
Start

Oracle® Documaker

Programmer ’s Guide to Docusave
Server
version 3.0

Part number: E15145-01

September 2006

Copyright © 2009, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable,
the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be
the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for
the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or
damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

s

Notice

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://www.apache.org/).
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution under the Generic
BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2004 Jean-loup Gailly and Mark Adler

This product includes software developed by the Massachusetts Institute of Technology (MIT).
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright © 2009 MIT

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by Sam Leffler of Silicon Graphics.
THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software components distributed via the Berkeley Software Distribution (BSD).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2006 www.hamcrest.org. All Rights Reserved.

This product includes software components developed by the Independent JPEG Group and licensed for binary distribution under the
Independent JPEG Group license.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 1994-1998 AIIM International. All Rights Reserved.

This product includes software components developed by Sam Stephenson.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2005-2007 Sam Stephenson

This product includes software components developed by Sun Microsystems.

Copyright (c) 1995-2008 Sun Microsystems, Inc. All rights reserved.

This product includes software components distributed by Vbnet and Randy Birch.

Copyright © 1996-2008 Vbnet and Randy Birch. All Rights Reserved

This product includes software components distributed by the Internet Software Consortium and IBM.

 THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1996 by Internet Software Consortium.

THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES, INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN IF IBM IS APPRISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Portions Copyright (c) 1995 by International Business Machines, Inc.

This product includes software components distributed by RSA.
RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any
particular purpose. It is provided "as is" without express or implied warranty of any kind.

Copyright © 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

This product includes software components distributed by Terence Parr.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2003-2007, Terence Parr. All rights reserved.

This product includes software components distributed by Computer Associates.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2002 Computer Associates. All rights reserved.

This product includes software components distributed by MetaStuff.

THE SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS "AS-IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDINGBUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS AND SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ARISING IN ANY WAY OUT OF THE
USE OF THE SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2001-2005 Metastuff, Ltd. All Rights Reserved.

This product includes software components distributed by JSON.

The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2002 JSON.org

This product includes software components distributed by OpenSSL (http://www.openssl.org/).

THIS SOFTWARE IS PROVIDED BY THE OPENSSL PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENSSL PROJECT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS INTERRUPTION)
HOWVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1998-2007 The OpenSSL Project. All rights reserved.

This product includes software components distributed by Yahoo! Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2008 Yahoo! Inc. All Rights Reserved.

Programmer’s Guide to Docusave Server vii

Publication history

First issue for /NT 2.0.4: July 2002
Revision 1 for /NT v2.0.8/6000 v2.0.4a GA: September 2003
Reissued for /NT v3.0: May 2006
Revision 2: for v3.0 running on Windows, AIX, Solaris and Linux:
 September 2006

Programmer’s Guide to Docusave Server viii

Table of Contents
XIV PREFACE

xiv Welcome

xv Using this manual

xvi Conventions

xvii Related documents

xvii Installation Guide

xvii Administrator’s Guide

xvii Docusave Server Help

xvii Docucorp Queue Systems Guide

1 WHAT IS DOCUSAVE SERVER?

1 Introduction

2 Use and Structure

3 Docusave Server in Context

5 Flow of Control

8 Library Overview

11 Sample Code

13 COMMON ELEMENTS

13 Introduction

14 Pre-initialization functions

14 Initialization functions

Table of Contents

Programmer’s Guide to Docusave Server ix

15 Termination functions

15 Message Callback functions

16 Control Blocks

16 Dope Vectors

17 Return Codes

19 WRITING JOB RECOGNITION LIBRARIES

19 Introduction

19 Job Recognition Library

20 Calling Sequence

20 Notes

20 API Description in C

23 WRITING JOB AND DOCUMENT PROCESSING LIBRARIES

23 Introduction

25 Job Processing Common Elements

25 Calling Sequence

25 Custom Job Pre-Processing Libraries

26 Notes

26 API Description in C

26 Custom Job Processing Libraries

27 Notes

27 API Description in C

28 Custom Job Post-Processing Libraries

28 Notes

Table of Contents

Programmer’s Guide to Docusave Server x

28 API Description in C

29 Custom Document Pre-Processing Libraries

29 Notes

30 API Description in C

30 Custom Document Processing Libraries

30 Notes

31 API Description in C

31 Custom Document Post-Processing Libraries

32 Notes

32 API Description in C

33 WRITING IMAGING LIBRARIES

33 Introduction

33 Custom Imaging Libraries

33 Calling Sequence

34 Notes

34 API Description in C

Table of Contents

xi Programmer’s Guide to Docusave Server

Programmer’s Guide to Docusave Server xii

Docusave Server documentation roadmap

Administrating

Installation
Guide

Server
Administrator

Guide

Server
Help

Programming

Programmer’s
Guide

xiii Programmer’s Guide to Docusave Server

Programmer’s Guide to Docusave Server xiv

Preface

Welcome

Docusave for Oracle offers a comprehensive range of scalable high-
performance products for every step in the life cycle of a document. These
include Docusave for Oracle Creation Solutions to capture data and create
forms, Oracle Publishing Solutions to produce large volumes of personalized
documents, Oracle Archival Solutions to intelligently store and retrieve
documents, Oracle Management Solutions to control and network documents,
and Oracle Development Tools to customize your Oracle Solutions
implementations and interfaces.

Docusave Archival Solutions store your documents electronically for
intelligent retrieval and viewing. Docusave Archival Solutions facilitate
immediate access to your documents for such applications as claims
processing, enterprise-wide contract or regulatory document lookup, call
center statement reference, and other internal and customer service-based
functions. You can implement Docusave Archival Solutions as standalone
systems or integrate them with leading imaging systems.

