Oracle® Tuxedo JCA Adapter

Programming Guide
11g Release 1 (11.1.1.1.0)

March 2010

ORACLE

Oracle Tuxedo JCA Adapter Programming Guide, 11g Release 1 (11.1.1.1.0)
Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Oracle Tuxedo JCA Adapter Programming Guide

OVEIVIEW . o ottt ettt e e e e e e -1
PrereqUISITES . . . ottt e -1
Common Development Tasks. i -2

Using Connection Instance and Connection Factory. -2

Using the DMConfigChecker Utility. i -4

Developing an Oracle Tuxedo JCA Adapter Client Application. -4
CCI Client Programmingttt e -5
Transaction Client Programming i, -9

CCI-Managed XA Client Programming -10
CCI-Managed Local Transaction Programming -17
JATMI Client Programmingttt -23
Inbound EJB Service Programming -27
Inbound POJO Service Programming. -31

Configuration File Examples. -35
Oracle Tuxedo JCA Adapter Configuration Examples. -35
Oracle Tuxedo UBBCONFIG and BDMCONFIG Examples -37

SEE AlSO . . ot -38

Oracle Oracle Tuxedo JCA Adapter Programming Guide i

Oracle Oracle Tuxedo JCA Adapter Programming Guide

Oracle Tuxedo JCA Adapter
Programming Guide

This chapter contains the following topics:
e Overview

e Using Connection Instance and Connection Factory

Using the DMConfigChecker Utility

Developing an Oracle Tuxedo JCA Adapter Client Application

Configuration File Examples

Overview

The Oracle Tuxedo JCA Adapter supports both standard JEE Connector Architecture Common
Client Interface (CCI) and Oracle Tuxedo Java Application-To-Monitor Interface (JATMI). Both
interfaces allow client applications to access services located in remote Oracle Tuxedo
application domains. The Oracle Tuxedo JCA Adapter supports transparent routing and load
balancing internally. Requests are load-balanced and routed to different remote Oracle Tuxedo
application domains that provide the same service.

Prerequisites

Developing an Oracle Tuxedo JCA Adapter application requires the following prerequisites:

e JDK 1.5, or later

Oracle Tuxedo JCA Adapter Programming Guide 1

Oracle Tuxedo JCA Adapter Programming Guide

e Java Application Server
— Oracle WebLogic Server 10gR3 and later
— IBM WebSphere 7.0 and later
— JBoss Application Server 5.1.0 and later
e Text Editor, XML Editor, or an IDE
— IBM WebSphere Application Server Toolkit

Common Development Tasks

Developing an application for the Oracle Tuxedo JCA Adapter requires the following steps:
1. Identify remote Oracle Tuxedo resources needed

2. Configure the resource deployment descriptor

3. Configure the Oracle Tuxedo JCA Adapter

4. Create resource archive

5. Deploy the Oracle Tuxedo JCA Adapter

Note: These steps can be done independent of application development, but must be completed
before running the client application. For more information, see the Oracle Tuxedo JCA
Adapter Users Guide.

Using Connection Instance and Connection Factory

All client applications are required to lookup the Connection Factory for the Oracle Tuxedo JCA
Adapter in the JNDI tree to retrieve a connection instance. The exact lookup string may differ
depending on the configuration.

Different application servers may use different implementations to provide this information to the
Oracle JCA Adapter. For example, Oracle WebLogic server uses the weblogic-ra.xml file
(using the <jndi-name> XML tag) to provide this information as shown in Listing 1.

IBM WebSphere configures this information through the administration console using the "JNDI
name" field of the "g2C Connection Factory" page.

2 Oracle Tuxedo JCA Adapter Programming Guide

../users/jca_usersguide.html
../users/jca_usersguide.html

Using Connection Instance and Connection Factory

Listing 1 Oracle WebLogic Server Connector

<weblogic-connector
xmlns=http://www.bea.com/ns/weblogic/90>

<jndi-name>eis/TuxedoConnector</jndi-name>

<outbound-resource-adapter>
<connection-definition-group>
<connection-factory-interface>javax.resource.cci.ConnectionFactory</connec
tion-factory-interface>
<connection-instance>
<jndi-name>eis/TuxedoConnectionFactory</jndi-name>
</connection-instance>
</connection-definition-group>
<outbound-resource-adapter>

</weblogic-connector>

Listing 2 shows a Connection Factory lookup and Connection instance code example.

Listing 2 Connection Factory Lookup/Connection Instance Code Example

import javax.naming.Context;
import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.resource.cci.ConnectionFactory;

import javax.resource.cci.Connection;

Context ctx;
ConnectionFactory cf;

Connection c;

Oracle Tuxedo JCA Adapter Programming Guide 3

Oracle Tuxedo JCA Adapter Programming Guide

ctx = new InitialContext();
cf = ctx.lookup ("eis/TuxedoConnectionFactory") ;

C

cf.getConnection() ;

The "ctx.lookup ()" call uses the string configured in "jndi-name".

Using the DMConfigChecker Utility

The pMConfigChecker utility is used to encrypt configuration file passwords. It checks the
Oracle Tuxedo JCA Adapter configuration file syntax and replaces all the unencrypted password
elements with the encrypted password. If necessary, this utility can also generate a key file which
is used to encrypt/decrypt the passwords.

For more information, see the Oracle Tuxedo JCA Adapter Command Reference.

Developing an Oracle Tuxedo JCA Adapter Client
Application

For client applications, the Oracle Tuxedo JCA Adapter implements the necessary connection
creation, session authentication, data privacy, data transformation, routing/load balancing, and
transaction processes. This makes it easier, consistent, and transparent for an Oracle Tuxedo JCA
Adapter client to access Oracle Tuxedo services.

Not all application servers run client programs in the same manner; they may have their own
toolset and implementation methodology. In general, after you develop the client application, you
must do the following steps to run client application server programs:

1. Build the client application
2. Configure the client application
3. Deploy the client application

4. Run the client application

4 Oracle Tuxedo JCA Adapter Programming Guide

../ref/index.html

CCI Client Programming

Note: Refer to your target Application Server documentation for detailed information on how
to build, configure, deploy, and run client applications.

