLASSES

Here are the properties and methods for IDSSQL.ADO and IDSSQL.IDSRC:

IDSSQL.ADO
Here are the properties and methods for IDSSQL.ADO:

Properties
Property Description

AbsolutePage The ordinal position of the current page. The default is zero (0).
If zero (0), all records queried by the SQLcommand are returned.
If set to something other than zero, only those records on the page are
returned. The number of records on the page are determined by the
PageSize property.

CommandTimeOut The number of seconds to wait when executing a command before
terminating the attempt and returning an error. If you set this property
to zero, ADO will simply wait until the execution is complete. The
default is 30 seconds.

DSN The ODBC data source name or the information used to create a
connection to data source.

PageSize The number of records on a page. The default is 10.

Chapter 2
Using the Internet Document Server

168

Methods

IDSSQL.IDSRC
Here are the properties and methods for IDSSQL.IDSRC, the IDS record set.

Properties

Methods

EXAMPLE SCRIPT

Here is an example in ASP:

<%@ Language=VBScript %>

<HTML>

Password The password used to connect to the database. A password is required
if the DSN connection is not a trusted SQL Server connection.

SQLCommand The SQL statement.

User The user ID used to connect to the database. The user ID is required if
the DSN connection is not a trusted SQL Server connection.

Property Description

Method Description

Execute Process SQL command.
Returns the record set requested by SQLCommand.

Property Description

BOF True if the current record position is before the first record.

EOF True if the current record position is after the last record.

Errors Errors collection.

Field Each field of the current record.

Fields Fields information collection.

RecordCount The number of records currently in the record set.

Method Description

MoveFirst Move to the first record in the record set and make that the current record.

MoveLast Move to the last record in the record set and make that the current record.

MoveNext Move to the next record in the record set and make that the current record.

MovePrevious Move to the previous record in the record set and makes that the current
record.

Connecting to an SQL Database

169

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

</HEAD>

<BODY>

<%

CrLf = Chr(13) & Chr(10)

set sql = Server.CreateObject("idssql.ado") 'Create IDS ADO Object

set rc = Server.CreateObject("idssql.idsrc") 'Create IDS record set

ShowAllActivateAccount()

Sub ShowAllActivateAccount()

sql.DSN = "COB_TEST"'ODBC Data source name

sql.SQLCommand = "Select * from subscriberdata where ebppstatus =
'A'"

Set rc = sql.Execute()‘Execute Command

If rc.Errors.Count <> 0 Then‘Check for error

Response.write "Error source = " & rc.Errors(1).Source & "
"

Response.write "Error Description = " & rc.Errors(1).Description
& "
"

Else

%>

<TABLE BORDER=1>

<TR>

<TH>RC#</TH>

<TH>Account#</TH>

<TH>Name</TH>

</TR>

<%

‘Loop through all the return records and display the fields

For i = 1 To rc.RecordCount

Response.write "<TR>" & Crlf

Response.write "<TD>" & i & "</TD>"

Response.Write "<TD>" & rc.Field("Accountnumber") & "</TD>"

Response.Write "<TD>" & rc.Field("SubscriberFirstName") & " "

Response.Write rc.Field("SubscriberMiddleName") & " "

Response.Write rc.Field("SubscriberLastName") & " "

Response.Write "</TD>" & Crlf

Response.write "</TR>" & Crlf

rc.MoveNext‘Move to next record

Next

%>

</TABLE>

<%

End If

End Sub

%>

<P> </P>

</BODY>

</HTML>

Fields Here is an example of how you can access the name and data in the field of each record:

Chapter 2
Using the Internet Document Server

170

For i = 1 To rc.RecordCount‘Loop through all return record set

 Response.Write "========="

 Response.Write "Record " & i

 Response.Write "========="

 For j = 1 To rc.Fields.Count‘Loop through all the fields in
that record

 Response.Write rc.Fields(j) & ":" ‘Display field name

 Response.Write rc.Field(j)‘Display data in the field

 Next

Next

You can access the data in the field using the name or index, such as:

Rc.Field(1) or Rc.Field(“SubscriberID”)

Using the Thin Client Forms Publisher

171

USING THE THIN
CLIENT FORMS

PUBLISHER

The Thin Client Forms Publisher lets web clients enter a user ID, password, and other
information at login. Depending on how you set it up, IDS then returns a list of group1/
group2 combinations for the form set.

The web client can then choose a group1/group2 combination and submit it to IDS along
with an effective date. The DPRSetConfig rule sets the effective date for use with Library
Manager.

IDS then returns a new XML form set (through the result queue) based on the group1/
group2 submittal. The Thin Client Forms Publisher loads the XML form set returned by
IDS and generates an HTML tree view.

The web client can then select the forms, images, recipients, and print options and submit
a request to print the form set. Once submitted, the Thin Client Forms Publisher
generates a new XML form set and sends it to IDS.

IDS retrieves the new XML form set, converts it into a FAP form set and prints it. IDS
then sends the final output file to the Thin Client Forms Publisher through the queues.
The Thin Client Forms Publisher supports these print options: PDF, XML, PCL, AFP,
MET, and HTML.

Look at these examples for more information:

These virtual directories are included in the IDS sample resources. Use FORMAKER for
the user ID and password when viewing the examples.

Example Uses

/formpub dp018.dll which you can use on Windows 2000 without IDS DLL files

/formpubnt idsasp.dll for standard messaging and dp018.dll for XML processing

Chapter 2
Using the Internet Document Server

172

PAUSING IDS When necessary, you can pause IDS processing and then restart it. For instance, suppose
you are running a system with multiple instances of IDS, each running its own
Documanage Bridge, with each Documanage Bridge logging into a separate Documanage
system.

In this scenario, you want IDS to become passive (stop processing requests) when the
Documanage system becomes unavailable and to become active again when the
Documanage system becomes available again.

This fail-over strategy avoids situations where IDS is processing requests which are failing
because the bridge is having a problem with Documanage server.

To handle this scenario, you use a C or Java DSI API. This API lets a rule request that
IDS go into pause mode. While in pause mode IDS will not receive requests from a queue
and will execute only one request type PAUSE. The frequency of this request is defined
using this option in the configuration file:

<section name="BusinessLogicProcessor">

 <section name="messaging">

 <section name="timed">

 <entry name="PauseCheckIntervalSeconds">10</entry>

 </section>

The entry PauseCheckIntervalSeconds is the interval that IDS will send PAUSE requests
to itself when it is paused.

The Documanage Bridge calls the API and places IDS in pause mode when Documanage
server becomes unavailable. The rule registered on the PAUSE request type checks to see
if the Documanage server is available calls an API to resume the IDS operation.

You use these DSI APIs:

DSIQueryStatus
This API returns DSI specific status options via DSISTATUS_* flags. Use it to determine
if IDS is in a paused mode. Here is a list of the available flags:

NOTE: Setting the status to DSISTATUS_STOP is non-recoverable action. Once the
server exits, no other actions are possible.

Syntax DSIQueryStatus()

Flag Description

DSISTATUS_PAUSE Pause the server

DSISTATUS_STOP Stop the server and exit the process

DSISTATUS_RESTART Restart the server

DSISTATUS_RESUME Resume the server after a pause

Pausing IDS

173

Returns DSIERR_SUCCESS or an error code.

Errors

Example Here is an example:

long lOpt;

if (DSIQueryStatus(hInstance,&lOpt) != DSIERR_SUCCESS) {

... display error message

}

if (lOpt & DSISTATUS_PAUSE)

{

printf("Server is currently paused\n");

}

if (lOpt & DSISTATUS_STOP)

{

printf("Server is currently stopping\n");

}

DSISetStatus
This API sets DSI specific status options via DSISTATUS_* flags. Use it to pause IDS.
Here is a list of the available flags:

NOTE: Setting the status to DSISTATUS_STOP is non-recoverable action. Once the
server exits, no other actions are possible.

Parameter Description

hdsi handle to instance returned by DSIInitInstance

plOptions pointer to a long for returning the DSISTATUS_* values.

Message Description

DSIERR_INVPAR
M

Invalid DSI instance handle or plOptions is NULL

DSIERR_INTERNA
L

Internal error

Flag Description

DSISTATUS_PAUSE Pause the server

DSISTATUS_STOP Stop the server and exit the process

DSISTATUS_RESTART Restart the server

DSISTATUS_RESUME Resume the server after a pause

Chapter 2
Using the Internet Document Server

174

Syntax DSISetStatus()

Return values DSIERR_SUCCESS or an error code.

Errors

Example Here is an example:

if (DSISetStatus(hInstance,DSISTATUS_PAUSE) != DSIERR_SUCCESS) {

... display error message

}

printf("Server is currently paused\n")

When running a Java rule, the RequestState parameter has methods for pausing and
resuming IDS as well as to check to see if it is currently paused.

Parameter Description

hdsi handle to instance returned by DSIInitInstance

plOptions pointer to a long for returning the DSISTATUS_* values.

Message Description

DSIERR_INVPARM Invalid DSI instance handle

DSIERR_INTERNAL Internal error

Method Description

isRequestProcessorPaused Returns true if IDS is currently paused, false otherwise.

pauseRequestProcessor Tells IDS to pause and stop processing requests from queues
and so on.

resumeRequestProcessor Tells IDS to resume processing requests from queues and so
on.

Executing Request Types at Run Time

175

EXECUTING
REQUEST TYPES

AT RUN TIME

IDS lets you execute request types composed at run time. Client programs can specify
their own XML configuration file with a set of request types to process. Multiple client
programs can have request types with the same name but with a different set of rules to
run. Request types no longer have to be present in the IDS configuration file.

To execute request types at run time, specify an attachment variable named DYNAMIC-
CONFIGURATION-FILE with a full path and file name for a configuration file
accessible to IDS.

Here is an example:

Example configuration
file

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <section name="ReqType:POC-RUNRP-HTM">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">atcw32->ATCSendFile,
RPOUTPUT,INSURED,BINARY</entry>

 <entry name="function">atcw32->ATCReceiveFile,
EXTRACTFILE,EXTRFILE,c:\docserv\data*.xml,KEEP</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">RPDW32->RPDCheckRPRun</entry>

 <entry name="function">RPDW32->RPDCreateJob</entry>

 <entry name="function">RPDW32->RPDProcessJob</entry>

 </section>

</configuration>

Example data file <?xml version="1.0" encoding="UTF-8"?>

<message>

 <data>

 <var name="CONFIG">POC</var>

 <var name="BATCHFILES">3</var>

 <var name="INIOptions">1</var>

 <var name="INIOptions1.Group">Printer</var>

 <var name="INIOptions1.Option">PrtType</var>

 <var name="INIOptions1.Value">HTM</var>

 <var name="OUTPUTTYPE">HTM</var>

 <var name="PRINTBATCHES">3</var>

 <var name="SHOWERRORS">YES</var>

 <var name="REQTYPE">POC-RUNRP-HTM</var>

 <var name="DYNAMIC-CONFIGURATION-FILE">c:\docserv\runrp-poc-htm-
config.xml</var>

 </data>

 <attachments>

 <file name="EXTRACTFILE">C:\msgclient\extract\poc.xml</file>

 </attachments>

</message>

Example dynamic.htm
page

<html>

<head>

<h2>dynamic config test</h2>

<body>

<form action="dynamic2.asp" enctype="multipart/form-data"
method="post">

<table>

 <tr>

Chapter 2
Using the Internet Document Server

176

 <td>*Enter an xml message with name/value pairs to process</td>

 <td>example</td><td><input name="xml-
message" type="file"/></td>

 </tr>

</table>

 <input type="submit" name="" value="submit">

</form>

Example dynamic.asp
page

<%

 set parser = server.CreateObject("IDSASP.DSI")

 parser.parseData()

 message = parser.getBuffer("xml-message")

 '***process the message file

 processMessageFile message

 parser.showAtt = 1

 parser.ProcessRq

 function processMessageFile(buffer)

 set xml = Server.CreateObject("MSXML2.DOMDocument.4.0")

 xml.loadxml(buffer)

 set msgVars = xml.selectNodes("message/data/var")

 for each var in msgVars

 name = var.getAttribute("name")

 value = var.text

 parser.addReq name, value

 next

 set Attachments = xml.selectNodes("message/attachments/file")

 for each attach in Attachments

 name = attach.getAttribute("name")

 value = attach.text

 parser.SendFile name, value

 next

 end function

%>

Publishing Your Forms on the Web

177

PUBLISHING
YOUR FORMS
ON THE WEB

The system provides tools you can use to create one HTML file and a number of PDF
files (one per FAP file). You can then publish these HTML and PDF files on your web
server.

The HTML file lists all of the company, line of business (LOB), form, and image
combinations from the FORM.DAT file. This file has links to PDF files which are created
for each image.

To publish your form library, you have to put these HTML and PDF files in a web server
contents directory. Once you have the HTML and PDF files in a contents directory, you
can use your browser to open the HTML page and view the images.

NOTE: The one PDF file per image concept does not work well in an environment which
has a lot of small images. This concept works better with full page FAP files.

Use the following tools to publish your forms on the web:

• FORMPUB - This program provides a graphical interface from which you can run
the FD2HTW32 and PTFMDW32 utilities.

• FD2HTW32 - This utility converts a FORM.DAT file into an HTML page. You can
run this utility as a stand-alone program or from the FORMPUB tool.

• PTFMDW32 - This utility creates a PDF file for each image in the FORM.DAT file.
You can run this utility as a stand-alone program or from the FORMPUB tool.

• FAP2HTML - This utility lets you convert FAP files into HTML format for use with
iPPS as data entry screens.

FORMPUB
This utility provides a graphical interface from which you can run the FD2HTW32 and
PTFMDW32 utilities. If you want to run these utilities as stand-alone programs, read the
following descriptions of these programs.

Chapter 2
Using the Internet Document Server

178

FD2HTW32
Use this utility to convert a FORM.DAT file into an HTML page.

Syntax fd2htw32 [-i=<formdef>] [-ini= <inifile>] [-o=<outfile>] [-
d=<dirname>]

Parameters

PTFMDW32
Use this utility to create a PDF file for each image in the FORM.DAT file.

Syntax ptfmdw32 [-i=<formdef>] [-ini=<inifile>] [-f=<formlib>] [-
x=<fxrfile>] [-o=<outdir>]

Parameters

Parameter Description

i The form definition file from which to read. Defaults to the FORM.DAT file.

ini The initialization file from which to read. Defaults to the FSIUSER.INI file.

o The name of the output HTML file.

d The name of the web server directory.

Parameter Description

-i=<formdef> The form definition file from which to read. Defaults to FORM.DAT.

-ini=<inifile> The initialization file from which to read. Defaults to FSIUSER.INI.

-f=<formlib> Location of FAP files.

-x=<fxrfile> Full name of font cross-reference file (FXR file).

-o=<outdir> Location of output PDF files. Defaults to the same directory as FAP files.

Publishing Your Forms on the Web

179

FAP2HTML
Use this utility to convert FAP files into dynamic HTML files.

Program names

Syntax FAP2HTML /I /TS /D /X /INI

This utility creates an HTML file for each FAP files you specify. The utility appends the
extension HTM to the output files. You can then display the HTML files using a browser.

Keep in mind:

• Dynamic HTML commands require Microsoft Internet Explorer 4.0 or later.

• If the FAP form is complex, you may experience problems in older versions of
Internet Explorer. To avoid such problems, use Internet Explorer 6.0 or later.

• Using absolute positioning, dynamic HTML commands make the HTML page the
exact size of the FAP page. This means you cannot zone the HTML file in a browser.

• A multi-page FAP file is converted into multiple HTML files, one for each page.
Pages have _p# appended to the FAP file name with the HTM extension. For
example, the first page has _1 appended to the end of the FAP file name with the
HTM extension. The second page has _2 appended to the end of the FAP file name
with the HTM extension, and so on.

• True Type font names are retrieved from the FXR (font cross-reference) file. The
computer used to display the output HTML files must have these same fonts or the
output may differ.

The mapping to the True Type font occurs in the Window32Subs control group.
Here you can specify, for example, a Times family font and map it to the True Type
equivalent, Times New Roman. You do not have to change your FXR file, just make
sure you have the correct mappings in the INI file.

• This utility does not convert logos. It will, however, set up references to the logo file.
You must use a graphics file conversion utility (not included) to convert the logo files
into GIF or JPEG files.

Windows 32-bit FAP2HTML.EXE

Parameter Description

/I The name of the FAP file. You can use wildcards, such as *.FAP.

/ts Include this parameter to tell the utility to produce HTML output for TerSub
paragraphs. TerSub is a pre-and post-edit function which selects and assembles
pre-written, standardized paragraphs as a time-saving feature.

/d Include this parameter to include output that can help you diagnose any problems
that occur.

/X The name of the FXR file (font cross-reference file).

/INI (Optional) The name of the INI file to use. The default is FSIUSER.INI.

Chapter 2
Using the Internet Document Server

180

• To create TerSub paragraphs, include the /TS and /D parameters.

INI Options
You can use these INI options to customize how the FAP2HTML utility works:

< PrtType:HTM >

SplitText =

Field =

Text =

TextMerge =

Box =

Barcode =

Bitmap =

ImagePath =

ImageExt =

Table =

FieldFontFudge =

DirLinks =

CollapsePage=

PageBreaks =

HR =

AllowInput =

Option Description

SplitText Use this option to specify the number of characters to output as a separate
text label. If you set this set option to -1 (the default), each word is output as
a separate word. If you set this option to zero (0), the system will not split
the text.
Splitting the text on every character produces a better fidelity HTML file, but
slows the performance of the utility and of the browser. The default value
seems to produce good results. If you plan to later edit the HTML file, set
this value to zero (0) so all the text is output together without positioning
commands.

Field Enter No if you want to omit this kind of objects from the HTML file. The
default is Yes.

Text Enter No if you want to omit this kind of objects from the HTML file. The
default is Yes.

TextMerge Enter No if you want to omit this kind of objects from the HTML file. The
default is Yes.

Box Enter No if you want to omit this kind of objects from the HTML file. The
default is Yes.

Barcode Enter No if you want to omit this kind of objects from the HTML file. The
default is Yes.

Bitmap Enter No if you want to omit this kind of objects from the HTML file. The
default is Yes.

Publishing Your Forms on the Web

181

ImagePath Use this option to specify the location of the graphics files. Use a relative
path, such as /images/, so the reference to the logo will be output in the
HTML file with the attribute

SRC=”images/GRAPH1BB.jpg”

Be sure to use this option if you keep the graphics in a separate directory on
the web server.

ImageExt Use this option to specify the extension to use for references to graphic files.
The default is JPG. You will need to set this option to the correct value, if
your bitmaps are converted into some other file format, such as GIF, PNG,
or TIFF.

Table Use this option to specify if the dynamic HTML absolute positioning should
be used for the text. The default is No.
When HTML tables are used for text positioning, the FAP lines and boxes
are not output and the fidelity of the output document is low.
Set this option to Yes to edit the HTML text after the conversion.

FieldFontFudge Use this option to increase or decrease the font size for the input fields. The
default is 0.535.
This option is necessary because browsers usually use fonts larger than the
input fields, so the top or bottom of the text inside the input field is chopped
off. When you use this option, the font size inside the input field is the font
height times this value.

DirLinks Use this option to add Next and Prev links on pages. The default is No.

CollapsePage Use this option to eliminate white space between HTML pages. The default
is No.

PageBreaks Use this option to force a page break between pages during HTML print.
The default is Yes.

HR Use this option to display a line between HTML pages. You can configure
the size, color and width. Here is an example:

HR = Size=2 Width=100% Color=Black

AllowInput Set this option to Yes to enable variable fields for entry. The default is No.

Option Description

Chapter 2
Using the Internet Document Server

182

HANDLING
MULTI-PART/
FORM-DATA

FORMS

You can use JSP pages to process HTML forms encoded as multi-part/form-data. This
encoding enables file uploading from HTML pages to IDS for processing.

Here is a sample HTML form that includes uploading an attachment that is loaded from
a file on the user's machine. Any request type can be used. This example uses the LGN
request type.

The attachment name should match an attachment you are expecting in your rules. In this
example the attachment is named IMAFILE. Attachments are always sent in binary
format.

<FORM METHOD=POST ENCTYPE="multipart/form-data" ACTION="login.jsp">

 <INPUT TYPE="FILE" NAME="IMAFILE"/>

 <INPUT NAME="REQTYPE" value="LGN" TYPE="HIDDEN">

 <H3>

 User ID: <INPUT SIZE=10 MAXLENGTH=8 NAME="USERID"
value="FORMAKER">

 Password: <INPUT TYPE=PASSWORD SIZE=8 MAXLENGTH=8
NAME="PASSWORD" VALUE="FORMAKER"><P>

 Archive:

 <SELECT NAME="CONFIG">

 <OPTION VALUE = "UTILITY">Utility Company

 <OPTION VALUE = "FINANCE">Worldwide Financial

 </SELECT>

 <P>

 <INPUT TYPE="submit" VALUE="Login"> <INPUT
TYPE="reset" VALUE="Reset"><P>

 </H3>

 </FORM>

Formatting Text with XML Markup

183

FORMATTING
TEXT WITH

XML MARKUP

iPPS and other Documaker clients can format multi-line text fields in XML files. The
XML import loader and export unloader, which are the same for Documaker and IDS,
support these formatting attributes:

Italic: <I>

Bold:

Underline: <U>

Font

Attributes:

SIZE=99 (point size)

FACE=(font family name)

COLOR=(hex color value, such as #FFFFFF)

Paragraph: <P> or

Attributes: ALIGN="CENTER" or "RIGHT"

If you omit the alignment, the system left justifies the text. Empty paragraphs use a

element instead of <P>.

Here is an example multi-line field input or output XML:

<P ALIGHN="CENTER">

This is bold 15 points size
font

<I><U>This is italic size 10 point

font with underline</U></I>

</P>

If the font does not exist, the font locator looks for the best match based on font family
name, point size, style, and weight.

If you omit the font information from the import file, the system uses the default font for
the text area.

Chapter 2
Using the Internet Document Server

184

ENCRYPTING
AND

DECRYPTING
DATA FILES

IDS includes a utility you can use to encrypt and decrypt data files. The program is a Java
class in the DocuCorpUtil.jar library. To run it, enter a command similar to the one shown
here:

java -cp DocuCorpUtil.jar com.docucorp.util.DataCrypt

Here is a summary of the parameters:

If you omit all of the parameters, a usage message appears.

Parameter Description

-i Treat the text argument as a file name instead of text to encrypt/decrypt.

text The text to encrypt/unencrypt or the name of a file if the -i parameter is included.
The input file is overwritten with the new information.

-u Include this parameter if you want to decrypt the text or file instead of encrypting
it. Encrypting is the default behavior for this utility.

Using Multiple Attachment Values with the Same Name

185

USING
MULTIPLE

ATTACHMENT
VALUES WITH

THE SAME
NAME

IDSASP and IDSJSP let you send and receive messages with multiple attachment
variables which have the same name. To enable support for multiple attachment variables,
set the ProcessAll property to True at the beginning of an ASP or JSP page See the
example pages below.

In ASP you can simply traverse through the Request and Result collections as before to
retrieve all entries for a message. In JSP you can use the getEntries() API to return a list
of MsgVarEntry objects.

Here is an example ASP page:

<%

 set dsi = server.createobject("IDSASP.DSI")

 dsi.ProcessAll = True

 dsi.addReq "USERID", "DOCUCORP"

 dsi.addReq "USERID", "FORMAKER"

 dsi.addReq "USERID", "DEMO1"

 dsi.addReq "USERID", "DEMO"

 dsi.addReq "PASSWORD", "P1"

 dsi.addReq "PASSWORD", "P2"

 dsi.addReq "REQTYPE", "TEST_MVARS"

 For I = 1 To dsi.Request.count

 Response.Write "Request " & I & ": "

 Response.Write dsi.Request(i).NAME & " = " &
dsi.Request(i).Value

 Response.Write "
"

 Next

 dsi.processRq

 For I = 1 To dsi.Result.count

 Response.Write "Result " & I & ": "

 Response.Write dsi.Result(i).NAME & " = " & dsi.Result(i).Value

 Response.Write "
"

 Next

%>

Chapter 2
Using the Internet Document Server

186

Here is an example JSP page:

<%@ page language="java" import="java.util.*,

 java.net.*,

 java.io.*,

 com.docucorp.messaging.data.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>

<%

 int _OUTPUTQUEUE = 1;

 int _INPUTQUEUE = 2;

 List entries = null;

 dsi.setTimeout(30000);

 //dsi.debugOn(response);

 dsi.ProcessAll = true;

 dsi.addRequest("USERID", "DOCUCORP");

 dsi.addRequest("USERID", "FORMAKER");

 dsi.addRequest("USERID", "DEMO1");

 dsi.addRequest("USERID", "DEMO");

 dsi.addRequest("PASSWORD", "P1");

 dsi.addRequest("PASSWORD", "P2");

 dsi.addRequest("REQTYPE", "TEST_MVARS");

 entries = dsi.getEntries(_OUTPUTQUEUE);

 for (int I =0; I <entries.size(); i++){

 String k = MsgVarEntry.getName(entries, i);

 String v = MsgVarEntry.getValue(entries, i);

 out.println("Request: " + k + "=" + v + "
");

 }

 dsi.ProcessRequest();

 entries = dsi.getEntries(_INPUTQUEUE);

 for (int I =0; I <entries.size(); i++){

 String k = MsgVarEntry.getName(entries, i);

 String v = MsgVarEntry.getValue(entries, i);

 out.println("Response: " + k + "=" + v + "
");

 }

%>

Using Multiple Attachment Values with the Same Name

187

getEntries
Use this API to return a list of MsgVarEntry objects. Each MsgVarEntry object contains
a name and value property.

Parameters

Returns A list of MsgVarEntry objects (see the JSP example page).

Parameter Description

queue An integer value that indicates which queue the entries should be returned for: 1
= Output queue, 2 = Input queue.

Chapter 2
Using the Internet Document Server

188

CONVERTING
XML FILES

USING A
TEMPLATE

You can use the XsltTransformRule rule to transform input into the desired output based
on an xsl template. For instance, you can transform an XML extract file located using the
EXTRFILE input attachment variable into a new output file or a set of XML files located
in the path specified by the XMLPATH input attachment variable, appending the results
from each one to the end of the file. You can also transform a single XML file located by
the XMLFILE or SOURCE input attachment variables.

This rule can also transform the result XML message in the queue. The output depends
on the xsl template provided.

This rule takes an argument of name RUNMSG which can have a value of 1-4 to specify
whether the rule should be run in the INIT (1), TERM (2), RUNF (3), or RUNR (4)
message. The default is RUNF (3) message if no RUNMSG argument is specified. This is
useful when the rule that outputs the XML source does not run in the default RUNF
message.

This rule also supports transformations with XSL parameters.

Variable Description

XMLPATH (Optional) Specifies a path for multiple XML source files to be
processed. The rule appends the transformation output for each source
file to the end of the output file.

EXTRFILE (Optional) Specifies the full path and name of the XML extract file to
be transformed. If this variable is present, the rule transforms the
extract file and replaces the EXTRFILE input attachment variable with
the value of the new output file.

XMLFILE (Optional) Specifies the full path and name of an XML file to use as the
source of the transformation.

XSLTFILE Specifies the full path and name of the xsl template to use for the
transformation.

PRINTPATH (Optional) Specifies the path where the output file will be written.

OUTFILE (Optional) Specifies the output file name. If this variable is missing the
rule generates a unique file name for the output file.

DOCTYPE (Optional) Specifies the extension and file type of the output file. The
default is .dat.

XSLPARAMETERS (Optional) An XML rowset which contains the name/value pairs for
parameters to use in the xsl transformation.

OUTPUTVAR (Optional) Defines the name of an additional attachment variable that
holds the full path and name of the output file.
This is useful when running other rules after this rule that expect an
attachment variable with a name other than the default of
XSLOUTPUT.

Converting XML Files Using a Template

189

Here is an example of a request message:

 <MSGVARS>

 <VAR NAME="doctype">htm</VAR>

 <VAR NAME="REQTYPE">TRANSFORM2</VAR>

 <VAR NAME="SOURCE">RESULT</VAR>

 <VAR NAME="XSLTFILE">X:\\XSL\transform1.xsl</VAR>

 <VAR NAME="XVALUE">2</VAR>

 <ROWSET NAME="XSLPARAMETERS">

 <ROW NUM="1">

 <VAR NAME="y">2</VAR>

 <VAR NAME="x">LOOKUPVAR.XVALUE</VAR>

 </ROW>

 </ROWSET>

 </MSGVARS>

In addition, each row of parameters for a transformation can contain a value of the
format:

LOOKUPVAR.ATTACHVARNAME

Where ATTACHVARNAME is the name of an attachment variable in the output
message. The rule then retrieves the value for the ATTACHVARNAME variable and
uses it as the value for the parameter in the transformation. This is useful when you do
not know the value of a parameter until run-time.

Here are example request types for the DOCSERV.INI file used in IDS 1.8:

[REQTYPE:TRANSFORM]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
XsltTransformRule;XSLTTRANSFORMER;transaction;transform;

function = dprw32->DPRSetConfig

function = atcw32->ATCSendFile,XSLOUTPUT,XSLOUTPUT,BINARY

function = irlw32->IRLCopyAttachment

Here is a sample JSP page:

<%@ page language="java" import="java.util.,

 java.net.,

 java.io." %>

<jsp:useBean id='dsi' scope='page'
class='com.docucorp.ids.jsp.dsimsg'/>

SOURCE (Optional) Defines the name of an attachment variable in the output
message that contains the full path and name of the XML source to be
used for the transformation.
This is useful when running other rules prior to this rule which might
output the XML source that needs to be transformed to a variable other
than the expected variables (XMLFILE or EXTRFILE).
In addition, you can use this variable to indicate the source for the
transformation should be the output XML message in the result queue
instead of an XML file — set SOURCE equal to the value of RESULT
in this case.

Variable Description

Chapter 2
Using the Internet Document Server

190

<%

 dsi.setTimeOut(30000);

 dsi.debug_on(response);

dsi.addRequest("REQTYPE", "TRANSFORM");

dsi.addRequest("XMLFILE", "X:\\input\\data.xml");

dsi.addRequest("XSLTFILE", "X:\\XSL\\transform1.xsl");

dsi.addRequest("doctype", "htm");

String record = "XSLPARAMETERS";

String rec = dsi.addAttachRec(record);

 if (rec != null){

 dsi.addToAttachRec(rec, "x", "1");

 dsi.addToAttachRec(rec, "y", "1");

 }

dsi.processRequest();

byte buf[] = dsi.receiveFileAsBuffer("XSLOUTPUT");

 if (buf != null){

 out.println(new String(buf));

 }

%>

Here is a sample ASP page:

<%@ Language=VBScript %>

<%

 Set DSI = server.CreateObject("IDSASP.DSI")

 DSI.clearReq

 DSI.WaitTime = 250 ' Polling interval

 DSI.Timeout = 1000000

 DSI.ShowAtt = 1

 DSI.AddReq "REQTYPE", "TRANSFORM"

 DSI.AddReq "XMLFILE", "X:\\input\\data.xml"

 DSI.AddReq "XSLTFILE", "X:\\XSL\transform1.xsl"

 DSI.AddReq "doctype", "htm"

 record = DSI.AddAttachRec("XSLPARAMETERS")

 DSI.AddToAttachRec record, "x", "1"

 DSI.AddToAttachRec record, "y", "2"

 'On Error Resume Next

 DSI.ProcessRq

 'If Err <> 0 then

 'Err.Clear

Converting XML Files Using a Template

191

 'End if

 result = DSI.Result("RESULTS").Value

 Set DSI = Nothing

 Response.Write("result: " & result & "
")

 Response.End

%>

Chapter 2
Using the Internet Document Server

192

CUSTOMIZING
YOUR SYSTEM

IDS includes several bridges and example applications. These applications typically
include windows or dialogs based on HTML and either JSP or ASP. Some dialogs present
query result sets for subsequent user selection. The result sets are typically returned as
attachment variables, accessible via DSI (or DSICo) API calls. Custom rules and request
types can create other query results, and custom HTML dialogs and scripts can implement
custom user dialog presentations of the information.

IDS version 1.7 enhanced the internal message format to an XML format based on
evolving SOAP standards. You can use this XML format and bypass the DSI API layer,
or you can continue to use the DSI APIs.

To help you build alternative dialogs to replace the standard dialogs in the bridges and
applications and create new dialogs for other custom applications, the system returns
query result sets as structured data in XML format.

The system creates elements inside the <DSIMSG> structure to contain the results of a
search as descendants <ROWSET> tag. Each record (ROW) in the result set is stored in
a <ROW> XML element, as a child of the <ROWSET> element. Please see the following
example.

For many situations, you can use a non-hierarchical (single level) SQL-like ROW to
represent hierarchically structured data by flattening the columns into a single ROW. If,
however, the resulting XML needs the multi-level hierarchy, send the XML as an
attachment. For example, if a result set represented a Documaker form set (a list of
available forms and images), this could be returned as an Oracle Insurance standard XML
file attached to the message.

You can use DSI C APIs, Java, and COM to manipulate the XML result set. Java and VB
return the XML from the <ROWSET> element as a string to be loaded into a DOM
object by the client. The main reason the row set is returned as XML string or buffer and
not as a DOM object is the versioning of DOM objects and XML parsers—IDS does not
know what parser and what DOM object will be used by the client application. The C
APIs will allow the calling application to get first/next values from a ROWSET, including
the name, instance number, data value, and so on.

The existing APIs that access the attachment variables by their old concatenated names
still work for backward compatibility, so you do not have to change existing client code
unless you want to take advantage of the newer methods.

The results of SSS (server statistics request) are shown in the example below in SOAP-
XML format, using both the original and the newer XML message layout for the result
set. The number of rows in the LIBRARIES row set is reduced to two for a smaller
sample.

Here is an example of the original XML layout:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.018.0">

<CTLBLOCK>

<UNIQUE_ID>4C6482AC643F4B91A9EA347977B8E186</UNIQUE_ID>

<REQTYPE>SSS</REQTYPE>

<USERID>DSICoTB</USERID>

<RESULTQMGR>vaf.atl3nt03</RESULTQMGR>

Customizing Your System

193

</CTLBLOCK>

<MSGVARS>

<VAR NAME="ALLOCCOUNT">5750</VAR>

<VAR NAME="ERRORCOUNT">1</VAR>

<VAR NAME="FREECOUNT">2828</VAR>

<VAR NAME="LASTRESTART">Tue Jul 02 09:49:07 2002</VAR>

<VAR NAME="LIBRARIES">2</VAR>

<VAR NAME="LIBRARIES1.DATE">Jul 1 2002</VAR>

<VAR NAME="LIBRARIES1.NAME">ATC</VAR>

<VAR NAME="LIBRARIES1.TIME">07:40:37</VAR>

<VAR NAME="LIBRARIES1.VERSION">100.018.001</VAR>

<VAR NAME="LIBRARIES2.DATE">Jul 1 2002</VAR>

<VAR NAME="LIBRARIES2.NAME">DCB</VAR>

<VAR NAME="LIBRARIES2.TIME">07:35:16</VAR>

<VAR NAME="LIBRARIES2.VERSION">100.018.001</VAR>

<VAR NAME="RESTARTCOUNT">1</VAR>

<VAR NAME="RESULTS">SUCCESS</VAR>

<VAR NAME="SERVERTIMESPENT">0.015</VAR>

<VAR NAME="SUCCESSCOUNT">1</VAR>

<VAR NAME="UPTIME">Tue Jul 02 09:48:59 2002</VAR>

</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Here is an example of the newer XML layout:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.018.0">

<CTLBLOCK>

<UNIQUE_ID>4C6482AC643F4B91A9EA347977B8E186</UNIQUE_ID>

<REQTYPE>SSS</REQTYPE>

<USERID>DSICoTB</USERID>

<RESULTQMGR>vaf.atl3nt03</RESULTQMGR>

</CTLBLOCK>

<MSGVARS>

<VAR NAME="ALLOCCOUNT">5750</VAR>

<VAR NAME="ERRORCOUNT">1</VAR>

<VAR NAME="FREECOUNT">2828</VAR>

<VAR NAME="LASTRESTART">Tue Jul 02 09:49:07 2002</VAR>

<ROWSET NAME="LIBRARIES">

<ROW NUM="1">

<VAR NAME="DATE">Jul 1 2002</VAR>

<VAR NAME="NAME">ATC</VAR>

<VAR NAME="TIME">07:40:37</VAR>

<VAR NAME="VERSION">100.018.001</VAR>

</ROW>

<ROW NUM="2">

<VAR NAME="DATE">Jul 1 2002</VAR>

<VAR NAME="NAME">DCB</VAR>

<VAR NAME="TIME">07:35:16</VAR>

<VAR NAME="VERSION">100.018.001</VAR>

</ROW>

</ROWSET>

Chapter 2
Using the Internet Document Server

194

<VAR NAME="RESTARTCOUNT">1</VAR>

<VAR NAME="RESULTS">SUCCESS</VAR>

<VAR NAME="SERVERTIMESPENT">0.015</VAR>

<VAR NAME="SUCCESSCOUNT">1</VAR>

<VAR NAME="UPTIME">Tue Jul 02 09:48:59 2002</VAR>

</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The sample below corresponds to the row set shown above in the XML layout:

<?xml version="1.0" encoding="UTF-8"?>

<ROWSET NAME="LIBRARIES">

<ROW NUM="1">

<VAR NAME="DATE">Jul 1 2002</VAR>

<VAR NAME="NAME">ATC</VAR>

<VAR NAME="TIME">07:40:37</VAR>

<VAR NAME="VERSION">100.018.001</VAR>

</ROW>

<ROW NUM="2">

<VAR NAME="DATE">Jul 1 2002</VAR>

<VAR NAME="NAME">DCB</VAR>

<VAR NAME="TIME">07:35:16</VAR>

<VAR NAME="VERSION">100.018.001</VAR>

</ROW>

</ROWSET>

You can use these API functions to support row sets:

The GetRowsetXML function was also added to COM and Java APIs (DSICO, IDSASP
and DSIJava). You can learn more about these functions in the SDK Reference.

Function Description

DSIRowset2XML Use this rule to get a row set back as XML in memory.

DSIRowset2XMLSize Use this rule to get a size of row set back as XML in memory.

Handling Security Issues

195

HANDLING
SECURITY

ISSUES

THere are several security issues to consider as you set up the Internet Document Server
and build your applications. These include

• Using firewalls

• Implementing security for web applications

USING FIREWALLS

Typically, you will use the Internet Document Server with some kind of firewall between
the web server and the NT server where the Internet Document Server is installed. This
lets you give the Internet Document Server access to archives and other sensitive data
without permitting the same access to anyone with an Internet connection.

The Internet Document Server (IDS) sample setup included on the installation CD
assumes no firewall exists. As you set up the Internet Document Server and your web
server with a firewall between the two, keep these points in mind:

• The messaging system can use either WebSphere MQ, JMS, or HTTP. All of these
messaging systems communicate with other computers via TCP/IP. The firewall
must be configured to open the TCP/IP ports for a messaging system. Read your
messaging system's manuals and firewall manuals to find out which ports are used
and how to set it up.

• If you are using NT servers, those servers running the Internet Document Server
should have TCP/IP networking installed.

• The web server should have an FTP (file transfer protocol) service configured and
started.

• File communications from the web server to the Internet Document Server must use
FTP.

• For the FTP rules to work, your TCP/IP networking must be installed on the
computer where the Internet Document Server is installed.

• Be sure to configure FTP server access with the appropriate user ID and passwords.

The Internet Document Server includes several rules for use with firewalls, such as the
IRLFileFTP and IRLInitFTP (Windows) or the FTPRule (Windows and UNIX) rules.
For more information on these rules, refer to the SDK Reference.

IMPLEMENTING SECURITY FOR WEB APPLICATIONS

Some ASP customers use the ASP IDS and a web server for hot-key applications. The
system builds an URL with, for example, the account number and bill date. When this
URL is executed, it returns a PDF or HTML bill presented in a browser window.

A potential security problem is if the user changes the account number on the URL and
retrieve someone else's bill or document. The system, however, can encrypt parts of the
URL to make it more difficult to see someone else's documents.

The COM object DSIEncr lets VB or an ASP page encrypt a value. The ASP syntax is as
follows:

<%@ Language=VBScript %>

Chapter 2
Using the Internet Document Server

196

<%

 Response.Buffer=True

 Set DSI = Server.CreateObject("DSI.DSIEncrypt")

 val = "abc"

 DSI.Encrypt val

 Response.Write "Encrypted: abc as " + val + "
"

 DSI.Decrypt val

 Response.Write "Decrypted as " + val

 Response.End

 Set DSI = nothing

%>

The COM object is created by Server.CreateObject() method.

