ORACLE
INSURANCE

Oracle® Insurance IStream

IStream Publisher Interface Reference Guide
Release 4.3

E15194-01

July 2009

Copyright

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Andrew Brooke and Ken Weinberg

This software and related documentation are provided under alicense agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperahility, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to usin writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercia technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure,
modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forthin FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in avariety of information management applications. It is not developed
or intended for usein any inherently dangerous applications, including applications which may create arisk of
personal injury. If you use this software in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous
applications.

Oracleisaregistered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

CONTENTS

Chapter 1 — Overview e 11
Document ConVeNtiONS.o 12
IStream Publisher 13
Queues and ReqUESES 13
IStream Publisher Documentation............... i, 14
Chapter 2 — Simple Services 15
Parameters and XML Schema. 16
Distributor.Xsd 16
Validating Requests. 17
Referencing Files 18
WebDAV Repository Adapter. 20
Delivering CLG Files through InfoSources. 21
JMS Message Header and Properties 23
RequestMetadata 24
Detailed Response Parameters i 25
CONtENt SEIVICE . . . 26
Generate Calligo Document Service OVEIVIEWo oo oo i i i i e 26
Using Referenced and Embedded XML Data 27
Generate IStream Document XML Sample i 30
Rendering Services 31
Rendering a Microsoft Word Documentto HTML 31
Rendering a Microsoft Word Documentto PCL. 32
Rendering a Microsoft Word Documentto PDF. 33
Rendering a Microsoft Word Document to PostScript 35
Rendering Service XML Sample e e 35
Rendering a Microsoft Word Documentto TIFF 35
Rendering a Microsoft Word Documentto TXT/RTF. 35
Rendering a PDF Documentto PCL 36
Rendering a PDF Documentto PS 36

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 3

CONTENTS

Renderinga PDF Documentto TIFF 37
Renderinga TIFFImage to PCL e 37
Renderinga TIFF Image to PDF e 37
Rendering a TIFF Image to Postscript. 38
Rendering an IStream Document to Microsoft Word 38
DeliVery SErVICE . . oo 39
Delivering Contentto a Repository 39
Delivering Contentto a Printer. i i 40
Delivering Contentto an E-mail Server 40
Delivering Contenttoa Fax Server 42
Embedded Codes 42
Delivery Service Request XML Sample. 44
Utility Services 45
RUNWOrd Macro 45
Concatenating PCL Streamso 45
Concatenating PDF Files 46
Concatenating PS Streams 47
Encrypting PDF DOCUMENLS. et 49
Deleting Filesand Folders 49
Aggregate RequUEeST 53
Aggregate Request ProCesSINgo vttt ittt e e 53
Aggregate Request Limitations 53
Chapter 3 — Distribution Service......................... 55
The Distribution Service 56
The Distribution Request et 57
The Distribution Request Structure 59
IStream Publisher Distribution Request Failure Policy. 60
Troubleshooting the Distribution Request 61
The Distribution Package i i 63
The Distribution [tem 63
ReCIpIBNtS 66
RECIDIENt . . 66
RecipientPackage. 68

4 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CONTENTS

Delivery Channels 71
Operating MOdes 71
Event Handlers. 74
EVeNIS . . 74
Distribution Request Metadata. 78
Concatenating PCL Streams 79
Concatenating PS Streams 81
A Distribution Request Example 83
Chapter 4 — PDF Preferences 87
Overview of PDF Preferences. e et 88
SIMPIE SeIVICES . . . 88
Distribution Request. 88
SUTUCTUNE . . o oo e e 90
<pdf-preferences> 90
<PAf-flags> 91
PO PAgE>. . . . o 91
Limitations 93
Reading Direction. 93
Document Layout. 93
Document Title. 93
Chapter 5 — Tracking and Monitoring Requests 95
ReqUESt MBS SaAgES. . . . ottt e 96
UNique ReqUESE IDS. . . . e 96
Live Request Message Status i 96
The Request Log Tables e et 97
Request Table 97
The Status Table 98
The Errorinfo Table 99
The StatusOrder Table. 99
Resubmitting a Failed or Canceled Request. i, 100
Distribution ReqUESTES. 100
MaPPINg ..o 100

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 5

CONTENTS

Error Log Levels e 101
Chapter6 — Stream Back 103
Enabling the IStream Publisher Web Service 104
Creating Requests for Stream Back Documents 105
saveAsStreamBack Value 105
Supported ReqUESESo 105
Overview of the Stream Back Request Process 106
Distribution Request Example i e 106
Overview of the Stream Back Web Service Process 108
Considerations and Limitations i 109
Chapter 7 — Creating and Using Cover Pages 111
Delivering Cover Pagesto Fax and Printer. u.. 112
Chapter 8 — SDK — The IStream Publisher Client API 115
The IStream Publisher Client API. e 116
Client APl Interfaces 117
Distributor Factory o 117
S S ON 119
The ResponselListener and ResponseExceptionListener Interfaces. 120
SBIVICES . . o ottt 120
IStream Publisher Client EXCeptions e 123
Configuring the IStream Publisher Client API 124
Configuration Files e 124
Configuration Implementation e 126
Notification of Request Completion i, 128
Chapter 9 — SDK — Repository APl 129
The Repository APl e 130
The AP Architecture e ettt 131
Categories of Functionality. e 132

6 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CONTENTS

Reference Language e 133
Uniform Resource Identifiers e 133
QUETY . oo 135

The Connection Interface e 136
CoNNECLiON FaCIONYot 136
Creating @ CoNNECHION oo e 137

The Repository Interface. e 139

Repository Objects e e 141
Object Metadata.t e 142
VIS ONS . . ottt 143
RenNditions 144

Identifiers 145
URLStreamHandlerFactory e e e 145
URLStreamHandler 146
URLCONNECHION . . . e e e 147
CON Nt . . o 148

Adding a New Repository Adapter. e 149
Java Code 150
Service Request Example 152

Chapter 10 — SDK — System Extensibility. 153

Creating and Adding a Simple Service i 154

Extending the Distribution Service 157
EventHandlers. 157
Event Handlers in the Distribution Request 158
Distribution Request with Event Handler Example. 165
Distribution State DAO. 171

Customizing aRequest LogMessage 173
Customizing the RequestLog Table 173
Adding Custom Fields e 173
The RequestLog Table i 173

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 7

CONTENTS

Chapter 11 — SDK — Web Service Interface 175
The Web Services Interface i i 176
About Web Service Applications e 176
IStream Publisher WSI Benefits. 176
IStream Publisher WSI Architecture 177
General Information 177
Overview of WSI Architecture e e 177
Web Services Interface Methods L. 178
Flows of IStream Publisher WSICalls 179
WS WS DL . . o e 184
Configuring the IStream Publisher WSl in the Console. 185
WSIClient Examples 186
Troubleshooting the IStream Publisher WSI. 187
IStream Publisher WSI Logfiles 187
Appendix A — Reference Material — Samples.............. 189
Sample Deliver-to-Email Request. 190
Sample Aggregate Request 191
Sample Aggregate Request. 191
Header Page Template Example. e 193
Interactive, Batch, and Embedded XML Data 194
Interactive Mode. 194
BatCh . .. 194
Embedded Data. 195
Appendix B—Glossary 197
Appendix C — SDK - Encrypted Credentials. 205
Passing Credentials Securely. 206
The Java Cryptography EXtension. e 206

8 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CONTENTS

Encrypted Credentials. 207
Encrypted Data. e 208
Encryption Method. e 208
key-info Parameter. 208
Cipher-Data Parameter 208
SECUNTY KBYS . oo e e e 209
Example of a Credentials Set 210
INdeX 211

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 9

CONTENTS

10 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 1

Overview

Welcome to the I Stream Publisher Interface Reference Guide. This guide helps
developers and system integrators integrate | Stream Publisher into their systems.

This chapter describes:
. Document Conventions on page 12
. | Sream Publisher on page 13
. | Sream Publisher Documentation on page 14
Note: For information about | Stream Publisher’s architecture, and how to administer

| Stream Publisher and its associated components, see the | Sream Publisher
Administrator’'s Reference Guide.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 11

OVERVIEW

Document Conventions

Tips, Notes, Important Notes and Warnings
Tip: A Tip provides a better way to use the software.
Note: A Note contains specia information and reminders.

Important: AnImportant note contains significant information about the use and
understanding of the software.

Warning: A Warning containscritical information that if ignored, may cause errors or result
in the loss of information.

Other Document Conventions

. Microsoft Window names, buttons, tabs and other screen elementsarein
bold, for example: Click Next.

. paths, URLs and code samples are in the Courier font, for example:
C:\Windows

. values that you need to enter or specify are indicated in theitalicized
Courier font, for example, server name

. values that are optional are indicated with square brackets, for example
[reserved]

12

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER

IStream Publisher

| Stream Publisher is an enterprise document automation software solution that
complements core business systems for product devel opment, sales and
marketing, administration and customer service.

| Stream Publisher provides a set of integrated services that have been specificaly
engineered to automate document-intensive business processes. It is used to
satisfy event-driven requests, such as new policy fulfillment requests, which
trigger arange of activities. These activities can include:

. automatically retrieving documents from multiple sources such asfile
systems, the web, or | Stream Document Manager

. assembling personalized, complex documents and document packages such
as policies, letters, contracts and booklets

. rendering them in multiple file formats including: DOC (Microsoft Word),
HTML, PDF, PCL, PS (Postscript) and TIFF

. delivering them to multiple recipientsthrough their preferred channel s (print
and mail, fax, email, the web)

. saving them to afile system, FTP, |Stream Document Manager, or a
WebDAV server (Microsoft SharePoint)

| Stream Publisher is a J2EE application that uses JM S technology and an XML
request-based interface to automate the entire document issuance process from
content creation to delivery.

Queues and Requests

You access all Publisher services through queues using either:
. IBM WebSphere MQ: IBM’s WebSphere messaging platform
. OpenJM S: an open-source messaging platform

The Service Requests are delivered to the various components using JM S text
messages (with the body in XML format).

This guide assumes that you have a basic understanding of:

. IBM WebSphere MQ or OpenJM S, including the basic messaging
functions, and how to set up and manage queues

. the JM S M essage Ser vice, including architecture and messaging
. XML, including an understanding of its structure and styles
Note: Throughout the guide, there are referencesto Calligo, which isthe previous name

for | Stream Document Manager. Calligo documents are now called |Sream
documents.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 13

OVERVIEW

IStream Publisher Documentation

| Stream Publisher includes the following documents and online help files:

The | Sream Publisher Release Notes include general product information,
product enhancements and new features, supported platforms and third-
party software, assorted considerations, and known issues and limitations.

The |Sream Publisher Administrator’s Reference Guide helps system
administrators configure, control, and manage operations and requests.

The 1Sream Publisher Interface Reference Guide allows you to integrate
| Stream Publisher within your own systems. It includes the Software
Developers Kit (SDK), which allows you to extend | Stream Publisher
Publisher, control its operation, and automate requests.

The |Sream Publisher Schema Referenceisaset of HTML files that
describe the structure of Publisher’s services and requests.

The I1Sream Publisher Error Messages contains alist of error messages and
their causes.

14

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 2

Simple Services

This chapter describes the 1Stream Publisher functional requests that are used to
process | Stream Publisher services. It provides the information necessary for a
developer or system administrator to use |Stream Publisher in arelatively ssimple
way to manage documents.

Aggregate Request on page 53 and Distribution Service on page 55 explain how to
produce the same final result, with less effort on the part of the user.

This chapter describes:

. Parameters and XML Schema on page 16

. Referencing Files on page 18

. JMS Message Header and Properties on page 23
. Detailed Response Parameters on page 25

. Content Service on page 26

. Rendering Services on page 31

. Delivery Service on page 39

. Utility Services on page 45

. Aggregate Request on page 53

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 15

SIMPLE SERVICES

Parameters and XML Schema

XML Schemais used to construct and validate XML requests for | Stream
Publisher.

The main parameters are listed for all services. For related parameters, see the
schemafiles, which are located in:
IStream Publisher install folder\dtd\

The Functional Request schema describes | Stream Publisher’s Service Requests
and responses.

Important: Thefunctional requests are always validated against the internal copy of the XML

schema. Any changes made to the schema located in the above folder does not
affect the validation of the functional requests.

The syntax for the administrative commands is defined in the DTDs. The syntax
for system requestsis defined in the XML schema.

The following sections describe each DTD and their XML request elements. (You
can use an XML editor to access these main elements using the referenced DTDs
and schemas.)

Please note:

. For complete details of all requests and their parameters, refer to the I Stream
Publisher Schema and the | Sream Publisher Schema Reference.

. Calligo documents are now called | Sream documents.

Distributor.xsd

This schema describes all service requests and responses including how to
generate, render and deliver documents using a single or aggregate request.

You can validate requests against this schema to create Simple, Aggregate and
Distribution Requests.

Simple Service XML Request Elements

Content
<generate-calligo-document></generate-calligo-document >

Render
<render-CLG-to-Word></render-CLG-to-Word>
<render-PDF-to-PCL></render-PDF-to-PCL>
<render-PDF-to-PS></render-PDF-to-PS>
<render-PDF-to-TIFF></render-PDF-to-TIFF>
<render-TIFF-to-PCL></render-TIFF-to-PCL>
<render-TIFF-to-PS></render-TIFF-to-PS>
<render-TIFF-to-PDF></render-TIFF-to-PDF>
<render-Word-to-HTML></render-Word-to-HTML>
<render-Word-to-PCL></render-Word-to-PCL>

16

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

PARAMETERS AND XML SCHEMA

<render-Word-to-PDF></render-Word-to-PDF>
<render-Word-to-PS></render-Word-to-PS>
<render-Word-to-TIFF></render-Word-to-TIFF>
<render-Word-to-TXT></render-Word-to-TXT>

Delivery

<deliver-to-email></deliver-to-email>
<deliver-to-fax></deliver-to-fax>
<deliver-to-printer> </deliver-to-printers>
<deliver-to-repository></deliver-to-repository>

Utility
<concatenate-pcl-files></concatenate-pcl-files>
<concatenate-pdf></concatenate-pdf>
<concatenate-ps-files></concatenate-ps-files>
<delete-files></delete-file>
<encrypt-pdfs></encrypt-pdf>
<run-Word-macro></run-Word-macro>

Aggregate Service XML Request Element

<request-aggregates></request-aggregates>

Distribution Service

<distribution-request></distribution-request>

Validating Requests
All functional requests are always validated against XML schema.

Validating requests helps minimize user errors. The XML Parser will provide
errors back to the client reducing the chance of failed requests.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

17

SIMPLE SERVICES

Referencing Files

Using | Stream Publisher, you reference files using avariety of different protocols.
Note the following information when referencing filesin | Stream Publisher:

1

When references to files are passed as arguments to a service invocation,
they are expressed in the form of aUISR, an FTP or aFile URL.

« aUISRisused to access asourcefileif the sourcefileis amodel
document (.cms) or generated document (.clg)

« anFTPURL isused to accessasourcefileif thefileison an FTP server
e aFile URL isusedto access asourcefilein aFile System
The following methods can be used to refer to files:

e DMSURL —thefilemust residein an |Stream DMS; the syntax for the
URL is:

calligo://user name:passwordedatabase name;server
name : port/path

¢ FileURL —thefile must reside on the file system (Windows, Unix)
e FTPURL —thefile must reside on the FTP server (Windows, Unix)

¢ UISR —thefile must reside on a Windows file system, in an | Stream
DMS, or on aWebDAV server such as Microsoft SharePoint

* WebDAV URL -thefile must reside on a WebDAV server such as
Microsoft SharePoint: for more information, see WebDAV Repository
Adapter on page 20

If you are accessing databases for content generation, you can use the
following:

* ODBC InfoSources: see InfoSource on page 200

e XML InfoSources

e aUNC path to the XML file containing the data for generation
e aURL tothe XML file containing the data for generation

When using the Repository API to access file(s) at specified FTP or File
URLSs, a Repository Adapter for the specific repository must be available on
the Worker Machine where the service runs.

Some services that reference files using UISRs use InfoSources. The
InfoSources referenced by the Ul SRs passed with the service invocation
must exist and can be configured as either local or remote.

Examples of file reference syntax that is supported by all aspects of | Stream
Publisher:

Local drives:
file:///C:/rest _of file reference

Make surethat al the slashes are forward slashes. Also remember to include
the third dash, asin “///". Do not use:

18

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

REFERENCING FILES

o file:C:\
e file://C:/

Important: Mapped drives are not supported by | Stream Publisher. Please use UNC paths
instead.

. Network UNC shares:
file://server/share/

Make surethat al the slashes are forward slashes. Also remember to include
the second slash, asin “//”. Do not use;

e file://\\server\share

e file:///server/share
. FTP:
ftp://server/dir/

Note: Pleaserefer to your | Stream Document Manager documentation for more
information about UISRs.

The repository adapters available are FTP, file system, DMS and WebDAV.

7. Element credentials may be defined in multiple places. Credentials also may
be defined in the URL itself. If credentials are defined both in the URL and
in the credentials element, then credentials defined in the element take
precedence (unless empty strings are defined there, in which case non-
empty credentialsfrom the URL if any exist will be taken). These points are
described in more detail in Using Referenced and Embedded XML Data on

page 27.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 19

SIMPLE SERVICES

Note:

WebDAV Repository Adapter

I Stream Publisher allows you use any WebDAV server, but can only guarantee
functionality for the Microsoft SharePoint WebDAV server. Using another
WebDAV server may cause unexpected results.

Prefix

The prefix of the WebDAV protocol is. "dav:http", Of "dav:https" for an
SSL connection.
Thisis an example of a simple source element from a request:

<source url="dav:http://server/path/document.doc"/>

The destination or any other element where RAPI protocols are used would be
identical.

User Credentials

You can specify user credentias inline or as a separate request element.

Inline Credentials

<source url="dav:http://username:passwordeserver/path/
document .doc" />

Credentials as Separate Element

<source url="dav:http://server/path/document.doc"/>
<credentials user="username" password="password" />
</source>

Special Symbols in Credentials
If the user name or password contain special symbols (such as @), they must be
properly URL-encoded if they are provided inlinein a URL, for example:

<source url="dav:http://userl:passl%40word@server/path/
document .doc" />

However, these symbols can be entered without encoding if they are providedin a
separate element, for example:

<source url="dav:http://server/path/document.doc"/>
<credentials user="userl" password="passeword" />
</sources>

Secure Connections

If you require a secure connection, then you must use the dav: ht tps protocol,
for example:

<source url="dav:https://server/path/document.doc"/>

20

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

REFERENCING FILES

Types of Authorization

WebDAV servers support basic and NTLM authentication. The SharePoint server
also supports Integrated Windows Authentication (IWA).

You use the URL parameters to configure the WebDAV URL for the different
types of authentication.

Basic Authentication

The basic authentication is the default one and does not need any extra explicit
parameters (besides the user name and password). However, you can still specify
this authentication explicitly in the request using auth . scheme optional
parameter:

url="dav:http://server/path/document name.doc?auth.scheme
=basic"

NTLM Authentication

NTLMv1 authentication is supported but NTLMv2 is not.

The main registry key controlling the NTLM protocol level of support on the
server sideis:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
To enable NTLMv1 support, set the LMCompatibilityLevel to 3 or less.
The URL targeting IWA/NTLMv1is:

url="dav:http://server/path/document name.doc?
auth.scheme=nt1m" with credentials supplied inline or in a separate element.

Connecting Through a Proxy Server

If you are connecting to the WebDAYV server through a proxy server, you may
need to specify additional parametersin the WebDAV URL: proxy .host,

proxy.port, proxy.user, and proxy .password.

Delivering CLG Files through InfoSources

The following table shows how InfoSources are used to deliver specified source
content (CLG's) to aFile System or DMS.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 21

SIMPLE SERVICES

InfoSource
Types Example Description
FileSystem UISR="FileSystem InfoSource:document.clg" For delivering the CLG to the
(local) FileSystem INFOSOURCE = specified location through the
C:\PublisherFS\Destination folder\ FileSystem InfoSource
CalligpDMS UISR="DMS_INFOSOURCE:document.clg" For delivering the CLG to the
(remote) DMS_INFOSOURCE = specified location through the
-or- server://Admin:livelinkecalligo; server:2099/ |Stream DMSS InfoSource
test/Destination folder/ Note:
|StreamDM _ _
e CalligopDM Sisthetype
(remote) used in Calligo 5.x.
See description * |StreamDM isthe type
for use. used in | Stream Document

Manager 6.x.

22

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

JMS MESSAGE HEADER AND PROPERTIES

JMS Message Header and Properties

JMS header and property fields can be used to route messages or to carry user-
specific metadata.

Thefollowing table represents the fields in the request header that have prescribed
names. They are copied as request metadata into the request status update
message, along with other custom metadata:

Parameter Description
JMSType The type of request — Request.JM SType
JM SMessagel D A string ID that uniquely identifies the message in the systems (set

automatically by the Queue Provider).

JMSCorrelationlD

Used only for response messages. Containsthe ID of the request to which the
response message is linked.

JMSReplyTo A destination-object (JMS) indicating the queue where the response to the
message should be submitted. If null, no responseis required.
The queue specified in the IM SReplyT o field must reside on the same IBM
WebSphere MQ Queue Manager or OpenJM S Server as the queue used to
submit the request.

JM SPriority Specifies the priority of the message (a number from 0 to 9 with 0 being the
lowest priority and 9 the highest). When not specified, the default value
assumed is 4.

InternalRequest- Thisvalueis assigned after successful submission.

ID

RequestID Thisvaue is assigned by the Requestor (client).

Aggregatel D Assigned by the client for Aggregate Requests. Each sub-request has the
same Aggregate ID. This IMS Header applies to Aggregate requests only.

ParentI D Thisvalueis assigned by the Regquestor when arequest is resubmitted.

OriginalRequest- This|D is provided by | Stream Publisher for resubmitted requests.

ID

RequestType The Request Type of the original Request.

LogLevel Thelevel of logging that is performed by the system, ranging from O to 6.

The default is“4”.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

23

SIMPLE SERVICES

Parameter

Description

Deferra Time

fixed time—Dmm/dd/yyyy or Thh:mm, where:
e D —mandatory letter for fixed date

mm/dd/yyyy — date format;

T —mandatory letter for fixed time;

hh:mm —time format, where hhisin 24 hours format;

D/05 — arequest should be processed on 5th day of current month, year
D1//2003- arequest should be processed on January 2003.

D01/02/2002 — arequest should be processed on 2nd January, 2002;
D/15/ —arequest should be processed on 15th day of current month, year
D//2003- arequest should be processed in 2003 year.

timer —+Dmm/dd or Thh:mm, where:

D — mandatory letter for date parametersin timer

mm/dd- number of months, days;

T —mandatory letter for time parameters;

hh:mm —time format, where hh isin 24 hours format;

+D/05 — arequest should be processed in 5 calendar days

+DO01/- arequest should be processed in 1 month.

+D01/02 — arequest should be processed in 1 month and 2 calendar days.

ExpirationTime

fixed time—Dmm/dd/yyyy or Thh:mm, where:

e D —mandatory letter for fixed date

o mm/dd/yyyy — date format;

o T —mandatory letter for fixed time;

¢ hh:mm —time format, where hh isin 24 hours format;
timer —date/time—+Dmm/dd or Thh:mm, where:

» D —mandatory letter for date parametersin timer

« mm/dd- number of months, days;

e T —mandatory letter for time parameters;

¢ hh:mm —time format, where hh isin 24 hours format;

Request Metadata

The request metadata representing the information varies from deployment to
deployment, and consists of request header fields. | Stream Publisher components
store the information about requests in the Request Log database.

The Request Log configuration maps Custom Request metadata fields to the
Request Log table fields. If a mapping does not exist for one of the custom
metadata fields, that field is not stored in the Request Log table.

The request metadata can be used when performing request searches. It can also
be referred to in the selector parameter of the FindrRequest administrative
command.

24

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

DETAILED RESPONSE PARAMETERS

Detailed Response Parameters

For simple requests, aresponse is returned when the request is run. A successful
completion response simply echoes the destination URL. A failure response will
contain one or more of the following items:

. an error ID
. an English text message explaining the reason for the failure
. an XML fragment with extended error information

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 25

SIMPLE SERVICES

Content Service

Important:

Note:

Important:

Documents can be generated using | Stream Publisher with the Generate | Stream
Document service, a subset of the Content service. The Generate | Stream
Document service can produce both (.clg) and Microsoft Word documents (.dac).

The Content Service provides access to content generated by the Assembly
Service.
You can use InfoSources to access the content only if:

. The InfoSource exists and is configured on the Worker machine running the
service.

. The source or target file is an | Stream document (.clg), model document
(.cms), or model section (.cds).

Generate Calligo Document Service Overview

Use the Generate Calligo Document service to generate an | Stream or a Microsoft
Word document based on a model document.

Calligo isthe former name for |Sream Document Manager. Therefore, Calligo
documents are now called | Sream documents.

| Stream InfoSources are specific to the | Stream Assembly Engine and are used to
reference generated |1 Stream documents or model documents. InfoSources are
COM (see Component Object Model (COM) on page 198) objects and are,
therefore, platform dependent (WI132).

A Generate Calligo Document Service request can produce both an | Stream
document (.clg) and/or a Microsoft Word document (.doc). The document that is
produced is determined by the destination parameters in the Generate Calligo
Document Requests parameters table.

You can a'so use the Generate Calligo Document service to create aregeneratable
PDF from the resulting Microsoft Word document using the <regen-pdf > tag.

At least one destination parameter must be specified, otherwise the document will
not be produced.

IStream XML InfoSource

When generating documents using the | Stream XML InfoSource (formerly called
the Calligo Extreme XML Infosource), data for generation can be:

. passed by key data: one or more local or UNC pathsto the XML datafiles
containing the generation data can be passed as key data

. embedded in the request.
. referenced by a URL to a XML datafile

26

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CONTENT SERVICE

Thekey-data tag represents definitions for key data elements that the model
document expects. The parameters are used to | et the document generation service
know what information to put into the key data and in what format.

In case the Service Request fails, the body of the original request aswell asthe
error details can be found in the Request Log.

A Generation Log produced by the Assembly Engine is provided whether the
request completes successfully or not.

Important: The Generate | Stream document service uses the Repository API to store the
Word rendition of the generated document.

Using Referenced and Embedded XML Data

Note: The elements <xml-data> and <xml-data-def> are available in E-Delivery 2.1 (E-
Delivery isthe former product name of | Stream Publisher), and are supported in
this version for backward compatibility. New applications should use the new
<generation-data> element.

Sample XML Fragments

Here are some XML fragments followed by an explanation of some of the tags
used.

These XML fragments are two examples of generation data embedded in the
generate | Stream document Requests:

Example 1

<generation-data name="xml file name">

<job-data><?xml version="1l.0"?>
.. embedded XML data fragment ..

</job-datas>

</generation-data>

Example 2

<generation-data name="xml file name">
<source url="ftp://hostl/data/QPolicy.xml"/>
</generation-datas>

Asyou can see, in example 1 the datais embedded and in example 2 it is
referenced. Thetags <source> and <job-datas are mutually exclusive.

Using Referenced XML Data

When using referenced data, you must use case sensitive XML data. Your XML
InfoSource (used in your model document) must be marked as case sensitivein
the InfoSource Administrator, and all datatagsin the XML file and model must be
the same, consistent case.

Note: All SQL query statements must be uppercase.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 27

SIMPLE SERVICES

Important:

When using Batch Referenced data, you must ensure that the Query statement in
the model document uses the following format:

QUERY "FILE=" + xml file name, "XMLInfoSource"

or

QUERY "FILE=" + xml file name + ";JobID=" + JobID ,
"XMLInfoSource"

wherexml file name iSthevalue specified in attribute "name" inthe
generation-data €lement.

Do not use Batch data where the query is only the ID.

Code Samples

The following examples use Interactively Referenced, Embedded, and Batch
Referenced XML.

Batch XML as the URL Reference
The JobID isthe ID inthe XML file.

<generate-calligo-document>
<calligo-source UISR="modelIS:doc.cms" docType="cms">
<credentials user="test" password="password"/>
</calligo-source>

<destination url="ftp://server/folder/document.doc"/>
<key-data name="JobID" value="12345678" type="string"/>

<generation-data name="keydataname">
<source url="ftp://server/folder/xmldatafile.xml"/>
</generation-datas>
</generate-calligo-document>

Embedded XML

<generate-calligo-document>
<calligo-source UISR="modelIS:doc.cms" docType="cms">
<credentials user="test" password="password"/>
</calligo-source>

<destination url="ftp://server/folder/document.doc"/>
<generation-data name="keydataname">

<job-data><?xml version="1l.0"?>
<interactive>

<PolicyNumber type="double">12345678
< /PolicyNumbers> ;

<EffectiveDate type="date">01/01
/2002

< /EffectiveDate>

28

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CONTENT SERVICE

<CompanyCode type="string" > ;ABCTO1
< /CompanyCode> ;
&1t ;DataArrayé>
&1t ;Id type="array">
<row type="string">111</row>
<row type="string">222</row>
<row type="string">333</row>
<row type="string">444</row>
<row type="string">555</row>
<row type="string">666</row>
</Ids>
< /DataArray>
</interactives>

</plain-data>

</generation-datas>
</generate-calligo-document>

Embedded XML with Plain Data
<generate-calligo-document>
<calligo-source UISR="modelIS:doc.cms" docType="cms">
<credentials user="test" password="password"/>
</calligo-source>

<destination url="ftp://server/folder/document.doc"/>

<generation-data name="keydataname">
<plain-data>
<interactives
<PolicyNumber type="double">12345678</PolicyNumber>
<EffectiveDate type="date">01/01/2002
</EffectiveDates>
<CompanyCode type="string">ABCT0l</CompanyCode>
<DataArray>
<Id type="array"s>
<row type="string">1ll</row>
<row type="string">222</row>
<row type="string">333</row>
<row type="string">444</row>
<row type="string">555</row>
<row type="string">666</row>
</Id>
</DataArray>
</interactives>
</plain-datas>
</generation-datas>
</generate-calligo-document>

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 29

SIMPLE SERVICES

Generate IStream Document XML Sample

The following code is an example of a Content Service Reguest that generates an
| Stream document.

<?xml version="1.0" encoding="UTF-8"?>
<generate-calligo-document>
<calligo-source UISR="ABC:Test Letter.CMS"/>
<destination url="ftp://abcserve/Test Letter.clg"/>
<calligo-destination
UISR="Demo Dest:contentCMS2CLG/Test Letter.clg"/>
<key-data
name="$Policy"
value="test letter"
type="string" />
</generate-calligo-document >

30 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

RENDERING SERVICES

Rendering Services

After content has been extracted, the next step isto transform the content from its
current format into a different format.

The Rendering Service is agroup of servicesthat transform content from its
current format into a different format. Each service invocation renders from one
source format into one destination format (for example, from Microsoft Word to
PDF). Typically, arender request specifies the location (URL) of the source
content and the location (URL) where the result of the render operation should be
placed.

In addition to the source and destination, other arguments are specific to each
particular rendering service. For example, rendering to PCL will include
parameters specific to a print job such as duplex mode or page range. It is
therefore important to have this type of information before you create your
Rendering Service request.

Important: If aPage Range parameter iswrong, referring to pagesthat do not exist, an error is
produced and the rendering request fails.

Updating a Table of Contents in Word

To update a table of contents in a Word document

Before rendering, printing or distributing the document, use the following
standard Word macrosin the simple rendering reguest or in the Distribution Item
of the Distribution Reguest:

<word-options updateToc="true"/>

Rendering a Microsoft Word Document to HTML

This service transforms a Microsoft Word document into Hyper Text Markup
Language (HTML, version 4.0) format page.

It uses Microsoft Word's application automation, which makes it Win32-platform
dependent.

It also usesthe Repository API to access al the files specified as parametersto the
request.

Related Files

When a document is rendered into an HTML page, all graphics and objects are
saved in GIF (.gif), JPEG (.jpg) or PNG (.png) format so that they can be viewed
in a Web browser. These graphics and abjects include:

. pictures
. AutoShapes
. WordArt

. text boxes

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 31

SIMPLE SERVICES

. calouts

. Equation Editor objects

. Organization Chart objects
. Graph objects

Graphics Files

When you render Word-to-HTML and the destination is FS (File System) or FTP,
an HTML file and afolder are created. This folder contains all the related

graphics.

Graphics might include bullets, backgrounds, and horizontal lines for each
document. Thisfolder (or subfolder) is aways given the name of the associated
HTML page, followed by theword £iles. For example, if the name of the

HTML pageisletter.htm, thegraphicsfor that Web page arein afolder called
letter filesOr letter.files. Thesubfolder also containsafile called
filelist.xml where all the graphics are listed.