A key component of Docusave Archival Solutions is the Docusave Server™
application.

Preface
Using this manual

xv Programmer’s Guide to Docusave Server

Using this manual
This Programmer’s Guide to Docusave Server manual is written to help you
customize or extend base product functionality.

Preface
Conventions

Programmer’s Guide to Docusave Server xvi

Conventions
The Programmer’s Guide to Docusave Server manual provides consistent
typographic conventions and keyboard formats to help you locate and
interpret information easily. These conventions are provided below.

Convention Description

Italics Command, dialog box, button, and field names

Arial font Directory, folder, and file names

1 Numbered lists Provide step-by-step procedures for performing an
action

 Bulleted lists Provide grouped information, not procedural steps

Preface
Related documents

xvii Programmer’s Guide to Docusave Server

Related documents
In addition to this Programmer’s Guide, the related documentation described
here is also included with Docusave Server. This documentation includes
administrator documentation and programming documentation.

Installation Guide

The Installation Guide is written for administrators of the Docusave Server
application. It describes how to install the Docusave Server application on
operating systems that it is compatible with.

Administrator’s Guide

This Administering Docusave Server guide is written for administrators of the
Docusave Server application. This guide describes how to use Docusave
Server on multiple operating systems to automate document filing and
document batch retrieval.

Docusave Server Help

The Docusave Server Help provides an overview of Docusave Server. It also
describes the Job Recognition, Processing and Imaging Libraries, the
BldCache and Addres utilities, and the AddResources batch file.

Docucorp Queue Systems Guide

The Docutoolbox Docucorp Queue Systems guide shows you how to install,
configure, and manage the Queue Management Systems. Queues provide a

Preface
Related documents

Programmer’s Guide to Docusave Server xviii

way for other applications to organize jobs for processing in Docusave
Server. Docusave Server uses queues as holding areas for jobs awaiting
processing. Dedicated queues and file servers improve the throughput
processing time for Docusave Server by distributing jobs across multiple
computers available on a local area network.

Preface
Related documents

xix Programmer’s Guide to Docusave Server

Programmer’s Guide to Docusave Server 1

What is Docusave Server?

Introduction

Docusave Server automates document filing and batch retrieval.

When performing document filing, Docusave Server processes jobs, which
consist of groups of documents, separates them into individual documents,
converts and optionally compresses each document, and then automatically
files the documents into an archival imaging or document management
system.

When performing batch retrieval, Docusave Server fetches previously
archived documents for subsequent processing by another process (like
Docucreate IC) or for routing print stream documents back to a production
printer. It does this by using two types of records:

 Document RePrint records (DRP records)—Docusave Server retrieves a
compressed AFP or Metacode print stream and its dependant printer
resources from the archival imaging or document management system for
subsequent printing.

 Document Retrieval Requests (DRR records)—Docusave Server
retrieves page images from an archival imaging or document
management system and exports them in a format accepted by
Docucreate IC.

What is Docusave Server?
Use and Structure

2 Programmer’s Guide to Docusave Server

Use and Structure

Docusave Server can be used as part of any business solution that requires
automated processing (typically archiving or batch retrieving) of significant
volumes of documents or document oriented transactions. Additionally,
Docusave Server provides transaction level logging, error recovery, and
custom library support to meet unusual or changing business needs.

The custom capabilities of Docusave Server enable novel solutions and allow
easy development of:

 Custom output destinations (e.g., new imaging or archival system
destinations)

 Custom index processing including validation, “pre-flighting,” and/or
possibly correcting indexes before a document is filed

 Custom pre-, post-, and processing steps, such as file type conversion,
data validation, and error recovery

Docusave Server takes its primary input from a queue. Use of a queue allows
business solutions to span separate computing platforms, where the
applications that create documents reside on a different computer system (or
even a different type of system) than Docusave Server itself. Another
advantage of queues is that the separate processes feeding a queue can be
started and stopped independently of Docusave Server. Using queues also
allows the number of instances of Docusave Server to differ from the number
of processes feeding the queue, which permits load balancing and system
scaling. In short, use of an input queue provides Docusave Server a single
interchange point for improved platform connectivity, independent operation,
load balancing, and system scaling.

The elements that reside in a Docusave Server input queue are groups of
documents or transactions in a single unit, called a job. A job can contain one

What is Docusave Server?
Use and Structure

Programmer’s Guide to Docusave Server 3

or a thousand documents. One important function of Docusave Server is to
split jobs into separate documents for individual processing, and to ensure
that the job process is complete. An axiom of Docusave Server design is that
entire jobs either succeed or fail. Error recovery processing is provided to
ensure that a job does not partially succeed.

The “all or none” approach to document processing within a job provides
important operational simplicity. It eliminates messy recovery in situations
where part of a job was successfully processed, and part of it failed. “Roll-
back” logic is included in Docusave Server so that jobs either succeed
entirely, or the system is rolled back to its state before the job was started. (If
some documents were processed in a job that fails, roll-back ensures the
documents are deleted from the output destination).

If documents are intended to be processed independently, and not as a
combined job, they can be queued in separate jobs of one document. (Note:
Some queue implementations have performance implications or system
limitations on the number of jobs in a queue. Keep this in mind when putting
many small jobs in a queue.).

Docusave Server in Context

In a filing scenario, Docusave Server is often used in conjunction with
Documaker or Docuflex publishing solutions. Typically the output of
Documaker or Docuflex is directed to a Docusave Server input queue.
Docusave Server in turn often writes its output to an archive or document
management system such as Documanage.

Together, Documaker/Docuflex, Docusave Server, Documanage, and
Docupresentment, with their associated tools, form the architectural
foundation for a number of complete business solutions.