Two methods are available in this COM object, Decrypt and Encrypt. The Decrypt
method is provided for testing purposes.

A simple implementation includes an ASP page which encrypts the account number on
the URL before redirecting the user to the presentment web site.

Here is a sample URL without the encryption:

http://webaddress/present.asp?ACCT_NO=1032714&BILLDATE=20020415

Here is a sample URL with encryption:

http://webaddress/
present.asp?ACCT_NO=0zJxWr96vm1ZkniK7Cp0n&BILLDATE=20020415

The result of the encryption is a safe string for the URL so no additional encoding is
required. There will be no special characters.

On the IDS side, you can use the DPRDecryptValue rule to decrypt the value before
executing a search in the database. Here is an example of how you use this rule:

function = dprw32->DPRDecryptValue,ACCT_NO

After this rule is executed on the RUNF message, the ACCT_NO in the attachment is
replaced by the real value.

NOTE: The encryption algorithm is proprietary.

Using the FAP2XML Utility

197

USING THE
FAP2XML

UTILITY

You can use the FAP2XML utility to convert a FAP file into an XML file.

NOTE: This utility is intended for iPPS manuscripting support and is not used by the
Documaker system. Neither IDS, Image Editor, or Documaker Studio can read
the resulting file and turn it into a FAP or NA file.

Program names

Syntax FAP2XMLW /i=FAPFile /o=XMLFile /x=FXRFile /ini=INIFile

Windows FAP2XMLW.EXE

Parameter Description

/I (Optional) Enter the name of the FAP file.

/O (Optional) Enter the name you want assigned to the XML file. The default is the
name of the FAP file with an XML extension.

/X Enter the name of the font cross-reference file (FXR) file.

/INI (Optional) Enter the name of the INI file which contains settings for this utility.
The utility looks in the MasterResource control group find the location of FAP
and other files.

Chapter 2
Using the Internet Document Server

198

USING LDAP
SUPPORT

IDS supports the use of Lightweight Directory Access Protocol (LDAP), an application
protocol for querying and modifying directory services running over TCP/IP.

IDS includes an LDAP API for Java. The JAVA DocucorpUtil package includes an
LDAP class which you can use to query an LDAP server for group information for a user.

For more information please see the LDAP.html documentation that ships with IDS
located in the dsi_sdk\java\docs\com\docucorp\util directory and see the ldapTest class
example which ships with IDS and is located in the dsi_sdk\java\samples\ldap directory.

NOTE: If you are using JVM version 1.3, you must replace the jsse.jar file with the one
from JVM version 1.4, which you can find at this location:

JAVA_HOME\jre\lib\ext

IDS also includes an LDAP API for C that you can use to query an LDAP server for
group information for a user. These functions are supported in the API:

• LDAPInit

• LDAPTerm

• LDAPSearchDirectory

• LDAPGetErrorCode

• LDAPGetErrorMessage

For more information, see the SDK Reference.

Searching a Directory
Information Tree

You can search a Directory Information Tree (DIT) in an LDAP server. IDS includes the
following rules for conducting LDAP queries to determine a user ID group or role
membership:

• DPRSearchLDAP (C)

• search (Java)

These rules will look for all configuration options in rule arguments, a properties file, INI
options, and input attachment variables, in that order. Option values found in more than
one source override the previous value.

• For information on the DPRSearchLDAP rule, see Using the Documaker Bridge.

• For information on the Java rule search, refer to the dsidocs/com/Docucorp/DSI/
util/DSIJession.html documentation shipped with the Java SDK.

Using Default Time-outs for DSILIB-Based Client Applications

199

USING DEFAULT
TIME-OUTS FOR
DSILIB-BASED

CLIENT
APPLICATIONS

You can set default time-outs for DSILIB-based client applications. You set these defaults
using these configuration entries in the docclient.xml file:

• DefaultTimeoutSeconds

• MaxTimeoutSeconds

• MinTimeoutSeconds

NOTE: Examples of client-based applications that benefit from this feature are ASP
pages using IDSASP.DLL, JSP pages using IDSJSP.jar, and the test programs
DSICOTB.EXE, DSITEST.EXE, and DSIEX.EXE.

For instance, suppose you have hundreds of web applications installed on a single IIS or
Java server and all of these applications are talking to the same IDS setup. Suppose some
of these web applications have large time-out values which are not suitable for production
mode, such as values longer than a few minutes. In this scenario, a transaction that takes
a long time can tie up one thread on the web server. Since the total number of threads in
the web server is limited, this can affect other applications.

Using these options, the system administrator can make sure that no matter what was
specified as the time-out value, the actual time-out period is what the system administrator
thinks it should be.

These entries go under the DocumentClient section in the docclient.xml file. Here is an
example:

<section name="DocumentClient">

<entry name="DefaultTimeoutSeconds">45</entry>

<entry name="MaxTimeoutSeconds">60</entry>

<entry name="MinTimeoutSeconds">30</entry>

Entry Description

DefaultTimeoutSeconds Use this entry when DSILIB-based client applications, such as
dsiex, dsitest, and dsicotb test programs, provide a time-out value
of zero (0) to DSIGetQueueRec calls to wait for a response
message.
The default is 15 seconds.

MaxTimeoutSeconds Use this entry to set the upper limit for the time-out value when
waiting for a response message. If a time-out value is specified for
DSIGetQueueRec calls and it is greater than
MaxTimeoutSecondsvalue, the MaxTimeoutSeconds is used
instead.
There is no default.

MinTimeoutSeconds Use this entry to set the lower limit for the time-out value when
waiting for a response message. If a time-out value is specified for
DSIGetQueueRec calls and it is less than MinTimeoutSeconds
value, the MinTimeoutSeconds is used instead.
There is no default.

Chapter 2
Using the Internet Document Server

200

NOTE: It is possible that Microsoft Server script execution time-out limits could be set
lower than the values specified for this feature. In those instances, the values of
the Microsoft Server script execution time-out limits would be used. Please
consult your Microsoft documentation for more information.

Running Timed Requests

201

RUNNING TIMED
REQUESTS

You can run timed requests repeatedly or just in the primary instance. Use the following
entry attributes for a timed request entry under the Timers section in docserv.xml file:

Entry attribute Description

RepeatInterval Enter true or yes (case sensitive) to tell IDS to convert the text
value provided for the entry into seconds and run the timed
entry at each interval specified. Here are some few examples.
This timed section runs every 120 seconds:

<entry RepeatInterval="yes"
name="SSS">00:01:60</entry>

This timed section runs every 3720 seconds:

<entry RepeatInterval="yes"
name="SSS">01:01:60</entry>

This timed section runs every 90 seconds:

<entry RepeatInterval="yes"
name="SSS">90</entry>

If more than one IDS instance is running, any timed sections
configured with the RepeatInterval attribute are run at a
random interval using the interval seconds as the seed. Making
sure they are not run at the same time by all IDS instances,
allows other processing to take place.
The default lower bound is 60 seconds, meaning any timed
section that is configured to use a time interval of less than 60
seconds will instead use the default value.

RunOnPrimaryInstanceOnly Enter yes or true (case sensitive) to make sure only the primary
instance runs the timed section. For instance, you might want
to do this when a timed section runs a synchronization rule
that updates resources for a master resource library. This type
of request would only need to be run once.
If you omit this attribute, all IDS instances will run each timed
section. Here is an example:

<entry RunOnPrimaryInstanceOnly="Yes"
name="SSS">00:01:60</entry>

Chapter 2
Using the Internet Document Server

202

IN-PROCESS
RENDERING FOR

DPAVIEW

With version 11.3 Shared Objects, you can create a bitmap representations of a DPA
document without creating another instance of IDS. Before version 11.3, you had to have
an additional dedicated instance of IDS to create the bitmaps.

DRLLIB detects whether it is running inside an instance of IDS or inside an external
process. If DRLLIB detects that it is running inside IDS, it will use its own instance of
IDS to render the bitmap.

DPAView lets you create bitmaps from archived transactions in Documanage for display
in Documanage Workstation. To do this, you have to have the following items set up:

• Documaker Server (publishing engine)

• An MRL set up to archive into Documanage (DBHandler:DMIA)

• Documanage version 6.5 and higher

• Documanage Bridge version 3.3

The DPA archives created by Documaker Server through the GenArc program must have
been archived into Documanage.

You can enable additional tracing by setting the environment variable DRLDEBUG.

This feature also adds the DRLGetConfig API.

DRLGetConfig
Use this API to retrieve the CONFIG name for the DPA file processed by
DRLProcessDPAFile. You must call this API after running DRLProcessDPAFile.

These APIs are not supported in-process.

• DRLProcessPageDC

• DRLProcessPageBuffer

Syntax DRLGetConfig (hInstance) (config) (len)

Parameters

Returns DRLERR_* value

See also DRLProcessDPAFile

Parameter Description

hInstance The instance handle returned by DRLInitInstance call.

config The parameter to hold the config.

len The maximum size the config parameter may hold.

Using DAL Functions for WIP Column Access

203

USING DAL
FUNCTIONS FOR

WIP COLUMN
ACCESS

You can use the following DAL functions to set or retrieve WIP field data when
Docupresentment processes WIP or archived transactions:

There are several ways to run the DAL script, here are two examples:

• Using the ~DALRUN built-in INI function following a DAL script file, as shown in
this example:

~DALRUN wipkey.dal

• Using the DPRExecuteDAL rule, as shown in the following request type:

[ReqType:i_WipTest]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = dprw32->DPRSetConfig

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRGetWipFormset

function = dprW32->DPRExecuteDAL,wipkey.dal,RUNF

You can also use the following built-in INI functions to retrieve WIP field data when
Docupresentment processes WIP or archived transactions:

• ~KEY1

• ~KEY2

• ~KEYID

• ~ORIGUSER

Function Enhancement

WIPKEY1 Returns the value of the Key1 WIP field. Requires no input parameters. Here
is an example:

Val=WIPKEY1()

WIPKEY2 Returns the value of the Key2 WIP field. Requires no input parameters. Here
is an example:

Val=WIPKEY2()

WIPKEYID Returns the value of the KeyID WIP field. Requires no input parameters. Here
is an example:

Val=WIPKEYID()

WIPFLD Returns the value of the specified WIP field data. This field must be defined in
the WIP.DFD file. Requires one input parameter to indicate which key value
to return. Here is an example:

Val=WIPFLD(“TranCode”)

SETWIPFLD Sets the value of the specified WIP field key and keeps it in memory until the
job finishes. For example, this DAL script sets/changes CURRUSER to
DEMO1 and returns it:

SETWIPFLD(“CURRUSER","DEMO1");

Val=WIPFLD("CURRUSER");

Return Val;

Chapter 2
Using the Internet Document Server

204

• ~CREATETIME

• ~MODIFYTIME

• ~FORMSETID

• ~ORIGFSID

• ~TRANCODE

• ~DESC

• ~WIPFIELD

All of these built-in functions except WIPFIELD do not require input parameters.

The WIPFLD function requires an input parameter that indicates the field data to return.
Here is an example:

~WIPFLD FORMSETID

In this example, FORMSETID is the input parameter that specifies the field name.

Using Enterprise Web Processing Services

205

USING
ENTERPRISE

WEB
PROCESSING

SERVICES

Enterprise Web Processing Services (EWPS) make it easier to integrate applications,
providing a set of web services for accessing the Documaker forms library and initiating
real-time publishing operations. This helps you deliver the information requested by your
clients, prospects, employees, and business partners.

Via EWPS you can use a number of essential mechanisms, such as WS-I SOAP interfaces
for application integration, JSON for UI integration, or prepackaged business parts for
design-time integration, to create a solution that uniquely meets your business needs.

Typical EWPS-enabled solutions include:

• Self-service publishing solutions

• Document search utilities

• Composition and workflow systems

• Systems that embed publishing artifacts into web pages

• Applications that help users create documents and forms

EWPS supports these protocols:

• SOAP (Simple Object Access Protocol).

• JSON (JavaScript Object Notation)

For more information on EWPS, see Introduction to Enterprise Web Processing
Services.

NOTE: EWPS is not available on the UNIX platforms.

openfile ewps_book.pdf
openfile ewps_book.pdf

Chapter 2
Using the Internet Document Server

206

207

Chapter 3

Creating Output Files

This chapter discusses the types of output you can
create, such as PDF or HTML files. If you are unsure as
to which type of file you want to produce, see HTML vs.
PDF on page 4.

For more information on creating these files, see these
topics:

• Creating PDF Files on page 208

• Creating HTML Files on page 230

• Creating XML Output on page 236

In addition, this chapter includes information about the
various paper sizes the system supports. For more
information, see Creating Output Files on page 207.

Chapter 3
Creating Output Files

208

CREATING PDF
FILES

The PDF Print Driver creates Adobe Portable Document Format (PDF) files from
output from the Rules Processor’s GenPrint program.

PDF is a document language developed by Adobe Systems, Inc., that allows formatting
and graphics information to be stored along with text. Using PDF files, you can make sure
form sets viewed and printed match originals created by the GenPrint program.

A document stored in PDF format can be transmitted to and viewed on many types of
systems. There are PDF viewer applications available for many platforms, both as stand-
alone programs and as add-ons for existing applications (such as word processors and
Internet web browsers). You can download Acrobat Reader from Adobe Systems’ web
site (www.adobe.com).

Print output directed to the PDF Print Driver is stored in one or more files. You can then
view these files using the Acrobat Reader. This topic discusses...

• Setting Up the PDF Print Driver on page 209

• Creating PDF Files with Unicode Support on page 212

• Setting PDF Compression Options on page 212

• Handling Fonts on page 215

• Using the PDF Print Driver with GenPrint on page 220

• Font Cross Reference File Tips on page 223

• Using the 14 Base Fonts Distributed with Acrobat Reader on page 226

• Setting Up Bookmarks on page 227

• Limitations on page 229

http://www.adobe.com
http://www.adobe.com

Creating PDF Files

209

SETTING UP THE PDF PRINT DRIVER

You must have installed the Rules Processor, including the GenPrint program, to use the
PDF Print Driver. Adding the ability to output PDF files from the GenPrint program
requires two steps:

1 First, copy the PDF DSO file from the CD into your DAP DSO directory. The PDF
DSO is contained in the \DAP_PDF\Relxx directory on the CD. For windows, this
file is named PDFW32.DLL. For UNIX it is named libpdf.so.

NOTE: The Relxx directory indicates the system release used for running the GenPrint
program. Version 9.5 (Rel95) is the first release of the GenPrint program
supported by the PDF Print Driver.

2 Second, make the following changes in your FSISYS.INI file. Start by adding a new
PrtType control group named PrtType:PDF as follows:

< PrtType:PDF >

Device = TEST.PDF

Bookmark = Yes,Page

DownLoadFonts = No,Enabled

Module = PDFW32

PageNumbers = Yes

PrintFunc = PDFPrint

SendOverlays = No,Enabled

SendColor =

PrintViewOnly = No

SplitText = No

SplitPercent = 50

Class = PDF

DisplayMode = UseOutlines

PaperSize = 0

ForceColorBitmaps =

FontCompression= 2

Option Description

Device Enter the path and file name for the output.

Bookmark The format is

Bookmark = Yes,Page,No,Group

The first parameter specifies whether bookmarks are created.
The second parameter specifies the lowest level at which bookmarks are
created (Formset, Group, Form, or Page).
The third parameter specifies whether bookmarks for unnamed objects
are included.
The fourth parameter specifies the lowest level of bookmark to be
displayed (Formset, Group, Form, or Page). If you omit this parameter,
the system uses the level specified for the second parameter.

DownLoadFonts Set to No, Enabled

Chapter 3
Creating Output Files

210

Module The name of the program module which contains the system’s PDF
print driver. See also the Class option.

PageNumbers Set to No if you do not want page numbers. Defaults to Yes.

PrintFunc The name of the program function that is the main entry point into the
system’s PDF print driver.

SendOverlays Set to No, Enabled

SendColor This option does not apply to PDF files. If the document contains
color, the PDF Print Driver correctly processes that information so
Acrobat Reader will display the color appropriately.

PrintViewOnly Use this option to output view only forms when you create PDF files.
Set to Yes to print these images. Defaults to No. Images marked as Entry
only will not be printed, as these usually are the worksheet type images
used for data collection.

SplitText Use the SplitText and SplitPercent options if you see text that is not
positioned accurately when the PDF file is viewed.
If the SplitText option is set to Yes, every text string will be split and
adjusted position according to the value of the SplitPercent option.
See Handling Fonts on page 215 for more information.

SplitPercent This value can be -1 or any integer from zero (0) to 100. -1 means every
text string will be split on a space. The integer is used to calculate the
threshold for split and adjustment.

Class Specifies the printer classification, such as AFP, PCL, XER, PST, or
GDI. If you omit this option, the system defaults to the first three letters
from the Module option.
Some internal functions expect a certain type of printer. For instance,
all 2-up functions require an AFP printer. The internal functions check
the Class option to make sure the correct printer is available before
continuing.

DisplayMode This option lets you control how the PDF file is initially displayed. To
have the PDF file open…
- with bookmarks (document outline) visible, enter UseOutlines
- with thumbnail images visible, enter UseThumbs
- in full-screen mode, with no menu bar or other window controls
visible, enter FullScreen
- in default mode, with neither bookmarks or thumbnails visible, enter
UseNone
Keep in mind that the PDF Print Driver includes your choice in the
PDF file it creates. Acrobat and Adobe Reader honor this setting and
display the PDF using your DisplayMode setting.
The Acrobat OCX control which lets browsers display PDF files may
not honor the DisplayMode setting. Other software, like GhostView or
Xpdf, that displays PDF files may not honor the DisplayMode setting.

Option Description

Creating PDF Files

211

3 If you have a Printers control group, simply add this option to that control group:

PrtType = PDF

If you do not have a Printers control group, add this control group and option. For
example, your Printers control group might look like this:

< Printers >

PrtType = PDF

The GenPrint program can now use the PDF Print Driver.

PaperSize This option selects the paper size. The most commonly chosen options
are shown here. For a complete listing of all the options you can choose
from, see Creating Output Files on page 207.
0=Letter (default)
1=Legal
2=A4
3=Executive
98=Custom
99=Current type
When deciding the size, the system first sets the page size to the size of
the first image on the page. If the page size is Custom, the page size will
be set to the form size.
If the page size is now Letter (the default), the PDF Print Driver checks
the PaperSize option. If the PaperSize option is specified, the system
uses it to determine the size.
If the PaperSize option is set to Custom and page size is less than Letter,
the page size is set to Letter. Otherwise, the system uses the custom
width and height.

ForceColorBitmaps Enter Yes if you want the PDF Driver to print images in color even if
the images are not set to print in color (the image does have to be a color
image, of course). The default is No.

FontCompression Use this option to compress embedded fonts. Enter zero (0), 1, 2, or 3
to indicate the level of compression. Zero indicates no compression and
three indicates the highest level of compression. The default is two (2).
Keep in mind that this option only compresses the ASCII portion of
PostScript fonts, so the compression ratio is between 5-15%. For True
Type fonts, the compression ratio is between 40-50%.

Option Description

Chapter 3
Creating Output Files

212

CREATING PDF FILES WITH UNICODE SUPPORT

With IDS version 1.8, the PDF Print Driver now supports Unicode data. Previously, PDF
files produced by the PDF Print Driver could be viewed in Acrobat version 3.0 and above.
For Unicode support, you must now use Acrobat version 4.0 and above. Oracle Insurance
recommends you use version 7.0 and above.

Having Unicode support lets you create PDF documents that contain Far Eastern
languages such as Chinese, Japanese, or Thai.

To create a PDF file containing Unicode data, you must specify a TrueType font to be
embedded (downloaded) into the PDF file. You cannot use the internal Acrobat fonts or
embed PostScript fonts when printing Unicode data.

NOTE: For information on embedding a TrueType font into a PDF file, see Embedding
Fonts on page 217.

SETTING PDF COMPRESSION OPTIONS

You can choose from these PDF compression methods:

To override the default, add the Compression option in the PrtType:PDF control group
in the DAP.INI file.

< PrtType:PDF >

Compression = 3

You can test the various compression options to see what works best for your
implementation by comparing...

• The time difference between the request to view the transaction in Acrobat Reader
and when it is displayed.

• The size of the PDF file after it is retrieved.

You can also control how much compression is used for fonts embedded into your PDF
files. To do this, see the FontCompression option, discussed on page 211.

Choose For

0 (zero) no compression

1 best speed

2 default compression

3 best compression

Creating PDF Files

213

PRODUCING OPTIMAL PDF OUTPUT

To produce optimal PDF output, make the following changes in your font cross-
reference (FXR) file.

• Remove font IDs built from the FORMSX font.

This is not needed in Metacode conversions and there is no equivalent built-in
Acrobat font. Furthermore, the original entry does not contain character width
information.

• Fix point size settings for font IDs.

Metacode fonts do not contain point size information. Therefore, a point size is
approximated when a Metacode font is inserted into the FXR file. Sometimes, this
approximation is incorrect. Many Metacode fonts include the point size as a part of
its file name. For example, font ID 5 was built from the Metacode font AR07BP but
is listed as having a point size of 8. However, AR07BP is really a 7-point font and the
point size for this font ID should be changed to 7.00.

• Remove font IDs built from landscape fonts.

For landscape fonts, where the equivalent portrait fonts are included in the FXR, the
font IDs for the landscape fonts should be deleted and the landscape font name
should be in the Rotated Fonts field of the portrait font. For example, font ID 4 was
built from the landscape font AR07BL (Arial Bold 7-point). Font ID 5 was built from
the portrait font AR07BP (Arial Bold 7-point). Therefore, font ID 4 was deleted and
;;AR07BL was added to the Rotated Font Files field in the Metacode section of the
Printers tab of the FXR file.

• Remove non-text fonts from the FXR file.

You may decide to leave a non-text font in the FXR if you have an equivalent
TrueType or PostScript font to embed and you have enabled font downloading. If
not, remove the font IDs for non-text fonts.

If the non-text font contains a signature or graphic, such as a company logo, convert
the font to a logo (LOG) file. Fonts of this style have contiguous characters and are
always referenced one way. For example, the font JOHNDO might contain only the
letters A, B, and C. When the letters ABC are printed together using the JOHNDO
font, the signature John Doe is printed. When a font is always used with a single
contiguous set of characters, convert the font to a logo.

For non-text fonts that contain characters which will be printed using a variety of
combinations, you cannot use a logo. In this case, make the Xerox font available in
the directory specified by the FontLib option in the MasterResource control group.
Examples of these types of non-text fonts include OCR, MICR, and barcode fonts.

For example, a ZIP code (barcode) font produces a different picture when different
ZIP codes are used. The ZIP code for 30309 looks different than the ZIP code for
49501. Using this approach, a bitmap image is created from the Xerox font using the
specified characters (30309, 49501, and so on.) in the print stream. Only use this
approach for fonts that are used infrequently because it results in larger PDF files
which affects the time it takes to create and download a PDF file.

Chapter 3
Creating Output Files

214

• Make sure color bitmaps are not saved as Comp TIFF or Comp Pack. These
compression methods are not supported by PDF.

The Comp TIFF format is designed to compress monochrome bitmaps, not color
ones. The Comp Pack format is only useful when the color bitmap is 16 or 256
colors. There is no reason to use Comp Pack on a full-color (24-bit) bitmap.

In most cases, you can simply leave full color bitmaps as JPEG or bitmap files and
not convert them at all. The only reason to convert these files to the LOG format is
to move them to a platform that does not support those file types, like MVS.

• Run the FXRVALID utility to check the FXR file.

The FXRVALID utility reports missing font files, incorrect built-in Acrobat font
names, and so on. Correct any errors reported by the FXRVALID utility.

• Avoid specialty fonts when mapping to built-in Acrobat fonts.

The built-in Acrobat fonts include Courier, Helvetica, and Times plus a couple of
fonts containing non-text characters (Symbol and ZapfDingbats). Fonts such as Arial
and Univers are pretty similar to Helvetica in terms of appearance and size and the
built-in Acrobat font can often be used without any noticeable effect. Some font
vendors also supply versions of the fonts where the characters are condensed
(narrow) or expanded (wide). Although these fonts may have a similar character
appearance, their size has been altered in a way that makes mapping to a built-in
Acrobat fonts problematic.

• Use SplitText option when using built-in Acrobat fonts.

When using built-in Acrobat fonts, many printer fonts are mapped to a single built-
in Acrobat font. Many times, the printer fonts are not scaled perfectly in terms of
their character widths. For example, the letter A in a 5-point printer font may have a
width of 8 dots. Meanwhile, the letter A for the same font at 10-point (twice the size)
may have a width of 14 dots (instead of 8*2 or 16 dots). This becomes a problem
when mapping these non-scalable printer fonts to the built-in Acrobat fonts. The
built-in Acrobat font is scalable and 10-point characters are twice the size as 5-point
characters. You can use the SplitText and SplitPercent options to hide the differences
that result from mapping non-scalable printer fonts into built-in (scalable) Acrobat
fonts.

If you set the SplitText option to Yes, every text string will be split and adjusted
position according to the value of the SplitPercent option. The default is No.

You can set the SplitPercent option to -1 or any integer between zero (0) and 100.
When you set this option to -1, every text string will be split and adjusted one position
on a space. When you set this option to a positive value, such as 45, the differences
between the character widths of the font used for a text string and character widths
of the base font are accumulated.

Once the accumulated differences greater than 45/100*(width of the space
character), the text string is split and a new accumulation is started. Therefore,
smaller values for the SplitPercent option will produce better visual results at the cost
of slightly slower performance and somewhat larger PDF files.

Creating PDF Files

215

According to tests performed on a 55-page and a 100-page document, the size of the
one with the SplitPercent option equal to -1 is about 12 percent greater than the one
without any text split. The performance difference is hardly noticeable.

HANDLING FONTS

The PDF Print Driver lets you embed fonts into the PDF print stream. This topic
discusses when to embed fonts and when not to. It also describes how the system
determines which base font to use or which custom font to embed.

Generally, you want the PDF Print Driver to reproduce your document so that it looks
exactly as it did when you created it. Embedding fonts lets you accomplish this if you are
using fonts that do not match the criteria discussed below.

When not to embed
fonts

If you do not need to reproduce the exact look of the original document, you do not need
to embed fonts. If you use the base AGFA fonts and the FXR file Oracle Insurance
distributes, you do not need to embed fonts. The AGFA fonts are scalable and the AGFA
Courier, Times, and Univers fonts are mapped to the names of the 14 base fonts Adobe
distributes with Acrobat Reader.

NOTE: For a list of the base fonts, see Using the 14 Base Fonts Distributed with Acrobat
Reader on page 226.

The AGFA Letter Gothic (fixed pitch, sans-serif) font is mapped to the base Adobe
Courier (fixed pitch, serif) font. If you prefer the sans-serif look of Letter Gothic, you
should embed that font.

Adobe also uses a standard scaling algorithm. If your implementation uses fonts that scale
exactly as Adobe expects, you do not need to embed fonts. The PDF Print Driver
determines the fonts to use and scales them for you. See Not Embedding Fonts on page
216 for more information.

In summary, you do not need to embed fonts if the fonts you are using …

• Are already scalable

• Closely match the PDF base fonts

When to embed fonts Embedding fonts lets you control the appearance of the document by letting you specify
which fonts Acrobat Reader should use and what the font width will be. When you need
to reproduce the exact look of the original document and you use custom fonts that do
not scale exactly as Adobe expects, you should embed fonts.

To embed fonts, you need a set of PostScript Type 1 fonts or TrueType fonts, and you
need to set the DownLoadFonts INI option to Yes. You also need to run the FXRVALID
utility to prepare your FXR file. For detailed instructions, see Embedding Fonts on page
217.

Chapter 3
Creating Output Files

216

Not Embedding Fonts
If you are not going to embed fonts, you must set the following INI option to No, as
shown here:

DownloadFonts = No

When you use a font that is not included in the 14 base fonts distributed with Acrobat
Reader, the PDF Print Driver uses the information in the following fields, in this order,
to determine what to do with the font:

• Setup Data field on the Other tab of the Font Properties window in the Font
Manager. The system checks this field to see if its contents matches one of the 14
base Adobe fonts or an equivalent AGFA font name.

• Font Name field under PostScript on the Printer tab of the Font Properties window
in the Font Manager. The system checks this field to see if its contents matches one
of the 14 base Adobe fonts or an equivalent AGFA font name.

TypeFace field on the Description tab of the Font Properties window in the Font
Manager. The system checks this field to see if its contents matches one of the 14 base
Adobe fonts or an equivalent AGFA font name.

NOTE: For a list of the base fonts, see Using the 14 Base Fonts Distributed with Acrobat
Reader on page 226.

When the system matches a criteria, it then stops. If, after checking these fields, the system
does not find information that matches one of the 14 base Adobe fonts or an equivalent
AGFA font, it then maps…

• Proportional fonts to the Adobe Helvetica font (normal, bold, italic, or bolditalic)

• Fixed pitch or non-proportional fonts to the Adobe Courier font (normal, bold,
italic, or bolditalic)

The system then checks these fields to determine additional font attributes:

• Spacing (fixed pitch or proportional)

• Style (italic or upright)

• Stroke Weight (bold or normal)

Creating PDF Files

217

Embedding Fonts
If you are going to embed fonts, you must have either PostScript Type 1 or TrueType
fonts. In addition, you must set the following INI option to Yes, as shown here:

DownloadFonts = Yes

You must also have the following information set up correctly for the PDF Print Driver
to embed the font. If there is an error in any of the following fields, the PDF Print Driver
will substitute one of the 14 base fonts using the criteria discussed in the topic, Not
Embedding Fonts on page 216.

• Options field on the Other tab of the Font Properties window is set to one (1) if the
field should be embedded or zero (0) if it should not be embedded.

• Font Index field on the Other tab of the Font Properties window specifies the width
table to use for a group. Properly scaled font IDs have the same grouping value. This
value is the font ID of one of the fonts in the group.

• Font File Name field on the Other tab and/or Postscript Font File Name field on
the Printer tab. (Postscript => .PFB TrueType => .TTF). This field contains the file
name of the PostScript or TrueType font you want to embed. This file should exist
in the directory specified by the FontLib setting in your master resource library.

NOTE: The information stored in the A,R3 OTH record in the FXR appears in the fields
on the Other tab of the Font Properties window in the Font Manager. You can
edit the information there. The FXRVALID utility can also create this record.
For more information about the FXRVALID utility, see the Docutoolbox
Reference.

When you use internal Acrobat fonts in producing your PDF file, the PDF Print Driver
maps your printer fonts from the FXR file to internal Acrobat fonts. Because printer fonts
in FXR file differ from the internal Acrobat fonts, the PDF Print Driver adjusts the point
size of the font to produce each piece of text so that the total character width of the text
in the PDF file matches the character width of the text as it would have printed using the
printer font. This may cause the height of text to vary slightly. This is done to maintain
the proper character width of the text.

The following example may help to understand the issue. The two sentences below
represent the text from a FAP file and that same text, rendered using an internal Acrobat
font.

The first line uses an Arial 24 point font. The second line uses a 21 point Verdana font.
If your system has both screen fonts installed, the periods at the end of each sentence will
appear line up together (or nearly so).

This is Arial 24 point.
This is Arial 24 point.

Chapter 3
Creating Output Files

218

While the two fonts are similar in design, you can see that the heights and widths of the
characters are different. For this particular sentence, a 21 point Verdana font will
approximate the width of the same text when using an Arial 24 point font.

Similarly, Oracle Insurance’s PDF Print Driver determines the point size of the internal
Acrobat font to use such that the total width of the text string is identical to the total width
of the text string in the original form (FAP file).

If higher fidelity is required, you can embed a PostScript or TrueType font that has the
exact metrics of the original printer font used in the FXR file. This creates a larger PDF
file and a higher fidelity document.

Consider the alternatives and decide which approach best meets your needs — using
internal Acrobat fonts (less fidelity, smaller file size) vs. embedded fonts (high fidelity,
larger file size).

Creating PDF Files

219

Handling Fonts with Multiple Width Tables
For each font family, only one font with one width table (called base font) is created in
PDF. So if a text string is using a font with a different width table from base font, the
length of this string may be greater or smaller than anticipated and it may overlap with
other text strings.

To solve this problem, you need to split text strings and adjust positions, so that
overlapping between text strings can be avoided. To help you do this, the PDF Print
Driver lets you use the following INI options:

< PrtType:PDF >

SplitText = Yes

SplitPercent =

If you set the SplitText option to Yes, every text string will be split and adjusted position
according to the value of the SplitPercent option. The default is No.

The value of the SplitPercent option can be -1 or any integer between zero (0) and 100.
When you set this option to -1, every text string will be split and adjusted one position on
a space. When you set this option to a positive value, such as 45, the differences between
the character widths of the font used for a text string and character widths of the base font
are accumulated.

Once the accumulated differences greater than 45/100*(width of the space character), the
text string is split and a new accumulation is started. Therefore, smaller value for the
SplitPercent option produce better results but also slow performance and result in larger
files.

According to tests performed on a 55-page and a 100-page document, the size of the one
with the SplitPercent option equal to -1 is about 12 percent greater than the one without
any text split. The performance difference is hardly noticeable.

NOTE: You can also use the SplitText and SplitPercent INI options in the AFP print
driver to eliminate differences in text positioning on 240 dpi and 300 dpi AFP
printers.

Chapter 3
Creating Output Files

220

USING THE PDF PRINT DRIVER WITH GENPRINT
The GenPrint program creates the print stream for each recipient batch and sends it to a
printer output file. A batch active flag tells PRTLIB’s installed output function to keep the
current file open and to append each output group to the active stream, only closing the
file at the end of the batch.

In most GenPrint processing situations, this is how you want it to work. For PDF,
however, you need to break each recipient record into a separate file. The following topics
describe how to send each form set to a separate file.

Changing the GenPrint Program
With changes made for custom callback support in version 9.5 (described in the Version
9.5 Features and Information document), a new callback function is included in the
GenPrint program. This callback function is called MultiFilePrint().

NOTE: The callback function applies when you are running the GenPrint program in
multi-step mode.

To print multiple files when you are using Documaker in single step mode, use
the PrintFormset rule. For more information on this rule, see the Rules
Reference.

To use this callback function, you must change the FSISYS.INI file as shown below:

< Print >

 CallbackFunc = MultiFilePrint

 MultiFileLog = { full path file name of a log file (optional) }

< RunMode >

 DownloadFAP = Yes

 LoadFAPBitmap = Yes

 CheckNextRecip = No

Here is an example setup:

< Printer >

 PrtType = PDF

< PrtType:PDF >

 Device = e:\test.pdf

 DownLoadFonts = No,Disabled

 LanguageLevel = Level2

 Module = PDFW32

 PageNumbers = Yes

 PrintFunc = PDFPrint

 SendOverlays = No,Disabled

 SendColor = Yes,Enabled

< Printer1 >

 PORT = ..\RPEX1\DATA\BAT10001.PDF

< Printer2 >

 PORT = ..\RPEX1\DATA\BAT20001.PDF

... (and so on)

Creating PDF Files

221

Setting the
CheckNextRecip option

When you use the PDF Print Driver, make sure the CheckNextRecip INI option is set to
No (the default is No.) The GenPrint program uses this option to look ahead to
subsequent recipient records and queue up recipient records that match the same form
set.

This improves system performance when many recipient batch records are placed in the
same print batch and sorted together. However, it is essential that each recipient record
be viewed as a separate print transaction for this to work. Without this option disabled,
each file will contain multiple recipients for the same form set, which is probably not what
you want.

Using overlays You cannot use overlays with the PDF Print Driver. There is no way to generate PDF
overlays or use them at print time. Because of this, the GenPrint program ignores the
SendOverlays option when it prints to the PDF Print Driver. FAP files and bitmaps must
be loaded, which is indicated by setting these INI options:

DownloadFAP = Yes

LoadFAPBitmap = Yes

Using the MultiFilePrint
Callback function

If you specify the MultiFileLog option in the Print control group, the specified file is
created at the start of the GenPrint program when the callback is installed. The file is
closed at the end of the GenPrint program when the callback is uninstalled.

At the end of each transaction, a new output file name is constructed and the GenPrint
program’s normal behavior of only outputting to one file is overridden. MultiFilePrint
makes the following assumption about the output file name:

XXXX####

XXXX = four characters that are preserved.

= four characters set to a zero-filled sequence number.

MultiFilePrint assumes that the original print batch name ends in 0001. The second file
opened will be 0002, and so on, up to 9999. MultiFilePrint assumes that no single recipient
batch contains more than 9999 recipient batch records. If this is the case, a custom version
of MultiFilePrint is required.

Avoid this approach, however, since this is a large number of output files to attempt to
track and manage. MultiFilePrint does work with multiple print batches, and each batch
can contain up to 9999 recipient records.

If you turned on logging, as each file is completed the system creates a log record in the
log file you specified.

NOTE: The MultiFilePrint option should only be used with the PDF, RTF, HTML, and
XML print drivers.

Using the log file The log record has the following format:

;FIELD1;FIELD2;FIELD3;FIELD4;FIELD5;FIELD6;FIELD7;FIELD8;FIELD9;

FIELD1= Logical recipient batch file name

FIELD2 =Physical (full file name) recipient batch file

FIELD3= Group name 1 (e.g., Company)

FIELD4= Group name 2 (e.g., L.O.B.)

Chapter 3
Creating Output Files

222

FIELD5= Group name 3 (usually empty)

FIELD6= TransactionId (e.g., Policy no)

FIELD7= Transaction type

FIELD8= Recipient type (as specified in POLFILE or FORM.DAT)

FIELD9= Print output file (full file name)

The log file is provided for use by a custom application and implementation to handle the
management and distribution of the many individual output files.

Generating Separate Files
You can generate separate files for each transaction when you choose PDF (or RTF) from
WIP or batch print.

The name of the files will have a rolling number appended to the end of the name that
starts the process and is filled in on the Print window. This is automatically handled and
you do not have to set INI options to get the WIP or batch print to work as long as your
PrtType name is PrtType:PDF.

There are several INI options you can use to override the naming process and also name
other print drivers that require this unique handling.

< BatchPrint >

NoBatchSupport = PDF

PreLoadRequired= PDF

These are the default settings and cannot be overridden. However, you can specify other
PrtType print driver definitions you want to fall into these same categories.

Also, you can name PrtType specific items under the BatchPrint control group to override
the normal Device naming option. Here is an example:

< BatchPrint >

PDF = ~HEXTIME .PDF

RTF = ~HEXTIME -~KeyID .RTF

Any batch print sent to PrtType:PDF (picking PDF on the Print window) will override
the name and store the current hexidecimal date and time, such as BCF09CA4.PDF,
which is an eight-character name, as the name of each transaction's output.

Also, you can combine INI built-in calls as shown in the RTF example. Here any WIP or
batch print sent to RTF will name the files using the HEXTIME and the KeyID from the
WIP transaction. This will result in names similar to this: BCF099A4-123456.RTF

Note that you must leave a space after the built-in INI function name for it to work
properly. That space will not appear in the resulting output name.

Option Description

NoBatchSupport Indicates that the named PrtType items, separated by semicolon, do not
really support batch transactions and require special handling.

PreLoadRequired Lets you specify all the PrtType items, separated by semicolon, that
should be forced to load the form set prior to the starting print. Most
print drivers don't require this special requirement, but some, such as
PDF do.

Creating PDF Files

223

FONT CROSS REFERENCE FILE TIPS

The quality of the created PDF files is in large part influenced by the setup information
contained in the font cross-reference (FXR) file. Keep the following tips in mind when
looking at your FXR file to optimize the quality of your PDF output.

PostScript font names should be present in your FXR, and all font IDs should contain
one of the following PostScript font names in the Setup Data field for PostScript printing.
The names of the PostScript fonts are case sensitive.

• Courier

• Courier-Bold

• Courier-Oblique

• Courier-BoldOblique

• Helvetica

• Helvetica-Bold

• Helvetica-Oblique

• Helvetica-BoldOblique

• Times-Roman

• Times-Bold

• Times-Italic

• Times-BoldItalic

• Symbol

• ZapfDingbats

• Courier-Italic

• Courier-BoldItalic

• Univers-Medium

• Univers-Bold

• Univers-MediumItalic

• Univers-BoldItalic

The point size value should be present and should be within 33% of the font height. Font
heights are measured in 2400 dots per inch while point sizes are measured in 72 dots per
inch, so some conversions to equivalent units will be necessary to determine their relative
values.