If you move an HTML page to another location, all the related graphics must be
moved, otherwise the hyperlinks might not work, and the graphics might not
appear on the HTML page.

Important: When you render Word-to-HTML and the destination is DMS, only the HTML

Note:

fileis saved, and not the folder and itsimages.

Rendering from Word to HTML has some document layout limitations. Because
Word provides formatting options that most Web browsers do not support, some
text and graphics may look different when you view them on a Web page.

Please note the following information:

. graphics with certain kinds of text wrapping will change position when you
save your document as a Web page

. cross-referencing in a Word document cannot be translated to HTML

. hyperlinks inside an embedded OLE object (such as Microsoft Excel)
cannot be converted to HTML

The render-Word-to-HTML request renders a Microsoft Word document into an
HTML format.

Rendering a Microsoft Word Document to PCL

The render-Word-to-PCL request produces a PCL (Printer Control Language)
representation of a Microsoft Word document. When the PCL stream is sent to a
printer, it produces a hard copy of the document.

Keep in mind when rendering Microsoft Word documents to PCL that because
this rendering service uses Microsoft Word's application automation, which is
only available on the Win32 platform, this service is limited to that platform.

32

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

RENDERING SERVICES

Rendering a Microsoft Word Document to PDF

This service produces a Portable Document Format (PDF) document from a
Microsoft Word document. The PDF files can be viewed on multiple platforms
using the appropriate reader for that platform.

You can configure how the final PDF appears using the <pdf -preferences>
element: see PDF Preferences on page 87.

For this service, you can select to use the Amyuni PDF printer driver or Microsoft
Word 2007 as the rendering application.

Using Microsoft Word 2007 as the Rendering Application

If you select Microsoft Word 2007 as the rendering application, note that:
. Microsoft Word 2007 must be installed

. you need to download and install the Microsoft Save As PDF add-in for
Microsoft Office 2007 programs

. the resulting PDF document will always include hyperlinksif there are
hyperlinks in the source Word document: for other PDF options, see
Microsoft Save as PDF Add-in for 2007 Microsoft Office programs

s pageranges are not supported

. if the source Word document is generated from an | Stream model, the PDF
setting from the | Stream model will not be effective

To enable bookmarks or embedded fonts in the PDF, compl ete the following
procedures in Microsoft Word 2007.

Method: Enable bookmarks in the PDF

[On
In Microsoft Word 2007, click ““* , Save As> PDF > Options.
Select Create bookmarksusing:

Select Headings or Word bookmarks, depending on which you have used
to define your bookmarks.

Note: Only standard Microsoft Word heading styles (Headingl, Heading 2, Heading 3,
and so on) from CM Sfilesthat have been converted to Word 2007 and configured
in IStream Author as PDF bookmark styles will appear as corresponding
bookmarks in the resulting PDF.

Non-heading Word styles, for example, List or Note, that have been configured in
Author as PDF bookmark styles will not appear as PDF bookmarks. However, if
you use the Amyuni PDF printer as the rendering application, then all of the
selected styles will appear as PDF bookmarks.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 33

SIMPLE SERVICES

Method: Embedding fonts in the PDF

In Microsoft Word 2007, click (F2 , Save As> PDF > Options.

Select | SO 19005-1 compliant (PDF/A).

The PDF will be created using the PDF/A standard. This standard ensures
that all the fonts will be embedded in the PDF.

Note: The PDF/A standard has certain limitations. For more information, see
www.pdfa.org.

34 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

RENDERING SERVICES

Rendering a Microsoft Word Document to PostScript

This service renders a Word document to a PS stream which, when sent to the
printer, creates a printed copy of the document. It uses Word's application
automation and PostScript drivers, which makes it Win32-platform dependent.

Rendering Service XML Sample

<?xml version="1.0" encoding="UTF-8"?>
<render-Word-to-PCL>
<source url="ftp://abcserve/demo/source/doc/ABC_LTC.doc"/>
<destination
url="ftp://abcserve/demo/destination/renderDOC2PCL/
LTC.prn"/>
<output-name>HPLJ8000</output -name>
<printer-configuration
copies="1"
pageRange="1-3"
duplex="none"
collate="off"/>
</render-Word-to-PCL>

Rendering a Microsoft Word Document to TIFF

The render-Word-to-TIFF request renders a Microsoft Word document into a
TIFF image.

Note: You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a TIFF (Tagged Image File Format) rendering of a
Microsoft Word document.

Note the following information when rendering Microsoft Word to TIFF:

. because this service uses Microsoft Word's application automation, it is
Win32-platform dependent

. this service uses the Amyuni PDF Converter printer driver for rendering

. this service supportsthe CCITT group 4 compression, and multi-page image
TIFF features

Rendering a Microsoft Word Document to TXT/RTF

The render-Word-to-TXT request renders a Microsoft Word document intoa TXT
or RTFfile.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 35

SIMPLE SERVICES

Note: You must have the appropriate |Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a TXT/RTF rendering of a Microsoft Word document.
Note the following information about this service:

. this service uses Microsoft Word's automation feature making it Win32-
platform dependent

. you need to specify text/plain Of application/rtf asthe content
type in order to perform a corresponding TXT or RTF rendering of the
Microsoft Word document

Rendering a PDF Document to PCL
The render-PDF-to-PCL request renders a PDF document into a PCL stream.

Note: You must have the appropriate |Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a PCL (Printer Control Language) representation of a PDF
(Portable Document Format) electronic document.

The Render PDF to PCL Serviceis Win32-platform dependent.

This request effectively creates a stream, which when sent to a printer will
produce a hardcopy of the PDF document. Because rendering depends on the
actual printer that is used to produce the printout, the request must include
parameters specific to the printer (such as the number of copies and pages).

Note: This service supports only unprotected PDF documents. Please ensure that the
documents specified in the source are not protected.

Rendering a PDF Document to PS
The render-PDF-to-PS request renders a PDF document into a PS stream.

Note: You must have the appropriate |Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a PS (Postscript) representation of a PDF (Portable
Document Format) electronic document. The Render PDF to PS Serviceis
Win32-platform dependent.

Note: This service supports only unprotected PDF documents. Please ensure that the
documents specified in the source are not protected.

36 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

RENDERING SERVICES

Rendering a PDF Document to TIFF
The render-PDF-to- TIFF request renders a PDF document to TIFF.

Note: You must have the appropriate |Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a TIFF (Tagged Image File Format) rendering of a PDF
(Portable Document Format) electronic document. It supports Group-3 and
Group-4 TIFF compression formats.

Note: This service supports only unprotected PDF documents. Please ensure that the
documents specified in the source are not protected.

This service is Win32-platform dependent.

Rendering a TIFF Image to PCL

The render-TIFF-to-PCL request renders a TIFF image into a PCL stream which
when sent to a printer produces a hard copy of the image.

Note: You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a PCL (Printer Control Language) representation of a TIFF
(Tagged Image File Format) image.

Rendering a TIFF Image to PDF
The render-TIFF-to-PDF request renders a TIFF image into a PDF document.

Note: You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a PDF (Portable Document Format) rendering of a TIFF
file.

See dso:
. Rendering a Microsoft Word Document to PostScript on page 35
. PDF Preferences on page 87

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 37

SIMPLE SERVICES

Note:

Rendering a TIFF Image to Postscript

The render-TIFF-to-PS request renders a TIFF image into a PS stream which,
when sent to a printer, produces a hard copy of the image.

You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

This service produces a PS (PostScript) representation of a TIFF (Tagged Image
File Format) image. It supports Group-3 and Group-4 TIFF compression formats.

Rendering an IStream Document to Microsoft Word

| Stream documents are compound documents that contain a Microsoft Word
document among other things such as persistent variables and customizations.
The render-CL G-to-Word service extracts the Microsoft Word document from an
| Stream document.

Because the service uses the Assembly Engine, which isonly available on the
Win32 platform, the serviceitself islimited to this platform.

38

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

DELIVERY SERVICE

Delivery Service

Once the content has been extracted and rendered (if applicable), the final step in
the distribution processis to deliver the content to the recipients. The following
methods are available to deliver content:

. repository: includes DMS, file system, FTP and WebDAV repositories

. printer
. email
. fax

A request for delivery will typically specify the location of the content to be
delivered. This content can be a specific file in any of the supported formats. See
Content Service on page 26. The other parameters are specific to the actual
channel used for delivery.

Delivering Content to a Repository

The Delivery Service uses the Repository API to deliver the source content
documents (DOC, HTML, PDF, PCL, PS, RTF, TIFF, and TXT files) to the
destination Repository Adapters.

Examples Using the Destination Element
<destination url="file:///C:/PublisherFS/Destination/letter.doc"/>

<destination url="calligo://user name:passwordeLivelink; SERVERNAME:2099/
TEST/Destination/letter.doc"/>

Note: The above URLs are used to deliver specified source content to the destination.
You cannot use these URL s to produce a CLG file.

Other adapters may be provided in the future, or custom adapters can be built
based on the Repository APl specification.

The Repository API will allow a delivery service to deliver content to different
types of repositories aslong as a Repository Adapter exists for that repository.

If the destination repository supports versions, and the source documents already
exist, they are added as new versions. If an existing document cannot be reserved,
so that the new version can be added, the operation will fail. All reserve
operations are performed using the credentials supplied as parameters.

The deliver-to-repository request stores a document into a repository.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 39

SIMPLE SERVICES

Delivering Content to a Printer

The deliver-to-printer request delivers an individual file to a printer. Note the
following information when implementing this service:

. The printer must be alogical device (print server or spooler). This service
only ensures that the spooler has accepted the content.

. Currently, the service uses native Windows APIs to submit print jobsto the
print spooler and is therefore limited to the Win32 platform.

. The content delivered can be any file depending on the printer’s capabilities.

. You can specify the name of the file to be sent to the printer.

Note: Therequest may fail because of a“physical” issue. Examples of physical issues

include if the printer is unavailable, if it is offline, if the user lacks proper security
permissions to use the printer, and others.

Delivering Content to an E-mail Server

Note: You must have the appropriate | Stream Publisher license to run this service.

Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

The déliver-to-email request delivers content to an SMTP e-mail server as multi-
part MIME messages. Note the following information when implementing this
service:

. The content consists of one message body and zero or more attachments.
Both the content making up the body of the message and the attachments
can be either ASCI| text or binary. The message body may also be
embedded and may also be HTML.

Please note that:
. Binary content is base64 encoded

. ASCII text is 7bit encoded

. The service only delivers the email (multi-part MIME message) to the
SMTP e-mail server. It does not wait for the e-mail to be delivered to the
actual recipient(s) or to get delivery confirmation.

. This serviceis a pure Javaimplementation that uses the JavaMail API.
Therefore, it is platform independent and can be used on any platform that
supports Java.

. The Worker machine on which the service is deployed must be configured
with the name of SMTP e-mail server.

The following items are attributes of the deliver-to-email request
. Subject — The subject line of the e-mail.

40

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

DELIVERY SERVICE

. Priority — The priority of the message (High, Normal, or Low). Thisfieldis
optional and if not specified, Normal priority is assumed.

Note: To see some sample “deliver-to-email” code, please see Sample Deliver-to-Email
Request on page 190.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 41

SIMPLE SERVICES

Note:

Important:

Delivering Content to a Fax Server

You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

The deliver-to-fax request delivers TIFF (raster) content to the RightFax server
from an SMTP e-mail server. The RightFax server automatically picks up e-mail
messages addressed to it from the SMTP server.

Note the following information when implementing this service:
. the content can consist of one or many attachments

. the service only deliversthe e-mail (multipart MIME) message to the SMTP
e-mail server; it does not wait for the e-mail to be delivered either to
RightFax, or to the actual recipient(s)

. the service gets delivery confirmation from the SMTP e-mail server

. the Worker machine which the service is deployed on must be configured
with the name of the SMTP e-mail server

. the delivery service invocation includes the URLSs of the contents to be
delivered and their MIME type

I Stream Publisher alows you to deliver any file formats supported by RightFax.
However, 1Stream Publisher does not guarantee the target layout if rendering has
been done by RightFax.

Embedded Codes

Embedded codes are special faxing instructions that can be passed through a
reguest and inserted by the Service Manager directly into a fax-bound e-mail

message body.

You can use embedded codes to specify:
. adate and time to send the fax

. the fax priority

. the sender’s phone and fax number

. a specific fax cover sheet

Example of Embedded Codes

Hereis an example of embedded codes in arequest:

<deliver-to-fax>
<fax-number>$ {FAXNUM} /pn=Case.#10/</fax-number>
<fax-attachments>
<source url="${SOURCE}TestFiles/tiff files/
CNAInteractive.tiff" deleteAfterExecution="none">

42

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

DELIVERY SERVICE

<credentials user="${USER_SRC}"
password="3${PASSWORD SRC}" />
</sources>
</fax-attachment>
<fax-property name="attime" value="+5" />
<fax-property name="atdate" value="+2" />
</deliver-to-fax>

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

43

SIMPLE SERVICES

Delivery Service Request XML Sample

Thefollowing code is an example of a Deliver to e-mail request:

<?xml version="1.0" encoding="UTF-8"?>
<deliver-to-email
subject="rd0026_0034"

priority="normal"s>

<body-source>

Body Source Information

<source

url="ftp://anonymous:user@abcserve/source/e-mailmessage/e-

mail.txt"/>
</body-source>
<sender
name="1st submitter"
emailAddress="submitterl@abc.com" />
<receiver
name="1lst Receiver"
emailAddress="receiverl@abc.com
type="to" />
<receiver
name="1st CC"
emailAddress="CCl@abc.com
type="cc" />
<receiver
name="1st BCC"
emailAddress="bccl@abc.com
type="bcc" />
<attachments>

Attachment I nformation

<source

url="ftp://anonymous:user@abcserve/source/docs/sdoc.doc" />

</attachment>
</deliver-to-email>

44 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

UTILITY SERVICES

Utility Services

| Stream Publisher provides several utility services. These servicestypically run
after the rest of arequest has successfully completed.

The utility services are:

. Run Word Macro on page 45

. Concatenating PCL Sreams on page 45
. Concatenating PDF Files on page 46

. Concatenating PS Sreams on page 47

. Encrypting PDF Documents on page 49
. Deleting Files and Folders on page 49

Run Word Macro

The run-word-macro Service runs amacro on a Word document or CLG file
and saves the resulting file.

The run-Word-macro-response contains the URL of theresulting file, plus
the return status of the request and errorDetails if the request failed.

The source and destination parameters are for Word files only, and the clg-
sour ce parameter isfor CLG files only. If you use aclg-source, the macrois
applied to the Word document inside the CLG and then saved back to the same
CLG location.

You can pass parameters to the Word macro. Each parameter must be enclosed in
single quotes and separate by commas, as follows:

<macro-name> [name of macro] ('parameter 1',6 'parameter 2',
'parameter 3')</macro-names

Concatenating PCL Streams

Note: You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

Some documents need to be printed as a single job to avoid pages from other
documents being intermixed. This service provides the ability to concatenate the
PCL streams for these documents in the correct order.

Alternatively, the service concatenates PCL streams to some specified number, N,
of approximately equal-size PCL stream segments for delivery to a print server
with load balancing across multiple (N) printers. The order of the concatenated
documents remains unchanged.

The Number of streamsis specified in the request. The default number of streams
is"1".

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 45

SIMPLE SERVICES

Streams Header Page

Each subgroup must have an appropriate header page defined so that, after
delivery to a print server with load balancing across multiple (N) printers, a
person can reassemble the documents back into the correct sequence for delivery.

The Header Page can be composed using a Header Page Template. The template
contains some special placeholders.

The service uses this template and substitutes the placeholders with actual values
provided with the request. The place where content must be substituted, is marked
by “{ <name>}" —where <name> is the name of the value to be used.

If aname provided in the request does not match a placeholder in the template, the
Header Page will not include the information.

Template URL

The URL to the template should be specified in aconfig file for the service. If
there is no template associated with a Header Page, then a Header Page as plain
text will be composed “on the fly” and every field will be printed in a separate
row, left-aligned.

The template can bein plain text or in PCL format. You can create fancy Header
Page templates with placeholders using Microsoft Word and Render to PCL
format. See Header Page Template Example on page 193.

Optional Parameters
The following parameters can optionally be provided for a Header Page:

. paper size

. paper orientation

. tray/paper source

Each header page will be concatenated, with the appropriate PCL segment on top.

Duplexing Options

In the concatenation process, the duplexing of the pages can either be continuous
(meaning that the next concatenated stream can start either on an even or an odd
page) or, it can break at odd-numbered pages. If the Print Instruction parameter for
duplexing is not specified in the request, the service will assume a break at odd-
numbered pages.

Concatenating PDF Files

Some documents need to be printed as a single job to avoid pages from other
documents being mixed in with them. This service provides the ability to
concatenate the PDF documents in the correct order. This service is supported on
any Java platform.

46

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

UTILITY SERVICES

Note:

Note:

Please note:

. This service supports only unprotected PDF documents. Please ensure that
the documents specified in the source are not protected.

. A standard concatenation event handler requiresthe absolute-path
element within thepreference-repository specified and cannot
include a destination element.You can configure how the final PDF appears
using the <pdf -preferences> element: see PDF Preferences on page 87.

Concatenating PS Streams

You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

PS Concatenation Methods

| Stream Publisher provides PS Concatenation in two ways, as a Utility Service
and as an Event Handler in a Distribution Request. In both cases, two or more
source PS streams are concatenated in a certain order into one or more destination
PS streams. The actual printing of the destination PS streams can then be sent as
one or more print jobs to one or multiple printers.

Each destination PS stream is printed as a single print job to one printer. PS
Concatenation is useful in eliminating the possibility of other documents being
mixed in with a set of documents intended to be printed as one package. It isalso
useful for printing alarge package of documents with load balancing across
multiple printers.

PS concatenation in the event handler may not be continuous depending on which
rendering printer or physical printer is used. You will need to confirm the behavior
with your selected printer driver and printer.

PS Concatenation Variations

| Stream Publisher supports these variations of PS Concatenation:

. where two or more source PS streams are concatenated into one destination
PS stream

. where two or more source PS streams are concatenated into a given number
of destination PS streams with a designation on which source PS stream
should go to which destination PS stream

. where two or more source PS streams are concatenated into a given number
of destination PS streams of approximately equal size to achieve load
bal ancing across multiple printers

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 47

SIMPLE SERVICES

Header Pages and Templates

When concatenating to produce destination PS streams of approximately equal
size, aHeader Page can optionally be printed at the beginning of each destination
PS stream to assist in reassembling the streams printed across multiple printers
back into the correct sequence. A template may be used for the generation of the
Header Page. The template must contain placeholders, corresponding to field
entries specified in the request, where actual values of information relating to that
PS stream can be substituted. The template must be in PS format.

The URL to the Header Page Template must be specified in the configuration
properties for PS Concatenation. If no template is specified, the Header Page will
be composed as plain text on the fly, with each of the field entries specified in the
reguest printed on a separate row aligned to the left.

48 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

UTILITY SERVICES

Encrypting PDF Documents

This service protects and encrypts PDF documents according to specified
parameters. This serviceis supported on any Java platform.

Please note:

Note: You must have the appropriate | Stream Publisher license to run this service.
Please check your software license or contact Customer Support to determine if
you are licensed to run this service.

. This service supports only unprotected PDF documents. Please ensure that
the documents specified in the source are not protected.

. You can configure how the final PDF appears using the <pdf -
preferences> element: see PDF Preferences on page 87.

Specifying Encryption Flags

If an encrypt-pdf request does not specify encryption flags explicitly, |Stream
Publisher assigns the highest level of security to the document’s properties, and
generates and assigns a unigue encrypted master password to the document
automatically so that its security level cannot be changed.

If the document’s security settings need to be modified, the request must explicitly
assign amaster password to the document in the request which can then be used to
change the security settings.

Deleting Files and Folders

You can use the Delete Files simple service to delete files and folders.

Source Parameter

The source parameter isthe URL of thefiles or folders that you want to delete.

When you specify a source, |Stream Publisher tries to delete the folder and its
contents. In File System and | Stream DM type-repositories, the contents of the
folder are deleted regardless of whether the folder is empty. In an FTP repository,
afolder that is not empty cannot be deleted.

Example: Deleting a folder from an IStream DM Repository

In this example, the documents folder and its contents are del eted:
<delete-files>
<source url="calligo://admin:passwordelivelink;
dmsserver:2099/documents" />
</delete-file>

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 49

SIMPLE SERVICES

Example: Deleting a folder from an FTP Repository

In this example, the documents folder and its contents are not deleted if
documents folder contains files or folders:
<delete-file>

<source url="ftp://ftpserver/documents"/>
</delete-file>

Folder Sources

When you specify a<folder-sources, the contents of thefolder will be deleted
recursively, but not the folder itself.

Example

In the following example, everything under the documents folder will be
deleted, but the documents folder itself will not be deleted.

<delete-file>
<folder-source>
<source url="calligo://Admin:passwordelivelink;
dmsserver:2099/documents" />
</folder-source>
</delete-file>

Wildcards

You can use these wildcard characters to delete files and folders:
. ? — represents any single character

° * — represents one or more characters

Example Using Question Mark (?) Wildcard

Thisis an example that uses the question mark wildcard:

<delete-file>
<folder-source>
<source url="file:///c:\myfolder"/>
<filter value="Policy-2009-??.pdf"/>
</folder-sources>
</delete-file>

Thiswould delete al filesnamed policy-2009-27?, where 2?2 represents any
two characters. Therefore, al of the following files would be del eted:

° Policy-2009-12.pdf
U Policy-2009-3A.pdf
U Policy-2009-FN.pdf

However, these other files would not be deleted because more or less than two
characters appear after the dash:

U Policy-2009-1.pdf

50 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

UTILITY SERVICES

U Policy-2009-A.pdf
. Policy-2008-123.pdf

Example Using Asterix (*) Wildcard

Thisis an example that uses the asterix wildcard:
<delete-file>
<folder-sources>
<source url="file:///c:\myfolder"/>
<filter value="Policy-2009-*.pdf"/>
</folder-sources>

</delete-file>

Thiswould delete all files named Policy-2009-+*, where * represents any
number of any characters. Therefore, al of the following files would be deleted:

U Policy-2009-12.pdf
U Policy-2009-3A.pdf
. Policy-2009-FN.pdf
U Policy-2009-1.pdf

. Policy-2009-A.pdf

. Policy-2008-123.pdf

Combining <source> and <folder-source>

You can use <source> and <folder-sources in any combination in the
<delete-file> request.

Thefollowing exampleisvalid:

Example: Source & Folder Source
<delete-file>
<source url="calligo://Admin:password@livelink;dmsserver:2099/
Test Docs"/>
<folder-source>
<source url="calligo://Admin:password@livelink;dmsserver:2099/
Test Docs"/>
</folder-sources>
<source url="file://somefolder/tempdocs"/>
<folder-source>
<source url="ftp://ftpserver/lastyear/worddocs"/>
</folder-sources>
</delete-file>

Credentials

Y ou can optionally provide credentials if the source requires authentication. They
can be specified either as a separate parameter or encoded in the URL.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 51

SIMPLE SERVICES

The Service Response is the return URL of any successfully deleted files. There
are two possible values. completed-successful or completed-failure.

A failure response will contain any or al of the following items:
. an error ID
. an English text message explaining the reason for the failure

. an XML fragment with extended error information

52

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

AGGREGATE REQUEST

Aggregate Request

If you want Simple Requests to be executed in a specific order, such as rendering
before delivering, then you must submit an Aggregate Request. Otherwise, when
you send multiple simple regquests such as generate, render and deliver, thereisno
guarantee that they will be executed in the correct order.

Aggregate Request Processing

The processing order for an Aggregate Service Request is described as a
dependency tree in which subrequests are processed only after the main “top”
request has completed successfully.

—

3 ¥

Child Render Render Child
Lewel 1 Lewel 1

L 3 3

Child Deliver Deliver Deliver Deliver Child
Lewel 2 Lewel 2

Dependencies of the Aggregate Service Request

The figure above shows the dependencies of an Aggregate Service Request. The
processing order is asfollows:

1. TheRender request (Level 1) isonly processed if the Generate Content
request (Main) is processed successfully.

2. TheDeédliver request (Level 2) isonly processed if the Render request (Level
1) is processed successfully.

Aggregate Request Limitations

In order to maintain forward compatibility with your | Stream Publisher Client
there are some limitations for the kinds of requests that can be aggregated

1. You can specify only one document per request in the root.

2. The dependencies tree may have only one root node. It can, however, have
one or more levels. Sub-requests at each level can be of different types
(Generate, Render, Deliver, or Utility).

3. AnAggregate Request cannot handle situations where parallel executions
must come back together in a synchronized way to perform a common
action or request.

4. An Aggregate Reguest does not:

e Support order processing of sub-requests belonging to the same level of
the dependenciestree.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 53

SIMPLE SERVICES

« Provide acleanup of intermediate temporary files created as aresult of
processing Aggregate Request. Note that Utility Services are designed
to provide cleanup and to delete temporary files.

e Provide consolidation of sub-request responses.

An Aggregate Reguest is considered complete as soon as the root processis
complete and the sub-processes have been submitted.

54 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 3

Distribution Service

This chapter describes:

. The Distribution Service on page 56

. The Distribution Request on page 57

. The Distribution Package on page 63

. Recipients on page 66

. Delivery Channels on page 71

. Event Handlers on page 74

. A Distribution Request Example on page 83

Note: Themain parametersarelisted for all services. For related parameters, pleaserefer
to the schema.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 55

DISTRIBUTION SERVICE

The Distribution Service

The Distribution Service isacomposite service, designed to provide user-friendly
document distribution service. This service improves the document distribution
process by allowing reguests to be more oriented to the business user.

The business user does not need to know as much about all the steps of the
distribution process including the intermediate content that gets created. Instead,
the user can focus on the business requirement. The model that the Distribution
Service usesisthat of “a Distribution Package delivered to multiple recipients
through various Delivery Channels’, in one request.

Example

A marketing document needs to be delivered by fax to a group of customers. A
different version of that document needs to be sent by e-mail to 2,000 managers
and athird version needs to be saved on the Web site for use by sales agents. All
of these requirements can now be handled by one regquest using the | Stream
Publisher Distribution Service.

For an overview of the Distribution Service functionality, see The Distribution
Request Lifecycle on page 26 of the Administrator’s Reference Guide.

56

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE DISTRIBUTION REQUEST

The Distribution Request

The Distribution Serviceisinvoked through a Distribution Request. The request
has a declarative structure. The Distribution Request describes the documentsto
be distributed, their recipients, the delivery channels to use and the Event
Handlers to apply.

Warning: The distribution request should not contain more than 1,000 delivery items,
including items within folder distributions. This is because large Distribution
Requests may take along time to be processed. This can trigger an IBM
WebSphere MQ server roll-back on the request itself. Thiswill not cause the
request to fail, but may result in the request being processed by another Service
Manager and cause duplicate delivery itemsto be created and delivered. Single
delivery of items using Distribution Requests may not work. Single delivery can
be guaranteed using Simple or Aggregate Requests with the
preventDuplication JMSHeader value set to true.

XML-Based

A Distribution Request is a self-contained XML file. All required information for
the request processing is specified as various nested elements. The top-level
elements are mainly collections of other elements. The top-level elements are
described in the table below, while the other sections are drill-downs of each
individual collection and their elements.

At various levels, the request also embeds custom information (called metadata)
provided by the submitter for use by the Event Handlers. Metadatais custom, both
in content and structure.

In the diagram on page page 59, notice the main components of a Distribution
Request, which are also the main topics of the explanations that follow:

. Distribution Package
. Recipients
. Delivery Channels

. Event Handlers

ContentType

The ContentType parameter specifies the MIME type. (See Multipurpose
Internet Mail Extensions (MIME) on page 200.) There are four places where
ContentType can be specified:

. as a Distribution Item parameter
. as a Recipient Item parameter
. as aDelivery Channel parameter

. as a Délivery Preference parameter

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 57

DISTRIBUTION SERVICE

The MIME types are:

. Adobe PDF — application/pdf

. HTML — text/html

. Microsoft Word — application/msword
. PCL — application/vnd.hp-PCL

. Postscript — application/postscript

. RTF — application/rtf

. TIFF — imagel/tiff

. TXT —text/plain

Example
Hereisapractical example of where those settings might be used:

A Microsoft Word document needs to be saved in arepository in TIFF
format. The Distribution Item ContentType iS application/msword.
However, the Recipient Item specifies a ContentType of image/tiff. The
Distribution Service will understand that a Render service from Word to
TIFFisrequired.

Additional Details about ContentType

The render-param parameter defines the Recipient's additional preferences for
each type of delivery channel:

. the default driver name for each type of rendering
. the default number of copies for any rendering type
. duplex or collate —for pcl or ps rendering types

The default ContentType associated with an output channel is a configurable
parameter. However, the ContentType and render-param parameters can be
specified explicitly in a Distribution Request:

For each Delivery Channel:

The contentType specified at the Delivery Channel level of a Distribution
Request takes precedence over the parameters specified in the configuration
settings.

For each Delivery Preference of a Recipient:

This ContentType value will be used asthe default value for all Recipient Itemsin
a Recipient Package associated with the Delivery Preference. For example, if a
Recipient would like to receive e-mail attachmentsin Microsoft Word format,
then it would be necessary to specify the ContentType for "preference-email” as
"application/msword". If the Recipient prefers saving document in the DMSin
PDF format the ContentType of a"preference-repository” should be specified as
"application/pdf". The ContentType and render-param specified at the Delivery

58

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE DISTRIBUTION REQUEST

Preference level take precedence over the parameters specified at the Delivery
Channel level.

For each Recipient Item in the Recipient Package:

This ContentType value will be used for the Recipient Item in the Recipient
Package. The ContentType and render-param specified at the Recipient Item level
take precedence over those parameters specified at the Delivery Preference level.

Note: With regard to the Content Type parameter when rendering from Word to HTML,

the Distribution Request functions somewhat differently than the Simple Request,
as described below. In anutshell, the graphics sub-folder for a Distribution
Request is named after the Distribution Item source, whereas for a Simple
Request, the graphics sub-folder’s name refers to the destination (final) file name.

The Distribution Request Structure

Distribution Reguest

i Distribution Fackange

!

Distribution [tem Reference

—|Delivery Preference

The following table describes the components of the Distribution Request.

Component Description

distribution- A collection of Distribution Items that make up the subject of the Document
package Distribution process.

delivery- A collection of Delivery Channel elements that are to be used to deliver the
channels content created following the processing of the Distribution Package.
recipients A collection of recipient elements that make up the full list of recipientsto

which documents in the Distribution Package are distributed.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 59

DISTRIBUTION SERVICE

Component

Description

event-handlers

A collection of special processing operations that are to be invoked as a result
of events that occur during the processing of the Distribution Request. Event
handlers are grouped per the events to which they are associated.

failure-policy

A policy for error treatment in the processing of a Distribution Request. The
two options of the Failure Policy are:

« failFast - the Distribution service will attempt to finish the execution of a
Distribution Request as soon as possible. (See more detail s about this Failure
Policy below).

* perseverance — the Distribution service continues the processing of a
Distribution Request to the best of its ability. (See more details about this
Failure Policy below)

IStream Publisher Distribution Request Failure Policy

There are two different Failure Policies available that can be specified by the user:
Fail Fast and Perseverance.

Fail Fast Failure Policy

Using the Fail Fast failure policy, al further processing of the entire Distribution
Request will end at the first failure of atask, even if there are non-dependent tasks
that could be processed. Thisisthe default failure policy for a Distribution
Service Request.

Example

A Distribution Request is required to generate Policy Pages for two recipients: an
Agent and an Insured (customer). It must send the Policy Pages both to the Agent
and to the Insured to print for further mailing. A letter of notification must be sent
to the Agent by e-mail.

This request should be sent using the Fail Fast failure policy, since thereis no
reason to send anotification through e-mail if either the printing or the generation
falls.

Perseverance Failure Policy

Using the Perseverance failure policy, any non-dependent tasks will still get
processed, even if afailure occurs, while tasks that have assigned dependencies
will end.

One reason you might want to use perseverance is when you are sending out e-
mails or faxes to many recipients and you do not want the entire Distribution
Request to stop just because one of them fails.

Example

A Distribution Request is required to generate a personalized | etter of notification
for each Policy Owner (multiple recipients). It must then send it to be printed for

60

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE DISTRIBUTION REQUEST

further mailing. If the generation of a document for one recipient fails, the
business requirement is to send the notification to as many clients as possible.

This request should be submitted using the Perseverance failure policy. In this
case, even if the distribution for one recipient fails, other nodes (generate-render-
deliver) for the rest of the recipients should still be completed.