This section contains the following topics:
e CCI Client Programming

e Transaction Client Programming

CCI-Managed Local Transaction Programming

JATMI Client Programming

Inbound EJB Service Programming

e Inbound POJO Service Programming

CCI Client Programming

Client applications can access Oracle Tuxedo services using the JEE Connector Architecture
Common Client Interface (CCI).

To develop a CCI-based Tuxedo JCA Adapter client application, you must do the following
steps:

1. Create a new interaction and specification instance.

2. Set the imported Oracle Tuxedo service name and call.

3. Create and input a new Oracle Tuxedo Typed Buffer data record instance.
4. Execute service requests.

5. Release resources.

6. Retrieve data record output reply

The code examples in this section perform service calls to an Oracle Tuxedo service. The service
name is "TOUPPER" and requires configuration. For more information, see Configuration File
Examples. The "TOUPPER" service uses a STRING Typed Buffer for input and output.

To create a new interaction instance, the client application must place a call to the Connection.
The interaction between client applications (javax.resource.cci.Interaction) and Oracle
Tuxedo services must be customized using the interaction specification
(javax.resource.cci.InteractionSpec) as shown in Listing 3.

Oracle Tuxedo JCA Adapter Programming Guide 5

Oracle Tuxedo JCA Adapter Programming Guide

Listing 3 Create a New Interaction Instance and Specification

Interaction ix;

TuxedoInteractionSpec ixspec;

ix = c.reateInteraction()

ixspec = new TuxedoInteractionSpec/() ;

You must import the following:

e the Oracle Tuxedo service name the client application wants to invoke (found in the Oracle
Tuxedo JCA Adapter configuration file "Import" section)

e its input/output buffer type

The input/output buffer type must access the Oracle Tuxedo service code or query the
Oracle Tuxedo Metadata Repository. For more information, see the Oracle Tuxedo
Metadata Repository documentation.

Listing 4 shows a client application synchronously invoking the "TOUPPER" service.

Listing 4 CCI Client Application Invoking TOUPPER Service

ixspec.setFunctionName ("TOUPPER") ;

ixspec.setInteractionVerb (InteractionSpec.SYNC_SEND_RECEIVE) ;

The input data sent must use an Oracle Tuxedo Typed Buffer.

Listing 5 shows the "TOUPPER" service using a STRING buffer type for input and output.

Listing 5 TOUPPER" Service Using a STRING Buffer Type

TuxedoStringRecord inRec;

TuxedoStringRecord outRec;

6 Oracle Tuxedo JCA Adapter Programming Guide

../../../salt/docs11gr1/metarepo.html
../../../salt/docs11gr1/metarepo.html

CCI Client Programming

inRec = new TuxedoStringRecord() ;
outRec = new TuxedoStringRecord();
inRec.setRecordName ("MyInputData") ;
outRec.setRecordName ("MyOutputData") ;

inRec.setString(string_to_convert)

Listing 6 shows the actual "TOUPPER" service request, resource release, and reply data retrieval.

Listing 6 Service Request, Release Resources, and Output Data Retrieval

ix.execute(ixspec, inRec, outRec);

ix.close();

c.close();

String returned_data = outRec.getString();

To compile the Java code, the client application must import the following packages.
® javax.resource.cci

® weblogic.wtc.jatmi

® com.oracle.tuxedo.adapter.cci

® com.oracle.tuxedo

Listing 7 shows a CCI client application program example.

Listing 7 CCI Client Application Program Example

import javax.naming.Context;

import javax.naming.InitialContext;

Oracle Tuxedo JCA Adapter Programming Guide 1

Oracle Tuxedo JCA Adapter Programming Guide

import javax.naming.NamingException;

import javax.ejb.CreateException;

import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Connection;

import javax.resource.cci.Interaction;
import javax.resource.cci.Interactionspec;

import javax.resource.ResourceException;

import weblogic.wtc.jatmi.TPException;

import weblogic.wtc.jatmi.TPReplyException;

import com.oracle.tuxedo.adapter.TuxedoReplyException;
import com.oracle.tuxedo.adapter.cci.TuxedoStringRecord;

import com.oracle.tuxedo.adapter.cci.TuxedoInteractionSpec;

public String Toupper (String string_ to_convert) throws TPException,

TuxedoReplyException

{
Context ctx;
ConnectionFactory cf;
Connection c;
Interaction ix;
TuxedoStringRecord inRec;
TuxedoStringRecord outRec;

TuxedoInteractionSpec ixspec;

try {

ctx = new InitialContext();

cf = ctx.lookup ("eis/TuxedoConnectionFactory") ;
c = cf.getConnection() ;
ix = c.createInteraction();

ixspec = new TuxedoInteractionSpec/();

8 Oracle Tuxedo JCA Adapter Programming Guide

Transaction Client Programming

ixspec.setFunctionName ("TOUPPER") ;
ixspec.setInteractionVerb (InteractionSpec.SYNC_SEND_RECEIVE) ;

inRec = new TuxedoStringRecord() ;
outRec = new TuxdeoStringRecord() ;
inRec.setRecordName ("MyInputData") ;
outRec.setRecordMane ("MyOutputData") ;

outRec.setString(string_ to_convert) ;

ix.execute (ixspec, inRec, outRec) ;

ix.close();

c.close();

String returned_data = outRec.getString();
return returned_data;

}

catch (NamingException ne) {
throw new TPException (TPException.TPESYSTEM,

"Could not get TuxedoConnectionFactory") ;

}
catch (ResourceException re) {
throw new TPException (TPException.TPESYSTEM,

"ResourceException occurred, reason: " + re);

Transaction Client Programming

The Oracle JCA Adapter supports CCI-managed transaction client applications. The type of
transaction depends largely on the transaction level (XA transactions or local transactions)
configured in the Oracle Tuxedo JCA Adapter deployment descriptor. For more information, see
the Oracle Tuxedo JCA Adapter Users Guide.

