ORACLE
INSURANCE

Oracle@ Documaker

Documaker Server System
Reference

version 11.4

Part number: E14902-01
July 2009

ORACLE’

Copyright © 2009, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing, This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable,
the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be
the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensute the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for
the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or
damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered tradematks of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Softwate Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes softwate distributed via the Berkeley Softwate Distribution (BSD) and licensed for binary distribution under the Generic
BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Softwate Distribution (BSD)

This product includes software developed by the JDOM Project (http://wwwjdom.otg/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copytight © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in patt on the wotk of the Independent JPEG Group (http://wwwijg.otg/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. (http://www.w3.otg/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecteststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Chtis Maunder and distributed via Code Project Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes softwate developed by PJ Arends and distributed via Code Project Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-1999 Erwin
Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN RISK! THE
AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer), and others.
(http:/ /wwwlibpngorg)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all watranties, expressed or implied,
including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages, which may result from the use of the PNG
Reference Libraty, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CRYPTIX
FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This softwate is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BELIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

'THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

'THIS SOFTWARE IS PROVIDED "AS IS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The Ultimate
Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavasctipts/tree/version 0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH REGARD TO
IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall University of
Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever) resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS"" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

Contents

Chapter 1, Introduction

2 System Overview

3 Rules Publishing Solution Overview

4 Document Automation Evolution

7 Document Automation Goals

8 System Benefits

Chapter 2, Understanding the System

11

14

15

21

33

35

37

Processing Overview

Processing Options

Using Banner Processing

Using Multi-step Processing

21 Creating Transaction Records

22 File Summary

23 Processing Transactions
24 Output Files for GenPrint
24 Output Files for GenWIP
24 Output Files for GenArc

25 File Summary

27 Creating Print Spool Files
28 File Summary

29 Sending Incomplete Transactions to WIP

30 File Summary

31 Archiving Transactions

32 File Summary

32 Rules Used in Multi-Step Processing
Restarting the GenData Program
Generating Batch Status Emails

Tracking Batch Page Statistics

37
38
39
40

Recipient Page Statistics

Batch Totals Summary File

Sample Log File
Default DFD Files

43 Controlling GenTrn Processing

45 Using Single-step Processing

45 Creating and Processing Transaction Records

47

49
50
51
51
52
55

46

System Settings and Resources

Creating Print Files

48

File Summary

Using the MultiFilePrint Callback Function

Mapping Fields with XPath

Running Archive in Single-Step Processing

Running WIP in Single-step Processing

Rules Used in Single-step Processing

Single-step Processing Example

57 Using IDS to Run Documaker

58 Writing Unique Data into Recipient Batch Records

65 Using Class Recipients

67 Running Documaker Using XML Job Tickets

68 Handling 2-up Printing

69
71

Changing the INI File
Changing the Recipient Batch DFD File

72 Rules Used for 2-up Printing

74

Placing the 2-up Rules in the JDT File

75 2-up Processing Example

76 Running the GenData Program

79 Splitting Recipient Batch Print Streams

81
81
81
82

DeviceName
SetDeviceName
BreakBatch
UniqueString

82 Using DAL to Manipulate File Names

83
83

FileDrive
FilePath

85
87
90

93

96

99

100

109

111

120

121

123

83 FileName
84 FileExt
84 FullFileName

Assigning Printer Types Per Logical Batch Printer
Controlling WIP Field Assignments
Generating Email Notifications from GenWIP

Using Multi-mail Processing
93 Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
94 Setting Up the FSISYS.INI File for Multi-mail Processing

Adding and Removing Pages
96 Using Custom Code
96 Using DAL Scripts
98 Using IDS
Adding Indexes and Tables of Contents

Using Run-Time Options
100 GenData Command Line Options
100 GenPrint Command Line Options
101 GenTrn Command Line Options
101 Debugging Options
103 Grouping Print Batches
104 Controlling Console Logging
104 Logging INI File Names and Options
105 Listing the Rules Executed
106 Analyzing DAL Performance
108 When Extract Files Exceed The Offset Limits

Controlling What is in the MultiFilePrint Log

Using INI Built-In Functions
115 Accessing WIP Fields

118 Defining Built-in Functions via Studio
Outputting WIP Field Data Onto the XML Tree

Using XML Files
121 Handling Overflow
122 Triggering Forms and Sections

Using XPath

xi

Xii

123 XPath Syntax
123 Axes
124 Symbols
124 Functions
125 Expressions
126 Using the XPath Testing Utility

130 Example XML File

Chapter 3, Implementing Your System

132 Using a Methodology

134 Gathering Information
134 Understanding Your Niche

134 Understanding Your Organization

135 Roles and Responsibilities

Chapter 4, Setting Recipients and Copy Counts

138 Concepts
139 Key Files

139 Transaction Trigger Table
139 Trigger Levels

139 Form Set Definition Table
140 Trigger Table Record Format
142 Specifying the Transaction Trigger Table
143 How Transaction Triggering Works
144 Section Level Triggers
147 Form Level Triggers

149 Master and Subordinate Sections
149 Marking Subordinate Sections
150 Marking Master Forms

151 Examples

152 Specifying Copy Counts and Sections

168

154 Using Transaction Codes

155 Setting Up Search Mask and Sections

157 Using the RECIPIF Rule

159 Using Automatic Overflow

161 Using Forced Overflow

162 Setting Search Masks and Recipients

163 Using the Set Recipient Table and Extract Files
164 Formatting Search Masks

166 Sorting Forms by Recipient

Summary

Chapter 5, Working with Fonts

172

177

185

General Font Concepts
172 Font Terminology

175 How Characters are Represented
175 Bitmap Fonts
175 Scalable Fonts

176 How Computers and Printers Use Fonts

Using Code Pages
178 ASCII Code Pages
180 EBCDIC Code Pages
181 Character Sets
181 Determining Characters Used in a Printer Font

183 Code Page Names

Types of Fonts

185 Using Screen Fonts

185 Font Substitution in Windows

186 Installing Screen Fonts in Windows
186 Using Printer Fonts

186 AFP

186 Metacode

187 PCL

187 PostScript Fonts

187 TrueType Fonts

187 Adding Printer Fonts to a Font Cross-reference File

xiii

188 Using System Fonts
189 TFont Cross-reference Files for Monotype Fonts
192 Using Custom Fonts
194 Using Font Cross-Reference Files
195 How FXR Settings Affect Display and Print Quality
196 Maintaining FXR Files

196 Choosing a Font Cross-reference File

198 International Language Support
198 Using the ANSI Code Page for PC Platforms
199 Using Code Page 37 for EBCDIC Platforms

200 Using International Characters

201 Converting Text Files from one Code Page to Another

202 Setting Up PostScript Fonts

205 Fonts for PDF Files
205 Importing PostScript Symbol Fonts

207 Font Naming Conventions

208 Mapping Fonts for File Conversions

Chapter 6, Setting Up Printers

210 AFP Printers
210 AFP INI Options
221 AFP Printer Resources
222 AFP Troubleshooting

225 Including Documerge Form-level Comment Records

226 Metacode Printers

226 Required JSL INI Options

229 Additional Required INI Options
231 Specifying Installable Functions
232 Optional INI Options

244 Using Mobius Metacode Print Streams
245 Metacode Printer Resources
246 Metacode Limitations

246 Metacode Troubleshooting

253

251
251
252

PCL Printers

Using Xerox Forms (FRMs)
BARRWRAP

Transferring Files from Xerox Format Floppies

253 PCL INI Options

256
257
257
260
261
262
263
263
264

Using PCL 6

Printing Under Windows

Using High-Capacity Trays 3 and 4 on HP 5SI Printers
Overriding Paper Size Commands and Tray Selections
Using Simple Color Mode

Creating Compressed PCL Files

Adding Printer Job Level Comments

Adding Data for Imaging Systems

Limiting the Number of Embedded PCL Fonts

265 PCL Printer Resources

266 PostScript Printers

266 PostScript INI Options

269
270
270
271
272

Printing under Windows

Generating PostSctipt Files on z/OS
Creating Smaller PostScript Output
Adding DSC Comments

Stapling Forms

275 PostScript Printer Resources

276 Using the GDI Print Driver

283

285

286

289

307

278 GDI Printer Driver INI Options
281 Avoiding Problems with FAX Drivers

281 Batch Printing to Files

Using Pass-through Printing

Creating PDF Files

Creating RTT Files

Using the VIPP Print Driver

290
294
297
305

VIPP Resource Files
Managing VIPP Resources
VIPP INI Options

VIPP Limitations

Emailing a Print File

XV

311 Choosing the Paper Size
312 US Standard Sizes
313 ISO Sizes
316 Japanese Standard Sizes
317 Printer Support for Paper Sizes
321 Paper Sizes for AFP Printers
323 Creating Print Streams for Docusave
323 Archiving AFP Print Streams
324 Archiving Metacode Print Streams
325 Archiving PCL Print Streams
325 Using DAL Functions
327 Adding TLE Records

328 Handling Multiple Paper Trays

330 Including Tray Selections in a Print Stream Batch

Chapter 7, Setting Up Error Messages and Log Files

332 Overview

333 Configuring the Message System

333 Enabling and Disabling Messages
334 Logging INI Files and Options Used

334 Clearing Messages

334 Defining the Output Message Files
335 Initializing the Output Message Files
335 Turning Off Date Stamps
335 Controlling the Translation Process
336 DBLib Trace Messages

337 Creating Messages

337 Using the RPErrorProc and RPLogProc Functions

339 Using Message Tokens

340 Setting Up Message Text

343 Using the Message Token File

Xvi

Chapter 8, Archiving and Retrieving Information

348 Terminology
350 System Scenarios
352 Archive and Retrieval Features

353 Processing Overview
353 Files GenArc Uses
353 How the GenArc Program Works

356 Running GenArc

357 Command Line Options
359 Using the Restart Option

361 Using GenArc with Documanage
368 Using the Oracle ODBC Driver
370 Creating the Database and Tables

373 Resolving Errors
374 Viewing Archives in Documanage

375 Using Multiple Simultaneous ODBC Connections
377 Using WIP and the Archive Index File
378 TFormatting Archive Fields

380 Retrieving Archived Forms
380 Files the Archive Module Uses
380 Using the Archive Module
381 Retrieval Options
383 Working with Documanage
384 Using Documanage Data Type Support
385 Setting Up Automatic Category Overrides
386 Mapping Documaker Archive Fields to Documanage Properties
388 Using Next/Retrieve Cursor

389 Enhanced Documanage Document Extended Properties Support

Chapter 9, Setting Up Archive/Retrieval Configurations

398 DB2 Server on OS/390 —Windows Client

398 Configuring the Server

Xvii

Xviii

399 Setting Up the Windows 2000 Server (Middle Tier)

401 Installing and Configuring Microsoft’s SNA Server

402 Configuring SNA Server 4.0 SP3

404 Setting Up DB2 on a Windows 2000 Server

405 Installing and Configuring DB2 on a Windows 2000 Server
405 Setting Up Universal Database on Windows 2000

407 Updating TCP/IP-related Values on a Windows 2000 Setver

407 Common DB2 Errors
407 Setting Up Clients
408 Setting Up the INI Options for the DB2 Driver
410 DB2 Server on Windows — Windows Client

410 Setting up a DB2 Database on the Server
411 Setting Up a Client for DB2 VERSION 6.1

413 Archiving to a Remote DB2 Database Using the Native DB2
Driver

415 DB2 Server and Client on Windows

415 Setting Up a DB2 Database

416 Archiving to a Local DB2 Database Using the Native DB2
Driver

419 SQL Server on Windows — ODBC Client on Windows
419 Setting Up a Client

421 1DS on Windows —DB2 Archive on z/OS
421 Setting Up the DB2 Atrchive on z/OS

422 Creating a z/OS Database
422 Updating TCP/IP Values on a Windows 2000 Server

Appendix A, System Files

426 Overview
428 Types of Files

431 Resource Files
441 DFD File Format

444 Files Created by the GenTrn Program
445 TFiles Created by the GenData Program

447 Files Created by the GenPrint Program

448 Tiles Created by the GenWIP Program

449 Files Used by the GenArc Program

Glossary

451
451
452
452
452
452
452
452
452
452
453
453
453
453
453
454
454
454
454
454
454
454
455
455
455
455
455
456
456
456
456

00000001.DAT File
00000001.POL File
AFP
ARCHIVE.CAR File
ARCHIVE.DBF File
ARCHIVE.DFD File
Base Product

.BCH Files

Batch Files

.CAR Files

Custom Solution
DAL

.DAT Files

.DBF Files

DDT Files
DESKJET.FXR File
.DFD Files
Distributed Resource Library
Duplex
ERRFILE.DAT
Error Batch

Error Files

External Database Editor
Extract Files

.FAP Files

FDB.DBEF File

fetype

Field Database Editor
Fixed Data

Font Manager

Form

Xix

XX

456
456
457
457
457
457
457
458
458
458
458
458
459
459
459
459
459
459
459
460
460
460
460
460
460
460
460
461
461
401
401
461
401
401
462
462
462

Form Set

Form Set Manager
FORM.DAT File
FSISYS.INI File
FSIUSER.INI File
FXR Files

GenArc Program
GenData Program
GenPrint Program
GenTrn Program
GenWIP Program
Help Editor

Image (Section)
Image Editor

NI Files
INTL.FXR
INTLSM.FXR

JDT Files

Library Manager
Log Files

.LOG Files

Logo Manager
MANUAL.BCH File
Master Resource Library
Metacode

.MDX Files
NAFILE.DAT File
NEWTRN.DAT File
Objects

Overflow

Page

PCL
POLFILE.DAT File
PostScript

Section
SETRCPTB.DAT File

Simplex

462
462
462
462
462
463
463
463
463
463
463
463

465 Index

System Releases
System Patches
Table Editor
Transaction List
TRN Files
TRNDFDFL.DFD File
UFSTSM.FXR File
UNIQUE.DBF File
Variable Data
WIP.DBF File
WIP.MDX

xBase

XXi

xxii

Chapter 1
Introduction

Welcome to the Documaker rules-based publishing
solution. This product consists of a complete set of tools
which provide solutions for all your form and document
processing needs. The system includes these major
components:

* Docucmaker Studio (and legacy Docucreate)
¢ Documaker Workstation
* Documaker Server

This manual serves as a reference to Documaker Server.
This chapter discusses the following topics:

* System Overview on page 2
* Rules Publishing Solution Overview on page 3
* Document Automation Evolution on page 4

* System Benefits on page 8

Chapter 1

Introduction

SYSTEM
OVERVIEW

Documaker Server is part of the Rules Publishing Solution, which also includes
Documaker Studio, Documaker Workstation, and reusable resource libraries.

Documaker Server uses resources you create using Documaker Studio to process
information and forms. This processing includes merging external data onto forms,
processing data according to rules you set up, creating print-ready files, archiving data and
forms, and, if applicable, sending incomplete forms to Documaker for completion by a
user.

Forms can be completed using Documaker when user input is required or, if all of your
information can be extracted from external data sources, you can set up Documaker
Server to process forms without requiring user input.

Documaker Server can create print-ready files for a variety of printer languages including,
AFP, PostScript, PCL, and Xerox Metacode printers. In addition, using
Docupresentment, the system can produce output in Adobe Acrobat PDF format.

The following topic discusses the entire Rules Publishing Solution, its purpose, its
underlying concepts and how it all works together to provide you with an enterprise-level
solution to meet your document creation, processing, and storage needs.

RULES
PUBLISHING
SOLUTION
OVERVIEW

Rules Publishing Solution Overview

Document automation is the basic concept underlying the system. An understanding of
document automation helps you understand the purpose of the Rules Publishing
Solution.

Document automation replaces paper documents with electronic media. Generally,
document automation is an integrated process within enterprise information systems.

The greatest challenge that document intensive industries face is the efficient processing
of forms and documents. Moving toward the era of electronic information means finding
workable solutions for the paper-to-electronic media replacement process. New business
directions include developing ways to automate document handling processes, which
extend beyond simply creating electronic output or print.

Document automation is rapidly becoming an integral part of today's business
environment. The Rules Publishing Solution creates a total business solution which lets
you automate both paper document processing and electronic document management.

Let's examine document automation outside the Rules Publishing Solution to build a
knowledge base applicable to unique platforms. Then we can apply the basic concepts to
the Rules Publishing Solution.

Chapter 1

Introduction

DOCUMENT
AUTOMATION
EVOLUTION

Stage 1 - paper
automation

Through the years, document automation has moved in concert with technological
evolution. The technological evolution has progressed from initial ideas and applications
about forms processing, to the integrated management of electronic documents. The
distinction between merely automating paper production and permanently integrating
electronic processing and management is critical to understanding the technological
evolution. This table shows the progression of document automation in the current
environment,

Stage

Type of Automation Components

1 Paper Automation Business correspondence
Forms processing

Document assembly

2 Wotkflow Automation Electronic mail
Electronic data interchange
Electronic funds transfer

Integrated facsimile

3 Paperless Information
Automation

Cooperative processing
Enterprise indexing
Integrated section processing
Multimedia

Paper automation, enabled by the advent of computers and laser printers, is the first stage
of the document automation evolution. Most people think of the processing and assembly
of business correspondence and forms by computers as document automation. While the
computer does perform some information processing, this stage of document automation
evolution is still very paper intensive. It does not extend to associated automated
document workflow and procedures.

Stage 2 - workflow
automation

Document Automation Evolution

i E%

[—

Workflow automation, enabled by the proliferation of personal computers,
communication standards, Local Area Networks (LANs), Wide Area Networks (WANSs),
and integrated FAX machines, is the second stage in the document automation evolution.
Workflow automation goes beyond information processing to the transfer of digitized
information across telecommunication lines. It eliminates many manual procedures, often
clerical in nature, from the workflow process.

Chapter 1

Introduction

Stage 3 - paperless
information automation

A
£

2 I,
e r PP)
NaaAS A) Y
!tg.—".-.‘"ﬂ'

Papetless information automation combines multiple technologies across multiple
organizations, enterprises, and government entities. Information elements from various
sources are shared and are readily available in flexible electronic formats. Papetless
information automation enables you to reuse the information contained in the
documents. Electronic documents are much easier to track, maintain, update, route, file,
and retrieve.

Cooperative
Processing

Enterprise
Indexing

Image
Processing

Multimedia

Paperless Information
Automation

Document Automation Evolution

DOCUMENT AUTOMATION GOALS

Document automation combines many elements of the evolutionary stages previously
discussed to accomplish these primaty objectives:

* Eliminate paper

Paper consumes enormous resources. Document automation decreases the costs
associated with paper documents, and decreases the requirements for both long term
and short term storage, retrieval, and document distribution.

* Automate manual procedures

Automating manual procedures associated with document automation increases
efficiency, increases accuracy, and reduces costs. Repetitive and unnecessary
procedures are identified and eliminated.

* Automate system interfaces

Interfaces which allow exchange of data between automated systems eliminate the
need to manually enter data. Automated system interfaces also eliminate the need to
supplement automated processes with manual functions. Automated system
interfaces reduce errors, increase efficiency, and simplify the workflow.

As you can see, document automation encompasses many different technologies which
merge in a variety of ways. In the current business environment, there are many single
technologies and partial solutions which mimic document automation at first glance.
Keep in mind, a single solution using one technology is not document automation.
Document automation involves multiple technologies which help you manage forms and
documents, workflow, procedures, and other electronic media, based on the needs and
requirements of each individual organization or enterprise.

Chapter 1

Introduction

SYSTEM
BENEFITS

The system's cohesive design results in many benefits to the user. The system provides a
seamless interface to your existing systems by integrating document automation
technology with your current systems, and by offering you a customized computer system
with reusable resources. You can select modules to meet your specifications.

The system also provides you with the following advantages in your document
automation processing:

* Functional - The system's configuration meets a wide vatiety of document processing
needs. The system's expandable architecture utilizes technological innovations to
meet changing processing needs.

* Portable - The system's architecture allows core processing modules to operate on
multiple hardware platforms and in multiple operating environments. This design
gives the user control of the system configuration in order to meet individual needs.

* Modular - The system's configuration lets you select modules to customize your
system. The modular design eases maintenance by segregating functions in
independent modules. A change in one module does not necessitate multiple changes
throughout the system. This modular design also improves performance by
eliminating unnecessary processing.

* Reusable - The biggest advantage in using the system is the reusability of resources.
Libraries are composed of customizable resource units such as sections (sections)
and rules, which can be reused. Reusing resources increases efficiency and promotes
consistency throughout your system and product.

* FEasy to use - System components have a graphical user interface common to all
components. The system's seamless system interface provides transparent print and
data merge capabilities.

Chapter 2

Understanding the
System

In Chapter 1, you were introduced to the system as a

whole. This chapter provides an overview of

Documaker Server.

As you review this chapter you will learn about the

programs that make up Documaker Server. Following

the overview, you will learn about the files used and

created by the system programs in both the multi- and
single-step processes.

This chapter contains the following topics:

Processing Overview on page 11

Processing Options on page 14

Using Banner Processing on page 15

Using Multi-step Processing on page 21
Restarting the GenData Program on page 33
Tracking Batch Page Statistics on page 37
Generating Batch Status Emails on page 35
Controlling GenT'rn Processing on page 43
Using Single-step Processing on page 45
Using IDS to Run Documaker on page 57

Writing Unique Data into Recipient Batch Records
on page 58

Using Class Recipients on page 65

Running Documaker Using XML Job Tickets on
page 67

Handling 2-up Printing on page 68

Chapter 2

Understanding the System

10

Splitting Recipient Batch Print Streams on page 79

Assigning Printer Types Per Logical Batch Printer on page 85
Controlling WIP Field Assignments on page 87

Generating Email Notifications from GenWIP on page 90
Using Multi-mail Processing on page 93

Adding and Removing Pages on page 96

Adding Indexes and Tables of Contents on page 99

Using Run-Time Options on page 100

Controlling What is in the MultiFilePrint Log on page 109
Using INI Built-In Functions on page 111

Outputting WIP Field Data Onto the XML Tree on page 120
Using XML Files on page 121

Using XPath on page 123

Processing Overview

PROCESSING Documaker Server is designed to gather source data, process that data by applying rules you
define, merge the data onto pre-designed forms, and print the result. In addition,
OVERVIEW Documaker Server can automatically check for incomplete data and send that data to
Documaker for completion. Documaker Server can also automatically archive completed
transactions which you can later view as needed.

The following illustration shows a high level view of Documaker Server:

NOTE: This illustration and the other illustrations in this chapter show a typical,
workstation-based system flow. Your system may be set up differently.
Furthermore, the system can be customized in many ways and can run on a
variety of platforms. For instance, if your source data is properly formatted, you
can bypass the GenTrn program. Or, you may choose to run the GenTrn,
GenData, and GenPrint programs on a host machine and then download the
information and use a system utility (FIXOFES) to prepare it for use by the
GenWIP and GenArc programs running on a workstation. You could also run
the GenArc program on the host and only run the GenWIP program on a
workstation.

Source Systern Systern
data settings resnurces
f 1 I lwr
> i %
GenTm GenData GenPrint|__,.
Print farm sets

— »|GenWip |—» mag

Cornplete work
in progress

3
»|GenArc —* m

Store form sets

This illustration shows the main programs which make up Documaker Server and an
overall view of the processing cycle.

* GenTrn. The GenTrn program reads source data and uses system settings to create
transaction records. The source data is stored in extract files. Depending on the

operating system you use, this program has various names such as
GENTNW32.EXE for 32-bit Windows environments.

* GenData. The GenData program takes the transaction records created by the
GenT'rn program and uses system settings and resources to apply processing rules to
those transactions.

11

Chapter 2

Understanding the System

12

The GenData program creates output files the GenPrint program can use. It also
creates files with incomplete transactions which the GenWIP program can use. The
GenWIP program creates from these files, output you can display and complete
using the WIP module of Documaker Workstation.

The output from the GenData program is also used by the GenArc program to
archive data. Depending on the operating system you use, this program has various
names such as GENDAW32.EXE for 32-bit Windows environments.

NOTE: The illustration on the preceding page and this overview discuss the standard or
multi-step processing flow of the system. By using specific rules you can have the
GenData program execute both the functions of GenTtn and GenPrint. This is
called single-step processing and can improve performance. To learn more, see Using
Single-step Processing on page 45.

* GenPrint. The GenPrint program takes information produced by the GenData
program and creates printer spool files for use with PCL, AFP, Metacode, and
PostScript compatible printers. In addition, If you have purchased Docupresentment
(IDS), the GenPrint program can also produce a Portable Document File or PDF
(Acrobat) output. Depending on the operating system, this program has various
names such as GENPTW32. EXE for 32-bit Windows environments.

* GenWIP. The GenWIP program receives information about incomplete
transactions from the GenData program and processes that information so you can
use the WIP module of Documaker to display the form and fill in the missing
information. Once completed, you can print, archive, print and archive, delete, or
change the status of form sets using Documaker. Depending on the operating
system, this program has various names such as GENWPW32. EXE for 32-bit
Windows environments.

NOTE: When using Documaker Server, a transaction may be placed in WIP for
completion by a data entry operator. In these cases, you would first complete the
transaction before it is archived.

* GenArc. The GenArc program archives data so you can store the information
efficiently and retrieve it quickly. This program receives information from the
GenData program. Depending on the operating system, this program has various
names such as GENACW32. EXE for 32-bit Windows environments.

The previous illustration showed a high level view of Documaker Server which shows you
the main programs in the system and its processing cycle. These programs create and use
several types of files as they process information. The following illustration shows this
processing flow in greater detail, though not every possible system file is included.

Processing Overview

Understanding how the information flows from one program to another and which files
are used and created is key to understanding Documaker Server. Here you can see all of
the files the system uses and creates during its processing cycle.

System
settings

System resources

RCBDFDFL

‘J GenPrnt @
AFP, Metacode,
-~

TRHFILE

FCL, PostSeript

GenTrm GenData

Log File

Emor Fle

GenWip

—=
o
Message

File

ATHIH
I
H

e e o GenAre

ARCHIVEL AR

You can find information about all these files and programs in the Glossary. You can also
find examples of certain files in Appendix B, System Files on page 425. Let’s first look at
the GenTrn program and the files it uses and creates.

NOTE: You can run the GenData and GenPrint programs on z/OS using resources
retrieved from Documanage (on a Windows server) via Library manager. For
information on setting up the library in Documanage and setting the INI options
on z/OS to access this libraty, refer to the Documaker Studio User Guide. See
Using Documanage in Chapter 9, Managing Resources.

13

Chapter 2

Understanding the System

PROCESSING You can run Documaker Server as a multi- or single-step process. Variations of these

OPTIONS

processes provide additional options such as AFP 2-up printing and multi-mail sorting.

Chapter 2 begins with a general overview of the system. From this point forward, we will

review specific processing options. The following topic discusses running the system

using the multi-step process. This topic is followed by a discussion of running the system

using the single-step processes. The remainder of the chapter provides brief explanations

of 2-up and multi-mail printing.

NOTE: To gain a complete understanding of the different features of the multi- and
single-step processes, it is important to read through both sections. Certain

information that is common to both processes is only described in the multi-step

section.

To help determine which option is best suited for a particular need, a brief description of

the run-time options and related processes are provided in the table below:

Process

Description

2-Up Printing

Banner

Multi-mail

Multi-step

Restarting the
system

Single-step

Two-up printing is a two-step process which passes input through GenData
three (3) times with a different JDT file each pass. This process is similar to the
single-step process in that GenData performs the work, but the three passes
through GenData actually represent two steps of the multi-step process:
processing the transactions and printing the transactions. Two-up printing is
AFP printer-specific. For more information, see Handling 2-up Printing on
page 68.

The system lets you process banners at several points in the processing cycle.
Doing this involves using a simplified AFGJOB.JDT file. For more
information, see Using Banner Processing on page 15.

GenData groups transactions with the same multi-mail code into selected print
batches to be sorted and delivered to the same location. For more information,
see Using Multi-mail Processing on page 93.

The system programs, GenTrn, GenData and GenPrint, each perform a set of
steps to read data, create output files and print. GenWIP and GenAtc are
optional programs to complete incomplete transactions and archive data for
retrieval. For more information, see Using Multi-step Processing on page
21.

You can set up the GenData program to restart itself at a particular transaction
if it encounters a failure. For more information, see Restarting the GenData

Program on page 33.

To enhance system performance, the steps of the GenTrn, GenData and
GenPrint programs are performed in one step by GenData. The GenWIP and
GenArc programs function the same as in the multi-step process. For more
information, see Using Single-step Processing on page 45.

14

USING BANNER
PROCESSING

Enabling banner
processing

Specifying banner
forms and scripts

Using Banner Processing

The system includes support for banner processing. Banner processing is supported at
these points in the processing cycle:

* Beginning of a batch
Before a transaction is processed
After a transaction is processed
* End of a batch

Banner processing is optional at each point. Banner processing can optionally include
FAP forms processing and DAL script processing.

You specify the FAP forms for banner processing in this manner:

;keyl;key2; form name;

The forms must appear in the FORM.DAT file in DefLib. The associated sections
(images) for those forms and must reside in FormLib.

You can set up banner forms and scripts at a global level so they can be used by all print
batches. Individual recipient print batches can specify local forms or scripts to override
the global forms and scripts.

Keep in mind these limitations:

* This enhancement only affects the GenPrint program. Documaker Workstation has
a separate banner handling method, and does not support this method of banner
processing.

* Only the standard printer drivers, such as AFP, Metacode, PCL, and Postscript,
support batch banner processing. Avoid batch banner processing if you are using
another print driver.

* Banner pages are printed at the group level. As a result, this bypasses the custom
callback function named in the CallbackFunc option of the Print control group since
it is a form set-level callback.

NOTE: Version 10.1 added batch-level banner processing to multi-step mode. Version
10.2 added batch-level banner processing to single-step processing — printing
via GenData using the PrintFormset rule.

For performance reasons banner processing is, by default, disabled. You must enable it
using one or both of these INI options:

< Printer >
EnableTransBanner = True
EnableBatchBanner = True

Omitting either option disables the associated level of batch banner processing. Once
enabled, banner processing is in effect for the entire GenPrint run. You can, however,
disable banner processing for individual batches by specifying forms and scripts with
blank names.

You can globally specify forms and scripts for all batches, or locally for specific batches.
Use these INI options to specify global batch forms and scripts:

15

Chapter 2

Understanding the System

16

< Printer >

BatchBannerBeginForm = form name
BatchBannerBeginScript = script name
BatchBannerEndForm = form name
BatchBannerEndScript = script name
TransBannerBeginForm = form name

TransBannerBeginScript = script name
TransBannerEndForm = form name
TransBannerEndScript = script name

Specify form names as follows:
;KEY1;KEY2; Form name;

You must have an associated form line in the FORM.DAT file to match the specified
form. The sections (FAP files) for the forms are specified in the form lines in the
FORM.DAT file. You must include these FAP files in FormLib.

Store the banner forms in a separate and unique banner form group, defined by a
combination of Key7 and Key2. You can use the AddForm DAL function in a DAL script
to insert additional forms for banner processing. Place these additional forms and sections
in the same group as the initial banner form. Each form is printed separately and after all
banner forms are printed, the entire banner group is removed from the document set. For
these reasons, it is critical that you isolate the banner forms from the rest of the
transaction document set by specifying a Key7/Key2 combination that does not otherwise
occur within the document.

The FAP files assigned to the form (on the form line in the FORM.DAT file) must have
the recipient BANNER with a copy count of at least one. When banner forms are printed,
only sections assigned to the recipient BANNER with a non-zero copy count are printed.

Specify the DAL script names without a path or extension. For best results, store the
DAL scripts in your DAL libraries because they are easier to maintain. The system
automatically loads DAL libraries if you include these INI options:

< DALLibraries >
LIB = libraryl
LIB = library?2

The DAL script libraries or files must reside in DefLib.

You can specify forms and scripts at the recipient batch level to override the global
specification. Here is an example of how you do this:

< Print_Batches >
BATCH1 = BATCH1.BCH
BATCH2 = BATCH2.BCH
< Batchl >
BatchBannerBeginForm = form name
BatchBannerBeginScript = script name

BatchBannerEndForm = form name
BatchBannerEndScript = script name
TransBannerBeginForm = form name

TransBannerBeginScript = script name
TransBannerEndForm = form name
TransBannerEndScript = script name

You can specify some, none, or all of the forms and scripts for local override of the default
global forms and scripts.

Banner form
processing and multi-
file print

Using Banner Processing

An individual batch can completely or partially disable banner processing if the forms,
script names, or both are blank, as shown here:

< Batchl >
BatchBannerBeginForm

BatchBannerBeginScript

BatchBannerEndForm
BatchBannerEndScript =

TransBannerBeginForm

TransBannerBeginScript
TransBannerEndForm =

TransBannerEndScript

Use the RetainTransBeginForm option to make pre-transaction transaction banner form
processing compatible with multi-file printing. Banner forms print separately from the
rest of the document. When using multi-file printing with print drivers such as PDF or
RTTF, banner forms do not appear in the output file. This options lets the banner form
appear in the same print file.

Banner pages are, by design, not considered part of the form set. A pre-transaction banner
page is designed to print separately, using data from the form set, but as if it were not
physically part of the form set. For that reason, when printing to a single-file-per-
transaction format such as PDF, RTF, XML, or HTML, and using the MultiFile print
callback method to produce separate files, the banner output is not included in the output
file.

It is possible to use pre-transaction banner forms as a way of producing a mailer sheet for
a form set. This works for true printed output, but if you are producing a PDF file, for
example, the banner (mailer page) does not appear within the PDF.

If, however, you use the RetainTransBeginForm option to retain the pre-transaction
banner form, the banner process proceeds as before, but the printing of the banner is
initially suppressed. The banner page is retained and remains inside the form set, as the
first form in the form set. When the form set is processed by the PDF driver to produce
the PDF file, the pre-transaction banner form (or mailer sheet) is then included in the
resulting PDF file.

Keep in mind however that the document is only temporarily modified during the print
step. The banner form is not included with the actual, intelligent form set when it is
archived. For instance, if the intelligent document format is used for archiving, the mailer
sheet does not appear as part of the form set, and will not print if retrieved from archive.
If, however, you archive the PDF output, then the mailer sheet will appear in the PDF file.

You can place the RetainTransBeginForm option in the Printer control group as a global
setting or you can place it at the recipient batch level. A setting at the recipient batch level
overrides a setting in the Printer control group.

Here is an example of how you could set a global or default setting in the Printer control
group and override that setting for a particular recipient batch:

< Printer >
RetainTransBeginForm = Yes
(other applicable options omitted - see the following note)

< Print_Batches >
Batchl = BATCH1.BCH

17

Chapter 2

Understanding the System

18

Processing logic

Batch2 = BATCH2.BCH

< Batchl >

Option

RetainTransBeginForm = No
(other applicable options omitted - see the following note)

Description

RetainTransBeginForm Enter Yes if you want the system to include the transaction banner

form in the form set. The default it No.

If you are using the PDF, RTF, XML, or HTML print driver, this
means the banner pages will be included in each transaction’s print
file.

NOTE:

There are additional INI settings required for single- and multi-step processing.
For more information about single-step processing, see the discussion of the
PrintFormset rule in the Rules Reference.

For more information about multi-step processing, see the discussion of the
MultiFilePrint callback function in the Using the PDF Print Driver.

Banner processing functions are part of the base system and are primarily located in

GenLib.

The GenPrint program, however, first routes the processing to CusLib. This lets

you use the exit points in CusLib to create additional customized processing before, after,
or in place of, the calls to GenlLib routines.

The processing sequence for banner processing (at any level) is as follows:

1 Ifa

banner form is specified, it is created in the form set and the FAP files are loaded.

2 Ifabanner DAL script is specified, it is executed.

3 For any banner form specified in step 1 or created duting step 2, the following steps

take place:

any variable fields in the banner form that are still empty are updated, first from
matching GVM variables, such as fields in the recipient batch record, then from
matching DAL variables.

the form is printed.

4 If there were banner forms to process, after updating the fields and printing the
forms, the entire banner form group is removed from the form set.

NOTE:

You can suppress the printing of the banner page by using the SuppressBanner
DAL function. This is useful when you need to combine several transactions
within the same transaction banner pages.

If there are registered comment record functions, each banner form in the form
group receives its own set of comment records. If the additional forms should
not receive their own comment records, add the sections for those forms to the
original form—do not add them as separate forms.

DAL functions

Banner processing
example

Using Banner Processing

You can also use these DAL functions with banner processing. See the DAL Reference
for more information.

* RecipName. Returns the name, such as INSURED, AGENT, COMPANY, and so
on, of the recipient batch record of the transaction currently being printed.

* RecipBatch. Returns the name, such as BATCH1, BATCH2, ERROR, MANUAL,
and so on, of the recipient batch file being processed.

* SuppressBanner. Suppresses the current banner from printing. You can use this
function when you want to combine several transactions inside one set of banner
pages, based on a flag that the DAL script checks.

Assume you have these FAP files in your forms library (FormLib).
e btchbannr

* btctrail

* trnbannr

e trotrail

Here is an excerpt from the FSISYS.INT file:

< Printer >
PrtType = PCL
EnableTransBanner = TRUE
EnableBatchBanner = TRUE
BatchBannerBeginScript = PreBatch

TransBannerBeginScript = PreTrans

BatchBannerEndScript = PstBatch

TransBannerEndScript = PstTrans

BatchBannerBeginForm = ;BANNER; BATCH; BATCH BANNER;
BatchBannerEndForm = ;BANNER;BATCH; BATCH TRAILER;
TransBannerBeginForm = ;BANNER; TRANSACTION; TRANS HEADER;
TransBannerEndForm = ;BANNER; TRANSACTION; TRANS TRAILER;

< DALLibraries >
LIB = Banner

Here is an excerpt from the FORM.DAT file:

; BANNER; BATCH; Batch Banner;Batch Banner (Job\
Ticker) ;N; ;btcbannr | D<BANNER (1) >;

; BANNER ; BATCH; Batch Trailer;Batch Trailer (End\

Ticket);N; ;btctrail |<BANNER(1)>;

; BANNER ; TRANSACTION; Trans Trailer;Transaction Trailer (End\
Ticket) ;N;;trntrail |D<BANNER (1)>;

; BANNER ; TRANSACTION; Trans Header; Transaction Banner\
Page;N; ; trnbannr | D<BANNER (1) >;

19

Chapter 2
Understanding the System

Here is an example of the BANNER.DAL file in DefLib:

BeginSub PreBatch
#batch += 1
#trans = 0
rb = RecipBatch()
rn = RecipName ()

EndSub

BeginSub PreTrans
#trans += 1
rb = RecipBatch()
rn = RecipName ()
EndSub

These additions to the FORM.DAT and FSISYS.INI files plus file additions to the
FormLib and DefLib sub-directory would cause the following pages to be added to each

batch:
Batch Banner Page
Transaction Banner Page
Company: Sampco
LOB: LB1
Policy: 1234567
Recip name: Insured
Recip batch: Batchl
Batch no.: 1 . .
Pages associated with the
Trans no.: 1 transaction
——
Transaction Trailer
EEEE—

Repeat of the previons pages—
from Transaction Banner page
through the Transaction Trailer

page

Batch Trailer
(endiing job ticker)

20

USING MULTI-
STEP
PROCESSING

Using Multi-step Processing

This topic describes the standard, multi-step approach to processing. In a multi-step
processing scenario, the system takes these steps:

* Create the transaction records

* Process the transactions

* Create print spool files

* Send incomplete transactions to work-in-progress (WIP)

e Archive transactions

NOTE: Be sure to carefully read this topic even if you are using single-step processing.

CREATING TRANSACTION RECORDS

This illustration shows the files used and created by the GenTrn program as it creates
transaction records:

Source gystem System
data settings resources

3
=
Files

TRHDFOFL.DFD

—M TRMNFILE

t

GenTm GenData

hd

Log File

m Error File

Mess=ge
File

e

The GenTrn program takes the source data, which is stored in extract files, and creates a
list of the transactions, which is stored in the TRNFILE, or transaction file. This
transaction list is then used by the GenData program as it processes the transactions.

The GenT'rn program uses settings in the FSISYS.INI and TRNDFDFL.DFD files to
determine how to process the transactions. These files provide the GenTrn program with
information about the format and structure of the extract file, such as how to determine
where each new record starts.

21

Chapter 2

Understanding the System

The GenTrn program also produces a log file of its activities, a message file, and an error
file which you can use to resolve any etrrors that occur.

File Summary

This table summarizes the files used to supply information (input) and the files created by
(output) the GenTrn program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File Name Default File
or Type Extension Format Description
Input Extract files .DAT text Contains the data you want to process.
FSISYS INI text Initialization file which includes system
settings.
TRNDFDFL .DFD text Defines the attributes of the variable fields in
the TRNFILE.DAT file.
TRNFILE .DAT text Serves as an index to the individual
transactions. Used by the GenData program as
Output it processes the source data in the extract file.
Log file .DAT text Serves as a processing log for the GenTrn
program. The system records the information
by transaction.
Error file .DAT text Notes any errors and warnings encountered by
the GenTtn program as it created the
TRNFILE.DAT file. The system records the
information by transaction.
Message file .DAT text Contains errors and warnings.

22

Using Multi-step Processing

PROCESSING TRANSACTIONS

The following illustration shows the files used and created by the GenData program as it
processes transactions:

Source System

data settings System resources
CNY L Ly TS
= B e
Y ¥
GenPrint
. =
GenTrn GenData | | —
GenWip
L
=
-
GenAre
Nex
O —
Me srag e

Als

i

The GenData program uses the transaction list (TRNFILE) created by the GenTtn
program as it processes the source data stored in the extract files. The FSISYS.INI file
provides system setting information, such as whether or not it should stop processing if
it encounters errors, how to identify key fields in extract files, whether or not it should
check the output data size against the defined field length, and so on.

The files listed under System resounrces provide additional information such as:
* How to read the transaction file (TRNDFDFL.DFD)

e The forms, graphics, and other resources to use when creating the form sets
(RESLIB)

e What forms to use (FORM.DAT)

* Who to send the forms to (SETRCPTB.DAT)

* What processing rules to apply to the data (DDTSs)

* What processing rules to apply to this job (JDTs)

* How the batch files are defined (RCBDFDFL.DFD)

23

Chapter 2

Understanding the System

24

NOTE: You can learn more about these files in Appendix B, System Files on page 425.

Output Files for GenPrint

The output files created by the GenData program include three types of files used by the
GenPrint program: Batch files, NAFILEs, and POLFILEs. Batch files list the
transactions which should be included in each batch print job. NAFILEs store section
and variable field information. POLFILEs define the form set the GenPrint program
should use for each transaction it processes.

Output Files for GenWIP

The GenWIP program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenData program creates
manual batch files specifically for the GenWIP program.

The GenData program creates manual batch files if it is unable to complete the processing
of a form set. Typically, this occurs if the form set is missing information. The GenWIP
program uses this file to create separate transactions which can then be completed
manually using the Entry module of Documaker Workstation. The data for the separate
transactions are stored in files with the extension DAT, such as 00000001.DAT,
00000002.DAT, and so on.

Output Files for GenArc

The GenArc program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenArc program uses the
NEWTRN files to tell it where to find data in the NAFILEs and which forms to use in
the POLFILEs.

File Summary

Using Multi-step Processing

This table summarizes the files used to supply information (input) and the files created by

(output) the GenData program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name or Default File
Type Extension Format Description
Input Extract files text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNFILE DAT text Used as an index to the individual
transactions stored in the extract file.

TRNDFDFL DFD text Tells GenData how to read the TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the variable fields in
a batch file.

Resources (various) (various) Includes graphics (LOG), font cross
reference files (FXR), sections (.FAP), and
SO on.

Output Batch files BCH text Indicates which transactions should be

included in a given batch job. Used by the
GenPrint program.

NAFILE DAT text Contains section and variable field
information. Used by the GenPrint,
GenWIP, and GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.

Used by the GenPrint, GenWIP, and
GenArc programs.

25

Chapter 2

Understanding the System

File name or

Type

NEWTRN

Manual batch
files

Error batch
files

ARCHIVE

Log file

Error file

Message file

Default
Extension

DAT

BCH

.BCH

DFD

DAT

DAT

.DAT

File
Format

text

text

text

text

text

text

text

Description

Tells the GenArc program where to find
data in the NAFILE and which forms to use
in the POLFILE.

Created if the form is incomplete. Used by
GenWIP to allow an operator to complete
the form in the Entry module of
Documaker.

Created if the system spots an error, such as
if the system spots an error and the form is
marked as host required. In contrast to
manual batch files, you cannot correct these
errors using the GenWIP program. Instead,
you must correct the error in the extract file
change the flag to operator required, or
change the FAP file and then process the
transaction again.

>

Tells the GenArc program how to store
archived data.

Setves as a processing log. Created by the
GenTrn program, the GenData program
adds information to this file.

Notes any errors encountered by the
GenData program. Created by the GenTrn
program, the GenData program adds
information to this file (as do the GenPrint,
GenWIP, and GenArc programs).

Contains errors and warnings.

26

CREATING PRINT SpooL FILES

Using Multi-step Processing

The following illustration shows the files used and created by the GenPrint program as it

creates print-ready files:

GenPrint
GenData

(L
(e
(o

Prirt-ready fles ; i
3 I

The GenPrint program receives batch files from the GenData program which tell it what
transactions to print, NAFILEs which tell it what data to print, and POLFILEs which tell

it which forms to print.

With this information, the GenPrint program creates print-ready files for AFP, Xerox

Metacode, PCL, or PostScript compatible printers. The GenPrint program serves as the

print engine for the system.

NOTE: In addition, the GenPrint program can also create PDF (Acrobat) if you have
purchased the PDF Print Driver. For more information about this product,

contact your sales representative.

27

Chapter 2

Understanding the System

File Summary

This table summarizes the files used to supply information (input) and the files created by
(output) the GenPrint program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name Default File
or Type Extension Format Description
Input Batch files BCH text Indicates which transactions should be
printed in a given batch. Used as trigger
files by the GenPrint program.
NAFILE DAT text Contains section and variable field
information.
POLFILE DAT text Defines the forms to use for each batch.
RCBDFDFL DFD text Defines the attributes of the variable
fields in a batch file.
Output Print-ready AFP, PCL, AFP, PCL, Printer spool files which can be printed
files XER, PST, MetaCode, on the printer of your choice.
PDF PostScript,
or PDF

28

Using Multi-step Processing

SENDING INCOMPLETE TRANSACTIONS TO WIP

The following illustration shows the files used and created by the GenWIP program as it
processes incomplete transactions:

WIF DEF

GenData

GenWip |—

POL
Fles

A

The GenWIP program receives information from the GenData program about
incomplete transactions the GenData program found during its processing cycle. With
this information, the GenWIP program creates files the WIP module of Documaker can
read. Through the WIP module, data entry operators can complete the transactions by
entering the missing information.

The manual batch file tells the GenWIP program which transactions are incomplete and
should be included in work-in-progress (WIP).

Using the information in the manual batch files, the GenWIP program extracts the
information it needs from the NAFILE and POLFILE. With this information, it then
creates individual NA and POL files for each incomplete transaction. The GenWIP also
creates a WIP.DBF (database) file which contains information about the incomplete
transactions. The WIP.MDX file serves as an index to this file. Both the WIP.DBF and
WIP.MDX files are used by the WIP module of Documaker Workstation.

29

Chapter 2

Understanding the System

File Summary

This table summarizes the files used to supply information (input) and the files created by
(output) the GenWIP program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

Default
File Name Extensio File
or Type n Format Description
Input NAFILE DAT text Contains section and variable field

information.

POLFILE DAT text Defines the forms to use for each batch.

RCBDFDFL DFD text Defines the attributes of the variable fields in
the batch files.

Manual batch BCH text Indicates which transactions should be
included.

Output WIP DBF Contains information about the incomplete

transactions extracted from the NAFILE and
POLFILE.

WIP MDX Serves as an index to the WIP.DBF file.

NA Files DAT text Contains the data (section and vatiable field
information) for a specific transaction. These
files are named numerically and each file has a
corresponding POL file.

POL Files POL text Defines the forms to use for a specific
transaction. These files are named numetically
and each file has a corresponding NA file.

30

ARCHIVING TRANSACTIONS

Using Multi-step Processing

The following illustration shows the files used and created by the GenArc program as it

archives completed transactions:

HAALE

GenData

HENTEH

i

¥

GenArc

N

ARCHIWVE.DFD

¥

The GenArc program receives information from the GenData program, using many of
the same files used by the GenWIP and GenPrint programs, such as the NAFILE and
POLFILE. These two files identify the data to archive. The NEWTRN file tells the
GenArc program where to find data in the NAFILE, which is created by the GenArc

program.

In addition, the GenArc program also uses the ARCHIVE.DFD file which tells it how to

store the data.

With this information, the GenArc program creates DBF and CAR files. The DBF files
serve as an index to the CAR files, where the archived information is actually stored. You

can have multiple CAR files.

31

Chapter 2
Understanding the System

File Summary

This table summarizes the files used to supply information (input) and the files created by
(output) the GenArc program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

Default
File Name Extensio File
or Type n Format Description
Input NAFILE DAT text Contains section and variable field information.
POLFILE DAT text Defines the forms to use for each batch.
NEWTRN DAT text Tells the GenArc program where to find data in
the NAFILE and which forms to use in the
POLFILE.
APPIDX DFD text Tells the GenArc program how to store the
data.
Output DBEF files DBF text Serves as an index to the archived data in the
CAR files.
ARCHIVE CAR CAR Contains the archived forms.

RULES USED IN MULTI-STEP PROCESSING

Several rules are used to execute the programs of the multi-step process. For a complete
listing and description of these and other rules, see the Rules Reference.

32

RESTARTING
THE GENDATA
PROGRAM

RULCheckTransaction
rule

Restarting the GenData Program

You can set up the GenData program to restart itself at a particular transaction if it
encounters a failure. To accomplish this, the system uses a restart file. You use INI
options to set up the restart file.

NOTE: This feature does not apply if you are using single-step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it isolates the
transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of a
GenData run, the system assumes a restart is necessary and will open and read the file.
The checkpoint information lets the system set internal pointers and output files in such
a way that it can begin at that transaction.

These rules are used to handle restarting the GenData program:
* RULCheckTransaction

* RestartJob

The RULCheckTransaction rule is always the first base form set rule. It saves the
EXTRFILE offset, TRNFILE offset, NEWTRN offset, NAFILE offset, POLFILE
offset, and batch file offsets into a restart (RSTFILE) file.

These offsets are updated in the post process after a specific number of transactions. You
specify the number of transactions using the CheckCount option. You define the Restart
file and the and check count in the Restart control group:

< Restart >
RstFile =
CheckCount =

Option Description

RstFile Enter the name of the restart file. If you omit this option, the system uses
RSTFILE.RST (DD:RSTFILE for MVYS) as the file name.

The system uses the DataPath option in the Data control group to determine
where to create the restart file. The default location is the current working
directory.

CheckCount Enter a number to specify the number of transactions to process before
updating the offsets. For instance, if you specify two hundred (200), the system
processes two hundred transactions, updates the offsets, processes two hundred
more transactions, and so on. The default is 100.

You can also use the /m# command line option with the GenData program to
overtide the CheckCount option. Here is an example:

gendaw32 /cnt=10

Here is an example:

;RULCheckTransaction;2;Always the first form set rule;

33

Chapter 2

Understanding the System

34

RestartJob rule

INI options

The RestartJob is always the first base rule. This rule opens the restart file (RSTFILE) and
resets the EXTRFILE, TRNFILE, NEWTRN, NAFILE, POLFILE, and batch files at
the broken transaction if the restart file exists. If the restart file does not exist, the
RestartJob rule is skipped.

NOTE: For mote information on these rules, see the Rules Reference. You can also set
up the GenArc program to restart itself. For more information, see Using the
Restart Option on page 359.

Here is an example:

;RestartJob;1;Always the first base rule;

To use the restart feature, you should also set the following INI options:

< GenDataStopOn >

BaseErrors = Yes
TransactionErrors = Yes
ImageErrors = Yes
FieldErrors = Yes

GENERATING
BATCH STATUS
EMAILS

Generating Batch Status Emails

You can set up the GenData program to check recipient batches and notify the print
operator via email as to when to expect output print files.

You use INT options to have the Joblnit] rule notify batch recipients about batch file
information. On Windows, Microsoft mail and the SMTP mail type is supported. On
UNIX, only the SMTP mail type is supported.

With the INT settings shown below, the GenData program can...

* Notify a user that a batch is not empty. For example, the GenData program can send
email notification if there are transactions in the error or manual batches or both.

* Notify a user that a batch is empty. For example, it can send an email to the print
operator telling the operator not to expect a print file for processing.

* The notifications above can be skipped on per batch basis. For example, you can
have the GenData program skip batches that do not produce print files or produce
files that do not need to be printed.

* For each notification email you can specify a send to address, reply to address,
message body, optional attachment, and message subject.

* To each email you can optionally attach a recipient batch file.

* The notification email message can include variable data which comes from GVM
variables.

To use this feature, make sure you have your INI files set up as shown here. The new
control groups and options appear in bold and are documented in the following table.

< Print_Batches >
Batchl = batchl.bch
Batch2 = batch2.bch
Batch2 = batch3.bch
Manual = manual.bch
Error = error.bch

< Batchl >
Printer = Printerl
Notify = BchRecipl

< BatchNotify:BchRecipl >
Empty = Yes
MailType = MSM
AttachBatchFile = Yes
SendTo = John Formaker
Subject = Batch 1 is empty
BodyTemplate = email.txt

< Mail >
MailType = MSM
; MailType = SMTP
< MailType:MSM >
Module = MSMW32
MailFunc = MSMMail
ReplyTo = replyto@docucorp.com
UserID = test
SuppressDlg = Yes
HiddenMsgSupport = Yes

35

Chapter 2

Understanding the System

Name = MS Exchange Settings
Recipient = test@oracle.com

Option Description

Batch1 control group

Notify Enter the name of INI control group where the notification options are
specified. In the example above, the control group name would be
BatchINotify:BehRecip1.

BatchNotify:BchRecip1 control group

Empty Enter Yes if you want the system to notify you if this batch is empty or
missing.

Enter No if you want the system to notify you if the batch is not empty.

MailType Enter MSM to specify the mail type as Microsoft mail.

Enter SMTP to specify the mail type as SMTP. SMTP is the only option for
UNIX.

AttachBatchFile Enter Yes to attach the batch file if it exists and is not empty.

Enter No if you do not want the system to attach it.
SendTo Enter the name of the recipient or his or her email address.

Subject Enter the text you want the system to place in the email subject line. For
instance, you could enter Batch 1 is empty.

BodyTemplate Here you can specify a template file, such as email.txt, to use when creating
an email message. It has format:

data for item one <% //testl,%s %> and trailing data

36

TRACKING
BATCH PAGE
STATISTICS

Tracking Batch Page Statistics

The system lets you track job statistics that show you...

* Total pages

¢ Printed sheets

Pages not including copy counts

e Sheets by tray (1 through 9)

You can compile these statistics by batch, recipient within each batch, and job totals. You

can also have the system write the totals to a recipient detail file, a batch summary file, and

the log file. Totals are written to the log file by default.

You can add recipient totals to the recipient batch records by adding the appropriate
global vatiables (GVMs) to the recipient batch file's Data Format Definition (DFD) file.
If you create the optional batch summary file, the batch page statistics will be available to
the GenPrint program via the batch total GVMs.

RECIPIENT PAGE STATISTICS

These statistics are captured for each recipient batch record written to the batch file:

Statistic GVM Description

Recipient RCB_NAME The current recipient name

Total Pages RCB_TOTAL The total recipient pages including non-print (display
only) pages

Total Pages - RCB_TOTAL_ The total recipient pages not including copy counts.

No Copy NC Non-print (display-only) pages are included.

Total Sheets RCB_SHEETS The total printed sheets for the transaction (omits
display-only pages)

Total Tray 1 RCB_TRAY1 The total printed sheets for Tray 1

Total Tray 2 RCB_TRAY2 The total printed sheets for Tray 2

Total Tray 3 RCB_TRAY3 The total printed sheets for Tray 3

Total Tray 4 RCB_TRAY4 The total printed sheets for Tray 4

Total Tray 5 RCB_TRAY5 The total printed sheets for Tray 5

Total Tray 6 RCB_TRAY6 The total printed sheets for Tray 6

Total Tray 7 RCB_TRAY7 The total printed sheets for Tray 7

Total Tray 8 RCB_TRAYS The total printed sheets for Tray 8

Total Tray 9 RCB_TRAY9 The total printed sheets for Tray 9

37

Chapter 2
Understanding the System

BATCH TOTALS SUMMARY FILE

The system can write a summary record for each recipient within each batch and a total
summary record to the optional Batch Totals Summary file. To have the system create this
file, include the RCBStatsTot option in the Data control group and specify a file name.

You can modify the summary total file layout using a custom DFD. Specify the name of
the custom DFD in the RCBStatsTotDFD option in the Data control group. If you omit
the RCBStatsTotDFD option, the default DFD file is used (see Default DFD Files on
page 40).

If there are more that one recipient for a given batch file, a Total record is written. The

BATCH_RCB_NAME value is set to *** Total *** for the total file record. If a total
record exists, the total record is loaded by the GenPrint program.

Accessing totals in If you set the RCBStats option in the RunMode control group to Yes and RCBStatsTot
GenPrint option in the Data control group has a value, the GenPrint program loads the total values
for each batch. These values will then be available as GVM variables.

INI Options You use the following INI options to record statistics:

< RunMode >
RCBStats
RCBTotals =

Option Description

RCBStats Enter No if you do not want to execute statistics processing.

The default is Yes, unless the system is running under IDS. If IDS is running
Documaker Server, the default is No.

RCBTotals Enter No if you do not want the system to write recipient totals to the log file.
The default is Yes.

< Data >
RCBStatDt1DFD
RCBStatsTotDFD =
RCBStatsDtl
RCBStatsTot

Option Description

RCBStatDtIDFD Enter a name for the RCB Statistics Detail File DFD. The system
defaults to an internal DFD entry.

RCBStatsTotDFD Enter a name for the RCB Statistics Total File DFD. The system
defaults to an internal DFD entry.

RCBStatsDtl Enter the name and path you want assigned to the detail log file. The
system will create this file if you include a value for this option.

RCBStatsTot Enter the name and path you want assigned to the total log file. The
system will create this file if you include a value for this option.

38

SAMPLE LOG FILE

Here is an example of a log file:

Batch (BATCHI) :

- Total for Recipient (AGENT)

Tracking Batch Page Statistics

in Batch(BATCH1) :

- Total for Recipient (COMPANY) in Batch(BATCH1) :

- Total for Recipient (INSURED) in Batch (BATCHL) :

Pages 9
Pages (nc) : 9
Sheets 6
Trayl 2
Tray?2 2
Tray3 0
Tray4 2
Tray5 0
Tray6 0
Tray7 0
Tray8 0
Tray9 : 0
Pages 21
Pages (nc) : 21
Sheets 16
Trayl 3
Tray?2 2
Tray3 9
Tray4 2
Tray5 0
Tray6 0
Tray7 0
Tray8 0
Tray?9 0
Pages 44
Pages (nc) : 44
Sheets 28
Trayl 6
Tray?2 11
Tray3 9
Tray4 2
Tray5 0
Tray6 0
Tray7 0
Tray8 0
Tray?9 : 0
- Total for Batch(BATCHL) :
Pages 74
Pages (nc) : 74
Sheets 50
Trayl 11
Tray?2 15
Tray3 18
Tray4 6
Tray5 0

39

Chapter 2

Understanding the System

Tray6 0
Tray7 0
Tray8 0
Tray?9 : 0
Job Page Statistics:
Pages : 74
Pages (nc) : 74
Sheets : 50
Trayl : 11
Tray?2 : 15
Tray3 : 18
Tray4 : 6
Tray5 0
Tray6 0
Tray7 0
Tray8 0
Tray?9 0

DErFAULT DFD FILES
Here are examples of the DFD files:

RCBStatsDtIDFD

< FIELDS >

40

CHAR_ARRAY_NO_NULL_TERM

CHAR_ARRAY_NO_NULL_TERM

FIELDNAME RCB_BATCH
FIELDNAME RCB_NAME
FIELDNAME RCB_TRANS
FIELDNAME RCB_TOTAL
FIELDNAME RCB_TOTAL_NC
FIELDNAME RCB_SHEETS
FIELDNAME RCB_TRAY1
FIELDNAME RCB_TRAY2
FIELDNAME RCB_TRAY3
FIELDNAME RCB_TRAY4
FIELDNAME RCB_TRAYS5
FIELDNAME RCB_TRAY6
FIELDNAME RCB_TRAY7
FIELDNAME RCB_TRAYS8
FIELDNAME RCB_TRAY9

< FIELD:RCB_BATCH >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 21
EXT_TYPE =
EXT_LENGTH = 20
KEY = Y
REQUIRED = Y

< FIELD: RCB_NAME>
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 21
EXT_TYPE =
EXT_LENGTH = 20
KEY = Y
REQUIRED = Y

< FIELD:RCB_TRANS >

INT_TYPE =

CHAR_ARRAY

Tracking Batch Page Statistics

INT_LENGTH = 31
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 30
KEY = N
REQUIRED = N
< FIELD:RCB_TOTAL >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TOTAL_NC >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY1l >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY2 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY3 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY4 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY5 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY6 >

41

Chapter 2

Understanding the System

INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY7 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY8 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAYY9 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N

RCBStatsTotDFD < FIELDS >

FIELDNAME = BATCH_NAME
FIELDNAME = BATCH_RCB_NAME
FIELDNAME = BATCH_TOTAL
FIELDNAME = BATCH_TOTAL_NC
FIELDNAME = BATCH_SHEETS
FIELDNAME = BATCH_TRAY1
FIELDNAME = BATCH_TRAY2
FIELDNAME = BATCH_TRAY3
FIELDNAME = BATCH_TRAY4
FIELDNAME = BATCH_TRAYS
FIELDNAME = BATCH_TRAY6
FIELDNAME = BATCH_TRAY7
FIELDNAME = BATCH_TRAYS
FIELDNAME = BATCH_TRAY9

42

CONTROLLING
GENTRN
PROCESSING

Controlling GenTrn Processing

Include the following control group and option in the FSISYS.INI file when you want the
GenT'rn program to continue processing transactions when errors occur. By default, the
GenTrn program halts when it encounters an error.

NOTE: This control group and option is typically used if you are using XML extract files
and you do not want the GenTrn program to stop every time it encounters an
error. For any type of extract file, using this option detects missing Keyl and
Key2 information.

Here is an example of the control group and option:

< GenTranStopOn >

TransactionErrors = Parameterl;Parameter2;Parameter3;

Parameter Description

Parameterl Enter No to turn the GenTranStopOn option off. The default is Yes.

Parameter2 Enter the name of the transaction file. To wtite out the error transaction, enter
the name of the file where you want the extract file records written.

If you omit the path, the system uses the DataPath option in the Data control
group in the FSISYS.INI file to determine where to locate this file.

Parameter3 The system only looks at this parameter if you entered a file name for
Parameter2.

Enter Yes to tell the system to append the error transactions accumulated duting
this processing run to the file created in a prior run.

Enter No to tell the system to overwrite any existing file. If Parameter2 exists and
you omit this parameter, the system defaults to No.

If you enter Yes, you must remove the file when necessary. Keep in mind that
over a series of processing runs, this file will expand in size.

Separate the parameters with semicolons (5).

The system records all errors and warnings it encounters during a processing run in the
ERRORFILE.DAT file. In addition, it writes the extract file records of the transaction in
error to the file you specify in Parameter2. This lets you inspect those transactions and
determine the best way to proceed.

Here are some examples. This option:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;No;
Is the same as:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;;

Both let the GenT'rn program continue processing subsequent transactions when errors
occur. These options tell the GenTrn program to write the error transaction to a file
named ERRORTRANSACTION.DAT, stored in the \Extracts directoty.

TransactionErrors = No; ErrorTransaction.dat;Yes;

43

Chapter 2

Understanding the System

44

This option lets the GenT'rn program continue processing subsequent transactions when
errors occut. Since the path of the error transaction file was omitted, the system uses the
DataPath option in the Data control group in the FSISYS.INI file to find the file so it can
append any error transactions to the existing error transaction file.

TransactionErrors = Noj;;;

This option lets the GenT'rn program continue processing subsequent transactions when

errors occut. It does not, however, write out error transactions.

When using this option, you may encounter these errors:

Problem in loading the XML file. Syntax error.

GenTrn

Transaction Error Report - System timestamp: Mon Dec 16 13:42:27 2002

DM12041: Error: FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

codel:<48>, code2:<0>

msg:<XML Parse Error: The 15 chars before error=< <Keyl>Compl<>,
the 8 chars starting at error=</Keylc>
>>,

DM12041: Error : FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

codel:<48>, code2:<0>
msg:<mismatched tag at line 3 column 16>.

DM10293: Error: Error in <BuildTranRecs>: Unable to
<DXMLoadXMLRecs () >.

Skip Transaction# <2>.

Warning: the specific info you see may not be the info for the error
transaction. It may be the info on the last complete transaction.

==> Warning count: 0
==> Error count: 3

No problem in loading the file, however, Keyl is omitted in the transaction.

GenTrn

Transaction Error Report - System timestamp: Fri Dec 13 13:52:13 2002
DM1002: Error: Required INI definition omitted.

Cannot locate INI group <KeylTable> with value = defined.

DM15062: Error in BuildTrnRecs () : Unable to GENGetDocSetNames (pRPS) .
Skip Transaction# <3>.

==> Warning count: 0

==> Error count: 2

Using Single-step Processing

U SING S| NGLE- The single-step process improves the performance of your system by combining the
functions of GenT'rn, GenData and GenPrint into one step performed by GenData. This
STEP process is used when no intermediate steps are necessary.
PROCESSING

The GenWIP and GenArc options are performed the same as in the multi-step process.
See Sending Incomplete Transactions to WIP on page 29 and Archiving Transactions on
page 31 for more information on the functions of the GenWIP and GenArc programs.

NOTE: When running in single-step mode, you can only produce a single print stream.
For instance, the most common method of print batching is to batch by recipient,
in single-step processing, however, you cannot produce separate print streams for
each recipient batch.

CREATING AND PROCESSING TRANSACTION RECORDS

In the multi-step process, the GenTrn program creates transaction records that are sent
to the GenData program for processing. In the single-step process, the GenData program
performs both of these actions in one step.

P Pinbesty AR

AFP, Metacole,
PCL, PO Borpt

GenData | | Faktes !

Genip
Gendrc
-__E Error ;
Fle

Archive
OFD

45

Chapter 2

Understanding the System

46

As shown in the illustration above, the GenData program processes transaction records,
originated from the source data, and creates various output files for print, WIP or
GenArc. By combining the functions of GenTrn and GenPrint into GenData, you reduce
the number of times the system needs to open and close files, thus enhancing the overall
performance of your system.

System Settings and Resources

The FSISYS.INI and the FSTUSER.INI file provide system setting information, such as
whether or not it should stop processing if it encounters errors, how to identify key fields
in extract files, whether or not it should check the output data size against the defined field
length, and so on.

The files listed under system resources provide additional information such as:
* How to read the transaction file (TRNDFDFL.DFD)

* The forms, graphics, and other resources to use when creating the form sets
(RESLIB)

* What forms to use (FORM.DAT)

* Who to send the forms to (SETRCPTB.DAT)

* What processing rules to apply to the data (DDTs)

* What processing rules to apply to this job (JDT's)

* How the batch files are defined RCBDFDFL.DFD)

NOTE: You can learn more about these files in Appendix B, System Files on page 425.

The advantage of single-step processing is the improvement to performance The
disadvantage is that it is much more difficult to correct errors because the system does not
create batch files at the end of each step. These batch files tell you what occurred and help
you spot and cotrect etrors.

Using Single-step Processing

CREATING PRINT FILES

With the placement of specific rules, you can make the GenData program perform the
functions of the GenTrn and GenPrint programs. In other words, when GenData is
processing transactions files, it is also producing the print-ready files necessary to print on
AFP, Metacode, PCL, or Postscript printers.

AFP , Metacade,
PCL, Postscript
(e

GenData

As in the multi-step process, the GenData program creates these types of files:
* Batch files - list the transactions which should be included in each batch print job
* NAFILE:s - store section and variable field information

* POLFILE:s - define the form set the GenPrint program should use for each
transaction it processes

NOTE: When using single-step processing, you should clear all messages before each
processing run. For information on how to do this, see Clearing Messages on
page 334.

47

Chapter 2

Understanding the System

File Summary

This table summarizes the files used to supply information (input) and the files created by
(output) the GenData program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input files and all of the output files.

File name or Default File
Type Extension Format Description
Input Extract files text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNDFDFL DFD text Tells GenData how to read and write the
TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the variable fields in
a batch file.

Resources (vatious) (various) Includes graphics (LOG), font cross
reference files (FXR), sections (FAP), and so
on.

Output Batch files BCH text Indicates which transactions should be
included in a given batch job.

NAFILE DAT text Contains section and variable field
information. Used by the, GenWIP, and
GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.
Used by the GenWIP and GenArc
programs.

NEWTRN DAT text Tells the GenAtc program where to find data
in the NAFILE and which forms to use in
the POLFILE.

48

Using Single-step Processing

File name or Default File

Type Extension Format Description

Manual batch BCH text Created if the form is incomplete. Used by

files GenWIP to allow an operator to complete
the form in the Entry module.

Error batch .BCH text Created if the system spots an error, such as

files if the system spots an error and the form is
marked as host required. In contrast to
manual batch files, you cannot correct these
errors using the GenWIP program. Instead,
you must correct the error in the extract file,
change the flag to operator required, or
change the FAP file and then process the
transaction again.

ARCHIVE DFD text Tells the GenArc program how to store
archived data.

Log file DAT text Serves as a processing log. Created by the
GenData program in the single-step process.

Etror file DAT text Notes any errors encountered by the
GenData program. Created by the GenData
program in the single-step process.

Message file .DAT text Intermediate file which contains log and

error messages. These messages are then
translated and written to either the
LOGFILE.DAT or ERRFILE.DAT files.

USING THE MULTIFILEPRINT CALLBACK FUNCTION

The system includes a MultiFilePrint callback function designed for running the GenData
program in single-step mode. The log file is either a semicolon delimited text file—the
same as the file created by MultiFilePrint—or an XML file.

The layout of the XML file is as follows:

.\data\BATCH1.BCH
SAMPCO

LB1

1234567

T1

INSUREDS COPY
DATA\ O0rDcP7WxytE82ECP5jexhWXVagkjv840Vw_F-GykT_VMfd.PDF
.\data\BATCH2 .BCH
SAMPCO

LB1

1234567

T1

49

Chapter 2

Understanding the System

50

COMPANY COPY
DATA\0v317pBdVgHceoRL5hf2xgjJ7WAMx1RVO9U70iFiXIcne . PDF

You can use the INI options in the DocSetNames control group to determine which
XML elements atre created. The values are the same as those written to a recipient batch
or transaction file.

The MultiFilePrint callback function should only be used with the PDF, RTF, HTML,
and XML print drivers. See also Controlling What is in the MultiFilePrint Log on page
109.

MAPPING FIELDS WITH XPATH

The GenTrn program and the NoGenTrnTransactionProc rule let you use the
TRN_Fields control group to map all of your fields with XPath. To let the system know
you are using the XML file, set the XMLTrnFields option in the TRN_File control group
to Yes and also set the XMLExtract option in the RunMode control group to Yes.

Here is an example:

< RunMode >
XMLExtract = Yes
< TRN_File >
XMLTrnFields= Yes
< TRN_Fields >

Company = ! /Forms/Keyl

LOB = ! /Forms/Key2

PolicyNum = !/Forms/PolicyNum
RunDate = ! /Forms/RunDate;DM-4;D4

NOTE: Use this format for the Trn_Fields control group options:

(Field in the Transaction DFD File) = XPath;Field Format

Be sure to include the leading exclamation mark (!). This tells the system to use an XML
path search but is not part of the actual search routine. Do not specify whether a field is
a key. The system does not support multiple (search) keys with the XML implementation.

If you are selectively excluding transactions, in your exclude file, instead of an offset and
SearchMask, replace it with the XPath. Here is an example:

! /Forms [PolicyType="0LD"]

Using Single-step Processing

RUNNING ARCHIVE IN SINGLE-STEP PROCESSING

Using rules developed for archiving via Docupresentment, you can run the GenArc
program as part of single-step processing.

Use the InitArchive rule to check the INT options in the Trigger2Archive control group,
initialize the database, open the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Here is an example:

< Base Rules >
;InitArchive;1;;

< Base Form Set Rules >
;Archive;2;;

NOTE: For more information on these rules, see the Rules Reference.

RUNNING WIP IN SINGLE-STEP PROCESSING

You can use the InitConvertWIP and ConvertWIP rules to run the GenWIP program in
single-step mode.

Use the InitConvertWIP rule to perform the initialization necessary for the ConvertWIP
rule.

Use the ConvertWIP rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents of
the POLFILE.DAT and NAFILE.DAT files to new files with unique names.

You can then view these WIP records using Documaker Workstation or the WIP Edit
plug-in, which is part of the Docupresentment suite of products.

Here is an example:

< Base Rules >
;InitConvertWIP;1; ;

< Base Form Set Rules >
;ConvertWIP;2; ;

NOTE: For more information on these rules, see the Rules Reference.

51

Chapter 2

Understanding the System

Archive

BatchingByReciplINI

BatchByPageCount

BuildMasterFormList

52

RULES USED IN SINGLE-STEP PROCESSING

Specific rules are used to combine the execution and functionality of the GenTrn,
GenData, and GenPrint programs into a single step. To begin familiarizing yourself with
these rules, an alphabetical listing and brief description follows. You can find more
information in the Rules Reference.

Use this form set level (level 2) rule after the InitAtrchive rule to unload the current form
set and convert field data for archive using the INI options in the Trigger2Archive control

group.

Use this form set level (level 2) rule to send transactions to a batch you specify based on
data in the extract file. To use this rule, you must include the BatchingByRecip control
group in your FSISYS.INI file with options similar to those shown below:

< BatchingByRecip >
Batch_Recip_Def = default; "ERROR"
Batch_Recip_Def = 4,1234567; "BATCH1" ; INSURED
Batch_Recip_Def = true;"BATCH2"; INSURED
Batch_Recip_Def = True; "BATCH3"; COMPANY | true; "BATCH2” ; AGENT

You must also add the TWOUP control group and CounterTbl option to the FSISYS.INI
file.

Use this form set level rule to send a transaction to a specific batch based on the number
of pages produced by processing the transaction. The batch used is determined by the
PageRange option in the Batch control group.

In the example below; transactions that produce 1 to 7 pages are send to Batchl.
Transactions that produce 8 to 25 pages are send to Batch2. In addition, you must add the
TWOUP control group and CounterTbl option to the FSISYS.INI file.

< Batches >

Batchl = .\data\Batchl
Batch2 = .\data\Batch2
Batch3 = .\data\Batch3
Error = .\data\Error
Manual = .\data\Manual
< Batchl >

Printer = Batchl_PTR
PageRange = 1,7

< Batch2 >

Printer = Batch2_PTR
PageRange = 8,25

< TWOUP >
CounterTbl = .\datal\counter.tbl

Use this job level rule (level 1) to load the FORM.DAT file into an internal linked list
within the GenData program. You must include this rule in the AFGJOB.JDT file
because the RunSetRcpThl rule is dependent on the list this rule creates.

ConvertWIP

InitArchive

InitConvertWIP

InitPrint

InitSetRecipCache

NoGenTrnTransaction
Proc

PageBatchStage1Init
Term

Using Single-step Processing

Use this form set level (level 2) rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents of
the POLFILE.DAT and NAFILE.DAT files to new files with unique names. You can
then view these WIP records using Documaker Workstation or the WIP Edit plug-in,
which is part of Docupresentment.

Use this job level (level 1) to check the INI options in the Trigger2Archive control group,
initialize the database, open the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

Use this job level (level 1) rule to perform the initialization necessary for the ConvertWIP
rule.

Use this job level (level 1) rule to load printer and recipient batch information. This rule
sets up PRTLIB data, initializes print options, and loads a table which contains page totals
for recipient batch files.

Use this job level rule (level 1) to set the amount of cache the system uses to store recipient
information in memory. With this rule you can tell the system the amount of memory to
set aside and use for storing information in the Keyl and Key?2 fields, often used to store
the company, line of business, and transaction codes. You can use this rule to improve
processing performance for complex forms. This rule has no affect on the processing
speed for static forms.

NOTE: If you omit this rule, the system does not set aside memory for the Keyl and
Key2 fields.

Use this form set level rule when you use the GenData program by itself to execute the
GenTrn and GenData steps. In the single-step processing environment, this rule
processes the extract file and creates the information normally created in both the
GenTrn and GenData steps. When combined with the InitPrint and PrintFormset rules,
it creates the output files normally created during the GenPrint step.

NOTE: Do not use this rule if you are running the GenT'rn, GenData, and GenPrint
programs as separate processes (multi-step processing).

Use this job level rule (level 1) to create and populate a list of records which contain page
ranges and total page counts for each recipient batch file.

This rule is typically used for handling 2-up printing for AFP and compatible printers.

This rule creates a list (populated in another rule) to contain the recipient batch records
for a multi-mail transaction set. The rule then writes out the recipient records for the final
multi-mail transaction set and writes out the total page counts for each recipient batch.
You must add the TWOUP control group and CounterTbl option to the FSISYS.INI file,
as shown here:

< TwoUp >
CounterTbl = .\data\counter.tbl

53

Chapter 2

Understanding the System

PaginateAndPropogate Use this form set level (level 2) rule to paginate the form set and merge in or propagate
field data.

PrintFormset Use this form set level (level 2) rule when you run the GenData program by itself to
execute GenT'rn and GenPrint processes. In the single-step processing environment, this
rule, when combined with the InitPrint rule, prints form sets.

NOTE: Do not use this rule if you are running the GenT'rn, GenData, and GenPrint
programs as separate processes (multi-step processing).

ProcessQueue Use this form set level (level 2) rule to process the queue you specify. This rule loops
through the list of functions for the queue you specify and then frees the queue when
finished.

StandardFieldProc This rule is a field level rule (level 4), which you must include in the AFGJOB.JDT file.
This rule is used when you are using the performance mode JDT and should be the first
field level rule. This rule tells the system to process each field on all of the sections
triggered by the SETRCPTB.DAT file. If you use the StandardFieldProc rule in your JDT,
you must also include the WriteNAFile rule.

StandardlmageProc This rule is a section level rule (level 3) which you must include in the AFGJOB.JDT file.
This rule is used when you are using the performance mode JDT and should be the first
section level rule. This rule tells the system to process each section triggered by the

SETRCPTB.DAT file.

WriteNAFile Use this form set level rule (level 2) to append the NAFILE.DAT file data records for the
current form set into an existing NAFILE.DAT file. When you use the
NoGenTrnTransactionProc rule, which replaces the RULStandardProc rule, you must
include the WriteNAFile rule to cause data (records) to be written to the NAFILE during
the GenData processing step. In addition, you must also include the WriteOutput rule to
cause data (records) to be written to the POLFILE.DAT and NEWTRN.DAT files
during the GenData processing step.

WriteOutput Use this form set level (level 2) rule to append the POLFILE.DAT file data records for
the current form set into an existing POLFILE.DAT file.

You also use this rule when you are using the GenData program by itself to execute the
GenTrn, GenData, and GenPrint processing steps.

If you use this rule, do not use the UpdatePOLFile rule.

WriteRCBWithPage Use this form set level rule (level 2) to write page counts for each recipient. This rule is
Count typically used for handling 2-up printing on AFP and compatible printers. To use this rule,
you must update the RCBDFDFL.DFD file with the following items:

< FIELDS >
FIELDNAME = CurPage
FIELDNAME = TotPage
FIELDNAME = AccumPage
FIELDNAME = MMFIELD

< FIELD:CurPage >
INT_TYPE = LONG

54

Base rules

Using Single-step Processing

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:TotPage >
INT_TYPE = LONG
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N

< FIELD:AccumPage >
= LONG
= CHAR_ARRAY_NO_NULL_TERM

INT_TYPE
EXT_TYPE

EXT_LENGTH = 10
KEY = N
REQUIRED =N

< FIELD:MMFIELD >
INT_TYPE = CHAR_ARRAY

7

INT_LENGTH

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 6

KEY =
REQUIRED

N
=N

SINGLE-STEP PROCESSING EXAMPLE

As stated earlier, the single-step process is performed by combining the execution and
functionality of the GenTrn, GenData, and GenPrint programs. This is done by placing
certain rules into a specialized JDT. The eatlier illustration shows the input and output
files used by GenData to process transactions and print output files in one step. The
following file describes the JDT used to process the job and an example of the rules used
to combine the GenTrn, GenData, and GenPrint functions.

To make this happen, the NoGenTrnTransactionProc rule, along with other rules, are
placed in the JDT file as seen in the following sample file. You can find a sample file in

the DMS1 sample library.

The following base rules are designed for the performance mode.

;RULStandardJdobProc;1l;Always the first job level rule;

;SetErrHdr;1;
;SetErrHdr;1;
;SetErrHdr;1;
;SetErrHdr;1;
;SetErrHdr;1;
;SetErrHdr;1;
;SetErrHdr;1;

;SetErrHdr;1;
;JobInitl;;;

‘k‘k‘k:
Kk k..
*k k.
*k k.
***:

* kK .

BillPrint Data Generation (Base) ;

Transaction:
Company Name:
Line of Business:
Run Date:

;CreateGlbVar;1l; TXTLst, PVOID;
;CreateGlbVar;1;TblLstH, PVOID;

;InitOvFlw; 1;

7

*** ACCOUNTNUM* * * ;
***Company* * * ;
* kKT, OB** % ;

RunDate;

; SetOvF1lwSym; 1; SUBGROUPOVF, SUBGROUP, 5;
;BuildMasterFormList; ;4;
;PageBatchStagelInitTerm; ; ;

55

Chapter 2

Understanding the System

Base form set rules

Base image rules

Base field rules

56

;InitSetrecipCache;; ;
The following rule is required to execute GenData and GenPrint as a single step.

;InitPrint;;;

The following base form set rules causes GenTrn and GenData to be combined into a
single step.

;NoGenTrnTransactionProc; ; ;
;ResetOvFlw;2; ;
;BuildFormList; ;;
;LoadRcpTbl; ; ;
;RunSetRcpTbl; ; ;

The following rules are required to execute GenData and GenPrint as a single step.

;PrintFormset; ; ;

;WriteOutput;; ;

;WriteNaFile;;;
;WriteRCBWithPageCount; ; ;

; ProcessQueue; ; PostPaginationQueue;
; PaginateAndPropogate; ; ;
;BatchingByRecipINI; ; ;

The following base image rules apply to every section in this base.

;StandardImageProc;3;Always the 1lst image level rule;

The following base field rules apply to every field in this base.

;StandardFieldProc;4;Always the 1lst field level rule;

USING IDS TO
RUN
DOCUMAKER

Using IDS to Run Documaker

If you have a license for both Documaker and Docupresentment, you can set up the
Internet Document Server (IDS) to run Documaker as a subordinate process. Web clients
communicate with IDS using queues. IDS communicates with Documaker via XML files
called job tickets and job logs.

This diagram illustrates the process:

XML Job

Ticker Documaker
—

IDS Server

(GenData)

IDS can start or stop Documaker Server as needed, without user interaction. One IDS
session controls one Documaker process. You can, however, implement multiple IDS
sessions and have multiple Documaker Server processes as well.

Keep in mind these limitations:
* You can only run Documaker in single step mode.
* You must run Documaker on Windows 2000 or higher.

* Different resource setups for Documaker are supported, but Documaker processing
restarts if resources are changed, eliminating the performance benefits. This should
not be a problem because it is unlikely multiple Documaker Server setups will be used
with a single IDS implementation. You can, however, experience problems testing a
system with multiple setups.

* During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

For more information, see the Internet Document Server Guide and the SDK Reference.

57

Chapter 2

Understanding the System

WRITING
UNIQUE DATA

INTO RECIPIENT

58

BATCH
RECORDS

The GenData program lets you add unique data to each recipient batch record before it

i

s written to the recipient batch files. The recipient batch record data and format is defined

by the GVM variable definitions in the RCBDFDFL.DAT file.

You can use this capability if you need to add...

¢ Address information or other field level information to the batch record, which is

typically unique for each recipient.

* Recipient information that is not handled by normal field mapping from the

transaction DFD to the recipient batch DFD.

* Cumulative or calculated information not available until the document is nearly

completed.

NOTE: Before this feature was implemented in version 10.2, the recipient batch records

were identical except for the recipient code field which contains a unique
identifier assigned to a given recipient. If additional recipient data was required,
you had to write a custom rule.

Use the options in the RecipMap2GVM control group to set up this capability. Data that
can be added to the recipient batch record can be:

Contents of a vatiable field on the specified section or form/section
Constant value
Data from an existing INI built-in functions, such as ~DALRun

Data from a custom written INI function

Here is an example of the RecipMap2GVM control group:

< RecipMap2GVM >
Form =

Image
Reqg =
Opt =

Option Description

Form (optional) Enter the name of the form.

Image Enter the name of the section (image). You can also enter a section name root.

A section name root is the first part of a name. For instance, MAILER is the root
name for sections with names such as MAIl.LER A, MAILLER_B, or MAIL.ERS.

Writing Unique Data into Recipient Batch Records

Option Description

Req * A semicolon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

Opt * A semicolon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

* = Repeat for each GVM variable you are setting up.

Optional formatting You can add optional formatting information as a parameter of the Opt INI option. This

information formatting information is comprised of four items separated by commas.
Item Description
Input fetypes D or d = date

N or n = number

Input format Date - see the FmtDate rule in the Rules Reference.

mask Number — see the FmtNum rule in the Rules Reference.

Output fetypes D or d = date

N or n = number

Output format Date - see the FmtDate rule in the Rules Reference.

mask Number — see the FmtNum rule in the Rules Reference.

Here are some formatting examples:
d,”l/4”, d, \\4/4”

This converts an input date, mmddyyyy, into month name dd, yyyy, such as February 17,
2006.

n, nCAD, nUSD, “$zzz,zz9.99”

This converts an input numeric value in Canadian French format into a value in United
States format.

Keep in mind...

* For the Req option, if the data is missing an error occurs and the transaction is send
to the error batch.

* For the Opt option, if the data is missing the system stores an empty string in the
GVM variable.

* A RCB GVM variable cannot be restored to its original or default value after it has
been changed using this method.

* Any RCB GVM variable not assigned using this method retains the value originally
set during the transaction processing.

59

Chapter 2

Understanding the System

* Some RCB GVM variables should never be changed using this mapping technique.
These include:

TRN_ Offset
NA_Offset
POL._Offset

* If the section defined in the Image option in the RecipMap2GVM control group
does not name a section, the feature is disabled for all transactions.

* If the section defined in the Image option is missing from the form set being
processed, the GVM data is not changed. Depending on where the GVM data is
mapped, this could mean data from the prior transaction will still be in the GVM
variables.

* If there are multiple sections with the same name in the form set, the form specified
in the Form option is used to identify the section to use. If the Form option is
omitted, the first section found in the current form set is used.

* The system assumes the specified section contains all of the unique data except for a
constant value or data gathered from an INI built-in function.

* If more than one recipient is assigned to the section, all recipient batch records
receive the same added data.

Example This example creates a mailer cover page for each insured, agent, and/or company
recipient per transaction. The cover page is created using banner page processing which
occurs during GenPrint processing. Examples of the three different mailer cover pages
are as follows.

60

Insureds

Agents

Company

I

Jill Smith

11111 Oak Citcle
Suite 999

Smryna, FL. 12345

[

Suzy Smith

Morris Fanelli

99934 Oak Citcle
Suite 999

Smartburg, WI 99999

[1ill Smith

Martin Short Agent
963 Atlantic
Boulevard

Suite 1250

Miami, FL. 30202

[Suzv Smith

David Miller Agent
999 Green Dolphin
Street

Suite 1200

Miami, FL 30202

[Suzv Smith

[1ill Smith

Sampco, Inc.

316 N.E. 3rd Avenue
Pompano Beach, FL
33333

Writing Unique Data into Recipient Batch Records

61

Chapter 2

Understanding the System

This example assumes that the:

* Agent and company recipient batch files are sorted (agent number and company
name, respectively) before the GenPrint program runs. This sorting allows for the
creation of only one mailer cover page per unique agent and company.

* Unique information is contained on the form/section, Dec Page/Q1MDCI.

* The FSIUSER.INI file includes these control groups and options:

< RecipMap2GVM >

Form = Dec Page

Image = Q1MDC1

Opt = Namel; Insured Name;

Opt = Name2; Insured Name2;

Oopt = Addressl;Address Linel;

Opt = Address2;Address Line2;

Opt = CityCounty;prtvalue;

Opt = AgentName;Agent Name;

Opt = AgentID; Agent ID;

Oopt = OfficeAddress;Office Address;

Oopt = TownandState;Town And State;
< Printer >

PrtType = PCL

EnableTransBanner = True

EnableBatchBanner = False

TransBannerBeginScript= PreTrans

TransBannerEndScript = PstTrans
TransBannerBeginForm = ;BANNER; TRANSACTION; TRANS HEADER;
TransBannerEndForm = ;BANNER; TRANSACTION; TRANS TRAILER;

< DALLibraries >
LIB = Banner

BANNER.DAL The DefLib directory contains this DAL script:

* This script obtains the required unique data from the recipient
* batch record and stores it on the mailer form.

BeginSub PreTrans

blank_gvm = Pad(" ",41," ")

SetGVM ("NameA" ,blank_gvm,,"C",41)

SetGVM ("NameB" ,blank_gvm,, "C",41)

SetGVM ("AddressA" ,blank_gvm,,"C",41)

SetGVM ("AddressB" ,blank_gvm,,"C",41)

SetGVM ("CityCountyl" ,blank_gvm,,"C",41)

If Trim(RecipName()) = "INSURED" Then
SetGVM ("NameA" ,GVM ("Namel") ,,"C" L4l
SetGVM ("NameB" GVM ("Name2") ,,"C",4l)
SetGVM ("AddressA" GVM ("Addressl") ,,"C",41)
SetGVM ("AddressB" ,GVM ("Address2") ,,"C",41)
SetGVM ("CityCountyl" ,GVM("CityCounty"),,"C",41)
GoTo exit:

End

last_agent_id = last_agent_id

If Trim(RecipName()) = "AGENT" Then

62

Writing Unique Data into Recipient Batch Records

If last_agent_id != Trim(GVM("AgentID")) Then
last_agent_id = Trim(GVM("AgentID"))
SetGVM ("NameA" ,GVM ("AgentName") ,,"C",41)
SetGVM ("NameB" ,GVM("OfficeAddress") ,,"C",641)
SetGVM ("AddressA" ,GVM ("TownandState") ,,"C",41)
GoTo exit:
Else
SuppressBanner ()

GoTo exit

End
End
last_company_name = last_company name
If Trim(RecipName()) = "COMPANY" Then
If Trim(GVM("Company")) != last_company name Then
last_company name = Trim(GVM ("Company"))
If Trim(GVM("Company")) = "SAMPCO" Then;
SetGVM ("NameA" , "Sampco, Inc." ,,"C",41)
SetGVM ("NameB" ,"316 N.E. 3rd Avenue" ,,"C",41)
SetGVM ("AddressA" ,"Pompano Beach, FL 33333" ,,"C",41)
GoTo exit:
ElseIf Trim(GVM("Company")) = "FSI"
SetGVM ("NameA" ,"FSTI Inc." , . "C",41)
SetGVM ("NameB" ,"222 Newbury St." ,,"C",41)
SetGVM ("AddressA" , "Northwest City, FL 99999 ,,"C",41)
GoTo exit:
End
Else
SuppressBanner ()
GoTo exit:
End
End
exit:
EndSub

BeginSub PstTrans
EndSub

The RCBDFDFL.DAT file contains the following GVM variable definitions which are
defined in the RecipMap2GVM control group:

* Namel
* Name2
e Addressl
* Address2

* CityCounty

e AgentName

e AgentlD

* OfficeAddress

¢ TownAndState

63

Chapter 2

Understanding the System

64

Here are two recipient batch records from this example:

SAMPCOLB12234567SCOM1FLT1 B2199802232234567890 0 22560

R V0N 3724 452J111 Smith Morris

11111 Oak Circle Suite 999 Smyrna,
FL 12345 Martin Short Agent 963 Main Street,

Suite 1250 Miami, FL 30202

FSI CPP4234567FSIMIWIT1 B3199802234234567890 0 30360
FrRxxXF(OQL 4667 565Suzy Smith Morris

99934 Oak Circle Suite 999 SmartBurg,
WI 99999 David Miller Agent 999 Main Street,

Suite 1200 Miami, FL 30202

USING CLASS
RECIPIENTS

Using Class Recipients

A class recipient identifies a recipient that represents one or more persons or entities. For
instance, in an insurance implementation, you might have a policy that has a several
recipients declared as an Additional Interest. Instead of declaring each as a separate recipient
with separate triggering logic, it is more convenient to declare a single recipient name that
represents all those of the same type or class. All members of this class receive virtually
identical copies of the document.

In this scenario, you do not have to do anything special to declare a class recipient in your
form definitions. Merely determine the appropriate title for this class of recipients and
define that name as you would a normal recipient that represents a single entity.

If you want all members of the class to receive identical copies of the document, use the
trigger for the recipient to assign a copy count to each form or section — where the count
equals the number of members in the class.

There are some limitations to using form copy counts to provide recipient copies. For
instance, this does not let you print unique information about each member of the class
recipient, as would be necessary on a mailer page, for instance.

NOTE: It is possible to handle this using trigger overflow processing to physically trigger
multiple copies of each form — one for each member, but a disadvantage of this
approach is that each item (form or section) triggered is physically duplicated in
the form set and therefore each requires data processing. This means that if there
are a large number of these duplicate recipients, the throughput performance of
transactions could be affected.

To handle this situation, the RecipMap2GVM feature can write additional batch records
for each member of a class recipient. The RecipMap2GVM feature lets you write unique
recipient information to each batch record.

With this method, only a minimal amount of additional processing occurs in the form set
mapping. Yet, because a separate batch record is written for each member, the system
prints a separate copy of the document for each member and you can use the unique
information saved in each batch record to provide a unique banner page, such as a mailer,
for each member in the print output.

To use the RecipMap2GVM feature, follow these steps:

1 Add a section to your form set definition and assign this section the name of your
class recipient. Normally, you would also flag this section as bidden, since you would
not want it to display or print. This purpose of this section is to hold the unique
information for each member of the class recipient.

2 Define a trigger for the section that uses overflow to generate as many copies of the
section as there are members in the data. The idea is to trigger an instance of the
section for each member recipient. Be sure to also declare and create the appropriate
overflow variable in the AFGJOB.JDT file you will use during data mapping.

3 Create the section and add fields that map the data to be written to the batch record
for each member. Be sure to use the appropriate overflow variable for this section in
your rule mapping definitions. Also remember to assign the appropriate section level
rule to increment the overflow symbol after processing each section.

65

Chapter 2

Understanding the System

66

4 Set up your RecipMap2GVM INI control group and modify your
RCBDFDFL.DFD (Recipient Table DFD) file to include your unique data fields for
the recipient batch records. Specify the new section as the section required in the
RecipMap2GVM control group and set up each of the fields to map into your
RCBDFDFL.DFD file layout.

NOTE: See Writing Unique Data into Recipient Batch Records on page 58 for more
information on the RecipMap2GVM control group.

When you run the GenData program, your new section will trigger once for each member
recipient. During normal processing, the fields on each section will map (using overflow
variables) the unique data for each member. Because you have multiple copies of the
section triggered, the RecipMap2GVM feature creates a separate batch record for each
instance of the section. Therefore, you receive a separate record representing each
individual member of your class recipient.

When the GenPrint program runs, having a separate record for each class recipient in the
batch causes that transaction to print once for each member. And by using banner page
processing, you can take the unique information written into each batch record and map
that information to a mailer page, making the final output unique to each member of the
class.

RUNNING
DOCUMAKER
USING XML
JOB TICKETS

Running Documaker Using XML Job Tickets

You can run Documaker from another application using an XML job ticket. You receive
results in an XML job log file.

The layout of these files is the same as those used by IDS for running Documaker. See
Using IDS to Run Documaker on page 57 for more information.

The name of the job ticket is passed to the GenData program on the command line as
/Jjticket= parameter

The default name is JOBTICKET.XMI..

To set this up replace the StandardJobProc rule with the TicketJobProc rule. Keep in
mind you must run Documaker in single step mode, since only the GenData program is
executed. See Using Single-step Processing on page 45 for more information.

You can specify the name of the resulting job log file using this command line parameter:
/jlog=
The default is JOBLOG.XML.

67

Chapter 2

Understanding the System

HANDLING 2-UP

68

PRINTING

2-up printing with
single-page forms

Two-up printing lets you print two transactions on the same page of single- and multi-
page forms. 2-up printing is a two-step process which passes input through GenData
three (3) times, using a different JDT file each time.

This process is similar to the single-step process in that GenData performs the work, but
the three passes through GenData actually represent two steps of the multi-step process:
processing the transactions and printing the transactions.

For more information and to see example JDT files, see Single-step Processing Example
on page 55.

NOTE: 2-up printing is only available for AFP printers.

There are several scenarios in which 2-up printing applies:
e 2-up printing with single-page forms
* 2-up printing with multi-page forms

The following illustrations describe these scenarios.

This illustration shows how 2-up printing works when you use single-page forms, such as
some types of bills and statements.

Transaction 1 —/' Services rendered 100.00

Services rendered 100.0!
Setvices rendered ;
Services 100.00
crvices rendered 100.00
Transaction 3 “

_— v Setvices rendered 100.00

Services rendered
Services rendered

Services rendered 100.00
Setvices rendered 100.00
00 Services rendered 100.00

Setvices rendered 100.00
Setvices rendered 100.00

Transaction 2

Setvices rendered 100.00
Services rendered 100.00
Setvices rendered 100.00
Setvices rendered 100.00
Services rendered 100.00

Transaction 4
ervices rendered

Transaction 5
_—J Services rendered 100.00

Services rendered 100.0

Services rendered .00
Transaction 6 Seryi ered 100.00
Services rendered 100.00

Services tendered 100.00
Services tendered 100.00
Services rendered 100.00
Services tendered 100.00
Services rendered 100.00

Services rendered 100.00 Setvices rendered 100.00
Services rendered 100.00 Services rendered 100.00
Services rendered 100.00 Setvices rendered 100.00

Services rendered 100.00 Services rendered 100.00
Services rendered 100.00 Services rendered 100.00

In this scenario, the system merges the data for the first transaction onto the form and
then prints the form.

2-up printing with
multi-page forms

Batch file

Transaction 1}

page 1

Transaction 1}

page 2

Transaction 1
page3

Transaction 2
page 1

Transaction 2
page 2

Transaction 2
page 3

Transaction 3
page 1

Transaction 3
page 2

Services rendered 100.00
Services rendered
Services rendered
Services rendered
Services rendered” 100.00

Handling 2-up Printing

This illustration shows how 2-up printing works when you use multi-page forms.

Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

Setvices rendered 100.00
Services rendered 100.00

Sepfices rendered 1
ervices rendered
Services rendety
Setvices rendéred 100.00

page 2
4
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

page 3
ervices rendered

Setvices rendered
Services render
Services te 100.00
Setvice 100.00

page 3

Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

Services rendered 100.0
Services rendered .00
Services rend 100.00

Pl Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

Transaction 3
page3

Transaction 4
page 1

Transaction 4
page 2

Transaction 4
page 3

Changing the INI File

[T Services rendered 100.00

Setvices rendered 100.00

fidered 100.00 Services rendered 100.00
100.00 Services rendered 100.00
page 2 page 2

Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

Setvic efed 100.00

ervices rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

page 3

Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

You must make the following changes in your FSISYS.INT file.

necessary.

NOTE: Changes to the error and manual recipient batch control groups are not

You must include a Printer option in the recipient batch control groups for each print
file created. These printers must also be defined in the FSISYS.INI file.

The recipient batch groups must have a FinalPrinter option. This option specifies the
printer to use for the final, merged file. This printer must also be defined in the

FSISYS.INTI file.

69

Chapter 2

Understanding the System

Creating the TWOUP
control group

70

The recipient batch groups must have a PageRange option for page count batching.
You specify this option as shown below:

PageRange [min], [max]

If you do not specify win, the system uses zero (0). If you omit zax, the system uses
(unsigned)-1 (all bits on). The min and max values are inclusive.

You can also include in the recipient batch control groups a TwoUpStart option,
which can have any of these values (case is irrelevant):

L
Left
R
Right

This option specifies whether the merge process should associate the first Printer

option with the left or the right side of the page. The system only checks this option
when there are multiple Printer options present in the control group. If you omit this
option, the file specified in the first Printer option is used for the left side of the page.

Here is an example of a recipient batch control group:

< Batchl >

Printer = Printerl
Printer = Printer2
FinalPrinter = Printer3
PageRange = ,1
TwoUpStart = R

This splits single page transactions evenly between the files specified in the Printer] and
Printer2 control groups. The files specified in the Printerl and Printer2 control groups
will then be merged into the file specified in the Printer3 control group. The file specified
in the Printer] control group is used for the right page.

You must create the TwoUp control group. This control group must contain the
CounterTbl option, which specifies the file name for the table that contains recipient
batch page counts.

The TwoUp control group can optionally contain the CounterDFD option, which
specifies the name of a DFD file. See the Rules Reference for information about this
DFD.

The TwoUp control group can optionally contain the LMargin, LShift, and RShift
options. Records on the left page will be shifted to the right by LShift - LMargin, and
records on the right page will be shifted to the right by RShift - RMargin. Amounts are in
FAP units (2400 per inch). If you omit these options, the system uses these defaults:

600
1200
16800

LMargin
LShift
RShift

< TwoUp >
CounterTbl
CounterDFD
LMargin

data\counter. tbl
deflib\counter.dfd

300

Creating the
Added Fonts control
group

Handling 2-up Printing

LShift 600
RShift = 15000

The first two options define the location of the files shown above.