Troubleshooting the Distribution Request

All Distribution Requests are initialy processed by the Distribution Service.

The Distribution Service validates an XML request and immediately returns
failureif it isincorrect.

Example: <distribution-request-response status="failure">
<errorDetails messageKey="DR.01"

text="DR.01l: Failed to parse DistributionRequest: ..
SAXParseException

This error message means that parsing of the XML request failed and the user
should verify and fix the XML data before sending a new request.

Examples of other error messages include:

. DE.06: Distributionltem not found: (item id). — means that the attribute
refID in the element recipient-item has a reference to a distribution-item
with an id which does not exist.

. DE.O7: Déelivery preferencerefersto non-existing channel:
refl D=channel id — means that an element preference-repository,
preference-printer, preference-email or preference-fax has an attribute refl D
which is pointing to a non-existing delivery channel id.

. RP.01: Failed to resolve delivery preference: preferenceid — meansthe
attribute refI D of the element delivery-preference has areference to a
preference-* id which does not exist.

Errors such as these can be avoided if the user strictly follows the Distribution
Service specification provided in the |Sream Publisher Interface Reference
Guide.

Distribution Service

The Distribution Serviceitself does not perform any actual operation apart from
sending requests to simple services to perform specific operations and collect
responses.

The Distribution Service always waits for the completion of all simple requests
that are required for processing of the Distribution Request. However, if a
required simple services is not available (due to system failures or incorrect
configuration) then the Distribution Service will be trapped in await state.
Administrators can detect problems by monitoring messages waiting in the
Service Queues or by using the System Query State operation in the Console.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 61

DISTRIBUTION SERVICE

Loopback Service

When a simple request created by the Distribution Serviceis completed, the
Loopback Service (a specia service used only for processing responses of simple
requests created by the Distribution Service) receives a response and notifies the
Distribution Service about completion of the simple request. When the simple
regquest is completed successfully, the Distribution Service then sends simple
reguests, or returns a response to the requestor (if required in the request IMS
message) if there are no more tasks required for completion of the Distribution
Request.

All smple service failures are recorded by the Distribution Service, returned to
the requestor, and logged to the Request Log after completion of the Distribution
Request processing.

Error Messages

Error messages returned by various simple services can vary. The Distribution
Service wraps simple service error responses into its own response message.

A user might find that afailureis based on a combined Distribution Service
Response or by simulating Distribution Request processing using simple requests.

For example, a Distribution Item containing the element <calligo-items
requires an invocation of Content Service, which can return error messages if
thereis a problem during document generation.

Typically, these sort of errors are self-sufficient and are quickly detected. But
some errors can be caused by an implicit invocation of some services.

For example, if aclg-sourceisto be delivered as afax, it is converted to a
Microsoft Word format using the render-CL G-to-Word service. The Word
document is then rendered to a TIFF format by the render-Word-to-TIFF service
and sent to the fax server by the deliver-to-fax service. Any simple service can fail
(for example, aWorker that does not have a Fax Printer Driver, but has started the
render-Word-to-TIFF service) and cause the failure of the whole distribution
request.

To avoid difficulties with troubleshooting the Distribution Requests, a client can
set the IMS message property LogL evel to 6 in the request message, and check
the request status in the Request Log (by using the Console Request Log Request
Info operation or executing direct queries to the Request Log table).

62 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE DISTRIBUTION PACKAGE

The Distribution Package

The Distribution Package is the full set of interrelated items (such as documents,
images, folders and files), that are to be delivered. (These items are called
Distribution Items.) The Distribution Package is the object of the distribution
process. A business process usually determines the contents of this package. The
Distribution Package is an unordered set.

| Distribution Package |

1 *
(?1—{ Distribution Item |

Model
Document

— File |
—

Folder |

The Distribution Package Structure

The following table describes the parameters of the Distribution Package.

Parameter Description

distribution-package Information specific to all Distribution Itemsin the Distribution Package.

metadata This also constitutes the Distribution Request global metadata. The
metadata specified in this block is available to al Event Handler
invocations, regardless of the event they are handling.

distribution-item Documents or files that make up the Distribution Package.

The Distribution Item

Any file can be a Distribution Item: a Microsoft Word document, an image in
TIFF format, a PCL stream, an XML datafile, and so on. The system handles the
following itemsin special ways, but like all items they can appear in any number
and combination in the Distribution Package. These “special” Distribution Item
types are described in more detail in the following sections.

The IStream Document Item <calligo-item>

Calligo documents are now called | Sream documents, however the term Calligo
isstill used in thetags. Therefore, <calligo-items refersto an |Stream
document item.

If a Distribution Request requires the generation of an 1Stream document, then
either the Model document (.cms) or the | Stream document (.clg) should be
specified as the source for the Distribution Item. For more information about
generating a document, please see Generate Calligo Document Service Overview
on page 26.

If the model document (.cms) or generated document is the Distribution Item
itself, then it should be included in the package as a generic file.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 63

DISTRIBUTION SERVICE

Keep in mind that there are two types of source documents: model documents
(using an extension of .cms) and generated documents (using an extension of

.clg).

Repository File

Thefilesreferenced by the Distribution Items are not physically contained in the
request. Only references are included, each specified asaURL. RAPI (Repository
Application Programming Interface) is used to access the referenced files and
therefore they must be located in a RAPI compliant repository.

Repository Folder

The system iterates over the contents of the folder and adds all itsfilesto the
Distribution Package. The repository must be RAPI compliant, (that is, provide a
RAPI adapter).

The Distribution Package can have one or many Repository Folders as
Distribution Items.

I Stream Publisher processes only the current Folder and does not support
subfolders, where a subfolder is a subdirectory in a core Folder with a subset of
distributable documents/files.

A Folder breaks up into alist of distributable items based on wildcards specified
by the user.

Wildcards

Wildcards are supported for extracting files from the Folder. A wildcardisa
character that represents one or more characters. Two commonly-used wildcard
characters are:

. The question mark (?), which represents any single character, and

. The asterisk (*) which can be used to represent any character or group of
characters that matches that position in the target set of filenames.

Distribution Item Description and Syntax

A Distribution Item is one of the documents or files that make up the Distribution
Package. A Distribution Item can be either afile or afolder that contains any
number of files.

Deleting after Distribution

By default, a Distribution Item will not be deleted after distribution. However,
thereis aflag —the “Delete After Delivery” flag (see below) — that can be set to
automatically delete files after distribution, saving time and reducing expensive
hard disk overhead. The “Delete After Delivery” flag is an option for the
Distribution Item.

There is also the option of using aWildcard “filter” to control very precisely the
specific filesthat do get deleted if the “ Delete After Delivery” flag is set to True.

64

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE DISTRIBUTION PACKAGE

Note:

Example

There are anumber of distributable documentsin PCL format in a Repository.
The goal isto concatenate all distributable documents that start with “F” to one
PCL stream. The Distribution Item is a Folder, the “ Delete After Delivery” flagis
set to True, and the filter specifies“F*” meaning al files starting with “F”. In this
scenario, al files from the Folder that match the filter (that is, start with “F") will
be deleted after the distribution, assuming that it takes place successfully. The
Folder itself and subfolders will not be deleted. Only the files that have been
distributed by | Stream Publisher, and that start with “F’, are deleted.

Only File and Folder types of Distribution Item documents can be deleted. The
“Delete After Delivery” flag does not apply to | Stream source documents.

ContentType

The ContentType parameter is never used to filter fileseven if the folder is
defined in the Distribution Item. (For filtering files, the Distribution Request
“filter” element exists.) The ContentType parameter functions together with the
other pieces of the Distribution Request to define what rendering will be applied
to the file before delivery.

The following tables describe the Distribution Item parameters.

Distribution Item Parameters

Please refer to the schema.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 65

DISTRIBUTION SERVICE

Recipients

A recipients element represents metadata valid for all recipients as well asthe
collection of Recipient Package, Recipient Metadata and Delivery Preferencesfor
each recipient.

This diagram gives an overview of the structure of the Recipients element:

Recipients
{4
1.. Rec ipient

1.7

Recipient Package

Delivery Preferences

Printer

e-mail

FAX

Repository

The following table describes the parameters of the Recipients element.

Parameter

Description

recipients-
metadata

Thisisinformation specific to all recipientsin the Distribution Request. The
metadata specified in this block is available for all Recipient Packages or
Delivery Packages when the appropriate Event Handler isinvoked.

recipient

A person or an organization to which the itemsin the Distribution Package are
addressed. See below.

Note:

Recipient

A recipient is either a person or an organization to which the itemsin the
Distribution Package are addressed. A recipient element contains Recipient
Packages, recipient metadata and Delivery Preferences for the recipient. The list
of recipients can optionally be ordered by assigning adelivery order to each
recipient. Recipients for which adelivery order is not specified, are processed
after all of those for which adelivery order is specified.

If the delivery order is specified, the ordering is enforced only in the case of
delivery through the same delivery channel and this channel operatesin
Synchronized mode.

66

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

RECIPIENTS

Recipient Parameters Example

Here's a simple example of how the recipient parameters can be used in order to
save time and streamline your business processes:

An agent prefersto receive Recipient Package #1.

. In TIFF format by FAX

. By e-mail.

At the same time, this agent prefers to receive Recipient Package #2:
. In PCL format by printer.

In multiple places in the Distribution Request, the ref 1D attribute is used. The
Distribution Request will not pass syntax validation if any ref 1D references an
element with an ID that does not exist somewhere in the request. However,
reguest validation cannot check the semantics of such references. In other words,
be aware that an ID can exist (and pass the syntax check) but nevertheless not
work in the context.

If you want to be able to validate the ref 1D references, you would need to use an
external XML editor application.

For details of the Recipient element, please refer to the schema.

ReflD Example

Here is an example of areflD along with the element to which it refers:

<preference-xxx refID={refers to the corresponding delivery
channel ID} ...>

Note: Itisrequired that the preference-printer must be pointed to the printer delivery
channel, the preference-email to the e-mail delivery channel, and so on.
Delivery-Preference Considerations

Delivery-preferences provided in the Recipient Package define what channels are
used to deliver any given Recipient Package. This way the same Recipient
Package may be delivered simultaneously through multiple channels.

Sometimes a service has finished the execution of arequest, but one of the
following failures occurs:

. The Service Manager fails
. A servicefails

. The database connection is lost before the Service Manager has
acknowledged the transaction

Inthis casetherequest isrolled back to a Service Queue and marked by setting the
JM SRedelivered header field of the rolled back request to "true". After this
happens, the next available Service Manager will execute the request.

In some failure cases the above process may lead to duplication of the request.
Depending on the business situation, thismay or may not be critical. If arequestis

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 67

DISTRIBUTION SERVICE

Important:

"print abill", it might be critical. On the other hand, if it isthe generation or
rendering of adocument, it may not be critical.

To prevent duplication, you should specify the 'preventDuplication’ attribute of a
<delivery-preference> as 'true'. If the 'preventDuplication” is true, the Service
Manager will check the status of the previous attempt. If the previous attempt
completed successfully, then the Service Manager just acknowledges the
transaction without executing the request again.

Setting the 'preventDuplication’ flag set to ‘true’ will definitely impact
performance, because of the extra checking operation. Use the flag only for
critical cases or if performance is not an issue.

Logical vs. Physical Delivery Units

Note that the Recipient Package is considered as alogical delivery unit. For some
channels the physical delivery unit coincides with the logical one, for example al
recipient items are included in asingle e-mail as attachments. (A similar situation
can occur with afax.) At the same time, for other channels the logical packageis
split into multiple physical units. Examples of thiswould be delivery to repository
and to printer.

In other words for the e-mail and fax delivery, one simple Service Request is
generated per Recipient Package while for the repository and printer one Simple
Service Request is generated per Recipient [tem.

Recipient Package

In the Recipient Package, you specify the recipients that will be receiving the
distribution package and the delivery order for each recipient. You can have one
or more recipients in each Distribution Request. A Recipient Package, therefore,
isasubset of the Distribution Package to be delivered to a particular recipient. It
contains alist of referencesto items in the Distribution Package that make up a
Recipient Package.

ContentType Issue

The Content Type (ContentType) of a Recipient Item is required by the
Distribution Service to determine the type of rendering for the preferred Delivery
Channel. The ContentType parameter includes the MIME type of the content and
the setting for an appropriate rendering driver.

If ContentType is not specified for a deliverable item (recipient-item) in a
Recipient Package and in the delivery preference or the delivery channelsin the
Distribution Request, then the rendering format to pcl (for printer) and to TIFF
(for fax) is derived from the configuration setting. No rendering is made for e-
mail and repository channelswhen ContentType is omitted. When ContentTypeis
specified explicitly it defines to which mime type the original distribution item is
rendered (and is sent to delivery channel). An explicitly specified ContentType
overwrites the type associated with a given delivery channel by default.

68

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

RECIPIENTS

As adefault, the Distribution service considers the document formats associated
with each type of channel based on delivery preferences:

. PCL format for delivery to Printer
. TIFF format for delivery to FAX

. MIME type of an original Distribution Item in the Distribution Package for
delivery to a Repository or by e-mail.

If adelivery preferenceisaFAX or e-mail, all itemsin the Recipient Package are
sent as attachments in one FAX or email.

The itemsin a Recipient Package may be ordered using the optional segqNumber
attribute.

Note: For fax and e-mail, we can map many itemsto one Simple Request. However, for
repository and printer, it is a one-to-one relationship: one Recipient ltem maps to
one request. Also, it is possible for one Recipient Item to produce many Simple
Requests.

For details of the Recipient Package and the Recipient [tem Reference parameters,
please refer to the schema.

The ContentType Parameter

The Recipient Item has an optional attribute ContentType (described above),
which takes precedence over the default rendering for a given channel.

The engine does not apply any rendering if ContentType is omitted in the
configuration settings for the associated delivery channel.

Rendering Services

If there is no rendering service when rendering is required (all rendering services
are defined in the config file DistributionRequestStatic.xml), then the whole
Distribution Reguest fails. If the ContentType attribute is defined in the Recipient
Item, then the engine looks for a rendering service to support rendition to that
type. This ContentType determines the document type being sent to the delivery
channel. For instance if the ContentType is 'application/msword' and the original
document is 'application/msword' as well then no rendering is done for recipient
item. The Word document is sent to the printer ‘asis' (and as alikely result some
garbage will be printed).

render-param subelement

Render-param defines additional configuration settings for rendering. It does not
affect in any way what rendering is chosen (see ContentType above). Those
settings are taken into account only if they are relevant to the chosen rendering.
For example, if the rendering is TIFF to PCL while render-param defines some
fax settings, then they are ssmply ignored (they would have to be printer settings
in order to have any effect).

The rational e behind such behavior may beillustrated with the case when multiple
delivery preferences are defined for a particular recipient item. In this case, the
recipient item is delivered through multiple delivery channels with possibly

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 69

DISTRIBUTION SERVICE

different renderings for each channel. The rendering settings defined in render-
param that areirrelevant in each case, are ignored.

Element <part name="xxx">

This element (under recipient-item) was added to allow the specification of mail
attachment names. By default, the attachment name is the same as the file name
provided in the distribution item. However inthe case of a<calligo-items> and
generation, this name may be rather cumbersome and should be replaced in the e-
mail with something more readable. It is not important for the case of delivery to
fax and printer where those intermediate names are never exposed to the client.
For the delivery to repository element, 'destination’ serves the same purpose.

Delivery to Repository

In the case of delivery to repository, there are multiple ways to specify the
destination. If the destination is defined per recipient-item then that valueis used.
The destination is treated as afolder if it ends with atrailing slash and the
destination file name is defined by the distribution item (with possibly an
extension replaced if rendering took place). Otherwise, the destination is
considered as afile path and the generation/rendering result (if any took place) is
eventually renamed (copied) to that file. Another way to define the destination
(likely adestination folder) isin the absolute-path element of the preference-
repository. The treatment is the same.

If the destination is not supplied, then the absolute path defined in the preference-
repository will be used in the same way as is describe above.

Note: There are two cases with regard to the filename:
. The full path, including the file name, is specified, or

. The path is specified without the filename, and with atrailing slash —
implying that thisis afolder. In this case, the file name specified in the
source, will be added to the path.

Note: The extension of the file name will be adjusted according to the ContentType of
the resulting file.

Calligo-destination

Thisitem is processed only if the corresponding Distribution Item contains a
<calligo-items. Inthiscase, generation and delivery to repository may be
done in one step using a single Service Request.

70 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

DELIVERY CHANNELS

Delivery Channels

A Delivery Channel isthe method by which a Distributed item is delivered. It
represents adevicethat can transmit information in a printed form (print or fax) or
in an electronic form (through e-mail or to arepository). Channels can be
configured for different content formats, transmission protocols, and so on.

Specific information is associated with each type of channel in order for 1Stream
Publisher to perform the physical communication with the channel.

| Stream Publisher supports the following Delivery Channels:

. Printer

. E-mail

. Fax

. Repository

Operating Modes

Delivery channels can function in two operating modes depending on the moment
when the actual delivery of an item occursin relation to the other itemsin the
delivery package: Synchronized Delivery and Instant Delivery.

Synchronized Delivery

In the Synchronized Delivery mode, the itemsin the Delivery Package are not
delivered until they become available and a delivery package ready event is
raised. At this point, al items are then delivered one by one.

The delivery order in Synchronized mode is affected by:

. the deliveryOrder attribute of al recipients

. the deliveryOrder attribute of al Recipient Packages
. the segNumber attribute of al Recipient Items

You can use the sync1d Attribute for synchronization between multiple channels.
The same value of this attribute in different delivery channel definitions means
that delivery to al channels begins only when al the items for this channels are
ready for delivery.

In synchronized delivery, if one transmission fails, then further requests will not
be sent. See Fail Fast Failure Policy on page 60.

Instant Delivery

In the Instant Delivery operating mode, the itemsin the Delivery Package are
delivered as soon as:

. al theitems of a specific request are ready (generated/rendered), and

. al the Event Handlers associated with that item are complete

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 71

DISTRIBUTION SERVICE

Note:

With e-mail, fax or repository, you would not use synchronized delivery because
the order does not matter. When delivery in order isimportant there are severa
elements of the Distribution Request to check:

1. TheDelivery Channel in use should be in 'Synchronized' mode. This means
that the delivery does not start before all items are ready. All generations,
renderings and proper Event Handlers must be complete. It also means that
al Delivery Requests are sent one by one.

2. Recipients and Recipient Items must be ordered using their deliveryOrder
attribute (integer) and the Recipient Item must be ordered using its
segNumber attribute (integer). Elements with lower numbers are served
first.

In the case of a Recipient Item that supports a Simple Request with many items,
for example e-mail, the seqNumber controls the order within the e-mail, that is,
the order of the attachments.

The following diagram describes the structure of Delivery Channels and the table
describes the Delivery Channel parameters:

1

Delivery Channels

T1— Delivery Channel

Printer

g-mail

4{ FAX

Repositary

For details of the Delivery Channels, please refer to the schema.

Delivery Channel Settings

There are multiple placeswhere Delivery Channel-related information is specified
in 1Stream Publisher. Each setting ultimately references the appropriate Delivery
Channel parameter.

The “Delivery Channels” item lists all output channels that can be used in the
Distribution Request. In the Delivery Preferences for the recipient, thereisa
Reference ID pointing to the “Delivery Channel” ID.

Recipient-Specific Information

Additionally, there will be recipient-specific information related to the output
channel. For example, the Fax Number in the Delivery Preference would be
different for each recipient.

72

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

DELIVERY CHANNELS

As afurther example, aprinter that is defined using the ID parameter of the

Printer parameter, above, can be referenced with the (optional) preference-printer
parameter of the recipient.

Similarly, an SMTP server can beidentified asaDelivery Channel and referenced
using the recipient preference-fax parameter.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 73

DISTRIBUTION SERVICE

Event Handlers

You can use Event Handlers to extend the Distribution Request processing.

During the processing of the Distribution Request, various events are activated to
indicate where the processing is and to allow the request processing to be
extended by invoking an Event Handler associated with the particular event.

Events occur every time the processing of a Distribution Reguest reaches a point
where a specific action should be taken or where customization of the distribution
processitself is possible.

When invoking events, the system must allow them accessto a particular scope of
metadata. The system informs the Event Handler with regard to what metadata
scopeit is allowed to access by passing it a metadata scope identifier.

Event Handlers can be critical or non-critical.

Events

The events raised by the Distribution service are:

Distribution Package Ready

Raised when all the items that make up the Distribution Package are available. At
this point all document generation operations have completed and al folders have
been iterated for content. The metadata scope for this event is that of the
Distribution Package element.

Recipient Package Ready

Raised when al the items that make up arecipient's package are available. At this
point all render operations have completed. The metadata scope for thisevent is
that of the Recipient Package element.

Delivery Package Ready

Raised when al the items that are to be delivered through a Delivery Channel
operating in synchronized delivery mode are available. At this point the
Distribution Package and all the Recipient Packages are ready. The metadata
scope for this event isthat of the distribution channel element.

Delivery Item Ready

Raised when an item for delivery through a channel operating in instant delivery
mode has become available. At this point theitem isready for delivery but the rest
of the itemsin either distribution, recipient or delivery packages are not
necessarily ready. The metadata scope for this event isthat of the distribution
channel element.

74 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EVENT HANDLERS

Package Delivered

Raised when a delivery package has been delivered. Applies only to Delivery
Channels operating in synchronized delivery mode. The metadata scope for this
event isthat of the distribution channel element.

Item Delivered

Raised when a delivery item has been delivered. Appliesonly to Delivery
Channels operating in instant delivery mode. The metadata scope for thisevent is
that of the distribution channel element.

Distribution Complete

Raised when the processing of the Distribution Request has completed. At this
point all the nodes in the task graph have been processed and the request state and
temporary files have been removed. The metadata scope for this event is that of
the Distribution Request (global scope).

Events and Services

Aslisted in the following table, an event either supports (@), partially supports
(Q), or does not support (no dot) specific services. (For example, the recipient-
package-ready event can perform all the services.)

LL I LL

£ L]0 |0 o
“ _ o a B 2|2 | &
81242 & 5|82
2128 /2|,18|® i |2 =
2 g g g O o Q E LL (@) o o (@)
5|5 5|5 |2 |8|e8|F (22|33
N I8 |8|8B|d|L|SE| 5 |5|5|5 |5
g g 8 D g g = gl - | |T |T
== = = c = (=

() o O
Events S|8|8|8|8 |88 | |g|8 |8 ¢
distribution-package-ready Y QO e o o o o
distribution-complete ® QO e o o o o
reci pient-package-ready o oo/ 0|0 © [0 0|0 0|0
delivery-package-ready Y Q e o o | o | o
delivery-item-ready ® QO e o o 0o o
package-delivered ° Q o o o o o
item-delivered ® QO e o o o o

Note: You cannot use the encrypt-pdf servicesin any event.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 75

DISTRIBUTION SERVICE

Sequence Number

Event Handlers can be invoked and executed either concurrently or sequentially.
The default behavior is for the Event Handlers to run concurrently, meaning that
there is no predetermined order and none of the individual processes will wait for
any othersto complete. If both sequenced and concurrent Event Handlers are
specified, the sequenced ones are executed first, in order, after which all non-
sequenced requests are executed concurrently.

The event-handler “seqgNumber” parameter is the specific setting that defines the
order of execution of Event Handlers.

Multiple Event Handlers

If multiple Event Handlers relate to the same event, the seqNumber parameter
could be used to sequence the execution of these Event Handlersiif it isimportant
in the context. If it is not important, and if seqNumber is not specified, then
processing may happen simultaneously.

Event Handlers can alter the contents of the Delivery Packages, for example, they
can concatenate multiple Deliverable Items into one PCL stream. Event Handlers
are not allowed to alter the Distribution Package or the Recipient Packages.

Critical or Non-Critical

Event Handlers may be labeled as critical or non-critical. Non-critical Event
Handlers don't cause the whole distribution request to fail. Instead, in the case of
failure, they are reported in the Distribution Request response (which in the case
of failure has the status 'success-with-info). Note that for some Event Handlers
the Event Handler proxy may be defined in CommonSM.xml — those Event
Handlers are always treated as critical. The Event Handler proxy (if defined)
transforms the generic Event Handler request into a simple Service Request (it
happens on the Distribution service side). This simple request is sent as usual to
the simple service and the simple service responseis again handed to the proxy for
post-processing.

The diagram below describes the structure of the Event Handlers elements:

1
Event Handlers

L Event

Event Handler

76

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EVENT HANDLERS

The following table describes the event parameters:

Event

Description

event

See “Event Handlers, Event Parameters’ below.

distribution-package-
ready

The metadata scope for this event isthat of the Distribution Package
element.

reci pi ent-package-ready

The metadata scope for this event isthat of the Recipient Package
element. The Recipient Package Ready event has one Parameter:

recipientpackageRefld — A reference to the Recipient Package ID.
The event is raised when al the items that make up the specified
Recipient Package are available. At this point all render operations
have completed.

delivery-package-ready

The metadata scope for this event is that of the distribution channel
element. The Delivery Package Ready event has one Parameter:

 deliveryChannelRefID — A reference to a Delivery Channel.
The event israised when all the items that are to be delivered
through the specified Delivery Channel operating in synchronized
delivery mode are available.

delivery-item-ready

The metadata scope for this event isthat of the distribution channel
element. The Delivery Item Ready event has the following
parameters:

* deliveryChannelRefID — A reference to a Delivery Channel.

 deliveryltemlID (optional) - A reference to a Distribution Item.
This parameter will befilled in by |Stream Publisher. (If auser
setsit in their request, it isignored.)

The event is raised when the item that is to be delivered through the

specified Delivery Channel operating in Instant delivery mode is

available.

package-delivered

The metadata scope for this event isthat of the distribution channel
element. The Package Delivered event has one Parameter:

* deliveryChannelRefID — A reference to a Delivery Channel.
The event israised when all the items that are to be delivered
through the specified Delivery Channel operating in synchronized
delivery mode are available.

item-delivered

The metadata scope for this event is that of the distribution channel
element. The Item Delivered event has the following Parameters:

 deliveryChannelRefID — A reference to a Delivery Channel.
 deliveryltemID (optional) - A reference to a Distribution Item
This parameter will befilled in by 1Stream Publisher. (If a user sets
it in their request, it isignored.) The event is raised when al the
itemsthat are to be delivered through the specified Delivery
Channel are available. This event applies only to delivery channels
operating in Instant delivery mode.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 77

DISTRIBUTION SERVICE

Event

Description

distribution-complete The metadata scope for this event is that of the distribution request

(global scope).

event-handler

An Event Handler isinvoked when the appropriate event happens.

The Event Handler element has the following Parameters:

* serviceType — name of the specific Event handler that should be
invoked.

» segNumber — The order in which multiple Event Handlers are
executed synchronousdly if there is more than one Event Handler
associated with the particular event

* event-handler-metadata — metadata specific to the Event Handler
* critical —“true” or “false”

event-handler-response

This parameter provides a successful completion response by simply returning a
successful completion status.

A failure response will contain:

. An error 1D, and/or

. An English text message explaining the reason for the failure, and/or
. An XML fragment with extended error information.

The Response message for a particular Event Handler can be extended depending
on the business requirements.

Distribution Request Metadata

Event Handlers

Event handlers are given access to request metadata and distribution, recipient and
delivery packages by means of Data Access Objects and Value Objects. This
DAO observes the scoping rules and make the metadata available to Event
Handlers as XML fragments. Each element of the Distribution Request hasits
own scope, enclosed within the scope of its main, higher level element.

When an event occurs within the scope of a certain el ement, the metadata for that
element, together with the metadata from al of its ancestor elements, is made
available to the Event Handler. When the system invokes the Event Handlers, it
passes them a scope identifier, which they can use with the DAO to access the
metadata. Thisisthe interface to the persisted state information and no Event
Handler should accessit directly.

The Event Handler can unmarshal the XML fragment into Value Objects.

Metadata Elements

M etadata elements may include arbitrary user data. However in order to allow co-
existence of data belonging to multiple customers, the general agreement is that
each customer defines its own sub-element in metadata. In other words, the

78

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EVENT HANDLERS

definition of the metadata element itself is not changed and PCDATA isonly
expected under the metadata element itself.

Concatenating PCL Streams

The concatenate pcCL Event Handler isinvoked when the Recipient Package
Ready event israised and all itemsto be delivered through a delivery channel
operating in synchronized delivery mode are available. At this point, the
Distribution Package and all the Recipient Packages are ready.

Note: A standard concatenation event handler requiresthe absolute-path element
withinthepreference-repository specified and cannot include adestination
element.

Multiple Streams into One Job

Some documents need to be printed as a single job to avoid pages from other
printer jobs being intermixed. The Event Handler provides the ability to
concatenate the PCL streams for these documentsin the correct order.

One Job into Multiple Streams

Alternatively, the Event Handler concatenates Distribution Itemsin a Recipient
Package and/or through multiple Recipient Packages to some specified number,
N, of approximately equal-size PCL stream segments. The order of the
concatenated documents remains unchanged.

The number of streamsis specified in the Distribution Request. The default
number of streamsis”1".

Header Page

Each subgroup must have an appropriate header page defined so that, after
delivery to a print server with load balancing across multiple (N) printers, a
person can reassemble the documents back into the correct sequence for delivery.

The Header Page can be composed using a Header Page Template. The template
contains some special placeholders.

Event Handler

The Event Handler uses the template and substitutes these placehol ders with
actual values provided with the request. The place where content must be
substituted, is marked by “{<name>}" —where <name> is the name of the value
to be used.

If aname provided in the request does not match a placeholder in the template, the
Header Page will not include the information.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 79

DISTRIBUTION SERVICE

Template URL

The URL to the template should be specified in aconfig file for the Event
Handler. If thereisno template associated with a Header Page, then a Header Page
as plain text will be composed “on the fly” and every field will be printed in a
separate row, |eft-aligned.

The template can bein plain text or in PCL format. You can create fancy Header
Page templates with placeholders using Microsoft Word and Render to PCL
format. See Header Page Template Example on page 193.

Optional Parameters
The following parameters can optionally be provided for a Header Page:

. paper size
. paper orientation
. tray/paper source

Each header page must be concatenated, with the appropriate PCL segment on
top.

Duplexing Options

In the concatenation process, the duplexing of the pages can either be continuous
(meaning that the next concatenated stream can start either on an even or an odd
page) or, it can break at odd-numbered pages. If the Print Instruction parameter for
duplexing is not specified in the Distribution Request, the Event Handler will
assume a break at odd-numbered pages.

80

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EVENT HANDLERS

Concatenating PS Streams

For an overview, see Concatenating PS Sreams on page 47.

The information below describes the parameters for the PS Concatenation Event
Handler within a Distribution Request.

Parameter

Description

page-header

A separate page defined so that a person can reassemble documents
printed across multiple printers back into the correct sequence.

The Header Page composed on the fly for each of (N) PCL segments
using atemplate with appropriate delivery order on each page. Each

header page must be concatenated with the appropriate PCL segment on a

top. See “Page Header Parameters’, below.

paperSize

Paper Size for a Page Header, for example, Legal, Letter

paperOrientation

Portrait or Landscape

paperSource

Defines the printer tray 1D for the Header Page.

By default and in case of wrong tray ID provided in the request, the
service would use the default tray for the Header Page.

field

Specify fields to be printed on the Header Page. All fields are character

typefields.
Specify field names and value of the field. The field names are:

* job-name — Standard name passed as a parameter on the request,
Length—10

* job-number — request ID number — format 99999999 (keep leading

zeroes). Length—8
* job-submit-date — job submit date — format YYYY-MM-DD

* job-submit-time — job submit time — format HH:MM:SS (24 hour
clock)

* message — The message. Length — 256
* seg-number — sequence number for identification purposes

» distribution-instructions — General message text defining job
distribution information. Length — 512

numberPSsegments

The number of destination PS streams into which the source PS streams

will be concatenated. The default number of PS segmentsis"1".

The information below describes the optional parametersincluded in the

reci pi ent-package-metadata within a Distribution Request when concatenating

source PS streams for different recipients.

Command/Element

Description

PSsegmentID

The specific destination PS stream where the source PS streams for the

particular recipient will be concatenated.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

81

DISTRIBUTION SERVICE

The information below describes the optional parametersincluded in the
recipient-item-metadata within a Distribution Request when concatenating source

PS streams for a particular recipient.

Command/Element Description

PSsegmentI D The specific destination PS stream where the particular source PS stream
will be concatenated. If a PSsegmentlID is specified here for a particular
recipient's item and a PSsegmentI D is also specified for that recipient in
the ps-concatenate-reci pi ent-package-metadata, and the two do not
match, the PSsegmentI D specified here takes precedence.