Oracle Tuxedo JCA Adapter Programming Guide 9

../users/jca_usersguide.html

Oracle Tuxedo JCA Adapter Programming Guide

10

e CCI-Managed XA Client Programming

e CCI-Managed Local Transaction Programming

CCI-Managed XA Client Programming

To develop a VIEW buffer type-based CCI-managed XA client application, you must do the
following steps:

1. Compile VIEW definition using viewj32 compiler.

2. Get user transaction, set transaction timeout, and start transaction.
3. Create new interaction and specification instance.

4. Set the imported Oracle Tuxedo service name.

5. Set the style of call.

Instantiate and initialize VIEW32 object.

Create new Oracle Tuxedo Typed Buffer data record instance.
8. Execute the service request.

9. Get the reply.

10. Commit the transaction.

11. Release the resources.

12. Retrieve the output data record reply.

The code examples in this section perform service calls to an Oracle Tuxedo service. The service
name is TOUPPER V32 and requires configuration. For more information, see Configuration
File Examples. The "TOUPPER 32" service requires a VIEW32 Typed Buffer for input and
output.

Note: The equivalent of VIEW32 Typed Buffer in Tuxedo JCA Adapter is
TuxedoView32Record. In the following examples VIEW32 view is called "view32".
The java code is generated using the viewj32 compiler.

For more information, see Managing Typed Buffers in Programming An Oracle
Tuxedo ATMI Application Using C and the Oracle Tuxedo JCA Adapter Command
Reference Guide for viewj and view;j32 information.

Listing 8 shows a VIEW32 definition file example.

Oracle Tuxedo JCA Adapter Programming Guide

../ref/jcacomref.html
../ref/jcacomref.html
../../../tuxedo/docs11gr1/pgc/pgbuf.html

Transaction Client Programming

Listing 8 VIEW32 Definition File Example

VIEW View32
short TEST_SHORT - 1 - - 0
string TEST_STRING - 1 - 100 -

Compile using the following viewj32 utility command:

java -classpath $CLASSPATH® weblogic.wtc.jatmi.viewj32 tuxedo.test.simapp
View32

This command creates a "view32.java" Java class file (package name
"tuxedo.test.simpapp") in the current working directory.

Listing 9 shows how to create and start a user transaction. The transaction will timeout after 300
seconds.

Listing 9 Create and Start a User Transaction

UserTransaction utx;

utx = (UserTransaction)ctx.lookup("java:comp/UserTransaction") ;
utx.setTransactionTimeout (300) ;

utx.begin() ;

To create new interaction instance, the client application must place a call to the Connection. The
interaction between client applications (javax.resource.cci.Interaction) and Oracle
Tuxedo services must be customized using the interaction specification
(javax.resource.cci.InteractionSpec) as shown in Listing 10.

Oracle Tuxedo JCA Adapter Programming Guide "

Oracle Tuxedo JCA Adapter Programming Guide

Listing 10 Create a New Interaction Instance and Specification

Interaction ix;

TuxedoInteractionSpec ixspec;

ix = c.reateInteraction()

ixspec = new TuxedoInteractionSpec/() ;

You must import the following:

e the Oracle Tuxedo service name the client application wants to invoke (found in the Oracle
Tuxedo JCA Adapter configuration file "Import" section).

e its input/output buffer type

The input/output buffer type must access the Oracle Tuxedo service code or query the
Oracle Tuxedo Meta Data repository. Repository. For more information, see the Oracle
Tuxedo Metadata Repository documentation.

Listing 11 shows a client application invoking the "TOUPPER 32" service using asynchronous
interaction.

Listing 11 CCl Transaction Client Application Invoking TOUPPER Service

ixspec.setFunctionName ("TOUPPER_V32") ;

ixspec.setInteractionVerb (InteractionSpec.SYNC_SEND) ;

The input data sent to Oracle Tuxedo must use an Oracle Tuxedo Typed Buffer.

Listing 12 shows the "TOUPPER 32" service using a VIEW32 Typed Buffer for input and
output.

12 Oracle Tuxedo JCA Adapter Programming Guide

../../../salt/docs11gr1/metarepo.html
../../../salt/docs11gr1/metarepo.html

Transaction Client Programming

Listing 12 TOUPPER_32 Service Using a VIEW32 Buffer Type

View32 myData;

TuxedoView32Record inRec;

myData = new View32();
myData.setTEST_SHORT ((short)4) ;
myData.setTEST_STRING (string_to_convert) ;

inRec = new TuxedoView32Record (myData) ;

inRec.setRecordName ("MyInputData") ;

Listing 13 shows the actual "TOUPPER 32" service request, resource release, and reply data

retrieval.

Listing 13 Service Request, Release Resources, and Output Data Retrieval

TuxedoView32Record outRec;

ix.execute (ixspec, inRec) ;
ixspec.setInteractionVerb (InteractionSpec.SYNC_RECEIVE) ;

outRec = (TuxedoView32Record)ix.execute(ixspec, inRec);

utx.commit () ;
ix.close() ;

c.close();

View32 myDataBack = (View32)outRec.getView32();
String returned_data = myDataBack.getTEST_STRING() ;

Oracle Tuxedo JCA Adapter Programming Guide

13

Oracle Tuxedo JCA Adapter Programming Guide

14

To compile the Java code, the client application must import the following packages:

® javax.resource.cci

® weblogic.wtc.jatmi

® com.oracle.tuxedo.adapter.cci
® com.oracle. tuxedo

Listing 14 shows a transaction client application program example.