NOTE: All of the fonts listed above, except for the Univers fonts, are included in Adobe’s
Acrobat Reader and do not have to be embedded in PDF files.

Chapter 3
Creating Output Files

224

The spacing value (either fixed or proportional) should be present and accurate. Here is a
list of PostScript fonts sorted by spacing value.

The font style value (upright or italic) should be present and accurate; it should match a
PostScript font with an equivalent font style.

The font weight (bold or normal) should be present and accurate; it should match a
PostScript font with an equivalent font weight.

Embedding Fonts
Follow these instructions to embed fonts.

NOTE: You can embed TrueType or PostScript fonts. The PDF Print Driver uses the
font file extensions to distinquish between the two types of fonts. TrueType
fonts have a TTF extension. PostScript fonts have a PFB extension.

1 Use a text editor to open the INI file. Then set the DownLoadFonts option in the
PrtType:PDF control group to Yes.

2 Next, use the Font Manager to set up your font cross reference file (FXR). Start the
Font Manager and select the font cross reference file you want to edit. Then select
the font you want to embed and click Edit.

Fixed Pitch Fonts Proportional Fonts

Courier Helvetica

Courier-Bold Helvetica-Bold

Courier-Oblique Helvetica-Oblique

Courier-BoldOblique Helvetica-BoldOblique

Courier-Italic Times-Roman

Courier-BoldItalic Times-Bold

Times-Italic

Times-BoldItalic

Univers-Medium

Univers-Bold

Univers-MediumItalic

Univers-BoldItalic

Symbol

ZapfDingbats

Creating PDF Files

225

3 On the Font properties window, use the Other tab to set up the font for
downloading.

Enter 1 in the Options field to indicate that the font should be downloaded (a
zero (0) tells the system not to download the font).

Use the Font Index field to group fonts.

Enter the name of the font file in the Font File field.

4 Set up the remaining fields (Char set ID, Setup Data, and so on) as you would for a
PostScript font.

Keep in mind...

If you set the DownloadFonts option to No, all fonts used in the image are
mapped to one of the 14 Type 1 fonts distributed with the system and no fonts
are downloaded.

If you do not define the fields on the Other tab, the system will not download
the font—even if you set option to Yes. Instead, the system will map the font to
one of the 14 Type 1 fonts.

For symbol fonts, such as DocuDing, make sure the Char set ID field on the
Other tab is set to WD.

If you set the DownLoadFont option to Yes,

The system will download fonts used in the document as long as the Options
fields on the Other tab are set to 1.

The system will map the fonts used in the document to one of the 14 Type 1
fonts if the Options fields on the Other tab is set to zero (0).

Downloadable fonts with the same value in their Index fields are considered in
the same group. Only one font will be downloaded (embedded) for each group.

Chapter 3
Creating Output Files

226

NOTE: Each font you embed increases the PDF file size by approximately 40kb. See
FontCompression on page 211 for information on compressing fonts.

Using the 14 Base Fonts Distributed with Acrobat Reader
Adobe includes the following fonts with Acrobat Reader. You do not have to embed
these fonts in PDF files.

Fixed Pitch Fonts Proportional Fonts

Courier Helvetica

Courier-Bold Helvetica-Bold

Courier-Oblique Helvetica-Oblique

Courier-BoldOblique Helvetica-BoldOblique

Times-Roman

Times-Bold

Times-Italic

Times-BoldItalic

Symbol

ZapfDingbats

Creating PDF Files

227

SETTING UP BOOKMARKS

The PDF Print Driver sets up bookmarks at these levels by default:

• Form set - The text for this bookmark is the recipient name if applicable, otherwise
it is the name of the form set.

• Group - The text for this bookmark is the name of the group.

• Form - The text for this bookmark is the description of the form. If there is no form
description, the PDF Print Driver uses the name of the form.

• Page - The text for this bookmark is the name of the page.

If the text for any of the bookmarks is blank, the PDF Print Driver inserts text to describe
the bookmark level, such as Formset, Group, Form, or Page, and the index for that level.
Here is an example:

Creating custom
bookmarks

The PDF Print Driver lets you use custom rules to create custom bookmarks in the PDF
file. To do this, you must create the custom rule.

With a custom rule, you can use the extra info in the FAP objects to store custom
bookmark titles. Currently, the system uses extra 1 and extra 2, leaving extra 3 for
bookmark titles.

If you choose do develop a custom rule to use extra 3 for this purpose, keep these things
in mind:

• The setting for the Bookmark option remains the same.

• The maximum length for a custom bookmark title is 128 characters.

• This feature is not a callback, so all bookmark settings using extra 3 must be finished
before you send them to the PDF Print Driver.

• The PDF Print Driver expects to receive a character string for extra 3 and the first
eight characters must be BOOKMARK. The actual bookmark text begins with the
ninth character and is NULL terminated.

Chapter 3
Creating Output Files

228

• If you do not set extra 3 (NULL handle) or the first eight characters are not
BOOKMARK, the PDF Print Driver ignores extra 3 and uses its original logic to
create bookmarks.

Refer to the discussion of the FAPGetExtraInfo and FAPPutExtraInfo functions in the
API documentation, available from the DOSS site, for information on getting and setting
extra 3.

Here’s how the system determines the text for a bookmark in a form set:

If you are filtering by recipient, the system...

1 Checks extra3 of the recipient (128 character limit).

2 Checks extra3 of the form set (128 character limit).

3 Check the recipient name (15 character limit).

If you are not filtering by recipient, the system...

1 Checks extra3 of the form set (128 character limit).

2 Checks the form set name (8 character limit).

Collapsing bookmarks You can create PDF files with collapsed bookmarks. Use the Group parameter for the
Bookmark option to control whether bookmarks are expanded or collapsed. Here is an
example:

< PrtType:PDF >

Bookmark = Yes,Page,No,Group

In this example, the system creates bookmarks down to the Page level. It does not include
unnamed objects and it collapses bookmarks below the Group level.

Creating PDF Files

229

LIMITATIONS

The PDF Print Driver does not currently support the full set of Adobe Acrobat PDF
capabilities. The following are a some of the product’s limitations.

Type 1 fonts If the PostScript Font Name/Setup Data setting in the FXR does not match a PDF base
font, the PDF Print Driver maps the following PostScript font names into PDF base font
names:

• Courier-Italic maps to Courier-Oblique

• Courier-BoldItalic maps to Courier-BoldOblique

• Univers-Medium maps to Helvetica

• Univers-Bold maps to Helvetica-Bold

• Univers-MediumItalic maps to Helvetica-Oblique

• Univers-BoldItalic maps to Helvetica-BoldOblique

Finally, if the PostScript font name fails to map to a PDF base font name using these rules,
then fixed pitch fonts map to Courier and proportional fonts map to Helvetica. If a font
has bold, italic or bold and italic attributes, the Courier or Helvetica PDF base font with
corresponding attributes will be used.

Code pages Currently, only the ANSI code page (also known as code page 1004) is supported for PDF
files. Normally, this will only be an issue if you are trying to support international
characters. If you have used AGFA fonts for printing, this should not be an issue.

PDF objects Although Acrobat Reader supports variable fields, radio buttons, push buttons, list boxes,
and hypertext links, the PDF Print Driver does not support the creation of these objects
within a PDF file.

Searching for text in
PDF files

If you retrieve archived Documerge print streams or Documaker archives via
Documanage and then use the PDF print driver in Docupresentment, you will produce
PDF Normal files. PDF Normal files can include both text and graphics and you can
search for text in these files.

Documanage can also convert archived Documerge print streams into TIFF (bitmap)
files. If you send the TIFF files to Docupresentment, the PDF Print Driver produces
Image Only PDF files. Since these TIFF files are bitmaps, there is no text to search.

Chapter 3
Creating Output Files

230

CREATING
HTML FILES

You can create HTML files by simply printing to the HTML print driver. The HTML
print driver includes support for:

• Boxes – solid and shaded colors only

• Bar codes

• Charts

• Vectors – solid and shaded colors only

• Logos – converted to JPG files by the driver

• Lines – solid and shaded colors only. Dashed lines are supported but do not take the
line characteristics as specified. The spacing and length of dashed lines are defaulted
by the HTML 4 specification.

• Shaded areas – solid and shaded colors only

• Text areas

• Text

• Variable fields

Use these INI options to set up the HTML print driver:

< PrtType:HTML >

Device = Sample.htm

DirLinks = Yes

CollapsePage = Yes

PageBreaks = Yes

HR = Size=2 Width=100% Color=Black

AllowInput = No

DownloadFonts = Yes,Enabled

TemplateFields = No,Enabled

Module = HTMW32

PrintFunc = HTMPrint

JavaScript = format.js

JavaScript = help.js

JavaScript = data.js

ColorSheet = iecolor.css

MultiPage = No

ImagePath = e:\rpex1

ImagePathCreate = e:\rpex1\new_images

PageNumbers = Yes

SendColor = Yes,Enabled

AllowColorSheetLink = Yes

CreateScriptFile = Yes

DumpScript = Yes

HiddenFieldScript = textMergeP(this);

ScriptPath = e:\rpex1\deflib

ScriptPathCreate = e:\scripts

EntryBackColor = #BBEBE6

EntryFontColor = #FFFFFF

SplitText = -1

BmSub = Yes

BmSubChar = '_'

IMG_ZIndex = 100

Creating HTML Files

231

Option Description

Device Sample.htm is the name of the HTML file generated when printed
from Studio, Image Editor, or Entry.

DirLinks Enter Yes to include Next and Prev links on pages. The default is No.

CollapsePage Enter Yes to remove white space at the bottom of page. The default
is No.

PageBreaks Forces a page break between pages during HTML print. The default
is Yes.

HR (Header Rule) Displays a line between pages. You can configure the
size, color and width. See example to see how to configure the rule.

AllowInput Enter Yes if you are running iPPS or iDocumaker. The default is No.

DownloadFonts Enter Yes to download of PCL fonts. Include Enabled to tell the
system to display a check box the user can use when printing from
Documaker Workstation, Studio, or Image Editor.

TemplateFields Enter No to omit the Xs from variable fields.

Module Enter the name of the print driver DLL file.

PrintFunc Enter the name of function within the print driver for print.

JavaScript Specify any script files which contain functions you want the system
to use.

ColorSheet Specify the style sheet that contains the color information. The
default is WSCOLOR.CSS. The WSCOLOR.CSS file contains web
safe colors. The IECOLOR.CSS file contains Internet Explorer
colors.

AllowColorSheetLink Use this option to tell the HTML print driver if a color style sheet link
exists. The default is Yes.
If the color information is inline in the HTML page, omit the link to
an external color style sheet.

MultiPage Enter Yes only when running the Image Editor and you want to print
multiple page FAP files with each page as a separate HTML file. This
feature is not supported when printing from Documaker and
Documaker Workstation.

ImagePath Enter the path for JPG files.

ImagePathCreate Enter a path to indicate where you want the images created.

PageNumbers Enter Yes to print page numbers. The default is No.

SendColor Enter Yes,Enabled to print in color. The default is No.

Chapter 3
Creating Output Files

232

CreateScriptFile Enter Yes is if you want the HTML driver to generate script files. The
script files correspond to the name of the FAP. For example, if the
Q1ADDR.FAP file contained either an inline script or a call to a
function in an external script file, the generated script file is named
Q1ADDR.JS.
The corresponding function for a function that occurred in an
external DAL script file would be called. For example:

_q1addr_dal_1ST NAME ZIP(obj)

where the q1addr represents the name of the FAP file, _dal implies it
was contained in an external script file, and _1ST NAME ZIP is the
name of the field. If the DAL script is inline and not in an external
file, the example would look like this:

_q1addr_1ST NAME ZIP(obj).

DumpScript Enter Yes to have the inline script written to the Java script file as a
comment. For example if the inline script for an effective date field
existed it would be written to the js file as:

function _samplefap_EFFDTE(obj);

{

/*HOLDDTE = DATEADD(@("EFFDTE"),,,,1); SETFLD
(HOLDDTE, "EXPDTE");*/

}

If you enter No for this option, the inline script is not written as a
comment. Instead, it is handled as if it were in an external file. The
corresponding function would be:

_samplefap_EFFDTE(obj);

{ /*alert(EFFDTED code goes here);*/ }

HiddenFieldScript This tells the system to display a box the user can use to enter data
onto the form. In this example,

textMergeP(this);

The hidden field has a length of one.

ScriptPath Enter the path to the script (.js) files generated by the HTML print
driver. This is used for script files references in the HTML files.

ScriptPathCreate Enter the path that points to where the driver creates the script files.

EntryBackColor This is the background color for the data entry fields. This can be
overridden in formatting script functions. The default is #B0E0E6.

EntryFontColor Enter the color for the font used in data entry fields. The default is
#FFD2D2.

SplitText The default (-1) tells the system to split the text so a single word
appears on each HTML line. Enter zero (0) to tell the system not to
split text in the HTML file.

Option Description

Creating HTML Files

233

Also, you can run the GenData program in single step mode and create separate files for
each transaction. Each transaction will have its own HTML file if you include INI options
similar to these:

< PrintFormSet >

MultiFilePrint = Yes

LogFileType = XML

LogFile = d:\fap\mstrres\rpex1\data\jlog

< Printer >

PrtType = HTML

; Printers is for the GUI dropdown selection (uncomment many)...

< Printers >

PrtType = AFP

PrtType = PCL

PrtType = XER

PrtType = HTML

NOTE: To make sure the page looks the same to all users, only use fonts which all users
have. Otherwise, fonts are substituted.

The look of the printed HTML file depends on the settings in affect for the user’s
browser. For example, the following shows printed output when the page setup includes
a header and footer with a top and bottom margin of 0.166”:

BmSub Enter No if you do not want the system to substitute invalid
characters with the character you specify in the BmSubChar option.
The default is Yes. For instance, if you omit this option but specify X
in the BmSubChar option, the system substitutes Xs for invalid
characters.

BmSubChar Enter the character you want the system to use to replace invalid
characters. The default is an underscore (_).

IMG_ZIndex The z-index indicates the stacking order of objects based on the order
in which those objects appear in the HTML file. Higher values place
objects closer to the front while lower values place them further to
the back. Objects with the same value are stacked based on the order
in which they appear in the HTML source.
For instance, a positive value positions an object above text that has
no defined z-index. A negative value would place the object below the
same text.
If you omit this option or leave it blank, the system will not layer
objects.

Option Description

Chapter 3
Creating Output Files

234

Note how the last line of the first page has overflowed onto a new page.

The following example shows the printed output when the margins remain at 0.166” but
there are no header and footers:

Creating HTML Files

235

Note how the last line of the page has moved up but still has run over onto a second page.

NOTE: The company logo appears as ABCD in this example. This can indicate a font
problem. For instance, Internet Explorer can display HTML that uses raster
fonts as long as the raster font is on the user’s machine. Not all Windows print
drivers, however, support printing with raster fonts. In this example, if this
happened the output would print as ABCD.

PRODUCING TABLE INFORMATION FOR TEXTMERGE
PARAGRAPHS

The system can produce table information for HTML documents generated from FAP
documents which include text areas that have the TerSubstitute Pre-Edit procedure
enabled.

The following attribute information is now produced for the hidden input tag that
corresponds to an <iframe> element for a text merge paragraph:

attribType = tersub

TABLEID = ID value of the table.

TABLEFILE = The file value of the table.

Here is an example:

<IFRAME ID="PSELECTION" NAME="PSELECTION"
ONFOCUS="window.frames.editBar.displayToolbar(this,true);"
FRAMEBORDER="0" STYLE="BORDER-BOTTOM: buttonface 1px solid; BORDER-
LEFT: buttonface 1px solid; BORDER-RIGHT: button face 1px
solid;BORDER-TOP: button face 1px solid;height: 0.80 in; width: 6.10
in; " TABINDEX="3"></IFRAME>

<INPUT TYPE="hidden" NAME="PSELECTION" ACCESSKEY="G" TABLEID="Denial
Reasons" TABLEFILE="LTRENTRY" attribType="tersub"/>

You can use this information to call the DPRTblLookUp rule in another request to
retrieve a list of paragraphs for insertion into the text merge area. This information can in
turn be used to call the DPRFap2Html rule to retrieve an HTML representation of the
appropriate TerSub paragraph so it can be inserted into the <iframe> element.

This lets iPPS or iDocumaker query real-time TERSUB information from IDS.

Chapter 3
Creating Output Files

236

CREATING XML
OUTPUT

The XMPLIB library lets you use IDS and Documaker to create Oracle Insurance
standard XML output. This lets you unload Oracle Insurance standard XML output from
the GenPrint or GenData programs (using the PrintFormset rule).

Here is an example of the INI setup this feature requires:

< Printers >

 PrtType = XMP

< PrtType:XMP >

 Module = XMPW32

 PrintFunc = XMPPrint

When using with Documaker, be sure to use the MultiFilePrint functionality to create a
separate XML file per transaction. If multiple XML files are written into the same file, the
file will not load in an XML parser, browser, or editor.

NOTE: For more information on the Oracle Insurance standard XML format, see
Working with XML.

237

Chapter 4

Using Print Preview

Print Preview lets you view work-in-progress (WIP) on-
line using DPRWIP rules and the Internet Document
Server (IDS). Source files coded in JSP generate the
HTML pages IDS displays.

NOTE: For more information on setting up IDS and
using the DPRWIP rules, see Using the Internet
Document Server on page 9 and the SDK
Reference, respectively.

Print Preview includes several HTML pages which let
you log into the system, select WIP transactions, view
transactions, select recipients, and print form sets.

This appendix includes information about...

• Touring Print Preview on page 239

• Using the JSP Files on page 245

• Customizing Print Preview on page 247

Chapter 4
Using Print Preview

238

This illustration shows the HTML pages and some, but not all, of the ways you can
navigate among the pages.

Rejected
(WIPAPLST.ASPArchived

(WIPAPLST.ASP

Login
(LOGIN.JSP)

WIP List
(WIPLIST.JSP)

Search
(WIPENTRY.JSP

Records Found
(WIPFIND.JSP)

Recipient
(WIPRECIP.JSP)

Print Form Set
(WIPFMSET.JSP)

Change Status
(WIPSTAT.JSP)

Approved
(WIPAPLST.AJ

Touring Print Preview

239

TOURING PRINT
PREVIEW

Follow these steps for a tour of Print Preview:

1 To login onto the system, enter a user ID and password, select a configuration from
the list, and click on the Login button.

If the login is unsuccessful, an error message appears and you can try again. After you
log in, your browser takes you to the WIP List page.

2 The WIP List page lets you view WIP records. The page has three parts: header,
body, and footer. You can customize the JSP files that create these parts to change
appearance of the page.

NOTE: The status codes are defined in the Status_CD control group. The options are
WIP (W), Approved (AP), Archived (AR), and Rejected (RJ), and so on.

Enter your user ID and
password.

Click here to choose a
configuration.

Click Login to enter Print
Preview or Reset to start
over.

Header

Body

Footer

(WIPHEAD.JSP)

(WIPFOOT.JSP)

Chapter 4
Using Print Preview

240

These buttons on the WIP List link this page to other pages:

Use this button To...

Go Display a drop-down list of sort keys defined in the WIP.DFD file. The
USER TAG and DOC TAG keys are hard coded. Other keys are based
on the WIPKey array defined in the PrtView_WIPTable INI control
group.
When you select a key and click Go, the records are re-arranged based
on the key you selected. This key is then used until you change it on the
WIP List page.
You can hide the button and list by setting the Sort variable to Mask in
the LOGIN.JSP file.

Next Set
Prev Set

Move through the set of records.
These buttons only appear when relevant. Retrieved records are
displayed based on the record number.

Apply
Apply All

Approve or archive records. You define the drop down list that appears
using the OptKey and AppTxt arrays in the PrtView_WIPTable INI
control group.
To approve or archive a record, you select the records, select what to
apply, and then click Apply. Clicking Apply All tells the system to
approve or archive all records on the page.
The system prompts you for confirmation before it changes the status
code. Approved or archived records are removed from the WIP List
page as soon as their status changes.

Reject
Reject All

Reject records.
The system prompts you to confirm the action before it changes the
status code.

Show
Show Rejected

Show approved, archived, or rejected records.
You define the list that appears using the OptKey and ShwTxt arrays in
the PrtView_WIPTable INI control group.

Find Records Search for records. The Search page appears so you can enter the
criteria you want the system to use.

Touring Print Preview

241

In addition to the buttons, you can click in the first column to go to the Print Form
Set page where you can print copies for all recipients. Clicking in the first field in the
second column takes you to the Recipient page where you can first select a recipient
and then print a copy.

You can click on the arrow next to the Show button to select the type of records you
want to display. For instance, this lets you view approved, archived, or rejected
records.

3 Make sure Approved appears next to the Show button, then click the Show button to
go to the Approved Records page.

NOTE: This example HTML page shows two ways to select statuses. You can use the
drop-down list to select from Approved and Archived or you can click a button
to see Rejected records. You can customize the JSP pages to meet your needs.

Click in this column to go to
the Print Form Set page
where you can print copies
for all recipients.

Click a field in the Key1
column to go to the
Recipient page where you
can print copies for a single
recipient.

Click here to select a specific
record status to display.

You can select a different
status to display the Archived
Records page and review
records with an archived
status code.

Use the Show Rejected
button to see rejected
records.

Chapter 4
Using Print Preview

242

This page includes several buttons also found on the WIP List page: Next Set, Prev
Set, Show Approved, Show Rejected, Archive Only, and Reject. These buttons
function the same way as on the WIP List page.

The buttons unique to this page are described in the following table:

Just like the WIP List page, clicking the first or second columns takes you to the Print
Form Set page or the Recipient page, as described previously.

4 Click the Return to Main button and then click the Find Records button on the WIP
List page. The Search page appears.

Use this page to enter criteria you want the system to use to search for records. You
can change the PrtView_WIPTable control group to customize the fields that appear
on this page and to decide which keys to use for searching.

This page has three buttons. The Search button starts the search, Cancel clears the
entry fields, and Return to Main takes you to the WIP List page or other parent list
page, such as the Approved Records page.

Use this button To...

Undo Approve Click this button to change status code of selected records back to
the WIP status. The changed records are removed from the
Approved Records page and added back to the WIP List page.
Similarly, on the Archived Records page there is Undo Archive
button and on Rejected Records page there is Undo Reject button.

Return to Main This button takes you back to the WIP List page.

Use the fields on this page to
enter the criteria you want
the system to use when it
searches for records.

Click the Search button to
start the search.

Touring Print Preview

243

5 Click the Search button, the Records Found page appears. This page lists the records
the system found.

This page includes the same buttons as those on the WIP List page.

6 Click in the first column. The system creates a PDF file of the form set and displays
it in the Print Form Set page. Here is an example:

Anytime you click in the first column of a list page, such as the WIP List, Approved
Records, Rejected Records, or Records Found, the system creates a PDF file that
shows all recipient copies of the form set.

The form set appears as a
PDF file using Acrobat
Reader or the Acrobat plug-
in used by your browser.

Acrobat includes tools you
can use to view the form set
on the toolbar.

These buttons let you
change the status of the form
set.

Chapter 4
Using Print Preview

244

NOTE: To display a PDF file, you must have the Acrobat® Reader from Adobe®
Systems. You can download the free reader at Adobe’s web site:
www.adobe.com. You will also find a copy of Acrobat Reader on the Internet
Document Server Installation CD. For best results, use version 7.0 or later.

The Print Form Set page includes these buttons:

7 Click Cancel to return to the Records Found page. Next, click in the second column
to display the Recipient page.

Anytime you click in the second column of a list page, the Recipient page appears to
show you the information for the record you selected. Pick a recipient from a list and
then click on Print Record to go to the Print Form Set page.

Use this page to print a copy of an individual form set.

Button Click to...

Approve Change the form set’s status to Approved.

Archive Only Change the form set’s status to Archived.

Reject Change the form set’s status to Rejected.

Cancel Return to the list page you came from.

Click here to select the
recipient.

http://www.adobe.com
http://www.adobe.com
http://www.adobe.com

Using the JSP Files

245

USING THE JSP
FILES

Print Preview includes these ASP files which you maintain:

LOGIN.JSP WIPLIST.JSP

WIPAPLST.JSP WIPENTRY.JSP

WIPFIND.JSP WIPSTAT.JSP

WIPFMSET.JSP WIPRECIP.JSP

Plus these JSP files which you can customize:

WIPHEAD.JSP WIPFOOT.JSP

This table describes the files you maintain:

ASP file Description Customizing

LOGIN.JSP This code creates the Login page You can change the appearance of the login
page by...
- Changing the JSP code
- Including separate JSP codes, such as
WIPHEAD.JSP and WIPFOOT.JSP
Including separate JSP codes can make the
system easier to maintain.
The value of passing parameters:
MAXRECORDS determines how many
records appear on each list page.
SORT determines whether the sorting list
appears on the WIP List page.
PASSWORDENCRYPTED determines if
the system should use an encrypted
password.

WIPLIST.JP The Login page links to the WIP List page. The
WIP List page and all other list pages consist of
three parts: header, body, and footer.
You can customize the body using the
PrtView_WIPTable control group to specify a
different configuration.

You customize the header and footer by
changing the WIPHEAD.JSP,and
WIPFOOT.JSP files.
These JSP files are included in the
WIPLIST.JSP file as include files.

WIPAPLST.JSP The WIP List (WIPLIST.JSP) and Records
Found (WIPFIND.JSP) pages link to this page.
This JSP file creates an approved, archived or
rejected record list page, as necessary.

You customize this page just as you do the
WIP List page.

WIPAPPR.JSP You use this page to change the status code for
all WIP records. It is linked only to the WIP List
page.
After you approve all or reject all records, you go
back to an empty WIP List page, so you can
decide your next step.

You cannot customize this page.

Chapter 4
Using Print Preview

246

WIPENTRY.JSP The Find Record button is linked to this entry
table page. To find records, you enter one or
more fields as search keys.
The Search button links this page to the
WIPFIND.ASP which creates the Record
Found List.

You can determine the keys used in searches.
Customize this page just as you would the
WIP List page.

WIPFIND.JSP This code creates a list of the records have a
given status, such as WIP, Approved, Archived, or
Rejected.

You customize this page just as you do the
WIP List page.

WIPSTAT.JSP This code is used to change the status code for
selected records.
Once the status codes are changed, you return to
the parent list page, such as the WIP List.

You cannot customize this page.

WIPFMSET.JSP This code is used to retrieve a form set from a
parent record list such as the WIP List,
Approved Records, Archived Records, Rejected
Records, or Records Found page.
If the request type specifies DPRPrint rule, the
form set is converted to PDF format and the
PDF file is displayed on this page.
If you select and press the Approve or Reject
button, you return to the WIPSTAT.JSP where
you can approve or reject the record. From there
you are taken to the parent list page.

You can customize the header and footer of
this page by including WIPHEAD.JSP and
WIPFOOT.JSP files.

WIPRECIP.JSP Clicking in the second column on a parent list
takes you this page, called the Recipient page.
This page shows the selected record and asks you
to select a recipient from the list.
You can click on the Print Record button to go
to the page created by the WIPFMSET.JSP file
where you can view and print a single copy of the
form set.
Click Cancel to return to a parent list page.

You customize this page just as you do the
WIP List page.

ASP file Description Customizing

Customizing Print Preview

247

CUSTOMIZING
PRINT PREVIEW

You can customize these JSP files to make Print Preview meet your needs:

• WIPHEAD.JSP

• WIPFOOT.JSP

WIPHEAD.ASP You can modify this JSP code to customize the header part of the page. It is in HTML
format, and you can modify it as necessary.

Here is an example:

<TABLE BORDER=0 WIDTH=100% VSPACE="0" HSPACE="0" CELLPADDING="0"
CELLSPACING="0">

<TR>

 <TD WIDTH="80%">

 <H2> Docucorp IDS Server </H2>

 </TD>

 <TD>

 </TD>

</TR>

</TABLE>

<TABLE BORDER=0 # BGCOLOR="#80a0a0" WIDTH=100% VSPACE="0" HSPACE="0"
CELLPADDING="0" CELLSPACING="0">

 <TR><TD> </TD></TR>

</TABLE>

<HR>

<% string bkgdcolor=”#808080">

<% string border=”=2">

Where bkgdcolor determines the color for the background and border determines the style
of border for the tables which comprise the body.

WIPFOOT.JSP You can modify this JSP code to customize the footer part of the page. It is in HTML
format, and you can modify it as necessary.

<HR>

<TABLE BORDER=0 # BGCOLOR="#80a0a0" WIDTH=100% VSPACE="0" HSPACE="0"
CELLPADDING="0" CELLSPACING="0">

 <TR><TD> </TD></TR>

</TABLE>

Chapter 4
Using Print Preview

248

USING INI OPTIONS TO CUSTOMIZE PRINT PREVIEW
SCREENS

You can also customize the WIP index layout using INI options, instead of having to
change the JSP scripts.

You do this by moving the arrays of column names and headings from the JSP code into
an INI file. The INI options are based on the CONFIG value and can be specific to each
WIP resource setup. You can store the INI options in the DAP.INI file if you need them
to be global in scope in the particular CONFIG.INI file.

You customize the WIP list by changing the options in the PrtView_WIPTable control
group. To read the control group from the INI file, such as RPEX1.INI, add the
DPRWipTableParms rule in every request type that displays a record list. Here is an
example of setting the request type for a WIP list:

< ReqType:WLT >

 function = atcw32->ATCLogTransaction

 function = atcw32->ATCLoadAttachment

 function = dprw32->DPRSetConfig

 function = atcw32->ATCUnloadAttachment

 function = dprw32->DPRDecryptLogin

 function = dprw32->DPRDefaultLogin

 function = dprw32->DPRCheckLogin

 function = dprw32->DPRWipTableParms

 function = dprw32->DPRGetWipList

This rule passes the value of each array option to the client side. The JSP code, such as
WIPLIST.JSP, gets the value and translates it to an array for the WIP table customization
by calling:

wipkey = DSI.getWipKeys(Rst, "WIPKEY");

Here is an example of the PrtView_WIPTable control group:

< PrtView_WIPTable >

;table

Fields = KEY1,KEY2,KEYID,RECTYPE,CREATETIME,ORIGUSER,CURRUSER,
MODIFYTIME,FORMSETID,TRANCODE,STATUSCODE,FROMUSER,FROMTIME,
TOUSER,TOTIME,DESC,INUSE,ARCKEY,APPDATA,RECNUM

Table = KEY1,KEY2,KEYID,RT,CT,OU,CU,MT,ID,TR,ST,DESC,RECNUM

WIPKey = KEY1,KEY2,KEYID,RECTYPE,CREATETIME,ORIGUSER,CURRUSER,
MODIFYTIME,FORMSETID,TRANCODE,STATUSCODE,DESC,RECNUM

;dropdown

OPTKey = AP,AR

APPTxt = Approve,Archive only

SHWTxt = Approved,Archived

;entry table

EntryTBL = Key 1,Key 2,Key ID,Record Type,Formset ID,Tran Code,Status
Code

EntryKey = KEY1,KEY2,KEYID,RECTYPE,FORMSETID,TRANCODE,STATUSCODE

If the control group is not found, the default arrays are used.

Make sure you include all of the options. These include: Fields, Table, WIPKey, OPTKey,
APPTxt, SHWTxt, EntryTBL, and EntryKey. The required Java modules are: IDSJSP.jar,
DSIJava.jar, and DocucorpUtil.jar.

Customizing Print Preview

249

NOTE: The Print Preview plug-in can download additional resource files on demand.

CUSTOMIZING THE WIP LIST PAGE

You can customize the WIP List page by passing arrays from IDS to the client side. You
set the data in the arrays by changing the options of the PrtView_WIPTable control
group. This control group includes these options:

Here is an example:

< PrtView_WIPTable>

;table

Fields = Key1, Key2, KeyID, RecType, ...

Table = Key1, Key2, KeyID, RecType, ...

WIPKey = Key1, Key2, KeyID, RecType, ...

;dropdown

OptKey = AP, AR

AppTxt = Approve, Archive only

ShwTxt = Approved, Archived

;entry table

EntryTbl= Key1, Key2, KeyID, ...

EntryKey= Key1, Key2, KeyID, ...

If you omit the PrtView_WIPTable control group, the system uses its default settings. Be
sure to include all INI options in the control group.

To read the control group from a client INI file, such as the RPEX1.INI file, you must
include the DPRWipTableParms rule in every REQTYPE that requires displaying a
record list. Here is an example of how to set the REQTYPE for a WIP list:

< ReqType:WLT >

 function = atcw32->ATCLogTransaction

 function = atcw32->ATCLoadAttachment

Option Description

Fields Defines all fields defined in the WIP BDF file.

Table Defines the name of each column in the record list.

WIPKey Retrieves field values from the WIP retrieval base. Retrieved field values are filled
into each column defined by the corresponding table array.

OptKey Includes the status code of the Show or Apply drop-down list.

AppTxt Includes the options of the Apply list.

ShwTxt Includes the options of the Show list.

EntryTbl Includes the name of each field to be entered.

EntryKey Defines the search keys. You enter the value for each key so the system can search
the records.

Chapter 4
Using Print Preview

250

 function = dprw32->DPRSetConfig

 function = atcw32->ATCUnloadAttachment

 function = dprw32->DPRDecryptLogin

 function = dprw32->DPRDefaultLogin

 function = dprw32->DPRCheckLogin

 function = dprw32->DPRWipTableParms

 function = dprw32->DPRGetWipList

NOTE: The WFD and WRC request types also display records and need the
DPRWipTableParms rule.

This rule passes the value of each array option to the client side. The JSP code, such as
that in the WIPLIST.JSP file, gets the value and translates it to an array for the WIP table
customization by calling the following:

wipkey = DSI.getWipKeys(Rst, "WIPKEY");

The required Java modules are:

• IDSJSP.jar

• DSIJava.jar

• DocucorpUtil.jar

CREATING USER LISTS FOR PRINT PREVIEW

The standard Print Preview rules use the same ReportTo logic as Documaker
Workstation to get the list of WIP records from WIP. If you need to create a custom
version of user authentication which is not built from the USERINFO database, use the
USERLIST attachment variable.

This attachment variable contains a comma-delimited list of user IDs. The system uses
this list instead of the information in the USERINFO database. If you want to use the
current user ID (logged on user ID) to get the WIP list, you must also include it in
USERLIST attachment variable.

Customizing Print Preview

251

REQUEST TYPES FOR PRINT PREVIEW

Here are examples of the request types you can use with Print Preview:

; Login and get WIP list

< ReqType:WLG >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRLoginUser

function = dprw32->DPRGetWipList

;Get WIP list and display records

< ReqType:WLT >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

; function = dprw32->WipTableParams ;Used only with JSP to
customize display

function = dprw32->DPRGetWipList

; Approve all WIP records

< ReqType:WAL >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRApproveWipRecords

; Get recipients and display records

< ReqType:WRC >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

; function = dprw32->WipTableParams ;Used only with JSP to
customize display

function = dprw32->DPRGetWipRecipients

; Update WIP records with new status code

< ReqType:WST >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

Chapter 4
Using Print Preview

252

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRUpdateWipRecords

;Get form set

< ReqType:WFS >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRGetWipFormset

function = dprw32->DPRPrint

; Find records and display them

< ReqType:WFD >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

; function = dprw32->WipTableParams ;Used only with JSP to
customize display

function = dprw32->DPRFindWipRecords

253

Chapter 5

Using Docucorp
Publishing Services

Docucorp Publishing Services (DPS) for print and
archive are a set of objects you can use to interface VB,
C#, or Java with Documaker to execute print or archive
through Docupresentment (IDS). You can run IDS on a
local or remote system.

Only one transaction can be processed per API
invocation. The return file types can be PCL, PDF, or
XML. For print requests, the input file (attachment)
contains data representing a single transaction. For
archive retrieval requests, the first transaction that
matches the search criteria is returned.

Docucorp Publishing Services (DPS) consists of:

• An action object. (DPSPrint, DPSArchive)

This object passes a group of variables (properties)
that define input parameters for performing the
specific action.

• An interface object. (DPSIDS)

This object parses or constructs the request
variables based on the input object properties and
interfaces with IDS to send the request variables
and receive the result variables.

• IDS

IDS performs the task based on the request. There
are two groups of the requests: remote and local. If
IDS is local, it is running on the same machine as
the client and shares the same physical hard drive
— so it is not necessary to send the output file back
to the client since it is on the same machine. If IDS
is remote, the output file needs to be sent from the
machine that is running IDS to the client machine.

Chapter 5
Using Docucorp Publishing Services

254

Here is a summary of the DLL and class files for DPS:

The following illustration shows how this works on a local IDS setup, with IDS running
on the same machine:

Required By File name Description

IDS IDSRules.jar com/docucorp/ids/rules/dps

VB API DPSClient.dll DPSPrint, DPSArchive, DPSIDS objects.

C# API Docucorp.DPS.dll
Docucorp.IDS.dll

DPSPrint, DPSArchive, DPSIDS objects.

Java API dps.jar DPSPrint, DPSArchive, DPSIDS objects.

Request type for a
local IDS server

DPSPrt

DPSArc

DPSIDS object

IDS

Local hard
disk

DPSArchive

DPSPrint object

Action object Interface object

object

255

This illustration shows how it works with IDS running on a different machine:

Request type for a
remote IDS server

DPSPrtRM

DPSArcRM

DPSIDS object

IDS

Local hard
disk

DPSArchive

DPSPrint object

Action object Interface object

IDS server
hard disk

object

Chapter 5
Using Docucorp Publishing Services

256

DPS OBJECT
PROPERTIES

The following tables describe the properties of these objects:

• DPSPrint

• DPSArchive

DPSPrint object The DPSPrint object has these properties:

Property Name I/O Type Description

VB ApplicationName I/O String (Optional) Use to pass application-specific data
to the API.

C# ApplicationName I/O

Java setapplicationName
getapplicationName

Input
Output

VB ConfigurationName I/O String Use to set the DAP configuration.

C# ConfigurationName I/O

Java setconfigurationName
getconfigurationName

Input
Output

VB DestinationName I/O String (Optional) Use to pass application-specific data
to the API.

C# DestinationName I/O

Java setdestinationName
getdestinationName

Input
Output

VB EffectiveDate1 I/O String (Optional) Specifies the effective date of this
transaction in YYYYMMDD format.

C# EffectiveDate1 I/O

Java seteffectiveDate1

geteffectiveDate1
Input
Output

VB FormDescription I/O String (Optional) Specifies the form description to be
processed for this transaction.
Leave this property blank to tell the system to
process all requested forms. You can pass
multiple form descriptions by entering the
form names separated by commas.

C# FormDescription I/O

Java setformDescription
getformDescription

Input
Output

1 Not yet implemented.

DPS Object Properties

257

VB FormName I/O String (Optional) Specifies the form name to be
processed for this transaction. Leave this
property blank to tell the system to process all
requested forms. You can pass multiple forms
by entering the form names separated by
commas.

C# FormName I/O

Java setformName
getformName

Input
Output

VB InputFile I/O String Specifies the name of the attached input data
file, which is usually an extract data file for the
transaction, such as an XML extract file or an
import file name.

C# InputFile I/O

Java setinputFile
getinputFile

Input
Output

VB Key1, Key2, Key3, and
KeyID

I/O String (Optional) Specifies transactional keys or
application-specific values.

C# Key1, Key2, Key3, and
KeyID

I/O

Java setkey1, setkey2,
setkey3, and setkeyID
getkey1, getkey2,
getkey3, and getkeyID

Input

Output

VB OutputFile I/O String (Optional) Specifies a string that contains the
name of the returned output file. If the buffer
contains no input value (blank or empty) the
Documaker system generates this output file
name. Use the OutputFile property to get the
generated file name.

C# OutputFile I/O

Java setoutputFile
getoutputFile

Input
Output

VB OutputPath I/O String (Optional) Specifies the desired location of the
returned output files. If you leave this property
blank, the system uses the current directory
from which the client was executed.

C# OutputPath I/O

Java setoutputPath
getoutputPath

Input
Output

VB Password I/O String (Optional) Specifies the password if one is
required by the request.

C# Password I/O

Java setpassword
getpassword

Input
Output

Property Name I/O Type Description

1 Not yet implemented.

Chapter 5
Using Docucorp Publishing Services

258

VB PrinterType I/O String (Optional) Specifies the type of output, such as
PCL, PDF, or XML. Future versions may
support additional output types.C# PrinterType I/O

Java setprinterType
getprinterType

Input
Output

VB Priority1 I/O Priorities
DPS_IM
MEDIAT
E
DPS_DE
FERRED

Specifies immediate processing, deferred
(batch) processing of the transaction, or end-
of-day/end-of-period transaction. The default
is DPS_IMMEDIATE.