82 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

A DISTRIBUTION REQUEST EXAMPLE

A Distribution Request Example

The following is an example of a Distribution Request. It renders three files:
Test1.doc, Test2.doc, Testl.tif to pcl format, concatenates them into asingle file
and then sends the result to a printer.

JMSType distribution-service
JMSDestination ForTesting.submit
RequestID 123456

<?xml version="1.0"?>

<distribution-requests>
<distribution-package>
<distribution-item id="D-ITEM-1">
<file>
<item-source url="ftp://user:passwordeftpserver/
source/Testl.doc" ContentType="application/msword"/>
</file>
</distribution-item>
<distribution-item id="D-ITEM-2">
<file>
<item-source url="ftp://user:passwordeftpserver/
source/Test2.doc" ContentType="application/msword"/>
</file>
</distribution-item>
<distribution-item id="D-ITEM-3">
<file>
<item-source url="ftp://user:passwordeftpserver/
source/Testl.tif" ContentType="image/tiff"/>
</file>
</distribution-item>
</distribution-package>

<delivery-channels>
<printer id="PRINTER-1" printerName="\\PDCMAR-
01\5_ES HPLJ5si" operatingMode="Synchronized"
outputName="HP" />
</delivery-channels>

<recipientss>
<recipient id="RCP-1" deliveryOrder="2">
<delivery-preferences>

<preference-printer id="PREF-PRINTER-1"
refID="PRINTER-1"/>
</delivery-preferences>

<recipient-packages>

<recipient-package id="RCP-PKG-2" deliveryOrder="2">

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 83

DISTRIBUTION SERVICE

<recipient-package-metadatas>

<pcl-concatenate-recipient-package-metadata
PCLsegmentID="10"/>

</recipient-package-metadatas

<recipient-item refID="D-ITEM-1" segNumber="1">
<recipient-item-metadatas
<pcl-concatenate-recipient-item-metadata
duplex="continuous"/>
</recipient-item-metadata>
<render-param outputName="HP">
<pcl>
<printer-configuration pageRange="4,1,1"
duplex="flipLongEdge" collate="off"/>
</pcls>
</render-param>
</recipient-items>

<recipient-item refID="D-ITEM-2" segNumber="2">
<recipient-item-metadatas
<pcl-concatenate-recipient-item-metadata
duplex="continuous"/>
</recipient-item-metadatas
<render-param outputName="HP">
<pcl>
<printer-configuration pageRange="4,1,1"
duplex="flipLongEdge" collate="off"/>
</pcl>
</render-param>
</recipient-item>

<recipient-item refID="D-ITEM-3" segNumber="3">
<recipient-item-metadatas>
<pcl-concatenate-recipient-item-metadata
duplex="continuous"/>
</recipient-item-metadatas
<render-param outputName="HP">
<pcl>
<printer-configuration pageRange="4,1,1"
duplex="flipLongEdge"/>
</pcls>
</render-param>
</recipient-item>

<delivery-preference refID="PREF-PRINTER-1"/>

</recipient-package>
</recipient-packages>
</recipient>
</recipients>

84 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

A DISTRIBUTION REQUEST EXAMPLE

<event-handlerss>
<event>
<recipient-package-ready recipientPackageRefID="RCP-PKG-
2"/ >
<event-handler serviceType="concatenate-pcl"s
<event-handler-metadatas>
<concatenate-pcl numberPCLsegments="1">
<page-header paperSize="Letter"
paperOrientation="Portrait" paperSource="Tray 1">
<field name="job-name" value="RCP-PKG-2"/>
</page-headers>
</concatenate-pcls>
</event-handler-metadatas>
</event-handlers>
</event>
</event-handlers>
</distribution-requests>

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 85

DISTRIBUTION SERVICE

86 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 4

PDF Preferences

This chapter describes the PDF preferences element:
. Overview of PDF Preferences on page 88
. Sructure on page 90

. Limitations on page 93

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 87

PDF PREFERENCES

Overview of PDF Preferences

| Stream Publisher allows you to set additional PDF document default viewing
preferencesin its rendering to PDF services using the <pdf -preferences>
element. All of these preferences become a part of the created PDF document,
however, the actual PDF viewing functionality and features of the final PDF
depend on other factors including the PDF reader type, version and reader
preferences.

You can insert this element into a simple service or defineit in render-param/
pdf for adistribution request.

Note: The<pdf-preferencess> element isnot supported inthe concatenate-pdf

event handler.

Simple Services

The following simple services support the new pdf-preferences element:

. Microsoft Word-to-PDF: see Rendering a Microsoft Word Document to
PDF on page 33

. TIFF-to-PDF: see Rendering a TIFF Image to PDF on page 37
. Concat-PDF: see Concatenating PDF Files on page 46
. Encrypt-PDF: see Encrypting PDF Documents on page 49

. Regen-PDF (as part of generation): see Generate Calligo Document Service
Overview on page 26

A typical simple service request is:
<render-Word-to-PDF>
<source url="file:///c:/test.doc"/>
<destination url="file:///c:/test.pdf"/>
<pdf-preferencess>.. </pdf-preferencess
</render-Word-to-PDF>

The processing for all services includes these steps:
1. Create a PDF file using the Amyuni driver or Microsoft Word 2007

2. Apply the settings defined in <pdf -preferences> to the PDF document
created (using i Text package).

Distribution Request

The <pdf -preferences> sub-element isin the distribution request <render-
params> / <pdf> element. Itisthe same element as described in the simple
services section above.

You can define <render-params in arequest within one of these elements:
U] <recipient-item>

. <delivery-preferences> / <preference-XvZ>, Where xvzisa
repository, fax, email address or printer.

88

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

OVERVIEW OF PDF PREFERENCES

When a simple regquest to produce a PDF file is created, the <pdf -
preferences> element is copied into the simple request.

If <pdf-preferencess> isdefinedinboth <recipient-items and
<preference-XYZ>, theonedefined in <recipient-item> takes precedence.

You can also set <pdf -preferencess inthe Event Handler: see Event Handlers
on page 74.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 89

PDF PREFERENCES

Structure

The XML element <pdf -preferencess> structure is defined in the
Distributor.xsd XML schemafile.

Here is an example of the <pdf -preferences> element with all its attributes:

<pdf-preferences print-scaling="None" direction="L2R">

<pdf-flags

hide-toolbar="true"
hide-menubar="true"
hide-window-ui="true"

fit-window="true"
center-window="true"
display-doc-title="true"

/>

<pdf-page
layout="SinglePage"
mode="FullScreen"
nonfullscreen-mode="UseThumbs"

/>

</pdf-preferences>

All attributes and sub-elements are optional. There are no default values for the
attributes. If an attribute is not defined, it is not applied to the resulting PDF file.

The sub-elements are:

. < pdf-preferences> on page 90
. <pdf-flags> on page 91

. <pdf-page> on page 91

<pdf-preferences>

direction

The predominant reading order for the text. This entry has no direct effect on the
document’s contents or page numbering, but can be used to determine the relative
positioning of pages when displayed side by side or printed n-up:

. L 2R - |€eft to right

. R2L - right to left, including vertical writing systems such as Chinese,
Japanese, and Korean

print-scaling
The print dialog settings:

. None - the print dialog should reflect no page scaling
. AppDefault - use the default settings

90

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

STRUCTURE

<pdf-flags>
All of these values are boolean (true or false):

. hide-toolbar - hide the viewer application’stool bars when the document is
active

. hide-menubar - hide the viewer application’s menu bar when the document
isactive

. hide-window-ui - hide the user interface elements (such as scroll bars and
navigation controls) in the document’s window, leaving only the document's
contents displayed

. fit-window - resize the document’s window to fit the size of the first
displayed page.
. center-window - position the document’s window in the center of the screen

. display-doc-title - display the document’s title in the top bar: for
limitations, see Document Title on page 93

<pdf-page>

layout

The page layout to be used when the document is opened.

The following table lists the names of the possible layout values, how the page(s)
will be displayed using that value, and the equivalent action in the View > Page
Display menu of Adobe Reader 9.0:

Adobe Reader

Page Display
Name Will display... Equivalent
SinglePage one page at atime (the default Single Page
setting)
OneColumn the pages in one column Single Page
Continuous
TwoColumnL eft the pagesin two columns, with Two-Up
odd-numbered pages displayed on Continuous
the left
TwoColumnRight the pagesin two columns, with Two-Up
odd-numbered pages displayed on Continuous
theright
TwoPagel eft two pages, with odd-numbered Two-Up

pages on the | eft

TwoPageRight two pages, with odd-numbered Two-Up
pages on the right

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 91

PDF PREFERENCES

mode

Specifies how the document should be displayed when opened:

UseNone - neither the document outline or the thumbnail images are
displayed (the default setting)

UseOutlines - the document outline is displayed; the document outlineis
the same as the Bookmarks Navigation panel

UseT humbs - thumbnail images are displayed; thisis the Pages Navigation
panel

FullScreen - full-screen mode, with no menu bar, window controls, or any
other window visible

UseOC - the optional content group panel is displayed; thisis the optional
content Layers Navigation panel

UseAttachments - the Attachments navigation panel is displayed

nonfullscreen-mode

Specifies how to display the document after exiting full-screen mode. It is
meaningful only if the page mode is mode=FullScreen.

UseNone - neither the document outline or the thumbnail images are
displayed

UseOutlines - the document outline is displayed

UseThumbs - thumbnail images are displayed

UseOC - the optional content group panel is displayed

92

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

LIMITATIONS

Limitations

Reading Direction

Adobe Reader 9 relies on the directional property of the document (left to right,
right to left) only if the viewer’s Default Reading Direction preferenceis set to
Infer direction from document (adefault setting). However, if this preferenceis
set to another value (L eft to Right, Right to Left), then the directional property of
the document isignored.

Document Layout

Thereisalimitation involving the document layout specified in the document, for
example, the OneColumn layout corresponding to the Single Page Continuous
setting in the Adobe Reader View > Page Display menu.

If Open Settingsin the Adobe Reader preferences (Edit > Preferences >
Documents) is set to Restore last view settings when reopening documents,
then the page layout of the document is governed by the layout used by the
previously viewed document, and not by the layout setting embedded into the
document.

This Open Settings preference will similarly affect other viewing preferences
such as Hide-toolbar.

Document Title

Note the following limitations and considerations when using the display-doc-
title attribute of the <pdf-flags> element:

. the only services that will specify the name of the resulting PDF document
will be render-Word-to-PDF (or similar), and even then, thetitle will only be
atemporary file name

. if the PDF does not have a specified title, the PDF displays with no title or
with simply the document’s file name

. if the PDF is rendered from another document type, for example using the
render-TIFF-to-PDF service, the document will not have atitle

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 93

PDF PREFERENCES

94 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 5

Tracking and Monitoring
Requests

This chapter explainsthe Request Log facility, which is used to trace requests and
monitor their progress through their lifecycle. It is aso used to log error
information that results from afailure to process a request and to hold the actual
content of afailed or canceled request so that it can be resubmitted later.

This chapter describes:

. Request Messages on page 96

. The Request Log Tables on page 97

. Resubmitting a Failed or Canceled Request on page 100
. Error Log Levels on page 101

Note: Themain parametersarelisted for all services. For related parameters, please refer
to the schema.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 95

TRACKING AND MONITORING REQUESTS

Request Messages

The system will trace all Request Messages that are waiting to be Processed,
Executed or Completed.

Unique Request IDs

To trace regquests the Request Log must be capable to uniquely identify them.
Each request bears a unique ID assigned by | Stream Publisher.

Unique Request ID

The Unique Request ID is stored under the name of Internal RequestID as Number
(20) in the request table, and is used in the Status and Errorinfo tablesas aforeign
key. The Internal RequestI D as provided with the request at submissioniskeptin
the request table. Since all system components need to refer to the request by the
same unique 1D, this ID must be assigned as soon as the request enters the system.

Live Request Message Status

Apart from being used to trace the history of past requests processed by the
system, the Request Log is used to keep track of the current state of “live”
reguests. The status information that the system components log contains,
includes the name of the component where the request resides, the time stamp
when its status changed and its current status. The possible values for status are;

. Pending — the request awaits to be executed by a component.

. Paused — the request has been put on hold and the component will not
continue its execution until it is explicitly directed to do so (resume the
reguest).

. Processing — a component is currently processing the request.

. Completed-Success — processing has completed and the result was
successful.

. Completed-Success-With-I nfo — Processing has completed because of the
failure of anon-critical Event Handler in the Distribution Request
processing.

. Completed-Failure — processing has completed because of afailure.

. Completed-Canceled — processing has completed due to an administrative
command (cancel).

. Resubmitted — the request has been resubmitted for the processing.

. Deferred — the request awaits execution within a specified interval between
Deferral and Expiration Time.

96

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE REQUEST LOG TABLES

The Request Log Tables

The system stores the request metadata and status information into a group of
relational database tables that are together make up the Request Log.

Thetablesin the Request Log are:

. Request

. Status

. Errorinfo

. StatusOrder

Each of these tablesis described in the following sections.

Request Table

Thisisthe main table and contains one record for each request in the system.
When a component submits request information to the Request Log, the metadata
contained in thisinformation is stored in the request table.

Since the latest status information about a request resides in the request table, it
reduces the need to access the Status table for status information, other than
looking at the history of arequest's processing.

Therequest table contains the following fields:

Field Name Value Data type Size
InternalD the primary key NUMBER 4
RequestID the Request ID VARCHAR 64
OriginalRequestID the request 1D of the original failed or VARCHAR 64
canceled request that had been resubmitted
Aggregatel D the aggregate Request ID VARCHAR 64
ParentID the parent (main) Request ID if part of an VARCHAR 64
aggregate request
RegDocument the Distribution Request name that refersto VARCHAR 64
the type of business, for example “NEW
BUSINESS’
Requestor abusiness user or component, for example, VARCHAR 128
“DRM” or “John Doe”
JMSType the original request IM S type VARCHAR 64
Priority the priority of therequest: avalue between 0- NUMBER 4
9
TimeStamp thefinal timethat the request wasupdated by DATE 8
the system

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 97

TRACKING AND MONITORING REQUESTS

Field Name Value Data type Size

Deferral Time the time when the request is scheduledto be VARCHAR 64
processed

ExpirationTime the time the request must not be executed VARCHAR 64
after

SubmittedTimeStamp the time the request was originally submitted DATETIME 8

SubmittedComponentName the component that the request was VARCHAR 128
submitted to

PendingTimeStamp thetimetherequest wasmoved totheservice DATETIME 8
queue

PendingComponentName the component that moved the request tothe VARCHAR 128
service queue

ProcessingTimeStamp the time the request began processing DATETIME 8

ProcessingComponentName the component that processed the request VARCHAR 128

ProcessingAttemptCount the number of timesthat the systemtriedto NUMBER 4

process the request
CompletedTimeStamp the time the request completed processing DATETIME 8
Component the name of the component that producedthe VARCHAR 128
Request L og message
StatusCode the foreign key of the StatusOrder table NUMBER 4

Note: Any number of additional fields can be added to the request table to permit an
independent record of a Custom Service Request IM S Message header property.

The Status Table
This Table contains records only for requests that have the following status:

. Deferred: the request awaits execution within a specified interval between
Deferral and Expiration Time

. Resubmitted: the request has been resubmitted for processing

. Paused: the request has been paused by the system and is not processed
until it is resumed

The status table contains the following fields:

Field Name Value Data Type Size
InternallD the foreign key of the main table (request) NUMBER 4
Timestamp the time the status of the request changed DATETIME 8

98 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE REQUEST LOG TABLES

Field Name Value Data Type Size

Component the name of the component that produced the Request VARCHAR 128
L og message

StatusCode the Foreign key of the StatusOrder table NUMBER 4

The Errorinfo Table

This table contains zero or one record per request. If the request is completedin
error, the affected component must log the error information, including the:

. error code
. textual description

. any available extended error information (the Java exception stack in XML
format)

Additionally, if the request completes with a status of completed-failure or
completed-canceled, the request is saved as it was submitted so that it can bere-
submitted at alater point in time.

The ErrorInfo table containsthe following fields:

Field Name Value Data Type Size
InternallD the foreign key of the main table (request) NUMBER 4
ErrorCode aunique ID code for the error VARCHAR2 128
ErrorMessage = amessage describing the error VARCHAR2 1500
Errorinfo additional error information: consists of an XML CLOB 16

representation of the Java exceptions produced by the
faulty component.

OriginalRequest the entire content of the request CLOB 16

The StatusOrder Table

The statusorder table enumerates request status values and also the order in
the request processing.

Field Name Value Data Type Size
StatusCode aunique ID code for the status NUMBER 4
RequestStatus adescription of the status VARCHAR 32

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 99

TRACKING AND MONITORING REQUESTS

Resubmitting a Failed or Canceled Request

Note:

The ResubmitRequest Admin Command can resubmit arequest if it has been
completed with failure or if it has been canceled.

The ResubmitRequest Admin command uses the specified
OriginalRequestID OF Selector t0 query the Request Log table and uses the
logged information regarding the given request to compose a new resubmitted
request.

Distribution Requests

A Distribution Reguest can be resubmitted as a whol e request. With the Error Log
Level equal to 6, all subrequests of the Distribution Request will be logged into
the Request Log table. If asubrequest fails, the body of the subrequest will be
logged into the Request Log table, but the subrequest cannot be resubmitted
separately from the Distribution Request.

The body of the failed subrequest can be used for debugging purposes only.

If multiple requests have the same RequestI D, only those requests that failed will

be resubmitted. For example, if two requests with RequestID “ABCD,” where one
of them failed and one succeeded, only the failed one will be resubmitted. If both
requests failed, both will get resubmitted.

Important: A client isresponsible for the uniqueness of the RequestID.

Mapping

The mapping between the IM S header fields and the Request Log Data Base
fieldsis configurable:

. The Resubmitted Request is considered a new request with an
Original RequestI D correlated to the RequestI D of the original failed
request.

. The InternalRequestI D, as well as Aggregatel D if applicable, is assigned by
the 1 Stream Publisher component that resubmits a request. | Stream
Publisher uses UUIDs (Universal Unique Identifier).

. | Stream Publisher assigns a unique Internal Request!D when the newly
composed request is submitted to a Service Queue.

. JM SReplyTo defines a Response Queue for the response messages. Itisa
configurable parameter.

. The name of the Queue Set.

100

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ERROR LOG LEVELS

Error Log Levels

You can configure the LogLevel parameter of the JM SType message to control
the amount of logging that takes place. Because the amount of logging occurring
affects performance, this setting should be carefully monitored.

You can add the following JM S header property to all functional requests:
LogLevel N

where N is one of:
. 0—No logging. No ReguestL og messages are sent to the RequestL og.

. 1,2,3,4 —10g pending, processing and completed for Distribution
Requests but nothing for generated Simple Requests. These values are
required for backward compatibility.

. 5,6 —log all messages

Important: A LogLevel setting of “4” isthe default for Distribution Requests, and “6” for all
other types.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 101

TRACKING AND MONITORING REQUESTS

102 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 6

Stream Back

The Web Services stream back feature allows a client to receive a stream of
documents using SOAP technology. Maost document types are supported.

This chapter includes the following topics:

. Enabling the 1Sream Publisher WWeb Service on page 104

. Creating Requests for Sream Back Documents on page 105

. Overview of the Sream Back Request Process on page 106

. Overview of the Sream Back Web Service Process on page 108

. Considerations and Limitations on page 109

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 103

STREAM BACK

Enabling the IStream Publisher Web Service

To use the stream back feature, you need to ensure the web service is enabled and
properly configured:

1. Inthe Admin Console, enable the | Stream Publisher web service.

2. Veify that the | Stream Publisher web service has access to the | Stream
Publisher shared directory. (IStream Publisher needs to store documentsin
this directory before it can stream them back.)

104 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CREATING REQUESTS FOR STREAM BACK DOCUMENTS

Creating Requests for Stream Back Documents

To stream back documents, you assign avalue of true or false tothe
saveAsStreamBack atributeinthe bestination element, as showninthe
following example:
<render-Word-to-TIFF>
<source ContentType="application/msword" url="${filesource}/
simple.doc"/>
<destination ContentType="image/tiff" url="${filedest}/simple.tif"
saveAsStreamBack="false"/>
</render-Word-to-TIFF>

saveAsStreamBack Value

The following table describes the results depending on the value you assign to
saveAsStreamBack, aswell astheresultsif you do not assign any value:

saveAsStreamBack Document(s) will Document(s) will be
Value be streamed back saved to the destination
true Yes Yes

fase Yes No

(no value) No Yes

Supported Requests

All simple services that have aDestination element are supported with the
stream back feature, except for the following services:

. Concatenate-pcl

. Delete-file

. Déliver-to-email

. Deliver-to-fax

. Deliver-to-printer

. Deliver-to-repository: not supported for simple requests, only for
distribution requests

. Word-to-HTML: see Word-to-HTML Limitations on page 109

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 105

STREAM BACK

Overview of the Stream Back Request Process

| Stream Publisher processes a stream back simple request as follows:

1. IStream Publisher creates afolder in the IStream Publisher shared directory
to store the streamed back document.

Thefolder nameisintheformat: stream<InternalIDs, Where
InternallD isthelD that uniquely identifies the request.

2. |1Stream Publisher copies the stream back document to this folder for this
particular request.

3. IStream Publisher adds aflag to the response message to indicate there are
documents to be streamed back. The flag isin the format
stream="<internalID>".

Thisis an example of aresponse message:
<render-Word-to-PDF-response worker="ABC1906"

url="file:///C:/inforsourceFS/ds/dest/new2.pdf"
status="success" gtream="12345"

/>
The Stream Back Distribution Flag

The stream back attribute flag can be added to the Destination Or Absolute-

path elements. If the request fails, the streamed documents will not be streamed
back.

Distribution Request Example

Thisis an example of adistribution request:

<distribution-request failurePolicy="failFast">

<distribution-package name="Pcgl">
<distribution-item id="di 00001">
<file>
<item-source url="file:///C:/folder/abc.doc"

ContentType="application/msword"/>

</file>
<macro name="epublishing"/>
</distribution-item>
<distribution-item id="di 00002">
<file>
<item-source url="file:///C:/folder//abc.doc"

ContentType="application/msword"/>

</file>
<macro name="epublishing"/>
</distribution-item>
</distribution-package>
<delivery-channelss>
<repository operatingMode="Synchronized" id="repl"/>
</delivery-channels>
<recipientss>

106

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

OVERVIEW OF THE STREAM BACK REQUEST PROCESS

<recipient id="recipl"s>
<delivery-preferencess>
<preference-repository id="prefl" refID="repl"/>
<preference-repository id="pref2" refID="repl">
<absolute-path url="file:///c:/temp/result2222.PS"
saveAsStreamBack="true"/>
</preference-repositorys>
<preference-repository id="pref3" refID="repl"/>
</delivery-preferences>
<recipient-packagess>
<recipient-package id="psConcatbPkg">
<recipient-item refID="di_ 0000L1"
ContentType="application/postscript" segNumber="1">

<!-- render-param outputName="HPPS2">
<ps>
<printer-configuration copies="1"/>
</ps>
</render-param -->

<destination url="file:///c:/temp/result2200.PS"
saveAsStreamBack="true"/>
</recipient-item>
<recipient-item refID="di_ 00002"
ContentType="application/postscript" segNumber="2">

<!-- render-param outputName="HPPS2">
<ps>
<printer-configuration copies="1"/>
</ps>

</render-param -->
<destination url="file:///c:/temp/result2288.PS"
saveAsStreamBack="true"/>
</recipient-item>
<delivery-preference refID="pref2"/>
</recipient-package>
</recipient-packages>
</recipient>
</recipients>
<event-handlerss>
<events>
<recipient-package-ready recipientPackageRefID="psConcatPkg"/>
<event-handler serviceType="concatenate-ps" critical="true">
<event-handler-metadatas>
<concatenate-ps numberPSsegments="1"/>
</event-handler-metadatas>
</event-handlers>
</event>
</event-handlers>
</distribution-request>

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 107

STREAM BACK

Overview of the Stream Back Web Service
Process

The Web Service processes a stream back request as follows:

1

The client application or web service sends a stream back rendering request
using the execute method from |Stream Publisher web service.

The I Stream Publisher web service sends the response back to the client.
The client obtains a stream back 1D from the response.

The Client callsthe get st ream method from the | Stream Publisher web
service and passes the stream back ID parameter. The method signatureis:
public String getStream(String streamId)

The IStream Publisher web service retrieves the attachment(s) from the
shared directory based on the ID.

The IStream Publisher web service compresses the attachment(s) into a zip
file.

The I Stream Publisher web service loads the zip file as a SOAP attachment
and returns this message back to the client application.

The client application retrieves the SOAP message and obtains the
attachment from this message.

The client application extracts the zip file and gets the stream and file names
for the document(s).

108

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CONSIDERATIONS AND LIMITATIONS

Considerations and Limitations

General Information

. The stream back function isaWeb Service feature only, and cannot be used

in batch mode

. streamed back document(s) are placed into azip file even if thereisonly one
document

. if copyMetadata istrue, the metadatafile will not be streamed back

Unsupported Items and Applications

The stream back function is not supported with:
. direct submission queue requests

. the Test Console

. any custom client application

Also note that stream back is only supported from the root request of an aggregate
request.

Word-to-HTML Limitations

Note the following limitationsif you use the Word-to-HTML request with the
stream back function:

. You may encounter unexpected results if the Word document contains
graphics or complex styles.

. If saveAsStreamBack IS set to false, although the main HTML fileis not
saved to the destination, its related files (which are created in a separate
folder) are still saved to the destination.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 109

STREAM BACK

110 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 7

Creating and Using Cover
Pages

This chapter describes how users can create and use custom cover pages before
distribution to fax or printer. Thisfeature isimplemented using event handlers and
the Count Pages Service.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 111

CREATING AND USING COVER PAGES

Delivering Cover Pages to Fax and Printer

Event handler definitions must be added to the Distribution Request in this
format:

<distribution-request>

. usual distribution request parameters ..
<event-handlerss>

<events>
<recipient-package-ready

recipientPackageRefID="package id"/>

<event-handler serviceType="count-pages"

segNumber="1"/>

<event-handler serviceType="generate-calligo-

document" segNumber="2">

<event-handler-metadatas>
<generate-calligo-document>
<calligo-source

UISR="1is name:CoverPage.cms" docType="cms"/>

<key-data name="numberOfPages"

type="numeric"

value="{numberOfPages}"/>
</generate-calligo-document >
</event-handler-metadatas
</event-handlers>
<event-handler serviceType="render-Word-to-PCL"

segNumber="3"/>

<event-handler serviceType="concatenate-pcl"

segNumber="4"/>

</event>

</event-handlerss>

</distribution-requests>

Based on the preceding event handler definitions added to the Distribution
Request, the cover page creation follows these steps:

1

The Distribution Service processes the Distribution Request as usual, until
the preparation of al parts (files) of the Distribution Package
(<recipient-package-ready RecipientPackageRefID="package
id"s) iscomplete.

The Distribution Service invokes the first event handler associated with the
"count-pages" Simple Service.

Note: Thisevent handler isoptiona and required only if you want the generated cover
page to include and display the total number of pagesin al documentsin the
package. If this step is not used, go to step 6.

3.

Thefirst event handler finds all the filesin the Recipient Package and sends
its URL s to the Count Pages Service.

112

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

DELIVERING COVER PAGES TO FAX AND PRINTER

4. The Count Pages Service countsthe pagesin all of the sourcefiles and sends
aresponse to the first event handler.

5. Thefirst event handler replaces the {numberofprages} placeholder in the
parameters of the next <event -handler> with an actual value, extracted
from the received response.

6. TheDistribution Service invokes the second event handler, which preparesa
reguest to the Content Service (generate-calligo-document) based on
parameters provided in <event -handler-metadata>, Specifying the
destination asa DOC file in atemporary location (that is, the same place
where the Distribution Service stores all intermediate files).

7. TheContent Service generates anew document (Cover Page) based onthe
parameters received from the event handlers.

8. Thesecond event handler receives a response from the Content Service and
adds a new source file recipient package.

9. TheDistribution Service invokes the third event handler, which creates a
reguest to the simple Rendering Service to convert the generated Cover Page
to aformat required for a specific destination. In this example, PCL printer
isused as the destination and is calling the render-Word-to-PCL service. For
PostScript printers, render-Word-to-PS service should be used. For faxes,
render-Word-to-TIFF service is used.

Note: Thisevent handler isoptional if the fax server can send Word documents without
rendering. If this step is not used, go to step 13. Also, this event handler specifies
the destination as atemporary file (that is, in the same location as source, with the
file extension changed).

10. The Rendering Service converts the generated Cover Page to the requested
format and sends a response to the third event handler.

11. Thethird event handler removes the generated Cover Page in Microsoft
Word format from the Recipient Package and adds arendered Cover Pageto
the Recipient Package.

12. Thelast event handler is optional and required only for delivery to aprinter,
if the client requires having all parts of the package printed on the same
printer as asingle job. The type of event handler could be "concatenate-
pcln for PCL-compatible printers and "concatenate-ps" for PostScript
printers.

13. The Distribution Service resumes processing of the prepared package and
sendsiit to the required destination.

More parameters can be added in the <generate-calligo-document >
element if the client needs to provide additional datafor cover page generation. If
the generated Cover Page does not include the number of pages, the client may
remove the first event handler and the <key-data ../> element from the
generation request.

Important: You must have segNumber attributesin all <event-handler ..> elements,
otherwise the Distribution Service will try to execute all event handlers at the
sametime, resulting in afailure.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 113

CREATING AND USING COVER PAGES

114 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 8

SDK — The IStream Publisher
Client API

The IStream Publisher SDK allows you to extend | Stream Publisher, control its
operation, and automate requests.

This guide helps system administrators use the | Stream Publisher SDK and its
associated components.

This chapter describes:

. The | Sream Publisher Client API on page 116

. Client API Interfaces on page 117

. | Sream Publisher Client Exceptions on page 123

This chapter includes description on how to use the Client API, | Stream Publisher
client exceptions, and | Stream Publisher client support classes.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 115

SDK — THE ISTREAM PUBLISHER CLIENT API

The IStream Publisher Client API

The IStream Publisher Client API enables Java-based client applications to
interact with and use the functionality of |Stream Publisher. Semantically, and in
terms of functionality offered, this API is no different than the XML interface for
invoking requests.

Specific implementations will be provided by the different versions of the | Stream
Publisher Client. The differences between various | Stream Publisher
implementations consist of:

. the method used by the client to communicate with | Stream Publisher
. the representation of the requests and responses in the invocation of services

Initialy, the default implementation will use both XML messages and serialized
Java objects over message queues. The service interface has two distinct
versions of the run method, one that deals with requests and responsesin the form
of XML strings and the other that uses Java objects.

116 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CLIENT API INTERFACES

Client API Interfaces

The IStream Publisher Client API consists of the interfaces with which the client
application must interact in order to access | Stream Publisher functionality. The
interfaces are contained in a package named
com.insystems.edelivery.client. Implementations of the client APl are
contained in sub-packages that are named so as to reflect the characteristics of the
implementation. In general, client applications need not be aware of the
implementations.

Distributor Factory

To access the | Stream Publisher functionality an application must first obtain an
instance of aclassthat implementsthe pistributor interface. It obtainsthis
from afactory class that exposesthe DistributorFactory interface.

9

caom_insy=stem s edafivery.clerk [¥sfribidorFactory

+oregtelsinbuloriiser-S g, password: Simng)-Disirbutor
+oregtelisinbutor]): Disinbutor

A

. Q

Javax naming Referenceablie

+gelReferancel] javax.naming. Reference

DistributorFactoryimpl

+DistributorFactoryim pl)
+[istributorFactoryim pliconfig-XmSetting)
+setConfigiconfig:Xm Setting).woid
+setConfig{configPath; Stang)woid
+zetConfigiconfigStream : InputStream) void
+getConfig(; XrmSetting
+getConfighsString (). String

+zetPropertie s{props: P operties) void
+getReference():Reference
+createlistnbutor): Distnbutor
+createDistributoriu ser:String passwoe rd: String): Distributor

Creating an Instance of DistributorFactory

You can create an instance of DistributorFactory in different ways. You can create
an instance directly when the client application knows the name of the class that
implementsthe DistributorFactory interface.

When the client createsthe instance directly it typically passes some configuration
information in the form of an instance of the xrmsett ing class. With the default
implementation of the | Stream Publisher client, this configuration information is

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 117

SDK — THE ISTREAM PUBLISHER CLIENT API

passed as a parameter of the constructor of the DistributorFactoryImpl
class.