Listing 14 Transaction Client Application Program Example

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.ejb.CreateException;

import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Connection;

import javax.resource.cci.Interaction;
import javax.resource.cci.Interactionspec;

import javax.resource.ResourceException;

import weblogic.wtc.jatmi.TPException;

import weblogic.wtc.jatmi.TPReplyException;

import com.oracle.tuxedo.adapter.TuxedoReplyException;
import com.oracle.tuxedo.adapter.cci.TuxedoView32Record;

import com.oracle.tuxedo.adapter.cci.TuxedoInteractionSpec;

import tuxedo.test.simpapp.View32;

private void cleanup (UserTransaction utx, Interaction ix, Connection
{
try {
if (utx != null) utx.rollback();

Oracle Tuxedo JCA Adapter Programming Guide

if (ix != null)
if (¢ !'= null)

}

catch (Exception e)

/* ignore */

ix.close();

c.close();

public String Toupper (String string_ to_convert)

TuxedoReplyException

Transaction Client Programming

throws TPException,

{
Context ctx;
ConnectionFactory cf;
Connection c;
UserTransaction utx;
View32 myData;
View32 myDataBack;
Interaction ix;
TuxedoView32Record inRec;
TuxedoView32Record outRec;
InteractionSpec ixspec;
try {
ctx = new InitialContext();
cf = ctx.lookup ("eis/TuxedoConnectionFactory") ;
c = cf.getConnection() ;
utx = (UserTransaction)ctx.lookup("java:comp/UserTransaction") ;
utx.setTransactionTimeout (300) ;

utx.begin () ;
ix = c.createlInteraction() ;
ixspec = new TuxedoInteractionSpec/() ;
ixspec.setFunctionName ("TOUPPER_V32") ;
ixspec.
myData = new View32();
setTEST_SHORT ((short)4) ;
(

setTEST_STRING (string_to_convert) ;

myData.
myData.

setInteractionVerb (InteractionSpec.SYNC_SEND) ;

Oracle Tuxedo JCA Adapter Programming Guide 15

Oracle Tuxedo JCA Adapter Programming Guide

inRec = new TuxedoView32Record (myData) ;

inRec.setRecordName ("MyInputData") ;

ix.execute (ixspec, inRec);
ixspec.setInteractionVerb (InteractionSpec.SYNC_RECEIVE) ;

outRec = (TuxedoView32Record)ix.execute (ixspec, inRec) ;

utx.commit () ;
ix.close();

c.close();

myDataBack = (View32)outRec.getView32();

String returned_data = myDataBack.getTEST_ STRING() ;

return returned_data;
}
catch (NamingException ne) {

cleanup (utx, ix, c);

throw new TPException (TPException.TPESYSTEM,

"Could not get TuxedoConnectionFactory");

}
catch (ResourceException re) {

cleanup (utx, ix, c);

throw new TPException (TPException.TPESYSTEM,

"ResourceException occurred,
reason: " + re);

}
catch (javax.transaction.RollbackException rbe) ({

cleanup (utx, ix, c);

throw new TPException (TPException.TPETRAN, "Exception: " + rbe);
}
catch (javax.transaction.NotSuppotedException hre) {

cleanup (utx, ix, c);

throw new TPException (TPException.TPETRAN, "Exception: " + nse);
}
catch (javax.transaction.HeuristicRollbackException hre) {

cleanup (utx, ix, c);

throw new TPException (TPException.TPETRAN, "Exception: " + hre);

16 Oracle Tuxedo JCA Adapter Programming Guide

Transaction Client Programming

}
catch (javax.transaction.HeuristicMixException hme) {
cleanup (utx, ix, c);
throw new TPException (TPException.TPETRAN, "Exception: " + hme);
}
catch (javax.transaction.SystemException se) {
cleanup (utx, ix, c);

throw new TPException (TPException.TPETRAN, "Exception: " + se);

CCl-Managed Local Transaction Programming

The Oracle Tuxedo JCA Adapter supports local managed transaction client applications using
CCI. The transaction requires an Oracle Tuxedo JCA Adapter specific extension in order to set
per transaction timeouts.

To develop a synchronous CCl-based Tuxedo JCA Adapter local managed transaction client
program using a VIEW32 Typed Buffer, you must do the following steps:

1. Create a new Local Transaction instance.

2. Create a new interaction and specification instance.

3. Set the imported Oracle Tuxedo service name.

4. Set the call style.

5. Start Local Transaction.

6. Create a new Oracle Tuxedo Typed Buffer data record instance.
7. Send the input data to the data record.

8. Execute the service request.

9. Commit Local Transaction.

10. Release the resources.

11. Retrieve output data record reply.

Oracle Tuxedo JCA Adapter Programming Guide 17

Oracle Tuxedo JCA Adapter Programming Guide

18

The code examples in this section perform service calls to an Oracle Tuxedo service. The service
name is TOUPPER and requires configuration. For more information, see Configuration File
Examples. The "TOUPPER" service requires a STRING Typed Buffer for input and output.

Listing 15 shows how create a new Oracle Tuxedo JCA Adapter Local Transaction instance from
the Oracle Tuxedo Connection

(com.oracle.tuxedo.adapter.cci.TuxedoJCALocalTransaction).

Listing 15 Create a New Local Transaction Instance

TuxedoJCALocalTransaction 1ltx;

1ltx = (TuxedoJdJCALocalTransaction)c.getLocalTransaction() ;

To create new interaction instance, the client application must place a call to the Connection. The
interaction between client applications (javax.resource.cci.Interaction) and Oracle
Tuxedo services must be customized using the interaction specification
(javax.resource.cci.InteractionSpec) as shown in Listing 16.

Listing 16 Create a New Interaction and Specification

Interaction ix;

TuxedoInteractionSpec ixspec;

ix = c.reateInteraction()

ixspec = new TuxedoInteractionSpec /() ;

Listing 17 shows how to create and start a managed local transaction. The transaction will
timeout after 15 seconds.

Oracle Tuxedo JCA Adapter Programming Guide

Transaction Client Programming

Note: This is an Oracle Tuxedo JCA Adapter specific implementation and is not part of the
standard CCI Local Transaction interface.

Listing 17 Create and Start a Local Transaction

ltx.begin(15) ;

You must import the following:

e the Oracle Tuxedo service name the client application wants to invoke (found in the Oracle
Tuxedo JCA Adapter configuration file "Import" section).

e its input/output buffer type

The input/output buffer type must access the Oracle Tuxedo service code or query the
Oracle Tuxedo Meta Data repository. Repository. For more information, see the Oracle
Tuxedo Metadata Repository documentation.