C# Priority1 I/O

Java setpriority1

getpriority1
Input
Output

VB RecipientName I/O String (Optional) Specifies the recipient name to be
processed for this transaction. Leave this
property blank if you do not want recipient
filtering performed. You can specify a list of
recipients, using commas to separate the
recipient names.

C# RecipientName I/O

Java setrecipientName
getrecipientName

Input
Output

VB ReturnCode I/O String Set to DPS0000 if the transaction was
processed successfully. Otherwise, it will
contain an error code set by the DPS interface.
This error code can be an error returned from
the Documaker system or Docupresentment or
a failure of the DPS API.

C# ReturnCode I/O

Java setreturnCode
getreturnCode

Input
Output

VB RunDate1 I/O String (Optional) Specifies the run date of this
transaction in YYYYMMDD format.

C# RunDate1 I/O

Java setrunDate1

getrunDate1
Input
Output

VB SourceName I/O String (Optional) Use to pass application-specific data
to the API.

C# SourceName I/O

Java setsourceName
getsourceName

Input
Output

Property Name I/O Type Description

1 Not yet implemented.

DPS Object Properties

259

DPSArchive object The DPSArchive object has these properties:

VB TrnCode1 I/O String (Optional) Specifies a transaction code or other
application-specific value.

C# TrnCode1 I/O

Java settrnCode1

gettrnCode1
Input
Output

VB UserID I/O String (Optional) Specifies a user ID if one is required
by the request.

C# UserID I/O

Java setuserID
getuserID

Input
Output

VB WaitForResult I/O Boolean Specifies whether the invoking application
expects to receive results. The default is True.

C# WaitForResult I/O

Java setwaitForResult
getwaitForResult

Input
Output

Property Name I/O Type Description

1 Not yet implemented.

Property Name I/O Type Description

VB ConfigurationName I/O String Use to set the DAP configuration.

C# ConfigurationName I/O

Java setconfigurationName
getconfigurationName

Input
Output

VB FormDescription I/O String (Optional) Specifies the form description to be
processed for this transaction. Leave this
property blank to tell the system to process all
requested forms. You can pass multiple form
descriptions using commas to separate the
form names.

C# FormDescription I/O

Java setformDescription
getformDescription

Input
Output

VB FormKey1 I/O String (Optional) Specifies the form set filtering
Key1.

C# FormKey1 I/O

Java setformKey1
getformKey1

Input
Output

1 Not yet implemented.

Chapter 5
Using Docucorp Publishing Services

260

VB FormKey2 I/O String (Optional) Specifies the form set filtering
Key2.

C# FormKey2 I/O

Java setformKey2
getformKey2

Input
Output

Output

VB FormName I/O String (Optional) Specifies the forms to be processed
for this transaction. Leave this property blank
to tell the system to process all requested
forms. You can pass multiple forms using
commas to separate the form names.

C# FormName I/O

Java setformName
getformName

Input
Output

VB Key1, Key2, Key3, and
KeyID

I/O String (Optional) Specifies the columns in application
index file you want to use in the query

C# Key1, Key2, Key3, and
KeyID

I/O

Java setkey1, setkey2,
setkey3, and setkeyID
getkey1, getkey2,
getkey3, and getkeyID

Input

Output

VB OutputFile I/O String (Optional) Specifies a string that contains the
name of the returned output file. If the buffer
contains no input value (blank or empty) the
Documaker system generates this output file
name. Use the outputFile property to get the
generated file name.

C# OutputFile I/O

Java setoutputFile
getoutputFile

Input
Output

VB OutputPath I/O String (Optional) Specifies the desired location of the
returned output files. If you leave this property
blank, the Docucorp publishing system (such
as Documaker) uses its own INI options to
determine the locations of the returned output
files and the caller will have to know to retrieve
the files from that location.

C# OutputPath I/O

Java setoutputPath
getoutputPath

Input
Output

VB Password I/O String Specify password required to retrieve from the
database.

C# Password I/O

Java setpassword
getpassword

Input
Output

Property Name I/O Type Description

1 Not yet implemented.

DPS Object Properties

261

DPSIDS object The DPSPrint object has these methods:

VB PrinterType I/O String (Optional) Specifies the type of output, such as
PDF or XML. Future versions may support
additional output types.C# PrinterType I/O

Java setprinterType
getprinterType

Input
Output

VB RecipientName1 I/O String (Optional) Specifies the recipients to be
processed for this transaction. Leave this
property blank if you do not want recipient
filtering performed. You can specify a list of
recipients, using semicolons to separate the
recipient names.

C# RecipientName1 I/O

Java setrecipientName1

getrecipientName1
Input
Output

VB ReturnCode I/O String Set to DPS0000 if transaction was processed
successfully. Otherwise it contains an error
code set by the DPS interface. This error code
can be an error returned from the Documaker
or Docupresentment system or a failure of the
DPS API.

C# ReturnCode I/O

Java setreturnCode
getreturnCode

Input
Output

VB UserID I/O String Specifies the user ID required to access the
database.

C# UserID I/O

Java setuserID
getuserID

Input
Output

VB WaitForResult I/O Boolean Specifies if the invoking application expects to
receive results. The default is True

C# WaitForResult I/O

Java setwaitForResult
getwaitForResult

Input
Output

Property Name I/O Type Description

1 Not yet implemented.

Methods Description

VB Send(actionObject as Variant) Call to parse an action object’s properties to request
variables and send the request variables to the IDS
Server to perform the function specified by the
requestType.

C# Send(DpsPrint dpsPrintObject)
Send(DpsArchive dpsArchiveObject)

Java send(DPSPrint oDPSPrint)
send(DPSArchive oDPSArchive)

Chapter 5
Using Docucorp Publishing Services

262

SETTING
DEFAULT

PARAMETERS

Use the DPSINI.XML file to set default parameters. The system looks for the file in the
current directory. If it is not found, it looks in the Windows system directory, such as
c:\winnt\system32.

Here is an example of the DPSINI.XML file:

<?xml version='1.0'?>

<DPS>

 <DPSIDS>

 <RemoteIDS>Yes</RemoteIDS>

 <PathSeparator>\</PathSeparator>

 </DPSIDS>

 <DPSPrint>

 <RequestType>DPSPRT</RequestType>

 <RequestTypeRM>DPSPRTRM</RequestTypeRM>

 <OutputAttachName>DPSPRTOUTPUT</OutputAttachName>

 <InputAttachName>DPSPRTINPUT</InputAttachName>

 </DPSPrint>

 <DPSArchive>

 <RequestType>DPSARC</RequestType>

 <RequestTypeRM>DPSARCRM</RequestTypeRM>

 <PartialMatch>Yes</PartialMatch>

 <CaseSensitivity>No</CaseSensitivity>

 <MaxRecords>1</MaxRecords>

 <OutputAttachName>DPSARCOUTPUT</OutputAttachName>

 </DPSArchive>

</DPS>

DPSIDS section

DPSPrint section

DPSArchive section

Parameter Description

RemoteIDS This parameter determines the location of the IDS Server, local or remote.

PathSeparator

Parameter Description

RequestType This is the request type when RemoteIDS is set to No. The default is
DPSPRT.

RequestTypeRM This is the request type when RemoteIDS is set to Yes. The default is
DPSPRTRM.

OutputAttachname This is the AttachName used by the IDS Server to send a file to the
client when RemoteIDS is set to Yes. The default is DPSPRTOUTPUT.

InputAttachName This is the AttachName used by the client to send an input extract file
to the IDS Server when RemoteIDS is set to Yes. The default is
DPSPRTINPUT.

Parameter Description

RequestType The request type when RemoteIDS is set to No. The default is
DPSARC.

Setting Default Parameters

263

RequestTypeRM The request type when RemoteIDS is set to No. The default is
DPSARCRM.

OutputAttachname The AttachName used by the IDS Server to send a file to the client when
RemoteIDS is set to Yes. The default is DPSARCOUTPUT.

PartialMatch The search condition uses a partial match.

CaseSensitivity If set to Yes, the search is case sensitive. The default is No

Maxrecords The maximum number of records to return. It must be set to one (1).

Parameter Description

Chapter 5
Using Docucorp Publishing Services

264

SAMPLE VB
CODE

Here are examples of Visual Basic code for print and archive:

Print Private Sub CmdPrint_Click()

 Dim oDPSVar As New DPSPrint

 Dim oDPSIDS As New DPSIDS

 oDPSVar.inputFile = “D:\MRL\TEST\EXTRACTS\ExtrFile.dat”

 oDPSVar.configurationName = “DPS”

 oDPSVar.outputFile = “PrintOutput”

 oDPSVar.outputPath = “D:\MRL\TEST\PrintFile.PCL”

 oDPSVar.printerType = “PCL”

 oDPSIDS.send oDPSVar

 if oDPSVar.ReturnCode = “DPS0000” Then

 FinalOutput.Text = oDPSVar.outputPath + oDPSVar.outputFile

 End If

End Sub

Archive Private Sub CmdArchive_Click()

 Dim oDPSVar As New DPSArchive

 Dim oDPSIDS As New DPSIDS

 FinalOutputA.Text = ""

 oDPSVar.configurationName = "DPS"

 oDPSVar.userID = “UserID”

 oDPSVar.password = “Password”

 oDPSVar.outputFile = FldOutputFileA.Text

 oDPSVar.outputPath = FldOutputPathA.Text

 oDPSVar.key1 = "SAMPCO"

 oDPSVar.printerType = “PDF”

 oDPSIDS.send oDPSVar

 if oDPSVar.ReturnCode = “DPS0000” Then

 FinalOutputA.Text = oDPSVar.outputPath + oDPSVar.outputFile

 End If

End Sub

NOTE: The DPSClient.dll file must be referenced before you can use the DPSPrint,
DPSArchive, and DPSIDS objects.

Sample C Code

265

SAMPLE C
CODE

Here is some sample C# code:

using System;

using Docucorp.DPS;

.

.

.

private void printButton_Click(object sender, System.EventArgs e)

{

 DpsPrint dpsVarObject = new DpsPrint();

 DpsIds dpsIdsObject = new DpsIds();

 dpsVarObject.InputFile = inputFile.Text;

 dpsVarObject.ConfigurationName = config.Text;

 dpsVarObject.OutputFile = outputFile.Text;

 dpsVarObject.OutputPath = outputPath.Text;

 dpsVarObject.PrinterType = printerType.Text;

 dpsVarObject.FormName = formName.Text;

 dpsVarObject.FormDescription = formDescription.Text;

 dpsVarObject.RecipientName = recipientName.Text;

 try

 {

 dpsIdsObject.Send(dpsVarObject);

 finalOutput.Text = dpsVarObject.OutputPath +
dpsVarObject.OutputFile;

 }

 catch (Exception ex)

 {

 Console.Out.WriteLine(ex.ToString());

 }

}

private void archiveButton_Click(object sender, System.EventArgs e)

{

 DpsArchive dspVarObject = new DpsArchive();

 DpsIds dpsIdsObject = new DpsIds();

 finalOutputA.Text = "";

 dspVarObject.WaitForResult = true;

 dspVarObject.UserID = userID.Text;

 dspVarObject.Password = password.Text;

 dspVarObject.ConfigurationName = "DPS";

 dspVarObject.OutputFile = outputFileA.Text;

 dspVarObject.OutputPath = outputPathA.Text;

 dspVarObject.Key1 = "SAMPCO";

 dspVarObject.PrinterType = printerTypeA.Text;

 dspVarObject.FormName = formNameA.Text;

 try

 {

 dpsIdsObject.Send(dpsVarObject);

 finalOutputA.Text = dpsVarObject.OutputPath +
dpsVarObject.OutputFile;

 }

 catch (Exception ex)

 {

 Console.Out.WriteLine(ex.ToString());

Chapter 5
Using Docucorp Publishing Services

266

 }

}

NOTE: You must install the Docucorp.IDS.dll file in GAC and the Docucorp.DPS.dll
file must be referenced before you can use the DPSPrint, DPSArchive, and
DPSIDS objects.

Sample Java Code

267

SAMPLE JAVA
CODE

Here is some sample Java code:

import com.docucorp.dps.*;

.

.

.

 void BtnPrint_actionPerformed(ActionEvent e) {

 DPSPrint oDPSVar = new DPSPrint();

 try {

 DPSIDS oDPSIDS = new DPSIDS();

 oDPSVar.setinputFile(FldInputFile.getText());

 oDPSVar.setconfigurationName(FldConfig.getText());

 oDPSVar.setoutputFile(FldOutputFile.getText());

 oDPSVar.setoutputPath(FldOutputPath.getText());

 oDPSVar.setprinterType(FldPrinterType.getText());

 oDPSVar.setformName(FldFormName.getText());

 oDPSVar.setformDescription(FldFormDescription.getText());

 oDPSVar.setrecipientName(FldRecipientName.getText());

 oDPSIDS.send(oDPSVar);

 FldFinalOutput.setText(oDPSVar.getoutputPath() +
oDPSVar.getoutputFile());

 FldReturnCode.setText(oDPSVar.getreturnCode());

 } catch (DPSJException ex) {

 FldReturnCodeA.setText(oDPSVar.getreturnCode());

 ex.printStackTrace();

 } catch (DSIJException ex) {

 FldReturnCodeA.setText(oDPSVar.getreturnCode());

 ex.printStackTrace();

 } catch (Exception ex) {

 FldReturnCodeA.setText(oDPSVar.getreturnCode());

 ex.printStackTrace();

 }

 }

 void BtnArchive_actionPerformed(ActionEvent e) {

 DPSArchive oDPSVar = new DPSArchive();

 try {

 DPSIDS oDPSIDS = new DPSIDS();

 oDPSVar.setuserID(FldUserID.getText());

 oDPSVar.setpassword(FldPassword.getText());

 oDPSVar.setconfigurationName(FldConfigA.getText());

 oDPSVar.setoutputFile(FldOutputFileA.getText());

 oDPSVar.setoutputPath(FldOutputPathA.getText());

 oDPSVar.setformName(FldFormNameA.getText());

 oDPSVar.setprinterType(FldPrinterTypeA.getText());

 oDPSIDS.send(oDPSVar);

 FldFinalOutputA.setText(oDPSVar.getoutputPath() +
oDPSVar.getoutputFile());

 FldReturnCodeA.setText(oDPSVar.getreturnCode());

 } catch (DPSJException ex) {

 FldReturnCodeA.setText(oDPSVar.getreturnCode());

 ex.printStackTrace();

 } catch (DSIJException ex) {

 FldReturnCodeA.setText(oDPSVar.getreturnCode());

 ex.printStackTrace();

 } catch (Exception ex) {

Chapter 5
Using Docucorp Publishing Services

268

 FldReturnCodeA.setText(oDPSVar.getreturnCode());

 ex.printStackTrace();

 }

 }

Setting Up IDS

269

SETTING UP
IDS

Add the following request types to the DOCSERV.INI file to set up IDS:

[ReqType:DPSARC]

 function = atcw32->ATCLogTransaction

 function = atcw32->ATCLoadAttachment

 function = dprw32->DPRLocateOneRecord

 function = dprw32->DPRInitLby

 function = atcw32->ATCUnloadAttachment

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,REMOTEPRINTFILE,O,ARCOUTPUTFILE,
O

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,SENDBACKPAGE,O,ARCOUTPUTFILE,O

 function = dprw32->DPRRetrieveFormset

 function = dprw32->DPRFilterFormsetForms

 function = dprw32->DPRPrint

 function = dprw32->DPRProcessTemplates

[ReqType:DPSARCRM]

 function = atcw32->ATCLogTransaction

 function = atcw32->ATCLoadAttachment

 function = dprw32->DPRSetConfig

 function = dprw32->DPRLocateOneRecord

 function = dprw32->DPRInitLby

 function = atcw32->ATCUnloadAttachment

 function = dprw32->DPRRetrieveFormset

 function = dprw32->DPRFilterFormsetForms

 function = atcw32->ATCSendFile,DPSARCOUTPUT,OUTPUTFILE,Binary

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,OUTPUTFILE,O,ARCOUTPUTFILE,O

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,REMOTEPRINTFILE,O,OUTPUTFILE,O

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,SENDBACKPAGE,O,OUTPUTFILE,O

 function = dprw32->DPRPrint

 function = dprw32->DPRProcessTemplates

[ReqType:DPSPRT]

 function = atcw32->ATCLogTransaction

 function = atcw32->ATCLoadAttachment

 function = atcw32->ATCUnloadAttachment

 function = dprw32->DPRSetConfig

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,PRINTER1,O,PRINTOUTPUTFILE,O

 function = rpdw32->RPDCheckRPRun

 function = rpdw32->RPDCreateJob

 function = rpdw32->RPDProcessJob

[ReqType:DPSPRTRM]

 function = atcw32->ATCLogTransaction

 function = atcw32->ATCLoadAttachment

 function = atcw32->ATCUnloadAttachment

 function = atcw32-
>ATCReceiveFile,DPSPRTINPUT,EXTRFILE,d:\temp*.dat,KEEP

 function = dprw32->DPRSetConfig

 function = atcw32->ATCSendFile,DPSPRTOUTPUT,PRINTER1,Binary

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,PRINTER1,O,PRINTOUTPUTFILE,O

 function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,PRINTER1,O,OUTPUTFILE,O

 function = rpdw32->RPDCheckRPRun

Chapter 5
Using Docucorp Publishing Services

270

 function = rpdw32->RPDCreateJob

 function = rpdw32->RPDProcessJob

Add these control groups and options to the DAP.INI file:

< Config:DPS >

INIFile = DPS.INI

< Configurations >

Config = DPS

Here is a sample DPS.INI file:

< MasterResource >

XRFFile = rel102

DefLib = D:\MRL\DEMO\MstrRes\Def\

FormLib = D:\MRL\DEMO\MstrRes\FAP\

LbyLib = D:\MRL\DEMO\MstrRes\FAP\

FontLib = D:\AGFA\

FormDef = form.dat

< RPDRunRP >

Executable = d:\rel111\rps100\w32bin\GENDAW32.EXE

Directory = D:\MRL\DEMO\MstrRes

; UserINI = D:\MRL\DEMO\RunBatch\fsiuser.s.ini

UserINI = D:\MRL\DEMO\RunBatch\FSIUSER.PCL.INI

Debug = Yes

< RPDCheckRPRun >

Debug = Yes

< IDSServer >

BaseLocation = http://10.1.10.209/doc-data/

PrintPath = d:\MRL\DEMO\PrintFiles

GENSemaphoreName = GenData

RPDSemaphoreName = RPDRunRP

< Debug >

RULServerJobProc = Yes

RPDProcessJob = Yes

< ARCRet >

; path to CAR files

CARPath = D:\MRL\DEMO\ARC\

CARFile = ARCHIVE

; full file name for application index

APPIDX = D:\MRL\DEMO\ARC\APPIDX

; full file name for temporary index

TempIDX=D:\MRL\DEMO\ARC\TEMP

; full file name for CAR files catalog

Catalog = D:\MRL\DEMO\ARC\CATALOG

APPIDXDFD = D:\MRL\DEMO\mstrres\def\appidx.dfd

< Control >

XrfExt = .fxr

ImageEXT = .fap

DateFormat = 24%

< PrtType:PDF >

LanguageLevel= Level2

Module = PDFOS2

PrintFunc = PDFPrint

Linearize = No

Setting Up Documaker

271

SETTING UP
DOCUMAKER

Set up Documaker to run in single-step mode. Please note in the following sample
AFGJOB.JDT file that the RULServerJobProc rule is required to run in the IDS
environment and the ServerFilterFormRecipient rule is required for DPS to run properly.

Here is a sample AFGJOB.JDT file:

/* This base (this implementation) uses these rules. */

<Base Rules>

;RULServerJobProc;1;Always the first job level rule;

/*;RULStandardJobProc;;Always the first job level rule;

;JobInit1;;;

;BuildMasterFormList;1;4;

;InitPrint;;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;required to combine gentrn/gendata into
single step;

;BuildFormList;;;

;LoadRcpTbl;;;

;ServerFilterFormRecipient;;;

;RunSetRcpTbl;;;

;PrintFormset;;required to combine gendata/genprint into single
step;

;WriteOutput;;;required to combine gentrn/gendata into single step;

;WriteNaFile;;;required to combine gentrn/gendata into single step;

;BatchingByPageCountINI;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropogate;;FooterMode(2) Debug;

/* Every image in this base uses these rules. */

<Base Image Rules>

;RULStandardImageProc;;Always the first image level rule;

/* Every field in this base uses these rules. */

<Base Field Rules>

;RULStandardFieldProc;;Always the first field level rule;

Chapter 5
Using Docucorp Publishing Services

272

273

Chapter 6

Customizing iDocumaker,
iPPS, and WIP Edit

This appendix describes how you can customize how
iDocumaker, iPPS, and the WIP Edit plug-in work with
IDS.

In this appendix, you will find the following topics:

• Setting Up a Favorites List for iDocumaker on page
274

• Attaching Files to Transactions as Forms on page
276

• Designating Read-Only Multi-Line Text Field
Paragraphs on page 282

• Printing on Your Workstation Printer on page 283

• Preventing the Session from Expiring on page 284

• Passing WIP Record IDs to the MergeWIP Rule on
page 285

• Automatically Updating iDocumaker on page 286

• Using the WIP Edit Plug-in on page 292

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

274

SETTING UP A
FAVORITES LIST

FOR
IDOCUMAKER

You can create a favorites list — a list of frequently used forms — for use in iDocumaker.
This increases your ability to get MRL information from IDS via XML and is similar to
Documaker Workstation feature that lets you set up personal forms lists.

For example, if your company has a large number of forms, each user can set up a
favorites list to more quickly find the forms he or she typically works with. Keep in mind
that users can still select any available form, you are not limited to just those forms on
your favorites list.

To understand this feature you need to understand how iDocumaker uses the
i_GetMRLResource request type to get a list of the groups and forms an MRL supports.

First, iDocumaker requests a list of groups by running the i_GetMRLResource request
without submitting any XML. A list of groups is returned to iDocumaker in an XML
attachment called DOCUMENTSTREAM.

If this feature is enabled, one of the groups is identified as the favorites group. Either the
user or iDocumaker can then select one or more of these groups to get a forms list.

You get a forms list by sending the list of desired groups in the XMLIMPORT XML
attachment to the i_GetMRLResource rule. The i_GetMRLResource request type returns
an XML attachment that contains forms, form descriptions, and recipient data for all of
the requested groups, including the favorites group if you enabled favorites and one of
the submitted groups contains the attribute FAVORITES=TRUE.

You can store one favorites list per configuration. The list is stored in this location:

Config\UserID\profile.xml

For example, if the user ORACLE has a favorites list for the configuration SAMPCO, the
favorites list will be stored in the following location:

SAMPCO\ORACLE\profile.xml

Here is an example of the XML file that contains the favorites list:

<DOCSET>

 <GROUP NAME1="FAVORITES" NAME2="FAVORITES" NAME3="">

 <FORM NAME="FIL 1010 04 92"/>

 <FORM NAME="FIM 0100 11 92"/>

 <FORM NAME="FCG 0010 11 92"/>

 <FORM NAME="Barcode Samples"/>

 <FORM NAME="DAL Locale"/>

 <FORM NAME="Auto Increment Names"/>

 <FORM NAME="A128">

 </FORM>

 </GROUP>

</DOCSET>

You can use these INI options in your MRL INI file to control the favorites list:

< Favorites >

Enabled = Yes

Path = z:\sharedir

Name1 = Favorites

Name2 = Favorites

Setting Up a Favorites List for iDocumaker

275

NOTE: When you select a form from the favorites list, the Key1/Key2 in WIP is set to
whatever is in the Name options in your Favorites control group (Favorites in the
preceding example).

Option Description

Enabled Enter Yes to turn on the use of favorites. The default is No.

Path Enter the name of the path into which you want the favorites list saved. For
instance, if your user ID is Oracle and you enter...
z:\sharedir
The favorites list will be stored in this directory:
z:\sharedir\oracle\profile.xml
If you have IDS installed on multiple PCs, set the Path option to point to the same
location.
If you only have IDS installed on a single PC, you can omit this option.

Name1 Enter the name of the first favorites group.

Name2 Enter the name of the second favorites group.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

276

ATTACHING
FILES TO

TRANSACTIONS
AS FORMS

Using the Documaker Bridge, you can now attach external files as forms to Documaker
transactions. These external files can be in the following formats: TIFF, JPG, PDF, and
other bitmap formats supported by Documaker.

You can also attach RTF files. The RTF import is limited to the same level of support
here as it has in other places in the system. For instance, if something will not work in
Studio, it will not work here either.

When you attach one of these types of files, it becomes an embedded bitmap in a form in
the Documaker transaction. The attached form has an option to indicate it is an
attachment (the letter A in form options).

NOTE: This feature was implemented for use with iDocumaker. The Documaker Bridge
rules DPRUpdateFormsetFromXML and DPRLoadImportFile were enhanced
to support attachment forms.

You can attach a file by:

• Placing it on disk and specifying its name and type in IDS attachment variables.

• Sending the file to IDS in a message.

• Placing the file on a disk accessible to the Documaker Bridge.

• Placing the file in a Documanage repository.

In all cases, the information needed to find the file is located in the form metadata. Special
metadata tag names are reserved for each case.

Specifying the File Name and Type in IDS Attachment
Variables
Use these tags in the form’s metadata specify how to locate the file name.

Here is an example fragment of an XML import file with this information. The file name
is located in a DSI variable named DPRFILE and its type is in the DSI variable
DPRTYPE.

<FORM NAME="Test form name" OPTIONS="RA">

Tag Description

DPR_ATTACHVARNAME The name of the DSI attachment variable where the file name
is stored.

DPR_FILETYPE (Optional) The file type. The file type is determined by the
program by looking at this value. If missing, the file extension
is checked. If the extension is missing, the default is TIFF.

DPR_FILETYPEVAR (Optional) The name of the DSI attachment variable with the
file type. The file type is determined by the program by looking
at this value. If missing, the file extension is checked. If the
extension is missing, the default is TIFF. If the
DPR_FILETYPE variable is present, this variable is ignored.

Attaching Files to Transactions as Forms

277

<INFO NAME="DPR_ATTACHVARNAME">DPRFILE</INFO>

<INFO NAME="DPR_FILETYPEVAR">DPRTYPE</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Sending the File to IDS in a Message
The following tags in form metadata specify how to locate the file data.

At least one of the file type values is required even though both are listed as optional.

Here is an example fragment of an XML import file with this information. The file is sent
to IDS inside the message and the name of the attachment used to send it is SENTFILE.
The type of file is in the DSI variable DPRTYPE.

<FORM NAME="Test with DSI message" OPTIONS="RA">

<INFO NAME="DPR_ATTACHNAME">SENTFILE</INFO>

<INFO NAME="DPR_FILETYPE">TIF</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Storing the File on a Disk Accessible to Documaker Bridge
Use these tags in the form’s metadata to tell Documaker Bridge how to locate the file.

Tag Description

DPR_ATTACHNAME The name of the DSI attachment in which the file was sent, such as
via the SendFile API.

DPR_FILETYPE (Optional) The file type. The file type is determined by the program
by looking at this value. If missing, the file extension is checked. If
the extension is missing, the default is TIFF.

DPR_FILETYPEVAR (Optional) The name of the DSI attachment variable with the file
type (optional). The file type is determined by the program by
looking at this value. If missing, the file extension is checked. If the
extension is missing, the default is TIFF. If the DPR_FILETYPE
variable is present, this variable is ignored.

Tag Description

DPR_FILENAME The name of the file.

DPR_FILETYPE (Optional) The file type. The file type is determined by the program
by looking at this value. If missing, the file extension is checked. If
the extension is missing, the default is TIFF.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

278

Here is an example fragment of an XML import file with this information.

<FORM NAME="Test with filename" OPTIONS="RA">

<INFO NAME="DPR_FILENAME">c:\docs\Image_0001.jpg</INFO>

<INFO NAME="DPR_FILETYPE">JPG</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

NOTE: If you are using relative paths in the file name, the path has to be relative to the
directory where Docupresentment is running.

Storing the File in a Documanage Repository
Include these tags in the form’s metadata to specify how to locate the file:

Here is an example fragment of an XML import file with this information.

<FORM NAME="Test with Documanage" OPTIONS="RA">

<INFO NAME="DMG_CABINET">DOCCDEMO</INFO>

<INFO NAME="DMG_DOCID">22401</INFO>

<INFO NAME="DMG_VERSION">1</INFO>

<INFO NAME="DMG_REVISION">0</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Here is another example with the DOC_VERS value:

<FORM NAME="Test with Documanage" OPTIONS="RA">

DPR_FILETYPEVAR Optional) The name of the DSI attachment variable with the file
type. The file type is determined by the program by looking at this
value. If missing, the file extension is checked. If the extension is
missing, the default is TIFF. If the DPR_FILETYPE variable is
present, this variable is ignored.

Tag Description

DMG_CABINET The name of the Documanage cabinet.

DMG_DOCID The value of the Documanage DOCID.

DMG_VERSION The major version of the document.

DMG_REVISION The minor version of the document.

DMG_VERS The minor and major version of the document. The format is
minor.major, such as 1.0 or 2.5. If this value is present, the values of
DMG_VERSION and DMG_REVISION are ignored.

Tag Description

Attaching Files to Transactions as Forms

279

<INFO NAME="DMG_CABINET">DOCCDEMO</INFO>

<INFO NAME="DMG_DOCID">22401</INFO>

<INFO NAME="DMG_VERS”>1.0</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Note that to use the file in Documanage, the Documanage Bridge must be available on
the same Docupresentment server. The Documaker Bridge executes these Documanage
Bridge rules when it encounters the form with the metadata. No configuration changes
are needed:

• DmgBrsCopyAttachment

• DmgBrsValidateSession

• DmgBrsCacheContentsFile

You do not have to specify the file type in this case, the Documanage document type is
used instead.

Error Messages
These error messages can be produced by the DPR rules listed above if the attached form
did not work or was specified incorrectly.

Specifying Duplex Options for the Attached Form
When it contains multiple pages, the attached form might have to be printed in duplex
mode. The duplex options in Documaker are specified on sections (images), so to provide
the duplex information the form in XML must specify a section and section duplex
options.

Your choices are:

Message Description

DPR0097 Attachment form <FORM> metadata specified the DSI attachment variable
<VARIABLE> but this variable was not found. The file will not be loaded.

DPR0098 Attachment form <FORM> metadata specified the DSI file attachment with the
delimiter <VARIABLE> but this file was not attached to the DSI message. The
file will not be loaded.

DPR0099 Attachment form <FORM>metadata is missing the required value <INFO>. The
file will not be loaded.

DPR0100 Failed to load the attached file specified by the attachment form <FORM>. File
name <FILE> of type <TYPE>.

DPR0101 Failed to load the dynamic link library <LIBRARY>.

DPR0102 Cannot locate variable <VARIABLE> in the attachment list after executing the
Documanage Bridge rules. Examine the Documanage Bridge errors.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

280

• F – front

• B – back

• T – short bind

If there are no options or no section is specified, the rule assumes simplex mode. At the
end of the options you must to specify #1 to indicate it is a dummy image. Here is an
example:

(OPTIONS=”S#1”)

The name of the section is ignored. Here are a few examples:

Start on back page bind
example

<FORM NAME="Test with PDF filename" OPTIONS="RA">

<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>

<DESCRIPTION>Test of TIFF form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>

<SHEET>

<PAGE>

<SECTION NAME="TESTSECTION" OPTIONS="B#1"/>

</PAGE>

</SHEET>

</FORM>

Long bind example <FORM NAME="Test with PDF filename" OPTIONS="RA">

<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>

<DESCRIPTION>Test of TIFF form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>

<SHEET>

<PAGE>

<SECTION NAME="TESTSECTION" OPTIONS="F#1"/>

</PAGE>

</SHEET>

</FORM>

Short bind example <FORM NAME="Test with PDF filename" OPTIONS="RA">

<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>

<DESCRIPTION>Test of TIFF form</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>

<SHEET>

<PAGE>

<SECTION NAME="TESTSECTION" OPTIONS="T#1"/>

</PAGE>

</SHEET>

</FORM>

Debugging
Include this INI option in the DAP INI files to help you resolve any problems.

< Debug >

DPRProcessFormsetAttachments = Yes

Attaching Files to Transactions as Forms

281

The default is No. If you enter Yes, the NA and POL files are unloaded with the names
dprattach.dat and dprattach.pol. Here is an example of the log file (dprtrc.log) the system
produces:

DPRProcessFormsetAttachments: DMG_CABINET=<DOCCDEMO> Form <Test with
Documanage>. Adding CABINET attachment variable

DPRProcessFormsetAttachments: DMG_DOCID=<22401> Form <Test with
Documanage>. Adding DOC_ID attachment variable

DPRProcessFormsetAttachments: DMG_VERSION=<1> Form <Test with
Documanage>. Adding DOC_MAJORVERSION attachment variable

DPRProcessFormsetAttachments: DMG_REVISION=<0> Form <Test with
Documanage>. Adding DOC_MINORVERSION attachment variable

DMG Rule DmgBrsCopyAttachment(DSI_MSGINIT) Time spent: 0.000

DMG Rule DmgBrsValidateSession(DSI_MSGINIT) Time spent: 0.000

DMG Rule DmgBrsCacheContentsFile(DSI_MSGINIT) Time spent: 0.000

DMG Rule DmgBrsCopyAttachment(DSI_MSGRUNF) Time spent: 0.078

DMG Rule DmgBrsValidateSession(DSI_MSGRUNF) Time spent: 0.109

DMG Rule DmgBrsCacheContentsFile(DSI_MSGRUNF) Time spent: 0.094

DPRProcessFormsetAttachments: found Documanage bridge attachment
variables CONTENTS_DECOMPRESSED_PATH=<cache\22401f0v1x0.tif> and
CONTENTS_DECOMPRESSED_TYPE=<TIF>

DMG Rule DmgBrsCacheContentsFile(DSI_MSGRUNR) Time spent: 0.016

DMG Rule DmgBrsValidateSession(DSI_MSGRUNR) Time spent: 0.000

DMG Rule DmgBrsCopyAttachment(DSI_MSGRUNR) Time spent: 0.000

DMG Rule DmgBrsCacheContentsFile(DSI_MSGTERM) Time spent: 0.000

DMG Rule DmgBrsValidateSession(DSI_MSGTERM) Time spent: 0.000

DMG Rule DmgBrsCopyAttachment(DSI_MSGTERM) Time spent: 0.000

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

282

DESIGNATING
READ-ONLY
MULTI-LINE
TEXT FIELD

PARAGRAPHS

The following attributes are included in the XML export file on the <P> tag for read-only
multi-line text field paragraphs:

contenteditable="false"

unselectable="on"

These attributes are used by iPPS and iDocumaker TERSUB functionality to prevent a
user from selecting or modifying the paragraphs.

Here is an example:

<P contenteditable="false" unselectable="yes" />

Printing on Your Workstation Printer

283

PRINTING ON
YOUR

WORKSTATION
PRINTER

When using iPPS or iDocumaker, you can send print files to workstation printers. The
print files are created on the server, downloaded, and then printed on your workstation’s
printer.

The system displays the Printer window so you can select the printer you want to use or
cancel the print job. The printer you select must support either PCL or PostScript.

The print files have a DPP file extension and will be in PCL or PostScript format. This
DPP file is generated by IDS via a request from iPPS or iDocumaker. There are no
changes on the client side (plug-in) you need to make.

NOTE: When you install or update iPPS or iDocumaker, the installation process creates
the necessary file association.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

284

PREVENTING
THE SESSION

FROM EXPIRING

You can prevent the web server session from timing out when you are working on
documents in iDocumaker. The time-out occurs if you leave the document open in
iDocumaker for an interval longer than the time the web server allows a session to remain
active. For instance, when a session times out, a save request will fail.

The session is kept current by telling iDocumaker to contact the web server when you
change the current page. To do this, set this INI option in the CONFIG.INI file:

< INI2XML >

RefreshScript = iwip18/test.htm

NOTE: The value of the RefreshScript option is specfic to your installation. The value
shown above is only an example.

By default, iDocumaker will not contact the web server if it has done so in the last five
minutes. You can change this interval using this INI option in the WIPEDIT.INI file.

< WIPEdit >

RefreshSessionTime = 600

Specify the interval in seconds. The example above specifies an interval of 600 seconds,
or 10 minutes.

Passing WIP Record IDs to the MergeWIP Rule

285

PASSING WIP
RECORD IDS TO
THE MERGEWIP

RULE

iDocumaker can designate a single WIP transaction to be processed by Documaker. IDS
then passes the WIP record ID to Documaker so the MergeWIP rule will process that
record.

This table describes how it works:

NOTE: This only affects Documaker when you are running Documaker via IDS.

For more information about the MergeWIP rule, see the Rules Reference. For more
information about running Documaker Server as a subordinate process of IDS, see Using
IDS to Run Documaker on page 144.

On the... This happens

IDS side The RPDCreateJob rule checks the WIPRECORDID input attachment variable
and adds the XML element <WIPRECORDID> to the job ticket.
Keep in mind that the WIPRECORDID input attachment variable is required
when the RPD request is submitted. This requirement is in addition to the
normal requirements for running Documaker as a subordinate process of IDS.

Documaker
Server side

The ServerJobProc rule receives the job ticket and looks for the
WIPRECORDID variable. If WIPRECORDID is found, the rule creates the
WIPRECORDID GVM. The MergeWIP rule uses the WIPRECORDID GVM
to retrieve the WIP record for batch processing by Documaker.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

286

AUTOMATICALLY
UPDATING

IDOCUMAKER

You can use IDS to update a user’s workstation with a new version of the iDocumaker
executables. Users are notified of an update when a document is opened if a new version
has been made available by the administrator.

NOTE: You must be using version 11.2 or higher of iDocumaker to use the automatic
update feature.

The user can then begin the installation by clicking the Begin Installation button. If the
user clicks Exit, the update is skipped until he or she opens the next document.

CONFIGURING IDS TO UPDATE IDOCUMAKER

To configure IDS to update iDocumaker, follow these steps:

1 Select the location where the iDocumaker executables will be kept under IDS. This
example shows the default location if IDS is running from the \docserv directory.

Docserv\data\CONFIG\wipedit

If you need to change this you can set the following INI option in the configuration-
specific INI file:

< WIPEdit >

ExecDir = d:\docserv\data\sampco\wipedit

2 Copy the executables for iDocumaker into this directory.

IDS keeps a file that contains version information for these executables. The
contents of this file are included inside the DPW file. The presence of this file
determines whether the update process occurs. Here is the default path for this file:

Docserv\data\CONFIG\CONFIG.wipedit

If this is not an acceptable location you must set the following INI option in the
CONFIG.INI file to the appropriate location:

< WIPEdit >

VersionFile = d:\docserv\data\sampco

3 The update program needs to know the location of the installation file from the web
server so you must set up the following INI options. To set up these options, you
must know the web site address and the relative path to the installation file within the
web site.

< INI2XML >

DownloadURL = localhost

DownloadScript = doc-prog/data/sampco/wipedit.dpi

DownloadUserID = (user ID)

DownloadPassword = (password)

Option Description

ExecDir This option tells the update utility (VERSUPD) where the executables are
located.

Automatically Updating iDocumaker

287

Here is an example of how you can use the CRYRUW32 utility at a command prompt
to encrypt the data:

C:\docserv1.8>cryruw32 password

Encrypted string (2XAUnkxUYlx7i5AnQ4m4E1m00)

4 Next, use the VERSUPD utility to build the installation file and version file.

USING THE VERSUPD UTILITY

Use this utility to create the installation file and the version file. These files are created by
the VERSUPD utility:

• A version file which contains XML entries for version number, patch level, and
accumulated CRC for files without patches.

• An installation file which has all of the executables for iDocumaker compressed into
one file. The executable is installed on client machines via the UPDWDT utility.

NOTE: The UPDWDT utility is typically executed by iDocumaker when needed. You do
not have to run it.

Both the version file and the installation file need to be created where the IDS rules expect
them to be. By default, the VERSUPD utility creates them in same location IDS expects
to find them.

Program names

Option Description

DownloadURL You can enter the web site address or a machine name on the
network. For example, you could enter localhost,
pd.docucorp.com, www.docucorp.com, or an IP address. The
exact value is specific to your implementation. This option is
similar to the PUTURL option which may already be in the
INI2XML control group.