The LMargin=300 option sets the left margin to 1/4 inch. The LShift=600 option shifts
the left page 1/2 inch from the left edge of the paper (1/4 inch beyond the left margin).
The RShift=15000 option shifts the right page 6 1/2 inches the left edge of the paper (6
inches from the left margin).

You can optionally create the Added_Fonts control group. The options in this group
specify additional fonts to add to the AFP output file for text label records which may be
added during the merge process. Each option takes the form:

FontName =
Here is an example:

< Added_Fonts >
FontName = XOFATINO
FontName = XOFAUNNS
This tells the system to include the fonts XOFATINO and XOFAUNNS in the final output
file, regardless of whether they are present in the input files.

Changing the Recipient Batch DFD File

The recipient batch DFD file (RCBDFDFL.DAT) must have the following fields with the
given types. You can modify the field lengths—just make sure you set the
EXT_LENGTH option large enough to represent all of the pages in a multi-mail
transaction set. Also make sure you set the INT_LENGTH option larger by one than the
EXT_LENGTH option.

Note that the field name is case sensitive. Also, for each of these fields, be sure to add a
FIELDNAME-= line to the <FIELDS> line in the DFD file.

< FIELD:CurPage >

INT_Type = CHAR_ARRAY
INT_Length = 5
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length = 4
Key =N
Required =N
< FIELD:TotPage >
INT_Type = CHAR_ARRAY
INT_Length = 5
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length = 4
Key =N
Required =N
< FIELD:AccumPage >
INT_Type = LONG
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length = 10
Key =N
Required =N

71

Chapter 2

Understanding the System

AddLine

AddTextLabel

ForceNolmages

GetRCBRec

InitMerge

InitPageBatchedJob

72

RULES USED FOR 2-UP PRINTING

The following descriptions will help familiarize you with the rules that are required to
perform the 2-up printing process. All of the rules listed in the topic, Rules Used in Single-
step Processing on page 52 are requited for 2-up printing, plus these additional rules:

NOTE: You can find more information in the Rules Reference.

Use this form set level (level 2) rule to add a line record, such as for OMR marks, to the
AFP record list built by the Merge AFP rule.

Use this form set level (level 2) rule to add a text label record to the AFP record list built
by the Merge AFP rule.

Use this section (image) level rule (level 3) to return the msgNO_MORE_IMAGES
message. This prevents errors if you have no section level rules.

Use this form set (level 2) level rule to set the current recipient batch file. This rule
initializes the current recipient batch file, if necessary.

This rule also sets the first printer for current batch to be the current printer and retrieves
the next record from the current recipient batch file.

Use this job level (level 1) rule to create a list of printers, batches, and buffers for the
comment (RCB) records. This rule also creates a list to hold AFP records and AFP fonts.
After the system finishes running the rule, it deletes everything the rule created.

NOTE: The recipient batch files are not used at this stage. The batch list must be created
beforehand so the system will know which print files belong together. The
skipping batch message is an artifact of the batch file loading process.

Use this job level (level 1) rule to open NA and POL files. This rule installs the section
level callback function for inserting recipient batch records into the AFP print stream as
AFP comment records.

When finished, this rule restores the original callback function and closes the NA and
POL files.

MergeAFP

ParseComment
Example

PrintData

ProcessRecord

Handling 2-up Printing

Use this form set level (level 2) rule to initialize input files. This rule populates the AFP
record list, retrieves comment (RCB) records, and terminates the input files.

This rule also initializes output files, and writes out the AFP record list, adding end page
and end document records as necessary. The rule then terminates these output files.

Use this form set level (level 2) rule to parse comment records into the GVM variable.

Use this form set (level 2) rule to print the form set. This rule is used for handling 2-up
printing on AFP and compatible printers.

NOTE: The section handler installed by the InitPageBatchedJob rule is called during the
printing stage. If you want to make any modifications to the recipient batch
record, you must do so before this point.

Use this form set (level 2) rule to switch between print files as necessary when printing 2-
up forms on an AFP printer. This rule updates the page count for current print file and
loads and merges the form set.

73

Chapter 2

Understanding the System

Placing the 2-up Rules in the JDT File

When you use the rules listed at the beginning of this topic to handle 2-up printing, you
must place them in the correct places and order in the AFGJOB.JDT file. Use the
following table as a guide to where to place these rules. You can insert other rules before,
between, or after the 2-up rules—just keep the 2-up rules in the order indicated below
with respect to one another.

Stage 1

Job level Insert the PageBatchStage1lnitTerm rule after the
RULStandardJobProc and Joblnit1 rules

Form set List the form set level rules in this order:
level WriteOutput
CreateRecordList
BatchByPageCount
PaginateAndPropogate

Place these rules after the RULStandard TransactionProc rule and make
sure any rule which changes page count appears before these rules.

Stage 2
Job level Include these rules in this order:
InitPrint
InitPageBatched]ob
SetErrHdr
Do not include the RULStandardJobProc ot JoblInit] rules in this stage.
Form set Include these rules in this order:
level GetRCBRec
ProcessRecord
PrintData
Do not include the RULStandardTransactionProc rule in this stage.
Section There are no regulations on the order in which you can place rules in
(image) this stage. Remember, however, that if there are no section level rules,
level you must include the ForceNolmages rule to avoid errors.
Stage 3

Job level Place the InitMerge rule anywhere after the RULStandardJobProc rule.

Form set Make sure the Merge AFP rule is the first rule called. Place rules which
level add records or determine whether a page pair should be printed after
the MergeAFP rule.

Section There are no stipulations on the order in which you must place rules in
level this stage. Remember, however, that if thete are no section level rules,
you must include the ForceNolmages rule to avoid errors.

74

2-UP PROCESSING

Handling 2-up Printing

EXAMPLE

As stated eatlier, 2-up printing is a two-step process which calls GenData three times with
different JDT files. These file excerpts show how to set up your batch and INI files:

2upbycnt.bat

2upstep1.ini

2upstep2.ini

2upstep3.ini

You can set up this batch file as follows:

@Echo Off

SetLocal

Echo Y|Del Data*.* >NUL

GenDaW32.Exe -INI=2upstepl.ini

If Not ErrorLevel 5 GoTo SteplNoError
Echo "2Up Printing Failed in Step 1."
GoTo Exit

:SteplNoError

GenDaW32.Exe -INI=2upstep2.ini

If Not ErrorLevel 5 GoTo Step2NoError
Echo "2Up Printing Failed in Step 2."
GoTo Exit

:Step2NoError

GenDaW32.Exe -INI=2upstep3.ini

If Not ErrorLevel 5 GoTo Step3NoError
Echo "2Up Printing Failed in Step 3."

:Step3NoError

EndLocal

(Exit

You can set up this INI file as follows:

< Data >

AfgJobFile = .\Def\AfgJobl.jdt
< Environment >

FSISYSINI = .\fsisys.ini

You can set up this INI file as follows:

< Data >

AfgJobFile = .\Def\AfgJob2.jdt
< Environment >

FSISYSINI = .\fsisys.ini

You can set up this INI file as follows:

< Data >

AfgJobFile = .\Def\AfgJob3.jdt
< Environment >

FSISYSINI = .\fsisys.ini

Chapter 2

Understanding the System

RUNNING THE GENDATA PROGRAM

The following pages provide illustrations and an example files for each time the GenData
program is run.

Step 1 - Using the

AFGJOB1.JDT file - -
=]

AGE JOBET jat

Eis
+¢—‘

|

Gerlllp

.

GerAn

W (
»(

The first execution of GenData uses the AFGJOB1.JDT file with the base and form set
rules shown in this example to create output files shown in the illustration.

<Base Rules>

;RULStandardJobProc;1;;

;SetErrHdr;1;***: BillPrint Data Generation (Base);
;SetErrHdr;1; ***:;

;SetErrHdr;1;***: Transaction: ** * ACCOUNTNUM* * * ;
;SetErrHdr;1; ***: Company Name: ***Company* **;
;SetErrHdr;1;***: Line of Business: ***[OB***;
;SetErrHdr;1;***: Run Date: ***RunDate***;

;SetErrHAr; 1 ***i-—mmm oo
;JobInitl;;;

;CreateGlbVar;1; TXTLst, PVOID;

;jCreateGlbVar;1;TblLstH, PVOID;

;InitOvFlw;1; ;

; SetOvF1lwSym; 1; SUBGROUPOVF, SUBGROUP, 5;

;BuildMasterFormList; ;4;

; PageBatchStagelInitTerm; ; ;

;InitSetrecipCache;; ;

<Base Form Set Rules>
;NoGenTrnTransactionProc; ;;

76

;ResetOvFlw;2; ;

;BuildFormList; ;;
;LoadRcpTbl; ; ;

;RunSetRcpTbl; ; ;
;WriteNaFile;;;
;WriteRCBWithPageCount; ; ;

;ProcessQueue; ; PostPaginationQueue;

;WriteOutput; ;;

Handling 2-up Printing

;CreateRecordList; ;

;BatchByPageCount; ;
;PaginateAndPropogate; ; ;

<Base Image Rules>
;StandardImageProc;3;Always the 1lst image level rule;

<Base Field Rules>
;StandardFieldProc;4;Always the 1lst field level rule;

Step 2 - Using the
AFGJOB2.JDT file

AGFJOELMT

B

Manual
EBakh

NAFILE

(W

vy

GenData ke diale
#2 PrinFready de s

Log
Flle
Emor
Flle

The second execution of GenData uses the AFGJOB2.JDT file. This JDT file uses the
base and form set rules shown in this example to process the intermediate print files.

<Base Rules>

;InitPrint;;;

; InitPageBatchedJob; ; ;

;SetErrHAr; 1 ; ** % {m e e e e e e e
;SetErrHdr;1;***: BillPrint Data Generation (Base) ;
;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: SubCompany:***SubCompany***;

;SetErrHdr;1;
;SetErrHdr;1;

* kK .

Account #: ***AC-KY-BA***;

77

Chapter 2

Understanding the System

<Base Form Set Rules>

;GetRCBRec; ; ;

;ProcessRecord; ; ;

;PrintData; ; ;

<Base Image Rules>

;ForceNoImages;; ;

Step 3 - Using the
AFGJOB3.JDT file

s

u RCEDFDFL

AGFJOEIHt

Intemed e
PIIVEE Aty M3

vy

Frivteady ks

GenData

#3

The third execution of GenData uses the AFGJOB3.JDT file. This JDT file uses base and
form set rules shown in this example to merge data intermediate print-ready files into a
print-ready file for an AFP printer.

<Base Rules>

;RULStandardJobProc; ; ;

;SetErrHdr;1;

;SetErrHdr; 1; ***:
;SetErrHdr; 1; ***:
;SetErrHdr;1;***:

;SetErrHdr;1;
;InitMerge; ; ;

Kk Kk .

BillPrint Data Generation (Base);

Company Name: ***Company***;
SubCompany : ***SubCompany* * * ;
Account #: ***AC-KY-BA***;

<Base Form Set Rules>

;MergeAFP; ;;

<Base Image Rules>

;ForceNoImages;; ;

78

SPLITTING
RECIPIENT
BATCH PRINT
STREAMS

Splitting batches by
sheet count

Splitting Recipient Batch Print Streams

The GenPrint program and the PrintFormset rule (when running in single-step mode) are
designed to produce one print stream output file for each recipient batch. This print
stream output file includes all of the transactions in the recipient batch.

Sometimes, however, you may want to split the print stream output into multiple print
stream output files. For instance, you can use this feature to split your batches into files
that reflect the amount of paper you can load into your printer at one time.

You can use DAL scripts to set up criteria for splitting the output file to reflect almost any
scenario. For example, it can be based on a certain number of transactions, a maximum
number of sheets of paper, or on changes in variables in the recipient batch.

NOTE: Some types of print streams require one file per transaction, such as RTF, PDF,
and HTML. The typical way of handling this is via the multi-file print callback
method, but this feature provides an alternate method which gives you greater
control over the naming of the output file.

To do this you use the PrintFormset rule and these DAL functions:
¢ DeviceName

* SetDeviceName

* BreakBatch

* UniqueString

This rule and these DAL functions let you:

* Split recipient batches into multiple print stream files

* Assign names to those print stream files

For example, here are some things you can do:

You can use these functions to split a batch based on the sheet count during the GenPrint
process. Once a batch reaches a certain number of sheets, you can tell the system to:

* TFinish processing the current transaction

* End the current print file. (If you are using a post-transaction or post batch banner
page, it will print before the file is closed.)

* Repeat this process when the next print file reaches the specified number of sheets

You can use virtually any logic to decide when to break the batch. For instance, to break
based on sheet count, use the TotalSheets function to get the number of sheets to
maintain a counter across the transactions.

NOTE: Be sure to reset the sheet count variable in the pre-batch banner DAL script.

79

Chapter 2

Understanding the System

Here is an example of DAL script logic that might appear in a post-transaction banner
DAL script:

IF

END

TotalSheets () > 16000

#COUNTER += 1

CurFile = DeviceName ()

Drive = FileDrive (CurFile)

Path = FilePath(CurFile)

Ext = FileExt (CurFile)

RecipBatch = RecipBatch/()

NewFile = FullFileName (Drive, Path,RecipBatch & #COUNTER, Ext)
SetDeviceName (NewFile)

BreakBatch()

NOTE:

See Using DAL to Manipulate File Names on page 82 for information on using
DAL functions to manipulate file names.

Creating PDF output You can
transacti

also modify the above script to unconditionally break the batch after each
on. Assuming you used the SetDeviceName function to assign a proper file

name, each recipient printed would receive a separate output file.

This is particularly useful for output types such as PDF, which require a separate file for

each transaction.

NOTE:

You can also use the multi-file print callback method in GenPrint to get separate
files. Similarly, the single-step processing mode currently uses this INI option:

< PrintFormset >
MultiFilePrint = Yes

to tell the system to generate separate files for each transaction. Single-step mode
automatically generates a unique file name and offers no way to override that
name. By using the BreakBatch and SetDeviceName functions, however, you can
control the names assigned to the files in single-step mode. To emulate the action
of the current code, use the UniqueString function.

DAL functions Here is a summary of the DAL functions you would use. Keep in mind...

* These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

* These print drivers are not supported: EPT, MDR, and GDIL

* All platforms are supported, but note that while UniqueString is supported on z/OS,
z/OS does not supportt long file names.

* Bot

80

h multi-step and single-step processing are supported.

Syntax

Syntax

Syntax

Splitting Recipient Batch Print Streams

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in the Rules Processor or Entty,
the BreakBatch and SetDeviceName functions are not applicable in Entry since
it does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and the Rules Processor.

DeviceName
Use this function to return the current output device file name, such as the name of the

current print stream output file.

DeviceNamne ()

SetDeviceName

Use this procedure to set a new output device file name which will be used the next time
the output device is opened, assuming nothing overrides the name prior to that.

SetDeviceName (Device)

BreakBatch

Use this procedure to tell the Rules Processor to break the output print stream file for the
current recipient batch after processing the current recipient, including post transaction
banner processing.

BreakBatch ()

The procedure is typically called in the transaction banner DAL script. You must use the
SetDeviceName function to specify a new device name. Otherwise, the new file has the
same name as the old file and overwrites its contents.

After the GenPrint program finishes processing the current transaction, it closes the
current output device file. This includes executing any post-batch banner processes. It
then continues processing the recipient batch.

If you have assigned a new output device file name using the SetDeviceName function,
the system will create and start writing to a new print stream file with that name. The best
place to call the BreakBatch function is in the post-transaction banner DAL script.

81

Chapter 2
Understanding the System

UniqueString

Use this function to return a 45-character globally unique string.

Syntax UniqueString ()
Here is an example:

DataPath = GetINIString(, "Data", "DataPath")

Drive = FileDrive (DataPath)

Path = FilePath (DataPath)

UniqueID = UniqueString/()

Outputname = FullFileName (Drive, Path,UniquelID,".PDF")
SetDeviceName (Outputname)

UsING DAL 10 MANIPULATE FILE NAMES

Since you can use DAL functions to read tables and to set device names for output print
stream files, this feature further extends DAL functionality by letting you manipulate file
names.

For instance, you can get the components of a file name (drive, path, name, and
extension) and combine those into a full file name. For example, for computers running
Windows file names look like this:

d: \mypath\ myfile .ext

Drive / / \ s Extension

Path Name

For computers running z/OS, file names look like this:

DD:DEFLIB(member)

Drive/ / \ X Extension

Path Name

In this z/ OS example, the drive and extension are omitted, because they ate not applicable
on z/OS and the patrentheses enclosing member ate patt of the path.

To do this you use these DAL functions:

¢ FileDrive

e TFilePath
¢ FileName
e TFileExt

¢ FullFileName

All platforms are supported and both the Rules Processor and the Entry system are
supported.

82

Syntax

Syntax

Syntax

Splitting Recipient Batch Print Streams

Each platform will use platform specific logic to extract or assemble the components. For
example, UNIX uses forward slashes and z/OS uses DD names ot partitioned dataset
names for the path and member names for name.

Here are descriptions of these functions:

FileDrive

Use this function to get the drive component of a file name.

FileDrive (“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the drive component of that file name.

Here is an example:
MYDRIVE = FileDrive("d:\mypath\myfile.ext")

In this example, MYDRIVE would contain:
{%' 2

FilePath

Use this function to get the path component of a file name.

FilePath(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the path component of that file name.

Here is an example:
MYPATH = FilePath("d:\mypath\myfile.ext")

In this example, MYPATH would contain:

Nomypath\”

FileName

Use this function to get the name component of a file name.

FileName (“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the name component of that file name.

Here is an example:
MYNAME = FileName ("d:\mypath\myfile.ext")

In this example, MYNAME would contain:

r(}ﬂjﬁle»

83

Chapter 2

Understanding the System

FileExt

Use this function to get the extension component of a file name.

Syntax FileExt (“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the extension component of that file name.

Here is an example:
MYEXT = FileExt ("d:\mypath\myfile.ext")

In this example MYEXT would contain:

“ext

”

FullFileName

Use this function to make the full file name.

Syntax FullFileName (“Drive”, "Path”, "Name” , "Ext”)

This function accepts a string containing the drive, path, name, and extension
components of a fully qualified file name, assembles them, and returns a string that
contains the full file name.

Here is an example:
MYFILENAME = FullFileName ("d:", "\mypath\", "myfile", ".ext")

In this example, MYFILENAME would contain:

“A\mypath\myfile.ext”

NOTE: If, in this example, \mypath had no trailing slash, the FullFileName function
would have added it for you.

Here is a z/OS example:
FullFileName (, "DD:DEFLIB() ", "MEMBER")

In this example, the result would be:

DD:DEFLIB(MEMBER)

84

ASSIGNING
PRINTER TYPES
PER LOGICAL
BATCH PRINTER

Assigning Printer Types Per Logical Batch Printer

Recipient batches often need to be sent to different types of printers. For example, you
could have a situation where you want to generate PDF files with one batch, email another
batch, and send the rest of the batches to a Metacode printer.

In addition, logical printers may also need different callback functions. For example, one
batch might print Metacode and need OMR marks created in a callback function while
another batch may need to be split by transaction using the MultiFilePrint callback
function.

NOTE: Before version 11.1, the print system only supported one type of printer and only
one type of callback per run. You made this assignment using the PrtType option
in the Printer control group.

You can optionally define for each logical printer a printer type and a callback function.
For instance, now the PrtType option in the Printer control group defines the default type
of printer while the CallbackFunc option defines the default callback function you want
to use.

Here is an example:

< Printer >
PrtType = XER ; Default
< Printers >
Printer = Printerl
Printer = Printer2
< Insured >

Printer = Printerl
< Agent >
Printer = Printer2

< Printerl >

Port = Outputl.XER

< Printer2 >
Port = Output2.PDF
CallbackFunc = RULMultiFilePrint
PrtType = PDF

When you define a callback function, such as shown below, you are defining the default
callback function for a// defined logical printers:

< Print >
CallbackFunc = Mycallback

If, however, you do not want a specific logical printer to have a callback function, you can
disable the callback for that logical printer by leaving blank the CallbackFunc option for
that logical printer, as shown here:

< MyPrinter >
CallbackFunc =

To disable the default callback, define an empty callback name. Otherwise, the system
uses the default callback function.

85

Chapter 2

Understanding the System

86

You can also set these INI options using Documaker Studio’s Manage, System, Settings

option. Here is an example:

i amergen (DEV - Development) - Documaker Studio - Settings

I=¥] INI Configuration Settings =~
a Database Handlers
@ Libraries
@ Library Tiers
&4 Print Batches & Printers
#* Resource Path Setup
= Options by topic
Archive
Arcsplit
Common
Database
Development Toaols
Entry
Import and Export
Libraries
Library Tiers
Print
Resource Path Setup
Rules Processing
WiIP
Uncategorized —
= Options by group
15¥] studio Settings

AFP Printar NI Options 4
= Common to all Batch P
BatchingByRecip

DefaultFields

ERROR

ANUAL

Print

PRINT_BATCHES

Frinter

Printerinfo

Runhode
Comman to all GUI Prir
Comman to all Printer
EPT Printer INI Options
GOI Printer IMI Options
GenPrint printer aption
GUI Print Options
HTIL Printar INI Optio
MDR. Printer INI Option
IMetacade Printer INI C
PCL Printer INI Cptione
PDF Printer INI Options
Printing to RTF

L2 I 3 2 3 = 3 S B €3]

#

Lacal | Shared |

Printer

X

™ Printer
BatchBannerBeginForm
BatchBannerBeginScript
BatchBannerEndFarm
BatchBannerEndScript
EnableBatchBanner
EnahleTransBanner
GenerateFileMamsa
PageMumberFormat
Fort

9| PriType
RecipientPrintOrder
RightJustifyPageMumber
SuppressDialog
TransBannerBeginForm
TransBannerBeginScript
TransBannerEndForm

*ER

= Configuration Options
= Wiorkspace Information
= Cornrmon / Docurnent \iew ﬂ

=]

PST Printer INI Optians
PHL Prirter INI Options » |

TransBannerEndScript

23]

o]

Cancel Help

RS

Keep in mind this applies to...

* A batch of transactions. Each transaction within that batch will print to a single type
of printer.

* Both single- and multi-step processing of transaction batches.

Single-step processing has limitations as compared to multi-step processing and this
feature does not remove those limitations. Single-step processing optimizes the
processing of transactions that do not require recipient batching. Single-step processing
is, therefore, intended for use with a single input batch of transactions for a single
recipient or a single transaction with one or more recipients, such as in real-time
processing.

While you can specify multiple printers and associate a different printer per recipient
batch, single-step processing can still only process a single recipient batch at a time.
Therefore, it is not possible to do the same type of multi-batch processing in single-step
as is done in multi-step processing. A given set of transactions can specify a single
recipient and you can map that recipient to a different type of printer.

Real-time transaction processing of single transactions may also benefit from this by using
the multi-file callback method to split output files, along with necessary logic to create
unique file names for each output file. When used in this manner, single-step processing
of a single, real-time transaction can call a different driver for each recipient in the
transaction.

CONTROLLING
WIP FIELD
ASSIGNMENTS

Controlling WIP Field Assignments

You can use options in the Trigger2WIP control group to set almost all of the WIP record
fields for each transaction.

NOTE: Do not try to set the ModifyTime, InUse, or the FormSetID fields of the WIP
record. The ModifyTime field is assigned by the system when a WIP record is
added or updated. If you need to save a date and time for the transaction, store
that information in the CreateTime field, using the hextime X format for the
destination as shown in one of the examples.

The InUse field is used internally to prevent multiple people from editing the
same transaction. Let the system manage this column.

The FormSetID is assigned by the system when a new WIP transaction is created.
Let the system handle this.

The Trigger2WIP control group defines which recipient batch (RCB) transaction fields
from the manual batch (those kicked to WIP) are mapped to the corresponding WIP
transaction record fields.

The options under the Trigger2WIP control group define the mappings as shown here:

The contents of ...is copied into

this field... ~ ~—— |- 99Sr2WIF > . «— this field
RCBField 1 = WIPField 1

RCBField 2 = WIPField 2

RCBField represents one of the fields defined by the batch transaction record definition
(RCBDFDFL.DFD). WIPField represents a field defined in the WIP database.

NOTE: There may be an external WIP.DFD file that identifies the fields in a WIP record.
An external DFD file is not required if you are using the default WIP database
layout.

Note, although the normal mapping technique is to name a RCB field on the left side, the
left side can name any defined GVM (global variable member). Typically, the only GVMs
that exist during GenWIP processing are those defined in the RCB DFD file, but custom
applications or single-step WIP systems may have additional GVMs.

The changes in this release support this INI definition and also let you convert data or
define a constant value you want to map to a WIP field. For a data conversion, define your
INI options as shown here:

< Trigger2WIP >
RCBField = WIPField; input format ; output format;

The conversion information must appear on the right side of the INI option, after the
WIPField name definition. Separate it from the named variable with a semicolon. Here is
an example:

RunDate = CREATETIME;DD4;X

87

Chapter 2

Understanding the System

88

The first semicolon denotes the input format of the data. The second separates the desired
output format. In this example, the input format of DD4 means the source data is a date
field in the format D4, which is YYYYMMDD.

The output format X indicates you want to convert the date value to the internal
HEXTIME format used in the WIP CreateTime field.

NOTE: For more information selecting from the pre-defined date formats or defining
your own, see the Rules Reference.

Although conversions are often used to change date formats, you can also use them to do
additional formatting. The system supports a simple C style sprintf (%s) and constant text
formatting, like %s, %10.10s, %-38.38s, and so on. The system does not support any of
the other C style formats flags that assume non-text data or asterisk (variable width)
designations.

Here is an example:
EFFVALUE = APPData; ; ($s%%)

Suppose in this example, that EFFVALUE contains the text 70, the resulting value
mapped into the APPData field will read (70%).

NOTE: You must use two percent signs (%Y%) to represent a single percent sign in the
output. The system only supports a string %s type format. It does not support
numeric data formats of any type.

Normally, the left side of the INI option names a field from the RCB file definition. You
can also enter NULL as a keyword to mean there is no corresponding RCB data field to
associate with the WIP field. This lets you assign the constant data to the WIP field, as
shown here:

NULL = DESC; ;ABC123 HERE WE GO

This example shows how to assign the constant text ABC723 HERE WE GO into the
DESC field of the WIP record. NULL indicates there is no source variable to associate
with this destination field.

You can also use INI built-in functions to provide a constant value to map to the field.
For example:

NULL = CURRUSER; ;~GETENV USERNAME

INT built-in functions are preceded with a tilde (~). This example executes the GETENV
built-in INT function, which gets the environment variable USERNAME. If you assume
the variable contained the text TOM, the WIP variable CURRUSER would be assigned
TOM after execution of the built-in function.

These options show the defaults used if the Trigger2WIP control group does not override
the variables:

< AFG2WIP >
StatusCode = WIP
RecordType NEW
UserID = DOCUCORP

Controlling WIP Field Assignments

The StatusCode option defines which INI option in the Status_CD control group to use
as the default WIP StatusCD field. Suppose you have the following Status_CD control
group defined.

< Status_CD

WIP =W
Assign =A
Quote =Q
BatchPrint =W
Archive =AR
Printed =P

This means a I would be assigned to the WIP StatusCD field (usually meaning a normal
WIP transaction).

The RecordType option defines which INI option to locate in the Record_Type control
group as the default setting for WIP RecType. Suppose you have these options defined:

< Record_Type >
New =00
Assign =01
Partial =02

New is the normal default for the AFG2WIP control group and would therefore map 00
into the WIP RecType field.

The UserID option defines which user should be assigned the WIP transactions in the
CURRUSER field. Unless this option is changed or the CURRUSER field assigned from
the Trigger2WIP control group, the system defaults this value to DOCUCORP.
DOCUCORRP is one of the default users created in a default user database.

You would normally want to add an option to the AFG2WIP control group to name a
valid user in your company, otherwise, users will have to log in as DOCUCORP and
reassign the WIP to valid users later.

89

Chapter 2

Understanding the System

GENERATING
EMAIL
NOTIFICATIONS
FROM GENWIP

90

You can enable the GenWIP program to send email. The GenWIP program will generate
an email message by processing a message body template against variable data in the
manual batch. It then sends the message when the document is added to WIP.

NOTE: See also Emailing a Print File on page 307.

Email-specific data can be in the recipient batch read by the GenWIP program or in the
INTI file. The system checks the recipient batch first. If the field is not present or blank,
the system then checks the INI option.

Below is a list of the fields the GenWIP program looks at to get email information. If you
want to include other fields, you can use the INI built-in function to accomplish this.

Email is enabled in the GenWIP program when there is both a send-to email address and
a subject or message body. The message body is expected to be in a separate file. Email
attachment files are also supported and are processed as template files the same as the
message body. You use these INI options to enable email processing:

< GenWIPEmail >
EnableEmailNotification=
MailMessageBody =
MailID =
MailSubject =
MailAttachment =

Option Description

EnableEmailNotification Enter Yes.
MailMessageBody Enter the path and file name for the email template.

MaillD The email address to send. This is optional if the MAILID is
omitted, you can send using this address.

MailSubject If the MAILSUBJECT is missing or blank, the system will use the
text you enter here as the Subject.

MailAttachment The name of the file to attach.

These field names to go into the RCBDFDFILE:

FIELDNAME = MAILID

FIELDNAME = MAILATTACHMENT_IN
FIELDNAME = MAILATTACHMENT_OUT
FIELDNAME = MAILSUBJECT
FIELDNAME = MAILIDFROMADDRESS
FIELDNAME = MAILMESSAGEBODY

Group: < FIELD:MAILID >entries:

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 51

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 50

KEY = N

Generating Email Notifications from GenWIP

REQUIRED = Y

Group: < FIELD:MAILATTACHMENT_IN >entries:

INT_
INT_.
EXT_
EXT_

KEY

TYPE = CHAR_ARRAY

LENGTH = 129

TYPE = CHAR_ARRAY_NO_NULL_TERM
LENGTH = 128

=N

REQUIRED = Y

Group: < FIELD:MAILATTACHMENT_OUT >entries:

INT_
INT_.
EXT_'
EXT_.

KEY

TYPE = CHAR_ARRAY

LENGTH = 129

TYPE = CHAR_ARRAY_NO_NULL_TERM
LENGTH = 128

=N

REQUIRED = Y

Group: < FIELD:MAILMESSAGEBODY > entries:

INT_
INT_.
EXT_'
EXT_.

KEY

TYPE = CHAR_ARRAY

LENGTH = 129

TYPE = CHAR_ARRAY_NO_NULL_TERM
LENGTH = 128

=N

REQUIRED = Y

Group: < FIELD:MAILSUBJECT > entries:

INT_TYPE = CHAR_ARRAY
INT_LENGTH = 129
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 128
KEY = N
REQUIRED = Yes
Errors Here are the error messages that can appear:
Error Description
11226 Error in GENCreateEmail(): Unable to get <&Name&> does it exist in rcb dfd
file?\n
11227 Error in GENCreateEmail(): Unable to process template check file
<&filename&> for valid markup syntax\n
11228 Etror in GENCteateEmail(): Unable to open file <&Name&>\n
11229 Error in GENCreateEmail(): Unable to QueryAPI <&apiname&> check for
valid path to DLL <&dllname&>\n
11230 Etror in GENCteateEmail(): Unable to Logon to email server\n

91

Chapter 2

Understanding the System

92

Error

11231

11232

11233

Description

Error in GENCreateEmail(): Unable to set <&data&> check INI file for valid
<&inigroup&> <&inioption&>\n

Error in GENCreateEmail(): Unable to get <&data&> check INI file for
<&inigroup&> <&inioption&>\n

Error in GENCreateEmail(): failed to send e-mail <&userid&>
<&emailaddress&>\n

USING MULTI-
MAIL
PROCESSING

Using Multi-mail Processing

Multi-mail processing groups the transactions with the same multi-mail code into selected
print batches based on the number of pages defined in the PageRange INI option. Multi-
mail can only be handled as a 2-up process. In the INI example below, all transactions
with the same multi mail will be stored in a batch category:

batchl-less than five pages

batch2-five to nine pages
batch3-10 or more pages

The MM_FIELD option in the TRN_Field control group identifies position, length, type
of data and where the multi-mail code is located in the transaction record.

NOTE: The parameter has been named MM_FIELD in the above explanation, however

it can be given any name.

The BatchByPageCount rule in the AFGJOB.JDT file identifies the name in the
TRN_Field control group, as shown here:

BatchByPageCount; ; MMFIELD=MM_FIELD;

Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files

You must make the following changes to the RCPDFDFL.DAT and TRNDFDFL.DAT
files for multi-mail processing:

< Fields >

FIELD:MMField

< FIELD:MMFIeld >

INT_Type = CHAR_ARRAY
INT_ Length =7

EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length =6

Key =N

Required =N

93

Chapter 2

Understanding the System

Setting Up the FSISYS.INI File for Multi-mail Processing

Here is an example of how the relevant control groups and options in your FSISYS.INI
file should look:

< Print_Batches >

P_Batchl = .\data\Batchl
P_Batch2 = .\data\Batch2
P_Batch3 = .\data\Batch3
Error = .\data\Error
Manual = .\data\Manual
< P_Batchl >
Printer = Batchl_PTR_1
Printer = Batchl_PTR_2
FinalPrinter = Batchl_PTR_F
PageRange = ,4 (controls which batch is used)
TwoUpStart =L
< P_Batch2 >
Printer = Batch2_PTR_1
Printer = Batch2_PTR_2
FinalPrinter = Batch2_PTR_F
PageRange =5,9 (controls which batch is used)
TwoUpStart =L
< P_Batch3 >
Printer = Batch3_PTR_1
Printer = Batch3_PTR_2
FinalPrinter = Batch3_PTR_F
PageRange = 10,99 (controls which batch is used)
TwoUpStart =L

< TRN_FIELDS >
MM_Field = 326,6,N (defines where the multi-mail code
is found in each transaction)

The order of the page output on the final print file will produce 2-up printing depending
on how many intermediate printer files are specified. The output will look as follows:

< P_Batch2 >

Printer = Batch2_PTR_1 intermediate printer file
Printer = Batch2_PTR_2 intermediate printer file
FinalPrinter = Batch2_PTR_F intermediate printer file
PageRange =5,9

TwoUpStart =L

transaction #1 mmcode 111 page ltransaction mmcode 555 page

transaction #1 mmcode 111 page 2transaction mmcode 555 page
mmcode 555 page
mmcode 555 page

mmcode 555 page

transaction #1 mmcode 111 page ntransaction
transaction #2 mmcode 126 page ltransaction
transaction #2 mmcode 126 page 2transaction
transaction #2 mmcode 126 page ntransaction mmcode 555 page
transaction #3 mmcode 222 page ltransaction mmcode 865 page

transaction #3 mmcode 222 page ltransaction mmcode 865 page

X X X B B B B BB
5 N R B 0 W R

transaction #3 mmcode 222 page ntransaction mmcode 865 page

94

Using Multi-mail Processing

If you define only one printer and a final printer for a batch, the 2-up printing would look

as follows:

< P_Batch2 >
Printer

FinalPrinter

PageRange
TwoUpStart

transaction
transaction
transaction
transaction
transaction
transaction
transaction

transaction

#1
#1
#1
#2
#2
#3
#3
#4

mmcode
mmcode
mmcode
mmcode
mmcode
mmcode
mmcode

mmcode

111
111
111
555
555
126
126
222

Batch2_PTR_1
Batch2_PTR_F

5,9
L

page
page
page
page
page
bage
bage
page

ltransaction
3transaction
ntransaction
2transaction
4transaction
ltransaction
2transaction

ltransaction

H FH H I H H I H

B Ww W N NN R

mmcode
mmcode
mmcode
mmcode
mmcode
mmcode
mmcode

mmcode

111
111
555
555
555
126
126
222

page
page
page
page
page
page
page
page

N B NMNB WERE N

95

Chapter 2

Understanding the System

96

ADDING AND
REMOVING
PAGES

Adding pages

Removing pages

Adding pages

You can add and remove blank pages or a FAP file to a form set. Typically, you would
add these pages so each printed page has a front and back.

This lets you change a simplex or mixed plex form set into a fully duplexed form set. For
instance, you can use this feature to create PDF files for mixed plex form sets that print
in a similar fashion to printers that support mixed plex.

You can access this functionality several ways:
* Using custom code
* Using DAL scripts

* Using Docupresentment rules (version 1.6 and higher)

NOTE: Typically, you use this feature to add blank pages just before the print step. These
additional pages are not actually part of the saved document.

If, however, if you added the blank pages before the batch steps that save
document information to the NA/POL files, the blank pages would become a
permanent part of the document layout.

UsING CusToM CODE

Use this API to call custom code to add blank pages:

DWORD _VMMAPI FAPAddBlankPages (
VMMHANDLE objectH, /* form set or form handle */
char FAR * sectionname) /* if NULL, "Blank Page" */

If the section name is NULL, a blank page is created when a dummy page is needed. If
the section name is not NULL, the section name is loaded when a dummy page is needed.
Omit the path and file extension when you enter sectionnane.

Use this API to call custom code to remove blank pages:

DWORD _VMMAPI FAPDelBlankPages (VMMHANDLE objectH)
/* formset or form handle */

UsING DAL ScCRIPTS

Use this DAL function to add blank pages:
AddBlankPages ()

or
AddBlankPages ('FAPFile')

For example, you can use this function with the banner processing feature. First, specify
a DAL script that runs at the start of each transaction. The DAL script calls the
AddBlankPages function. This tells the system to convert each transaction to a fully
duplexed form set with blank pages added as needed.

Here is an example of the INI settings you would need:

Removing pages

< Printer >
EnableTransBanner
TransBannerBeginScript
< DALLibraries >
Lib

True
PreBatch

BANNER

Here is an example of the BANNER.DAL script:

BeginSub PreBatch
AddBlankPages ()
EndSub

Use this DAL function to remove a page from a form set:

DelBlankPages ()

Adding and Removing Pages

For example, you can use this function with the banner processing feature. First, specify
a DAL script that runs at the start of each transaction. The DAL script calls the
DelBlankPages function. This tells the system to remove blank pages from each

transaction.

< Printer >
EnableTransBanner
TransBannerBeginScript
< DALLibraries >
Lib

True
PreBatch

BANNER

Here is an example of the BANNER.DAL script:

BeginSub PreBatch
DelBlankPages ()
EndSub

97

Chapter 2

Understanding the System

UsING IDS

For more information on the rules listed below see Using the Documaker Bridge.

Adding pages Use this IDS rule to add blank pages:
function = dpros2->DPRAddBlankPages

This IDS rule assumes the form set being used has been loaded by the Documaker Bridge
into the DSI variable, DPRFORMSET. If you are using this rule with a different bridge,
you may need to specify a different DSI variable that contains the form set.

To specify a FAP file to use for the dummy pages, add the name of that FAP file after the
form set variable name when you specify the IDS rule. Here is an example:

function = dpros2->DPRAddBlankPages, DPRFORMSET, FAPFile

Removing pages Use this IDS rule to remove blank pages:
function = dpros2->DPRDelBlankPages

This IDS rule assumes that the form set has been loaded by the Documaker Bridge into
the DSI variable, DPRFORMSET. If you are using this rule with a different bridge, you
may need to specify a different DSI variable.

To specify the FAP file being used for dummy pages, add the FAP file name after the
form set variable name when you specify the IDS rule. Omit the path and extension. Here
is an example:

function = dpros2->DPRAddBlankPages, MTCFORMSET

98

openfile DocumakerBridge.pdf

ADDING
INDEXES AND
TABLES OF
CONTENTS

Adding Indexes and Tables of Contents

Using Documaker Studio or Image Editor, you can insert tables of contents, lists of
figures or indexes to your form sets. This makes it easier for users to navigate through the
various forms.

To use this feature, all sections must be loaded before the print operation executes.
Otherwise, the system will not have all the content available and will not be able to create
a complete table of contents, list of figures, or index. Since some print drivers do not force
the loading of all sections until necessary, this means you may have to include an
additional INT option.

For Documaker Server (GenPrint), you would include this option:

< RunMode >
DownloadFAP = Yes

99

Chapter 2

Understanding the System

USING RUN-
TIME OPTIONS

100

The system offers several ways you can customize the way it runs. The following topics
discuss these options.

GENDATA COMMAND LINE OPTIONS

The GenData program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dmsl\gendaw32 /ini=my.ini

The command line options are explained below:

Option Description

CNT Overrides the number of transactions specified in the CheckCount option in the
Restart control group. This count specifies the frequency of updating offsets for
GenData restart processing.

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
cutrent directory.

JDT Tells the program to use the specified AFGJOB.JDT file instead of the one defined
in the FSIUSER.INI or FSISYS.INI files.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

GENPRINT COMMAND LINE OPTIONS

The GenPrint program accepts several command line options. Command line options
begin with either a backslash (/) or a dash (-). Hete is an example:

c:fap\mstrres\dmsl\genptw32 /ini=my.ini

The command line options are explained below:

Option Description

INI Tells the program to use the specified FSTUSER.INI file instead of the one in the
cutrent directory.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

Using Run-Time Options

GENTRN COMMAND LINE OPTIONS

The GenTrn program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dmsl\genTnw32 /ini=my.ini

The command line options are explained below:

Option Description

B Tells the program to build only the transaction file.

I Tells the program to build only the filter extract file.

FB Tells the program to build only the filter extract and transaction files.

INI Tells the program to use the specified FSTUSER.INI file instead of the one in the
cutrent directory.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

DEBUGGING OPTIONS

You can use the following options in the Debug_Switches control group to turn on or off

debugging options.

< Debug_Switches >

Debug_If_ Rule = Yes
Enable_Debug_Options = Yes
Show_Debug_Options = Yes
LoadListFromTable = Yes

Option

Description

Debug_If_Rule

Enable_Debug_Options

Show_Debug_Options

LoadListFromTable

Set to Yes if you want to turn on the debug options for the IF and
DAL rules. The system places the debug data in the
LOGFILE.DAT file. Setting this option to Yes slows performance.

Set this option to Yes to turn on all debug options.

Set this option to Yes to make the
GEN_DEBUG_DebugSwitchSet function log the state (on or off)
of all debug options.

Set this option to Yes to make the
Gen_TabUtil_LoadListFromTable function log the contents of
any ASCII table it loads.

101

Chapter 2
Understanding the System

Noting font IDs of zero You can use the CheckZeroFontID option to tell the system to display a warning or error
message if the field being processed contains a font ID equal to zero (0).

Typically, this means no font was assigned during the mapping. Since the merging of FAP
and DDT files in version 11.0, the field definition should be complete at the time of
processing. So if you encounter a field with no font ID assigned, it probably means some
unusual situation has occurred — like the field was defined via an import method but not
actually defined on the FAP file where it resides.

Here is an example of the CheckZeroFontID option:

< RunMode>
CheckZeroFontID =

Option Description

CheckZeroFontID Enter Yes (or Error) to have the system to issue an error message if it
encounters a font ID set to zero (0). If you enter Yes (or Error) and the
system encounters a font ID of zero, you get a message similar to this:

DM30046: Error: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.
Enter Warn if you want the system to issue a warning message if it
encounters a font ID set to zero. If you enter Warn and the system
encounters a font ID of zero, you will get a message similar to this:

DM30046: Warning: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.
In either message, FLDNAME and IMGNAME are reflect the
appropriate field name and section (image) name.

The default is No, which means nothing is checked and no message is
issued.

Suppressing elapsed You can suppress the elapsed runtime message by setting the ElapsedTimeStamp option
runtime messages to No. This turns off the elapsed runtime message for the error, log, and trace files. Here
is an example:

< Control >
ElapsedTimeStamp = No

Option Description

ElapsedTimeStamp Enter No to suppress the elapsed runtime message for the error, log, and
trace files. The default is Yes.

NOTE: You can use the existing ErrorFileDateStamp and LogFileDateStamp options to
turn off the time stamp in the error and log files. The new ElapsedTimeStamp
option controls the elapsed runtime message.

102

Using Run-Time Options

GROUPING PRINT BATCHES

If you want to group all of your print batches (BCH files) in one file, follow these steps:

1

Add two options to the FSISYS.INI file. In the RunMode control group, set the
AliasPrintBatches option to Yes. In the Data control group, add the BatchTable
option. Set this option as shown below:

BatchTable = <tablename>

If you omit the path, the system uses your entry in the DataPath option of the Data
control group.

Add a key to the RCBDFDFL.DFD file. In the Fields control group, add the
following option:
FieldName = BatchName

Add the option exactly as shown here. Do not substitute the desired batch name,
here or in any of the following steps.

Add a corresponding FIELD:BatchName control group. Note that the lengths you
specify in this group must be sufficient to hold the batch name (the option side of

the equations in the Print_Batches control group). In the Keys control group, add

the following option:

Key = BatchName
and add a corresponding KEY:BatchName control group, with these options:

FieldList = BatchName
Expression = BatchName

If you are using ASCII for the print batch, after you run the GenData program you must
sort the batch file using the BatchName field as the key. If you are using xBase or DB2,
you should be able to run the GenPrint program without this step.

NOTE: If you are using ASCII for the print batches, be sure to place the BatchName field

directly before the NA_Offset field in the RCBDFDFL.DFD file. And when
sorting, use the BatchName and NA_Offset fields together as the key.

This will help make sure the print output is identical to that produced with
multiple batches. If you are using xBase or DB2, you do not need these additional
instructions.

103

Chapter 2

Understanding the System

104

CONTROLLING CONSOLE LOGGING

When processing a large number of transactions, you can see how far along you are
without affecting performance by using the LogToConsole option. This option lets you
control how often the console is updated with progress information.

Using the LogToConsole option, you specify the number of transactions that should be
processed before that information is logged on the console. For instance, if your
processing run consisted of 10,000 transactions, you could set the option to log progress
on the console after every 1000 transactions are processed. Here is an example:

< Control >
LogToConsole = 1000

Option Description

LogToConsole Enter the number of transactions you want the system to process before it
logs its progress on the console. For instance, enter 1000 to have the system
tell you each time it processes 1000 transactions.

If you leave this option blank or enter Yes, the system logs the processing of
each transaction on the console. If you enter a numbet, such as 1000, the
system will send a log message to the console each time it processes that
number of transactions.

Keep in mind that logging information to the console affects performance.
The more often the system logs information to the console, the greater the
affect.

Consider how many transactions you will process in the run and use that
number to determine appropriate progress benchmarks.

If you enter No, the system will not notify you of its progress.

LOGGING INI FILE NAMES AND OPTIONS

You can log INI file names and options in the TRACE file during GenTrn, GenData,
GenPrint, GenArc, and Documaker Studio processing.

To turn on the logging of INI file names and options, include these INI options:

< Debug_Switches >
Enable_Debug_Options = Yes
INILib = Yes

For the GenTtn, GenData, GenPrint, and GenAtc programs, you can include the /L
command line parameter to log these file names and options in the TRACE file.

NOTE: Logging the INI file names and options in the TRACE file replaces the writing
of the INI file names and options to the LOGFILE as was done prior to version
11.1, patch 02.

Using Run-Time Options

LISTING THE RULES EXECUTED

Use the following INT options to tell the system to create a list of the Documaker Server
rules executed and the amount of time (in milliseconds) spent for each execution:.

< Debug_Switches >

Enable_Debug_Options = Yes
BaseRuleTime = Yes
FormSetRuleTime = Yes
ImageRuleTime = Yes
ImageFuncTime = Yes
FieldFuncTime = Yes
Option Description

Enable_Debug_Options Enter Yes to turn on the logging service.

BaseRuleTime Enter Yes to report base or job-level (level 1) rules.
FormSetRuleTime Enter Yes to report form set-level (level 2) rules.
ImageRuleTime Enter Yes to report image-level (level 3) rules.
ImageFuncTime Enter Yes to report image functions.
FieldFuncTime Enter Yes to report field functions.

The rule timings are written to a standard debug trace file. Individual records are tab-
delimited with the following fields:

Field Description

Standard Log Trace This field tells you the log entries data, time, and process ID. You can
info omit this information using the PrintTimeStamp option (see below).
Rule Type This field provides information like: Base Rule Forward, Base Rule

Reverse, and so on.

Time Spent Label The comment label for the Time Spent field:

Time Spent (sec)
Time Spent The time, in milliseconds, spent executing the rule.

Rule Name The name of the rule. Image functions use this format:

"Image Name"."Rule Name"

Field functions use this format:

"Image Name"."Field Name"."Rulename"

Turn off the time stamp associated with the rule timing options listed above, set the
PrintTimeStamp option to No.

< Debug_Switches >
PrintTimeStamp = No

105

Chapter 2

Understanding the System

106

ANALYZING DAL PERFORMANCE

In addition to DAL profile information which includes the time spent per function (DAL
subroutine), the system places information into the TRACE file about the total time spent

in each function and number of times each function is called.

An example of this information is shown below. This example is from a GenData run

which processed 600 transactions. The total processing time was 23 seconds. Only the

beginning of the log is shown because of space considerations.

The log is sorted by the cumulative time spent in each script with longest running scripts

at the top. The log information appears in the trace file and is written out when the

program terminates.

You will find this information appears in the log:

Item Description

Executed XXX The number of times script was executed.

Cumulative The time in seconds dot milliseconds spent in this script and all sctipts/code
run time that was executed from this script.

X XXX

Compiled or Whether or not the script was compiled.

Non-compiled

Name The name of the script or the actual script if it was not in an external file.

Some scripts look like they are listed twice, but are not. For instance, in the example below
PostTrans_Prod() and PostTrans_Prod actually are the script that had a call to
PostTrans_Prod (all it had was “PostTrans_Prod()”’) and the actual PostTrans_Prod DAL
subroutine.

When you analyze the log, keep these things in mind:

The scripts you need to review are usually the scripts at the top of the log.

Review any scripts that are executed more times than number of transactions in the
run. You can probably modify your implementation so the script is run no more than
once per transaction or once per job.

Review the scripts that run the longest and see if they can be optimized. For example,
move assignment of variables outside the loop. Consider parts that can be executed
only when needed.

Typically, scripts that take longer to run or receive a higher number of calls are good
candidates for review of either the script itself or the implementation.

Clock resolution is set at one millisecond. If a script executes in less than one
millisecond, the time spent equals zero (0). Scripts that show a high number of calls,
even if the time is shown as zero (0), or a relatively small number are good candidates
for optimization.

Using Run-Time Options

NOTE: The extra logging does affect total time spent executing the program being
analyzed and should not be turned on in a production environment or left on
when not needed.

Executed 600 times Cumulative run time 2.840 Non-compiled Script
PostTrans_Prod ()

Executed 600 times Cumulative run time 2.824 Compiled Script
PostTrans_Prod

Executed 600 times Cumulative run time 2.451 Non-compiled Script
PREFILL_VARS ()

Executed 600 times Cumulative run time 2.420 Compiled Script
PREFILL_VARS

Executed 600 times Cumulative run time 1.954 Compiled Script
DEFLIB\BarCode.DAL

Executed 534 times Cumulative run time 0.792 Compiled Script
DEFLIB\Delete_Images.DAL

Executed 1150 times Cumulative run time 0.784 Non-compiled Script
CALL ("SERVPHONENUM")

Executed 1150 times Cumulative run time 0.737 Compiled Script
DEFLIB\ SERVPHONENUM. DAL

Executed 600 times Cumulative run time 0.372 Non-compiled Script
COPYCOUNT ()

Executed 1813 times Cumulative run time 0.359 Non-compiled Script
call ("INSUREDNAMEL1")

Executed 1813 times Cumulative run time 0.312 Compiled Script
DEFLIB\ INSUREDNAMEL .DAL

Executed 600 times Cumulative run time 0.295 Compiled Script
COPYCOUNT

Executed 1180 times Cumulative run time 0.234 Non-compiled Script
call ("INSUREDNAME2")

Executed 1200 times Cumulative run time 0.205 Non-compiled Script
call ("BROKERNAMELIT")

Executed 1180 times Cumulative run time 0.203 Compiled Script
DEFLIB\ INSUREDNAME?2 . DAL

Executed 567 times Cumulative run time 0.186 Non-compiled Script
Return ((? ("POL.NUM.LIT")) & " " & (?("INS.POL.NUM")) &

(? ("INS.POL.YREFF")))

Executed 1200 times Cumulative run time 0.186 Non-compiled Script
Call ("DMGMERGESETID")

Executed 1137 times Cumulative run time 0.173 Non-compiled Script
call ("POLEFFDATE")

Executed 534 times Cumulative run time 0.159 Non-compiled Script
MSGBO3A()

Executed 534 times Cumulative run time 0.158 Non-compiled Script
MSGD12A1 ()

Executed 600 times Cumulative run time 0.158 Non-compiled Script
CALL ("SERVADDR1DAL")

Executed 534 times Cumulative run time 0.142 Non-compiled Script
MSGSO04A ()

Executed 534 times Cumulative run time 0.141 Non-compiled Script
MSGBO7B ()

Executed 1137 times Cumulative run time 0.139 Non-compiled Script
call ("POLEXPDATE")

Executed 534 times Cumulative run time 0.126 Non-compiled Script
MSGSO09B ()

Executed 1149 times Cumulative run time 0.126 Non-compiled Script
call ("DUEDATE")

107

Chapter 2

Understanding the System

108

Executed 534 times Cumulative run time 0.126 Non-compiled Script
MSGB11A()

Executed 550 times Cumulative run time 0.126 Compiled Script
DEFLIB\UPDATESCANABLE.DAL

Executed 600 times Cumulative run time 0.125 Non-compiled Script
CALL ("SERVADDR3DAL")

Executed 534 times Cumulative run time 0.125 Compiled Script
DEFLIB\WITHDRBILLDAY2 .DAL

Executed 534 times Cumulative run time 0.125 Non-compiled Script
CALL ("WITHDRBILLDAY2")

Executed 534 times Cumulative run time 0.125 Non-compiled Script
MSGML11A ()

Executed 534 times Cumulative run time 0.124 Non-compiled Script
MSGD12A3 ()

Executed 1200 times Cumulative run time 0.124 Compiled Script
DEFLIB\DMGMERGESETID. DAL

Executed 534 times Cumulative run time 0.124 Non-compiled Script
MSGSO08A ()

Executed 1137 times Cumulative run time 0.123 Compiled Script
DEFLIB\POLEXPDATE.DAL

Executed 534 times Cumulative run time 0.111 Non-compiled Script
MSGCO1A ()

Executed 534 times Cumulative run time 0.111 Compiled Script MSGBO03A

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGMO7A ()

Executed 570 times Cumulative run time 0.110 Non-compiled Script
call ("COMPANYNAMELIT")

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGD10C ()

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGMO2A ()

Executed 600 times Cumulative run time 0.110 Non-compiled Script
CALL ("SERVADDR2DAL")

Executed 534 times Cumulative run time 0.110 Compiled Script MSGD12A1l

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGD10G ()

Executed 600 times Cumulative run time 0.109 Non-compiled Script
CALL ("DMGTOTALSHEETS")

WHEN EXTRACT FILES EXCEED THE OFFSET LIMITS

During GenTrn processing, offsets to individual transactions within the extract file are

written to the TRNFILE. A long integer is used to contain these offsets. The long integer

can have a value up to about 2,100,000,000 bytes or about 2 GB.

When the extract file offset number inside the TRNFILE is about to exceed the 2GB
limit, the GenTrn program gives you the following error message:

DM15065: Error in BuildTrnRecs(): Offset for extract file is
approaching 2GB limit.

If GenTrn processing is combined into GenData processing (using the
NoGenTrnTransactionProc rule in the AFGJOB.JDT file), and this situation is
encountered, the GenData program gives you the following error message:

DM30049: Error in &1tRULLoadXtrRecs>(): Offset for extract file is
approaching 2GB limit.

CONTROLLING
WHAT IS IN THE
MULTIFILEPRINT

LoG

Controlling What is in the MultiFilePrint Log

Use the MultiFileLogRecord option to control the content of the log file produced during
multi-file printing. For certain print drivers (PDF, RTT, XML, or HTML), you must
generate a separate print file for every transaction in a batch.

For this processing mode You set the

Multi-step processing CallbackFunc option in the Print control group to
(GenTtn, GenData, and GenPrint) MultiFilePrint

Single-step processing MultiFilePrint option in the PrintFormset control group
(GenData) to Yes

During this process, the system creates a log file to keep track of the print files it creates.
The MultiFileLogRecord option lets you control the contents of the log file produced.

For multi-step processing using the multi-file callback function, you must change the
FSISYS.INI file as shown below:

< Print >
CallbackFunc MultiFilePrint
MultiFileLog = {log file name and path}
MultiFileLogRecord = ~DALRUN MyScript.DAL

The system first looks for MultiFileLog option in the logical printer control group first,
such as Printer1, Printer2, Printer3, and so on. If not found, it then looks for this option
in the Print control group.

To control the information written to the MultiFileLog file, specify the name of the DAL
script, such as MyScript. DAL, in the MultiFileLogRecord option. The system will then
execute this script whenever a new output file needs to be created. If a string is returned,
the string is used instead of building the log record as a set of semicolon delimited fields.
If an empty string is returned, the current log record format is produced.

NOTE: A linefeed is appended to the string before it is written to the log file.

The DAL script could be as simple as one that returns the string from the DAL function,
DeviceName. Here is an example:

RETURN(DeviceName ())

NOTE: For more information about multi-step processing, see Using Multi-step
Processing on page 21 and the discussion of the MultiFilePrint callback function
in Using the PDF Print Driver.

109

Chapter 2

Understanding the System

In single-step processing (GenData), use the MultiFilePrint option in the PrintFormset
control group, as shown here:

< PrintFormset >

MultiFilePrint = Yes
LogFileType =
LogFile = {log file name and path}

MultiFileLogRecord = ~DALRUN MyScript.DAL
(other applicable options omitted - see the following note)

The PrintFormset rule checks for the MultiFileLogRecord option and if a string is
returned, it uses the string instead of building the log record as a set of semicolon
delimited fields. If an empty string is returned, the current log record format is produced.

If you set the LogFileType option to XML, the system generates a log file using XML and
ignores the MultiFileLogRecord option.

NOTE: There are additional INT settings required for single- and multi-step processing.
For more information about single-step processing, see the discussion of the
PrintFormset rule in the Rules Reference.

110

Using INI Built-In Functions

USING INI You can use these INI built-in functions when tunning the system:
BUILT-IN

Built-in function Form more information, see

FUNCTIONS
~GetEnv ~GetEnv on page 112
~Platform ~Platform on page 112
~0OS ~OS on page 113
~DALRUN ~DALRUN ~DALVAR on page 113
~DALVAR ~DALRUN ~DALVAR on page 113
~Encrypted ~Encrypted on page 114
~ProcessID ~ProcessID on page 114
~WIPField ~WIPField on page 115

There are also several functions you can use to retrieve information from WIP records.
See Accessing WIP Fields on page 115 for more information.

And, see Defining Built-in Functions via Studio on page 118 for information on how you
can use Documaker Studio to define built-in functions.

Chapter 2

Understanding the System

~ GetEnv Here are examples which show how you can use the GetEnv function.

< MasterResource >
DefLib = ~Getenv MYDRIVE \mstrres\deflib\

This INI function recognizes a value that begins with a tilde (~). It then parses out the
next word and looks to see if a built-in function has been registered with that name, such
as gefenv in the above example.

Once found, the function is called. It then parses the first word to get the environment
variable, such as MYDRIIE. Leave a space before and after the environment variable.

Finally, the function puts together the result of the environment data with the remainder
of the data line, as in \mstrres\deflib\.

So, if MYDRIVE=G:\APPS you would see G:\APPS\mstrres\deflib\.

NOTE: Before executing an application whose INI contains the GetEnv function, you
must initialize the operating system environment variables. For Windows 32-bit,
you enter on a command line:

Set EnvironmentVariable = Value

Here are some examples:

Set MyDrive=G:\APPS
Set UserID=MVF

Be sure to leave a space before and after the environment variable.

For this example, assume the environment contains USERID=(INITLALS) and the INI
contains:

< SignOn >
UserID = ~GetEnv USERID

The logon process picks up your user ID from an environment variable.

This method results in a very generic built-in function that does not assume what the data
represents. However, if you were using it to build file names, the environment variables
would have to be consistent in terms of whether they contained the final backslash or not.
In the above example, MYDRIVVE=GA\APPS\ would produce an invalid path because a
double backslash would occur.

~ Platform Use the ~Platform function to create multi-platform INI files. The possible return values
are: PC, and M1/S. This lets you set up INI control groups and options that work on either
a PC or MVS platform. When the system executes this function, it replaces ~Platform with
either PC or M1/S, depending on the platform. Here is an example:

< Print_Batches >

P_Batchl = < Config:~Platform > P_Batchl
P_Batch2 = < Config:~Platform > P_Batch2
P_Batch3 = < Config:~Platform > P_Batch3
Error = < Config:~Platform > Error
Manual = < Config:~Platform > Manual
< CONFIG:PC >
P_Batchl = .\data\Batchl
P_Batch2 = .\data\Batch2

~0S

~DALRUN
~DALVAR

Using INI Built-In Functions

P_Batch3 = .\data\Batch3
Error = .\data\Error
Manual = .\data\Manual
< CONFIG:MVS >
P_Batchl = DD:Batchl
P_Batch2 = DD:Batch2
P_Batch3 = DD:Batch3
Error = DD:Error
Manual = DD:Manual

NOTE: You can also use the File option in the INIFiles control group to load multiple
INI files. Place this control group and option in your FSTUSER.INI file. Here is
an example:

< INIFiles >
File = PC.INI
File = MVS.INI

You can assign any name as long as you include the INI extension. You can have
as many File options as needed. You can customize these files based on the
platform you are using.

Use ~OS function to determine the current operating system environment. The possible

return values are: WIN32, HPUX, AIX, MV'S, Sun, and OS1100.

Here is an example of the functions usage in the INI file. Be sure to include the space after
~OS.

< DBHandler:DB2 >

BindFile = <DB2:~0S > bindfile =
< DB2:WIN32 >

BindFile = w32bin\DB2LIB.BND

This setup allows for the different bindfiles being specified for different operating systems
— compare with the ~Platform function which returns PC for Win32.

Use the DALRUN and DALVAR built-in functions to execute DAL scripts or get DAL
variable information you can use to complete INI options. For instance, you can use this
to map unique recipient information into batch records.

These functions are automatically registered when DAL is initialized. Several programs
can initialize DAL, such as the GenData and GenPrint programs, the AFEMAIN
program (including RACLIB/RACCO), Documaker Studio, Image Editot, and vatious
utilities such as ARCRET, ARCSPLIT, and DALRUN.

NOTE: If you try to use these functions in systems that do not initialize DAL, an
incorrect INI value is returned.

Here is an example:

< INIGroup >
Optionl = ~DALRUN MY.DAL
Option2 = ~DALVAL XYZ_VAL

Chapter 2

Understanding the System

114

~ Encrypted

~ProcessID

If the program requests Option], the script MY.DAL is executed and the resulting option
is assigned.

If the program requests Option2, the DAL variable XYZ_VAL is located and its contents
are assigned to the INI option.

Use this built-in function to place encrypted values in an INI file. To get the encrypted
value, you can execute the CRYRU utility. Here is an example of how you could use this
utility on Windows:

cryruw32.exe userl
The result would be something like this:
Encrypted string (2yz76tCkk0BRiPgLJLG00)

You then paste the value (2yz76:CkEOBR:P4IJI.G00) into an INI file and use the
~ENCRYPTED INI function, as shown in this example:

< SignOn >
UserID = ~ENCRYPTED 2yz76tCkk0BRiPgLJLG00

When Documaker Server or IDS runs and gets the value of the UserID option in the
SignOn control group, it will get the real value USERT.

NOTE: The encryption method used is proprietary.

Keep in mind these limitations:
* Only Windows and UNIX platforms are supported.
* This feature has nothing to do with secure PDF or PDF encryption.

* Almost any INI option can be encrypted.

The ProcessID INI built-in function (~ProcessID) provides separate trace files for
different instances of Documaker Setver/Documaker Bridge. This makes it easier to find
performance problems and to separate multiple instances.

Here is an example of how you would set up your INI files in Documaker Server or
Documaker Bridge to use the ProcessID built-in INT function:

< Data >
TraceFile = dprtrc~PROCESSID .log

Here is an example of an output trace file:

1. Tue May 25 21:27:26.489 2006 pid=00003896 SQInstallHandler: Info
from SQLGetInfo, DBName=<>, DBMS=<Oracle>, DBMS Version=<09.02.0010>
2. Tue May 25 21:27:26.489 2006 pid=00003896 SQInstallHandler: Info
from SQLGetInfo, DriverName=<SQORA32.DLL>, DriverVer=<09.02.0000>,
DriverODBCVer=<03.51>

3. Tue May 25 21:27:26.677 2006 pid=00003896 SQHandler (LOCATEREC) :
ENTER

4. Tue May 25 21:27:26.677 2006 pid=00003896 SQBindParamData: calling
_SQLBindParameter, len = <10>, <JOB_ID> = <DEF_JOB_ID>

5. Tue May 25 21:27:26.677 2006 pid=00003896 select
STATUS,JOB_ID,COMM_RECS,LASTREC from SJSRPX1_ORA_RESTART where
JOB_TID = ?

~ WIPField

Using INI Built-In Functions

6. Tue May 25 21:27:26.693 2006 pid=00003896 SQHandler (LOCATEREC) :
SQLocate returned a row.

Use this built-in INT function to tell the system to substitute a value in the INI file with a
value from the WIP record. This works with either Documaker Workstation
(AFEMAIN) or the WIP Edit plug-in.

For example, if you want the UserDict value to equal the value for ORIGUSER in the
current WIP record, you would set up the following option:

< Spell >
UserDict = ~WIPFIELD ORIGUSER

ACCESSING WIP FIELDS

You can access most standard WIP fields using the following built-in INT functions. For
instance, if you want to create an exportt file and a PDF file and have the names for these
files be identical except for the extension, you could use these function to create a unique
name for a file that does not depend on the current time, but rather on a time that does

not change, such as the create or modify time.

Function Returns the
~Keyl WIP Keyl field
~Key2 WIP Key2 field
~KeylD WIP KeyID field
~ORIGUSER Original WIP User ID field (the ID used to create the WIP)
~CREATETIME WIP Create Time field. You can format this option.
~MODIFYTIME WIP Modify Time field. You can format this option.
~ORIGFSID Original WIP form set ID.
Keep in mind when routing messages, the original form set ID is not
necessatily the same as the cutrent form set ID.
~TRANCODE WIP Transaction Code field.
~DESC WIP Description field.
~DATE The current date value.
~USERID Cutrently logged in user ID.
~FIELD A field value from the form set.

NOTE: You can access all of the WIP fields via DAL using the WIPFId function. And,
since DAL can be accessed via the ~DALRUN function (see page 113), you have
another method you can use to get those fields.

Chapter 2

Understanding the System

Formatting arguments

116

The system retrieves the Modify Time and Create Time from the WIP record. You can
use the ~NDATE function to get the current date value. You can also include a parameter
to tell the system to format the date.

Keep in mind that if you are trying to use the value as part of a file name, you should only
include characters that are valid in file names.

Here is an example of how to specify a date format:
~MODIFYTIME ;%m-%d-%Y;

Semicolons (;) begin and end the string that defines the date format. If you omit a
semicolon, you get the hexadecimal value of the date for ~MODIFYTIME and
~CREATETIME. For the ~DATE function, you get the format specified by the
DateFormat option in the Formats control group. This option defaults to:

gm/%d/ %y

If you include the semicolon, but omit the format information after the semicolon, for
~MODIFYTIME and ~CREATETIME you get the format specified by the DateFormat
option in the Formats control group. This option defaults to:

sm/%sd/ Sy .
Format arguments consists of one or more codes. Begin each code with a percent sign

(%0). Characters that do not begin with a percent sign are copied unchanged to the output
buffer.

Any character following a percent sign that is not recognized as a format code is copied
to the destination—so you can enter %% to include a percent sign in the resulting output
string.

You can choose from these format codes:

Code Description

%d Day of month as decimal number (01 - 31)

%H Hour in 24-hour format (00 - 23)

%l Hour in 12-hour format (01 - 12)

Yom Month as decimal number (01 - 12)

%M Minute as decimal number (00 - 59)

Yop Cutrent locale's AM/PM indicator for 12-hour clock
%S Second as decimal number (00 - 59)

Yoy Year without century, as decimal number (00 - 99)
%Y Year with century, as decimal number

Y%A Weekday name, such as Tuesday

%b Abbreviated month name, such as Mar

%B Full month name, such as March

Specifying locales

Code
Yoj
%ow

Yo@xxx

Using INI Built-In Functions

Description

Day of year as decimal number (001 - 3606)

Weekday as decimal number (0-6, with Sunday as 0)

Specify language locale (whete xxx is a 3-letter code that identifies one of the

supported languages. For example. A format of %@CAD%.A might produce
mardi, the French word for Tuesday.

Here are some examples:

This format Will result in
%m-%d-%Y 01-01-2009
The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 01/01/09 at 11:57 PM

Here are some additional format attributes for certain codes:

Code Description
Tells the system to suppress leading zeros for the following format codes. This flag
only affects these format codes:
$#d, SHH, %#I, %#3j, %#m, %#M, %#S, S#w
For example, if %d outputs 07, using %#d will produce 7. Subsequent codes are not
affected unless they also have this flag.
> Tells the system to uppercase the resulting text. This flag only affects these format
codes:
$>p, %$>A, %>b, %>B
For example, if % results in Tuesday, using %>.A will produce TUESDAY.
Subsequent codes are not affected unless they also have this flag.
< Tells the system to lowercase the resulting text. This flag affects only these codes:
$<p, %<A, %<b, %<B
For example, if %b results in Mar, using %<4 will produce 7ar. Subsequent codes are
not affected unless they also have this flag.
<> Tells the system to capitalize the first letter of the resulting text. This flag affects only

these codes:

$<>p, %$<>A, %<>b, %<>B

For example, if %p tesults in AM, using %<>p will produce A. Subsequent codes are
not affected unless they also have this flag.

When you use %@axxx in the format string, the xxx represents a 3-letter code that

identifies one of the supported language locales.

Until a locale format code is encountered in the format string, the default locale (typically
USD which is US English) is used. Once a locale format code is found, the locale specified
remains in effect until another locale code is encountered.

Chapter 2

Understanding the System

Using the ~Field
function

118

For example, suppose the input date is 03-01-2009. This table shows the output from

various formats:

This format Will result in

“ %A, %B %d” “Monday, March 01”.
“%@CADY%A %@CADY%A, %B %d” “lundi, mars 01”
“%A, Yo@CADY%B %d” “Monday, mars 01”
“%@CADY%A, Y%@USD%B %d” “lundi, March 01

The ~Field function lets you use a quoted parameter string to name the specific field to
locate within the form set. The definition of the field can name a specific section, form,
and group (Key2 or Line of Business), separated by semicolons, that contains the field
requested. This lets you make sute you are retrieving a specific field occurrence within the
document.

Because object names, like fields, sections, forms, and groups, can sometimes contain
spaces or other special chatacters, you should enclose the entire definition in quotation
marks (). You cannot quote individual elements of the search.

Here are some examples:

'This is a valid definition for the ~Field function:
option = ~FIELD "Field;Section;Form;Group"

This is 7ot a valid definition for the ~Field function:

option = ~FIELD "Field";"Section";"Form"; "Group"

DEFINING BUILT-IN FUNCTIONS VIA STUDIO

In addition to using INI files to define built-in INI functions, you can implement the
following built-in functions via Documaker Studio:

Field Description
~HEXTIME A generated eight-character hexidecimal time value.
~DATE The current date.

~DALRUN (script) Tells the system to execute the named DAL script which is expected to
return a value.

For example, to use Studio to tell the system to print the current date in the footer section
of a page, you would first create a field in the footer section at the location where you want
it to appear. Then name this field as shown here:

Using INI Built-In Functions

Properties a
Enter ~DATE in the Name Field Options
field OX4bEiER

¥ General

MName ~Date
Style

FPromppt

Faont 1D 11010 Times-Forman 10 FT (PCLAFP
Type Multi-line Text

Farmat

Faragraph J
Coordinates

Aftributes

Documerge

Fule

Entry

Lirk.

v v v v v vy w

No other rules or script calculations are required. During print processing, each time the
section that contains this field prints, the system will assign a date value.

Chapter 2

Understanding the System

OUTPUTTING
WIP FIELD
DATA ONTO
THE XML TREE

120

Documaker can export these WIP-related transaction fields onto the XML tree:

Keyl Key2 KeyID
TranCode StatusCode Desc
GuidKey TrnName LocID
SubLoclD Jurisdictn QueuelD

The XML print driver (print type XMP) includes WIP field data in the output when it is
generated from GenData's PrintFormset rule or the GenPrint program. You use the
Trigger2WIP control group to map the field information. This WIP field information is
included in the resulting XML tree under the DOCSET tag.

NOTE: The transaction batch record is defined by the DFD which is defined via the
RCBDFDFL setting. The mapped WIP fields must be defined in the WIP DFD
file or the internal WIP definition if an external DFD is not used.

Here is an example of the Trigger2WIP control group set up for field mapping:

< Trigger2WIP >

Company = Keyl
LOB = Key?2
PolicyNum = KeyID

TransactionType= TranCode
The output XML tree should have this format:

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT TYPE="RPWIP" VERSION="11.2">
<DOCSET NAME="">

<LIBRARY NAME="" CONFIG="Batch Processing">Batch
Processing</LIBRARY>

<ARCEFFECTIVEDATE>20061115</ ARCEFFECTIVEDATE>
<KEY1l NAME="COMPANY">SAMPCO</KEY1>

<KEY2 NAME="LOB">LBl</KEY2>

<KEYID NAME="PolicyNum">1234567</KEYID>
<TRANCODE NAME="TRANSACTIONTYPE">T1</TRANCODE>
<STATUSCODE NAME="STATUSCODE" />

<DESC NAME="DESC"/>

</DOCSET>
</DOCUMENT>

Using XML Files

USING XML Youcan use these rules to create an alternative data search method so you can do direct
FILES XML mapping within Documaker Server:

Rule Description

UseXMLExtract Uses the extract list loaded by the transaction as the source of the XML tree.

XMLFileExtract Assumes that the extract list contains the name of an external file which is
the source of the XML tree.

NOTE: For more information on the new rules, see the Rules Reference.

The extract list and the XML tree are separate. Once the XML tree is loaded, it remains
loaded and can be searched by subsequent rules — just like any extract list.

The system supports a mix of these search methods:

* An XDB token reference such as ZTOKEN looked up in the XDB to get the actual
search text

* The legacy Offset,Mask method such as 70, HEADERREC)
e An XML search text, such as //descendant::Item
In most cases, the XBD token reference will be the preferred method.

An XDB entry can return either a legacy offset/length search mask or an XML search
path. XML search masks must begin with an exclamation mark (1). The leading
exclamation mark is not actually sent to the search routine.

You can use text movement and formatting rules, like Move_It, MoveNum, FmtDate,
and FmtNumber, to do simple operations, but keep in mind some of the more
complicated options may not work.

For instance, Move_It suppotts a same record flag. This does not work in XML searches.
Likewise, Move_Num supports several binary input data types like BCD and you cannot
include those in XML at present.

More complicated rules that have multiple search criteria like SetAddr, SubExtractList,
and Concat do not work with XML files.

HANDLING OVERFLOW

The XML search infrastructure has position support.
/descendant: :Forms/child: : form[position()=2]/child::fieldl

The 2 in this case indicates you want the second form child. Since you would not want to
write the search to work with every explicit number, you must indicate where the overflow
variable fits into the equation, as shown here:

/descendant: :Forms/child: : form[position()=****]/child::fieldl

121

Chapter 2

Understanding the System

122

The system first scans the search to see if a replacement is needed for the overflow value.
In this case, it would insert the 2 (taken from the overflow variable value) and then do the
actual XML search.

You can also handle overflow within overflow by specifying an overflow variable name in
the search. For instance, suppose you have multiple cars and each car can have multiple
drivers.

<car>
<driver>Tom<driver/>
<driver>Tim<driver/>
<car/>

<car>
<driver>Sally<driver/>

<car/>

If you had two overflow vatiables, one working for carand one for driver, you could create
a search like this:

/descendant: :car[**carvar**]/child: :driver[**drivevar**]

Where the system gets two overflow variables and insert them into the search text.

TRIGGERING FORMS AND SECTIONS

You can do simple triggering based upon the existence of a node. For example, this
/child::car

would trigger a form if ¢aris a child of the root node. Referring back to the earlier example,
you could make it trigger two of the same forms because there are two cats.

The system supports value matching. So you can do the following:
/child::car[child: :driver="Tom"]

Or, you can use the Reciplf rule to trigger a section with custom rule parameters, as shown
in this example:

A={!/child::car/child::driver 1,7}::1if
(A="Tom') : :return(""1"") ::end::;

If there is such a value in that element in the XML file, the section would trigger. For this
to work, define the offset of the variable attribute as 1 and the length of the data you want
to compate.

You can also use XML search strings such as these:

This string Finds
ldescendant::PolicyNumber The PolicyNumber value
ldescendant::Forms/ child::Form All forms

USING XPATH

Using XPath

XML path locator (XPath) complies with the standard syntax specifications (W3C
standards) found in the XML Path Language, but differs in some regards because it was
developed to support the Rules Processor. Because this version of XPath has some
limitations, you should check the syntax using the XPATHW32 utility.

XPATH SYNTAX

Here are examples of the valid axes, function calls, signs, and operators to help you
understand and use the XPath syntax.

Axes

You have these axes:

Name

Used to locate the

ancestor
ancestor-or-self
patent
descendant
descendant-ot-self
attribute

child
following-sibling
following
preceding-sibling
preceding

self

Ancestors of the cutrent context node
Ancestors of the current context node and itself
Parents of the current context node
Descendants of the current context node
Descendants of the current context node and itself
Attributes of the current context node

Children of the cutrent context node

Following siblings of the current context node
Context nodes that follow the current node
Preceding siblings of the current context node
Context nodes that precede the current node

Self context node

When used, an axis is always followed by a context node name separated by two colons

(::). For example, the syntax descendant::para locates all para descendants of the current

context node.

123

Chapter 2

Understanding the System

124

Symbols

You can use these calculation operators:

= 1= < > + _

Where !=, <, >, + can be used as calculation operators in function position(), such as,
[position()=2], [position()!=2], [3+1i], [position()<5], and so on. The equals sign (=) is also
used for evaluations such as @Nawe="Auto’.

You can use these symbols in a valid XPath:
/ /o g [| @
Where the pait of brackets ([]) enclose a condition for evaluation, the at symbol (@) is

an abbreviation of the attribute, the asterisk (*¥) is used for a wild card search, and others
are used in a valid XPath, as shown below.

Functions

You can use these functions:

Function Returns

concat(string, string, string. .. The concatenation of the strings

last() The last element in the selection

name() The name of the selected elements

node() The node names

position() The position of selected elements

text() The text of selected elements

string(object) The string from the context node

xml() The output buffer containing all descendents of the

specified element

Expressions

You can use abbreviated syntax with XPath. Here are the valid expressions:

Abbreviated syntax

Full syntax

Using XPath

*

para
chapter/para

paral]
/chaptet/paraflast()]
text()

node()

para|@type]

para[@type="warning"]
para[@type="warning"[2-+i]
chapterf|title]
chapter|title="Introduction’]
doc//para

@*

@type

[@name="warning’]

//para

./ /para

../ chapter

../ @type

child::*

child::para

child::chaptet/child::para
child::para[position()=1]
/child::chapter/child::para[position()=last()]
child::text()

child::node()

child::para[attribute:type]

child::para[attribute:type="warning"|

child::para[attribute::type="warning"|[position ()#2-+i]

child::chapter|child:title]
child::chapter[child:title="TIntroduction"]
child::doc/descendant-or-self::node() / child::para
attribute:*

attribute::type

[attribute::name="warning’|
/descendant-ot-self::node() / child::para
self::node()

self:node/descendant-or-self::node() / child::para
parent::node()

parent:node()/child::chapter

patent:node()/attribute:type

125

Chapter 2

Understanding the System

USING THE XPATH TESTING UTILITY
Here is the syntax of the XPATHW32 testing utility:

xpathw32 /f= xml file /e=starting node /x= search path

The /e parameter specifies the node where the search of the XPath statts. You can omit
this parameter if you want the search to start from the beginning. A pair of double quotes
is required to enclose the search mask. Here is an example:

xpathw32 /f=“d:\test\test.xml” /x=“Forms/Form/Car[@Name='Carl’]/
text ()"

This example searches the node Carwith the attribute Name=“Car1”. It then retrieves its
text and returns a text string similar to this one:

Text string = Car 1 is Toyota

These examples illustrate some search paths most frequently used in Documaker RP
applications. Run the testing tool yourself for the answer.

Example 1 These examples search for a list of nodes with or without conditions. Keep in mind a
condition is always placed within brackets, as shown here: Jcondition].

This Returns

Forms/Form/Car A list of the Car nodes

Forms/Form/ The first two nodes in the Car node list
Car[@*][position()<3]

Forms/Form/ A list of the Car nodes above the first element

Car[@Name][position()>1]

Forms/Form/ A list of the Car nodes, excluding the second one
Carl[text()] [position()!=2]

Forms/Form/Cat[Model] A list of Car nodes that have a child named Model
Forms/Form/Cat/node() A list of children nodes under the Car nodes
Forms/Form/Cat/Coverage|[1] A list of first child Coverage under the Car nodes
Forms/Form/ A list of nodes Coverage under Carl

Car[@Name="Car1’]/Coverage

126

Using XPath

Example 2 These examples search for the path for a single element:

This

Produces

Forms/Form/Cat[@*][1]
Forms/Form/Car[@Name][last()]

Forms/Form/
Car[@Name="Car1’]

Forms/Form/
Car[Model="Toyota’|

Forms/Form/
Car[Mode="Nissan’]/Coverage[3]

The first node of the Car list with any attributes

The last node of the Car list with the attribute Name
The Car node with attribute name Carl

The Car node with a child Model that has a text string of
Toyota.

The third child node of Coverage under the parent node
Car that has a child named Model with a text string of
Nissan

Example 3 These examples search for a list of attributes:

This

Produces

Forms/Form/

Car[Model="Nissan’] /@*

Forms/Form/Car/@Name

A list of attributes of the Car node that have a Child node
named Model with a value of Nissan

A list of the attribute Name that has a parent node of Car

Example 4 These examples search for a single attribute:

This

Produces

Forms/Form/

Car[Model="Honda’]/@*[1]

Forms/Form/Car
Model="Honda’]/@Name

Forms/Form/Cat[1]/@Name

The first attribute of the Car node that has a child named
Model with a value of Honda

The attribute Name of the Car node that has a child
named Model with a value of Honda

The attribute Name of first Car node

Example 5 These examples search for a list of text strings:

This

Produces

Forms/Form/Car/text()

Forms/Form/Car[Model] /text()

A list of text strings of Car nodes

A list of text strings of Car nodes which have children
named Model

127

Chapter 2

Understanding the System

Example 6 These examples search for a single text string:

This Produces

Forms/Form/ The text string of the Car node which has a child name

Car[Model="Toyota’]/text() Model with a value of Toyota

Forms/Form/ The text string of the node Form which has a child named

Car[Model="Honda']/patent/text() Car that, in turn, has a child named Model with a value of
Honda

NOTE: Thete ate three types of returned lists: elements, attributes, and text. When a list
includes only one element, the structure returns a single element instead of a list.

Example 7 These examples search for the name of elements:
This Returns
//*[name()="Cat’] “Car” nodes
Forms/Form/*[name()="Car’][2]/ A text string of second “Catr” nodes
text()
Example 8 These examples concatenate text strings:
This Returns
concat('Carl’, 'and', 'Car2")" A string “Car] and Car2”
concat(/ /Cat[@Name="Carl'], A string “Toyata and Nissan are imported cars.”

'and',/ /Car[@Name="'Car3"], 'are
imported cars."))

128

Using XPath

Example 9 These examples search for strings:

This Returns

string(* 12345’) The string “ 12345”

string(/ /Cat[2] /*[1]) The string of the first child of the second Cat node
Example 10 This examples returns a buffer that contains all descendants of the specified element:

This Produces

xpathw32 /f=cars.xml /x="//Car[2]/xml() <Car Name=" Car2">Car 2 is Honda

<Model>Honda</Model>
<Coverage>Cover 4< / Coverage>
<Coverage>Cover 5< / Coverage>
<Coverage>Cover 6</Coverage>
</Car>

Note that the XPath must point to a single element, such as Car/2] in the example.

129

Chapter 2

Understanding the System

ExAMPLE XNMIL FILE
Here is an example XML file (TEST.XML):

<?xml version="1.0" encoding="UTF-8"7?>

<!--Sample XML file generated by XML Spy v4.2 U (http://
www . xmlspy.com) ——>

<Forms>
<Form>

<Car Name=" Carl">Car 1 is Toyata
<Model>Toyota</Model>
<Coverage>Cover l</Coverage>
<Coverage>Cover 2</Coverage>
<Coverage>Cover 3</Coverage>

</Car>

<Car Name=" Car2">Car 2 is Honda
<Model>Honda</Model>
<Coverage>Cover 4</Coverage>
<Coverage>Cover 5</Coverage>
<Coverage>Cover 6</Coverage>

</Car>

<Car Name="Car3">Car 3 is Nissan
<Model>Nissan</Model>
<Coverage>Cover 7</Coverage>
<Coverage>Cover 8</Coverage>
<Coverage>Cover 9</Coverage>

</Car>

</Form>
</Forms>

130

Chapter 3

Implementing Your
System

This chapter provides an overview of how a system is
implemented. Although implementations may be
handled by Professional Services and each
implementation differs, you can make your
implementation run more smoothly by understanding
the procedures and methodologies outlined here.

In general terms, a system implementation is a set of
structured procedures and processes our Business
Analysts follow to design, develop, and set up a
customized system for a particular client.

This chapter discusses...
* Using a Methodology on page 132
* Gathering Information on page 134

* Roles and Responsibilities on page 135

131

Chapter 3

Implementing Your System

USING A
METHODOLOGY

132

When each system implementation is so unique and so configurable, why use a
methodology?

Because, a methodology allows for consistent handling of each specific implementation.
Consistency promotes efficiency. The smoother and more efficient a system
implementation is, the more satisfied you will be. Furthermore, it will be easier to maintain
and, if necessary, easier to modify the implemented system should your needs change.

The system Implementation methodology is followed for each implementation project.
The methodology is designed to allow for project flexibility to accommodate the vatious
system customizations.

The System Implementation Methodology is comprised of these phases:
Phase 1 - Define Requirements

Phase 2 - Create Detail Forms Requirements

Phase 3 - Build the Master Resource Library

Phase 4 - Install and Configure the System

Phase 5 - Test the System

Phase 6 - Go Live

The methodology phases are cyclical. After completing Phase 6, Phase 1 begins again, to
continually evaluate the system and to incorporate product maintenance.

1

Define
Requirements

2
Create Detail
Forms
Requirements

5 3

Test the System Build Master
Resource Library

4

Install and
Configure System

Phase 1 - Define the
requirements

Phase 2 - Create the
detail forms
requirements

Phase 3 - Build the
Master Resource
Library

Phase 4 - Install and
configure the system

Phase 5 - Test the
system

Phase 6 - Go live

Using a Methodology

Because each system implementation is different, the time frame for completing each
phase varies. Here is a summary of the phases and the related tasks:

Defining the requirements is the planning and definition phase of an implementation. In
this phase, your processing needs are defined. Your input is very important in accurately
identifying your needs.

The primary output of this phase is the Requirements Definition Documentation. This
document includes the project scope and schedule, information regarding the technical
and functional areas targeted for document automation, and the steps outlining how the
implementation will proceed.

Creating the detail forms requirements involves specifying all forms to be converted from
paper to electronic forms, and determining how to automate the transferal of data to the
forms. Determining how to automate data transfer includes defining how the data will be
mapped, defining the data transfers from the source file to the forms, and the form data
format. This process requires mapping data in hierarchical succession: form set, form,
section, fields, field attributes, and field sequencing and navigation logic.

Documaker Studio or the legacy Docucreate tools are often used during this phase. You
can learn more about these tools in the Documaker Studio User Guide or the Docucreate
User Guide.

Building the Master Resource Library involves organizing and setting up the resources to
be used by your system. Here a complete library of reusable resources is set up. Your users
will select from these resources to complete their work activities.

A resource library is divided into these libraries: Section Library, Variable Data Dictionary
Library, and Rules Library. Each of these libraries contains files that store different
resource components. Depending on your system configuration and location, you may
have separate Distributed Resource Libraries, as a subset of the Master Resource Library.

In addition to setting up the resources, this phase involves configuring forms sets, the
rules used for processing forms, and the system initialization files that determine how
your system operates. During this phase the base system is customized to meet your
needs. Customization can range from changing system functions to changing the system
interface.

During this phase, the various system modules are installed. After installing the
components, you test various aspects and functions of the system, such as printing and
archiving, using test scenarios and sample data. Adjustments are made if required to the
configuration files. If available, you should use real data for these initial tests.

In Phase 5, system testing begins. Detailed test matrices are created, which are used to test
the entire system using real data. A test matrix is a listing of the functions, conditions, and
exceptions of the system you want to test. It’s important to have plenty of real data you
can use for testing purposes during this phase.

In Phase 6, the system is now ready for full production. The support personnel assigned
to the project will assist you with start up procedures and training.

133

Cha

pter 3

Implementing Your System

134

GATHERING
INFORMATION

At the beginning of any implementation, it is important to gather as much relevant
information as possible. This information helps ensure requirements are correctly
defined, future goals are taken into consideration, and the solution meets your needs
exactly.

UNDERSTANDING YOUR NICHE

Understanding your current and future industry positioning is integral in successfully
implementing a customized system. The system must suit your needs now, and expand as
your company grows. Knowing where you expect to take the company in the future is
important for defining a system.

The implemented system must be set up so it can grow as your company grows. The
system must also serve the your current needs. To define your current and future needs,
you will be asked questions about the your company’s goals, industry trends, and company
projections, such as:

* Do you expect a significant growth in revenue over the next five years? What is your
vision for the future?

* Do you expect to experience a reduction or increase in number of employees?
* Do you envision growth into other related or non-related industries?

* How far has the company grown (or downsized) in the past few years? Can you
detect industry trends based on past revenues, and financial status?

One of the greatest benefits of a system is its flexibility. Determining where you are and
where you expect to be in the future helps to make sure your system solves your business
problems today and tomorrow.

UNDERSTANDING YOUR ORGANIZATION

Understanding your organization is also important in fulfilling your needs. It helps to
understand the chain of command, and the responsibilities associated with each role in
your organization. To gather information about your organization, you will be asked
questions such as:

* Have you had previous experience with document automation? How would you
describe that experience positiver?

* How many data entry operators do you have, and who and where are they?
* What percentage of total time do employees at each level spend on the system?

* Is there a specific organizational hierarchy or chain of command within the
company?

* Whatis your corporate culture? Is there a discreet division of labor at all levels, or is
there cross-training and information sharing?

You may also have documentation about your company, future company directions,
system flows and workflows, and other information which is important in mapping an
implementation strategy. This background information is important in defining the best
solution for your company.

ROLES AND
RESPONSIBILITIES

Roles and Responsibilities

There are many people involved in a system implementation project. A system
implementation project team is comprised of both Documaker Professional Services
personnel and personnel from your company. The team's goal is to provide a seamless
integrated solution for the your document automation needs.

You are an integral member of the system implementation team. With your knowledge of
your business needs, you can often be the navigator or guide during the implementation
process.

Documaker Professional Services personnel include:

BUSINESS ANALYST. Throughout the project the Business Analyst is responsible for
coordinating the project, creating the phase deliverables, and keeping apprised of the
status of all processes and subprocesses within the project.

PROJECT MANAGER. The project manager is involved in initial project analysis and
planning, and sizing of the system component development process. The project manager
is also responsible for creating the project schedule.

SYSTEM DEVELOPERS. The developers are primarily responsible for coding the system
components. Additionally, the programmers may provide analysis, and planning input
during the initial phases. Professional Services personnel are involved in customization

pro}ects.

135

Chapter 3

Implementing Your System

136

Chapter 4

Setting Recipients and
Copy Counts

This chapter describes how you can specify recipients
for the individual forms that comprise your form sets
and how you can specify the number of copies each
recipient will receive.

In this chapter you will find information about:
* Concepts on page 138
* Koy Files on page 139
* Trigger Table Record Format on page 140

* Specifying the Transaction Trigger Table on page
142

* How Transaction Triggering Works on page 143
* TForm Level Triggers on page 147

* Master and Subordinate Sections on page 149

* Examples on page 151

* Summary on page 168

137

Chapter 4

Setting Recipients and Copy Counts

138

CONCEPTS

In a manual form system, a data entry operator selects the forms that make up a document
set. Some forms may be mandatory and are always included. Others are optional and must
be specified by the operator.

The operator chooses forms by examining the data at hand and considering certain
conditions pertaining to that data. For instance, if the operator is creating insurance
policies, he or she would have to know:

* What company is this for?

* What line of business?

* What type of transaction is this?

* Does the agent need a copy?

* How many copies?

* What about the home office copy?

And so on. The answer to each question affects the makeup of the document set you will
assemble.

Documaker Server automates the tasks and selection decisions that an operator makes.
The set of forms to be printed, and the recipients of those forms, are selected by executing
a series of business rules that test the supplied data to see if certain conditions are met.

As matching conditions are found in the data for a transaction, a form set can be
constructed, form by form, with all the proper recipients designated. This is the first step
in the assembly of a document set. Later, once the set of forms has been determined,
other business rules for each form and variable field can be executed to begin to construct
the output data, field by field, within each form.

NOTE: Docucreate includes the Form Set Manager, a tool you can use to set recipients
and copy counts. This chapter explains how the undetlying files and settings
work. You can change these settings either by changing the files in a text editor
ot by using the Form Set Manager. You can find more information about the
Form Set Manager in the Docucreate User Guide and in the tool’s on-line Help.

KEY FILES

Key Files

Here is a discussion of the key files which the system uses to determine who gets what
form and how many copies it should print. You’ll also find information about important
concepts, such as form and section (image) level triggers.

TRANSACTION TRIGGER TABLE

The transaction trigger table (also known as the SETRECIP table, or SETRCPTB.DAT
file) is a text file used by Documaker Server to define the conditions under which certain
forms are included in form sets, and which recipients are to receive the forms. Each
record in the transaction trigger table defines a triggering condition for a form or section
and is referred to as a trigger record, or, more simply, a trigger.

Trigger Levels

There are two /levels of trigger records: form level triggers which trigger forms, and section level
triggers which trigger sections within a form. section level triggers are optional, since some
forms automatically include all necessary sections. Also, form level triggers can be
optional, since a form can also be triggered by a section level trigger.

NOTE: sections are defined by FAP files and are maintained using Documaker Studio or
Image Editor. A section may be an entire page, or a page segment. Forms can be
made up of many pages, each containing one or more sections.

FORM SET DEFINITION TABLE

The transaction trigger table works with the form set definition table (also known as the
FORM.DAT file) to define the required form set. Together they define many complex
inter-relationships and rules, and a number of powerful options by which forms and
sections can be triggered, and recipients defined.

In this chapter we will discuss the...

* Purpose of the transaction trigger table.

* Record layout of the transaction trigger table.

* Runtime setup options for the transaction trigger table.

* Rules under which the transaction trigger table program logic operates.

In addition, this chapter discusses several scenarios to illustrate many of the options and
variations used to trigger forms and sections.

139

Chapter 4

Setting Recipients and Copy Counts

TR IGGER T ABLE The transaction trigger table is a semi-colon delimited text file. Each record in the table
defines a form level or section level trigger condition. Each record contains the following

RECORD (4.
FORMAT

;GroupNamel (Company)

;GroupName?2 (Line of Business)

;Form name

;Image name

JTransaction codes

;Recipient list

;Search mask 1 (Counter)

;Overflow field 1 (Occurrence flag)

;Overflow field 2 (Records per overflow image)

;Overflow field 3 (Records per first image)

;Recipient Copy count

;Search mask 2 (True/False)

;Custom rule;

NOTE: Semicolons are required as field separators, or placeholders. When values are

omitted from optional fields, one or more consecutive semicolons may appeat.

The table describes each field.

Field

Description

GroupNamel

GroupName?2

Form name

Image name

140

Matches the GroupNamel field in the form set definition table. In an
insurance industry application, this would typically contain the Company
code. <KeylTable> in the FSISYS.INT file.

Matches the GroupName?2 field in the form set definition table. In an
insurance industry application, this would typically contain the “line of
business” code. <Key2Table> in the FSISYS.INI file.

The name of the form, as specified in the form set definition table. Note:
Form names are descriptive, and do not correlate to any physical file
name.

The name of a section (image) within a form, as specified in the form set
definition table. This name also correlates to a physical section file (FAP
file) and often to a Data Definition Table file (DDT file).

Note: A section level trigger record requites an entry in this key field; a
form level trigger record must omit any value in this field.

Field

Transaction codes

Recipient list

Search mask 1
(Counter)

Occurrence

(overflow) Flag

Records per
overflow image

Records per first
image
Recipient copy

count

Search Mask 2
(True/False)

Custom Rule

Trigger Table Record Format

Description

By including one or more transaction codes in this field, a form is
triggered only if the extract file record includes that transaction code.

If no transaction code value is mapped from the extract data for a
transaction, the system considers all triggers eligible, regardless of
whether they specify a transaction code list.

Conversely, if a transaction code value is mapped from the data, the
system only considers those triggers that have the same value to be
eligible for evaluation.

Lets you optionally specify certain recipients.

Defines the criteria to determine when a form belongs in a form set (or
a section within a form). The criteria lets Documaker Server get specific
data from the extract file. One form (or section) is added for every
occurrence of the Search Mask per Transaction when the overflow flag
is set.

Indicates the need to calculate overflow conditions. Enter zero (0) for no
overflow or 1 for overflow.

Also used for Master and Subordinate form and section level flags. You
can entet:

M=master (used on form level triggers)
S=subordinate (used on section level triggers)

F=tells the system to override any previous copy count settings and use
the copy count settings in this trigger file (used on form level triggers). In
essence, this flag tells the system that if this form is already triggered,
don't trigger it again—just modify the previously triggered copy.

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on the specified overflow form.

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on a specific form before overflowing
to a new form.

Specifies the number of copies a recipient receives.

Similar to Search Mask 1, but only one form will be triggered, regardless

of how many occurrences of the condition exists.

Available field for use with custom rules or search masks. Most common
custom rule is RECIPIF.

141

Chapter 4

Setting Recipients and Copy Counts

SPECIFYING THE
TRANSACTION
TRIGGER TABLE

142

You specify the file name of the transaction trigger table (also known as the SETRECIP
table) in the FSISYS.INI file. For example:

< Data >
SetRcpTb = SETRCPTB.DAT

< MasterResource >
FormsetTrigger = SETRCPTB.DAT

The form set definition table is also specified in the FSISYS.INI file, in the following
control group:

< MasterResource >
FormDef = FORM.DAT

There are two form set level rules that relate to the transaction trigger table in the
AFGJOB.JDT file:

<Base Form Set Rules>
;LoadRcpTbl;2;;
;RunSetRcpTbl;2; ;

The LoadRcpThl rule loads the entries from the SETRCPTB.DAT file for the current
GroupNamel, GroupName2, and Transaction code. The RunSetRepThl rule runs all
entries in the transaction trigger table that pertain to the current GroupNamel,
GroupName2, and Transaction code to generate the form set for the current transaction.

For more information on these and other rules, see the Rules Reference.

How
TRANSACTION
TRIGGERING
WORKS

How Transaction Triggering Works

The transaction trigger table works with the extract file, TRN file (usually TRNFILE), and
the form set definition file (usually FORM.DAT). The TRNFILE contains a record for
each transaction passed to Documaker Server.

The record format for the TRNFILE varies by implementation; the format is specified by
a DFD (Data Format Definition) file. Each TRNFILE record contains a series of offsets
used when processing the transaction.

Offsets in a TRNFILE record define the location where:

* The transaction begins in the extract file

* Data for the transaction is stored in the NAFILE

* The form set for the transaction is stored in the POLFILE

* The TRN record itself begins (this offset is stored in the BCH file, so the entire
TRNFILE is not needed)

The form set definition file (FORM.DAT) defines the organization of sections within
forms and the organization of forms within form sets. The FORM.DAT is a semi-colon
delimited file; its format includes information about...

¢ Company

* Line of business

* Forms (form options)

* Sections (section options)

* Recipients

* Recipient section copy counts

The recipient table, also known as the transaction trigger table (usually
SETRCPTB.DAT), defines when to include a particular form section or recipient of a
form section in a form set. The recipient table contains information necessary to
determine if a condition exists to include a form. Conditions may be defined by a
combination of transaction types and search masks for the extract file as defined above.

Three of the first five transaction trigger fields (GroupNamel, GroupName2, and
Transaction Code) must match some records within the extract file in order for the trigger
conditions to be evaluated. For example, if there are no records with the transaction code
specified in the trigger, that trigger will be skipped. If extract records exist that match
these three fields, the remaining fields of that trigger are evaluated.

It is not required to use all of the available fields in a transaction trigger record, but if it is
necessary to use multiple search masks and/or a custom rule, the following logic applies
when evaluating whether to trigger that form or section.

143

Chapter 4
Setting Recipients and Copy Counts

SECTION LEVEL TRIGGERS

Here are some examples of how the system evaluates triggers:

With these settings:

Copy Count Search Mask 1 Search Mask 2 The result is:

0 T T Turn off
0 T F Do nothing
0 F F Do nothing
0 F T Tutn off
Non 0 T T Turn on
Non 0 T F Turn off
Non 0 F F Turn off
Non 0 F T Tutrn off

The system evaluates search mask 2 first. When this evaluation is performed, the system
also takes the copy count into consideration.

If the copy count is zero (0):

e If search mask 2 is true, evaluate search mask 1. If search mask 1 is true, turn on the
section based on the copy count (for instance, if the copy count is zero (0), then turn
on nothing). If false, turn off the section.

e If search mask 2 is false, then do nothing.
If the copy count is not zero:

e If search mask 2 is true, then evaluate search mask 1. If search mask 1 is true, turn
on the section based on the copy count (for instance, if the copy count is zero (0),
then turn on nothing). If false, turn off the section.

e If search mask 2 is false, turn off the section.