What is Docusave Server?
Use and Structure

4 Programmer’s Guide to Docusave Server

Docusave Server can be part of a system designed to process very high data
volumes. It may be desirable to run multiple instances of Docusave Server
concurrently for increased throughput. Typically, multiple publishing
processes feed a single input queue from which multiple instances of
Docusave Server process jobs in parallel.

In a batch retrieval scenario using DRR records, Docusave Server runs “in
reverse” to extract page images from an imaging or document management

Printer
Resource

Queue
Utilities

Docusave
Server

Queue Management
System (QMS)
Messaging
Queue

Docusave
Server

Docusave
Server

Documanage
Imaging
System Disk

Docupresent-
ment

Docuflex

Documaker
FP or RP

Docucorp
Application
Programmi
ng/QMS

What is Docusave Server?
Use and Structure

Programmer’s Guide to Docusave Server 5

system and emits them as “megafiles” into a queue for processing by
Docucreate IC.

Flow of Control

Docusave Server follows the same sequence of processing steps regardless of
variations in processing content and configuration. For example, the file type
translation, compression choice, and destination archive or imaging system
can all be changed without changing the Docusave Server program, its
internal structure, or process flow.

Within the general flow, there are a number of places where Docusave Server
offers processing options. Some options are controlled by a user interface (or

Documanage

Docusave
Server

Docucreate
IC

Document
Retrieval
Request
Application

Electronic
Document Library
(EDL)

Queue Management
System Messaging
Queue

Queue Management
System Messaging
Queue

What is Docusave Server?
Use and Structure

6 Programmer’s Guide to Docusave Server

the equivalent configuration files or input control statements). Other
processing options are determined by library selection, which can be static or
dynamic.

Dynamic library selection is governed by two attributes of the job being
processed. A job recognition library examines a job in the input queue and
returns two processing types: the Job Type and Process Type (also known as
the Input type and Output type, respectively). These two types are represented
with three letter codes, which trigger the naming conventions for processing
libraries. For example, ‘RAS’ designates rasterization, and ‘PRT’ designates
print stream format. The job and process type are used to dynamically select
and load the libraries for job and document processing steps.

Summarized, the internal processing flow of Docusave Server is as follows:

 Initialize and begin monitoring an input queue for work units, called
“jobs”

 Wait for a job in the input queue

 For each job in the input queue:

 Call a “job recognition” library to determine the processing
requirements, and set the corresponding Job Type and Process Type

 Call the job pre-processor function (if any)

 Call the job processor function which bursts the job into separate
documents (transactions). If the job contains documents that need to
be processed individually, the job processor will call the following
document processing libraries

 Document pre-processing library (if any)

 Document processing library

 Document post-processing library (if any)

 Call the job post-processor library (if any)

What is Docusave Server?
Use and Structure

Programmer’s Guide to Docusave Server 7

 Start the next job in the input queue, or resume waiting for more

 Upon exiting, release memory, network, and system resources, close
files, and return to the operating system

The normal inputs and outputs to these process are:

 Input queue (into which jobs are placed by other processes)

 Configuration settings, gathered from a User Interface in the Windows
version, otherwise from control card settings or configuration files

 Output to log files that show jobs and documents successfully processed,
and their disposition

 Output to log files that show jobs and/or documents which failed to
process, the reason for failure, and the action taken or recommended

 Output to the chosen processing destination, usually an archival imaging
or document management system, but sometimes simply as files on disk

 Megafiles output to a queue, formatted for processing by Docucreate IC.

 Reprint packages output to disk, formatted for subsequent printing.

 Output and Input among various temporary files during processing

Although Docusave Server can be configured many different ways, certain
configurations using the default libraries cause it to perform the specific
functions of previous products:

 AccessCommander functionality can be achieved by using Docusave
Server to process AFP or Metacode print streams, or stacked DCD
documents. This processing includes bursting jobs into separate
documents, analyzing resource requirements, ensuring required resources

What is Docusave Server?
Library Overview

8 Programmer’s Guide to Docusave Server

are accessible, performing DJDE normalization (if applicable), and
archiving to a supported imaging system. In addition to documents,
printer resources can be archived using Docusave Server, fulfilling
another AccessCommander function.

 ImageCreate functionality converts AFP or Metacode print streams into
TIFF (or similar) image files before archiving those into an imaging
system.

Other configurations are possible when used with custom libraries and
provide virtually unlimited flexibility in processing.

Library Overview

NOTE: All libraries are supported by all operating systems (Microsoft
Windows, AIX, Linux and Solaris) unless otherwise specified.

When Docusave Server is started it loads and initializes the following
libraries:

 DSJOBTYP – for recognizing the contents of input jobs

 CODECMGR – for managing the compression of documents and the
decompression of input jobs

 DSISYSxx – for storing/retrieving documents to/from the imaging
system. Each imaging system will have its own library, and the standard
installation includes support for:

 DSISYSD - Disk (local file system)

 DSISYSDM - Documanage

What is Docusave Server?
Library Overview

Programmer’s Guide to Docusave Server 9

 DSISYSFL - Output File

 DSISYSFN - FileNet: Windows, AIX

 DSISYSIC - ImageCreate Output: Windows, AIX

 DSISYSM - MARS/NT: Windows

 DSISYSV - VLAM EDL: Windows

Docusave Server is often used in conjunction with a publishing solution such
as Documaker or Docuflex. The output of Documaker or Docuflex is directed
to a Docusave Server input queue. When a job is extracted from the input
queue the job recognition library is called to identify the job type. It returns a
three-character string that uniquely identifies the contents of the job.
Docusave Server will then use this string as a suffix to construct the names of
the job pre-processing library, the job processing library, and the job post-
processing library. The names will have following format:

 DSPRJxxx – pre-process job

 DSPJBxxx – process job

 DSPOJxxx – post-process job

For example, if the job-typing library returns the string “ABC,” then
Docusave Server would attempt to load the three libraries named

 DSPRJABC

 DSPJBABC, and

 DSPOJABC

The job processing library is the only library that must exist. The pre/post-
job/document processing libraries are optional and are not supplied with the
standard installation; they are custom libraries.