DownloadScript This is the part of the URL which points to the location within the
host for the installation file. It should contain the name of the
installation file. This is similar to the SCRIPT option which
usually points to the wipsave.asp or wipsave.jsp file for
iDocumaker Workstation. The exact value is specific to your
implementation.

DownloadUserID Enter the user ID for authentication purposes. This entry may be
encrypted.

DownloadPassword Enter the password for authentication purposes. This entry may
be encrypted.

Windows versupd.exe

UNIX versupd

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

288

Syntax versupd /config /ini /versionfile /installation /base /debug

Here is an example:

versupd /config=SAMPCO

This command puts both files in the following path:

c:\docserv\Data\SAMPCO

Here is another example:

versupd /config=SAMPCO /versionfile=c:\docserv\VersionControl
/installation=c:\docserv\WIPEditInstallation

This command creates these files:

INI options These INI options from the CONFIG.INI files are read by the VERSUPD utility:

< WIPEdit >

ExecDir =

VersionFile=

Parameter Description

/config Enter the name of the configuration, such as SAMPCO.

/ini (Optional) Enter the path to the configuration INI file used by IDS.
Specifying an INI file helps you make sure IDS and the VERSUPD utility look
for shared files in the same location.

/versionfile (Optional) Enter the path to the version file. This overrides the entry in the INI
file.

/installation (Optional) Enter the path to the installation file. This overrides the entry in the
INI file.

/base (Optional) Enter the path to the executables for iDocumaker Workstation.
By default, this utility looks for executables in the data\config\wipedit directory
under the current directory. This overrides the entry in the INI file

/debug (Optional) Include this option to send a list of each file included in the
installation to stdout.

File type Name and path

Version c:\docserv\VersionControl

Installation c:\docserv\WIPEditInstallation

Option Description

ExecDir Enter the location for iDocumaker Workstation’s executables.

VersionFile Enter the location of the file that contains the version information.

Automatically Updating iDocumaker

289

Error messages The following error messages may be generated by versupd. These errors will go both to
stdout and to a file named trace that will be in the current directory of the VERSUPD
utility.

Could not create installation file (version file path)

Could not find files to build installation in directory (iDocuMaker
Workstation directory)

Not able to add file (executable name) to installation (installation
file name)

Could not access directory where the iDocuMaker Workstation
executables are suppose to be.

Could not access directory where custom wipedit executables are
suppose to be (custom executable directory)

Unable to create version file (installation file)

Unable to retrieve version information from directory (iDocumaker
Workstation directory)

Unable to create document (version file)

Could not lock version file (version file name).

ON THE CLIENT SIDE

When iDocumaker is installed the version information is stored in registry. When
iDocumaker parses the DPW file, it finds the most current version according to IDS. It
then compares the version stored under IDS and the local version. If there is a
discrepancy, iDocumaker’s installation tool starts.

• The installation tool performs these steps:

• Downloads the archived file of iDocumaker executables.

• Backs up the current iDocumaker executable directory.

• Makes sure you have write access to all of the program files for iDocumaker.

• Erases all of the files in iDocumaker's executable directory.

• Installs the new executables.

• Updates the local version information in the registry.

Once you have set up IDS to automatically update iDocumaker, those computers with
version 11.2 or higher of iDocumaker display the following window when you open a
document.

Click the Begin Installation button to update iDocumaker. Click Exit to skip the update.
The next time the user tries to open a document, IDS will again prompt the user to update
iDocumaker.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

290

Additional Utilities
You can also use these additional utilities:

• The VERS2REG utility gets the local version information and updates the registry.
This utility executes on the workstation side from a command prompt. Typically, it
is only executed during the original installation of iDocumaker. You can, however,
start it from a command prompt. You can use the /v and /i parameters to determine
which files and patch levels are in the current installation.

vers2reg /v /i /p /r

NOTE: CRC (Cyclic Redundancy Check) is a way to check for data transmission errors.

• The UPDWDT utility gets the iDocumaker installation file from the IDS and then
updates iDocumaker.

NOTE: The UPDWDT utility is typically executed by iDocumaker when needed.
Information about running this utility is only included in case you are having
problems with the iDocumaker and need to update your system.

updwdt /b /i /r

Parameter Description

/v This parameter writes to stdout the values it will put in the registry.

/i This parameter tells the utility to simply display the patch and CRC
information and not change the registry.

/p Use this parameter to set the path to the iDocumaker executables instead of
using the registry to find the installed location

/r This parameter indicates the registry key where the utility can find
iDocumaker executables.

Parameter Description

/b This tells the utility to copy the reboot/backup directory contents to the
installation directory. This option is used when there are files to update
during the reboot process.

/i This tells the utility to install from a file specified by the next parameter. This
is used if the installation file is already present on the local machine.

/r The registry location where iDocumaker has been installed. The defaults is:

HKEY_CLASSES_ROOT\\wipedit.Document\\protocol\\StdF
ileEditing\\server

Automatically Updating iDocumaker

291

• Documaker Bridge rules to get the version information and CRC from the
iDocumaker executables. You should have a separate location for each CONFIG
value for these executables.

CHECKING VERSION INFORMATION

You can use the WDTValidateDPI API to check the version information for iDocumaker
from a menu. Place this API function in the WIPEDIT.RES file. When you use this
function, these tests are performed:

1 Make sure local version information has been created. This identifies whether the
VERS2REG utility has been run during the install process. If the version information
does not exist, this message appears:

Local version information does not exist for plug-in

2 Make sure the server version information has been updated. This indicates that server
information was created and downloaded in the DPW file. If the version information
cannot be found, this message appears:

Version information does not exist on the server for plug-in

3 Compare server side information with local version information. If the version
information matches, this message appears:

You are running the correct version of the plug-in

If the versions do not match, this message appears:

Incorrect version of the plug-in - please update

4 Make sure the compressed file can be downloaded from the web server based on the
download information in the registry. If it cannot, this message appears:

Not able to locate the installation file on the web server - (followed
by web address attempted)

5 Check the format of the installation file. If there is a problem, this message appears:

Plug-in installation file is corrupt contact server administrator

If everything is Ok, you will see at least two messages. If tests 1, 2, and 3 pass the following
message appears.

You are running the correct version of the plug-in

If tests 1, 2, and 3 fail but tests 4 and 5 pass, this message appears:

Installation file can be accessed successfully

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

292

USING THE WIP
EDIT PLUG-IN

The WIP Edit plug-in lets you present WIP information inside a browser. The plug-in is
an Active Document Server application, which means it can run inside Internet Explorer
whenever it opens a DPW file. The document is opened inside the browser. The browser
menu is not replaced and you can access it by right clicking inside the document.

NOTE: The WIP Edit plug-in only runs inside Microsoft’s Internet Explorer. It will work
with other browsers, but it will not run inside other browsers.

The WIP Edit plug-in dynamically requests the downloading of the following resources
from IDS. The DPRGetResource rule looks in your INI options to locate any resources
requested.

• FAP files (The default location is your FormLib directory)

• DAL scripts (The default location is your DefLib directory)

• Tables (The default location is your TableLib directory)

• Help files (The default location is your HelpLib directory)

You must include this request type in the DOCSERV.INI file to dynamically download
resources:

[ReqType:GETRESOURCE]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = atcw32->ATCSendFile,RETURNFILE,RETURNFILE,Binary

function = dprw32->DPRGetResource,RETURNFILE

You can add entries to WIP by including this request type in the DOCSERV.INI file. This
request type creates a DPW file that triggers the Form Selection window.

[ReqType:GETEMPTYWIP]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = atcw32->ATCSendFile,RETURNFILE,RETURNFILE,Binary

function = dprw32->DPRCreateEmptyWipXML,RETURNFILE

function = dprw32->DPRFile2Dpw,RETURNFILE

function = dprw32->DPRIni2XML

Set this request type to determine if a policy number is already being used.

[ReqType:WFIND]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

Using the WIP Edit Plug-in

293

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRFindWipRecords

Here are examples of entries in the INI2XML control group:

< INI2XML >

PolicyScript = doc-prog/iwip/sampco/wipfound.asp

GetScript = doc-prog/iwip/sampco/wipdownload.asp

Key1 = FORMMAKER PACKAGE

Key2 = PROPERTY;INLAND MARINE

The WIPCTL.DLL file lets you control the document through an ASP page. The
WIPCTL.DLL file contains the WIP Edit interface. This lets custom web applications
send messages to the WIP Edit plug-in to do things like zoom in or out, advance to the
next page or form, and so on. You must register this component with regsvr32.

This component supports these methods:

cmd(int cmd);

GotoForm(BSTR formname,int formno,int pageno);

Save(void);

FitToWidth(void);

FitToWindow(void);

ZoomIn(void);

ZoomOut(void);

ZoomNormal(void);

FormPrevious(void);

FormNext(void);

FormSelect(void);

Refresh(void);

FieldTemplat(void);

AutoFocus(void);

Information(void);

FixedEdit(void);

FixedPrompt(void);

Cascade(void);

Tile(void);

Stack(void);

StackOnly(void);

HelpContents(void);

HelpHowTo(void);

Option Description

PolicyScript This is a script to run on the web server to check for duplicate policy numbers.

GetScript This is a script to run on the web server to get resources dynamically.

Key1 If a transaction is created, this sets the Key1 value on the Form Selection
window.

Key2 If a transaction is created, this sets the Key2 value on the Form Selection
window.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

294

HelpGlossary(void);

UsingHelp(void);

PagePrevious(void);

PageNext(void);

SelectSection(void);

ProductionInformation(void);

HelpShortcuts(void);

Here is a example of ASP code for wipctl:

Function Save

set aspobj = CreateObject("Wipctl.WipEd.1")

aspobj.Save

set aspobj = Nothing

End Function

Here are some things to keep in mind as you use the WIP Edit plug-in:

Turning on debugging You can use the Debug option to turn on debugging. This lets you turn on debugging
without having to individually set the environment variable on client machines running
the WIP Edit plug-in.

To turn on debugging using the Debug option, include this option in the wipedit.ini file:

< WIPEdit >

Debug = Yes

Automatically sending
the WIPEDIT.FXR file

The IDS rules that create the DPW file can automatically send the WIPEDIT.FXR file to
the WIP Edit plug-in when these conditions are met in the INI file:

• The DownloadDPWFonts option in the WIP2DPW control group is set to No.

• The XRFToken option is not set in the File2DPW control group.

In the sampco.ini file, comment out the XRFToken option, as shown in this example:

< File2DPW >

; XRFToken = mstrres\sampco\deflib\rel102sm.fxr

NOTE: You can only have one installation of the WIP Edit plug-in on a PC.

Saving documents with
invalid certificates

The WIP Edit plug-in ignores invalid web certificates, such as when the web certificate
has expired. If the certificate is invalid, the system can save the document from the WIP
Edit plug-in with the following INI options:

To begin, download an INI file to the WIP Edit plug-in. For this example, use the
USER.INI file. Add the following to the configuration specific INI:

< File2DPW>

INIToken = user.ini

The USER.INI file should contain the following.

< ICMLib>

IgnoreInvalidCertificate = Yes

Running the plug-in
outside the browser

You can run the WIP Edit plug-in in its own window (outside the browser) by changing
the content type header in the WIPEDIT.ASP or WIPEDIT.JSP web page.

Using the WIP Edit Plug-in

295

When you run it outside the browser, you must delete the file type setup by registering the
program and manually setting the file type and association.

Registering the plug-in The installation routine should register the plug-in for you, but if for some reason you
need to register the plug-in, simply run the WIPEDW32 program with no parameters.

Changing values in the
WIP index

Use the UpdateDpwIndex INI option to change values in the WIP index based on session
variables created in the wipedit.jsp or wipedit.asp page. This option will probably always
be used with a customization to the web page to update the WIP index with data from an
external source.

If you need to change a WIP index field with a value that originates in the ASP/JSP page,
you can use the UpdateDPWIndex option to modify the WIP record when the document
is saved. For example, you can use this option to track some other user ID than the login
ID the page prompts for.

The following lines are in the wipedit.asp page. A session variable is created called
SETORIGUSER. This information is passed to IDS in the form of an attachment
variable by the DSI.ProcessQ:

session("SETORIGUSER") = "testchange"

On Error Resume Next

DSI.ProcessQ 'Execute Request From Attachment

The configuration specific INI must have the following UpdateDpwIndex option:

< UpdateDPWIndex >

OrigUser = #SETORIGUSER

The # character tells the system to get the data from the attachment variable named
SETORIGUSER. Without the #, the WIP index is updated with the text in the INI file.

The DPRIndex2Xml rule reads the UpdateDpwIndex control group and makes changes
in the index portion of the DPW file. When the DPW file is saved, the DPRDpw2Wip
rule updates the WIP index with the change.

Changing the WIP
index field

You can change the WIP index field in a document from the web page while the
document is being edited by the WIP Edit plug-in. This is mainly used with iDocumaker.
These methods let you change and retrieve the WIP index fields from the current
document:

• SetWipField

• GetWipField

• GetWipIndex

This Visual Basic script sets the DESC field in the WIP index and retrieves it with both
methods.

Dim wvalue1

To run Change the content type header to

Inside the browser Response.ContentType ="application/octet-stream"

Outside the browser Response.ContentType ="application/dpw"

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

296

Dim wvalue2

set aspobj = CreateObject("Wipctl.WipEd.1")
 aspobj.SetWipField "DESC", "testvalue"

 wvalue1 = aspobj.GetWipIndex("DESC")

MsgBox(wvalue1)

aspobj.GetWipField "DESC", wvalue2

MsgBox(wvalue2)

Running multiple
instances of the WIP

Edit plug-in

You can have multiple browser windows open, all running the WIP Edit plug-in. Note,
however, that if the web application is not designed for multiple browser access by the
same user, you will still experience problems.

You can get related debugging information when running multiple instances of the WIP
Edit plug-in by setting this environment variable:

WIPCTLDEBUG=Y

The debugging information is placed in the wipctl.log file in the system’s TMP directory
or the directory specified by WIPEDITTMP.

NOTE: While this is not an issue for iDocumaker, some implementations in which
iDocumaker is integrated with other web applications can be affected.

Using WIP Edit with
SiteMinder®

You can use the WIP Edit plug-in with web sites protected by SiteMinder® and with web
sites that use clustered web servers. SiteMinder stores security information in a cookie.
The WIP Edit plug-in looks for this cookie and attaches the cookie information to
requests for resources and the saving of documents.

CONTROLLING THE INTERFACE

The WIPCTL program (WIPCTL.DLL) contains the WIP Edit interface which lets
custom web applications send messages to WIP Edit to do things like zoom in or zoom
out, advance to the next page or form, and so on. This component must be registered with
regsvr32.

NOTE: This information is intended for someone writing ASP or JSP scripts.

The WIPCTL.DLL also includes the CmdWithMessage method which lets someone
writing a script receive a response from the WIP Edit plug-in in that script. The following
table documents the WIPCTL methods and options:

To... Use...

Anchor the data entry area at the top of your screen, instead of
having it move as you move through the various fields.

FixedEdit(void)

Anchor the data entry area at the top of your screen, instead of
having it move as you move through the various fields.

FixedPrompt(void)

Using the WIP Edit Plug-in

297

Change data within the form set.

See cmdSetFormsetField on page 300 for more information.

cmdSetFormsetField
(VARIANT fieldName,
VARIANT newValue

Change the form being edited. The parameters include:
• formname – Name of the form in the form set.
• formno – Instance of the form. This is because a form set

may have multiple forms with the same name.
• pageno – Page within the form.

GotoForm(BSTR
formname,int formno,int
pageno);

Change the WIP index field for the current document.
See Changing the WIP index field on page 295 for more
information.

SetWipField

Check required fields.
See BSTR getRequiredFieldName() on page 301 for additional
information.

BSTR checkRequiredField()

Decrease the magnification of your form display. ZoomOut(void)

Display additional information about the variable fields in an
image.

Information(void)

Display how to perform specific functions using the various
options, commands, and system tools.

HelpHowTo(void)

Display multiple form or image windows in layers. The system
stacks the forms one behind another so you see the complete
form set and the name or title of each form.

Cascade(void)

Display multiple form or image windows on your screen. If
you tile a form set, each window displays the first image of each
form in that form set.

Tile(void)

Display multiple form or image windows stacked on top of one
another. You close each top layer display window to reveal
underlying windows.

Stack(void)

Display retrieved form sets in Stack mode. Stack Only is the
default display when you retrieve archived form sets.

StackOnly(void)

Display the entire image in the active window. You see the
complete image on one window.

FitToWindow(void)

Display the full width of the image in the active window. You
see a complete horizontal display.

FitToWidth(void)

Display window for product information. ProductionInformation(void)

Document the shortcuts. HelpShortcuts(void)

To... Use...

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

298

Execute functions defined in WIPEDIT.RES. WIPEDIT.RES
is the file that defines the menu for the WIP Edit plug-in. This
is similar to the MEN.RES for AFEMAIN.
Each function has a number that identifies the function. This
is the number that should be used in cmd.

cmd(int cmd);

Find out whether a save command was successful from a Java
script.
See cmdGetResponse on page 301 for more information.

cmdGetResponse

Get an overview of the system. HelpContents(void)

Have the system scroll the form as you move through the fields
on the form. The current field always stays in view. With this
option turned off, it is possible for the field your cursor is in to
not appear on your screen.

AutoFocus(void)

Increase the magnification of your form display. ZoomIn(void)

Learn how to use help. UsingHelp(void)

Let someone writing the script receive a message back from the
WIP Edit plug-in in the script. The WIPEDIT.RES function
must provide a response to return. A MEN.RES function must
be written to handle this situation. An example is
RACCheckRequiredFields.
RACCheckRequiredFields checks to see if a function has been
installed that will set up a response to be returned in the
rsptoasp.
This method only works with Visual Basic scripts.

cmdWithMessage(int cmd)

Look up definitions of terms used throughout the system. HelpGlossary(void)

Move to the next form. FormNext(void)

Move to the next page. PageNext(void)

Move to the previous form. FormPrevious(void)

Move to the previous page. PagePrevious(void)

Pass a parameter to a function defined in the wipedit.res file.
See cmdGetResponseWithParm on page 300 for more
information.

cmdGetResponseWithParm
(LONG cmd, VARIANT
FieldName)

Redraw or redisplay your form after making changes. Refresh(void)

Retrieve the WIP index field for the current document.
See Changing the WIP index field on page 295 for more
information.

GetWipField

To... Use...

Using the WIP Edit Plug-in

299

NOTE: WIPCTL also includes a Terminate method. Do not use this method. The
Terminate method was only included to be consistent with the existing interface.

Retrieve the WIP index field for the current document. Works
just like the GetWipField method except it returns the value of
the field instead of setting a parameter.
See Changing the WIP index field on page 295 for more
information.

GetWipIndex

Return the name of the field that needs data if the result of
checkRequiredFields was False.
See BSTR getRequiredFieldName() on page 301 for more
information.

BSTR
getRequiredFieldName()

Return your form to 100% display size. ZoomNormal(void)

Return WIP Edit plug-in version information.
See GetVersion on page 301 for more information.

GetVersion

Save the document. This sends the copy of the document back
to the server but it does not close the document.

Save(void)

Select the form in a form set you want to view. This option is
helpful when you are viewing a stacked form set.

FormSelect(void)

Select which page you want to view. This option is helpful
when you are viewing a stacked form set.

SelectSection(void)

View the size and location of variable fields on a form. FieldTemplat(void)

To... Use...

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

300

Example ASP code Here is example ASP code for WIPCTL.

Function Save

set aspobj = CreateObject("Wipctl.WipEd.1")

aspobj.Save

set aspobj = Nothing

End Function

Example Visual Basic
script

Here is an example Visual Basic script:

Dim rspmsg

set aspobj = CreateObject("Wipctl.WipEd.1")

aspobj.cmdWithMessage 263,rspmsg

set aspobj = Nothing

MsgBox(rspmsg)

cmdGetResponseWith
Parm

Use this method to pass a parameter to a function defined in the wipedit.res file.

cmdGetResponseWithParm(LONG cmd, VARIANT FieldName)

This is a generic method that is used with a wipedit.res function.

In this example the cmdGetReponseWithParm method is used to get the value of a form
set field and return it to a Java script. First, in the wipedit.res file, add this line:

MENUITEM "RACGetFormField" 263 "racw32->RACGetFieldData"

Here is an example:

{

var rsp;

aspobj = new ActiveXObject("Wipctl.WipEd.1");

rsp = aspobj.cmdGetResponseWithParm(263, "COMM PROP PREM");

alert(rsp);

}

cmdSetFormsetField Use this method to change data within the form set.

cmdSetFormsetField(VARIANT fieldName, VARIANT newValue

This method returns the previous value of the field.

NOTE: If there are multiple fields in the form set with the same name, the system changes
all of the matching names in the form set.

Parameter Description

cmd The command ID in the wipedit.res file.

Fieldname The name of the field in the form set.

Parameter Description

fieldName Then name of the field in the form set

newValue The value to change the field to.

Using the WIP Edit Plug-in

301

Here is an example:

{

var rsp;

aspobj = new ActiveXObject("Wipctl.WipEd.1");

rsp = aspobj.SetFormsetField("COMM PROP PREM", "44");

alert(rsp);

}

GetVersion Use this method to return the current WIP Edit plug-in version information in the
following format (a null terminated string separated with semi-colons):

dap-patch;3rdparty patch;accumulated CRC;version

There are no parameters for this method. Here is an example:

<script language="JavaScript">

{

aspobj = new ActiveXObject("Wipctl.WipEd.1");

version = aspobj.GetVersion();

alert(version);

}

</script>

cmdGetResponse The WIP Edit plug-in can send a response back to Java script that indicates the success
or failure of a save operation initiated from the web page. This method lets you find out
whether a save command was successful from a Java script. Here is an example of the
cmdGetResponse method:

function CheckRequiredFields() {

aspobj = new ActiveXObject("Wipctl.WipEd.1");

var rspmsg = "";

rspmsg = aspobj.cmdGetResponse(262);

alert(rspmsg);

rspmsg = ""

}

BSTR
getRequiredFieldName(

)

If the results of checkRequiredFields was False, use this method to return the name of the
field that needs data. Here is an example:

function CheckFields() {

aspobj = new ActiveXObject("Wipctl.WipEd.1");

var rspmsg = aspobj.checkRequiredField();

if (rspmsg == "false")

{

rspmsg = aspobj.getRequiredFieldName();

alert(rspmsg);

}

else

{

alert("all required fields have data");

}

}

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

302

SETTING UP CUSTOM FUNCTIONS

Custom functions let you send a message back to IDS by selecting a menu item. To use a
custom function, you must set them up consistently in several places:

• Decide the node name for the custom function. This is used to map the transaction
from the customer INI file and the WIPEDIT.RES file. In this example,
CUSTFUNC is the node name.

• Specify the node name in the INI2XML control group in the customer INI file, as
shown here

< INI2XML >

MakeNode = CUSTFUNC

• The information sent back to the IDS is defined as shown here:

< INI2XML:CUSTFUNC >

ReqType = WSTATUS

NewWIP1.StatusCode = AP

ReqType = WSTATUS

WIPS1.RecordID = #RECNUM

WIPS = 1

WIPS1.Status = W

Config = #CONFIG

GoChange = Yes

PutURL = LOCALHOST

EncryptedLogin = #ENCRYPTEDLOGIN

UserID = #ENCRYPTEDLOGIN

SaveDPWFile = Yes

Script = /doc-prog/iwip/sampco/wipsave.asp

You must define ReqType in the DOCSERV.INI file.

• Make sure the WIPEDIT.RES menu file for the program references the custom
function. The last parameter must match the node name, as shown here:

MENUITEM "&CUSTOMFUNC" 9910 "racw32->RACtoIDS" CUSTOMFUNC"

[ReqType:WSTATUS]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

; function = Atcw32->ATCReceiveFile,RF_POSTFILE,RF_POSTFILE,*

function = dprw32->DPRUpdateWipRecords

Using the WIP Edit Plug-in

303

CHANGING THE USER ASSOCIATED WITH A DOCUMENT

You can use the AFEAssignDpw API function to change the user associated with a
document through the WIP Edit plug-in.

When the user selects the assign option, a list of the users that can be assigned to the
document appears. Select the appropriate user and click Ok. The document is saved and
the user ID is assigned.

Here’s how to set up this API:

1 Modify the WIPEDIT.RES file, to include the following function. The number 261
can vary, just make sure the number you use is not taken by another line in the
WIPEDIT.RES file:

 MENUITEM "&Asssign" 261 "AFEOS2->AFEAssignDpw" "Assign"

2 Modify the DOCSERV.INI file to include these request types:

< ReqType:WLGNINFO >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRGetNewLogin

3 Modify the configuration specific INI to include the following options. The values
for these INI options vary, based on your implementation.

< INI2XML >

ReLoginScript= doc-prog/iwip/sampco/wiprelogin.asp

< File2DPW >

DBF = D:\docserv1\userinfo\USERINFO.DBF

MDX = D:\docserv1\userinfo\userinfo.mdx

SENDING PASSWORDS

IDS can use the DPRIni2Xml rule to pass an encrypted password to the WIP Edit plug-
in to provide authentication when saving data back to IDS.

< INI2XML >

HTTPUserID = encrypteduserID

HTTPPassword = encryptedpassword

You can also use the cryruw32 program to create an encrypted value that can be
understood by the WIP Edit plug-in. This lets you avoid putting passwords in the INI file
where they can easily be read. For instance, if you enter this from the command line:

cryruw32.exe password

you will see the output similar to the following:

Encrypted string (2XAUnkxUYlx7i5AnQ4m4E1m00)

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

304

REQUESTING A DICTIONARY

The WIP Edit plug-in can request a user spelling dictionary from IDS when running a
spell check.

Use the DPRINI2XML rule to calculate a CRC (Cyclic Redundancy Check) that will be
stored in the DPW file. This line will calculate the CRC of a spelling dictionary specified
by the user ID:

< INI2XML >

CalcCRC = d:\docserv1\spell\#USERID.tlx!TLX

To update the spelling dictionary if the WIP Edit plug-in has changed it, use the
DPRPutResource rule:

[ReqType:PUTRESOURCE]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRPutResource

Specifying the user
dictionary

Use the UserDict option to specify the name of the dictionary file you want to use in the
WIP Edit spell check process. If you omit this option, the spell dictionary file name is
based on the user ID.

To begin, download an INI file to the WIP Edit plug-in. For this example, use USER.INI.
Add the following to the configuration-specific INI file:

< File2DPW >

INIToken = user.ini

< Spell >

UserDict = dictionary.tlx

Using the WIP Edit Plug-in

305

TRAPPING EVENTS

The options to control the trapping of events were implemented because web pages that
use anchor tags cause WIP Edit to exit prematurely. If your web page contains anchor tags
you may need these options.

These INI options are in the INI file downloaded to WIP Edit, usually named
WIPEDIT.INI. The INI file is specified in the INIToken option, as shown below:

< INI2XML >

INIToken = wipedit.ini

< WIPEdit >

DisableRightClick =

TrapEvents =

TrapOnlyQuitEvent =

NOTE: Whether the document is saved or whether you are prompted to save the
document depends on the following options in the WIPEDIT.INI file. If you set
the OverridePrompt option to Yes, you are not prompted when the plug-in
closes. The default is No.

< WIPSave >

OverridePrompt =

If you want WIP Edit to automatically save the document. Set the
OverridePrompt option to Yes and set the SaveOnExit option to Yes.

< WIPSave >

SaveOnExit =

The default for the SaveOnExit option is No.

TRACKING SESSION INFORMATION

The WIP Edit plug-in will let a web application specify data that will be sent back to the
web server when a document is saved. This lets iPPS or iDocumaker send session
information to the web server/IDS when saving data or getting resources.

The DPRPrintDpw rule looks for groups of attachment variables to add information to
the DPW file. This information is used by WIP Edit to add data to the GETRESOURCE
and WIPSAVE request.

Option Description

DisableRightClick Enter Yes to turn off the right-click menu. The default is No.

TrapEvents Enter No to turn off event trapping. This makes it easier to integrate
with iPPS and iDocumaker. The default is Yes.

TrapOnlyQuitEvent Enter Yes to tell the WIP Edit plug-in to ask the user to save the
document when closing the browser, but not when navigating to
another page. The default is No.
If you set the TrapEvents option to Yes, the TrapOnlyQuitEvent
option has no affect.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

306

Use HTTPFORMDATA variables to add multi-form post data:

Use HTTPQUERYSTRING variables to add the query string:

Use the HTTPHEADER variables to add the HTTP header:

Use the HTTPCOOKIE variables to add the cookie header:

Examples Here are some examples:

To add multipart form data to the HTTP request the following attachment variables were
added to the request that creates the DPW file:

HTTPFORMDATA = 1

HTTPFORMDATA1.NAME = nameformdata1

HTTPFORMDATA1.VALUE = valueformdata1

The resulting line in the HTTP request would look like this:

-----------------------------7d32f01b1003de

Content-Disposition:form-data; name="nameformdata1"

Variable Description

HTTPFORMDATA The number of variables to add multi-form post data

HTTPFORMDATA#.NAME The name of the variable.

HTTPFORMDATA#.VALUE The value of the variable.

Variable Description

HTTPQUERYSTRING The number of variables to add to the query string

HTTPQUERYSTRING#.NAME The name of the variable.

HTTPQUERYSTRING#.VALUE The value of the variable.

Variable Description

HTTPHEADER The number of variables to add to the HTTP header

HTTPHEADER#.NAME The name of the variable.

HTTPHEADER#.VALUE The value of the variable.

Variable Description

HTTPCOOKIE The number of variables to add to the cookie header

HTTPCOOKIE#.NAME The name of the variable.

HTTPCOOKIE#.VALUE The value of the variable.

Using the WIP Edit Plug-in

307

valueformdata1

To add data to the query string for the HTTP request these attachment variables were
added to the request that creates the DPW file.

HTTPQUERYSTRING 1

HTTPQUERYSTRING1.NAME = SESSIONID

HTTPQUERYSTRING1.VALUE = 8010e572-001b-43e3-98f4-e1b0e0116933

In the resulting line in the HTTP request, HTTPQUERYSTRING adds the following
information to the URL. Here is an example:

/doc-prog/iwip/sampco/wipsave.asp?SESSIONID= 8010e572-001b-43e3-
98f4-e1b0e0116933 HTTP/1.1

To create a header for the HTTP request these attachment variables were added to the
request that creates the DPW file:

HTTPHEADER = 1

HTTPHEADER1.NAME = someheader1

HTTPHEADER1.VALUE = someVALUE1

In the resulting line in the HTTP request, HTTPHEADER adds information to the
HTTP header. The following example is from a save request:

someheader1:someVALUE1

To add data to the cookie header the HTTP request the following attachment variables
were added to the request that creates the DPW file:

HTTPCOOKIE = "1"

HTTPCOOKIE1.NAME = "cookie"

HTTPCOOKIE1.VALUE = "Toolfloat=false; Toolbottom=false;
IX=%E9%C4%92%

08%C9%D3xo%D9%2D%AF%D3%A0%AC%26%15%7E%FA%23M%01%D9%FDt%23%A2%13%7E%
CAN%95%80%B2%

E5cC%0Enj%E7%1E%E4; ASPSESSIONIDACRTQSCA=EGPPLAECPNDMGOIIMANOAPPB"

The resulting cookie header in the HTTP request would look like this:

Cookie: Toolfloat=false; Toolbottom=false;
IX=%E9%C4%92%08%C9%D3xo%D9%2D%AF%D3%A0%AC%26%15%7E%FA%23M%01%D9%FDt
%23%A2%13%7E%CAN%95%80%B2%E5cC%0Enj%E7%1E%E4;
ASPSESSIONIDACRTQSCA=EGPPLAECPNDMGOIIMANOAPPB;
ASPSESSIONIDQSBCQTCA=JHCKEELAANHOGDGAPMABIHDL

SETTING UP PRINTERS

This topic tells you how to set up printers for the WIP Edit plug-in. The WIP Edit plug-
in gets the fonts it needs from Docupresentment, using the GETRESOURCE request.
This helps insure better fidelity of printed copies by using PCL or PostScript printers.

To use set up printers, make sure...

• The WIPEDIT.RES file includes the print option.

• The WIPEDIT.INI file has the print types set up in the same manner as those in
Documaker Workstation or PPS.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

308

NOTE: The INITOKEN option in the File2Dpw control group of the CONFIG.INI file
must be set before options in the WIPEDIT.INI file can take effect.

• The GETRESOURCE type is in the docserv.xml or DOCSERV.INI file.

• The FontLib option in the MasterResource control group is set in the CONFIG.INI
file.

Here is an example of the WIPEDIT.RES file:

POPUP "&Print" 1070 "Print"

BEGIN

MENUITEM "Pri&nt Formset..." 1065 "NULL" "NULL"

MENUITEM "&Form..." 1066 "NULL" "NULL"

MENUITEM "Pa&ge..." 1067 "NULL" "NULL"

END

Here are examples for the WIPEDIT.INI file:

:PostScript examples.

< PrtType:PST >

DownloadFonts = Yes,Enabled

Module = PSTW32

PrintFunc = PSTPrint

Resolution = 300

; SendOverlays = Yes,Enabled

SendOverlays = No,Disabled

< PrtType:PXL >

DownloadFonts = Yes,Enabled

Module = PXLW32

PageNumbers = Yes

PrintFunc = PXLPrint

SendOverlays = No,Enabled

< PXL >

Device = \\Atl1dc01\YEL_HP8000_A

DownloadFonts = Yes

Module = PXLW32

PrintFunc = PXLPrint

< PrtType:PCL >

DownloadFonts = Yes,Enabled

Module = PCLW32

MultipleCopies = Yes

PrintFunc = PCLPrint

SendOverlays = No,Enabled

Here is an example the docserv.xml file:

<section name="ReqType:GETRESOURCE">

<entry name="function">atcw32->ATCLogTransaction</entry>

<entry name="function">atcw32->ATCLoadAttachment</entry>

<entry name="function">atcw32->ATCUnloadAttachment</entry>

<entry name="function">dprw32->DPRSetConfig</entry>

<!-- entry name="function">dprw32->DPRDecryptLogin</entry -->

<!-- entry name="function">dprw32->DPRDefaultLogin</entry -->

<!-- entry name="function">dprw32->DPRCheckLogin</entry -->

Using the WIP Edit Plug-in

309

<entry name="function">atcw32-
>ATCSendFile,RETURNFILE,RETURNFILE,Binary</entry>

<entry name="function"<dprw32->DPRGetResource,RETURNFILE</entry>

<!-- -->

</section>

Here is an example of the DOCSERV.INI file:

[ReqType:GETRESOURCE]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = atcw32->ATCSendFile,RETURNFILE,RETURNFILE,Binary

function = dprw32->DPRGetResource,RETURNFILE

Here is an example of how you would set the FontLib option:

< MasterResource >

FontLib = mstrres\sampco\fmres

For more information on setting printing options, see the Documaker Server Reference
Guide or the Documaker Workstation Supervisor Guide.

Chapter 6
Customizing iDocumaker, iPPS, and WIP Edit

310

311

Chapter 7

Using the DP.DLL
ActiveX Interface

DP.DLL is a COM object that can be used by ASP client
applications to communicate with IDS via SOAP
messages and the MQSeries message bus without an
IDS client. It supports the same SOAP message format
as IDS, including rowsets and file attachments.

Connection information can come from an
MQSERVER environment variable, a Client
Connection Definition Table (CCDT), or from
properties in an XML configuration file.

You can use DP.DLL as a standalone client DLL to
communicate with a remote IDS via MQSeries and
SOAP attachments using the Microsoft IMessage
interface. This is supported on Microsoft Windows 2000
and later platforms.

NOTE: The DP.DLL COM object is not distributed
with IDS. To receive this additional feature,
contact your sales representative.

This appendix includes information on the following
topics:

• Requirements on page 312

• Setting Up the Configuration File on page 313

• Properties on page 315

• Methods on page 316

• Examples on page 325

Chapter 7
Using the DP.DLL ActiveX Interface

312

REQUIREMENTS To use the DP.DLL ActiveX Interface, you must have the following:

• SOAP Toolkit version 2.0 (MSSMO.dll)

• MSXML version 4.0

• CDO for Windows 2000 or later

• MQSeries. Client installation (version 5.3 or later is required for SSL connections)

You must have these default directories under the virtual directory:

• Cache (used to write all input and output files)

• Debug (used to write all debug files)

Setting Up the Configuration File

313

SETTING UP THE
CONFIGURATION

FILE

You must have an XML configuration file called INI.XML. Place this file under the virtual
directory. It can contain these properties:

Property Description

QUEUEMANAGER The name of the queue manager.

RESULTQ The name of the input queue.

REQUESTQ The name of the output queue.

CHANNEL The channel name, should correspond to the name of a server
connection channel, used to create a matching client connection
channel at run time.

CONNECTION The IP address and port number of the box hosting the queue
manager and server connection channel.

MSGLEN The maximum message length of a message. Be sure to configure the
queue manager and server connection to support the same message
length. This property is optional. The default max message size is
4MB.

SSLCIPHERSPEC The cipher specification (encryption and hashing algorithm) that
should be used in SSL connections. Should correspond to the
Cipherspec chosen for the server connection channel when SSL
connections were enabled for it. This property is only required when
establishing connections to a queue manager configured for SSL.

SSLPEERNAME The DN (Distinguished Name) of the subject in the SSL certificate
used by the queue manager. Used to verify the client application is
connecting to the correct queue manager. This property is only
required when establishing connections to a queue manager
configured for SSL and when client applications desire to verify the
DN of the certificate used by the queue manager - enabling this option
forces the queue manager to send its certificate to the client for
verification of the DN as part of the SSL handshake.

SSLCLIENTAUTH This property is only required when establishing connections to a
queue manager configured for SSL and when client applications desire
to verify the certificate used by queue manager - enabling this option
forces the queue manager to send its certificate to the client for
verification of the DN as part of the SSL handshake.

Chapter 7
Using the DP.DLL ActiveX Interface

314

Here is an example of a configuration file:

<?xml version="1.0" encoding="UTF-8" ?>

<GROUPS>

 <GROUP NAME="MQSERIES">

<QUEUEMANAGER>queue_manager</QUEUEMANAGER>

<REQUESTQ>REQUESTQ</REQUESTQ>

<RESULTQ>RESULTQ</RESULTQ>

<CHANNEL>SSLCHANNEL1</CHANNEL>

<CONNECTION>X.X.X.X(1414)</CONNECTION>

<MSGLEN></MSGLEN>

 <SSLCIPHERSPEC>RC4_MD5_US</SSLCIPHERSPEC>

 <SSLPEERNAME>CN=ssl_qmgr, C=US, S=GA, L=Atlanta, O=Acme, Co.,
OU=PD</SSLPEERNAME>

 <SSLCLIENTAUTH>Y</SSLCLIENTAUTH>

 </GROUP>

</GROUPS>

NOTE: If the MQSERVER or MQCHLLIB and MQCHLTAB system environment
variables are specified, the system uses them to derive the connection
information instead of using the property values in the XML configuration file.

Keep in mind...

• SSL is only supported in MQSeries version 5.3 or later.

• When using SSL, be sure to first give the IIS account read permission to the key.sto
file (the SSL key repository).

• The IIS account must have access to the following registry keys to send the client
certificate to the queue manager when the following SSL options are enabled in the
server connection channel. Otherwise, WebSphere MQ issues error code 2193
complaining the client application did not send the certificate to the queue manager
for verification:

Registry Keys:

HKEY_USERS\.Default\Microsoft\Software\SystemCertificates\Root

HKEY_USERS\.Default\Microsoft\Software\SystemCertificates\trust

HKEY_USERS\.Default\Microsoft\Software\SystemCertificates\CA

HKEY_USERS\.Default\Microsoft\Software\SystemCertificates\my

The easiest thing to do is to configure IIS Out-Of-Process Applications under
'Component Services' mmc snap/in to run under an identity that has permissions to
these keys and restart IIS. Alternatively, the two options specified below can be
disabled in the server connection channel to avoid requiring client applications send
their certificate for verification as part of the SSL handshake.

Server Connection Channel Options:

Only Accept Certificates with Distinguished Names matching these values.’
Always Authenticate parties initiating connections to this channel definition.’

Properties

315

PROPERTIES The DP.DLL ActiveX interface includes these properties:

Property Description

Request Type: Collection
Contains request name/value pairs for a transaction.