With these settings:

Copy Count Search Mask 1 Custom Rule The result is
0 T T Tutn off
0 T F Turn off
0 F F Turn off
0 F T Turn off

144

How Transaction Triggering Works

Copy Count Search Mask 1 Custom Rule The result is
Non 0 T T Turn On
Non 0 T F Turn off
Non 0 IF IF Turn off
Non 0 IF T Turn on

When search mask 1 and custom rule are specified, the system uses the custom rule only.
When the custom rule is evaluated:

* If true, turn on the section based on the copy count (for instance, if the copy count
is zero (0), then turn on nothing)

e If false, do not turn on the section.

With these settings:

Copy Count Search Mask 2 Custom Rule The result is
0 T T Turn off

0 T F Turn off

0 F F Do nothing
0 F T Do nothing
Non 0 T T Turn on
Non 0 T F Turn off
Non 0 F F Turn off
Non 0 F T Turn off

The system evaluates search mask 2 first. When this evaluation is performed, the system
also takes the copy count into consideration.

If the copy count is zero (0):

e If search mask 2 is True, evaluate the custom rule. If the custom rule is True, turn on
the section based on the copy count (for instance, if the copy count is zero (0), then
turn on nothing). If false, turn off the section.

* If search mask 2 is false, then do nothing. The custom rule will be ignored. Leave the
section as is.

If the copy count is not zero:

145

Chapter 4

Setting Recipients and Copy Counts

e Ifsearch mask 2 is true, then evaluate the custom rule. If the custom rule is true, turn
on the section based on the copy count (for instance, if the copy count is zero (0),
then turn on nothing). If false, turn off the section.

e If search mask 2 is false, turn off the section.

146

FORM LEVEL
TRIGGERS

Form Level Triggers

Here are some examples. With these settings:

Copy Count Search Mask 1 Search Mask 2 The result is:

0 T T Turn off
0 T F Turn off
0 F F Turn off
0 & T Turn off
Non 0 T T Turn on
Non 0 T F Turn off
Non 0 F F Turn off
Non 0 F T Turn off

At the form level, search mask 2 is evaluated first. It is unlike the section level in that the
copy count is not considered.

If search mask 2 is true, search mask 1 is evaluated:

e If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

* If false, do not trigger the form.

With these settings:

Copy Count Search Mask 1 Custom Rule The result is:
0 T T Turn off
0 T F Turn off
0 F F Turn off
0 F T Turn off
Non 0 T T Turn on
Non 0 T IE Turn off
Non 0 F F Turn off
Non 0 F T Turn on

When search mask 1 and custom rule are specified, the system uses the custom rule only.
When the custom rule is evaluated:

147

Chapter 4

Setting Recipients and Copy Counts

e Iftrue, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

e If false, do not trigger the form.

With these settings:

Copy Count Search Mask 1 Custom Rule The result is:
0 T T Turn off
0 T I Turn off
0 F F Turn off
0 F T Turn off
Non 0 T T Turn on
Non 0 T F Turn off
Non 0 F F Turn off
Non 0 F T Turn off

At the form level, search mask 2 is evaluated first. It is unlike the section level in that the
copy count is not considered. If search mask 2 is true, the custom rule is evaluated:

* If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

* If false, do not trigger the form.
If search mask 2 is false, do not trigger the form.

When a transaction trigger table entry is evaluated to be true or false, the effect varies
depending on the type of trigger. The following table explains the effects of form and
section level triggers:

Logic Form Level Trigger Section Level Trigger

True Turns on all sections in the form for Turns on the specified section for the
selected recipients with the copy selected recipients with the copy count
count specified in the copy count specified in the copy count field in the
field in the transaction trigger table transaction trigger table entry.
(GRHEY: Turns on other sections in the form with
Turns on sections in the form for the same recipients with a copy count of
non-selected recipients only if those at least 1 in the form set definition table.

sections have a copy count of at least
1 in the form set definition table.

False Does not turn on any images for any Turns off the specified image by setting
recipients. the copy count to zero (0) for the selected
recipients or does nothing,.

148

MASTER AND
SUBORDINATE
SECTIONS

Master and Subordinate Sections

The set recipient table contains both form and section (image) level triggers to handle
cases of conditional sections on forms. There are two flag options you can use in the set
recipient table (SETRECIP) for transaction triggering. These two flags, S and M, are used
to regulate the evaluation of section level triggers and are placed in the Occurrence
(overflow) flag field of form or section level triggers.

NOTE: When you are using master and subordinate triggering, keep in mind you cannot
evaluate multiple form level triggers. The system limits you to a single form level
trigger for a given group of sections. You can repeat the same sections for
another form level trigger.

MARKING SUBORDINATE SECTIONS

The S flag, called the subordinate flag, identifies the section as subordinate to the parent
or master form. The subordinate flag is enabled when you place an uppercase S in the
Occurrence flag field (which is the 8th semi-colon delimited field of each table entry), and
may be separated from the overflow flag (0 or 1) by a comma. As long as there is an
uppercase S character in the flags field, the section will be treated as a subordinate. The .§
flag makes the section level trigger dependent on the successful triggering of its parent
form by the form level trigger for that form. If the parent form was not triggered on its
own account, such as if it was added because of an underlying non-subordinate section
being triggered, then all subordinate sections triggers are still ignored.

The intended use of this flag is to eliminate redundant conditional logic at both the section
and form level, as well as to maintain a hierarchy of form and section with respect to the
inclusion of these entities into a form set. A subordinate section cannot cause the
inclusion of the parent form because if the form was not triggered then the subordinate
section triggers are never processed. The use of subordinate sections lends itself largely to
situations where you want to trigger a form based on some condition, and then
conditionally add sections to that form.

If the form was not triggered then all underlying section triggers can be ignored, which
eliminates unnecessary processing. The subordinate flag also eliminates processing the
same conditional logic over and over again since the logic is only performed once at the
form level.

Subordinate sections are subordinate to the master (or parent) form level trigger being
true or false, and not actually to the form being triggered. Therefore, it is probably not a
good idea to mix subordinate and non-subordinate sections under the same parent form.
If the form was triggered by a non-subordinate section, and not by its own conditional,
then all subordinate sections for that parent form will still be ignored, despite the fact the
form was triggered.

149

Chapter 4

Setting Recipients and Copy Counts

150

MARKING MASTER FORMS

The master form flag, uppercase M, works in a similar manner but on the form level. The
M flag is used only with form level triggers and is ignored if used with a section level
trigger. The M flag is used to signify a master form level trigger, causing all of the section
level triggers beneath the master form level trigger to be treated as if they were
subordinate section level triggers.

When you use the M flag with a form level trigger, it does not matter whether the
underlying section level triggers have the § flag—they will all be treated as if they did. If
effect, if the logic in a master form level trigger fails, the form does not trigger and all of
the form’s section level triggers are ignored. The next section illustrates transaction
triggering logic through specific examples.

EXAMPLES

Examples

The transaction trigger table works with the form set definition table. The transaction
trigger table is usually named SETRCPTB.DAT and the form set definition table is usually
named FORM.DAT.

The FORM.DAT file defines which sections make up a form. There are many possible
combinations of sections that can constitute a form. A form can be comprised of a single
section or multiple sections. The FORM.DAT file also specifies which recipients get
which sections. It is possible to have a single form that is composed of four sections, three
of which are constant for all recipients, and one section that varies depending on recipient.

Recipient and copy count information contained in the FORM.DAT is also included in
the SETRCPTB.DAT transaction trigger table, so it is important to understand how these
two tables work together. Designing the two tables independently can often cause
undesired results because one table is overriding the other in a manner that the user did
not anticipate. But if the two tables are designed to work together, many complex forms
with conditional sections and copy counts can be implemented.

In this topic, numerous examples of form set definition files and transaction trigger tables
are shown to illustrate some basic relationships between the form set definition table file
and the transaction trigger table file.

In each example, the FORM.DAT and SETRCPTB.DAT tables are shown along with the
resulting POL file generated by the GenData program. The POL file shows the final form
sets created by the GenData program and is used as an input file by the GenPrint program
(along with the NA file) to generate printed output.

You will find examples which discuss:

* Specifying Copy Counts and Sections on page 152

* Using Transaction Codes on page 154

e Setting Up Search Mask and Sections on page 155

e Using the RECIPIF Rule on page 157

* Using Automatic Overflow on page 159

* Using Forced Overflow on page 161

* Setting Search Masks and Recipients on page 162

* Using the Set Recipient Table and Extract Files on page 163
* Formatting Search Masks on page 164

e Sorting Forms by Recipient on page 166

151

Chapter 4

Setting Recipients and Copy Counts

152

SPECIFYING CoPY COUNTS AND SECTIONS

One of the fields that is shared by both the transaction trigger table and the form set
definition table is the copy count. The copy count specifies the number of copies of a
section to be printed for a given recipient.

In the FORM.DAT file, there can be multiple copy counts—one for each recipient for
each section that makes up a form. However, in the SETRCPTB.DAT file, there is only
one copy count field for each entry. A single SETRCPTB.DAT entry can reference
multiple recipients however, so that one copy count field can be applied to more than one
recipient.

NOTE: You can also use GVM or DAL variables to set the copy count for a recipient.

For more information see the Docucreate User Guide or the Documaker Studio
User Guide.

The copy count is a typical interaction between the FORM.DAT and the
SETRCPTB.DAT. In this example, note from the FORM.DAT that the form
DECPAGE is made up of the sections PRUNAME, COMDEC1, COMDEC2, and
COMDECS3. The other form in the FORM.DAT is VARFLD, which is made up of one
section VARFIELD.

All the sections that make up DECPAGE and VARFLD have individual copy counts
associated with each recipient. Note that the sections COMDEC2 and VARFIELD have
their copy counts set to zero (0) for each recipient. This means that the default copy
counts for these sections is zero (0), and if these forms are included in a form set, these
sections will not print for any of the listed recipients unless their copy counts are changed

by the SETRCPTB.DAT table.

Now looking at the SETRCPTB.DAT file, the first entry causes the form DECPAGE to
be loaded, provided the search mask criteria is true (which it is in this case). This first entry
is known as a form level trigger because the section name field has been left blank. While
the first SETRCPTB.DAT entry references only INSURED and AGENT in the recipient
list field, the form is also triggered for COMPANY as well because COMPANY is listed
in the FORM.DAT with a copy count of 1 for all sections that make up DEC PAGE
except COMDEC2. COMDEC?2 is included in DEC PAGE for recipients INSURED
and AGENT because they are in the form level SETRCPTB.DAT entry recipients list
field.

The second SETRCPTB.DAT line is a section level entry, referencing the section
COMDEZC2 in the form DECPAGE. The purpose of this section level entry is to set the
copy count of the section COMDEC2 (which defaults to zero (0) in the FORM.DAT) so
that it will be included in or excluded from the DEC PAGE if the conditions in its
SETRCPTB.DAT entry are true (more on this in Example 3).

In this example, COMDEC2 has already been included for INSURED and AGENT by
the previous form level entry. If the conditions of this section level entry are true, the
section COMDEC2 will be included for recipient AGENT with a copy count of 1 (which
in this case is redundant since the previous form level entry already did this). However,
since the section level entry conditions are false, the copy count of COMDEC2 for
AGENT is set to zero (0). Looking at the POL file, COMDEC 2 only printed for
INSURED, because the copy count for AGENT was set to zero (0).

Examples

The final three SETRCPTB.DAT entries are all form level entries for VARFLD. Note
that in the FORM.DAT, VARFLD, which is composed of one section, VARFIELD has
two recipients, INSURED and COMPANY, both of which have copy counts of zero (0).
The three SETRCPTB.DAT entries for VARFLD each reference a different recipient in
the recipient list field and assign them copy counts. COMPANY gets 1 copy, INSURED
gets 2 copies, and AGENT gets 3 copies. However, looking at the POL file, VARFLD
printed once for COMPANY and twice for INSURED, but it did not print at all for
AGENT. This is because, even though AGENT was included in the SETRCPTB.DAT
entry, AGENT was never an original recipient for VARFLD in the FORM.DAT.

FORM.DAT file ; SAMPCO; LB1; DEC PAGE; ;R;; PRUNAME | D<INSURED (1) ,COMPANY (1) ,AGENT (1)>/
COMDEC1 | DS<INSURED (1) , COMPANY (1) , AGENT (1) >/
COMDEC?2 | DS<INSURED (0) , COMPANY (0) , AGENT (0) >/
COMDEC3 | DS<INSURED (1) , COMPANY (1) , AGENT (1) >;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘D<INSURED(O),COMPANY(O)>;

SETRCPTB.DAT file ; SAMPCO; LB1 ; DEC
PAGE; ; T1l; INSURED, AGENT; 11, HEADERREC, 96,~0;0;0;0;1;;;;

; SAMPCO; LB1; DEC
PAGE; COMDEC2; T1;AGENT; 11, HEADERREC, 11, SPCIALREC, 25, Special;0;0;0;1;

; SAMPCO; LB1; VARFLD; ; T1; COMPANY; 11,HEADERREC, 96,~0;0;0;0;1;;;;

; SAMPCO; LB1; VARFLD; ; T1; INSURED; 11, HEADERREC, 96,~0;0;0;0;2;; ; ;

; SAMPCO; LB1; VARFLD; ; T1;AGENT; 11, HEADERREC, 96,~0;0;0;0;3;;;;
POL file ; SAMPCO; LB1 ; DECPAGE; ; R; ; PRUNAME | D<INSURED, COMPANY , AGENT> /

COMDEC1 | DS<INSURED, COMPANY , AGENT>/COMDEC2 | DS<INSURED, >/
COMDEC3 | DS<INSURED, COMPANY , AGENT> ;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘DN<INSURED(2),>;
\ENDDOCSET\ 1234567

;SAMPCO;LBl;DECPAGE;;R;;PRUNAME‘D<INSURED,COMPANY,AGENT>/
COMDECl|DS<INSURED,COMPANY,AGENT>/COMDEC2‘DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘DN<INSURED(2),>;
\ENDDOCSET\ 3234567

;SAMPCO;LBl;DECPAGE;;R;;PRUNAME‘D<INSURED,COMPANY,AGENT>/
COMDECl|DS<INSURED,COMPANY,AGENT>/COMDEC2‘DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘DN<INSURED(2),>;

\ENDDOCSET\ 5234567

153

Chapter 4

Setting Recipients and Copy Counts

FORM.DAT file

SETRCPTB.DAT file

154

POL file

USING TRANSACTION CODES

In this example, the same environment as in the first example, Specifying Copy Counts
and Sections, is used. In this case, however, the second entry in the SETRCPTB.DAT has
been slightly modified. The transaction code field has been changed from T1 to T2 to
illustrate that not having the proper transaction code will cause that entry to be skipped.

In this example, the SETRCPTB.DAT section level entry that references COMDEC2 is
not being evaluated because the transaction code field does not match the data contained
in the extract file. The result of skipping this entry is, unlike the previous example, where
COMDEC?2 did not print for AGENT, in this example COMDEC2 prints for both
AGENT and INSURED.

; SAMPCO; LB1; DEC PAGE;;R;;PRUNAME|D<INSURED(1),COMPANY(l),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(l),AGENT(l)>/
COMDEC2|DS<INSURED(O),COMPANY(O),AGENT(O)>/
COMDEC3|DS<INSURED(1),COMPANY(l),AGENT(l)>;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|D<INSURED(O),COMPANY(O)>;

; SAMPCO; LB1; DEC

PAGE; ; T1; INSURED, AGENT; 11, HEADERREC, 96,~0;0;0;0;1;;;;

; SAMPCO; LB1; DEC

PAGE; COMDEC2; T2 ; AGENT; 11, HEADERREC, 11, SPCIALREC, 25, Special;0;0;0;1;
; SAMPCO; LB1; VARFLD; ; T1; COMPANY; 11, HEADERREC, 96,~0;0;0;0;1;;;;

; SAMPCO; LB1; VARFLD; ; T1; INSURED; 11, HEADERREC, 96,~0;0;0;0;2;;;;

; SAMPCO; LB1; VARFLD; ; T1; AGENT; 11, HEADERREC, 96,~0;0;0;0;3;;;;

; SAMPCO; LB1; DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDECl|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

; SAMPCO; LB1 ; VARFLD; NEW FORM;RD;;VARFIELD|DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;
\ENDDOCSET\ 1234567

; SAMPCO; LB1; DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDECl|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;
\ENDDOCSET\ 3234567

; SAMPCO; LB1; DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDECl|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;
\ENDDOCSET\ 5234567

FORM.DAT file

SETRCPTB.DAT file

Examples

SETTING UP SEARCH MIASK AND SECTIONS

There are two search mask fields in the SETRCPTB.DAT table structure. The first search
mask is known as the counter search mask because it works with the overflow counters that
immediately follow it in the transaction trigger table format, provided that the overflow
flag is set.

The second search mask is known as the #rue/ false search mask. Both search masks can be
used to set conditions to evaluate whether a set recipient entry should be executed. In this
example, the second SETRCBTP.DAT entry that references COMDEC2 has a multiple
condition counter search mask.

NOTE: If you want the system to stop searching after it finds the first match, use the
true\ false search mask instead of the counter search mask. If you place the search
mask in the counter search mask field, the system finds the first match and then
looks for multiple occurrences.

The first entry in the SETRCPTB.DAT table causes the form DEC PAGE to be triggered
for recipients INSURED and AGENT. All sections that make up DEC PAGE and have
INSURED and/or AGENT as recipients (from the FORM.DAT file) ate triggered with
a copy count of 1 for each recipient. The second SETRCPTB.DAT entry is a section level
entry that references COMDEC2.

The search mask in this entry will obviously fail because the first condition looks for
HEADERREC at offset 11 and the second condition also looks at offset 11, but for
SPCIALREC. Both conditions cannot be true at the same time, so the search mask fails.
The result of this section level search mask failing is to set the copy count for the
recipients in the recipient list field, in this case AGENT, to zero (0).

Were the search mask true, AGENT would have been set to a copy count of 1 (which
would be no change, since AGENT already had a copy count of 1 for COMDEC?2).

Looking at the POL file, COMDEC2 was printed only for INSURED because the copy
count of COMDEC2 for AGENT was set to zero (0) when the section level entry in the
SETRCPTB.DAT file failed.

; SAMPCO; LB1; DEC PAGE;;R;;PRUNAME‘D<INSURED(1),COMPANY(l),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(l),AGENT(l)>/
COMDEC2|DS<INSURED(O),COMPANY(O),AGENT(O)>/
COMDEC3|DS<INSURED(1),COMPANY(l),AGENT(1)>;

7 SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD‘D<INSURED(O),COMPANY(O)>;

; SAMPCO; LB1; DEC
PAGE; ; T1; INSURED, AGENT; 11, HEADERREC, 96,~0;0;0;0;1;;;;

; SAMPCO; LB1; DEC
PAGE; COMDEC2; T1;AGENT; 11, HEADERREC, 11, SPCIALREC, 25, Special;0;0;0;1;

; SAMPCO; LB1; VARFLD; ; T1; COMPANY; 11, HEADERREC, 96,~0;0;0;0;1;;;;

; SAMPCO; LB1; VARFLD; ; T1; INSURED; 11, HEADERREC, 96,~0;0;0;0;2;;;;

155

Chapter 4

Setting Recipients and Copy Counts

; SAMPCO; LB1; VARFLD; ; T1; AGENT; 11, HEADERREC, 96,~0;0;0;0;3;;;;

POL File ; SAMPCO; LB1 ; DECPAGE; ; R; ; PRUNAME | D<INSURED, COMPANY , AGENT> /
COMDEC1 | DS<INSURED, COMPANY , AGENT>/COMDEC2 | DS<INSURED, >/
COMDEC3 | DS<INSURED, COMPANY , AGENT> ;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;
\ENDDOCSET\ 1234567

;SAMPCO;LBI;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDECl|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<COMPANY>;
; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;
\ENDDOCSET\ 3234567

;SAMPCO;LBl;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDECl|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

; SAMPCO; LB1; VARFLD; NEW FORM;RD;;VARFIELD|DN<COMPANY>;
; SAMPCO; LBl ; VARFLD; NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 5234567

156

FORM.DAT file

SETRCPTB.DAT file

Examples

UsING THE RECIPIF RuULE

The RECIPIF rule is the primary rule used in the custom rule field. There are other rules
which have been written for specific implementations that have been used in this field,
but the RECIPIF rule is a patt of base. The RECIPIF rule allows for customized search
mask evaluations.

In this example, the RECIPIF rule is being used to evaluate two different conditions:

e does ‘1995’ exist beginning at offset 51 in records with HEADERREC beginning at
offset 11

e does T exist at offset 45 in records with FRMLSTREC beginning at offset 11

Looking at the entry in the SETRCPTB.DAT, notice that there are no search masks - only
the RECIPIF rule is being used. Following the Search Mask 2 field, the rule name appears,
and the rule itself appears in the following field. Each element of the rule is separated by
double colons (::).

The first RECIPIF statements assign variables to the search criteria. In this case, A is
assigned to the information appearing in the four characters beginning at offset 51 in
records with HEADERREC beginning at offset 11. And B is assigned to the information
appearing in the two characters beginning at offset 45 in records with FRMLSTREC
beginning at offset 11.

The next RECIPIF statement sets up the evaluation logic for the rule. What should A
equal? What should B equal? Should both conditions be true, or just one? In this case, A
should be 1995’ and B should be “T'1°, and both need to be those values for the rule to be
evaluated as true. An OR condition could have been used, which would have been true if
either A or B matched their desired values.

The next RECIPIF statements set the return values. In this case, if A=1995” and B="T1’,
then a 1’ is returned (note that the boolean ‘1’ is enclosed both in quotes and carats, such
as “~177). If those conditions are not met, then return a Boolean zero (0). These return
values can be reversed to return a zero (0) when the RECIPIF criteria is true and a one
(1) when false, should the need arise in a particular implementation. The last RECIPIF
entry is the END statement. Here is an example of the RECIPIF rule syntax:
;recipif;varl={offset,value offset, length}::var2={offset,value

offset,length} ::if((varl=‘varlvalue’) boolean
(var2=‘var2value’)) ::return(“"#7”) ::else::return(“"#7”) ::end: :;

NOTE: Thete is a space between offset,value and offsetlength .

; SAMPCO; LB1; DEC PAGE;;R;;PRUNAME‘D<INSURED(O),COMPANY(O),AGENT(O)>/
COMDEC1|DS<INSURED(O),COMPANY(O),AGENT(O)>/
COMDEC2|DS<INSURED(O),COMPANY(O),AGENT(O)>/
COMDEC3|DS<INSURED(O),COMPANY(O),AGENT(O)>;

; SAMPCO; LB1; DEC

PAGE; ; ; INSURED,AGENT; ;0;0;0;1; ;recipif;A={11, HEADERREC
51,4}::B={11,FRMLSTREC 45,2}::1f((A="'1995') AND
(B="T1'))::return(""1"")::else::return("”0™")::end: :;

157

Chapter 4

Setting Recipients and Copy Counts

158

POL file

; SAMPCO; LB1; DEC PAGE; ;R; ; PRUNAME | D<INSURED, AGENT>/
COMDEC1 | DS<INSURED, AGENT>/COMDEC?2 | DS<INSURED, AGENT> /
COMDEC3 | DS<INSURED, AGENT> ;

\ENDDOCSET\ 1234567

; SAMPCO; LB1; DEC PAGE;;R;;PRUNAME|D<INSURED,AGENT>/
COMDECl|DS<INSURED,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,AGENT>;

\ENDDOCSET\ 2234567

FORM.DAT file

SETRCPTB.DAT file

POL file

Examples

USING AUTOMATIC OVERFLOW

In some cases, there is information on a form that will repeat an unknown number of
times. For example, an auto insurance policy may contain a form that lists the vehicles
owned by the insured. The number of vehicles will vary from one insured to another, so
there is no way to know in advance how many lines will be needed on a form to list the
vehicles. Overflow exists to handle these situations.

There are two types of overflow in the transaction trigger table, forced and automatic. In
this example, automatic overflow is used. In automatic overflow, the system automatically
determines how many entries exist and inserts them in the form.

Looking at the SETRCPTB.DAT, there is only one section level entry, referencing the
section cgdcbd. Looking at the FORM.DAT, section cgdcbd has a default copy count of
zero (0), while all the other sections have a default copy count of one (1) for all recipients.
So, triggering the section cgdecbd will trigger the remaining sections that make up the form
CGDEC.

The SETRCPTB.DAT entry has a simple counter search mask and has the overflow field
(occurrence flag) set. The next two overflow-related fields are set to zero (0), so we know
that this is an automatic overflow situation.

When this SETRCPTB.DAT entry is executed, it will keep track of the number of records
that exist in the extract file that meet this criteria and automatically insert that number of
cgdcbd sections into the form CGDEC. Looking at the POL file in this example, many
cdgebd sections were inserted into the form to reflect the number of entries in the extract
file that met the specified transaction trigger search criteria.

;FSI;GL;CGDEC;General Liability
Declarations;RD;;cgdctp\FDSOX<INSURED(l),COMPANY(1)>/
cgdcbd | RDS<INSURED (0) , COMPANY (0) >/
ngcbt|RDS<INSURED(1),COMPANY(1)>/
cgdcft|RDSOY<INSURED(l),COMPANY(1)>;

;FSI;GL; CGDEC; cgdcbd; T1l; INSURED, COMPANY;11,CLSSCDREC;1;0;0;1;;;;

;FSI;GL;CGDEC;General Liability
Declarations;RD;;cgdctp\FDSOX<INSURED,COMPANY>/

cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/

cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/

cgdcbd | RDS<INSURED, COMPANY>/cgdcbd RDS<INSURED,COMPANY>/ngde|\

RDS<INSURED,COMPANY>/cgdcbd‘RDS<INSURED,COMPANY>/

cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RD\

S<INSURED,COMPANY>/cgdde‘RDS<INSURED,COMPANY>/

cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd |RDS<\

INSURED,COMPANY>/ngde\RDS<INSURED,COMPANY>/

cgdcbd RDS<INSURED,COMPANY>/ngde‘RDS<INSURED,COMPANY>/
cgdcbd RDS<INSURED,COMPANY>/ngde\RDS<INSURED,COMPANY>/
cgdcft RDSOY<INSURED,COMPANY>/cgdctp\RDSOX<INSURED,COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RD\

159

Chapter 4

Setting Recipients and Copy Counts

S<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/

cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<INSURED, COMPANY>/
cgdcbd | RDS<INSURED, COMPANY>/cgdcbd | RDS<\

INSURED,COMPANY>/ngde|RDS<INSURED,COMPANY>/
ngcbt|RDS<INSURED,COMPANY>/ngCft|RDSOY<INSURED,COMPANY>;

\ENDDOCSET\ 5234567

160

FORM.DAT file

SETRCPTB.DAT file

POL file

Examples

USING FORCED OVERFLOW

In this example, forced overflow is used. Forced overflow differs from automatic
overflow in that there are a set number of overflow entries that can be placed on a given
form.

For example, if a form is designed to list all the vehicles owned by an insured, the form
designer might have a section that has room to list up to two vehicles. For insureds with
two or less vehicles, only that one section is needed. However, for insureds with more
than two vehicles, the designer has a separate add-on section to list the remaining vehicles.
Forced overflow is used in situations such as this.

In this example, there are two sections in the FORM.DAT that make up the form FCP
DEC. The first section, FCPDEC, is the main section, and the second section,
FCPDEC2, is the overflow section. Both sections have copy counts of zero (0), allowing
the SETRCPTB.DAT entries to control the copy counts.

The first SETRCPTB.DAT entry triggers the form for all recipients (in this case
INSURED), leaving the copy counts set to zero (0). The next entry sets FCPDEC’s copy
count to 1 if the search mask is true. The final SETRCPTB.DAT entry is the forced
overflow entry. The same search criteria is used, but the overflow (occurrence) flag is set.

The next two overflow fields specify how many entries are to be split among the two
sections. The records per overflow section (6 in this example), specifies how many records
will fit on the FCPDEC2 overflow section. The next field, records per first section,
specifies how many records will fit on the primary section FCPDEC (2 in this example).
So, FCPDEC2 will only be triggered if the search mask criteria is true and there are more
than 2 occurrences of this record type.

Looking at the POL file, FCPDEC2 was triggered twice, so there must have been at least
9 overflow records. The first two went on the first section FCPDEC, the next six on the
first FCPDEC2 section, and the remaining on the second FCPDEC2 section.

;FSI;CPP;FCP DEC;FCPDEC OVERFLOW;RO; ; FCPDEC |D<INSURED(0)>/
FCPDEC2 | D<INSURED (0) >;

;FSI;CPP;FCP DEC; ;T1l; INSURED; 11, PREMLCREC;0;0;0;0;;;;
;FSI;CPP; FCP DEC;FCPDEC;T1; INSURED; 11, PREMLCREC;0;0;0;1;;;;

;FSI;CPP; FCP DEC; FCPDEC2;T1; INSURED;11,PREMLCREC;1;6;2;1;;;;

;FSI;CPP;FCP DEC;FCPDEC OVERFLOW;RO; ; FCPDEC | D<INSURED>/
FCPDEC2 | D<INSURED>/FCPDEC2 | D<INSURED> ;

\ENDDOCSET\ 4234557

161

Chapter 4

Setting Recipients and Copy Counts

FORM.DAT file

SETRCPTB.DAT file

162

POL file

SETTING SEARCH MASKS AND RECIPIENTS

In this example, two transaction trigger table concepts are illustrated. First, notice that
there are two search masks in the SETRCPTB.DAT entries. Both the counter and true/
false search masks are being used. Also, in the recipient selection from the
SETRCPTB.DAT is used.

The FORM.DAT consists of a single form, OP654, made up of a single section, addr.
section addr is defined for three recipients, INSURED, COMPANY, and AGENT, all
with default copy counts of zero (0). In the SETRCPTB.DAT, there are two form level
entries. In the first entry, we are looking for ‘1995’ at offset 51 in records with
HEADERREC at offset 11 and 0 at position 20 in records with FRMLSTREC at offset
11.

If both of these conditions are true, OP654 is triggered for INSURED with a copy count
of 1. In the second entry, the same conditions apply for AGENT, with the exception of
looking for ‘1996’ in the counter search mask (rather than 1995’).

Notice in the POL file that form OP654 was triggered for INSURED only, indicating that
the second SETRCPTB.DAT entry failed. The second entry failed because 1996’ did not
appear at offset 51 in records with HEADERREC at offset 11. This example illustrates
that the two search masks work with a logical AND condition, since the true/false search
mask is true in both entries.

This example also illustrates letting the SETRCPTB.DAT control the copy counts for a
form. When the section OP654 was triggered for INSURED in the first entry, it was
triggered for all recipients. Since the default copy count for all recipients is zero (0), and
only INSURED was set to a copy count of 1 in the SETRCPTB.DAT entry, OP654 was
only printed for INSURED.

; SAMPCO; LB2;0P654;First
Letter;RD;;addr|DS<INSURED(O),COMPANY(O),AGENT(O)>;

; SAMPCO; LB2;0P654; ; T1; INSURED; 11, HEADERREC,51,1995;0;0;0;1;11;FRMLS
TREC, 20,0;

; SAMPCO; LB2;0P654; ; T1;AGENT; 11, HEADERREC, 51,1996;0;0;0;1;11, FRMLSTR
EC,20,0;

; SAMPCO; LB2;0P654;First Letter;RD;;addr|DS<INSURED,>;
\ENDDOCSET\ 6SAMPCO
; SAMPCO;LB2;0P654;First Letter;RD;;addr |DS<INSURED, >;

\ENDDOCSET\ 8SAMPCO

Examples

USING THE SET RECIPIENT TABLE AND EXTRACT FILES

Here are some hints on how to best use the set recipient table (SETRCPTB.DAT) and
extract files:

Fewer triggers equals better performance. Each trigger is like a condition statement
for the system to evaluate. The more conditions the system has to evaluate, the
slower the processing cycle.

Use the master (M) and subordinate (S) flags to avoid repetition.

The set recipient table contains both form and section level triggers to handle cases
of conditional sections on forms. A section level trigger can be used to trigger a form.
This is beneficial in situations where a conditional section can trigger header and
footer sections. If, however, you use it improperly, you will add redundant
conditional logic at both section and form level—which slows performance.

There are two flags (S and M) which you can use to control the evaluation of section
level triggers and to maintain a hierarchy of form and section with respect to the
inclusion of these entities into a form set. The S flag, called the subordinate flag,
identifies the section as subordinate to the parent or master form level trigger. If the
form is not triggered, all underlying section triggers can be ignored, which eliminates
unnecessary processing. The subordinate flag also eliminates processing the same
conditional logic over and over again since the logic is only performed once at the
form level.

The master form flag (M) works in a similar manner but at the form level. When you
use the M flag with a form level trigger, it does not matter whether the underlying
section level triggers have an S flag—all will be treated as if they did. If the logic in a
master form level trigger fails, the form does not trigger and all of the form’s section
level triggers are ignored.

Limit your use of the Reciplf rule.

The Reciplf rule is just like the IF rule except it is used in the SETRCPTB.DAT file.
The more conditions the system has to evaluate, the slower the processing cycle.
Avoiding the Reciplf rule often depends on the structure of the extract file.

The ideal situation is to trigger a form or section based on one search criteria. If you
want to trigger a form or section based on more than one search critetia, you may
need to use the Reciplf rule. The more conditions you have, the more complicated
the Reciplf rule will be. If the system has to look for a value in a given range of data
instead of at an exact location, you have to add a long and complicated recipif. There
is a price to pay for flexibility and it’s paid in performance.

Structure the data in your extract file to be read in the order that it will be processed.
This improves performance since the system will find the next piece of data to
process faster.

163

Chapter 4

Setting Recipients and Copy Counts

FORMATTING SEARCH MASKS

Here are some tips to keep in mind when formatting a search mask.
Spaces * You cannot have a space in any part of the search mask after the comma following
an offset unless you intend to search for that space in the extract file. For example,
"10, DATA"
is not the same as
"10, DATA"

In the second mask, the space is considered part of the search string.

* You cannot have spaces following D.4T.A that you do not want to include in the
search. For example,

"10,DATA, 20, DATA"
is not the same as
"10,DATA ,20,DATA"

In the latter, the space following the first word DATA is considered part of the
search text.

* You can have space following the numerical offset value. For example, “70 ,DATA”
is interpreted the same as “70,DAT.A".

Commas You cannot search for data which contains a comma. For instance, you cannot have a
search mask of
"10,A,B"
where you expect to find
"A,B"
in your extract row.

You can, however, write the search mask to exclude every other possible character that
might occur between A at offset 10 and B at offset 12. For instance, you could create this
search mask:

"10,A,12,B,11,~+,11,~="
assuming that the only other possible combinations are A+B and A=B.
Tildes The tilde (~) represents a logical NOT of the search operation. The tilde must

immediately follow the comma—Dbut remember that any space after the comma is
considered part of the search text.

For example, a search mask of
"10, ~DATA"

is only true if “DATA” does not occur starting at offset 10.

To search for text that beings with a tilde, include two tildes in a sequence. For example,
“10,~~DATA" tells the system to search for “~D.4T.A” beginning at offset 10.

164

Parentheses

Using the OR condition

Using the NOT
condition

Using AND and OR
conditions

Examples

If, however, the tilde is not the first character in the search text, you do not duplicate the
character. For instance, “70,D.AT.A~"is all you have to enter to find “DAT.A~ " starting
at offset 10.

There is no way to search for text that begins with an open parenthesis. For instance, if
you use a search mask like

"10, (,20,DATA"

assuming that the open paren character would be at offset 10, you will not get the results
you want.

The OR condition is defined as OFFSET,(DATA,DATA,DATA). You must include a
comma between the offset value and the open parenthesis. In addition, you cannot include
spaces between the comma and open parenthesis or the calculation will be mishandled.

You can have any number of search text items inside the parenthesis as long as they are
separated by commas. Having only one search text inside the parenthesis is no different
than not using the OR condition. For example, “70,D.AT.A"is the same as “70,(DATA)”
and “710,D.AT.A,20,(MORE)” is the same as “10,D.A1.A4,20, MORE".

You cannot use the tilde NOT conditions) with OR condition data in any fashion. It
cannot be used outside the parentheses, as shown here

OFFSET, ~ (MORE, DATA)
nor can you include it inside the parentheses, as shown here
OFFSET, (~MORE, DATA)

The NOT condition is not supported with the OR search criteria.

You can include a mix of AND and OR conditions, but the result is an AND operation.
In other words, each individual search mask operation must evaluate to TRUE before the
result is assumed TRUE. Here is an example:

10,DATA, 20, (MORE, DATA) ,

This statement will only be TRUE when “DATA” occurs starting at offset 10 and
“MORE” or “DATA” occur at offset 20.

Here are some additional examples:
10, (MORE) , 10, (DATA)

will never be TRUE since the text at offset 10 cannot be both “MORE” and “DATA".
10, (MORE, DATA) , 10 (SOME, DATA)

will only be TRUE when “D.ATA” occurs at offset 10. If the word “SOME” or “MORE”
occurs at offset 10, the other part of the condition would return FALSE and the result of
the entire statement would be FALSE. So, you can rewrite this statement simply as
“10,DATA".

165

Chapter 4

Setting Recipients and Copy Counts

SORTING FORMS BY RECIPIENT

Use the SortFormsForRecip callback function to sort forms in a different order,
depending on recipient. This function reads the given sort table and sorts the forms by
recipient. A form identifier called a Document Type Number (DTN) tells the system how
to sort the forms. The DTN resides in the form description of the FORM.DAT file and
begins with a tilde (~).

Here is an example of how you can use Form Set Manager to specify a DTN in the

The Form Description reads:

ABC~10.
The DTN is 10. —— ||

FORM.DAT file.
o [=]
Fie | Edt Tools Help
= ﬁ L\MRLYS artFarmsF o ecipM siRes\Def\FORM.DAT {))) 5 [x]
=5 [SAMPTOSMP) Formm Mame: - DecPage Options——
+ [E} [FORMIIABE-10] FORMI & Nodec
o [b IFOR B ER=20) Form descripbon: -~ E:;:?w
2D (FORMIIGHI™ZD]
LEC-10 © Subdec
Options
" Required [Hidden [~ Multicapy
I~ Pull [~ Staple [~ Overllow
~Size Options ~ Diientati
% Portrait
Letter " Landscape
Cancel | Help

Keep in mind:

166

This feature does not support running with the MultiFilePrint callback function.

Use the DTN to identify the category of the form and to specify the assembly order
of the form.

Form sets with identical DTN are sorted and printed in the order that they are
triggered.

When running in single-step mode, to preserve the order of the original forms being
triggered and the NA data being written, these rules must be set in this order in the
AFGJOB.JDT file:

;PrintFormset; ;
;WriteOutput; ;
;WriteNaFile; ;

Otherwise, the POLFILE.DAT and NAFILE.DAT files will be out of sync.

If a form should print for a particular recipient and it is omitted from the sort table,
the system warns you. For example, suppose Form1 with a DTN of 10 should be
printed for RECIPIENT1 but this form was not specified in the sort table. Here is
an example of the warning you would see in the error file:

Warning: Document <FORM1>, Description <One~10>

Recipient <RECIPIENT1> has no matching recipient codes in sort table.

Although these error messages do not stop the processing, the result will not be
sorted correctly.

INI files

Sort tables

Examples

Here is how you set up your INI file:

< Print >
CallBackFunc= SortFormsForRecip
< Sort_Forms >
TableName = ..\MstrRes\Table\sort.tbl

This tells the system to use a sort table called SORT.TBL.

Keep in mind, when using the SortFormsForRecip rule on UNIX platforms, you have to
enter the extract path with forward slashes, as shown here:

< Sort_Forms>
TableName = /mstrres/table/sort.tbl

Here is an example of a sort table called SORT.TBL:

;*;10,20,30;
; CUSTOMER; 10,30,20;
;AGENT, OFFICE;20,30,10;

The first line in the sort table defines the default sort order for all recipients not defined
in the sort table. The second and third lines are sort records. You set up a sort record for
each different sort order.

To set up a sort record, begin with a semicolon (;), followed by the recipient names
separated with commas (,). End the list of recipients with a semicolon (;). Here is an
example:

;Recipientl,Recipient2,Recipient3;

Next, and on the same line, list the D'TNs associated with the form sets. Separate the
DTNs with commas () and end the list with a semicolon (;). Here is an example of a sort
record:

;Recipientl,Recipient2,Recipient3;10,20,30;

Based on the form sets and the SORT.TBL file shown above, here is an excerpt from the
resulting POLFILE.DAT file:

;SAMPCO;SMP;FORMl;One~lO;R;;ImageA‘D<CUSTOMER,AGENT,OFFICE>;
;SAMPCO;SMP;FORMI.l;Two~lO;R;;IMAGEA2‘D<CUSTOMER,AGENT,OFFICE>;
;SAMPCO;SMP;FORMZ;Three~20;R;;IMAGEB‘DS<CUSTOMER,AGENT,OFFICE>;
;SAMPCO;SMP;FORM3;Four~30;R;;IMAGEC‘D<CUSTOMER,AGENT,OFFICE>;
\ENDDOCSET\ 1234567890

The print file for CUSTOMER will be in this order:
; SAMPCO; SMP; FORM1; One~10;R; ; ImageA
; SAMPCO; SMP; FORM1.1; Two~10;R; ; IMAGEA2
; SAMPCO; SMP; FORM3 ; Four~30;R; ; IMAGEC
; SAMPCO; SMP; FORM2 ; Three~20;R; ; IMAGEB
The print file for AGENT and OFFICE will be in this order:

; SAMPCO; SMP; FORM2 ; Three~20;R; ; IMAGEB
; SAMPCO; SMP; FORM3 ; Four~30;R; ; IMAGEC

; SAMPCO; SMP; FORM1; One~10;R; ; ImageA

; SAMPCO; SMP; FORM1.1; Two~10;R; ; IMAGEA2

167

Chapter 4

Setting Recipients and Copy Counts

168

SUMMARY

This chapter explains the major principles illustrated in the previous examples and reviews
the triggering logic used by the transaction trigger table. Keep in mind that the transaction
trigger table cannot be viewed in isolation; it works with the form set definition table, and
both must be examined to predict triggering behavior. The form set definition table
defines the default recipients and copy counts for form sections. The transaction trigger
table may override some or all of the form set definition table settings.

In the case of the copy count, the form set definition table defines a default copy count
for each recipient of each form section. A transaction trigger table entry defines a copy
count for one or more recipients. This transaction trigger table copy count may be the
same or different from that already defined in the form set definition table. When
evaluated, a transaction trigger table entry’s copy count will override the one already
defined for those recipients in the form set definition table for that form section.

A similar relationship exists between the form set definition table and the transaction
trigger table for recipients. The form set definition table defines the default recipients for
a form section. The transaction trigger table can be used to change the copy count for
those recipients. And if a transaction trigger table entry sets the copy count to zero (0) for
a particular recipient, it has the effect of removing that form section for that recipient.
Keep in mind that a recipient may not be included in a transaction trigger entry unless that
recipient has already been included for that form section in the form set definition table.

For a transaction trigger table entry to be evaluated, three of the first five transaction
trigger fields (GroupName 1, GroupName 2, and Transaction Code) must match some
records within the extract file. For example, if there are no records with the transaction
code specified in the trigger, that trigger will be skipped. If extract records exist that match
these three fields, the remaining fields of that trigger are evaluated. A blank transaction
code field is treated as a wildcard, accepting any transaction code for the trigger.

Of the two transaction trigger table search masks, the true/false mask is evaluated first.
Once an extract file record has been found that meets the true/false search mask criteria,
the counter search mask is evaluated next, if one is present. The counter and true/false
search masks work the same way when the overflow flag is not set. But when the overflow
flag is set, the counter search mask criteria search does not stop at the first matching
extract file record - the system will continue to search for all matching extract file records.

When the system evaluates the counter ot true/false mask, the system searches through
all the records in the extract file for the specified transaction. If any of the transactions
match the search criteria, the condition is considered true. If there are multiple records
with the same search criteria, the system will evaluate all of them. If any of these records
match the search criteria, the trigger condition is considered true.

For example, if Search Mask 2 is specified as 11,SPECIAL,20,5 and there are two records
containing SPECIAL at offset 11, the first one an A at offset 20 and the second one with
a 5 at offset 20, the system will evaluate both records and finding the second meets the
search criteria, the trigger condition is considered true. The system will stop searching
once a True condition is found, except in overflow situations. For overflow situations, the
system will not stop searching. Rather, it will keep searching and counting the number of
True conditions. The system will then trigger the number of sections or forms based on
that count.

When the custom rule RECIPIF is evaluated, the search is different than that used for
Search Masks 1 and 2 in that when the system only evaluates the first found record which
matches the search criteria. For example, if the custom rule is specified as follows:

Summary

;Recipif;A={11, SPECIAL
51,4}::1f(A="1995") ::return(“"1"”) ::else::return(*"0"") ::end::
There are two records in the extract file containing SPECIAL at offset 11. The first one

has 1994 at offset 51, and the other has 1995 at offset 51. When the system stops
searching once it finds the first record which matches the search criteria. In this case, it
evaluates the record contains 1994 and determines that the trigger condition is false.

When the overflow flag is set, the next two transaction trigger table entry fields, records
per overflow section and records per first section, are examined. If both of these fields
are set to zero (0), the system will automatically handle the overflow. If these fields are
used, they specify how many entries are to be split among the two sections. The records
per overflow section specifies how many records will fit on the overflow section. The next
field, records per first section, specifies how many records will fit on the primary section.

At a minimum, a transaction trigger table entry must contain a GroupNamel value, a
GroupName?2 value, a Form Name value, and a Copy Count value. A section level trigger
must also contain a section Name value. At a minimum, the three overflow fields must be
set to zero (0). A blank Transaction Code field acts as a wildcard, accepting any
transaction code. A blank Recipient List field will default to the recipients named in the
form set definition table. And the two Search Mask fields and the Custom Rule field may
be used as needed to produce the desired triggering results.

169

Chapter 4

Setting Recipients and Copy Counts

170

Chapter 5

Working with Fonts

A font is a collection of letters, symbols, and numbers
which share a particular design. This chapter provides
general information on font concepts and types.

Documaker Studio includes tools for managing the

fonts you use. You can learn more about Studio’s Font

manager in the Documaker Studio Users Guide.

The Docucreate system also includes a tool, called Font

Manager, which lets you manage your fonts.

Topics included are as follows:

General Font Concepts on page 172

Using Code Pages on page 177

Types of Fonts on page 185

Using System Fonts on page 188

Using Font Cross-Reference Files on page 194
International Language Support on page 198
Setting Up PostScript Fonts on page 202

Font Naming Conventions on page 207

Mapping Fonts for File Conversions on page 208

NOTE: The Documaker system also includes several

utilities you can use to work with fonts. These
utilities are mentioned where appropriate
throughout this chapter and are discussed in
detail in the Docutoolbox Reference.

171

Chapter 5

Working with Fonts

GENERAL FONT

172

CONCEPTS

FONT TERMINOLOGY

The following is a glossary of some common typographic terms you may encounter when
working with fonts.

Typography is the art and technique of selecting and arranging type styles, point sizes, line
lengths, line spacing, character spacing, and word spacing for typeset applications.

A typeface is a unique design of upper- and lower-case characters, numerals, and special
symbols. Times-Roman, Arial-Italic, Courier-Bold are examples of typefaces.

A fontis the implementation, for a specific device, of one typeface. A font contains a group
of characters (letters, numbers, punctuation, and so on) which have a specific form and
size. As you can see below, a Courier font is one which is designed to look like it was
produced by a typewriter.

Courier fonts look like text produced by a typewriter.

A font family is family of related font typefaces. Times-Roman, Times-Bold, Times-Italic,
and Times-BoldItalic are typefaces which belong to the Times font family.

Font size refers to the vertical point size of a font, where a point is about 1/72 of an inch.
There are several other terms used to describe the characteristics of a font, including:

e Ascender

* Baseline

e Descender

The ascender is the portion of a lowercase character that extends above its main body, as
in the vertical stem of the character b.

The baseline is an imaginary line upon which the characters in a line of type rest.

b_C_X¥_ — — baseline

The descender is the portion of a lowercase character that extends below the baseline, as in
yorg

bcxy.

Kerning is the process of decreasing space between two characters for improved

ascender

descender

readability, such as tucking a lowercase o under an uppercase T. A variation of kerning,
called fracking, involves decreasing the amount of space between all characters by a
specified percentage.

National language
terminology

General Font Concepts

Leading is the amount of vertical space between lines of text. Leading (pronounced /edding)
is measured from baseline to baseline. On old hot-type printing presses, this was done by
inserting strips of lead between the cast type.

Fonts are measured in poinfs. A point is a typographical unit of measure which equals

about 1/72 of an inch. For example, this is a 16 pOiﬂt font while the rest of the

line uses a 10 point font.

A pica is another typographical unit of measurement equal to 12 points. There are about
6 picas in one inch.

A twip is yet another typographical unit of measurement equal to 1/20th of a point. There
are 1440 twips to one inch, 567 twips to one centimeter.

Piteh refers to the amount of horizontal space used for each character of fixed-width fonts.
This is often specified in characters-per-inch (CPI). Typically, 10-pitch equals 12 point,
12-pitch equals 10 point, and 15-pitch equals 8 point type, but some fonts use other
equivalencies.

Sans serif means without serifs and refers to a character (or typeface) that lacks serifs, such
as Arial or Helvetica.

A serifis an ornamental aspect of a character. A serif typeface is one whose characters
contain serifs (such as Times Roman or Courier).

Spacing can either be fixed or proportional. In a fixed font, such as Courier, every character
occupies the same amount of space. In a proportional font, such as Arial or Times,
characters have different widths.

Stroke weight refers to the heaviness of the stroke for a specific font. This is usually
indicated in font names by including words such as Light, Regular, Book, Demi, Heavy,
Black, and Extra Bold.

The style of a font is whether it is plain, bold, or italic.

Here are some additional terms you may encounter when working with fonts and
supporting international languages.

National character handling is dependent on both the language used, and on the country.
In many cases, the language is used only in one country (such as Japanese in Japan). In
other cases, there is a national variant of the language (such as Canadian French).

A code page is a table which defines the mapping in a computer of each of these characters
to a unique hexadecimal number, called a code point. There are three families of code
pages: EBCDIC, ASCII, and ISO.

A character set defines which characters must be supported for a specific language.

Single byte character sets (SBCS) are character sets which can be defined using a single byte
code point (code points range from 0 to 255). Most languages can be defined using an
SBCS.

Double byte character sets (DBCS) are character sets which contain so many characters that
they require two bytes to define the valid code point range. Languages which require a
DBCS are Japanese (Kanji), Korean, and Chinese (both Traditional and Simplified). For
example, the Kanji character set uses approximately 6,700 characters out of a total of
65,000 valid code points provided by a DBCS code page.

173

Chapter 5

Working with Fonts

174

Multiple byte character sets (IMBCS) use both single and double byte code points. This is also
referred as a combined code page. For example, the combined Japanese code page 932
consists of a SBCS code page 897 and a DBCS code page 301. These code pages use the
Shift JIS encoding defined by the Japanese Industry Standard Association, and contains
Kanji, Hiragana, and Katakana characters.

Unicode is a character coding system designed to support the interchange, processing, and
display of the written texts of the diverse languages of the modern world. In its current

version (3.2), the Unicode standard contains over 95,000 distinct coded characters derived
from dozens of supported scripts. These characters cover the principal written languages
of the Americas, Europe, the Middle East, Africa, India, Asia, and Pacifica. Support for
Unicode is growing among operating systems, such as Windows XP, and programming

languages, such as Java.

NOTE: Beginning in version 10.2, the system includes support for Unicode. Specific
information on how to use Unicode is available in a separate document, entitled
Using Unicode.

Bi-directional (BIDI) languages or Extended SBCS languages are languages which display text
in a right-to-left manner and numbers in a left-to-right manner. Hebrew and Arabic are
BIDI languages.

ANSTis an acronym for the American National Standards Institute. The Windows ANSI
character set is based on code page ISO 8859-x plus additional characters based on an
ANSI draft standard.

ASCII is an acronym for the American Standard Code for Information Interchange.
ASCII is a 7-bit code that is a US national variant of ISO 646.

Program Integrated Information (PII) includes all text in messages, menus, and reports which
is displayed to the user. To provide national language support, all PII text must be isolated
for easy translation.

Enabled is a term used to indicate an application that has been altered to handle input,
display, and editing of double byte languages (such as Japanese) and bi-directional
languages (such as Arabic).

Translated is a term used to indicate an application which has been enabled and has had its
Program Integrated Information translated into the national language. A translated
application must also support various country settings, such as time, date, currency, and
sorting.

AFM is an extension used with Adobe® PostScript© font files. It stands for 4dobe Font
Metrics. AFM files are text files that describe a PostScript font.

TrueType

General Font Concepts

How CHARACTERS ARE REPRESENTED

Fonts can use different methods of internally representing characters. Two categories of
representing characters in fonts are known as bitmap fonts and scalable fonts.

Bitmap Fonts

Bitmap fonts describe each character as a pattern of black dots. Bitmap fonts were
originally used for printer and screen devices because these devices were only capable of
drawing dots. Below is crude representation of how the certain letters could be drawn as
a series of dots in a 3x3 grid.

e o eoeo eoeo e o e o oo o eeo e °

e o ° ° eeoeo ° e o ° °

eeeo eoeo ° e o e o oo o eeoe oo e
| T H X

Essentially, this is what happens when a character is drawn to the screen or printed on
paper. Fortunately, screen and printer fonts use a whole lot more dots per inch so that the
distance between the dots becomes neatly invisible to the naked eye. By the way, this is
also the reason why printed text looks better that text on the screen. Printed text often
uses 300 or 600 dots per inch while your screen’s resolution might be 96 dots per inch.

A different font file is required for each point size and different font files are required for
different device resolutions (VGA vs. Super-VGA monitors, 300 dpi vs. 600 dpi printers).

Bitmap fonts are used primarily by printers. Bitmap fonts used by printers cannot be used
for displaying text on screens because there are different internal formats and different
resolutions. Printers which use bitmap fonts include HP® laser printers, IBM® AFP
printers, and Xerox® Metacode printers

Scalable Fonts

A scalable font can be scaled to any size needed. Characters of scalable fonts are internally
represented as outlines (a series of straight lines and curves). These outlines can be scaled
to allow characters to be rendered at different resolutions and point sizes. For example,
the letter O may be represented as outer and inner circular lines whose interior is filled.

Outlines Final Character

O O

Two types of scalable fonts are TrueType and PostScript fonts.

TrueType was designed and developed by Apple Computer and Microsoft for use on the
Macintosh computer and PCs running Microsoft Windows. TrueType provides a number
of advantages over bitmap fonts. TrueType is WYSIWYG (what you see is what you get).
The same font can be used with printers and video displays. Typically, TrueType font files
have a file extension of TTF.

175

Chapter 5

Working with Fonts

176

PostScript

PostScript fonts were designed and developed by Adobe Systems Incorporated.
PostScript fonts are a special implementation of a PostScript language program.
PostScript fonts are scalable fonts. PostScript fonts describe each character as a series of
straight-line and curved-line segments. These segments (also known as an outline) along
with a flexible coordinate structure allow PostScript fonts to be scaled easily and used on
different devices (video monitors and printers). PostScript printers support the PostScript
language and fonts. There are several types of PostScript fonts:

e PostScript Type 1

When someone refers to a PostScript font, this is the type of font most often referred
to. Typically, Type 1 font files have a file extension of PFB.

e PostScript Type 3

A Type 3 font is one whose behavior is determined entirely by the PostScript
language procedures built into the font. These fonts are typically larger files than
Type 1 fonts and do not take advantage of special algorithms built into the PostScript
interpreter for rendering characters. This usually results in inferior output at small
sizes and low resolution.

* PostScript Type 0

A Type 0 (zero) font is a composite font program that can contain several thousand
characters, accessed by multi-byte codes. They can be used for non-Roman scripts,
such as Japanese kanji.

* PostScript Multiple Master

Multiple master font programs are an extension of the Type 1 font format. Multiple
master font programs contain a wide variety of typeface variations, such as multiple
weights, character widths, and so on.

How COMPUTERS AND PRINTERS USE FONTS

What happens to make the letter A4 show up on the screen or print on a printer?

The key to remember is that computers and printers are not very smart. They really don’t
know anything about letters or punctuation characters.

When you press the letter 4 on the keyboard, the keyboard sends a number to computer.
On a PC, this number is usually 65 for the letter .4. The computer uses this number to
produce the letter 4. For simplicity, let’s assume you have a bitmap screen font.

As stated before, bitmap fonts describe each character as a pattern of black dots. Let’s
assume these patterns are stored in the font as a series of slots where slot 0 is followed by
slot 1 which is followed by slot 2, and so on. For the number 65 (letter 1), the computer
simply draws the pattern of dots stored in slot 65. When the bitmap is drawn on the
screen, we see what looks like the letter 4.

If you print the letter 4 with a bitmap font, the concept is essentially the same. The printer
receives the number 65 and prints the series of dots stored in slot 65 of the printer font.

The numbers which the computer uses to represent characters are called code points.

USING CODE
PAGES

Using Code Pages

A code page is a table which defines the mapping in a computer of each of these
characters to a unique hexadecimal number, called a code point. There are three families
of code pages: EBCDIC, ASCII, and ISO.

A code page is a table that defines how the characters in a language or group of languages
are encoded. A specific value is given to each character in the code page. For example, in
code page 850 the letter 7 (lowercase) is encoded as hex A4 (decimal 164), and the letter
N (uppercase) is encoded as hex A5 (decimal 165). Of particular interest are these code

pages:
* Code Page 850

Code page 850 is also called the Latin-1, multilingual code page. This code page
supports the alphabetic characters of the Latin-1-based languages.

e Code Page 437

Code page 437 is the standard personal computer code page. The lower 128
characters are based on the 7-bit ASCII code. The upper 128 characters contain
characters from several European languages (including part of the Greek alphabet)
and various graphic characters. However, some of the accented characters, such as
those used in the Nordic countries, are not represented. The missing characters are
available in other code pages (code page 850 will usually contain the desired
characters). It contains characters required by 13 languages used in approximately 40
countries.

* Code page 1004

Code page 1004 is the equivalent of the Windows ANSI code page. It contains more
international characters than the multilingual code page 850. This character set
contains all characters necessary to type all major (West) European languages. This
encoding is also the preferred encoding on the Internet.

ISO 8859-x character sets use code points 128 through 255 to represent national
characters, while the characters in the 32 to 127 range are those used in the US-ASCII
(ISO 646) character set. Thus, ASCII text is a proper subset of all ISO 8859-X character
sets.

The code points 128 through 159 are typically used as extended control characters, and
are not used for encoding characters. These characters are not currently used to specify
anything. This character set is also used by AmigaDOS, Windows, VMS (DEC MCS is
practically equivalent to ISO 8859-1) and (practically all) UNIX implementations. MS-
DOS normally uses a different character set and is not compatible with this character set.

177

Chapter 5

Working with Fonts

Code Page 850

ASCII Code Pages

ASCII is an acronym for the American Standard Code for Information Interchange.
ASCII code pages are used on the PC platform. Code points below 32 for ASCII code
pages are considered control characters for internal uses. These code points are usually
not displayable characters. Code points from 32 to 127 are usually the same in ASCII code
pages and are used for English letters, numbers, and punctuation.

Where ASCII code pages differ is in the characters assigned to code points 128-255. Code
points 128-255 are used for international characters, math symbols, and so on. The
characters for these code points vary in other code pages.

The characters used in code points below 128 use the English letters, numbers, and
punctuation commonly found in ASCII code pages. The upper 128 code points are used
for characters from several European languages (including part of the Greek alphabet)
and various graphic characters. However, some of the accented characters, such as those
used in the Nordic countries, are not represented.

Code page 437 is known as the standard personal computer code page. These characters
were originally used in the original IBM PC. This code page is still used today in U.S.
English versions of DOS and Windows. The primary code page used for these platforms
is also known as the OEM code page.

Code page 850 is also called the multilingual code page. This code page supports many of
the characters of the Latin-based alphabet.

The following table shows code page 850. To determine the code point associated with a
character, use the numbers in the first row and column in the following table. For
example, the letter .4 has a code point of 65 (64 + 1) and the space character has a code
point of 32 (32 + 0).

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0
16
32 ! « # 3 % & ‘ () & + , = /
48 0 1 2 3 4 5 6 7 8 9 g < = > ?
64 @ A B C D E F G H 1] K L M N (@)
80 P Q R S T 0] v W X Y Z [\] ~ _
9) a b c d e f g h i j k 1 m n o
112 | p q r s t uov WXy z { | } ~
128 C u é a a a a ¢ € é © 1 i i A A
144 E @ y:2) 6 6 o il u i (@) U o L () X f

178

160 a i
176
192

208) b

24 [O B

1+

240 -

%a

Using Code Pages

fl N : ° E] ® - Y2 Ya i « »
A A A © ¢ ¥
a A o
E I i I : I

There are many more ASCII code pages which are targeted for a specific country and or
language. For example, code page 863 is used for Canadian French.

Code page 1004 is the IBM equivalent of the Windows ANSI code page. It contains more
international characters than the multilingual code page 850. It contains characters
required by 13 languages used in approximately 40 countries. Windows uses the ANSI
code page to support most of the languages used in the Western Hemisphere and Western
Europe. Keystrokes are translated by Windows from the primary (OEM) code page into
the ANSI code page.

The following page shows the Windows ANSI code page. To determine the code point
associated with a character, use the numbers in the first row and column in the following
table. For example, the letter .4 has a code point of 65 (64 + 1) and the space character

has a code point of 32 (32 + 0).

Code Page 1004 (ANSI Code Page)

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0
16
32 ! « # $ % & ¢ () & + , - /
48 0 1 2 3 4 5 6 7 8 9 ; < = > >
64 @ A B C D E F G H I] K L M N (@)
80 P Q R S T U v W X Y Z [\] ” _
92) a b c d e f g h i j k 1 m n o
112 p q r s t u v w X y z { | } ~
128 € , f , .. t c g % S < & Z
144 ¢ ’ « 2 . = =) ™8 > e z Y
160 i ¢ £ o ¥ ! § © a 7 = 3 ® -

179

Chapter 5

Working with Fonts

176 ° + 2 3 ‘ u ﬂ . S ! ° » Ya Yo s é
192 A A A A A A A C E E B E I i i I

2w | P N O O O o6 o x ©® U U U U Y pP B

—>
—

224 a a a a a a ® ¢ © @ € € i i

240 o) il o) 6 o) o o) = %) u u a u y b N

EBCDIC CoDE PAGES

EBCDIC is an acronym for the Extended Binary Coded Decimal Interchange Code.
EBCDIC code pages are used on mainframe (z/OS) and mini computers (AS400). There
are many EBCDIC code pages. EBCDIC code pages usually share the same code points
for English letters, numbers, and punctuation characters. However, EBCDIC code pages
use different code points than ASCII code pages for the same English letters, numbers,
and punctuation characters. Code points below 64 for EBCDIC code pages are
considered control characters for internal uses. These code points are usually not
displayable characters.

Code page 37 is an EBCDIC code page used on many z/OS and AS400 systems.
Although the code points are completely different, code page 37 shares most of the same
characters as code page 1004 (ANSI). The characters associated with code points 128-159
in the ANSI code page are not defined in code page 37.

NOTE: The system uses some undefined code points (below 64) in code page 37 to try
represent these characters. For maximum portability, avoid using code points
128-159 of the ANSI code page when composing forms.

The following page shows a table of code page 37. To determine the code point associated
with a character, use the numbers in the first row and column in the following table. For
example, the letter 4 has a code point of 193 (192 + 1) and the space character has a code
point of 64 (64 + 0).

Code Page 37

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0
16
32
48
64 a a a a a a ¢ a ¢ < (e

180

80

96

112

128

144

160

176

192

208

224

240

o>

Using Code Pages

¢ i 1 i i B ! $ &) ; o
A A A A C N ! , % _ > ?
E i i i I # @ ' = «
d e f g h I « » d y b +
m n o p q r ? ° x s A a
u v w X y z i d b Y b ®
© § 19 Ya 2 a [] B X
D E & G H 1 - 6} e} o 6 o
M N O P Q R ! a i u 4 N

CHARACTER SETS

You may have noticed that the largest code point shown in the earlier code page tables is
255 (240 + 15). The reason for this is that 255 is the largest value which can fit into a byte
of memory. Code pages like this are said to have a single byte character set (SBCS). Some
Asian languages, like Japanese and Chinese, contain so many characters that they must be
represented by a double byte character set (DBCS) or a multiple byte character set
(MBCS).

NOTE: Prior to version 10.2, the system only supported SBCS code pages. Version 10.2
added support for many additional languages using Unicode.

Determining Characters Used in a Printer Font

The simplest way to determine what characters are contained in a printer font is to print
a FAP file which contains all possible code points. The Docucreate system includes a FAP
file you can use for this purpose. This FAP file looks very similar to the code page tables
shown earlier in this chapter.

To print this FAP file in Image Editor, follow the steps below:
1 Start Image Editor.

2 Choose File, Open and select the Q1CDPG.FAP file, which is located in the
DMS1\FORMS directory.

3 Choose Tools, Font Manager and highlight the font 77076 (this FAP file only uses
one font ID, 11016).

181

Chapter 5

Working with Fonts

Click the Edit button. The Font Properties window appears. Click the Printers tab.

Change the AFP, PCL, or Xerox font file name to the font file name you want to test
and click Ok. Then click Close to exit Font Manager and save your changes.

6 Select File, Print. Print the FAP file using the printer driver which corresponds to the
printer font you are testing.

NOTE: Be sure to download fonts if you are testing a PCL font.

182

CoDE PAGE NAMES

Using Code Pages

One confusing thing about code pages is that different organizations have different names

for the same code pages. IBM, Microsoft, and the International Organization for

Standardization (ISO) all use different names for essentially the same code page. You may
hear a code page referred to by its IBM, Microsoft, or ISO name. For example, the ANSI
code page is the same as IBM code page 1004, Microsoft code page 1252, and ISO code

page 8859-1.

The following table shows a list of commonly used code pages. For more information,

see these books:

* Developing International Software, Second Edition - Microsoft Press

* National Language Design Guide Volume 2 - IBM

Code Pages
Language Country Windows OEM z/0OS
U.S. English USA 1252 (ANSI) 437, 850 037
Western Hemisphere and Western Europe SBCS Code Pages
U.K. English UK 1252 (ANSI) 850, 437 ?
Brazilian Portuguese Brazil 1252 (ANSI) 850, 437 ?
Canadian French Canada 1252 (ANSI) 850, 863 ?
Danish Denmark 1252 (ANSI) 850 ?
Dutch Netherlands 1252 (ANSI) 850, 437 ?
Finnish Finland 1252 (ANSI) 850, 437 ?
French France 1252 (ANSI) 850, 437 ?
German Germany 1252 (ANSI) 850, 437 ?
Ttalian Ttaly 1252 (ANSI) 850, 437 ?
Norwegian Norway 1252 (ANSI) 850 ?
Portuguese Portugal 1252 (ANSI) 850, 860 ?
Spanish Spain 1252 (ANSI) 850, 437 ?
Swedish Sweden 1252 (ANSI) 850, 437 ?
Eastern Europe SBCS Code Pages
Russian Russia 1251 (Cyrillic) 866, 850 ?

183

Chapter 5

Working with Fonts

184

Code Pages
Language Country Windows OEM z/08
Bosnian Bosnia ? 852, 850 ?
Croatian Croatia 1250 (Eastern 852, 850 ?
Europe)
Czech Czech 1250 (E.E.) 852, 850 ?
Estonian Estonia 1257 (Baltic) ? ?
Greek Greece 1253 (Gtreek) ? ?
Hungarian Hungary 1250 (E.E.) 852, 850 ?
Latvian Latvia 1257 (Baltic) ? ?
Lithuanian Lithuania 1257 (Baltic) ? ?
Polish Poland 1250 (E.E.) 852, 850 ?
Romanian Romania 1250 (E.E.) 852, 850 ?
Serbian-Latin Serbia 1250 (E.E.) 852, 850 ?
Slovak Slovak 1250 (E.E.) 852, 850 ?
Slovenian Slovenia 1250 (E.E.) 852, 850 ?
Tutkish Turkey 1254 (Turkish) 857, 850 ?
Extended SBCS Code Pages
Arabic Arabic speaking 1256 (Arabic) 864, 850, 437 ?
Hebrew Israel 1255 (Hebrew) 862, 850, 437 ?
Thai Thailand 874 874,437 ?
Asian DBCS Code Pages
Japanese Japan 932 932,942, 437, ?
850

Korean Korea 949 949, 850, 437 ?
Simplified Chinese PRC, Singapore 936 1381, 437, 850 ?
Traditional Chinese Taiwan, 950 938, 948, 437, ?

Hong Kong 850 ?

950, 437, 850

TYPES OF
FONTS

Types of Fonts

The system uses screen and printer fonts for displaying and printing text on forms. The
Family field in the FXR contains the name of the screen font to use for displaying text
under Windows.

The Font File fields in the FXR contain the names of the printer fonts to use when
printing text. The FXR file provides attributes of the fonts and cross references the
various font file names and parameters for different printers. The FXR does not contain
any printer or screen fonts, only information about printer and screen fonts. FXR files are
referred to in this section but are discussed in detail in the section, Using Font Cross-
Reference Files on page 194.

USING SCREEN FONTS

Font Substitution in Windows

If the system cannot find a matching screen font using the information in the FXR, it will
attempt to substitute a different Windows font. For Windows, the system will
automatically try to substitute the following fonts for these missing fonts:

If this font is missing... The system will substitute this font...
Courier Courier New

Helv Arial

Letter Gothic Courier New

MICR Courier New (fixed pitch) or Arial (proportional)
OCR A Courier New (fixed pitch) or Arial (proportional)
OCR B Courier New (fixed pitch) or Arial (proportional)
Times Times New Roman

Times Roman Times New Roman

Tms Rms Times New Roman

Univers Arial

Separate INI file control groups are used for Windows 3.1x (16-bit) and Windows 32-bit
platforms for defining substitute font names. These control groups are named
WINDOWSUBS and WINDOW32SUBS, respectively. Here is an example of the
WINDOW32SUBS control group, which shows the defaults settings:

< Window32Subs >

Univers = Arial
Helv = Arial
Letter Gothic = Courier New
Courier = Courier New

185

Chapter 5

Working with Fonts

186

Coded fonts

Code pages

Character sets

Tms Rms = Times New Roman
Times Roman = Times New Roman
Times = Times New Roman

In this example, the system substitutes the native Windows 32-bit font, Times New
Roman, if the Times family font is not found. Likewise, it substitutes Courier New for
Letter Gothic and Arial for Univers. If you do not have a font installed which matches the
original or substituted fonts, a default font will be used instead (usually Courier).

Installing Screen Fonts in Windows

To avoid these font substitutions, you can install fonts into Windows using the Fonts
folder (usually located in the Control Panel). After opening the Fonts folder, select the
File, Install New Font option. The Add Fonts window appears and asks for the drive and
directory in which the new TrueType font files are located. When you finish selecting the
fonts you want to install, click Ok to install them.

For the system to correctly match the fonts installed under Windows, the family and face
name must be spelled exactly the same as they appear on the Names tab of the Properties
window for the font. Use FXR settings for FAP height, FAP width, and so on, to
customize the display of a font.

USING PRINTER FONTS

The system supportts printer fonts for AFP, Xerox Metacode, PCL, and PostScript
printers. Here is some background information you should know about each of these
print platforms.

AFP

AFP fonts are designed solely for IBM’s AFP printers. In AFP terminology, a font is
described by three components:

A coded font file contains references to specific character set and specific code page.
Coded font files always begin with the letter X, such as XODATINS.

In IBM AFP terminology, a code page file maps code points to an AFP character name
in a character set file. Code page files always begin with the letter T, such as TIDOCO037.

A character set file contains the bitmap image of each character in the character set.
Character set files always begin with the letter C, such as COFATINS.240 or
COFATINS.300. The character set file name extension (240 or 300) indicates whether the
bitmap images are drawn at 240 or 300 dots per inch. Each character is given a eight letter
AFP character name. For example, the letter .4 has an AFP character name of LA020000.

Metacode

Metacode fonts are designed solely for Xerox Metacode printers. Metacode fonts are
bitmap fonts. Typically, Metacode font files have a file extension of FNT, such as
FXTINS.FNT. Characters are accessed by code points.

Types of Fonts

PCL

PCL is the Printer Control Language developed by Hewlett Packard for its Laser]et (and
compatible) printers. PCL bitmap fonts are used by the system. PCL bitmap fonts can

have any file name extension. The system provides PCL fonts with an extension of PCL,
such as FPTINS.PCL. Like Metacode fonts, PCL characters are accessed by code points.

PostScript Fonts

PostScript fonts were designed and developed by Adobe Systems Incorporated.
PostScript fonts are actually a special implementation of a PostScript language program.
PostScript fonts are scalable fonts and there ate several types of PostScript fonts,
PostScript Type 1 fonts are most common and are the only type supported by the system.
Typically, Type 1 font files have a file extension of PFB, such as COURIER.PFB.

Each character in a PostScript font has a PostScript character name. When used as a
screen font, the operating system associates code points in a code page with the
appropriate PostScript character names.

NOTE: The system uses the CODEPAGE.INI file to associate code points with the
appropriate PostScript characters.

TrueType Fonts

TrueType is a scalable font designed and developed by Apple Computer and Microsoft
for use on the Macintosh computer and on PCs running Microsoft Windows. TrueType
is WYSIWYG (what you see is what you get). The same font can be used with printers
and video displays. Typically, TrueType font files have a file extension of TTF.

Adding Printer Fonts to a Font Cross-reference File

Fonts are added to an FXR file using the Docucreate’s Font Manager. You can insert
TrueType, PCL, AFP, Xerox Metacode, certain FormMaker 1I files, and other FXR files
into a font cross-reference file. Font Manager is discussed in the Docucreate Users Guide.

187

Chapter 5

Working with Fonts

USING SYSTEM

188

FONTS

Oracle Insurance has licensed for use and distribution with the system the following

Postscript and TrueType fonts from Monotype Imaging, Inc. (formerly Agfa):

Albany

Arial Black
Arial Narrow
Coutier
Letter Gothic
Times
Univers
Univers Condensed
DocuDings
MICR
OCRA
OCRB
ZIPCODE

Albany (an Arial clone), Arial Narrow, Arial Black, and DocuDings (a Wingdings clone)
are clones of commonly-used Windows fonts. The fonts are similar in appearance to the

corresponding Windows fonts and have the same character width attributes. In addition,

you can now use PCL, PostScript, AFP, and Metacode versions of these fonts for

printing.

NOTE: Although DocuDings is very similar to Wingdings, there are some differences.

For instance, code point 255 in Wingdings is the flying Windows symbol (ZH).
The DocuDings font displays a blank space for code point 255. The other code
points (characters) are very similar in appearance but are not exact duplicates to
the Wingdings font.

The Monotype font sets include the Euro character (€).

HPINTL.FXR,
HPINTLSM.FXR

REL95.FXR,
REL95SM.FXR

REL102.FXR,
RELT102SM.FXR

REL103.FXR,
RELT103SM.FXR

Using System Fonts

From these fonts, we have created fonts to use with AFP, PCL, and Xerox printers. These
fonts let you print nearly identical forms on any supported printer. We use the following
file naming convention for AFP, PCL, and Xerox printer fonts:

FTFlIF1SP
For example, a 10 point bold Courier Xerox font would be named FXCOBO0.FNT.

F Standard Documaker system font

Printer type where

A = AFP, P = PCL, X = Xerox 0 degree, 9 = Xerox 90 degree, 7 = Xerox 180
T degree, 2 = Xerox 270 degree

Two-character family name where

AB = Albany, AL = Arial Black, AN = Arial Narrow, CO = Coutiet, HI” =
Helvetica, [.G = Letter Gothic, TI = Times, UN = Univers, UC = Univers
Condensed, DD = DocuDings, MI =MICR, O.A=0OCRA, OB=OCRB, ZP=ZIP
F1 code

Style where
S B = Bold, I = Italic, O = Bold Italic, N = Normal/Medium

Point size where
1 - 9 = point sizes 1-9 and 0 = point size 10
P A - Z = point sizes 11-36

Font Cross-reference Files for Monotype Fonts

These FXRs provide support for Hewlett Packard (PCL) internal fonts using ANSI code
page character sets instead using Monotype-based PCL downloadable fonts. The
HPINTLSM.FXR file is a subset of the font information contained in the HPINTL.FXR
file—SM indicates small.

Use these FXRs if you intend to print on an AFP printer using Monotype fonts. These
FXRs specify new Monotype AFP coded fonts which use a new code page file. The
system uses code page 37 for EBCDIC platforms. These AFP fonts are based on this
standard. The REL95SM.FXR file is a subset of the font information contained in the
REL95.FXR file—SM indicates small.

These FXRs are similar to the REL95 FXRs but also include these fonts: Univers
Condensed, MICR, OCRA, and OCRB.

These FXRs are similar to the REL102 FXRs but also include these fonts: Albany, Arial
Black, Arial Narrow, and DocuDings. Be aware that the REL103SM.FXR file does not
include DocuDings or all of the point sizes of the Albany group (including bold and italic),
the Arial Narrow group (including bold and italic), and the Arial Black group (including
italic).

You can identify these fonts via their names. For example 78070 indicates a 10-point
Albany font. The initial 7 indicates Monotype, the 8 indicates Albany, the 0 indicates
normal type, and 70 is the point size.

189

Chapter 5

Working with Fonts

190

Arial Black fonts are indicated with a nine (9) and Arial Narrow fonts are indicated with

a zero (0). DocuDings are indicated with a 34. You can find detailed information on font

naming conventions in the Working with Fonts chapter of the Docucreate User Guide.

Below are the PostScript and TrueType fonts included in REL103SM.FXR:

PostScript Font

PostScript Font Name

ALBB .PFB
ALBBI___.PFB
ALBIT____.PFB

ALBR .PFB

AN____ .PFB
ANB____ PFB
ANBI_____.PFB
ANI_____ PFB
ARBLI____.PFB
ARIBL___.PFB

DOCUD___.PFB

Albany-Bold
Albany-BoldlItalic
Albany-Italic
Albany-Regular
ArialNatrowMT
ArialNarrowMT-Bold
AtrialNarrowMT-BoldItalic
ArialNarrowMT-Italic
ArialMT-Blackltalic
ArialMT-Black

DocuDings

TrueType Font

TrueType Font Name

ALB.TTF

ALBB.TTF

ALBBLTTF

ALBLTTF

ARBL.TTF

ARBLIT.TTF

ARIALN.TTF

ARIALNB.TTF

ARTALNBLTTF

ARIALNLTTF

DOCUDING.TTF

Albany AMT

Albany AMT Bold
Albany AMT Bold Italic
Albany AMT Italic
Atial Black

Arial Black Italic

Arial Narrow

Atrial Natrow Bold

Arial Narrow Bold Italic
Arial Narrow Italic

DocuDings

REL112.FXR
REL112SM.FXR

Using System Fonts

These files differ from the REL103.FXR and REL103SM.FXR files in that...

The PDF417 fonts were added into the base FXR file.

Character widths were corrected for font records previously created by importing
TrueType fonts.

Font heights were corrected for the Times fonts so Windows will select the correct
screen font.

191

Chapter 5

Working with Fonts

192

USING CUSTOM FONTS

To the system, custom fonts ate simply fonts which are not based on the ANSI code page.
This means that the font contains characters which have different code points or which
do not exist in the ANSI code page. If you cannot use the system’s Monotype fonts (or
at least ANSI code page based fonts), you will need to consider these possible issues:

e Viewing Forms

Viewing forms may be the first problem since the characters in the original printer
font do not match the characters used in displaying text on the screen. This problem
will be seen during forms composition. This will also be a problem if the you have
licensed the Entry or Archive Retrieval modules. Keyboard entry becomes a training
issue as well. Under Windows, you must use 4-digit ALT key sequences to prevent
code point translation.

If possible, you should convert any custom fonts to TrueType fonts for Windows
and install the fonts into your operating system. If the font cross-reference file is
properly modified to specify these screen fonts, the system will display your forms
correctly. However, these characters may not display properly in Docucreate and
Documaker Workstation.

NOTE: The Xerox Font Center will convert a Xerox Metacode font into a PostScript or

TrueType font for a fee. They may convert AFP fonts as well. You can reach
them at 1-800-445-3668.

* PDF Incompatibility

In addition to the Entry and Archive module problem, PDF or Acrobat files created
for Internet archive retrieval use the ANSI code page for displaying forms.
Therefore, archived forms based on custom fonts may not display correctly when
retrieved through Docupresentment.

* Printing Forms

Another problem concerns using custom fonts on multiple (ASCII and EBCDIC)
platforms. The system performs ASCII/EBCDIC translation based on the
assumption that the ASCII code page is the ANSI code page and that the EBCDIC
code page is code page 37. The system also assumes that PCL, PostScript, and
Metacode printers use ASCII (hence ANSI) fonts. The system assumes AFP printers
use EBCDIC fonts. The following table shows when the system will translate text
(from FAP files) and variable data (from extract files) when printed under different
platforms and printers.

Platform ASCII (Windows 32-bit) EBCDIC (z/0S, AS400)

/ Printer ASCII FAP files and Extract data EBCDIC FAP files and Extract data
AFP ASCII to EBCDIC translation No translation

PCL No translation EBCDIC to ASCII translation
PostScript No translation EBCDIC to ASCII translation

On AFP printers

On Xerox Metacode
printers

On PCL printers

On PostScript printers

Using System Fonts

Platform ASCII (Windows 32-bit) EBCDIC (z/0S, AS400)

/ Printer ASCII FAP files and Extract data EBCDIC FAP files and Extract data
Xerox No translation EBCDIC to ASCII translation
Metacode

On a PC, text will be translated when printing to an AFP printer. Therefore, the code
points used in text or variable data on forms are very important. After these code points
are translated to the EBCDIC (code page 37), they must match the code points associated
with the desited characters in the AFP code page which will be used.

On EBCDIC platforms, such as z/OS, AS400, text is assumed to be EBCDIC and will
not be translated when you print to an AFP printer. The key to correct printing is to make
sure the text (FAP files) and variable data (extract files) use the code points associated with
the desired characters in the AFP code page you will use. Since FAP files are created as
ASCII files on a PC, they will need to be transferred to the EBCDIC platform. Since you
are using custom fonts, it is quite likely the file transfer software will not perform the
proper code point translation. In this case, you may need to upload the files without
translation and use the CPCNYV utility to translate the files. This may require defining a
special code page in the CODEPAGE.INI file for the CPCNV utility to use to do the
proper translation.

See Determining Characters Used in a Printer Font on page 181 for help in determining
how code points will be associated with font characters.

On a PC, text (code points) will not be translated when printing to a Metacode printer.

On EBCDIC platforms (z/OS, AS400), text is assumed to be EBCDIC and will be
translated to ASCII (ANSI code page) when printing to a Metacode printer. Therefore,
the EBCDIC code points used in text or variable data on forms are very important. Since
the FAP files are ASCII files created on a PC, they will need to be transferred to the
EBCDIC platform. Since you are using custom fonts, it is quite likely that the file transfer
software will not perform the proper code point translation. In this case, you may need to
upload the files without translation and use the CPCNYV utility to translate the files. This
may require defining a special code page in the CODEPAGE.INI file for the CPCNV
utility to use to do the proper translation.

See Determining Characters Used in a Printer Font on page 181 for help in determining
how code points will be associated with font characters.

On a PC, text (code points) will not be translated when printing to a PCL printer. On
EBCDIC platforms (z/OS, AS400), PCL print is not curtently supported.

On a PC, text (code points) will not be translated when printing to a PostScript printer.
On EBCDIC platforms (z/OS, AS400), PostScript print is not currently supported.

193

Chapter 5

Working with Fonts

USING FONT
CROSS-
REFERENCE
FILES

194

The font cross-reference file lets you organize the fonts you use for display and printing.
The FXR provides the system with all the necessary font information. It does not contain
the actual font files; rather, it contains information about the font attributes. Font
attribute information includes formatting styles (bold, italic, and so on), point size (10
point, 14 point, and so on), and font stroke weight (heavy, light, and so on).

NOTE: Storing the cross-reference information separately from the physical fonts
affords greater flexibility in printer and font usage. You can convert virtually any
font for your individual printer environment, provided you obtain appropriate
license agreements for the fonts.

Let's examine the organization of the font cross-reference file and the font files. The
illustration below depicts a font cross-reference file named REL103SM.FXR. This file
contains a single font set. It includes all the crucial information for each font in the font
set. The actual font files are physically separate from the font cross-reference file.

Font Cross-reference File Font Files

/ REL103SM.FXR \

Font 1

Font 2

Font 3

Font 4

Font 4
ID and File Name
Typeface and Family

Character Dimensions

Printer Specific Info

Z/

As shown above, the font files are distinct from the font cross-reference file. When you

work with the font cross-reference file you affect the stored font information. You do not
affect the separate and independent font files. The number of available fonts is limited
only by your needs and storage space. If you keep this organizational structure in mind
you can easily work with the font cross-reference file.

The font cross-reference file provides the names of your independent font files, but it is
more than a simple listing of fonts. The file contains crucial font attribute information
along with information specific to your printer types. The printer information is crucial
because sections are compiled based on your printer environment.

The font cross-reference file ends in the extension FXR (for font cross-reference). The
system includes these font cross-reference files:

FAP\MSTRRES\FMRES\DEFLIB\HPINTL.FXR

Using Font Cross-Reference Files

FAP\MSTRRES\FMRES\DEFLIB\HPINTLSM.FXR
FAP\MSTRRES\FMRES\DEFLIB\REL103.FXR
FAP\MSTRRES\FMRES\DEFLIB\REL103SM.FXR

REL103SM.FXR - References Times (Roman), Couriet, Univers and Univers
Condensed fonts for PostScript, AFP, Metacode, and PCL printers. This FXR file is pre-
installed in your system.

Additional PostScript fonts are also included in the REL103.FXR file. This FXR file
references standard and supplemental PostScript fonts and all font attributes. You can use
the supplemental installation disks to add fonts to your font set, and use the REL103.FXR
file as your font reference file, as your system’s disk space allows.

Keep in mind these points concerning the FXR file:
* Contains one font set

The font set is the specific group of fonts you choose to include in your font cross-
reference file. Each font cross-reference file contains a single font set. You assign
each font cross-reference file and font set a unique name. For example, you might
organize a font set for creating and printing accounting forms in a font cross-
reference file called ACCOUNT.FXR.

* Contains information on multiple fonts

A font set contains numerous fonts. For example, a font set might contain Times
New Roman fonts and Gothic fonts of multiple point sizes with bold and italic
attributes. A second font set might contain Courier fonts and Helvetica fonts, also of
multiple point sizes with bold, italic and regular attributes.

* Independent of your font files

The font cross-reference file works with the printer and window font files.
Remember that the font files are separate files from the font cross-reference file.

How FXR SETTINGS AFFECT DISPLAY AND PRINT QUALITY

Certain attributes in the FXR file affect how the system displays text. For example, when
the system displays text, it uses scalable font technology which exists in Adobe Type 1
Postscript fonts and TrueType fonts. All versions of Windows support TrueType fonts.
Windows 2000 also supports PostScript fonts.

These fonts are selected via the family name specified in our FXR, and scaled according
to point size, height and width parameters in the FXR. The fonts are spaced according to
the character widths specified in the FXR.

Once the font is selected, then it can be zoomed in and out, or additionally scaled as
required. Bitmap fonts do not have this scaling ability, which is why scalable fonts are used
for display purposes, rather than bitmap fonts.

This means that when the system displays text on the screen, it attempts to mirror how it
will look on paper. To achieve the same look on the screen as on paper, the parameters
in the FXR are critical. The more accurate the FXR is, the more likely the display will
mirror the printed document. The printed document is the standard for the screen display.

195

Chapter 5

Working with Fonts

196

Since the system includes Monotype TrueType and PostScript fonts which match its
printer fonts, if you install these Monotype fonts on a Windows system, what you see on
your screen will more closely match what you print out. The keys are to closely match the
printer’s fonts and to have the best possible information in the FXR file.

Creating a font cross-reference file is usually done by importing a printer font file using
Documaker Studio or Docucreate’s Font Manager. Since the font cross-reference file is a
representation of information contained in the printer font file, modification of its fields
usually does not affect the printed output. However, modifying these FXR fields can
improve the system’s ability to display forms.

MAINTAINING FXR FILES

Use the Font manager to maintain FXR files. You can start this tool in Documaker Studio
using the Manage, System, Fonts option. You can start this tool from Docucreate (choose
Resources, Fonts) or from Image Editor (choose Tools, Font Manager). Font Manager
makes it easy to insert, edit, copy or delete font information in the FXR file.

Choosing a Font Cross-reference File

During library setup, you must choose either REL.103.FXR or REL103SM.FXR as the
font cross-reference file for an AFP printer. You should also specify the PCL download
font file named REL103SM.FNT in the FntFile option of the Resource Library window.

If you have older versions of the AFP coded font and code page files installed in PSF or
PSF/2, you can use these versions to print to the same AFP printer. If you do not keep
the older AFP coded font and code page files installed, you must recompile AFP page
overlays for the current version using REL103.FXR or REL103SM.FXR.

NOTE: This example shows you how the HPINTL.FXR and HPINTLSM.FXR files use
PCL escape sequences in the Setup Data field (on the Font Properties window)
to use internal fonts on a PCL printer. If you use Font Manager to edit a font in
the HPINTL(sm).I'XR file, you will see the PCL escape sequence in this field.

For example, if you look at the Setup Data field for font ID 11036 (Times Roman
Normal 36 point), you will see:

~(19U~(s1p36v0sOb5T

Where

Using Font Cross-Reference Files

Represents

19U

¢slp
36v
0Os
Ob

5T

an escape character which must always start a PCL escape sequence
the primary symbol set or code page (Windows 3.1 Latin 1 in this case)
the start of a second PCL escape sequence

the spacing of the font (proportional in this case)

the height of the font in point size (36 point in this case)

the style of the font (normal in this case)

the stroke weight of the font (medium in this case)

the typeface family of the font (Times Roman in this case)

There are other values you can use for each of these sequences. For example, the
character or symbol set values used in HPINTL.FXR are:

79U for Windows 3.1 Latin 1
This symbol set matches the Windows ANSI code page and IBM code page 1004.
You can find a list of character set values in the HP manual entitled, PCL. 5
Comparison Guide.
Spacing values are (s7p for proportional fonts and (s0p for fixed pitch fonts.
- Point size values atre placed before the »
- Font styles are Os for normal, 7s for italic
- Font stroke weights are 0b for medium, 35 for bold
The typeface family values used in HPINTL.FXR are:
- 57T for Times Roman
- 3T for Coutier
- 67T for Letter Gothic

- 52T for Univers

197

Chapter 5

Working with Fonts

INTERNATIONAL

198

LANGUAGE
SUPPORT

Our goal for international language support is to support the languages you are most likely
to need. At the present, we consider these languages to be those used in the Western
Hemisphere and Western Europe.

If you need support for Far Eastern languages like Chinese, Japanese, or Korean or if you
need support for Eastern European languages, you must use version 10.2 or higher.
Contact Support to receive a copy of the document, Using Unicode, for more information.

UsING THE ANSI CoDE PAGE FOR PC PLATFORMS

The Windows operating environment supports languages in these countries via a code
page known as the ANST code page. Windows supports different keyboard mappings for
these countries by translating the key codes into ANSI code points. Therefore, even
though a keystroke for an international character generates different £ey codes on English,
Spanish, and French keyboards, a Windows application receives the same ANSI code point.

NOTE: We adopted these standards:

- The ANSI code page is the standard code page for all data files. The text
contained in FAP files is stored using the ANSI code page.

- The ANSI code page is the standard for the Monotype fonts included with the
system.

See Using International Characters on page 200 for more information.

By adopting these standards, you receive these benefits:
* Support for 13 languages used in approximately 40 countries
* Improved platform resource compatibility (Windows, UNIX, and z/OS).

* You only need one set of Monotype fonts—no need to create sepatate fonts for each
language

* Improved support of other Windows products, such as dictionaries, databases, and
o on.

The ANSI code page is used by the World Wide Web and UNIX computers, as well as
the Windows operating environment.

There are a few drawbacks to this approach. For instance, although all international
alphabetic characters in the Latin character set are supported in the ANSI code page,
certain symbols available in other code pages are not supported. These symbols include
mathematical, scientific, and line drawing symbols. Greek, Cyrillic, and Asian characters
are not supported either. And, in some cases, data files may have to be converted to ANSI
code page characters.

International Language Support

UsING CoDE PAGE 37 FOR EBCDIC PLATFORMS

To support international languages on EBCDIC platforms, such as z/OS and AS400, we
use EBCDIC code page 37 as the standard EBCDIC code page. Code page 37 is the
native code page for many z/OS and AS400 systems. By using code page 37, you receive
these benefits:

Code page 37 supports languages used in Europe and North and South America,
such as French, Spanish, Italian, German, Portuguese, and Danish.

This reduces or eliminates the need to convert extract files containing international
chatacters on z/OS and AS400 platforms.

This helps reduce or eliminate the need to convert resources before uploading to
EBCDIC platforms from Windows.

Using code page 37 for EBCDIC platforms creates compatibility problems with
resources created in earlier versions. This only affects resources created in an earlier
version which contain international or desktop publishing characters.

All characters defined in code page 37 are also contained in code page 1004, the
standard ASCII code page. There are, however, characters in code page 1004 which
are not in code page 37—mainly desktop publishing characters from code point 128
to 159. To support these characters, we use undefined code points in code page 37
(code points below 64). For maximum portability, avoid using characters not defined
in code page 37.

AFP print output and resource files normally use EBCDIC characters. The other
supported printers, such as Metacode, PCL, and PostScript, normally use ASCII

characters.

NOTE: The current AFP code page file is called TIDOC037, the AFP code page for

prior versions was called T100ASC4. The current AFP coded font files are called

all versions.

199

Chapter 5

Wor

INTERNATIONAL

200

king with Fonts

USING

CHARACTERS

One method for enteting international chatacters is to install a country/language specific
version of Windows. These language-specific versions of Windows map characters from
the keyboard differently so that it is easier to enter characters common to that language.
In the simplest case, a single keystroke will generate an international character.

For example, if you have a Canadian French version of Windows, pressing the slash
character (/) on a U.S. keyboard produces an e-acute letter (¢). Many international
characters require a two-character keystroke combination. Again using the Canadian
French keyboard setup, you must press the left square bracket ([) followed by the letter
e to generate an e-circumflex letter (¢).

Having to install a special version of Windows would be difficult for those in the U.S. who
are trying to compose forms with French characters. Fortunately, there is a simpler
solution.

Using the numeric keypad on the right side of your keyboard, you can hold down the ALT
key and enter a three-digit number to enter an international character. For example, if your
primary (OEM) code page is 437 or 850, you can enter the letter 77 (lowercase) by pressing
the ALT key while you type 164 on the numeric keypad. When you release the ALT key,
the code point 164 will be generated by the keyboard, which Windows will display as the
letter 7.

NOTE: If you look at the code page 1004 table you will see that on the ANSI code page
code point 164 is not the letter 77. So why is the letter /7 being displayed? Windows
recognizes that a code point of 164 has been generated by the keyboard and it is
associated with the OEM code page (437 or 850). For this code page, code point
164 maps to the letter 7. In Windows, the code point from the keyboard is
translated from 164 to 241. A Windows program will actually receive a keystroke
code point of 241 instead and that code point will display as the desired letter 7.

You can also use the numeric keypad to enter ANSI code points directly. Using the
numeric keypad on the right side of your keyboard, you can press the ALT key and type a
four-digit number to key in an international character. For example, you can enter in the
letter fi by pressing the ALT key and typing 0241 on the numeric keypad. Entering a four-
digit number beginning with a zero tells Windows you are entering a code point for the
ANSI code page. Therefore, Windows does not need to translate the code point and
passes the keystroke code point directly to the Windows application.

By standardizing on the ANSI code page, a document containing several languages can
be read and written by a number of people from different countries. The keystroke code
point translation lets Windows support many OEM code pages and keyboard settings.

NOTE: You can use any Windows text editor, such as Notepad, to edit resource files
since Windows also uses the ANSI code page.

Using International Characters

CONVERTING TEXT FILES FROM ONE CODE PAGE TO
ANOTHER

There are two situations where you may need to convert text files from one code page to
another.

* Ifthe customer’s data (extract) file is not in the ANSI code page and the file contains
international characters, you will need to convert the customer data file to use the

ANSI code page.

* If you need to upload system resource files, such as FAP, INI, and menu resource
(MEN.RES) files, which contain international characters to an EBCDIC platform,
such z/OS or AS400, and the file transfer software cannot convert ANSI code page
file to EBCDIC code page 37.

To convert a file from one code page to another, you can use the CPCNV code page
conversion utility. For more information, see the Docutoolbox Reference.

201

Chapter 5

Working with Fonts

S ETTING UP The system includes a standard font set with PostScript fonts. These fonts reside in the
FAP\MSTRRES\FMRES\DEFLIB\ directory with the sample forms included with
POSTSCRIPT Documaker Studio and Docucreate. We devised naming conventions for the bitmap
FO NTS printer fonts that are created from the PostScript fonts supported by the system.
PostScript fonts are easily converted to Xerox, AFP, and PCL formats.

NOTE: When you create bitmap printer fonts from PostScript fonts, follow the naming
convention outlined in the table below. This will make it easier to track and
identify those fonts.

A standard font has a six-character name. Each character indicates a specific piece of data
that describes the font. For example, you may take a PostScript font such as Times
(Roman), Bold (TIB___.PFB), convert the font to Metacode format, and change the
name to the standard FSI bitmap font name (FXTIOM). The font name characters
designate the following:

Character Definition

1 Converted PostScript fonts always begin with the letter F, indicating a system
supported font.

2 Indicates the printer platform associated with the converted font: X = Xerox, A
= AFP, P = PCL

3 and 4 Indicate the font family, such as Times Roman, Coutier, and so on.
AB = Albany AL = Arial Black

AN = Arial Narrow CO = Courier

DD = DocuDings UC = Univers Condensed
LG = Letter GothicMI = MICR

TI = Times (Roman)OA = OCRA

UN = Univers(al) OB = OCRB

ZP = ZIP code

5 Indicates the style of the font: N = Normal (no attributes), B = Bold, I = Italic,
O = Bold, Italic

6 Indicates the point size of the font. Use numbers 1 through 9 for point sizes 1
through 9.

0 (zero) = 10 point

A =11 point

B = 12 point

C = 13 point-through--Z = 36 point

202

Setting Up PostScript Fonts

This table lists PostScript fonts and their file names. The list shows the font names before
you create and name the fonts using the conventions in the previous table. Point sizes are

omitted in the names below. Use the table on the previous page to determine the
remaining font file name value for each corresponding font size.

Font File Name

Albany ALBR____.PFB
Arial Black ARIBI.____.PFB
Arial Narrow AN___ .PFB
Courier CO___ PFB
Courier Bold COB_____.PFB
Coutier Bold Italic COBI____.PFB
Courier Italic COI____ .PFB

DocuDings

Letter Gothic

Letter Gothic Bold
Letter Gothic Bold Italic
Letter Gothic Italic
MICR MT

OCRA MT

OCRB MT

Times Roman

Times Roman Bold
Times Roman Bold Italic
Times Roman Italic
Univers

Univers Bold

Univers Bold Italic
Univers Italic
Univers-Condensed Bold

Univers-Condensed Medium

DOCUD___.PFB

LG. .PFB
LGB_____.PFB
LGBSL___.PFB
LGSL____PFB
MICR____.PFB
OCRA___.PFB

OCRBMT__.PFB

TIR_____.PFB
TIB_____.PFB
TIBI____.PFB
TII______PFB
UNM____ . PFB
UNB_____PFB
UNBI___.PFB
UNMI____.PFB
UNCB__.PFB

UNCM___.PFB

203

Chapter 5

Working with Fonts

204

Font File Name
Univers-Condensed Medium Italic UNCMI____.PFB
ZIPcode Barcode-Regular ZIPCODE_.PFB

Remember that PostScript fonts are scaleable. You complete font file name by adding the
point size values when you convert the font. Here is an example:

CSBD___.PFB = CS Bookman Bold (any point size)

NOTE: AFM files are Adobe Font Metrics files which describe a PostScript font. These
files are used when you install PostScript fonts using Adobe Type Manager.

PostScript fonts reference code pages to define window and print characters. In turn, the
code page maps to specific characters in the character set. The PostScript fonts included
with Documaker Studio and Docucreate reference code page 1004, W1 and are shown
here:

0

16

32 " # S % & ¢ () N I - /

48 0 1 2 3 4 5 6 7 8 9 = ; < = > 2?

64 @ A B C DE F G H 1T J K L M N O
80 P Q R S T U V W X Y Z [\] ~ |
96 a2 b ¢ d e f g h 1 j k1 m n o
112 P 9 r s t u VvV W X y z | { | } .

128 € , ., ° f F ° % S « @ V4

144 7 AT (e = = ™ |E P |« z ||Y
160 i ¢ £ B ¥ I § T © * « o - ® ~
176 SN EE e TR R S S 7SN VS 7R

192 A A A A A A £ C E E E E 1 I i 1

208 P N O O OO O x o U U U U Y b B
224 A 4 A4 4 4 4 = ¢ & & & & i i i i

240 8 4 o6 6 6 6 6 + e uw w a4 @y p ¥

Setting Up PostScript Fonts

Bitmap fonts are a specific set of symbols or characters. The maximum number of
characters a set of bitmap fonts can reference is 256. Scaleable fonts, such as PostScript
fonts, may have more than 256 characters, but only 256 can be used at one time. The
system’s font structure is designed to use the standard code page 1004, W1. Code pages
are predefined in your system, and reside in the CODEPAGE.INI file in your DEFLIB
directory. The path is FAP\MSTRRES\FMRES\DEFLIB.