The following job processing libraries are supplied with a standard
installation:

 DSPJBDCD – for processing DCD input

 DSPJBDRP – for processing DRP input

What is Docusave Server?
Library Overview

10 Programmer’s Guide to Docusave Server

 DSPJBDRR – for processing DRR input

 DSPJBFPP – for processing DMFPPP logs

 DSPJBIMC – for processing ImageCreate output

 DSPJBPCL – for processing PCL input

 DSPJBPRT – for processing AFP and Metacode input

 DSPJBRSC – for processing printer resources

A job processing library calls document processing libraries if the job
contains documents that need to be processed individually. The following
document processing libraries will be supplied with a standard installation:

 DSPDCDCD – for processing DCD documents

 DSPDCNUL - for transferring AFP/Metacode documents to a
mainframe VLAM library as-is

 DSPDCPCL - for archiving PCL documents

 DSPDCPRT – for archiving AFP/Metacode documents

 DSPDCRAS – for rasterizing AFP/Metacode documents

Once jobs are processed, they are output to an imaging system and Docusave
Server begins processing the next job in the queue or resumes waiting for
more.

What is Docusave Server?
Sample Code

Programmer’s Guide to Docusave Server 11

Sample Code

Docusave Server is shipped with sample C++ code to illustrate the
implementation of each type of library used. This is an excellent starting
point for custom-built libraries.

 DSJBTXYZ. A sample job recognition library. This library doesn't
actually interrogate the content of jobs but always returns “XYZ” as the
job type, which triggers the other sample job processing libraries.

 DSPRJXYZ. A sample job pre-processing library. This library does not
alter the contents of the job but writes messages to the server log to
indicate that it has been invoked.

 DSPJBXYZ. A sample job processing library. This library loads and
invokes the *XYZ document processing libraries. For the purpose of this
sample the entire job is treated as a single document.

 DSPRDXYZ. A sample document pre-processing library. This library
does not alter the contents of the document but writes messages to the
server log to indicate that it has been invoked.

 DSPDCXYZ. A sample document processing library. This library sends
the entire document to the imaging library for storage and intentionally
returns an error code to demonstrate that the document post-processor can
alter this return code.

 DSPODXYZ. A sample document post-processing library. This library
reduces the return code from the document processor to a maximum of
four (4), which is intended to simulate reducing an error condition to a
warning condition.

 DSPOJXYZ. A sample job post-processing library. This library merely
writes messages to the server log to indicate that it has been invoked.

What is Docusave Server?
Sample Code

12 Programmer’s Guide to Docusave Server

 DSISYSU. A sample imaging library. This library merely writes
messages to the server log to indicate that it has been invoked.

Programmer’s Guide to Docusave Server 13

Common Elements

Introduction

Docusave Server takes its primary input from a queue. Use of a queue allows
business solutions to span separate computing platforms, where the
applications that create documents reside on a different computer system (or
even a different type of system) than Docusave Server itself. Another
advantage of queues is that the separate processes feeding a queue can be
started and stopped independently of Docusave Server. Using queues also
allows the number of instances of Docusave Server to differ from the number
of processes feeding the queue, which permits load balancing and system
scaling. In short, use of an input queue provides Docusave Server a single
interchange point for improved platform connectivity, independent operation,
load balancing, and system scaling.

The elements that reside in a Docusave Server input queue are groups of
documents or transactions in a single unit, called a job. A job can contain one
or a thousand documents. One important function of Docusave Server is to
split jobs into separate documents for individual processing, and to ensure
that the job process is complete. An axiom of Docusave Server design is that
entire jobs either succeed or fail. Error recovery processing is provided to
ensure that a job does not partially succeed.

The “all or none” approach to document processing within a job provides
important operational simplicity. It eliminates messy recovery in situations
where part of a job was successfully processed, and part of it failed. “Roll-
back” logic is included in Docusave Server so that jobs either succeed
entirely, or the system is rolled back to its state before the job was started. (If

Common Elements
Pre-initialization functions

14 Programmer’s Guide to Docusave Server

some documents were processed in a job that fails, roll-back ensures the
documents are deleted from the output destination).

Pre-initialization functions

Some of the libraries contain functions that may be called before the
initialization function. Currently there are two types of functions that fall into
this category:

 Identity functions. Return a character string that provides a brief
description of the library’s function. The server can use this information
to display in dialogs and in logged messages.

 Setup functions. In a Windows environment this function is called by the
server to display any setup dialog that might be appropriate for the
library.

Initialization functions

Each of the libraries contains an initialization function, which is normally
called before any other function.

Typically the initialization function takes at least two parameters:

 The address of a four-byte control block address

The control block address will be set by the initialization function and
will subsequently be passed to all the other functions.

Common Elements
Termination functions

Programmer’s Guide to Docusave Server 15

 The interface version

Each header contains a version definition which can be used to indicate
the interface version. For example, the job processing interface
“dsprocj.h” contains the definition DSPROCJ_VERSION which should
be passed as the value for the interface version.

Termination functions

Each library contains a termination function, which is normally the last
function called. Functions called after the termination function will fail.