Result Type: Collection
Contains result name/value pairs for a transaction

ErrMsg Type: String
Contains an error description of the last error encountered in the MQSeries
APIs.

RC Type: Integer
Can return either zero (0) for success or one (1) for failure for the last
MQSeries API Call in DP.DLL.

bDebug Type: Boolean
Can be set to one (1) or True or zero (0) or False. Used to write the inbound
and outbound SOAP attachments and XML form sets to disk. Also used to
enable tracing throughout DP.dll. Tracing output goes to trace.txt file
located on the root context of the web application.

Expires Type: Long
Used to set the time in minutes a message will exist in the queue before it is
removed by MQSeries.

TimeOut Type: Long
Used to set the time the MQSeries MQGet API will wait for a message
when attempting to retrieve a message from the queue.

ShowAtt Type: Boolean
Can be one (1) or True or zero (0) or False. Used to display the request and
result collections on an ASP page for debugging purposes.

GUID Type: String
Contains the unique message identifier for a SOAP message. Used in
putMsg and getMsg calls in order to match a request to a response.

CleanUpInterval Type: Long
Contains the clean up interval of the cache. Always set to three or four times
the session expiration time in order to avoid a conflict. Set the time in
minutes.

OutputBuffer Type: String
Contains the outgoing SOAP attachment before calling putMsg.

InputBuffer Type: String
Contains the incoming SOAP attachment retrieved by getMsg call.

Chapter 7
Using the DP.DLL ActiveX Interface

316

METHODS The DP.DLL ActiveX Interface includes these methods:

• AddNameValuePair on page 317

• Bin2Unicode on page 317

• CleanCache on page 317

• GetMsg on page 318

• GetUniqueString on page 318

• Initialize on page 318

• InitializeDefaults on page 319

• ProcessTrn on page 319

• PutMsg on page 319

• ReadIniOptions on page 320

• RequestValue on page 320

• ResultValue on page 321

• SetGUID on page 321

• SOAPAddAttachment on page 321

• SOAPGetAttachment on page 322

• SOAPGetAttachmentAsBuffer on page 322

• SOAPLoadAttachment on page 322

• SOAPUnloadAttachment on page 323

• Terminate on page 323

• Trace on page 323

• Trace on page 323

• WriteBinFile on page 324

• WriteToLog on page 324

Methods

317

ADDNAMEVALUEPAIR

Use this method to add name/value pairs from a Session, Form, or QueryString
Collection to the request collection.

Syntax AddNameValuePair(Name, Value)

Parameters

See Example 1 on page 325 and Example 2 on page 327.

BIN2UNICODE

Use this method to convert a binary string into a Unicode string.

Syntax Bin2Unicode (sABSTR)

Parameters

CLEANCACHE

Use this method to read every record in the random access file:

APPL_PHYSICAL_PATH & "log.db"

and compare its date and time stamp to the CleanUpInterval property.

Syntax CleanCache

If the time difference exceeds the interval, the method deletes the record from the log,
removes the file from the cache, and marks the record as deleted so the same record can
be used again by the WriteToLog method.

Parameter Description

Name The index name of the name/value pair.

Value The value of the name/value pair.

Parameter Description

sABSTR A binary string.

Chapter 7
Using the DP.DLL ActiveX Interface

318

FILEEXISTS

Use this method to see if a file exists.

Syntax FileExists (FileName)

This method returns True if the file exists, otherwise False.

Parameters:

See Example 1 on page 325.

GETMSG

Use this method to retrieve a SOAP message from the result queue into the InputBuffer
property.

Syntax GetMsg

This method expects the TimeOut and GUID properties to be set. This method call is
only necessary when processing a transaction by calling the individual methods instead of
calling the ProcessTrn method. This method returns zero (0) for success or one (1) for
failure.

See Example 2 on page 327.

GETUNIQUESTRING

Use this method to return a unique identifier string.

Syntax GetUniqueString

See Example 2 on page 327.

INITIALIZE

Use this method to connect to the queue manager and open the input and output queues.

Syntax Initialize

Make sure the InitializeDefaults and ReadIniOptions methods are called first to set the
default MQ objects and connection properties. This method call is only necessary when
you are processing a transaction by calling the individual methods instead of calling the
ProcessTrn method.

This method returns zero (0) for success or one (1) for failure.

See Example 2 on page 327.

Parameter Description

FileName Enter the full file name of the file to check.

Methods

319

INITIALIZEDEFAULTS

Use this method to initialize the MQSeries defaults.

Syntax InitializeDefaults

Call this method before any other method calls. It is only required if processing a
transaction by calling the individual methods instead of calling the ProcessTrn method.

See Example 2 on page 327.

PROCESSTRN

Use this method to:

• Initialize the MQSeries default settings.

• Read all connection properties from the INI.XML file.

• Initialize the MQSeries connection and open the queues for input and output.

• Generate a message ID to correlate a request with a response message.

• Generate the SOAP request message from the request collection.

• Put the SOAP request message in the request queue by message ID.

• Retrieve the result SOAP message from the result queue by message ID.

• Unload the result SOAP message into the result collection.

• Close the queues and disconnect the queue manager.

Syntax ProcessTrn

See Example 1 on page 325.

PUTMSG

Use this method to place a SOAP message in the request queue.

Syntax PutMsg

This method expects the GUID and OutputBuffer properties to be set. This method call
is only necessary when you are processing a transaction by calling the individual methods
instead of calling the ProcessTrn method. This method returns zero (0) for success or one
(1) for failure.

See Example 2 on page 327.

Chapter 7
Using the DP.DLL ActiveX Interface

320

READINIOPTIONS

Use this method to read these options from the INI.XML file located in the root context
of the web application:

• QUEUEMANAGER

• RESULTQ REQUESTQ

• CHANNEL

• CONNECTION

• MSGLEN

• SSLCIPHERSPEC

• SSLPEERNAME

• SSLCLIENTAUTH

Syntax ReadIniOptions

Always call this method immediately after InitializeDefaults method to set the connection
properties before you call the Initialize method. This method call is only necessary when
you are processing a transaction by calling the individual methods instead of calling the
ProcessTrn method.

See Setting Up the Configuration File on page 313 for a description of each property. See
Example 2 on page 327.

REQUESTVALUE

Use this method to return a value in the request collection name/value pair, found by
NameIndex.

Syntax RequestValue (NameIndex)

This method returns an empty string if the name/value pair is not found.

Parameters

See Example 1 on page 325.

Parameter Description

NameIndex The name index of the name/value pair in the request collection.

Methods

321

RESULTVALUE

Use this method to returns a value in the result collection name/value pair, found by the
NameIndex parameter.

Syntax ResultValue (NameIndex)

This method returns an empty string if the name/value pair is not found.

Parameters

See Example 1 on page 325.

SETGUID
Use this method to set the message ID that should be used for a request/response
transaction.

Syntax SetGUID

This method call is only necessary when you are processing a transaction by calling the
individual methods instead of calling the ProcessTrn method.

See Example 2 on page 327.

SOAPADDATTACHMENT

Use this method to add a file as a SOAP attachment to the request message.

Syntax SOAPAddAttachment(FileName, ID, Type)

Parameters

Always call the SOAPAddAttachment method before calling the SOAPLoadAttachment
method.

See Example 1 on page 325.

Parameter Description

NameIndex The name index of the name/value pair in the result collection.

Parameter Description

FileName The full file name of the file to add as an attachment.

ID The unique identifier for the file attachment.

Type The media type and transfer encoding type for the attachment. You can choose
from TEXT or BINARY

Chapter 7
Using the DP.DLL ActiveX Interface

322

SOAPGETATTACHMENT

Use this method to retrieve a SOAP attachment from the result message as a file written
to disk.

Syntax SOAPGetAttachment (FileName, ID)

Parameters

This method returns True if the attachment was found, otherwise, False.

See Example 1 on page 325.

SOAPGETATTACHMENTASBUFFER

Use this method to return a buffer containing the attachment or an empty string if the
attachment was not found.

Syntax SOAPGetAttachmentAsBuffer (ID)

The method returns a SOAP attachment as a string buffer.

Parameters

SOAPLOADATTACHMENT

Use this method to convert the request collection into a SOAP message.

Syntax SOAPLoadAttachment

This method expects the request collection to be set through AddNameValuePair method
calls. The method expects file attachments to be set through the SOAPAddAttachment
method calls. This method sets the OutputBuffer property.

This method call is only necessary when you are processing a transaction by calling the
individual methods instead of calling the ProcessTrn method.

See Example 2 on page 327.

Parameter Description

FileName The full file name of the file that will be unloaded.

ID The unique identifier for the file attachment in the SOAP message.

Parameter Description

ID The unique identifier for the file attachment in the SOAP message.

Methods

323

SOAPUNLOADATTACHMENT

Use this method to extract the SOAP message from the InputBuffer property and set the
result collection.

Syntax SOAPUnloadAttachment

This method call is only necessary when you are processing a transaction by calling the
individual methods instead of calling the ProcessTrn method.

See Example 2 on page 327.

TERMINATE

Use this method to close the input and output queues and disconnect from the queue
manager.

Syntax Terminate

This method call is only necessary when processing a transaction by calling the individual
method instead of calling the ProcessTrn method. This method returns zero (0) for
success or one (1) for failure.

See Example 2 on page 327.

TRACE

Use this method to write the date/time stamp, including milliseconds along with the
contents of a buffer to a trace log location defined as:

 ASP.Server.MapPath("trace.txt")

Syntax Trace (Buffer)

Parameters

UNICODE2BIN

Use this method to convert a Unicode string into a binary string.

Syntax Unicode2Bin (str)

Parameters

Parameter Description

Buffer A string buffer that contains the information you want written to the log.

Parameter Description

str A Unicode string.

Chapter 7
Using the DP.DLL ActiveX Interface

324

WRITEBINFILE

Use this method to write the contents of a file to a browser.

Syntax WriteBinFile (FileName)

Parameters

See Example 2 on page 327.

WRITETOLOG

Use this method to write entries into the cleanup log.

Syntax WriteToLog (FileName)

Each entry contains the full path and file name of a file written to the cache directory. The
path and name of the log file is:

APPL_PHYSICAL_PATH & "log.db"

Each entry contains the date and time stamp and a deleted flag initially set to False. The
system uses the first record marked as deleted in the log as the record place for the new
record to save space.

Parameters

See also the CleanCache method and CleanUpInterval property.

Parameter Description

FileName The full file name of the binary file to write to the browser.

Parameter Description

FileName Full file name of the file to write to the cleanup log.

Examples

325

EXAMPLES Here are some examples that show you how to use the DP.DLL ActiveX Interface
methods.

Example 1 This example uses the ProcessTrn method to send and receive a request and reply to and
from IDS:

1 This HTML page submits a request to an ASP page:

<html>

<head>

</head>

<body>

<form name=submitReq action="ProcessTrn_Example.asp" method=post>

<input name="GROUP1" value="GENERAL LIABILITY" type=hidden>

<input name="GROUP2" value="APPLICATION" type=hidden>

<input name="CONFIG" value="AMERGEN" type=hidden>

<input name="USERID" value="DOCUCORP" type=hidden>

<input name="PASSWORD" value="DOCUCORP" type="hidden">

<input name="PASSWORDENCRYPTED" type=hidden value="NO">

<input name="ARCEFFECTIVEDATE" value="20020819" type=hidden>

<input name="PRINTPATH" type=hidden value="Output\">

<input name="PRTTYPE" value="PDF">

<input name="REQTYPE" value="FRMPBPRTTEST">

<input type=submit name="btnSubmit" value="submit">

</form>

2 This ASP page calls the ProcessTrn method to send/receive a request/response to/
from IDS:

 <%

Set DP = server.CreateObject("DP.IDSMessage")

DP.ShowAtt = 0

DP.bDebug = 1

For i=1 to Request.Form.Count

 DP.AddNameValuePair Request.Form.Key(i), Request.Form(i)

Next

VirtualPath = Request.ServerVariables("APPL_PHYSICAL_PATH") &
"Cache\"

OutputFormset = VirtualPath & "OutputFormset.xml"

DP.SOAPAddAttachment OutputFormset, "ATC_XMLFORMSET", "BINARY"

DP.ProcessTrn()

File = getFilename(DP.ResultValue("PRINTFILE"), "\")

 FullFileName = VirtualPath & File

If (DP.SOAPGetAttachment (FullFileName, "OUTFILE")) Then

Set DP = Nothing

Session("File") = FullFileName

Response.Redirect "Print.asp"

Else

Response.Write "Error encountered retrieving file!"

Chapter 7
Using the DP.DLL ActiveX Interface

326

Set DP = Nothing

End if

 function getFileName(sFile, delimiter)

 getFileName = Mid(sFile, InstrRev(sFile, delimiter, -1)+1,
len(sFile))

 end function

%>

3 Then, this ASP print page appears:

 <%

File = Session("File")

set DP = Server.CreateObject("DP.IDSMessage")

DP.WriteBinFile(File)

set DP = Nothing

%>

Examples

327

Example 2 This example shows how to use the individual APIs to send and receive requests and
replies to and from IDS:

1 This HTML page sends a request to an ASP page:

<html>

<head>

</head>

<body>

<form name=submitReq action="APIs_Example.asp" method=post>

<input name="GROUP1" value="GENERAL LIABILITY" type=hidden>

<input name="GROUP2" value="APPLICATION" type=hidden>

<input name="CONFIG" value="AMERGEN" type=hidden>

<input name="USERID" value="DOCUCORP" type=hidden>

<input name="ARCEFFECTIVEDATE" value="20020819" type=hidden>

<input name="PRINTPATH" type=hidden value="Output\">

<input name="PRTTYPE" value="PDF">

<input name="REQTYPE" value="FRMPBPRTTEST">

<input type=submit name="btnSubmit" value="submit">

</form>

2 This ASP page calls the individual functions to send and receive requests and
responses to and from IDS:

<%

 Set DP = Server.CreateObject("DP.IDSMessage")

 DP.ShowAtt = 0

 DP.bDebug = 1

 DP.Expires = 300

 DP.TimeOut = 60

 For i=1 to Request.Form.Count

 DP.AddNameValuePair Request.Form.Key(i), Request.Form(i)

 Next

 DP.InitializeDefaults

 DP.ReadINIOptions

 DP.Initialize

 if DP.RC <> 0 then

 Response.Write DP.ErrMsg

 end if

 GUID = DP.GetUniqueString

 DP.SetGUID(GUID)

 VirtualPath = Request.ServerVariables("APPL_PHYSICAL_PATH") &
"Cache\"

 OutputFormset = VirtualPath & "OutputFormset.xml"

Chapter 7
Using the DP.DLL ActiveX Interface

328

 DP.SOAPAddAttachment OutputFormset, "ATC_XMLFORMSET", "BINARY"

 DP.SOAPLoadAttachment

 DP.PutMsg

 DP.GetMsg

 DP.SOAPUnloadAttachment

 DP.Terminate

 File = getFilename(DP.ResultValue("PRINTFILE"), "\")

 FullFileName = VirtualPath & File

 If (DP.SOAPGetAttachment (FullFileName, "OUTFILE")) Then

 Set DP = Nothing

 Session("File") = FullFileName

 Response.Redirect "Print.asp"

 Else

 Response.Write "Error encountered retrieving file!"

 Set DP = Nothing

 End if

 function getFileName(sFile, delimiter)

 getFileName = Mid(sFile, InstrRev(sFile, delimiter, -1)+1,
len(sFile))

 end function

%>

2.3Asp print page:

<%

File = Session("File")

set DP = Server.CreateObject("DP.IDSMessage")

DP.WriteBinFile(File)

set DP = Nothing

%>

329

Appendix A

System Files

The following pages list and explain the various files
which comprise the Internet Document Server. These
are the files installed on your computer when you install
the Internet Document Server and its various bridges.

This includes information about the following:

• IDS Configuration Files on page 330

• Sample Output Files on page 333

There are two file types that are treated in a special
manner by the web server package—CGI-compliant
executables and HTML content pages. The Internet
Document Server includes both types of files.

Typically, CGI-compliant executable files are stored in
directories specified as CGI directories to the web
server. In a similar manner, HTML content pages are
stored in directories specified as content directories to
the web server.

Appendix A
System Files

330

IDS
CONFIGURATION

FILES

The Internet Document Server and its bridges use the following INI files:

Since the server must start before a client can begin processing, the docserv.xml file is read
first.

The same option can be defined in both the DAP.INI file and in the various INI files for
your resources. When this happens, the settings in the resource INI files take precedence
over those in the DAP.INI file.

Docserv.xml file format Prior to IDS version 2.0, the configuration file was a simple INI file (docserv.ini). For IDS
2.0, the format changed to an XML file. This gives you more control over configuration
options.

In the INI format, you could only have one level of control groups (sections), with entries
under each group or section. Using the XML format, you can now have multiple levels of
subsections under a section for better grouping. Options relevant to the passing of
messages can be, for example, grouped under a messaging subsection.

The general format of the docserv.xml file is:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <section name="DocumentServer">

 <entry name="FileWatchTimeMillis">10001</entry>

 <entry name="FilePurgeTimeSeconds">3600</entry>

 <entry name="FilePurgeList">purgeme.properties</entry>

 </section> <!-- DocumentServer -->

 <section name="BusinessLogicProcessor">

 <section name="MultiThreadedRequests">

 <entry name="Request">ECH</entry>

 </section> <!-- MultiThreadedRequests section -->

 <section name="messaging">

 <section name="http">

 <entry name="port">49152</entry>

 </section> <!-- http section -->

 <section name="timed">

 <entry name="AutoRunIntervalSeconds">3600</entry>

 <section name="Timers">

 <entry name="XYZ">Tue 3:27:01 PM</entry>

File Used for

fapcomp.ini System tools, such as the Font Manager

docserv.xml Internet Document Server settings

docclient.xml IDS client settings

docclnt.ini IDS CGI client application

dsi.ini custom client programs written using VB, Java, and so on, which call DSI
APIs.

dap.ini the various bridges

(resource).ini the various libraries

IDS Configuration Files

331

 </section>

 </section> <!-- timed section -->

 <section name="queue">

 <entry
name="queuefactory.class">com.docucorp.messaging.mqseries.DSIMQMess
ageQueueFactory</entry>

 <!-- Settings for MQSeries connection -->

 <entry name="mq.queue.manager">queue.manager</entry>

 <entry name="mq.inputqueue.name">requestq</entry>

 <entry name="mq.inputqueue.maxwaitseconds">5</entry>

 <entry name="mq.outputqueue.name">resultq</entry>

 <entry name="mq.tcpip.host">10.1.10.1</entry>

 <entry name="mq.queue.channel">queue_channel</entry>

 <entry name="mq.tcpip.port">1414</entry>

 </section> <!-- queue section -->

 </section> <!-- messaging section -->

 </section> <!-- BusinessLogicProcessor -->

 <section name="ReqType:INI">

 <entry name="function">irlw32->;IRLInit</entry>

 <entry name="function">dprw32->;DPRInit</entry>

 <!-- Following rule now initted in THREADINI -->

 <!-- entry name="function">DSICoRul->;Init</entry -->

 <!-- entry name="function">pobrs->;POWInit</entry -->

 <entry name="function">Tpdw32->;TPDInitRule</entry>

 </section>

 <section name="ReqType:THREADINI">

 <entry name="function">atcw32->;ATCLoadAttachment</entry>

 <entry name="function">atcw32->;ATCUnloadAttachment</entry>

 <entry name="function">DSICoRul->;Init</entry>

 <entry name="function">DSICoRul-
>;Invoke,DocuCorp_IDS_DPRCo.DPR->;DPRCoLoginInit</entry>

 </section>

 <section name="ReqType:ECH">

 <entry
name="function">java;com.docucorp.ids.rules.EchoTest;;transaction;e
cho;</entry>

 </section>

</configuration>

The file begins with the line indicating it’s an XML file. Under that is the configuration
element, the root element of the XML. Inside the configuration element are several section
elements, each with a name attribute to identify the section. Some section names, such as
REQTYPE:INI are the same as in IDS version 1.

A section may just have several entry elements inside it. Each entry has a name attribute to
identify it, and the text in between the <entry> and </entry> tags is the value of the
entry.

A section may also have other section elements inside of it, for example the
BusinessLogicProcessor section. The BusinessLogicProcessor section has subsections
pertaining to getting requests to process and sending results back to clients.

In this document any configuration settings will list the section, and optionally any
subsections, that an entry belongs to.

Appendix A
System Files

332

Docclient.xml format Similar to IDS 2.0, most IDS client programs now use an XML-based configuration file.
The exception is docclnt, the CGI client program.

The general format of the docclient.xml file is:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <section name="DocumentClient">

 <section name="messaging">

 <section name="queue">

 <entry name="queuefactory.class">com.docucorp.messaging.
 mqseries.DSIMQMessageQueueFactory</entry>

 <!-- Settings for MQSeries connection -->

 <entry name="mq.queue.manager">queue.manager</entry>

 <entry name="mq.inputqueue.name">requestq</entry>

 <entry name="mq.inputqueue.maxwaitseconds">5</entry>

 <entry name="mq.outputqueue.name">resultq</entry>

 <entry name="mq.tcpip.host">10.1.10.1</entry>

 <entry name="mq.queue.channel">queue_channel</entry>

 <entry name="mq.tcpip.port">1414</entry>

 </section> <!-- queue section -->

 </section> <!-- messaging section -->

 </section> <!-- DocumentClient -->

</configuration>

The overall structure is similar to docserv.xml. The main difference is that the messaging
parameters are under a "DocumentClient" section. This makes it possible for client
applications and IDS use the same configuration file, with client settings under the
"DocumentClient" section and IDS settings under the "DocumentServer" and
"BusinessLogicProcessor" sections.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <section name="DocumentServer">

 <entry name="FileWatchTimeMillis">10001</entry>

 <entry name="FilePurgeTimeSeconds">3600</entry>

 <entry name="FilePurgeList">purgeme.properties</entry>

 </section> <!-- DocumentServer -->

 <section name="BusinessLogicProcessor">

 <section name="MultiThreadedRequests">

 <entry name="Request">ECH</entry>

 </section> <!-- MultiThreadedRequests section -->

 <section name="messaging">

 <section name="http">

 <entry name="port">49152</entry>

This line indicates it is an XML file

This is the configuration
element

Here, a section is defined

Here are the entries for a
section

Sample Output Files

333

SAMPLE
OUTPUT FILES

Here are printouts of the sample output files you should receive when you check your
server installation.

The output comes from these functions:

• DSIEXW32.EXE

• DSICOTB.EXE, option ESS

• DSICOTB.EXE, option Roll Your Own

• DSICOTB.EXE, option RSS

• DSICOTB.EXE, option SSS

DSIEXW32.EXE Here is the output you should see when you execute DSIEXW32.EXE. You will see
similar results when you execute DSICoEx.

Name = ALLOCCOUNT Value = 3073

Name = ERRORCOUNT Value = 0

Name = FREECOUNT Value = 391

Name = LASTRESTART Value = Wed Aug 12 16:31:14 1998

Name = LIBRARIES Value = 11

Name = LIBRARIES1.DATE Value = Jun 30 1998

Name = LIBRARIES1.NAME Value = IRL

Name = LIBRARIES1.TIME Value = 11:31:06

Name = LIBRARIES1.VERSION Value = 100.013.001

Name = LIBRARIES10.DATE Value = Jun 30 1998

Name = LIBRARIES10.NAME Value = DPR

Name = LIBRARIES10.TIME Value = 11:48:16

Name = LIBRARIES10.VERSION Value = 400.098.001

Name = LIBRARIES11.DATE Value = Aug 5 1998

Name = LIBRARIES11.NAME Value = PDF

Name = LIBRARIES11.TIME Value = 16:02:25

Name = LIBRARIES11.VERSION Value = 400.098.010

Name = LIBRARIES2.DATE Value = Jun 26 1998

Name = LIBRARIES2.NAME Value = IRP

Name = LIBRARIES2.TIME Value = 18:10:35

Name = LIBRARIES2.VERSION Value = 100.013.001

Name = LIBRARIES3.DATE Value = Jun 26 1998

Name = LIBRARIES3.NAME Value = DQM

Name = LIBRARIES3.TIME Value = 18:11:31

Name = LIBRARIES3.VERSION Value = 100.013.001

Name = LIBRARIES4.DATE Value = Jun 26 1998

Name = LIBRARIES4.NAME Value = IBASE

Name = LIBRARIES4.TIME Value = 18:01:12

Name = LIBRARIES4.VERSION Value = 100.013.001

Name = LIBRARIES5.DATE Value = Jun 26 1998

Name = LIBRARIES5.NAME Value = DCB

Name = LIBRARIES5.TIME Value = 18:06:22

Name = LIBRARIES5.VERSION Value = 100.013.001

Name = LIBRARIES6.DATE Value = Jun 30 1998

Name = LIBRARIES6.NAME Value = ATC

Name = LIBRARIES6.TIME Value = 11:29:22

Name = LIBRARIES6.VERSION Value = 100.013.001

Name = LIBRARIES7.DATE Value = Jun 29 1998

Name = LIBRARIES7.NAME Value = DSIJ

Appendix A
System Files

334

Name = LIBRARIES7.TIME Value = 17:50:06

Name = LIBRARIES7.VERSION Value = 100.013.001

Name = LIBRARIES8.DATE Value = Jun 26 1998

Name = LIBRARIES8.NAME Value = WFX

Name = LIBRARIES8.TIME Value = 17:52:36

Name = LIBRARIES8.VERSION Value = 100.013.001

Name = LIBRARIES9.DATE Value = Jun 30 1998

Name = LIBRARIES9.NAME Value = DSI

Name = LIBRARIES9.TIME Value = 11:36:19

Name = LIBRARIES9.VERSION Value = 100.013.001

Name = RESTARTCOUNT Value = 0

Name = RESULTS Value = SUCCESS

Name = SUCCESSCOUNT Value = 1

Name = UPTIME Value = Wed Aug 12 16:31:14 1998

DSICoTB, option ESS Here is the output you should see when you execute the Visual Basic program,
DSICoTB.EXE, option ESS.

LOG

InitSession

Submit: ESS

GetQueueRec

Term

------------------------ Done ------------------------

OUTPUT

ALLOCCOUNT9477

ERRORCOUNT0

FREECOUNT6791

LASTRESTARTWed Aug 12 16:48:37 1998

LIBRARIES11

LIBRARIES1.DATEJun 30 1998

LIBRARIES1.NAMEIRL

LIBRARIES1.TIME11:31:06

LIBRARIES1.VERSION100.013.001

LIBRARIES10.DATEJun 30 1998

LIBRARIES10.NAMEDPR

LIBRARIES10.TIME11:48:16

LIBRARIES10.VERSION400.098.001

LIBRARIES11.DATEAug 5 1998

LIBRARIES11.NAMEPDF

LIBRARIES11.TIME16:02:25

LIBRARIES11.VERSION400.098.010

LIBRARIES2.DATEJun 26 1998

LIBRARIES2.NAMEIRP

LIBRARIES2.TIME18:10:35

LIBRARIES2.VERSION100.013.001

LIBRARIES3.DATEJun 26 1998

LIBRARIES3.NAMEDQM

LIBRARIES3.TIME18:11:31

LIBRARIES3.VERSION100.013.001

LIBRARIES4.DATEJun 26 1998

LIBRARIES4.NAMEIBASE

LIBRARIES4.TIME18:01:12

Sample Output Files

335

LIBRARIES4.VERSION100.013.001

LIBRARIES5.DATEJun 26 1998

LIBRARIES5.NAMEDCB

LIBRARIES5.TIME18:06:22

LIBRARIES5.VERSION100.013.001

LIBRARIES6.DATEJun 30 1998

LIBRARIES6.NAMEATC

LIBRARIES6.TIME11:29:22

LIBRARIES6.VERSION100.013.001

LIBRARIES7.DATEJun 29 1998

LIBRARIES7.NAMEDSIJ

LIBRARIES7.TIME17:50:06

LIBRARIES7.VERSION100.013.001

LIBRARIES8.DATEJun 26 1998

LIBRARIES8.NAMEWFX

LIBRARIES8.TIME17:52:36

LIBRARIES8.VERSION100.013.001

LIBRARIES9.DATEJun 30 1998

LIBRARIES9.NAMEDSI

LIBRARIES9.TIME11:36:19

LIBRARIES9.VERSION100.013.001

MESSAGESMSG0002

RESTARTCOUNT1

RESULTSSUCCESS

SUCCESSCOUNT7

UPTIMEWed Aug 12 16:44:15 1998

DSICoTB, option Roll
Your Own

Here is the output you should see when you execute the Visual Basic
program, DSICoTB.EXE, option Roll Your Own.

LOG (left hand side)

InitSession

Submit

USERID USERID

PASSWORDPASSWORD

CONFIG INSURE

GetQueueRecord

GetAttachmentAll

------------------------ Done ------------------------

OUTPUT (right hand side)

CONFIGINSURE

PASSWORDPASSWORD

REPORTTOFORMAKER

RESULTSSUCCESS

RIGHTS9

SECURITY

USERIDUSERID

USRMESSAGE

Appendix A
System Files

336

DSICoTB, option RSS Here is the output you should see when you execute the Visual Basic program,
DSICoTB.EXE, option RSS.

LOG (left side of window)

InitSession

Submit: RSS

GetQueueRec

Term

------------------------ Done ------------------------

OUTPUT (right side of window)

ALLOCCOUNT12542

ERRORCOUNT0

FREECOUNT9867

LASTRESTARTWed Aug 12 16:48:37 1998

LIBRARIES11

LIBRARIES1.DATEJun 30 1998

LIBRARIES1.NAMEIRL

LIBRARIES1.TIME11:31:06

LIBRARIES1.VERSION100.013.001

LIBRARIES10.DATEJun 30 1998

LIBRARIES10.NAMEDPR

LIBRARIES10.TIME11:48:16

LIBRARIES10.VERSION400.098.001

LIBRARIES11.DATEAug 5 1998

LIBRARIES11.NAMEPDF

LIBRARIES11.TIME16:02:25

LIBRARIES11.VERSION400.098.010

LIBRARIES2.DATEJun 26 1998

LIBRARIES2.NAMEIRP

LIBRARIES2.TIME18:10:35

LIBRARIES2.VERSION100.013.001

LIBRARIES3.DATEJun 26 1998

LIBRARIES3.NAMEDQM

LIBRARIES3.TIME18:11:31

LIBRARIES3.VERSION100.013.001

LIBRARIES4.DATEJun 26 1998

LIBRARIES4.NAMEIBASE

LIBRARIES4.TIME18:01:12

LIBRARIES4.VERSION100.013.001

LIBRARIES5.DATEJun 26 1998

LIBRARIES5.NAMEDCB

LIBRARIES5.TIME18:06:22

LIBRARIES5.VERSION100.013.001

LIBRARIES6.DATEJun 30 1998

LIBRARIES6.NAMEATC

LIBRARIES6.TIME11:29:22

LIBRARIES6.VERSION100.013.001

LIBRARIES7.DATEJun 29 1998

LIBRARIES7.NAMEDSIJ

LIBRARIES7.TIME17:50:06

LIBRARIES7.VERSION100.013.001

Sample Output Files

337

LIBRARIES8.DATEJun 26 1998

LIBRARIES8.NAMEWFX

LIBRARIES8.TIME17:52:36

LIBRARIES8.VERSION100.013.001

LIBRARIES9.DATEJun 30 1998

LIBRARIES9.NAMEDSI

LIBRARIES9.TIME11:36:19

LIBRARIES9.VERSION100.013.001

MESSAGESMSG0001

RESTARTCOUNT2

RESULTSSUCCESS

SUCCESSCOUNT7

UPTIMEWed Aug 12 16:44:15 1998

DSICoTB, option SSS Here is the output you should see when you execute the Visual Basic program,
DSICoTB.EXE, option SSS.

LOG (left side of window)

InitSession

Submit: SSS

GetQueueRec

Term

------------------------ Done ------------------------

OUTPUT (right side of window)

ALLOCCOUNT9397

ERRORCOUNT0

FREECOUNT6720

LASTRESTARTWed Aug 12 16:48:37 1998

LIBRARIES11

LIBRARIES1.DATEJun 30 1998

LIBRARIES1.NAMEIRL

LIBRARIES1.TIME11:31:06

LIBRARIES1.VERSION100.013.001

LIBRARIES10.DATEJun 30 1998

LIBRARIES10.NAMEDPR

LIBRARIES10.TIME11:48:16

LIBRARIES10.VERSION400.098.001

LIBRARIES11.DATEAug 5 1998

LIBRARIES11.NAMEPDF

LIBRARIES11.TIME16:02:25

LIBRARIES11.VERSION400.098.010

LIBRARIES2.DATEJun 26 1998

LIBRARIES2.NAMEIRP

LIBRARIES2.TIME18:10:35

LIBRARIES2.VERSION100.013.001

LIBRARIES3.DATEJun 26 1998

LIBRARIES3.NAMEDQM

LIBRARIES3.TIME18:11:31

LIBRARIES3.VERSION100.013.001

LIBRARIES4.DATEJun 26 1998

LIBRARIES4.NAMEIBASE

Appendix A
System Files

338

LIBRARIES4.TIME18:01:12

LIBRARIES4.VERSION100.013.001

LIBRARIES5.DATEJun 26 1998

LIBRARIES5.NAMEDCB

LIBRARIES5.TIME18:06:22

LIBRARIES5.VERSION100.013.001

LIBRARIES6.DATEJun 30 1998

LIBRARIES6.NAMEATC

LIBRARIES6.TIME11:29:22

LIBRARIES6.VERSION100.013.001

LIBRARIES7.DATEJun 29 1998

LIBRARIES7.NAMEDSIJ

LIBRARIES7.TIME17:50:06

LIBRARIES7.VERSION100.013.001

LIBRARIES8.DATEJun 26 1998

LIBRARIES8.NAMEWFX

LIBRARIES8.TIME17:52:36

LIBRARIES8.VERSION100.013.001

LIBRARIES9.DATEJun 30 1998

LIBRARIES9.NAMEDSI

LIBRARIES9.TIME11:36:19

LIBRARIES9.VERSION100.013.001

RESTARTCOUNT1

RESULTSSUCCESS

SUCCESSCOUNT6

UPTIMEWed Aug 12 16:44:15 1998

Visited: http://

339

Appendix B

Error Messages

This appendix describes how you can customize the
error messages you may receive while using IDS. For
more information, see Displaying Error Messages on
page 340.

This appendix also lists and explains error messages you
may receive while using the Internet Document Server
and any of the various bridges.

The messages are grouped in these categories:

• Internet Document Server Error Messages on page
344

• Documaker Bridge Error Messages on page 346

• Printstream Bridge Error Messages on page 351

Appendix B
Error Messages

340

DISPLAYING
ERROR

MESSAGES

The system includes an XML file which provides a template for all server and base rule
error messages. It is up to you to customize this file if you use custom rules or if you want
to modify the description of the problem. The file includes US English error descriptions,
possible causes, and remedies.

You can find examples of how to use this XML file in the Docupresentment samples for
ASP and JSP pages.

NOTE: CGI clients cannot use this file and must use HTML templates instead.

Here is an example of the XML file:

XML layout <?xml version="1.0" encoding="UTF-8"?>

<ERRORCODES>

<CODE VALUE="ATC0001">

<PARAMETERS>

<VARIABLE/>

</PARAMETERS>

<SEVERITY>Error</SEVERITY>

<CATEGORY>Server configuration</CATEGORY>

<DESCRIPTION>Can not add variable <PARAMETER NAME="VARIABLE">

//ROWSET[@NAME="ATC0001"]//VAR[@NAME="VARIABLE"]</PARAMETER>

to the attachment</DESCRIPTION>

<CAUSE>Attachment size is larger than supported by queuing system

<REMEDY>Reduce the size of the attachment. Example, if search request
returns too many matches redefine search criteria so number of
matches is reduced.

</REMEDY>

</CAUSE>

<CAUSE>Server is running low on memory

<REMEDY>Restart server. If problem persists, report it to tech
support</REMEDY>

</CAUSE>

<CAUSE>Memory was corrupted by ill-behaved rule

<REMEDY>If problem persists, report it to tech support</REMEDY>

</CAUSE>

</CODE>

<CODE VALUE="ATC0002">

<PARAMETERS>

<APINAME/>

</PARAMETERS>

<SEVERITY>Error</SEVERITY>

<DESCRIPTION>The virtual memory management API <PARAMETER
NAME="APINAME">

//ROWSET[@NAME="ATC0002"]//VAR[@NAME="APINAME"]</PARAMETER>
failed</DESCRIPTION>

<CAUSE>Memory corruption on the server due to ill-behaved rules.

<REMEDY>If problem persists, report it to tech support</REMEDY>

</CAUSE>

</CODE>

<CODE VALUE="DPR0009">

<PARAMETERS/>

<SEVERITY>Warning</SEVERITY>

<CATEGORY>User error</CATEGORY>

Displaying Error Messages

341

<DESCRIPTION>No matches were found for the specified search
criteria</DESCRIPTION>

<CAUSE>Search criteria specified by the user resulted in no matches
found

<REMEDY>Specify different search criteria</REMEDY>

</CAUSE>

</CODE>

</ERRORCODES>

Keep in mind...

• All error codes are attributes of the CODE children of the ERRORCODES root
element.

• The PARAMETERS child of the CODE element defines the parameters in the error
message. In example above, the ATC0001 error code parameter passed with the error
message is named VARIABLE.

In the attachment variable name sense, the following attachment variables will be
present with ATC0001 error: ATC0001 and ATC00011.VARIABLE. The second
number one indicates a row set. You must insert the value of the VARIABLE into
the placeholder specified in XML file.

The ATC0001 is a row set in DSI SOAP XML message, so it can also be accessed as
an element on the ROWSET XML tree. The placeholder is indicated with the XML
element PARAMETER and the text of this element is an XPath you can use to pull
the parameter value from the IDS XML SOAP message. See the following sample
IDS message.

• The SEVERITY element defines the severity level such as: error, warning or info.

• The CATEGORY element defines where the error was generated and the most likely
cause, such as: server configuration, bridge configuration, or user error.

• The DESCRIPTION element defines the information displayed to the end user with
the parameter placeholders replaced by actual parameter values.

• The CAUSE element defines the probable cause of this error. Since it is possible to
have multiple causes, the application should be able to display multiples CAUSE
elements.

• The REMEDY element, which is a child of the CAUSE element, provides an
explanation how you can correct the problem.

Appendix B
Error Messages

342

Client error handling Usually the client submits a request to IDS and gets results. One of the attachment
variables returned is RESULTS. This value contains the value SUCCESS or the error
code.

Since you can have multiple errors, be sure to check RESULTS for the value SUCCESS.
If it is not SUCCESS, the client code should examine the returned results for all error
messages, not just the code provided in RESULTS attachment variable. In other words,
the attachment variable RESULTS should be considered as a binary indication of
successful transaction, it was either success or not.

Here is a sample IDS message with an error. This layout shows row set changes, available
in IDS 1.8 and higher. Do not compare this layout with messages created by the older
versions of IDS.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.018.0">

<CTLBLOCK>

<UNIQUE_ID>9F2AE2BB6609450887779A836D90D390</UNIQUE_ID>

<REQTYPE>RPD</REQTYPE>

<USERID>USERNAME</USERID>

</CTLBLOCK>

<MSGVARS>

<ROWSET NAME="ERRORS">

<ROW NUM="1">

<VAR NAME="CODE">ATC0001</VAR>

</ROW>

</ROWSET>

<ROWSET NAME="ATC0001">

<ROW NUM="1">

<VAR NAME="VARIABLE">FILENAME</VAR>

</ROW>

</ROWSET>

<VAR NAME="RESULTS">ATC0001</VAR>

</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Displaying Error Messages

343

Error reporting for C
exceptions

The reporting of C exceptions while running a rule has includes the following
information:

• Before the restart, IDS reports the type of C Exception and the rule that triggered
the exception. This is reported through IDS's regular logging techniques. Here is an
example:

ERROR [BLP-0]: 2005-06-30 14:54:23,703 BusinessLogicProcessor The
thread tried to read from or write to a virtual address for which it
does not have the appropriate access.

ERROR [BLP-0]: 2005-06-30 14:54:23,718 RequestDescription Rule
'tstw32.dll->TSTTestBlowUP' had an exception in Run Forward message.

• After IDS restarts, it sends a message to the client program through the queues to
report there was a problem. This is reported via the usual rowset/error message way
of reporting errors. Here is an example:

Result returned back from server

Message variables

RESULTS=SRV0004

Rowsets

ERRORS

Row 1

CODE=SRV0004

SRV0004

Row 1

CURMSG=Server failed to process the request <TSTLIB> due to a fatal
error.