The characters in the code page include foreign language characters and mathematical
function characters. When you convert PostScript fonts using Font Manager, you always
select this code page (1004). You may, however, notice that the PostScript fonts
themselves support multiple code pages.

NOTE: If you want to use the internal printer fonts and you will print international
characters, your printer must have the character or symbol set named Windows
Latin 1 (also known as ANSI code page) on your printer. Be aware that not all
PCL printers support this character set.

FONTS FOR PDF FILES

When you are creating PDF files, keep in mind that the following PostScript fonts are
included with Adobe Acrobat Reader and do not have to be embedded.

Fixed Pitch Fonts

Proportional Fonts

Courier
Courier-Bold
Courier-Oblique

Courier-BoldOblique

Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Symbol

ZapfDingbats

Importing PostScript Symbol Fonts

You can select a code page when importing PostScript symbol fonts, such as Euro Sans
and I'TD Zapf Dingbats, which contain characters that do not adhere to a standard
Windows code page.

205

Chapter 5

Working with Fonts

206

In Font Manager (For both Documaker Studio and the legacy tools), select 9999,WD as
the code page when importing these types of PostScript fonts.

NOTE: For normal fonts, you should continue to select 7004,I77 as the code page.

If you import a PostScript font using code page 1004,W1 and the system produces a font
record with only a few non-zero character widths or produces an internal error, try using
code page 9999,WD to import the font.

For instance, importing Euro Sans and I'TC Zapf Dingbats using code page 1004,W1
produces a font record where only the space and hard space characters (code points 32
and 160) contain non-zero character widths. Importing the same fonts using code page
9999,WD produces a font record with non-zero character widths for virtually every code
point from 32 to 255.

When you use the PS2PCL utility to convert PostScript symbol fonts to PCL, specify the
symbol set by setting the /S parameter to WD. This tells the utility that these PostScript
fonts that contain characters that do not adhere to a standard Windows code page.

NOTE: When converting normal text fonts with the PS2PCL utility, continue to set the
/S parameter to W7.

Font Naming Conventions

FO NT N AMING When adding fonts to a font set, or when installing new fonts, you must give each font a
unique ID. Use this 5-digit naming convention:
CONVENTIONS ™™ s

The... Indicates...
First digit the font provider:
1= Monotype
2= Adobe
Second digit the font type or font family:

The standard FXR file (REL103SM) defines only 1 = Times (Roman)
Times (Roman), Courier, and Univers. If you add
other fonts to your FXR, use these font code
naming conventions.

2 = Coutier

3 = OCRA, OCRB, MICR, and ZIPcode*
5 = Letter Gothic

(DocuDings is included in 3) = Witais

7 = Univers Condensed
8=Albany

9=Arial Black

0=Arial Narrow

Third digit the font attributes
0= normal
1= bold
2= italic
3= bold, italic

Fourth and fifth digits the point size of the font,

such as 09 point, 12 point, and so on.

* The OCRA, OCRB, MICR, and ZIPcode fonts do not have bold or italic styles so the second
and third digits identify these fonts: 30 = OCRA, 31 = OCRB, 32 = MICR, 33 = ZIPcode, and
34 = DocuDings.

For example, 11010 indicates Times (Roman) Regular 10 point, 11214 indicates Times
(Roman) Italic 14 point, and 16110 indicates Universal Bold 10 point.

NOTE: You may only use a font ID from 00001 to 32767 and the font ID must be
numeric not alphanumeric.

207

Chapter 5

Working with Fonts

MAPPING
FONTS FOR FILE
CONVERSIONS

208

When converting a file from one format to another, you may need to convert the fonts
used in the document. You can use INI control groups and options to map fonts in a
source document to the fonts you want to use in the destination document. For instance,
if you are converting an RTT file into a FAP file, you can use the following control group:

< RTFFONtMAP >

Arial = Swiss

This tells the system to convert all Arial fonts into Swiss fonts. Use this control group
when converting DCD files into FAP files:

< FontFamilyMatching >
Arial = Swiss

Place these control groups and options in the FAPCOMP.INI file.

RTF and DCD files contain font information about the generic font families used. For
example, Arial and Univers, both san serif proportional fonts, belong to a generic font
family called Swiss.

The RTF and DCD converters in the system use the RTFFontMap and
FontFamilyMatching control groups to assign a font when other means of mapping fonts
from the RTT or DCD file fails.

In Windows environments, thetre are several generic font families, as shown in this table:

Family Description

Decorative Specifies a novelty font, such as Old English.

Dontcare Specifies a generic family name. This name is used when information about a font
does not exist or does not matter. The default font is used.

Modern Specifies a monospace font with or without serifs. Monospace fonts are usually
modern fonts, such as Pica, Elite, and Courier New.

Roman Specifies a proportional font with serifs, such as Times New Roman.

Script Specifies a font that is designed to look like handwriting, such as Script and
Cursive.

Swiss Specifies a proportional font without serifs, such as Arial.

Chapter 6
Setting Up Printers

The system supports printing on a variety of printers
ranging from network laser printers to high volume
production printers. This chapter describes how to set
up the system to print on this wide array of printers.

In this chapter you will find information on the
following topics:

* AFP Printers on page 210

* Metacode Printers on page 226

* PCL Printers on page 253

* PostScript Printers on page 266

* Using the GDI Print Driver on page 276

* Using Pass-through Printing on page 283

e Creating PDF Files on page 285

e Creating RTF Files on page 286

* Using the VIPP Print Driver on page 289

* Emailing a Print File on page 307

* Choosing the Paper Size on page 311

* Creating Print Streams for Docusave on page 323
* Handling Multiple Paper Trays on page 328

For each type of printer, this chapter discusses set up
issues, printer resources, special features, performance
considerations, troubleshooting, and more.

209

Chapter 6

Setting Up Printers

AFP PRINTERS

210

IBM created the Advanced Function Printing (AFP) language. The data streams produced
by Documaker applications for AFP printers are called Mixed Object Document Content
Architecture MO:DCA) data streams. MO:DCA data streams are sometimes referred to as
AFP data streams (AFPDS).

You must have a program such as IBM’s Print Services Facility (PSF) to convert AFP data
stream into the printer’s native language. PSF is the umbrella software that brings the AFP
resources (created by AFP or system utilities) together in one print job and sends it to the
printer.

NOTE: All system print drivers support 24-bit color graphics. If you printer does not
support color, the print driver will automatically convert the color graphics into
monochrome graphics. Keep in mind that for the best performance you should
avoid color graphics.

AFP INI OPTIONS

You define the necessary printer options for the system to produce AFP data streams.
These options specify how the system creates AFP output. Most of the AFP-related
options are found in a PrtType:XXX control group, where XXX indicates the different
printer types. Pr£Type:AFPis a common control group name used to contain AFP settings.
The most common AFP printer options are shown below (default values are bold):

Option Values Description
Device Any file or device The name of the file or device (LPT1) where
name the AFP data stream should be written. This

setting is ignored by the GenPrint program
but is used by Documaker Studio and other
system programs.

Module AFPPRT The name of the program module which
contains the system’s AFP print driver. See
also the discussion of the Class option.

See also Using defaults for the Module and
PrintFunc options on page 214.

PrintFunc AFPPrint The name of the program function that is
the main entry point into the system’s AFP
print driver.

See also Using defaults for the Module and
PrintFunc options on page 214.

Resolution 240/300 The dots per inch (dpi) resolution of the
printer which receives the AFP data stream

SendOverlays Yes/No Set to Yes if you created AFP ovetlays for
each FAP file

Option

ChartResolution

LandscapeSupport

SplitText

SplitPercent

FudgeWidth

GraphicSupport

PageNumbers

PrintViewOnly

PrePrintedPaper

Values

120/150/240/
300

Yes/No

Yes/No

0 to 100 (50)

any number (0)

0,1,2,3

Yes/No

Yes/No

Yes,Disabled

AFP Printers

Description

Used when printing charts as inline bitmap
graphics on an AFP printer that does not
have graphics (GOCA) support. Defaults to
one-half of the Resolution option setting.

Although not required for printing, you can
set this option to Yersif your printer supports
landscape medium maps. Generally, AFP
printers using cut-sheet papet do 7ot support
landscape medium maps.

Used to minimize the print differences
between 240 and 300 dpi printing.

Percentage of the width of the space
character used to determine when the
rounding error between 240 and 300 dpi
printing has caused a significant difference
and the text string should be split into
smaller strings.

Can be used when building page overlays for
sections smaller than a page.

0 = no graphics (GOCA) support
1 = inline bitmap graphics support
2 = GOCA chatts support

3 = inline bitmap graphics and GOCA
charts support

Set to Yes to turn on form or form set page
numbering

If set to Yes, the view only sections will
print. This does not apply to entry only
sections, which are never printed. Entry only
sections are usually worksheets. If the
section is marked as hidden and view only, it
will not print.

Determines if the check box which lets you
print or not print pre-printed objects appears
on the Print window. Also determines the
default for this check box—checked or
unchecked. You must add this option to the
INI file if you want the check box to appear
on the Print window.

The default for this option includes the
checkbox on the Print window and leaves it
unchecked. All objects except fields can be
designated as pre-printed on the object’s
Properties window.

211

Chapter 6

Setting Up Printers

212

Option Values

Class (first three characters
of the Module
option)

OnDemandScript

TLEScript

TLESeparator

TLEEveryPage Yes/No

PaperSize 0,1,2, 3,98

Description

Specifies the printer classification, such as
AFP, PCL, XER, PST, or GDL. If you omit
this option, the system defaults to the first
three letters from the Module option.

Some internal functions expect a certain type
of printer. For instance, all 2-up functions
require an AFP printer. The internal
functions check the Class option to make
sure the correct printer is available before
continuing,

Use this option to add comments to the
print stream. This lets you handle archiving
using OnDemand.

Enter the name of the DAL script you want
the system to run. This DAL script creates
the On Demand records and adds them as
comments.

The AddComment function is also used in
DAL scripts to add OnDemand command
records. For mote information about this
and other functions, see the DAL Reference.

Enter the name of the DAL script to execute
to add Tagged Language Element (TLE)
records to the print stream.

See Adding TLE Records on page 327 for
more information.

Enter the character you want to use to
separate the key and value portions of the
TLE comment string.

Optional. If you enter Yes, the TLE DAL
script will be executed at the start of every
page. If you enter No, the TLE DAL script
is executed at the start of every form set. The
default is No.

Use this option to set a default paper size
when converting AFP print streams using
the Internet Document Server or the
MRG2FAP utility.

Enter zero (0) for letter size (default)
Enterl for legal size

Enter2 for A4 size

Enter3 for executive size

Enter 98 for a custom size

Option

DocusaveScript

SendColor

NamedColors

SkipChartColorChange

SuppressLogoUnload

ReplaceBitmap

Values

Yes/No

Yes/No

Yes/No

LIGHT,
LIGHTER,
LIGHTEST,
MEDIUM,
DARK,
DARKER,
DARKEST,
NOSHADE,
SOLID,
HORIZONTAL,
VERTICAL,
DIAGRIGHT,
DIAGLEFT,
HATCH, ot
DIAGHATCH

AFP Printers

Description

Use this option to add comments to the
print stream. This lets you handle archiving
using Docusave.

Enter the name of the DAL script you want
the system to run. This DAL script creates
the Docusave tecords and adds them as
comments.

Enter Yes to send color information to the
printer. AFP highlight color printing on
printers from Xerox and Oce is supported.

Make sure the objects you want to print in
color (text, lines, shades, and so on) are set to
print in color. The Print in Color option is
on the Color Selection window. You can
display this window by clicking the Color
button on the object’s Properties window.

Use this option to tell the system to use only
specific AFP named colors. For example, if
you wanted all highlight (non-black) colors
mapped to blue, you would set the
NamedColors option to blue.

To allow the mapping of the colors you
assigned to the objects in the FAP file to
multiple colors, separate each color with a
semicolon (). For example, to use red, blue,
and magenta, set the NamedColors option as
shown here:

NamedColors =
red;blue;magenta

The order you list the colors does not matter.

Enter Yes to suppress color changes
normally done to enhance 3D bar chatts.

Enter Yes to suppress the unloading of
graphics (LOG) files during a conversion of
AFP files to FAP (ot PDF) format. The
default is No.

Enter the name of the bitmap you want to
replace followed by one of the replacement
patterns.

The default is LIGHT.
Keep in mind your entry must be in all caps.

See Using Documaker shading patterns
instead of shaded bitmaps on page 215 for
more information.

213

Chapter 6

Setting Up Printers

Option Values Description

DisplayCodedFont Yes/No Enter No to include the character set/code
page combinations in the AFP font list,
instead of the coded fonts. The defaults is
Yes, which tells the system to include the
coded fonts.

See Outputting character set and code page
information on page 216 for more
information.

There are some additional options you can use to print inline graphics (LOG files). Be
aware that not all AFP printers support these settings. You'll find these options in the
AFP control group.

AFP Options Values Description

OutputHalfRes Yes/No Scales the bitmap loaded from the graphic to half
resolution in memory before writing the output.

DoubleOutputRes Yes/No Does not change the bitmap loaded from the graphic,
but would tell the printer to double its resolution when
printed. This lets the system load graphics that ate half
resolution already.

SuppressZeroData Yes/No Suppresses data containing a seties of zeros (white
space in the bitmap).

TrimWhiteSpace Yes/No Suppresses data containing zeros (white space) at the
right edge of the bitmap.

MultiLinesPerCommand Yes/No Tries to combine AFP commands into fewer records
when printing the bitmap. You cannot use this option
with the SuppressZeroData option.

Using defaults for the = Default values for the Module and PrintFunc options in the PrtType:xxx control group
Module and PrintF_unC are provided when you use a standard print type name or print class, such as AFP, PCL,
options PDF, PST, VPP, XER, XMP, or GDI.

These defaults keep you from having to enter the Module and PrintFunc names in your
INTI file. For example, if you want to generate AFP print files, you can specify these INI
options:

< Printer >

PrtType = MYAFP
< PrtType:MYAFP >
Class = AFP

And the system will default these options for you:

< PrtType:MYAFP >
Module = AFPPRT
PrintFunc = AFPPrint

214

Using Documaker
shading patterns
instead of shaded

bitmaps

Printing highlight colors

AFP Printers

You can replace the shading bitmaps in AFP files with Documaker’s internal FAP shading
patterns. Using Documaker’s internal FAP shading patterns results in smaller and more
efficient FAP files and you will have more flexibility in choosing patterns.

To use Documaker FAP shading patterns, include the ReplaceBitmap INI option, as
shown here:

< PrtType:AFP >
ReplaceBitmap =

NOTE: The system ignores this option if the AFP output file being loaded is one
generated by Documaker because it automatically replaces shading bitmaps from
internally-generated AFP files with FAP shading patterns when appropriate.

The system replaces all occurrences of the bitmap you specify with the shading pattern
you choose. The system places the replacement shading pattern in the same location as
the AFP bitmap. To replace multiple bitmaps, repeat the ReplaceBitmap option as
necessary.

The bitmap patterns that are replaced must be named in bytes 10-17 of the Begin Image
(D3 A8 7B) AFP structured field and the bitmap name listed in the ReplaceBitmap option
must match the bitmap name in the Begin Image structured field. All Begin Image
structured fields encountered that have names that match the name in the ReplaceBitmap
option are replaced.

NOTE: While the system does support color text, color bitmaps are not supported by the
AFP loader of the MRG2FAP utility.

The system supports AFP highlight color printing on printers from Xerox and Oce. Like
other color printer support, the SendColor option must be set to Yes and the objects, such
as text, lines, and shades must be set to Print In Color.

The RGB (red,green,blue) color setting for each FAP object is mapped to the closest AFP
named color. The names of the available colors are as follows: blue, red, magenta, green,
cyan, yellow, dark_blue, orange, purple, dark_green, dark_cyan, mustard, gray, and
brown.

You use the NamedColors option in the AFP printer group to specify certain AFP named
colors. For example, if you wanted all FAP (non-black) colors to be mapped to brown,
you would use this INI option:

NamedColors = brown

To let the system map FAP colors to multiple colors, separate each color with a semicolon
(;)- For example, to use all of the default AFP named colots except brown, you would use
this INT option:

NamedColors = Red;Blue;Magenta;Green;Cyan;Yellow

215

Chapter 6

Setting Up Printers

Character set and code
page font information

Outputting character

set and code page
information

Using multiple code

216

pages

NOTE: The order in which you name the colors does not matter. In addition, the
LOG2PSEG and FAP20OVL utilities include a /C=color parameter, whete color
is the one of the named AFP colors.

When loading AFP, the system uses the information in the Character Set and Code Page
Font fields in the FXR file instead of using the font information contained in the
IBMXREF.TBL.

The AFP loader expects the AFP file's Map Coded Font (MCF) structured fields to
contain references to AFP coded fonts. However, MCF structured fields can contain
character set and code page information instead of the coded font information the FXR
file requires.

Before version 11.2, for MCF structured fields that contained character set and code page
information instead of coded fonts, you had to manually set up the IBMXREF.TBL file
to resolve the character set/code page information to coded fonts in the FXR file.

Since the system includes character set and code page information in the FXR file, the
AFP loader first checks the FXR file for this information and, if it exists, uses it. If the
information does not exist, the AFP loader loads the information from the
IBMXREF.TBL file.

You can output the AFP character set and code page combination instead of the coded
font in the font list when you generate normalized AFP files. If you want the character
set/code page combinations to be output in the AFP font list, instead of the coded fonts,
you must add the DisplayCodedFont option, as shown here:

< PrtType:AFP >
DisplayCodedFont = No

Keep in mind the FXR file must contain the character set and code page entries in the
AFP font record for this option to work. If you set the INI option to No and the character
set and code page entries are not in the FXR file, the font list in the AFP file will contain
only the coded fonts.

NOTE: The AFP output record can only contain either coded fonts or character set/code
page entries — it cannot contain a combination. It will default to coded fonts for
all if the font for one or mote objects does not contain character set/code page
entries.

You can use multiple code pages for creating AFP output. While the standard 37 code
page is the default code page, alternate code pages are frequently used for fonts set up for
them. Here is a summary of the new font definition files which were created to let you
specify code pages:

File Description

CODED.FNT The coded font definitions. This file specifies which AFP code page and AFP
font character set make up the coded font.

AFP Printers

File Description

CPDEF.FNT The code page definitions. This file maps each AFP code page to a Windows
character set.

CPGID.CP The code page map file. This file contains the character identifiers (and
associated EBCDIC hexadecimal code points) for an IBM code page and maps
them to character identifiers (and associated ASCII code points) for a
Windows ANSI or SYMBOL character set.

Here are the general syntax rules for all new font definition files:

* Asemicolon () in the first column of any of these files will cause the line to be treated
as a comment statement and ignored.

* Section headers within files are enclosed either in brackets (<> or []) with #o spaces
and must #of be removed or changed.

* All values are case insensitive.

* If a parameter value is invalid and a default value exists, it will be substituted.
* All parameters are positional.

* Blanks are allowed between parameter values.

* The question mark (?) is used in some areas as a single wildcard character.

e If the resource file exists in DEFLIB directory and contains valid data conforming
to these specifications, it will be loaded and used.

* If bad data is encountered in the file, either the offending record is ignored or a
warning is issued. If the file is considered corrupt or invalid enough, it may not be
used at all.

CODED.FNT FILE. This file specifies which AFP code page and AFP font character
set make up the coded font. The CODED.FNT file is necessary for basic multiple code
page support.

When creating this file, keep these rules in mind:
* The coded font name and both parameters are required.

* A question mark (?) can be used as the wild-card character only for the second
character in the coded font name and for any character of the character set name.
This allows all the character rotations of the coded fonts to be handled with one entry
for searching.

* After the coded font name, the character set name must be listed first, followed by
the code page name.

* The character set and code page must be separated by a comma.

Here is an example of this file:

X?COL8=C?420080,T1000850
X?COL7=C?420070,T1000850
;Core

X?H210AC=C?H200A0, T1V10500
X?H210FC=C?H200F0, T1V10500

217

Chapter 6

Setting Up Printers

218

;FormMaker Fonts

X?FA????=C?FA????,T100ASC4
X?DA????=C?FA????,T1DOC037
X0P09X12=C0P09X12,T1DOCO037
X0P12X16=C0P12X16,T1DOC037

CPDEF.FNT FILE . This file maps each AFP code page name to its code page global
identifier (CPGID) and to a Windows character set. If you do not have at least one valid
entry in this file for each code page you want to use, the system uses the default code page.

When creating this file, keep these rules in mind:
* Parameters must be separated by a comma.
* AFP code page name and code page identifier are required.

* If you create your own code page, you must assign it a unique code page identifier.
Leading zeros are invalid.

* Code Page Global Identifier (CPGID) attribute's possible values: IBM-defined
CPGID or your own defined CPGID between 65280 and 65534, inclusively. This
value matches the name of a code page map file.

* For each CPDEF.FNT entry, you must have a corresponding code page map file
with the same name as the CPGID.

* Windows character set attribute's possible values: ANSI or SYMBOL.

Here is an example of this file:

<CODEPG>

;codepage = cpgid,wincp

;****xput User-defined/Custom code pages Here *****
T100ASC4=361,ANSI

T1DOC037=37,ANSI

T10MR=5280, ANSI

T1POSTBC=5280,ANSI

;*¥***xxx* End User-defined/Custom code pages ***x**
T1000259=259, SYMBOL

T1000290=290,ANSI

T1000293=293,ANSI

T1000310=310,ANSI

DEFAULT=361,ANSI

CPGID.CP (CODE PAGE MAP FILE) . You must have a separate CPGID.CP file for
each AFP code page entry in the CPDEF.FNT file. Each code page map file contains the
character identifiers (and associated EBCDIC hexadecimal code points) for an IBM code
page and maps them to character identifiers (and associated ASCII code points) for a
Windows ANSI or SYMBOL character set. Code page map files are necessary for basic
multiple code page support.

NOTE: The actual file name is not CPGID.CP, but rather the CPGID value from the
CPDEF.FNT file with an extension of CP. For instance, in the CPDEF.FNT
example, the first two lines are:

T100ASC4=361,ANSI

Using LLE records to
link to external
documents

AFP Printers

T1DOC037=37,ANST

So, since those two entries are in the CPDEF.FNT file, that means that there
must be code page map files with named 367.CP and 37.CP.

Also, if these two entries are in the CPDEF.FNT file, but the corresponding
361.CP and 37.CP code page map files are not in DEFLIB, the translations for
those fonts will not be correct.

When creating this file, keep these rules in mind:
e Parameters must be separated by blanks.
* All four parameters are required.

* “NOMATCH” means there is not a matching character in the Windows character
set.

Here is an example of this file:

(395.cp for the T1000395 code page mapped to the Windows ANSI character set):

;T1000395 to ANSI
SP010000 40 SP010000 20
LA150000 42 LA150000 E2
LA170000 43 Lal70000 E4
LA130000 44 LA130000 EO
SP180000 8B SP180000 BB
SM560000 8C SM560000 89
SA000000 8D SP100000 2D
LI510000 8E NOMATCH 00
LI570000 8F NOMATCH 00
SM190000 90 SM190000 BO
LJ010000 91 LJ010000 6A
LF510000 A0 NOMATCH 00
;iii:3:: 5 SD150000 5E
iiiiiiii i SD130000 60

For AFP files, LLE (Link Logical Element) records let you link internal or external
documents into the AFP presentation space. For example when you are creating a PDF
file, you might want to include in the text hotspots that link to a URL. These hotspots,
when clicked, open that document.

NOTE: The LLE records are for use with text fields.

Place the LLE record immediately before the BPT — Begin Presentation Text record.
Then, following the BPT record, you can have any number of PTX records containing a
TRN (Transparent Data) control sequence, followed by a terminating EPT — End
Presentation Text.

Here is an example of the LLE format:

219

Chapter 6

Setting Up Printers

220

Element Description

5A

00 32 record length

D3B490 LLE

00 Flags

00 00 reserved

01 Navigation Link Type

00 reserved

00 05 triplet length including this value

02 Link Source specification

/N soutce text limited by triplet size) See below explanation of /N
00 11 triplet length including this value) Ox11 (17 decimal (2+1+14)
03 Link Target specification

http://xyz.com target text limited by triplet size

In the above example, the text fields /N and A#p:/ / xyz.com would be encoded as hex
EBCDIC. For example a source link such as:

00 05 02 /N
would be encoded as...
00 05 02 61 D5

The FAP library does not use the name (link source) member of the FAPLINK, therefore
it is used for feature steering.

By specifying a /N (NEXT) as the source name, the system applies the curtent instance
of the LLE to the first occurrence of a PTX record containing a TRN (Transparent Data)
control sequence record. Once the LLE link information has been applied to that
particular PTX FAPOBJECT, the system clears the LLE status so subsequent PTX
records are rendered as non-hyperlinked text.

By default the LLE is applied to all subsequent PTX / TRN recotds until either an LLE
is encountered with a /C as its source link to enable the cleating of the active instance of
the LLE, or to use a normal valid LLE to supersede the prior usage.

If you ate not using a /N ot /C, you may use the source name area of the LLE for a brief
descriptive label.

FormDef

Fonts

Monotype fonts

Overlays

Page segments

AFP 2-up support

AFP Printers

NOTE: The system does not support the use of the attribute link type or internal target
links within FAP and therefore PDF documents.

The system only supports the conversion of LLE records in FAPSTEXT objects
and linking to external documents.

AFP PRINTER RESOURCES

The system uses copy groups from its own FormDef named F7FMMST.DAT. Each copy
group in a FormDef contains information about paper size, duplex, tray selection, jog,
orientation, and so on. The FormDef must be available to PSF to print AFP data streams.
You can use the AFPFMDETF utility to create or modify the FormDef.

AFP fonts are designed solely for AFP printers. For more information about fonts, see
Working with Fonts on page 171. In IBM AFP terminology, a font is described by three
components:

CODED FONT. A coded font file contains references to specific character set and specific
code page. Coded font files always begin with the letter X, such as XODATINS.

CODE PAGE. In IBM AFP terminology, a code page file maps code points to an AFP
character name in a character set file. Code page files always begin with the letter T, such
as T1DOCO037.

CHARACTER SET. A character set file contains the bitmap graphic of each character in

the character set. Character set files always begins with the letter C (such as
COFATINS.240 or COEATINS.300). The character set file name extension (240 ot 300)
indicates whether the bitmap graphics are drawn at 240 or 300 dots per inch.

Oracle Insurance has licensed for use and distribution with its systems, fonts from
Monotype Imaging, Inc. The system includes both 240 and 300 dpi AFP fonts.

Use the FAP2OVL utility to create AFP overlays from FAP files. The OVLCOMP utility
also lets you create AFP overlays from FAP files. These overlays must be available to PSF
to print AFP data streams when the SendOverlays option is set to Yes.

Use the LOG2PSEG utility to create AFP page segments from graphics (LOG files).
These page segments must be available to PSF to print AFP data streams.

NOTE: For information on system utilities, see the Docutoolbox Reference.

The system include rules you can use to generate and merge print streams for AFP
printing for printers that support 2-up printing. See Handling 2-up Printing on page 68 in
the Documaker Server System Reference for more information.

221

Chapter 6

Setting Up Printers

222

Floating section
limitations

Objects extending
beyond the edges

Conflicts between
page and form
orientation

AFP TROUBLESHOOTING

The system lets you compose a page from several sections. The system also lets you create
overlays for these sections. There is one limitation when you print these sections on a
landscape page. Overlays on a landscape page can only be placed vertically on the page.
Overlays on a landscape page cannot be placed horizontally on the page.

This means, in your SetOrigin rule, you cannot specify any non-zero, positive number for
the X-relative displacement. Create your FAP files accordingly, but keep in mind that they
can be moved down but not across. This limitation exists only for AFP ovetlays, and only
in landscape mode.

Another type of error can occur if the overlay for a custom-sized section is too small for
the objects (text, lines, graphics, and so on) contained within it. If the AFP overlay’s page
size is too small, objects may be clipped to the page size, printed as solid black rectangles,
or trigger error messages.

Documaker Studio and Image Editor offer an Auto-size option which you can use to
make sure the custom-sized section is large enough to contain all objects placed within it.
Use this feature to prevent most custom page size problems.

Be careful placing text at the extreme left edge of the section because it may cause errors
that the Auto-size option cannot detect. For instance, suppose you have this text label
positioned on the left edge of the FAP file (left offset = 0):

Beneficiary

When printed, black rectangles or an error message may appear instead of the text.

This can occur because some of the characters in the italic font (Times New Roman) have
a negative left offset. This means that the characters print to the left of where they would
normally start. A negative left offset may be easier to understand by looking at these
characters:

ef

Notice how the bottom of the f'goes under the e. This is an example of a negative left
offset. Because it is positioned to the left of where it would normally start, the character
is now positioned off the left edge of the overlay.

This kind of detailed character information is not stored in the FXR file so Documaker
Studio and Image Editor have no way to know there may be a problem. You can,
however, move the text labels in the FAP file to correct the problem.

If you create a custom-sized page, be aware of any conflict between page orientation and
the form orientation. If the form orientation is not the same as the page orientation, the
page will not print according to the page orientation, but will follow the form’s
orientation.

NOTE: This happens only in case of custom size pages. Standard size pages obey the page
orientation.

Multi-page FAP
limitation

Printing rotated
variable fields

AFP 240 dpi print
problems

AFP Printers

There is a problem when a landscape, multi-page FAP has different page sizes on each

page. All pages of a multi-page FAP file should be the same size. As a workaround, use
Documaker Studio or Image Editor to correct the page sizes. After saving the FAP file,
you can then generate proper AFP overlays.

Here is a list of field options you can specify in the NAFILE.DAT file:

Option Description

E Error

M Manual

P Protected

G Global scope (entire form set)

F Form scope

H Hidden field — a dummy field, not displayed or printed
N Nonprintable field (displayed, not printed)

C Send-copy-to field (receives current recipient name at print time)
9 Rotated 90 degrees

8 Rotated 180 degrees

7 Rotated 270 degrees

Some of these options require the FAP field attributes to be available at runtime, since the
DDT file does not include the necessary information. Use the CheckImagel.oaded rule to
make sure this information is available.

Due to differences in resolution on 240 and 300 dpi printers, a text string may print with
slightly different lengths. One example where this may be noticeable is when the text is
printed inside of a boxed region. Another example where this may be noticeable is when
a text area contains an embedded variable field.

To minimize the print differences between 240 and 300 dpi printing, use the SplitText
option. Make sure these options are in your printer PrtType:xxx control group:

< PrtType:AFP >

SplitText = Yes/No (default is No)
SplitPercent = ### % of space-width as max rounding error)
Resolution = ##t# (default is 300)

If you set the SplitText option to Yes, each text string is checked to see if it needs to be
split into sections for printing. The SplitPercent value helps determine when a text string
must be split into sections for printing.

The SplitPercent option sets the percentage of the width of the space character to use as
the maximum amount of rounding error that can accumulate in a string before it is broken
into sections.

223

Chapter 6

Setting Up Printers

The SplitPercent value is from zero (0) to 100. Do not enter a value greater than 100. For
example, if you set the SplitPercent option to 75, the string is broken into sections if the
accumulated rounding error is greater than 75% of the width of the space character. This
value is set to 50 by default.

NOTE: Using 50 as the SplitPercent value is a good trade-off between the appearance and
the performance impact on the GenPrint program and print spool size. Setting
the SplitPercent option to a smaller value gives you a more accurate printout but
slows the GenPrint program, increases the size of the print spool, and increases
the amount of time it takes to print.

The Resolution option determines the rounding error. Most FXRs are built using 300 dpi
fonts. This causes rounding errors when the FXR is used for printing to a 240 dpi printer.
If you omit the Resolution option, the system uses the default setting of 300.

You need to know whether the FXR you are using was built by importing 300 dpi fonts
or 240 dpi fonts. The standard FXRs are built using 300 dpi fonts. When an FXR is built
using 300 dpi fonts, there are rounding errors when printing to a 240 dpi printer.

Here are some examples of options to use in different situations:

* Ifyour font cross-reference (FXR) file was built from 300 dpi fonts and your printer
resolution is 240 dpi, set the options as shown here:

< PrtType:AFP >

SplitText = Yes
SplitPercent = 50
Resolution = 240

* If your font cross-reference file was built from 240 dpi fonts and your printer
resolution is 300 dpi, set the options as shown here:

< PrtType:AFP >

SplitText = Yes
SplitPercent = 50
Resolution = 300

* If your font cross-reference file was built from 300 dpi fonts and your printer
resolution is 300 dpi, you do not need to set the SplitText option.

* If your font cross-reference file was built from 240 dpi fonts and your printer
resolution is 240 dpi, you do not need to set the SplitText option.

224

AFP Printers

INCLUDING DOCUMERGE FORM-LEVEL COMMENT RECORDS

You can include Documerge form-level comments in AFP print streams produced by
Documaker. You may want to include form-level comments if you have a reprint utility
program that needs information about a form before it can reprint it.

To include form-level comment records, add the FormNameCR option in your AFP
printer control group and set it to Yes, as shown here:

< PrtType:AFP >

FormNameCR = Yes

Module = AFPPRT
PrintFunc = AFPPrint
SendOverlays = Yes,Enabled

Here is an example of the AFP records in an AFP print stream which includes the
Documerge form level comment (NOP) records:

000, Begin, Document, 29,

001, Data,NOP, 84, $%$%$DMGFORMBEG%%% DEC PAGE 00001
AFP Docucorp 000001

002, Map,Medium Map,16,PLUD

033, End, Page, 16,

034, Data,NOP, 84, $$$DMGFORMEND%%% DEC PAGE 00001
AFP Docucorp 000001
035, Data,NOP, 84, $%$%$DMGFORMBEG%%% LETTER 00001

AFP Docucorp 000002
036, Begin, Page, 16,

053, End, Page, 16,

054, Data,NOP, 84, $%$%$DMGFORMEND%%% LETTER 00001
AFP Docucorp 000002

173 ,End, Document, 16,

000, Begin, Document, 29,

001, Data,NOP, 84, $%%$DMGFORMBEG%%% OP714 00001
AFP Docucorp 000001

002, Map,Medium Map, 16, PLUO

225

Chapter 6

Setting Up Printers

METACODE
PRINTERS

226

The Metacode language is the native mode language for Xerox 4000 and 9000 series
printers. This language is superior to printing using line data with Xerox Laser Printing
Systems (LPS). The advantages of using Metacode over line data printing include support
for portrait and landscape text on the same page, support for different fonts on the same
line, precise text positioning, and text justification. In addition, Metacode lets you merge
multiple forms onto a single page.

NOTE: All system print drivers support 24-bit color graphics. If you printer does not
support color, the print driver will automatically convert the color graphics into
monochrome graphics. Keep in mind that for the best performance you should
avoid color graphics.

Required JSL INI Options

The system does not require you to use a special JSL on your printer to print its Metacode
output. The Xerox Metacode printer driver is configurable based on options to produce
Metacode which match your existing JSL settings. Here is an example of the
PrtType:XER control group which contains these options:

< PrtType:XER >

DJDEIden = A'@CEDJDE'
DJDEOffset =0
DJDESkip =8

OutMode = BARR
ImageOpt = No
CompressMode = LIN
JDEName = META
JDLCode = NONE
JDLData = 0,255
JDLHost = IBMONL
JDLName = CBA
PaperSize =0

Device = dummy . txt
RelativeScan = Yes

Several of these options are based on the comparable parameter values in the settings of
the printer's JSL. A JSL may contain many JDLs from which to choose, or thete may be
multiple JSLs compiled into multiple JDLs.

JDLName

JDEName

Metacode Printers

A portion of a JDL may look like the following:

CBA:
T1:
T2:
T3:
Cl:
C2:
C3:
VOLUME
LINE
IDEN

ROFFSET
RSTACK
RPAGE

/* 8.5 x 11 job */

JDL;
TABLE
TABLE
TABLE
CRITERIA
CRITERIA
CRITERIA

CONSTANT=X"'121212121212121212";
CONSTANT=X"'13131313131313131313";
CONSTANT=X'FFFF26FFFF "' ;
CONSTANT=(0,9,EQ,T1) ;
CONSTANT=(0,10,EQ,T2) ;
CONSTANT=(1,5,EQ,T3) ;
HOST=IBMONL;

DATA=(0,255);

PRE=A'@E@@DJDE",

OFF=0,

SKIP=8;

TEST=C1;

TEST=C2, DELIMITER=YES, PRINT=NONE;

TEST=C3, SIDE=NUFRONT , WHEN=NOW ;

USAl: JDE;

OUTPUT

/* 8.5 x 14 job */

META: JOB;

VOLUME

/* Default job */

DFLT: JDE;

VOLUME
END;

/* JOB can be used in place of JDE
PAPERSIZE=USLETTER;

CODE=NONE

CODE=EBCDIC

*/

Here are the required options which are based on settings in the printer’s JSL file.

Represents the name of the JDL to use. The following table shows the relevant JSL
statement for the earlier example and the proper option to use based on the JSL example.

JSL statement | CBA: JDL;

INI option

| JDLName = CBA

Represents the name of the job to use. A JDL may contain many jobs (JDEs) from which
to choose. This JDE must contain a ['OLUME CODE=NONE statement. The

following table shows the relevant JSL statements for the earlier example and the proper
option to use based on the JSL example.

JSL statements

META: JOB;

VOLUME CODE=NONE

INI option

JDEName = META

227

Chapter 6

Setting Up Printers

DJDElden,
DJDEOffset, and
DJDESKkip

JDLCode

JDLData

JDLHost

228

Represent the IDEN statement of the JDL. The value of the DJDEIden setting is a string
constant. The types of string constants supported are ASCII (A'string'), EBCDIC
(E'string"), Character (‘string'), and Hex (X'string"). Octal, H2, and H6 sttings are not
supported.

Strings containing repeat counts, embedded hex values, and uppetr/lower case toggles are
not supported. The following table shows the relevant JSL statements for the earlier
example and the options to use based on the JSL example.

JSL statements IDEN PRE=A'@@@D]JDE/,
OFF=0,
SKIP=8;

INTI options DJDEIden = A'@@@D]JDE'
DJDEOffset = 0
DJDESkip =8

Represents the type of input format expected by the Xerox printer. Character translation
occurs as necessary. Currently, the supported code types are EBCDIC, ASCII, NONE
(same as ASCII), BCD, H2BCD, H6BCD, IBMBCD, and PEBCDIC. User-defined code
translations are not supported.

Referring to the sample JSL, if the printer is normally started with STA DLFT,CBA then
the JDLCode option must be set to CODE = EBCDIC. The system’s option must contain
the value of the CODE statement for the printer's normal operation. This table shows the
relevant JSL statements for the earlier example and the proper option to use based on the
JSL example.

JSL statements DFLT:]DE;
VOLUME CODE=EBCDIC

INI option JDLCode = EBCDIC

Represents the starting position and length of the print line data within an input data
record. The LINE statement contains a DATA entry that holds these values. This table
shows the relevant JSL statement for the earlier example and the proper option to use
based on the JSL example.

JSL statement | LINE DATA=(0,255);

INI option | JDLData = 0,255

Represents whether the printer is normally in an on-line or off-line state. Currently, the
only values we accept for this option are IBMONL (on-line) and IBMOS (off-line). The
following table shows the relevant JSL statement for the eatlier example and the proper
option to use based on the JSL example.

JSL statement | VOLUME HOST=IBMONIL;

OutMode

ImageOpt

Metacode Printers

INI option JDLHost = IBMONL

Additional Required INI Options

Below are the additional required options not based on the printer’s JSL file.

The OutMode option indicates the output format for the Metacode data stream generated
by Documaker applications.

Use BARR, if the Metacode output is to be transmitted to the Xerox printer via BARR
SPOOL hardware and software. When using the BARR setting, a length byte is placed at
the start and end of each Metacode record.

Use BARRWORD, if the Metacode output is to be transmitted to the Xerox printer via
BARR SPOOL hardware and software. BARRWORD should be used oz/y if the Xerox
printer can handle records longer than the 255 characters.

Use PCO, if the output is transmitted to the Xerox printer via PCO hardware and software
(from Prism). When using the PCO setting, a 4-byte length field is placed at the start of
each Metacode record.

NOTE: The PCO interface has not been tested, but should work.

Use JES2, if the Environment option is set to MVS.

Use MRG4, if you will transmit the Metacode output to the mainframe using
Commcommander or if you will archive it in Docusave (see Creating Print Streams for
Docusave on page 323 for more information).

Use LLAN4235, if the output is generated for a Xerox 4235 printer attached to a network.
Here is an example:

OutMode = BARR
The ImageOpt option specifies if the graphics are being saved on Xerox printer as IMG
files or as FINT files.

To use IMG files, the printer needs a special GVG or GHO hardware installed. Also, in
the JSL you have to specify GRAPHICS = YES.

If you are using IMG files, vectors, in-line bitmaps or want to print charts, set the
ImageOpt option to Yes; otherwise set it to No. Here is an example:
ImageOpt = No

If the system detects a problem when you are printing in-line bitmaps and vectors, it will
display a message that tells you the type of graphic and image name. If the graphic is an
in-line bitmap, it includes the name.

NOTE: Metacode printers have a limit of 16 IMG files on a page.

229

Chapter 6

Setting Up Printers

230

CompressMode

CompilelnStream

The CompressMode option compresses bitmaps output as inline graphics, such as charts
and graphics with the inline graphics flag set. There are four compression modes available,
which you can specify using the CompressMode option in the PrtType:XER control

group:

* CompressMode = UNC
* CompressMode = ENC
* CompressMode = HTN
e CompressMode = LIN

UNC'is the uncompressed or raw bitmap mode. If none is specified, the system defaults
to HTIN mode.

To demonstrate the effects of Metacode graphics compression, the following chart shows
the GenPrint program run times and file sizes with the different compression options for
a test environment containing in-line images.

Test GenPrint time File size
No charts (ImageOpt=No) 182 seconds (3:02) 697,599

UNC — uncompressed 309 seconds (5:09) 9,011,058
LIN compression 290 seconds (4:50) 1,589,226
ENC compression 301 seconds (5:01) 2,248,302
HTN compression 296 seconds (4:56) 1,831,050

Which compression method yields the smallest file size or the quickest compression time
depends on the graphic bitmaps you are printing. In general, HTN or LIN compression
provides the best results. HTN generally does best with graphics which contain more
filled-in or shaded areas, while LIN performs better with graphics which contain more
line art. Experiment with your sections to determine the best compression method.

The results of compression can be dramatic, as the table shows. The uncompressed print-
ready file is over nine megabytes in size, while the compressed file size ranges from 18%
to 25% of the uncompressed file. However, keep in mind that while the reduced file sizes
save disk space and reduce transmission times, these files must be decompressed by the

printer at print time, which is done automatically by the print controller.

The CompileInStream option determines whether the FAP files have been loaded. If set
to Yes, the print driver compiles the print stream using FAP files. Make sure the
DownloadFAP option in the RunMode control group is set to Yes. If set to No, pre-
compiled MET files are used.

The print driver creates the print stream using pre-compiled Metacode files. Use the
FAP2MET utility to create pre-compiled Metacode files. The GenPrint program loads
pre-compiled Metacode membets from the PMETLIB PDS under z/OS. On other
platforms, the PMetLib option specifies the directory which contains the pre-compiled
MET files. If you do not set this option, the system uses the setting for the FormLib
option in the MasterResource control group.

Device

RelativeScan

Using defaults for the
Module and PrintFunc
options

Metacode Printers

NOTE: To use FRM files in your Metacode print stream, set the CompileInStream INI
option to No in the Xerox printer control group. Using FRM files enhances
performance in high volume situations that use a repeated background form on

every page.

This is the name of the file or device, such as LPT1, where the Metacode print stream
should be written. This option is ignored by the GenPrint program but should not be left
blank or omitted. For instance, you could enter dummy.txt.

When set to Yes, the RelativeScan option tells the system to consolidate all records in the
print stream. When set to No, this option tells the system to omit Relative Scan records
when consolidating records. If you are using GenPrint version 9.0 or higher you will

probably want to leave this option at its default setting (Yes) for maximum optimization.

Specifying Installable Functions

For the Xerox print driver, you must specify the following set of installable functions in
the PrtType:XER control group:

OutputFunc = XEROutput
OutMetFunc = XEROutMet
InitFunc = XERInit
TermFunc = XERTerm
Module = XERW32
PrintFunc = XERPrint

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDIL

These defaults keep you from having to enter the Module and PrintFunc names in your
INI file. For example, if you want to generate XER print files, you can specify these INI
options:

< Printer >

PrtType = MYXER
< PrtType:MYAFP >
Class = XER

And the system will default these options for you:

< PrtType:MYAFP >
Module = XERPRT
PrintFunc = XERPrint

231

Chapter 6

Setting Up Printers

Setting the end of the

232

report

Starting new pages

Optional INI Options

Use the JDLRStack option to set the criteria which signals an end of report condition to the
printer. In the JDL sample listed eatrlier, the RSTACK statement performed a criteria test
named C2. The C2 test checks a specific part of each input line against the string named
T2. If the string T2 matches an input data record at position zero (0) for a length of 10
bytes, an ezd of report condition is signaled. Only CONSTANT criteria using an EQ
operator are supported.

Setting the JDLRStack option is optional. If your printer is used for both Metacode and
text file print jobs, you must set this option. Using the JDL sample listed eatlier, the option
should be:

JSL statements T2: TABLE CONSTANT=X'13131313131313131313";
C2: CRITERIA CONSTANT=(0,10,EQ,T2);
RSTACK TEST=C2,DELIMITER=YES ,PRINT=NONE;

INI option JDLRStack = 0,10,EQ,X'13131313131313131313'

Use the JDLRPage option to set the criteria which signals a jump to front side of a new sheet
to the printer. In the JDL sample listed earlier, the RPAGE statement performed a critetia
test named C3. The C3 test checks a specific part of each input line against the string
named T3. If the string T3 matches an input data record at position zero (0) for length of
5 bytes, a jump to new sheet condition is signaled because of the SIDE=NUFRONT
statement. Only CONSTANT criteria using an EQ operator are supported. For the
JDLRPage option to work propetly, the SIDE=NUFRONT and WHEN=NOW
statements must be used as a part of the RPAGE settings in the JSL file.

Setting the JDL.LRPage option is optional. If the print job contains duplex pages alternating
with simplex (one-sided) pages, this option provides a way to leave blank the backsides of
certain pages. Using the JDL sample listed eatlier, the option should be:

JSL statements T3: TABLE CONSTANT=X'FFFF26FFFF)
C3: CRITERIA CONSTANT=(1,5EQ,T3);
RPAGE TEST=C3,SIDE=NUFRONT,WHEN=NOW;

INT option JDLRPage = 1,5,EQ,X'FFFF26FFFF'

The Metacode print driver automatically places the SIDE=NUFRONT statement on all
front pages when operating in duplex mode. This lets the system support print stream
sorting facilities such as Mobius InfoPak. Also, the SIDE=NUBACK statement is now
added to blank back pages when in duplex mode.

These statements eliminate the need for the ADDPAGES utility which some systems
used with Mobius InfoPak support. Without this functionality the first page of an output
may print on the back of a previous output.

You will need to add the SIDE=NUFRONT statement on all front pages printed, not
only those pages that specify a tray change. This is necessary to handle the end of job
condition where the last page prints on the front and is moved by InfoPak.

Adding an OFFSET
command

Jogging pages

Metacode Printers

Also, the system will now add a SIDE=NUBACK statement for pages that start on the
back side of the page, leaving the front side blank.

NOTE: You cannot configure these statements. The system automatically enters them
into the print stream. You do not need to add SIDE=NUFRONT and
SIDE=NUBACK statements to your Xerox printer control group
(PrtType:XER).

Prior to version 11.3, the first Metacode print stream the system produced would include
this statement:

DJDE SIDE=NUFRONT, END
while the remaining print streams the system produced would include this statement:
DJDE SIDE= (NUFRONT, OFFSET) , END

This means the first Metacode print stream will not have a statement which includes the
OFFSET command.

If your printer requires the OFFSET command to be in all statements, including the first
DJDE statement, add the DJDEForceOffsetEnd option to your INI file, as shown here:

< PrtType:XER >

CodeDef = dcascii9
Device = X.MET
DJDEIden = E'S$SXEROX'
DJDEOffset =0
DJDESkip =8

DJIDEForceOffsetEnd = Yes

Option Description

DJDEForceOffsetEnd Enter Yes to make sure there is an OFFSET command in every
DEJDE statement, including the DJDE statement for the first print
stream.

The default is No, which omits the OFFSET command from the
DJDE statement in the first Metacode print stream.
Only set this option to Yes if you must include the OFFSET

command for your printer. Most printers do not require OFFSET in
the first DJDE statement.

Use the JDLROffset option to set the criterion that tells the printer to initiate a page offset
in the output bin. This option has not been fully implemented.

In the JDL sample, the ROFFSET statement performed a criteria test named C7. The C1
test checks a specific part of each input line against the string named T7. If the string T'1
matches an input data record at position zero (0) for length of 9 bytes, a page offset is
initiated. Only CONSTANT criteria using an EQ operator are supported.

Setting the JDLROffset option is optional. Using the JDL sample listed eatlier, the option
should be:

233

Chapter 6

Setting Up Printers

Specifying spot color

Chart performance and

print quality

Optimizing Metacode

234

print streams

JSL statements T1: TABLE CONSTANT=X'121212121212121212)
Cl: CRITERIA CONSTANT=(0,9,EQ,T1);
ROFFSET TEST=C];

INI option JDLROffset = 0,9,EQ,X'121212121212121212'

You can also jog form sets by transaction instead of by batch. In some situations, this can
make manual assembly easier. To do this, set the OffsetLevel option to Formset, as shown
here:

< PrtType:XER >
OffsetLevel = Formset

This adds an additional 'OFFSET" parameter to the SIDE=NUFRONT command,
which tells the printer to jog after each transaction.

Use the PrinterInk option to specify the color of ink loaded on a Xerox highlight color
printer. You can set this option to one of the following colors:

Blue Red Green Ruby Violet Brown
Gray Cardinal Royal Cyan Magenta

Blue is the default if you omit this option. This option is used with the SendColor option.
If you set the SendColor option to Yes, be sure to also set the PrinterInk option. Here is
how you would specify cyan as the color of the ink stored on the printer:

PrinterInk = cyan
By default, charts are rendered at 150 dpi (dots per inch) in a Metacode print stream. This

setting typically provides for a smaller print stream and optimal performance from the
GenPrint program.

Charts are scaled by the printer to their proper size and are printed as 300 dpi bitmaps.
Because fewer dots are used at these lower dpi settings, you may notice some loss of detail
in the printed output and effects such as:

* The circle which makes up the pie chart is less precise
e The lines used in a chart are thicker

Test charts printed to see if the loss of detail is acceptable. In general, horizontal and
vertical lines scale with little or no loss of precision. Arcs and diagonal lines may lose some
detail.

To disable rendering charts at 150 dpi, add the following option to the Xerox printer
control group, usually named Pr/Type:XER:

ChartResolution = 300
The only other acceptable value for this option is 150. This option does not affect

graphics printed as inline graphics.

The GenPrint program lets you produce optimized Metacode print streams. You may
want to consider using optimization if your Metacode output causes the printer to cycle
down (wait) while printing.

Using a common font
list

Metacode Printers

This condition can occur when Metacode records cannot be transferred fast enough to
the printer. Optimization helps remedy this situation by combining Metacode print
records into larger and fewer records. Reducing the number of records that must be
transmitted reduces the amount of time needed to spool the Metacode print stream to the
printer. The cost is decreased GenPrint performance. You can also use the METOPT
utility to optimize normal (non-optimized) Metacode output. For more information on
this utility, see the Docutoolbox Reference.

To have the GenPrint program produce optimized Metacode output streams, add this
FSISYS.INI option to have the GenPrint program sort and consolidate records to create
more efficient print streams:

< PrtType:XER >
Optimize = Yes

The Optimize option defaults to No, which tells the GenPrint program to run without
sorting and consolidating records.

You can enable some extra error checking during optimization. If optimization
encounters critical errors, such as the inability to find or open a file, it will notify you and
stop immediately. It can report actual or potential non-critical problems it encounters
while it runs. For instance, if optimization finds Metacode records that may prevent the
file from printing, it can warn you.

To have optimization notify you if it spots potential problems, add the following option
to your PrtType:XER control group:

< PrtType:XER >
ValidLevel = 0 (default)

Enter zero (0) to tell the utility not to report non-critical problems. Enter one (1) to tell
the utility to report warnings for non-critical problems, but continue optimizing. Enter
two (2) to tell the utility to report warnings for non-critical problems and attempt to fix
the problems. Enter three (3) to tell the utility to report warnings for non-critical problems
and exit immediately.

Regardless of the option you choose, if you receive any warnings, be sure to closely check
both the original and, if applicable, the optimized file.

The METOPT utility and the Metacode print driver let you use common font lists at the
beginning of a Metacode print stream. A common font list names all of the Xerox fonts
that will be used by the print job.

By knowing all of the fonts up front, the Metacode driver can issue a single DJDE
FONTS command once at the beginning of the job and avoid issuing DJDE FONTS
commands on subsequent pages. This helps some Metacode printers print jobs at their
highest rated speed.

In the CommonFonts control group, you will see a list of options similar to these:

< CommonFonts >

Names = 28

Namel = FORMSX
Name2 = FXUNBD
Name3 = FXUNNG6
Name4d = FXCONG6
Name5 = FXUNNS8
Name6 = FXUNNO

235

Chapter 6

Setting Up Printers

Setting a default paper

236

size

Name7 = FXUNBH

Name28 = FXUNIO

The first option, Names, defines the number of font name entries that follow. The
following options specify the Xerox fonts which will be used in the print job.

NOTE: The format used for the CommonFonts control group is the same as that used
by Documerge. Therefore, if you used this in Documerge, you can copy that INI
control group into your Documaker INI file.

To use common font lists, you must use the METOPT utility or use the Metacode print
driver and have the following INI options in the Xerox print group:

< PrtType:XER >
Optimize = Yes

MaxFonts =
Option Description
Optimize To use common font lists, set this option to Yes.

MaxFonts Set this option to the maximum number of fonts your printer can handle in a single
DJDE command. This number will vaty based upon the printet's memory and
configuration. The maximum value is 99 and the default is 20.

If the number of fonts in your common font list exceeds the MaxFonts value, the system
outputs the MaxFonts number of fonts in the DJDE FONTS command. The DJDE
FONTS command will contain the names of the fonts used on that page plus additional
fonts from the common fonts list until the MaxFonts number of fonts is reached.

If the system encounters a page that uses a font not specified in the common fonts list (or
the prior DJDE FONTS command to be more precise), it issues a new DJDE FONTS
command which appends to the common font list the new fonts for that page.

Use the PaperSize option to set a default paper size when converting Metacode print
streams using the Internet Document Server or the MRG2FAP utility.

< PrtType:XER >

PaperSize = 0
Enter Description
zero (0) for letter size (default)
1 for legal size
2 for A4 size
3 for executive size
98 for a custom size

Automatically sizing
sections

Inline graphic
performance and print
quality

Adding color to charts

Using named paper
trays

Specifying the printer
model

Metacode Printers

You can have the system automatically size FAP files converted from Metacode files,
(usually Documerge EDL members). This lets you create the FAP files as custom sized
sections that are the minimum size required to contain all of the converted objects from
the Metacode file.

To have the system automatically size the FAP files, include this INI option in the Xerox
printer group you are using to convert the Metacode file:

< PrtType:XER >
AutoSize = Yes

If you omit this option, the system creates full page size sections.

Keep in mind...

* The system will not automatically size the section if the converted Metacode file
results in a multi-page section.

* If the section is automatically sized and the result is a custom sized section, the
Metacode loader does not try to determine if the section is landscape and does not
rotate landscape objects.

Graphics at 75, 100, or 150 dpi, printed using inline graphics, are scaled by the printer to
their proper size and printed as 300 dpi bitmaps. Because fewer dots are used at these
lower dpi settings, you may notice some loss of detail in the printed output and effects
such as:

* Arcs and circles are less precise
* The lines used in a graphic are thicker

Test LOG files printed as inline graphics to see if the loss of detail is acceptable. In
general, horizontal and vertical lines scale with little or no loss of precision. Arcs and
diagonal lines may lose some detail.

To avoid scaling inline graphic LOG files, use Documaker Studio or Logo Manager to
scale your graphics to 300 dpi. Most graphics are normally 300 dpi and most graphics are
not printed as inline graphics.

Use the ColorCharts option to print the graphic portion of the chart in color.
ColorCharts = Yes

This option is used with the SendColor and PrinterInk options.

By default, Metacode output specifies the main tray for pages that use Tray 1. The AUX
tray is specified for all other trays. If you have named trays in your JSL, specify these
named trays in your options. An example of this option is shown here:

Trayl = ONE1
Tray2 = TWO2
Tray3 = THREE3
Tray4 = FOUR4

Use the PrinterModel option to specify the particular printer model you are using. There
may be subtle differences between printer models that can affect the output sent to the
printer. Cutrently, only the 3700 printer requites this setting. An example of this option
is shown here:

237

Chapter 6

Setting Up Printers

Specifying the
resolution

Displaying console
messages

Stapling forms

238

PrinterModel = 3700

Use the Resolution option to specify the printet's dots per inch resolution. Cutrently, only
300 dpi is supported, which is also the default.

Resolution = 300

Use the OTextString option to display a message on the printer console. The text you
specify is sent before the print job starts. For example, this lets you display the message,
Put BLUE paper in tray 1 before a print job starts. Here is an example:

OTextString = “Put BLUE paper in tray 1”

The system also supports multiple OTEXT messages in the Metacode print driver at a
print batch level. Additionally, the system lets OTEXT messaging generate multiple
messages per print batch. To turn on multiple OTEXT messaging, add this option to the
FSISYS.INI file

< PrtType:XER >
MultipleOText = Yes

The default is No.

This tells the system to ignore the OTextString value in the PrtType control group and
instead use the ones found in the appropriate print batch group.

For example, if you have three print batches, called BATCH1, BATCH2, and BATCH3,
under each separate batch group, put required number of sequential messages for that
batch:

< BATCH1 >
OTextStringl = "Batch 1 OText Stringl"
OTextString2 = "Batch 1 OText String2"
OTextString3 = "Batch 1 OText String3"
< BATCH2 >
OTextStringl = "Batch 2 OText Stringl"
OTextString2 = "Batch 2 OText String2"
OTextString3 = "Batch 2 OText String3"
< BATCH3 >
OTextStringl = "Batch 3 OText Stringl"
OTextString2 = "Batch 3 OText String2"
OTextString3 = "Batch 3 OText String3"

* kK

Keep in mind that the index tags OTextStringX (where X is a number) must start with
one (1) and be sequential. The system stops writing OTEXT records to the batch when
it finds a tag that is out of sequence. Here is an example:

OTextStringl = "Batch 3 Otext String 1"
OTextString3 = "Batch 3 Otext String 3"

In this example, only the first one would display on the screen, because OTextString2 is
not encountered next.

Some Metacode printers include a stapling feature. The system supports this feature, but
it has not been tested and is not warranted.

Duplex switching

Using VSAM to store
resources

PrintViewOnly

Caching files to
improve performance

Metacode Printers

Using this feature, forms printed on certain Metacode printers can be stapled if you
specify a Staple]DEName option in the PrtType control group. This causes a new JDE
to be specified on forms that need to be stapled.

It is assumed that the Staple JDE option has the same settings as the normal JDE
specified except for the additional STAPLE command. You specify which forms should
be stapled using the Form Set Manager, which is part of Docucreate or via Documaker
Studio.

This option only affects implementations which print to Metacode printers with the
optional stapling feature. For more information on this feature, see the Docucreate User
Guide. An example of this option is shown here:

StapledJDEName = JDESTP

In earlier versions of the system, a Metacode print stream began and continued as a

simplex job until the system encountered a page that needed to be duplex. At that point,
the duplexing option was turned on. From that point forward, the print stream remained
in duplex mode. For performance reasons, the system did not switch out of duplex mode.
Research showed that for most cases, this was the most efficient way to drive the printer.

If, however, you ate directing the printer output stream to a value-added process, you may
want to include the actual duplex selection information with each form set. Without the
commands to specify the duplex state, some value-added processes may not work
propetly. By setting the DJDELevel option to Formset, each form set will include a
duplex command which specifies either simplex or duplex mode (DJDE DUPLEX=YES
or NO always appears at the beginning of every new form set). A value other than Formset
causes the duplex commands to be output as before. Here is an example:

DJDELevel = Formset

The system lets you store DDT files, precompiled Metacode resources, NA and POL
files, and transaction trigger files in VSAM KSDS (Virtual Storage Access Method/Key
Sequence Data Set) data sets. If you use this feature, you must set the following options
in the VSAM control group in the FSISYS.INI file:

< VSAM >
DDTVSAM = DD:DDTVSAM DDT files
METVSAM = DD:PMETVSAM PreCompiled Metacode files
VSAMRCPTB = DD:SETRCPVS Transaction Trigger file
VSAMNA = DD:NAFILE NA and POL files

For more information on implementing VSAM support under z/OS, see Optimizing
Performance in the Documaker Server Installation Guide.

If set to Yes, this option tells the system to print the view only sections. The default is No.
This does not apply to entry only sections, which are never printed. Entry only sections
are usually worksheets. If the section is marked as hidden and view only, it will not print.

The following options let you minimize the opening and closing of frequently used PDS
members by retaining, or caching, file handles and file data. In many cases the default
values are sufficient, but for specific cases in which you use many different sections, you
may need to increase these caching values to improve performance.

Here are the options you can customize:

< Control >

239

Chapter 6

Setting Up Printers

240

CacheFAPFiles
RuleFilePool
LogCaching =
CacheMethod =

Option Description

CacheFAPFiles Specifies the number of FAP files to keep available for re-use without re-
loading them from disk. The default is 100.

RuleFilePool Specifies the number of DDT files to keep available for re-use without re-
loading them from disk. The default is 100.

LogCaching Enter No if you do not want the system to log caching statistics. The default
is Yes.

CacheMethod Use to set the type of caching method. You can choose from LFU (least
frequently used), LRU (least recently used), or LFUO (least frequently used
optimized). LFUO is the default.

MET files contain pre-compiled Metacode information produced by the FAP2MET
utility. The GenPrint program loads MET members from the PMETLIB PDS undert z/
OS. On other platforms, the PMetLib option specifies the directory containing the pre-
compiled MET files.

If not set, the system uses the setting for the FormLib option in the MasterResource
control group. The CacheFiles option keeps frequently used MET members available for
re-use. This option is placed in the PrtType:XER control group in the FSISYS.INT file, as
shown here:

< PrtType:XER >
CacheFiles = 100 (default is 100)
InitFunc = XERInit
TermFunc = XERTerm

Caching statistics for FAP files, DDT files and Xerox resources such as pre-compiled
Metacode files (PMETS) and forms (FRMs) are collected and can be placed in the
LOGFILE.DAT file. These statistics show the following information:

Item Description

Method The caching method you are using (LFUO, LFU, or LRU).

Size The size of the caches. The default is 100.

Hits The number of times the system tried to load a resource from the cache and found
it there.

Misses The number of times the system ttied to load a resource from the cache and did not

find it there.

Total The combined hits and misses. This represents the number of times the system tried
to load a resource from the cache.

Using the loader

Using the Class option

Metacode Printers

Item Description

Purges The number of times the system had to remove a resource from the cache to put
another resource into the cache. The system decides which resoutce to remove
based on the method. If you are using LFUO or LFU, the least frequently used
resource is removed. If you are using LRU, the least recently used resource is
removed.

The system lets you load print-ready Metacode files. For this feature to work, the print-
ready Metacode file must have the same extension as the Ext option in the Loader:MET
control group in the FAPCOMP.INI file. Here is an example:

< Loader:MET >

Desc = Xerox Metacode (*.MET)
Ext = .MET
LoadFunc = XERLoadMet
Module = XERW32
< Loaders >
Loader = MET

Along with the Metacode loader feature, another INT option is required in the
PrtType:XER control group. The DefaultFont option defines the default font to use to
indicate the names of any graphics in the print-ready Metacode file.

The graphics do not display in Image Editor when the print-ready Metacode file is
opened. Instead the name of the graphic appears, in the default font, and the space taken
by the graphic is indicated. In addition, the default font is also used for displaying any text
that references a font not present in the font cross-reference file.

To set the default font, enter the name of a Xerox font file contained in the font cross-
reference file as shown here:

< PrtType:XER >
DefaultFont = FXTINS8

If there are any graphics in the MET file, the system requires a LOGO.DAT file in the
FormLib directory so it can display graphics propetly for all rotations. The LOGO.DAT
file, which is a semicolon-delimited file, should look similar to this:

[file name for 0° rotation]; [file name for 90° rotation];[file name
for 180° rotation];[file name for 270° rotation];

Here are a few points to keep in mind when using this feature:

* The PrtType settings must match the setting used to produce the print-ready
Metacode file.

* Rotated text will not display propetly.
* Blank pages are created for simplex forms printed in duplex mode.
* This feature slows the printing of large print-ready files (more than 100 pages).

* If there is a reference to a FRM file in the MET file, the system cannot display the
MET file.

* The system cannot display charts and graphics.

You can use the following INI option to specify the printer classification, such as AFP, PCL, XER,
PST, or GDLI. If you omit this option, the system defaults to the first three letters from the Module

241

Chapter 6

Setting Up Printers

Adding user-defined

242

DJDE statements

Using third-party
software to read
Metacode files

option.

< PrtType:XER >
Class = XER

Some internal functions expect a certain type of printer. For instance, all 2-up functions
require an AFP printer. The internal functions check the Class option to make sure the
correct printer is available before continuing.

You can place the Additional DJDE option anywhere in the PrtType:XER control group.
Each Additional DJDE value represents a distinct and separate DJDE statement, given
verbatim. You can include as many Additional DJDE statements as needed. All of the
located AdditionalDJDE statements are inserted into the print stream. You can also
specify the batch in which to output the DJDE statement. Here is an example:

< PrtType:XER >

AdditionalDJDE = "BATCH1"; FEED=COVER, ;
InitFunc = XERInit
AdditionalDJDE = "BATCH1"; STOCKS=BLUE, ;

AdditionalDJDE = JDL=DPLJDL,JDE=STRTON, ;

The first two occurrences only apply to the BATCHT1 batch. The third occurrence has no
batch specified, so this DJDE statement is written to all print batches.

Keep in mind that these user-defined DJDE statements are placed after the BEGIN
DJDE record and before the other DJDEs that are always inserted, such as FONTS.
Make sure the DJDE syntax is correct and that the new DJDE records do not interfere
with the ones automatically inserted into the print stream by the system.

Also, it is very important that you follow the correct syntax when coding the INI line. If
you enter an invalid batch name, no corresponding batch will be found and the DJDE line
will be ignored ot not output in any batch. And, if the DJDE syntax is incorrect, the
printer will issue error messages or unpredictable print results may occut.

If you use third-party software to read Documaker-produced Metacode files and that
software needs the DJDE, RSTACK, and RPAGE commands to begin with a carriage
control value other than the default value of 0x07, you can use the DJDECarrControl
option to handle this. You simply enter a value in the form of a string constant. These
string constants are supported:

* ASCII (A'string’)
* EBCDIC (E'string)
* character (‘string’)

* hex (X'string")

NOTE: The character string produces an EBCDIC string, same as E'string’.

The default value is 1 (X'01"). Here is an example:

< PrtType:XER >
DJDECarrControl = X'09'

Metacode Printers

Keep in mind that any carriage control value will be accepted and no attempt is made to
make sure a valid carriage control is used.

Specifying the paper Using Documaker Studio you can specify what paper stock the form should print on. This
stock will help users who have more than nine types of paper stocks. Here is an example of the
INI options you could set up:

< PaperStockIDs >
PaperStockID Drilled
PaperStockID = 201b
. (and so on)
< PaperStockID:Drilled >

Description = 3-hole paper

< PaperStockID:201bwW >
Description = 201b White Paper
DJDE = DJDE name

Once you have set up the appropriate PaperStockID options, you will see those options
available via Studio's Form manager. Just open a form and select the appropriate paper
stock in the Paper Stock field on the Properties tab, as shown here:

Form Options

w FORKI0
Mame FORMIO
Description SetOrigin Rule
w COptions
Multicopy O
Click here to choose the paper Dverlow O
stock. Pul O
Hidden O
Staple O
Form metadata Form metadata
w Page
Size LS Letter
Orientation Portrait
[~ Paper Stock

w Default Recipients

AGENT Mot eligible
BAMMNER Mot eligible
CUSTOMER 1 Copy

CUSTOMERAGE Mot eligible

Your selection is reflected in the POL file produced by the GenData program. In this
example, the form called DEC PAGE has a paper stock ID of Drilled.
; SAMPCO; LB1 ; DEC
PAGE; | | FORMPAPERSTOCK=Drilled| | ;R; ; QPRUNA |DL (3360, 18600) <AGENT, COMP
ANY, INSURED>

In the Metacode printer control group, you must set the TrayUsePaperStockID option to
Yes, as shown here:

< PrtType:XER >
TrayUsePaperStockID = Yes

243

Chapter 6

Setting Up Printers

244

If the TrayUsePaperStockID option is set to Yes, the Metacode print driver takes the
form’s PaperStockID and tries to find the DJDE INI option for it in the INI file when it
emits the tray command.

Keep in mind...
* The paper stock selection applies to the entire form
* Only the Metacode print driver uses the paper stock selection

* Only Documaker Studio lets you select the paper stock

UsSING MoBIUS MEETACODE PRINT STREAMS

You can use Mobius to archive Metacode print streams and also use Docupresentment to
retrieve archived Metacode print streams and produce or present PDF files.

You can retrieve the archived Metacode print streams using Mobius' ViewDirect APIs.
The ViewDirect APIs are built to communicate with the Mainframe Mobius Archive via
TCP/IP. If you license the Mobius' ViewDirect APIs, you can write a custom rule to
retrieve your archived Metacode print streams.

To do this, include these options in your FAPCOMP.INI file (for Image Editor) or your
FSISYS.INI file (for Studio and the MRG2FAP utility):

< PrtType:XER >
OutMode = MOBIUS
< Loader:MOBIUS >
Desc = Mobius Metacode files (*.MET)
Func = XERLoadMobius
Module = XEROS2
< Loaders >
Loader = MOBIUS
< Control >
Mobius = XER

Where XER is the printer control group that contains the Mobius Metacode information.

To use the Mobius Metacode loader in Docupresentment, use the same
MTCLoadFormset rule you would use to load a Documerge Metacode print stream.

To specify a Mobius Metacode print stream, instead of a Documerge print stream, the
Xerox printer control group must include this INI option:

< PrtType:XER >
OutMode = MOBIUS

Metacode print streams retrieved from a Mobius archive have a special record blocking
scheme and use special comment records to indicate the fonts used. This version adds
support for reading Metacode print streams retrieved from a Mobius archives.

Use XERLoadDocuMerge as the loader function. It checks for an OutMode setting of
MRG2, MRG4, or ELIXIR. You must add MOBIUS to the list of allowed OutMode
settings and you must add your Mobius comment checking to XERLoadMet, when the
OutMode option is set to MOBIUS.

Fonts

Forms

Images

Logos

Metacode Printers

NOTE: The loader functions convert a particular type of file, such as a PCL print stream,
a Metacode print stream, an RTT file, and so on, into an internally formatted file.
Once converted, the system can then do a variety of things with that file, like
display it in Studio, print it on a supported printer, ot save it as another type of
file, such as a FAP file, RTF file, or a print stream file.

The loader included in this version can also be used in other Documaker
products. For instance, Studio can use it to load Mobius Metacode, then display,
modify, and save the result as a FAP file or print to a supported printer. It can
also be used by the METDUMP utility to dump information about the Mobius
Metacode print stream.

METACODE PRINTER RESOURCES

A number of resources are used in the printing process. These resources generally reside
on the printer’s disk drive.

Xerox fonts are ASCII fonts. Xerox fonts are not scalable and do not rotate. Thete is one
font file for each rotation and different files are required for different sizes. The file
extension is FINT and file names are up to six characters long. Oracle Insurance has
licensed for use and distribution with its systems, fonts from Monotype Imaging, Inc.
Xerox fonts for all four rotations are included.

Xerox forms are precompiled electronic files containing static text, boxes, graphics, and
so on, ready to be merged with variable data. Forms always have the extension FRM. Like
fonts, the maximum file name is six characters. You use the FAP2FRM utility to create
Xerox forms from FAP files.

Xerox images are large bitmaps or raster patterns that are stored in a special file format.
These images are merged onto the forms which are then merged with the vatiable data.
The file extension is IMG and the maximum file name is six characters.

NOTE: You must install a GVG hardware card on the printer to print IMG files. You can
use the LOG2IMG utility to create Xerox images from LOG files. For more
information on this utility, see the Docutoolbox Reference.

Logos are small bitmaps stored in a different format than IMG files. The extension is
LGO and the file name is six characters long. You can only use Xerox logos inside a FRM
file. You cannot invoke them directly in the data stream.

NOTE: These L.GO files are quite different than the graphics (I.OG) files used in
Documaker Studio and Logo Manager. Documaker software does not use Xerox
LGO files.

245

Cha

pter 6

Setting Up Printers

246

Xerox images

HMI support

Changing the paper
size on the 4235
printer

Xerox forms

Unexpected color
output

METACODE LIMITATIONS

The maximum number of images and inline graphics per page is 16.

HMI (horizontal motion index) is supported for zero (0) and 270 degree rotated text on
portrait forms only. HMI combines separate text labels which are positioned on the same
line and which use the same font into a single Metacode record. FAP files with justified
paragraphs can benefit from this feature. Use the FAP2MET utility to implement HMI

into pre-compiled MET files.

You can not easily change paper sizes in one job. Each job is controlled by a JDE. If you
need to pull paper from bins of different sizes, you have to call a different JDE each time
you change from one paper size to another. This is similar to staple support. There is no
code to invoke different JDEs for change of paper size.

If a Xerox form (FRM file) contains more than 48 blocks (each block is 512 bytes), your
printer may not have enough memory to print it.

The CD (Character Dispatcher) memory is divided into three regions. The first region
loads all fonts used on a page. The second region is used for TL/DLs which contain inline
Metacode (may only be variable data if you use an FRM). The third tegion loads the TL/
DLs from an FRM file, if one is being used for the page.

If you have version 2 of the printer softwate, your printet supports eight TL/DL buffers
of 3K each (same as 48 blocks of 512 bytes each) for inline Metacode. With version 3.5
of the printer software, the limit was increased to 16 buffers of 3K each.

NOTE: Our testing shows that with version 3.5, TL/DLs from FRMs (the third region
of CD memory) ate still limited to 8 TL/DL buffers of 3K each (same as 48
blocks of 512 bytes each).

Typically, Xerox 9700 and 9790 printers still have the older release installed. If so, you may
want to upgrade to version 3.5. The Xerox 4000 series printers (4050, 4850, and so on)
always come with version 3.5 or higher.

When you are not using FRM files in a print stream, the system does not use the CD
memory reserved for FRM files.

METACODE TROUBLESHOOTING

Even though you set the SendColor option set to No, you still get color output when
printing. This occurs when:

* You specified Print in color for some elements of the FAP file
* You precompiled the FAP files with the /C option on FAP2MET

* A SUB INK command was issued on the printer

Unexpected black and
white output

Highlight color should
match the Printerink
option

LOG file orientation

Output catching up
with the input

Metacode Printers

If ink substitution occurred because of an operator command, such as SUB INK BLUE
(or RED or GREEN), the colored components of the precompiled MET file will be
brought in with color attribute turned on and printed with color. This happens regardless
of how you set the SendColor option. To print in black and white, either re-run the
FAP2MET udility with no /C flag, ot use the END command to cancel ink substitution
on the printer.

Even though you set the SendColor option to Yes, you still get black and white output
when printing. Use this checklist to make sure you have done everything to print in color:

* Make sure you specified Print in color for the color elements in your FAP file, such as
text, shaded areas, lines, and so on.

* Make sure you precompiled the FAP files with the /C option on FAP2MET;

* If you are using precompiled FAP files, make sure you compiled those FAPs using
the FAP2CFA utility.

* Make sure you run the GenPrint program with the SendColor option set to Yes.

The PrinterInk option causes a DJDE ILIST command which specifies the highlight
color to use. If a different highlight color is installed on the printer, the printer follows the
procedure specified in the ABNORMAL statement in the JDL and JDE loaded. The
ABNORMAL procedure specifies whether the job should continue, abort, or stop. If no
ABNORMAL procedure is declared, the default is for the printer to stop so a new ink
cartridge can be loaded. Besides the ABNORMAL statement, the printer operator can
override the ink setting using the SUB command (for example, SUB INK BLUE or SUB
INK CURRENT).

To print a portrait section which contains a graphic on a landscape form using pre-
compiled MET files, set the LoadFAPBitmap option to Yes. This is necessary because the
graphic name must change from the portrait (zero degrees) name to the landscape (270
degrees) name.

If your printer cycles down and displays a message stating that the output caught up with
the input, it indicates the average number of records per physical page is greater than the
maximum number of records that can be transferred across the channel in the time
allowed for a page.

This situation causes the printer to cycle down so it can buffer more pages before it
continues. This table shows the maximum average number of records that can be
transferred across the channel in time to support the printer running at rated speed:

Printer Maximum Records Per Page
4050 285

4090 155

DP96 149

41/4635 105

DP180 78

247

Chapter 6

Setting Up Printers

Printing rotated
variables

Multi-page sections

248

To resolve this problem, you need to optimize the Metacode print stream. For more
information, see Optimizing Metacode print streams on page 234.

Here is a list of field options you can specify in the NAFILE.DAT file:

Option Description

E Error

M Manual

P Protected

G Global scope (entire form set)

F Form scope

H Hidden field (such as a dummy field, neither displayed nor printed)
N Nonprintable field (displayed, not printed)

C Send-copy-to field (receives curtent recipient name at print time)
9 Rotated 90 degrees

8 Rotated 180 degrees

7 Rotated 270 degrees

NOTE: For legacy MRLs, some of these options require the FAP field attributes to be
available at runtime because the DDT file does not include the necessary
information. You can use the CheckIlmageloaded rule to make sure this
information is available.

There are no DDT files in MRLs created using Documaker Studio

When you use multi-page FAP files and pre-compiled MET files, you must use the
EjectPage rule. This rule enables the printing of multi-page sections. Here are the steps to
apply the rule in Image Editor:

T Open the FAP file in Image Editor.
2 Select Format, Image Properties and then click the Load DDT button.

Image Editor detects that the section contains multiple pages and inserts into the DDT
file as many EjectPage rules as there are pages.

You must have a variable field on each page. The variable field can be a dummy field that
is hidden.

NOTE: Documaker Studio automatically handles EjectPages for you.

Operator command,
FEED, causes duplex
problems

Line density errors

Metacode Printers

When you implement multi-page FAP files and pre-compiled MET files, keep these
requirements in mind:

* Only multi-page FAP files are applicable.

* Multi-page FAP files cannot be mixed with single page FAP files on the same form.
The system cannot easily determine the page number in this case.

* The multi-page FAP file came from Documaker Studio or Image Editor and
therefore there is only one section per page, hence, each page on the form has a
section list that contains one and only one section.

* The index of the page on which that section resides within that form is the number
of the page.

* Multi-page sections can be duplexed by setting the form to either Front (long edge
binding) or Short bind (short edge binding). Internally created sections will be set to
Rolling for the remaining pages.

NOTE: If a form begins with a rolling duplex option, the print drivers begin printing on
the blank back page of the previous form. Any form that starts with rolling and
begins a form set is treated as the front page of a rolling set.

If you enter an operator command to specify an input tray—because for instance, one
paper tray is empty and while you refill it you want the printing to continue using another
tray—you can no longer select trays from DJDE:s in the job stream. Instead, you will get
messages which tell you tray selection was suspended by an operator override.

All paper feed from that point forward, will be from the tray specified in the operator
command. This can cause duplex jobs to print incorrectly if you have completed printing
on a front page and the next page should print from a different tray.

To correct this situation, enter a FEED=MAIN command. This command tells the
printer to switch to tray 1 and enables tray selection through DJDE commands so the next
paper selection command is obeyed.

As the speed of the printer increases, there is less and less time available to the character
dispatcher to form the scan line and send it to the image generator. Here is some
information on how this affects the various Xerox printers:

* Since the 4135 printer is the fastest of the Xerox printets using the older CD/IG, the
chances of running out of time and causing a /Jine density error are greatest with this
model.

* The Xerox 4050 and 4850 printers are too slow for this to be a problem. These
printers allow more fetches from the font memory per scan line.

* The Xerox 4635 printet's image generation module has been revamped to such an
extent that Xerox almost guarantees there will never be a line density exceeded error
on a 4635 printer.

* The 4235 printer is slow and works quite differently than the centralized printers.

e Ifajob works fine on a 9790 printer but fails on a 4135, the number of character
fetches is likely on the bordetline of failure.

249

Chapter 6

Setting Up Printers

250

Output data length
validation

If you experience line density problems, check your FAP files for the following:
* Text superimposed on shaded areas.
* Large number of text lines with small fonts.

* Large number of horizontal lines whose thickness is measured in an odd number of
dots. If you change the thickness of a horizontal line from three dots to two or four
dots (0.01" to .006666" or 0.013333"—24 FAP units to 16 or 32 FAP units), it
reduces the character count from two to one.

The Xerox line drawing font has three horizontal line drawing characters which
specify lines with thicknesses of two, four, and eight dots (.006666", .013333" and .0
26666" ot 16, 32, and 64 FAP units). Odd thicknesses require the printer to ovetlay
or overlap multiple lines.

* Large number of small boxes, many of which have common boundaries. On paper
it looks like one line. Actually, there may be two or more character fetches for the
same black dots. Create these kinds of boxes by drawing lines rather than boxes.

Metacode printer JSL specifies the length of data that can be received. This data length
must match the value output into the Metacode print stream. You specify the data length
in the JSL as shown here:

LINE DATA = (0,213)

You specify the data length in the PrtType:XER control group in the FSISYS.INI file, as
shown here:

< PrtType:XER >
JDLData = 0,213

In this example, the JSL specifies a maximum data length of 273, so the INI option has a
matching value. The maximum length value is also used in the Metacode print driver to
make sure no more than the specified amount of data is output in any Metacode record.
If the amount of data to be emitted in the record exceeds this amount, an error message
such as the following appears:

Record Length 214 is too long - maximum length is 213.

NOTE: Under z/0S, Metacode output files are VB datasets. The JCL specifies a
maximum length of a record (LRECL). If an attempt is made to write a record
longer than the LRECL value, the write will fail and an error message appears.

Be advised that under z/OS, with VB datasets, the LRECL size includes a 4-byte
record length, known as the RDIV. The RDW is implicitly added to the front of
each variable length record. Therefore, you should set the LRECL value for the
Metacode output dataset to a number equal to the JSL maximum length plus four
to account for the RDW bytes at the front of the record. For the above example,
set the LRECL of the Metacode output file to 277.

Metacode Printers

Using Xerox Forms (FRMs)

The system lets you use Xerox form (FRM) resources when you print to Xerox Metacode
printers. FRMs are printer resident resources that contain static full-page images. The
system can use FRMs during the print process.

You can convert frequently used static full-page images into FRMs using the FAP2FRM
utility. To indicate an image is resident on the printer as a FRM file, use the Form Set
Manager. The Printer Resident field indicates the image is a pre-compiled resource
resident on the printer—as opposed to a pre-compiled resource that needs to be
downloaded to the printer. For more information on the Form Set Manager and the
Printer Resident field, see the Docucreate User Guide.

Here are some guidelines for using Xerox forms (FRMs):

* Create one FAP file per page. If there is a text area, do not put variable data within
the text area.

* The image size must be one of the standard paper sizes, such as US Letter, Legal, A4,
or Executive.

* Because Xerox printers can only accept file names up to six characters in length, the
image name can be up to six character long. If, however, it is a multi-page FAP file,
the name can consist of no more than four characters to accommodate the two-
character number added by the FAP2FRM utility. Here are some examples:
TESTO1.FRM for the first page, TEST02.FRM for the second, and so on.

* Use the FAP2FRM utility to convert FAP files into FRM files. For multi-page FAP
files, create multiple FRM files. The names are appended with two-digit numeric
suffixes.

* On workstations, store the FRM files in the same directory as the FAP files. On z/
OS, keep them in a PDS attached to the PFRMLIB DD name. On AS400 systems,
use the FRMFile option in the Data control group to specify to store the FRM files.

* Use the Printer Resident field in the Form Set Manager to mark individual forms as
printer resident. After you do this, the FORM.DAT file contains the I image option
which indicates the image is resident on the printer. When you run the GenPrint
program, a DJDE FORMS=fname command is inserted for the corresponding
images. The remainder of the images are printed by inline Metacode, possibly using
precompiled MET files.

* Install the FRM files on the Xerox printer using the XERDNLD utility. Copy the
resulting * DAT files to the printer. To make sure the forms are installed on the
printer, use the SAMPLE console command to print the form files.

BARRWRAP

The BARRWRARP utility converts Metacode output from JES2 format into BARR
format.

The BARR interface attachment for Metacode printers requires that the Metacode print
stream files contain BARR specific information. The BARRWRAP utility adds this
information to an existing Metacode print stream file, which lets you print the output file
via the BARR interface.

251

Chapter 6

Setting Up Printers

252

After you run the utility on a Metacode file, 76 7.4 FF 00 is added at the beginning of the
file. This tells BARR the file is a Metacode file. A byte denoting the record length is also
added at the beginning and end of each record in the file.

Use this utility when you test the GenPrint program on z/OS. If the z/OS system is not
directly channel-attached to the Xerox printer, you must download the print streams to
an OS\2 system—use no ASCII translation, but do use CRLF. Then, using BARRWRAP,
the print stream is packaged to successfully pass through BARR/SPOOL.

NOTE: Occasionally, the binary data contained in a Metacode file has a sequence of hex
bytes (x’0D0.A’) which could be misinterpreted as a carriage return/line feed.
This is true particularly for charts and other inline graphics. Convert such data
streams using the BARRWRARP udility on the z/OS platform before you
download them with the no ASCII and no CRLF (binary) options.

Transferring Files from Xerox Format Floppies

Resources saved on a 5 1/4-inch floppy, using FLOPPY SAVE file.ext, ate saved in a
special Xerox format. For use in the system, or for transferring to a 4235 printer, you must
convert these resources into DOS format. You can use the following software packages
to perform this required conversion:

* FloppyCopy by Lytrod Software — Inexpensive, easy to use
* Elixir — More expensive, but includes additional features.

* LaserLinx — No longer marketed.

PCL PRINTERS

PCL Printers

Hewlett-Packard created the Printer Control Language (PCL) to provide a way for
application programs to control a range of printer features across a wide array of printing
devices.

The PCL language has evolved over time. For the most part, system-produced PCL
output will run on any printer that supports PCL 5 or PCL 6. There are separate drivers
for these two versions of the PCL language.

To support color printing, the printer must support PCL 5c, which contains color
extensions. To support more than two paper trays, the printer must support PCL 5e.

NOTE: All system print drivers support 24-bit color graphics. The PXL (PCL 6) driver
supports monocolor, 8-bit color (256 color), and 24-bit color graphics.

If your printer does not support color, the print driver will automatically convert
the color graphics into monochrome graphics. Keep in mind that for the best
performance you should avoid color graphics.

PCL INI OPTIONS

You must define the necessary printer options for the GenPrint program to produce PCL
output. These options specify PCL output and are located in a PrtType:xxx control group,
such as PrfType:PCL for PCL 5 ot PriType:PXI. for PCL 6. Common PCL printer options
are shown below, with default values in bold:

Option Values Description
Device any fileordevice = The name of the file or device (LPT1) where the PCL
name print stream should be written. This setting is ignored

by the GenPrint program but is used by Studio,
Image Editor, and other Documaker system
programs.

Module PCLW32 The name of the program module which contains the
PCL print driver. See also the Class option.

For PCLG, enter PXLW32.

See also Using defaults for the Module and PrintFunc
options on page 231.

PrintFunc PCLPrint The name of the program function that is the main
entry point into the PCL print driver.

For PCLG, enter PXLPrint.

See also Using defaults for the Module and PrintFunc
options on page 231.

Resolution 300 The dots per inch resolution of the printer which will
receive the PCL data stream.

SendOverlays Yes/No Set to Yesif you created PCL overlays for each FAP
file.

This option is not supported for PCL 6.

253

Chapter 6

Setting Up Printers

Option

OvetlayPath

OvetlayExt

PageNumbers

SendColor

HighlightColor

DownloadFonts

TemplateFields
FitToWidth

AdjLeftMargin

254

Values

any directory

any file
extension

(ovL)

Yes/No

Yes/No

Enabled/
Disabled/
Hidden

Yes/No

Yes/No

Yes/No
Yes/No

Yes/No

Description

Set to the directory containing the PCL ovetlays for
each FAP file. The default is the FormLib option of
the MasterResource control group.

Here is an example:
< MasterResource >
FormLib = <CONFIG:Batch Processing>
FormLib = <CONFIG:Batch Processing>
FormLib = ./forms/

This option is not supported for PCL 6.

The file extension of the PCL overlays.
This option is not supported for PCL 6.

Set to Yes to enable form or form set page
numbering.

Set to Yes to enable color printing.

Enabled = Option appears in the Print window and
is active (available to be checked).

Disabled = Option appeats in the Print window but
is grayed out (not available to be checked).

Hidden = Option does not appear in the Print
window.

Set this option and the SendColor option to Yes to
use simple color mode. See Using Simple Color
Mode on page 261 for more information.

This option is not supported for PCL 6.

Set to Yes to enable downloading of PCL fonts.

For PCL6, you must enter Yes because internal font
selection is not supported.

Set to Yes to test print Xs in variable fields.
Not supported by either PCL print driver.

Automatically adjusts the left margin to compensate
for the 1/4-inch left margin added by PCL printers.

Yes = Automatically adjust the left margin. Forms
print exactly as they appear on screen (default).

No = Do not adjust the left margin. Forms may not
print correctly on PCL printers after performing a
retrieve function.

This option is not supported for PCL 6.

Option Values
SelectRecipients Yes/No
Enabled/
Disabled/
Hidden
PrintViewOnly Yes/No
PrePrintedPaper Yes,Disabled
Class (first three
characters of the
Module option)
StapleBin
PJLCommentScript

PJLCommentOn batch/formset

OutputBin

PCL Printers

Description

Set to No to disable the ability to select recipients.

Enabled = Appears in the Print window and is active
(available to be checked).

Disabled = Appears in the Print window but is
grayed out (not available to be checked).

Hidden = Does not appear in the Print window.

If set to Yes, the view only sections will print. This
does not apply to entry only sections, which are never
printed. Entry only sections ate usually worksheets. If
the section is marked as hidden and view only, it will
not print.

Determines if the check box which lets you print or
not print pre-printed objects appears on the Print
window. Also determines the default for this field—
checked or unchecked. You must add this option to
the INI file if you want the field to appear on the
Print window.

The default includes the field on the Print window
and leaves it unchecked. All objects except fields can
be marked pre-printed on the object’s Properties
window.

Specifies the printer classification, such as AFP, PCL,
XER, PST, or GDLI. If you omit this option, the
system defaults to the first three letters from the
Module option.

Some internal functions expect a certain type of
printer. For instance, all 2-up functions require an
AFP printer. The internal functions check the Class
option to make sure the cotrect printer is available
before continuing,.

Set this option to the PCL printer escape sequence
that selects the bin that contains the staple
attachment. Use a tilde character (~) in place of the
binaty escape character.

This option is not supported for PCL 6.

To add PJL. comments to a PCL print stream, enter
the name of the DAL script you want the system to
run. This DAL script creates the control strings and
adds them as ASCII comments.

This option is not supported for PCL 6.

Use this option to add PJL. comment records to the
beginning of every form set or batch.

This option is not supported for PCL 6.

Enter the printer escape sequence to select the
normal output bin (for non-stapled forms) if non-
stapled forms are being sent to the wrong bin.

This option is not supported for PCL 6.

255

Chapter 6

Setting Up Printers

Using defaults for the
Module and PrintFunc
options

Click here to turn on Unicode
support.

256

NOTE: The default FAPCOMP.INI file should include the PrtType:GDI control group
and options in addition to the PrtType:PCL or PrtType:PXL control group.

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDIL

These defaults keep you from having to enter the Module and PrintFunc names in your
INTI file. For example, if you want to generate PCL print files, you can specify these INI
options:

< Printer >

PrtType = MYPCL
< PrtType:MYAFP >
Class = PCL

And the system will default these options for you:

< PrtType:MYAFP >

Module = PCLPRT
PrintFunc = PCLPrint
Using PCL 6

PCL 6 is a stack-based protocol (similar to PostScript) composed of attributes and
operators that let you define paths, clip paths, pens, brushes, fonts, raster patterns, and so
on. PCLG6 also supports 16-bit character codes which makes it a better choice for
supporting Unicode than PCL 5.

The PCL 6 driver lets you download both PCL bitmap fonts and TrueType fonts. You
must specify the TrueType font file name in the Font File entry of the PCL printer section
in the font cross-reference (FXR) file.

To turn on Unicode support, check the Unicode Character Widths field when you insert
a TrueType font into the FXR file. Unicode support lets you use additional characters and
languages supported by the TrueType font.

Import Using PLUGIN.TTF E
Codepage: |1uu4,w1 v[
Character 032 space SPO10000 -
Set: 0322 exclam sSE0z20000
" 024 guotedbl Sp040000
035 numborsign sM010000
026 dollar scozo0o000
037 porcant sSMO020000 &

Family: ITimes New Roman| pReiatSizes ===
. I 0.00= Paint
Style: |U|m£|ht 'l

Stroke wt: IMedium (U] vl Change

Spacing: " Fixed Insert
% Proportional

[~ Unicode character widths Delete

0K Cancel Help

LLLL

PCL Printers

Keep in mind...

* The PCL 6 driver supports PCL bitmap fonts so you can use master resource libraries
(MRLs) designed for PCL 5. Just remember to make the appropriate changes to your
INI options.

* When printing using a TrueType font, only the characters used on the form are
downloaded into the print stream. This reduces the size of print stream files,
particularly if the TrueType font includes support for Asian languages.

In comparison to the PCL 5 printer driver, the PCL 6 driver has these limitations:

* No overlay support

* No support for a separate downloadable font file which contains multiple PCL fonts
* No internal printer font support

e Less paper tray support, no INI options to specify which PCL. commands to use

* No INI options to specify PCL. commands to output bin or staple bin

* No highlight color support

* No comment script support

Printing Under Windows

Windows XP/2000 does not recognize printer ports such as LPT1. If you atre using
Windows XP /2000, you must change the PrtType control group in the FSTUSER.INI file
to reflect the print server name and print device. Here is an example:

< PrtType:PCL >
Device = \\FSISRV03\\OPTRAL

Using High-Capacity Trays 3 and 4 on HP 5SI Printers

The system defines document attributes in a device-independent fashion. In prior
versions, PCL support was based on options available to PCL 5 and similarly configured
printers. The newer HP 581 printer offers additional capabilities which depend upon (at
least somewhat) commands that exist in PCL 5e. To add to the confusion, HP is not
always consistent with its own terminology. Here is how the system treated PCL in prior
versions:

NOTE: The ability to define trays or use the Tray# option is not supported for PCL 6.

System PCL PCL

term command term HP 4 term HP 4siterm HP 5si term
Tray 1 ~&I1TH Tray 2 PC Tray Upper tray ~ Tray 2 (upper
(Main) (upper) drawer)

Tray 2 ~&l4H Tray 3 MP Lower tray ~ Tray 3 (lower
(Aux) (lower) drawer)

257

Chapter 6
Setting Up Printers

System PCL PCL
term command term HP 4 term HP 4siterm HP 5si term
Tray 3 ~&I2H Manual Tray 1 Manual feed Tray 1 (manual
(Man) feed side feed)
Tray 4 ~&I3H Envelope Tray 1 Manual feed Tray 1 (manual
(Env) feed side feed)
n/a ~&I5H HCI, first LC Tray n/a First tray of HCI
tray
n/a ~120H HCI, n/a n/a Second tray of
second HCI
tray

The terms for the current version are shown below, with changes highlighted:

System PCL PCL

term command term HP 4 term HP 4si term HP 5si term
Tray 1 ~&I1H Tray 2 PC Tray Upper tray Tray 2 (upper
(Main) (upper) drawer)

Tray 2 ~&I4H Tray 3 MP Lower tray Tray 3 (lower
(Aux) (lower) drawer)

Tray 4

The command ~¢>/5H (first high-capacity tray) is supported by PCL 5, but the hardware
is not typically found on HP printers. The command ~&/20H requires PCL 5e.

You can use these INI options:

< PrtType:PCL >

Trayl = pcl command sequence (default is ~&11H)
default is ~&14H)
default is ~&15H)

default is ~&120H)

Tray2 = pcl command sequence
Tray3 = pcl command sequence

(
(
(
Tray4 = pcl command sequence (

Keep in mind the paper size overrides the tray selection.

NOTE: See also for Handling Multiple Paper Trays on page 328 more information.

If you depend on the prior sequence, you can return to the original operation by

specifying:
< PrtType:PCL >
Tray3 = ~&12H
Tray4d = ~&13H

258

Using a staple
attachment

PCL Printers

NOTE: The tilde (~) represents the escape character and is translated internally. The third
character in each sequence shown is a lowercase L.

In your PCL printer group, usually PrtType:PCL, add the StapleBin option to use a staple
attachment on your PCL printer.

Set the StapleBin option to the PCL printer escape sequence that selects the output bin
which contains the staple attachment. Use a tilde (~) in place of the binary escape
character.

Here is an example:
~&»/[2G (tilde, ampersand, lower case 1, 2, upper case G)

This example shows the escape sequence used to select an optional lower (rear) output
bin that may have a staple attachment. Check with your printer manual for the escape
sequence you should use.

The OutputBin option should contain the printer escape sequence needed to select the
normal output bin (for non-stapled forms). Using the OutputBin option is not necessary
unless you notice the non-stapled forms are being sent to the wrong output bin. This INI
option is only necessary when you have both stapled and non-stapled forms in the same
print batch.

259

Chapter 6

Setting Up Printers

260

Overriding Paper Size Commands and Tray Selections

You can include additional PCL 5 printer commands which you can use to override both
the paper size and the tray selection. For instance, you can use this technique to get an
envelope feeder to work.

NOTE: Before the release of version 11.1, you could only specify the PCL 5 command
for the system to emit when a form is specified to use a certain paper tray (for
more information, see Using High-Capacity Trays 3 and 4 on HP 5SI Printers on
page 257).

When you include a PCL paper (page) size command, the system does not emit its own
paper (page) size PCL command based on the form's page size. This lets you use a page
size the system does not support.

For example, suppose you want to print on #10 business envelopes (41 /g inch by 9%z

inch) using an optional envelope feeder on your PCL printer. The PCL command to select

a paper (page) size for printing COM-10 (Business 4! /g x 9%z inches) is shown here:
~&181A

The PCL command to feed an envelope from an optional envelope feeder is shown here:
~&16H

If your system contained a form for printing on an envelope and the form was specified
to print from tray 4, you would use this INI setting:

< PrtType:PCL >

Trayd = ~&181A~&16H

Because some characters are hard to distinguish, refer to this table for an explanation of
the characters shown for the Tray4 field, in order:

Character Description

= A tilde

& An ampersand

1 A lowercase L

8 The numeral eight (8)
1 The numeral one (1)
A An uppercase A

= A tilde

& An ampersand

1 A lowercase L

Marking objects to
print in color

PCL Printers

Character Description
6 The numeral six (6)
H An uppercase H

When writing PCL commands as an INI setting, the tilde (~) is used as a substitute for the PCL
escape character (x1B).

The PCL 5 Technical Reference manual contains information on PCL commands used to
select paper trays and paper sizes. You can get a copy of the PCL 5 Technical Reference
manual by going to www.hp.com and entering the phrase PCL fechnical reference in the
search window.

NOTE: When printing envelopes, you may want to design your form (section) in
landscape mode. When printing on PCL printers, there are unprintable margins
on the left/right edge of V4 inch and top/bottom edge of 1/ 6 inch. These

unprintable margins apply when printing envelopes. Remember to account for
these unprintable margins when designing your form (section).

Using Simple Color Mode

The PCL print driver supports PCL simple color mode in addition to full RGB color
support. PCL simple color mode uses a 3-plane CMY palette. The 3-plane CMY palette
contains these indexed colors:

- White

- Cyan

- Magenta
- Blue
Yellow
- Green

- Red

- Black

N oy Uk W N O
|

To specify highlight color printing for PCL, include these INI options:

< PrtType:PCL >
SendColor = Yes
HighlightColor = Yes

For any object, such as lines, boxes, or text, select the Print in Color option on the Color
Selection window if you want the object to print in a color other than black. Keep in
mind...

e If the object s black and is not marked as Print in color, the system prints the object
using a black color index.

e If the object has a color other than blank and is marked as Print in color, the system
prints it using a highlight color index.

e Charts print in black, although you can print chart labels in the highlight color.

261

www.hp.com

Chapter 6

Setting Up Printers

Specifying the highlight
color to use

Printing on different
types of printers

Bitmap compression

262

You can use these INTI options to specify the PCL color commands to use for printing the
black and highlight colors. The default values are shown here:

< PrtType:PCL >
HighlightColorCmd = ~*v3S
HighlightBlackCmd = ~*v7S

Note that the tilde (~) is used in place of the PCL escape character (hex 1B) and that the
number used in the command corresponds to the color indexes specified earlier, such as
3=Blue and 7=Black.

To use a different highlight color, include the HighlightColorCmd option. To use a
different black color, specify the HighlightBlackCmd option.

Printing black and white, highlight color, and full color print streams on black and white,
highlight color, and full color PCL printers will produce varying results.

You can usually send a color PCL print stream to a black and white PCL printer without
any problem—everything comes out black and white. PCL printers usually ignore any
commands they do not understand.