Typically the termination function takes a single parameter:

 The control block address returned from the initialization function

Message Callback functions

The server may supply the library with a function pointer that can be called to
post messages back to the server log file. The callback function takes a single
null-terminated string as its only parameter. There is no return code.

Common Elements
Control Blocks

16 Programmer’s Guide to Docusave Server

Control Blocks

The control block should be allocated in the initialization function. The
address of the control block will then be passed back to all subsequent
functions. Any data that needs to be shared between function calls should be
placed in the control block. It’s the responsibility of the termination function
to delete the control block.

Each library defines the structure of its own control block.

Dope Vectors

Many of the libraries need the ability to call functions in other libraries that
Docusave Server has loaded. Docusave Server uses a structure we’re calling a
“dope vector” to encapsulate the pertinent information about these libraries so
that it can pass them to other libraries as a single data structure. The dope
vector structure is defined in “dsapidv.h” and contains:

 The library handle

 The initialized control block

 The addresses of all the exported functions

Common Elements
Return Codes

Programmer’s Guide to Docusave Server 17

Return Codes

Every library function returns a four-byte integer indicating the result of the
function’s execution. The valid return codes for each library are defined in the
header file associated with that library. Some of the common return codes:

 DS*_OK (0). The function completed successfully.

 DS*_REQUEST_FAILED (12). The function did not complete
successfully.

 DS*_INVALID_PARM (16). One or more of the parameters appears
to be invalid. Examples: an invalid parameter address or a character
string that is longer or shorter than expected.

 DS*INVALID_CB (32). The control block supplied to the function
does not appear to be the same control block that was allocated in the
initialization function.

Common Elements
Return Codes

18 Programmer’s Guide to Docusave Server

Programmer’s Guide to Docusave Server 19

Writing Job Recognition
Libraries

Introduction

The Job Recognition Library identifies the job type when the job is pulled
from the input queue. The Library returns a 3 character string that uniquely
identifies the contents of the job, which Docusave Server uses as suffix to
construct the name of the job processing libraries.

Depending on the job type coming in to the system, the job recognition
library selects the appropriate job and document processing library to process
the job.

Job Recognition Library

A working example of a recognition library is distributed as
DSJBTXYZ.CPP.

Writing Job Recognition Libraries
Job Recognition Library

20 Programmer’s Guide to Docusave Server

Calling Sequence

The typical calling sequence for a recognition library is:

DSJOBTYP_init()
DSJOBTYP_setMsgCallback()
 DSJOBTYP_getType()
DSJOBTYP_terminate()

The initialization function (DSJOBTYP_init) is called one time before job
servicing begins. The processing function (DSJOBTYP_getType) is called
once for each job read from the input queue. Before Docusave Server is shut
down the termination function (DSJOBTYP_terminate) is called.

Notes

The processing function (DSJOBTYP_getType) is given the control block
from the initialization function, the name of the file containing the contents of
the input job, and the job description supplied by the user when the job was
added to the queue. The function passes back a unique three-character string
(null-terminated) to identify the contents of the job. It also passes back a
three-character string to indicate the type of processing that should be
performed on this job. A null-string for the processing type indicates that the
default processing for the job type should be performed.

API Description in C
/* Initialization functions */

DSJOBTYP_API CALL_TYPE DSJOBTYP_init(DSJOBTYP * cb, /* in/out */

 long interfaceVersion); /* in */

DSJOBTYP_API CALL_TYPE DSJOBTYP_setMsgCallback(DSJOBTYP cb, /* in */

Writing Job Recognition Libraries
Job Recognition Library

Programmer’s Guide to Docusave Server 21

 void * pfn); /* in */

/* Recognition Functions */

DSJOBTYP_API CALL_TYPE DSJOBTYP_getType(DSJOBTYP cb, /* in */

 char * fileName, /* in */

 char * description, /* in */

 char jobType[4], /* out */

 char processType[4]); /* out */

/* Termination function */

DSJOBTYP_API CALL_TYPE DSJOBTYP_terminate(DSJOBTYP cb); /* in */

Writing Job Recognition Libraries
Job Recognition Library

22 Programmer’s Guide to Docusave Server

Programmer’s Guide to Docusave Server 23

Writing Job and Document
Processing Libraries

Introduction

The Job recognition library ascertains the type of job in the queue, and
thereby determines both the job processing and document processing libraries
that will be used. The mechanism for automatically selecting the correct
processing libraries is a library naming convention.

The library naming convention constructs processing library names from the
job and document types (determined by the recognition step). If a pre-, post-,
or processing library is present, and its name matches the naming convention
for the current job, it will be invoked automatically at the appropriate time.

Job and document processing actions are implemented through separate
libraries to allow a high degree of flexibility in controlling how processing
occurs, and to provide custom behavior by using substitute or optional
libraries.

Job processing refers to operations that happen once per job, where a job is a
single entry in the input queue.

Document processing refers to operations that happen for each document in a
job – potentially many times during one job. (A Job typically contains many
documents.)

Writing Job and Document Processing Libraries
Introduction

24 Programmer’s Guide to Docusave Server

Job processing always use at least one library. The job processing library,
may in turn, use one document processing library (for a total of 2 libraries).
However, both job and document processing can also include optional pre-
processing and post-processing libraries to bring the total number of
processing libraries to 6. (Often pre- and post- processing libraries are not
needed, and may not even be installed.)

Not surprisingly, the pre-processor library runs immediately before the
corresponding job or document processor, and the post-processor runs
immediately after.

The only purpose for using pre- and post- processing libraries is to modify (or
supplement) the behavior of the main processing library. This makes it
possible to use the standard processing libraries in non-standard situations.

For example, if you wish to validate index data in a database lookup before
the standard document processor converts and files it, you might write a
document pre-process library to validate the index data.

