Oracle® Tuxedo
Using the Tuxedo .NET Workstation Client
11g Release 1 (11.1.1.1.0)

March 2010

ORACLE

Oracle Tuxedo Using the Tuxedo .NET Workstation Client, 11g Release 1 (11.1.1.1.0)
Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Creating Tuxedo .NET Workstation Client Applications

OVOTVIBW .« ot ettt et e e e e e e e e e 1
LImitations oo ottt 2
How Tuxedo .NET Workstation Client Works. 3
Microsoft NET Framework. i 4
Developing Tuxedo .NET Workstation Client Applications 5
Programming Tuxedo .NET Workstation Clients., 5
Tuxedo .NET Workstation Client Namespacesvvvinenrnnnnnn.. 6
Using AppConteXt Class oottt et e et 6
Using Typed Buffers e 8
Using STRING Typed Buffers i 9

Using FML/FML32 Typed Buffers 10

Using VIEW/VIEW32 Typed Buffers 11
Programming with Visual Basic (VB)........ 13
Building .NET Workstation Clients., 15
Managing Errors 15
Tuxedo .NET Workstation Client Samples. 16
SEE AlSO . .ot 16

Using the Tuxedo .NET Workstation Client iii

iv

Using the Tuxedo .NET Workstation Client

Creating Tuxedo .NET Workstation
Client Applications

This topic includes the following sections:

o Overview
o How Tuxedo .NET Workstation Client Works

e Programming Tuxedo .NET Workstation Clients

Tuxedo .NET Workstation Client Samples

Overview

For Microsoft NET programmers, Tuxedo .NET Workstation Client is a facilitating tool that will
help to efficiently develop Tuxedo .NET Workstation Client applications. Besides providing a set
of Object Oriented (OO) interfaces to .NET programmers, this tool allows you to design and write
code in OO styles.

For Tuxedo programmers, the Tuxedo .NET Workstation Client inherits most ATMI function
invocation behavior which makes it easier to understand and use .NET Client classes to write
applications. Because the Tuxedo .NET Workstation Client is published as a .NET assembly, it
also leverages the benefit of NET Framework. It can be used with many .NET programming
languages (for example, C#, J#, VB .NET, and ASP.NET).

Note: The Tuxedo Workstation Client has been tested with and officially supports Microsoft
Framework 2.0

Creating Tuxedo .NET Workstation Client Applications 1

Creating Tuxedo .NET Workstation Client Applications

The Tuxedo .NET Workstation Client enables you to write Tuxedo client applications using
.NET programming languages to access Tuxedo services. It also provides connectivity between
.NET workstation applications and Tuxedo services.

The Tuxedo .NET Workstation Client contains the following components:

e A wrapper assembly: 1ibwsclient.dll

This Microsoft .NET Framework .d11 assembly wraps Tuxedo ATMI and FML functions
for developing Tuxedo .NET workstation clients.

e A set of utilities: viewcs, viewcs32; mkfldcs, mkfldcs32; and buildnetclient

These executable utilities help to develop C# code using Tuxedo VIEW/VIEW32 and
FML/FML32 typed buffer and compile C# code to Tuxedo .NET Workstation Client
executable assemblies. For more information, see viewcs, viewcs32(1),
mkfldcs, mkfldcs32(1),buildnetclient(1).

e Sample applications: callapp, fmlviewapp, and unsolapp

These three samples explain how to create Tuxedo .NET Workstation Client application
using C#. See Tuxedo .NET Workstation Client Samples.

Limitations

The Tuxedo .NET Workstation Client has the following limitations:

o [t exclusively supports developing Tuxedo workstation clients with .NET languages. It
does not support developing Tuxedo native clients or Tuxedo servers in a .NET
environment.

e New Tuxedo 11g R1 ATMI functions are not included in the Tuxedo .NET Workstation
Client package (for example, tpxmltofml132(3) and tpfmltoxml32(3)).

e Tx Transaction interfaces (for example: tx_open (), tx_close(), and tx_begin()), are
not supported by Tuxedo .NET Workstation Client. Only Tuxedo TP transaction functions
can be used.

e Tuxedo .NET workstation Client implementation requires ATMI client functionality.
During the Tuxedo installation, the Full Install Set and .NET Client Install Set
automatically include the ATMI Client Install Set.