If, however, you send a highlight color PCL print stream to a full color PCL printer, the
result may be slightly different than if you send it to a highlight color printer.

Bitmap graphics in a highlight color print stream may print as cyan on a full color printer.
Bitmaps are a sequence of binary data—zeros (0) and ones (1)—so the zeros may print as
white, while the ones may print as cyan. On a highlight color printer, the bitmap is printed
as expected using the black or highlight color.

If you send a full color PCL print stream to a highlight color printer, your results may vary
based on the printer model and printer settings.

Creating Compressed PCL Files

You can create compressed PCL files using Documaker. This is typically used with IDS
because Windows does not let you print files that are a mixture of simplex and duplex

pages from Acrobat. The whole document has to be printed the same way. IDS, however,
lets you print a file to a local PCL printer which preserves the file’s duplex information.

Use these options, which call the PRTZCompressOutPutFunc function, to compress an
output file, such as a PCL print batch file:

< PrtType:PCL >
OutputMod = PRTW32
OutputFunc = PRTZCompressOutputFunc

NOTE: The output is compressed, regardless of the file’s extension. You must
decompress the file before you can print it.

The PCL print driver also supports bitmap compression. To disable bitmap compression,
add the following INI option to the PCL printer control group:

< PrtType:XXX >
Compression = No

PCL Printers

Adding Printer Job Level Comments

Printer Job Language (PCL) comments are supported by some PCL printers (not PCL 06).
One type of command lets you add a comment to your PCL print stream. The PJL
comment does not affect printing but can pass information to other products that look
for specific information in PJI. comment records, such as an imaging system.

NOTE: Imaging products can be used to archive PCL print streams. These products
often require a control record at the beginning of the PCL print stream. These
options and DAL functions let you create that control record.

To add PJL. comments, add the following INI option to the PCL print group:

< PrtType:PCL >
PJLCommentScript = imaging.DAL

The PJLCommentSctipt option specifies the DAL script you want to run. This DAL
script creates a control string and adds it as an ASCII comment. Here is an example of the
DAL script:

* Add imaging comment - use default APPIDX record.
Comment = AppIdxRec()

AddComment (Comment, 1)

Return (‘Finished!’)

Notice the use of the second parameter to the AddComment DAL function. The 7
indicates the string should be an ASCII string. If you omit this parameter, the system
converts the string into an EBCDIC string.

You can also use the PJLComment option to tell the system to add PJI. comments to the
beginning of every form set or print batch. Here is an example:

< PrtType:PCL >
PJLCommentScript = imaging.DAL
PJLCommentOn = formset

Adding Data for Imaging Systems

The PCL print driver can add free form text or data at the beginning of a batch or each
form set within the batch. This can help you interface with imaging systems such as
RightFax.

Use the TEXTScript INI option to specify the DAL script you want to run. This DAL
script creates a free form data or text buffer and adds it to the print stream.

Here is an example of the DAL script:

* Populate the PCL stream comment with these values from RCBDFD
faxnum = trim(GVM('FaxNumber'))
faxname = trim(GVM('FaxName'))

AddComment ('<TOFAXNUM: ' & faxnum & '>',1)
AddComment ('<TONAME: ' & faxname & '>',1)

Return

263

Chapter 6

Setting Up Printers

264

Notice the use of the second parameter to the AddComment DAL function. The 1
indicates the string should be an ASCII string. If you omit this parameter, the system
converts the string into an EBCDIC string. You can also use the TEXTCommentOn
option to tell the system to add free form text or data to the beginning of every form set
or print batch. Here is an example:

< PrtType:PCL >
TEXTScript imaging.DAL
TEXTCommentOn = formset

Limiting the Number of Embedded PCL Fonts

If the DownloadFonts option is set to Yes, when the GenPrint program generates PCL
print the fonts used in each transaction are embedded into that transaction’s portion of
the print stream.

For example, if the first transaction in the print stream references fonts A and B and the
second transaction references fonts A, B, and C, the section of the print stream that
contains the print records for the first transaction would include embedded font data for
fonts A and B. The section of the print stream that contains the print records for the
second transaction would include embedded font data for fonts A, B, and C.

PCL Printstream With the DownloadFonts option set to Yes:

Transaction 1 .
The system includes embedded font data for

(using fonts A and B) fonts A and B.

Transaction 2 The system includes embedded font data for

(using fonts A, B and C) fonts A, B, and C.

Transaction 3

Typically, some fonts are used in multiple transactions, such as A and B in this illustration.
This means those fonts are embedded multiple times. You can, however, use the InitFunc
and TermFunc options to tell the GenPrint program to only embed a font once. Here is
an example of the INI settings you would need:

< PrtType:PCL >
InitFunc = PCLInit
TermFunc = PCLTerm
DownloadFonts = Yes

Continuing with the example, with these settings fonts A and B would be embedded into
the section of the print stream that contains print records for the first transaction and only
font C would be embedded into the section of the print stream that contains print records
for the second transaction. If subsequent transactions only reference fonts A, B, or C, no
other fonts would be embedded into the print stream.

Fonts

Overlays

PCL Printers

With the InitFunc, TermFunc, and DownloadFonts
options set as shown above:

PCL Printstream
Transaction 1

. The tem includes embedded font data for fonts A
(U,Slng fonts A and B) and(,]SgyS em includes empe € on ata 10r 1onts

Transaction 2

) The system includes embedded font data for font C.
(using fonts A, B and C)

Transaction 3 No additional embedded font data is included for
this transaction because fonts A and B have already
(using fonts A and B) been embedded.

Transaction 4

Using these INT settings to avoid the redundant embedding of font data results in smaller
print streams and faster processing times.

PCL PRINTER RESOURCES

A number of resources are used in the printing process. These resources reside in
directories specified in the MasterResource control group.

The system supports PCL bitmap fonts. These fonts reside in the directory specified in
the FontLib option in the MasterResource control group when you set the
DownloadFonts option to Yes. The system includes utilities for creating PCL fonts from
PostScript, TrueType, Xerox, or AFP fonts.

Use the OVLCOMP utility to create PCL overlays from FAP files. These overlays must
reside in the directory specified in the OverlayPath option in the MasterResource control
group when you set the SendOvetlays option to Yes.

NOTE: Because the PCL 6 driver supports PCL bitmap fonts, you can use master
resource libraries (MRLs) designed for PCL 5. Just remember to make the
appropriate changes to your INI options.

265

Chapter 6

Setting Up Printers

266

POSTSCRIPT
PRINTERS

Adobe Systems created the PostScript language. It is an interpretive programming
language with powerful graphics capabilities. For the most part, system-produced
PostScript output will run on any printer that supports PostScript Level 2.

NOTE: The PostScript print driver supports monocolor, 4-bit, 8-bit, and 24-bit color
bitmaps. If you printer does not support color, the print driver will automatically
convert the color graphics into monochrome graphics. Keep in mind that for the
best performance you should avoid color graphics.

PosSTSCRIPT INI OPTIONS

You must define the necessary printer related options for the GenPrint program to
produce PostScript output. These options specify PostScript output and are located in a
PrtType:xxx control group, such as Pr#Type:PST. Common PostScript printer options are
shown below, with default values in bold:

Option Values Description
Device any file or The name of the file or device (LPT1) where the
device name PCL print stream should be written. This setting is

ignored by the GenPrint program but is used by
Documaker Studio, Image Editor, and other
system programs.

Module PSTW32 The name of the program module which contains
the PostScript print driver. See also the Class
option.

See also Using defaults for the Module and
PrintFunc options on page 269.

PrintFunc PSTPrint The name of the program function that is the main
entry point into the PostScript print driver.

See also Using defaults for the Module and
PrintFunc options on page 269.

Resolution 300 The dots per inch resolution of the printer which
will receive the PostScript data stream.

SendOverlays Yes/No Set to Yes if you have created PostScript overlays
for each FAP file.
See also Creating Smaller PostScript Output on
page 270.

DSCHeaderComment Use to specify PostScript Document Structure

Convention (DSC) comments you want added to
the header portion of the generated PostScript
print stream.

You can include as many DSCHeaderComment
options as are necessary.

See Adding DSC Comments on page 271 for more
information.

Option

OvetlayPath

OverlayExt

PageNumbers

SendColor

DownloadFonts

PrinterModel

TemplateFields

FitToWidth

Values

any directory

any file
extension

(OvL)

Yes/No

Yes/No

Enabled/
Disabled/
Hidden

Yes/No

file name (omit
extension)

Yes/No

Yes/No

PostScript Printers

Description

Set to the directory which contains the PostScript
overlays for each FAP file. The default is the
FormLib option of the MasterResource control
group.

Instead of using the above control groups and
options, you could use the following options:

< MasterResource >

OverlayPath = <CONFIG:Batch
Processing> OverlayPath =

< CONFIG:Batch Processing >
OverlayPath = .\PstOvl\

The defaultis the FormLib directory pointed to by
the FormLib option in the MasterResource control
group., as shown here:

< MasterResource >

FormLib = <CONFIG:Batch
Processing> FormLib =

< CONFIG:Batch Processing >
FormLib = ./forms/

The file extension of the PostScript overlays.

Set to Yes to enable form or form set page
numbering.

Set to Yes to enable color printing,.

Enabled = Option appears in the Print window
and is active (available to be checked).

Disabled = Option appeats in the Print window
but is grayed out (not available to be checked).

Hidden = Option does not appear in the Print
window

Set to Yes to enable downloading of PostScript
fonts.

See also Creating Smaller PostScript Output on
page 270.

Contains the name of the PostScript Printer
Definition (PPD) file. This file contains
information about printer-specific features. This
file must be in the directory specified by the
DefLib option of the FMRES control group.

Set to Yes to test print Xs in variable fields

Not supported by the PostScript print driver

267

Chapter 6

Setting Up Printers

Option

PrintViewOnly

PrePrintedPaper

Class

Languagel evel

StapleOn
StapleOff

SelectRecipients

268

Values

Yes/No

Yes,Disabled

(first three
characters of the
Module option)

Levell
Level2

see description

Yes/No

Enabled/
Disabled/
Hidden

Description

If set to Yes, the view only sections will print. This
does not apply to entry only sections, which are
never printed. Entry only sections are usually
worksheets. If the section is marked as hidden and
view only, it will not print.

Determines if the check box which lets you print
or not print pre-printed objects appeats on the
Print window. Also determines the default for this
check box—checked or unchecked. You must add
this option to the INI file if you want the check
box to appear on the Print window.

The default for this option includes the checkbox
on the Print window and leaves it unchecked. All
objects except fields can be designated as pre-
printed on the object’s Properties window.

Specifies the printer classification, such as AFP,
PCL, XER, PST, or GDLI. If you omit this option,
the system defaults to the first three letters from
the Module option.

Some internal functions expect a certain type of
printer. For instance, all 2-up functions require an
AFP printer. The internal functions check the
Class option to make sure the correct printer is
available before continuing.

Level2 is the default setting and is required for
complex printing tasks, such as duplexing, tray
selection, and so on.

Only use Levell if your printer only supports
PostScript Level 1 language features.

These options work in a similar fashion to the
Tray# options which let you specify PostScript
commands directly as a quoted string or to look up
the PostSctipt commands to use in your printer's
PPD file.

For detailed information, see Stapling Forms on
page 272.

Enabled = Option appears in the Print window
and is active (available to be checked).

Disabled = Option appears in the Print window
but is grayed out (not available to be checked).

Hidden = Option does not appear in the Print
window.

Using defaults for the
Module and PrintFunc
options

Avoiding a white
outline around letters

PostScript Printers

Option Values Description

SetOverprint Enter Yes if you are using a highlight color printer,
such as the Xerox DocuTech/DocuPrint 180
Highlight Color printer, and you want to remove
the white outline that appears around black letters
printed on a highlight color background.

If you are using pre-compiled overlays, be sure to
re-create the overlays after you set this option to
Yes.

If you still see a small white outline around the
characters in your printed output, your printer may
need to be re-calibrated. Contact your printer
vendor to fine tune your printer calibration.

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDIL

These defaults keep you from having to enter the Module and PrintFunc names in your
INI file. For example, if you want to generate PST print files, you can specify these INI
options:

< Printer >

PrtType = MYPST
< PrtType:MYAFP >
Class = PST

And the system will default these options for you:

< PrtType:MYAFP >
Module = PSTPRT
PrintFunc = PSTPrint

On some highlight color printers, such as the Xerox DocuTech/DocuPrint 180 Highlight
Color printer, if you print black text on a colored shaded area, the black text is printed
with a white outline around the letters. To eliminate the white outline, add the
SetOverprint option to your PostScript printer INI control group and set it to Yes.

Printing under Windows

Windows XP/2000 does not recognize printer ports such as LPT1. Change the PrtType
control group in the FSTUSER.INI file to reflect the print server name and print device.
Here is an example:

< PrtType:PST >
Device = \\FSISRV03\\OPTRAL

269

Chapter 6

Setting Up Printers

Bitmap compression

270

Generating PostScript Files on z/0OS

You can generate PostSctipt output files on z/OS systems with an updated (vetsion 11.0
or later) PSTLIB. Be sure to include these settings in your FSISYS.INI file to print
PostSctipt on z/OS:

< Printer >
PrtType = PST

< PrtType:PST >
Module = PSTW32
Printfunc = PSTPrint

SendOverlays = (Yes or No)
SendColor = (Yes or No)
DownloadFonts = (Yes or No)

Creating Smaller PostScript Output

The PostScript print driver automatically downloads (embeds) only the fonts that are
needed. This results in smaller output files.

NOTE: To produce a PostScript print stream that only downloads (embeds) the
minimum set of fonts required by the PostScript print stream, you cannot use
overlays.

All PostScript fonts referenced in the FXR file are downloaded if the
SendOverlays option is set to Yes because the system does not know which fonts
are used by the overlays.

You must set these PostScript INI options as shown to tell the PostScript print driver to
download the minimum set of fonts required by a print stream:

< PrtType:PST >
DownloadFonts = Yes
SendOverlays = No

If you are running the GenPrint program, you will need to tell GenPrint to load the FAP
files (instead of overlays) by using the DownloadFAP option:

< RunMode >
DownloadFAP = Yes

The PostScript print driver supports bitmap compression. Compression is enabled by
default. To disable compression, add this option to the PostScript printer control group:

< PrtType:XXX >
Compression = No

Color bitmaps are compressed in JPEG format.

Monocolor bitmaps are compressed using Run Length Encoding (RLE) compression. If
compression or color is disabled, 4-bit and 8-bit color bitmaps are printed as monocolor
bitmaps. For compatibility with previous releases, 24-bit color bitmaps ate printed in
color when compression is disabled and color is enabled.

PostScript Printers

PostScript print streams with bitmap compression are often smaller and may be produced
faster than PostScript print streams without bitmap compression. PostScript print
streams with compressed multi color bitmaps will see the greatest reduction in terms of
file size and time to produce.

The 4-bit and 8-bit color bitmaps printed in color with compression will likely produce
larger print streams than 4-bit and 8-bit color bitmaps which have been converted to
monocolor (black and white) bitmaps.

Keep in mind:

* For any bitmap to print in color, you must make sure the bitmap (LOG) is marked
as Print in Color in the FAP file. Also make sure you set the SendColor option to Yes
in the PCL or PostScript printer control group before printing.

* When using Forms Integrity Manager (FIM) to compare a version 11.2 or later
PostScript print stream with bitmap compression against an older PostScript print
stream without bitmap compression, FIM will report that some bitmaps are not
identical. Older PostScript print streams without bitmap compression generated the
bitmap data in multiple streams while the newer compressed bitmaps are always
generated within a single stream. In this case, FIM will report the older print streams
contains multiple Overlay Images entries while the new print streams contain a single
Overlay Images entry. Also, FIM may report differences in some attributes (height,
width, raster size, and so on) of Overlay Images and 1V ariable Images due to differences
in how bitmaps are emitted.

Adding DSC Comments

Use the DSCHeaderComment option to specify the PostScript Document Structure
Convention (DSC) comments you want added to the header portion of the generated
print stream. You can include as many DSCHeaderComment options as are necessary.

This example shows how, in addition to specifying PostScript commands in the Tray#
options, you can also include DSC comments you want added to the header portion of
the generated PostScript print stream:

< PrtType:PST >
Device = test.ps
DownloadFonts = Yes, Enabled
DSCHeaderComment = $%$%DocumentMedia:Medial 612 792 75 (White)
(Trayl)
DSCHeaderComment = %%+ Media2 612 792 75 (White) (Tray?2)
DSCHeaderComment = %%+ Media3 612 792 75 (White) (Tray3)
DSCHeaderComment = %%+ Mediad4 612 792 75 (White) (Tray4)
LanguageLevel = Level2
Module = PSTW32
PageNumbers = Yes
PrinterModel = XDP92C2
PrintFunc = PSTPrint
Resolution = 300
SendColor = No, Enabled

Trayl = "<< /MediaType (Trayl)/MediaColor (White) /MediaWeight
75>>
setpagedevice"
Tray2 = "<< /MediaType (Tray2)/MediaColor (White) /MediaWeight
75>>
setpagedevice"

271

Chapter 6

Setting Up Printers

Tray3 = "<< /MediaType (Tray3)/MediaColor (White) /MediaWeight
75>>
setpagedevice"
Tray4d = "<< /MediaType (Tray4)/MediaColor (White) /MediaWeight
75>>
setpagedevice"

SendOverlays = Yes, Enabled

The DSC header comments are added at the beginning of the generated PostScript print
stream as shown here:

%1 PS-Adobe-3.0

%$%Title: INSUREDS COPY

%%Creator: FormMaker PostScript Driver
%%CreationDate: Thu Apr 04 17:50:57 2002
$For: INSURED

$%$Pages: (atend)

%%DocumentData: Clean7Bit
%%DocumentSuppliedResources: font (atend)
%%DocumentMedia:Medial 612 792 75 (White) (Trayl)
%%+ Media2 612 792 75 (White) (Tray2)

%%+ Media3 612 792 75 (White) (Tray3)

%%+ Mediad 612 792 75 (White) (Tray4)
$%EndComments

Stapling Forms

Use the StapleOn and StapleOff INI options in the PostScript printer control group to

control staple support. These options work in a similar fashion to the Tray# INI options
which let you specify PostScript commands directly as a quoted string or to look up the
PostScript commands to use in your printer's PPD file.

Here is an example. Suppose you have seven forms in the form set and all but one (Form
D) are to be stapled. There are two recipients who are to receive these forms as shown in

this table:
Form Staple? Recipients
A Yes INSURED, AGENT
B Yes INSURED
C Yes INSURED, AGENT
D No INSURED, AGENT
E Yes INSURED
F Yes INSURED, AGENT
G Yes INSURED, AGENT

The INSURED recipient’s forms print as:

272

PostScript Printers

Form A Form D Form E
Form B Form F
Form C Form G
(stapled together) (stapled together)
The AGENT recipient’s forms print as:
Form A Form D Form F
Form C Form G
(stapled together) (stapled together)

273

Chapter 6

Setting Up Printers

By default, the PostScript print driver will use these commands:

< PrtType:PST >

StapleOn = "<</Staple 3 >> setpagedevice"
StapleOff = "<</Staple 0 >> setpagedevice"

You can override PostScript staple commands by providing an alternate PostScript
command to use via the StapleOn and StapleOff options in your PostScript printer
control group.

You can issue PostScript staple commands in these forms:

* A quoted string containing the PostScript commands. The quoted string should
contain the appropriate PostScript commands for turning stapling on or off. Here is
an example:

StapleOn = "1 dict dup /Staple 0 put setpagedevice"

* A Ul keyword from a PPD file. UI keywords represent features that commonly
appear in a user interface (UI). They provide the code to invoke a user-selectable
feature within the context of a print job, such as the selection of an input tray or
manual feed. The entries of UI keywords are surrounded by these structure
keywords:

*OpenUI/*CloseUI or *JCLOpenUI/*JCLCloseUI
Here is an example of an OpenUI structure for XRXFinishing:

*OpenUIl *XRXFinishing/Finishing: PickOne
*OrderDependency: 60.0 AnySetup *XRXFinishing
*Defaul tXRXFinishing: None

*XRXFinishing None/None: "
1 dict dup /Staple 0 put setpagedevice"
*End

*XRXFinishing Single_Portrait_Staple/Single Portrait Staple: "
2 dict dup /Staple 3 put

dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(SinglePortrait) put

put setpagedevice"
*End

*XRXFinishing Single_Landscape_Staple/Single Landscape Staple: "
2 dict dup /Staple 3 put

dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(SingleLandscape) put

put setpagedevice"
*End

*XRXFinishing Dual_Portrait_Staple/Dual Portrait Staple: "
2 dict dup /Staple 3 put

dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(DualPortrait) put

put setpagedevice"
*End

*XRXFinishing Dual_Staple/Dual Landscape Staple: "

274

Fonts

Overlays

PostScript Printer
Definition (PPD) Files

PostScript Printers

2 dict dup /Staple 3 put
dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(DualLandscape) put

put setpagedevice"
*End

*?XRXFinishing: " (Unknown) = flush"

*CloseUI: *XRXFinishing

A PostScript Printer Definition (PPD) file is supplied with a PostScript printer. This file
contains information about printer-specific features. You specify the PPD file you want
to use in the PrinterModel option in your PostScript printer control group (just the file
name, no drive, path, or file extension). If the PrinterModel option contains the name of
a PPD file, this file must be in the directory specified in the DefLib option in the FMRes
control group.

This example shows a PostScript printer group that uses a PPD file for a DocuPrint 65
printer (XRD60651.PPD) and specifies StapleOn and StapleOff options using keyword
settings from the PPD file:

< PrtType:PST >

PrinterModel = XRD60651

StapleOn = *XRXFinishing Single_Portrait_Staple/Single Portrait
Staple:

StapleOff = *XRXFinishing None/None:

POSTSCRIPT PRINTER RESOURCES

A number of resources participate in the total printing process. They reside in directories
specified in the MasterResource control group.

The system supports PostScript Type 1 fonts. These fonts must reside in the directory
specified in the FontLib option in the MasterResource control group when the
DownloadFonts option is set to Yes.

Use the OVLCOMP utility to create PostScript overlays from FAP files. These overlays
must reside in the directory specified in the OverlayPath option in the MasterResource
control group when the SendOverlays option is set to Yes.

A PostScript Printer Definition (PPD) file is supplied with a PostScript printer. This file
contains information about printer-specific features. If the PrinterModel option contains
the name of a PPD file, this file must be in the directory specified in the DefLib option
in the FMRES control group.

275

Chapter 6

Setting Up Printers

USING THE GDI

276

PRINT DRIVER

How it works

Oracle Insurance developed a Graphics Device Interface (GDI) print driver because it
provides many opportunities for Windows platform users. For example, by using a GDI
driver, you can now fax, since fax drivers can be installed into Windows as a GDI
Windows printer driver.

Also, printing using GDI lets you print to printers that do not support any of the printer
languages the system supports, such as inkjet printers. To make this driver even more
useful, it includes the ability to scale output, which lets you shrink the printed output to
the size of the paper.

The advantages of using the Graphics Device Interface (GDI) include:
* Ability to print to any printer attached via a Windows print driver
* Ability to print to any fax machine attached via a Windows print driver

* Ability to scale edge to edge forms to print within the printable area defined by the
Windows print driver.

The disadvantages of using the Graphics Device Interface (GDI) include:
* Print quality is often poorer

* Inability to print a mixture of portrait and landscape forms

* Inability to print a mixture of simplex and duplex forms

* Inability to address the same printable area available when using our native print
drivers.

NOTE: If you do not specify the option for sending color to a GDI printer, the system
converts color (4-, 8-, or 24-bit) graphics into monochrome before sending them
to the printer driver. Depending on the bitmap, this conversion from color to
monochrome may not yield acceptable results. Be sure to consider your printers
capabilities when you are creating graphics.

If you elect to send color, including color graphics, to a GDI printer that does
not support color, the printer driver determines what to do. Some ignore the
color commands (printing in black), and some apply a gray-scale adjustment to
the output to simulate the color changes. Some GDI printer drivers cannot
accept color commands at all. If printing to your Windows-attached printer
causes a program fault, or print failure, try turning off the Send Color option via
the system’s Print window and sending the output again.

Most Windows applications print using the Windows GDI application programming
interface. Essentially, the application uses commands similar to display commands to send
print commands to the operating system. Windows, in turn, sends the commands to the
currently installed Windows printer driver.

Using the GDI Print Driver

NOTE: Printer manufacturers provide Windows printer drivers for their printers. These
come on install disks from the manufacturer, or sometimes ship with Windows
itself. Other types of drivers (such as fax drivers) can be installed as Windows
printer drivers.

When a Windows program talks to the operating system using GDI, printer commands
are not emitted in the native language of the printer by the program. The program prints
to Windows, and Windows then prints to the installed printer driver.

The printer driver then produces the native printer language commands, including the
bitmap font definitions. If the printer driver belongs to a PCL printer, the print driver
issues PCL commands, including fonts. In contrast, our PCL printer modules produce the
PCL commands and fonts.

When you use our GDI driver, a Windows print driver will use the Windows screen fonts
to print the document with its goal being to make the document look like it does on your
screen.

NOTE: In Documaker implementations, users typically decide what fonts they want to
use and then install those fonts on the production printer. Documaker
applications try to make the screen look like the printed output, not the other way
around. Information from the production printer fonts is loaded into the font
cross-reference file. The system uses this information to try to represent the
printer fonts on screen. The system can also convert production printer fonts
into PCL bitmap fonts. The PCL fonts the system produces look like the fonts
used on your production printer.

GDI print quality, by definition, is based on the fonts used for display. The attributes
which describe fonts in the font cross-reference file determine which screen fonts are
used. The screen fonts used determine what you see on the screen and how GDI printed
output will look.

So, the key to improving GDI print is to improve the fonts used in the display system.
Some of this can be improved by making sure the font’s character widths and family name
is correct. There are INI options for improving the screen font substitutions, if names
cannot be matched up.

For the best results, you should use exact matching screen fonts. The system comes with
a set of TrueType fonts that match the printer fonts included with the system. Install and
use these fonts for best results.

NOTE: If you are instead working backward from existing production fonts, as is often
the case, either an approximation must take place, or you have to find screen
fonts built from the printer fonts.

277

Chapter 6

Setting Up Printers

278

GDI PRINTER DRIVER INI OPTIONS

You define the necessary printer options to print using the GDI printer driver. These

options specify GDI output and ate located in a PrtType:xxx control group, such as
PriType:GDI. Common GDI options are shown below, with default values in bold:

Option Values Description

Device any file or device Not used by the GDI print driver.

name

Module GDIW32 The name of the program module which contains
the system’s GDI print driver. See also the Class
option.

See also Using defaults for the Module and
PrintFunc options on page 280.

PrintFunc GDIPrint The name of the program function that is the main
entry point into the system’s GDI print driver.
See also Using defaults for the Module and
PrintFunc options on page 280.

Resolution 300 Not used by the GDI print driver.

SendOverlays Yes/No Not used by the GDI print driver.

OvetlayPath any directory Not used by the GDI print driver.

OverlayExt any file extension Not used by the GDI print driver.

(OVL)

PageNumbers Yes/No Set to Yes to enable form or form set page
numbering.

SendColor Yes/No Set to Yes to enable color printing,.

Enabled/Disabled/ Enabled = Option appears in the Print window and
Hidden is active (available to be checked).
Disabled = Option appears in the Print window
but is grayed out (not available to be checked).
Hidden = Option does not appear in the Print
window

DownloadFonts Yes/No Not used by the GDI print driver.

FitToWidth Yes/No Scale pages to fit on the paper. This option will, if
necessary, reduce the size of the page. It will not
increase it.

TemplateFields Yes/No Set to Yes to test print Xs in variable fields.

SelectRecipients Yes/No Enabled = Option appears in the Print window and

Enabled/ is active (available to be checked).
Disabled/Hidden Disabled = Option appeats in the Print window

but is grayed out (not available to be checked).

Hidden = Option does not appear in the Print
window.

Using the GDI Print Driver

Option Values Description

PrintViewOnly Yes/No If set to Yes, the view only sections will print. This
does not apply to entry only sections, which are
never printed. Entry only sections are usually
worksheets. If the section is marked as hidden and
view only, it will not print.

PrePrintedPaper Yes,Disabled Determines if the check box which lets you print or
not print pre-printed objects appears on the Print
window. Also determines the default for this check
box—checked or unchecked. You must add this
option to the INI file if you want the check box to
appear on the Print window.

The default for this option includes the checkbox
on the Print window and leaves it unchecked. All
objects except fields can be designated as pre-
printed on the object’s Properties window.

Class (first three characters of ~ Specifies the printer classification, such as AFP,
the Module option) PCL, XER, PST, or GDLI. If you omit this option,

the system defaults to the first three letters from the
Module option.

Some internal functions expect a certain type of
printer. For instance, all 2-up functions require an
AFP printer. The internal functions check the Class
option to make sure the correct printer is available
before continuing.

SuppressDlg Yes/No Set to Yes to suppress the Windows Print window.

GDIDevice Specifies the Windows printer name. Click Start,
Settings, Control Panel, Printers to see a list of the
printers you can choose from.

If you set the SuppressDlg option to Yes and leave
this option blank, the system suppresses the Print
window and automatically prints to the default
printer.

Include these options in your FSISYS.INI file (for Documaker Workstation) and
FAPCOMP.INI files (for Docucreate).

In addition, you can add the following INI setting to automatically select landscape mode
when printing any of the specified sections:

< VBPrtOptions >
Landscape = (list of landscape sections)

Beside the Landscape option, list the sections you want printed landscape. Separate each
section with a comma.

Users can ovetrride this option at print time.

279

Chapter 6

Setting Up Printers

Using defaults for the
Module and PrintFunc

280

options

NOTE: If you do not set the SuppressDlg option to Yes, the Windows Print window
appears when you use the print device to spool the job. If you omit the
SuppressDlg option or set it to No, the user can select which Windows print
device to spool the output through. By setting this option to Yes, the Windows
Print window (not the system's Printer window which normally appeats first), will
be automatically completed for the user.

If you set the SuppressDlg option to Yes, the default Windows printer is used
unless the GDIDevice option specifies a printer. You can use the GDIDevice
option to name a specific Windows print device for spooling the raw output. The
name you specify must match one of the installed printers. You can see these
printer names by going to the Control Panel and clicking the Printers icon.

If you misspell the printer name or specify one not installed for the GDIDevice
option, the system will send the output to the default printer device or you will
get an error and printing will stop. On Windows, an incorrect setting sends the
raw output to spool to the default printer device.

Don't confuse the SuppressDig option with the SuppressDialog option in the Printer
control group in the FSISYS.INI file. The SuppressDialog option suppresses the
system's internal Printer Selection window—the one that names which
PrtType: XXX group from the INI file you wish to use. The SuppressDig option
suppresses the operating system’s (Windows 32-bit) Printer Selection window.

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDL

These defaults keep you from having to enter the Module and PrintFunc names in your
INTI file. For example, if you want to generate GDI print files, you can specify these INI
options:

< Printer >

PrtType = MYGDI
< PrtType:MYAFP >
Class = GDI

And the system will default these options for you:

< PrtType:MYAFP >
Module = GDIPRT
PrintFunc = GDIPrint

Using the GDI Print Driver

AVOIDING PROBLEMS WITH FAX DRIVERS

Use the FullSupport option to prevent problems with FAX drivers which can occur when
you are printing from Documaker Workstation or PPS.

The GDI driver first looks for this INI option in the control group whose name reflects
the Windows print driver, such as HP Laser[et 4050 Series PS.

If the FullSupport option is set to Yes, the GDI driver assumes the Windows print driver
contains full print support and can handle form sets with mixed simplex and duplex forms
(some FAX drivers crash when presented these kinds of forms).

Here is an example:

< HP LaserJet 4050 Series PS >
FullSupport = Yes

If not found there, the GDI driver looks for the FullSupport option in the control group
for the printer type, such as PrtType:GDL. If you place the FullSupport option in the
PrtType:GDI control group, it serves as a default for all GDI printers. Putting the option
in for specific devices overrides this default.

BATCH PRINTING TO FILES

You can use the GDI print driver to print to a file by adding the PrintToFile option in
your GDI printer control group. This lets you direct output to the path and file you
specify — equivalent to checking the Print to File field on the Print window.

< PtrType:GDI >
PrintToFile = Yes

Option Description

PrintToFile Enter Yes to have the GDI print driver use the Port options as the output print
file names for each batch when running GenPrint. The default is No.

In the GenPrint program, output print file names for each batch are specified using the
Port INI option. When you use the GenPrint program with most Documaker print
drivers, the Port option determines the name of the print stream created for each batch.

Normally, the GDI print driver prints directly to a Windows print driver and does not
create files written to disk. By setting the PrintToFile option to Yes in your GDI printer
control group, the GDI print driver creates a print stream for each batch based on the
names specified in the Port options — just like the other Documaker print drivers.

Because the Documaker GDI print driver is not designed for batch print, these additional
GDI print options are recommended when you set the PrintToFile to Yes:

< PtrType:GDI >
SuppressDialog = Yes

GDIDevice = (Windows printer name)
FullSupport = Yes

281

Chapter 6

Setting Up Printers

282

Option Description

SuppressDialog Enter Yes to suppress the Windows Print window from appearing.
GDIDevice Enter the name of the Windows print driver you want to use.

FullSupport Enter Yes to tell the Windows driver to fully support duplexing, tray
selection, and so on.

This feature is limited to using the GDI driver with GenPrint (multi-step batch print) to
produce output print files and is limited to simple GenPrint (batch print) environments.

Keep in mind that all normal GDI print limitations (fidelity, tray selection, duplexing, and
so on) apply, plus the following:

* Banner page processing may not work.
e Cannot use the SetDeviceName and BreakBatch DAL functions.
* Callback functions may not work.

* Single step processing does not work correctly (all transactions are printed to a single

file).
* Multiple driver routers may not work.

* Printing from Studio or Image Editor may work but the Device setting will be used
to create the file. Printing from Documaker Workstation may not work.

* Printing to fax drivers, email drivers, and so on may not work and other types of print
or print features not previously discussed may not work.

In other words, trying to use PrintToFile option with anything except GenPrint running
in a simple batch mode using a normal Windows print driver is not supported.

Using Pass-through Printing

USING PASS- There are some problems which occur when you print to LPT1 on Windows platforms.
One problem occurs if you run Netware Client 32 for Windows 95. Although you can
THROUGH open LPT1 from the system, you may receive errors when printing large amounts of data.
PRINTIN G Downloading PCL fonts usually causes this.

Another problem occurs when a print queue adds additional printer commands to
system-created print jobs. This causes invalid output to be sent to the printer. The HP 5si
print driver can cause this problem. Another problem affects other software which
redirects printers and expects all print output to use the Windows GDI mechanism.

Documaker includes a GDI print driver that uses Windows-native calls for printing,
which is how most applications print under Windows. However, the Windows system
print drivers have problems handling some system printing requirements, such as
enhanced font selection, the ability to combine duplexing with landscape forms, and so
on.

To solve these problems, our print drivers can produce the commands for controlling the
printer while still using an installed Windows printer device. To use this feature, leave the
Device field blank on the Print window, where you select the printer driver you want to
use.

PCL Print [x|

\ Printer type PCL = I™ ! All recipients
Device: LPT1

Options

Leave this field blank

¥ Download fonts
¥ Template variahle fields

™ Send overlays

¥ | Gelectracipients
MNumber of copies: 1

QK I Cancel | Help |

Normally, the Device field contains the name of the device (LPT1) or the name of the file
(D:\OUTPUT.PCL) the system should print to. When you leave this field blank, you tell
the print driver you want to print through an installed printer device. After you click Ok,
the Windows Print window appears so you can select which printer device to send the
print job.

This printer device must be associated with a printer supported by the system’s print
driver. If you have a printer device available that is associated with a printer not supported
by the system’s print driver, the results are unpredictable. For example, if you select PCL
as the system printer type (print driver), but choose a printer device associated with an
AFP printer, the AFP printer will not understand the PCL output and will print garbage.

283

Chapter 6

Setting Up Printers

284

Unlike the GDI driver, our print drivers control the printed output. The Windows Print
window is the standard print window provided by Windows. Documaker applications
cannot control or change this window. In addition, since our print driver is controlling the
printer, most of the options on the Windows Print window will be ignored. The only
options you can use are:

* Select a printer device.
* Select the Cancel button and the print process is canceled.

* Check the Print to File field and the system will print the document to the file you
specify.

NOTE: Not all Windows print drivers support pass-through printing. If you receive an
error while printing in this manner, you are probably using a Windows print
driver that does not support pass-through printing.

Creating PDF Files

CREATING PDF Adobe Systems created the Portable Document Format (PDE). It is the native file format
FILES of the Adobe Acrobat family of products. The original PDF file format was version 1.0.

The system produces PDF files which adhere to PDF file format version 1.3 (or version
1.4 if 128-bit encryption is used). This version supports compression and page-at-a-time
downloading. With page-at-a-time downloading (byte-serving), a web server sends only
the requested page of information to the user, not the entire PDF document.

NOTE: When you use Acrobat Reader to view a PDF document, you do not have to do
anything to make it download a page at a time. Acrobat Reader and the web
server handle this for you.

If you want the entire PDF document to continue downloading in the
background while you view the first page in Acrobat Reader, choose File, General
Preferences and select the Allow Background Download of Entire File option.

For additional information about creating PDF files with Documaker applications, please
refer to the following documents:

For See

Docupresentment Please see the Internet Document Server User Guide for more
information on PDF support.

Documaker Server Please see the additional configuration steps in the Documaker
(z/OS) Server Installation Guide.

For all other products and for ~ Please see Using the PDF Print Driver.
general PDF information

285

Chapter 6

Setting Up Printers

CREATING RTF
FILES

Generating separate
files

286

The RTT print driver lets you create a medium-fidelity export of the contents of a form
setin a format you view or edit with most popular word processors. The email print driver
uses this capability to email form sets. See Emailing a Print File on page 307 for more
information.

To use the RTT print driver, you need these INI settings:

< Printers >

PrtType = RTF

< PrtType:RTF >
Module = RTFW32
PrintFunc = RTFPrint

You will also need to specify an output device name on the Print window.

NOTE: The RTF print driver does not support graphics (bitmaps), charts, or bar codes.

You can generate separate files for each transaction when you choose RTF (or PDF) from
WIP or batch print.

The name of the files will have a rolling number appended to the end of the name that
starts the process and is filled in on the Print window. This is automatically handled and
you do not have to set INI options to get the WIP or batch print to work as long as your
PrtType name is PrtType:RTF.

There are several INI options you can use to override the naming process and also name
other print drivers that require this unique handling.

< BatchPrint >
NoBatchSupport = RTF
PreLoadRequired= RTF

These are the default settings and cannot be overridden. However, you can specify other
PrtType print driver definitions you want to fall into these same categories.

Option Description

NoBatchSupport Indicates that the named PrtType items, separated by semicolon, do not
really support batch transactions and require special handling.

Prel.oadRequired Lets you specify all the PrtType items, separated by semicolon, that
should be forced to load the form set prior to the starting print. Most
print drivers don't requite this special requirement, but some, such as

PDF do.

Also, you can name PrtType specific items under the BatchPrint control group to override
the normal Device naming option. Here is an example:

< BatchPrint >
PDF = ~HEXTIME .PDF
RTF = ~HEXTIME -~KeyID .RTF

Any batch print sent to PrtType:PDF (picking PDF on the Print window) will override
the name and store the current hexadecimal date and time, such as BCFO9CA4.PDF,
which is an eight-character name, as the name of each transaction's output.

Adding or removing
frames

Creating form fields

Creating RTF Files

Also, you can combine INI built-in calls as shown in the RTF example. Here any WIP or
batch print sent to RTF will name the files using the HEXTIME and the KeyID from the
WIP transaction. This will result in names similar to this: BCF099A4-123456.RTF

Note that you must leave a space after the built-in INI function name for it to work
properly. That space will not appear in the resulting output name.

By default, the RTF print driver uses frames to replicate the look of a document. If you
do not want the frames, which print as boxes around the various document objects, to
appear, set the WriteFrames option to No.

< PrtType:RTF >

WriteFrames =

For instance, you can use the RTF driver to print form sets to an RTF file. Once the RTF
file is created, you can then open it in a word processor. To avoid having frames in the
file, you would set this option to No.

You can use the RTT print driver to convert variable fields into RTTF form fields. For
example, a variable address field is converted into an RTF form field. The format of the
field is retained. If, for example, the address field contained all uppercase characters, this
would be reflected in the corresponding RTF form field.

To print form fields, include this INI option:

< PrtType:RTF >
AllowInput = Yes

NOTE: This works with print types RTF and RTF_NoFrame.

You may also need to include the WordTimeFormats and WordDateFormats control
groups. You can use these control groups in case you are using a time or date format that
has no equivalent in Word. The following groups and options let you map a Documaker
format to a Word format.

< WordTimeFormats >
hh:mm XM =

< WordDateFormats >
bD/bM/YY =

To the left of the equals sign, you list the Documaker format used on the section. To the
right, you list the Word format you want to use.

287

Chapter 6

Setting Up Printers

Setting margins

Removing the contents
of headers and footers

288

The RTT print driver produces margins by calculating what is required and putting the
result in the RTT output. You can, however, set minimum required margins using the
RTF print type control group.

You must set the minimum required margins in FAP units (2400 dots per inch). Here are
the default settings:

< PrtType:RTF >
MinTopMargin = 400
MinLeftMargin = 600
MinRightMargin = 600
MinBottomMargin= 400

Margin values specified in the INI file override those set in the FAP file if the page
margins in the FAP file are smaller.

NOTE: The changes in the margins are noticeable when you open the document in an
application such as Microsoft Word. You will see the left and right margins
shifting based on what you specified in the INI file. The top and bottom margins
(seen on the left side of the page) will also vary based on what you specified in
the INI file.

Use these options to remove the contents, including graphics and text, from headers and
footers when creating RTTF files:

< PrtType:RTF >
EmptyFooters = Yes
EmptyHeaders = Yes

Option Description

EmptyHeaders Enter Yes to remove the contents from any headers in the file. This includes
both text and graphics. The default is No.

EmptyFooters Enter Yes to remove the contents from any footers in the file. This includes
both text and graphics. The default is No.

USING THE
VIPP PRINT
DRIVER

Using the VIPP Print Driver

Variable Data Intelligent PostScript PrintWare (VIPP) was created by Xerox in the early
1990s to enable high-performance variable data printing on PostScript devices. VIPP is
based on PostScript and works by extending the PostScript programming language. VIPP
can be used on any PostScript compatible printer, including Xerox and third-party
network, workgroup, and production devices that have been licensed for VIPP.

VIPP is supported on these devices:

* DocuPrint NPS (monochrome and color)

* DocuPrint N-series

* DocuSP (Document Services Platform) controllers, including iGen3
¢ DocuColor, EFI, and Creo controllers, (including iGen3)

The Documaker VIPP print driver requires that you have VIPP version 5.3 or later
installed on your printet’s controller.

NOTE: Contact your Xerox representative to see if your specific printer supports VIPP
and to obtain VIPP licensing and installation of the latest VIPP version. To use
the Documaker VIPP print driver, any supported device must have a local file
system you can access to transfer resource files. Check with your Xerox
representative for any limitations or considerations when using VIPP on your
specific printer. For example, DocuColor systems may have limited or no
support for stapling, duplexing, and paper tray (media) selection. In addition,
older models of DocuTech and DocuPrint printers may have limited or no
support for caching resource files.

The Documaker VIPP print driver produces native mode VIPP output. Native mode
refers to files composed solely of VIPP commands. VIPP commands are used to place
text, lines, boxes, shades, and graphics directly on the page. Native mode is the default
VIPP mode.

A VIPP print job can refer to external resource files such as fonts, TIFF and JPEG
graphics files, and page overlays (segments).

VIPP provides a mechanism called VIPP Projects that lets you manage all of the resources
needed for a VIPP print job.

VIPP Projects allow you to organize the resources of a job under a single name (the
project) and group the jobs by family (the folder).

A folder is a collection of projects that share some common features. For example, you
may decide to create one folder for each customer, each division, or each line of business.
Within each folder, you could define multiple projects. A folder can contain common
resources (company logo, standard boilerplate page segments, and so on) that are shared
by the projects within the folder. The projects will contain resources that are unique to
the project. You can also have resources that are global across all projects and folders.

Having multiple folders and projects provide a great deal of flexibility in how you organize
and share your resources. Folders and projects can even provide the logical grouping of
the physical resources used by the job at one or more steps during in the job life cycle
(development, testing, production, and so on).

289

Chapter 6

Setting Up Printers

Converting bitmaps
into VIPP image files

290

This is a sample structure:

Folder A - Dallas Division
Project 1
Project 2
Project 3

Folder B - Atlanta Division
Project 1
Project 2
Project 3

Folder C - Silver Springs Division
Project 1
Project 2
Project 3

VIPP Resource Files

The resource files referenced by a Documaker VIPP job are:

Pictures (images) in TIFF or JPEG format
Overlays (segments) in VIPP format
PostScript fonts

Font encoding tables

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a

Documaker VIPP job must have lower case file names.

VIPP supportts bitmap files in TIFF and JPEG format. The Documaker VIPP print driver
assumes that mono-color (1 bit per pixel) graphics have been converted into TIFF format
and multi-color (more than 1 bit per pixel) graphics have been converted into JPEG
format.

Scanned images are usually converted into multi-color graphics even though the images

can appear to be black and white. There are a number of ways to convert your graphics
into TIFF and JPEG files as expected by the VIPP print driver.

Use Logo Manager. Choose the File, Save As option. On the Save As window, select
VIPP image files (*.*) in the Save as Type field. Selecting VIPP image files tells the
system to create a TIFF file or a JPEG file, based on the number of colors used in
the graphic.

Use the Conversion Wizard in Documaker Studio. Choose the Manage, Conversion
option from the main menu. Select IVIPP image files as the Final Conversion File Type.
Selecting VIPP image files tells the system to create a TIFF file or a JPEG file, based
on the number of colors used in the graphic.

Use Docutoolbox RP. Choose the File, Convert, Logos option from the main menu.
Select VIPP image files as the output file type. Selecting VIPP image files tells the
system to create either a TIFF file or a JPEG file, based on the number of colors used
in the graphic.

Converting FAP files
into VIPP segment files

Using the VIPP Print Driver

e Use the LOG2VIPP utility. The utility creates a TIFF file or a JPEG file based on
the number of colors used in the graphic. See the Docutoolbox Reference for details.

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to make
sure the resource file names are lower case before they are transferred to the
UNIX workstation console attached to the VIPP printer.

VIPP supports pre-compiled printer overlays (called segments). A segment is a VIPP
native mode or a PostScript fragment intended to be reproduced once or several times at
specific locations on one or more pages. You can use the OVLCOMP utility to convert
Documaker FAP files into VIPP segment files.

Here is an example of the syntax for this utility. For more information, see the
Docutoolbox Reference:

OVLCOMP /I=fapfile /X=fxrfile /L=VPPW32 /F=VPPPrint /U=VPP /C

Parameter Description

/1 Enter the name of the FAP file. Omit the extension.

/X Enter the name of the FXR file. Omit the extension.

/L For the VIPP print driver, enter VPPW32.

/F For the VIPP print driver, enter VPPPrint. Case is important when using this

parameter, therefore, you must enter it exactly as shown here:
/F=VPPPrint

/U (Optional) Enter the name of your VIPP printer group. Here is an example:
/U=VPP
/C (Optional) Include this parameter if you want to use color.

You will need a FSISYS.INT file in the directory that you run the OVLCOMP utility from.
Within the FSISYS.INI file, you should have a VIPP printer group defined. For example,
below is a subset of the INI settings you might find in a VIPP printer group.

< PrtType:VPP >

Module = VPPW32
OverlayExt = .seg
PrintFunc = VPPPrint
SendOverlays = Yes, Enabled

You can specify the overlay (segment) extension you want to use by including the
OverlayExt option in your VIPP printer control group and telling OVLCOMP the name
of your VIPP printer group (/U=VPP). Use the same OverlayExt setting in your VIPP
printer control group when producing a VIPP print stream that uses overlays (segments).
If you omit the OverlayExt option, the default file extension for an overlay is .ov/.

Another way to create VIPP overlays (segments) is to use the Conversion wizard in
Documaker Studio. Select the Compile Sections (FAPs) to Print Files option and choose
Section to VIPP as the conversion type.

291

Chapter 6

Setting Up Printers

On the Dimensions tab, you
must modify this field to use

VIPP fonts

the VIPP print driver

292

You can also use Docutoolbox RP to create VIPP overlays (segments) by choosing the
File, Convert, FAP to VIPP option.

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to make
sure the resource file names are lower case before they are transferred to the
UNIX workstation console attached to the VIPP printer.

VIPP supports PostScript fonts as VIPP resources. While VIPP supports any font type

(Type 1, Type 3, and composite) supported by the PostScript interpreter, Documaker only
supports Type 1 PostScript fonts. The PostScript fonts you use must be defined in your
font cross-reference (FXR) file.

If you are using a base FXR file, like REL103.FXR or REL110.FXR, the base PostScript
fonts are already set up for you in the FXR file. The same PostScript fonts used for
printing with the Documaker PostScript print driver are also used with the Documaker
VIPP print driver.

If you are using a custom FXR file and you have not set up your FXR file for printing
PostScript, then you will need to add the PostScript fonts to your FXR file. You can use
the Import option for the Font manager to import PostScript fonts into your FXR file.
The primary fields used by the PostScript and VIPP print drivers are the Codepage field
on the Dimensions tab, and the Font File, Font Name, and Char Set ID fields in the
PostScript section of the Properties tab.

Here are examples of the Dimensions and Properties tabs in Documaker Studio for a font
record in your FXR file:

Font Dimensions - 10006 Arial Narrow 6 PT

¥ Dimensions l
FAP Height 240
FAP Width 168
FAF Baseline 192
L Criginal Font File an pfa
Codepage 1004
Font Properties - 10006 Arial Narrow 6 PT
Here are the fields on the b ;
Properties tab you must ¥ PostScript Properties -
modify to use the VIPP L | FontFile AN FFB
print driver. x‘ Fant Name AvialNarrowhdT
™ | Char SetID Wi
¥ | Advanced..
Typeface ID
Char Set Name
Fant Index 0
COther Info
Options 0
Flag 0
[» EOF Broperies ~

VIPP font encoding
files

Using the VIPP Print Driver

Field Enter...

Codepage Under Windows, the system uses the ANSI code page. Normally, this field is
set to 1004 or is left blank.

Font File The PostScript Type 1 font file name, including the .PFB extension. Font
Manager fills this field when you insert a PostScript font.

Font Name The full font name, such as Times-Roman. Font Manager fills this field when
you insert a PostScript font.

Char Set ID A character set (also known as a symbol set) identifies the set of symbols
provided by the font. It is used by PostScript printing to build an internal code
page. Use W1 for the fonts that use the standard Windows ANSI code page.
The character set ID and code page values should match those specified in the
CODEPAGE.INI file.

Code page 1004 and Char Set ID W7 are used for fonts that use the standard
Windows ANSI code page.

Code page 9998 and Char Set ID WD are used for DocuDings (Wingdings
clone) font.

Code page 9999 and Char Set ID MI are used for the base MICR font.

The Working with Fonts chapter in the Docucreate User Guide (and other manuals)
contains more detailed information on how to add PostScript fonts to your FXR file.

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to make
sure the resource file names are lower case before they are transferred to the
UNIX workstation console attached to the VIPP printer.

A PostScript font is a collection of characters. Each character in a PostScript font has a
PostScript-assigned name. For example, the dollar sign (§) character has a PostScript
name of “/dollar’. While PostSctipt fonts use PostScript-assigned names for each
character, PostScript (and VIPP) print streams use a byte value to represent each
character. For example, the dollar sign ($) is usually represented by a value of 24 hex. An
encoding table is used to match a byte value (24 hex) with the character name (““/dollar”)
contained within a PostScript font.

This table shows the relationship between the hex byte value, the equivalent decimal
value, the PostScript character name, and the actual printed character using the standard
ASCII encoding table.

Hex value Decimal value PostScript name Character
20 32 /space

24 36 /dollar $

2A 42 /asterisk A

30 48 /zero 0

293

Chapter 6

Setting Up Printers

294

Hex value Decimal value PostScript name Character
41 65 /A A

61 97 /a A

7A 122 /z z

VIPP font encoding files serve a similar purpose as the Documaker CODEPAGE.INI
file and the Codepage and Char Set ID settings in the font cross-reference file. The
Documaker VIPP print driver uses the Codepage setting for each font in the font cross-
reference to determine the name of the encoding file to use. The Documaker VIPP print
driver appends the letters ¢ to the value of the code page setting for each font in the font
cross-reference to determine the name of the VIPP font encoding file. Therefore, if a font
has a Codepage setting of 7004, then the Documaker VIPP print driver will use a VIPP
font encoding file called ¢7004.

These VIPP encoding files are provided to correspond to the code pages used by the base
Documaker font cross-reference files:

File Description

cp1004 The VIPP encoding file used for fonts that use the standard Windows ANSI code
page. Most text fonts will use this.

cp9998 The VIPP encoding file used for the DocuDings font (clone of Wingdings).

cp9999 The VIPP encoding file used for the base MICR font.

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to make
sure the resource file names are lower case before they are transferred to the
UNIX workstation console attached to the VIPP printer.

Managing VIPP Resources

Documaker VIPP print jobs use external resources for VIPP images, segments, fonts, and
encoding files. By using external resources, the amount of time needed to produce a VIPP
print stream is greatly reduced (as well as the size of the print job). Because the resources
are not part of the job, the VIPP resources must be deployed to the controller (often a
Sun workstation) that houses the VIPP software and ultimately drives the printer.

You will need some means of transferring VIPP resource files to the controller for the
VIPP printer such as:

* Windows FIP command line utility
* Third- party FTP file transfer utility

* VIPP Manage (contact Xerox for more information)

Using the VIPP Print Driver

You will need to log on with root access onto the controller. For some controllers, you
can use the following user ID and password.

User ID: root
Password: service!

Contact your Xerox representative if you need help logging onto the controller for your
VIPP printer.

As mentioned eatlier, VIPP lets you organize the resources required by a VIPP job under
a hierarchy of folders and projects. A folder is a collection of projects that share some
common features. For example, you can decide to create one folder for each customer,
each division, or each line of business. Within each folder, you could define multiple
projects. A folder can contain common resources (company logo, standard boilerplate
page segments, and so on) that are shared by the projects within the folder. The projects
will contain resources that are unique to the project. You can also have resources that
global across all projects and folders.

When VIPP is installed on the controller for your printer, VIPP is configured with a file
called xgfunix.run (stored in the /ust/xgf/stc directory). The xgfunix.run file contains
VIPP commands that determine the VIPP resource directories.

By default, VIPP is configured with the following VIPP projects repository (collection of
VIPP resources and projects):

\xgfc - parent of folder

\gshared
\global-level shared resources

\projects

/folder-level shared resources
—|J_‘__| \fshared

" \projecta
local resources for individual projects
{771 \projectB (to be created)

{777 \projectC

The root path for xgfc will be /usr/xgfc on controllers that use UNIX systems.

In the xgfunix.run file, you might see a SETPPATH (VIPP command) that looks like
this:

[(/usr/xgfc/$SFOLDER./$SSPROJECT. /) % project local paths
(/usr/xgfc/S$SSFOLDER. /fshared/) % project folder shared paths
(/usr/xgfc/gshared/) % project global shared paths
(/usr/xgfc/fontlib/) % project access to font 1lib
(/usr/xgf/encoding/) % project access to standard encoding
(/usr/xgf/gshared/) % project global shared path
(/opt/XRXnps/resources/ps/mislib/) % project access to DocuSP

resource list

] SETPPATH

The $§FOLDER. and $§PROJECT. strings are placeholders for project folders and
project names. In the example listed eatlier, §§FOLDER would be represented by the
projects folder and $FPROJECT could be represented by projectA, projectB, ot projectC.

Project paths are divided into these three levels of hierarchy or scope:

295

Chapter 6

Setting Up Printers

296

* Local scope — paths that contain both $$FOLDER and $$PROJECT. These
libraries will hold resources that pertain only to the project. In the example listed
eatlier, usr/xgfc/projects/projectA would have a local scope.

* TFolder scope — paths that contain only $§IFOLDER. These libraries will hold
project libraries and resources shared by projects belonging to the same folder. In the
example listed eatlier, usr/xgfc/projects/fshared would have a folder scope.

* Global scope — paths that contain neither $$FOLDER nor $$PROJECT. These
libraries will hold resoutces shared by all projects. In the example listed eatlier, usr/
xgfc/gshared would have a global scope.

When a resource is present with the same name in more than one folder (scope), VIPP
uses the following order of precedence to determine which resource file to use:

* Local scope folder
* Folder scope
* Global scope

Even the simple default VIPP repository gives you a lot of flexibility in how you manage
your VIPP resources.

As you recall, Documaker LOG files are converted to VIPP image files (TIFF or JPEG
files). Let’s say that some of your LOG files are unique to projectA while others are shared
by projectA, projectB, and projectC.

The TIFF or JPEG files that are unique to projectA could be stored in a local scope folder
such as usr/xgfc/projects/projectA.

The TIFF or JPEG files that are shared between projectA, projectB, and projectC could
be stored in a folder scope folder such as usr/xgfc/projects/fshared.

Similarly, Documaker FAP files are converted to VIPP segment files. Again, some of your
FAP files are unique to projectA while others are shared by projectA, projectB, and
projectC.

Like the VIPP image files, the VIPP segment files that are unique to projectA could be
stored in a local scope folder such as usr/xgfc/projects/projectA while the VIPP
segment files that are shared between projectA, projectB, and projectC could be stored in
a folder scope folder such as usr/xgfc/projects/fshared.

Finally, you have the PostScript fonts and the font encoding resources to consider.
Perhaps your company has established standards on the use of the PostScript fonts and
font encoding. As a result, you only need one set of PostScript fonts and font encoding
files for all projects to use. In that case, you could place your PostScript fonts and font
encoding files in a global scope folder such as usr/xgfc/gshared.

In the section entitled VIPP INI Settings, you will see how you can define the folder name
(“$$FOLDER.”) and project name (“$$PROJECT.”) used to represent the directories
containing the VIPP resoutces required by the VIPP print streams produced from the
Documaker VIPP print driver. You also see how to set up your own list of libraries
containing VIPP resources.

Using the VIPP Print Driver

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to make

sure the resource file names are lower case before they are transferred to the
UNIX workstation console attached to the VIPP printer.

VIPP INI Options

Here are the INI options and settings commonly-used with the VIPP print driver:

Option

Values

Description

Device

Module

PrintFunc

Resolution

SendOverlays

CacheFiles

CacheLogos

any file or
device name

VPPW32

VPPPrint

300

Yes/No

any number,
zero or higher

Yes/No

The name of the file ot device (LPT1) whete the
VIPP print stream should be written. This setting
is ignored by the GenPrint program but is used by
Studio, the Image Editor, and other system
programs.

The default is the first three letters of the entry for
the Module option, such as VPP.

The name of the program module that contains
the VIPP print driver. See also the Class option.

The default is PCLLW32, but you must enter
VPPW32 to use the VIPP print driver.

The name of the program function that is the
main entry point into the VIPP print driver.
The default is PCLPrint, but you must enter
VPPPrint. Case is important when using this
option, therefore, you must enter it exactly as
shown here:

VPPPrint

The dots per inch resolution of the printer that
will receive the PostScript data stream.

The default is zero (0) which tells the system to let
the print driver to determine the resolution. The
VIPP print driver defaults to 300 dpi.

Set to Yes if you have created VIPP overlays
(segments) for each FAP file.

Set to enable the caching of VIPP segments and
images. The first x number of VIPP segments and
images in the print job are cached. The default is
zero (0).

Set to enable the caching of VIPP images if
CacheFiles is also enabled. The default is No.

Some default settings are determined by the program performing the print operation. The
defaults in this table refer to printing from the GenPrint program. The defaults when printing
from other applications, such as Documaker Workstation, may differ.

297

Chapter 6

Setting Up Printers

Option

DSCHeaderComment

OvetlayExt

PageNumbers

SendColor

HighlightColor

DownloadFonts

TemplateFields

Class

Values

any file

extension

Yes/No

Yes/No
Enabled/
Disabled/
Hidden

Yes/No

Yes/No

Yes/No

(first three
characters of
the Module
option)

Description

Use to specify PostScript Document Structure
Convention (DSC) comments you want added to
the header portion of the generated VIPP print
stream.

You can include as many DSCHeaderComment
options as are necessary.

See Adding DSC comments on page 303 for more
information.

The file extension of the VIPP overlays
(segments). The default is .oz/.

Set to Yes to enable form or form set page
numbering.

The default is No.

Set to Yes to enable color printing.

Enabled = Option appears in the Print window
and is active (available to be checked).

Disabled = Option appeats in the Print window
but is grayed out (not available to be checked).

Hidden = Option does not appear in the Print
window.

Set to Yes to enable highlight color support. The
default is No.

If you set this option to Yes, you must also set the
SendColor option to Yes.

Set to Yes to embed (download) PostScript fonts
within the VIPP print stream.

Set to No if you have loaded the PostScript fonts
onto the VIPP controller.

The default is Yes but you will get better
performance if you set this option to No.

Set to Yes to test print Xs in variable fields

Specifies the printer classification, such as AFP,
PCL, XER, PST, GDI, or VPP. If you omit this
option, the system defaults to the first three letters
from the Module option.

Some internal functions expect a certain type of
printer. For instance, all 2-up functions require an
AFP printer. The internal functions check the
Class option to make sure the correct printer is
available before continuing.

Some default settings are determined by the program performing the print operation. The
defaults in this table refer to printing from the GenPrint program. The defaults when printing
from other applications, such as Documaker Workstation, may differ.

298

Option

SelectRecipients

Tray#

(whete # is a number
from 1 to 9)

Folder

Project

ProjectPath

Values

Yes/No
Enabled/
Disabled/
Hidden

Media string

Directory
name

Directory
Name

Fully qualified
directory path

Using the VIPP Print Driver

Description

This only applies to the Documaker
Wotkstation/PPS systems.

Enabled = Option appears in the Print window
and is active (available to be checked).

Disabled = Option appears in the Print window
but is grayed out (not available to be checked).

Hidden = Option does not appear in the Print
window.

Specifies a media string in the form of:
MediaType:MediaColor:Medial eight

See Setting up paper trays on page 302 for more
details.

Name of the high level directory (folder) under
which a project may appear. See Setting up folders
and projects on page 300 for more details.

Name of the directory where local resources for a
project will reside. See Setting up folders and
projects on page 300 for more details.

Each ProjectPath setting defines a path that will
be used to define a SETPPATH command that
overrides the one found in the xgfunix.run file
found on the VIPP controller. The path defined
by the first ProjectPath setting will be the first
directory searched for VIPP resources. If the
resource is not found, the path defined by the
second ProjectPath will be searched next (and so
on).

See Overriding the list of libraries for projects on
page 301 for more information.

Some default settings are determined by the program performing the print operation. The
defaults in this table refer to printing from the GenPrint program. The defaults when printing
from other applications, such as Documaker Workstation, may differ.

299

Chapter 6

Setting Up Printers

Setting up folders and

300

projects

VIPP uses a configuration file named xgfunix.run (stored in the /ust/xgf/stc directory) to
define a list of libraries (directories) for projects. In the xgfirnix.run file, you might see a
SETPPATH (VIPP command) that looks like this:

[(/usr/xgfc/$SFOLDER. /$$PROJECT. /) % project local paths
(/usr/xgfc/$SFOLDER. /fshared/) % project folder shared paths
(/usr/xgfc/gshared/) % project global shared paths
(/usr/xgfc/fontlib/) % project access to font 1lib
(/usr/xgf/encoding/) % project access to standard encoding
(/usr/xgf/gshared/) % project global shared path
(/opt/XRXnps/resources/ps/mislib/) % project access to DocuSP

resource list

] SETPPATH

SETPPATH is a VIPP command that defines a list of libraries (directories) for projects.
The $§FOLDER. and $§PROJECT. strings are placeholders for project folders and
project names.

You can use the projects directory for your main folder or create your folder directory.
The name of the directory for your local project resources can be anything you wish.

Let’s say you wanted to create a series of projects for the head office. Your VIPP projects
repository might look like this:

\xgfc - parent of folder

\gshared
\global-level shared resources
\head-office

/ folder-level shared resources
—{ T \fshared

— \monthly-report
local resources for the monthly, quarterly, and
—] \quarterly-report annual reports

" \annual-report

Of course, you would need to create the head-office directory along with the subdirectories
for the fshared, monthly-report, quarterly-report, and annual-report on the VIPP controller. And
you would need to transfer the VIPP resource files (images, segments, fonts, and so on)

into the appropriate directories.

However, before you can produce one of the reports for the head office, you will need to
tell the Documaker VIPP print driver which VIPP folder and project names this report
will use. You do this by specifying the Folder and Project options in your VIPP printer

control group.

Option Description

Folder The Folder option contains the name of the high level directory (folder) under
which a project may appear.

The value set in the Folder option is substituted automatically as the $$FOLDER
string in the SETPPATH statement found in the xgfunix.run file on the VIPP
controller.

Overriding the list of
libraries for projects

Using the VIPP Print Driver

Option Description

Project The Project option contains the name of the directory where local resources for a
project will reside.

The value set in the Project option is substituted automatically as the $$PROJECT
string in the SETPPATH statement found in the xgfunix.run file on the VIPP
controller.

Using the example described earlier, let’s say you want to produce a monthly report for
the head office. In that case, you would use the following Folder and Project settings:

< PrtType:VPP >
Folder = head-office
Project = monthly-report

As mentioned before, VIPP uses a configuration file called xgfunix.run (stored in the /
ust/xgf/stc directory) to define a list of libraties (directoties) for projects.

In the xgfunix.run file, you might see a SETPPATH (VIPP command) that looks like
this:

[(/usr/xgfc/$SFOLDER./$$PROJECT. /) % project local paths
(/usr/xgfc/SSFOLDER. /fshared/) % project folder shared paths
(/usr/xgfc/gshared/) % project global shared paths
(/usr/xgfc/fontlib/) % project access to font 1lib
(/usr/xgf/encoding/) % project access to standard encoding
(/usr/xgf/gshared/) % project global shared path
(/opt/XRXnps/resources/ps/mislib/) % project access to DocuSP

resource list

] SETPPATH

If you wanted to override the list of project paths with a different set, you can do so by
using a series of ProjectPath INI options. Each ProjectPath option defines a path that will
be used to define a SETPPATH command that overrides the one found in the
xgfunix.run file found on the VIPP controller. The path defined by the first ProjectPath
option will be the first directory searched for VIPP resources. If the resource is not found,
the path defined by the second ProjectPath will be searched next (and so on).

The following ProjectPath settings would produce the same list of paths as described
earlier:

< PrtType:VPP >

ProjectPath = /usr/xgfc/$$SFOLDER./$SSPROJECT. /
ProjectPath = /usr/xgfc/$$SFOLDER./fshared/
ProjectPath = /usr/xgfc/gshared/

ProjectPath = /usr/xgfc/fontlib/

ProjectPath = /usr/xgf/encoding/

ProjectPath = /usr/xgf/gshared/

ProjectPath = /opt/XRXnps/resources/ps/mislib/

When defining your own list of project paths, keep in mind:

* In the Local scope category, $$PROJECT must immediately follow $§FOLDER.
* A path containing $$PROJECT without $$FOLDER is not allowed.

e If present, $§$FOLDER and $$PROJECT must appear only once in each path.

301

Chapter 6

Setting Up Printers

Setting up paper trays

302

* No additional path components are allowed after §$PROJECT.
* A path ending by $$FOLDER is invalid.
* There must be at least one path for each category.

* There may be several paths in each category but they must be defined and grouped
by category (local, folder, global) in the SETPPATH list.

* A folder or project name must appear only once in the trees of directories covered

by SETPPATH.

* When a resource is present with the same name in more than one scope, the order
of precedence is: local, folder, global.

* To improve cross-platform portability, Xerox recommends that FOLDER and
PROJECT names do not contain more than 32 characters, and only use the

€, 2 2«

characters “a” to “z”, “0” to “9”, “.” (dot), “-” (dash) and “_” (underscore).

The type of media (paper) stored in each paper tray needs to be defined in terms of its
MediaType, MediaColor, and MediaWeight.

The MediaType can be named Plain, Transparency, Drilled, and so on
The MediaColor can be any color such as White, Green, Blue, GoldenRod, and so on

The MediaWeight is measured in grams per square meter. Usually, the media weight is set
to 75 g/m? (equivalent to 20 Ib. paper).
When designing your form set, you may have specified that certain forms use a specific

paper tray to make sure the proper paper (pre-printed forms, colored paper, perforated
papet, and so on) was used.

To make sure these forms print on the desired type of paper, you must define a unique
MediaType, MediaColor, and MediaWeight combination for the paper tray. This
information must be set up on both the printer and in the TRAY# INI settings in your
VIPP printer control group.

For example, let’s say that on your printer, you defined a type of paper will be stored in
TRAY1 as having a MediaType of Plain, a MediaColor of Green, and a MediaWeight of

75 g/m°.
For your form set to print from that paper tray, you would add the following INI option

to your VIPP printer control group:

< PrtType:VPP >
Trayl = Plain:Green:75

The Tray# INI settings expect a string in the form of:
MediaType:MediaColor:MediaWeight

You can specify any of the media attributes as null or omit them. When any of the media
attributes are omitted or specified as null, those attributes are ignored in the following
media selections. This example ignores MediaType.

Trayl = null:Green:75

If the trailing media attributes are omitted, you can omit the trailing colon (), as shown in
this example:

Adding DSC comments

Using the VIPP Print Driver

Tray2 = Plain::
or

Tray2 = Plain:
or

Tray2 = Plain

When any of the media attributes such as type, color, or weight are omitted, the last
specification or the default value for that attribute remains in effect. Because it may be
difficult for you to know the value of the attribute that remains in effect, omitting or
media attributes as null should be used with caution.

Finally, the TRAY# INI settings can also be specified with just a tray number from 1 to
9. For example, Tray5=1 maps output for tray 5 to tray 1. The system checks the INI
option for overriding Trayl before it checks the setting for Tray2 and so on.

Because of this, do not specify a tray number /ess zhan the tray you are overriding. For
example, you should not use a setting of Tray5=6.

< PrtType:VPP >
Trayl = Plain:White:75
Tray2 = Plain:Yellow:75
Tray3 = Plain:Pink:75
Tray4 = Drilled:White:75
Tray5 = 1
Tray6 = 1

For paper tray selection to work properly on DocuPrint NPS printers, it may be necessary
to also include some DSC comments at the beginning of your VIPP print stream.

Use the DSCHeaderComment INI option to specify PostScript Document Structure

Convention (DSC) comments you want added to the header portion of the generated
VIPP print stream. You can include as many DSCHeaderComment options as are
necessaty.

This example shows how, in addition to specifying media commands in the Tray#
options, you can also include DSC comments you want added to the header portion of
the generated VIPP print stream:

< PrtType:VPP >
DSCHeaderComment = %%DocumentMedia:Medial 612 792 75 (White)
(Plain)
DSCHeaderComment = %%+ Media2 612 792 75 (Yellow) (Plain)
DSCHeaderComment = %%+ Media3 612 792 75 (Pink) (Plain)
DSCHeaderComment = %%+ Mediad 612 792 75 (White) (Drilled)

Trayl = Plain:White:75
Tray?2 = Plain:Yellow:75
Tray3 = Plain:Pink:75
Tray4 = Drilled:White:75

The form of the DocumentMedia DSC comment is:

Q

% Key: <Tag Name> <Width> <Height> <Weight> <Color> <Type>

Item Description

Tag Name Any unique name, ignored by VIPP

303

Chapter 6

Setting Up Printers

Item Description

Width The width of paper stock, measured in 1/72” units

Height The height of papet stock, measured in 1/72” units

Color The color of paper stock. You can enter any alphanumeric string.
Type The type of paper stock. You can enter any alphanumeric string.

The DSC header comments are added at the beginning of the generated VIPP print
stream, as shown here:

o

|

%%Title: INSURED

%%Creator: Documaker VIPP Driver
%%CreationDate: Wed Jul 13 11:55:34 2005

%%DocumentMedia:Medial 612 792 75 (White) (Plain)

+ Media2 612 792 75 (Yellow) (Plain)
%%+ Media3 612 792 75 (Pink) (Plain)
%%+ Mediad 612 792 75 (White) (Drilled)
$%EndComments

304

Troubleshooting

Scenario 1

Scenario 2

Scenario 3

VIPP known problems

Using the VIPP Print Driver

VIPP Limitations

The VIPP language does not support Unicode. As a result, the VIPP print driver can not
be used as a Unicode print driver.

Here are some troubleshooting scenarios:

A VIPP job stops printing before the last page with the following error message:

ERROR: VIPP_unable_to_locate; OFFENDING COMMAND: filename.ext
Flushing: rest of job (to end-of-file) will be ignored

Where filename.ext is the name of a VIPP resource file.

This error occurs if the VIPP print job references a VIPP resource file (PostScript font,
font encoding table, VIPP segment overlay, VIPP bitmap image) that cannot be found.

Make sure you have loaded the missing file onto the VIPP controller and placed it in a
folder defined for your VIPP project. See Managing VIPP Resources on page 294 for
more information.

A VIPP job stops printing before the last page, usually with the following error message:

ERROR: undefined
OFFENDING COMMAND: Selected pages 0 n

Where nis the page volume limit for that device.

If VIPP is installed without a production license file, then the VIPP program will run in
demonstration mode. Demonstration mode is a full-featured version of the VIPP
software, however page volume limitations are imposed. The page volume limits are
device-dependant and varies between 10 and 200 pages.

On some DocuColor printers, the error does not appear. Instead, jobs simply stop when
the demonstration limit is reached. The limit is 57 or 200 pages and depends upon the
DocuColor printer model.

Contact your Xerox representative about getting a VIPP license to run VIPP in full
production mode.

If you are not getting the correct characters printing, check the code page setting in the
FXR file for the font. For most fonts that use the Windows code page, the code page
setting in the font record should be set to 1004.

At the time this documentation was written, version 5.3 was the latest version of VIPP.
Here are some known problems with VIPP version 5.3:

* When caching is used in a VIPP print job, some VIPP segments and images may not
print in the correct location or at all, or may cause a fatal system error on the printer.
This is a known issue on some printers, such as older model DocuTech and
DocuPrint printers. You can remove the CacheFiles INI option and reproduce your
print job without using caching.

Or, you can open a console window on the printer's workstation, login with root
access and type (or ask your Xerox analyst or engineer to do so):

/opt/XRXnps/bin/setimagepath -f 0

This will disable VIPP caching for all print jobs.

305

Chapter 6
Setting Up Printers

* There is a VIPP bug when using a vector object to draw a circle and the line width
exceeds a certain size (noticeable at 1/6 inch or higher). The outside edge of the citcle
does not draw completely around the border of the circle. The Xerox says it will be
fixed in the next VIPP release (after version 5.3).

* There is a problem when using Univers Condensed Bold and Italic fonts on
DocuPrint or DocuTech 65 printers. When printing a line of text using the Univers
Condensed Bold font followed by a second line of text using the Univers Condensed
Italic font, some of characters in the second line may print using the Univers
Condensed Bold font (instead of the Univers Condensed Italic font). This bug
reported to Xerox but will not be fixed.

NOTE: The SPAR problem was analyzed by Xerox’s VIPP and DocuSP development
staffs who determined the problem lies in the Adobe PS decomposer. The
problem was tested against the latest D'T/DP75/90 product release and the fonts
printed correctly, indicating the problem has been corrected by Adobe.
Unfortunately, the DTG5 is, according to Xerox, at its end of life and no further
software support will be provided for this product.

306

EMAILING A
PRINT FILE

Creating EPTLIB print
files for Documaker
Workstation

Emailing a Print File

The system lets you set up an RTT (Rich Text Format) print driver which lets you create
a print-ready file that you can email to another user. The recipients can immediately print
the file.

NOTE: If you have the Internet Document Server, you can also use the included PDF
print driver to create print-ready files you can email.

You install the email print driver (EPTLIB) by setting up INI options so the system will
know how to use the driver. Since EPTLIB is essentially a wrapper for a real print driver,
the INI options must also include a reference to the actual print driver the system will use
to create the print-ready file, such as the PDFLIB or PCLLIB. There are also INI options
for the email processing, in addition to the regular email INT options.

The INT options for EPTLIB are as follows:

< Printers >
PrtType = EPT

This option lets the system know that EPTLIB is a print driver so it will include it on the
Print window when you print from Documaker Workstation.

You can use the PrtType:EPT control group to further customize the email print driver.
For instance, you can add subject and message information and use the email address
book when printing from Documaker Workstation using the EPT print driver. This lets
you select print, choose form set (form or page), then select the EPT print type.

The system would then display the email address book. You select the recipients and a
window appears into which you can enter the subject and message text. You then choose
to send or cancel the message.

Here is an example of the INT options you would set up:

< PrtType:EPT >

Device =

Filename = EPTFILE.RTF
InitFunc = EPTInit

KeepFile = No

Message = Please respond ASAP
Module = EPTW32

PrintFunc = EPTPrint

PrtType = RTF

RecipFunc = CSTSetMailRecipgvm
RecipMod = CSTW32

Recipient =

Subject = New Application
TermFunc = EPTTerm

KeepFile = No

307

Chapter 6

Setting Up Printers

Creating EPTLIB print Set up your INT options as shown here:
files for Documaker

< Printer >
Server

PrtType = EPT

< PrtType:EPT >
Module = EPTW32
PrintFunc = EPTPrint
InitFunc = EPTInit
TermFunc = EPTTerm

These options tell the system which functions to call to execute the printing process.
PrtType = RTF

This tells the EPTLIB print driver which real print driver to use to create the print-ready
file. If omitted, it defaults to the RTF print driver (Rich Text Format).

FileName = EPTFILE.RTF

This option gives the name of the output file to create. This is only used if the Device
Name field is empty in the GUI print window (the batch file name is used for GenPrint).
If the device name is empty and the FileName option is omitted, a temporary file name is
used. Use a file name with an extension that matches the print driver type, such as RTF.
For GenPrint, the file name is the name of the print batch.

KeepFile = No

The KeepFile option tells EPTLIB whether or not to keep the output file after it has been
emailed. The default is No.

< Print >
CallbackFunc = MultiFilePrint
MultiFileLog = data\rtflog.dat

These options tell the system to divide large RTF files into smaller RTT files. If you omit
these options, you will be able to view the first transaction, but not the following ones.

The RTFLOG.DAT file stores the information that defines which RTF file contains
which transaction for which batch.

Recipient = Email Recipient
Subject = File from Documaker User
Message = PDF file attached

Use these INI options to set mail settings for EPTLIB. The Subject and Message options
specify the Subject line and Message text for the email message. For the Recipient option,
you can either include the actual email recipient ot you can specify a field name where the
system can go to look up the recipient. Here are some examples:

Recipient = Stephen Petersen; send to internal email recipient
Recipient = spetersen@oracle.com; send to Internet email address
Recipient = Fieldname:ADDRESS2; use text in ADDRESS2 field

If the email system cannot resolve recipients, or if you leave the Recipient option blank,
an email address window appears so you can select an email address from the address
book. The field lookup is a feature of the default recipient function in EPTLIB, which
you can replace using these INI options:

RecipMod = CSTW32
RecipFunc = CSTSetMailRecip

308

Emailing a Print File

These options tell the system which module and function to use to determine the
recipient. Omit these options and the system uses EPTLIB’s default recipient function.

The CSTSetMailRecip function displays a window which shows the subject and message
text and lets you edit this text. This window also lets you provide the email recipient for
Documaker Workstation. Documaker Server lets you use these functions to set up
recipients:

RecipMod = CUSW32

RecipFunc = CUSSetMailRecip

or
RecipFunc = CUSSetMailRecipGVM
Function Description
CUSSetMailRecip This function finds the print recipient and looks up the recipient in

the RECIP_MAIL control group to get the email address of the
recipient. Here is an example:

< RECIP_MAIL >

AGENT = myagent@sampco.com
COMPANY = support@sampco.com

CUSSetMailRecipGVM This function finds the recipient in a global variable, the name of
which is defined in this INI option:

< PrtType:EPT >
Recipient = EAddress

Instead of using EAddress as the recipient name, the system uses it
as the variable name to look up to find the recipient name. This
global variable can have any name.

The recipient functions have the following syntax:

DWORD _VMMAPI EPTDefSetRecipient (VMMHANDLE objectH,
char FAR * recip,
size_t len);

Parameter Description

objectH The object being printed (form set, form, or page)
recip The recipient buffer
len Length of the buffer, currently 80 characters

The return value should be SUCCESS or FAILURE. If FAILURE, then the message is
not sent and FAILURE is returned from EPTPrint. To set the recipient function without
INI options, use the EPTSetRecipFunc function:

EPTRECIPFUNC _VMMAPI EPTSetRecipFunc (EPTRECIPFUNC newfunc) ;
Call it with the address of the recipient function:
EPTSetRecipFunc (func) ;

The EPTSetRecipFunc function returns the previous installed function, which can be
used to set it back.

309

Chapter 6

Setting Up Printers

Creating PDF print files

Overriding attached

310

files

Using email aliases

If you are creating PDF files, use these INI options:

< Printers >

PrtType = PDF

< PrtType:PDF >
Module = PDFW32
PrintFunc = PDFPrint

Keep in mind that when the PDF driver is called from the EPT driver, the current printer
control group remains PrtType:EPT, not PrtType:PDF. Therefore, unless you add PDF-
specific options, the system uses the INT settings it finds for PrtType:EPT.

Many print options, such as the DownloadFonts option, are set before the system calls
EPT, which then redirects the print to another driver. So, to have the system use the
correct PDF options, set your PrtType:EPT control group to look like this:

< PrtType:EPT >

PrtType = PDF
DownloadFonts = [PrtType:PDF] DownloadFonts =
SendColor = [PrtType:PDF] SendColor =

This way, if you change the options in the PrtType:PDF control group, those changes are
automatically picked up in the PrtType:EPT control group.

Keep in mind that the EPT (email print) driver can use the FSRSetFileAttachment APL
This lets you create custom hooks to override the attached file and handle situations
where you need to remove the attached file but still send the message.

Multiple recipient addresses are not supported with the EPT PrtType. If you need to send
an email to, for instance, all agents, use an Email Application Server, such as Microsoft
Exchange (MailType = MSM) or ccMail (MailType = CCM). With these products you can
define an alias to represent a group of email addresses. You cannot set the MailType
option to SMTP unless your SMTP server understands aliases.

Email Application Servers usually run on top of an SMTP service and let you manage
email messaging more efficiently. When using an application such as Exchange, you can
create a group (such as TestGroup) and you can specify the group name when you specify
the Recipient option.

For example, if you set the MailType option to MSM in the Mail control group and you
have this defined for the Recipient option:

< PrtType:EPT >
Recipient = TestGroup

This option is sent to the Exchange server which converts the alias (Tes?Group) into its
SMTP equivalent value, such as a list of email address similar to this:

hbean@oracle.com; jgaramond@oracle.com; tbottle@oracle.com.. .

The result is a message sent to the entire group represented by TestGroup.

NOTE: To use this feature, you must set up email-related INI options. These options are
discussed in the Documaker Workstation Supervisor Guide.

CHOOSING THE
PAPER SIZE

For a section, you can choose
from the available standard
page sizes or choose Custom

here. ¥ | Faper
Height 3600 FAPS
Width 20415 FAPs

Choosing the Paper Size

The system supports a variety of paper sizes including US and international sizes. The
following tables show the paper sizes you can choose from:

* US Standard Sizes on page 312

* ISO Sizes on page 313

* Japanese Standard Sizes on page 316

You can also find the following related information in this topic:
* Printer Support for Paper Sizes on page 317

* Paper Sizes for AFP Printers on page 321

NOTE: Please note that the NA file stores the actual section height and width for custom
sized sections. This information is stored in the SIZE entry in the NAFILE.DAT
file. Here is an example:

\NA=glsnam, LN=1, DUP=LB, SIZE=3360x18600, TRAY=U, X=600,Y=600. ..

The height and width are in FAP units (2400 per inch).

In Studio you use the Size property to specify the page size for a section. There is also a
Size property at the form level.

Section Options

oxX3$:

¥ General
b | Margins

Size Custorn
Crientation Fortrait
Auto size

b Information

Section rules g
b Entry
b Color

Chjects Properties

If, for a section, you choose Custom, the system defaults to the size of paper that will best
contain the custom section, but you must tell it what paper is installed on your printer.
For sections small enough to fit on letter size paper, the system defaults to letter.

NOTE: This affects section printing from Documaker Studio and Image Editor but has
no effect on Form Set Manager or Form (FOR) definitions.

311

Chapter 6

Setting Up Printers

US STANDARD SIZES

These paper sizes are commonly used in the United States and Canada. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are

approximate.
Width x Height

Name Code FAP units Millimeters Inches (approximate)
US letter 0 20400 x 26400 216 x 279 82x 11
US legal 1 20400 x 33600 216 x 356 82x 14
US executive 3 17400 x 25200 190 x 254 74 102
US ledger 4 40800 x 26400 432 x 279 17x 11
US tabloid 5 26400 x 40800 279 x 432 11x17
US statement 6 13200 x 20400 140 x 216 572x 8"
US folio 7 20400 x 31200 216 x 330 8/2x13
US fanfold 8 35700 x 26400 378 x 279 147 sx 11
Custom 98 any x any any x any any x any

312

Choosing the Paper Size

ISO SizES

The International Organization for Standardization (ISO) paper sizes, which are based on
the earlier Deutsche Industrie Norm (DIN) sizes, are used throughout the world except
in Canada, the United States, and Japan. There are three main series of paper sizes: A, B,
and C.

ISO A sizes The A series of sizes ate typically used for correspondence, books, brochutes, and other
printed materials. This diagram shows most of the various A sizes. The height and width
are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are

approximate.
(roughly 49 inches)
AO
A2 Al (roughly 66 inches)
A4 A3
A6 Ab
A7

Width x Height
Name Code FAP units Millimeters Inches (approximate)
ISO A0 20 79464 x 112345 841 x 1189 337 8x46%
1SO A1 21 56125 x 79464 594 x 841 23 sx33Y s
ISO A2 22 39685 x 56125 420 x 594 162 x 237 8
ISO A3 23 28063 x 39685 297 x 420 11% x 16Y2
1SO A4 2 19842 x 28063 210x 297 8Yax 11%

313

Chapter 6

Setting Up Printers

Width x Height
Name Code FAP units Millimeters Inches (approximate)
ISO A5 25 13984 x 19842 148 x 210 57 8x 8%
ISO A6 26 9921 x 13984 105 x 148 4 8x57 8
ISO A7 27 6992 x 9921 74 x 105 27 sx4Y 8
ISO A8 28 4913 x 6992 52x 74 2x27 8
ISO A9 29 3496 x 4913 37 x 52 12 x 2
ISO A10 30 2457 x 3496 26 x 37 1x1%
ISO 2A 32 112345 x 158927 1189 x 1682 46%4 x 664
ISO 4A 34 158927 x 224690 1682 x 2378 66% x 937 s
ISO B sizes The B series of sizes are designed primarily for posters, wall charts, and similat items

where the difference between each A size represents too large a jump. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are

approximate.
Width x Height

Name Code FAP units Millimeters Inches (approximate)
ISO BO 40 94487 x 133605 1000 x 1414 39Y s x 55Y 8
ISO B1 41 66802 x 94487 707 x 1000 277 sx39Y 8
ISO B2 42 47244 x 66802 500 x 707 19¥ 8x 277 8
ISO B3 43 33354 x 47244 353 x 500 137 8x 197 s
ISO B4 44 23622 x 33354 250 x 353 97 sx 137 8
1SO B5 45 16630 x 23622 176 x 250 7x97 8
ISO B6 46 11811 x 16630 125x 176 5x7
ISO B7 47 8315 x 11811 88 x 125 3%2x5
ISO B8 48 5858 x 8315 62 x 88 22 x 32
ISO B9 49 4157 x 5858 44 x 62 1% x 22
ISO B10 50 2929 x 4157 31 x 44 1Vax 1%
ISO 2B 52 133605 x 188974 1414 x 2000 55% x 78%
1SO 4B 54 188974 x 267209 2000 x 2828 78% x 111%

314

Choosing the Paper Size

ISO C sizes The C series of sizes are designed for making envelopes and folders to take the A seties
of sizes. The height and width are in FAP units (2400 per inch), millimeters, and inches.
The inch dimensions are approximate.

Width x Height
Name Code FAP units Millimeters Inches (approximate)
1SO CO 60 86645 x 122550 917 x 1297 36Y 8x 51
ISO C1 61 61228 x 86645 648 x 917 25%2 x 36
ISO C2 62 43275 x 61228 458 x 648 18 x 25Y2
ISO C3 63 30614 x 43275 324 x 458 12%: x 18
ISO C4 64 21638 x 30614 229 x 324 9x12%
ISO C5 65 15307 x 21638 162 x 229 67 8x9
ISO Co6 66 10772 x 15307 114 x 162 45 x 67 8
ISO C7 67 7653 x 10772 81x 114 3% x 4Y2
ISO C8 68 5386 x 7653 57 x 81 2Yax 34
ISO C9 69 3779 x 5386 40 x 57 1Y sx 2V
ISO C10 70 2646 x 3779 28 x 40 17 sx17 s
ISO DL 71 10394 x 20787 110 x 220 4y 3x 87 3

The DL size is for a sheet 1/3 of the A4 size. This is the most common size of envelope.

315

Chapter 6

Setting Up Printers

316

JAPANESE STANDARD SIZES

Japan has its own standard paper sizes, called the Japan Industrial Standard (JIS). The JIS
A series is identical in size to the ISO A series. The JIS B seties, however, does not match
the ISO B series. There is no equivalent to the ISO C series. This table shows the JIS paper
sizes. The height and width are in FAP units (2400 per inch), millimeters, and inches. The
inch dimensions are approximate.

Width x Height
Name Code FAP units Millimeters Inches (approximate)
JIS BO 80 97322 x 137573 1030 x 1456 40%2x 574
JIS B1 81 68787 x 97322 728 x 1030 28% x 402
JIS B2 82 48661 x 68787 515x 728 20%4 x 28%4
JIS B3 83 34393 x 48661 364 x 515 144 x 204
JIS B4 84 24283 x 34393 257 x 364 10Y 8 x 14Y4
JIS B5 85 17197 x 24283 182 x 257 7Yax 10Y 8
JIS B6 86 12094 x 17197 128 x 182 5x 7%
JIS B7 87 8598 x 12094 91 x 128 3%2x5
JIS B8 88 6047 x 8598 64 x91 2Y2x 3%
JISB 89 4252 x 6047 45 x 64 1% x 2Y2
JIS B10 90 3024 x 4252 32x 45 1Vax 1%

Choosing the Paper Size

PRINTER SUPPORT FOR PAPER SIZES

This table outlines the vatious paper sizes supported by the different print drivers. The
table includes information for the PDF, RTF, HTML, Metacode, PCL 5, PCL 6, GDI,
PostScript, and AFP print drivers. The PDF, RTF, HTML, and Metacode print drivers

support all paper sizes.

PDF, RTF,
HTML, and
Paper size Metacode PXL! PCL? GDI? PST? AFP*
US letter X X X X X X
US Tegal X X X X X X
US executive X X X X X X
US ledger X X X X X X
US tabloid X Y US letter X X X
US statement | X JIS B5 US executive X X X
US folio X USlegal US legal X X X
US fanfold X US ledger US ledger X X X
1SO 4A X Y US letter US letter USletter C
1SO 2A X Y US letter US letter ~ USletter C
ISO A0 X Y US letter US letter C
ISO A1l X Y US letter US letter X C
ISO A2 X Y US letter US letter X C
ISO A3 X X X X X X

Sizes marked with an X are fully supported by the corresponding driver.
Sizes matked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INT option:

< PrtType:XXX >
PaperSizeMatching = Yes

! When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

* Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
FIFMMST.DAT, See Paper Sizes for AFP Printers on page 321 for more information.

317

Chapter 6

Setting Up Printers

318

PDF, RTF,
HTML, and
Paper size Metacode pxL! PCL? GDI? PST? AFP*
ISO A4 X X X X X
ISO A5 X X X X X X
ISO A6 X X X X X X
ISO A7 X ISO A6 1ISO C5 ISO A6 X C
1SO A8 X ISO A6 ISO C5 ISO A6 X C
ISO A9 X ISO A6 1ISO C5 ISO A6 X C
ISO A10 X ISO A6 ISO C5 ISO A6 C
ISO 4B X Y US letter US letter US letter C
1SO 2B X Y US letter US letter ~ US letter C
ISO B0 X Y US letter US letter X C
1SO B1 X Y US letter US letter X C
ISO B2 X Y US letter USletter X C
1SO B3 X Y US letter US letter X C
ISO B4 X JIS B4 US ledger X X X
1SO B5 X JIS B5 X X X X
ISO B6 X JIS B6 1SO C5 X X X
1SO B7 X ISO A6 ISO C5 ISO A6 X C
ISO B8 X ISO A6 1ISO C5 ISO A6 X C

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INI option:

< PrtType:XXX >
PaperSizeMatching = Yes

! When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

* Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 321 for more information.

Choosing the Paper Size

PDF, RTF,
HTML, and
Paper size Metacode PXL! PCL? GDI? PST? AFP*
ISO B9 X ISOA6 ISO C5 ISO A6 C
ISO B10 X ISO A6 ISOC5 ISO A6 X C
ISO CO0 X Y US letter USletter X C
ISO C1 X Y US letter US letter X C
ISO C2 X Y US letter USletter X C
ISO C3 X Y US letter X X C
ISO C4 X JIS B4 US ledger X X C
ISO C5 X X X X X C
ISO C6 X JIS B6 ISO C5 X X C
ISO C7 X ISO A6 ISOC5 ISO A6 X C
ISO C8 X ISOA6 ISO C5 ISO A6 US letter C
ISO C9 X ISO A6 ISOC5 ISO A6 US letter C
ISO C10 X ISO A6 ISO C5 ISO A6 US letter C
ISO DL X X X X X X
JIS BO X Y US letter US letter X C
JIS B1 X Y US letter US letter X C
JIS B2 X Y US letter US letter X C
JIS B3 X Y US letter US letter X C

Sizes marked with an X are fully supported by the corresponding driver.
Sizes matked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INT option:

< PrtType:XXX >
PaperSizeMatching = Yes

! When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

* Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
FIFMMST.DAT, See Paper Sizes for AFP Printers on page 321 for more information.

319

Chapter 6

Setting Up Printers

320

PDF, RTF,
HTML, and

Paper size Metacode pxL! PCL? GDI? PST? AFP*
JIS B4 X X X US fanfold X X

JIS B5 X X X X X X

JIS B6 X X X X X X

JIS B7 X ISO A6 ISO C5 ISO A6 X C
JISB8 X ISO A6 ISO C5 ISO A6 X C

JIS B9 X ISO A6 ISO C5 ISO A6 X C

JIS B10 X ISO A6 ISO C5 ISO A6 X C

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INI option:

< PrtType:XXX >
PaperSizeMatching = Yes

! When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
FIFMMST.DAT, See Paper Sizes for AFP Printers on page 321 for more information.

Choosing the Paper Size

PAPER SIZES FOR AFP PRINTERS

The AFP formdef source file (FIFMMST.DAT) contains supportt for the following paper
sizes, but since this file contains support for so many paper sizes, its size could affect
printer performance. To limit the effect, some of the paper sizes ate commented out, as
shown in this table:

Size Commented out?
Letter No
Legal No
Executive No
Ledger Yes
Tabloid Yes
Statement Yes
Folio Yes
Fanfold Yes
ISO A3 Yes
ISO A4 No
ISO A5 Yes
I1SO A6 Yes
ISO B4 Yes
ISO B5 Yes
ISO B6 Yes
ISO DL Yes
JIS B4 Yes
JIS B5 Yes
JIS B6 Yes

NOTE: The FIFMMST.DAT and FIFMMST.FDF files can be found in the FMRES
master resource library (MRL).

The commented source line begins with an asterisk (*). To add support for another paper
size, you open the FIFMMST.DAT file and delete the asterisk at the beginning of each
line that references the paper size you want to add.

321

Chapter 6

Setting Up Printers

322

Because the AFP formdef is composed on medium map names that specify page
orientation, paper size, tray selection, and duplex settings, there are 31 groups of medium
map settings. Each of these groups contains the 57 possible paper sizes. So, for each paper
size you add, there are 31 sources lines you must #ncomment to fully support a paper size
for all orientations, trays, and duplex settings.

After you uncomment the lines that reference the paper size you want to add, run the
AFPFMDEEF utility to rebuild your AFP formdef file with the new information. For more
information on this utility, see the Docutoolbox Reference.

CREATING
PRINT STREAMS
FOR DOCUSAVE

Creating Print Streams for Docusave

Docusave can archive AFP, Metacode, and PCL print streams that are in a Docusave-
compatible format and contain special records used to index the archive.

For AFP and Metacode, you use the OutMode option in the PrtType:AFP or XER
control group to tell the GenPrint program to create a Metacode or AFP print stream in
a Docusave-compatible record format. You can choose between these Docusave-
compatible formats: JES2 and MRG4.

For PCL, the process is similar but there is not OutMode option to set. You include
comment records in the print streams to index the archive. You can use a DAL script to
add those comment records.

For details, see...
* Archiving AFP Print Streams on page 323
* Archiving Metacode Print Streams on page 324

* Archiving PCL Print Streams on page 325

ARCHIVING AFP PRINT STREAMS

Set the OutMode option to MRG4 to produce a print stream for Docusave from non-z/
OS platforms.

Here is an example:

< PrtType:AFP >
OutMode = MRG4

When you set the OutMode option to MRG4, the GenPrint program creates print stream
records with a 4-byte sequence that precedes them. This sequence defines the record
lengths. Records are grouped into blocks with one or more records in each block. Both
records and blocks have a 4-byte sequence that precedes them, defining their length.

These length indicators are formed by taking the high-order byte of length followed by
the low-order byte of length followed by two bytes of zeros.

The maximum number that can be displayed is a 16-bit quantity. The value in each
includes the length of the structure itself. A one-byte data record in its own block would
have five for the record length and nine for the block length. This table shows what a 3-
byte record would look like:

Byte offset Value (Hex) Meaning

0 00 Block length high-order
1 0B Block length low-order

2 00 Always 0

3 00 Always 0

4 00 Record length high-order
5 07 Record length low-order

323

Chapter 6

Setting Up Printers

324

Byte offset Value (Hex) Meaning
6 00 Always 0
7 00 Always 0
8 31 T
9 32 2
10 33 i3

In addition to using the OutMode option, you must include comment records in the print
streams to index the archive. You can use a DAL script to add comment records into the
print stream. Use the DocusaveScript option in the PrtType:AFP control group to have
the system execute a DAL script at the times when Docusave comments can be added to
the print streams.

To add Docusave comments to an AFP print stream, you must add the DocusaveScript
option and the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record. Here is
an example:

< PrtType:AFP >
DocusaveScript = Docusave.DAL
OutMode = MRG4

ARCHIVING METACODE PRINT STREAMS

Set the OutMode option to JES2 to produce print streams undet z/OS. Hete is an
example:

< PrtType:XER >
OutMode = JES2

When you set the OutMode option to JES2, the GenPrint program creates print stream
records that are native to a mainframe environment.

Also include comment records in the print streams to index the archive. You can use a
DAL script to add comment records into the print stream. Use the DocusaveScript option
in the PrtType:XER control group to have the system execute a DAL script at the times
when Docusave comments can be added to the print streams.

To add Docusave comments to a Metacode AFP print stream, add the DocusaveScript
option and the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record. Here is
an example:

< PrtType:XER >
DocusaveScript = Docusave.DAL
OutMode = JES2

Creating Print Streams for Docusave

ARCHIVING PCL PRINT STREAMS

NOTE: Docusave is adding support for archiving PCL 5 print streams. In anticipation of
Docusave's PCL archive capability, Documaker version 10.2 and later can
produce PCL 5 print streams with the necessary Docusave comment
information.

You must include comment records in the print streams to index the archive. You can use
a DAL script to add comment records into the print stream. Use the DocusaveScript
option in the PrtType:PCL control group to have the system execute a DAL script when
Docusave comments can be added to the print stream.

To add Docusave comments to an PCL print stream, add the DocusaveScript option and
the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record.

Here is an example:

< PrtType:PCL >
DocusaveScript = DOCUSAVE.DAL

Here is an example of what the DOCUSAVE.DAL file might look like:

* Add DocuSave Comment - use default: APPIDX record!
COMMENT = AppIdxRec ()

PRINT_IT (COMMENT)

ADDDOCUSAVECOMMENT (COMMENT)

RETURN ('FINISHED! ")

NOTE: PCL 6 print streams cannot be archived into Docusave.

UsING DAL FUNCTIONS

For all types of print streams, you can use these DAL functions to create archive keys to
use with Docusave.

Function Description

AddDocusaveComment Adds a Docusave comment string to the print stream

AddComent Adds a comment string to the print stream

AppldxRec Gets an archive record based on APPIDX.DFD and
Trigger2Archive INI settings

HaveGVM Verifies if a GVM variable exists

SetGVM Updates the contents of a GVM variable

GVM Gets the contents of a GVM variable

MajorVersion Gets the system’s major version number

325

Chapter 6

Setting Up Printers

326

Function

MinorVersion
PrinterClass
PrinterGroup

Print_It

Description

Gets the system’s minor version number
Gets the type of print being produced
Gets the name of the print group being used

Debug tool to print a string to the console

For more information on these functions, see the DAL Reference.

ADDING TLE
RECORDS

Adding TLE Records

You can add TLE (Tag Logical Element) records into AFP print streams which can be
used by some 3rd-party archive systems to archive AFP print streams in a manner similar
to archiving AFP or Metacode print streams in Docusave.

You must include comment records in the print streams to index the archive. You can use
a DAL script to add comment records into the print stream. Use the TLEScript option in
the PrtType:AFP control group to name the DAL script to execute when TLE records
can be added into the print stream. The DAL script should call the AddComment
function to add a string as a TLE comment record.