If you wanted to modify the result code assigned under a certain error
condition, you might write a document post-processor library to test for that
condition and modify the result code.

A custom job post-processor library could be used to provide additional
notification (e.g., send an email or advance a workflow) when a job
completes.

Pre- and Post- processing libraries can be simple or complex and are entirely
optional.

In addition to pre- and post- processing, custom processing libraries can be
used to create new functions and operations (e.g., convert print images to a
different output type such as PDF). Custom processing libraries may or may
not use pre- or post- processing libraries as well.

Writing Job and Document Processing Libraries
Job Processing Common Elements

Programmer’s Guide to Docusave Server 25

Job Processing Common Elements

Job and document pre-, post-, and processing libraries have a common calling
sequence.

Calling Sequence

The typical calling sequence for job and document pre-, post-, and processing
libraries is:

DSP*_init()
DSP*_set*()
 DSP*_process()
DSP*_terminate()

The initialization function is called exactly once immediately after the library
is loaded into memory. One or more of the “set” functions may be called after
the library is initialized. The processing function is called once for each job or
document. Before Docusave Server unloads the library the termination
function is called.

Custom Job Pre-Processing Libraries

A working example of a job pre-processing library is distributed as
DSPRJXYZ.CPP.

Writing Job and Document Processing Libraries
Custom Job Processing Libraries

26 Programmer’s Guide to Docusave Server

Notes

DSPREPJ_preprocess()

The job pre-processing function is supplied with two file names: the name of
the file containing the original job from the input queue, and the name of a
file that may be used to place an altered version of this input job. The process
type (returned from the recognition library) is also supplied to this function
and may be altered in-place if desired. This function should return
DSPREPJ_USE_ORIGINAL if the original input file should be passed to the
job processing step or DSPREPJ_OK if the altered job should be used
instead.

API Description in C
/* Initialization functions */
DSPREPJ_API CALL_TYPE DSPREPJ_init(DSPREPJ * cb, /* in/out */
 long interfaceVersion); /* in */
DSPREPJ_API CALL_TYPE DSPREPJ_setImgSys(DSPREPJ cb, /* in */
 DSapiDopeVector * pdv); /* in */
DSPREPJ_API CALL_TYPE DSPREPJ_setMsgCallback(DSPREPJ cb, /* in */
 void * pfn); /* in */

/* Processing function */
DSPREPJ_API CALL_TYPE DSPREPJ_preprocess(DSPREPJ cb, /* in */
 char * fileIn, /* in */
 char * fileOut, /* in */
 char * processType); /* in/out */
/* Termination function */
DSPREPJ_API CALL_TYPE DSPREPJ_terminate(DSPREPJ cb); /* in */

Custom Job Processing Libraries

A working example of a job processing library is distributed as
DSPJBXYZ.CPP.

Writing Job and Document Processing Libraries
Custom Job Processing Libraries

Programmer’s Guide to Docusave Server 27

Notes

DSPROCJ_process()

The job processing function is supplied with the name of the file containing
the job and a character string that indicates the type of processing to be
performed. (This character string may be null, which indicates the default
processing type.) Any meaning associated with the processing type is
determined in this function.

At the discretion of this function, document processing libraries (document
pre-, post-, and processing) may be called to handle the individual documents
inside the job. This may or may not be applicable depending on the job type.
For information on Document Processing go to “Custom Document Pre-
Processing Libraries” on page 29”

This function would normally call the beginJob() and endJob() functions of
the Imaging library. If no document processing libraries are used (i.e. all
processing takes place in this function) then this function would also call the
other Imaging library functions required to store each of the documents in the
job. See “Writing Imaging Libraries” on page 33 for more information.

API Description in C
/* Initialization functions */
DSPROCJ_API CALL_TYPE DSPROCJ_init(DSPROCJ * cb, /*
in/out */
 long interfaceVersion); /*
in */
DSPROCJ_API CALL_TYPE DSPROCJ_setCompression(DSPROCJ cb, /*
in */
 DSapiDopeVector * pdv); /*
in */
DSPROCJ_API CALL_TYPE DSPROCJ_setImgSys(DSPROCJ cb, /*
in */
 DSapiDopeVector * pdv); /*
in */
DSPROCJ_API CALL_TYPE DSPROCJ_setMsgCallback(DSPROCJ cb, /*
in */

Writing Job and Document Processing Libraries
Custom Job Post-Processing Libraries

28 Programmer’s Guide to Docusave Server

 void * pfn); /*
in */
DSPROCJ_API CALL_TYPE DSPROCJ_setup(void * parentWindow); /*
in */

/* Processing */
DSPROCJ_API CALL_TYPE DSPROCJ_process(DSPROCJ cb, /*
in */
 char * fileName, /*
in */
 char * processType); /*
in */
/* Termination function */
DSPROCJ_API CALL_TYPE DSPROCJ_terminate(DSPROCJ cb); /*
in */

Custom Job Post-Processing Libraries

A working example of a job post-processing library is distributed as
DSPOJXYZ.CPP.

Notes

DSPOSTJ_postprocess()

The job post-processing function is supplied with the name of the file and
character string passed to the DSPROCJ_process() function. It is also given
the address of a four-byte integer which contains the return code from the
DSPROCJ_process() function. This function may adjust the return code if
necessary.