Appendix B
Error Messages

344

INTERNET
DOCUMENT

SERVER ERROR
MESSAGES

Here is a list of the error messages you may receive.

Code Message Text

ATC0001 Cannot add variable #VARIABLE,# to the attachment list.

ATC0002 The virtual memory management API #APINAME,%s# failed.

ATC0003 The attachment variable #VARNAME,%s# could not be located.

IRL0001 The required attachment variable #VARIABLE,%s# could not be located.

IRL0002 No search criteria were specified. The attachment variable FIELDS in empty.

IRL0003 The user information database, #FILENAME,%s#, could not be opened.

IRL0004 The user ID #USERID,%s# is invalid.

IRL0005 The password specified for user #USERID,%s# is incorrect.

IRL0006 The virtual memory management API #APINAME,%s# failed.

IRL0007 The INI option #INIOPTION,%s# could not be located in the group
#INIGROUP,%s#.

IRL0008 The database API #APINAME,%s# failed accessing the table
#TABLENAME,%s#.

IRL0009 No matches were found for the search criteria.

IRL0010 The system encountered an internal error of unknown type. The call by
#LOCATION,%s# to #APINAME,%s# failed.

IRL0011 The attachment field #VARIABLE,%s# does not contain valid data.

IRL0012 The queue management API #APINAME,%s# failed.

IRL0013 The initialization file, #FILENAME,%s# could not be loaded.

IRL0014 Platform error. Area: #AREA,# Code: #CODE,# Code2: #CODE2,# Message:
#MESSAGE,#

IRL0015 The parameter #PARAMETER,# is invalid.

IRL0016 The value #VALUE,# was not found for option #OPTION,# in group
#GROUP,#.

IRL0017 Cannot locate variable #VARIABLE,#.

IRL0022 Cannot add variable #VARIABLE,# to the attachment list.

IRL0023 Cannot save changes to the file #FILE,#.

IRL0025 Cannot add variable #VARIABLE,# to the attachment record #RECORD,#.

RL0026 Cannot find the global variable #VARIABLE,#. Make sure the IRLInitFTP rule is
registered on INI request.

IRL0027 Rule parameters for rule #RULENAME,# are incorrect. The rule is disabled.

Internet Document Server Error Messages

345

IRL0028 TP server is not specified in the attachment or in the INI file. The FTP rule is
disabled.

IRL0029 FTP connection cannot be established. Make sure the FTP rule is configured
correctly.

IRL0030 Cannot find variable #VARIABLE,# in the attachment. FTP operation
#OPERATION,# will be skipped.

IRL0031 Error #ERRORCODE,# #ERRORDESCRIPTION,# on FTP operation
#OPERATION,#.

SRV0001 The Rule Processor failed while processing the messages #CURMSG,#.

SRV0002 The server is not configured for request type: #REQTYPE,#.

SRV0003 The master server could not send the message to IDS.

SRV0004 Server failed to process the request due to a fatal error.

SRV0005 Server failed to process the request due to a time-out.
You must enable the long transaction detection feature for the SRV0005 error to
work. To enable this message, set the client time-out longer than the Watchdog
timer value on IDS side.

Code Message Text

Appendix B
Error Messages

346

DOCUMAKER
BRIDGE ERROR

MESSAGES

Here is a list of the error messages you may receive.

Code Message Text

ATC0001 Cannot add variable #VARIABLE,# to the attachment list.

ATC0002 The virtual memory management API #APINAME,# failed.

ATC0003 The attachment variable #VARNAME,# could not be located.

DPR0001 Cannot locate variable #VARIABLE,# in the attachment list.

DPR0002 No search criteria was specified. The attachment variable FIELDS is empty.

DPR0003 The user information database, #FILENAME,#, could not be opened.

DPR0004 The user ID #USERID,# is invalid.

DPR0005 The password specified for user #USERID,# is incorrect.

DPR0006 The virtual memory management API #APINAME,# failed.

DPR0007 The INI option #INIOPTION,# could not be located in the group
#INIGROUP,#.

DPR0008 The database API #APINAME,# failed accessing the table #TABLENAME,#.

DPR0009 No matches were found for the search criteria.

DPR0010 The system encountered an internal error of unknown type. The call by
#LOCATION,# to #APINAME,# failed.

DPR0011 The attachment field #VARIABLE,# does not contain valid data.

DPR0013 The initialization file, #FILENAME,# could not be loaded.

DPR0012 The database API #APINAME,# cannot locate the table #TABLENAME,#.

DPR0014 Platform error. Area: #AREA,# Code: #CODE,# Code2: #CODE2,# Message:
#MESSAGE,#

DPR0015 FAP Version is not in sync. #LOCATION,#.

DPR0016 Failed to unload template file #FILE,#.

DPR0017 Cannot locate variable #VARIABLE,#.

DPR0018 Cannot load font cross reference file #PATH,##FILE,##EXTENSION,#

DPR0019 Cannot retrieve data into the #FILE,# file. ARCRetrieveDoc API failed.
CATALOGKEY =#CATALOGKEY,# CARID=#CARID,#.
#PATH,##FILE,##EXTENSION,#

DPR0020 DSLoadFormList API failed on file #FILE,#

DPR0021 DSLoadNAFormset API failed on file #FILE,#

DPR0022 Cannot add variable #VARIABLE,# to the attachment list.

DPR0024 Cannot create DSI variable #VARIABLE,#.

Documaker Bridge Error Messages

347

DPR0025 Cannot add variable #VARIABLE,# to the attachment record #RECORD,#.

DPR0026 Cannot load the import file #FILE,#.

DPR0027 Cannot load the form set definition file #FILE,#.

DPR0028 Cannot load the FAP file for image #IMAGE,#.

DPR0029 Loading of the provided import file resulted in empty form set.

DPR0030 The combination of group names (#GROUPNAME1,#) and
(#GROUPNAME2,#) and the form name (#FORMNAME,#) does not exist in
form definition file. Invalid import data.

DPR0031 Cannot open import file #FILE,#.

DPR0032 No form name provide in the import file.

DPR0033 Cannot parse import file. Line: #LINEDATA,#

DPR0034 The combination of group names (#GROUPNAME1,#) and
(#GROUPNAME2,#) and the form name (#FORMNAME,#) and image name
(#IMAGENAME,#) does not exist in form definition file. Invalid import data.

DPR0035 Cannot open the export file #FILENAME,#. Error reported by OS
#ERRORNO,#

DPR0036 The DSI variable #VARIABLE,# does not contain a valid FAP form set.

DPR0037 The attachment variable #VARIABLE,# with value #VALUE,# is not a valid
encrypted string.

DPR0038 The rule parameters #PARAMETERS,# for the rule #RULE,# are not correct or
empty.

DPR0039 The call by #LOCATION,# to API #APINAME,# failed.

DPR0040 DSI variable #VARIABLE,# does not contain valid data.

DPR0041 The call by #LOCATION,# to API #APINAME,# failed. The status code has
been changed by another user.

DPR0042 Failed to unload File #FILE,# in #LOCATION,#.

DPR0043 Failed to DBQueryFormatInfo from #FILE,#.

DPR0044 Failed to DBInitializeFile #FILE,#.

DPR0045 Failed to DBOpen #FILE,#.

DPR0046 Failed to UTLLockARC #FILE,#.

DPR0047 Failed to ArcInit #FILE,#.

DPR0048 Failed to ArcArchiveDataFile #FILE,#.

DPR0049 Failed to create the XML document in #LOCATION,#.

DPR0050 Failed to export the form set to XML in #LOCATION,#.

DPR0051 Failed to unload the XML file #FILE,# in #LOCATION,#.

Code Message Text

Appendix B
Error Messages

348

DPR0052 Failed to decrypt the attachment variable #VARIABLE,# in the wild card search.

DPR0053 Unable to get a random seed value in #LOCATION,#.

DPR0054 Invalid login.

DPR0055 Unable to DSIGlobalDataCreate in #LOCATION,#. Most likely the global data
setup is incorrect.

IRL0001 The required attachment variable #VARIABLE,%s# could not be located.

IRL0002 No search criteria were specified. The attachment variable FIELDS in empty.

IRL0003 The user information database, #FILENAME,%s#, could not be opened.

IRL0004 The user ID #USERID,%s# is invalid.

IRL0005 The password specified for user #USERID,%s# is incorrect.

IRL0006 The virtual memory management API #APINAME,%s# failed.

IRL0007 The INI option #INIOPTION,%s# could not be located in the group
#INIGROUP,%s#.

IRL0008 The database API #APINAME,%s# failed accessing the table
#TABLENAME,%s#.

IRL0009 No matches were found for the search criteria.

IRL0010 The system encountered an internal error of unknown type. The call by
#LOCATION,%s# to #APINAME,%s# failed.

IRL0011 The attachment field #VARIABLE,%s# does not contain valid data.

IRL0012 The queue management API #APINAME,%s# failed.

IRL0013 The initialization file, #FILENAME,%s# could not be loaded.

IRL0014 Platform error. Area: #AREA,# Code: #CODE,# Code2: #CODE2,# Message:
#MESSAGE,#

IRL0015 The parameter #PARAMETER,# is invalid.

IRL0016 The value #VALUE,# was not found for option #OPTION,# in group
#GROUP,#.

IRL0017 Cannot locate variable #VARIABLE,#.

IRL0022 Cannot add variable #VARIABLE,# to the attachment list.

IRL0023 Cannot save changes to the file #FILE,#.

IRL0025 Cannot add variable #VARIABLE,# to the attachment record #RECORD,#.

RL0026 Cannot find the global variable #VARIABLE,#. Make sure the IRLInitFTP rule is
registered on INI request.

IRL0027 Rule parameters for rule #RULENAME,# are incorrect. The rule is disabled.

Code Message Text

Documaker Bridge Error Messages

349

IRL0028 TP server is not specified in the attachment or in the INI file. The FTP rule is
disabled.

IRL0029 FTP connection cannot be established. Make sure the FTP rule is configured
correctly.

IRL0030 Cannot find variable #VARIABLE,# in the attachment. FTP operation
#OPERATION,# will be skipped.

IRL0031 Error #ERRORCODE,# #ERRORDESCRIPTION,# on FTP operation
#OPERATION,#.

MTC0001 The attachment variable #VARIABLE,# could not be located.

MTC0010 The system encountered an internal error of unknown type. The call by
#LOCATION,# to #APINAME,# failed.

MTC0011 The attachment field #VARIABLE,# does not contain valid data.

MTC0014 Platform error. Area: #AREA,# Code: #CODE,# Code2: #CODE2,# Message:
#MESSAGE,#

MTC0017 Cannot locate variable #VARIABLE,#.

MTC0018 Cannot load font cross reference file #PATH,##FILE,##EXTENSION,#

MTC0022 Cannot add variable #VARIABLE,# to the attachment list.

SRV0001 The Rule Processor failed while processing the messages #CURMSG,#.

SRV0002 The server is not configured for request type: #REQTYPE,#.

SRV0003 The master server could not send the message to IDS

TPD0001 Cannot DSILocateValue #NAME,#. Make sure TPDInit rule was executed.

TPD0002 Call to API #APINAME,# failed.

TPD0003 File #TIFFNAME,# cannot be loaded.

TPD0004 Stem variable #NAME,# cannot be located.

TPD0005 Stem variable #NAME,# has invalid value (0).

Code Message Text

Appendix B
Error Messages

350

JAVA ERROR
MESSAGES

Here is a list of the error messages you may receive.

Code Message Text

JAV0001 JNIAPI #APINAME,# Failed.

JAV0002 Cannot locate the global variable #VARIABLE,#.

JAV0003 Cannot create the global variable #VARIABLE,#.

JAV0004 Cannot parse the rule PARM #VARIABLE,#.

JAVARULE001 Cannot find the argument file #ARGUMENTS,#.

JAVARULE002 Problem using the argument file #ARGUMENTS,#. #MESSAGE,#

JAVARULE003 Cannot locate the attachment variable #ATTACHVAR,# for parsing
arguments.

JAVADOM0001 A DSI exception was returned from Java. The error message is
#ERRORMESSAGE,#

JAVADOM0002 Cannot find the attachment variable #ATTACHVAR,#. This variable
contains the name of the XML file.

JAVADOM0004 Error changing document. Error code returned is #ERRORCODE,#.
Error message is #ERRORMESSAGE,#

JAVADOM0005 Java class #DOMCLASS,# specified in “DOMCLASS” not an instance of
Java interface DOMTransformer.

JAVADOM0006 An exception was returned from Java. The error message is
#ERRORMESSAGE,#

JAVADOM0007 The Java class “#CLASS,#” was not found. Check the UserClassPath
setting.

JAVAXSL0001 Error during run forward message.

JAVAXSL0002 Error getting XSL filters. Error code returned is #ERRORCODE,#.
Error message is #ERRORMESSAGE,#

JAVAXSL0003 A DSI exception was returned from Java. The error message is
#ERRORMESSAGE,#

JAVAXSL0004 An exception was returned from Java. The error message is
#ERRORMESSAGE,#

JAVAXSL0005 Java class #PROVIDERCLASS,# specified in “#PROVIDERCLASS”
not an instance of Java interface XSLProfilesProvider.

JAVAXSL0006 An exception was returned from Java during initialization. The error
message is #ERRORMESSAGE,#

JAVAXSL0007 The Java class “#CLASS,#” was not found. Check the UserClassPath
setting.

Printstream Bridge Error Messages

351

PRINTSTREAM
BRIDGE ERROR

MESSAGES

Here is a list of the error messages you may receive.

Code Message Text

MTC0001 The attachment variable #VARNAME,%s# could not be located.

MTC0010 The system encountered an internal error of unknown type. The call by
#LOCATION,%s# to #APINAME,%s# failed.

MTC0011 The attachment field #VARIABLE,%s# does not contain valid data.

MTC0014 Platform error. Area: #AREA,# Code: #CODE,# Code2: #CODE2,#
Message: #MESSAGE,#

MTC0017 Cannot locate variable #VARIABLE,#.

MTC0018 Cannot load font cross reference file #PATH,##FILE,##EXTENSION,#

MTC0022 Cannot add variable #VARIABLE,# to the attachment list.

Appendix B
Error Messages

352

AFP ERROR MESSAGES
The following information describes how to handle error messages you may encounter
while using the Printstream Bridge and AFP print streams.

Character set
xxxxxxxx not found…

If you receive this error message, the AFP print stream uses a character set and code page
file name instead of coded font file name to specify an AFP font to be used. In this case,
you will need to create an additional file called IBMXREF.TBL to provide additional AFP
font information. IBMXREF.TBL is a text file that contains pairs of coded font names
and character set names. This file should be placed in the directory specified by the
FORMLIB INI setting.

What you are doing is specifying the coded font file name to use when a reference to the
character set file is encountered in the AFP print stream. The system searches in the FXR
file for the coded font file name to determine font information it needs during the PDF
conversion.

When entering the coded font and character set names in IBMXREF.TBL, do not use the
first two letters (X0, X1, C0, C1, and so on). The coded font and character set names need
to be written in UPPER CASE and separated by at least one space. Each pair of coded
font and character set names should be written on separate lines. For example, if you
receive an error stating…

Character set C0AR111 not found…

Add a line of coded font and character set names to the IBMXREF.TBL. If a coded font
file named X0AR11P contained a reference to the character set file C0AR111, you would
add the following line to IBMXREF.TBL:

AR11P AR111

Notice the first two letters of X0AR11P and C0AR111 are omitted from the line added
to IBMXREF.TBL. You should have inserted the coded font file, X0AR11P, into the
FXR file previously.

If you have character set files but do not have any coded font files, you can insert a
character file into the FXR. However, you must edit the font inserted into the FXR and
specify a coded font file name on the Printers page. In this case, use the character set name
as the coded font name and change the first letter from C to X. In this case, the pair of
names stored in the IBMXREF.TBL will be the same.

If you have a character set file that is used by more than one code page file, you can map
each character set/code page file combination to a coded font file named in the FXR. To
do this, add a third column to the IBMXREF.TBL. The third column contains the name
of code page file. For example, to map the coded font file, X0AR11P, to the character set
and code page files, C0AR111, and T1ISI121, you would add this line to IBMXREF.TBL:

AR11P AR111 T1ISI121

Notice the first two letters of X0AR11P and C0AR111 are omitted from the line added
to IBMXREF.TBL but the full name of the code page file, T1ISI121, is used.

Error opening overlay:
xxxxxxxx

If you receive this error message, the AFP print stream uses an overlay that the system
could not find. Notice the path and file extension of the overlay specified in the error
message. Make sure your AFP overlay is stored in the proper directory and contains the
expected file extension.

Printstream Bridge Error Messages

353

Error opening page
segment: xxxxxxxx

If you receive this error message, the AFP print stream uses a page segment that the
system could not find. Notice the path and file extension of the page segment specified
in the error message. Make sure your AFP page segment is stored in the proper directory
and contains the expected file extension.

Error opening logo:
xxxxxxxx

If you receive this error message, it is likely that the AFP print stream uses a page segment
that the system could not find. If so, you would have received an error message for the
missing page segment as well. Correct the problem with the missing page segment and
this error should disappear as well.

Appendix B
Error Messages

354

355

Appendix C

Choosing a Paper Size

The system supports a wide variety of paper sizes
including US and international sizes. The following
tables show the paper sizes you can choose from:

• US Standard Sizes on page 356

• ISO Sizes on page 357

• Japanese Standard Sizes on page 360

You can also find the following related information in
this topic:

• Printer Support for Paper Sizes on page 361

• Paper Sizes for AFP Printers on page 365

Appendix C
Choosing a Paper Size

356

US STANDARD
SIZES

These paper sizes are commonly used in the United States and Canada. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are
approximate.

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

US letter 0 20400 x 26400 216 × 279 8½ x 11

US legal 1 20400 x 33600 216 × 356 8½ x 14

US executive 3 17400 x 25200 190 × 254 7¼ 10½

US ledger 4 40800 x 26400 432 x 279 17 x 11

US tabloid 5 26400 x 40800 279 × 432 11 x 17

US statement 6 13200 x 20400 140 x 216 5½ x 8½

US folio 7 20400 x 31200 216 x 330 8½ x 13

US fanfold 8 35700 x 26400 378 x 279 147⁄ 8 x 11

Custom 98 any x any any x any any x any

ISO Sizes

357

ISO SIZES The International Organization for Standardization (ISO) paper sizes, which are based on
the earlier Deutsche Industrie Norm (DIN) sizes, are used throughout the world except
in Canada, the United States, and Japan. There are three main series of paper sizes: A, B,
and C.

ISO A sizes The A series of sizes are typically used for correspondence, books, brochures, and other
printed materials. This diagram shows most of the various A sizes. The height and width
are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are
approximate.

A0

A7

A6 A5

A4 A3

A2 A1

(roughly 49 inches)

(roughly 66 inches)

Code

Width x Height

Name FAP units Millimeters
Inches
(approximate)

ISO A0 20 79464 x 112345 841 x 1189 331⁄ 8 x 46¼

ISO A1 21 56125 x 79464 594 x 841 233⁄ 8 x 331⁄ 8

ISO A2 22 39685 x 56125 420 x 594 16½ x 233⁄ 8

ISO A3 23 28063 x 39685 297 x 420 11¾ x 16½

ISO A4 2 19842 x 28063 210 x 297 8¼ x 11¾

Appendix C
Choosing a Paper Size

358

ISO B sizes The B series of sizes are designed primarily for posters, wall charts, and similar items
where the difference between each A size represents too large a jump. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are
approximate.

ISO A5 25 13984 x 19842 148 x 210 57⁄ 8 x 8¼

ISO A6 26 9921 x 13984 105 x 148 41⁄ 8 x 57⁄ 8

ISO A7 27 6992 x 9921 74 x 105 27⁄ 8 x 41⁄ 8

ISO A8 28 4913 x 6992 52 x 74 2 x 27⁄ 8

ISO A9 29 3496 x 4913 37 x 52 1½ x 2

ISO A10 30 2457 x 3496 26 x 37 1 x 1½

ISO 2A 32 112345 x 158927 1189 x 1682 46¾ x 66¼

ISO 4A 34 158927 x 224690 1682 x 2378 66¼ x 935⁄ 8

Code

Width x Height

Name FAP units Millimeters
Inches
(approximate)

Code

Width x Height

Name FAP units Millimeters
Inches
(approximate)

ISO B0 40 94487 x 133605 1000 x 1414 391⁄ 8 x 551⁄ 8

ISO B1 41 66802 x 94487 707 x 1000 277⁄ 8 x 391⁄ 8

ISO B2 42 47244 x 66802 500 x 707 195⁄ 8 x 277⁄ 8

ISO B3 43 33354 x 47244 353 x 500 137⁄ 8 x 195⁄ 8

ISO B4 44 23622 x 33354 250 x 353 97⁄ 8 x 137⁄ 8

ISO B5 45 16630 x 23622 176 x 250 7 x 97⁄ 8

ISO B6 46 11811 x 16630 125 x 176 5 x 7

ISO B7 47 8315 x 11811 88 x 125 3½ x 5

ISO B8 48 5858 x 8315 62 x 88 2½ x 3½

ISO B9 49 4157 x 5858 44 x 62 1¾ x 2½

ISO B10 50 2929 x 4157 31 x 44 1¼ x 1¾

ISO 2B 52 133605 x 188974 1414 x 2000 55¾ x 78¾

ISO 4B 54 188974 x 267209 2000 x 2828 78¾ x 111¼

ISO Sizes

359

ISO C sizes The C series of sizes are designed for making envelopes and folders to take the A series
of sizes. The height and width are in FAP units (2400 per inch), millimeters, and inches.
The inch dimensions are approximate.

The DL size is for a sheet 1/3 of the A4 size. This is the most common size of envelope.

Code

Width x Height

Name FAP units Millimeters
Inches
(approximate)

ISO C0 60 86645 x 122550 917 x 1297 361⁄ 8 x 51

ISO C1 61 61228 x 86645 648 x 917 25½ x 36

ISO C2 62 43275 x 61228 458 x 648 18 x 25½

ISO C3 63 30614 x 43275 324 x 458 12¾ x 18

ISO C4 64 21638 x 30614 229 x 324 9 x 12¾

ISO C5 65 15307 x 21638 162 x 229 63⁄ 8 x 9

ISO C6 66 10772 x 15307 114 x 162 4½ x 63⁄ 8

ISO C7 67 7653 x 10772 81 x 114 3¼ x 4½

ISO C8 68 5386 x 7653 57 x 81 2¼ x 3¼

ISO C9 69 3779 x 5386 40 x 57 15⁄ 8 x 2¼

ISO C10 70 2646 x 3779 28 x 40 11⁄ 8 x 15⁄ 8

ISO DL 71 10394 x 20787 110 × 220 41⁄ 3 x 82⁄ 3

Appendix C
Choosing a Paper Size

360

JAPANESE
STANDARD

SIZES

Japan has its own standard paper sizes, called the Japan Industrial Standard (JIS). The JIS
A series is identical in size to the ISO A series. The JIS B series, however, does not match
the ISO B series. There is no equivalent to the ISO C series. This table shows the JIS paper
sizes. The height and width are in FAP units (2400 per inch), millimeters, and inches. The
inch dimensions are approximate.

Code

Width x Height

Name FAP units Millimeters
Inches
(approximate)

JIS B0 80 97322 x 137573 1030 x 1456 40½ x 57¼

JIS B1 81 68787 x 97322 728 x 1030 28¾ x 40½

JIS B2 82 48661 x 68787 515 x 728 20¼ x 28¾

JIS B3 83 34393 x 48661 364 x 515 14¼ x 20¼

JIS B4 84 24283 x 34393 257 x 364 101⁄ 8 x 14¼

JIS B5 85 17197 x 24283 182 x 257 7¼ x 101⁄ 8

JIS B6 86 12094 x 17197 128 x 182 5 x 7¼

JIS B7 87 8598 x 12094 91 x 128 3½ x 5

JIS B8 88 6047 x 8598 64 x 91 2½ x 3½

JIS B 89 4252 x 6047 45 x 64 1¾ x 2½

JIS B10 90 3024 x 4252 32 x 45 1¼ x 1¾

Printer Support for Paper Sizes

361

PRINTER
SUPPORT FOR
PAPER SIZES

This table outlines the various paper sizes supported by the different print drivers. The
table includes information for the PDF, RTF, HTML, Metacode, PCL 5, PCL 6, GDI,
PostScript, and AFP print drivers. The PDF, RTF, HTML, and Metacode print drivers
support all paper sizes.

Paper size

PDF, RTF,
HTML, and
Metacode PXL1 PCL2 GDI2 PST3 AFP4

US letter X X X X X X

US Legal X X X X X X

US executive X X X X X X

US ledger X X X X X X

US tabloid X Y US letter X X X

US statement X JIS B5 US executive X X X

US folio X US legal US legal X X X

US fanfold X US ledger US ledger X X X

ISO 4A X Y US letter US letter US letter C

ISO 2A X Y US letter US letter US letter C

ISO A0 X Y US letter US letter X C

ISO A1 X Y US letter US letter X C

ISO A2 X Y US letter US letter X C

ISO A3 X X X X X X

ISO A4 X X X X X X

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 365 for more information.

Appendix C
Choosing a Paper Size

362

ISO A5 X X X X X X

ISO A6 X X X X X X

ISO A7 X ISO A6 ISO C5 ISO A6 X C

ISO A8 X ISO A6 ISO C5 ISO A6 X C

ISO A9 X ISO A6 ISO C5 ISO A6 X C

ISO A10 X ISO A6 ISO C5 ISO A6 X C

ISO 4B X Y US letter US letter US letter C

ISO 2B X Y US letter US letter US letter C

ISO B0 X Y US letter US letter X C

ISO B1 X Y US letter US letter X C

ISO B2 X Y US letter US letter X C

ISO B3 X Y US letter US letter X C

ISO B4 X JIS B4 US ledger X X X

ISO B5 X JIS B5 X X X X

ISO B6 X JIS B6 ISO C5 X X X

ISO B7 X ISO A6 ISO C5 ISO A6 X C

ISO B8 X ISO A6 ISO C5 ISO A6 X C

ISO B9 X ISO A6 ISO C5 ISO A6 X C

Paper size

PDF, RTF,
HTML, and
Metacode PXL1 PCL2 GDI2 PST3 AFP4

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 365 for more information.

Printer Support for Paper Sizes

363

ISO B10 X ISO A6 ISO C5 ISO A6 X C

ISO C0 X Y US letter US letter X C

ISO C1 X Y US letter US letter X C

ISO C2 X Y US letter US letter X C

ISO C3 X Y US letter X X C

ISO C4 X JIS B4 US ledger X X C

ISO C5 X X X X X C

ISO C6 X JIS B6 ISO C5 X X C

ISO C7 X ISO A6 ISO C5 ISO A6 X C

ISO C8 X ISO A6 ISO C5 ISO A6 US letter C

ISO C9 X ISO A6 ISO C5 ISO A6 US letter C

ISO C10 X ISO A6 ISO C5 ISO A6 US letter C

ISO DL X X X X X X

JIS B0 X Y US letter US letter X C

JIS B1 X Y US letter US letter X C

JIS B2 X Y US letter US letter X C

JIS B3 X Y US letter US letter X C

JIS B4 X X X US fanfold X X

Paper size

PDF, RTF,
HTML, and
Metacode PXL1 PCL2 GDI2 PST3 AFP4

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 365 for more information.

Appendix C
Choosing a Paper Size

364

JIS B5 X X X X X X

JIS B6 X X X X X X

JIS B7 X ISO A6 ISO C5 ISO A6 X C

JIS B8 X ISO A6 ISO C5 ISO A6 X C

JIS B9 X ISO A6 ISO C5 ISO A6 X C

JIS B10 X ISO A6 ISO C5 ISO A6 X C

Paper size

PDF, RTF,
HTML, and
Metacode PXL1 PCL2 GDI2 PST3 AFP4

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 365 for more information.

Paper Sizes for AFP Printers

365

PAPER SIZES
FOR AFP
PRINTERS

The AFP formdef source file (F1FMMST.DAT) contains support for the following paper
sizes, but since this file contains support for so many paper sizes, its size could affect
printer performance. To limit the effect, some of the paper sizes are commented out, as
shown in this table:

NOTE: The F1FMMST.DAT and F1FMMST.FDF files can be found in the FMRES
master resource library (MRL).

The commented source line begins with an asterisk (*). To add support for another paper
size, open the F1FMMST.DAT file and delete the asterisk at the beginning of each line
that references a paper size you want to add.

Size Commented out?

Letter No

Legal No

Executive No

Ledger Yes

Tabloid Yes

Statement Yes

Folio Yes

Fanfold Yes

ISO A3 Yes

ISO A4 No

ISO A5 Yes

ISO A6 Yes

ISO B4 Yes

ISO B5 Yes

ISO B6 Yes

ISO DL Yes

JIS B4 Yes

JIS B5 Yes

JIS B6 Yes

Appendix C
Choosing a Paper Size

366

Because the AFP formdef is composed on medium map names that specify page
orientation, paper size, tray selection, and duplex settings, there are 31 groups of medium
map settings. Each of these groups contains the 57 possible paper sizes. So, for each paper
size you add, there are 31 sources lines you must uncomment to fully support a paper size
for all orientations, trays, and duplex settings.

After you uncomment the lines that reference the paper size you want to add, run the
AFPFMDEF utility to rebuild your AFP formdef file with the new information. For more
information on this utility, see the Docutoolbox Reference.

367

Index

A

A4 page size
PaperSize option 211

AbsolutePage property 167
Acrobat

downloading Acrobat Reader 4
Acrobat Reader

base fonts 215
embedded fonts 223
fonts 226

Active Server Pages 12, 25, 168
ActiveX Data Objects 166
AddNameValuePair method 317
AddReq method 18
AFEAssignDpw API 303
AFGJOB.JDT file 151
AFP

error messages 352
AGFA fonts

embedding 215
international characters 229

AllowColorSheetLink option 231
AllowInput option 181, 231
AltFrom option 137, 138
ANSI code page 229
AppIdx INI option

multiple bridges 130
ArcRet control group

multiple bridges 130

Index

368

ASP
IDSASP object 17
Print Preview 245
sample files 25
samples 25
showing PDF files 22

ATCReceiveFile
referencing attachment variables 106

ATCSendFile
referencing attachment variables 106

attachment fields
sending and receiving 19

attachment variables
referencing 106

attachments
distributing email 137, 138
REPLYTO 138

ATTCHDFD.DFD file 136, 139, 140
authentication

for Print Preview 250

B

Barcode option 180
base fonts

Acrobat Reader 216
defined 226

BaseErrors option 149
batch active flag 220
batch requests

submitting 132
BatchPrint control group 222
Bin2Unicode method 317
Bitmap option 180
bitmaps

color 214
BmSub option 233
BmSubChar option 233
BOF property 168

Bookmark option
custom bookmarks 227
PDF printers 209

bookmarks
creating custom 227
DisplayMode option 210

Box option 180
bridges 2

using multiple 130
built-in functions

REPLYTO 138

C

callback function 220
Certificate Authority 124
CGI

query strings 19
character widths

SplitPercent option 219
CheckNextRecip INI option 221
Class option

PDF printers 210
CleanCache method 317
ClearMsgFile option 149
ClearReq method 18
ClearRes method 18
Client Connection Definition Table 124
cmdGetResponseWithParm method 300
cmdSetFormsetField method 300
CmdWithMessage method 296
code pages

support for PDF files 229
CollapsePage option 181, 231
ColorSheet option 231
CommandTimeout property 167
Comp Pack 214
Comp TIFF 214
Compression attachment variable 134
Compression option 212

369

compression ratios 211
CONFIG attachment variable

multiple bridges 130
CONFIG.INI file

referencing attachment variables 106
correlation IDs 119
CreateScriptFile option 232
custom page sizes

PaperSize option 211

D

DAP.INI file 145
distributing email 136
multiple bridges 130
PDF compression option 212
referencing attachment variables 106

DCLTW32 program 16, 19
Debug control group 146
Debug option 294

MailType control group 137
DefaultTimeoutSeconds attribute 199
Device option 231
DFD VARIABLE option 139
dialogs

customizing 192
DirLinks option 181, 231
DisableRightClick option 305
DisplayMode option 209, 210
distributed documents 2
DOCCLNT.INI files

request types 131
DOCSERV.INI file

referencing attachment variables 106
request types 131

docserv.xml file 145, 330
Documaker

running via IDS 144
Documaker Bridge

error messages 346

Documerge 2
DownloadDPWFonts option 294
DownloadFAP option 221
DownloadFonts option

embedding fonts 215, 224
overview 231
PDF printers 209

DP.DLL 311
DPP files 283
DPRAdd2Attachment rule

distributing email 137, 139, 140
DPRCreateEMailAttachment rule

distributing email 138, 140
DPRDecryptValue rule 196
DPRFap2Html rule 235
DPRFindTemplate rule

distributing email 136, 138, 139, 140
DPRLog rule

distributing mail 141
DPRMail rule

and the DPRLog rule 141
distributing email 137, 139, 140

DPRParseRecord rule
and the DPRLog rule 141
distributing email 136, 139

DPRPrint rule 151
DPRSetConfig rule

multiple bridges 130
DPRTblLookUp rule 235
DPRWIP rules

and Print Preview 237
DPRWipTableParms rule 248
DPW files 152
DRLGetConfig 202
DSICoEx

sample output 333
DSICoTB

sample output 334, 335, 336, 337
DSIEncr COM object 195
DSIEXW32 program

sample output 333
DSIGetSOAPMessage 164

Index

370

DSIGetSOAPMessageSize 164
DSIJWP.DLL file 134
DSILIB

default time-outs 199
DSIMessage class 76
DSIRowset2XML rule 194
DSIRowset2XMLSize rule 194
DSIServer control group 151
DSITEST utility 103
DSN property 167
DumpScript option 232
duplex 134

E

email
distributing with IDS 135
message bus 141

Email2IDS control group 136, 139
EmailAdd option 136
EmailAdd2Attachment control group 137, 140
EmailDFD control group 136, 139
embedding fonts

compressing 211
how to 224
PDF Print Driver 215

encrypting
URLs 195

Enterprise Web Processing Services (EWPS) 205
EntryBackColor option 232
EntryFontColor option 232
EOF property 168
eplyToQueueManagerName property 125
error messages 273, 339

AFP 352
displaying 340
Documaker Bridge 346
Internet Document Server 344
Java 350
Printstream Bridge 351

Errors property 168
Execute method 168
executive page size

PaperSize option 211
extra info 227

F

FAP files
converting into HTML 179
converting to XML 197

FAP2HTML utility 179
FAP2XML utility 197
FAPGetExtraInfo function 228
FAPPutExtraInfo function 228
favorites list 274
FD2HTW32 utility 177
Field option 180
FieldErrors option 149
FieldFontFudge option 181
Fields property 168
File option

EmailDFD control group 136
FILE2IDS utility 132
FileExists method 318
FileExt option 151
files

sample output 333
system 329
testing the transfer of 103

firewalls
using 195

font cross-reference files
and the PDF Print Driver 223
optimizing 213

Font File field 225
Font File Name field 217
font IDs

PDF Print Driver 223
removing 213

371

Font Index field 217, 225
Font Manager

embedding fonts 224
font mapping

PDF Print Driver 229
Font Name field 216
FontCompression option 211
fonts

AFP error messages 352
changing 217
compressing embedded fonts 211
embedding PostScript fonts 224
FieldFontFudge option 181
XML 183

ForceColorBitmaps option 211
FORM.DAT file

publishing forms 177
forms

publishing on the web 177
frequently used forms 274
From option 137, 138
FSISYS.INI file 149

and the PDF Print Driver 209
callback function 220

FSIUSER.INI file 149
FTP

and firewalls 195
full-screen mode

DisplayMode option 210
FXRVALID utility

embedding fonts 215, 217
optimizing PDF files 214

G

GenData
creating HTML files 233

GenDataStopOn control group 149

GenPrint
and the PDF Print Driver 209
callback support 220
CheckNextRecip option 221
MultiFilePrint option 221
SendOverlays option 221

GENSemaphoreName option 146, 150
GetAttach 106
GetMsg method 318
GetUniqueString method 318
GetVersion method 299, 301

H

HiddenFieldScript option 232
hInstance property 17
HR option 181, 231
HTML

and JSP 13
print driver 230
supported language features 8
vs. PDF 4

HTML files
converting FAP files 179

I

i_GetMRLResource rule 274
iDocumaker

favorites list 274
IDS

pausing 172
running Documaker 144

IDSASP
creating front-end solutions 16
illustrated 17

IDSINSTANCE variable 70
IDSJSP bean 14
IDSJSP.jar 13

Index

372

IDSServer control group 145, 146, 151
IDSSQL.ADO 167
IDSSQL.DLL 166
IDSSQL.IDSRC 168
IDSSQLRULE.DLL 166
IECOLOR.CSS file 231
Image Only PDF files 229
ImageErrors option 149
ImageExt option 181
ImagePath option 181, 231
ImagePathCreate option 231
IMG_ZIndex option 233
INI files

customizing Print Preview 248
FSISYS.INI and the PDF Print Driver 209
list of 330

INIFile option
multiple bridges 130

Initialize method 318
InitializeDefaults method 319
INIToken option 305
instance numbers 70
instances

Watchdog 66
internal message format 192
Internet access 6
Internet Document Server

and Document Management Solutions 2
error messages 344
illustration 12
overview 11
using the 9

intranet 2
IRLFileFTP rule 195
IRLInitFTP rule 195

J

J2EE-compliant application servers 113

Java
error messages 350
Java Management Extensions (JMX) 94
Java Message Service (JMS) 113
Java Naming and Directory Interface (JNDI) 113
server pages 13
threads test utility 57
WebSphere MQ 116

JavaScript option 231
JPEG files 214
JSON 205

L

LDAP 198
legal page size

PaperSize option 211
letter page size

PaperSize option 211
limitations

PDF Print Driver 229
load balancing 74
LoadFAPBitmap option 221
log files

DPRLog rule 141
logging categories 96

LogConfConvert.xsl template 95
LogFile option 149
LogFileType option 149, 150
LOGIN.ASP 245
LOGIN.ASP file 25
logos

error messages 353
optimizing PDF files 213

M

Mail control group 137
MailFunc option 137

373

MailType control group 137
MailType option 137
Management Information Base (MIB) file 64
marshaller class 76
MaxTimeoutSeconds attribute 199
message format

internal 192
MinTimeoutSeconds attribute 199
Module option 137, 231

PDF printers 210
MoveFirst method 168
MoveLast method 168
MoveNext method 168
MovePrevious method 168
MQSeries 116

DP.DLL COM object 311
MultiFileLog option 221
MultiFilePrint callback function 220, 221
MultiFilePrint option 149, 150
multi-line text fields

in XML files 183
MultiPage option 231
multiple bridges 130
multiple servers

measurements 52
using 50

MVS
ODBC connections 51

N

Name option 137
NoBatchSupport option 222

O

ODBC
connections to MVS 51

oDSI property 17

OnEndPage method 18
OnStartPage method 18
Option field 217
Options field 217, 225
OTH record 217
Other tab 217
Other tab (Font Properties window) 225
OutputFunc option 134
OutputMod option 134
overlays

and the PDF Print Driver 221
error messages 352

OverridePrompt option 305

P

page segments
error messages 353

PageBreaks option 181, 231
PageNumbers option 210, 231
PageSize property 167
PaperSize option 211
Password property 168
passwords

and firewalls 195
Path option 139
pausing IDS 172
PCL printing

mixing simplex and duplex 134
PDF Converter 3
PDF files

creating separate files 222
embedded fonts 223, 226
initial display 210
optimizing 213
showing 22
types of 229
vs. HTML files 4

Index

374

PDF Print Driver
changing fonts 217
fonts 229
limitations 229
overview 208
setting up 209
support for the GenPrint program 209

PDFW32.DLL 209
performance

measurements with multiple servers 51
PDF Print Driver 221
using multiple servers 50

personal forms lists 274
point sizes 223
Port option 137
Portable Document Format 208
PostGenDataExecutable option 155
PostGenPrintExecutable option 155
PostGenTrnExecutable option 155
PostScript

embedded fonts 223
PostScript Font File Name field 217
PostScript fonts

compressing 211
embedding 215, 217

PreLoadRequired option 222
Print Preview

ASP files 245
compressed PCL files 134
customizing 247
illustration 238
overview 237
using 239