The TLE comment string must include a key and a value. Separate these components with
a special character. This character can be any printable character as long as it is a unique
character not found in the key or value portion of the comment string.

For example, you might build a comment string using a colon () as a separator as in the
following example:

PolicyNum:7SAMPCO

The key portion of the string is PolicyNum, the value portion of the string is 7SAMPCO,
and the separator character is a colon ().

Here is an example of what TLE DAL script might look like:

cidlabel = 'PolicyNum'
clientid = GVM("PolicyNum")
colon = ':'

AddComment (cidlabel & colon & clientid);
RETURN ('FINISHED! ')

Notice that the key portion remains constant (PolicyNum) while the value portion
changes based on the contents of the GVM variable, PolicyNum.

Add these options to the PrtType:AFP control group to enable TLE record support:

< PrtType:AFP >
TLEScript = TLE.DAL
TLEEveryPage= No

TLESeparator= :
Option Description
TLEScript Enter the name of the DAL script to execute.
TLESeparator Enter the character you want to use to separate the key and value portions

of the TLE comment string.

TLEEveryPage Optional. If you enter Yes, the TLE DAL script will be executed at the start
of every page. If you enter No, the TLE DAL script will be executed at the
start of every form set. The default is No.

327

Chapter 6

Setting Up Printers

HANDLING
MULTIPLE
PAPER TRAYS

For PCL printers

For PostScript printers

328

You can set up PCL, PostScript, GDI, AFP, and Metacode print drivers to support up to
nine paper trays. Setting up nine tray printer support for the various types of printers is
outlined below.

NOTE: You can also use the Form Set Manager to specify tray settings. See the
Docucreate User Guide for more information.

You can override PCL tray commands by providing an alternate PCL command to use.
Here are the default PCL INI settings:

< PrtType:PCL >

Trayl = ~&11H
Tray2 = ~&l14H
Tray3 = ~&15H
Trayd = ~&120H
Tray5 = ~&121H
Tray6 = ~&122H
Tray7 = ~&123H
Tray8 = ~&124H
Tray9 = ~&125H

When writing PCL commands as an INI setting, the tilde (~) is used as a substitute for
the PCL escape character (x1B).

You can override PostScript tray commands by providing an alternate PostScript
command to use. You issue PostScript tray commands in these forms:

* A quoted string containing the PostScript commands. The quoted string should
contain the appropriate PostScript commands for selecting a paper tray. Here is an
example:

Trayl = "statusdict /lettertray get exec”

* A tray number from 1 to 9. You can use tray numbers to map non-existent trays. For
example, Tray5=1 maps output for tray 5 to tray 1. The system checks the INI setting
for overriding Tray1 before it checks the setting for Tray2 and so on. Because of this,
do not specify a tray number /ess #han the tray you are overriding. For example, you
should not use a setting of Tray5=0.

* A Ulkeyword from a PPD file. UI keywords represent features that commonly
appear in a user interface (UI). They provide the code to invoke a user-selectable
feature within the context of a print job, such as the selection of an input tray or
manual feed. The entries of UI keywords are surrounded by these structure
keywords:

*OpenUI/*CloseUI or *JCLOpenUI/*JCLCloseUI
Here is an example of an OpenUI structure for MediaColor:

*OpenUI *MediaColor: PickOne
*OrderDependency: 30 AnySetup *MediaColor
*DefaultMediaColor: white

*MediaColor white: "1 dict dup /MediaColor (

*MediaColor clear: "1 dict dup /MediaColor (clear) put setpagedevice"
*MediaColor blue: "1 dict dup /MediaColor (blue) put setpagedevice"
*MediaColor buff: "1 dict dup /MediaColor (

white) put setpagedevice"

buff) put setpagedevice"

Handling Multiple Paper Trays

*MediaColor green: "1 dict dup /MediaColor (green) put setpagedevice"
*MediaColor goldenrod: "1 dict dup /MediaColor (goldenrod) put
setpagedevice"
*MediaColor pink: "1 dict dup /MediaColor (pink) put setpagedevice"
*MediaColor yellow: "1 dict dup /MediaColor (yellow) put
setpagedevice"
*?MediaColor: "
save
currentpagedevice /MediaColor
{get} stopped
{pop pop (white)} {dup null eqg {pop (white)} if} ifelse
= flush
restore
*End
*CloseUI: *MediaColor

Input media (paper trays) are often selected on PostScript printers by specifying PageSize,
MediaColor, MediaWeight, and MediaType. In the above example, media (paper) colors
were defined for white, clear, blue, and so on. If you wanted to specify that the paper
assigned to tray 5 uses blue papet, you could use one of these INT settings:

Tray5 = *MediaColor blue:
or
Tray5 = "1 dict dup /MediaColor (blue) put setpagedevice"

The first uses the UI keyword in the PPD file while the second uses the actual PostScript
commands in a quoted string. When you use the UI keyword in an INI setting, always
include the beginning asterisk (*) and the terminating colon (3).

Here are the default PostScript INT settings:

< PrtType:PST >

; UI keyword is used if PPD is specified and keyword is found.

; Otherwise, quoted string is used.

Trayl="0 statusdict /setpapertray get exec" or Trayl=*InputSlot
Upper :

Tray2="1 statusdict /setpapertray get exec" or Tray2=*InputSlot
Lower:

Tray3="2 statusdict /setpapertray get exec" or Tray3=*InputSlot
Manual :

Tray4="3 statusdict /setpapertray get exec" or Tray4=*InputSlot
Envelope:

; Make trays 5 through 9 use the PostScript commands for tray 1
Tray5=1

Tray6=1

Tray7=1

Tray8=1

Tray9=1

For GDI printers You can ovetride the GDI tray commands by specifying an alternate papet tray to use.
Here are the default GDI INI settings:

< PrtType:GDI >

Trayl = 1
Tray2 = 2
Tray3 = 3
Tray4d = 4

329

Chapter 6

Setting Up Printers

For AFP printers

For Metacode printers

330

Tray5 =
Tray6 =
Tray7 =
Tray8 =

A

Tray9 =

You can override the AFP tray commands by specifying an alternate paper tray to use.
Here are the default AFP INI settings:

< PrtType:AFP >
Trayl = 1
Tray2 =
Tray3 =
Trayd =
Tray5 =
Tray6 =
Tray7 =
Tray8 =

R R R R R WwN

Tray9 =

You can override the Metacode tray commands by specifying an alternate tray name to
use. Here are the default Metacode INT settings:

< PrtType:XER >
Trayl = MAIN
Tray2 = AUX
Tray3 = AUX
Tray4d = AUX
Tray5 = AUX
Tray6 = AUX
Tray7 = AUX
Tray8 = AUX
Tray9 = AUX

INCLUDING TRAY SELECTIONS IN A PRINT STREAM BATCH

To include the header with the tray selection in a print stream batch, the first section
written or triggered to the batch must have a tray, such as Tray 1 or Tray 2, listed in its
FORM.DAT file. Otherwise, the information is not written to that batch print stream.
Here is an example of header information from a PostScript print stream that had these
INTI options:

< PrtType:PST >
Trayl =*InputSlot Upper:
Tray2 =*InputSlot Lower:

Here is the example header:

GenericDict begin
%%BeginSetup
%%BeginFeature: *Duplex

false statusdict /setduplexmode get exec false statusdict /settumble
get exec

%$%EndFeature

%%$BeginFeature: *InputSlot Upper

0 statusdict /setpapertray get exec
%$%EndFeature

Chapter 7

Setting Up Error
Messages and Log Files

This chapter discusses the how the system creates error

and log messages and describes how you can customize

these messages to meet your company’s needs.

In this chapter, you will find information about...

Overview on page 332

Configuring the Message System on page 333
Creating Messages on page 337

Using the Message Token File on page 343

331

Chapter 7

Setting Up Error Messages and Log Files

332

OVERVIEW

The message system is enabled by default. Without making any modifications, it is fully
functional. Each executed system program (GenTrn, GenData, GenPrint, and so on)
appends output messages to the appropriate log or error file.

When an error or log message occurs, the system writes the information to a token file
named MSGFILE.DAT. A second step converts or translates the output into log and
error files, which are typically named LOGFILE.DAT and ERRFILE.DAT.

By default, this translation step occurs before each program’s termination so the system
is compatible with eatlier versions. You can, however, delay this step and execute it
manually using the TRANSLAT utility (see the Docutoolbox Reference for more
information). This lets you translate the message and error information after all system
programs have completed their processing cycle for a given batch run.

NOTE: Typically, you will want to use system defaults as you implement your system.
This lets you spot errors after each processing step. Once your system is
implemented and is running without error, you may want to delay the translation
process to improve performance. See Controlling the Translation Process on
page 335 for more information.

Delaying the translation process can sometimes improve throughput performance—
especially in batch implementations that typically run without errors.

This translation process, delayed or not, gives you flexibility in the type of options you can
use; increases the amount of information that can be generated; and lets you control
message formatting and language.

CONFIGURING
THE MESSAGE
SYSTEM

Configuring the Message System

As with most system features, you can configure the messaging system. Typically you use
INI options in the FSISYS.INI file (or whatever your INI file is named) to configure the
message system.

For example, you can turn off or on the log and error files, assign different output file
names or directories, and so on. As mentioned earlier, you can also configure the message
translation process to occur during normal system processing or as a final, separate step.

The system automatically prefixes an error code before each error message. Each code
begins with the two-character identifier. Here is an example:

DM10825: Warning in TextMergeParagraph(): Rule used in image that
does not have any text areas. Image name is <glsnam>. Processing will
continue

ENABLING AND DISABLING MESSAGES

Messages output from system programs fall into two categories—Ilog and error messages.
Unless specifically turned off via INI options, the message system produces both error
and log files.

Error messages contain information about the problems encountered during the
execution of the program. The generation of error information cannot be disabled. It is
possible to not translate the results into an actual error file, instead the informational
tokens output by the programs are written to a wessage token file named MSGFILE.DAT.

Log messages are a different matter. This type of message is informational, but not
generally tied to the success or failure of the job. In general, these messages are
transactional in nature—meaning that they provide information about each transaction as
it proceeds through the processing cycle.

You can suppress the log information output by the programs. The LogTransactions
option enables or disables the generation of log messages:

< Control >
LogTransactions = Yes

The LogTransactions options defaults to Yes. To disable the logging of messages, set it to
No. By disabling this option, you suppress the informational tokens written to the
intermediate file and prevent the translation of the log file.

When you set the LogTransactions option to No, system programs do not output the
informational tokens, so you cannot generate the log file even if you use the TRANSLAT
utility.

NOTE: For more information on the TRANSLAT utility, see the Docutoolbox
Reference.

333

Chapter 7

Setting Up Error Messages and Log Files

334

Logging INI Files and Options Used

By default, the GenTrn, GenData, GenPrint, and GenArc programs log the INI files
being used. This tells you which files were used and if they were opened successfully. For
more information, see Logging INI File Names and Options on page 104.

CLEARING MIESSAGES

If you are using single-step processing, you can use the following INI option to delete all
MSGFILE.DAT, ERRFILE.DAT, and LOGFILE.DAT files before the system begins
the single step process.

< GenData >
ClearMsgFile = Yes

The default is No.

DEFINING THE OUTPUT MESSAGE FILES

Several files are used by the message system. You identify the output files and their
locations with these INI options:

< Data >
ERRFile = errfile.dat
LOGFile = logfile.dat
MSGFile = msgfile.dat
TranslationFile = translat.ini

NOTE: The values for the LOGFile and ERRFile options are probably already set
correctly if you are upgrading your system from an eatlier version.

The values you specify for each option identify the file name for that option. You can also
specify a directory path for each file. If you omit the path and include only the file name,
the setting for the DataPath option is used as the default location for these files.

Option Description

ERRFile Identifies the file which contains the error messages.

LOGFile Identifies the file which contains the log messages.

MSGFile Identifies the message token file the system programs produce.

TranslationFile ~ Contains the message text. Normally defaults to TRANSLAT.INI. Use this
option to specify the file name and location.
Unlike the other files, the TRANSLAT.INI file is static—it does not change
during the batch process and is not considered a data file. This file’s location
does not default to DataPath option as do the other files.
In the MVS environment, the DefLib option identifies the TRANSLAT.INI
file’s default location if you do not specify a path in the TranslationFile
option.

Configuring the Message System

Initializing the Output Message Files

In a standard implementation, the GenTtn program is the first program run in the batch
process. As the first program, it re-initializes the data files by first deleting the existing data
files.

If your implementation does not use the GenTrn program, you ether have to set up the
implementation to manually delete these files or you must include an additional INT
option.

The ErrorFileOpenMode option lets you tell system programs to delete old message files

before beginning its processing cycle. Here is an example of this option:

< Control >
ErrorFileOpenMode = Create

If you set this option to Create, the system deletes existing files and creates new ones for
the processing run. If you leave this option blank or enter any other value, the system
appends information onto existing files.

Turning Off Date Stamps

You can turn off date stamps in batch processing error and log files using these INI
options:

< Control >
ErrorFileDateStamp = No
LogFileDateStamp = No

Option Description

ErrorFileDateStamp ~ Enter No to disable date stamps in error files. The default is Yes.

LogFileDateStamp Enter No to disable the date stamp in log files. The default is Yes.

Entering No to turn off these options can be of use when regression testing.

Use this option to disable date stamps in the batch trace file:

< Debug_Switches >
PrintTimeStamp = No

Option Description

PrintTimeStamp Enter No to disable date stamps in the batch trace file. The default is Yes.

Controlling the Translation Process

By default, the GenTrn program deletes the old message file at the beginning of its
execution and starts a new file with output information. All other programs, such as
GenData, GenWIP, and so on, append information to the end of the message file created
by the GenTrn program.

3356

Chapter 7

Setting Up Error Messages and Log Files

336

The default translation options are set so the log and error files are created after each
system program executes. You can, however, set the ImmediateTranslate option to No to
delay the translation process until all system programs finish processing—at the end of
the batch process.

Here is an example:

< Control >
ImmediateTranslate = No

Once processing stops, you can then use the TRANSLAT utility to translate the messages.
By delaying the translation process and only executing it once per batch cycle, you can
reduce job throughput times.

NOTE: If you set the ImmediateTranslate option to No, the system will not create the
ERRFILE.DAT file.

DBLib Trace Messages

DBLib-related trace (or log) messages are written to the trace file. The name of this file
defaults to #race but you can set it to another file name using the TraceFile option:

< Data >

TraceFile = xxxxx

We recommend you use the default name of #race.

NOTE: Before version 11.0, DBLib-related logging messages were written to the file
indicated by this option:

< Data >
DBLogFile = (file name)

The default was DBLOGFLE.DAT.

Keep in mind, all types of tracing, including DBLib tracing, slow performance. You
should only activate DBLib tracing during development and testing or if requested by
Documaker support personnel.

In the Rules Processor, the trace file for DBLIB log messages is the default logging file.
You can activate DBLib tracing by specifying these INI options in the FSISYS.INI file:

< Debug_Switches >
Enable_Debug_Options = Yes
DBLib = Yes

In IDS, the default logging file is the DPRTRC.LOG file DBLIB log messages. You can
enter the INI options in the DAP.INI file or the MRL-specific INI file.

CREATING
MESSAGES

RP Struct

Message Types

Creating Messages

System messages fall into these categories:
* Log messages
* Error messages

Log messages record information about the processing run. These messages are
informative rather than diagnostic. Types of information that fall into this category
include transaction IDs that are processed; the start, ending and elapsed time of the run;
transaction counts and statistics; and the program description that is producing the
information.

Error messages are also informative, but usually help diagnose problems encountered
during the processing run. These messages include such things as invalid data recognition;
improper options; input/output etrors; and resource validation.

The way these messages are produced is exactly the same. In general, the only real
distinction between these two message classes is the destination file to which each is
written.

UsING THE RPERRORPROC AND RPLOGPROC FUNCTIONS

Use these two functions when you specify information to be output to the log or error
files. You can use these functions to install the custom error and log procedures called
from within these functions. The system lets the calling function provide the details of a
message without having to specify the exact formatted text.

Here is an example:

RPErrorProc (pRPS, (WORD)EMIT_WARNING, (DWORD)10012,
"OutBuff", pRPS->OutBuff,
"Image", IMAGENAME (pRPS->CurrentFapImageH),
LASTERRORTOKEN) ;

RPLogProc (pRPS, (WORD)EMIT_MESSAGE, (DWORD)10775,
LASTERRORTOKEN) ;

Each parameter is discussed below:
The first parameter represents the pointer to the RP Struct active during the run.

The second parameter identifies the type of message being reported. There are these
classes of messages:

Class Description

EMIT_MESSAGE Indicates the resulting information is simply a message.
EMIT_WARNING Indicates the information is a warning to the user.

EMIT_ERROR Indicates an etror has been encountered by the program.

The message system recognizes the type of message if you use one of the above defines.
Use the EMIT 222 keywords for this parameter and do not rely upon the undetlying
numeric value. This lets you later change these values or add new values and recompile
without invalidating the meaning of a particular message.

337

Chapter 7

Setting Up Error Messages and Log Files

Message Number

Assigning numbers to

338

custom messages

Use this parameter to specify the message number to associate with the output data.
Message numbers fall within the range of 100 to 1,000,000.

Message numbers are associated with the TRANSLAT.INI file. This file contains all the
static text for each message. Later, the static text is merged with the variable information
to produce the messages written into the log or error files. This table shows the range
categories for messages:

Range Description

100 to 9999 Used for general messages, universally shared

10000 to 499999 Reserved range for Documaker base system messages
500000 to 999999 Can be used for custom messages

Within the reserved range, there are sub-ranges for each library (DLL) and program:

Range Library or Program
10000 to 10999 RULLIB
11000 to 11999 GENLIB
12000 to 12999 RPLIB

13000 to 13999 RCBLIB
14000 to 14999 A2WBLIB
15000 to 15999 GenTrn

16000 to 16999 GenData
17000 to 17999 GenPrint
18000 to 18999 GenArc

19000 to 19999 GenWIP
20000 to 20999 CUSLIB (Base)

This gives each program or DLL one thousand possible messages. We reserve the first
five hundred thousand numbers for base system use (0 - 499,999). If a library eventually
exceeds the 1000 messages currently assigned, we will assign an additional range.
Likewise, this reserves enough numbers to allow for new libraries and programs which
may be added in the future.

The range 500,000 to 999,999 is for customization messages, which are generally added
when you customize your system. Although you can use previously defined messages, it
is better to assign an unused number within the custom range for each message you add.

Creating Messages

This makes sure the intended meaning of an existing message is not changed in case

someone modifies the text of the assumed custom message in the external file. In

addition, if you develop a numbering system for the custom range, you can provide
additional debugging information through the message number.

USING MIESSAGE TOKENS

The remaining parameters passed to the RPErrorProc or RPLogProc functions are
variables which represent foken-data pairs used to define the content of the message.

In this example, there are two pairs of foken-data.

RPErrorProc (pRPS, (WORD)EMIT WARNING, (DWORD)10012,
"OutBuff", pRPS->OutBuff,
"Image", IMAGENAME (pRPS->CurrentFapImageH),

LASTERRORTOKEN) ;
Token Description
OutBuff Represents a token name. The data for that token is defined in pRPS-
>QOutBuff.
Image A second token name, with appropriate data text following. Token

and data must be character text. Therefore, if the data to be
represented is anything other than text, it must be converted before
you call the message function.

LASTERRORTOKEN Not really a single token, but rather is a macro that contains several

token-data pairs. These pairs identify the source module name and
the line number of the statement being compiled. The last
component of LASTERRORTOKEN is a NULL pointer used by the
internal message formatter to recognize the end of the Token-Data
pairs.

LASTERRORTOKEN st be the last variable passed to bozh the
RPErrorProc and RPLogProc functions.

There are several points to remember about fokens which will become apparent as you
examine the TRANSLAT.INI file—the file that contains the rest of the message text.

The message text from the TRANSLAT.INI file does not have to use all, or for that
matter any, of the tokens output from a particular function. This means you can
output more information (in Zoken-data format) than would normally be required in
the message. This information, however, might prove useful to a programmer during
closer examination of the message file.

Token names live forever. This means that a token logged eatlier in the session can
be referenced by messages that occur later. For instance, if an early message outputs
a token (with a value) named ID, any message text translated after that point may
refer to ID and receive that same value.

Token names are reusable. You should reuse token names whenever it makes sense.
For instance, each time a function is required to emit the section (image) name, use
the same token name. This conserves space in the token list (because a new entry
does not have to be created) and if subsequent messages rely upon the last known
value of a given token, it is more likely to be correct.

339

Chapter 7

Setting Up Error Messages and Log Files

340

* Tokens are not case sensitive. A token named Iage can be referred to as IMAGE,
Image, image, ImageE, and so on.

Also note, that the example refers to one-word tokens. Although, this is the most efficient
use of space, tokens can be longer and include spaces. The only character you cannot use
in a token is the ampersand (&)—ampersands are used in defining the static message text.
For instance, you can define a token such as One 4 Day, but you cannot define a token
such as Will Not>Work.

NOTE: Legacy systems expected the fourth parameter to be a string representing a
format. This format string might be the complete message or contain flags
indicating where subsequent variables will be substituted—such as %d, %s, %X,
and so on.

The RPErrorProc or RPLogProc functions distinguish how these remaining
parameters are handled (legacy or new) by first determining if the Message Type
and Message Number parameters are values expected by the new functionality.

The new use of the functions does not require a format string. Instead, the
variables represent foken-data pairs until the LASTERRORTOKEN is
encountered.

SETTING UP MESSAGE TEXT

Message output from system programs is typically destination bound to the error or log
files. All static message text is isolated into an external file for easy maintenance. The static
portion of all messages is contained in the TRANSLAT.INI file.

NOTE: The INI designation is one of convenience, since the TRANSLAT.INI file is not
intended to be used like a conventional INI file. INI references intended for
other program functionality do not work when placed in this file. Likewise, you
cannot add static message text intended for the log or error files into the
FSISYS.INT or FSTUSER.INI files.

The TRANSLAT.INI file associates a message number with the static text for each
message. Each entry takes the form:

AA99999 = message text

The numeric value is the message numberwhich defines the text associated with the message.
You can prefix the message number with a two-character alpha code, such as 4A.

All messages must have a unique message number. You must make sure the proper
message number is referenced in the code.

Message examples

Undefined tokens

Adding a new line

Creating Messages

Here ate some examples:

10529 = Error in rundate(): Unable to GENFmtDate (<&RunDate&>,,) .
10536 = Error in lookup(): Missing Key offset in lookup.
20261 = \nProcessing Batch:<&Name&> File:<&File&> Port:<&Printé&>

There are several points to note in these messages.

* Each line specifies a unique message number and associates the static text portion of
the message with that number.

* The words bounded on each end with an ampersand (&) are token placeholders for
value replacement (see message numbers 10529 and 20261). This is where the token-
data pairs passed to the RPErrorProc and RPLogProc functions are matched and
substituted into the static text. For example, assume the following statement is in the
code of one of the system programs.

RPErrorProc (pRPS, (WORD)EMIT_ ERROR, (DWORD)10529,
"RunDate", “April 1, 1999~",
LASTERRORTOKEN) ;

This would cause message number 10529, shown above, to print this text in the log
file.

Error in rundate(): Unable to GENFmtDate (<April 1, 1999>,,).

* Since token names are identified between ampersand characters, two ampersand
characters together (&&) signals that the output text is to contain a single ampersand
character.

Messages in the TRANSLAT.INI file can have any number of token replacements. If,
however, a token is undefined when the messages are translated, the token name is left in
the text. So, if you view the log or error file and find a message which includes a word
bounded by ampersands, it means one of these things:

* The token is misspelled in the TRANSLAT.INI file.

* The token is misspelled in the code that called the RPLogProc or RPErrorProc
function.

* The token and data was not included in the parameters to the message functions.

* This is not a token and was intended to print in this manner. Either it is data
associated with a token or two ampersands were included at each end of the word in
the static message text.

The first place to begin diagnosing this type of result is by examining the text included for
the message in the TRANSLAT.INI file.

In message number 20261, you can see the use of another format convention. The \#in
the text is translated as a new line character. This causes the following text to print on the
next line. The layout of the TRANSLAT.INI file requires that all of the text for each

message must fit onto a single line. Using \7 in text expands your formatting possibilities.

341

Chapter 7

Setting Up Error Messages and Log Files

Determining where the

342

message originated

Examine message number 10536. This message does not contain any tokens. Therefore
there is no variable text that is required to print within this message.

The fact that the message does not contain any tokens does not mean that no tokens were
output from the system program when the RPErrorProc function was called. In fact,
there are at least two tokens associated with this message.

LASTERRORTOKEN is the last required parameter to calls to the RPErrorProc and
RPLogProc functions. This macro defines the FSTFileName and FSILineNumber tokens. If
you include the FSIF#/eName token in the message text, the name of the module that
contained the code calling the RPErrorProc or RPLogProc function is substituted into
the message. Likewise, FSTLineNumber is substituted with the source line number of the
statement calling the RPLogProc or RPErrorProc function.

This information can be quite useful if you are trying to determine what code is issuing a
particular message. All you have to do is edit the message and include > FSTLF7/eNamec>
and &FSILineNumbere into the message text defined in the TRANSLAT.INT file.

USING THE
MESSAGE
TOKEN FILE

Using the Message Token File

While a system program is running and emitting information, the token-data pairs are
written to the message file (MSGFILE.DAT). Typically, you do not have to examine the
message file. The translation process that produces the error file and log file will do that
for you and will make the final text more readable.

On occasion, however, examining the file reveals more information than is provided by
the translation process. For instance, if you see a particular message in the error file and
want to know where in the code this message originated, you can do one of two things.

You could edit the TRANSLAT.INI file to add the FSILineNumber and FSIFileName
tokens to the message. Then, by rerunning the translation process, you would get the
additional message information. (See Determining where the message originated on page
342 for more information)

Or, if you know what you are looking for, you could peek into the message file and locate
the information more readily. Here is an excerpt from a message token file.

T DestField/PREM PAY INCEPTION
T Image/gmdc2

T FSIFileName/..\C\rulbsfl.c
T FSILineNumber/364

E 10010

T FSIFileName/..\C\rcbbatpr.c
T FSILineNumber/418

E 13027

T FSIFileName/..\C\rulbsfs.c
T FSILineNumber/185

L 10775

T ID/3234567

T GrpNamel/SAMPCO

T GrpName2/LB1

T GrpName3/

T Buff/T1

T FSIFileName/..\C\gentrans.c
T FSILineNumber/1187

L 11190

The first character on the line is a letter code which designates the meaning of the line.
Valid codes are shown here:

Code Description

12) Followed by a message number bound for the error file. (error or warning)
L Followed by a message number bound for the log file. (informational)
T Followed by a token-data pait, separated by a forward slash (/).

The token-data pairs for a given message will occur in the file on lines before the E or L
lines. Knowing this, you can see that the excerpt from the message file shown above
contains the information for four different messages.

343

Chapter 7

Setting Up Error Messages and Log Files

344

The first message number occurs at the line that contains £ 70070. This is a message
bound for the error file. Four tokens are defined before translation:

* DestField

¢ Image

e FSIFileName

* FSILineNumber

This means that if the message text for 10010 contains any of these tokens the appropriate
data will be substituted. Remember, however, if the message refers to a token that has not
been defined prior to this point, the token will be left in the output text to indicate a
problem might have occurred.

The next message number occurs at the line that contains £ 73027. This too is a message
bound for the error file. Notice that two tokens occur between the location of the first
and second message—FSIFieName and FSILineNumber. These use the same token names
used before, however, now their data values are different.

Also note that although only two additional token (changes) occurred before message
13027, four tokens are defined. If you could look into the program memory at this
moment, you would see that the token list has these values:

Token Value

DestField PREM PAY INCEPTION
Image qmdc2

FSIFileName .\C\tcbbatpt.c

FSILineNumber 418

All tokens remain active after they have been translated. Tokens that are reused are
updated with new values, but no tokens are removed until the translation process is
complete.

Therefore, it is permissible (but at this point not likely) that a message can use tokens
output by a prior message. This is why it is important to reuse token names when it makes
sense, such as when all references to a section’s (image) name should use the same token.

Continuing with the examination of the message file excerpt, the next message is
identified via the line that reads, L. 70775. This is a message bound for the log file, not the
error file. It too redefines the FSIFi/eName and FSILineNumber tokens, as do all messages
that use LASTERRORTOKEN.

Using the Message Token File

The last message in this example is defined by the line, I 77790. Five new tokens were
introduced before this message. Pecking into program memory again, the token list now
looks something like this:

Token Value

Buff T1

DestField PREM PAY INCEPTION
GrpNamel SAMPCO

GrpName?2 LB1

GrpName3

1D 3234567

Image qmdc2

FSIFileName .\C\genttans.c
FSILineNumber 1187

Note that the most recent values for FSIFieName and FSILineNumber are reflected. Also
note that the tokens previously defined still exist. Finally, note that one of the tokens
appears to have no data (GrpName3) and is therefore blank. This is permissible.

345

Chapter 7

Setting Up Error Messages and Log Files

346

Chapter 8

Archiving and Retrieving
Information

The GenArc program lets you store completed form sets
for later retrieval. The GenArc program can be run as an
independent program or from within the Documaker
system using the archive and retrieval options.

When you run the archive module, the information the
system uses to compose the form sets is compressed and
stored in an archive file along with certain indexing
information.

Once the form set information has been archived, those
form sets can be regenerated by retrieving the form set
information from the archive file. The archive index file
is used to aid in the retrieval of particular form set
information through the use of keys. These keys can be
set to meaningful search criteria such as policy or
account numbers, claim or invoice numbers, company
names, customer names, and so on.

This chapter includes information on the following
topics:

e Terminology on page 348

* System Scenarios on page 350

* Archive and Retrieval Features on page 352

* Processing Overview on page 353

* Running GenArc on page 356

e Using WIP and the Archive Index File on page 377
* Retrieving Archived Forms on page 380

* Working with Documanage on page 383

347

Chapter 8

Archiving and Retrieving Information

TERMINOLOGY

348

Files and tables

Commit

Rollback

GenArc

AFEMAIN

CARFILE

APPIDX

TEMPIDX

The GenData program creates the NEWTRN file (which contains one record for every
transaction to be processed), the NAFILE (which contains section and variable field
information and possibly some in-line data), the POLFILE (which contains form and
section inclusion information) and the recipient batch files, such as BATCH1, BATCH2,
and so on (which look similar to the NEWTRN file).

The GenArc process accepts as input the NEWTRN, NAFILE and POLFILE files and
archives this data. Here are some terms you need to be familiar with:

The term file refers to a non-database data structure, such as a flat file, while the term zable
refers to data structures within some database management system, such as DB2, SQL
Server, and so on. However, the terms file and table might be used interchangeably in this
chapter.

The term commit is a database term which means to make table changes permanent. As data
is written to tables, the data is not really made permanent until a commit is performed.
Before performing a commit, if you determine that you really don’t want to make the
changes to the table, you can perform a ro/lback which will undo any table changes you
have made since the last commit point. The GenArc program performs periodic commits
based on an INI value you set.

The term ro//back is a database term which means to undo any table changes that have
been made since the last commit point. As table rows are inserted, deleted and updated,
these changes do not become permanent until a commit is performed.

The program name for the process which performs batch archive. The program names
vary slightly, depending on the operating system you are running. For example, the
GenArc program on Windows is called GENACW32.EXE.

The program name for the Processing System. The AFEMAIN program contains a
graphical user interface. It lets you enter key information and retrieve a list of archived
form sets you can display. The program name may vary slightly, depending on the
operating system platform you are using. For example, on Windows it is called
AFEMNW?32.EXE.

Compressed Archive File. The CARFILE may also be referred to as the ARCHIVE file. The
GenAtc program comptresses the NAFILE/POLFILE data for each transaction and
writes archives this data to the CARFILE. The GenArc program writes one or more
records to the CARFILE for each transaction it archives.

Application Index. The GenArc program archives indexing information to the APPIDX
file. The GenArc program writes one record to the APPIDX file for each transaction it
archives.

Temporary Application Index. The TEMPIDX file is used as a temporary storage for records
to be added to the Application Index file. The TEMPIDX file is used only when the
GenArc program is archiving to a DBASE IV database. TEMPIDX is not used by the
GenArc program when archiving to DB2, SQL Server, Oracle, or other databases.

CATALOG

RESTART

DFD

Terminology

Refers to the CATALOG file. As the GenArc program archives data to the CARFILE
and the APPIDX, it connects the CARFILE and APPIDX files with a &¢y (by default
called ARCKEY). Part of this key is a field called the CATALOGID. The GenArc
program generates a unique CATALOGID (timestamp) each time it runs and writes this
CATALOGID to the CATALOG file. The GenArc program writes one record to the
CATALOG file for each GenArc run.

The Restart table. The Restart table describes whether a GenArc run was successful or if
the run failed. The GenArc program writes one record to the Restart table for each
distinct GenArc run. GenArc runs are made distinct by passing the GenArc program a
parameter called JOBID.

Data Format Definition. A DFD file is used to describe the fields a file’s records are
composed of. DFD files have a particular format and are frequently used to map the
layout of system-related data files. The archive-related files defined above all have default
DEFD files that describe their layout.

349

Chapter 8

Archiving and Retrieving Information

SYSTEM
SCENARIOS

Scenarios for 0S/390

(MVS)

Scenarios for Windows

350

32-bit

You can run the batch archive GenArc program, on a variety of platforms. This program
creates and indexes the archived copy of the form set and its corresponding data.

You use Documaker’s Archive module to retrieve, display, and print archived form sets
from their workstations. The Archive module runs under various Windows 32-bit
operating systems such as Windows 2000 and Windows XP. The following tables describe
the various platforms and types of archives you can create and access.

NOTE: If your company has needs not covered below, contact your sales representative.

Server

Operating system 0S/390 0S§/390

Database DB2 8.1 Oracle 8.1.7 ot higher

Communications SNA 6.2 SNA 6.2

Client

Operating system Windows 32-bit Windows 32-bit

Database DB2 for Windows 7.2 #a

Product SNA Server 6.2 SNA Server 6.2

Communications DDCS 2.3.2 DDCS 2.3.2

Archive (Documaker Workstation) Yes Yes

Server

Operating system Windows Windows Windows Windows Windows

Database DB2 8.1 xBase SQL Setver 7.0 Sybase Oracle
8.1.7

Communications na na ODBC ODBC ODBC

Client

Operating system Windows Windows Windows Windows Windows

Database DB28.1 xBase SQL Setver 7.0. Sybase Oracle
8.1.7

Communications ODBC na ODBC ODBC ODBC

Atrchive (Documaker Yes Yes Yes Yes Yes

Workstation)

Scenarios for UNIX

System Scenarios

Server

Operating system AIX version 5 or higher Linux (x86) Kernel

version 2.4.21

Solaris 9 or higher

Database DB2 8.1 or higher DB2 8.1 or higher DB2 8.1 or higher
Oracle 8.1.7 or higher xBase Oracle 8.1.7 or higher
xBase xBase

Communications na na no

Client

Operating system Windows Windows Windows

Database DB2 8.1 DB2 8.1

Oracle

Communications ODBC see below ODBC

Archive Yes see below Yes

(Documaker

Workstation)

The DB2 database uses DB2LIB on if you are running the UNIX version of the GenArc
program. If you are archiving to UNIX from the Windows version of the GenArc
program, the system uses ODBC as the database communications layer.

You can also retrieve to Windows using DB2LIB or ODBC from tables created from the
UNIX version of the GenArc program.

For Oracle databases, the UNIX processes use ORALIB as the communications client to
the Oracle database server so the UNIX version of the GenArc program uses ORALIB.
The Oracle database setver can teside on UNIX/Linux or on Windows and you can set
up ORALIB to communicate with the Oracle database server.

After the tables are populated by the UNIX version of the GenArc program, Windows
applications such as AFEMAIN can retrieve archived form sets using ODBC as the
Oracle database client communication layer.

351

Chapter 8

Archiving and Retrieving Information

ARCHIVE AND

352

RETRIEVAL
FEATURES

Regardless of the platform being used, the system has many features, including:

Multiple media support

The archive and index files can be automatically or manually divided into separate
files which may be stored on multiple storage devices. This allows for the segregation
of archive data chronologically to improve search and retrieval performance. Also, as
archive files grow in size, they ate not limited by the physical space available on a
single drive. This feature also lets you easily copy older archive files to long-term
media for storage without inhibiting the retrieval capabilities.

Stability and redundancy

The archive files are designed to be reliable. Indexing information is stored
redundantly in separate files so that the index can be regenerated independently in
the event of index corruption. There are a variety of archive utilities you can use to
repair archive files damaged by user error or hardware failure.

Flexible indexing

The archive index can be configured to use certain field keys within the data, allowing
for retrieval based on the specified keys. This lets you design your archive system to
store information for later retrieval using the most relevant data fields.

Network-ready

The system lets you use both local and network drives for storing of archive files. The
archive files are independent, so archive files can be split up over combinations of

local and network drives. The system keeps track of where specific files are stored,

so users do not need to know the physical or logical file storage locations.

Unattended operation

If configured to do so, the archive module can be executed as part of the batch
process. This allows data to be archived automatically.

Restarting the archival process

Should the archive process get interrupted, you can easily restart the GenArc program and

have it automatically begin where it was interrupted. You can also use command line

options to process a specified range of transactions or a specific job if you are running the

GenArc program on multiple computers simultaneously.

PROCESSING
OVERVIEW

DBASE IV

DB2

SQL server

Oracle

Input files

Output files

Processing Overview

The GenAtc progtam can atchive form set data to files and/or Database Management
Systems (DBMS). By default (if the INI file is not configured otherwise), the GenArc
program archives form set data to a DBASE IV DBMS (actually a combination —
APPIDX is DBASE 1V file and CARFILE is a flat file). Below is a list containing some
of the DBMS systems the GenArc program can archive to.

NOTE: For information on the various INI option settings, see the appropriate
installation manual for your operating system and the technical documentation.

The APPIDX, TEMPIDX and CATALOG files are created as DBASE 1V files. This
results in the GenArc program creating DBF and MDX database files for the APPIDX,
TEMPIDX and CATALOG and a CAR file (non-DBASE 1V) for the CARFILE. The
restart option is not available for DBASE 1V archive.

The APPIDX, ARCHIVE, CATALOG and RESTART files are all created as DB2 tables.
GenArc communication to DB2 can be done through either the DB2’s native API or
DB2’s ODBC interface. The restart option is available for DB2 archive.

The APPIDX, ARCHIVE, CATALOG and RESTART files are all created as SQL Server
tables. SQL Server is an ODBC-compliant DBMS. The restatt option is available for SQL
Server archive.

The APPIDX, ARCHIVE, CATALOG, and RESTART files are all created as Oracle
tables. Oracle is an ODBC-compliant DBMS. The restart option is available for Oracle
archive.

FiILES GENARC USES

* NEWTRN file
* NAFILE file
* POLFILE file

* Compressed Archive (CAR) file
* Application Index file
* Catalog file

e Restart file

How THE GENARC PROGRAM WORKS

Below is a brief description of how GenArc processing is performed. Most of the restart
information has been omitted but is covered in Using the Restart Option on page 359.

1 Store the command line parameters, load INI files, and check and update the Restart
table.

353

Chapter 8

Archiving and Retrieving Information

354

the GenArc program parses and stores any command line parameters passed to it.
INTI files are read and loaded. The Status column of the Restart table is checked (if
archiving to a DBMS, not DBASE 1V) to determine if the previous GenArc run by
this JOBID (DEFAULT_JOB_ID by default) was successful or whether it failed. If
the last GenArc run was successful the Status column of the Restart row is initialized
to Failed.

Get a CATALOGID and then check and update the CATALOG table.

the GenArc program gets a timestamp from the system and constructs a 10-character
CATALOGID. The CATALOG table is checked to make sure this CATALOGID
is not already in the table. If the CATALOGID is already in the table, the GenArc
program gets additional timestamps, until it finds one that is not already in the table.
Once it has a unique CATALOGID, the GenArc program constructs a tow
containing this CATALOGID (CATALOGID column) and writes this row to the
CATALOG table so future runs of the GenArc program will not be able to use this
CATALOGID.

Read the NEWTRN file, get form set data from the NAFILE and POLFILE, then
combine and compress the information.

The NEWTRN file is opened and the first record (transaction) is read. The
NEWTRN record contains offset values into the NAFILE and POLFILE for the
transaction. The GenArc program uses these offset values to retrieve the NAFILE
data and POLFILE data for the transaction and it then combines and compresses
this data.

Construct the ARCKEY, construct and archive the rows to the ARCHIVE table.

An eight-character sequential number (which will be incremented for each
transaction) is appended with the 10-character CATALOGID to form an 18-
character ARCKEY. This ARCKEY will be unique for each transaction. A record (or
row) is constructed to be written to the ARCHIVE table. This row (whose columns
are described by the CARFILE DFD file) contains the ARCKEY and the combined
and compressed NAFILE/POLFILE data (CARDATA column). If the CARDATA
is too large to fit on a single row, additional rows are constructed—each row will have
the same ARCKEY but will have an incremented Sequence Number (SEQ_NUM
column). The constructed rows are archived to the ARCHIVE table.

Construct and archive the rows to the APPIDX table.

The index information for the transaction is gathered and a row is constructed to be
written to the APPIDX table. This row (whose columns are described by the
APPIDX DFD file) contains the ARCKEY used to construct the row for the
ARCHIVE table above, as well as other information, such as Company, Line of
Business, PolicyNumber, and so on (columns identified in the INI group
Trigger2Archive). Once this APPIDX row is constructed it is archived to the
APPIDX table. Only one record is written to the APPIDX table for each transaction.

Repeat the process, update the Restart table, issue messages, and terminate
processing.

Processing Overview

Steps 3 through 5 are repeated until all the NEWTRN records have been read. Once
all the NEWTRN records have been read and the archiving is complete for all
transactions, the Status column of the Restart table row, which was set to failed in
step 1, is updated to reflect that the GenArc run was successful. The GenArc
program issues console messages indicating how may transactions were read, archived,
in error, and rolled back. The GenArc program then terminates processing.

355

Chapter 8

Archiving and Retrieving Information

RUNNING
GENARC

Logging archived
transactions

Archiving to a database

356

The name of the GenArc program and how you run it varies somewhat depending on the
operating system you are using. The concepts are the same, though, for all operating
systems. For our example let’s assume you are running the GenArc program on Windows
2000. To run the GenArc program on Windows 2000, you enter a command like this:

C:FAP\MSTRRES\DMS1\genacw32

Notice the command includes the program name (GENACW32) and it’s full path—from
the DMS1 master resources directory. This command starts the GENACW32 program
(GENACW32.EXE) and attempts to locate a FSTUSER.INI file in the

c:\fap\mstrres\dms1 directory.

The GenArc program messages will look something like the sample below if you have the

LogToConsole option set as shown here:

< Control >
LogToConsole

= Yes

Here are the sample messages:

--- GenArc ---

==> Processing:
TransactionType
==> Processing:
==> Processing:
==> Processing:
==> Processing:
==> Processing:
==> Processing:
==> Processing:
==> Processing:

==> Processing:

==> Transactions
==> Transactions
==> Transactions
==> Transactions

==> Warning coun
==> Error coun
Elapsed Time: 2

--- GenArc Compl

If you want the GenArc

TransactionId-GroupNamel-GroupName?2-GroupName3-

1234567-SAMPCO-LB1--T1
2234567-SAMPCO-LB1--T1
5SAMPCO-SAMPCO-LB2--T1
6SAMPCO-SAMPCO-LB2--T1
7SAMPCO-SAMPCO-LB2--T1
8SAMPCO-SAMPCO-LB2--T1
9SAMPCO-SAMPCO-LB2--T1
4234567-FSI-CPP--T1
5234567-FSI-GL--T1

Read
Archived

In Error
Rolled Back:

o o v v

t: 0
t: 0
seconds
eted ---

program to produce a log of the archived transactions, include

the following INI option in the ArcRet control group:

< ArcRet >

ExportIndex = <file name>.

Be sure to include the full path and file name of the log file. If you omit the ExportIndex

option, the system does not create the log file.

The system lets you archive information to a database, such as DB2, as an alternative to
archiving to flat files (CAR files). You use the ArchiveMem option in the FSISYS.INI file

to enable database archiving, as shown here:

< Archival >
ArchiveMem =

Yes

Sorting records in a
database

Preparing SQL

INI

JOBID

DPASSWD

Running GenArc

NOTE: When running on z/OS, the GenArc program sets the ArchiveMem option to
Yes if it was not in the FSISYS file and produces a warning. This prevents an
error (running with non-VSAM NA and POL files) or an abend (running with
VSAM NA and POL files) which will occur if the ArchiveMem option is set to
No.

Use the DefaultTag option to specify the default tag in ODBC and DB2. This tag is then
used by the ORDER BY clause in the SQL database to sort records.

< DBTable:MYTABLE >
DefaultTag =

For the DefaultTag option, enter the name of the key from the DFD file.
Keep in mind this only works with ODBC and DB2. It does not work with xBase files.

Add the AlwaysSQLPrepare option to make sure the ODBC driver always performs the
_SQLPrepare() function. Here is an example:

< DBHandler:0ODBC >
AlwaysSQLPrepare = Yes

Omitting this option can the S1010 0 [Oracle][ODBC]Function sequence error.

COMMAND LINE OPTIONS

The GenArc program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example of starting the
GenArc program with command line options:

C:FAP\MSTRRES\DMS1l\genacw32 /ini=my.ini /jobid=tuesdayl

The command line options are explained below:

Use the INI command line option to tell the GenArc program to open and read a
FSIUSER.INI file other than the one in the current directory.

(Abbreviation:])

Use the JOBID command line option to associate a Job Identifier with this patticular run
of the GenArc program. By default the GenArc program associates a run with the
identifier, DEF_JOB_ID. This identifier (either the default identifier or the identifier
specified with the JOBID option) is used when the Restart row in the Restart table is
searched for and/or updated. Using JOBID allows for concurrent runs of the GenAtrc
program.

(Abbreviation: DP)

Use the DPASSWD command line option to indicate the password to be used when
connecting to a DB2 database management system (DBMS). Use this option along with
the DUSERID option. You can also specify the DPASSWD option in the INI file as
shown below:

< DBHandler:DB2 >

357

Chapter 8

Archiving and Retrieving Information

358

DUSERID

OPASSWD

OUSERID

RESTART

SQLID

STOPREC

Passwd = XXXXXXXX

(Abbreviation: DU)

Use the DUSERID command line option to indicate the User ID to use when connecting
to a DB2 database management system. Use this option along with the DPASSWD
option. You can also specify the DUSERID option in the INI file as shown below:

< DBHandler:DB2 >

UserID = XXXXXXXX

(Abbreviation: OP)

Use the OPASSWD command line option to indicate the password to be used when
connecting to an ODBC-compliant database management system. Use this option along
with the OUSERID option. You can also specify the OPASSWD option in the INI file
as shown below:

< DBHandler:0DBC >

Passwd = XXXXXXXX

(Abbreviation: OU)

Use the OUSERID command line option to indicate the password to be used when
connecting to an ODBC-compliant database management system. Use this option along
with the OPASSWD option. You can also specify the OPASSWD option in the INI file
as shown below:

< DBHandler:0DBC >
UserID = XXXXXXXX

(Abbreviation: R)

Use the RESTART command line option to tell the GenArc program to start processing
with the n’th record in the NEWTRN file. The GenArc program will skip n-1 NEWTRN
records and begin with the n’th record. When you use the RESTART command line
option you are explicitly restarting the GenArc program.

(Abbreviation: SQL)

Use the SQLID command line option to tell the GenArc program to perform a SET
CURRENTSQILID=SQLID at initialization time. You can also specify the SQLID
option in the INI file as shown below:

< DBHandler:DB2 >

CurrentSQLID = XXXXXXXX

(Abbteviation: S)

Use the STOPREC command line option to tell the GenArc program to stop processing
on the n’th NEWTRN record.

Running GenArc

Using the Restart Option

The Restart option is on/y available if you are archiving both APPIDX and ARCHIVE
data into a database management system. The Restart option is not available if you are
using DBASE 1V, which is the default archive method.

If the GenArc program detects an error during its processing, it can skip the transaction
in error and continue processing with the next transaction in the NEWTRN.DAT file.
The INT option listed below tells the GenArc program whether it should terminate
processing when it encounters errors:

< GenArcStopOn >
DBErrors = No

The default value for the DBEtrors option is Yes, which means the GenArc program
stops processing when it receives an error. If you set the DBErrors option to No, the
GenArc program tries to skip the transaction in error and then continues with the next
transaction in the NEWTRN.DAT file.

Below is a brief description of how the GenArc program performs restart processing. The
description below does not include all of the information provided in How the GenArc
Program Works on page 353 but all of that information applies to restart processing as
well.

1 Check the command line for parameters, load INI files, and then check and update
the Restart table.

The GenArc program parses and stores any command line parameters passed to it.
INI files are read and loaded. If the JOBID parameter was passed, the GenArc
program will attempt to locate a row in the Restart table whose JOB_ID column
equals the JOBID value. If the GenArc program cannot locate a row whose JOB_ID
column matches the JOBID value passed in, the GenArc program issues an error
message and terminates.

If the RESTART parameter was passed, this is an expliit restart, meaning we are
supposed to restart on the n’th record of the NEWTRN.DAT file (skipping the first
n-1 records).

If the RESTART parameter was not passed, either the prior run of the GenArc
program was successful (and there is no need to try to restart) or the prior run was
unsuccessful but the operator made some change since encountering the error that
should allow the GenArc program to continue where it left off (implicit restart).

2 Determine the restart point and check the Restart table.

If this is an explicit restart, the GenArc program simply skips the first n-1 records of
the NEWTRN file and reads the n’th record. It begins the archiving process with that
record.

If this is either a o restart or an implicit restart, the GenArc program first locates the
appropriate row of the Restart table (based on the JOBID described in Step 1). The
GenArc program then checks the Status column of the Restart table to determine if
the previous GenArc run by this JOBID was successful or whether it failed. If the
last GenArc run was successful the Status column of the Restart row is initialized to
Failed.

359

Chapter 8

Archiving and Retrieving Information

360

If the last GenArc run failed, the COMM_RECS column is checked to see how may
transactions were committed during the prior GenArc run. The GenArc program
also retrieves the value of the LASTREC column — this column contains the actual
NEWTRN record for the last successful transaction. If the value of COMM_RECS
is, for example, X, the GenArc program then skips to the x’th record in the
NEWTRN.DAT file and compares the NEWTRN record with the value of the
LASTREC column — if the values do not match, the GenArc program issues an error
message indicating there is a consistency problem and terminates processing. If the
values of the xth NEWTRN record and the LASTREC column do match, the
GenArc program positions itself to the x+1’th NEWTRN record and will begin the
archiving process with that record.

Archive form sets and then perform regular commits.

Before beginning the actual archive processing of the NEWTRN records, the
GenArc program checks the INI file to determine how often to perform commits to
the DBMS tables. The GenArc program checks the INI option listed below:

< ArcRet >
CommitEvery = 10

The default value for the CommitEvery option is 10. This value tells the GenArc
program to perform a commit every 10 transactions.

Once the GenArc program is positioned to the appropriate NEWTRN record where
it is to begin processing, it processes each NEWTRN record. Processing means the
NAFILE and POLFILE data are combined and compressed and archived to the
ARCHIVE table, an index record is constructed and is archived to the APPIDX
table.

Also, the Restart table is updated: the COMM_RECS column receives the
NEWTRN record number—the record number of the most recently archived
NEWTRN transaction—and the LASTREC column receives a full copy of the actual
NEWTRN record itself. If at any time GenArc processing fails, a 7o//back is
performed which will restore all the GenArc tables to the last point of consistency,
which is the last commit point.

Finish processing the NEWTRN.DAT file and then update the Restart table.

The archiving and committing process described in step 3 is performed until all of
the NEWTRN records have been processed. When the final NEWTRN record is
processed, the Status column of the Restart table is updated from F (failed) to §
(successful) and a final commit is performed to make the last few table changes
permanent.

The GenArc program issues messages indicating how many transactions were read
from the NEWTRN.DAT file, how may transactions were skipped (if this was a
restart), how many transactions were successfully archived, how may transactions
were in error and how many transactions were rolled back. The sum of the number
of transactions skipped, archived, in error and rolled back should equal the number
of transactions read.

Running GenArc

UsSING GENARC WITH DOCUMANAGE

You can use Documanage to archive files created from the GenArc program. This is done
using the PO Handler. Set up the Documanage Administrator in this order:

* Map to database
* Business tables
e (Cabinets

* Document types

e Authorities

Cabinet

Folder A

>Defined in a user-defined table
Document A
> Defined in the OT_Docs table

The user-defined table contains a record for each folder in the cabinet. The OT_Docs
table includes one record for each document in the folder.

Folder B

Document B

What happens when a transaction is archived:

1 The PO Handler searches the cabinet for a folder that matches the transaction data.
The FolderBy option in the Cabinet control group defines the fields used to identify
the correct foldet.

2 Ifthe folder exists, the data needed to create the document is checked into the folder.
A folder is created if a matching folder was not found. Creating the folder adds a
record to the table that defines the cabinet. Adding the document adds a record to
the OT_Docs table. The document is named by the fields defined in the
NameDocBy INI option. The document appears by this name in Documanage.

When you display a transaction using the Entry system:

1 Folders are searched based on the fields defined in the FolderBy option. If a folder
exists, the documents in the folder that match the type are searched. If no documents
match, the folder is ignored. The document type is defined in the FileType option in
the Cabinet control group. The system then creates a row in the Formset Selection
window for each document where the folder has matching properties and document

types.

2 When you select 2 document, the body of the document (CARDATA) is extracted
into a temporary file. The data is then retrieved into the ARCHIVE record and the
form set is displayed.

361

Chapter 8

Archiving and Retrieving Information

Here are examples of the INI options you use. These options set all archive tables to use
the PO Handler:

< DBTable:APPIDX >
DBHandler = PO

< DBTable:ARCHIVE >
DBHandler = PO

These options set up the PO Handler:

< DBHandler:PO >

UserID = EZPOWER
Password = EZPOWER
Cabinet = ARCCAB
Domain = FSI

The Cabinet option contains all of the fields in all tables. You would use the Domain
option if you are executing Documaker Workstation or the GenArc program in a different
domain than the server machine.

Here are the options for the cabinet:

< PO:ARCCAB >
FileType

dap
FolderBy = KEY1,KEY2,KEYID
NameDocBy = KEY1,KEYID, TRANCODE

Option Description

FileType Use this option to define the file types that can be placed in the folder.

FolderBy Use this option to define the fields you want the system to use to sort the
document into the various folders. For instance, if you enter Key1,Key2,KeyID,
the system places documents which have the same data in these fields in the
same folder.

NameDocBy Use this option to tell the system which field contains the document name. If
you omit this field, the systems uses ARCKEY.

Use this control group to map the DFD fields to the OT_Docs fields. For instance, this
example assumes that the AddedOn option is in the OT_Docs table:

< POField2Document >
AddedOn = CreateTime

Use this control group to map the OT_Docs fields to the DFD fields:

< PODocument2Field >
CreateTime = AddedOn

This control group is required for the GenArc program. The Restart table is not
supported by Documanage:

< Archival >
ArchiveMem = Yes
UseRestartTable = No

362

Running GenArc

These field names ate reserved in the Documanage/PO Handler environment:

Field Description

CARData This field must be present in the CARFILE DFD file. Never folder on this field.
Should never be in the DB table under Documanage only in the DFD. Must be
defined in the CARFILE.DFD as a BLOB. Always associated with the document.

ARCKey This field is the archive key. It must be in both the APPIDX.DFD and
CARFILE.DFD files. Required in the table under Documanage.

DESC (optional) The document description. By default, this field is associated with
document.

RunDate (optional) The document’s run date. By default, this field is associated with
document.

Other fields are associated with the folder unless you specify otherwise in the
PODocument2Field or POField2Document control group.

Here are samples of the FSIUSER.INI, APPIDX.DFD, and CARFILE.DFD files:

NOTE: Make sure you use upper- and lowercase correctly in DFD and INI files.

Forcing folder updates You can now use the ForceFolderUpdate option to force folder updates when the folder
already exists. This lets Documanage Folder Update Authorities, when set to No, prevent
duplicate archive entries from being sent to the Documanage archive repository.

Here is an example of the ForceFolderUpdate option:

< PO:Prod >
FileType = PROD
FolderBy = DOC_TYPE_CODE, DOC_NUM, DOC_REV_NUM
NameDocBy = DOC_TYPE_CODE, DOC_NUM, DOC_REV_NUM
ForceFolderUpdate = Yes

The default is No.

FSIUSER.INI sample < Archival >
ArchiveMem = Yes
UseRestartTable = No
< ArcRet >

AppIdx = ARC\APPIDX

AppIdxDFD = DefLib\AppIdx.Dfd

ArcPath = [CONFIG:Batch Processing] ARCPath =
Arrangement = Stack

CARFile = ARCHIVE

CARFileDFD = .\DEFLIB\ODBC\carfile.dfd

CARPath = [CONFIG:Batch Processing] CARPath =
Catalog = ARC\CATALOG

ExactMatch = No

Keyl = Company

Key2 = Lob

KeyID = Policynum

363

Chapter 8

Archiving and Retrieving Information

364

LBLimit = 500
TempIdx = ARC\Temp
< Config:Batch Processing >
ARCPath = ARC\
BaseDef =
CARPath = arc\
CompLib = COMPLIB\
DALFile =
DefLib = DEFLIB\
FntFile = REL95SM. fnt
FontLib = ..\fmres\deflib\
Form7x =
FormDef = FORM.DAT
FormFile =
FormLib = FORMS\
FormsetTrigger = SETRCPTB.DAT
HelpLib = help\
LogoFile =
TableLib = table\
WIPPath = wip\
XrfFile = REL95SM
< Configurations >
Config = Batch Processing
< Control >
XrfExt = .FXR
< DBHandler:PO >
Cabinet = DMS1
Domain = FSI
PassWord = astros3
UserID = erm
< DBTable:APPIDX >
DBHandler = PO
< DBTable:ARCHIVE >
DBHandler = PO
< DefaultTextArea >
Chars = 10
Font = 16010
Lines =2
< DefaultVarField >
Font = 12010
Length =1
Type = X
< Environment >
FSTISYSINI = .\FSISYS.INI
FSITemp = TEMP
< MasterResource >
BaseDef = [CONFIG:Batch Processing] BaseDef =
CompLib = [CONFIG:Batch Processing] CompLib =
DalFile = <CONFIG:Batch Processing> DalFile =
DDTFile = [CONFIG:Batch Processing] DDTFile =
DDTLib = [CONFIG:Batch Processing] DDTLib =
DefLib = [CONFIG:Batch Processing] DefLib =
DictionaryFile = [CONFIG:Batch Processing] DictionaryFile
FieldBaseFile = [CONFIG:Batch Processing] FieldBaseFile
FntFile = [CONFIG:Batch Processing] FntFile =

APPIDX.DFD sample

FontLib
Form7x
FormDef
FormFile
FormLib
FormsetTri
HelpLib
LbyLib
LogoLib
LogoFile
TableLib
XrfFile

> PO:DMS1 >
FileType
FolderBy
NameDocBy

< PODocument2F
CreateTime

= [CONFIG:
= [CONFIG:
= [CONFIG:
= [CONFIG:
= [CONFIG:
gger = [CONFIG:
= [CONFIG:
= [CONFIG:
= [CONFIG:
= [CONFIG:
= [CONFIG:
= [CONFIG:

= DAP

Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch

Processing]
Processing]
Processing]
Processing]
Processing]
Processing]
Processing]
Processing]
Processing]
Processing]
Processing]
Processing]

= Company, Lob, Policynum

= ARCKEY
ield >
= AddedOn

< POField2Document >

AddedOn
< SignOn >
UserID
< WIPData >
File
Path

< FIELDS >

CreateTime

= FORMAKER

= Wip\Wip

Running GenArc

FontLib
Form7x =

FormDef =
FormFile =
FormLib =
FormsetTrigger
HelpLib =
LbyLib =
LogoLib =
LogoFile =
TableLib =
XrfFile =

= [CONFIG:Batch Processing] WIPPath =

FIELDNAME = UNIQUE_ID
FIELDNAME = Company
FIELDNAME = Lob
FIELDNAME = Policynum
FIELDNAME = RunDate

; FIELDNAME = InvFlag

; FIELDNAME = ClaimFl
FIELDNAME = ARCKEY
FIELDNAME = FormsetId
FIELDNAME = RECNUM
FIELDNAME = CONFIG

< FIELD:UNIQUE_ID >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 26
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 26
KEY = Y
REQUIRED = Y

< FIELD:Company >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 6
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 6
KEY =Y
REQUIRED = Y

< FIELD:Lob >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 3

365

Chapter 8

Archiving and Retrieving Information

EXT_TYPE = CHAR_ARRAY
EXT_LENGTH 3
KEY = Y
REQUIRED = Y

< FIELD:Policynum >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 7
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH 7
KEY = Y
REQUIRED = Y

< FIELD:RunDate >
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 8
EXT_PRECISION = 0
INT_TYPE = CHAR_ARRAY
INT _LENGTH = 8
INT_PRECISION = 0
KEY = N
REQUIRED = Y

< FIELD:InvFlag >
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 1
EXT_PRECISION = 0
INT_TYPE = CHAR_ARRAY
INT _LENGTH = 1
INT_PRECISION = 0
KEY = N
REQUIRED = Y

< FIELD:ClaimFl >
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 1
EXT_PRECISION = 0
INT_TYPE = CHAR_ARRAY
INT _LENGTH = 1
INT_PRECISION = 0
KEY = N
REQUIRED = Y

< FIELD:ARCKEY >
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 18
EXT_PRECISION = 0
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 18
INT_PRECISION = 0
KEY = Y
REQUIRED = Y

< FIELD:FormsetId >
EXT_TYPE = NOT_PRESENT
EXT_LENGTH = 0
EXT_PRECISION = 0
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 8
INT_PRECISION = 0
KEY = N

366

CARFILE.DFD sample

REQUIRED = Y

< FIELD:RECNUM >
EXT_TYPE = NOT_PRESENT
EXT_LENGTH = 0
EXT_PRECISION = 0
INT_TYPE = LONG
INT_LENGTH = 4
INT_PRECISION = 0
KEY = N
REQUIRED = Y

< FIELD:CONFIG >
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 10
EXT_PRECISION = 0
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 10
INT_PRECISION = 0
KEY = Y
REQUIRED = Y

< KEYS >
KEYNAME = UNIQUE_ID
KEYNAME = Company
KEYNAME = Lob
KEYNAME = Policynum

< KEY:Company >
EXPRESSION = Company
FIELDLIST = Company

< KEY:Lob >
EXPRESSION = Lob
FIELDLIST = Lob

< KEY:PolicyNum >
EXPRESSION = Policynum
FIELDLIST = Policynum

< KEY:UNIQUE_ID >
EXPRESSION = UNIQUE_ID
FIELDLIST = UNIQUE_ID

< FIELDS >
FIELDNAME = ARCKEY
FIELDNAME = SEQ_NUM
FIELDNAME = CONT_FLAG
FIELDNAME = TOTAL_SIZE
FIELDNAME = CARDATA

< FIELD:ARCKEY >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 18
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 18
KEY = N
REQUIRED = N

< FIELD:SEQ_NUM >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 5
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 5

Running GenArc

367

Chapter 8

Archiving and Retrieving Information

KEY = N
REQUIRED = N

< FIELD:CONT_FLAG >
INT_TYPE = CHAR_ARRAY
INT _LENGTH = 1
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 1
KEY = N
REQUIRED = N

< FIELD:Total_Size >
INT_Type = LONG
INT Length = 4
EXT_Type = LONG
EXT_Length = 4
Key = N
Required = N

< FIELD:CARData >
INT_Type = BLOB
INT Length = 8
EXT_Type = BLOB
EXT_Length = 8
Key = N
Required

N
< Keys >
KeyName = ARCKEY
KeyName = SEQ_NUM
KeyName = CAR_KEY
< KEY:ARCKey >
Expression = ARCKEY+SEQ_ NUM
FieldList = ARCKEY, SEQ_NUM
< KEY:SEQ NUM >
Expression = SEQ_NUM
FieldList = SEQ_NUM
< KEY:CAR_Key >
Expression = ARCKEY
FieldList = ARCKEY

Using the Oracle ODBC Driver

The Oracle ODBC driver is supported on all Windows platforms. The DFD and INT files
shown on previous pages require special consideration when using the Oracle driver. Here
are samples of CARFILE.DFD and FSIUSER.INI files.

CARFILE DFD To use alibrary using the Oracle ODBC driver, you must use an Oracle Insurance-
supplied CARFILE DFD file that differs from the standard (internal) DFD definition.
The supplied CARFILE.DFD file is located in the sample DMS1 resoutrces in the
directory:

. . \DEFLIB\ODBC_ORA\CARFILE.DFD

The contents of the CARFILE.DFD are listed below:

; CARFILE.DFD - this DFD is to be used when referencing a library or
; archive with the Oracle ODBC driver.

< FIELDS >
FIELDNAME = ARCKEY

368

FIELDNAME = SEQ_NUM
FIELDNAME = CONT_FLAG
FIELDNAME = TOTAL_SIZE
FIELDNAME = CARDATA

< FIELD:ARCKEY

>

INT_TYPE = CHAR_ARRAY
INT_LENGTH = 18
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 18
KEY = N
REQUIRED = N

< FIELD:SEQ_NUM >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 5
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 5
KEY = N
REQUIRED = N

< FIELD:CONT_FLAG >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 1
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 1
KEY = N
REQUIRED = N

< FIELD:TOTAL_SIZE >
INT_TYPE = LONG
INT_LENGTH = 4
EXT_TYPE = DOUBLE
EXT_LENGTH = 4
KEY = N
REQUIRED = N

< FIELD:CARDATA >
INT_TYPE = BLOB
INT_LENGTH = 252
EXT_TYPE = BLOB
EXT_LENGTH = 252
KEY = N
REQUIRED = N

< KEYS >
KEYNAME = ARCKEY
KEYNAME = SEQ_NUM
KEYNAME = CAR_KEY

< KEY:ARCKEY >
EXPRESSION = ARCKEY+SEQ_NUM
FIELDLIST = ARCKEY, SEQ_NUM

< KEY:SEQ_NUM >
EXPRESSION = SEQ_NUM
FIELDLIST = SEQ_NUM

< KEY:CAR_KEY >
EXPRESSION = ARCKEY
FIELDLIST = ARCKEY

To use the supplied CARFILE.DFD file, do the following:

Running GenArc

369

Chapter 8

Archiving and Retrieving Information

1 Copy the CARFILE.DFD file into the directory where you store other DFD files,

such as the \DefLib directoty.

2 Make the system use the CARFILE.DFD file by adding this entry into the INT file:

< ArcRet >

CARFileDFD = ..\DEFLIB\CARFILE.DFD

Creating the Database and Tables

Use these INI options to tell Library Manager to create a library using the Oracle ODBC

driver and to load resources from that library:

< MasterResource >
DALFile = LBYI
DDTFile = LBYI
FormFile = LBYI
LOGOFile = LBYI

< LibraryManager >
LBYLOGFile = LBYLOG

< Library:LBYI >
DBTable = LBYD

< DBTable:LBYI >
DBHandler = ODBC

< DBTable:LBYD >
DBHandler = ODBC
UniqueTag = ARCKEY+SEQ NUM

< DBTable:LBYLOG >
DBHandler = ODBC

< DBTable:CATALOG >
DBHandler = ODBC
UniqueTag = CATALOGID

< DBHandler:0DBC >

Server = LBYSQL
Qualifier = LBYSQL
CreateTable = Yes
CreateIndex = No
UserID = userid
Passwd = password
Debug = No

< ODBC_FileConvert >
LBYT = DAP102_LBYI
LBYD = DAP102_LBYD
LBYLOG = DAP102_LBYLOG

A description of the above INI options follows:

370

Option

Running GenArc

Description

MasterResource control group

DALFile

DDTFile

FormFile

LOGOFile

Enter the name of the library from which you want the system to retrieve DAL
sctipts and DAL script libraries.

Enter the name of the library from which you want the system to retrieve DDT
files.

If you define this option, the system expects to find all DDT files there,
including the MASTER.DDT file. You can use the following option to exclude
the MASTER.DDT file from being located in the library:

< RunMode >
MasterDDTNotInLibrary = Yes

The only advantage to having an external MASTER.DDT file is if your setup
creates the MASTER.DDT file on the fly, before a transaction is run. If that is
the case, it is easier to manipulate if it is outside of the library.

Enter the name of the library from which you want the system to retrieve FAP
files.

Enter the name of the library from which you want the system to retrieve
graphics (LOG) files.

LibraryManager control group

LBYLOGTFile

Enter the name of the library log file. The library log contains information
about resoutces that are added to, deleted from, or updated in the library. The
LBYLOGTFile does not have to use the same type of DB handler as the library
index and data portions.

Library:LBYT control group

DBTable

Enter the name of the data component of the library. In this example, the
names LBYT and LBYD are used to emphasize that one table, LBYT, represents
the library index and one table, LBYD represents the library data. You can use
up to eight characters to give these tables any name you like. See the
ODBC_FileConvert control group if you need to map these eight-character
names to longer table names.

DBTable:LBYT control group

DBHandler

Tells the system to access the LBYT table using the data base handler named
ODBC. Because of this INI value, the system expects to find an INI control
group named DBHandler:ODBC. Microsoft's SQL Setver is an ODBC-
compliant database.

DBTable:LBYD control group

DBHandler

Tells the system to access the LBYD table using the data base handler named
ODBC. Because of this INI value, the system expects to find an INI control
group named DBHandler:ODBC.

371

Chapter 8

Archiving and Retrieving Information

372

Option

UniqueTag

Description

In this example, ARCKEY+SEQ_NUM specifies that the columns ARCKEY
and SEQ_NUM can be combined to represent a unique tag for the table. This
unique tag is only used for internal purposes. If you do not specify a unique tag
for this table, and a column with the name UNIQUE_ID does not exist within

the table, you receive warning messages indicating that there is no unique tag
defined.

DBTable:LBYLOG control group

DBHandler

Tells the system to access the LBYLOG table using the data base handler
named ODBC. Because of this INI value, the system expects to find an INI
control group named DBHandler:ODBC.

DBTable:CATALOG control group

DBHandler

UniqueTag

Tells the system to access the CATALOG table using the data base handler
named ODBC. The CATALOG table is used to temporarily store
CATALOGID values used to construct an ARCKEY.

This specifies that the column CATALOGID represents a unique tag for this
table. This unique tag is only used for internal purposes. If you do not specify a
unique tag for this table, and a column with the name UNIQUE_ID does not
exist within the table, you receive warning messages indicating that there is no
unique tag defined.

DBHandler:ODBC control group

Server

Qualifier

CreateTable

Createlndex

UserID

Passwd

Debug

Specifies the name of the ODBC data source for this database handler, such as
LBYSQL. You must also define an ODBC data source with this name.

Specifies the name of the database for this database handler, such as
LBYDBASE. If you omit this option, the database set up as the default database
for the LBYSQL ODBC data soutce is used.

Specifies the system should create any tables Library Manager needs, that do not
already exist, at run time.

Specifies the system should create any database indexes it needs, that do not
already exist. Always set this option to No.

Enter the user ID to use when connecting to the data base management system.

Enter the password to use when connecting to the data base management
system.

Enter Yes to turn on tracing for the Documaker ODBC DB handler. Enter No
or omit this option except in troubleshooting situations.

ODBC_FileConvert control group

This INI control group lets you map table names of eight characters or less to table names longer
than eight characters. The table names you specify must follow the table naming conventions for
the data base management system.

Running GenArc

Option Description

LBYI Specifies the name of the table referenced in several INI locations as LBYI on
the data base management system.

LBYD Specifies the name of the table referenced in several INI locations as LBYD on
the data base management system.

LBYLOG Specifies the name of the table referenced in several INI locations as LBYLOG
on the data base management system.

Resolving Errors

If the GenArc program produces an error similar to the following example, it indicates
the INT_Length or EXT_Length (or both) options in the CARData control group have
not been set in the CARFILE.DFD file:

GenArc
Transaction Error Report - System timestamp: Fri Sep 07 02:07:33 2001
-->Transaction: 1234567

Error in RPFAPErrorNotify(): FAP library error:
area:<..\C\dxmerror.c

Jun 16 2001 12:44:04

400.101.002

DXMSetLastError>, code:<2>, code:<2>, msg<Invalid object handle was
passed>.

An example of the correct INI settings is shown in the FSTUSER.INI sample on page 363.

373

Chapter 8

Archiving and Retrieving Information

374

VIEWING ARCHIVES IN DOCUMANAGE

You can use the ARCVIEW utility to view Documaker archive files checked into the
Documanage archive system. This utility only runs under 32-bit Windows.

To use this utility, follow these steps:

T Register the Documanage file extension (DPA) in Windows so the operating system
will automatically use the ARCVIEW utility to view these files.

2 Set the FSTPATH environment variable to point to the directory where the INI file
for the AFEMAIN program is stored. Here is an example:

FSIPath = d:\dmsl

NOTE: The AFEMAIN program is the executable file for Documaker Workstation.

3 Place a menu file, similar to the MEN.RES file used by Documaker Workstation, be
in the directory specified by the FSIPath option. The name of the menu file should
be ARCVIEW.RES.

NOTE: You can edit this file to remove functionality you do not want to include.

4 Edit the FILETYPES.INI file on the computer where the Documanage setver runs.
Add the DPA file extension to the list of file types to view with the ARCVIEW.EXE
program. This causes the Documanage client to use the viewer registered in
Windows instead of the default Documanage viewer.

You can now click on Documaker archive files in Windows Explorer to display them.

Running GenArc

USING MULTIPLE SIMULTANEOUS ODBC CONNECTIONS

The system supports multiple simultaneous ODBC connections via different ODBC
drivers. This will, for instance, let you connect at the same time to multiple:

* Databases on an SQL server

e Databases on an SQL server and Excel spreadsheet databases
* Access databases and Excel spreadsheet databases

* Access databases

* Excel spreadsheet databases

* Databases for which you have an ODBC-compliant driver

The system does not support multiple different DB2 databases using native DB2 drivers.
Support is limited to ODBC-compliant data bases.

NOTE: Keep in mind the ODBC_FileConvert and ODBC_FieldConvert control groups
are global and affect all of the handlers.

For example, to access a database on a SQL Server and in a Microsoft Excel spreadsheet
simultaneously, you first set up the ODBC Data Sources Administrator panel as
illustrated and these INI options:
< DBHandler:DBSQL >
Class = ODBC
Server = SQL Server
< DBHandler :DBEXCEL >
Class = ODBC
Server = MS Excel

The database handler name is limited to 22 characters.

#"0DBC Data Source Administrator [2] x]
User DSM | System DSM I File DSH I Driversl Tracingl Connection Poolingl Ahbout I

Uszer Data Sources:

Mame | Diriver | Add... |

DBE xcel Micrazaft Excel Driver [*.xlz)
DBSGL SOL Server Remove
Friend32 Microzoft Access Driver [*.mdb)

Mamestce Microsoft Acoess Driver [*.mdb] Corfigure... |

MamesExc Microzoft Excel Driver [*.xls]

An ODEC User data source stores information about how ko connect to
the indicated data provider. A User data zource is only visible to you,
and can only be uszed on the current machine.

QK Cancel Apply Help

375

Chapter 8

Archiving and Retrieving Information

376

For the table you want to open using the appropriate handler add this INI option:

< DBTable:MYTABLE >
DBHandler = DBSQL

Debug INI option can be specified under each of the DBHandler: XXX control group.

If you use the name of the ODBC handler in the appropriate DAL function, you can omit
the DBTable:XXX control group. For more information on DAL functions and setting
up database handlers for Excel databases, see the DAL Reference.

USING WIP AND
THE ARCHIVE
INDEX FILE

Using WIP and the Archive Index File

Since the Archive module supports custom application archive index files, you must
create an application archive index record from a WIP record. The following example
shows a standard application archive index file.

The Archive option in the AFEProcedures control group defines the DLL and the
function name to call when converting a WIP record into an archive record. The standard
DLLis AFEW32 and the standard function is called AFEWip2ArchiveRecord. Here is an
example of the standard DLL and function:

< AFEProcedures >
Archive = AFEW32-> AFEWip2ArchiveRecord

The AFEWip2ArchiveRecord function uses options in the AFEWip2ArchiveRecord
control group. Options in the AFEWip2ArchiveRecord control group are:

Archive Field Name = WIP Field Name

Where ARCHIV'E FIEL.D NAME is the actual field name from archive DFD file and
WIP FIELLD NAME is the field name from WIP file. This means that data from WIP
record field WIP FIELLD NAME would be copied into archive record field ARCHIVE
FIELLD NAME.

For a base application archive index file, this control group and options are as follows:

< AFEWIP2ArchiveRecord >

KEY1 = KEY1

KEY2 = KEY2

KEYID = KEYID
RECTYPE = RECTYPE
CREATETIME = CREATETIME
ORIGUSER = ORIGUSER
CURRUSER = CURRUSER
MODIFYTIME = MODIFYTIME
FORMSETI = FORMSETID
TRANCODE = TRANCODE
STATUSCODE = STATUSCODE
FROMUSER = FROMUSER
FROMTIME = FROMTIME
TOUSER = TOUSER
TOTIME = TOTIME
DESC = DESC

INUSE = INUSE
ARCKEY = ARCKEY
APPDATA = APPDATA
RECNUM = RECNUM
RUNDATE = RUNDATE
INVFLAG = INVFLAG
CLAIMFL = CLAIMFL

377

Chapter 8

Archiving and Retrieving Information

FORMATTING

ARCHIVE FIELDS

Converting the case of

378

key fields

Reformatting dates

The system lets you format data values that will be mapped to the archive index record
from the Trigger2Archive control group. Normally, this group is defined like this:

< Trigger2Archive >

Keyl = Company
Key?2 = LOB
KeyID = TransID

RunDate = RunDate

NOTE: These same options in the ArcRet control group are used for searching the key
fields in the archive index file.

Where the value on the left of the equals sign designates an archive index field (defined in
APPIDX.DFD) and the value on the right represents a GVM variable normally associated
with the NEWTRN record (defined by the TRNDFDFL.DFD). These options are used
by the GenArc program to add the Key1, Key2, and KeylID information to the archive
index file.

You can have the system format these archive fields in several ways:
* Preserving the case of values in the key fields
* Formatting dates

* Storing a constant value

By default, the system converts the case of information in the Keyl, Key2, and KeyID
fields to uppercase when it archives a record. It does this to reduce the amount of time it
takes to find a record during a search. You can, however, use the CaseSensitiveKeys
option to preserve the case of the Key1, Key2, and KeylID values as entered. For example,
this option
< Archival >
CaseSensitiveKeys = Yes

Tells the system to preserve the case of the Key1, Key2, and KeylD fields as entered. If
you enter No or omit the CaseSensitiveKeys option, the system convert the values for
these options to uppercase before it archives the record.

You can do optional date reformatting and assign a constant data value not associated
with a GVM. Here is an example of date reformatting:

RUNDATE = TRANDATE;D1-4;D4

You still are associating the archive index field with a GVM variable normally loaded from
the NEWTRN record. Separated by a semicolon, you can define the date format of the
input variable and specify a different format for the final value after the second semicolon.

In this example, the RUNDATE field is to be set from the TRANDATE field from the
NEWTRN record. Note the first D that follows the semicolon indicates you want a date
conversion. This example converts the data from format 7-4 (MM-DD-YYYY) to format
D4 YYYYMMDD) before storing it in the RUNDATE field of the archive index.

NOTE: Always use YYYYMMDD to store your run date in the archive.

Storing a constant
value

Formatting Archive Fields

Here is an example of how you store a constant value instead of associating the field with
a GVM variable from the NEWTRN record.

USERID = NULL; ;TOM

Keep in mind that NULL is a keyword and is not interpreted as the name of a GVM
variable associated with any record. When using NULL, the system skips to the final
destination format section (the second semicolon) and places whatever value is defined
there in the resulting archive index field. In this case, that value is TOM.

Since this method assumes there will be a constant text value defined after the second
semicolon, you can also use INI built-in functions to provide this value. For instance,
consider this example.

USERID = NULL; ; ~GETENV USERNAME

This is similar to the previous example except it uses the GetEnv (Get Environment
Variable) INI function to get the value associated with USERNAME from the
environment to supply the field value.

379

Chapter 8

Archiving and Retrieving Information

RETRIEVING
ARCHIVED
FORMS

Input files

Output files

380

Once the form set information has been archived, you can re-create those form sets by
retrieving the form set information from the archive file, as long as you have access to the
resource library which contains the forms. You do this using the Archive module of
Documaker.

NOTE: The Archive module of Documaker can also archive form sets. For more
information, see the Documaker User Guide. The following information is
provided here so you can have a basic understanding of the retrieval process.

FILES THE ARCHIVE MODULE USES

The Archive module (the AFEMAIN program) uses the archive index file to aid in the
retrieval of form set information through the use of keys. You can define these keys to
provide meaningful search criteria such as account or policy numbers, company names,
or customer names.

e Compressed Archive (CAR) file
* Application Index file

* Catalog file

* Restart file

¢ Resource file such as FAPLIB, DEFLIB, and so on

None.

USING THE ARCHIVE MODULE

To retrieve a document from archive using the Archive module, you select the Retrieve,
Formset option. The Retrieve Document window appears.

Company Line of Business Policy # Run Date
|| ’ ’ |0913m2[m7
Policy # | createDt | ModifyDt | Tr | st |
k] o]
OK | Refresh Options Cancel | Help |

You can configure the Retrieve Document window using these FSISYS.INIT settings:

< Groupl >

Retrieving Archived Forms

Titlel = Company

Title2 = Line of Business

Title3 = Policy #

Title4 = Run Date

Title5 = Invoice Only

Title6 = Claim Only

Title7 = Policy # Date St Tr Description

NOTE: Title5 and Title6 are not used in the base Documaker Workstation system, but are
available if you choose to customize your installation. If you remove these
options from the FSISYS.INI file, the system does not display those fields.

Retrieval Options

If you click the Options button on the Retrieve Document window, the Retrieval Options
window appears, as shown below.

Retrieval options [%]

I” *Stack only* mode
¥ Display 'print only' forms

™ Display only forms with variable data
OK | Cancel | Help |

This window is shown with default text. If you want to change these default values, add

values to DlgTitles and ArcRet control groups as follows:

Beside this DIlgTitles option Enter the title for the...

RetOptionsDIgTitle window (Rerieve gptions in this example)
RetrOptionsPrintOnly Print only field

RetrOptionsOnlyEntry Display only field
RetrOptionsStackOnly Stack only mode field

381

Chapter 8
Archiving and Retrieving Information

The options in the ArcRet control group define only the default settings for fields users
can change actual values by checking or unchecking the fields on the window.

For this ArcRet option Enter...

Arrangement StackOnly. If StackOnly mode is on, the system shows one form at
a time and the Stack, Tile, and Cascade options are available. In this
mode DisplayPrintOnly is set to Yes DisplayOnlyEntry is set to No
and cannot be changed.

DisplayPrintOnly Yes. This setting displays only the forms in the form set defined as
Print Only, along with variable data forms included in the form set.
These forms do not contain manually-entered data.

DisplayOnlyEntry No. This setting displays only forms containing variable data. The
system will omit reference forms.

382

WORKING WITH
DOCUMANAGE

Working with Documanage

If you use Documanage as part of your archiving solution, you may want to use

Documanage data types when mapping archive index data. You may also want to
categorize the documents you archive.

These topics discuss how to do these tasks.

Using Documanage Data Type Support on page 384

Setting Up Automatic Category Overrides on page 385

Mapping Documaker Archive Fields to Documanage Properties on page 386
Using Next/Rettieve Cursor on page 388

Enhanced Documanage Document Extended Properties Support on page 389

383

Chapter 8

Archiving and Retrieving Information

384

USING DOCUMANAGE DATA TYPE SUPPORT

Pulling Documaker archive documents (DPA files) into Documanage lets you use
Documanage-supported data types when mapping the Documaker archive index data
into the Documanage folder and document properties tables.

This lets you search, query, and present the data through Documanage clients such as
Documanage Workstation and Documanage Bridge-based clients. For example, you can
store Documaker date/time data as Documanange date/time data types and enable the
use of date ranges and calendar functionality in web page design and for sorting and
searching Documaker archive documents. Data mining and reporting can also benefit
from better data representation and storage.

The DMIA DBHandler (DMILIB module: [DBHandler:DMIA]) used with the GenArc
program and other Documaker Server archive processes lets you use additional
Documanage Data Types in Documanage Folder fields instead of only supporting the
varchar or char data types.

Keep in mind...

* The date/time data types must be in either a Documaker D4 string format:
YYYYMMDDHHMMSS

The hours, minutes, and seconds (HHMMSS) are optional. For example, the D4
format can be sent in as:

20070131 (Jan. 31, 2007)

2007013113 (Jan. 31, 2007 1PM)
200701311330 (Jan. 31, 2007 1:30PM)
20070131133055 (Jan. 31, 2007 1:30:55 PM)

Or in a Documanage client-supported string format:
YYYY-MM-DD HH:MM:SS.msec

The hours, minutes, seconds and milliseconds (HH:MM:SS.msec) are optional.
For example, the Documanage format can be sent in as:

2007-01-31

2007-01-31 13
2007-01-31 13:30
2007-01-31 13:30:55
2007-01-31 13:30:55.800

* Documaker’s Archive Application Index Data Format Definition file
(APPIDX.DFD) fields must remain as CHAR_ARRAY for the INT_TYPE and
EXT_TYPE with the appropriate INT_LENGTH and EXT_LENGTH values for
representing the data in string format.

Working with Documanage

SETTING UP AUTOMATIC CATEGORY OVERRIDES

You can categorize DPA documents from Documaker Server Archive into Documanage.
This makes it easier to do searches and queries when retrieving via Documanage Bridge.
It also provides more flexibility in using Extended Document Properties (XDPs), which
allows for different XDPs in the different document categories so transactions can store
different relative data in the XDPs.

You can use input data to set the Documanage document's Category property during
archival via the Documaker Server Archive interface (DMIA). The default value for this
property comes from the FileType INI option during archival, but you can also
dynamically override the default with input data using this INI option:

< POField2Document >
ObjectClass = Appldx_Field

During retrieval, the Category Document property can be loaded into the Documaker
Appldx_Field using this INI option:

< PODocument2Field >
AppIldx_Field = ObjectClass

Extended Document Properties (XDPs) are based on the Category value set during
ingestion. Mappings to XDPs only occur if the XDP for the Document Category exists
by name. Otherwise, they are ignored and no error is generated. This allows different data
to be populated into the XDPs based on the category used.

Here is an example of how you would override the default document category of DPA
with the APPIDX.DFD field value of the field FormSet:

< DMIA:RPEX2ARC >
; FileType is the default Category/ObjectClass value
FileType = DAP
< PODocument2Field >
; Category/ObjectClass is overridden by the value in the AppIdx
H field FormSet
FormSet = ObjectClass
POField2Document >
; Category/ObjectClass is overridden by the value in the AppIdx
; field FormSet
ObjectClass = FormSet

A

Keep in mind the APPIDX.DFD field used to override the document Category in the INI
options POField2Document and PODocument2Field can not be used to also set other
folder or document properties. For instance, in the example another entry for FormSet

can not be used to map FormSet to another folder or document or XDP field.

385

Chapter 8

Archiving and Retrieving Information

386

Example 1

MAPPING DOCUMAKER ARCHIVE FIELDS TO DOCUMANAGE
PROPERTIES

When mapping Documaker archive field names to Documanage Folder and Extended
Document Properties, you can use DB Field Name values. This lets you modify the
Folder Property Name and Extended Document Property Name values in Documanage
Servet to effect changes to applications that use these values for input field/control labels
without requiring reconfiguring your Documaker to Documanage interface setup.

You can map Documaker archive index data to either the Documanage Folder Property
Name field and the Documanage Extended Document Property Name field (default
behavior as previously provided) or to the Documanage DB Field Name, which is the
database column name, based on the MapByDBName option.

< DMIA:cabinetname >
MapByDBName =

Option Description

MapByDBName Enter Yes to map to Documanage DB Field Names values for both Folder
Properties and Extended Document Properties. The default is No, which
instead maps them to the Folder Property Names and Extended
Document Property Names (Display Names).

You can also use these new control groups for even more control over mapping:
* DMIA_FieldConvert_cabinetname

¢ DMIA_FieldConvert

NOTE: The DMIA_FieldConvert_cabinetname control group overrides any entries in the
DMIA_FieldConvert control group.

Also, all filter and order by syntax generated and submitted to the Documanage Server
and used in SQL statements now uses qualified column names instead of the
Documanage Folder Property and Extended Document Property names to avoid
requiring the DB column name to be the same as the Property Name.

Here are some examples:

The Documaker archive index (Appldx) fields QTY and PreTaxAmt are mapped to
Documanage Field or Extended Document Property name Quantity and Pretax Amount.
All other Documaker archive index fields map to the same named Field and Extended
Document Property names with a test for the name with spaces as they exist and then for
spaces replaced with underscores (case-insensitive):

< DMIA:RPEX2ARC >
MayByDBName = No
< DMIA_FieldConvert >
QTY = Quantity
PreTaxAmt = Pretax Amount

Working with Documanage

Example 2 The Documaker archive index fields QTY and PreTaxAmount are mapped to
Documanage DB Field Name Quantity and PreTax_Amount. All other Documaker
archive index fields map to the same named DB Field Name (case-insensitive):

< DMIA:RPEX2ARC >
MayByDBName = Yes
< DMIA_FieldConvert >
QTY = Quantity
PreTaxAmt = Pretax Amount

387

Chapter 8

Archiving and Retrieving Information

388

USING NEXT/RETRIEVE CURSOR

Documanage supports a next/ retrieve cursor for use by the ARCRET utility when accessing
data from Documanage.

The ARCRET utility lets you retrieve records from archive and produce files. You can
then send these files to plug-in functions to print or migrate the archive records ot to test
the archive retrieval results.

NOTE: The ARCRET utility’s /REV parametet is only applicable to an archive stored in
xBase.

This eliminates the need to use the /BQ option for a Documanage atchive. The previous
(before version 11.3) interface to Documanage did not support retrieving documents
while sequentially reading the index. The /BQ option told the system to queue batches of
records into memory before attempting to retrieve each associated documents. This could
be memory intensive and affected performance. With version 11.3 and higher, the system
can retrieve the associated document while reading the index rows.

Working with Documanage

ENHANCED DOCUMANAGE DOCUMENT EXTENDED
PROPERTIES SUPPORT

You can populate Documanage Extended Document Properties (XDPs) using
Documaker Server archive indexed data. There are no limits to the number, sizes, and data
types you can use at the document level. This lets you use XDPs when you are directly
archiving to Documanage.

NOTE: Before version 11.1, only Documanage Basic Document Properties could only be
used for user data and the number, size and type of data available was limited.

To use this feature, you must...

* Create the extended document properties in Documanage in the proper document
categories

* Setup the GenArc program to map to them.

* Add the names you use for the XDP fields into GenAtc's application index file
(APPIDX.DFD).

* Setup Documaker Setrver to capture extract data to populate into the XDP fields.

The fields are propagated during GenTrn processing from the XML extract file to the
TRNFILE. During GenData processing, the fields are populated from the TRNFILE to
the NEWTRN file. Then, during GenArc processing, the fields are populated from the
NEWTRN file to the APPIDX structure and into the Documanage XDP fields.

The field names added to the APPIDX.DFD file must have the exact same names as
those set up in Documanage's Category Extended Properties. Here are some examples:

* PolicyDate
e PolicyType
* FormSet

* Number

* FinalDate

* Amount

e PreTaxAmt
« QTY

e DPercentage
* Ratio

* Opverage

* Specifier

389

Chapter 8

Archiving and Retrieving Information

390

FSISYS.INI file

For the appropriate fields to end up in the structure mapped by GenArc's APPIDX.DFD
file, those fields must be propagated from the NEWTRN.DAT file. This file is created
during GenData processing and is mapped using the TRNDFDFL.DFD file.

For the appropriate fields to exist in the NEWTRN file, those fields must be propagated
from the TRNFILE. This file is created during GenTrn processing and is mapped by the
TRNDFDFL.DFD file.

The TRNFILE is populated with data which is usually retrieved from the extract file. This
data is mapped using the INI options in the Trn_Fields control group or by using the
Ext2GVM rule in the AFGJOB.JDT file.

NOTE: Documanage Extended Document Properties is not supported by Docusave so
the Stacked DPA feature will not propagate the XML header data in the DPA
files into Documanage's XDP fields.

To handle the propagation of these fields, you must include additional information in
these files:

* FSISYS.INI file or the AFGJOB.JDT file or both
 TRNDFDFL.DFD file

* APPIDX.DFD file

e Extract file

Here are some examples of the additional information required in these files:

Here is an excerpt from the FSISYS.INI file:

< Trn_Fields >
SYyMm = 1,3,N
POL = 4,7,N
EffectiveDate = 25,6,N;DB;D4
Module = 38,2,N
State = 43,2,N
Trn_Type = 45,2,N
Company = 35,3,N
LOB = 40,3,N
SentToManualBatch = 47,2,N
Branch = 49,2,N
RunDate = 51,14,N
DueDate = 100,8,N
Cust_Num = 87,10,N
PKG_Offset = 97,10,N
TRN_Offset = 107,10,N
X _Offset = 117,10,N
NA_Offset = 127,10,N
POL_Offset = 137,10,N
TokenLen = 118,316,N

H PolicyDate = 51,14,N
PolicyType = 45,2,N
FormSet = 38,2,N

< Trigger2Archive >

TRNDFDFL.DFD file

Keyl C
Key2 =L
KeyID =

Customer

RunDate
DueDate
TokenLen
PolicyDa

OMPANY
OB
POL
= customer
= RUNDATE
= DueDate
= TOKENLEN
te = PolicyDate

PolicyType = PolicyType

FormSet

Number =
FinalDat
Amount =
PreTaxAm

= FormSet
Number

e = FinalDate
Amount

t = PreTaxAmt

Qty = QTY

Percenta
Ratio =
Overage
Specifie

ge = Percentage
Ratio

= Overage

r = Specifier

< Trn_File >

MaxExtRe
BinaryEx

Here is an excerpt from the TRNDFDFL.DFD file:

< FIELDS >
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =
FIELDNAME =

cLen = 750
t =N

sym

pol
EffectiveDate
module
state
trn_type
company
lob
SentToManualBatch
branch
RunDate
DueDate
cust_num
customer
PKG_Offset
TRN_Offset
X_Offset
NA_Offset
POL_Offset
TOKENLEN
PolicyDate
PolicyType
FormSet
Number
FinalDate
Amount
PreTaxAmt
QTY
Percentage
Ratio

Working with Documanage

391

Chapter 8

Archiving and Retrieving Information

FIELDNAME = Overage
FIELDNAME = Specifier

< FIELD:PolicyDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH 23

KEY = N

REQUIRED = Y

< FIELD:PolicyType >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 31

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH 30

KEY = N

REQUIRED = Y

< FIELD:FormSet >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 41

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 40

KEY = N

REQUIRED = Y

< FIELD:Number >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 11

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:FinalDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 23

KEY = N

REQUIRED = N

< FIELD:Amount >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 16

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:PreTaxAmt >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 16

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

392

EXT_LENGTH = 15
KEY = N
REQUIRED = N

< FIELD:QTY >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 6

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH
KEY = N
REQUIRED = N

5

< FIELD:Percentage >
INT_TYPE = CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 9

KEY = N

REQUIRED = N

< FIELD:Ratio >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 9

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 8
KEY = N
REQUIRED = N

< FIELD:Overage >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10
KEY = N
REQUIRED = N

< FIELD:Specifier >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 2

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 1
KEY = N

APPIDX.DFD file Here is an excerpt from the APPIDX.DFD file:

[FIELDS]
FIELDNAME=KEY1
FIELDNAME=KEY2
FIELDNAME=KEYID
FIELDNAME=customer
FIELDNAME=RUNDATE
FIELDNAME=DueDate
FIELDNAME=INVFLAG
FIELDNAME=CLAIMFL
FIELDNAME=ARCKEY
FIELDNAME=FORMSETID

Working with Documanage

393

Chapter 8

Archiving and Retrieving Information

394

FIELDNAME=TOKENLEN
FIELDNAME = PolicyDate
FIELDNAME = PolicyType
FIELDNAME = FormSet
FIELDNAME = Number
FIELDNAME = FinalDate
FIELDNAME = Amount
FIELDNAME = PreTaxAmt
FIELDNAME = QTY
FIELDNAME = Percentage
FIELDNAME = Ratio
FIELDNAME = Overage
FIELDNAME = Specifier
< FIELD:PolicyDate >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 24
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 24

KEY = N

REQUIRED = Y

< FIELD:PolicyType >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 30
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 30

KEY = N

REQUIRED = Y

< FIELD:FormSet >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 40
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 40

KEY = N

REQUIRED = Y

< FIELD:Number >

INT_TYPE

= CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE

= CHAR_ARRAY

EXT_LENGTH = 10

KEY = N
REQUIRED

< FIELD:F
INT_TYPE

= N

inalDate >
= CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE

= CHAR_ARRAY

EXT_LENGTH = 24

KEY = N
REQUIRED

=N

< FIELD:Amount >

INT_TYPE = CHAR_ARRAY
INT_LENGTH = 15
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:PreTaxAmt >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 15
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:QTY >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 5
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH 5

KEY = N

REQUIRED = N

< FIELD:Percentage >
INT_TYPE = CHAR_ARRAY

INT_LENGTH = 9
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 9

KEY = N

REQUIRED = N

< FIELD:Ratio >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 8
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 8

KEY = N

REQUIRED = N

< FIELD:Overage >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 10
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:Specifier >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 1
EXT_TYPE = CHAR_ARRAY
EXT_LENGTH 1

KEY = N

REQUIRED = N

Working with Documanage

395

Chapter 8

Archiving and Retrieving Information

NOTE: DATE type data must be passed in a format that is accepted by Documanage
Server or in a Documaker Server D4 format (YYYYMMDD).

AFGJOB.JDT file Here is an excerpt from the AFGJOB.JDT file:

;Ext2Gvm;2;11, TOTAL1REC 147, 4,Number;
;Ext2Gvm;2;11, TOTAL1REC 25,24,PolicyDate;
;Ext2Gvm;2;11, TOTAL1REC 49,23,FinalDate;
;Ext2Gvm;2;11, TOTAL1IREC 143,15, Amount;
;Ext2Gvm;2;11, TOTAL1IREC 158,10, PreTaxAmt;
;Ext2Gvm;2;11, TOTAL1REC 168,4,QTY;
;Ext2Gvm;2;11, TOTAL1REC 172,3,Percentage;
;Ext2Gvm;2;11, TOTAL1REC 175,8,Ratio;
;Ext2Gvm;2;11, TOTAL1REC 183, 6,0verage;
;Ext2Gvm;2;11, TOTAL1REC 189,1,Specifier;

Extract file Here is an excerpt from a single record in a flat extract file:

SCOREMOVEDHEADERREC00000030194 SCOM1FP GAT1I1B119950123 804-345-8789
041594 REMOVEDOOO 20000223 MAMTEST TOKEN LENGTH TEST TOKEN LENGTH
TEST TOKEN LENGTH TEST TOKEN LENGTH TEST TOKEN LENGTH ARCCAB DAP
SubTypeTestl TitleTestl TEST DESCRIPTION 1 19950124 Complete
UserFlaglTestl UserFlag2Testl KeywordlTestl Keyword2Testl X
SCOREMOVEDTOTALIRECP00002005-01-01 12:00:00.001 2006-01-01
12:00:00.999 Comprehensive FullLine 1000000.00 1228.98 2 1001.1 98.76
B X

396

Chapter 9

Setting Up Archive/
Retrieval Configurations

This section outlines several commonly-used archive/
retrieval scenarios. Click on a scenario to quickly go to
that discussion:

* DB2Setver on OS/390 —Windows Client on page
398

e DB2 Server on Windows — Windows Client on
page 410

e DB2 Server and Client on Windows on page 415

* SQL Server on Windows — ODBC Client on
Windows on page 419

+ IDS on Windows —DB2 Archive on z/OS on page
421

* Creating a z/OS Database on page 422

NOTE: Windows refers to 32-bit Windows operating
systems, such as Windows 2000 or Windows
XP.

We recommend that you only use uppercase for
table and column names when storing
information in a database. For instance, avoid
CustomerName, Customername, or
customername and instead use
CUSTOMERNAME.

Database management systems (DBMS) vary in
how they handle case issues so it is best to
standardize on uppercase. With version 11.2, all
column names must be in uppercase.

397

Chapter 9

Setting Up Archive/Retrieval Configurations

DB2 SERVER

ON 0S/390 —

398

WINDOWS
CLIENT

Getting the DB2
location name and
LUNAME

For this scenario, assume you ate running DB2 version 6.1 on OS/390 version 2. For the
DB2 client, assume you are running Windows 2000 or Windows XP.

DB2 Client
0S/390 —
Host m '
54
DB2 version 6.1 on N
0S/390 version 2
DB2 Client
iy
Windows 2000 Server '
-
%\;,

DB2 Client

i

]

The DB2 Distributed Data Facility is an optional patt of the DB2 product on OS/390.
The Distributed Data Facility must be configured and running for the DB2 client (on 32-
bit Windows) to communicate with the DB2 Server (on OS/390).

CONFIGURING THE SERVER

You can use the PRTLOGMP DB2 utility to print a report that lists the communication
record of the DB2 Bootstrap Dataset. In the communication record you can find the DB2
location and LU name for that DB2 subsystem. The location and LU name are needed
when configuring the SNA Server and DB2 on the 2000 Server.

Here is an example of the JCL used to run PRTLOGMP is shown follows, along with the
communication record portion of the output from the PRTLOGMP utility.

//* COPY JOBCARD HERE ..