The DistributorFactory Interface

9

L¥sfribuorfaciony
+oreatelN simbut orfi sar-5 g, password: Simng - Disimbutor
+oreatelNsimbutor i simbutor

»

D¥=friburdor
+geiMaiaDatal) isimbuforMsizData
+oregfeSyncSesson|) Synchession
+oregfad synche ssionfl AsyncS esson
+oregfeSessonfiss ychronousboolean) Sesson
+olosa:vord

The client uses on of the two versions of the createDistributor methods to obtain
an instance of the class that implements the Distributor interface.

The credentials that can be passed with one of the create methods are meant to
authenticate the client application or the end user that this application
impersonates, to the | Stream Publisher system. Credentials that are used by the
| Stream Publisher client to establish connections for communication purposes
should be passed as configuration information to the Distributor Factory class.

Distributor

The distributor interface is the main contract between the client application and
the 1Stream Publisher client. The class implementing the Distributor interfaceis
responsible for—

. alocating the resources necessary for the communication with 1Stream
Publisher.

. initiating and managing the interaction sessions.

. freeing the allocated resources when the client wants to end the interaction.

118

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CLIENT API INTERFACES

9

L¥stribudor
~geiMaisDala DisimbutorMeialData
+oregles oS ess ol Syncsession
+oresisAsmohession lAsyncE esson
+orestes essoniss wchronous.boalsani .S esson
+olossvoid

Session

A session represents a single-threaded interaction between the client application
and the | Stream Publisher Client. The client application creates a distributor
session viathe createSession method of the Distributor interface.

When creating a session, the client application must specify whether it is
synchronous or asynchronous. Depending on the type of session requested, the
distributor class returns either a session instance that implements the SyncSession
interface for synchronous sessions or the AsyncSession interface for
asynchronous sessions. The service instances created by the session will inherit
the corresponding synchronous or asynchronous behavior of its higher level
session.

The Session Interface

Q

Session
+oregfeSendoeinamea Sinng Senvice
+olose-void

o
SycSession
]

O

AsyrcSession
+seliResponsal isfeneriisfenerResponsalisfanar) void
+seliRe sponssExeaplionl fsfenarisfenar Response L xoapionl Fsfener) void

Through the Session interface the session class instance can be

. used to create instances of services.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 119

SDK — THE ISTREAM PUBLISHER CLIENT API

. closed so that any resources allocated for the communi cation session can be
freed.

. set up with aresponse listener, which the session will call when aresponse
arrives asynchronously. Thisis only available for the AsyncSession
interface only.

. set up with an exception listener, which the session will can when an
exception occurs while receiving aresponse asynchronously. Also thisis
only available for the AsyncSession interface.

To create aservice from a session, the client application must know in advance the
name of the service it wantsto use.

With asynchronous sessions, the client application can register aresponse listener
to receive the response object when in becomes available. Also it can register an
exception listener to be notified of any exception that occurs during the
asynchronous receiving of aresponse.

The ResponseListener and
ResponseExceptionListener Interfaces

9’

Respornsel isfener
FonResponseiresponse S endceResponse) void

9

Responsaxrefiond isiener
+o1Exoe pliion jax: CifentAP (Excapliion) void

The client application is responsible for implementing the ResponseL.istener and
ResponseExceptionListener interfaces and process the response or exception
object passed back by the session.

Services

To work with a service, invoke it and receive aresponse, the client application
must first create an instance of a class that implements the Service interface, viaa
call to the createService method of the Session interface. When invoking this
method the client application must provide the name of the service it wants to
create.

Through the Service interface, the service implementation class can be used to

. create instances of request classes that implement the ServiceRequest
interface (this feature is deprecated as of |Stream Publisher 3.2)

. run aservice

120

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CLIENT API INTERFACES

9

Senvice
+gefSendoeMelfalDalal) Senice MefaDala
+oregfeRequeslyl SendceReguest
Huvreguest SiTng - Siang
+ureguest SendoeReguest) S endceResponse

The run method behaves differently depending on what type of session has been
used to create the service instance. If a syncSession has been used then the run
method only returns when the processing of the service completes or it throws
either aserviceException Or other runtime exception.

If an AsyncSession hasbeen used to create the service instance, the run method
returns immediately and the client application will receive aresponse viathe
ResponseListener interface of the listener object it has registered with the
session. If no listener object has been registered, the | Stream Publisher Client will
assume that the client application is not interested in the response and it will not
produce one.

Service Invocation Sequence

The following code fragment represents the sequence of calls the client
application must performin atypical |Stream Publisher service invocation.

Distributor distributor = null;

Session session = null;

try

{
DistributorFactory factory =
distributor = factory.createDistributor () ;
segsion = distributor.createSyncSession() ;

Service service = session.createService(...);

String request = "<!-- any IStream Publisher XML request
__>||,.

String response = service.run(request) ;

}

catch (Exception ex)

{
}

finally

{

if (null != session)

{
}

if (null != distributor)

{

session.close () ;

distributor.close () ;

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 121

SDK — THE ISTREAM PUBLISHER CLIENT API

122 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER CLIENT EXCEPTIONS

IStream Publisher Client Exceptions

There are four categories of exceptions produced by the | Stream Publisher Client
API:

. Configuration exceptions—thrown when invalid configuration was
provided. Theinvalid configuration could consist of parsing errors, missing
mandatory properties or other inconsistencies.

. Communication exceptions — thrown when communication problems are
encountered between the client and the server. The exact types of problems
are implementation dependent and are specific to the transport used to
propagate the request from the client to the server.

. Naming exceptions — thrown when a JINDI naming exception occurs.

. Service exceptions — thrown by services when exceptional situations occur
in the processing of the requests. These are also specific to the
implementation of each service.

TheclientAPIException classisthe base classfor al the exceptions thrown
by the IStream Publisher Client API. This can be used as a catchall when no
special treatment is required for each individual type of exception.

The exception objects contain atextual description of the problem and possibly
they can wrap another linked exception.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 123

SDK — THE ISTREAM PUBLISHER CLIENT API

DistributorException
ClerifAP IExTeafion

+ClientAP | Exceplion{exceptionCode: String)

+ClientAP | Exceplion{exceptionCode: String , parm 1:Objed)

+ClientAP |IExceplion{excepticnCode:String parm s Object[T)

+ClientAP |IExceplion{exceptionCode: String & Exception)

+ClientAP |IExceplion{exceptionCode: String e:Exception, pam s:Objedt(])

+ClientAP |IException{exceptionCode:String &:Exception, pam 1:Object)

+ClientAP |IExceplion{excepticnCode String e Exception, pam 1:0bject, parm 2: Object)

i i £y

Configuring the IStream Publisher Client API

The 1Stream Publisher Client API should be properly configured beforeit is used.
These groups of parameters are available for configuration:

. adaptor — used to define requests, and optionally reply queue settings,
which are used to pass | Stream Publisher requests as IM S messages

. security settings — used to encrypt a transmitted user name and password

Configuration Files

The following configuration files are provided with the 1 Stream Publisher Client
API:

. Client.xml
. ClientdM SQueues.xml
. ClientSecurity.xml

Thesefilesare stored inthe config directory of the | Stream Publisher Client API
SDK installation. Any XML configuration files used in the | Stream Publisher
Client APl must contain parameters with values that are defined either explicitly

124

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER CLIENT EXCEPTIONS

(for example, mg_port="1414") or through macros. The format for amacrois
similar to $ {macro name}.

A macro is resolved when configuration files are loaded, based on the system
property value for the macro. If the system property is not specified, but the
default value is specified for the macro, then the default valueis used. The format
for amacro definition with adefault value issimilar to $ {mg_port|1414}.

Client.xml

The Client.xml file provides links to other configuration files that contain real
parameter values. Thisfile provides the following group parameters:

adaptor
<adaptor xlink:href="CliendMSQueues.xml"/>

ClientIMSQueues.xml

Thisfile contains an adaptor group of parameters that are used as the setting for
Queue Manager, which is used for transmitting messages from the client to

| Stream Publisher and back. Most of the parameters are defined through macros
and therefore should be resolved by the system properties.

The following table list the parameters. most of these parameters are for IBM

WebSphere MQ only:
Default
Parameter Name Description Value Notes
mqg_hame Name of MQ For IBM WebSphere MQ only. Should be
manager consistent with mg_name in the 1Stream
Publisher configuration.
mq_domain Domain name of For IBM WebSphere MQ only. Should be
MQ manager consistent with mq_domain in the |Stream
Publisher configuration.
mq_port Port number of 1414 For IBM WebSphere MQ only. Should be
MQ manager consistent with mg_port in the 1 Stream
Publisher configuration.
mq_requestqueue Name of queue to For IBM WebSphere MQ and OpenJMS.
send requests Should be consistent with submitting queue
of |Stream Publisher
mq_responsequeue The reply queue For IBM WebSphere MQ and OpenJMS.
name. If the response queue is undefined, then a
temporary queue s created.
mq_user User name for For IBM WebSphere MQ only.
MQ manager
mq_password Password for MQ For IBM WebSphere MQ only.
manager user

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 125

SDK — THE ISTREAM PUBLISHER CLIENT API

Note:

ClientSecurity.xml

Some client requests can contain confidential information such as auser name and
password. To secure that information, the | Stream Publisher Client API provides
the ability to encrypt it. Configuration for the security setting is provided in the
ClientSecurity.xml file, which is referred to by alink from Client.xml.

<security-settings xlink:href="ClientSecurity.xml"/>

Before using this feature, make sure to remove comments in the Client.xml file to
make <security-settingss> available.

The ClientSecurity.xml file contains alist of encryption keys for different
encryption algorithms.

Important: The |Stream Publisher Client API security setting should be consistent with

I Stream Publisher security settings. The following is an example of security
settings:
<key-data algorithm="DES" keyName="testKeyDES">
. encrypted key data is placed here ...
</key-datas>

Logging

The I Stream Publisher Client API provides the ability to customize logging
output. The logging utility uses the log4j tool. Complete documentation for
log4jisat http://logging.apache.org.

Default Configuration Files

The | Stream Publisher Client API provides default configuration files. Thosefiles
can be used in some simple cases, since they limit the number of configurable
parameters.

Configuration Implementation

To configure the | Stream Publisher Client API, you edit the configuration files
(see Configuration Files on page 124), if needed, and provide configuration
parameters through system properties.

Implementing the configuration in code involves passing data from a
configuration fileto the Di stributorFactoryImpl class. Thisclasshasa
group of setConfig. .. () methods, which are used to process configuration
data.

The following examples are the most useful of these:
1. Using the configuration file path.

You can use afully qualified path to the configuration file. Since Client.xml
is considered the main configuration file, provide a path to that file...

DistributorFactoryImpl distFact = new
DistributorFactoryImpl () ;

126

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER CLIENT EXCEPTIONS

distFact.setConfig("<ed client path>\\config\\Client.xm
1m);

..where <ed_client path> representsthe path where the | Stream
Publisher Client API islocated.
2. Using a package name.

You can use a package name (in effect, the name of directory where all
configuration files are located). Make sure that the path of the directory
containing the configuration files isincluded in the CLASSPATH of the
application. For example, if the | Stream Publisher Client API islocated in
Cc:\EDClientAPI and all the configuration filesareinaconfig
subdirectory then you must write the following code:

DistributorFactoryImpl distFact = new
DistributorFactoryImpl () ;

distFact.setConfigPackageName ("/config") ;

Note: ensurethat aforward slash character (/) is placed before the directory name.
When you run the application you must specify the classpath:
java -classpath C:\EDClientAPI <app name>
3. Using the default configuration files.

In some simple situations you can use the default configuration files (see
Default Configuration Files on page 126) by writing the following code:

DistributorFactoryImpl distFact = new
DistributorFactoryImpl () ;

distFact.setDefaultConfig() ;

To complete configuration of the | Stream Publisher Client APl you must
pass the system properties to resolve the parameter-macros.

1. Passing parameters in the command line.

Use the following form:
java <app_name> -Dparaml=valuel -Dparam2=value2

2. Setting system properties in Client.xml configuration file.

Usethe <system-property> element. Refer to Client.xml on page 125 for
details.

3. Passing parameters through a custom propertiesfile.

It is acceptable to provide parametersin a custom properties file. However,
you must ensure those parameters are moved into the system properties
before configuring the DistributorFactoryImpl class.

Thefollowing is a sample of code used to do this:
//load custom properties

Properties customProperties = new Properties() ;

//move custom properties into system properties

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 127

SDK — THE ISTREAM PUBLISHER CLIENT API

DistributorFactoryImpl.setConfig(customProperties) ;
//configure DistributorFactoryImpl
DistributorFactoryImpl distFact =

new DistributorFactoryImpl () ;

distFact.setConfigPackageName ("/config") ;

Notification of Request Completion

The I Stream Publisher Client API supports an asynchronous response processing
mechanism for clients running in Application Servers. The client application must
use the Distributor AsyncSession (see Session on page 119) and provide Reply
Queue Settings in the Distributor configuration.

Sample Distributor Configuration

<adaptors>
<property key="RequestQueueFactory.class"
value="com. ibm.mg. jms.MQQueueConnectionFactory"/>
<property key="RequestQueueFactory.init.setQueueManager"
value="QM SomeQueueManager"/>
<property key="RequestQueueFactory.init.setHostName"
value="someHost"/>
<property key="RequestQueueFactory.init.setPort"
value="1414"/>
<property key="RequestQueueFactory.init.setTransportType"
value="@com. ibm.mg.jms.JIJMSC.MQJMS TP CLIENT MQ TCPIP"/>
<property key="RequestQueue.name"
value="SUBMISSION.QUEUE" />
<property key="ReplyQueue.name"
value="CLIENT.REPLY.QUEUE" />
</adaptor>

In the preceding example, the queue CLIENT . REPLY . QUEUE should be created
and used only for the purpose of notifying the | Stream Publisher Client about a
Distribution Request completion.

| Stream Publisher Client will send requests to the Submission Queue with the
JMSReplyTo property set to the actual Reply Queue name.

128

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 9

SDK — Repository API

This chapter describes:

The Repository APl on page 130

The API Architecture on page 131

Reference Language on page 133

The Connection Interface on page 136

The Repository Interface on page 139
Repository Objects on page 141

Identifiers on page 145

Adding a New Repository Adapter on page 149

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

129

SDK — REPOSITORY API

The Repository API

The Repository API (Application Programming Interface) is a set of Java
interfaces and classes that abstract the operations that can be performed with a
Repository. The API isintended to be generic and offer the functionality
otherwise provided by most of the existing repositories. It isdesigned in such a
way that it decouples the client from the actual Repository being used. It also
permits the client to interchange similar repositories with similar schema, with
minimal or no impact on the code.

130 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE APl ARCHITECTURE

The API Architecture

The API consists largely of interfaces and defines the contract between the
Repository and the client accessing its functionality. There are a few abstract
classes provided for convenience only.

An implementation of the Repository API interfacesis called a Repository
Adapter. An adapter must completely implement al interfaces but this does not
mean that it has to support functionality that its underlying Repository does not
support.

Determining Supported Functionality

When the native Repository is limited in functionality, the API provides methods
that a client can call to determine the level of functionality that the Repository
supports. For example, the client may need to know whether the Repository has
support for versions or for renditions of objects. Those methods can only be used
to determine the functionality supported by the underlying Repository, not by the
adapter. When the adapter doesn't support afeature, it responds with an exception
- specifically, java.lang.UnsupportedOperationException.

Decoupling the Client

The client application is decoupled from the Repository by the Repository adapter
implementation. All object instances are created by factories and factory methods.
The only class that the client must instantiate directly is the class implementing
the connectionFactory interface. Even this class can be obtained from a
directory or naming service. As aresult, the client and the implementation are
completely independent of each other.

Accessing Repository Objects

In addition to the proprietary API, the Repository adapter extends Java's

URL StreamHandler and URL Connection to allow client applications to access a
Repository URI (Universal Resource Identifier) through Java's URL class. The
client application uses the URL class to access Repository objects through the
getContent () method.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 131

SDK — REPOSITORY API

Categories of Functionality
The functionality of the API can be divided into categories as follows:

. Connection — provides the means to authenticate, configure, and connect to
the Repository.

. Repository — exposes Repository metadata and functionality. For example,
it can create objects, find objects, and so on

. Repository Object — accesses the contents of the Repository with their
versions and renditions.

Each of these categoriesis described in greater detail, starting with The
Connection Interface on page 136. However, before we discuss these categories of
functionality we must clarify some terms relating to the URI (Uniform Resource
Identifier) specification.

132 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

REFERENCE LANGUAGE

Reference Language

The Repository API defines a reference language through which objectsin
repositories can be named and identified. Thisis accomplished using a common
syntax, independent of the underlying Repository. The APl also defines away to
map common existing URL s so that they can be expressed in the same reference
language. As aresult, the contents of the repositories to which they refer can be
accessed through the Repository API.

The reference language is based on the URI specification.

Uniform Resource Identifiers

A Uniform Resource Identifier (URI) isastring identifier that allows for a
resource to be named and located using its name or some other attributes by
following a set of syntactic conventions. For a more detailed description of URIs
see http://www.ietf.org/rfc/rfc2396.txt

The URI syntax is dependent upon a scheme that defines a namespace for the
URI. The URI is created based on that scheme. In general, an absolute URI has
the following structure:

absolute-URI= scheme ":" scheme-specific-part
As shown above, an absolute URI contains;

. The name of the scheme being used (scheme)

. Followed by acolon (":")

. Followed by a string (the scheme-specific-part) whose interpretation
depends on the scheme.

Scheme Name

The name of the scheme is used to determine the Repository adapter that will be
used. The URI classimplements the specific methods of resolving the mapping of
the scheme name to a Connection Factory class. Assisted by the connection class,
the URI can parse the URI string into its components. (See Examples of URIs on

page 135.)

The scheme-specific part for atypical hierarchical scheme consists of the
following components:

scheme-specific-part = "//" context absolute-path "?"
query

The double slash at the beginning indicates a hierarchical structure.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 133

SDK — REPOSITORY API

Context

Thetop hierarchical element constitutes the context (or naming authority) that
governs the rest of the name. The context component consists of the user
information and the Repository.

context = [[user [":" password] "@"] Repository

The user information is optional and provides for syntactic compatibility with
existing URLSs. Because of the security risks involved, its use should be
discouraged.

The Repository part of the name consists of the name and other attributes that the
Repository adapter can use to locate and connect to the Repository on a network.
Initsshortest form it should contain at |east a Repository name and ahost namein
the following form:

repository = [repository-name ["!" properties] ";"] host
[":" portl]

Important: The host name cannot start with a number.

Therepository-name isthefirst optional component. It is normally used for
existing schemesthat do not permit a Repository name and for cases when thereis
only one Repository possible. In these cases, the host or the port number can be
used to differentiate between instances.

repository-name= name
name= alpha | alpha (alpha-num | "-")* alpha-num

The properties component of the repository nameis also optional. It represents a
list of named val ues specific to each particular type of Repository. Typically, a
client stores the properties as configuration parameters with the class that
implements the ConnectionFactory interface. This class must be capable of
retrieving the parameters and configuring the connection instance that it creates.

properties= property | properties "," property
property= name "=" value
value= (alpha-num | unreserved | escaped)*

The host is adomain name of a network host or its |P address. |P addresses in

normal use today appear as a set of four decimal digit groups separated by ".".

host= host-name | IP-address

host-name= (domain-label ".")* top-label ["."]

domain-label= alpha-num | alpha-num (alpha-num | "-")*
alpha-num

top-label= name

IP-address= 1 digit* "." 1 digit* "." 1 digit* "." 1 digit*

port= digit*

The port is anetwork port number. Most schemes that use a port designate a
default value. A port number can optionally be supplied following the host and
separated by acolon (":"). If the port is omitted the scheme default value is
assumed.

134

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

REFERENCE LANGUAGE

Path

The path component contains data specific to the context, or the scheme if no
context is present. It identifies the resource within the scope of that scheme or
context. Paths can be either absolute or relative. A relative path can be relative to
the root of the Repository or relative to another object in the Repository.

path = absolute-path | relative-path

absolute-path= "/" [relative-path]
relative-path= path-step | relative-path "/" path-step
path-step= [relationship "::" role "@"] (abbrev-

attribute | attributes)

relationship= name

abbrev-attribute= name

attributes= attribute | attributes "," attribute
attribute= name "=" value

A path-step is equivalent to navigating between two object instancesin the
Repository object model. The navigation happens over a specific relationship to a
role. In the Repository object model, when there is only one relationship between
the two objects, the name of the relationship and the role can be omitted.

An abbreviated attribute is one for which only the value of the attribute is
specified but not the name. Paths can contain one abbreviated attribute (the first
one) in cases when the name of the object is the identifying attribute.

Query

The query part of the URI represents a set of named values separated by "&".
These values do not determine the location of the resource identified by the URI
but are usually interpreted as arguments to afunctional invocation referring to the

URI.

query = arguments

arguments= argument | arguments "&" argument
argument= name "=" value

Queries can be used to refer to a specific version and/or rendition of the object.

version=2&type=text.plain

The query above refers to the second version of the object and to its plain text
rendition.

Examples of URIs

Here are afew examples of URIs formed using the reference language defined by

the Repository API:

. ftp://guest:passwordecompany.com/policies/renewal .doc
. file://user/setup/Adobe/Acrobat/viewer.exe

° file:///C:/infosourceFS/ds/source/filename.doc

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 135

SDK — REPOSITORY API

The Connection Interface

The connection interface is the abstraction of the connection that a client must
establish with the Repository before getting accessto its content and functionality.
(See the “ Categories of Functionality” listed on 132). The connection:

. Maintains the configuration parameters required to access the Repository.
Examples of these parameters are the protocol, the host name, the
Repository name, and so on.

. Authenticates the user (the client) to the Repository.

. Manages the resources required to communicate with (connect to) the
Repository. Examples of these resources are sockets, database connections,
and so on. The connection also manages the lifetime of the connection itself
(opening and closing).

. Registers listeners to receive notifications about changes to objectsin the
Repository.

Connection Factory

A client uses a class factory to instantiate a connection. (See Creating an Instance
of DistributorFactory on page 117.) The Repository adapter must provide a class
factory for the connection class that implements the ConnectionFactory
interface. The Connection Factory class must also implement the
javax.naming.Referenceable and java.io.Serializable interfaces so
that it can be stored in adirectory service.

Required Properties

There are two mechanisms that a client must use, in this order, to locate and
instantiate a Connection Factory:

1. Theenvironment property
com.insystems.repository.scheme.connection.factory.
class must be set with the name of the class that implements the
ConnectionFactory interface. The client uses this class name to create
an instance of the Connection Factory class. The class factory itself uses a
propertiesfileto storeitsinitialization parameters and reads them at creation
time. The client can ater these parameters or place another propertiesfilein
the class path. In that case, the new propertiesfile will get loaded before the
default one.

2. If the name of the Connection Factory property is not present, the client
should look for the environment property
com.insystems.repository.scheme.connection.factory.name,
which must be set with the INDI name of the Connection Factory class. The
client uses this nameto retrieve an instance of the Connection Factory class
from the directory service. In this case, the initialization parameters must be
stored in the directory service together with the factory.

136

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE CONNECTION INTERFACE

If neither of these propertiesis set, then the oper ation will fail and no Connection
Factory classis instantiated.

The scheme in the two environment properties above is the name of the scheme
(ftp, xrmrep, and so on) used by the reference language to identify an object in a

Repository.

CannaclionFactory
+erealelonnection]):Connection
+erpaleConnectionuser Sirng passward Sirng L Conmachion

Important: Theclassextending java.net.URLStreamHandler iSalso aclassfactory for
the class implementing the connection interface. Recommendation: The class
extending URLStreamHandler should also implement ConnectionFactory.

Creating a Connection

A client creates a connection in order to get accessto the class that implementsthe
Repository interface, and by doing so to have access to the Repository.

Because the client instantiates the connection objects through a Connection
Factory, the factory has control of the way in which the connection instances are
created. For example, the Connection Factory class can provide instance pooling
to reduce the time required to connect to the Repository and thus reduce the
overall time required to connect.

Multithreading

A client should be alowed to open as many connections with the Repository asits
programming model requires. To fit a programming model where the client reuses
a single connection instance on multiple threads, the connection objects must
support concurrent use.

Opening the Connection

A connection object when instantiated represents an inactive connection to the
Repository. The client must make an explicit call to open the connection. This
allows the client to alter the properties that control the way in which the
connection with the Repository is established (setProperties ()).

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 137

SDK — REPOSITORY API

Q

Conneclion
+getConnectionPropertiesi) . Hashiabie

+selConnectionProperties) properties Hashilabiel: void

+open|lvoid

+oiose() void

+getReposifony) Repositony

+getReposiiory(schemaName String, schema Ver Siiing LReposifory
+getEventlisteneriur URL I Eventlisiensr
+addEventlistenarilistener EveniListenear, url URL) void

+ramoveEveniListener{listener:EventListenar, ur:URL) void
-]

The getRepository () method can beinvoked only on an open connection. If
the connection hasn't been opened yet or if it has been closed, the method throws
an exception, namely the InvalidConnectionStateException exception.

138 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

THE REPOSITORY INTERFACE

The Repository Interface

The rRepository interface abstracts the operations that can be performed against
the Repository itself. It is the interface through which:

. the Repository objects can be manipulated (created and destroyed)
. the client can access the root object(s) of the Repository
. the client can query the Repository for objects based on object metadata

. the client can check the permissions to perform various Repository
operations

Through this interface a client can get the naming context (URL) of the
Repository. It can also retrieve the connection from which the Repository instance
was obtained.

All the functionality of the Repository interface is available when an opened
connection exists to the Repository. If the connection corresponding to the
Repository object is closed, its methods will throw an
InvalidConnectionStateException exception.

A client obtains an instance of the class that implementsthe Repository
interface by calling the getRepository () method on the connection object.

Objects implementing the Repository interface are not required to be thread
safe. Consequently, a client with a multithreaded programming model should
obtain separate instances of the Repository for use on different threads.

Q

Repository

+gaiConnection):Connection

+gefContexti):.URE

+geiSchemai]l Schema

+orealeOjeciMeladatal) Objectieladala
+rorealeOeciMeladataiiocale Locale) ObjectMeladala
+gelfObiectiurl URL I:RepositonyOfyect
+orealeObfectlypeld String, url: URL) RepositoryObjact
+orealeObfectilypeld Sting, wrl URL meladala: ObjectMeladala) RepositoryObject
+aestrovObjectiurnl URL hvord

+geiRefarencedy) ferator
+geiRelferencediralationship. Relafionship):iteralor
+getRelferencedfrefationshipid: String). terator
+guernyforifera ObjectVeladata)l Herator
+oheckParmissionipermision: Permissionlvoid

The Repository Interface

When designing the Repository API it was assumed that the implementation for
therepository interface would be lightweight enough so that multiple instances

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 139

SDK — REPOSITORY API

could be created without too much impact on scalability. In contrast, the class
implementing the connection interface - because it can reserve external
resources - might have a greater impact on scalability. Thisisthe reason for the
requirement that the connection class supports multithreading, in order to
CONSErve resources.

140 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

REPOSITORY OBJECTS

Repository Objects

Repository objects represent the entities stored in the Repository. The Repository
object isawrapper - it isnot the dataitself. Thiswrapper adds Repository-specific
functionality to the data objects that the client deposits in the Repository. The
actual dataistreated as content of the Repository objects. Content typeis
differentiated based on the MIME type of the data. For alist of MIME types,
please see http://www.iana.org/assignments/media-types/

The following features of Repository objects are considered common to most of
the repositories and are exposed through the Repositoryobject interface:

Provide a reference language that uniquely identifies and references
objects in the Repository. Objects can be referenced either relative to each
other or absolutely in the context of the Repository.

Accessthe actual content of the object stored in the Repository.

Access metadata information for objects — Metadata consists of name and
type information along with any custom properties that an object might
define.

Maintain versions of an object - The latest version is the default for the
object.

Maintain different renditionsfor aversion of an object. When the object
does not have avisual representation of the rendition, it can be considered
just adifferent format of representation for the same information.

Reserve an object for the purpose of changing it and unreserve it so that
your changes can be visible to others.

Navigate the relationships the object isinvolved in with other objectsin
the Repository. Navigation is possible to both objects that reference and/or
arereferred by the current object.

Alter therelationshipsin which the object isinvolved, with other objects
in the Repository.

Remove the object in the Repository.

Discover the featuresthat the Repository supports. Versions, renditions
and effective dates are examples of supported features.

Check a client's per missions to perform various operations on a particul ar
Repository object.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 141

SDK — REPOSITORY API

Q

RaposiioryOect

Fom L () AARE

At) Shing

Apetinpt ey HinpudSiredan

et Streany Ohfpud Sirear

et Typed! Tyoe

et TpayiocaeLocals - Thoe

ety L ferator

ApetiRelibinnsfirsy oo L osate il

Agetieidaty O e stadity

ettty ok ool Oiecible okt

gt Corrterst Ty |- Strirg

ety vevsionNooin L erson

At Meradkor

gt Coury i

sl ey torntan ToeSiog |- Vi

santol vy tovmtan Tioe: S, efective-Duls) Vo
sreyrove Varmovy versarnooant v

AgetiReviaiiony covilenl T e Sioig Ranaiorr
petiRevoiios] L e

FpmtRencitiors Couny Lt

*npetiRevioiony covienr T e Siniig, versiorhooi bienaition
ApetiRenoions| versaatiooi e

AnpetiRevoios o vevssoraooint i

sl conlanl e St Rarnoiton

sl Ry ovaleval Ty S, vevsionNoam) Renaionr
sandolDenatRanotiony comert Tipe: Siriag)\ Raroibion
ArEvreve Aty covilert Tioes Siriag | veid
4,5!..'!'.‘?&';."":‘“’.\:..'&3"' leranlor

AR bt Sinng ek
sandolRefeensey relationsnpda Slriag reverencer LR vod
revnoverTeer e retReatorsty referencer LR o
petiReerenaceoy Hiarator
petiReerencecyreliorsgiotSinng e

danTelRa e et S refranced UL Feowy
srevroverTaferaced redatovisiapka Sirng, revErenced LIRL v
drEgarye o

AirEgansey Fvony

oty ok’

st Teservey ook

saverss Versions hooiaa

sttt v

ssiarisE ot D L ocksan

e R e RN T (R

Repository Objects

Note: To accessthe actual content of the Repository object the client must obtain either
the InputStream to read the object or the OutputStream to writeiit.

The functionality that the RepositoryObject interface exposes regarding
metadata, versions, renditions and schemais presented in more detail in the
following sections.

Object Metadata

There are two categories of metadata that are available for an object: schema
metadata and custom metadata. Schema information for an object is available
through specialized methods on the RepositoryObject interface. Two
examples of these methods are get 1d () and getType ().

142

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

REPOSITORY OBJECTS

Object custom metadata is exposed through the cbjectMetadata interface.
Thisinterface can be accessed using the getMetadata () method of the
RepositoryObiject interface.

The object metadata can be localized. Custom properties can be described in
either the default locale or a user-specified locale. These properties can be
specified as an argument with the getMetadata () method of the
RepositoryoObject interface. When aclient requests the metadata for alocae
that is not available, the java.util.MissingResourceException israised.

Q

ObjeciMatadata
+gatPropartyiname: Sking) Object
+EelPropertyname. Sirng, value: Obect) void
+getPropariiesCouniy) it
+getProparlyNamesi) ferator

The chjectMetadata Interface

The objectMetadata interface exposes object custom propertiesin a generic
way, as named properties. If the properties are locale-sensitive, the object
metadata must be obtained using the locale-aware getMetadata () method of
the Repositoryobject interface.

Versions

One important feature of a Repository is the ability to retain different versions of
an object. Methods of the Repositoryobject interface allow accessto an
object'sversions. A client can:

. Obtain the number of versions of an object.

. Enumerate all the versions.

. Access a specific version based on its number.

. Add anew version. It is also possible to specify an effective date.

. Remove a specific version based on its number.

Q

Version
+i5l atestibootean
+get lersioniurmbery it
+gatinmaSireamy) inputStrean
+getCulputStrearmy) OuiputStream
+aeiEffectiveDatef):Date
+salEfoctivelaledate Date) vold

The Vvarsiaon Interface

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 143

SDK — REPOSITORY API

Clients manipulate object versions through the version interface. The abject's
content for a particular version can be obtained through the input and output
streams exposed by this interface.

Thedefault version - The content of the default version is the one accessed
through the Repositoryobject interface. The default version is always the
latest version added to an object and cannot explicitly be set to a different version.

Renditions

It is assumed that objects stored in the Repository can potentially have different
representations. Thisis more true for objects that can be rendered visually - for
example, documents and images. Object renditions are differentiated based on
their content type (their MIME type). To support working with different renditions
of an object, the Repositoryobject interface allows the user to:

. Obtain the number of different renditions of an object.