PrintFormset rule 220
PrintFunc option 210, 231
PRINTOUT.ASP 25
PRINTPATH attachment variable 151
PrintPath option 151
Printstream Bridge

error messages 351
PrintViewOnly option

PDF printers 210

processing
documents using the internet 1

ProcessQ method 18, 19
ProcessRq method 18, 20
ProcessTrn method 319, 325
PRTLIB

and the PDF Print Driver 220
PrtType control group

PDF compression option 212
PDF Print Driver 209, 224

PrtView_WIPTable control group 248
PRTZCompressOutPutFunc function 134
publishing forms on the web 177
PullCode option 136
PutMsg method 319

Q

queues
~GetAttach variable 62, 106
client connection definition tables 124
default message queue handler 109
DESTINATION parameter 61
HTTP queues 110
IDSClientRule 60
logging categories 84
message queues 108
messaging systems 75
pausing IDS 172
pooling 122
ReplyToQueueName property 125
security exits 123
SOAP 158
SSL connections 124
transforming XML messages 188
using HTTP 126
using Java message service 113
using multiple 111
using WebSphere MQ 116
WaitTime property 18

375

R

ReadBinFile method 18, 24
ReadIniOptions method 320
ReceiveByCorrelationID API 119
RECIPS.ASP 25
RECORD.ASP 25
RecordCount property 168
RepeatInterval attribute 201
ReplyTo option 137, 138
replyToQueueName property 125
REQTYPE

multiple servers 51
request

submitting batch requests 132
types 131

Request property 17
requests

monitoring 65
timed 201

RequestValue method 320
required

components 6
Response.Redirect method 22
Result property 17
ResultValue method 321
Rotated Fonts field 213
RPDCheckRPRun rule 146
RPDCreateJob rule 146
RPDJobTicket variable 146
RPDProcessJob rule 146
RPDRunProcess variable 146
RPDRunRP control group 146
RPDSemaphoreName option 146, 150
RPDStopRPRun rule 146
RPEX1.INI file 145
RULServerJobProc option 150
RULStandardBaseProc rule 151
RUNMQSC tool 116
RunOnPrimaryInstanceOnly attribute 201

S

samples
output files 333

SaveOnExit option 305
ScriptPath option 232
ScriptPathCreate option 232
SEARCH.ASP file 25
security

URLs 195
security issues 195
semaphores 146
SendColor option 231

PDF printers 210
SendOverlays option

PDF printers 210
Server option 137
Server.CreateObject method 196
ServerBaseProc rule 151
servers

performance measurements 52
setting up additional 53
using multiple 50

SetGUID method 321
setting up

a Windows NT Service 54
PDF compression options 212
the PDF Print Driver 209

Setup Data field 216
ShowAtt property 17
simplex 134
single step mode 220
SleepingTime option 150
SNMP server programs 64
SOAP 205

DP.DLL COM object 311
message format 158

SOAP standards 192
SOAPAddAttachment method 321
SOAPGetAttachment method 322
SOAPGetAttachmentAsBuffer method 322

Index

376

SOAPLoadAttachment method 322
SOAPUnloadAttachment method 323
SplitPercent option 210, 214, 219
SplitText option 180, 210, 214, 219, 232
SQL

connecting to 166
SQLCommand property 168
SSL connections 124
symbol fonts 225
system files 329

T

Table option 181
TemplateFields option 231
Terminate method 323
TerSub paragraphs 235
Text option 180
TextMerge option 180
Thin Client Forms Publisher 171
thin clients 2
thumbnails

DisplayMode option 210
TIFF files

converting to PDF 229
timed requests 201
TimeOut property 18
time-outs

DSILIB client applications 199
TPDInitRule rule

multiple bridges 131
Trace method 323
TransactionErrors option 149
TrapEvents option 305
TrapOnlyQuitEvent option 305
TrueType fonts

compressing 211
embedding 215, 217

Type 1 fonts 225
TypeFace field 216

U

UDDI compliance 158
Unicode2Bin method 323
URL

requests 127
URLs

encrypting 195
user IDs

and firewalls 195
User property 168
USERINFO database 250
USERLIST attachment variable 250
using

multiple bridges 130
the Internet Document Server 9
the PDF Print Driver 208

W

WaitForStart option 149
WaitTime property 18
Watchdog 70
Watchdog process 66
Watchdog timer value 345
web servers

and firewalls 195
WebLogic 113
WebSphere 113

CCDT files 124
correlation IDs 119
overview 116
security exits 123
setting up 117
SSL connections 124

Windows NT
setting up an NT Service 54

WindowsRawPrinter.jar file 134

377

WIP Edit plug-in
changing user assignments 303
cmdGetResponseWithParm method 298, 300
cmdSetFormsetField method 297, 300
DPW files 152
GetVersion method 299, 301

WIPAPLST.ASP 245
WIPAPPR.ASP 245
WIPCTL program 296
WIPENTRY.ASP 246
WIPFIND.ASP 246
WIPFMSET.ASP 246
WIPFOOT.ASP 247
WIPHEAD.ASP 247
WIPLIST.ASP 245
WIPRECIP.ASP 246
WIPSTAT.ASP 246
WriteBinFile method 324
WriteToLog method 324
WSCOLOR.CSS file 231

X

XML
error message template 340
formatting text 183
internal message format 192
message format 158

XML files
converting FAP files 197

XML2Attach control group 137, 139, 140
XML2Body control group 136, 139, 140
XRFToken option 294

Z

Security exits 123

Index

378

	Start
	Notice
	Contents
	Processing Documents Using the Internet
	2 Overview
	5 Architectural Changes in Version 2.x

	6 Required Components
	6 Components Available from Oracle Insurance

	Using the Internet Document Server
	11 Overview
	13 Creating Front-End Solutions
	13 Using JSP
	14 Using the IDSJSP JavaBean
	15 Using the JSP Samples
	15 Handling Multi-Part/Form-Data Forms
	16 Using ASP

	17 Using the IDSASP Object
	19 Sending and Receiving Attachment Fields
	22 Showing a PDF File
	25 Using the ASP Samples
	25 Using the HTTP Parsing and Uploading APIs
	30 Using the XMLSession Rules
	30 IDSASP Methods
	32 IDSJSP Methods
	34 XMLSession Rules

	37 Using IDSXML
	38 XMLTransformErrors
	39 XMLTransformErrors2
	40 XMLLoadINI
	41 XMLLoadXML
	41 XMLLoadXSL
	42 XMLGetGroupOptionValue
	42 XMLGetValue
	42 XMLGetGroup
	44 XMLUpdateGroup
	45 XMLBuffer
	45 XMLLoadProcessor
	46 XMLAddParameterToXSL
	46 XMLTransformWithXSL
	47 XMLProcessWithXSL
	48 XMLUpdateFormset
	48 XMLProcessFormset

	50 Using Multiple Servers
	51 Determining if Your Transactions are CPU or I/O Intensive
	52 Performance Measurements when Using Multiple Servers
	53 Setting Up Additional Servers

	54 Setting Up a Windows NT Service
	55 Handling Multi-threaded Requests
	57 Using the Java Test Utility

	58 Using Rules Written in Other Scripting Languages
	59 Using IDS as a Client to Another IDS
	60 Using the IDSClientRule

	64 Monitoring IDS with SNMP Tools
	65 Monitoring Requests

	66 Managing IDS Instances
	75 Sending Results and Receiving Requests in Multiple Formats
	76 Configuring and Deploying Marshallers

	78 Logging and Tracing
	81 Naming Logging Messages
	84 Using Logging Categories
	87 Logging Information about Requests
	91 Querying Transaction Information
	92 getMetaData
	93 QueryTranLogs

	94 Monitoring Performance Statistics
	95 Generating a Logging Configuration File
	95 Using Logging Categories to Access the Internal Format of Requests

	97 Configuring IDS
	98 Running IDSConfig
	98 Creating New Files
	98 Adding Nodes
	98 Adding Nodes with Text
	99 Editing Nodes
	99 Copying Nodes
	99 Moving Nodes
	99 Adding Attributes
	100 Adding Comments
	100 Adding Text
	100 Adding a Request or Function
	100 Adding an IDS Function
	101 Converting DOCSERV.INI or DOCCLIENT.INI Files into XML Format
	101 Adding a Section or Entry
	101 Locating Text
	101 Importing Configuration Information
	102 Configuring MQSeries Buffer Sizes
	103 Testing File Transmission

	106 Referencing Attachment Variables
	107 Using Unicode in Attachment Variables

	108 Using the Message Queues
	108 Choosing the Right Queuing Options
	109 Understanding the Router Process
	110 How HTTP Queues are Handled
	110 Using the Router Section
	111 Using Multiple Queuing Systems

	113 Using the Java Message Service (JMS)
	113 Setting up JMS

	116 Using WebSphere MQ
	117 Setting Up WebSphere MQ
	118 Using MSMQ

	123 Using Security Exits
	124 Using Client Connection Definition Tables
	124 Using SSL Connections
	125 Using the ReplyToQueueName and ReplyToQueueManagerName Properties

	126 Using HTTP
	130 Using Multiple Bridges
	132 Submitting Batch Requests
	134 Printing in Duplex Mode to PCL Printers
	135 Using IDS to Distribute Email
	135 Modifying the docserv.xml Configuration File
	136 Modifying the DAP.INI File

	138 Attachment Variables Used by Email Rules
	139 Using Email Rules
	141 Using the Email Bus

	144 Using IDS to Run Documaker
	145 Setting Up IDS
	146 Setting up Multiple Internet Document Servers
	146 Controlling Documaker

	149 Setting Up Documaker
	151 Naming Conventions for Output Files

	152 Creating DPW Files
	153 Accessing IDS Attachment Variables in GenData
	153 Using TCP/IP Communications
	155 Customizing the Execution of Documaker

	158 Using the XML Messaging System
	160 Client Request Messages
	163 Server XML Response Messages
	164 Using XML SOAP Outside of Messaging Systems

	166 Connecting to an SQL Database
	167 Differences between Microsoft’s ADO and IDSSQL
	167 Setting up IDSSQL
	167 IDSSQL Classes
	167 IDSSQL.ADO
	168 IDSSQL.IDSRC

	168 Example Script

	171 Using the Thin Client Forms Publisher
	172 Pausing IDS
	172 DSIQueryStatus
	173 DSISetStatus

	175 Executing Request Types at Run Time
	177 Publishing Your Forms on the Web
	177 FORMPUB
	178 FD2HTW32
	178 PTFMDW32
	179 FAP2HTML
	180 INI Options

	182 Handling Multi-Part/Form-Data Forms
	183 Formatting Text with XML Markup
	184 Encrypting and Decrypting Data Files
	185 Using Multiple Attachment Values with the Same Name
	187 getEntries

	188 Converting XML Files Using a Template
	192 Customizing Your System
	195 Handling Security Issues
	195 Using Firewalls
	195 Implementing Security for Web Applications

	197 Using the FAP2XML Utility
	198 Using LDAP Support
	199 Using Default Time-outs for DSILIB-Based Client Applications
	201 Running Timed Requests
	202 In-Process Rendering for DPAView
	202 DRLGetConfig

	203 Using DAL Functions for WIP Column Access
	205 Using Enterprise Web Processing Services

	Creating Output Files
	208 Creating PDF Files
	209 Setting Up the PDF Print Driver
	212 Creating PDF Files with Unicode Support
	212 Setting PDF Compression Options
	213 Producing Optimal PDF Output
	215 Handling Fonts
	216 Not Embedding Fonts
	217 Embedding Fonts
	219 Handling Fonts with Multiple Width Tables

	220 Using the PDF Print Driver with GenPrint
	220 Changing the GenPrint Program
	222 Generating Separate Files

	223 Font Cross Reference File Tips
	224 Embedding Fonts
	226 Using the 14 Base Fonts Distributed with Acrobat Reader

	227 Setting Up Bookmarks
	229 Limitations

	230 Creating HTML Files
	235 Producing Table Information for TextMerge Paragraphs

	236 Creating XML Output

	Using Print Preview
	239 Touring Print Preview
	245 Using the JSP Files
	247 Customizing Print Preview
	248 Using INI Options to Customize Print Preview Screens
	249 Customizing the WIP List Page
	250 Creating User Lists for Print Preview
	251 Request Types for Print Preview

	Using Docucorp Publishing Services
	256 DPS Object Properties
	262 Setting Default Parameters
	264 Sample VB Code
	265 Sample C Code
	267 Sample Java Code
	269 Setting Up IDS
	271 Setting Up Documaker

	Customizing iDocumaker, iPPS, and WIP Edit
	274 Setting Up a Favorites List for iDocumaker
	276 Attaching Files to Transactions as Forms
	276 Specifying the File Name and Type in IDS Attachment Variables
	277 Sending the File to IDS in a Message
	277 Storing the File on a Disk Accessible to Documaker Bridge
	278 Storing the File in a Documanage Repository
	279 Error Messages
	279 Specifying Duplex Options for the Attached Form
	280 Debugging

	282 Designating Read-Only Multi-Line Text Field Paragraphs
	283 Printing on Your Workstation Printer
	284 Preventing the Session from Expiring
	285 Passing WIP Record IDs to the MergeWIP Rule
	286 Automatically Updating iDocumaker
	286 Configuring IDS to Update iDocumaker
	287 Using the VERSUPD Utility
	289 On the Client Side
	290 Additional Utilities

	291 Checking Version Information

	292 Using the WIP Edit Plug-in
	296 Controlling the Interface
	302 Setting Up Custom Functions
	303 Changing the User Associated with a Document
	303 Sending Passwords
	304 Requesting a Dictionary
	305 Trapping Events
	305 Tracking Session Information
	307 Setting Up Printers

	Using the DP.DLL ActiveX Interface
	312 Requirements
	313 Setting Up the Configuration File
	315 Properties
	316 Methods
	317 AddNameValuePair
	317 Bin2Unicode
	317 CleanCache
	318 FileExists
	318 GetMsg
	318 GetUniqueString
	318 Initialize
	319 InitializeDefaults
	319 ProcessTrn
	319 PutMsg
	320 ReadIniOptions
	320 RequestValue
	321 ResultValue
	321 SetGUID
	321 SOAPAddAttachment
	322 SOAPGetAttachment
	322 SOAPGetAttachmentAsBuffer
	322 SOAPLoadAttachment
	323 SOAPUnloadAttachment
	323 Terminate
	323 Trace
	323 Unicode2Bin
	324 WriteBinFile
	324 WriteToLog

	325 Examples

	System Files
	330 IDS Configuration Files
	333 Sample Output Files

	Error Messages
	340 Displaying Error Messages
	344 Internet Document Server Error Messages
	346 Documaker Bridge Error Messages
	350 Java Error Messages
	351 Printstream Bridge Error Messages
	352 AFP Error Messages

	Choosing a Paper Size
	356 US Standard Sizes
	357 ISO Sizes
	360 Japanese Standard Sizes
	361 Printer Support for Paper Sizes
	365 Paper Sizes for AFP Printers

	Processing Documents Using the Internet
	Overview
	HTML vs. PDF
	Architectural Changes in Version 2.x

	Required Components
	Provided by the end- user
	Provided by the Oracle Insurance license- holder
	Components Available from Oracle Insurance
	Internet Document Server
	Documaker Bridge
	Printstream Bridge (only for Windows)
	Documanage Bridge (only for Windows)
	Docuflex Bridge
	PDF print driver
	HTML print driver
	DSI SDK Package

	Using the Internet Document Server
	Overview
	Creating Front-End Solutions
	Using JSP
	Using the IDSJSP JavaBean
	Properties
	Methods

	Using the JSP Samples
	Handling Multi-Part/Form-Data Forms
	Using ASP

	Using the IDSASP Object
	Properties
	Methods
	Sending and Receiving Attachment Fields
	Using the ProcessQ method
	Using the ProcessRq method
	Sample Pages
	Page 1
	Page 2

	Showing a PDF File
	Using the Response.Redirect method
	Using the Read ReadBinFile method

	Using the ASP Samples
	Using the HTTP Parsing and Uploading APIs
	parseData
	Parameters
	Returns
	getRequest
	Parameters
	Returns
	getAttachment
	Parameters
	Returns
	getBuffer
	Parameters
	Returns
	upLoad
	Parameters
	Returns
	Sample Pages
	Page 1
	Page 2

	Using the XMLSession Rules
	IDSASP Methods
	addSessionVar
	getSessionVar
	removeSessionVar
	addSessionObject
	getSessionObject
	removeSessionObject

	IDSJSP Methods
	addSessionVar
	removeSessionVar
	getSessionVar
	addSessionObject
	removeSessionObject
	getSessionObject

	XMLSession Rules
	initSession
	Input variables
	Output variables
	termSession
	Input variables
	Output variables
	updateSession
	Input variables
	Output variables
	purgeXMLSessions
	Input variables
	Output variables
	saveFile
	Input variables
	Output variables

	Using IDSXML
	Properties
	Methods
	XMLTransformErrors
	Syntax
	Example

	XMLTransformErrors2
	Syntax
	Example

	XMLLoadINI
	Syntax
	Example

	XMLLoadXML
	Syntax
	Example

	XMLLoadXSL
	Syntax
	Example

	XMLGetGroupOptionValue
	Syntax
	Example

	XMLGetValue
	Syntax
	Example

	XMLGetGroup
	Syntax
	Example

	XMLUpdateGroup
	Syntax
	Example

	XMLBuffer
	Syntax
	Example

	XMLLoadProcessor
	Syntax
	Example

	XMLAddParameterToXSL
	Syntax
	Example

	XMLTransformWithXSL
	Syntax
	Example

	XMLProcessWithXSL
	Syntax
	Example

	XMLUpdateFormset
	Syntax
	Example

	XMLProcessFormset
	Syntax
	Example

	Using Multiple Servers
	Determining if Your Transactions are CPU or I/O Intensive
	Performance Measurements when Using Multiple Servers
	Setting Up Additional Servers
	Specifying the INI file to use

	Setting Up a Windows NT Service
	Handling Multi- threaded Requests
	INI vs. THREADINI control sections
	Threads and Inter-Rule data in C rules
	Threads and Inter-Rule data in Java and scripting rules
	Using the Java Test Utility

	Using Rules Written in Other Scripting Languages
	Using IDS as a Client to Another IDS
	The archive process
	The retrieval process
	Using the IDSClientRule
	Syntax

	Monitoring IDS with SNMP Tools
	Monitoring Requests

	Managing IDS Instances
	Determining the instance number of a server
	Categories and appenders used by Watchdog
	Watchdog section
	Scenario 1
	Scenario 2
	Scenario 3

	Sending Results and Receiving Requests in Multiple Formats
	Configuring and Deploying Marshallers
	Using the DSIMessage marshaller class

	Logging and Tracing
	Severity levels
	Logging categories
	Logging appenders
	Logging formats
	Logging example
	Naming Logging Messages
	Using Logging Categories
	Logging Information about Requests
	Request logging configuration
	Accessing the transaction database through IDS
	Accessing the transaction database directly

	Querying Transaction Information
	getMetaData
	Input attachments
	Output attachments

	QueryTranLogs
	Input attachments
	Output attachments

	Monitoring Performance Statistics
	Generating a Logging Configuration File
	Windows
	UNIX

	Using Logging Categories to Access the Internal Format of Requests

	Configuring IDS
	Running IDSConfig
	Creating New Files
	Adding Nodes
	Adding Nodes with Text
	Editing Nodes
	Copying Nodes
	Moving Nodes
	Move as a child node
	Move as previous node

	Adding Attributes
	Adding Comments
	Adding Text
	Adding a Request or Function
	Adding an IDS Function
	Converting DOCSERV.INI or DOCCLIENT.INI Files into XML Format
	Adding a Section or Entry
	Locating Text
	Importing Configuration Information
	Configuring MQSeries Buffer Sizes
	Testing File Transmission
	Syntax

	Referencing Attachment Variables
	Using Unicode in Attachment Variables

	Using the Message Queues
	Choosing the Right Queuing Options
	Understanding the Router Process
	How HTTP Queues are Handled
	Using the Router Section
	Using Multiple Queuing Systems

	Using the Java Message Service (JMS)
	Setting up JMS

	Using WebSphere MQ
	Setting Up WebSphere MQ
	Using MSMQ
	Property settings
	Using correlation IDs
	Using the ReceiveByCorrelationI D API
	Generating the message ID
	Using MSMQ direct format queue names
	Queue pooling

	Using Security Exits
	Using Client Connection Definition Tables
	Using SSL Connections
	Using the ReplyToQueueName and ReplyToQueueManagerName Properties

	Using HTTP
	Setting up HTTP
	Responding to URL requests
	Using IDS to respond to requests via a browser
	Configuring IDS to handle HTTP requests

	Using Multiple Bridges
	Request types and multiple bridges

	Submitting Batch Requests
	Printing in Duplex Mode to PCL Printers
	Using IDS to Distribute Email
	Modifying the docserv.xml Configuration File
	Modifying the DAP.INI File
	EmailDFD control group
	Email2IDS control group
	XML2Body control group
	XML2Attach control group
	EmailAdd2Attachment control group
	Mail and MailType control groups

	Attachment Variables Used by Email Rules
	Using Email Rules
	DPRParseRecord
	DPRFindTemplate
	DPRAdd2Attachment
	DPRCreateEMailAttach ment
	DPRMail
	DPRLog

	Using the Email Bus

	Using IDS to Run Documaker
	Setting Up IDS
	docserv.xml file
	DAP.INI file
	RPEX1.INI file
	Setting up Multiple Internet Document Servers
	Controlling Documaker
	If a critical error is encountered
	Error file processing
	Returning record IDs

	Setting Up Documaker
	FSISYS.INI or FSIUSER.INI file
	AFGJOB.JDT file
	Naming Conventions for Output Files

	Creating DPW Files
	Accessing IDS Attachment Variables in GenData
	On the IDS side
	On the Documaker side

	Using TCP/IP Communications
	In IDS
	In GenData

	Customizing the Execution of Documaker

	Using the XML Messaging System
	The XML-based DSI message format
	Client Request Messages
	Without attachments
	With attachments
	With multiple attachments

	Server XML Response Messages
	Using XML SOAP Outside of Messaging Systems

	Connecting to an SQL Database
	Differences between Microsoft’s ADO and IDSSQL
	Setting up IDSSQL
	IDSSQL Classes
	IDSSQL.ADO
	Properties
	Methods

	IDSSQL.IDSRC
	Properties
	Methods

	Example Script
	Fields

	Using the Thin Client Forms Publisher
	Pausing IDS
	DSIQueryStatus
	Syntax
	Returns
	Errors
	Example

	DSISetStatus
	Syntax
	Return values
	Errors
	Example

	Executing Request Types at Run Time
	Example configuration file
	Example data file
	Example dynamic.htm page
	Example dynamic.asp page

	Publishing Your Forms on the Web
	FORMPUB
	FD2HTW32
	Syntax
	Parameters

	PTFMDW32
	Syntax
	Parameters

	FAP2HTML
	Program names
	Syntax
	INI Options

	Handling Multi-Part/ Form-Data Forms
	Formatting Text with XML Markup
	Encrypting and Decrypting Data Files
	Using Multiple Attachment Values with the Same Name
	getEntries
	Parameters
	Returns

	Converting XML Files Using a Template
	Customizing Your System
	Handling Security Issues
	Using Firewalls
	Implementing Security for Web Applications

	Using the FAP2XML Utility
	Program names
	Syntax

	Using LDAP Support
	Searching a Directory Information Tree

	Using Default Time-outs for DSILIB-Based Client Applications
	Running Timed Requests
	In-Process Rendering for DPAView
	DRLGetConfig
	Syntax
	Parameters
	Returns
	See also

	Using DAL Functions for WIP Column Access
	Using Enterprise Web Processing Services

	Creating Output Files
	Creating PDF Files
	Setting Up the PDF Print Driver
	Creating PDF Files with Unicode Support
	Setting PDF Compression Options
	Producing Optimal PDF Output
	Handling Fonts
	When not to embed fonts
	When to embed fonts
	Not Embedding Fonts
	Embedding Fonts
	Handling Fonts with Multiple Width Tables

	Using the PDF Print Driver with GenPrint
	Changing the GenPrint Program
	Setting the CheckNextRecip option
	Using overlays
	Using the MultiFilePrint Callback function
	Using the log file

	Generating Separate Files

	Font Cross Reference File Tips
	Embedding Fonts
	Using the 14 Base Fonts Distributed with Acrobat Reader

	Setting Up Bookmarks
	Creating custom bookmarks
	Collapsing bookmarks

	Limitations
	Type 1 fonts
	Code pages
	PDF objects
	Searching for text in PDF files

	Creating HTML Files
	Producing Table Information for TextMerge Paragraphs

	Creating XML Output

	Using Print Preview
	Touring Print Preview
	Using the JSP Files
	Customizing Print Preview
	WIPHEAD.ASP
	WIPFOOT.JSP
	Using INI Options to Customize Print Preview Screens
	Customizing the WIP List Page
	Creating User Lists for Print Preview
	Request Types for Print Preview

	Using Docucorp Publishing Services
	DPS Object Properties
	DPSPrint object
	DPSArchive object
	DPSIDS object

	Setting Default Parameters
	DPSIDS section
	DPSPrint section
	DPSArchive section

	Sample VB Code
	Print
	Archive

	Sample C Code
	Sample Java Code
	Setting Up IDS
	Setting Up Documaker

	Customizing iDocumaker, iPPS, and WIP Edit
	Setting Up a Favorites List for iDocumaker
	Attaching Files to Transactions as Forms
	Specifying the File Name and Type in IDS Attachment Variables
	Sending the File to IDS in a Message
	Storing the File on a Disk Accessible to Documaker Bridge
	Storing the File in a Documanage Repository
	Error Messages
	Specifying Duplex Options for the Attached Form
	Start on back page bind example
	Long bind example
	Short bind example

	Debugging

	Designating Read-Only Multi-Line Text Field Paragraphs
	Printing on Your Workstation Printer
	Preventing the Session from Expiring
	Passing WIP Record IDs to the MergeWIP Rule
	Automatically Updating iDocumaker
	Configuring IDS to Update iDocumaker
	Using the VERSUPD Utility
	Program names
	Syntax
	INI options
	Error messages

	On the Client Side
	Additional Utilities

	Checking Version Information

	Using the WIP Edit Plug-in
	Turning on debugging
	Automatically sending the WIPEDIT.FXR file
	Saving documents with invalid certificates
	Running the plug-in outside the browser
	Registering the plug-in
	Changing values in the WIP index
	Changing the WIP index field
	Running multiple instances of the WIP Edit plug-in
	Using WIP Edit with SiteMinder®
	Controlling the Interface
	Example ASP code
	Example Visual Basic script
	cmdGetResponseWith Parm
	cmdSetFormsetField
	GetVersion
	cmdGetResponse
	BSTR getRequiredFieldName()

	Setting Up Custom Functions
	Changing the User Associated with a Document
	Sending Passwords
	Requesting a Dictionary
	Specifying the user dictionary

	Trapping Events
	Tracking Session Information
	Examples

	Setting Up Printers

	Using the DP.DLL ActiveX Interface
	Requirements
	Setting Up the Configuration File
	Properties
	Methods
	AddNameValuePair
	Bin2Unicode
	CleanCache
	FileExists
	GetMsg
	GetUniqueString
	Initialize
	InitializeDefaults
	ProcessTrn
	PutMsg
	ReadIniOptions
	RequestValue
	ResultValue
	SetGUID
	SOAPAddAttachment
	SOAPGetAttachment
	SOAPGetAttachmentAsBuffer
	SOAPLoadAttachment
	SOAPUnloadAttachment
	Terminate
	Trace
	Unicode2Bin
	WriteBinFile
	WriteToLog

	Examples
	Example 1
	Example 2

	System Files
	IDS Configuration Files
	Docserv.xml file format
	Docclient.xml format

	Sample Output Files
	DSIEXW32.EXE
	DSICoTB, option ESS
	DSICoTB, option Roll Your Own
	DSICoTB, option RSS
	DSICoTB, option SSS

	Error Messages
	Displaying Error Messages
	XML layout
	Client error handling
	Error reporting for C exceptions

	Internet Document Server Error Messages
	Documaker Bridge Error Messages
	Java Error Messages
	Printstream Bridge Error Messages
	AFP Error Messages
	Character set xxxxxxxx not found…
	Error opening overlay: xxxxxxxx
	Error opening page segment: xxxxxxxx
	Error opening logo: xxxxxxxx

	Choosing a Paper Size
	US Standard Sizes
	ISO Sizes
	ISO A sizes
	ISO B sizes
	ISO C sizes

	Japanese Standard Sizes
	Printer Support for Paper Sizes
	Paper Sizes for AFP Printers

	Index
	A
	A4 page size
	AbsolutePage property 167
	Acrobat
	Acrobat Reader
	Active Server Pages 12, 25, 168
	ActiveX Data Objects 166
	AddNameValuePair method 317
	AddReq method 18
	AFEAssignDpw API 303
	AFGJOB.JDT file 151
	AFP
	AGFA fonts
	AllowColorSheetLink option 231
	AllowInput option 181, 231
	AltFrom option 137, 138
	ANSI code page 229
	AppIdx INI option
	ArcRet control group
	ASP
	ATCReceiveFile
	ATCSendFile
	attachment fields
	attachment variables
	attachments
	ATTCHDFD.DFD file 136, 139, 140
	authentication

	B
	Barcode option 180
	base fonts
	BaseErrors option 149
	batch active flag 220
	batch requests
	BatchPrint control group 222
	Bin2Unicode method 317
	Bitmap option 180
	bitmaps
	BmSub option 233
	BmSubChar option 233
	BOF property 168
	Bookmark option
	bookmarks
	Box option 180
	bridges 2
	built-in functions

	C
	callback function 220
	Certificate Authority 124
	CGI
	character widths
	CheckNextRecip INI option 221
	Class option
	CleanCache method 317
	ClearMsgFile option 149
	ClearReq method 18
	ClearRes method 18
	Client Connection Definition Table 124
	cmdGetResponseWithParm method 300
	cmdSetFormsetField method 300
	CmdWithMessage method 296
	code pages
	CollapsePage option 181, 231
	ColorSheet option 231
	CommandTimeout property 167
	Comp Pack 214
	Comp TIFF 214
	Compression attachment variable 134
	Compression option 212
	compression ratios 211
	CONFIG attachment variable
	CONFIG.INI file
	correlation IDs 119
	CreateScriptFile option 232
	custom page sizes

	D
	DAP.INI file 145
	DCLTW32 program 16, 19
	Debug control group 146
	Debug option 294
	DefaultTimeoutSeconds attribute 199
	Device option 231
	DFD VARIABLE option 139
	dialogs
	DirLinks option 181, 231
	DisableRightClick option 305
	DisplayMode option 209, 210
	distributed documents 2
	DOCCLNT.INI files
	DOCSERV.INI file
	docserv.xml file 145, 330
	Documaker
	Documaker Bridge
	Documerge 2
	DownloadDPWFonts option 294
	DownloadFAP option 221
	DownloadFonts option
	DP.DLL 311
	DPP files 283
	DPRAdd2Attachment rule
	DPRCreateEMailAttachment rule
	DPRDecryptValue rule 196
	DPRFap2Html rule 235
	DPRFindTemplate rule
	DPRLog rule
	DPRMail rule
	DPRParseRecord rule
	DPRPrint rule 151
	DPRSetConfig rule
	DPRTblLookUp rule 235
	DPRWIP rules
	DPRWipTableParms rule 248
	DPW files 152
	DRLGetConfig 202
	DSICoEx
	DSICoTB
	DSIEncr COM object 195
	DSIEXW32 program
	DSIGetSOAPMessage 164
	DSIGetSOAPMessageSize 164
	DSIJWP.DLL file 134
	DSILIB
	DSIMessage class 76
	DSIRowset2XML rule 194
	DSIRowset2XMLSize rule 194
	DSIServer control group 151
	DSITEST utility 103
	DSN property 167
	DumpScript option 232
	duplex 134

	E
	email
	Email2IDS control group 136, 139
	EmailAdd option 136
	EmailAdd2Attachment control group 137, 140
	EmailDFD control group 136, 139
	embedding fonts
	encrypting
	Enterprise Web Processing Services (EWPS) 205
	EntryBackColor option 232
	EntryFontColor option 232
	EOF property 168
	eplyToQueueManagerName property 125
	error messages 273, 339
	Errors property 168
	Execute method 168
	executive page size
	extra info 227

	F
	FAP files
	FAP2HTML utility 179
	FAP2XML utility 197
	FAPGetExtraInfo function 228
	FAPPutExtraInfo function 228
	favorites list 274
	FD2HTW32 utility 177
	Field option 180
	FieldErrors option 149
	FieldFontFudge option 181
	Fields property 168
	File option
	FILE2IDS utility 132
	FileExists method 318
	FileExt option 151
	files
	firewalls
	font cross-reference files
	Font File field 225
	Font File Name field 217
	font IDs
	Font Index field 217, 225
	Font Manager
	font mapping
	Font Name field 216
	FontCompression option 211
	fonts
	ForceColorBitmaps option 211
	FORM.DAT file
	forms
	frequently used forms 274
	From option 137, 138
	FSISYS.INI file 149
	FSIUSER.INI file 149
	FTP
	full-screen mode
	FXRVALID utility

	G
	GenData
	GenDataStopOn control group 149
	GenPrint
	GENSemaphoreName option 146, 150
	GetAttach 106
	GetMsg method 318
	GetUniqueString method 318
	GetVersion method 299, 301

	H
	HiddenFieldScript option 232
	hInstance property 17
	HR option 181, 231
	HTML
	HTML files

	I
	i_GetMRLResource rule 274
	iDocumaker
	IDS
	IDSASP
	IDSINSTANCE variable 70
	IDSJSP bean 14
	IDSJSP.jar 13
	IDSServer control group 145, 146, 151
	IDSSQL.ADO 167
	IDSSQL.DLL 166
	IDSSQL.IDSRC 168
	IDSSQLRULE.DLL 166
	IECOLOR.CSS file 231
	Image Only PDF files 229
	ImageErrors option 149
	ImageExt option 181
	ImagePath option 181, 231
	ImagePathCreate option 231
	IMG_ZIndex option 233
	INI files
	INIFile option
	Initialize method 318
	InitializeDefaults method 319
	INIToken option 305
	instance numbers 70
	instances
	internal message format 192
	Internet access 6
	Internet Document Server
	intranet 2
	IRLFileFTP rule 195
	IRLInitFTP rule 195

	J
	J2EE-compliant application servers 113
	Java
	JavaScript option 231
	JPEG files 214
	JSON 205

	L
	LDAP 198
	legal page size
	letter page size
	limitations
	load balancing 74
	LoadFAPBitmap option 221
	log files
	LogConfConvert.xsl template 95
	LogFile option 149
	LogFileType option 149, 150
	LOGIN.ASP 245
	LOGIN.ASP file 25
	logos

	M
	Mail control group 137
	MailFunc option 137
	MailType control group 137
	MailType option 137
	Management Information Base (MIB) file 64
	marshaller class 76
	MaxTimeoutSeconds attribute 199
	message format
	MinTimeoutSeconds attribute 199
	Module option 137, 231
	MoveFirst method 168
	MoveLast method 168
	MoveNext method 168
	MovePrevious method 168
	MQSeries 116
	MultiFileLog option 221
	MultiFilePrint callback function 220, 221
	MultiFilePrint option 149, 150
	multi-line text fields
	MultiPage option 231
	multiple bridges 130
	multiple servers
	MVS

	N
	Name option 137
	NoBatchSupport option 222

	O
	ODBC
	oDSI property 17
	OnEndPage method 18
	OnStartPage method 18
	Option field 217
	Options field 217, 225
	OTH record 217
	Other tab 217
	Other tab (Font Properties window) 225
	OutputFunc option 134
	OutputMod option 134
	overlays
	OverridePrompt option 305

	P
	page segments
	PageBreaks option 181, 231
	PageNumbers option 210, 231
	PageSize property 167
	PaperSize option 211
	Password property 168
	passwords
	Path option 139
	pausing IDS 172
	PCL printing
	PDF Converter 3
	PDF files
	PDF Print Driver
	PDFW32.DLL 209
	performance
	personal forms lists 274
	point sizes 223
	Port option 137
	Portable Document Format 208
	PostGenDataExecutable option 155
	PostGenPrintExecutable option 155
	PostGenTrnExecutable option 155
	PostScript
	PostScript Font File Name field 217
	PostScript fonts
	PreLoadRequired option 222
	Print Preview
	PrintFormset rule 220
	PrintFunc option 210, 231
	PRINTOUT.ASP 25
	PRINTPATH attachment variable 151
	PrintPath option 151
	Printstream Bridge
	PrintViewOnly option
	processing
	ProcessQ method 18, 19
	ProcessRq method 18, 20
	ProcessTrn method 319, 325
	PRTLIB
	PrtType control group
	PrtView_WIPTable control group 248
	PRTZCompressOutPutFunc function 134
	publishing forms on the web 177
	PullCode option 136
	PutMsg method 319

	Q
	queues

	R
	ReadBinFile method 18, 24
	ReadIniOptions method 320
	ReceiveByCorrelationID API 119
	RECIPS.ASP 25
	RECORD.ASP 25
	RecordCount property 168
	RepeatInterval attribute 201
	ReplyTo option 137, 138
	replyToQueueName property 125
	REQTYPE
	request
	Request property 17
	requests
	RequestValue method 320
	required
	Response.Redirect method 22
	Result property 17
	ResultValue method 321
	Rotated Fonts field 213
	RPDCheckRPRun rule 146
	RPDCreateJob rule 146
	RPDJobTicket variable 146
	RPDProcessJob rule 146
	RPDRunProcess variable 146
	RPDRunRP control group 146
	RPDSemaphoreName option 146, 150
	RPDStopRPRun rule 146
	RPEX1.INI file 145
	RULServerJobProc option 150
	RULStandardBaseProc rule 151
	RUNMQSC tool 116
	RunOnPrimaryInstanceOnly attribute 201

	S
	samples
	SaveOnExit option 305
	ScriptPath option 232
	ScriptPathCreate option 232
	SEARCH.ASP file 25
	security
	security issues 195
	semaphores 146
	SendColor option 231
	SendOverlays option
	Server option 137
	Server.CreateObject method 196
	ServerBaseProc rule 151
	servers
	SetGUID method 321
	setting up
	Setup Data field 216
	ShowAtt property 17
	simplex 134
	single step mode 220
	SleepingTime option 150
	SNMP server programs 64
	SOAP 205
	SOAP standards 192
	SOAPAddAttachment method 321
	SOAPGetAttachment method 322
	SOAPGetAttachmentAsBuffer method 322
	SOAPLoadAttachment method 322
	SOAPUnloadAttachment method 323
	SplitPercent option 210, 214, 219
	SplitText option 180, 210, 214, 219, 232
	SQL
	SQLCommand property 168
	SSL connections 124
	symbol fonts 225
	system files 329

	T
	Table option 181
	TemplateFields option 231
	Terminate method 323
	TerSub paragraphs 235
	Text option 180
	TextMerge option 180
	Thin Client Forms Publisher 171
	thin clients 2
	thumbnails
	TIFF files
	timed requests 201
	TimeOut property 18
	time-outs
	TPDInitRule rule
	Trace method 323
	TransactionErrors option 149
	TrapEvents option 305
	TrapOnlyQuitEvent option 305
	TrueType fonts
	Type 1 fonts 225
	TypeFace field 216

	U
	UDDI compliance 158
	Unicode2Bin method 323
	URL
	URLs
	user IDs
	User property 168
	USERINFO database 250
	USERLIST attachment variable 250
	using

	W
	WaitForStart option 149
	WaitTime property 18
	Watchdog 70
	Watchdog process 66
	Watchdog timer value 345
	web servers
	WebLogic 113
	WebSphere 113
	Windows NT
	WindowsRawPrinter.jar file 134
	WIP Edit plug-in
	WIPAPLST.ASP 245
	WIPAPPR.ASP 245
	WIPCTL program 296
	WIPENTRY.ASP 246
	WIPFIND.ASP 246
	WIPFMSET.ASP 246
	WIPFOOT.ASP 247
	WIPHEAD.ASP 247
	WIPLIST.ASP 245
	WIPRECIP.ASP 246
	WIPSTAT.ASP 246
	WriteBinFile method 324
	WriteToLog method 324
	WSCOLOR.CSS file 231

	X
	XML
	XML files
	XML2Attach control group 137, 139, 140
	XML2Body control group 136, 139, 140
	XRFToken option 294

	Z
	Security exits 123

	Go to Oracle Insurance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