API Description in C
/* Initialization functions */
DSPOSTJ_API CALL_TYPE DSPOSTJ_identity(char identity[64]); /* out */
DSPOSTJ_API CALL_TYPE DSPOSTJ_init(DSPOSTJ * cb, /* in/out */
 long interfaceVersion); /* in */

Writing Job and Document Processing Libraries
Custom Document Pre-Processing Libraries

Programmer’s Guide to Docusave Server 29

DSPOSTJ_API CALL_TYPE DSPOSTJ_setImgSys(DSPOSTJ cb, /* in */
 DSapiDopeVector * pdv); /* in */
DSPOSTJ_API CALL_TYPE DSPOSTJ_setMsgCallback(DSPOSTJ cb, /* in */
 void * pfn); /* in */
DSPOSTJ_API CALL_TYPE DSPOSTJ_setup(void * parentWindow); /* in */

/* Processing function */
DSPOSTJ_API CALL_TYPE DSPOSTJ_postprocess(DSPOSTJ cb, /* in */
 char * fileIn, /* in */
 char * processType, /* in */
 long * rc); /* in/out */

/* Termination function */
DSPOSTJ_API CALL_TYPE DSPOSTJ_terminate(DSPOSTJ cb); /* in */

Custom Document Pre-Processing Libraries

A working example of a document pre-processing library is distributed as
DSPRDXYZ.CPP.

Notes

DSPREPD_preprocess()

The document pre-processing function is supplied with two file names: the
name of the file containing the original document from the input job, and the
name of a file that may be used to place an altered version of this input
document. The process type (returned from the recognition library) is also
supplied to this function and may be altered in-place if desired. This function
should return DSPREPD_USE_ORIGINAL if the original input file should
be passed to the document processing step or DSPREPD_OK if the altered
document should be used instead.

Writing Job and Document Processing Libraries
Custom Document Processing Libraries

30 Programmer’s Guide to Docusave Server

API Description in C
/* Initialization functions */
DSPREPD_API CALL_TYPE DSPREPD_init(DSPREPD * cb, /* in/out */
 long interfaceVersion); /* in */
DSPREPD_API CALL_TYPE DSPREPD_setImgSys(DSPREPD cb, /* in */
 DSapiDopeVector * pdv); /* in */
DSPREPD_API CALL_TYPE DSPREPD_setMsgCallback(DSPREPD cb, /* in */
 void * pfn); /* in */

/* Processing function */
DSPREPD_API CALL_TYPE DSPREPD_preprocess(DSPREPD cb, /* in */
 char * fileIn, /* in */
 char * fileOut, /* in */
 char * processType); /* in/out */
/* Termination function */
DSPREPD_API CALL_TYPE DSPREPD_terminate(DSPREPD cb); /* in */

Custom Document Processing Libraries

A working example of a document processing library is distributed as
DSPDCXYZ.CPP.

Notes

DSPROCD_process()

The document processing function is supplied with the name of the file
containing the document and a character string that indicates the type of
processing to be performed. (This character string may be null, which
indicates the default processing type.) Any meaning associated with the
processing type is determined in this function.

This function would normally call the setDocType(), setIndex(), and
setPageCount() functions of the Imaging library followed by the beginDoc(),

Writing Job and Document Processing Libraries
Custom Document Post-Processing Libraries

Programmer’s Guide to Docusave Server 31

appendPage(), and endDoc() Imaging library functions. See “Writing
Imaging Libraries” on page 33 for more information.

API Description in C
/* Initialization functions */
DSPROCD_API CALL_TYPE DSPROCD_init(DSPROCD * cb, /*
in/out */
 long interfaceVersion); /* in
*/
DSPROCD_API CALL_TYPE DSPROCD_setCompression(DSPROCD cb, /* in
*/
 DSapiDopeVector * pdv); /* in
*/
DSPROCD_API CALL_TYPE DSPROCD_setImgSys(DSPROCD cb, /* in
*/
 DSapiDopeVector * pdv); /* in
*/
DSPROCD_API CALL_TYPE DSPROCD_setMsgCallback(DSPROCD cb, /* in
*/
 void * pfn); /* in
*/
DSPROCD_API CALL_TYPE DSPROCD_setup(void * parentWindow); /* in
*/

/* Processing */
DSPROCD_API CALL_TYPE DSPROCD_process(DSPROCD cb, /* in
*/
 char * fileName, /* in
*/
 char * processType); /* in
*/

/* Termination function */
DSPROCD_API CALL_TYPE DSPROCD_terminate(DSPROCD cb); /* in
*/

Custom Document Post-Processing Libraries

A working example of a document post-processing library is distributed as
DSPODXYZ.CPP.

Writing Job and Document Processing Libraries
Custom Document Post-Processing Libraries

32 Programmer’s Guide to Docusave Server

Notes

DSPOSTD_postprocess()

The document post-processing function is supplied with the name of the file
and character string passed to the DSPROCD_process() function. It is also
given the address of a four-byte integer which contains the return code from
the DSPROCD_process() function. This function may adjust the return code
if necessary.

API Description in C
/* Initialization functions */
DSPOSTD_API CALL_TYPE DSPOSTD_init(DSPOSTD * cb, /*
in/out */
 long interfaceVersion); /* in
*/
DSPOSTD_API CALL_TYPE DSPOSTD_setImgSys(DSPOSTD cb, /* in
*/
 DSapiDopeVector * pdv); /* in
*/
DSPOSTD_API CALL_TYPE DSPOSTD_setMsgCallback(DSPOSTD cb, /* in
*/
 void * pfn); /* in
*/
DSPOSTD_API CALL_TYPE DSPOSTD_setup(void * parentWindow); /* in
*/

/* Processing */
DSPOSTD_API CALL_TYPE DSPOSTD_postprocess(DSPOSTD cb, /* in
*/
 char * fileName, /* in
*/
 char * processType, /* in
*/
 long * rc); /*
in/out */

/* Termination function */
DSPOSTD_API CALL_TYPE DSPOSTD_terminate(DSPOSTD cb); /* in
*/

Programmer’s Guide to Docusave Server 33

Writing Imaging Libraries

Introduction

Imaging Libraries are used to store and retrieve documents to and from an
imaging system. Each imaging system has its own library.