. Enumerate all the renditions.

. Access a specific rendition based on its content type.

. Add anew rendition, and potentially specify an effective date.
. Remove a specific rendition based on its content type.

Clients manipulate renditions through the Rendit ion interface. The content for
the rendition is accessible through the input and output streams exposed by this

interface.

Rendifion
HeDalawl):booloan
+salDafaulty) vald

+getConternt Typey):Siring
+gatinoutSireamy) inouSiream
+gafOuiputStreamy) OwlputStream

The Rendition Interface

The default rendition - The content for the default rendition is the one accessed
through the Repositoryobject interface. The default rendition can be set either
by calling the addpefaultRendition () method of the Repositoryobject
interface or by explicitly invoking the setDefault () method on the
Rendition interface.

144 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

IDENTIFIERS

Identifiers

The URI identifiers used by the Repository API are implemented by the
java.net.URL class. In effect it isnot the URL classitself that implements the
identifiers but rather the classes implemented by the adapter and to which the
URL class delegates. The following interfaces must be implemented or the classes
must be extended by the Repository adapter in order to support the URL’s class
functionality:

. The URLStreamHandlerFactory interface must be implemented to
control the way in which an instance of a URL stream handler classis
created.

. The URLStreamHandler class must be extended to handle the parsing of
the URL string.

. The URLConnection class must be extended to handle the connection to
the Repository.

URLStreamHandlerFactory

The URLStreamHandlerFactory iSan interface that the URL class usesto
create instances of a URL stream protocol handler that extends the class
URLStreamHandler.

The Stream Handler factory class can be installed once per VM (Java Virtua
Machine) by invoking the URL's class setURLStreamHandlerFactory ()
method. The Stream Handler factory should be used only if the other methods for
instantiating a URL stream protocol handler are not appropriate.

The methods referred to above, that the URL class uses to determine what URL
stream protocol handler to instantiate are:

Previous URLStreamHandlerFactory

If the application has previously set up an instance of
URLStreamHandlerFactory asthe stream handler factory, then the
createURLStreamHandler method of that instanceis called with the protocol
string as an argument to create the stream protocol handler.

No Previous URLStreamHandlerFactory

If N0 URLStreamHandlerFactory hasyet been set up, or if the factory's
createURLStreamHandler method returns null, then the constructor finds the
value of the system property java.protocol.handler.pkgs. If the value of
that system property isnot null, it isinterpreted as alist of packages separated by
avertical slash character ([).

The constructor tries to load the class named
<package>.<protocols>.Handler Where <packages isreplaced by the
name of the package and <protocols isreplaced by the name of the protocol. If
this class does not exist, or if the class exists but it is not a subclass of
URLStreamHandler, then the next packagein thelist istried.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 145

SDK — REPOSITORY API

Note:

No Protocol Handler

If the previous step fails to find a protocol handler, then the constructor triesto
load the class named sun .net . www.protocol . <protocol>.Handler. If this
class does not exist, or if the class exists but it is not a subclass of
URLStreamHandler, then aMalformedURLException exception isthrown.

Iustrated below is an example of a class that implements the
URLStreamHandlerFactory.

Because there can be only one class per VM, the factory is expected to exceed the
scope of asingle adapter. Thisisthe rationale for the name
XRMURLStreamHandlerFactory.

Q

Java.net URL StreamMandierFactony
+oraalfeURL SireamHarndierava lang Strng) java.net URL StreamHandier

A

XrmURLStreamHandlarFactony

+craate U RLStreamHandlenprotocal :String): URLStreamHandlar
+}XmURLSreamHandlerFacton)

The URLStreamHandl erFactory Class

URLStreamHandler

The abstract class URLStreamHandler iSthe common superclass for al stream
protocol handlers. Below is an example of aURLStreamHandler classfor an
| Stream repository:

146

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

IDENTIFIERS

Jevalang.Object
Jfava.nat LIRL Streamandiar
com.insysiams. con.mpositon. ComnechionFaciony | |
FOrBEEALDIECHOny O ONRSclion +URLStrzamHandlen)
Ferealalonnsction usar Sinng, passwond Stang . Connaction

i

]
oo insysiams. oo, wil XrnSireamiHandiar

+ArmStreamHandlern)

FOpeTC WSSl UIRL VURL Conveciion
+creataConnecton|) Connection

+rreateConnection|usar3ning paseward Strng:Connaction

I

Handler

xrmSiraamHandlzr

+Handler}
wparse URLiwURL spec:Siring, etarint imitint)woid
wopenConnectoniu URL):URLConnection

The URLStreamHandler Class

The URLStreamHandler class has two main responsibilities:

. Parsethe URL string into its components and set the private fields of the
URL class.

. Create a connection to the Repository.

The class extending the URLSt reamHandler IS used to create instances of the
class implementing the Connection interface. It also extends the
URLConnection abstract class, therefore it must implement the
ConnectionFactory interface.

URLConnection

The abstract class URLConnection isthe superclass of al classesthat represent a
communications link between the application and a URL. Instances of this class
can be used both to read from and to write to the resource referenced by the URL.

Below is an example of aURLConnection classfor arepository:

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 147

SDK — REPOSITORY API

A URLConnection Class

com_insysfems. core_rapasiony. Connaction 1

O javalang Chojact
Java.nel URL Conneclion

A

com.insystems.core. url, XrmURL Connection

+XmURLConnection{ur:URL)

+oonnecti) ovoid

+getConnactionProperties{):Hashtable

+satConnection Properties| propartias:Hashtableowoid

+opan()-woid

+close()woid

+getRepositony): Rapositary

+getRepositorylschamaMame: Siring,schemaVar String): Repositary
+getEventlistanenur: URL) EventListaner
+addEwaniListenanlistansrcom.insystems. cora. rapository. EventListensr,ur: URL) woid
+removeEventListenenlistenercom.insystems.core_repository. EveniListaner url: UR L) woid

i

CalligolRLConnection

+CalligoURLCennection{urd:URL)
+getCaontant():Object

+getConnection Properties(): Hashtable
+zatConnectionProperies{argl-Hashtable)woid
+open|):void

+choss|) void
+getRepositony(argd:String, arg1: String) Rapositary
+getRapositony(): Repository
+getEventListenarargl:URL)Eventlistaner

+add EventListensrangd:EventListensr, arg1: URL)void
+ramoveEventlistanerargl-EventListenar.arg 1:URL):void
+getinputStream():InputStraam

Content

To read the content of a Repository object, a client must:

Create an instance of the URL class using the URI reference of the
Repository object.

Cdll the getcontent () method of the URL class. The object returned by
this method must implement the Repositoryobject interface.

Obtain the Repositoryobject interface and call its
getInputStream() .

Read the object from the input stream.

148

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ADDING A NEW REPOSITORY ADAPTER

Adding a New Repository Adapter

This section shows how to create a new Repository implementation and add it to
| Stream Publisher. “Test Repository” is used through as an example.

| Stream Publisher uses various Repository APl implementations to access objects
stored in different locations. A standard installation includes implementations for
thelocal file system, FTP and | Stream DMSS. In addition, a standard
implementation supports any custom Repository implementations, which create
interfaces as defined in the Repository API. All existing services (generation,
rendering, delivery) will be able to use the new Repository as soon asits
implementation is created and added to the system configuration.

| Stream Publisher uses the protocol provided in the URL to select a specific
Repository API. You can select any protocol name (excluding standard names
such asfile, FTP, http, and so on.) and use this name in al requests referring to
objectsin your Repository.

In general, in order to add a new Repository, the following steps are required:

1. Implement Java code specific to the new Repository. This code should
expose at least one public class, which isimplementing the
ConnectionFactory interface and has a public constructor without
arguments.

2. Createacom/insystems/repository/url/protocol .properties
filein the JAR file, implementing the new adapter.

3. Addthefollowing line to the file you've created in the previous step:
protocol-name = implementation class name
For example:
myrep=com.acme.repository.MyRepHandler

4. Addyour JAR fileimplementing the new adapter to the Worker class path.

5. Prepare anew request message according to the source or destination URLs
referred to by objectsin your Repository.

To illustrate the steps above with examples, specific elements of the | Stream
Publisher infrastructure related to the tasks described above will be presented and
an example of anew Test Repository implementation will be considered in detail.
The Test Repository allows you to save and retrieve datato the local file system.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 149

SDK — REPOSITORY API

Java Code

The com. insystems.test.repository javapackage consists of the
following classes:

TestConnectionFactory — Connection Factory class
(Creates an instance of
com.insystems.core.repository.Connection)

TestConnection — connection class
(Creates an instance of
com.insystems.core.repository.Repository)

TestRepository — repository class
(Creates instances of
com.insystems.core.Repository.RepositoryObject)

TestRepositoryObject — Repository object implementation

(Creates java.io.lnputStream and java.io.OutputStream for specific object
in Repository)

Note: TheTestConnectionFactory classshould have a public constructor without
parameters.

Code Example

package com.insystems.test.repository;

import com.insystems.core.repository.ConnectionFactory;
import com.insystems.core.repository.Connection;
import com.insystems.core.repository.Repository;
import com.insystems.core.repository.RepositoryObject;

import java.io.InputStream;

import java.io.OutputStream;

public class TestConnectionFactory implements
ConnectionFactory

{

public TestConnectionFactory ()

{
}

public Connection createConnection ()

{

return new TestConnection() ;

public Connection createConnection (String user, String

password)

{

return new TestConnection() ;

150

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ADDING A NEW REPOSITORY ADAPTER

class TestConnection implements Connection

{

public TestConnection ()

{
}

public Repository getRepository ()

{
}

public Repository getRepository(String schemaName,
String schemaVer)

{
}

// Other methods defined in Connection interface are not
used.

}

return new TestRepository () ;

return new TestRepository() ;

class TestRepository implements Repository

{

public TestRepository ()

{

}

public RepositoryObject getObject (java.net.URL url)

{

return new

TestRepositoryObject (url.getFile () .substring(1l)) ;

}

public RepositoryObject createObject (String typeld,
java.net.URL url)

{
return new
TestRepositoryObject (url.getFile() .substring (1)) ;

}

// Other methods defined in Repository interface are not
used.

}

class TestRepositoryObject implements RepositoryObject

{

java.io.File file;
public TestRepositoryObject (String filename)

{
}

public InputStream getInputStream()

{

file = new java.io.File(filename) ;

try

{

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 151

SDK — REPOSITORY API

return new java.io.FileInputStream(file) ;

}

catch (java.io.FileNotFoundException ex)

{

return null;

}

public OutputStream getOutputStream ()

{

try

{
}

catch (java.io.FileNotFoundException ex)

{

return new java.io.FileOutputStream(file) ;

return null;

}

// Other methods defined in RepositoryObject interface
can be implemented later.

Service Request Example

Thefollowing codes is an example of a Service Request with the new repository:

<?xml version="1.0" encoding="UTF-8"?>
<render-Word-to-PCL>
<source url="test:///C:/TEMP/test.doc"/>
<destination url="test:///C:/TEMP/test.pcl"/>
<output-name>HPLJIII</output-names>
</render-Word-to-PCL>

152 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 10

SDK — System Extensibility

This chapter describes how to create and add a Simple Service using XML
message middleware, including the update of your configuration files. It then
describes how to extend the Distribution Service by creating Event Handlers to
customize your Distribution Request behavior. There is adiscussion of Data
Access Objects, and finally a procedure for modifying a Request Log message.

This chapter describes:

. Creating and Adding a Smple Service on page 154
. Extending the Distribution Service on page 157

. Customizing a Request Log Message on page 173

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 153

SDK — SYSTEM EXTENSIBILITY

Creating and Adding a Simple Service

Thelist of possible custom servicesis open-ended. Currently-implemented
servicesinclude:

. Document rendering in various formats (Word, PDF, HTML, TIFF and
PCL).

. Document delivery through multiple channels (e-mail, fax and print).

. Delivery to multiple repositories, for example, FTP server, file system and
DMS repositories.

New services may easily be added to your system. However, the relative ease of
adding a particular new service depends on how similar this new serviceisto any
already existing services that could be used as a prototype.

Generally, in order to add a new service the following steps are required:

. Update the system configuration, making it aware of the new service.
. Implement Java code specific to the new service.

. Update the system-configure command with the new service.

. Prepare a new request message according to the new message format.

To illustrate each of the above steps, specific elements of the | Stream Publisher
infrastructure related to the tasks described above will be presented and an
example of anew ‘delete-files’ service will be presented in detail.

Note: The'delete-files service allows the user to delete files and folders provided in a

request.

Simple Use Case

Consider the simplest case where a message contains only XML formatted text
with a Simple Request (not aggregate):

. When a message from the M essage Queue reaches | Stream Publisher, itis
picked up by one of the Service Managers servicing the given type of
request.

. That listener in turn, based on the type of IMS message, 10oks the type of
message up in the configuration file's serviceFactory classand
instantiatesit. To be precise, ServiceFactory isan interface and an
implementation of it isinstantiated.

. ThisserviceFactory creates a service object (the object implementing
the Service interface).

. The serviceRequest classisthen instantiated. Once again, to be precise,
ServiceRequest iSan abstract class and it is actually one of the derived
classes that is instantiated.

. The method run of the service isthen fed with the Service Request and the
result of the method run iS ServiceResponse.

154

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CREATING AND ADDING A SIMPLE SERVICE

. ThisserviceResponse ispackaged to reply to the message and sent back.

In summary, the service developer must implement service-specific
ServiceFactory, Service, ServiceRequest and ServiceResponse
classes. Two of those classes - the ServiceFactory and ServiceRequest
classes - must be defined explicitly in the configuration. See details below.

In the following paragraphs, as the main code pieces are introduced, we will
explain the required configuration changes.

Custom Service Deployment

1. Copy thejar file with custom service implementation to the Worker’s
IStream Publisher install folder\etc\ folder. If you have
multiple Workers, copy thisfileto all systems.

Log on to the Admin Console and click Configur ation.
Add new service [Custom0] entity under ..\Settings\Services

Select the check box near the maxError attribute when creating this entity,
otherwise the entity may not be create properly.

5. Createanew pProperty [factory] entity under this Service. The
Attribute Name must be the same as the JM S Type attribute of the request
message. The Attribute Value should contain the Service Factory class
name.

6. Createanew pProperty [request] entity. The Attribute Name should
contain the name of the root element used in XML requests send to the
custom service. The Attribute Value contains the class name, which
extendsthe serviceRequest.

7. Create anew pProperty [response] entity. The Attribute Name should
contain the name of the root element used in XML responses received from
the custom service. The Attribute Value contains the class name, which
extendsthe serviceResponse.

8. Restart the Worker service on al workers.

Sample Structure

For example, assume the following structure for the delete-files request:

<?xml version="1.0"?>
<delete-files>
<file>
<item-source url="ftp://.../Test.doc"
ContentType="application/msword">
</item-sources>
</file>
</delete-files>

Java Code

A typical implementation of a new Service consists of the following classes:

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 155

SDK — SYSTEM EXTENSIBILITY

Service Factory class,
Service Class,
Service Reguest, and
Service Response.

All of these classes are usually grouped as a single service package. In our
example case of the ‘delete-files’ service, the following files are found in the
com.insystems.distributor.services.cleanup package:

CleanupServiceFactory - the Service Factory class
CleanupService - the service itself
CleanupServiceRequest - the Service Request
CleanupServiceResponse - the Service Response

CleanupFile, CleanupFolder, CleanupFilter, and ItemSource
are al used to map to the proper XML elements.

The cleanupServiceFactory service factory implements the
ServiceFactory interface and has a public default constructor. The Service
Factory creates a new instance of the service.

The CleanupService implementsthe service interface and thisis where the
actual processing happens. It receives CleanupServiceRequest inits run
method and returns cleanupServiceResponse When the service is complete.

156

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

Extending the Distribution Service

Event Handlers

The Event Handlers structure is a powerful tool to customize Distribution Request
behavior. The ideais to provide some hooks for custom services during a
Distribution Request execution.

Event Handlers may be called:

. From the Distribution Request when all document generation is complete
but before any rendering takes place.

. When the Recipient Package is ready (all Recipient Items have been
rendered).

. Immediately before and immediately after delivery.
. When awhole Distribution Request is compl ete.

Operating Mode

Event Handlers called before and after delivery are processed differently
depending on the Delivery Channel operating mode. (For information about the
operating modes, see the Distribution Service on page 55.) If the operating mode
is Synchronized then the Event Handler may be called once when all Recipient
Packages/Items for the channel are ready for delivery. After that, another Event
Handler may be called when all items have been delivered through the channel.

Onthe other hand, if the channel actsin Instant mode, then the Event Handler may
be called right before and right after any single delivery takes place.

Distribution Request API

Event Handlers may interact with the Distribution Request as they progress
through the Distribution Request APl which allows the user to fetch some
information about the request based on the current scope available to the Event
Handler.

In other words, an Event Handler associated for example with a particular
Recipient Package may retrieve all details about this package's Recipient Items
based on the Recipient Package ID (and Request ID). Note that most of the
information from the Distribution Request available to the Event Handler isin fact
read-only. The only part of the Distribution Request that may be updated through
Event Handlersis the Delivery Item.

Updating the Delivery Item

A Dédlivery Itemissimply a URL, with some additional information like
credentials, and it may be added, removed or updated by an Event Handler. Only
the Delivery Items existing in the request just before the Delivery Request is
issued are subject to delivery. For example, the concatenation service may need to

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 157

SDK — SYSTEM EXTENSIBILITY

remove all items being concatenated and replace them with the concatenation
result.

Using the Event Handler Response

Another way an Event Handler may affect Distribution Request execution is
through the Event Handler response. If afailure responseis returned, then the
Distribution Request either stopsissuing Simple Requests subsequent to the failed
Event Handler or it stops issuing Simple Requests completely. (Which of these
two actionsis used will depend on the Distribution Request failure policy). The
only exception to this behavior is when the Event Handler itself is marked as non-
critical.

Event Handlers in the Distribution Request

In this section we will describe the classes that a Distribution Request Event
Handler uses to access the state that the Distribution service stores during the
processing of a Distribution Request. Through the classes described here the
Event Handler can access all the state information in read-only mode. The only
permitted read-write access isto the contents of the delivery packages.

Delivery Packages and Delivery Channels

The Event Handler is allowed to add and/or remove items from the Delivery
Packages. These items are files that the Distribution service will deliver through
the particular Delivery Channel to which the Delivery Package belongs. In fact for
all purposes with these classes the Delivery Packages are identical to the Delivery
Channelsto which they belong. They are also referred to as Delivery Channels.

There are two categories of classes:
. Entities, and

. Data Access Objects.

Entities

Entities represent the elements of the Distribution Request. The metadata
associated with the various elementsisstill initsraw form asit was passed in with
the Distribution Requests, asan XML document. Thisis because the Distribution
service does not know the meaning of the metadata and cannot interpret it.
Metadata therefore is offered as an XML document and it is the Event Handler's
responsibility to interpret it.

Data Access Objects

The Data Access Objects, although public, are not meant to be used by the client
directly. The entity classes use them as they decouple the entities from the
knowledge of how the data access is implemented.

All the classes, both entities and Data Access Objects, are available in the main
package: com. insystems.distributor.client.services.
distribution.

158

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

Entities

Entities are contained in a sub-package of the main package named entities.
Apart from the entities there are some other supporting classes, for example
primary key classes.

Entities represent the elements present in the Distribution Request. Some of the
entities aggr egate other entities. To reduce the overhead of having al the
elements of the Distribution Request in memory at the same time, the collections
of aggregated entities are not cached in memory by the entity that aggregates
them. Instead, as a collection of entitiesisiterated the data is read from the
database and objects are instantiated, but they are not held by their higher level
entity.

Important: Every call to aget method that returns a collection of subentities will incur
database access and should be considered expensive.

root entity

The root entity is the DistributionRequest and from it all other entities can be
reached. All that is necessary to have in order to load a DistributionRequest entity
isthe Request ID of that request. Thisistheid that has been passed to the Event
Handler initsinvocation. It isastring whose structure is defined by the client that
submitted the request in the first place.

Numeric IDs

Other ids, which are also strings, are present in the Distribution Request.
However, to make the database more efficient, the Distribution service replaces
the string idswith numbersthat it ensures are unique. These number ids are part of
the primary keys of the entities but the original ids can still be used to access the
entities.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 159

SDK — SYSTEM EXTENSIBILITY

IStream Publisher Object Relationships

D conEIng 1. 4
[-
CanbulonRequed D dri butionltem
Rt +heDisibutionterm
i L +the Digfbutianitem
+iheDidnbytioneque
daliver throwugh
1. HhealDeliveryChannal
Q dell vars -
‘ n
DeliveryChannel +tha Deliveryltem|
rendered as Ui
+ihe Rendition
O 1.
Doty arker
Fandition
aqr
diafdbale la
1
EntityBass
Reeipientitem
1
1.
#heRedpentiem
conlging balangs o
DeliveryPrelamence
+ive e liven® relarence ! +the DeliveryPreferance
1.* 1.-
1 g 1. i #theRedpiehtPackage
*hefiecpient D rEoRives HheReciplentPackage) D
b
4+ | Recipient - 14 RecipientPaciage <7
1 1
“HhaRecipient distnbuted far

Distribution Request

The DistributionRequest entity is the starting point in accessing any other entity.
To load an instance of a Distribution Request, the Event Handler uses the static
method 1oad () . This method acceptsthe originalRequest 1D Of the
Distribution Request whose data it wants to access.

160 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

Distribution Request Entity

Metadata
Eml “Siing +recipientsMetadata
oXMLString() String 0.1
romXMLString(xml - String) : woid
.1 I"1-r£~u:.|l..|estl'ul'l atadata Q

DigributionReguest

rimarykay - DigtributionReguesPK
riginalReguestld : String
ailurelnfa © String

eguesMetadata | Metadata
ecipientsMetadata | Metadala

Collections returmed by the variuusgetb-

methods are backed by a resull sat =gatic=> load(orgRequed!d | String) : DistributionRequast

and are not cached in the =gtatice> load(pk | DisibutionRequedFE] | DigributionRequest
DigributionReguest object. =gonsr== DigributionReguest(pk . DisributionRequestPK)

The objectsin the collaction are - =gonstr=> DigdributionRequest{orgReguesld & String)

created asthe resull sot istraversed. etPK() : DigibutionRequestPE

Each new invocation of a getter etOriginalReguesid() - String

methaed will incurr database access etRequastMetadatal) - Metadata

etRecipientsMetadatal) | Metadata
sFailed(): boolean
etFailuralnfol) . String
etDigributionitemn{iternid : int) - Digributionltem
etDigributionitems{) . Collection
BgetRecipients) : Collaction
g etDeliveryChannels]) - Collection
metEvenLg::l. Collection

idaniifiad by
1

<<primary keys=
DigributionReguest PK

Eequed!d - int

- constr=> DigributionRequedPE{raquedid © int)
[BoetRequestid(): int

Once loaded, the primary key of the Distribution Request can be obtained and
used to further drill down on other contained entities.

Accessing the Metadata

The metadata associated with the Distribution Request itself as well as that
associated with the recipients can be obtained as an instance of theMetadata
class. From this class, the metadata can be accessed as an XML string with the
toXMLString () method.

Distribution Package

The contents of the Distribution Package are accessible through the
Distributionltem and Rendition entities. The Event Handler does not directly load
any entities below the Distribution Request. Instead it uses the appropriate get
method of the higher level entity to access a collection of subentities.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 161

SDK — SYSTEM EXTENSIBILITY

In the case of Distribution Items, the Event Handler calls the

getDistributionItems () method to obtain acollection of Distributionltem
entities.

The Distribution Item

DisrbutlonReguest

contalng
1.
- Q. O
a1 Dignbutionitem _ :
E;nrl'na_r@j.- ClErbutionie meg 1 1 B
Borigl na DI lon IR mid - S ng
url - IURL
rigiiendition - Ren dl flon
leted ReDellve i “baoolkean Ide ot Mad by
Brcr oz nmlzls: Credentials P

- Bromegdata: Memdas

Socsa to== l02d o rgDistem i - Stnng) - ClErDu kon lem

1

01 SocsE tbae- 10adpk - DiErbutionle m PK): Db doniem
Credentlzls oo consir== Disti buflont em jpk - Dirstdb wilon Be mP¥) <=primary keys==
%o consar=-= Disti buflontem o gDl Stemid - String) DlariutknRemeK
% IPK[) - DistbutionlemPK |i;.re-:Je.;|:| i
%o 1onginzlitemi df - S ing Bredlgnnution®emid -t
Sagztusr) - Stang Sage ThiEt 30EtE() S MeEdaE
SgetPamwon () Sang %oe toniginalRenditb af): Fendtkn Scnond p= DlENbutlanimPK)
%o tRendltion Eon tentT ype -5 ring): RendRion WoetRequedid])
%o tRendltions]): ColEEion et Distrioution lem ()
EncrypedCredentak el
gipherDat - Shing 1.*
. _ <primag key==
Qs StAng Q RendRRNFK
getPasword() : Sting Frendis
g sward() : Snng Renditon B quesid - Int
[BeprimanEey - rendltonFy B 1srioisemid - int
B - URL X Bee ndiionid - Int
BronginalRendiion - bookan lentiflad by BeconientType - Sirhg
. E teniTy !
Shcematices 1020 Pk - RendiflonPK) : RendRlon 1 W sonnsir=-= Fendlflon =LAy
Woomongr- RendRionpk : RendRionPK) Mgt Fequestid])
oo P K () RendltlonPK et DiEnbutlonRem k()
e ILIRL () - LUIRL Sgetrenditlonidy)
i3 riginalRendltion - boolean %hget Content Ty pe)

When the Distribution Item requires credentials, those credentials are accessible
viaacredentials classor its subclass, EncryptedCredentials.

Each Distribution Item is associated with a particular set of renditions. One of
theseisthe original rendition, meaning the rendition of the item as specified in the
Distribution Package. Both the original rendition and other renditions can be
obtained by specifying their content type (MIME type).

Recipients

The Recipient entities refer to the Recipient, RecipientPackage and
RecipientItem classes.

162 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

Recipient Relationships

mnahs - Q

Diztiib utlonReques 1

¥
alsthute o af

DisnutlonBem Q
Reciplent

lentifizd by prima iy Key - Reciplent™K

riginalReciplentid : Sting —
1 quenceo - Int 1

— metadata - Meladata
=<imary key= moues: Disutionfeqes
Feclplentfy < Metadala
EEEEE'? It Yz=gatie= adprgReciplentd): Reciplent ol
s Bhecp lentid - Int Soegatie= ladiph - RecipleniPK) - Reciplent
Socnondr = Reciplentiegue & - DisrbuwlonRegues) 0-1
o napes RE0IDIETF K] e K| - FedplenPK
e e queEi) Soet0niginal Redplen 14 - Shing
SoetRe dplen 1)) SgiSequenceMaf): int 1

SoetRedplena dages] - Calkedion
SpiDe v ey PRERMES) - Collecion

Q Dl uion Fegued(): DisdulonFequed
RedpEfiEm 1= ¥
By oo oo requesid - INE
By =e reCiplentd - It 1.

Byocii 2o paXagRIc - 1INt ALstanuEa far
{ | BcPK oo il knBemid: nt
——{ BpwcPi =< reciplentiemid Cellver@rizRnc: EohhEs
Barighemid - Siring
Bemetadata - Metadat: 1.
Boomizri Type - Sting
Becequencehin - Int - 1.
Sreciplentiem|)
S DD ot ko MR | D

= Fe dpeniPadiage
1 B | comalns [Bhpimanke; - meciplenPackagePK
BeoiginalPadkag - Sing

helingsio Bemetadata: Meladats ot
; Berciplent Reciplkent

eI A ey e *oczmiice= load prgPackageld - Sting) - RetiplenPatkags
Fe D 2P 0k g fccsmine= Wad P FecipleriFackagel) | Reople s dEge
Ermeaia - Int oo arse RECDIENP 3EgE (RNt - Reslp ENY
Bomcnlentd - It e) -ReclplenPackage K

oi0rigl e Padageld () - Sirng
foemiietzata]) MekmdaE
e tRe aplentie ms) - Callection
iR dplent () - Reciplent

BhE xaged - In

o st REsiplentFackage PR
SE Reguesid))

SF Reciplentd |

3 Padkagei])

1 identifad by

Each Recipient entity is associated with a set of RecipientPackage entities. Each
RecipientPackage entity in its turn contains a set of Recipientltem entities. Each
of the Recipient Items corresponds to one Distributionltem in the Distribution
Package.

Each Recipient Package uses one or more Delivery Preference entities out of the
set of Delivery Preferences that belong to the Recipient that owns that particular
RecipientPackage.

Thefollowing diagram illustrates the Delivery Package entities.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 163

SDK — SYSTEM EXTENSIBILITY

Delivery Package

Q 1.* Q aprimany ke
- Deli annelFK
RecipientFadege Distribu onReque 2 LEnChann
Brnrequestd :int
* Q;\cl'arrall: imt
Q 1= %oz ponstr> DeliveryChannelPH)
o e Requedhi])
Recipient e tChannelld])
Metda deliver though 1
b - 0.1
D " 0.1 identfizd by
CelivwenPreirence 1.*
| Bepr man#izy: DalienFre EEnceFK Lo
Brmetdsts (Metdas Q
deli annd D e =|
B liveryChann venthann Celive nyChannel
%o ficss load) Beciiginal Channal 1d : String
%o mnst> DelivenPr efeenoe) BechannelT yps : Shing
S FH]) usng Emoperatinghode : Sting
e et adatal) Bomeadat : Metadats
e Dl veryChanns i) 1
%<statics> boad forgChannelld : Sting) : DelivenChannel
WcslEtics® loadipk : DeliveryChanneIPE) : DeliveryChannel
identifisd by %zsponars> DelivenyChannel{pk: DelivenChannel PH)
WoetFH)) : DeliveryChan nelFk
1 S3atliiveny=ms) - Collsction
“pnmany ey
Cel iveryPre ere ncePK
(Bemquegid : int el
Bchannelld - int 0.
%Eﬂ'p ientld : int
preferenceld ;int Q
®ccponaes DelivenPr Erence PH) - - Sttt .l
astRequestid]) Eprlrrar'_.i(aﬂ_.r: DelivendtemPH
®a=tChannel 4] Burl : URL
%y=tR=cipizntd]) BicontentTyps : Strng
WpetPrizrence)]]]
Westics> loadipk: Deliverd EmPH) : Delivendem

%z<ponae> Delivenitemiph: DelivendemPE) - Delivendem
" ®a=tURLY : URL
< 3 = ! v -

pamany ke Szt R (u : URL) - woid

DelivenyttemPH e =
- TToF ‘getContentT ypel) : Sting
Ej‘lﬁfﬁ". 'Igrtt :;atDnrtartTypa[:or EntType : Sting) : woid
= elld —_ - 5
Bndzlivendtamld :int sve{) - DelivenitemPh

"= movel) | wid

%copon > DelivendtemPr) o

BetRequestid : int)) Tdeniified by
getChannel i)
et Deli vendEmid)

Delivery Package

The Delivery Package entities refer to the DeliveryPreference, DeliveryChannel
and Déliveryltem entities.

Each DeliveryPreference uses one DeliveryChannel only. The DeliveryChannel
defines the method that will be used for delivery. Each DeliveryChannel is
associated with a set of Deliveryltem entities that will be delivered through that
channel.

164 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

Updating the Delivery Items

The Event Handler can alter the set of Delivery Items to be distributed through a
Delivery Channel. It can add new items or remove some or all of the existing
items. When adding items, the Event Handler is also responsible for making sure
that the content that the URL contained in the item isvalid and pointsto an
existing file. Thisfile will remain available even after the Event Handler finishes
execution.

Cleanup

When the Distribution service has completed the delivery, it will delete not only
the Delivery Items but the content that they point to as well. The Event Handler
should make copies of the content for the items that it adds to a Delivery Channel
if it wants to retain that content after the delivery is complete.

Adding a Delivery Item

To add a Delivery Item, the Event Handler creates a new instance of a
Deliveryltem entity. Before doing that, it must create an instance of the
DeliveryItemPK classand populate it with values. With the primary key
instanceit can then create the instance of the Deliveryltem. To commit the change
to the database, the Event Handler must call the save () method of the new
Déliveryltem instance. If changes are made after that, the save () method must
be invoked again to commit those changes. Any callsto save () other than the
initial one will only update the Delivery Item and not insert a new record in the
database.

Removing a Delivery Item

To remove an existing Delivery Item the Event Handler must call the remove ()
method on that particular instance of Deliveryltem.

Distribution Request with Event Handler Example
Event Handlers are described in the last section of Distribution Request.