Listing 18 shows the client application synchronously using the "TOUPPER" service.

Listing 18 Local Transaction Client Application Invoking TOUPPER Service

ixspec.setFunctionName ("TOUPPER") ;
ixspec.setInteractionVerb (InteractionSpec.SYNC_SEND_RECEIVE) ;

The input data sent to Oracle Tuxedo must use an Oracle Tuxedo Typed Buffer.

Listing 19 shows the "TOUPPER" service using a STRING Typed Buffer for input and output.

Listing 19 TOUPPER Service Using a STRING Typed Buffer

TuxedoStringRecord inRec;

TuxedoStringRecord outRec;

Oracle Tuxedo JCA Adapter Programming Guide 19

../../../salt/docs11gr1/metarepo.html
../../../salt/docs11gr1/metarepo.html

Oracle Tuxedo JCA Adapter Programming Guide

inRec = new TuxedoStringRecord() ;
outRec = new TuxedoStringRecord() ;
inRec.setRecordName ("MyInputData") ;
outRec.setRecordName ("MyOutputData") ;

inRec.setString(string_ to_convert) ;

Listing 20 shows the actual "TOUPPER" service request, resource release, and reply data
retrieval.

Listing 20 Service Request, Release Resources, and Output Data Retrieval

ix.execute (ixspec, inRec, outRec) ;

if (outRec.getTperrno() == 0) {
ltx.commit () ;

}

else {
ltx.rollback() ;

}

ltx = null;

ix.close();

c.close();

String returned_data = outRec.getString();

To successfully compile the Java code, the client application must import the following packages.
® javax.resource.cci

® weblogic.wtc.jatmi

® com.oracle.tuxedo.adapter.cci

® com.oracle. tuxedo

Listing 21 shows a local transaction client application program example.

20 Oracle Tuxedo JCA Adapter Programming Guide

Transaction Client Programming

Listing 21 Local Transaction Client Application Program Example

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.ejb.CreateException;

import javax.resource.cci.ConnectionFactory;

import javax.resource.cci.Connection;

import javax.resource.cci.Interaction;

import javax.resource.cci.Interactionspec;

import javax.resource.ResourceException;

import weblogic.wtc.jatmi.TPException;

import weblogic.wtc.jatmi.TPReplyException;

import com.oracle.tuxedo.adapter.TuxedoReplyException;

import com.oracle.tuxedo.adapter.cci.TuxedoView32Record;

import com.oracle.tuxedo.adapter.cci.TuxedoInteractionSpec;

import com.oracle.tuxedo.adapter.cci.TuxedoJCALocalTransaction;

public String Toupper (String string_to_convert)

TuxedoReplyException

{

Context ctx;
ConnectionFactory cf;
Connection c = null;

TuxedoJCALocalTransaction ltx = null;

Interaction ix = null;
TuxedoStringRecord inRec;
TuxedoStringRecord outRec;
InteractionSpec ixspec;

try {

ctx = new InitialContext () ;

cft = ctx.lookup ("eis/TuxedoConnectionFactory") ;

Oracle Tuxedo JCA Adapter Programming Guide

throws TPException,

21

Oracle Tuxedo JCA Adapter Programming Guide

22

}

}

c = cf.getConnection() ;

ltx = (TuxedodCALocalTransaction)c.getLocalTransaction() ;
ix = c.createlInteraction() ;

ixspec = new TuxedoInteractionSpec/() ;

ixspec.setFunctionName ("TOUPPER") ;
ixspec.setInteractionVerb (InteractionSpec.SYNC_SEND_RECEIVE) ;
ltx.begin (15) ;

inRec = new TuxedoStringRecord() ;
outRec = new TuxedoStringRecord() ;
inRec.setRecordName ("MyInputData") ;
outRec.setRecordName ("MyOutputData") ;

inRec.setString(string_to_convert) ;

ix.execute (ixspec, inRec, outRec);

if (outRec.getTperrno() == 0) {
ltx.commit () ;

}

else {
ltx.rollback() ;

}

ix.close();

c.close();

String returned_data = outRec.getString();

return returned_data;

catch (NamingException ne) {

throw new TPException (TPException.TPESYSTEM,
"Could not get

TuxedoConnectionFactory") ;

catch (ResourceException re) {

if (1ltx != null) {
try {
ltx.rollback() ;

Oracle Tuxedo JCA Adapter Programming Guide

JATMI Client Programming

}
catch (ResourceException xre) {

/* ignore it */

}
}
try {
if (ix != null) ix.close();
if (¢ != null) c.close();

}
catch (Exception e) {
/* ignore it */
}
throw new TPException (TPException.TPESYSTEM,
"ResourceException occurred,
reason: " + re);

}

JATMI Client Programming

Client applications can access an Oracle Tuxedo service using the Java Application To Monitor
Interface (JATMI). JATMI is a straight Java implementation of the Oracle Tuxedo ATMI
interface.

To develop a JATMI-based Tuxedo JCA Adapter client application, you must do the following
steps:

1. Create a new interaction instance

2. Create and input a new JATMI Typed Buffer data record instance.
3. Call Oracle Tuxedo service

4. Retrieve output data record reply

5. Release resources

The code examples in this section perform service calls to an Oracle Tuxedo service. The service
name is TOUPPER and requires configuration. For more information, see Configuration File

Oracle Tuxedo JCA Adapter Programming Guide 23

Oracle Tuxedo JCA Adapter Programming Guide

24

Examples. The Tuxedo TOUPPER service requires a STRING Typed Buffer for input and
output.

To create new interaction instance, the client application must place a call to the Connection.
When you use the JATMI interaction extension

(com.oracle. tuxedo.adapter.cci.TuxedoInteractionSpec), an interaction specification
is not required to customize the interaction between client applications and Oracle Tuxedo
services.The JATMI service invocation interface already includes these interaction specifications
as shown in Listing 22.