//*

//S1 EXEC PGM=DSNJU004

//SYSUT1 DD DSN=TDB1.BSDS01,DISP=SHR
//SYSPRINT DD SYSOUT=*

xx DISTRIBUTED DATA FACILITY *

COMMUNICATION RECORD

15:35:33 OCTOBER 12, 1999

LOCATION=USFSIMVSTDBl LUNAME=DB2TDB1l PASSWORD= (NULL)
DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED

Defining the SNA
server’s APPC LU in
VTAM

Defining the DB2
Application Major Node
in VTAM

Installing and
configuring Microsoft’s
SNA Server

DB2 Server on 0S/390 —Windows Client

SUCCESSFULLY

The following Switched Major Node (SNA) is contained in SYST.VTAMLST(SWOE40C):

Th

c

* Kk kK kK k k Kk Kk *x Kk Kk Kk k Kk Kk Kk *k Kk Kk Kk *x Kk Kk k k Kk Kk Kk *x Kk K* Kk *x * *

*

* VTAM SWITCHED MAJOR NODE
* FOR MICROSOFT SNA SERVER COMMUNICATIONS

*

* Kk *k Kk k K*k *x * *x * Kk *k Kk *x Kk *k * *x * *k * *k *k *k Kk Kk *k Kk *x * *x * * * *
*

SWOE40C VBUILD TYPE=SWNET,MAXGRP=3,MAXNO=30

*

CP00010 PU ADDR=40,CPNAME=CL00010, X

DISCNT=NO, MAXDATA=16384,USSTAB=USSFSIS, X

MAXPATH=1,MAXOUT=7, PASSLIM=7, X

VPACING=7, PACING=7, SSCPFM=USSSCS

*

CL00010 LU LOCADDR=0.

following Application Major Node is contained in SYS1.VTAMLST(DB2TDB1A):

* *k k k * *x * *k *x * *x k¥ *k *x * *k * * *x * *k *x *k *x k¥ * *x * *x * * *x * * *
*

* VTAM APPLICATION NODE FOR DB2

*

* Kk *x k*k *x * *x *x *x *x * *x *k *x * *x * *x * * * * *x *k *x * *x * *x * *x * * * *

DB2TDB1A VBUILD TYPE=APPL
DB2TDB1 APPL APPC=YES, X
ATNLOSS=ALL, X

AUTH= (ACQ), X

AUTOSES=1, X
DMINWNL=25, X

DMINWNR=25, X
DSESLIM=50, X

MODETAB=, X
SECACPT=ALREADYV, X
SRBEXIT=YES, X
SYNCLVL=SYNCPT, X
VERIFY=NONE, X

VPACING=2

Setting Up the Windows 2000 Server (Middle Tier)

To set up the middle tier, first install Microsoft SNA Server version 4,with Service Pack
3 applied, onto a server running Windows 2000 Server. Then Install SNA Server into its
own domain called USRO4SNA.

Here are the steps for installing the SNA Server:

1

Insert the install CD into CD drive. Select Start, Run and enter this command:
e:\snad40\i386\setup.exe

Go through the normal set up process. Enter this server domain information:

399

Chapter 9

Setting Up Archive/Retrieval Configurations

400

In this field Enter
Domain your domain name
Account _your account user name
Password (leave blank)
Confirm Password (leave blank)

Click Ok when finished.

Choose Primary Configuration Server. Then choose Named Pipe, TCP/IP, IPX/SPX.

Choose IPX/SPX Directory Service. Then choose Bindery Netware 3.x, 4., 5.x or 6.X)
and SINA Server Subdomain (USRO4SNA).

Next, use the Microsoft SNA Server Manager to make the following definitions. To
start this tool select Start, Programs, Microsoft SNA Server (Common), Manager.
Then right click the SNA Server you created in the first three steps. Choose Insett,
Link Services. From the Insert Link Services window select your adapter and
protocol (DLC 802.2 Link Service).

Select and right click the SNA Server you configured (USRSRV04). Select Properties.

The control point configured here is for incoming connections only and is not used
for this outgoing connection to OS/390. You should, however, configure it. Use the
Network Name (P390) and Control Point name (CLO0010). Accept the defaults on
the Server Configuration tab.

NOTE: The network name matches the value of the NETID parameter in the VTAM

startup parameters in SYS1. VITAMLST(ATCSTRO00). The control point name
(CL00010) here matches the value of the CPNAME parameter of the VI'AM
Switched Major Node on OS/390, in SYST.VTAMLST(SWOE40C).

6

Select and right click on Connections under the SNA Setrver you configured. Move
to APPC and select oca/ I.U. The Local LU Alias can be whatever you want but in
this scenario it’s the same as the LU Name (CL00010).

Enter the network name (P390). Enter an LU Name that matches the control point
name used above (CLO0010). Click the Advanced tab. Check Member Of Outgoing Iocal
APPC LU Pool. Make sure that the LU 6.2 Type is set to Independent then click Ok.

Select and right click on Connections under the SNA Server you configured. Move
to APPC and select Remote LU. Use the Connection List to select your connection
(ETH2MVS). The LU Alias can be whatever you want but in this scenario it’s the
same as the LU Name (DB2TDB1) — remember this is the remote LU Name.

Enter the network name (P390) and LU Name (DB2TDB1) and uninterpreted name
(DB2TDB1). Click the Option tab. Accept the defaults. The PLU for DB2 | OS/
390 is independent to support parallel sessions. Click Ok.

DB2 Server on 0S/390 —Windows Client

NOTE: Remote LU Name here should match the APPL name of the DB2 application

major node in SYST.VTAMLST(DB2TDB1A). Note that the member name
(DB2TDB1A) cannot be the same as the APPL name (DB2TDB1) within it.

10

Move to Configured Users, right click, select Insert, and click on User. Highlight
Everyone and click Add. Go back to the SNA Manager window where you should now
see Everyone under Configured Users. Right click on Everyone, choose Properties and
then click the APPC Defaults tab.

Click the list for Local APPC LU and choose (CL00010). Click the list for the Remote
APPC LU and choose (DB2TDB1).

Move down to APPC Modes, right click, select Insert, APPC, and click on Mode
Definition. Enter the mode name IBMRDB). Click the Limits tab. Enter the Parallel
Session Limit (10), Minimum Contention Winner Limit (3), Partner Minimum
Contention Winner Limit (3), and Automatic Activation Limit (2). Accept the
defaults on the Charactetistics tab and click Ok.

Move to CPIC Symbolic Names, right click, select Insert, APPC. Click on CPIC
Symbolic Name. This name can be anything you want but it must later match
something in DB2 on Windows 2000. This name is case sensitive.

For this scenario, use DB2CPIC (in all caps). Choose Conversation Security (Same),
Mode Name (IBMRDB). Click the Partner Information tab. In the Partner TP Name
area click SNA Service TP (in hex) and enter 07F6C4C2. In the Partner LU Name
area click Alias and enter Partner LU alias (DB2TDB1). Click Ok.

The CPIC Symbolic Name (DB2CPIC) must match the destination name when you
define the node entry in DB2 on the Windows 2000 Server (see the following
section).

Installing and Configuring Microsoft’'s SNA Server

For this scenario, you should install Microsoft SNA Server version 4, with Service Pack 3
applied, onto a Server running Windows 2000 Server. Install SNA Server into its own
domain and call the domain USRO4SN.A.

Follow these steps to install SNA Server 4.0 SP3:

1

Insert the install CD into CD-ROM drive. Go to Start, Run and entet:
e:\snad40\i386\setup.exe

Then click Ok. Go through the normal set up process.
Choose Primaty Configuration Setver. Then choose Nawed Pipe, TCP/IP, IPX/SPX.

Choose IPX/SPX Directoty Setrvice. Then choose Bindery (Netware 3., 4.5, 5.x or
6.x).

Choose SINA Server Subdomain (USRO4SNA).

Next, set up this server domain information:

401

Chapter 9

Setting Up Archive/Retrieval Configurations

Field Enter
Domain your domain name
Account _your account nser name
Password (leave blank)
Confirm Password (leave blank)

Click Ok.

Configuring SNA Server 4.0 SP3

The following definitions are made using the Microsoft SNA Server Manager tool. To
start this tool select Start, Programs, Microsoft SNA Server, Manager.

T Rightclick the server you created. Choose Insert, Link Services. From the Insert Link
Services window select your adapter and protocol (DLC 802.2 Link Service). Click
Add. The properties window for that protocol appears. Click Ok.

2 Expand the server. Right click on SNA Service and choose Properties. The control
point configured here is for incoming connections only and is not used for this
outgoing connection to OS/390.

You should, however, configure it. Enter the network name (P390) and control point
name (DL00010). The comment field is optional. Click Ok.

INOTE: The network name matches the value of the NETID parameter in the VTAM
startup parameters in SYST.VTAMLST(ATCSTROO). The control point name
(D1.00010) matches the value of the CPNAME parameter of the VIAM
Switched Major Node on OS/390, in SYS1.VTAMLST(SWO0E40D).

3 Highlight SNA Service and on the right hand side of the screen click the Connections
tab. Right click the Connections tab. Choose Insert, APPC, Local LU. The Local LU
Alias can be set to is whatever you want but for this scenario set it to the LU Name
(D1.00010). Enter the LU Alias (D1.00010). If you tab to the next field the network
name and LU name automatically appear in those fields. If this information does not
appear, enter P390 as the network name and DL00010 as the LU Name. The
comment is optional. Click the Advanced tab. Check Member of Default Outgoing
Local APPC LU Pool. Make sure Independent is selected for the section LU 6.2
type. Click Ok.

Right click the Connections tab and choose Insert, Connection, 802.2.

On the General tab, enter a name for yout connection, such as ETH2MVS. Choose
SNADLCI (or whatever the option may be) for the link service. The Comment is
optional. In the Remote End section, choose Hosz System. In the Allowed Directions
section, choose Outgoing Calls. In the Activation section choose On Server Startup.

6 On the Address tab, enter your remote network address, such as 10005A6EA879. Set
the Remote SAP Address to 0x04.

402

DB2 Server on 0S/390 —Windows Client

On the System Identification tab, make sure the following information is filled in. In
the Local Node Name section, the network name should be P390, the control point
name should be DI.00070, and the local node ID should be 05D FFFFF. In the XID
Type section, Format 3 should be selected.

In the Remote Node Name section, the network name should be P390 and the
control point name should be US$3270. Make no changes on the 802.2 DLC tab.
Click Ok.

NOTE: The Remote L.U Name should match the APPL name of the DB2 application

major node in SYST.VTAMLST(DB2TDB1A). Note that the member name
(DB2TDB1A) cannot be the same as the APPL name (DB2TDB1) within it.

10

1

Right click on APPC Modes. Choose Insert, APPC, Mode Definition. On the
General tab, enter a mode name, such as IBMRDB. The Comment field is optional.
On the Limits tab, enter 10 for the parallel session Limit. Enter 3 for the minimum
contention winner limit. Enter 3 for the partner minimum contention winner limit.
Enter 2 for the automatic activation limit. Leave the Characteristics, Partners, and
Compression tabs as is. Click Ok.

Highlight SNA Service. Right click the Connections tab on the right side of your
screen. Choose Insert, APPC, Remote LLU. On the General tab, choose ETH2M1/S.
The LU alias can be whatever you want but in this scenario it’s DB2TDB17. Make sure
the following information is in these fields:

Field Entry
Network Name P390
LU Name same as your alias DB2TDB1

Uninterpreted Name same as your alias DB2TDB1

Comment optional

On the Options tab, choose IBMRDB for the implicit incoming mode. Leave
everything else as is. Click Ok.

Move to Configured Users, right click, select Insert, and click on User. Highlight
Everyone and click Add. Everyone appears in the Add Names box. Click Ok. Go to the
SNA Manager Window where you should now see Everyone under Configured Users.
Right click on Everyone, choose Properties, and then click the APPC Defaults tab.
Choose DLO010 as the local APPC LU. Then choose DB2TDBT as the remote
APPC LU. Click Ok.

Move to CPIC Symbolic Names, right click, select Insert, select APPC, and click
CPIC Symbolic Name. This name must match something in DB2 on the Windows 2000
server and is case sensitive. For this scenario, enter DB2CPIC.

403

Chapter 9

Setting Up Archive/Retrieval Configurations

Installing DB2 on a

Windows 2000 Server

404

Configure the DB2
instance

12 Choose Same as the Conversation Security and IBMRDB as the mode name. The
Comment field is optional. Click the Partner Information tab. In the Partner TP
Name area, click SINA Service TP (in hex) and enter 07F6C4C2. In the Partner LU
Name area, click Alias and enter Partner LU alias (DB2TDBT). Click Ok.

NOTE: The CPIC symbolic name (DB2CPIC) must match the destination name when
you define the node entry in DB2 on the Windows 2000 Server. This is discussed
further in the following topic.

Setting Up DB2 on a Windows 2000 Server

On the Windows 2000 Setver, this scenario assumes DB2 version 8.1 for Windows is
installed with version 2.3.2 of the Distributed Database Connection Services.

Follow these steps:

Insert the installation CD and go to Start, Run. Then enter the following command,
substituting the appropriate drive letter for the CD drive:

e:\setup /I=LANGUAGE

Where LANGUAGE represents the two-character country code for your language
(for example, EN for English).

Click Ok.

2 The installation routine asks if you would like to view the read me file. If not, click
Next.

3 Check IBM Database 2, select the Server option, and check Distribution Database
Connection Services (DDCS). Then select the Multi-User gateway option. Click
Next.

4 Choose Try and Buy Only for both options then click Next.

Choose Full installation and click Next. Accept the default destination directory and
drive letter and click Install. The installation routine asks if you want to reboot:

Yes, reboot
OR
No, wait to reboot

Choose one of these options and click Finish.

All of the following definition descriptions were performed using DB2’s Database
Director. To start this tool choose Start, Programs, DB2 For Windows, Database
Director.

Click the plus sign (+) to the left of the Database Managers icon to expand it. Then right
click on the DB2 icon and choose Configure. On the Protocols tab, enter db2inst1 in the
Service Name field. Click Ok.

Defining an 0S/390
node

Defining a system
database entry

Updating TCP/IP values
on the Windows 2000
server

Defining a database
connection services
entry

Defining an 0S/390
system

Defining a DB2
instance

Defining an 0S/390
database

Installing Universal
Database

DB2 Server on 0S/390 —Windows Client

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the Node Directory icon, then
choose Directory Entry, Catalog.

Enter a Node Name (OS/390), an optional comment, choose the protocol type (APPC)
and the destination name (DB2CPIC), and then choose the security type (Program). Click
Ok.

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the System Database Directory
icon, then choose Directory Entry, Catalog.

On the General tab, choose Type for the Remote radio button. Click the Remote tab and
enter the database name (ARCDB) and alias (ARCDB). Choose Node from the list (OS/
390). Do not click the box labeled DDCS or Back level Database. Click Ok.

The next step is to update TCP/IP-related values on the Windows 2000 server. For
information on how to do this, see Updating TCP/IP values on the Windows 2000 setver
on page 405.

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the Database Connection
Services Directory icon, then choose Directory Entry, Catalog.

Choose Database (ARCDB). For Target Database, enter the location name for the DB2
subsystem on OS/390.

Installing and Configuring DB2 on a Windows 2000 Server
This scenario assumes DB2 for Windows was installed and DB2 Server was at version 8.1.

All of the following definition descriptions were performed using DB2’s Control Center
tool. To start this tool choose Start, Programs, DB2 for Windows, Administration Tools,
Control Center.

Right click on Systems and choose Add. On the Add System window, click the drop down
arrow for the operating system. Choose M1/S/ESA, and enter P390 for the system name.
Click Apply. A confirmation message appears. Click Close.

Expand the Host System (P390) you created in the previous topic. Right click on
Instances and choose Add. Enter names such as DB2TDB/1 as a remote instance and DB2

as a destination name. Choose APPC as the protocol. In the Security Section of this
window, choose Same and click Apply. A confirmation message appears. Click Close.

Expand out the newly created Instance from the previous section (DB2TDB1). Right

click on Databases and choose Add. Enter a database name and alias, such as ARCDB,
and click Apply. A confirmation message appears. Click Close.

Setting Up Universal Database on Windows 2000

This involves installing Universal Database (UDB) version 6.1 EE:

405

Chapter 9

Setting Up Archive/Retrieval Configurations

Configuring Universal

406

Database

On the Welcome window, click Next. Then select the DB2 Enterprise Edition
option and click Next. Then click Custom.

Select the components you need. Make sure the Destination folder is correct and
click Next. The Configure DB2 Services window appears.

Make sure there is a DB2 instance (DB2) and an Administration Server (DB2DAS00)
then click Next.

Check the user name and password for the Administration Setrver.

username = dbadmin
password = (password)

Click Next.

On the Start Configuring Files window, click Next. Then decide if you want to restart
your computer and click Finish.

Follow these steps to configure UDB version 6.1 EE:

1
2

Choose Start, Programs, DB2 for Windows, Client Configuration Assistant.

Click Add Database if you have just installed. Click Add to add databases if you have
already created databases. The Add Database Smart Guide appears.

On the Source tab (step 1), choose the Manually Configure a Connection to a DB2
Database option and click Next.

On the Protocol tab (step 2), choose TCP/IP as the protocol. Select OS/390 as the
target operating system. Click Next.

On the TCP/IP tab (step 3), set the following fields:

In this field Enter

Host Name 0s390

Port Number 446

Service Name (leave blank)
Click Next.

6 On the Database tab (step 4), set the following fields:

In this field Enter
Location Name USDCIOS39DSN1
Database Alias ARCDB
Comment (optional)
Click Next.

DB2 Server on 0S/390 —Windows Client

7 Onthe ODBC tab (step 5), check the Register this Database for ODBC option. Then
select the appropriate data source. Click Done.

Updating TCP/IP-related Values on a Windows 2000 Server
Follow these steps to update TCP/IP values on a Windows 2000 Setver.

1 Enter these lines into the services file (c:\winnt\system32\drivers\etc\services):

db2instl 3702/tcp # db2 port
db2insti 3703/tcp # db2 port interrupt

2 Go to Programs, Start, Settings, Control Panel, System and choose the Environment
tab. Enter a system vatiable called DB2COMM and set its value to APPC, TCP/IP.

This indicates the communication protocols DB2 will use — APPC talks to the OS/
390 Host and TCP/IP talks to the Windows clients.

Add a system variable called DB2ZCODEPAGE and set its value to 850.

Reboot your system to apply these changes.

ComMmmoN DB2 ERRORS

Here is a list of some common DB2 errots:

Error

Description

SQL30073 “119C”

<6

Parameter value “” is not

Supported

SQL30081N A communication
error has been detected

Protocol specific error 9

Protocol specific error 1

Protocol specific error 2

This is a problem with CCSID or code page. Select Start,
Control Panel, System, and click the Environments tab. Enter
a system variable called DB2CODEPAGE and set the value
to 850.

You must reboot for the change to take affect.

This problem is related to the SNA Connectivity parameters.

First look at the CPIC symbolic destination name and make
sure everything is correct. Also check the Partner LU and
Local LU definitions. If you change any of these parameters
only a stop and restart of SNA Server is required.

The first thing to look at is the Link. Make sure it has started
and you have a valid connection to the host.

Look at your LU definitions for both the Local LU and
Partner LU. Make sure they ate correctly defined.

SETTING UP CLIENTS

This scenario assumes DB2 for Windows version 8.1 is installed and the Distributed

Database Connection Services is at version 2.3.2.

407

Chapter 9

Setting Up Archive/Retrieval Configurations

Defining a DB2/2000
node

Defining a system
database entry

Updating TCP/IP-
related values on a
Windows client

408

All of the following definition descriptions were performed using DB2’s Database
Director. To start this tool choose Start, Programs, DB2 For Windows, Database
Director.

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the Nodes Directory icon, then
choose Directory Entry, Catalog.

Enter a node name (N'T04), an optional comment, and choose the protocol type (TCP/
IP). For the host name, enter your server name and for the service name enter
DB2INST1. Click Ok.

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the System Database Directory
icon, then choose Directory Entry, Catalog.

On the General tab, choose Remote for Type. Click the Remote tab and enter the
database name (ARCDB) and alias (ARCDB). Choose Node from the list (NT04).

Do not click the boxes labeled DDCS or Back Level Database. Click Ok.

Follow these steps so the system can update TCP/IP related values on a Windows client:

T So the system can find the host name (see Configuring SNA Server 4.0 SP3 on page
402), make this entry in the hosts file (c:\windows\system32\drivers\etc\hosts):

10.8.10.211 USRSRV04

The left indicates the IP address of the server and right indicates the host name.

2 Enter these lines in the services file (c:\windows\system32\drivers\etc\services):

db2instl 3702/tcp # db2 port
db2insti 3703/tcp # db2 port interrupt

3 Goto Programs, Settings, Control Panel, System, and click the Environment tab.
Enter a system variable called DB2COMM and set its value to TCP/IP. This indicates
the communication protocols DB2 will use (TCP/IP) to talk to the Windows Setver.
Also add a system variable called DB2ZCODEPAGE and set its value to 8§50. Reboot
your system to apply these changes.

Setting Up the INI Options for the DB2 Driver
Here are the INI options for the DB2 driver:

< Archival >
ArchiveMem = Yes

< ArcRet >
AppldxDfd = Deflib\AppIdx.dfd
AppIdx = APPIDX
CARFile = ARCHIVE
CARPath =
Catalog = CATALOG
RestartTable = RESTART

< DBHandler:DB2 >
BindFile = c:\rellO\fap400\w32bin\db2lib.bnd
Database = ARCDB

DB2 Server on 0S/390 —Windows Client

CreateTable = Yes
CreateIndex = No
UserID = (0S/390 user ID)
PassWd = (0S/390 password)

< DBTable:APPIDX >
DBHandler = DB2

< DBTable:ARCHIVE >
DBHandler = DB2

< DBTable:CATALOG >
DBHandler = DB2

< DBTable:RESTART >
DBHandler = DB2

< DB2_FileConvert >
APPIDX = DAP102_APP_RI1
Archive = DAP102_ARC_R1
Catalog = DAP102_CAT_R1
Restart = DAP102_RES_RI1

< Trigger2Archive >
Company = Company
LOB = Lob
PolicyNum = PolicyNum
RunDate = RunDate

These table names are examples of the names you can use.

409

Chapter 9
Setting Up Archive/Retrieval Configurations

DB 2 S ERVER For this scenatio, assume you have a DB2 (version 6.1) Universal Database set up on a

ON WINDOWS indows 2000 server.
— WINDOWS
CLIENT

Windows Client

Windows 2000 iy
Server m '

—
DB2 Universal Database '
(version 6.1) -
/3/

N

SETTING UP A DB2 DATABASE ON THE SERVER

Follow these steps to set up a DB2 Database on the server.

T Go to Start, Programs, DB2 for Windows, Administration Tools, Control Center.

The Control Center window appears. Expand Systems and you should see a server
name such as ARCDB6.

If so, go to step 3. If the server name is not listed, go to step 2.

2 Right click on Systems and choose Add. The Add System window appears. This is
where you set up the system information DB2 uses to find the location of the
database you are going to archive to.

Go to the Protocol field and select Named Pipe. The Protocol Parameters area
changes, now displaying a Computer Name field. Click Refresh to retrieve
information about the local system. The server name appears under the System
Name field. If you click on that name the system places it in the System Name field.
Fill in other pertinent information. The Comment field is optional. Click Apply when
finished.

A confirmation message appears. Click Close. This should take you back to the
Control Center window. The server name should now be listed under Systems. Go
to step 3.

410

Archiving to a remote
DB2 database using an
ODBC driver

Setting up an ODBC
data source

DB2 Server on Windows — Windows Client

Expand the system name. You will now see Instances listed. Right click on Instances
and choose Add. Click Refresh. This retrieves a list of instances on the server.

Choose DB2. Enter DB2 in the Instance Name field. The Comment field is optional.
Click Apply. A confirmation message appears. Click Close. This should take you back
to the Control Center window. The DB2 instance should now be listed under
Instances.

Expand DB2. You will see Databases listed, right click on Databases and choose
Create, New. The Create Database Smartguide window appears.

Enter the name of the new database (such as ARCDBO) in the Database Name field
and the Database Alias field. The Comment field is optional. Click Done. This takes
you back to the Control Center window. The newly created database will be listed
under Databases.

Setting Up a Client for DB2 VERSION 6.1

This topic discusses archiving to a DB2 version 6.1 database (Universal Database) on a
Window 2000 Server using an ODBC driver and the native DB2 driver.

Follow these steps to set up a DB2 remote database on Windows 2000 Server:

1

Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
The Control Center window appears. Right click on Systems, then choose Add.

An Add System window appears. This is where you set up the system information
DB2 uses to find the location of the database (Windows 2000 Server). Click Refresh
and the server name should appear in the box below the System Name field. Click
the server name and the server information appears in the fields. Click Apply. A
confirmation message appears. Click Close.

You are now back to the Control Center window again. Make sure the new system
name appears when you expand Systems. If the new system name is listed under
Systems then expand that out also. You should then find Instances listed under your
system name. Right click on Instances and choose Add.

An Add Instance window will appear. Click Refresh. This will retrieve a list of
instances on your local system. Choose DB2 if it is not already in the Remote
Instance field. Click Apply. A confirmation message appears. Click Close.

Expand Instances and expand DB2. There will be Databases listed under the DB2
instance, right click and choose Add.

An Add Database window appears. Click Refresh to retrieve the names of databases
currently set up on the server. Choose the correct database from the list, such as
ARCDBG. Enter the name of the database in the Alias field. The Comment field is
optional. Click Apply. A confirmation message appears. Click Close. Expand
Databases and make sure the new database appears.

Follow these steps to set up an ODBC data source using Windows 2000:

1

Go to Start, Settings, Control Panel, ODBC. You are now viewing User Data
Sources.

411

Chapter 9

Setting Up Archive/Retrieval Configurations

Setting up INI options
for the ODBC driver

412

Click Add to add an IBM DB2 ODBC driver. The Create New Data Source window
appeats.

Choose IBM DB2 ODBC Driver. Click Finish. The ODBC IBM DB2 Driver — Add
window appears.

Click the down arrow in the Data Source Name field, choose the correct database
name, such as ARCDB6. The Description field is optional, but it should be there if
you specified it when you created the database. Click Ok. The User Data Sources tab
of the ODBC Data Source Administrator window appears. Make sure your new data
source is there, along with its corresponding driver, then click Ok.

Follow these steps to set up the INI options specific to the ODBC driver:

Set up the DBHandler:ODBC control group as shown below.

< DBHandler:0DBC >
CreateTable = Yes
CreateIndex = No
Debug = No

Server = (such as ARCDB6-the newly-created data source name.)
BLOBSupportForDB20DBC =

UserID = (Windows user ID)

Passwd = (Windows password)

Use the BLOBSupportForDB20DBC option to tell the Archive/Rettieval programs
the version of DB2 being accessed can support BLOB (Binary Large Object) data
types. This INI option, along with specifying BLOB as the data type for the
CARData field in the CARFILE.DFD file, tells the Archive/Rettieval programs to
process the field as a BLOB. If you omit this option ot set it to No, the Archive/
Retrieval programs translate any CARFILE.DFD data type request of BLOB to
LONG VARCHAR.

The DBTable:XXX control groups determine what tables are used by looking at the
ArcRet control group. The ArcRet control group should look like the one shown
here:

< ArcRet >
AppIldxDfd = Deflib\AppIdx.dfd
AppIdx = APPIDX
CARFile = ARCHIVE
CARPath
Catalog = CATALOG
RestartTable = RESTART
ExactMatch = No
Keyl = Company
Key2 = Lob
KeyID = PolicyNum

For all the tables listed above, add these control groups:

< DBTable:APPIDX >
DBHandler = ODBC

< DBTable:ARCHIVE >
DBHandler = ODBC

< DBTable:CATALOG >
DBHandler = ODBC

Setting up a DB2
database

Setting up the INI
options for the DB2
driver

DB2 Server on Windows — Windows Client

< DBTable:RESTART >
DBHandler = ODBC

The ODBC_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >
APPIDX = FSIV100_APPIDX
Archive = FSIV100_ARCHIVE
Catalog = FSIV100_CATALOG
Restart = FSIV100_RESTART

Set the Archival control group as shown here:

< Archival >
ArchiveMem = Yes

Archiving to a Remote DB2 Database Using the Native DB2
Driver

Follow these steps to archive to a remote DB2 database using DB2’s native driver. These
steps assume you are using Windows 2000.

First set up a DB2 database:

Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center appears, right click on Systems, then choose Add. An Add
System window appears.

On the Add System window you set up system information DB2 uses to find the
location of the database (Windows 2000 Server). Click Refresh and the server name
should appear below the System Name field. Click the server name and the server
information appears in the fields. Click Apply. A confirmation message appears.
Click Close. You return to the Control Center window.

Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that out also. You should find Instances
listed under your system name. Right click on Instances and choose Add. An Add
Instance window will appear.

Click Refresh to retrieve a list of instances on your local system. Choose DB2 if it is
not already in the Remote Instance field. Click Apply. A confirmation message
appears. Click Close.

Expand Instances and expand DB2.There will be Databases listed under the DB2
instance, right click and choose Add. An Add Database window appears.

Click Refresh to retrieve the names of databases are currently set up on the server.
Choose the cotrect database from the list, such as ARCDB6. Enter the name of the
database in the Alias field. The Comment field is optional. Click Apply. A
confirmation message appears. Click Close. Expand Databases to make sure the new
database appears.

Follow these steps to add the INI setting the native DB2 driver will use:

Set up the DBHandler:DB2 control group as shown below.

413

Chapter 9

Setting Up Archive/Retrieval Configurations

< DBHandler:DB2 >
BindFile = c:\rellO\fap400\w32bin\db2lib.bnd
CreateTable = Yes
CreateIndex = No

Database = (such as ARCDB6, a remote database name)
UserID = (Windows 2000 user ID)
Passwd = (Windows 2000 password)

2 The DBTable:XXX control groups determine what tables are used by looking at the
ArcRet control group, which should look like the following.

< ArcRet >
AppIdxDfd = Deflib\AppIdx.dfd
AppIdx = APPIDX
CARFile = ARCHIVE
CARPath =
Catalog = CATALOG
RestartTable = RESTART

3 For all the tables listed above, add the following control groups:

< DBTable:RESTART >
DBHandler = DB2
< DBTable:CATALOG >
DBHandler = DB2
< DBTable:APPIDX >
DBHandler = DB2
< DBTable:ARCHIVE >
DBHandler = DB2

4 Make sure the DB2_FileConvert control group contains the table names of each
table to be created. Here is an example, your table names may differ:

< DB2_FileConvert >
APPIDX = DAP102_APP_RI1
Archive = DAP102_ARC_R1
Catalog = DAP102_CAT_R1
Restart = DAP102_RES_RI1

5 Set the Archival control group as shown here:

< Archival >
ArchiveMem = Yes

414

DB2 SERVER
AND CLIENT ON
WINDOWS

Setting up an ODBC
data source

DB2 Server and Client on Windows

This topic discusses archiving to a local DB2 version 6.1 database using an ODBC driver
and the native DB2 driver.

SETTING UrP A DB2 DATABASE

This scenario shows how to archive to a DB2 database using an ODBC driver on
Windows 2000.

1

Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center appears, right click on Systems, then choose Add. An Add
System window appeats.

On the Add System window you set up system information DB2 uses to find the

location of the database (local Windows 2000). Go to the Protocol field and click the
down arrow, select Named Pipe. The Protocol Parameters area changes, displaying the
Computer Name field. Type in the computer’s network name here and click Retrieve.

The program retrieves information about the local system. Once that information is
retrieved you will see names in the System Name and Remote Instance fields. Click
Apply. A confirmation message appears. Click Close. You return to the Control
Center window.

Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that also. You should then find
Instances listed under your system name. Right click Instances and choose Add.

An Add Instance window will appear. Click Refresh. You will see a list of instances
on your local system. Choose DB2 and click Apply. A confirmation message appears.
Click Close.

Expand Instances and expand DB2. You will see Databases listed, right click and
choose Add. The Add Database window appears.

Enter the name of the new database, such as ARCDBL, in the Database Name field
and the Alias field. The Comment Field is optional. Click Apply. A confirmation
message appears. Click Close. Expand Databases and make sure that the new
database appears.

This scenario uses Windows 2000.

Choose Start, Settings, Control Panel, ODBC. You are now viewing User Data
Sources. Click Add to add an IBM DB2 DBC driver. The Create New Data Source
window appears

Choose IBM DB2 ODBC Driver. Click Finish. The ODBC IBM DB2 Driver - Add
window appears.

Click the down arrow in the Data Source Name field and choose the correct database
name. The Description field is optional, but should appear if you specified it when
you created the database. Click Ok. The User Data Soutces tab of the ODBC Data
Source Administrator window appears. Make sure that your newly created data
source is there and its corresponding driver is correct then click Ok.

415

Chapter 9

Setting Up Archive/Retrieval Configurations

Setting up INI options Follow these steps to set up the INI options specific to ODBC:

for ODBC
1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:0ODBC >
CreateTable = Yes
CreateIndex = No

Debug = No

Server = (such as ARCDBL - The data source name)
BLOBSupportForDB20DBC =

UserID = (wWindows user ID)

Passwd = (Windows password)

Use the BLOBSupportForDB20DBC option to tell the Archive/Retrieval programs
the version of DB2 being accessed can support BLOB (Binary Large Object) data
types. This INI option, along with specifying BLOB as the data type for the
CARData field in the CARFILE.DFD file, tells the Archive/Rettieval programs to
process the field as a BLOB. If you omit this option ot set it to No, the Archive/
Retrieval programs translate any CARFILE.DFD data type request of BLOB to
LONG VARCHAR.

2 Use the DBTable:XXX control groups to determine what tables are used by looking
at the ArcRet control group. Here is an example:

< ArcRet >
AppldxDfd = Deflib\AppIdx.dfd
AppIdx = APPIDX
CARFile = ARCHIVE
CarPath =
Catalog = CATALOG
RestartTable = RESTART

3 Tor all the tables listed above, add these control groups:

< DBTable:APPIDX >
DBHandler = ODBC
< DBTable:ARCHIVE >
DBHandler = ODBC
< DBTable:CATALOG >
DBHandler = ODBC
< DBTable:RESTART >
DBHandler = ODBC

4 Use the ODBC_FileConvert control group to list the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >
APPIDX = FSIV100_APPIDX
Archive = FSIV100_ARCHIVE
Catalog = FSIV100_CATALOG
Restart = FSIV100_RESTART

5 Set the Archival control group as shown here.

< Archival >
ArchiveMem = Yes

Archiving to a Local DB2 Database Using the Native DB2

416

Setting up the DB2
database

Setting up the INI
options for the DB2
driver

DB2 Server and Client on Windows

Driver

This scenatio uses Windows 2000.

Select Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center window appears, right click on Systems, then choose Add.
The Add System window appears.

On the Add System window you set up system information DB2 uses to find the
location of the database (local Windows 2000). Go to the Protocol field and click the
down arrow, select Namzed Pipe. The Protocol Parameters area then displays a
Computer Name field. Enter the computer’s network name and click Retrieve.

The program retrieves information about the local system. Once that information
appears, you see names in the System Name and Remote Instance fields. Click Apply.
A confirmation message appears. Click Close. The Control Center window appears.

Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that also. You should then find
Instances listed under your system name. Right click Instances and choose Add. The
Add Instance window appears.

Click Refresh to retrieve a list of instances on your local system. Choose DB2 and
click Apply. A confirmation message appears. Click Close.

Expand Instances and expand DB2. You will see Databases listed, right click and
choose Create, New. The Create Database Smartguide window appears.

Enter the name of the new database (ARCDBL) in the New Database Name field
and the Database Alias field. The Comment Field is optional. Click Done.

This should take you back to the Control Center window. Expand Databases if it is
not already. Your new database should be listed.

Be sure to set up the following INI options for the native DB2 driver.

Set up the DBHandler:ODBC control group as shown below.

< DBHandler:DB2 >
BindFile = d:\rellO\fap400\w32bin\db21lib.bnd
CreateTable = Yes
CreateIndex = No
Debug = No

Database = (such as ARCDBL - Local database name)
UserID = (Windows user ID)
Passwd = (Windows password)

2 Use the DBTable:XXX control groups to determine what tables are used by looking

at the ArcRet control group, which should look like the following.

< ArcRet >
AppIdxDFD = Deflib\AppIdx.dfd
AppIdx = APPIDX
CARFile = ARCHIVE
CARPath
Catalog = CATALOG
RestartTable = RESTART

417

Chapter 9

Setting Up Archive/Retrieval Configurations

3 For all the tables listed above, add the following control groups:

< DBTable:CATALOG >
DBHandler = DB2
< DBTable:APPIDX >
DBHandler = DB2
< DBTable:ARCHIVE >
DBHandler = DB2
< DBTable:RESTART >
DBHandler = DB2

4 The DB2_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< DB2_FileConvert >
APPIDX = DAP102_APP_R1
Archive = DAP102_ARC_R1
Catalog = DAP102_CAT_R1
Restart = DAP102_RES_RI1

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

418

SQL SERVER
ON WINDOWS
— ODBC
CLIENT ON
WINDOWS

Setting up the INI
options for ODBC

SQL Server on Windows — ODBC Client on Windows

This scenario sets up a database in SQL Server using Microsoft SQL Server version 7.0.

1

Go to Start, Programs, Microsoft SQL Server 7.0 SQL Enterprise Manager. The
Server Manager window appears, SQL 7.0 should already be expanded and there will
be server names that appear below, choose the correct server and expand it.

Highlight the Databases folder, right click and choose New Database. Type in the
database name, such as ARCDB?7, and select a data device. There is a size specified
to the right of this field and the device should have a size greater than zero. Click the
Create Now button.

If no login has been defined, highlight the Logins folder under the server and right
click. Choose New Login. Type in a login name and a password. Click the Permit
field next to the database you would like the login to default to. Then click Add.
Confirm your password and click Ok.

SETTING UP A CLIENT

Follow these instructions to set up a Windows client and an ODBC data source using
Windows 2000.

1

1

Select Start, Settings, Control Panel, ODBC. The User Data Sources window
appears. Click Add to add a new SQL Server data source. The Create New Data
Source window appears.

Choose SQL Server. Click Finish. The ODBC SQL Server Setup window appears.
Enter the following information:

In this field Enter

Data Soutce Name This is your database name.)
Description (optional)

Setver (This will drop down and the server should be listed.)

Click Options and enter the database name, such as ARCDB7, you will be archiving
to in the Database Name field. Click Ok. The Data Sources window appears.

Make sure the new data source name appears with the correct driver specified. If all
is correct, click Ok.
Set up the DBHandler:ODBC control group as shown below.

< DBHandler:0DBC >
CreateTable = Yes
CreateIndex = No

Debug = No

Server = (such as ARCDB7 - This is the data source name)
UserID = (SQL Server user ID)

Passwd = (SQL Server password)

The user ID and password must be set up in SQL Server. For more information see
SQL Server on Windows — ODBC Client on Windows on page 419.

419

Chapter 9

Setting Up Archive/Retrieval Configurations

2 In the DBTable:XXX control groups, determine what tables are used by looking at
the ArcRet control group, which should look like the one shown here:

< ArcRet >
AppldxDfd = Deflib\AppIdx.dfd
AppIdx = APPIDX
CARFile = ARCHIVE
CARPath
Catalog = CATALOG
RestartTable = RESTART

For all the tables listed above, add the following control groups:

< DBTable:APPIDX >
DBHandler = ODBC

< DBTable:ARCHIVE >
DBHandler = ODBC
DBTable:CATALOG >
DBHandler = ODBC
< DBTable:RESTART >
DBHandler = ODBC

3 Add these INI options for DFD files for these tables:

A

< ArcRet >
CARFileDFD = carfile.dfd
RestartDFD = restart.dfd

DFD files can specify the full file name, otherwise they are located in the directory
specified in the DefLib option:

< MasterResource >
DefLib = subdirectory

4 The ODBC_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >
APPIDX = FSIV100_APPIDX
Archive = FSIV100_ARCHIVE
Catalog = FSIV100_CATALOG
Restart = FSIV100_RESTART

These table names are examples of the names you can use.

5 Set the Archival control group as shown here:

< Archival >
ArchiveMem = Yes

420

IDS ON
WINDOWS —
DB2 ARCHIVE

ON z/0S

IDS on Windows —DB2 Archive on z/0S

This scenario features Docupresentment’s Internet Document Server (IDS) running on a
Windows 32-bit computet and communicating with a DB2 archive residing on a z/OS
machine.

To illustrate this scenario, you should download the setup executable to install
Docupresentment 10.2 (IDS version 1.8). You can do this from the Support web site:

http:/ /www.oracle.com/skywiresoftware /index.html
Follow these steps:
1 From the Support site, register, log in, and then click on product installations.
2 Select the current version for Windows 32-bit operating systems.
Refer to these documents for installation and configuration information:
Internet Document Server Guide
Docupresentment Installation Guide

SDK Reference

SETTING Up THE DB2 ARCHIVE ON z/0OS

Refer to these documents for information on configuring a DB2 archive on z/OS:
e Documaker Server Installation Guide

* Documaker Server System Reference

421

http://www.oracle.com/skywiresoftware/index.html

Chapter 9

Setting Up Archive/Retrieval Configurations

CREATING A Z/
OS DATABASE

422

To create a database, you must be an administrator on the machine you are creating the
database on. Follow these instructions:

Click Add Database once you enter into the Client Configuration Assistant. On Tab

1 (Source), choose the Manually Configure a Connection to a DB2 Database option.
Click Next.

2 On Tab 2 (Protocol), choose TCP/IP as the protocol and z/OS as the target
operating system. Click Next.

3 On Tab 3 (TCP/IP), enter 08390 in the Hostname field. The Port number defaults
to 446. Enter db2ins 1 in the Service Name field. Click Next.

4 On Tab 4 (Target Database), enter the database name, such as USDCIOS39DSN1,
in the Location Name field. Click Next.

5 On Tab 5 (Alias), enter ARCDB (or your database name on the mainframe) in the
DBAlias field. The DBAlias field gets the first part of the location name from the
previous tab. The Description field is optional. Click Next.

6 On Tab 6 (ODBC), check the Register this Database for ODBC field. Then select
the data source. Click Done.

7 The system asks if you want to test your connection, click the Test Connection
button. Then enter your user ID and password and click Ok. A window should
appear with a message similar to this one:

The Connection test was successful.
Database product= DB2 0S/390 7.0

SQL authorization ID= akb

Database alias = ARCDB

To close this window and proceed, click OK.

Click Add to add another database or click Close to exit the Client Configuration
Assistant.

Updating TCP/IP Values on a Windows 2000 Server
Follow these steps to update TCP/IP-related values on a Windows 2000 setver:

T So that the host name you entered can be found, add this entry in the host file

(c:\winnt \system32 \drivers \etc \hosts):
10.8.10.210 WIN2000A_1

The value on the left is the IP address of the Windows 2000 Server. The value on the
right is the host name for that Windows 2000 Server.

2 Add these lines in the services file (c:\winnt\system32\drivers\etc\services):

db2instl 446/tcp #db2 port
db2insti 447 /tcp #db2 port interrupt

3 Go to Start, Settings, Control Panel, System, and choose the Environment tab. Enter
a system variable called DB2COMM and set its value to:

APPC, TCP/IP

Creating a z/0S Database

This specifies the communication protocols DB2 will use —APPC to talk to the z/
OS host and TCP/IP to talk to Windows 2000 clients.

Also add a system variable called DB2ZCODEPAGE and set its value to:
850

Reboot Windows 2000 for the system variable to take effect.

423

Chapter 9

Setting Up Archive/Retrieval Configurations

424

Appendix A
System Files

This appendix includes samples of the various files used
by and created by the system. For each file you will find
a definition, including information on the tools you can
use to modify the files, and a sample of the files.

The sample files are based on the base system. If you or
Oracle Insurance’s staff have customized your system,
your files may differ.

For information on file formats, consult the technical
documentation, which is located on your distribution
CD and on Oracle Insurance’s web site.

This appendix discusses these topics:

* Opverview on page 426

e Types of Files on page 428

* Resource Files on page 431

* Files Created by the GenTrn Program on page 444
* Files Created by the GenData Program on page 445
* Files Created by the GenPrint Program on page 447
e Tiles Created by the GenWIP Program on page 448
e Tiles Used by the GenArc Program on page 449

425

Appendix A

System Files

OVERV| EW The files discussed in this appendix are arranged in the following order:
Types of files:

* BCH files
* DAT files
e DBEF files
* DDT files
* DFD files

e Error files

* Initialization (INI) files

e JDT files
* Logfiles
* LOG files
* MDX files

* Transaction files
Resoutce files

e FSISYS.INI

* FSIUSER.INI

* FORM.DAT

* SETRECPTB.DAT

e DFD files
« DDT files
e JDT files

* Extract files

Files created by the GenT'rn program as it gathers information:
* TRNFILE.DAT

* LOGFILE.DAT

e ERRFILE.DAT

* MSGFILE.DAT

Files created by the GenData program to make print-ready files:
* NAFILE.DAT

* POLFILE.DAT

* NEWTRN.DAT

426

Overview

e Batch files (*.bch)

+ MANUAL.BCH

* Updated log and error files

* Spool files

* MSGFILEDAT

Files used by the GenWIP program for processing incomplete transactions
* WIP DBF

* WIP.MDX

* 00000001.DAT

» 00000001.POL

Files used by and created by the GenArc program for archiving information:
* APPIDX.DBF

* ARCHIVE.CAR

* APPIDX.MDX

* APPIDX.DFD

427

Appendix A

System Files

TYPES OF FILES

428

BCH files

CAR files

DAT files

DBF files

DDT files

There are several types of files used in the system. These file types are defined below.

The GenData program creates files with the extension BCH, called batch files, which list
the transactions to be included in each batch, as specified in your FSISYS.INI file settings.
Batch files are used as trigger files by the GenPrint and GenWIP programs. Batch files
indicate which transactions should be printed in a given batch job. The GenPrint program
uses batch files to print completed forms. The GenData program also creates manual
batch files which record incomplete transactions. These manual batch files are used by the
GenWIP program.

The GenArc program creates compressed archive (CAR) files in which it stores
NAFILEs, POLFILEs, and archived forms and data. An example of a generated CAR file
is ARCHIVE.CAR. You can have multiple CAR files. The GenArc program also creates
the APPIDX.DBEF file which serves as an index to the archived information stored in the
CAR file.

Data table (DAT) files define various information the system uses as it processes
information. All DAT are text files which have the extension DAT. Some DAT files are
comma-delimited text files. You can edit DAT files using an text editor.

In many cases, there are tools, such as Form Set Manager, which you can use to edit
specific DAT files. For example, the FORM.DAT file tells the system how the vatious
forms are organized in the form set. The SETRCPTB.DAT file contains information
about the recipients of a form and the conditions which determine whether or not a form
is included in a form set or sent to a recipient. You can edit these files using the Form Set
Manager.

The NAFILE.DAT file contains the variable data generated by the GenData program.
This file, along with the POLFILE.DAT file, tell the GenPrint program what to print.
This file also tells the GenWIP and GenArc programs what to place into WIP and what
to archive.

The GenWIP program also creates DAT files for each incomplete transaction it must
process. These files are numbered sequentially and for each file there is a corresponding
POL file which contains information about the forms to use.

Database files (DBF) are used in several places in the system. For each DBF file, there is
a corresponding MDX file which serves as its index. Examples of DBF files are
FDB.DBF, which is created by the Field Database Editor; ARCHIVE.DBF, which is
created by the GenArc program; and WIP.DBF, which is created by the GenWIP
program.

NOTE: The UNIQUE.DBF file contains the last number for WIP file that was created.
Whenever a WIP file is created, a number is generated to uniquely identify it to
make sure no WIP file is overwritten.

The data definition table (DDT) file tells the GenData program, what rules it should use
as it processes the data. You can edit DDT files using a text editor or by using the Image
Editor.

DFD files

Error files

Extract files

Types of Files

In the DDT file you store semi-colon-delimited information which defines the source and
target fields, field length and offsets, rules to apply to the field, and optional parameters
for the rules.

Data format definition (DFD) files define to the system the database file formats of the
files generated by the system. Many common system files are stored in database format.
For example, the transaction file, the new transaction, application index, and recipient
batch files are all stored in database format. These database files can be in a variety of
formats, including Xbase, DB/2, ODBC, and standard sequential files, such as flat text
files. The record structure defined in the DFDs remains independent, regardless of the
type of database being used—although there are occasionally exceptions for some
database specific records.

The GenData program uses TRNDFDFL.DFD to read the TRNFILE which contains
the actual transactions GenTrn creates.

The GenTrn program produces an error file to note any transactions it could not process
correctly. The other programs, such as GenData, GenPrint, GenWIP, and GenArec,
update this file as they perform their processing activities. This file will help you discover
and correct any processing errors you may encounter. Errors may be caused by incorrect
or missing data. The system records the error information by transaction. You can view
this file using a text editor.

The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator required
so the transaction will be added to the manual batch file, or change the FAP file and then
process the transaction again.

Extract files are typically text files which contain the data the system processes. Extract

files are created by another program, typically a database program, in a format the system
can read. The text file format provides a standard interface into the system. For example,
your data may be stored in a DB/2 or VSAM database from which you extract the data

you want the system to process.

You can customize the system to read almost any type of file layout. The GenT'rn program
first reads the extract file and, using that extract data and TRNDFDFL.DFD file, creates
transaction files (TRN files) the GenData program can use as it applies the processing
rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE: For use on an z/OS platform, the extract file must be converted to EBCDIC
format if the file contains international characters. See Working with Fonts on
page 171, for more information on international characters.

Docucreate includes a sample extract file, called EXTRFILE.DAT, which serves as an
example of the type of file the base system can read. You can use this file to experiment
with the base system and determine how you want to set up your system. Typically, a
complete test library is provided with the system. You can use this library to test your
installation.

You can use the OpSystem option to specify the origination platform of an extract file:

429

Appendix A

System Files

430

FAP files

Initialization files

JDT files

Log files

LOG files

MDX files

Transaction files

< RunMode >
OpSystem =

If you enter 08400, the system loads an EBCDIC conversion table which handles binary
number conversions for source extract files originating from an IBM AS/400 system.

The information which defines each section (image) is stored in a FAP file. FAP files are
text files with the extension FAP. You can edit FAP files using a text editor, but they are
most commonly created and edited using Documaker Studio or Image Editor. The FAP
file defines the section while the FORM.DAT file defines the sections which comprise a
form and form set.

Initialization (INI) files are used by the system to set system parameters and to enable or
disable system features. Some examples of system INT files are: FSISYS.INI and
FSIUSER.INI. For example, the FSISYS.INI file contains information the GenT'rn
program uses to determine when a new record starts and other information about the
extract files the GenTrn program processes. The FSIUSER.INI file contains information
specific to each user, such as the location of files and so on.

The job definition table (JDT) file is a text file which tells the system which rules to use
as it processes a specific job. Rules defined in the JDT file are run before the system runs
rules assigned to specific fields. An example of a JDT file is the AFGJOB.JDT file.

When you run GenT'rn, the program creates log files which record, by transaction, each
transaction the program processes. These files have a DAT extension. You can review
these log files using any text editot.

Graphics, such as scanned signatures or logos, are stored as LOG files in the system. You
use Documaker Studio or Logo Manager to view, manage, and manipulate LOG files.

The various system programs create MDX files which serve as indexes to the database
files (DBF files). For example, the GenWIP program creates the WIP.DBF file and the
corresponding WIP.MDX file to record the incomplete transactions which were not
printed.

The Field Database editor creates the FDB.MDX file to setve as an index to the
FDB.DBF file which contains common variable field definitions.

The GenT'rn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This format
is defined in the TRNDFDFL.DFD file. The GenData program uses the
TRNDFDFL.DFD file to read the information in the TRN file as it processes the
information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define the
location of the transaction data. For instance, the offsets in a TRN file tell the GenData
program where the transaction begins in the extract file, where the data for the transaction
is stored in the NAFILE.DAT file, and where the form set for the transaction is stored in
the POLFILE.DAT file.

RESOURCE
FILES

FSISYS.INI file

FSIUSER.INI file

FAPCOMP.INI

FORM.DAT file

Resource Files

Resource files are used by the various programs which comprise Documaker Server.
These files provide information these programs use to know how to read extract files,
how to create print-ready files, which rules to apply, which recipients receive copies of
which forms, and so on.

The resource files include:
+ FSISYS.INI

* FSIUSER.INI

* FAPCOMP.INI

e FORM.DAT

* SETRCPTB.DAT

* DFD files
* DDT files
* JDT files

e Extract files

The FSISYS.INI file is one of the initialization (INI) files used by the system to set
parameters and to enable or disable features. For example, the FSISYS.INI file contains
information the GenTrn program uses to determine when a new record starts and other
information about the extract files the GenTrn program processes. You can see examples
of this file in the DMS1 sample resources.

The FSIUSER.INI file is one of the initialization (INI) files used by the system to set
system parameters. For example, the FSTUSER.INI file contains information specific to
each user, such as the location of files and so on. If there are common settings in the
FSISYS.INI and FSIUSER.INI files, the system looks at both, but uses the settings in the
FSIUSER.INI file. You can see examples of this file in the DMS1 sample resources.

The FAPCOMP.INI is an initialization (INI) file used by the Docucreate tools to set
parameters or turn on or off features. For example, this INI file contains the control
groups which let you map font families so that if you import an RTF file, the fonts are
changed automatically. You can see an example of this file in the FAP\DLL directory.

The FORM.DAT file specifies the forms currently being used in the system. The various
elements of the FORM.DAT file specify the print order of the forms, duplex or simplex
options, recipient batch information, establish a link between a system form name and the
sections associated to it, and descriptive information.

This file, also known as the Form Set Definition Table, contains information about the
KEY fields, such as company, line of business, and policy number plus information about
each section in the form, its recipients, and the form set itself.

The information is stored in semi-colon-delimited format and you can edit this file using
the legacy Form Set Manager or a text editor. The information that comprises individual
sections is stored in a FAP file.

431

Appendix A

System Files

The following table describes the syntax of each record of the FORM.DAT file.

NOTE: Some of these options may not apply or may be changed given the specifications

for a custom implementation.

;<FLD1>;<FLD2>;<SYS NAME>; <DESC>;<FORM OPT>;<not used>;|

[<RECP1>(<CPY1>),...,<RECPn>(<CPYn>)]/.../|;

Record

Description

<FLD1>

<FLD2>

<SYSNAME>

<DESC>

<FORM OPT>

<not used>

432

Used to categorize the forms, such as company. (length 20)

Used to categorize the forms, such as line of business. (length 20)
The name of the form used by the system and in tables. (length 20)
Used to describe the form. (length 30)

Optional. Used for form options. (length 5)

B - Indicates forms printed on certain Metacode printers can be stapled.
D - Indicates this form is a Dec. page.

F - Indicates the form size is fixed and not selectable

G - Indicates the form is legal size

H - Indicates the form is hidden from view but data can still be embedded
on the form for later use.

I - Indicates the form is A4

J - Indicates the form is executive size

K- Indicates the form is landscape

M - Indicates these forms can be repeated.

N - Indicates the form is not required and should not display initially. The
user has to add this form using the Form Selection window. The system
assumes the form is required (see R) by default.

O - Indicates overflow. A duplicate form generates to accommodate
information which would not fit on the original form.

P - Indicates that the form is a pull form.

R - Used for default forms. Forms with this option atre displayed initially.
S - Indicates that this form is a Sub. Dec. page.

X - Indicates that this form is a Master Dec. page

7 -Line print (- z-z - z - z-)

Not cutrently assigned a value. Can be used in custom development.

Section file name stored in the master resource library, such as CU54A

<RECP>

<CPY>

Resource Files

These section options indicate:

A - the section has no variable fields and is a print only form.

B - the section is duplex and is on the back page.

C - the section is for data entry and should not be printed.

D - the section is for data entry and should be printed.

E - the section is for viewing only and not for data entry.

F - the section is duplex and is on the front page.

G - the section should be printed on letter size paper (the default)
H - the section is not for data entry but should be printed.

I - the section will print on standard European paper.

] - the section will print on Executive paper (7.257x10.57).

888K - the section will print landscape.

L, 2 - the section prints on paper tray 2 (lower)

N - the section is an inline FAP file

O - the section is copied onto additional pages

P - the section is a template

Q - the section is hidden and will not print.

R - a rolling section which prints on both sides of the paper.

S - the section stays on the same page and doesn’t flow onto two forms.

T - short binding. The section prints on both sides of the paper and
duplexes in flip chart fashion.

U, 1- the section prints on paper tray 1 (upper).

V - the section is a pre-compiled resource that is resident on the printer.
W - the section can grow. Size is not fixed.

X - the section is a header which appears at the top of the page.

Y - the section is s a footer which appears at the bottom of the page.
Z - this is a flash section and is not used in pagination calculations

0 (zero) - a variable text merge is created

3 - paper tray 3

4 - paper tray 4

5 - paper tray 5

6 - paper tray 6

7 - paper tray 7

8 - paper tray 8

9 - paper tray 9

Contains the name of all possible recipients in which this form can be
included. Example: Insured, Home Office, Agent, and so on.

Contains the default number of copies printed for a given recipient.

433

Appendix A

System Files

Here is an excerpt from the FORM.DAT file included with the base application in the
DMS1 sample resources. This excerpt shows the first three forms in the SAMPCO form
set, DEC PAGE, LETTER, and LETTER2:

; SAMPCO; LB1; DEC PAGE;X;R;;Sname|D<INSURED(l),COMPANY(l),AGENT(l) >/
Cmdecl|DS<INSURED(l),COMPANY(l),AGENT(l)>/CmdeC2|DS<INSURED(1),
COMPANY(l),AGENT(l)>/CmdeC3|DS<INSURED(1),COMPANY(l),AGENT(1)>;

;SAMPCO;LBl;LETTER;;RD;;Sname|D<INSURED(l),COMPANY(l),AGENT(l) >/
fmlt2a|DS<INSURED(l),COMPANY(l),AGENT(l)>/fmlt2b|DS<INSURED(l),
COMPANY(l),AGENT(l)>/Sall|DS<INSURED(1),COMPANY(l),AGENT(1)>;

; SAMPCO; LB1; LETTER2; Second Letter;RD; ; sname|D<INSURED(1),
COMPANY(l),AGENT(l)>/fmlt2a|DS<INSURED(l),COMPANY(l),AGENT(1)>/
b3002|DS<INSURED(l),COMPANY(l),AGENT(1)>/
ba3006|DS<INSURED(l),COMPANY(l),AGENT(l)>/
ba3020|DS<INSURED(l),COMPANY(l),AGENT(l)>/
Sall|DS<INSURED(l),COMPANY(l),AGENT(1)>

7

You can see other examples of this file in the DMS1 sample resources.

SETRCPTB.DAT file The SETRCPTB.DAT file is used with the FORM.DAT file to build form sets and
specify recipients given specific transaction types and other dependent conditions. It is
also used to desctibe overflow conditions.

This file, also known as the Form Set Trigger table, contains information which tells the
GenData program the recipients of a form set and tells the program which recipients
receive which forms or sections.

You can define conditions using the Form Set Manager or by editing the
SETRCPTB.DAT file in a text editor.

The following table describes each record in a SETRCPTB.DAT file. You can see
examples of this file in the sample resources.

NOTE: Some of these options may not apply or may be changed depending on how your
system was implemented.

This table explains the syntax of this file:

; COMPANY ; LOB; FORM NAME; IMAGE NAME; TRANS CODE;
RECP LIST; SEARCH MASK; OCCURRENCE (overflow) FLAG; RECS/FIRST IMAGE;
RECS/OVERFLOW IMAGE;RECIP. COPY COUNT; CONDITION; (CRLF)

Field Purpose

COMPANY Company name as defined in the form set definition file (FORM.DAT)
and the transaction record (TRNDFDFL.DFD)

LOB Line of business as defined in the FORM.DAT and TRNDFDFL.DFD

FORM NAME Form name as defined in the FORM.DAT file

IMAGE NAME Section (image) name as defined in the FORM.DAT file. Section name is
included only when you want to set conditions on a particular section in
a form.

434

Field

GroupNamel

GroupName?2

Form name

Image name

Transaction codes

Recipient list

Search mask 1
(Counter)

Occurrence
(overflow) Flag

Records per
overflow image

Records per first

image

Recipient copy
count

Resource Files

Purpose

Matches the GroupNamel field in the FORM.DAT file. In an insurance
industry application, this would typically contain the company code.
<Key1Table> in the FSISYS.INI file.

Matches the GroupName?2 field in the FORM.DAT file. In an insurance
industry application, this would typically contain the Zne of business code.
<Key2Table> in the FSISYS.INI file.

The name of the form, as specified in the FORM.DAT file. Note: Form
names are descriptive, and do not correlate to any physical file name.

The name of a section (image) within a form, as specified in the
FORM.DAT file. This name also correlates to a physical section file
(FAP file) and, in legacy implementations, to a Data Definition Table file
(DDT file).

Note: A section level trigger record requires an entry in this key field; a
form level trigger record must omit any value in this field.

By including one or more transaction codes in this field, a form is
triggered only if the extract file record includes that transaction code.

If no transaction code value is mapped from the extract data for a
transaction, the system considers all triggers eligible, regardless of
whether they specify a transaction code list.

Conversely, if a transaction code value is mapped from the data, the
system only considers those triggers that have the same value to be
eligible for evaluation.

Allows the optional specification of certain recipients.

Defines the criteria to determine when a form belongs in a form set (or
a section within a form). The criteria lets Documaker Server get specific
data from the extract file. One form (or section) is added for every
occutrence of the search mask per transaction when the overflow flag is
set.

Indicates the need to calculate overflow conditions. Valid entries are:
0=No overflow and 1=Overflow

Also used for Master and Subordinate form and section level flags. Valid
entries: M=master (used on form level triggers) and S=subordinate (used
on section level triggers)

F=tells the system to override any previous copy count settings and use
the copy count settings in this trigger file (used on form level triggers)

You can choose these options for the occurrence Flag field from a drop-
down pick list on the Transaction window.

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on the specified overflow form.

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on a specific form before overflowing

to a new form.

Specifies the number of copies a recipient receives.

435

Appendix A

System Files

436

DFD files

Field Purpose

Search Mask 2 Similar to Search Mask 1, but only one form will be triggered, regardless
(True/False) of how many occurrences of the condition exists.

Custom Rule Auvailable field for use with custom rules or search masks. Most common

custom rule is Reciplf.

Custom Rule Specifies parameters for the selected custom rule.
Parameters

Here is an excerpt from the SETRCPTB.DAT file included with the base application in
the /mstrres/dms1/deflib/ directory. This excerpt shows the recipients for the first three
forms in the SAMPCO form set, DEC PAGE, LETTER, and LETTER2:

; SAMPCO; LB1; DEC PAGE; ;Tl; INSURED, COMPANY,AGENT; 11, HEADERREC, 96,

~0;0;1;0;1;;

; SAMPCO; LBl ; LETTER; ; T1; AGENT, COMPANY, INSURED; 11, FRMLSTREC,25,1;0;1;
0;1;;

; SAMPCO; LB1; LETTER2; ; T1; INSURED, COMPANY, AGENT; 11, FRMLSTREC, 27,1;0; 1
;0;155

There are several database files, meaning that these files are written and read via calls to
Oracle Insurance’s DBLIB database software library. These database files can be in
several formats, including Xbase (dBase), DB/2, and flat text. Not all database files
require a corresponding DFD file because their record structure is coded in the software
modules that access them. For instance, here is a list of Oracle Insurance’s database files:

* transaction files

* new transaction files
e recipient batch files

* manual batch files

* application index files
* WIP files

* help files

* table files

Only these files require an external DFD file:
* transaction files

* new transaction files
e recipient batch files

* manual batch files

e application index files

The WIP file may optionally have an external DFD. If there is no external WIP DFD file,
the internal record structure as coded in the program is used. The help and table files do
not support the use of external DFD files.

TRNDFDFL.DFD file

RCBDFDFL.DFD file

APPIDX.DFD

Resource Files

Of the database files that require external DFD files, only three actual DFD files are
needed:

* atransaction file DFD (TRNDFDFL.DFD)
* arecipient batch file DFD (RCBDFDFL.DFD)
* an application index file DFD (APPIDX.DFD)

The transaction file DFD is used by both the transaction file and the new transaction file.
The recipient batch file DFD is used by both the recipient batch files and the manual
batch files. The application index file DFD is used by the application index file. You can
see examples of all these files in the DMS1 sample resources.

The TRNDFDFL.DFD file tells the GenData program how to read the TRN file. If
necessary, you can edit this text file in a text editor. The TRNDFDFL, is used by the
GenTrn, GenData, GenArc, and GenWIP programs.

The GenT'rn program writes out the transaction file using the TRNDFDFL. The
GenData program reads the transaction file and writes out the new transaction file using
the TRNDFDFL file. And the GenArc and GenWIP programs read the new transaction
file using the TRNDFDFTL file.

You can define the name of the TRNDFDFL file in the Data control group of the
FSISYS.INI file, as shown below:

< Data >
TrnDfdFile = trndfdfl.dfd

The RCBDFDFL.DFD file, or recipient batch file DFD, is used by the GenData,
GenPrint, and GenWIP programs. If necessary, you can edit this text file in a text editor.

The GenData program writes the recipient and manual batch files using the
RCBDFDFL.DFD file. The GenPrint program reads the recipient batch files using the
RCBDFDFL.DFD file. The GenWIP program reads the manual batch files using the
RCBDFDFL.DFD file.

You can set the name of the RCBDFDFL.DFD file in the Data control group of the
FSISYS.INI file, as shown below:

< Data >
RcbDfdFile = rcbdfdfl.dfd

The APPIDX.DFD file, or application index file, is used by the GenArc program and the
Archive module of Documaker Workstation. The GenArc program writes out the
application index file using the APPIDX.DFD. While Documaker Workstation’s Entry
module reads the application index file using APPIDX.DFD. If necessary, you can edit
this text file in a text editor.

You can set the name of the APPIDX.DFD file in the ArcRet control group in the
FSIUSER.INI file, as shown below:

< ArcRet >
AppIdxDfd = appidx.dfd

437

Appendix A

System Files

438

.DDT files

However, the APPIDX.DFD name does not have to be set as shown above, provided the
system is running in a Windows environment. If the APPIDX.DFD name is not specified
as shown, the system automatically appends a DFD extension to the APPIDX name
specified in the same group, as shown below:

< ArcRet >

Appldx = Appldx

This will not work in an environment that does not support file name extensions, such as

z/OS.

The Data Definition Table (DDT) is used to map data from a source record to fields in a
form. The DDT file tells the GenData program what rules it should use as it processes
the data. You can edit DDT files using a text editor or by using the Image Editor.

In the DDT file you store semi-colon-delimited information which defines the source and
target fields, field length and offset, rules to apply to the field, and optional parameters for
the rules.

You can see examples of DDT files in the DMS1 sample resources. The following table
explains the structure of this file:

;A;B;sfld;sofst;slen;dfld;dfinx;dlen; fm; frule;data; f1;£2;£3;f4;x;y;

fontID
Element Size Description
A index into File Definition Table (FDT)
B source record Index
sfld 17 soutce recotd field name
sofst offset of field in source record
slen length of field in source record
dfld 17 destination field name
dfinx destination field index
dlen length of destination field
fm 17 format mask
frule field level rule
data 1024 data field used by a field level rule
f1 2 not required flag
2 2 host required flag
f3 2 operator required flag

.JDT files

Extract files

Resource Files

4 2 optional required flag

X x coordinate for the location of the field, in FAP units (2400 per
inch)

y y coordinate for the location of the field, in FAP units (2400 per
inch)

fontID ID of the font

The job definition table (JDT) file is a text file which tells the system which rules to use
as it processes a specific job. Rules defined in the JDT file are run before the system runs
rules assigned to specific fields.

An example of a JDT file is the AFGJOB.JDT file, which you can see in the DMS1 sample
resources. You can also see examples of JDT files, including the performance JDT file
used with single-step processing in the topic, Single-step Processing Example on page 55.

Extract files are typically text files which contain the data the system processes. Extract

files are created by another program, typically a database program, in a format the system
can read. The text file format provides a standard interface into the system. For example,
your data may be stored in a DB/2 or VSAM database from which you extract the data

you want to process in the system in text format.

You can customize the system to read almost any type of file layout. The GenT'rn program
first reads the extract file and, using that extract data and TRNDFDFL.DFD file, creates
transaction files (TRN files) the GenData program can use as it applies the processing
rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE: For use on a z/OS platform, the extract file must be converted to EBCDIC
format if the file contains international characters. See Working with Fonts on
page 171, for more information on international characters.

Extract data can be in the form of a flat file, a VSAM file, or it can come directly from a
database. The important thing is that the data is organized and presented in a manner that
makes it efficient to process. While the system is very flexible, there are things you can do
to minimize the need for customizations and to maximize the speed at which the system
identifies and processes the data.

Here are some general guidelines to follow when you design an extract file:

* The basic entity of the data is the transaction. Data for transactions is stored in
multiple rows.

e To speed the identification of a transaction entity, make the first record for each
transaction a general information row.

439

Appendix A

System Files

* Fach record should have a standard key structure. Here is an example of a minimum
key structure:

Include this key Which is

Transaction Identifier unique to each transaction
Record Type Identifier for each record type
Record Counter a sequence number

Sequence numbers are not required. In some cases they are nice to have to keep track
of which occurrence has been passed. It is, however, not a requirement that you
sequence repeating records.

* To make testing easier, use a flat ASCIIT or EBCDIC extract file. By eliminating
packed data fields, you can more easily view the contents of an extract file using
standard text editors.

* Speed processing by keeping the extract file as small as possible—minimize the
occurrence of repeated information in subsequent records.

* When possible, structure the data in the extract file so the system can read it in the
order it should be processed. The less the system has to search for data, the faster it
will process the data.

* Keep all related information in one record if possible, to minimize complexity of
rules. For example, the layout should look something like this:

Record Name Layout
GENERALINFO account number, type transaction
ADDRESSINFO client name, address, phone

* When information occurs multiple times (occurs clauses) in records, structure the
extract file to contain one record for each occurrence. For example, when multiple
forms are present on a policy or multiple meters are present on a bill, structure the
information into individual records per entity (form, meter, and so on). This
increases the likelihood that you can use base system overflow and mapping features
to process the data.

NOTE: For overflow, the system first determines the maximum number of lines it can
print on a page. When this number is exceeded, the system automatically inserts
overflow pages as necessary. If overflow is dependent upon custom conditions
to determine line counts, you will need custom code.

* Design records that will recur or overflow to have specific identifiers to sequence the
records and to have key identifiers for overflow requirements within one record. This
helps to minimize processing time and rule complexity. This is not a requirement, but
may ease custom rule complexity with a point of reference.

440

Fields Group

Resource Files

e Itis a good idea to have a header record which contains all global identifiers for a
transaction, such as COMPANY, LINE OF BUSINESS, and TRANSACTION.
You can then use this header record as the trigger to each transaction and as the basis
for building the correct form set.

* When you build a header record, place all of the key fields for WIP, Archive, and the
batch sorting fields in this record. This makes it easier for the system to perform
searches and simplifies the building of the DFD records used to define the key
architecture.

* Where possible, place all conditional data triggers for a form in one record. This may
eliminate the need for the RECIPIF rule in the SETRCPTB.DAT file when
triggering records. By reducing usage of this rule, you can improve system
performance.

NOTE: You can find additional performance considerations for MVS systems in the
Installation Guide.

* To maximize performance, provide sub totals and totals for groups of information
in the extract data. This eliminates the need for system calculations via DAL scripts
or custom rules and speeds performance.

e Provide any data in the extract file that would require the use of the TbILkUp,
LookUp, SetState rules. This also improves performance and simplifies your master
resource libraties.

e TFor Year 2000 compliance, make sure all date fields in the extract file are in 4-digit
year format, preferably in YYYYMMDD format. (For the Archive application index
file, APPIDX.DFD, the rundate field retrieved from the extract file must be in this
format).

Docucreate includes a base extract file, called EXTRFILE.DAT, which serves as an
example of the type of file the base system can read. You can use this file to experiment
with the base system and determine how you want to set up yout system.

You can see examples of this file in the sample resources.

DFD File Format

The DFD file contains two control groups. The Fields control group lists all the fields in
the record structures and the order those fields appear in the storage media. The fields are
automatically stored internally in the same order they appear externally. The second group
describes each field. This description includes an external and internal definition of the
field where applicable.

The Fields control group appears as follows:

< Fields >
FIELDNAME
FIELDNAME
FIELDNAME =

441

Appendix A

System Files

Field Description Group

442

..where FIELDNAME lists the name of the field. This is the name used by applications
to reference data in a DFD record. The order of the FIELDNAME options dictates the
order these fields are in, where applicable, on the storage media and how are they are
stored in memory.

FIELDNAME has a maximum length of 26 characters, except when using xBase. Using

xBase, the maximum length is 10 characters.

The Field Description control group has the following format:

< XXXXXX >

EXT_TYPE=
EXT_LENGTH=
EXT_PRECISION=
INT_TYPE=
INT_LENGTH=
INT_PRECISION=

KEY=

REQUIRED=

...where xxoooxx is name of field as listed in the Fields control group.

EXT_TYPE

Data format of field on storage media

Possible formats are:

NOT_PRESENT

not present in this record

SIGNED_CHAR a signed char
CHAR char
CHAR_ARRAY NULL terminated string

CHAR_ARRAY_NO_NULL_TERM

SHORT

UNSIGNED_SHORT

LONG

UNSIGNED_LONG

FLOAT

DOUBLE

LONG_DOUBLE

character array not NULL
terminated

16-bit signed integer
16-bit unsigned integer
32-bit signed integer
32-bit unsigned integer
float single precision
double precision

long double precision

DATESTAMP a FSI date/time field
TIMESTAMP a FSI time stamp
VARCHAR variable length character array

Resource Files

The external record definition must match the actual records written to or read from the
database. The internal record definition is provided for easier programming use.

Item

Description

EXT LENGTH:

EXT_ PRECISION:

INT_TYPE:

INT_LENGTH:

INT_PRECISION:

KEY:

REQUIRED:

Length of field on storage media. Valid for data types CHAR_ARRAY
and CHAR_ARRAY_NO_NULL_TERM only. Ignored for all other
data types.

Number of digits after decimal point. Valid for data types FLOAT,
DOUBLE, and LONG_DOUBLE only. Itis ignored for all other data

types.

Same as EXT _TYPE.

Same as EXT_LENGTH except one additional byte is added to length
to store null termination byte.

Same as EXT_PRECISION.

Indicates if this field is a key field. Y indicates it is a key field. All other
values, or if field is not present, indicates field is not a key field. This
field is only used for DB/2 and indicates that the field is required.

Indicates if this field is required in order for a record to be stored on
or retrieved from a storage media. Y indicates it is required. All other
values, or if field is not present, indicates field is not required. If
KEY=Y, the field is required regardless of the value of this option.

The options can appear in any order. The system records any errors encountered while
loading a field in the log file.

443

Appendix A

System Files

FILES CREATED
BY THE GENTRN

444

PROGRAM

Transaction files

Error files

Log files

The GenTrn program reads data in an extract file and creates transaction records which
in turn are processed by the GenData program. The main file created by the GenTrn
program is the TRN file which, along with the TRNDFDFL.DFD file, tells the GenData
program which transactions to process.

The GenTrn program creates these files as it reads in the extract file and uses the resource
files:

e Transaction files
e Error files

* Logfiles

The GenT'rn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This format
is defined in the TRNDFDFL.DFD file. The GenData program uses the
TRNDFDFL.DFD file to read the information in the TRN file as it processes the
information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define the
location of the transaction data. For instance, the offsets in 2 TRN file tell the GenData
program where the transaction begins in the extract file, where the data for the transaction
is stored in the NAFILE.DAT file, and where the form set for the transaction is stored in
the POLFILE.DAT file.

The GenTrn program produces this file to note any transactions it could not process
correctly. This file will help you discover and correct any processing errors you may
encounter. The most common errors are caused by incorrect or missing data. The
information is recorded by transaction. You can view this file using a text editor. You can
see examples of this file in the DMS1 sample resources.

When you run GenTrn, the program creates log files which record by transaction each
transaction the program processes. You can review these log files using any text editor.
You can see examples of this file in the sample resources.

FILES CREATED
BY THE
GENDATA
PROGRAM

NAFILE.DAT file

POLFILE.DAT file

Files Created by the GenData Program

The GenData program takes information created by the GenTrn program and applies
processing rules to those transactions and data. The GenData program creates batch files,
the NAFILE.DAT, and the POLFILE.DAT file for the GenPrint program. It also creates
a manual batch file MANUAL.BCH) for the GenWIP program. The output from the
GenData program is also used by the GenArc program to archive forms and data.

The GenData program creates the following files:
*+ NAFILEDAT

* POLFILE.DAT

* NEWTRN.DAT

* Batch files (*.bch)

« MANUAL.BCH

* Updated error and log files

The GenData program creates an NAFILE.DAT file, commonly referred to as the NA
file, in which it stores section and variable field information. The GenPrint program uses
this file, along with the POLFILE.DAT file, which is also produced by the GenData
program to print the forms.

If the data is incomplete and GenData cannot complete the form, it creates a manual
batch file. The GenWIP program then creates separate DAT and POL files for each
incomplete transaction. These files provide the entry system with the information it needs
to open the form so a data entry operator can add the missing data. This is a semi-colon-
delimited text file. You can see examples of this file in the DMS1 sample resources.

The POLFILE.DAT file, commonly referred to as the POL file, defines the form set used
for a specific transaction. The GenData program creates this file which is used by the
GenPrint, GenWIP, and GenArc programs. For instance, if the data is complete,
GenData creates an NA file and a POL file. These files are used by GenPrint, along with
the batch files, to produce the print-ready file.

If the data is incomplete and GenData cannot prepare the form for printing, it creates a
manual batch file. The GenWIP program then creates separate files for each transaction
to provide the entry system with the information it needs to open the form so a data entry
operator can add the missing data. This is a semi-colon-delimited text file. You can see
examples of this file in the DMS1 sample resources.

NOTE: You can use the MaxPolLinel.ength option to control the output line length
when writing out POL file records. The default is 255. You can set it to shorter
lengths when testing to morte easily view the file in a text editor.

< Control >
MaxPolLineLength = 80

Choose a length between 40 to 4000 bytes.

445

Appendix A

System Files

NEWTRN.DAT file

Batch files

MANUAL.BCH file

Error batch

Updated log, error, and

446

message files

The GenData program creates the NEWTRN.DAT file. This file tells the GenArc
program where to find data in the NAFILE.DAT file and which forms to use in the
POLFILE.DAT file. You can see examples of this file in the DMS1 sample resources.

The GenData program creates files with the extension BCH, called batch files, list the
transactions to be included in each batch, as specified in your FSISYS.INI file settings.
Batch files are used as trigger files by the GenPrint and GenWIP programs. Batch files
indicate which transactions should be printed in a given batch job. The GenPrint program
uses batch files to print completed forms. The GenData program also creates manual
batch files which record incomplete transactions. These manual batch files are used by the
GenWIP program.

The GenData program creates this file if it is unable to complete the processing of a form
set. Typically, this occurs because the forms are missing information. This file is then used
by the GenWIP program so a data entry operator can manually complete the form and
resubmit it for processing.

The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required, or change the FAP file and then process the transaction again.

As the GenData program processes information, it updates the log, error, and message
files. You can review these files in a text editor to review when transactions were
processed ot to resolve errors.

FILES CREATED
BY THE
GENPRINT
PROGRAM

Spool files

Updated log and error
files

Files Created by the GenPrint Program

The GenPrint program takes information produced by the GenData program and creates
a printer spool file for use with PCL, AFP, Metacode, and PostScript printers. Specifically,
the GenData program produces batch files, an NAFILE.DAT, and a POLFILE.DAT file
which the GenPrint program uses to create printed forms

The GenPrint program creates the following files:
* Spool files
* Updated log and error files

The spool files are print-ready files the GenPrint program creates from information
received from the GenData program and from resource files.

As the GenPrint program processes information, it updates the log and error files. You

can review these files in a text editor to review when transactions were processed or to
resolve errors.

447

Appendix A

System Files

FILES CREATED

BY THE GENWIP

PROGRAM

WIP.DBF file

WIP.MDX file

00000001.DAT file

448

00000001.POL file

UNIQUE.DBF file

The GenWIP program receives information about incomplete transactions from the
GenData program. This information is stored in manual batch (MANUAL.BCH) files.
The GenWIP program then creates separate files for each incomplete transaction. The
data for these incomplete transactions is stored in a file with the extension DAT, such as
00000001.DAT. The corresponding form set information is stored in a file with the
extension POL, such as 00000001.POL.

The GenWIP program also creates the WIP.DBF file, a database file which contains
records of all the incomplete transactions extracted from the NAFILE.DAT file
produced by the GenData program. The WIP.MDX file, also created by the GenWIP
program serves as an index to the WIP.DBF file.

This gives the entry program the information it needs to display the form so you can fill
in the missing information and complete the form in Documaker Workstation. Once
completed, you can resubmit the form for processing by the GenData program.

The GenWIP program uses these files as it prepares incomplete transactions for further
processing with the entry system.

e WIP DBF

e WIP.MDX

* 00000001.DAT files
* (00000001.POL files
* UNIQUE.DBF

The WIP.DBF file contains information about the incomplete transactions which the
GenWIP program extracted from the NAFILE.DAT and POLFILE.DAT file created by
the GenData program. The WIP.MDX file serves as an index to this file.

This file serves as an index to the WIP.DBF file.

Using the MANUAL.BCH file produced by the GenData program. The GenWIP
program creates from the NAFILE.DAT file, a separate data file for each incomplete
transaction. These files are numbered and have the extension DAT. In essence, they are
like the NAFILE.DAT except there is only one transaction per file.

Using the MANUAL.BCH file produced by the GenData program, the GenWIP program
creates from the POLFILE.DAT file, a separate POL file for each incomplete transaction.
These files are numbered to correspond with their matching data file and contain
information about the form set on which the system should place the data. In essence,
they are like the POLFILE.DAT except there is only one form set per file.

The UNIQUE.DBF file contains the last number for WIP file that was created. Whenever
a WIP file is created, a number is generated to uniquely identify it to make sure no WIP
file is overwritten. You should not modify, rename, or delete this file. The highest number
it will generate for WIP files is FFFFFFFF, which is 4,294,967,295. After this number, the
counter resets to 00000001.

The GenWIP program uses this information to create separate data and form information
files for the incomplete transaction information it receives from the GenData program.

FILES USED BY
THE GENARC
PROGRAM

APPIDX.DBF file

APPIDX.DFD file

ARCHIVE.CAR file

APPIDX.MDX file

APPIDX.DFD file

Files Used by the GenArc Program

The GenArc program archives forms and data so you can store the information efficiently
and retrieve it quickly. This program receives information stored in the APPIDX.DFD.
Using this information, the GenArc program creates CAR files to store the information
and forms and a DBF files which serves as an index to the data in the CAR files. The
GenArc program can create multiple CAR files, as needed.

The GenArc program uses and creates these files as if archives information:
*+ APPIDX.DBF

*+ APPIDX.DFD

* ARCHIVE.CAR

* APPIDX.MDX

The APPIDX.DBF file is created by the GenArc program and contains records about the
archive information stored in the ARCHIVE.CAR file.

The GenData program creates this file to tell the GenArc program how to store data and
forms to be archived. The actual information is stored in ARCHIVE.CAR files.

The GenArc program creates CAR files in which it stores archived forms and data. An
example of a generated CAR file is ARCHIVE.CAR. You can have multiple CAR files.

This file serves as an index to the APPIDX.DBF file.

The APPIDX.DFD file, or application index file, is used by the GenArc program and the
Entry module. The GenArc program writes out the application index file using the
APPIDX.DFD. While the entry module reads the application index file using the
APPIDX.DFD file.

You can set the name of the APPIDX.DFD file in the ArcRet control group in the
FSIUSER.INI file, as shown below:

< ArcRet >
AppIdxDfd = AppIdx.Dfd

However, the APPIDX.DFD name does not have to be set as shown above, provided the
system is running in a Windows environment. If the APPIDX.DFD name is not specified
as shown, the system automatically appends a DFD extension to the APPIDX name
specified in the same group, as shown below:

< ArcRet >
Appldx = Appldx

This will not work in an environment that does not support file name extensions, such as
z/OS systems.

449

Appendix A

System Files

450

00000001.DAT File

00000001.POL File

Glossary

All components of the system use specific terminology.
We suggest you familiarize yourself with these terms
before you begin using the system. The following terms
include definitions of system tools and files as well as
commonly-used terms.

NOTE: The Data control group in the FSISYS.INI file
lets you specify many of the file names you want
to use. For instance, by modifying the settings in
this group, you can change the name of the
error file (ERRFILE.DAT) to any file name you
want. In this manual, we refer to the default
names for these files.

Using the MANUAL.BCH file produced by the
GenData program, the GenWIP program creates from
the NAFILE.DAT file, a separate data file for each
incomplete transaction. These files are numbered and
have the extension DAT. In essence, they are like the
NAFILE.DAT except there is only one transaction per
file.

See also 0000001.POL and the GenWIP Program on
page 458.

Using the MANUAL.BCH file produced by the
GenData program, the GenWIP program creates from
the POLFILE.DAT file, a separate POL file for each
incomplete transaction. These files are numbered to
correspond with their matching data file and contain
information about the form set on which the system
should place the data. In essence, they are like the
POLFILE.DAT except there is only one form set per
file.

See also 0000001.DAT and the GenWIP Program on
page 458.

451

Glossary

AFP

ARCHIVE.CAR File

ARCHIVE.DBF File

ARCHIVE.DFD File

Base Product

.BCH Files

Batch Files

.CAR Files

452

Advanced Function Printing (AFP), developed by IBM, is a print server language that
generates data streams of objects. The data streams merge with print controls and system
commands to generate Intelligent Printer Data Stream (IPDS). Your system then sends
the IPDS to the AFP printer for printing. The GenPrint program can create spool files
for AFP printers.

See .CAR Files on page 452.

The ARCHIVE.DBEF file is created by the GenArc program and contains records about
the archive information stored in the ARCHIVE.CAR file.

The GenData program creates this file to tell the GenArc program how to store data and
forms to be archived. The actual information is stored in ARCHIVE.CAR files.

Any executable modules, source code, resource libraries, and documentation and help
delivered to you from the Support Services Group within the normal system release and
update cycle are considered part of the base product. All executable modules, source code,
resource libraries, and documentation and help which were changed or customized by
your internal development team, a third-party development team, or the Professional
Services staff, are custom solutions.

The GenData program creates files with the extension BCH, called batch files, which list
the transactions to be included in each batch. Batches are specified in your FSISYS.INI
file settings. Batch files are used as trigger files by the GenPrint and GenWIP programs.
Batch files indicate which transactions should be printed in a given batch job. The
GenPrint program uses batch files to print completed forms. The GenData program also
creates manual batch files which record incomplete transactions. These manual batch files
are used by the GenWIP program. Error batch files contain transactions which cannot be
processed by the system. Batch files are comma-delimited TEXT files.

See also MANUAL.BCH File on page 460.

See .BCH Files on page 452.

The GenArc program creates CAR files in which it stores archived forms and data. An
example of a generated CAR file is ARCHIVE.CAR. You can have multiple CAR files.
The GenArc program also creates DBF files which serve as an index to the archived
information stored in the CAR file.

Custom Solution

DAL

.DAT Files

.DBF Files

DDT Files

All executable modules, source code, resource libraries, and documentation and help
which were changed or customized by your internal development team, a third-party
development team, or Oracle Insurance’s Professional Services staff, are considered to be
a custom solution. Any executable modules, source code, resource libraries, and
documentation and help delivered to you from the Support Services Group, within the
normal system release cycle, are considered part of the base product.

Document Automation Language (DAL) is the language you use when you tell the system
how to calculate variable fields. This calculation is also called a script. When you select
calculation options for a variable field, you can choose one of the following:

DAL CALC. Recalculates the value of all fields each time a user tabs to a new field in the
section.

DAL ScCRIPT. Recalculates the value of the fields to which you assign the script only
when a user tabs out of that field

NOTE: You can find detailed information about DAL in the DAL Reference.

Data table (DAT) files define various information the system uses as it processes
information. All DAT are text files which have the extension DAT. Some DAT files are
comma-delimited text files. You can edit DAT files using a text editor.

In many cases, there are graphical tools, such as Form Set Manager, which you can use to
edit specific DAT files. For example, the FORM.DAT file tells the system how the
various forms are organized in the form set. The SETRCPTB.DAT file contains
information about the recipients of a form and the conditions which determine whether
or not a form is included in a form set or sent to a recipient. You can edit these files using
the Form Set Manager.

The NAFILE.DAT file contains the variable data generated by the GenData program.
This file, along with the POLFILE.DAT file, tell the GenPrint program what to print.
This file also tells the GenWIP and GenArc programs what to place into WIP and what
to archive. These files can only be edited with a text editor.

The GenWIP program also creates DAT files for each incomplete transaction it must
process. These files are numbered sequentially and for each file there is a corresponding
POL file which contains information about the forms to use.

Database files (DBF) are used in several places in the system. For each DBF file, there is
a corresponding MDX file which serves as its index. Examples of DBF files are
FDB.DBF, which is created by the Field Database Editor; ARCHIVE.DBF, which is
created by the GenArc program; and WIP.DBF, which is created by the GenWIP
program.

See also Field Database Editor on page 456 and External Database Editor on page 455.

The data definition table (DDT) file tells the GenData program what rules it should use
as it processes the data. You can edit DDT files using a text editor or by using the Image
Editor.

453

Glossary

DESKJET.FXR File

.DFD Files

Distributed Resource

Library

Duplex

ERRFILE.DAT

Error Batch

Error Files

454

In the DDT file you store comma-delimited information which defines the source and
target fields, field length and offset, rules to apply to the field, and optional parameters for
the rules.

See also .JDT Files on page 459.

This font cross reference file provides information about internal HP fonts for HP
Deskjet and compatible printers.

Data field definition (DFD) files define to the system the file formats of the files
generated by the system.

An example of a DFD file is the TRNDFDFL file which the GenTrn program creates.
The GenData program uses this file to read the TRNFILE which contains the actual
transactions GenTrn creates.

A Distributed Resonrce Library provides a decentralized repository into which you can place
compiled items you select from your master resource library. A distributed resource
library provides a unique and customized library of reusable resources for specific users
at various locations in your organization. A distributed resource library contains a section
(image) library, a variable data dictionary library, a rules library, and a system library.

See also Master Resource Library on page 460.

A form printed on both the front and back sides of a sheet of paper is printed in duplex
mode.

See also Simplex on page 462.

The GenTrn program creates this file to note any transactions it could not process
correctly. The other programs, such as GenData, GenPrint, GenWIP, and GenArec,
update this file as they perform their processing activities. This file will help you discover
and correct any processing errors you may encounter. Common errors are caused by
incorrect or missing data. The system records error information by transaction. You can
view this file using a text editor.

The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required, or change the FAP file and then process the transaction again.

See ERRFILE.DAT on page 454.

External Database
Editor

Extract Files

.FAP Files

FDB.DBF File

fetype

The External Database Editor provides you with an easy-to-use tool for creating and
maintaining information about the extract file being used. The data in the file can be
automatically merged onto a form’s variable fields using the External Database Editor.
The External Database Editor can import DDF, DFD, DBF, and COBOL copy book
files. The tool defines customer data or transaction file data, which provides you with a
greater ability to apply and modify data, and increase the ease of reusing resources.

See also Field Database Editor on page 456.

Extract files are typically text files which contain the data the system processes. Extract

files are created by another program, typically a database program, in a format the system
can read. The text file format provides a standard interface into the system. For example,
your data may be stored in a DB/2 or VSAM database from which you extract the data

you want to process in the system in text format.

You can customize the system to read almost any type of file layout. The GenT'rn program
first reads the extract file and, using that extract data and TRNDFDFL.DFD file, creates
transaction files (TRN files) the GenData program can use as it applies the processing
rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE: For use on an MVS platform, the extract file must be converted to EBCDIC
format if the file contains international characters.

The system includes a base extract file, called EXTRFILE.DAT, which serves as an
example of the type of file the base system can read. You can use this file to experiment
with the base system and determine how you want to set up yout system.

The information which defines each section is stored in a FAP file. FAP files are text files
with the extension FAP. You can edit FAP files using a text editor, but they are most
commonly created and edited using Image Editor. The FAP file defines the section while
the FORM.DAT file defines the sections which comprise a form and form set.

See also Image Editor on page 459.

The FDB.DBF file is a database file created by the Field Database Editor which contains
a record for each unique variable field you create in the Image Editor. You can add
records (variable fields) using the Field Database Editor or as you create sections using
Image Editor. The FDB.MDX file serves as an index to this file.

See also Field Database Editor on page 456.

An fetype defines the field format type. You can have an input and an output fetype. For
example, an input fetype with the fmtnum rule tells the system where the decimal goes in
the number. The output fetype tells the system how to format the output amount. An
fetype can consist of either one or four characters.

For more information, see the Rules Reference.

455

Glossary

Field Database Editor

Fixed Data

Font Manager

Form

Form Set

Form Set Manager

456

The Field Database Editor provides you with an easy way to store common variable field
information to make setting up and creating FAP files faster and more consistent. When
you use this tool, you create a file named FDB.DBF. This file contains a record for each
unique variable field name, and is indexed in ascending order.

Use this tool to ensure consistency in forms sets. For example, if you have a Name
variable field on a form, you can pull the attributes for that field into the form from the
Field Database Editor. The database contains such information as the name of the field,
font, type of variable field, and so on.

See also External Database Editor on page 455.

Fixed data is the same on every copy of the form. This includes items such as logos,
headers and titles. This information remains constant regardless of the data entry.

Font Manager is used to organize fonts and font sets. A font is a collection of letters,
symbols, and numbers that share a particular design. A font set s a collection of fonts you
choose to group together for your section and printing needs. The font set information is
stored in the font cross reference file (FXR file) which is created by Font Manager. Font
Manager lets you make sure your documents print the same way on different printers.

A well organized font set makes section creation quick and efficient. Forms composers
need a variety of fonts for text and field creation. Font Manager does not change the
actual printer fonts. This tool is used for defining the appropriate characteristics (bold,
size, and so on) about the font so the fonts used to create a particular form set are
consistent and easily accessible to the forms composers.

A form is a single document containing one or more pages ot sections. Most forms
contain multiple pages that are usually printed on both sides of a single sheet (duplex).
Some forms are printed only on one side (simplex). Typical forms include insurance
policies, tax returns, and mortgage documents.

A form includes two types of data: fixed and variable.

* Fixed data is the same on every copy of the form. This includes items such as logos,
headers and titles. This information remains constant regardless of the data entry.

* Variable data may differ from form to form. This includes items such as individuals'
names, addresses, and policy numbers. This information relates to the specific data
processed on each form.

A form set is a group of logically related forms required to process a single transaction. A
form set may contain one or many forms. You can group forms any way you want as you
create form sets.

This tool helps you group the individual sections and forms you create using Image Editor
into a set of related forms. This information is stored in the form set definition table. The
Entry module uses the form set definition table to control the data entry, print, work-in-
process, and atchive/tetrieval functions for related forms and sections.

FORM.DAT File

FSISYS.INI File

FSIUSER.INI File

.FXR Files

GenArc Program

The system stores the form set information in a semi-colon delimited file named
FORM.DAT. This file includes information about the company, line of business, forms,
each section in the form, and the names of the person, organization, or entity who
receives a copy of each section of the form. Specific information about the recipients of
a form is stored in the Set Recipient table which is stored in the SETRCPTB.DAT file.

This file, also known as the Form Set Definition table, contains information about the key
fields, such as company, line of business, and policy number, plus information about each
section in the form, its recipients, and the form set itself. The information is stored in
semicolon-delimited format and you can edit this file using Form Set Manager or a text
editor. The information that comprises the individual sections is stored in a FAP file.

The FSISYS.INI file is a one of the initialization (INI) files used by the system to set
system parameters and to enable or disable system features. For example, the FSISYS.INI
file contains information the GenTrn program uses to determine when a new record starts
and other information about the extract files the GenTrn program processes.

NOTE: The Data control group in the FSISYS.INI file lets you specify many of the file
names you want to use in Documaker Server. For instance, by modifying the
settings in this group, you can change the name of the error file (ERRFILE.DAT)
to any file name you want. In this manual, we refer to the default names for these
files.

The FSIUSER.INI file is one of the initialization (INI) files used by the system to set
system parameters. For example, the FSTUSER.INI file contains information specific to
each user, such as the location of files and so on.

Font cross-reference (FXR) files are used by the system so you can make sure your
documents print the same way, regardless of which printer you choose. These files
contain information about the various fonts you use and their equivalents on various
printers.

The system includes several font cross-reference files. You can edit and create font cross-
reference files using the Font Manager.

The GenArc program archives forms and data so you can store the information efficiently
and retrieve it quickly. This program receives information stored in the APPIDX.DFD
file from the GenData program. Using this information, the GenArc program creates
CAR files to store the information and forms and DBF files which serve as an index to
the data in the CAR files. The GenArc program can create multiple CAR files, as needed.

Depending on the operating system you use, this program has various names such as
genacw32.exe for 32-bit Windows environments.

457

Glossary

GenData Program

GenPrint Program

GenTrn Program

GenWIP Program

Help Editor

458

The GenData program takes information created by the GenTrn program and applies
processing rules to those transactions and data. The GenData program creates batch files,
the NAFILE.DAT, and the POLFILE.DAT file for the GenPrint program. It also creates
a manual batch file for the GenWIP program. The output from the GenData program is
also used by the GenArc program to archive forms and data.

Depending on the operating system you use, this program has various names such as
gendaw32.exe for 32-bit Windows environments.

The GenPrint program takes information produced by the GenData program and creates
a printer spool file for use with PCL, AFP, Metacode, and PostScript printers. Specifically,
the GenData program produces batch files, an NAFILE.DAT, and a POLFILE.DAT file
which the GenPrint program uses to create printed forms.

Depending on the operating system you use, this program has various names such as
genptw32.exe for 32-bit Windows environments.

The GenTrn program reads data in an extract file and creates transaction records which
in turn are processed by the GenData program. The main file created by the GenTrn
program is the TRN file which, along with the TRNDFDFL.DFD file, tells the GenData
program which transactions to process.

Depending on the operating system you use, this program has various names such as
gentnw32.exe for 32-bit Windows environments.

The GenWIP program receives information about incomplete transactions from the
GenData program. This information is stored in manual batch files. The GenWIP
program then creates separate files for each incomplete transaction. The data for these
incomplete transactions is stored in a file with the extension DAT, such as
00000001.DAT. The corresponding form set information is stored in a file with the
extension POL., such as 00000001.POL.

The GenWIP program also creates the WIP.DBF file, a database file which contains
records of all the incomplete transactions extracted from the NAFILE.DAT file
produced by the GenData program. The WIP.MDX file, also created by the GenWIP
program, serves as an index to the WIP.DBF file.

This gives the Entry module the information it needs to display the form so you can fill
in the missing information and complete the form. Once completed, you can resubmit the
form for processing by the GenData program.

Depending on the operating system you use, this program has various names such as
genwpw32.exe for 32-bit Windows environments.

The Help Editor is a tool you can use to create user specific help records that are
accessible from a variable field during form entry time. You can easily create a help file
which contains records for the variable fields on a form. Each help record usually contains
an explanation of a description for entering correct data into a variable field. Help files
reside in the resource library.

Image (Section)

Image Editor

.INI Files

INTL.FXR

INTLSM.FXR

.JDT Files

Library Manager

A section is a group of text or graphics or both that make up a form or a section of a form.
You create sections using Documaker Studio or Image Editor. Each section is stored in
a separate file, so you can reuse sections in several forms and form sets. Multiple sections
can comprise a single form. For instance, a three-page form with text and graphics,
printed on both sides of each page, could contain a total of six sections. Some examples
of sections include an insurance policy declaration page, the return portion of a bill, and
page one of a 1040 Federal tax return form.

You may choose to create a single page containing multiple sections, especially if you
develop a page with graphics.

The Image Editor lets you create documents, forms, and sections that become part of an
electronic form or document. It is a full-featured design tool with an easy to learn and use
graphical user interface. With Image Editor, you have complete control and flexibility in
managing and creating your section. The section and objects that you create are stored in
the resource library's section library. Each section is stored in a file with the extension,
FAP. Sections are also referred to as F.APs.

Initialization (INI) files are used by the system to set system parameters and to enable or
disable system features. Some examples of system INI files are: FSISYS.INI and
FSIUSER.INL. For example, the FSISYS.INI file contains information the GenTrn
program uses to determine when a new record starts and other information about the
extract files the GenTrn program processes. The FSTUSER.INI file contains information
specific to each user, such as the location of files and so on.

This font cross reference file includes international characters for producing forms in
languages other than English.

A smaller version of the INTL.FXR font cross reference file, this file includes
international characters for producing forms in languages other than English.

Job Definition Table (JDT) files tell the system which rules to use as it processes a specific
job. Rules defined in the JDT file are run before the system runs rules assigned to specific
fields. An example of a JDT file is the AFGJOB.JDT file.

See also DDT Files on page 453.

The Library Manager lets you manage documents and logos while maintaining the
versions, revisions, and integrity of the sections you are developing. You may want to set
up a library for a specific client or form set. You can store all sections and logos in a
resource library. The storage consists of a listing of the section or logo, as well as a snap
shot of the section.

When you set up a library, you must define the locations of the library and storage files.
Entries made during library setup are automatically saved back to the FSTUSER.INI file
when you exit the setup window.

459

Glossary

Log Files

.LOG Files

Logo Manager

MANUAL.BCH File

Master Resource
Library

Metacode

.MDX Files

NAFILE.DAT File

460

When you run GenT'rn, the program creates log files which record by transaction each
transaction the program processes. You can review these log files using any editor.

Logos and other graphics, such as scanned signatures, are stored as LOG files in the
system. You use Logo Manager to manage and manipulate LOG files. You can view these
files using Logo Manager.