Thefollowing is an example of atypical Event Handler structure:

<distribution-request>

<event-handlers>
<event>
<one-of-predefined-events [optional data to define
handler scopel/>
<event-handler serviceType="handler (service) name">
<event-handler-metadatas>
. handler specific content ...
</event-handler-metadata>
</event-handler>
</event>
</event-handlerss>
</distribution-requests>

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 165

SDK — SYSTEM EXTENSIBILITY

In the example above:

. one-of -predefined-events iSapre-defined type of event specifiedin
the schema, which specifieswhich Event Handler to activate. Possible event
types are:

» distribution-package-ready
* recipient-package-ready

* delivery-package-ready

e package-delivered

e ddivery-item-ready

e item-delivered

» distribution-complete).

. optional data to define handler scope is required when the Event Handler
may be triggered more than once for a particular event type, for example
reci pient-package-ready. This functionality requires that a
recipientPackageRefI D value be specified.

. handler (service) name - Thisisthe Event Handler name, or service name, as
it isregistered with the Service Manager. The service with this name handles
Event Handler requests submitted from the Distribution Service.

. ... handler specific content ... Thisis the actual content of the information
that is copied 'asis into the Event Handler request.

Example

An example of an actual Event Handler in a Distribution Request follows:

<distribution-request>

<event-handlers>
<event>
<recipient-package-ready
recipientPackageRefID="RCP-PKG-1"/>
<event-handler serviceType="concatenate-pcl"s>
<event-handler-metadatas>
<concatenate-pcl numberPCLsegments="2">
<page-header paperSize="Letter"
paperOrientation="Portrait"
paperSource="Tray 1">
<field name="job-name" value="Job Name"/>
</page-headers>
</concatenate-pcl>
</event-handler-metadata>
</event-handlers>
</event>
</event-handlers>
</distribution-requests>

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

When the Recipient Package referenced in the Event Handler above is ready (all
items generated and/or rendered), then the following request is sent out:
<event-handler-request taskID="123"
distributionRequestID="12345">
<events>
<recipient-package-ready
recipientPackageRefID="RCP-PKG-1"/>
<event-handler serviceType="concatenate-pcl"
segNumber=""
critical="true">
<event-handler-metadatas>
<concatenate-pcl numberPCLsegments="2">
<page-header paperSize="Letter"
paperOrientation="Portrait"
paperSource="Tray 1">
<field name="job-name" value="Job Name"/>
</page-header>
</concatenate-pcl>
</event-handler-metadatas>
</event-handlers>
</event>
</event-handler-request>

Note: Thereguest aboveisnot arealistic ‘concatenate-pcl’ request. A real service uses
the Event Handler proxy described bel ow.

The above request becomes a payload of a JM S Message with the IM SType value
set to "concatenate-pcl”.

Event Handler IDs

There are several |Dsthat appear in the Event Handler request above:

. "distributionRequestI D" and "recipientPackageRefl D" are rather
obvious and allow the user to define the Event Handler scope when
additional data from the Distribution Request database is required.

. "taskl D" is dightly more complex. According to the Distribution Service
architecture, al tasks required to accomplish the Distribution Request
constitute nodesin asingle Task Graph. The execution of each task or node
is subject to the successful completion of al preceding nodes in the Task
Graph. When Event Handlers interact with Delivery Items, they need to
associate a new or updated Delivery Item(s) with the delivery tasks
responsible for the delivery of those items.

e tasklD inthe example above alows that:
» thistasklD belongsto the delivery task

» thatisin charge of the delivery of Recipient Items from the given
Recipient Package

» through the given Déelivery Channel.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 167

SDK — SYSTEM EXTENSIBILITY

« Dynamically fetching Delivery Items - The delivery task cannot know
in advance what items should be delivered, therefore it contains only a
template of the Delivery Request. Right before the actual delivery, this
task fetches from the Distribution Request database all Delivery Items
associated with this task, based on the taski D value.

e Creatingtheactual Delivery Request - The delivery task then
transforms its Delivery Request template into an actual Delivery
Request, or into multiple Delivery Requests. Thisiswhy when the
Event Handler updates the Delivery Items, each new Delivery Item
should have thistaskl D field properly set. Otherwise, new Delivery
Items will be ignored.

* Insummary: tasklD isnot an Event Handler task ID in the Task Graph
but it isinstead an ID of the delivery task that follows this Event
Handler task.

This matter can become somewhat complicated when the Recipient Package is
delivered via multiple channels. In this case, multiple delivery tasks follow a
single Event Handler task. Then the taskI D in fact contains the IDs of all delivery
tasks that follow, for example: taskl D="123456" .

Note: The Event Handler request presented above isissued by the Distribution Service.

This request processing is aresponsibility of the Event Handler implementation
(as aservice), which is the subject of the next section.

Event Handler Implementation

There are two ways to implement Event Handlers in 1 Stream Publisher. One way
isto provide an Event Handler implementation that:

. Accepts Event Handler requests from the Distribution Service,

. Interacts with the Distribution Request DAO API (reads data, updates
Delivery Items), and

. Eventually returns an Event Handler response to the Distribution Service.

Disadvantages
The disadvantages to this approach is that such an Event Handler:

. Should be configured to get access to the Distribution Request data. This
involves database connection configuration, firewall issues, and so on.

. Must have additional logic added in order to parse the Event Handler
reguests and to issue Event Handler responses. In addition to service that
this Event Handler provides (concatenation) it must know how to interact
through DA O with the Distribution Request, how to update Delivery Items
and so on.

. In summary, such an Event Handler becomes much more complex than any
other smple service.

168

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

Keeping it Simple

In order to keep things simple, an alternate approach to Event Handler
implementation is provided. This Event Handler implementation is further broken
up into two parts:

. The Event Handler proxy, and
. The actual Event Handler, or Event Handler implementation.

The Event Handler proxy is configured with the Distribution Service and runsin
the same JVM (Java Virtual Machine) as the Distribution Service itself. Every
time when an Event Handler request isformed, it goesfirst to the proxy whereitis
transformed into aregular Simple Request and sent for processing. In this case the
actual Event Handler is no different from any Simple Service. It is called exactly
the same way either from the Distribution Request or directly from the client.

These two approaches to implement the Event Handler are different and will be
described separately, as Event Handlers without and with a proxy.

Event Handlers Without a Proxy

An Event Handler request received by an Event Handler without a proxy was
already discussed in Event Handlers in the Distribution Reguest on page 158. To
recap, here is some sample code:
<event-handler-request taskID="123"
distributionRequestID="12345">
<events>
<recipient-package-ready
recipientPackageRefID="RCP-PKG-1"/>
<event-handler serviceType="concatenate-pcl"
segNumber=""
critical="true">
<event-handler-metadata>
. actual request content ...
</event-handler-metadatas>
</event-handlers>
</event>
</event-handler-request>

The Service Manager does not parse this request. For this reason, the Event
Handler must request the Service Manager to pass thisrequest to it asastring
value. To do this, the Event Handler must implement not only the service
interface (com. insystems.distributor.Service) but also the
ExtendedService interface
(com.insystems.distributor.ExtendedService). Additiona details of
the ExtendedService interface may be found in the documentation generated
by the Javadoc tool.

Using the Service Interface

In this case (no proxy), the method string run (String)fromthe service
interface is called, and the Service Manager never parses incoming reguests on its
own.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 169

SDK — SYSTEM EXTENSIBILITY

How this request is then parsed and what sort of actions the Event Handler
performsis up to the implementation. The main contract between the Service
Manager and this serviceis that the run method should return an Event Handler
response marshalled into a string, something like:

<event-handler-response status="success"/>

or

<event-handler-response status="failure"/>

Aswas mentioned above, the main interaction of the Event Handler with the
Distribution Request occurs not through this response but when the Event Handler
updates the Delivery Itemsin the Distribution Database. These interactions are
channelled through the Distribution Request DAO API, which isdiscussed in
Distribution Sate DAO on page 171.

In al other aspects, the Event Handler implementation resembles other Simple
Services. The developer must therefore follow the same stepsin coding as well as
updating configuration files, as were mentioned in Creating and Adding a Smple
Service on page 154.

Event Handler with Proxy

Each Event Handler proxy implements the EventHandlerProxy interface
(com.insystems.distributor.EventHandlerProxy). All details of this
interface may be found in the Javadoc-generated documentation.

The Event Handler proxy:

. retrieves some request pieces from the event-handler-metadata section of
the event-handler element

. supplements it with other data found in the relevant scope of the
Distribution Request

. forms a Simple Request to be processed by the second part of Event
Handler, the Event Handler implementation

This Event Handler implementation, like any other Simple Service, is running
“somewhere else” on the network and returns a response when processing is
complete.

Note: Thisisaregular Simple Service Response and not an Event Handler response.

The Event Handler implementation does not access the Distribution Request data
in any way. Thisis because in general, thisimplementation is called as aregular
Simple Service, not from the Distribution Request.

Sometimes a particular Event Handler functionality assumes dealing with
Delivery Itemsin the Distribution Request database. In this case, it is the Event
Handler’s responsibility to update the Delivery Items in the Distribution Request
Database, based on the response from the Event Handler implementation. This
response should contain enough of the information required by the proxy to
update the Delivery Items.

170

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

EXTENDING THE DISTRIBUTION SERVICE

Concatenating PCL Files

This*Event Handler with Proxy” approach was implemented to support the
concatenation of PCL files in the Distribution Request through Event Handlers.

In this approach:

. First, the Concatenate PCL proxy is called which forms a‘concatenate-pcl’
Simple Request.

. The actual file concatenation occurs later in the Simple Service
‘concatenate-pcl'.

. The request result isincluded in the service response. This concatenation
result is added as a new Delivery Item while all items being concatenated
are removed. Consequently, only the concatenation result is actually
delivered through Delivery Channels.

Implementation

The Event Handler implementation is added to 1Stream Publisher in exactly the
same way as all other Simple Services are added.

The Event Handler proxy to be called by the Distribution Service should be added
to the Distribution Request configuration. After deploying a new custom service,
using the Admin Console, create new entity Property [proxy] with attribute
Value set to custom proxy class name, implementing the EventHandlerProxy
interface for this service.

Distribution State DAO

Data Access Objects

The specifics of data access are separated and made accessiblein what is called a
Data Access Object. In | Stream Publisher, there is only one Data A ccess Object,
the RequestDAO. Instances of this DAO can be created using a DA OFactory as
depicted below:

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 171

SDK — SYSTEM EXTENSIBILITY

The DAOFactory

O

DAOFactony

‘u’eateﬂequ exDAD(): RequeaDald

b

RegquegD AD
"ﬁnl:lRaquest(uriginalﬂequestld : String) : DidributionRequest
l"s,nalec:tliliLvtrit:-uticlnlten'nz-(na»quest :DigributionRequest) : Collection
‘salectﬂenditiunsﬂtem : Digtributionltem }: Collection
“selectﬂeu:ipi entzfequed : Didibuf onRequed): Colledion
*seleu:tﬂedpientsPﬂcmges:redpient :Recipient) : Collection
*selectﬂecipienﬂ:'ﬂd{ﬂgeltemsﬁpadﬁge : RecdpientPackage) : Colledion
‘selecﬂ:leli'.feryl:'referencesiredpient :Recipient): Collection
“selecﬂ:leli'.fer:.rChanneIE(request : DigrbutionRequed) : Collection
*selecﬂ:leli'.fer:.rltem zichannel : DeliveryChannel) : Collection
“insertlileli'.fer'_,dtem(deli'.fergdtem : Delivendtem) : Deliveryltem P K
‘updﬂteDeIi'.fer':.rltem(deli'.fer';.dtem : Deliverdtem) void
%deletel eliveryltem (deliverdtem PK : DeliveryltemPK) @ void
%ac| ectE ventgrequed : DigrbutionRegued): Colledion
%zl ectE ventHandlerievent . Event) : Collection

Both baOFactory and the RequestDAO are interfaces only. The implementation
depends on the actual database being used. For example, in an Oracle deployment,
the classes oraclebDAOFactory and OracleRequestDAO Will be used to
implement these interfaces.

TheRrRequestDAO providesthe primitives required for database access but shields
the entities that use them from the details of the implementation.

172 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CUSTOMIZING A REQUEST LOG MESSAGE

Customizing a Request Log Message

Customizing the Request Log Table

All IMS header properties that are found in the initial request message are
converted to individual sub-elements of the Request L og message. By default, the
system persists only the IMS header fields of arequest, as specified in IMS
Message Header and Properties on page 23.

The system can be configured to store other header properties (sub-elements of
the Request L og message) as custom fields of the persistency layer. If itis
configured that way, than those header properties can be used in subsequent query
statements aimed at the system.

Adding Custom Fields

There are two steps involved in enabling the system to persist additional custom
fields:

. add the appropriate database fields to the Request table

. provide a mapping between the new database fields and the corresponding
custom JM S header fields

Modifying the Request Log Configuration

To provide the mapping between custom JM S header fields and new database
fields, use the Admin Console's Configuration function to add a new
JMSProperty entity under Domain\RequestLog. The entity name should
match the IMS header property. The attribute DBColumn value should match the
database column name in the Request table.

The Request Log Table

The system stores the request metadata and status information in arelational
database called the Request Log.

The Request Log table consists of four tables:

. Request

. Status

. Errorinfo

. StatusOrder

Each of these tables is described The Request Log Tables on page 97.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 173

SDK — SYSTEM EXTENSIBILITY

174 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Chapter 11

SDK — Web Service Interface

This chapter describes:

. The Web Services Interface on page 176

. | Sream Publisher WS Architecture on page 177

. Configuring the | Sream Publisher WS in the Console on page 185
. Troubleshooting the | Sream Publisher WS on page 187

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 175

SDK — WEB SERVICE INTERFACE

The Web Services Interface

The Web Services Interface (WSI) alows | Stream Publisher functions to be
invoked from various applications and platforms, and supports customers who are
adopting Web services into their infrastructure.

About Web Service Applications

Web Serviceis an application that can be accessed on the Web or an intranet
through a URL. It is accessed by clients using an XML-based Simple Object
Access Protocol (SOAP) that is sent over HTTP or HTTPS. Clients access a Web
service application through its interface using a Web Services Definition
Language (WSDL) file.

IStream Publisher WSI Benefits

The IStream Publisher WS is an alternative way to submit | Stream Publisher
requests; it is platform-independent and co-exists with current Javaand IMS
APIs.

The I Stream Publisher WSI has the following benefits:

. I nteroperability in a heterogeneous environment — The greatest strength
of Web Servicesistheir ability to enableinter-operability in a heterogeneous
environment.

. Easy integration with various front- and back-end systems—The
| Stream Publisher WSI provides a standard way to access the services
required by multi-tier applications and also provides standard supports for a
variety of clients. It therefore gives | Stream Publisher the flexibility to
easily integrate with various front- and back-end systems.

. Support of many client types— Clients can be written in any language and
deployed on any Web Service-enabled platform (Java, C++, C#, VB.NET,
and so on). You can select the configuration that best meets your application
reguirements.

176

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER WSI ARCHITECTURE

IStream Publisher WSI Architecture

The I Stream Publisher WSI provides various methods for invoking services
synchronously and asynchronously, as well as cancelling asynchronous requests.

General Information

XML isthe only supported format for all requests and responses. The | Stream
Publisher WSI acceptsall currently supported XML requests. The existing request
structure is supported for all requests to ensure compatibility with previous
versions and minimize changes to existing components.

Because the | Stream Publisher WSI supports clients running on non-Java
platforms that may not have the same error-handling mechanisms, al Java
exceptions are converted into meaningful service-specific exceptions and are
returned as XML responsesto clients.

Installation and Deployment

The Web Services Server can be installed on a separate machine, or on the same
machine with other | Stream Publisher components.

Server components can be deployed on Tomcat or other Servlet Container

Overview of WSI Architecture

The I Stream Publisher WSI uses Apache Axis, a SOAP engine that plugs into
Servlet engines, and can be deployed in many types of Servlet Containers,
including Tomcat, WebSphere and WebL ogic. Typically, it is deployed with the
Admin Console.

The following diagram illustrates how Web Servicesis deployed and how it
interacts with the | Stream Publisher Core components.

1 1.

Client Application || — — _ _| Servlet Container

hitp
- https
Axis Servlet
Publisher WSI | 2 P
Response
| A
4,
JMSI 2.
] Y
<<Queue>> »1 Worker Agent
Submit . i

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 177

SDK — WEB SERVICE INTERFACE

WSI Workflow

A typica workflow scenariois:

1. Theclient application submits an XML request to the | Stream Publisher
WS server.

2. ThelStream Publisher WS, running on Servlet Containers as a Web
Service, receives the client XML request and analyzesit. If the request had
been handled before and has an XML response in the database, the | Stream
Publisher WSI returns the response to the client directly, otherwise it
submits the request to Submission Queue.

3. IStream Publisher fetches the XML request from the Submission Queue.

The Worker fulfills the request, generates an XML response and sends it
back to response queue.

5. ThelStream Publisher Client APl monitors the response queue and receives
an XML response back.

6. ThelStream Publisher WSI forwards the response back to the client.

Web Services Interface Methods

The IStream Publisher WSI exposes one main interface, processor, with the
following functional interface methods:

Note: Thereturn request ID specified below isthe WSI Digest ID, not the request ID
from the request table. To specify the request ID from the request table, use
name=RequestID inthe jms-properties element.

Synchronous Invocation

String execute (String xmlRequest, long timeout) ;
// return XML response

Asynchronous Invocation

String submit (String xmlRequest, String deferralTime) ;
// return request Id

String getResponse (String requestId) ;
// return XML response

String cancel (String requestId) ;
// return cancellation result

Response Handler Interface

(Thisinterface isimplemented by your company.)

void processResponse (String requestId, String xmlResponse)

178 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER WSI ARCHITECTURE

Streamback Interface

String getStream(String streamId)

Flows of IStream Publisher WSI Calls

Synchronous Invocation

Normal Flow — Synchronous Call

1: execute (<xml request>,

timeout) »|Web Services
Server

Client Application | g Aireturn <xml response>

Client API

IStream
Publisher

1. Theclient calls execute method with an XML request string and timeout.
The timeout is specified in milliseconds and must be greater than O.

2. TheWeb Services Server calls the | Stream Publisher Client APl and sends
the request to the | Stream Publisher Core.

3. ThelStream Publisher Core processes the request, receives aresponse, then
sends it back to the I Stream Publisher WSI.

4, ThelStream Publisher WSI wraps up the XML response and returnsit to the
client application.

Notes

. The I Stream Publisher WSI generates an error and returnsit to theclient if a
response was not received within the specified timeout period.

. The IStream Publisher WSI keeps requests and responsesin the database for
the specified time. During this period, when the client recallsthe execute
method with the same XML request, the | Stream Publisher WSI simply
returns the response from the database. Once the specified time expires, the
datain the database is cleared. The client recalls the execute method with
the same XML request again. The | Stream Publisher WSI submitsthis XML
request to the 1 Stream Publisher Core, processes it and receives a new
response.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 179

SDK — WEB SERVICE INTERFACE

Retry Flow - Synchronous Call with Retry

1: execute (<xml request>,
timeout)

\

3: HTTP error Web Services Server,
or timeout

4: execute (<xml request>,
L limeouf)]

6: return <xml response> Client API

e —

Client Application

IStream Publisher

1. Theclient callsthe execute method with an XML request string and
timeout. The timeout is specified in milliseconds and must be greater than O.

2. TheWeb Services Server calls the | Stream Publisher Client APl and sends a
reguest to the | Stream Publisher Core.

(Notethat the call to the | Stream Publisher WS can fail at any time because
of system or application issues.)

3. Theclient recallsthe execute method with the same XML request again.

The IStream Publisher Core processes the request and receives a response,
then sends the response back to the | Stream Publisher WSI.

5. ThelStream Publisher WSI wraps up the XML response and returnsit to the
client application.

Note: The IStream Publisher WSI prevents multiple submissions of the same request by
persisting the message digest.

180

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER WSI ARCHITECTURE

Asynchronous Invocation

Normal Flow — Asynchronous Call

1: submit (<xml request>,
deferral time)

A

2: return request ID* Web Services Server

—y
-

Client Application 5: getResponse (request ID)

6: return <xml response> Client API

-

IStream Publisher

* Thisreturn request 1D isnot the request I1D from the request table. To specify the
request ID from the request table, use name=RequestID inthe jms-
properties €ement.

1

Theclient callsthe submit method with an XML request string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

The Web Services Server generates a message digest and returns it to the
client.

The Web Services Server calls the | Stream Publisher Client APl and sends a
request to the 1Stream Publisher Core.

The IStream Publisher Core processes the request and generates a response,
then sends the response back to the | Stream Publisher WSI. The | Stream
Publisher WSI receives the response and savesit to the database.

The client asynchronously calls the getResponse method, specifying the
digest returned by the WSI as an argument.

The | Stream Publisher WSI obtains the associated XML response from the
database, wraps it up, and returns it to the client application.

Note:

Each message digest generated by the | Stream Publisher WS is unique and
persistent for each XML request.

If the request response is not available when the client calls the
getResponse method, then this method returns an appropriate XML
message instead of response.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 181

SDK — WEB SERVICE INTERFACE

Failure Flow — Asynchronous Call with Failure

1: submit (<xml request>,
deferral time) -

2: return request ID Web Services Server,

-

4: getResponse (request ID)

Client Application
5: return <xml response

< (failed)> Client API

./6 -
- -;‘a\\a

- 3 ‘eﬂ‘}e
Ay 0

IStream Publisher

1. Theclient calsthe submit method with an XML request string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

2. TheWeb Services Server generates a message digest and returnsit to the
client.

3. Thecdl to thelStream Publisher Client API fails.

The client asynchronously callsthe getResponse method using the digest
returned from WS| as an argument.

5. ThelStream Publisher WSI returns an appropriate XML failure message.
Call Back Flow — Asynchronous Call with Call-Back

1: submit (<xml request>,
deferral time)

Yy

Client Application 2: return request ID* Web Services Server,

5: getResponse (request ID)

Web Services Server Client API

IStream Publisher

182 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER WSI ARCHITECTURE

1. Theclient calsthe submit method with an XML request string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

2. TheWeb Services Server generates amessage digest and returnsit to the
client.

3. TheWeb Services Server callsthe | Stream Publisher Client APl and sends a
reguest to the I Stream Publisher Core.

4. ThelStream Publisher Core processes the request and generates a response,
then sendsit back to the | Stream Publisher WSI. The | Stream Publisher WSI
receives the response and saves it to a database.

5. ThelStream Publisher WS callsthe processResponse method of the
ResponseHandler Web service endpoint. The message digest and XML
response are passed as arguments of the processResponse method.

Notes

. The client application itself is a Web Services Server which implements the
processResponse interface.

. The URL to aclient’s Response Handler Web Service is an optional item of
the 1Stream Publisher WS configuration, and isin the Admin Console Web
Service subfolder.

. The IStream Publisher WSI supports a push back of the XML responseto a
single client Web Service URL. If multiple clients request a callback, the
client’s web server may be designed to propagate this response to other
clients.

Cancel Flow — Asynchronous Call with Cancellation

1: submit (<xml request>,
deferral time) »

- 2: return request 1D Web Services Server,

-

Client Application 4: cancel (requestID)

7: getR nse (r t 1D Client API

‘ 8: return <xml response (failed)>

IStream Publisher

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 183

SDK — WEB SERVICE INTERFACE

Theclient callsthe submi t method with an XML reguest string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

The Web Services Server generates amessage digest and returnsit to the
client.

The Web Services Server callsthe | Stream Publisher Client APl and sends a
reguest to the I Stream Publisher Core.

The client asynchronously callsthe cancel method using a digest returned
from the 1Stream Publisher WS as an argument.

The Web Services Server calls the | Stream Publisher client APl and sends a
cancel regquest to the | Stream Publisher Core.

The I Stream Publisher Core cancels the request, generates a cancel
succeed response, then sends this response back to the 1Stream Publisher
WSI. The |Stream Publisher WSI received the response and savesto a
database.

The client asynchronously calls the getResponse method using a digest
returned from | Stream Publisher WS| as an argument.

The I Stream Publisher WSI obtains the associated cancel succeed XML
response from the database, wrapsit up, and returns it to the client
application.

Notes

When the | Stream Publisher Core processes the cancel request, if the
original submit XML request has been completed, acancel failed
XML response will be generated and returned to the client.

Call back response processing is also supported with the cancel method.

WSI WSDL

WSDL describes the point of contact for a service provider. This point of contact
isalso caled the service endpoint. It provides aformal definition of the endpoint
interface and establishes the physical location of the service.

You can retrieve the | Stream Publisher WSDL using the following URL on the
server where WS is deployed:

http://wsihost:8080/wsi/services/Processor?wsdl

184

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

CONFIGURING THE ISTREAM PUBLISHER WSI IN THE CONSOLE

Configuring the IStream Publisher WSI in the
Console

Method: Configure the IStream Publisher WSI

1. When the IStream Publisher WSI starts for the first time the following
messages may appear in the log:
2006-02-10 11:08:06,338 [ERROR]

(RDHelperClassicWithFastFetch.java:491) - Could not fetch
values

java.sql.SQLException: [Microsoft] [SQLServer 2000 Driver for
JDBC] [SQLServer] Invalid object name 'VALUATION'
2006-02-10 11:08:06,369 [ERROR]

(ConfigurationHelper.java:494) - Could not configure
WebServices for domain (Context[nulll])

com.insystems.edelivery.client.wsi.ConfigurationException:
WSI.CFG.09: WebServices configuration not found for context
"default"

These errors occur if the Console and Domain databases have not yet been created
by a Console. Once these databases are created, restart the | Stream Publisher WSI
Web application to reconnect to these databases.

2. Create aWeb Service entity under the bomain folder by clicking the Select
an entity to add drop-down list, then selecting Web Service.

3. Click the Web Serviceitem. All the attributes appear on the right side. If
you have multiple WS instances, click the Select an entity to add drop-
down list and select a context.

4, Enter the attributes.

Attribute Example Description

simpleSubmissionQueue submit the Submission Queue for requests

replyQueue response the reply queue for web service requests; see the
note following this table regarding changing this
value

replyTTL 1440 the number of minutes to keep XML responsesin
the database for client requests

responseHandlerURL the URL of the client web service endpoint that
implements the ResponseHander interface, for
example

http://server/wsiclient/services/
ResponseHandler

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 185

SDK — WEB SERVICE INTERFACE

5. Savethe configuration and restart the | Stream Publisher WSI Web
application.

Note: [f therReplyQueue valuechangesto anew queue name, you must stop and restart
the web server service and all worker agent services so that the Web Services
response listeners can monitor to the new response queue.

WSI Client Examples

| Stream Publisher WSI client examplesarein wsi-sdk. zip onthe |Stream
Publisher installation package.

Note: If you areimplementing Response Handler Interface on the .NET platform, ensure
the implementation class hasRout ingStyle Set t0 RequestElement and that
the main method uses RPC formatting. See the following C# .NET example:

[SoapDocumentService (RoutingStyle=SoapServiceRoutingStyle.
RequestElement)]
public class ResponseProcessorService : System.Web.Services.WebService

{

[WebMethod]

[SoapRpcMethodAttribute ("http://wsi.client.edelivery.XYZ.com",
RequestNamespace="http://wsi.client.edelivery.XYZ.com",
ResponseNamespace="http://wsi.client.edelivery.XYZ.com")]

public void processResponse (string digest, string xmlResponse)

{
}

186 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

TROUBLESHOOTING THE ISTREAM PUBLISHER WSI

Troubleshooting the IStream Publisher WSI

. Always start the IBM MQ Series or OpenJM S Agent before starting the
| Stream Publisher Web Service.

. When starting the Web Service, check the log file to ensure that the
AsyncResponseReceiver listener has started correctly. Look for errors
suchasListener cannot start.

OnWAS, for example, thelog fileislocated in:

C:\Program Files\WebSphere\AppServer\logs\serverl\
SystemOut. log

. Ensure that the | Stream Publisher WSI and Communicator (formerly called
Correspondence) are not using the same response queue, otherwise the
response may be processed by the wrong application.

. Ensure that the | Stream Publisher Web Service JDBC provider is set up
correctly, and test that the connection is successful.

. The Web Serviceis designed to prevent the execution of the same request
more than once. However, if you want to execute the same request more
than once, simply to add a space to the XML request so that the system can
generate a unique digest.

IStream Publisher WSI Log files
WSI can write system messages to the following log files.

wsi.log
Thislog file captures events of | Stream Publisher WSI activities.

Default locations:

C:\Program Files\Oracle\IStream Publisher install
folder\logs\wsi.log

There are five debug levels: DEBUG, INFO, WARN, ERROR, and FATAL. If you
changethelog level in:

C:\Program Files\Oracle\IStream Publisher install folder\
tomcat\webapps\wsi\WEB-INF\classes\log4j.properties

to DEBUG, then all debug information will be recorded in wsi . 1og.

Deployed Application Server JVM Log Files
The location of these log files depends on the specific application server.

For example, for WAS, the default location for these filesis:
WebSphere install folder\AppServer\logs\serverl\

Thefilesare systemOut . log and System Err.log

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 187

SDK — WEB SERVICE INTERFACE

188 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Appendix A

Reference Material — Samples

This appendix contains code samples that are referenced from other sections of
this document, and includes describes:

. Sample Déliver-to-Email Request on page 190

. Sample Aggregate Request on page 191

. Header Page Template Example on page 193

. Interactive, Batch, and Embedded XML Data on page 194

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 189

REFERENCE MATERIAL — SAMPLES

Sample Deliver-to-Email Request

<deliver-to-email subject="Test Subject" priority="normal" >
<body-sources>
<source url="ftp://{ftp domain}/{path} emailbody.txt"
ContentType="text/plain">
<credentials user="{ftp user}" password="${ftp pwd}"/>
</sources>
</body-source>
<sender
name="1st Submitter"
emailAddress="{SenderEmail}" />
<receiver
name="1st Receiver"
emailAddress="{ReceiverEmail}"
type="to" />
<attachment>
<source
url="ftp://{ftp user}:{ftp pwd}e{ftp domain}/path
document .doc"
ContentType="application/msword" />
</attachment>
</deliver-to-emails>

190 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

SAMPLE AGGREGATE REQUEST

Sample Aggregate Request

This request will generate to DOC, render DOC to PDF, render PDF to PCL, and
render DOC to HTML.

Sample Aggregate Request

<request-aggregate>
<request>

<generate-calligo-document>
<calligo-source UISR="ModelDoc Infosource:'ModelDocument.CMS'"
docType="cms"/>

<destination
url="ftp://{ftp user}:{ftp password}e{ftp domain}/{path}/
document .doc" />

<key-data name="policy" value="12345" type="string"/>

</generate-calligo-document>
</request>

<dependent -aggregate type="render-Word-to-PDF">
<request>
<render-Word-to-PDF>
<source
url="ftp://{ftp user}:{ftp password}e{ftp domain}/{path}/
document .doc"/>

<destination
url="ftp://{ftp user}:{ftp password}e{ftp domain}/{path}/
document .pdf"/>

<output-name>PDF Compatible Printer Driver</output-names
<macro name="UpdateFields" type="word"/>
</render-Word-to-PDF>
</request>

<dependent-aggregate type="render-PDF-to-PCL">
<request>
<render-PDF-to-PCL>
<source url="ftp://{ftp user}:{ftp password}e{ftp domain}/
{path}/document .pdf"/>

<destination url="ftp://{ftp user}:{ftp password}e{ftp domain}/
{path}/document .pcl"/>

<output-name>HPLJIII</output-name>
</render-PDF-to-PCL>

</request>

<service-queues

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 191

REFERENCE MATERIAL — SAMPLES

<queue name="{ServiceQueue}" type="Name"/>
</service-queue>

<reply-to-queues>

<queue name="{ResponseQueue}" type="Name"/>
</reply-to-queues
</dependent -aggregate>

<service-queues
<queue name="{ServiceQueue}" type="Name"/>
</service-queue>

<reply-to-queues>

<queue name="{ResponseQueue}" type="Name"/>
</reply-to-queue>
</dependent -aggregate>

<dependent-aggregate type="render-Word-to-HTML">
<request>
<render-Word-to-HTML>
<source url="ftp://{ftp user}:{ftp password}e{ftp domain}/
{path}/document .doc"/>

<destination url="ftp://{ftp user}:{ftp password}e{ftp domain}/
{path}/document .htm"/>

<macro name="UpdateFields" type="word"/>
</render-Word-to-HTML>
</request>

<service-queues
<queue name="{ServiceQueue}" type="Name"/>
</service-queue>

<reply-to-queues>
<queue name="{ResponseQueue}" type="Name"/>

</reply-to-queue>
</dependent -aggregate>
</request-aggregates>

192 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

HEADER PAGE TEMPLATE EXAMPLE

Header Page Template Example

{ sequence number}

{job-name}
Job Number: {job-number}
Job Submit Date: {job-submit-date}
Job Submit Time: {job-submit-time}

Distribution Instructions;

{ distribution-instructions}

{message}

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 193

REFERENCE MATERIAL — SAMPLES

Interactive, Batch, and Embedded XML Data

Example:

Interactive Mode

In the example below, the XML file in the referenced datais in Interactive mode,
meaning: one XML file per document generation.