Listing 22 New JATMI Interaction Instance

Interaction ix;

ix = c.reateInteraction()

The input data must be transported using an Oracle Tuxedo Typed Buffer. Listing 23 shows the
"TOUPPER" service using a STRING Typed Buffer for input and output.

Listing 23 TOUPPER" Service Using a STRING Buffer Type

TypedString inData;

inData = new TypedString(string_ to_convert) ;

Listing 24 shows the actual "TOUPPER" service request and data retrieval reply.

Oracle Tuxedo JCA Adapter Programming Guide

JATMI Client Programming

Listing 24 JATMI Client Application TOUPPER Service Request and Output Data Retrieval

Reply myRtn;
TypedString outData;

myRtn = ix.tpcall ("TOUPPER", inData, 0);
outData= (TypedString)myRtn.getReplyBuffer();
String returned_data = outData.toString()

Listing 25 shows how the resources are released.

Listing 25 JATMI Client Application Resource Release

ix.tpterm() ;

c.close();

To compile the Java code, the client application must import the following packages.

® javax.resource.cci
® weblogic.wtc.jatmi
® com.oracle.tuxedo.adapter.cci
® com.oracle. tuxedo

Listing 26 shows a JATMI client application program example.

Listing 26 JATMI Client Application Program Example

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.ejb.CreateException;

import javax.resource.cci.ConnectionFactory;

import javax.resource.cci.Connection;

Oracle Tuxedo JCA Adapter Programming Guide

25

Oracle Tuxedo JCA Adapter Programming Guide

import javax.resource.cci.Interaction;
import javax.resource.cci.Interactionspec;

import javax.resource.ResourceException;

import weblogic.wtc.jatmi.TPException;
import weblogic.wtc.jatmi.TPReplyException;
import weblogic.wtc.jatmi.Reply;

import weblogic.wtc.jatmi.TypedString;

import com.oracle.tuxedo.adapter.TuxedoReplyException;

import com.oracle.tuxedo.adapter.cci.TuxedoInteraction;

public String Toupper (String string_ to_convert) throws TPException,

TPReplyException
{
Context ctx;
ConnectionFactory cf;
Connection c;
Interaction ix;
TypedString inData;
TypedString outData;
Reply myRtn;
try {

ctx = new InitialContext();

cft = ctx.lookup ("eis/TuxedoConnectionFactory") ;

c = cf.getConnection() ;

ix = c.createInteraction();

inData = new TypedString(string_to_convert) ;
myRtn = ix.tpcall ("TOUPPER", inData, 0);
outData= (TypedString)myRtn.getReplyBuffer();

String returned_data = outData.toString();

ix.tpterm() ;

26 Oracle Tuxedo JCA Adapter Programming Guide

Inbound EJB Service Programming

c.close()
return returned_data;
}
catch (NamingException ne) {
throw new TPException (TPException.TPESYSTEM,
"Could not get
TuxedoConnectionFactory") ;
}
catch (ResourceException re) {
throw new TPException (TPException.TPESYSTEM,
"ResourceException occurred,
reason: " + re);

}

Inbound EJB Service Programming

You can use the Oracle Tuxedo JCA Adapter to access EJB-based Tuxedo client services. In
order for the Oracle Tuxedo JCA Adapter to invoke an EJB, the EJB must use the
weblogic.wtc.jatmi.TuxedoService interface. This interface defines a single method called
service as shown in Listing 27.

Listing 27 EJB Service Single Method

public Reply service(TPServiceInformation svcinfo)

throws TPException, TPReplyException, RemoteException;

To develop an EJB-based service application using the TuxedoService.service () interface,
you must do the following steps:

1. Retrieve input data and perform task.
2. Create Typed Bufter for output data.

3. Setup the output data to be returned to caller.

Oracle Tuxedo JCA Adapter Programming Guide 21

Oracle Tuxedo JCA Adapter Programming Guide

28

4. Configure the EJB deployment descriptor.

The code examples in this section show how to:
e use the TuxedoService interface.

e configure the EJB in the Oracle Tuxedo JCA Adapter configuration file to expose the
service.

e configure the Oracle Tuxedo GWTDOMALIN gateway to import the service.

The service name is TOLOWER and requires configuration. For more information, see
Configuration File Examples. The EJB service uses a STRING Typed Buffer for input and
output.

Listing 28 shows an example of how input data is retrieved using TPServiceInformation
(shown in Listing 27).

Listing 28 EJB Input Data Retrieved from TPServicelnformation

TypedString data;

data = (TypedString)mydata.getServiceDatal() ;

The input data is converted to lower case as shown in Listing 29

Listing 29 EJB Input Data Converted to Lower Case

String lowered;

lowered = data.toString() .toLowerCase() ;

Oracle Tuxedo JCA Adapter Programming Guide

Inbound EJB Service Programming

When the output data is available, it must be wrapped in an Oracle Tuxedo Typed Buffer.
Listing 30 shows the how the output data is wrapped using the TypedString Typed Buffer.

Listing 30 EJB Output Data Wrapped in TypedString Typed Buffer

TypedString return_data;

return_data = new TypedString(lowered) ;

The output Typed Buffer is then transported back to the caller (using the
TPServiceInformation object) as shown in Listing 31.

Listing 31 EJB Output Typed Buffer Transported to Caller

mydata.setReplyBuffer (return_data) ;

In order for Tuxedo JCA Adapter to successfully invoke the EJB service, the EJB deployment
descriptor must be configured using the following information:

® home interface: weblogic.wtc.jatmi.TuxedoServiceHome
® remote interface: weblogic.wtc.jatmi.TuxedoService
® jndi name: tuxedo.services.TolowerHome

The required prefix (tuxedo . services) and the EJB name (TolowerHome) are configured in the
<EXPORT> <SOURCE> element of the Oracle Tuxedo JCA Adapter configuration file as shown in
Listing 32.