Once you create a graphic object such as a logo or a scanned signature, you can edit it
using Logo Manager. This tool lets you resize, reverse, rotate, crop, and otherwise
manipulate a section to fit your needs. The system stores these graphic files as LOG files.

The GenData program creates this file if it is unable to complete the processing of a form
set. Typically, this occurs because the forms are missing information. This file is then used
by the GenWIP program so a data entry operator can manually complete the form and
resubmit it for processing.

See also Batch Files on page 452 and the GenWIP Program on page 458.

Master resource libraries provide a central repository into which you can place all reusable
resources such as sections, fonts, graphic files, data definitions, processing rules, and
processing procedures. A master resource library contains a section library, a variable data
dictionary library, a rules library, and a system library.

See also Distributed Resource Library on page 454.

A printer definition language developed by Xerox. Metacode is the native language of
Xerox’s Centralized Printing Systems. The GenPrint program can create spool files for
Metacode printers.

The various system programs create MDX files which serve as indexes to the database
files (DBF files). For example, the GenWIP program creates the WIP.DBF file and the
corresponding WIP.MDX file to record the incomplete transactions which were not
printed.

The Field Database Editor creates the FDB.MDX file to serve as an index to the
FDB.DBF file which contains common variable field definitions.

The GenData program creates an NAFILE.DAT file, commonly referred to as the NA
file, in which it stores section and variable field information. The GenPrint program uses
this file, along with the POLFILE.DAT file, which is also produced by the GenData
program to print the forms.

If the data is incomplete and GenData cannot complete the form, it creates a manual
batch file. The GenWIP program then creates separate DAT and POL files for each
incomplete transaction. These files provide the entry system with the information it needs
to open the form so a data entry operator can add the missing data. This is a comma-
delimited text file.

NEWTRN.DAT File

Objects

Overflow

Page

PCL

POLFILE.DAT File

PostScript

The GenData program creates the NEWTRN.DAT file. This file tells the GenArc and
GenWIP programs where to find data in the NAFILE.DAT file and which forms to use
in the POLFILE.DAT file. This is a comma-delimited text file.

Objects are the individual items which comprise your section. Examples of objects are
boxes, bar codes, lines, graphics, and text. All objects have unique attributes within the
section. Attributes include items such as position, size, font type, and color. Documaker
Studio and Image Editor let you easily create the various objects which comprise a section.

Overflow refers to a situation where there is not enough room on the form for all of the
data you need to enter. In this situation, you want to have the system automatically place
the additional data onto another form or another copy of the same form. The system
includes features which let you do this.

For instance, suppose you have a form which records automobiles and the drivers of the
automobiles. The form has room to record four different automobiles and drivers. In
most cases this will suffice but, in some situations, you need to include information about
additional automobiles and drivers. Using the overflow features, you can handle this
situation automatically.

Pages are the printed result of a section or a group of sections. You can have one section
per page, several sections per page, or even a section that spans several pages. You
determine the size of a page based on the size of your printed output. With Documaker
Studio or Image Editor, you can design forms for any size page your printer can print.

PCL (Printer Control Language) is a printer definition language developed by the
Hewlett-Packard company. The GenPrint program can create spool files for PCL
printers.

The POLFILE.DAT file, commonly referred to as the POL file, defines the form set used
for a specific transaction. The GenData program creates this file which is used by the
GenPrint, GenWIP, and GenArc programs. For instance, if the data is complete,
GenData creates an NA file and a POL file. These files are used by GenPrint, along with
the batch files, to produce the print-ready file.

If the data is incomplete and GenData cannot prepare the form for printing, it creates a
manual batch file. The GenWIP program then creates separate files for each transaction
to provide the entry system with the information it needs to open the form so a data entry
operator can add the missing data. This is a semicolon-delimited text file.

PostScript is a printer definition language developed by Adobe Systems which you can use
on various printers. The GenPrint program can create spool files for PostScript printers.

461

Glossary

Section

SETRCPTB.DAT File

Simplex

System Releases

System Patches

Table Editor

Transaction List

.TRN Files

462

A section (image) is a group of text or graphics or both that make up a form or a section
of a form. You create sections using Documaker Studio or Image Editor. Each section is
stored in a separate file, so you can reuse sections in several forms and form sets. Multiple
sections can comprise a single form. For instance, a three-page form with text and
graphics, printed on both sides of each page, could contain a total of six sections. Some
examples of sections include an insurance policy declaration page, the return portion of a
bill, and page one of a 1040 Federal tax return form.

You may choose to create a single page containing multiple sections, especially if you
develop a page with graphics.

This file, also known as the Form Set Trigger table, contains information which tells the
GenData program which recipients receive which forms or sections.

This file also contains the information the GenData program needs to determine whether
ot not to include or exclude a form. You can define conditions using Form Set Manager
or by editing the SETRCPTB file in a text editor.

A form printed on only one side of a sheet of paper is printed in simplex mode.

See also Duplex on page 454.

To continually improve and support the product, software enhancements and corrections
are organized into regularly scheduled system releases. Releases are noted with a major
and minor version number, such as 10.3 or 11.0.

In certain situations, and on a case by case basis, a correction to the current system release
can be made available as a system patch. Corrections to the prior release are handled on
a case by case basis, and are made available only as system patches.

The Table Editor lets you create a table of data used to automatically fill a variable field
during form data entry. Tables make the entry process quicker and more efficient for the
end user. Users can choose from data options within a table format rather than keying
information. Using tables reduces data entry errors and increases speed. In the Table
Editor, you can create and edit table files, tables, and table entries. Tables are stored in the
resource library.

The GenTrn program creates the transaction list which is used by the GenData program
as an index to the data in the extract file. The transaction list is stored in the TRN File.

The GenTrn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This format
is defined in the TRNDFDFL.DFD file. The GenData program uses the
TRNDFDFL.DFD file to read the information in the TRN file as it processes the
information.

TRNDFDFL.DFD File

UFSTSM.FXR File

UNIQUE.DBF File

Variable Data

WIP.DBF File

WIP.MDX

xBase

Each record in a TRN file contains a series of offsets or pointers. These offsets define the
location of the transaction data. For instance, the offsets in 2 TRN file tell the GenData
program where the transaction begins in the extract file, where the data for the transaction
is stored in the NAFILE.DAT file, and where the form set for the transaction is stored in
the POLFILE.DAT file.

The TRNDFDFL.DFD file tells the GenData program how to read the TRN file. If
necessary, you can edit this text file in a text editor.

This is a font cross reference file which provides Times (Roman), Courier, and Univers(al)
fonts for Xerox, AFP, PostScript, and PCL printers. This font cross reference file is
automatically installed when you install Docucreate.

The UNIQUE.DBEF file contains the last number for the WIP file that was created.
Whenever a WIP file is created, a number is generated to uniquely identify it to make sure
no WIP file is overwritten. You should not modify, rename, or delete this file. The highest
number it will generate for WIP files is FFFFFFFF, which is 4,294,967,295. After this
number, the counter resets to 00000001.

The GenWIP and GenArc programs use this information to create separate data and form
information files for the incomplete transactions received from the GenData program
and for the individual forms stored in archive.

See also 00000001.DAT File on page 451 and 00000001.POL File on page 451.

Vatiable data may differ from form to form. This includes items such as individuals'
names, addresses, and policy numbers. This information relates to the specific data
processed on each form.

The WIP.DBF file contains information about the incomplete transactions which the
GenWIP and GenArc programs extracted from the NAFILE.DAT and POLFILE.DAT
file created by the GenData program. The WIP.MDX file serves as an index to this file.
See also the GenWIP Program on page 458.

This file serves as an index to the WIP.DBF file.

A generic term for industry-standard dBase IV file format.

463

Glossary

464

Index

Symbols

& (ampersand) 340
.BCH files 428
.CAR files 428
.DAT files 428
.DBF files 428
.DDT files 428, 438
.DFD files 429
.FAP files 430
N files 430

JDT files 430, 439
LOG files 430
.MDX files 430
~Encrypted 114

~GetEnv function 112

~QOS function 113

~Platform function 112
~WIPField built-in function 115

Numerics

00000001.DAT file 448
00000001.POL file 448

2-up printing
overview 68

rule order 74

465

Index

A

A4

PaperSize option 212, 236
ABNORMAL statements 247
Access databases 375
Acrobat Reader

included fonts 205
AddBlankPages function 96
AddComment function 263, 264
AddDocusaveComment function 324
Added_Fonts control group 71
AddedOn option 362
AddForm function

banner forms 16
adding

printer fonts to the FXR file 187

tables of contents and indexes 99
AdditionalDJDE option 242
AddLine rule 72
ADDPAGES utility 232
AddTextLabel rule 72
AdjLeftMargin option 254
Adobe Acrobat 2
AFEMAIN program

defined 348

viewing archives 374
AfeProcedures control group 377
AFEW32 377
AFEWIP2ArchiveRecord 377

AfeWIP2ArchiveRecord control group 377

AFG2WIP control group 89
AFGJOB.JDT file 430, 439
and 2-up printing 74
AFM files 174
AFP
comment records 72
fonts 186

record list and the AddTextLabel rule 72

using custom fonts 193

AFP control group 214

466

AFP printers

fonts 221

form-level comments 225

handling multiple trays 328

highlight color printing 215

INT options 210

overlays 221

page segments 221

paper size 212

resources 221

setting up 210

TLE records 327

troubleshooting 222
AFPFMDEF utility 221
AIX

archive/retrieval scenarios 351
AliasPrintBatches option 103
AllowInput option 287
AlwaysSQLPrepare option 357
ampersands

in messages 341
ancestor 123
ANSI code page

for PC platforms 198
APPIDX file

defined 348
APPIDX.DBF file 449
APPIDX.DFD file 437, 449
APPIDX.MDX file 449
application index file 437

archive

creating print streams for Docusave 323

features 350

field names 386

retrieval 380

TLE records 327

transaction log 356
archive index file

and WIP 377
Archive rule 51, 52
ARCHIVE.CAR file 449
ArchiveMem option 356, 362

archiving
transactions 31
ArcRet control group 356, 381
ARCRET utility 388
ARCVIEW utility 374
ASCII
code pages 178
Asian languages
PCL 6 257
Auto-size option 222

B

banner form processing

multi-file print 17
banner forms

groups 16
banner processing

custom callback function 15

overview 15
BARR

format 251

interface attachment 251
BARR SPOOL

OutMode option 229
BARRWRAP utility 251
BaseErrors option 34
BaseRuleTime option 105
Batch control group 52
batch files 446

and single-step processing 46

grouping 103

page statistics 37
BatchBannerBeginForm option 16
BatchBannerBeginScript option 16
BatchBannerEndForm option 16
BatchBannerEndScript option 16
BatchByPageCount rule 52
BatchingByRecip control group 52
BatchingByRecipINI rule 52

BatchPrint control group 286
BatchTable option 103
bitmap compression
PCL print driver 262
PostScript printer driver 270
bitmap fonts
defined 175

bitmaps

compression for Metacode printers 230

highlight color printers 262
Metacode LGO files 245
scaling 214
Xerox images 245
black rectangles 222
blank pages 232
boxes, WriteFrame option 287
BreakBatch function 81
BuildMasterFormList rule 52
built-in functions 111
business envelopes 260

byte-serving 285

C

Cabinet option 362
CacheFAPFiles option 240
CacheFiles option 240
CacheMethod option 240
callback functions

InitPageBatched]ob rule 72
CallbackFunc option 85

RTF driver 308
CARData control group 373
CARFILE

defined 348
CARFILE.DFD file 369
case toggles 228
CaseSensitiveKeys option 378
CATALOG file

defined 349

467

Index

CD/IG 249
Character Set field 216
character sets
defined 181
determining characters used in a printer font 181
ChartResolution option
AFP printers 211
Metacode printers 234
charts
BARRWRAP utility 252
compression for Metacode printers 230
printing on Metacode printers 229
rendering on Metacode printers 234
using the Metacode loader 241
CheckCount option 33
CheckImagel.oaded rule
rotated variable fields 223
CheckZeroFontID option 102
child 123
Class option 375
AFP printers 212
GDI driver 279
Metacode printers 242
PCL printers 255
PostScript printers 268
class recipient 65
ClearMsgFile option 334
CMY palette 261
Code Page Font field 216
code pages
ASCII code pages 178
code page 1004 177,179
code page 37 180
code page 437 177
code page 850 177, 178
code page names 183

converting text files from one code page to another
201

EBCDIC code pages 180

for EBCDIC platforms 199

using the ANSI code page for PC platforms 198
CODE statement 228

468

CODEPAGE.INI file
and PostScript fonts 187
and the CPCNV utility 193
defined 205
ColorCharts option 237
colors
for charts 237
PCL support for 253
printing 215
simple color mode 261
specifying ink for Metacode printers 234
troubleshooting for Metacode printers 246
column names 397
COMM_RECS column
restarting GenArc 360
commas
in search masks 164
comment records 18
commit
defined 348
CommitEvery option 360
CommonFonts control group 236
CompilelnStream option 230
Compression option 270
CompressMode option 230
concepts
setting recipients and copy counts 138
configuring
the message system 333
the system 132
console
logging information 104
console messages 238
controlling the message translation process 335
converting
text files from one code page to another 201
ConvertWIP rule 51, 53
copy counts
DAL and GVM variables 152
example 152
setting 137, 138
Counter field 141, 435

counter search mask 155
CounterDFD option 70
CounterThl option 52, 53, 70
Createlndex option 372
CreateTable option 372
CreateTime field 88
CreateTime option 362
creating

print spool files (multi-step processing) 27

transaction records (multi-step processing) 21

transaction records (single-step processing) 45

creating messages 337

CRYRU utility 114
CSTSetMailRecip function 309
CUSSetMailRecipGVM function 309

custom callback function in banner processing 15

custom fonts 192
Custom Rule field 141

custom rules

field 436

D

DAL

analyzing performance 106
DAL functions

manipulating file names 82
DAL scripts

and extract files 441

banner processing 16

creating print streams for Docusave 324

splitting print streams 79
DALFile option 371
DALLibraries control group 16, 97
DALRUN built-in function 113
DALVAR built-in function 113
data

length validation 250
Data control group

print batches 103

data definition table

defined 428

file format 438
data format definition files 429
data table files 428
database

archiving to 356
database files 428, 436
DataPath option 103

and message files 334

and the TRANSLAT.INI file 334
date stamps

turning off 335
DB Field Name values 386
DB2

databases 375
dBase 463
DBErrors option 359
DBHandler option 371, 372, 376
DBLib tracing 336
DBLogFile option 336
DBTable option 371
DCD files

mapping fonts 208
DDTFile option 371
Debug option 372, 376
Debug_If_Rule option 101
Debug_Switches control group 101
DefaultTag option 357
defining

output message files 334
DefLib option

and the TRANSLAT.INI file 334

PostScript printers 267, 275
DelBlankPages function 97
descendant 123
DestField token 344
Device field 283

469

Index

Device option 231

AFP printers 210

GDI driver 278

PCL printers 253

PostScript printers 266
DeviceName function 81
DFD file

defined 349
DFD files 436

and 2-up printing 71

format 441
DisplayCodedFont option 214, 216
DJDE command 242
DJDE statements

user-defined 242
DJDECarrControl option 242
DJDEForceOffsetEnd option 233
DJDElIden option 228
DJDELevel option 239
DJDEOffset option 228
DJDESkip option 228
DlgTitles control group 381
DocSetNames control group 50
Documaker Server

resource files 431

running via IDS 57

system benefits 8

system overview 2

understanding the system 9
Documanage

categorizing documents 385

data types 384

Extended Document Properties 389

mapping Documaker archive fields 386

Next/Retrieve cursor 388

using resources in GenData and GenPrint 13

using with GenArc 361
viewing archives 374
Document Type Number 166

Docupresentment 2
PDF support 285

470

Docusave
creating print streams 323
retrieving form sets 380
DocusaveScript option 213, 324
dots per inch
Resolution option 210
DoubleOutputRes option
AFP printers 214
DownloadFAP option 99, 270
and the CompileInStream option 230
DownloadFonts option 264
emailing forms 310
GDI driver 278
PCL printer resources 265
PCL printers 254
PostScript printers 267, 275
DPA files
viewing 374
DPASSWD command line option 357
DPRAddBlankPages rule 98
DPRDelBlankPages rule 98
DSCHeaderComment option
PostScript printers 266
duplex
adding and removing pages 96
and simplex on Metacode printers 232
compressed PCL files 262
printing multi-page FAP files 249
switching modes 239
DUSERID command line option 358

E

EBCDIC 430
EBCDIC platforms

and code pages 180

using Code Page 37 199
EjectPage rule

multi-page FAP files 248
ElapsedTimeStamp option 102

email

aliases 310

GenWIP 90

sending a print-ready file 307
Email Application Servers 310
embedded fonts 264
embedded hex values 228
embedding fonts 205
EMIT_ERROR type 337
EMIT_MESSAGE type 337
EMIT_WARNING type 337
EmptyFooters option 288
EmptyHeaders option 288
Enable_Debug_Options option 101, 104, 336
EnableEmailNotification option 90
EnableTransBanner option 97
encrypted values 114
end of report conditions 232
envelope feeders 260
EPTLIB 307
EPTSetRecipFunc function 309
ERRFile option 334
ERRFILE.DAT file 332

and the ImmediateTranslate option 336
error batch 446
error codes 333
error files 429, 444

turning off the date stamp 335
error messages

configuring 333

creating 337

defining the output file 334

delaying the translation process 335

determining where a message originates 343

disabling 333

formatting 341

initializing output files 335

message tokens 339

negative left offsets 222

overview 332

setting up static text 340
ErrorFileDateStamp option 102

ErrorFileOpenMode option 335
errors
correcting 46
using GenArc with Documanage 373
European paper 433
examples
copy counts and sections 152

of form set definition files and transaction trigger
tables 151

RECIPIF rule 157
search mask and sections 155
setting search masks and recipients 162
transaction code 154
Excel spreadsheet databases 375
executive
PaperSize option 212, 236
executive paper 433
Exportlndex option 356
Expression option 103
Ext option
Metacode printers 241
EXT_Length option 71, 373
Extended Binary Coded Decimal Interchange Code 180
Extended Document Properties (XDPs) 385
extract files
and code pages 201
defined 429
guidelines for 439
layout of 440
NoGenTrnTransactionProc rule 53
offset limits 108
XML files 121
EXTRACT.DAT file 429

F

FAP files
adding and removing 96
mapping fonts 208
FAP2CFA utility 247
FAP2FRM utility 245, 251

471

Index

FAP2MET utility 230, 240, 246, 247
FAP20OVL utility 221
FAPAddBlankPages 96
FAPCOMP.INI file 431
mapping fonts 208
Metacode loader 241
FAPDelBlankPages 96
FAX drivers 281
fax, drivers 276
FEED command 249
FIELD
BatchName control group 103
Field Description control group 442
FieldErrors option 34
FieldFuncTime option 105
FieldList option 103
fields
mapping with XPath 50
Fields control group 441
grouping print batches 103
file names
DAL functions 82
File option
INIFiles control group 113
file summary
GenArc program 32
GenData program (multi-step processing) 25
GenData program (single-step processing) 48
GenPrint program (multi-step processing) 28
GenTrn program (multi-step processing) 22
GenWIP program (multi-step processing) 30
FileDrive function 82
FileExt function 82
FileName function 82
FilePath function 82

472

files

.CAR files 428

.DAT files 428

.DBF files 428

.DDT files 428, 438

.DFD files 429

FAP files 430

JDT files 430

LOG files 430

.MDX files 430
00000001.DAT file 448
00000001.POL file 448
APPIDX.DBEF file 449
APPIDX.DFD file 437, 449
APPIDX.MDX file 449
ARCHIVE.CAR file 449
batch files 446

BCH files 428

created by the GenData program 445
created by the GenT'rn program 444
created by the GenWIP program 448
DFD file format 441

DFD files 436

error batch files 446

error files 429, 444

extract files 429, 439
FORM.DAT file 139, 431
formats of 425

FSISYS.INI file 431
FSIUSER.INI file 431
initialization files 430

JDT files 439

log files 430, 444
MANUAL.BCH file 446
NAFILE.DAT file 445
NEWTRAN.DAT file 446
POLFILE.DAT file 445
RCBDFDFL.DFD file 437
recipient and copy count files 139
resource files 431
SETRCPTB.DAT file 434
system files 425

transaction files 430, 444

TRNDFDFL.DFD file 437
types of 428
UNIQUE.DBEF file 448
updated log and error files 446, 447
used by the GenArc program 449
WIP.DBF file 448
WIP.MDX file 448
FileType option 362
FinalPrinter option
and 2-up printing 69
FitToWidth option
GDI driver 278
PCL printers 254
PostScript printers 267
floating section limitations 222
FolderBy option 361
folders
updating 363
font cross-reference files
adding printer fonts 187
AFP printer resolution 224
choosing 196
for Monotype fonts 189
GDI drivers 277
FontFamilyMatching control group 208
FontLib option
PCL printers 265
PostScript printers 275

473

Index

fonts
AFP 186
bitmap fonts 175
common font lists 235
custom fonts 192
embedding 264
font substitution in Windows 185
FXR files for Monotype fonts 189
how computers and printers use fonts 176
IDs equal to zero 102
installing screen fonts in Windows 186
Metacode 186
Monotype fonts 188
naming conventions 207
PCL 187
PostScript 176, 187
PostScript printers 275
printer fonts 186
scalable fonts 175
screen fonts 185
setting up 171
terminology 172
True Type 175
footer 433
footers
in RTF files 288
ForceFolderUpdate option 363
ForceNolmages rule 72
form level triggers 139, 147
Form Name field 435
Form name field 140
Form option 58
form set definition table 139, 431
examples 151
summary 168
Form Set Manager 138, 239
form set trigger table 434
form sets
adding and removing pages 96

PrintFormset rule 54

474

FORM.DAT file 139, 431
banner processing 15, 19
examples 151
marking forms printer resident 251
single-step processing 52

format
DFD files 441
trigger table record 140

FormDef, AFP resources 221

FormFile option 371

form-level comments 225

FormLib option
PostScript printers 267
pre-compiled MET files 230, 240

FormNameCR option 225

forms
background 231
marking master forms 150
requirements 132
triggering in XML files 122

FormSetID field 87

FormSetRuleTime option 105

frames
WriteFrame option 287

FRM files
CompilelnStream option 231

FRMFile option 251

FSIFileName taken 342

FSIFileName token 344

FSILineNumber token 342, 344

FSIPATH environment variable 374

FSISYS.INTI file 431
and 2-up printing 69
banner processing 19, 20
grouping print batches 103
single-step processing 46

FSIUSER.INT file 431
INIFiles control group 113
single-step processing 46

FSRSetFileAttachment API 310

FudgeWidth option
AFP printers 211

FullFileName function 82

FullSupport option 281, 282

functions
built-in INI functions 111

FXR files
affect on display and print quality 195
choosing FXR files 196

G

GDI driver
handling multiple trays 328
INI options 278
Netware Client 32 for Windows 95 283
troubleshooting 283
GDIDevice option 279, 282
and the Device option 280

GEN_DEBUG_DebugSwitchSet function 101
Gen_TabUtil_LoadListFromTable function 101

GenArc program
.CAR files 428
and Documanage 389
APPIDX.DBF file 449
APPIDX.DFD file 449
APPIDX.MDX file 449
ARCHIVE.CAR file 449
archiving transactions 31
command line options 357
description 12
file summary 32
files used 449
output files 24
running 356
single-step processing 51
system scenarios 350

using with Documanage 361

GenData program

.BCH files 428

.DDT files 428

batch files 446

command line options 100

description 11

error batch files 429, 446

file summary (multi-step processing) 25
file summary (single-step processing) 48
files created 445

MANUAL.BCH file 446
NAFILE.DAT file 428, 445
NEWTRAN.DAT file 446

processing transactions (multi-step processing) 23
restarting 33

TRNDFDFL.DFD file 437

updated log and error files 446, 447

GenDataStopOn control group 34

GenPrint program

accessing batch totals 38

banner processing 15

command line options 100

creating print spool files (multi-step processing) 27
creating print streams for Docusave 323
description 12

file summary (multi-step processing) 28

output files from GenData (multi-step processing) 24

GenTranStopOn control group 43
GenTrn

controlling processing 43

GenTrn program

and single-step processing 45
command line options 101

creating transaction records for multi-step processing
21

description 11

error files 429, 444

file summary (multi-step processing) 22
files created 444

initializing message files 335

log files 430, 444

transaction files 430, 444

TRNDFDFL file 437

475

Index

GenWIP program
DAT files 428
00000001.DAT file 448
00000001.POL file 448
description 12
field assignments 87
file summary (multi-step processing) 30
files created 448

generating emails 90

output files from GenData (multi-step processing) 24

sending incomplete transactions to WIP 29
UNIQUE.DBF file 448
WIP.DBF file 448
WIP.MDX file 448
GETENV INI function 88
GetEnv INI function 379
GetRCBRec rule 72
GHO hardware 229
GOCA charts support 211
going live 132
graphics
compression for Metacode printers 230
orientation 247
rendering 237
using the Metacode loader 241
Graphics Device Interface (GDI) print driver 276
GraphicSupport option
AFP printers 211
GroupNamel field 140, 435
GroupName?2 field 140, 435
GVG hardware card 229, 245

H

H2 strings 228
HO strings 228
header 433
header records
and extract files 441

headers
in RTF files 288

476

hidden 433
highlight color printing

AFP 215
HighlightBlackCmd option 262
HighlightColor option 254
HighlightColorCmd option 262
horizontal motion index 246
HPINTL.FXR file 189
HPINTLSM.FXR file 189
HP-UX

archive/retrieval scenarios 351

IBMXREF.TBL file 216
IDEN statement 228
IDS

running Documaker Server 57

trace file 336
image level triggers 139, 144
Image Name field 140, 435
Image option 58
ImageErrors option 34
ImageFuncTime option 105
ImageOpt option

Metacode printers 229
ImageRuleTime option 105
imaging systems 263

adding PJL. comments 263
ImmediateTranslate option 336

and ERRFILE.DAT 336
implementation methodologies 132
implementing your system 131
indexes

adding 99
InfoPak 232
INI built-in functions 111

INI command line option 357

INI files
changes for 2-up printing 69
using multiple 113
INIFiles control group 113
INIGroup control group 113
INILib option 104
InitArchive rule 51, 53
InitConvertWIP rule 51, 53
InitFunc option 264
RTF driver 308
initialization files 430
InitMerge rule 72
InitPageBatched]ob rule 72
InitPrint rule 53
and the NoGenTranTransactionProc rule 53
InitSetrecipCache rule 53
ink color 234
inkjet printers 276
inline graphics
and the CompressMode option 230
BARRWRAP utility 252
LOG files 214
installable functions 231
installing
screen fonts in Windows 186
the system 132
INT_LENGTH option 71
INT_Length option 373
international language support 198
Internet Document Setver (IDS)
compressed PCF files 262
paper size 212, 236
InUse field 87

J

JDEName option 227
JDLCode option 228

JDLData option
defined 228
Metacode printers 250
JDLHost option 228
JDLName option 227
JDLRPage option 232
JDLRStack option 232
JDLs
setting up Metacode printers 226
JES2 format 251, 323
job definition table 430, 439
JOBID command line option 357
JOBID parameter
restarting GenArc 359
jogging pages 233
JSLs
setting up Metacode printers 226

jump to new sheet condition 232

K

KEY

BatchName control group 103
key fields

and extract files 441
Keyl

CaseSensitiveKeys option 378
KeyID

CaseSensitiveKeys option 378

L

landscape 433
AFP limitations 222
graphic orientation 247
Landscape option
GDI driver 279
LandscapeSupport option
AFP printers 211

477

Index

language log files
international language support 198 configuring 333
national language terminology 173 creating log messages 337
using international characters 200 defined 430
Languagelevel option 268 defining the output file 334
LASTERRORTOKEN token 339, 342 delaying the translation process 335
LASTREC column determining where a message originates 343
restarting GenArc 360 disabling 333
LBYD option 373 formatting 341
LBYI option 373 GenTrn program 444
LBYLOG option 373 initializing output files 335
) . message tokens 339
LBYLOGTile option 371] .
of archived transactions 356
legal

overview 332

PaperSize option 212, 236 setting up static text 340

letter turning off the date stamp 335
PaperSize option 212, 236 LOG2PSEG utility 221

l.ett‘er s.ize paper 433 LogCaching option 240

limitations LOGFile option 334

floating sections 222

multi-page FAPs 223
line density errors 249
LINE statement 228
lists of figures

adding 99

LOGFILE.DAT file 332
LogFileDateStamp option 102
logging messages 336

logical printers 85

Logo Manager 237, 245

Loader:Met control group 241 LOGO.DAT file
. . printing MET files 241
LoadFAPBitmap option 247))
LOGOFile option 371

LoadListFromTable option 101)
LogToConsole option 104, 356

LogT'ransactions option 333
LookUp rule

and extract files 441
LRECL values 250

M

Mail control group 310
MailAttachment option 90
MaillD option 90
MailMessageBody option 90
MailSubject option 90

478

MailType option 310
MANUAL.BCH file 446
Map Coded Font (MCF) fields 216
MapByDBName option 386
margins
added by PCL printers 254
setting minimum 288
marking
master forms 150
subordinate sections 149
Master and Subordinate Sections 149
master flag
and performance 163
master forms
marking 150
master resource libratries
implementation 132
MasterDDTNotlInLibrary option 371
MasterResource control group
PCL resources 265
pre-compiled MET files 230
MaxFonts option 236
MaxPolLineLength option 445
MergeAFP rule 73
message information 307
Message option
RTF driver 308
message token file
using 343
message token files
defining the output file 334

overview 333

messages
assigning message numbers 338
clearing 334
configuring 333
creating 337
defining output message files 334
determining where the originated 342
formatting 341
initializing output message files 335
message numbers and static text 340
types 337
using tokens 339
MET files
and multi-page FAP files 249
Metacode
fonts 186
Metacode printers
creating print streams for Docusave 323
data length validation 250
end of report conditions 232
handling multiple trays 328
JSL INI options 226
resources 245
setting up 226
troubleshooting 246
METDUMP utility 245
methodologies for implementation 132
METOPT utility
common font lists 236
Mixed Object Document Content Architecture data
streams 210
Mobius
InfoPak 232
ViewDirect APIs 244
ModifyTime field 87
Module option
AFP printers 210
GDI driver 278
PCL printers 253
PostScript printers 266
RTF driver 308

479

Index

Monotype fonts 221

FXR files 189

using system fonts 188
MRG2FAP utility

paper size 212, 236
MRGH4 format 323
MSGFile option 334
MSGFILE.DAT file 332, 343
msgNO_MORE_IMAGES message 72
MTCLoadFormset rule 244
multi-file print callback method 79
MultiFileLog option

RTF driver 308
MultiFileL.ogRecord option 109
MultiFilePrint callback function 49, 166
MultiFilePrint option

controlling the log 109
MultiLinesPerCommand option

AFP printers 214
multi-mail transaction

and the EXT_LENGTH option 71
multi-mail transactions

PageBatchStage1lnitTerm rule 53
multi-page FAP files

and pre-compiled MET files 248

creating multiple FRM files 251

limitations 223
multi-page forms

and 2-up printing 69
MVS

archive/retrieval scenarios 350
MVS file format 429

N

NAFILE.DAT file 428, 445
and the WriteNAFile rule 54
rotated variable fields 223
NamedColors option 213, 215
NameDocBy INI option 361

480

NameDocBy option 362
negative left offset 222
NEWTRAN.DAT file 446
NEWTRN file

Restart option 358
NEWTRN.DAT file

and the WriteNAFile rule 54
next/retrieve cursor 388
NoBatchSupport option 286
NoGenTrnTransactionProc rule 53

and the WriteNAFile rule 54

mapping fields 50
non-stapled forms

and stapled forms 259
NOT conditions

in search masks 165
NUBACK statements 232
NUFRONT statements 232

o)

objects
negative left offset 222
Occurrence flag 141, 435
occurs clauses 440
Octal strings 228
ODBC
archive/retrieval scenarios 350
multiple connections 375
ODBC_FieldConvert control group 375
ODBC_FileConvert control group 375
offset, negative left 222
OMR marks
and the AddLine rule 72
OnDemand command records 212
OnDemandScript option 212
OPASSWD command line option 358
OpSystem option 430
Opt option 58, 59
Optimize option 236

OR conditions

in search masks 165
Oracle

archive/retrieval scenarios 350, 351

ODBC driver 368
ORDER BY clause 357
OT_Docs table 361, 362
OTextString option 238
OUSERID command line option 358
OutBuff token 339
OutMode option

AFP printers 324

Metacode printers 229

Mobius 244

print streams for Docusave 323
output files

for the GenArc program (Docusave) 24

for the GenPrint program (multi-step processing) 24

for the GenWIP program (multi-step processing) 24
OutputBin option 255, 259
OutputFunc option 262
OutputHalfRes option 214
OutputMod option 262
overflow

and class recipients 65

defined 440

XML files 121
Overflow flag 141, 435
OverlayExt option

GDI driver 278

PCL printers 254

PostScript printers 267
OverlayPath option

GDI driver 278

PCL printers 254, 265

PostScript printers 267, 275
overlays

AFP resources 221

landscape pages 222

multi-page FAP files 223

OVLCOMP utility
and PCL resources 265

and PostScript resources 275

P

page segments 221
page-at-a-time downloading 285
PageBatchStagellnitTerm rule 53
PageNumbers option

AFP printers 211

GDI driver 278

PCL printers 254

PostScript printers 267
PageRange option 52

and 2-up printing 70
pages

adding and removing 96

jogging 233

numbering 278

starting new pages 232

total 37
paper size

overriding commands 260
paper sizes

changing on Metacode printers 246
paper trays

Metacode printers 237

on HP 5si printers 257

PCL support for 253

switching 249
PaperSize option 212, 236
PaperStockID option 243
parent 123
parentheses

in search masks 165
pass-through printing 283, 284
Passwd option 372

481

Index

PCL
custom fonts 193
fonts 187
simple color mode 261
PCL printers
adding PJL. comments 263
bitmap fonts 265
compressed PCL 262
handling multiple trays 328
INI options 253
mixing simplex and duplex 262
ovetlays 265
PCL version 5, 5¢, and 5e 253
PCL version 6 256
resources 265
setting up 253
simple color mode 261
using a staple attachment 259
PCO interface
OutMode option 229
PDF
incompatibilities 192
PDF files
creating 285
fonts 205
PDF format 2
PDF417 fonts 191
PDS members
caching 239
performance
caching PDS members 239
reducing job throughput 336
SplitPercent option 224
PJLComment option 263
PJLCommentOn option 255
PJLCommentScript option 255, 263
platforms
multiple INT files 113
PMetLib option

and the CompileInStream option 230

Metacode printers 240
PMETLIB PDS 230

482

PO Handler 361
PODocument2Field control group 363
POField2Document control group 363
POLFILE.DAT file 445

and the WriteNAFile rule 54
Port option 281
portrait graphic

orientation 247
PostScript

custom fonts 193

fonts 176, 187
PostScript fonts

included with Acrobat Reader 205
PostScript printers

handling multiple trays 328

INI options 266

PPD files 267, 275

resources 275

setting up 266

Type 1 fonts 275
PreLoadRequired option 286
PrePrintedPaper option

AFP printers 211

GDI driver 279

PCL printers 255

PostScript printers 268
print 286
print batches

banner processing 15

grouping 103
Print Services Facility 210
print spool files

creating (multi-step processing) 27
print streams

splitting recipient batch 79

Print window
and the Device field (GDI printing) 283, 284
and the PrePrintedPaper option 268
and the PrePrintedPaper option (AFP) 211
and the PrePrintedPaper option (GDI) 279
and the PrePrintedPaper option (PCL) 255
and the PrePrintedPaper option (PostScript) 268
and the SelectRecipients option 255, 278
and the SendColor option 254, 267, 278
suppressing 279
Print_Batches control group 103
banner forms 16
printer console messages 238
printer drivers
banner processing 15
Printer Job Language (PCL) comments 263
Printer option
and 2-up printing 69, 70
Printer Resident field 251
PrinterInk option
and the ColorCharts option 237
spot colors 234
troubleshooting 247
PrinterModel option 275
Metacode printers 237
PostScript printers 267, 275
printers
adding fonts to the FXR file 187
AFP fonts 186
configuring trays 328
default printer 279
determining characters used in a printer font 181
Metacode fonts 186
PCL bitmap fonts 187
PostScript fonts 187
using custom fonts 192
using printer fonts 186
PrintFormset rule 54, 120
and the NoGenTranTransactionProc rule 53

splitting recipient batch print streams 79

PrintFunc option

AFP printers 210

GDI driver 278

PCL printers 253

PostScript printers 266

RTF driver 308
printing

2-up 68

PrintFormset rule 54

under Windows NT 257
PrintTimeStamp option 105, 335
PrintToFile option 281
PrintViewOnly option

AFP printers 211, 255

GDI driver 279

Metacode printers 239

PostScript printers 268
ProcessID built-in INI function 114
processing

transactions (multi-step processing) 23

transactions (single-step processing) 45
processing overview 11
ProcessQueue rule 54
PRTLIB data 53
PrtType option 85

RTF driver 308
PrtType:AFP control group 210
PrtType:XER control group

installable functions 231

required options 226
PRTZCompressOutPutFunc function 262

Q

Qualifier option 372
queues

ProcessQueue rule 54

483

Index

R

RCBDFDFL.DAT file
and 2-up printing 71
RCBDFDFL.DFD file 437
and the WriteRCBWithPageCount rule 54
grouping print batches 103
RCBStatDtIDFD option 38
RCBStats option 38
RCBStatsDtl option 38
RCBStatsTot option 38
RCBStatsTotDFD option 38
RCBTotals option 38
RecipBatch function 19
RecipFunc option
RTF driver 308
recipient batch (RCB) transaction fields 87
recipient batch DFD file
and 2-up printing 71
recipient batch file 85, 437
recipient batch records
PageBatchStage1InitTerm rule 53
unique data 58
Recipient copy count field 141
Recipient list field 141
Recipient option
and email aliases 310
RTF driver 308
recipients
class recipients 65
Copy Count field 435
key files 139
List field 435
mapping information 113
selecting 138
setting 137
RECIPIF rule
and extract files 441
and performance 163
example 157
RecipMap2GVM control group 58

484

RecipMap2GVM INI control group 66
RecipMod option
RTF driver 308
RecipName function 19
records
maximum number (Metacode) 247
Records per first image field 141, 435
Records per overflow image field 141, 435
RecordType option 89
REL112.FXR 191
REL112SM.FXR 191
REL95.FXR file 189
RELI5SM.FXR file 189
RelativeScan option 231
repeat counts 228
ReplaceBitmap option 213, 215
Req option 58, 59
requirements definition 132
reserved message ranges 338
Resolution option
AFP printers 210
GDI driver 278
Metacode printers 238
PCL printers 253
PostScript printers 266
rounding errors 224
resource files 431
resources
for single-step processing 46
Restart control group 33
restart file 33
Restart option 358, 359
Restart table
defined 349
RestartJob rule 34
RetainTransBeginForm option 17, 18
Rettieval
options 381
Retrieval Options window 381
Retrieve Document window 380
RightFax 263

rollback

defined 348

restarting GenArc 360
rotated variable fields 223
rounding errors

SplitPercent option 223
RP Struct 337
RPAGE command 242
RPErrorProc function 337
RPLogProc function 337
RSTACK command 242
RstFile option 33
RTF

margins 288

print driver 286, 307

separate files 286

WriteFrames option 287
RTF files

mapping fonts 208
RTFFontMAP control group 208
RULCheckTransaction rule 33
RuleFilePool option 240
rules

for 2-up printing 72

for single-step processing 52

listing those executed 105

order for 2-up printing 74

used in multi-step processing 32
rules processing

using international characters 200
Rules Processor

trace file 336
Rules Publishing Solution

system overview 3
RULStandardProc rule

and the WriteNAFile rule 54

Run Length Encoding (RLE) compression 270

RunMode control group
checking font IDs 102
DownloadFAP option 99
grouping print batches 103
mapping fields with XPath 50

RunSetRepThl rule
and the BuildMasterFormList rule 52

S

scalable fonts 175
scaling output 276
screen fonts
GDI drivers 277
installing in Windows 186
using 185
Search Mask 1 field 141, 435
Search Mask 2 field 141, 436
search masks
and recipients 162
example 155
formatting 164
RECIPIF rule 157
section level triggers 139, 144
sections
marking subordinate sections 149
master and subordinate 149
tokens 339, 344
triggering in XML files 121, 122
SelectRecipients option
GDI driver 278
PCL printers 255
PostScript printers 268
self 123
SendColor option 215
AFP printers 213
and the ColorCharts option 237
and the PrinterInk option 234
emailing forms 310
GDI driver 278
PCL printers 254
PostScript printers 267
troubleshooting 246

485

Index

SendOverlays option
AFP printers 210
GDI driver 278
PCL printers 253, 265
PostScript printers 266, 275
sequence numbers
and extract files 440
Server option 372, 375
set recipient table
and performance 163
SetDeviceName function 81
SetOrigin rule
floating sections 222
SetOverprint option 269
SETRCPTB.DAT file 434
and the StandardFieldProc rule 54
and the StandardImageProc rule 54
examples 151
SETRECIP table
defined 139
specifying 142
SetState rule
and extract files 441
setting
fonts 171
setting up
error messages and log files 331
message text 340
printers 209
recipients and copy counts 137
transaction trigger tables 142
Setup Data field
example 196
short binding 433
Show_Debug_Options option 101
sibling 123
SIDE statements 232
simple color mode 254, 261

486

simplex
adding and removing pages 96
and duplex on Metacode printers 232
compressed PCL files 262
switching modes 239
single-page forms
and 2-up printing 68
singles-step processing
example 55
single-step processing
clearing messages 334
overview 45
WriteOutput rule 54
SkipChartColorChange option 213
skipping batch message 72
SortFormsForRecip callback function 166
sorting records 357
SplitPercent option
240 dpi print problems 223
defined 211
SplitText option
240 dpi print problems 223
defined 211
SQL Server
archive/retrieval scenarios 350
SQLID command line option 358
StandardFieldProc rule 54
and the WriteNAFile rule 54
StandardImageProc rule 54
StandardJobProc rule 67
staple attachments
and PCL printers 259
StapleBin option 255, 259
Staple]DEName option 239
StapleOff option 268, 272
StapleOn option 268, 272
stapling forms
Metacode 238
PostScript 272
start new page 232

statistics processing 38

Status column

restarting GenArc 359, 360
StatusCode option 89
STOPREC command line option 358
SUB INK commands 246
subject information 307
Subject option

RTF driver 308
subordinate flags

and performance 163
subordinate sections

marking 149

overview 149
SuppressBanner function 19
SuppressDialog option 282

and the SuppressDlg option 280
SuppressDlg option

and the SuppressDialog option 280

GDI print driver 279
SuppressLogoUnload option 213
SuppressZeroData option

AFP printers 214

and the MultiLinesPerCommand option 214
Sybase

archive/retrieval scenarios 350
system files 425
system implementation methodology 132
system overview 11
system resource files

uploading 201
system scenarios

GenArc 350
system settings

multi-step processing 46

T

table names 397
tables
defined 348

Tag Logical Element (TLE) records 327
TbILkUp rule
and extract files 441
TEMPIDX file
defined 348
TemplateFields option
GDI driver 278
PCL printers 254
PostScript printers 267
TermFunc option 264
RTF driver 308
terminology
fonts 172
testing
the system 132
text files

converting from one code page to another 201

TEXTCommentOn option 264
TEXTScript option 263
TicketJobProc rule 67
tildes

in search masks 164
TL/DL buffers 246
TLEEveryPage option 212, 327
TLEScript option 212, 327
TLESeparator option 212, 327
token-data pairs 339, 341, 343
trace files

ProcessID built-in INI function 114
TraceFile option 336
transaction codes 435

example 154
Transaction codes field 141
transaction files 430, 444
transaction records

creating for multi-step processing 21

creating for single-step processing 45

487

Index

transaction trigger table

defined 139

examples 151

how it works 143

specifying 142

summary 168
TransactionErrors option 34

GenTrn processing 43
transactions

archiving 31

log of archived 356

logging 104

processing (multi-step processing) 23
TransBannerBeginForm option 16
TransBannerBeginScript option 16, 97
TransBannerEndForm option 16
TransBannerEndScript option 16
transferring files

from Xerox format disks 252
TRANSLAT utility 332, 336
TRANSLAT.INI file

defining the output message file 334

determining where messages originate 342

formatting messages 341
message numbers 338
message tokens 339
setting up message text 340
translating messages 335
TranslationFile option 334
trays
configuring printer trays 328
for the HP 5SI printer 257
Metacode printers 237
overriding commands 260
selecting 330
troubleshooting 249
trigger levels
defined 139
trigger records
levels 139
Trigger Table Record Format 140
Trigger2Archive control group 51, 53, 378

488

Trigger2WIP control group 87, 120

triggering logic 168
triggers
and performance 163
form level 147
section level 144
TrimWhiteSpace option
AFP printers 214
TRN files 430, 444
Trn_Fields control group 50
TRNDFDFL.DFD file 437
true/false search mask 155
TrueType fonts 175
Asian languages 257
description 187
TWOUP control group 52, 53
TwoUp control group 70
TwoUpStart option 70

U

Unicode 256
unique data

adding 58
UNIQUE.DBEF file 448
UniqueString function 82
UniqueTag option 372
UNIX

archive/retrieval scenarios 351
updated log and error files 446, 447

UpdatePOLFile rule

and the WriteOutput rule 54

uppercase 397
UseRestartTable option 362
UserID option 89, 114, 372
UseXMLExtract rule 121

using

ANSI code page for PC platforms 198

custom fonts 192
printer fonts 186

screen fonts 185

\'

value-added processes 239
variable fields
in text areas 223
rotated 223
VB datasets 250
VBPrtOptions control group 279
ViewDirect APIs 244
Virtual Storage Access Method 239
VSAM control group 239

W

white outlines 269
white space
suppressing 214
Windows
archive/retrieval scenarios 350
font substitution 185
installing screen fonts 186
PostScript printers 269
printer ports 257
using the ANSI code page 198
WIP
and the archive index file 377
transaction fields 120
WIP Edit plug-in
WIPField built-in function 115
WIP RecType field 89
WIP StatusCD field 89
WIP.DBF file 448
WIP.DFD files 87

WIP.MDX file 448
WordDateFormats control group 287
WordTimeFormats control group 287
WriteFrames option 287
WriteNAFile rule
and the StandardFieldProc rule 54
described 54
WriteOutput rule 54

X

Xbase 463
archive/retrieval scenarios 350
DFD files 429, 436
maximum length 442

XDPs 389

XERDNLD utility 251

XERLoadDocuMerge loader function 244

Xerox
3700 printers 237
4000 printers 226
4050 printers 249
4135 printers 249
4235 printers 229, 246, 249
4635 printers 249
4850 printers 249
9000 printers 226
9700 printers 246
9790 printers 246, 249
fonts 245
format floppies 252
forms 245, 251
forms and memory 246
highlight color printers 234
images 245
JSL INI options 226
Laser Printing Systems 226
line drawing font 250
logos 245
setting up Metacode printers 226

using custom fonts 193

489

Index

XML 50

job tickets 67

path locator 123
XML files

as extract files 121
XML print driver 120
XMILExtract option 50
XMLFileExtract rule 121
XMLTtnFields option 50
XPath 123

mapping fields 50
XPATHW32 utility 123, 126

Y

Year 2000 compliance
and extract files 441

Z

2/ OS
generating PostScript output 270

490

	Start
	Notice
	Contents
	Introduction
	2 System Overview
	3 Rules Publishing Solution Overview
	4 Document Automation Evolution
	7 Document Automation Goals

	8 System Benefits

	Understanding the System
	11 Processing Overview
	14 Processing Options
	15 Using Banner Processing
	21 Using Multi-step Processing
	21 Creating Transaction Records
	22 File Summary

	23 Processing Transactions
	24 Output Files for GenPrint
	24 Output Files for GenWIP
	24 Output Files for GenArc
	25 File Summary

	27 Creating Print Spool Files
	28 File Summary

	29 Sending Incomplete Transactions to WIP
	30 File Summary

	31 Archiving Transactions
	32 File Summary

	32 Rules Used in Multi-Step Processing

	33 Restarting the GenData Program
	35 Generating Batch Status Emails
	37 Tracking Batch Page Statistics
	37 Recipient Page Statistics
	38 Batch Totals Summary File
	39 Sample Log File
	40 Default DFD Files

	43 Controlling GenTrn Processing
	45 Using Single-step Processing
	45 Creating and Processing Transaction Records
	46 System Settings and Resources

	47 Creating Print Files
	48 File Summary

	49 Using the MultiFilePrint Callback Function
	50 Mapping Fields with XPath
	51 Running Archive in Single-Step Processing
	51 Running WIP in Single-step Processing
	52 Rules Used in Single-step Processing
	55 Single-step Processing Example

	57 Using IDS to Run Documaker
	58 Writing Unique Data into Recipient Batch Records
	65 Using Class Recipients
	67 Running Documaker Using XML Job Tickets
	68 Handling 2-up Printing
	69 Changing the INI File
	71 Changing the Recipient Batch DFD File
	72 Rules Used for 2-up Printing
	74 Placing the 2-up Rules in the JDT File

	75 2-up Processing Example
	76 Running the GenData Program

	79 Splitting Recipient Batch Print Streams
	81 DeviceName
	81 SetDeviceName
	81 BreakBatch
	82 UniqueString
	82 Using DAL to Manipulate File Names
	83 FileDrive
	83 FilePath
	83 FileName
	84 FileExt
	84 FullFileName

	85 Assigning Printer Types Per Logical Batch Printer
	87 Controlling WIP Field Assignments
	90 Generating Email Notifications from GenWIP
	93 Using Multi-mail Processing
	93 Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
	94 Setting Up the FSISYS.INI File for Multi-mail Processing

	96 Adding and Removing Pages
	96 Using Custom Code
	96 Using DAL Scripts
	98 Using IDS

	99 Adding Indexes and Tables of Contents
	100 Using Run-Time Options
	100 GenData Command Line Options
	100 GenPrint Command Line Options
	101 GenTrn Command Line Options
	101 Debugging Options
	103 Grouping Print Batches
	104 Controlling Console Logging
	104 Logging INI File Names and Options
	105 Listing the Rules Executed
	106 Analyzing DAL Performance
	108 When Extract Files Exceed The Offset Limits

	109 Controlling What is in the MultiFilePrint Log
	111 Using INI Built-In Functions
	115 Accessing WIP Fields
	118 Defining Built-in Functions via Studio

	120 Outputting WIP Field Data Onto the XML Tree
	121 Using XML Files
	121 Handling Overflow
	122 Triggering Forms and Sections

	123 Using XPath
	123 XPath Syntax
	123 Axes
	124 Symbols
	124 Functions
	125 Expressions

	126 Using the XPath Testing Utility
	130 Example XML File

	Implementing Your System
	132 Using a Methodology
	134 Gathering Information
	134 Understanding Your Niche
	134 Understanding Your Organization

	135 Roles and Responsibilities

	Setting Recipients and Copy Counts
	138 Concepts
	139 Key Files
	139 Transaction Trigger Table
	139 Trigger Levels

	139 Form Set Definition Table

	140 Trigger Table Record Format
	142 Specifying the Transaction Trigger Table
	143 How Transaction Triggering Works
	144 Section Level Triggers

	147 Form Level Triggers
	149 Master and Subordinate Sections
	149 Marking Subordinate Sections
	150 Marking Master Forms

	151 Examples
	152 Specifying Copy Counts and Sections
	154 Using Transaction Codes
	155 Setting Up Search Mask and Sections
	157 Using the RECIPIF Rule
	159 Using Automatic Overflow
	161 Using Forced Overflow
	162 Setting Search Masks and Recipients
	163 Using the Set Recipient Table and Extract Files
	164 Formatting Search Masks
	166 Sorting Forms by Recipient

	168 Summary

	Working with Fonts
	172 General Font Concepts
	172 Font Terminology
	175 How Characters are Represented
	175 Bitmap Fonts
	175 Scalable Fonts

	176 How Computers and Printers Use Fonts

	177 Using Code Pages
	178 ASCII Code Pages
	180 EBCDIC Code Pages
	181 Character Sets
	181 Determining Characters Used in a Printer Font

	183 Code Page Names

	185 Types of Fonts
	185 Using Screen Fonts
	185 Font Substitution in Windows
	186 Installing Screen Fonts in Windows

	186 Using Printer Fonts
	186 AFP
	186 Metacode
	187 PCL
	187 PostScript Fonts
	187 TrueType Fonts
	187 Adding Printer Fonts to a Font Cross-reference File

	188 Using System Fonts
	189 Font Cross-reference Files for Monotype Fonts
	192 Using Custom Fonts

	194 Using Font Cross-Reference Files
	195 How FXR Settings Affect Display and Print Quality
	196 Maintaining FXR Files
	196 Choosing a Font Cross-reference File

	198 International Language Support
	198 Using the ANSI Code Page for PC Platforms
	199 Using Code Page 37 for EBCDIC Platforms

	200 Using International Characters
	201 Converting Text Files from one Code Page to Another

	202 Setting Up PostScript Fonts
	205 Fonts for PDF Files
	205 Importing PostScript Symbol Fonts

	207 Font Naming Conventions
	208 Mapping Fonts for File Conversions

	Setting Up Printers
	210 AFP Printers
	210 AFP INI Options
	221 AFP Printer Resources
	222 AFP Troubleshooting
	225 Including Documerge Form-level Comment Records

	226 Metacode Printers
	226 Required JSL INI Options
	229 Additional Required INI Options
	231 Specifying Installable Functions
	232 Optional INI Options
	244 Using Mobius Metacode Print Streams
	245 Metacode Printer Resources
	246 Metacode Limitations
	246 Metacode Troubleshooting
	251 Using Xerox Forms (FRMs)
	251 BARRWRAP
	252 Transferring Files from Xerox Format Floppies

	253 PCL Printers
	253 PCL INI Options
	256 Using PCL 6
	257 Printing Under Windows
	257 Using High-Capacity Trays 3 and 4 on HP 5SI Printers
	260 Overriding Paper Size Commands and Tray Selections
	261 Using Simple Color Mode
	262 Creating Compressed PCL Files
	263 Adding Printer Job Level Comments
	263 Adding Data for Imaging Systems
	264 Limiting the Number of Embedded PCL Fonts

	265 PCL Printer Resources

	266 PostScript Printers
	266 PostScript INI Options
	269 Printing under Windows
	270 Generating PostScript Files on z/OS
	270 Creating Smaller PostScript Output
	271 Adding DSC Comments
	272 Stapling Forms

	275 PostScript Printer Resources

	276 Using the GDI Print Driver
	278 GDI Printer Driver INI Options
	281 Avoiding Problems with FAX Drivers
	281 Batch Printing to Files

	283 Using Pass-through Printing
	285 Creating PDF Files
	286 Creating RTF Files
	289 Using the VIPP Print Driver
	290 VIPP Resource Files
	294 Managing VIPP Resources
	297 VIPP INI Options
	305 VIPP Limitations

	307 Emailing a Print File
	311 Choosing the Paper Size
	312 US Standard Sizes
	313 ISO Sizes
	316 Japanese Standard Sizes
	317 Printer Support for Paper Sizes
	321 Paper Sizes for AFP Printers

	323 Creating Print Streams for Docusave
	323 Archiving AFP Print Streams
	324 Archiving Metacode Print Streams
	325 Archiving PCL Print Streams
	325 Using DAL Functions

	327 Adding TLE Records
	328 Handling Multiple Paper Trays
	330 Including Tray Selections in a Print Stream Batch

	Setting Up Error Messages and Log Files
	332 Overview
	333 Configuring the Message System
	333 Enabling and Disabling Messages
	334 Logging INI Files and Options Used

	334 Clearing Messages
	334 Defining the Output Message Files
	335 Initializing the Output Message Files
	335 Turning Off Date Stamps
	335 Controlling the Translation Process
	336 DBLib Trace Messages

	337 Creating Messages
	337 Using the RPErrorProc and RPLogProc Functions
	339 Using Message Tokens
	340 Setting Up Message Text

	343 Using the Message Token File

	Archiving and Retrieving Information
	348 Terminology
	350 System Scenarios
	352 Archive and Retrieval Features
	353 Processing Overview
	353 Files GenArc Uses
	353 How the GenArc Program Works

	356 Running GenArc
	357 Command Line Options
	359 Using the Restart Option

	361 Using GenArc with Documanage
	368 Using the Oracle ODBC Driver
	370 Creating the Database and Tables
	373 Resolving Errors

	374 Viewing Archives in Documanage
	375 Using Multiple Simultaneous ODBC Connections

	377 Using WIP and the Archive Index File
	378 Formatting Archive Fields
	380 Retrieving Archived Forms
	380 Files the Archive Module Uses
	380 Using the Archive Module
	381 Retrieval Options

	383 Working with Documanage
	384 Using Documanage Data Type Support
	385 Setting Up Automatic Category Overrides
	386 Mapping Documaker Archive Fields to Documanage Properties
	388 Using Next/Retrieve Cursor
	389 Enhanced Documanage Document Extended Properties Support

	Setting Up Archive/Retrieval Configurations
	398 DB2 Server on OS/390 -Windows Client
	398 Configuring the Server
	399 Setting Up the Windows 2000 Server (Middle Tier)
	401 Installing and Configuring Microsoft’s SNA Server
	402 Configuring SNA Server 4.0 SP3
	404 Setting Up DB2 on a Windows 2000 Server
	405 Installing and Configuring DB2 on a Windows 2000 Server
	405 Setting Up Universal Database on Windows 2000
	407 Updating TCP/IP-related Values on a Windows 2000 Server

	407 Common DB2 Errors
	407 Setting Up Clients
	408 Setting Up the INI Options for the DB2 Driver

	410 DB2 Server on Windows - Windows Client
	410 Setting up a DB2 Database on the Server
	411 Setting Up a Client for DB2 VERSION 6.1
	413 Archiving to a Remote DB2 Database Using the Native DB2 Driver

	415 DB2 Server and Client on Windows
	415 Setting Up a DB2 Database
	416 Archiving to a Local DB2 Database Using the Native DB2 Driver

	419 SQL Server on Windows - ODBC Client on Windows
	419 Setting Up a Client

	421 IDS on Windows -DB2 Archive on z/OS
	421 Setting Up the DB2 Archive on z/OS

	422 Creating a z/OS Database
	422 Updating TCP/IP Values on a Windows 2000 Server

	System Files
	426 Overview
	428 Types of Files
	431 Resource Files
	441 DFD File Format

	444 Files Created by the GenTrn Program
	445 Files Created by the GenData Program
	447 Files Created by the GenPrint Program
	448 Files Created by the GenWIP Program
	449 Files Used by the GenArc Program

	Glossary

	Introduction
	System Overview
	Rules Publishing Solution Overview
	Document Automation Evolution
	Stage 1 - paper automation
	Stage 2 - workflow automation
	Stage 3 - paperless information automation
	Document Automation Goals

	System Benefits

	Understanding the System
	Processing Overview
	Processing Options
	Using Banner Processing
	Enabling banner processing
	Specifying banner forms and scripts
	Banner form processing and multi- file print
	Processing logic
	DAL functions
	Banner processing example

	Using Multi- step Processing
	Creating Transaction Records
	File Summary

	Processing Transactions
	Output Files for GenPrint
	Output Files for GenWIP
	Output Files for GenArc
	File Summary

	Creating Print Spool Files
	File Summary

	Sending Incomplete Transactions to WIP
	File Summary

	Archiving Transactions
	File Summary

	Rules Used in Multi-Step Processing

	Restarting the GenData Program
	RULCheckTransaction rule
	RestartJob rule
	INI options

	Generating Batch Status Emails
	Tracking Batch Page Statistics
	Recipient Page Statistics
	Batch Totals Summary File
	Accessing totals in GenPrint
	INI Options

	Sample Log File
	Default DFD Files
	RCBStatsDtlDFD
	RCBStatsTotDFD

	Controlling GenTrn Processing
	Using Single- step Processing
	Creating and Processing Transaction Records
	System Settings and Resources

	Creating Print Files
	File Summary

	Using the MultiFilePrint Callback Function
	Mapping Fields with XPath
	Running Archive in Single-Step Processing
	Running WIP in Single-step Processing
	Rules Used in Single-step Processing
	Archive
	BatchingByRecipINI
	BatchByPageCount
	BuildMasterFormList
	ConvertWIP
	InitArchive
	InitConvertWIP
	InitPrint
	InitSetRecipCache
	NoGenTrnTransaction Proc
	PageBatchStage1Init Term
	PaginateAndPropogate
	PrintFormset
	ProcessQueue
	StandardFieldProc
	StandardImageProc
	WriteNAFile
	WriteOutput
	WriteRCBWithPage Count

	Single-step Processing Example
	Base rules
	Base form set rules
	Base image rules
	Base field rules

	Using IDS to Run Documaker
	Writing Unique Data into Recipient Batch Records
	Optional formatting information
	Example
	BANNER.DAL

	Using Class Recipients
	Running Documaker Using XML Job Tickets
	Handling 2-up Printing
	2-up printing with single-page forms
	2-up printing with multi-page forms
	Changing the INI File
	Creating the TWOUP control group
	Creating the Added_Fonts control group

	Changing the Recipient Batch DFD File
	Rules Used for 2-up Printing
	AddLine
	AddTextLabel
	ForceNoImages
	GetRCBRec
	InitMerge
	InitPageBatchedJob
	MergeAFP
	ParseComment Example
	PrintData
	ProcessRecord
	Placing the 2-up Rules in the JDT File

	2-up Processing Example
	2upbycnt.bat
	2upstep1.ini
	2upstep2.ini
	2upstep3.ini

	Running the GenData Program
	Step 1 - Using the AFGJOB1.JDT file
	Step 2 - Using the AFGJOB2.JDT file
	Step 3 - Using the AFGJOB3.JDT file

	Splitting Recipient Batch Print Streams
	Splitting batches by sheet count
	Creating PDF output
	DAL functions
	DeviceName
	Syntax

	SetDeviceName
	Syntax

	BreakBatch
	Syntax

	UniqueString
	Syntax

	Using DAL to Manipulate File Names
	FileDrive
	Syntax

	FilePath
	Syntax

	FileName
	Syntax

	FileExt
	Syntax

	FullFileName
	Syntax

	Assigning Printer Types Per Logical Batch Printer
	Controlling WIP Field Assignments
	Generating Email Notifications from GenWIP
	Errors

	Using Multi- mail Processing
	Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
	Setting Up the FSISYS.INI File for Multi-mail Processing

	Adding and Removing Pages
	Using Custom Code
	Adding pages
	Removing pages

	Using DAL Scripts
	Adding pages
	Removing pages

	Using IDS
	Adding pages
	Removing pages

	Adding Indexes and Tables of Contents
	Using Run- Time Options
	GenData Command Line Options
	GenPrint Command Line Options
	GenTrn Command Line Options
	Debugging Options
	Noting font IDs of zero
	Suppressing elapsed runtime messages

	Grouping Print Batches
	Controlling Console Logging
	Logging INI File Names and Options
	Listing the Rules Executed
	Analyzing DAL Performance
	When Extract Files Exceed The Offset Limits

	Controlling What is in the MultiFilePrint Log
	Using INI Built-In Functions
	~GetEnv
	~Platform
	~OS
	~DALRUN ~DALVAR
	~Encrypted
	~ProcessID
	~WIPField
	Accessing WIP Fields
	Formatting arguments
	Specifying locales
	Using the ~Field function

	Defining Built-in Functions via Studio

	Outputting WIP Field Data Onto the XML Tree
	Using XML Files
	Handling Overflow
	Triggering Forms and Sections

	Using XPath
	XPath Syntax
	Axes
	Symbols
	Functions
	Expressions

	Using the XPath Testing Utility
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10

	Example XML File

	Implementing Your System
	Using a Methodology
	Phase 1 - Define the requirements
	Phase 2 - Create the detail forms requirements
	Phase 3 - Build the Master Resource Library
	Phase 4 - Install and configure the system
	Phase 5 - Test the system
	Phase 6 - Go live

	Gathering Information
	Understanding Your Niche
	Understanding Your Organization

	Roles and Responsibilities

	Setting Recipients and Copy Counts
	Concepts
	Key Files
	Transaction Trigger Table
	Trigger Levels

	Form Set Definition Table

	Trigger Table Record Format
	Specifying the Transaction Trigger Table
	How Transaction Triggering Works
	Section Level Triggers

	Form Level Triggers
	Master and Subordinate Sections
	Marking Subordinate Sections
	Marking Master Forms

	Examples
	Specifying Copy Counts and Sections
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Transaction Codes
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Setting Up Search Mask and Sections
	FORM.DAT file
	SETRCPTB.DAT file
	POL File

	Using the RECIPIF Rule
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Automatic Overflow
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Forced Overflow
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Setting Search Masks and Recipients
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using the Set Recipient Table and Extract Files
	Formatting Search Masks
	Spaces
	Commas
	Tildes
	Parentheses
	Using the OR condition
	Using the NOT condition
	Using AND and OR conditions

	Sorting Forms by Recipient
	INI files
	Sort tables

	Summary

	Working with Fonts
	General Font Concepts
	Font Terminology
	National language terminology

	How Characters are Represented
	Bitmap Fonts
	Scalable Fonts
	TrueType
	PostScript

	How Computers and Printers Use Fonts

	Using Code Pages
	ASCII Code Pages
	EBCDIC Code Pages
	Character Sets
	Determining Characters Used in a Printer Font

	Code Page Names

	Types of Fonts
	Using Screen Fonts
	Font Substitution in Windows
	Installing Screen Fonts in Windows

	Using Printer Fonts
	AFP
	Coded fonts
	Code pages
	Character sets

	Metacode
	PCL
	PostScript Fonts
	TrueType Fonts
	Adding Printer Fonts to a Font Cross-reference File

	Using System Fonts
	Font Cross-reference Files for Monotype Fonts
	HPINTL.FXR, HPINTLSM.FXR
	REL95.FXR, REL95SM.FXR
	REL102.FXR, REL102SM.FXR
	REL103.FXR, REL103SM.FXR
	REL112.FXR REL112SM.FXR

	Using Custom Fonts
	On AFP printers
	On Xerox Metacode printers
	On PCL printers
	On PostScript printers

	Using Font Cross- Reference Files
	How FXR Settings Affect Display and Print Quality
	Maintaining FXR Files
	Choosing a Font Cross-reference File

	International Language Support
	Using the ANSI Code Page for PC Platforms
	Using Code Page 37 for EBCDIC Platforms

	Using International Characters
	Converting Text Files from one Code Page to Another

	Setting Up PostScript Fonts
	Fonts for PDF Files
	Importing PostScript Symbol Fonts

	Font Naming Conventions
	Mapping Fonts for File Conversions

	Setting Up Printers
	AFP Printers
	AFP INI Options
	Using defaults for the Module and PrintFunc options
	Using Documaker shading patterns instead of shaded bitmaps
	Printing highlight colors
	Character set and code page font information
	Outputting character set and code page information
	Using multiple code pages
	Using LLE records to link to external documents

	AFP Printer Resources
	FormDef
	Fonts
	Monotype fonts
	Overlays
	Page segments
	AFP 2-up support

	AFP Troubleshooting
	Floating section limitations
	Objects extending beyond the edges
	Conflicts between page and form orientation
	Multi-page FAP limitation
	Printing rotated variable fields
	AFP 240 dpi print problems

	Including Documerge Form-level Comment Records

	Metacode Printers
	Required JSL INI Options
	JDLName
	JDEName
	DJDEIden, DJDEOffset, and DJDESkip
	JDLCode
	JDLData
	JDLHost

	Additional Required INI Options
	OutMode
	ImageOpt
	CompressMode
	CompileInStream
	Device
	RelativeScan

	Specifying Installable Functions
	Using defaults for the Module and PrintFunc options

	Optional INI Options
	Setting the end of the report
	Starting new pages
	Adding an OFFSET command
	Jogging pages
	Specifying spot color
	Chart performance and print quality
	Optimizing Metacode print streams
	Using a common font list
	Setting a default paper size
	Automatically sizing sections
	Inline graphic performance and print quality
	Adding color to charts
	Using named paper trays
	Specifying the printer model
	Specifying the resolution
	Displaying console messages
	Stapling forms
	Duplex switching
	Using VSAM to store resources
	PrintViewOnly
	Caching files to improve performance
	Using the loader
	Using the Class option
	Adding user-defined DJDE statements
	Using third-party software to read Metacode files
	Specifying the paper stock

	Using Mobius Metacode Print Streams
	Metacode Printer Resources
	Fonts
	Forms
	Images
	Logos

	Metacode Limitations
	Xerox images
	HMI support
	Changing the paper size on the 4235 printer
	Xerox forms

	Metacode Troubleshooting
	Unexpected color output
	Unexpected black and white output
	Highlight color should match the PrinterInk option
	LOG file orientation
	Output catching up with the input
	Printing rotated variables
	Multi-page sections
	Operator command, FEED, causes duplex problems
	Line density errors
	Output data length validation
	Using Xerox Forms (FRMs)
	BARRWRAP
	Transferring Files from Xerox Format Floppies

	PCL Printers
	PCL INI Options
	Using defaults for the Module and PrintFunc options
	Using PCL 6
	Printing Under Windows
	Using High-Capacity Trays 3 and 4 on HP 5SI Printers
	Using a staple attachment

	Overriding Paper Size Commands and Tray Selections
	Using Simple Color Mode
	Marking objects to print in color
	Specifying the highlight color to use
	Printing on different types of printers

	Creating Compressed PCL Files
	Bitmap compression

	Adding Printer Job Level Comments
	Adding Data for Imaging Systems
	Limiting the Number of Embedded PCL Fonts

	PCL Printer Resources
	Fonts
	Overlays

	PostScript Printers
	PostScript INI Options
	Using defaults for the Module and PrintFunc options
	Avoiding a white outline around letters
	Printing under Windows
	Generating PostScript Files on z/OS
	Creating Smaller PostScript Output
	Bitmap compression

	Adding DSC Comments
	Stapling Forms

	PostScript Printer Resources
	Fonts
	Overlays
	PostScript Printer Definition (PPD) Files

	Using the GDI Print Driver
	How it works
	GDI Printer Driver INI Options
	Using defaults for the Module and PrintFunc options

	Avoiding Problems with FAX Drivers
	Batch Printing to Files

	Using Pass- through Printing
	Creating PDF Files
	Creating RTF Files
	Generating separate files
	Adding or removing frames
	Creating form fields
	Setting margins
	Removing the contents of headers and footers

	Using the VIPP Print Driver
	VIPP Resource Files
	Converting bitmaps into VIPP image files
	Converting FAP files into VIPP segment files
	VIPP fonts
	VIPP font encoding files

	Managing VIPP Resources
	VIPP INI Options
	Setting up folders and projects
	Overriding the list of libraries for projects
	Setting up paper trays
	Adding DSC comments

	VIPP Limitations
	Troubleshooting
	Scenario 1
	Scenario 2
	Scenario 3
	VIPP known problems

	Emailing a Print File
	Creating EPTLIB print files for Documaker Workstation
	Creating EPTLIB print files for Documaker Server
	Creating PDF print files
	Overriding attached files
	Using email aliases

	Choosing the Paper Size
	US Standard Sizes
	ISO Sizes
	ISO A sizes
	ISO B sizes
	ISO C sizes

	Japanese Standard Sizes
	Printer Support for Paper Sizes
	Paper Sizes for AFP Printers

	Creating Print Streams for Docusave
	Archiving AFP Print Streams
	Archiving Metacode Print Streams
	Archiving PCL Print Streams
	Using DAL Functions

	Adding TLE Records
	Handling Multiple Paper Trays
	For PCL printers
	For PostScript printers
	For GDI printers
	For AFP printers
	For Metacode printers
	Including Tray Selections in a Print Stream Batch

	Setting Up Error Messages and Log Files
	Overview
	Configuring the Message System
	Enabling and Disabling Messages
	Logging INI Files and Options Used

	Clearing Messages
	Defining the Output Message Files
	Initializing the Output Message Files
	Turning Off Date Stamps
	Controlling the Translation Process
	DBLib Trace Messages

	Creating Messages
	Using the RPErrorProc and RPLogProc Functions
	RP Struct
	Message Types
	Message Number
	Assigning numbers to custom messages

	Using Message Tokens
	Setting Up Message Text
	Message examples
	Undefined tokens
	Adding a new line
	Determining where the message originated

	Using the Message Token File

	Archiving and Retrieving Information
	Terminology
	Files and tables
	Commit
	Rollback
	GenArc
	AFEMAIN
	CARFILE
	APPIDX
	TEMPIDX
	CATALOG
	RESTART
	DFD

	System Scenarios
	Scenarios for OS/390 (MVS)
	Scenarios for Windows 32-bit
	Scenarios for UNIX

	Archive and Retrieval Features
	Processing Overview
	DBASE IV
	DB2
	SQL server
	Oracle
	Files GenArc Uses
	Input files
	Output files

	How the GenArc Program Works

	Running GenArc
	Logging archived transactions
	Archiving to a database
	Sorting records in a database
	Preparing SQL
	Command Line Options
	INI
	JOBID
	DPASSWD
	DUSERID
	OPASSWD
	OUSERID
	RESTART
	SQLID
	STOPREC
	Using the Restart Option

	Using GenArc with Documanage
	Forcing folder updates
	FSIUSER.INI sample
	APPIDX.DFD sample
	CARFILE.DFD sample
	Using the Oracle ODBC Driver
	CARFILE DFD

	Creating the Database and Tables
	Resolving Errors

	Viewing Archives in Documanage
	Using Multiple Simultaneous ODBC Connections

	Using WIP and the Archive Index File
	Formatting Archive Fields
	Converting the case of key fields
	Reformatting dates
	Storing a constant value

	Retrieving Archived Forms
	Files the Archive Module Uses
	Input files
	Output files

	Using the Archive Module
	Retrieval Options

	Working with Documanage
	Using Documanage Data Type Support
	Setting Up Automatic Category Overrides
	Mapping Documaker Archive Fields to Documanage Properties
	Example 1
	Example 2

	Using Next/Retrieve Cursor
	Enhanced Documanage Document Extended Properties Support
	FSISYS.INI file
	TRNDFDFL.DFD file
	APPIDX.DFD file
	AFGJOB.JDT file
	Extract file

	Setting Up Archive/ Retrieval Configurations
	DB2 Server on OS/390 - Windows Client
	Configuring the Server
	Getting the DB2 location name and LUNAME
	Defining the SNA server’s APPC LU in VTAM
	Defining the DB2 Application Major Node in VTAM
	Setting Up the Windows 2000 Server (Middle Tier)
	Installing and configuring Microsoft’s SNA Server

	Installing and Configuring Microsoft’s SNA Server
	Configuring SNA Server 4.0 SP3
	Setting Up DB2 on a Windows 2000 Server
	Installing DB2 on a Windows 2000 Server
	Configure the DB2 instance
	Defining an OS/390 node
	Defining a system database entry
	Updating TCP/IP values on the Windows 2000 server
	Defining a database connection services entry

	Installing and Configuring DB2 on a Windows 2000 Server
	Defining an OS/390 system
	Defining a DB2 instance
	Defining an OS/390 database

	Setting Up Universal Database on Windows 2000
	Installing Universal Database
	Configuring Universal Database

	Updating TCP/IP-related Values on a Windows 2000 Server

	Common DB2 Errors
	Setting Up Clients
	Defining a DB2/2000 node
	Defining a system database entry
	Updating TCP/IP- related values on a Windows client
	Setting Up the INI Options for the DB2 Driver

	DB2 Server on Windows - Windows Client
	Setting up a DB2 Database on the Server
	Setting Up a Client for DB2 VERSION 6.1
	Archiving to a remote DB2 database using an ODBC driver
	Setting up an ODBC data source
	Setting up INI options for the ODBC driver

	Archiving to a Remote DB2 Database Using the Native DB2 Driver
	Setting up a DB2 database
	Setting up the INI options for the DB2 driver

	DB2 Server and Client on Windows
	Setting Up a DB2 Database
	Setting up an ODBC data source
	Setting up INI options for ODBC
	Archiving to a Local DB2 Database Using the Native DB2 Driver
	Setting up the DB2 database
	Setting up the INI options for the DB2 driver

	SQL Server on Windows - ODBC Client on Windows
	Setting Up a Client
	Setting up the INI options for ODBC

	IDS on Windows - DB2 Archive on z/OS
	Setting Up the DB2 Archive on z/OS

	Creating a z/ OS Database
	Updating TCP/IP Values on a Windows 2000 Server

	Appendix A

	System Files
	Overview
	Types of Files
	BCH files
	CAR files
	DAT files
	DBF files
	DDT files
	DFD files
	Error files
	Extract files
	FAP files
	Initialization files
	JDT files
	Log files
	LOG files
	MDX files
	Transaction files

	Resource Files
	FSISYS.INI file
	FSIUSER.INI file
	FAPCOMP.INI
	FORM.DAT file
	SETRCPTB.DAT file
	DFD files
	TRNDFDFL.DFD file
	RCBDFDFL.DFD file
	APPIDX.DFD
	.DDT files
	.JDT files
	Extract files
	DFD File Format
	Fields Group
	Field Description Group

	Files Created by the GenTrn Program
	Transaction files
	Error files
	Log files

	Files Created by the GenData Program
	NAFILE.DAT file
	POLFILE.DAT file
	NEWTRN.DAT file
	Batch files
	MANUAL.BCH file
	Error batch
	Updated log, error, and message files

	Files Created by the GenPrint Program
	Spool files
	Updated log and error files

	Files Created by the GenWIP Program
	WIP.DBF file
	WIP.MDX file
	00000001.DAT file
	00000001.POL file
	UNIQUE.DBF file

	Files Used by the GenArc Program
	APPIDX.DBF file
	APPIDX.DFD file
	ARCHIVE.CAR file
	APPIDX.MDX file
	APPIDX.DFD file

	Glossary
	00000001.DAT File
	00000001.POL File
	AFP
	ARCHIVE.CAR File
	ARCHIVE.DBF File
	ARCHIVE.DFD File
	Base Product
	.BCH Files
	Batch Files
	.CAR Files
	Custom Solution
	DAL
	.DAT Files
	.DBF Files
	DDT Files
	DESKJET.FXR File
	.DFD Files
	Distributed Resource Library
	Duplex
	ERRFILE.DAT
	Error Batch
	Error Files
	External Database Editor
	Extract Files
	.FAP Files
	FDB.DBF File
	fetype
	Field Database Editor
	Fixed Data
	Font Manager
	Form
	Form Set
	Form Set Manager
	FORM.DAT File
	FSISYS.INI File
	FSIUSER.INI File
	.FXR Files
	GenArc Program
	GenData Program
	GenPrint Program
	GenTrn Program
	GenWIP Program
	Help Editor
	Image (Section)
	Image Editor
	.INI Files
	INTL.FXR
	INTLSM.FXR
	.JDT Files
	Library Manager
	Log Files
	.LOG Files
	Logo Manager
	MANUAL.BCH File
	Master Resource Library
	Metacode
	.MDX Files
	NAFILE.DAT File
	NEWTRN.DAT File
	Objects
	Overflow
	Page
	PCL
	POLFILE.DAT File
	PostScript
	Section
	SETRCPTB.DAT File
	Simplex
	System Releases
	System Patches
	Table Editor
	Transaction List
	.TRN Files
	TRNDFDFL.DFD File
	UFSTSM.FXR File
	UNIQUE.DBF File
	Variable Data
	WIP.DBF File
	WIP.MDX
	xBase

	Index
	Symbols
	& (ampersand) 340
	.BCH files 428
	.CAR files 428
	.DAT files 428
	.DBF files 428
	.DDT files 428, 438
	.DFD files 429
	.FAP files 430
	.INI files 430
	.JDT files 430, 439
	.LOG files 430
	.MDX files 430
	~Encrypted 114
	~GetEnv function 112
	~OS function 113
	~Platform function 112
	~WIPField built-in function 115

	Numerics
	00000001.DAT file 448
	00000001.POL file 448
	2-up printing

	A
	A4
	ABNORMAL statements 247
	Access databases 375
	Acrobat Reader
	AddBlankPages function 96
	AddComment function 263, 264
	AddDocusaveComment function 324
	Added_Fonts control group 71
	AddedOn option 362
	AddForm function
	adding
	AdditionalDJDE option 242
	AddLine rule 72
	ADDPAGES utility 232
	AddTextLabel rule 72
	AdjLeftMargin option 254
	Adobe Acrobat 2
	AFEMAIN program
	AfeProcedures control group 377
	AFEW32 377
	AFEWIP2ArchiveRecord 377
	AfeWIP2ArchiveRecord control group 377
	AFG2WIP control group 89
	AFGJOB.JDT file 430, 439
	AFM files 174
	AFP
	AFP control group 214
	AFP printers
	AFPFMDEF utility 221
	AIX
	AliasPrintBatches option 103
	AllowInput option 287
	AlwaysSQLPrepare option 357
	ampersands
	ancestor 123
	ANSI code page
	APPIDX file
	APPIDX.DBF file 449
	APPIDX.DFD file 437, 449
	APPIDX.MDX file 449
	application index file 437
	archive
	archive index file
	Archive rule 51, 52
	ARCHIVE.CAR file 449
	ArchiveMem option 356, 362
	archiving
	ArcRet control group 356, 381
	ARCRET utility 388
	ARCVIEW utility 374
	ASCII
	Asian languages
	Auto-size option 222

	B
	banner form processing
	banner forms
	banner processing
	BARR
	BARR SPOOL
	BARRWRAP utility 251
	BaseErrors option 34
	BaseRuleTime option 105
	Batch control group 52
	batch files 446
	BatchBannerBeginForm option 16
	BatchBannerBeginScript option 16
	BatchBannerEndForm option 16
	BatchBannerEndScript option 16
	BatchByPageCount rule 52
	BatchingByRecip control group 52
	BatchingByRecipINI rule 52
	BatchPrint control group 286
	BatchTable option 103
	bitmap compression
	bitmap fonts
	bitmaps
	black rectangles 222
	blank pages 232
	boxes, WriteFrame option 287
	BreakBatch function 81
	BuildMasterFormList rule 52
	built-in functions 111
	business envelopes 260
	byte-serving 285

	C
	Cabinet option 362
	CacheFAPFiles option 240
	CacheFiles option 240
	CacheMethod option 240
	callback functions
	CallbackFunc option 85
	CARData control group 373
	CARFILE
	CARFILE.DFD file 369
	case toggles 228
	CaseSensitiveKeys option 378
	CATALOG file
	CD/IG 249
	Character Set field 216
	character sets
	ChartResolution option
	charts
	CheckCount option 33
	CheckImageLoaded rule
	CheckZeroFontID option 102
	child 123
	Class option 375
	class recipient 65
	ClearMsgFile option 334
	CMY palette 261
	Code Page Font field 216
	code pages
	CODE statement 228
	CODEPAGE.INI file
	ColorCharts option 237
	colors
	column names 397
	COMM_RECS column
	commas
	comment records 18
	commit
	CommitEvery option 360
	CommonFonts control group 236
	CompileInStream option 230
	Compression option 270
	CompressMode option 230
	concepts
	configuring
	console
	console messages 238
	controlling the message translation process 335
	converting
	ConvertWIP rule 51, 53
	copy counts
	Counter field 141, 435
	counter search mask 155
	CounterDFD option 70
	CounterTbl option 52, 53, 70
	CreateIndex option 372
	CreateTable option 372
	CreateTime field 88
	CreateTime option 362
	creating
	creating messages 337
	CRYRU utility 114
	CSTSetMailRecip function 309
	CUSSetMailRecipGVM function 309
	custom callback function in banner processing 15
	custom fonts 192
	Custom Rule field 141
	custom rules

	D
	DAL
	DAL functions
	DAL scripts
	DALFile option 371
	DALLibraries control group 16, 97
	DALRUN built-in function 113
	DALVAR built-in function 113
	data
	Data control group
	data definition table
	data format definition files 429
	data table files 428
	database
	database files 428, 436
	DataPath option 103
	date stamps
	DB Field Name values 386
	DB2
	dBase 463
	DBErrors option 359
	DBHandler option 371, 372, 376
	DBLib tracing 336
	DBLogFile option 336
	DBTable option 371
	DCD files
	DDTFile option 371
	Debug option 372, 376
	Debug_If_Rule option 101
	Debug_Switches control group 101
	DefaultTag option 357
	defining
	DefLib option
	DelBlankPages function 97
	descendant 123
	DestField token 344
	Device field 283
	Device option 231
	DeviceName function 81
	DFD file
	DFD files 436
	DisplayCodedFont option 214, 216
	DJDE command 242
	DJDE statements
	DJDECarrControl option 242
	DJDEForceOffsetEnd option 233
	DJDEIden option 228
	DJDELevel option 239
	DJDEOffset option 228
	DJDESkip option 228
	DlgTitles control group 381
	DocSetNames control group 50
	Documaker Server
	Documanage
	Document Type Number 166
	Docupresentment 2
	Docusave
	DocusaveScript option 213, 324
	dots per inch
	DoubleOutputRes option
	DownloadFAP option 99, 270
	DownloadFonts option 264
	DPA files
	DPASSWD command line option 357
	DPRAddBlankPages rule 98
	DPRDelBlankPages rule 98
	DSCHeaderComment option
	duplex
	DUSERID command line option 358

	E
	EBCDIC 430
	EBCDIC platforms
	EjectPage rule
	ElapsedTimeStamp option 102
	email
	Email Application Servers 310
	embedded fonts 264
	embedded hex values 228
	embedding fonts 205
	EMIT_ERROR type 337
	EMIT_MESSAGE type 337
	EMIT_WARNING type 337
	EmptyFooters option 288
	EmptyHeaders option 288
	Enable_Debug_Options option 101, 104, 336
	EnableEmailNotification option 90
	EnableTransBanner option 97
	encrypted values 114
	end of report conditions 232
	envelope feeders 260
	EPTLIB 307
	EPTSetRecipFunc function 309
	ERRFile option 334
	ERRFILE.DAT file 332
	error batch 446
	error codes 333
	error files 429, 444
	error messages
	ErrorFileDateStamp option 102
	ErrorFileOpenMode option 335
	errors
	European paper 433
	examples
	Excel spreadsheet databases 375
	executive
	executive paper 433
	ExportIndex option 356
	Expression option 103
	Ext option
	EXT_Length option 71, 373
	Extended Binary Coded Decimal Interchange Code 180
	Extended Document Properties (XDPs) 385
	extract files
	EXTRACT.DAT file 429

	F
	FAP files
	FAP2CFA utility 247
	FAP2FRM utility 245, 251
	FAP2MET utility 230, 240, 246, 247
	FAP2OVL utility 221
	FAPAddBlankPages 96
	FAPCOMP.INI file 431
	FAPDelBlankPages 96
	FAX drivers 281
	fax, drivers 276
	FEED command 249
	FIELD
	Field Description control group 442
	FieldErrors option 34
	FieldFuncTime option 105
	FieldList option 103
	fields
	Fields control group 441
	file names
	File option
	file summary
	FileDrive function 82
	FileExt function 82
	FileName function 82
	FilePath function 82
	files
	FileType option 362
	FinalPrinter option
	FitToWidth option
	floating section limitations 222
	FolderBy option 361
	folders
	font cross-reference files
	FontFamilyMatching control group 208
	FontLib option
	fonts
	footer 433
	footers
	ForceFolderUpdate option 363
	ForceNoImages rule 72
	form level triggers 139, 147
	Form Name field 435
	Form name field 140
	Form option 58
	form set definition table 139, 431
	Form Set Manager 138, 239
	form set trigger table 434
	form sets
	FORM.DAT file 139, 431
	format
	FormDef, AFP resources 221
	FormFile option 371
	form-level comments 225
	FormLib option
	FormNameCR option 225
	forms
	FormSetID field 87
	FormSetRuleTime option 105
	frames
	FRM files
	FRMFile option 251
	FSIFileName taken 342
	FSIFileName token 344
	FSILineNumber token 342, 344
	FSIPATH environment variable 374
	FSISYS.INI file 431
	FSIUSER.INI file 431
	FSRSetFileAttachment API 310
	FudgeWidth option
	FullFileName function 82
	FullSupport option 281, 282
	functions
	FXR files

	G
	GDI driver
	GDIDevice option 279, 282
	GEN_DEBUG_DebugSwitchSet function 101
	Gen_TabUtil_LoadListFromTable function 101
	GenArc program
	GenData program
	GenDataStopOn control group 34
	GenPrint program
	GenTranStopOn control group 43
	GenTrn
	GenTrn program
	GenWIP program
	GETENV INI function 88
	GetEnv INI function 379
	GetRCBRec rule 72
	GHO hardware 229
	GOCA charts support 211
	going live 132
	graphics
	Graphics Device Interface (GDI) print driver 276
	GraphicSupport option
	GroupName1 field 140, 435
	GroupName2 field 140, 435
	GVG hardware card 229, 245

	H
	H2 strings 228
	H6 strings 228
	header 433
	header records
	headers
	hidden 433
	highlight color printing
	HighlightBlackCmd option 262
	HighlightColor option 254
	HighlightColorCmd option 262
	horizontal motion index 246
	HPINTL.FXR file 189
	HPINTLSM.FXR file 189
	HP-UX

	I
	IBMXREF.TBL file 216
	IDEN statement 228
	IDS
	image level triggers 139, 144
	Image Name field 140, 435
	Image option 58
	ImageErrors option 34
	ImageFuncTime option 105
	ImageOpt option
	ImageRuleTime option 105
	imaging systems 263
	ImmediateTranslate option 336
	implementation methodologies 132
	implementing your system 131
	indexes
	InfoPak 232
	INI built-in functions 111
	INI command line option 357
	INI files
	INIFiles control group 113
	INIGroup control group 113
	INILib option 104
	InitArchive rule 51, 53
	InitConvertWIP rule 51, 53
	InitFunc option 264
	initialization files 430
	InitMerge rule 72
	InitPageBatchedJob rule 72
	InitPrint rule 53
	InitSetrecipCache rule 53
	ink color 234
	inkjet printers 276
	inline graphics
	installable functions 231
	installing
	INT_LENGTH option 71
	INT_Length option 373
	international language support 198
	Internet Document Server (IDS)
	InUse field 87

	J
	JDEName option 227
	JDLCode option 228
	JDLData option
	JDLHost option 228
	JDLName option 227
	JDLRPage option 232
	JDLRStack option 232
	JDLs
	JES2 format 251, 323
	job definition table 430, 439
	JOBID command line option 357
	JOBID parameter
	jogging pages 233
	JSLs
	jump to new sheet condition 232

	K
	KEY
	key fields
	Key1
	KeyID

	L
	landscape 433
	Landscape option
	LandscapeSupport option
	language
	LanguageLevel option 268
	LASTERRORTOKEN token 339, 342
	LASTREC column
	LBYD option 373
	LBYI option 373
	LBYLOG option 373
	LBYLOGFile option 371
	legal
	letter
	letter size paper 433
	limitations
	line density errors 249
	LINE statement 228
	lists of figures
	Loader:Met control group 241
	LoadFAPBitmap option 247
	LoadListFromTable option 101
	log files
	LOG2PSEG utility 221
	LogCaching option 240
	LOGFile option 334
	LOGFILE.DAT file 332
	LogFileDateStamp option 102
	logging messages 336
	logical printers 85
	Logo Manager 237, 245
	LOGO.DAT file
	LOGOFile option 371
	LogToConsole option 104, 356
	LogTransactions option 333
	LookUp rule
	LRECL values 250

	M
	Mail control group 310
	MailAttachment option 90
	MailID option 90
	MailMessageBody option 90
	MailSubject option 90
	MailType option 310
	MANUAL.BCH file 446
	Map Coded Font (MCF) fields 216
	MapByDBName option 386
	margins
	marking
	Master and Subordinate Sections 149
	master flag
	master forms
	master resource libraries
	MasterDDTNotInLibrary option 371
	MasterResource control group
	MaxFonts option 236
	MaxPolLineLength option 445
	MergeAFP rule 73
	message information 307
	Message option
	message token file
	message token files
	messages
	MET files
	Metacode
	Metacode printers
	METDUMP utility 245
	methodologies for implementation 132
	METOPT utility
	Mixed Object Document Content Architecture data streams 210
	Mobius
	ModifyTime field 87
	Module option
	Monotype fonts 221
	MRG2FAP utility
	MRG4 format 323
	MSGFile option 334
	MSGFILE.DAT file 332, 343
	msgNO_MORE_IMAGES message 72
	MTCLoadFormset rule 244
	multi-file print callback method 79
	MultiFileLog option
	MultiFileLogRecord option 109
	MultiFilePrint callback function 49, 166
	MultiFilePrint option
	MultiLinesPerCommand option
	multi-mail transaction
	multi-mail transactions
	multi-page FAP files
	multi-page forms
	MVS
	MVS file format 429

	N
	NAFILE.DAT file 428, 445
	NamedColors option 213, 215
	NameDocBy INI option 361
	NameDocBy option 362
	negative left offset 222
	NEWTRAN.DAT file 446
	NEWTRN file
	NEWTRN.DAT file
	next/retrieve cursor 388
	NoBatchSupport option 286
	NoGenTrnTransactionProc rule 53
	non-stapled forms
	NOT conditions
	NUBACK statements 232
	NUFRONT statements 232

	O
	objects
	Occurrence flag 141, 435
	occurs clauses 440
	Octal strings 228
	ODBC
	ODBC_FieldConvert control group 375
	ODBC_FileConvert control group 375
	offset, negative left 222
	OMR marks
	OnDemand command records 212
	OnDemandScript option 212
	OPASSWD command line option 358
	OpSystem option 430
	Opt option 58, 59
	Optimize option 236
	OR conditions
	Oracle
	ORDER BY clause 357
	OT_Docs table 361, 362
	OTextString option 238
	OUSERID command line option 358
	OutBuff token 339
	OutMode option
	output files
	OutputBin option 255, 259
	OutputFunc option 262
	OutputHalfRes option 214
	OutputMod option 262
	overflow
	Overflow flag 141, 435
	OverlayExt option
	OverlayPath option
	overlays
	OVLCOMP utility

	P
	page segments 221
	page-at-a-time downloading 285
	PageBatchStage1InitTerm rule 53
	PageNumbers option
	PageRange option 52
	pages
	paper size
	paper sizes
	paper trays
	PaperSize option 212, 236
	PaperStockID option 243
	parent 123
	parentheses
	pass-through printing 283, 284
	Passwd option 372
	PCL
	PCL printers
	PCO interface
	PDF
	PDF files
	PDF format 2
	PDF417 fonts 191
	PDS members
	performance
	PJLComment option 263
	PJLCommentOn option 255
	PJLCommentScript option 255, 263
	platforms
	PMetLib option
	PMETLIB PDS 230
	PO Handler 361
	PODocument2Field control group 363
	POField2Document control group 363
	POLFILE.DAT file 445
	Port option 281
	portrait graphic
	PostScript
	PostScript fonts
	PostScript printers
	PreLoadRequired option 286
	PrePrintedPaper option
	print 286
	print batches
	Print Services Facility 210
	print spool files
	print streams
	Print window
	Print_Batches control group 103
	printer console messages 238
	printer drivers
	Printer Job Language (PCL) comments 263
	Printer option
	Printer Resident field 251
	PrinterInk option
	PrinterModel option 275
	printers
	PrintFormset rule 54, 120
	PrintFunc option
	printing
	PrintTimeStamp option 105, 335
	PrintToFile option 281
	PrintViewOnly option
	ProcessID built-in INI function 114
	processing
	processing overview 11
	ProcessQueue rule 54
	PRTLIB data 53
	PrtType option 85
	PrtType:AFP control group 210
	PrtType:XER control group
	PRTZCompressOutPutFunc function 262

	Q
	Qualifier option 372
	queues

	R
	RCBDFDFL.DAT file
	RCBDFDFL.DFD file 437
	RCBStatDtlDFD option 38
	RCBStats option 38
	RCBStatsDtl option 38
	RCBStatsTot option 38
	RCBStatsTotDFD option 38
	RCBTotals option 38
	RecipBatch function 19
	RecipFunc option
	recipient batch (RCB) transaction fields 87
	recipient batch DFD file
	recipient batch file 85, 437
	recipient batch records
	Recipient copy count field 141
	Recipient list field 141
	Recipient option
	recipients
	RECIPIF rule
	RecipMap2GVM control group 58
	RecipMap2GVM INI control group 66
	RecipMod option
	RecipName function 19
	records
	Records per first image field 141, 435
	Records per overflow image field 141, 435
	RecordType option 89
	REL112.FXR 191
	REL112SM.FXR 191
	REL95.FXR file 189
	REL95SM.FXR file 189
	RelativeScan option 231
	repeat counts 228
	ReplaceBitmap option 213, 215
	Req option 58, 59
	requirements definition 132
	reserved message ranges 338
	Resolution option
	resource files 431
	resources
	Restart control group 33
	restart file 33
	Restart option 358, 359
	Restart table
	RestartJob rule 34
	RetainTransBeginForm option 17, 18
	Retrieval
	Retrieval Options window 381
	Retrieve Document window 380
	RightFax 263
	rollback
	rotated variable fields 223
	rounding errors
	RP Struct 337
	RPAGE command 242
	RPErrorProc function 337
	RPLogProc function 337
	RSTACK command 242
	RstFile option 33
	RTF
	RTF files
	RTFFontMAP control group 208
	RULCheckTransaction rule 33
	RuleFilePool option 240
	rules
	rules processing
	Rules Processor
	Rules Publishing Solution
	RULStandardProc rule
	Run Length Encoding (RLE) compression 270
	RunMode control group
	RunSetRcpTbl rule

	S
	scalable fonts 175
	scaling output 276
	screen fonts
	Search Mask 1 field 141, 435
	Search Mask 2 field 141, 436
	search masks
	section level triggers 139, 144
	sections
	SelectRecipients option
	self 123
	SendColor option 215
	SendOverlays option
	sequence numbers
	Server option 372, 375
	set recipient table
	SetDeviceName function 81
	SetOrigin rule
	SetOverprint option 269
	SETRCPTB.DAT file 434
	SETRECIP table
	SetState rule
	setting
	setting up
	Setup Data field
	short binding 433
	Show_Debug_Options option 101
	sibling 123
	SIDE statements 232
	simple color mode 254, 261
	simplex
	single-page forms
	singles-step processing
	single-step processing
	SkipChartColorChange option 213
	skipping batch message 72
	SortFormsForRecip callback function 166
	sorting records 357
	SplitPercent option
	SplitText option
	SQL Server
	SQLID command line option 358
	StandardFieldProc rule 54
	StandardImageProc rule 54
	StandardJobProc rule 67
	staple attachments
	StapleBin option 255, 259
	StapleJDEName option 239
	StapleOff option 268, 272
	StapleOn option 268, 272
	stapling forms
	start new page 232
	statistics processing 38
	Status column
	StatusCode option 89
	STOPREC command line option 358
	SUB INK commands 246
	subject information 307
	Subject option
	subordinate flags
	subordinate sections
	SuppressBanner function 19
	SuppressDialog option 282
	SuppressDlg option
	SuppressLogoUnload option 213
	SuppressZeroData option
	Sybase
	system files 425
	system implementation methodology 132
	system overview 11
	system resource files
	system scenarios
	system settings

	T
	table names 397
	tables
	Tag Logical Element (TLE) records 327
	TblLkUp rule
	TEMPIDX file
	TemplateFields option
	TermFunc option 264
	terminology
	testing
	text files
	TEXTCommentOn option 264
	TEXTScript option 263
	TicketJobProc rule 67
	tildes
	TL/DL buffers 246
	TLEEveryPage option 212, 327
	TLEScript option 212, 327
	TLESeparator option 212, 327
	token-data pairs 339, 341, 343
	trace files
	TraceFile option 336
	transaction codes 435
	Transaction codes field 141
	transaction files 430, 444
	transaction records
	transaction trigger table
	TransactionErrors option 34
	transactions
	TransBannerBeginForm option 16
	TransBannerBeginScript option 16, 97
	TransBannerEndForm option 16
	TransBannerEndScript option 16
	transferring files
	TRANSLAT utility 332, 336
	TRANSLAT.INI file
	translating messages 335
	TranslationFile option 334
	trays
	trigger levels
	trigger records
	Trigger Table Record Format 140
	Trigger2Archive control group 51, 53, 378
	Trigger2WIP control group 87, 120
	triggering logic 168
	triggers
	TrimWhiteSpace option
	TRN files 430, 444
	Trn_Fields control group 50
	TRNDFDFL.DFD file 437
	true/false search mask 155
	TrueType fonts 175
	TWOUP control group 52, 53
	TwoUp control group 70
	TwoUpStart option 70

	U
	Unicode 256
	unique data
	UNIQUE.DBF file 448
	UniqueString function 82
	UniqueTag option 372
	UNIX
	updated log and error files 446, 447
	UpdatePOLFile rule
	uppercase 397
	UseRestartTable option 362
	UserID option 89, 114, 372
	UseXMLExtract rule 121
	using

	V
	value-added processes 239
	variable fields
	VB datasets 250
	VBPrtOptions control group 279
	ViewDirect APIs 244
	Virtual Storage Access Method 239
	VSAM control group 239

	W
	white outlines 269
	white space
	Windows
	WIP
	WIP Edit plug-in
	WIP RecType field 89
	WIP StatusCD field 89
	WIP.DBF file 448
	WIP.DFD files 87
	WIP.MDX file 448
	WordDateFormats control group 287
	WordTimeFormats control group 287
	WriteFrames option 287
	WriteNAFile rule
	WriteOutput rule 54

	X
	Xbase 463
	XDPs 389
	XERDNLD utility 251
	XERLoadDocuMerge loader function 244
	Xerox
	XML 50
	XML files
	XML print driver 120
	XMLExtract option 50
	XMLFileExtract rule 121
	XMLTrnFields option 50
	XPath 123
	XPATHW32 utility 123, 126

	Y
	Year 2000 compliance

	Z
	z/OS

	Go to Oracle Insurance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