<generate-calligo-document>

<calligo-source
UISR="ModelDocuments:LTC Rate Increase Letter.CMS"
docType="cms"/>

<destination url="ftp://host/destination/
LTC Rate Increase_ Letter.doc">

<credentials user="ftp user" password="ftp password"/>
</destinations>

<generation-data name="infosource_ location">
<source url="file://domain/share/source/2.xml"
deleteAfterExecution="success"/>
</generation-datas>

</generate-calligo-document >

Here, the name attribute in the generation-data e ement isthe name of the
location of the XML file which references key data.

QUERY "FILE=" + infosource location, "XMLInfoSource"

Batch

Batch data has one XML file for many different document generations, each of
which is separated by aunique JOB ID. Using Batch referenced datawould result
in the <xm1 -data> section being different than the previous example, as follows:

key-data
<generate-calligo-document>

<calligo-source
UISR="ModelDocuments:LTC Rate Increase Letter.CMS"
docType="cms"/>

<destination url="ftp://host/destination/
LTC Rate Increase Letter.doc">

<credentials user="ftp user" password="ftp password"/>
</destinations>

<key-data name="$jobIDkey" value="2" type="numeric"/>
<generation-data name="infosource location">
<source url="file://domain/share/source/
2Batch.xml"/>
</generation-datas>
</generate-calligo-document >

194

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

INTERACTIVE, BATCH, AND EMBEDDED XML DATA

Here, the name attribute in the generation-data e ement isthe name of the
location of XML file which references key data. The name attribute in the xm1 -
data element is the name of the key data to be replaced with the value specified
in the attribute job1D.

Example: QUERY "FILE=" + infosource location + ";jobid=" + $jobIDkey,
"XMLInfoSource"

Embedded Data

Embedding data encloses existing data “as-is’ for generation in the XML file. As
with referenced data, the name element is used to specify the key datathat will be
replaced with the embedded data. All of the datafor generation must be embedded
in the request.

<generate-calligo-document>
<calligo-source
UISR="ModelDocuments:LTC Rate Increase Letter.CMS"
docType="cms"/>

<destination url="ftp://host/destination/
LTC Rate Increase_ Letter.doc">

<credentials user="ftp user" password="ftp password"/>
</destinations>

<generation-data name="infosource_ location">
<job-datas>
<?xml version=&gquot;1l.0"?>
<interactive>
<PolicyNumber
type=" ; string" >0764344444&1t;/
PolicyNumberé> ;
&1t ; NewPremium
type=" ;double" > ;404 .68&1t;/
NewPremiumé> ;
<EffectiveDate type="string">12/
15/2001&1t; /EffectiveDates>
&1t ; CompanyCode
type=" ; string" >01</
CompanyCode> ;
<SystemId type="string">23</
SystemId><Entityé>
&1t ;TaxId type="arrayé" >
<row type="stringé"/>
<row type="string"/>
<row type="string"/>
<row type="string"/>
<row type="string">
555555555&1t; /row> ;
<row type=&gquot;string"
> ;555555556&1t; /rowsgt ;

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 195

REFERENCE MATERIAL — SAMPLES

< /TaxIds>

&1t ; TaxIdType type="array">
<row type="string"/>
<row type="string"/>
<row type="string"/>
<row type="string"/>
<row type="string">
undefined< /row>

<row type="string">
undefined< /row&agt;

< /TaxIdType>

< /Entity&at;

</interactives>

</job-datas>

</generation-datas>
</generate-calligo-document>

Here, the name attribute in the generation-data € ement isthe name of the
location of XML file which references key data.

Example: QUERY "FILE=" + infosource location, "XMLInfoSource"

196 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Appendix B

Glossary

A-C-D-E-1-J-M=0O-P-Q-R-S-T-U-W

A

Administrative Command
A request to control and administer | Stream Publisher components such as
start, stop, or queryState.

Admin Console
A front-end application used to send administrative commands to | Stream
Publisher.

Admin Queue
A Queue used to store administrative commands.

Agent
| Stream Publisher uses agents to control and manage the functioning of the
system.

Aggregate Request
A type of Composite Request where its component Simple Requests are
specified in the body of the composite in atree-like structure. The hierarchy
they form represents their processing dependencies. Each request spawned
from an aggregate request or Composite Request has amain request ID and an
aggregate or composite request 1D in addition to its own request ID. When
tracing an aggregate or composite request there are multiple responses, one for
each simple request.

Aggregate Service
A type of Service used when one or more Simple Services arerequired in a
particular order.

Application Programming Interface (API)

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 197

GLOSSARY

A set of routines, protocols, and tools for building software applications. A
good APl makesit easier to develop a program by providing all the relevant
building blocks.

C

Calligo Document
The previous name for an | Stream Document.

Composite Request
A Request containing more than one requests.

Completion Queue
The Queue into which the Simple Service places a message to inform the
Distribution Service that the processing of the Task Graph is how complete.

Console
See Admin Console.

Component
A separate, functioning area of the |Stream Publisher system,

Console Database
The database from which the 1Stream Publisher components directly retrieve
their configuration.

Content Service
Provides access to content generated by the 1Stream Document Assembly
Service.

Coordinated Universal Time (UTC)
A time scale, based on the second (SI), as defined and recommended by the
CCIR, and maintained by the Bureau International des Poids et Mesures
(BIPM).

Component Object Model (COM)
A model for binary code developed by Microsoft. The Component Object
Model (COM) enables programmers to devel op objects that can be accessed
by any COM-compliant application. Both OLE and ActiveX are based on
COM.

D

Delivery Channel
Represents a physical device that can transmit information in printed form
(print, fax) or electronic form (e-mail, repository).

Delivery Package
The package of Recipient Items after rendering and before they are about to be
delivered to a Delivery Channel.

Delivery Preference

198 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

A method of the recipient that controls the default settings for how a Request
will be delivered for that recipient.

Delivery Service
All functionality related to delivering the content to the recipients. Once
content has been extracted and rendered (if applicable), the final step in the
distribution process is to deliver the content to the recipients. The following
methods are available to deliver content: Repository, Printer, E-mail and Fax.

Distribution Event
An event that occurs every time the processing of a Distribution Request
reaches a predetermined point where specific action should be taken or where
customization of the distribution processitself is possible.

Distribution Item
One of the documents or files that make up the Distribution Package.

Distribution Package
The full set of interrelated Distribution Item documents that make up the
subject of the Document Distribution process.

Distribution Request
A request to distribute a package of interrelated documents to a group of
recipients through various Delivery Channels. The Distribution Request isa
Composite Request.

Distribution Service
A composite service that provides document distribution functionality invoked
through a Distribution Request. The process of document distribution is
defined as the selective delivery of a package of interrelated documentsto
multiple recipients, through various Delivery Channels.

Distribution Service Queue
The Queue that services al Distribution Requests.

Document Distribution
Consists of the distribution of a package of business interrelated documents to
alist of recipients, in various formats and through different Delivery Channels.

Document Management System (DMS)
A multi-dimensional or hyperlinked organization of documents.

Domain Database
The database to which Request Log Events are logged.

E

Event Handler
The Event Handler isinvoked and executed following the occurrence of the
event to which it is associated.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 199

GLOSSARY

InfoSource
I Stream InfoSources are specific to the | Stream Assembly Engine and are used
to reference generated | Stream documents or model documents.

Instant Delivery
An operating mode for Delivery Channels. Inthismode, the actual delivery for
every item in the Delivery Package can proceed as soon as the item becomes
available and a delivery item ready event is raised.

IStream Document
A document generated from a component in | Stream Document Manager.
Formerly called a Calligo document.

J

Java Message Service (JMS)
An application program interface (API) from Sun Microsystems that supports
the formal communication known as messaging between computersin a
network. Sun’s JM S provides a common interface to standard messaging
protocols and also to special messaging services in support of Java programs.

M

Multipurpose Internet Mail Extensions (MIME)
MIME is a specification for formatting non-ASCIl messages so that they can
be sent over the Internet. Many e-mail clients now support MIME, which
enabl es them to send and receive graphics, audio, and video files viathe
Internet mail system. In addition, MIME supports messages in character sets
other than ASCII.

O

Open Database Connectivity (ODBC)
Open DataBase Connectivity is a standard database access method devel oped
by Microsoft Corporation. The goa of ODBC isto make it possible to access
any data from any application, regardless of which database management
system (DBMYS) is handling the data. ODBC manages this by inserting a
middle layer, called a database driver, between an application and the DBMS.

The purpose of this layer isto translate the application’s data queries into
commands that the DBM S understands. For this to work, both the application
and the DBM S must be ODBC-compliant —that is, the application must be
capable of issuing ODBC commands and the DBM S must be capabl e of
responding to them.

P

Public Admin Queue

200

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

The Queue from which an Admin system using JM S messages submits
administrative requests to | Stream Publisher. | Stream Publisher Admin
Console does not require this queue since it communicates to the system using
RMI.

Q

Queue
The area where messages (or requests) are sent to.

Queue Set
A logical set of Submission Service, Simple Service and Distribution Service
Queues.

Queue Set Reference
A reference to a Queue Set within aWorker. It contains the number of listeners
and the name of the Queue Set.

R

Recipient
A person or an organization to which the items in the Distribution Package are
addressed. Each recipient declares preferences for the delivery methods and
formats to be used. Other business process specific information can be
attached as metadata, for example, the name, title, or contact.

Recipients are grouped together into a collection also called recipients. This
provides a place to attach metadata that is common to al recipients.

Thelist of recipients can be ordered by assigning a delivery order to each
recipient. Recipientswhere a delivery order isnot specified are processed after
al of those for which adelivery order is specified.

Recipient Item
Recipient Items as defined in the Recipient Package are sent through all
Delivery Channels, as defined by the delivery-preferences Setting.

For example, if aDelivery Preferenceisapreference-fax or a
preference-email, itissent asasingle delivery. That is, one e-mail or fax
request is sent per recipient package, and al recipient items are sent as
attachmentsin it.

For preference-printer Of preference-repository, therewill be
multiple delivery requests — one per recipient item. An example of multiple
delivery requests per recipient item is a standard print request.

Recipient Package
A subset of the Distribution Package that contains only the items addressed to
aparticular recipient.

Remote Method Invocation (RMI)
The action of invoking a method of aremote interface on aremote object. A
method invocation on aremote object has the same syntax as a method
invocation on alocal object.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 201

GLOSSARY

Rendering Request
A request for rendering from one particular format to another.

Rendering Service
Once content has been generated, the next step is to transform the content from
its current format into a different format. The formats include; Microsoft
Word, HTML, PCL, PDF, and TIFF.

Repository API
The API for accessing the repository.

Request
A specific set of instructions to perform atask within the I Stream Publisher
system. See Aggregate Request, Composite Request, Distribution Request,
Rendering Request, Service Request, and Simple Request.

Request Log
A facility used to log information about the state of all Requests currently in
the system. It is made up of the Request, ErrorInfo, Status, and
StatusOrder tables.

Request Log Event
An action that occurs in the | Stream Publisher system when processing a
request. Reguest log events are stored in the Domain Database.

Request Metadata
Custom information contained in the Distribution Request, for the use of the
Event Handlers. The metadata associated with the Distribution Request itself
aswell asthat associated with the recipients can be obtained as an instance of
the Metadata class. From this, the metadata can be accessed as an XML string
using the toxMLString () method.

Response
A message that | Stream Publisher components send to Service Response
Queues as the result of the execution of functional or administrative
commands.

Response Queue
A Queue where the service will place messagesin response to Service Request
messages. The queue is designated by the submitter of the Service Request.

S

Service
A generic name for both Simple and Composite Services. See also Composite
Reguest and Simple Service.

Service Manager
The component that retrieve requests from a Service Queue and selects the
appropriate service to process them.

Service Manager Listener

202

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

One of the many threads on which a Service Manager can process requests
from a Service Queue.

Service Queue
A Queuein the IMS Server that is used to store Service Requests.

Service Request
A Simple Request or Composite Request.

Simple Mail Transfer Protocol (SMTP)
A protocol for sending e-mail messages between servers.

Simple Request
A reguest to execute a single document-related operation, such as generating a
document, rendering from one particular format to another, delivering through
aparticular channel.

Simple Service
A part of the system functionality that performs awell-defined document
distribution function. The service can be invoked through a Service Request.

Submission Service
The Queue to which messages are submitted.

Sub-Request
A sub-tree of an Aggregate Request. It can be either a nested tree of requests,
or ajust asingle Simple Request.

Synchronized Delivery
An operating mode for Delivery Channels. Inthismode, all itemsinaDelivery
Package must first be accumulated and available and a* delivery package
ready” event must be raised before the actual delivery can begin.

T

Task
An operation that must be performed as part of the processing of a Distribution
Request. The operation consists of the invocation of a Simple Service.

Task Graph
A graph, with nodes that represent tasks, events and Event Handlers, and with
edges that represent transitions and dependencies between the nodes. Task
graphs represent general computation jobs which have been decomposed into
modules called tasks that are executed according to some precedence
constraints, such as a distribution of the overall completion time.

Test Console
An application that allows you to create, save and manually submit requests to
| Stream Publisher, as well as monitor the Queues. In doing so, you are
verifying that your requests and |1 Stream Publisher are working properly.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 203

GLOSSARY

U

Universal Information Service Resource (UISR)
A method for specifying the location of 1Stream documents.

Universal Naming Convention or Uniform Naming Convention (UNC)
A PC format for specifying the location of resources on alocal-area network
(LAN). UNC uses the following format:

\\server-name\shared-resource-pathname

Uniform Resource Locator (URL)
The global address of documents and other resources on the Internet. The first
part of the addressindicates what protocol to use, and the second part specifies
the IP address or the domain name where the resource is located.

Utility Service
A set of standard services provided with | Stream Publisher, including Run
Word macro, Concatenate PCL streams and Delete files.

\W

Worker
The I Stream Publisher component responsible for processing requests.

Worker Machine
A computer on which Service Managers and services run. Workers are the
system’s basic unit of scalability.

204

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

Appendix C

SDK - Encrypted Credentials

This chapter describes:

Passing Credentials Securely on page 206
Encrypted Credentials on page 207
Encrypted Data on page 208

Security Keys on page 209

Example of a Credentials Set on page 210

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

205

SDK - ENCRYPTED CREDENTIALS

Passing Credentials Securely

To alow passing credentials (user name and password) in a secure manner in the
XML request, | Stream Publisher supports passing of the security sensitive
information in encrypted form.

The only form of encryption that | Stream Publisher will initially support will be
symmetric key encryption. This means that both the client submitting the message
that contains encrypted credentials and | Stream Publisher will have to share the
same key. The client uses it to encrypt the credentials and |1 Stream Publisher uses
it to decrypt them. The management of the key will be addressed by the | Stream
Publisher installation and deployment specification.

The Java Cryptography Extension

I Stream Publisher uses the Java Cryptography Extension for credentials
encryption/decryption. More specifically it supports the Sun JCE provider version
1.2 for JCE 1.2.1. This provider implements the following symmetric key
algorithms: DES, Triple DES, Blowfish and PBE. These algorithms are
referenced in the XML element encryption-method as DES, DESede, Blowfish
and PBEWithM D5ANdDES respectively.

206

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

ENCRYPTED CREDENTIALS

Encrypted Credentials

Encrypted credentialsin the Distribution Request are contained within an element
named <encrypted-credentials>. The structure of this element is presented below:

<!ELEMENT encrypted-credentials (encrypted-data) >
The <encrypted-credentials> element contains only an <encrypted-data> el ement.

This represents ablock of cipher data and will be used in the future more
generally for any kind of encrypted information.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 207

SDK - ENCRYPTED CREDENTIALS

Encrypted Data

The <encrypted-data> element contains a block of encrypted information.
<!ELEMENT encrypted-data (encryption-method, key-info?,
cipher-data) >
<!ATTLIST encrypted-data

id ID #IMPLIED>

Encryption Method

The encryption method defines the parameters use for the encryption of the data.
< !ELEMENT encryption-method EMPTY>
<!ATTLIST encryption-method

algorithm CDATA #REQUIRED >

The agorithm attribute contains not only the name of the encryption algorithm
used but also the feedback mode and the padding scheme. The feedback modes
and padding schemes allowed are dependent on the encryption algorithm used.

The structure of the string in the algorithm attribute is like this. "algorithm/mode/
padding” or just "algorithm" case in which default values are used for mode and
padding.

key-info Parameter

The <key-info> element identifies the key that has been used for encryption.
<!ELEMENT key-info EMPTY>
<!ATTLIST key-info

keyName CDATA #REQUIRED>

| Stream Publisher is configured possibly with many symmetric keys at
deployment time. Keys are generated at deployment and multiple keys can be
generated for the use of multiple, different clients. Each key is assigned a name
and the client must refer to the key that it used to encrypt the credentials by its
name.

Cipher-Data Parameter

This element contains the actual encrypted information (cipher data).
< !ELEMENT cipher-data (cipher-value) >
< !ELEMENT cipher-value (#PCDATA) >

Cipher data is base64-encoded sequence contained within the <cipher-vaue>
element.

208 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

SECURITY KEYS

Security Keys

Security keys can be used in | Stream Publisher when you want to use encrypted
credentials as parameters for source and destination files.

The keys can be generated by a client application and added to a static
| Stream Publisher configuration at any time.

Every key has three main parts:

1. agorithm name (used in <encryption-method algorithm="value"/
>, can be DES, DESede, PBEWithM D5ANdDES or Blowfish).

2. key name (used in <key-info keyName="value"/>, Can beany
alphanumeric value)

3. key data (actua key, which will be used for encryption by you and
decryption by | Stream Publisher itself).

For an | Stream Publisher installation using the Admin Console, the location of the
Security Keysin the Console database is

Domain/Settings/SecuritySettings/Algorithm algorithm name/KeyData
key name/Value=key data

where

* algorithm name iSone supported by | Stream Publisher (DES,
DESede, Blowfish, or PBEWithM D5ANdDES)

* key name isany nameused inthe element, key-info inencrypted-
credentials

* key dataistheactual key used for encryption in base 64 encoding.

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE 209

SDK - ENCRYPTED CREDENTIALS

Example of a Credentials Set

Here is an example of a set of credentials passed in a Distribution Request along
with one of the items of the Distribution Package:

<distribution-requests>
<encrypted-key id="X1"
carriedKeyName="Credentials">
<encryption-method algorithm="DSA"/>
<key-info keyName="E-Delivery Public"/>
</encrypted-key>

<!-- the rest of the request ommited for brevity -->

<source URL="ftp://host/location/filename.tiff"
contentType="image/tiff"
<encrypted-credentials>
<encrypted-datas
<encryption-method algorithm="DES/CFB/
NoPadding"/>
<key-info keyName="gession key"/>
</encrypted-datas>
<cipher-datas>
<cipher-value>AJD3242D53EW34JTWK</cipher-
value>

</cipher-datas>
</encrypted-credentials>
</source>

</distribution-requests>

210 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

INDEX

A
aggregate
request
limitations, 53
processing, 53
service XML request element, 17
architecture, 131
asynchronous
call
call back, 182
cancellation, 183
failure, 182
flow, 181
invocation
diagram and process, 181
web service interface, 178

B
batch, 194

C
call back flow, asynchronous, 182
Cdlligo
item, 63
references to, 13
cancel flow, asynchronous, 183
cancelled reguests, 100
cipher-data parameter, 208
client
API, 124
configuration, 124
interfaces, 117
exceptions, 123
client.xml, 125
clientjmsqueues.xml, 125
clientsecurity.xml, 126
concatenating
PCL files, 171
PCL streams, 45, 79
PS streams, 47, 81
configuration
files, 124
default, 126
implementation, 126
connection
creating, 137
factory, 136
interface, 136
opening, 137

content service, 26
contenttype

details, 58

distribution request, 57
issue, 68

parameter, 65, 69

cover pages, 111
credentias

deleting files, 51
set example, 210

critical event handlers, 76
custom fields, adding, 173
custom service deployment, 155

D

DAOfactory, 172

data access objects, 158, 171
decoupling the client, 131
default configuration files, 126
deleting

distribution items, 64
files, 49

delivering

CL G files through InfoSources, 21
content to arepository, 39
cover pagesto afax and printer, 112

delivery

deployed application server VM log files, 187

channels, 71
and delivery packages, 158
settings, 72
items
ready, 74
removing, 165
items, adding, 165
package ready, 74
packages, 158, 164
preference considerations, 67
service, 39
to repository, 70
units, logical vs. physical, 68

deployment, 177

detailed request parameters, 25
direction, PDF preferences, 90
distribution

complete, 75

item, 162
description and syntax, 64
overview, 63

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

211

INDEX

parameters, 65
package, 161
overview, 63
ready, 74
request, 100, 160
API, 157
completion, 128
completion, naotification of, 128
entity, 161
event handler example, 165
failure policy, 60
metadata, 78
overview, 57
sample, 83
structure, 59
troubleshooting, 61
XML-based, 57
service, 56, 61
cleanup, 165
extending, 157
state DAO, 171
distribution flag, stream back, 106
distribution request
PDF preferences, 88
stream back, 106
distributor
factory, 117
creating an instance, 117
interface, 118
interface, 118
distributor.xsd, 16
document conventions, 12
document layout, PDF preferences, 93
document title, PDF preferences, 93
documentation, 14
duplexing options, 46, 80

E
element, 70
embedded
data, 195
XML, 28
with plain data, 29
embedded codes, 42
encrypted
credentials, 206, 207
data, 208
encryption
flags, specifying, 49
method, 208
entities, 158, 159
error
log levels, 101

messages, 62

errorinfo table, 99
event handlers
concatenate PCL streams, 79
critical, 76
distribution request
metadata, 78
processing, 74
distribution request, in, 158
IDs, 167
implementation, 168
multiple, 76
overview, 157
response, 158
with proxy, 170
without a proxy, 169
events, 74
supported services, 75

F
fail fast failure policy, 60
failed requests, 100
failure flow asynchronous call, 182
files, referencing, 18
flows of WS calls, 179
folder sources, 50
functionality
categories, 132
determining supported, 131

G
generate Calligo document
service, 26
XML sample, 30
generate | Stream document service see generate Calligo
document service
glossary, 197
graphics, 32
guide overview, 11

H
header page, 79

template example, 193
high and low parts, 96

[
identifiers, 145
implementation, 171
installation, 177
instant delivery, 71
interactive
batch
embedded XML data, 194
mode, 194

212

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

INDEX

| Stream
document item, 63
item delivered, 75

J
java

code, 150, 155

example, 150

cryptography extension, 206
JM'S message header and properties, 23
job, single, into multiple streams, 79
JVM log files, 187

K
key-info parameter, 208

L

layout, PDF preferences, 91

live request message status, 96
logging, 126

logical vs. physical delivery units, 68
loopback service, 62

low and high parts, 96

M
mapping, 100
metadata
accessing, 161
elements, 78
MIME types, 58
mode, PDF preferences, 92
monitoring requests, 95
multiple
event handlers, 76
streamsinto one job, 79
multithreading, 137

N
non-critical, 76
nonfullscreen-mode, PDF preferences, 92
normal flow
asynchronous call, 181
synchronous call, 179
notification of distribution request completion, 128

@)
object
metadata, 142
relationships, 160
opening the connection, 137
operating mode, 71, 157
optional parameters, 46, 80
overview

Publisher, 13
WS architecture, 177

=]
package delivered, 75
parameters, 16
path, 135
PDF preferences
direction, 90
distribution request, 88
document layout, 93
document title, 93
layout, 91
limitations, 93
mode, 92
nonfullscreen-mode, 92
overview, 88
pdf-flags, 91
pdf-page, 91
print-scaling, 90
reading direction, 93
simple services, 88
structure, 90
tag, 90
pdf-flags, 91
pdf-page, 91
perseverance failure policy, 60
physical vs. delivery units, 68
print-scaling, PDF preferences, 90
Publisher
overview, 13

Q
query, 135
queues, 13

R
reading direction, PDF preferences, 93
recipient
description, 66
element, 66
entities, 162
package, 68
ready, 74
parameters example, 67
relationships, 163
reference language, 133
context, 134
referenced
XML data, 27
code samples, 28
embedded, 27
referencing files, 18

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

213

INDEX

RefID example, 67
rendering
| Stream doc to Word, 38
PDF to PCL, 36
PDF to PS, 36
PDF to TIFF, 37
service XML sample, 35
services, 31, 69
TIFFto
PCL, 37
PDF, 37
PS, 38
Word to
HTML, 31
PCL, 32
PDF, 33
PS, 35
TIFF, 35
TXT, 35
render-param subelement, 69
renditions, 144
repository
adapter, adding, 149
APl overview, 130
file, 64
folder, 64
interface, 139
objects, 141
accessing, 131
content, 148
request
log
agent configuration, modifying, 173
database, 97
database table, 173
message, customizing, 173
table, customizing, 173
messages, 96
metadata, 24
monitoring, 95
table, 97
tracking, 95
validating, 17
requests
for stream back documents, 105
gueues and, 13
supported by stream back, 105
required properties, 136
response
exceptionlistener interface, 120
handler interface, 178
listener interface, 120
parameters, detailed, 25
resubmitting failed or cancelled requests, 100

retry flow - synchronous call, 180
run Word macro, 45

S
sample, 189
aggregate request, 191
deliver-to-email, 190
distributor configuration, 128
structure, 155
XML fragments, 27
saveAsStreamBack, 105
schemaname, 133
SDK overview, 116
security keys, 209
sequence number, 76
services, 120
and events, 75
interface, 169
invocation sequence, 121
reguest example, 152
session, 119
interface, 119
simple service, 15
creating and adding, 154
PDF preferences, 838
XML request elements, 16
simple use case, 154
status table, 98
statusorder table, 99
stream back
considerations and limitations, 109
creating requests for documents, 105
distribution flag, 106
distribution request, 106
request Process, 106
supported requests, 105
web service, process, 108
streams, 79
header page, 46
structure, sample, 155
synchronized delivery, 71
synchronous
cal, 179
call with retry, 180
invocation, 178, 179

T
template URL, 46, 80
tracking request, 95
troubleshooting
distribution request, 61
WS, 187

214

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

INDEX

U
uniform resource identifiers, 133
unique request 1D, 96
updating delivery items, 157, 165
URI examples, 135
URL
URL connection, 147
URLstreamhandler, 146
URL streamhandlerfactory, 145
utility services, 45

V
versions, 143

W
web service
applications, 176
enabling, 104
interface, see WS
process, stream back, 108
WebDAYV repository adapter, 20
wildcards, 50, 64
Word
table of contents, updating, 31
to HTML related files, 31
to-HTML limitations, 109
WEI
architecture, 177
benefits, 176
client examples, 186
configuring, 185
configuring in the console, 185
flow of cals, 179
genera information, 177
log files, 187
methods, 178
overview, 176
troubleshooting, 187
workflow, 178
wsdl, 184
WSl.log, 187

X
XML schema, 16

ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

215

INDEX

216 ISTREAM PUBLISHER VERSION 4.3 INTERFACE REFERENCE GUIDE

	Contents
	Overview
	Document Conventions
	IStream Publisher
	Queues and Requests

	IStream Publisher Documentation

	Simple Services
	Parameters and XML Schema
	Distributor.xsd
	Validating Requests

	Referencing Files
	WebDAV Repository Adapter
	Delivering CLG Files through InfoSources

	JMS Message Header and Properties
	Request Metadata

	Detailed Response Parameters
	Content Service
	Generate Calligo Document Service Overview
	Using Referenced and Embedded XML Data
	Generate IStream Document XML Sample

	Rendering Services
	Rendering a Microsoft Word Document to HTML
	Rendering a Microsoft Word Document to PCL
	Rendering a Microsoft Word Document to PDF
	Rendering a Microsoft Word Document to PostScript
	Rendering Service XML Sample
	Rendering a Microsoft Word Document to TIFF
	Rendering a Microsoft Word Document to TXT/RTF
	Rendering a PDF Document to PCL
	Rendering a PDF Document to PS
	Rendering a PDF Document to TIFF
	Rendering a TIFF Image to PCL
	Rendering a TIFF Image to PDF
	Rendering a TIFF Image to Postscript
	Rendering an IStream Document to Microsoft Word

	Delivery Service
	Delivering Content to a Repository
	Delivering Content to a Printer
	Delivering Content to an E-mail Server
	Delivering Content to a Fax Server
	Embedded Codes
	Delivery Service Request XML Sample

	Utility Services
	Run Word Macro
	Concatenating PCL Streams
	Concatenating PDF Files
	Concatenating PS Streams
	Encrypting PDF Documents
	Deleting Files and Folders

	Aggregate Request
	Aggregate Request Processing
	Aggregate Request Limitations

	Distribution Service
	The Distribution Service
	The Distribution Request
	The Distribution Request Structure
	IStream Publisher Distribution Request Failure Policy
	Troubleshooting the Distribution Request

	The Distribution Package
	The Distribution Item

	Recipients
	Recipient
	Recipient Package

	Delivery Channels
	Operating Modes

	Event Handlers
	Events
	Distribution Request Metadata
	Concatenating PCL Streams
	Concatenating PS Streams

	A Distribution Request Example

	PDF Preferences
	Overview of PDF Preferences
	Simple Services
	Distribution Request

	Structure
	<pdf-preferences>
	<pdf-flags>
	<pdf-page>

	Limitations
	Reading Direction
	Document Layout
	Document Title

	Tracking and Monitoring Requests
	Request Messages
	Unique Request IDs
	Live Request Message Status

	The Request Log Tables
	Request Table
	The Status Table
	The ErrorInfo Table
	The StatusOrder Table

	Resubmitting a Failed or Canceled Request
	Distribution Requests
	Mapping

	Error Log Levels

	Stream Back
	Enabling the IStream Publisher Web Service
	Creating Requests for Stream Back Documents
	saveAsStreamBack Value
	Supported Requests

	Overview of the Stream Back Request Process
	Distribution Request Example

	Overview of the Stream Back Web Service Process
	Considerations and Limitations

	Creating and Using Cover Pages
	Delivering Cover Pages to Fax and Printer

	SDK - The IStream Publisher Client API
	The IStream Publisher Client API
	Client API Interfaces
	Distributor Factory
	Session
	The ResponseListener and ResponseExceptionListener Interfaces
	Services

	IStream Publisher Client Exceptions
	Configuring the IStream Publisher Client API
	Configuration Files
	Configuration Implementation
	Notification of Request Completion

	SDK - Repository API
	The Repository API
	The API Architecture
	Categories of Functionality

	Reference Language
	Uniform Resource Identifiers
	Query

	The Connection Interface
	Connection Factory
	Creating a Connection

	The Repository Interface
	Repository Objects
	Object Metadata
	Versions
	Renditions

	Identifiers
	URLStreamHandlerFactory
	URLStreamHandler
	URLConnection
	Content

	Adding a New Repository Adapter
	Java Code
	Service Request Example

	SDK - System Extensibility
	Creating and Adding a Simple Service
	Extending the Distribution Service
	Event Handlers
	Event Handlers in the Distribution Request
	Distribution Request with Event Handler Example
	Distribution State DAO

	Customizing a Request Log Message
	Customizing the Request Log Table
	Adding Custom Fields
	The Request Log Table

	SDK - Web Service Interface
	The Web Services Interface
	About Web Service Applications
	IStream Publisher WSI Benefits

	IStream Publisher WSI Architecture
	General Information
	Overview of WSI Architecture
	Web Services Interface Methods
	Flows of IStream Publisher WSI Calls
	WSI WSDL

	Configuring the IStream Publisher WSI in the Console
	WSI Client Examples

	Troubleshooting the IStream Publisher WSI
	IStream Publisher WSI Log files

	Reference Material - Samples
	Sample Deliver-to-Email Request
	Sample Aggregate Request
	Sample Aggregate Request

	Header Page Template Example
	Interactive, Batch, and Embedded XML Data
	Interactive Mode
	Batch
	Embedded Data

	Glossary
	SDK - Encrypted Credentials
	Passing Credentials Securely
	The Java Cryptography Extension

	Encrypted Credentials
	Encrypted Data
	Encryption Method
	key-info Parameter
	Cipher-Data Parameter

	Security Keys
	Example of a Credentials Set

	Index