Listing 32 EJB “TOLOWER” Configuration

<Export name="TOLOWER">
<RemoteName>TOLOWER</RemoteName>

Oracle Tuxedo JCA Adapter Programming Guide 29

Oracle Tuxedo JCA Adapter Programming Guide

<SessionName>session_1l</SessionName>
<Type>EJB</Type>
<Source>tuxedo.services.TolowerHome</Source>

</Export>

To successfully compile the Java code, the client application must import the following packages:

® weblogic.wtc.jatmi
® com.oracle.tuxedo.adapter.tdom

Listing 33 shows an EJB client application program example.

Listing 33 EJB Client Application Program Example

package test.tuxedo.simpserv;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import weblogic.wtc.jatmi.TPException;
import weblogic.wtc.jatmi.TypedString;

import weblogic.wtc.jatmi.Reply;

import com.oracle.tuxedo.adapter.tdom.TPServiceInformation;

public Reply service(TPServiceInformation mydata) throws TPException
{

TypedString data;

String lowered;

TypedString returned_data;

30 Oracle Tuxedo JCA Adapter Programming Guide

data = (TypedString)mydata.getServiceDatal() ;

lowered = data.toString() .toLowerCase() ;

returned_data = new TypedString(lowered) ;

mydata.setReplyBuffer (return_data) ;

return mydata;

Inbound POJO Service Programming

Inbound P0JO Service Programming

You can use the Oracle Tuxedo JCA Adapter to access Plain Old Java Object (POJO)-based
Tuxedo client services.

In order for the Oracle Tuxedo JCA Adapter to invoke a POJO service, the POJO service must
provide a method with same name as the exported name. This method must take two fixed

argunwnm:TPServiceInformationandTPRequestAsyncReply.

To develop an POJO-based service application using the TuxedoService.service () interface,
you must do the following steps:

1.
2.
3.
4.
5.

Retrieve input data and perform a task.
Create Typed Buffer for output data.

Setup the output data to be returned to caller.

Inform Tuxedo JCA Adapter POJO handler of success or failure

Configure the POJO deployment descriptor.

The code examples in this section show how to:

service

e use an ordinary Java class to provide a service to an Oracle Tuxedo C/C++ client.

o configure the POJO in the Oracle Tuxedo JCA Adapter configuration file to expose the

Oracle Tuxedo JCA Adapter Programming Guide 31

Oracle Tuxedo JCA Adapter Programming Guide

32

e configure an Oracle Tuxedo GWTDOMALIN gateway to import the service

The service name is MYTOLOWER and requires configuration. For more information, see
Configuration File Examples. The POJO service requires a STRING Typed Buffer for input and
output.

Listing 34 shows an example of how input data is retrieved using TPServiceInformation
(shown in Listing 27).

Listing 34 PO0JO Input Data Retrieved from Input TPServicelnformation

TypedString typedstr;

data = (TypedString)svcinfo.getServiceDatal() ;

The input data is converted to lower case as shown in Listing 35

Listing 35 PO0JO Input Data Converted into Lower Case

String lower;

lower = typedstr.toString() .toLowerCase() ;

When the output data is available, it must be wrapped in an Oracle Tuxedo Typed Buffer.
Listing 36 shows the how the output data is wrapped using the TypedString Typed Buffer.

Listing 36 P0JO Output Data Wrapped in TypedString Buffer

TypedString return_data;

Oracle Tuxedo JCA Adapter Programming Guide

Inbound POJO Service Programming

return_data = new TypedString(lower) ;

The output Typed Buffer is then transported back to the caller (using the
TPServiceInformation object) as shown in Listing 31.

Listing 37 PO0JO Output Typed Buffer Transported to Caller

mydata.setReplyBuffer (return_data) ;

areply.success (svcinfo) ;

In order for the Oracle Tuxedo JCA Adapter to successfully invoke a POJO service, the POJO
deployment descriptor must be configured. The POJO method name must be configured in the
<EXPORT> section of the Oracle Tuxedo JCA Adapter configuration file as shown in Listing 38.

The <SOURCE> element contains the fully qualified class name, and the <SourceLocation>
element contains the full path name to the . JaR file that contains the class. The . JAR file must be
configured in the CLASSPATH.

Listing 38 P0JO "TOLOWER_P0J0" Configuration

<Export name="TOLOWER_POJO">
<RemoteName>TOLOWER_POJO</RemoteName>
<SessionName>session_1l</SessionName>
<Type>P0OJO</Type>
<Source>com.oracle.tuxedo.test.MyTolower</Source>
<SourceLocation>c:\tuxedo\jca\test\myapp.jar</SourceLocation>

</Export>

To successfully compile the Java code, the client application must import the following packages.

® weblogic.wtc.jatmi

Oracle Tuxedo JCA Adapter Programming Guide 33

Oracle Tuxedo JCA Adapter Programming Guide

® com.oracle.tuxedo.adapter.tdom

Listing 39 shows a POJO client application program example.

Listing 39 PO0JO Client Application Program Example

package com.oracle.tuxedo.test;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import weblogic.wtc.jatmi.TPException;
import weblogic.wtc.jatmi.TypedString;
import weblogic.wtc.jatmi.Reply;

import weblogic.wtc.jatmi.TPRequestAsyncReply;

import com.oracle.tuxedo.adapter.tdom.TPServiceInformation;

public void TOLOWER_POJO (TPServiceInformation svcinfo, TPRequestAsyncReply
areply) throws TPException
{

TypedString typedstr;

String lower;
TypedString returned_data;
typedstr = (TypedString)svcinfo.getServiceDatal () ;

lower = typedstr.toString() .toLowerCase() ;

returned_data = new TypedString(lower) ;

svcinfo.setReplyBuffer (return_data) ;

areply.success (svcinfo) ;

34 Oracle Tuxedo JCA Adapter Programming Guide

Configuration File Examples

Configuration File Examples

To run the Oracle Tuxedo JCA Adapter, you must configure the following files:

e Oracle Tuxedo JCA Adapter configuration file
e Oracle Tuxedo UBBCONFIG and DMBCONFIG files

Oracle Tuxedo JCA Adapter Configuration Examples

The Oracle Tuxedo JCA Adapter configuration file is a formal syntax XML file. The location of
this file is configured in the ra . xm1 file in the resource adapter configuration property. For more
information, see the Oracle Tuxedo JCA Adapter Reference Guide.