Custom Imaging Libraries

A working example of an imaging library is distributed as DSISYSU.CPP.

Calling Sequence

The typical calling sequence to store a document in an imaging library is:

DSIMGSYS_init()
DSIMGSYS_setMsgCallback()
DSIMGSYS_isConnected()
 DSIMGSYS_beginJob()
 DSIMGSYS_setDocType()
 DSIMGSYS_setPageCount()
 DSIMGSYS_setIndex()
 DSIMGSYS_beginDoc()
 DSIMGSYS_appendFilePage() or

Writing Imaging Libraries
Custom Imaging Libraries

34 Programmer’s Guide to Docusave Server

 DSIMGSYS_appendMemPage()
 DSIMGSYS_endDoc()
 DSIMGSYS_endJob()
DSIMGSYS_terminate()

The typical calling sequence to retrieve a document from an imaging library
is:

DSIMGSYS_init()
DSIMGSYS_setMsgCallback()
DSIMGSYS_isConnected()
 DSIMGSYS_fetchDoc()
 DSIMGSYS_fetchPage()
DSIMGSYS_terminate()

Notes

Any type of login to the imaging system should be done when
DSIMGSYS_init() is called. If the login fails then subsequent calls to
DSIMGSYS_ping() and DSIMGSYS_isConnected() should also fail.

DSIMGSYS_ping() will be called at intervals to keep the imaging system
connection from timing out.

DSIMGSYS_isConnected() will normally be called immediately before a job
is processed to verify that a valid connection still exists.

API Description in C
/* Initialization functions */
DSIMGSYS_API CALL_TYPE DSIMGSYS_init(DSIMGSYS * cb, /*
in/out */
 long interfaceVersion, /* in
*/

Writing Imaging Libraries
Custom Imaging Libraries

Programmer’s Guide to Docusave Server 35

 char selfDescription[32]); /*
out */
DSIMGSYS_API CALL_TYPE DSIMGSYS_isConnected(DSIMGSYS cb); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_setMsgCallback(DSIMGSYS cb, /* in
*/
 void * pfn); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_setup(void * parentWindow); /* in
*/

/* Processing functions */
DSIMGSYS_API CALL_TYPE DSIMGSYS_beginJob(DSIMGSYS cb); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_beginDoc(DSIMGSYS cb); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_setDocType(DSIMGSYS cb, /* in
*/
 long docType, /* in
*/
 char * fileExt); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_setIndex(DSIMGSYS cb, /* in
*/
 char * indexString); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_setPageCount(DSIMGSYS cb, /* in
*/
 long nPages); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_appendFilePage(DSIMGSYS cb, /* in
*/
 char * fileName); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_appendMemPage(DSIMGSYS cb, /* in
*/
 void * pData, /* in
*/
 long nBytes); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_endDoc(DSIMGSYS cb); /* in
*/
DSIMGSYS_API CALL_TYPE DSIMGSYS_endJob(DSIMGSYS cb); /* in
*/

DSIMGSYS_API CALL_TYPE DSIMGSYS_fetchDoc(DSIMGSYS cb, /* in
*/
 char * url, /* in
*/
 long * totalPages); /*
out */
DSIMGSYS_API CALL_TYPE DSIMGSYS_fetchPage(DSIMGSYS cb, /* in
*/
 long n, /* in
*/
 char * fileName); /* in
*/

Writing Imaging Libraries
Custom Imaging Libraries

36 Programmer’s Guide to Docusave Server

DSIMGSYS_API CALL_TYPE DSIMGSYS_resourceExists(DSIMGSYS cb, /* in
*/
 char * resName, /* in
*/
 long resType, /* in
*/
 char * yyyymmddhhmmss);/* in
*/

/* Termination function */
DSIMGSYS_API CALL_TYPE DSIMGSYS_terminate(DSIMGSYS cb); /* in
*/

	Start
	Notice
	Publication history
	Table of Contents
	Docusave Server documentation roadmap
	Preface
	Welcome
	Using this manual
	Conventions
	Related documents
	Installation Guide
	Administrator’s Guide
	Docusave Server Help
	Docucorp Queue Systems Guide

	What is Docusave Server?
	Introduction
	Use and Structure
	Docusave Server in Context
	Flow of Control

	Library Overview
	Sample Code

	Common Elements
	Introduction
	Pre-initialization functions
	Initialization functions
	Termination functions
	Message Callback functions
	Control Blocks
	Dope Vectors
	Return Codes

	Writing Job Recognition Libraries
	Introduction
	Job Recognition Library
	Calling Sequence
	Notes
	API Description in C

	Writing Job and Document Processing Libraries
	Introduction
	Job Processing Common Elements
	Calling Sequence

	Custom Job Pre-Processing Libraries
	Notes
	DSPREPJ_preprocess()

	API Description in C

	Custom Job Processing Libraries
	Notes
	DSPROCJ_process()

	API Description in C

	Custom Job Post-Processing Libraries
	Notes
	DSPOSTJ_postprocess()

	API Description in C

	Custom Document Pre-Processing Libraries
	Notes
	DSPREPD_preprocess()

	API Description in C

	Custom Document Processing Libraries
	Notes
	DSPROCD_process()

	API Description in C

	Custom Document Post-Processing Libraries
	Notes
	DSPOSTD_postprocess()

	API Description in C

	Writing Imaging Libraries
	Introduction
	Custom Imaging Libraries
	Calling Sequence
	Notes
	API Description in C