Listing 40 shows an example ra.xml file snippet that links the configuration file with the Oracle
Tuxedo JCA Adapter.

Listing 40 ra.xml File Example

<config-property>
<config-property-name>dmconfig</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>c:/myJcaApp/adapter/bdmconfig.xml</config-property-
value>

</config-property>

Listing 41 shows an Oracle Tuxedo JCA Adapter DMCONFIG file example that accesses:
o A single Oracle Tuxedo application domain

e Oracle Tuxedo TOUPPER V32 and TOUPPER services

Oracle Tuxedo JCA Adapter Programming Guide 35

../ref/index.html

Oracle Tuxedo JCA Adapter Programming Guide

Note: TOUPPER V32 isa VIEW32 Typed Buffer service. TOUPPER is a STRING Typed
Buffer service.

The Local Access Point defines the Oracle Tuxedo JCA Adapter listening end point. The Remote
Access Point defines the Oracle Tuxedo GWTDOMAIN gateway listening end point.

Listing 41 Oracle Tuxedo JCA Adapter Configuration File

<?xml version="1.0" encoding="UTF-8"?><TuxedoConnector>

<Resources>
<ViewFile32Classes>tuxedo.test.simpapp.View32</ViewFile32Classes>

</Resources>

<LocalAccessPoint name="JDOM">
<AccessPointId>JDOM_ID</AccessPointId>
<NetworkAddress>//localhost:10801</NetworkAddress>

</LocalAccessPoint>

<RemoteAccessPoint name="TDOM1">
<AccessPointId>TDOM1_ID</AccessPointId>
<NetworkAddress>//localhost:12478</NetworkAddress>

</RemoteAccessPoint>

<SessionProfile name="profile_1">
<Security>NONE</Security>
<BlockTime>30000</BlockTime>
<Interoperate>false</Interoperate>
<ConnectionPolicy>0ON_STARTUP</ConnectionPolicy>
<ACLPolicy>local</ACLPolicy>
<CredentialPolicy>local</CredentialPolicy>
<RetryInterval>60</RetryInterval>
<MaxRetries>1000</MaxRetries>
<CompressionLimit>1000000</CompressionLimit>

</SessionProfile>

<Session name="session_1">
<LocalAccessPointName>JDOM</LocalAccessPointName>
<RemoteAccessPointName>TDOM1</RemoteAccessPointName>
<ProfileName>profile_1l</ProfileName>

</Session>

<Import name="TOUPPER">

<RemoteName>TOUPPER</RemoteName>

36 Oracle Tuxedo JCA Adapter Programming Guide

Oracle Tuxedo UBBCONFIG and BDMCONFIG Examples

<SessionName>session_l</SessionName>
<LoadBalancing>RoundRobin</LoadBalancing>

</Import>

<Import name="TOUPPER_V32">
<RemoteName>TOUPPER_V32</RemoteName>
<SessionName>session_l</SessionName>
<LoadBalancing>RoundRobin</LoadBalancing>

</Import>

<Export name="TOLOWER">

<RemoteName>TOLOWER</RemoteName>
<SessionName>session_l</SessionName>
<Type>EJB</Type>
<Source>tuxedo.services.TolowerHome</Source>

</Export>

<Export name="TOLOWER_POJO">
<RemoteName>TOLOWER_POJO</RemoteName>
<SessionName>session_l</SessionName>
<Type>P0OJO</Type>
<Source>com.oracle. tuxedo. test.MyTolower</Source>
<SourceLocation>c: \tuxedo\jca\test\MyApp.jar</SourceLocation>

</Export>

</TuxedoConnector>

Oracle Tuxedo UBBCONFIG and BDMCONFIG Examples

In addition to configuring the Oracle Tuxedo JCA Adapter configuration file, the Oracle Tuxedo
UBBCONFIG and BDMCONFIG configuration files must include the Oracle Tuxedo JCA
Adapter configuration in order to enable the application.

Listing 42 and Listing 43 show UBBCONFIG and BDMCONFIG file snippet examples required
to expose services inside an Oracle Tuxedo Application Domain and inter-domain requests.

Listing 42 UBBCONFIG File Snippet Example

*SERVICES
TOUPPER

Oracle Tuxedo JCA Adapter Programming Guide 317

Oracle Tuxedo JCA Adapter Programming Guide

TOUPPER_V32

Listing 43 BMDCONFIG File Snippet Example

*DM_LOCAL_SERVICES
TOUPPER
TOUPPER_V32

*DM_REMOTE_SERVICES
TOLOWER
TOLOWER_POJO

See Also

38

e Oracle Tuxedo JCA Adapter Users Guide
e Oracle Tuxedo JCA Adapter Reference Guide

e Oracle Tuxedo Metadata Repository Documentation

Oracle Tuxedo JCA Adapter Programming Guide

../users/jca_usersguide.html
../ref/index.html
../../../salt/docs11gr1/metarepo.html

	Oracle® Tuxedo JCA Adapter
	11g Release 1 (11.1.1.1.0)

	Oracle Tuxedo JCA Adapter Programming Guide, 11g Release 1 (11.1.1.1.0)
	Contents
	Oracle Tuxedo JCA Adapter Programming Guide

	Overview
	Prerequisites
	Common Development Tasks

	Using Connection Instance and Connection Factory
	Using the DMConfigChecker Utility
	Developing an Oracle Tuxedo JCA Adapter Client Application
	CCI Client Programming
	Transaction Client Programming
	CCI-Managed XA Client Programming
	CCI-Managed Local Transaction Programming

	JATMI Client Programming
	Inbound EJB Service Programming
	Inbound POJO Service Programming

	Configuration File Examples
	Oracle Tuxedo JCA Adapter Configuration Examples
	Oracle Tuxedo UBBCONFIG and BDMCONFIG Examples

	See Also