For more Tuxedo .NET Client installation and Tuxedo install set information, see /nstalling
the Oracle Tuxedo System.

2 Creating Tuxedo .NET Workstation Client Applications

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

How Tuxedo .NET Workstation Client Works

o Microsoft .NET Framework 2.0 must be installed in order to use the Tuxedo .NET
Workstation Client. Microsoft .NET Framework is not bundled with the Tuxedo .NET
Workstation Client package.

To download Microsoft NET Framework 2.0 and for more Microsoft NET Framework
information, see Microsoft’s .NET Developer Center.

How Tuxedo .NET Workstation Client Works

The Tuxedo .NET Workstation Client works as an intermediate layer or wrapper between your
NET applications and underlying Tuxedo workstation shared libraries (1ibwsc.d11,
libengine.dll, and 1ibfml.d11). Figure 1 illustrates how the Tuxedo .NET Workstation
client works.

The . NET assembly 1ibwscdnet.d11 contains the wrapper API classes for Tuxedo .NET
Workstation Client and implements a set of object-oriented-styled interfaces that wrap around
Tuxedo ATMI functions and FML functions.

buildnetclient references libwscdnet.dl1l in order to build Tuxedo workstation clients
written in . NET programming languages. It targets the Common Language Runtime (CLR)
environment, and is invoked by the assemblies (for example, client executables, libraries)
depending on it at runtime.

The win32 shared library, 1ibwdi .d11, implements platform specific functions that
libwscdnet.dll uses.

Note: 1ibwdi.dl1l isonly required by 1ibwscdnet.d11l at runtime and is not necessary when
buildnetclient builds the application source files into .NET executables.

This library is reserved for future use if Microsoft’s .NET Framework is ported to
platforms other than the Microsoft Windows family.

Creating Tuxedo .NET Workstation Client Applications 3

Creating Tuxedo .NET Workstation Client Applications

Figure 1 How Tuxedo .NET Workstation Client Works
Microsoft NET Frameworl

Tuxedo NET Workstation Client
{(Developed Based on NET wrapper)

OS5 or Compiler Supplied Libraries
{for example, msvert.dll)

Microsoft .NET Framework

The Tuxedo .NET Workstation Client requires Microsoft .NET Framework 2.0 SDK installation
on your system. The Oracle Tuxedo installer program automatically checks to see if NET
Framework is installed or not. If installed, 1ibwscdnet .d11 is automatically registered in the
.NET Framework global assembly cache.

If .NET Framework is not installed, you must install it. You can download the .NET Framework
from Microsoft’s .NET Developer Center. After you have installed .NET Framework, manually
registering 1ibwscdnet.dll in the global assembly cache is highly recommended.

To manually register/unregister 1ibwscdnet .d11 in the global assembly cache, you must do the
following steps:

Register libwscdnet.dll Using GUI Configuration

1. Launch the . NET GUI configuration program. On your Windows desktop, click Start/All
Programs/Administrative Tools/Microsoft NET Framework

4 Creating Tuxedo .NET Workstation Client Applications

Programming Tuxedo .NET Workstation Clients

2. Right click Assembly Cache. Click Add

3. Select 1ibwscdnet.dll from the $TUXDIR%\bin directory. Click Open. 1ibwscdnet .dll
is added to the Assembly Cache list.

Unregister libwscdnet.dll Using GUI Configuration

1. Launch the . NET GUI configuration program. On your Windows desktop, click Start— All
Programs— Administrative Tools— Microsoft NET Framework and select Assembly
Cache.

2. Inthe Assembly Cache list, right click 1ibwscdnet.d11 and click Delete.

Register/Unregister Using Command Line

You can also register/un-register 1ibwscdnet.dll from the command line.

To register enter: $WINDIR%\Microsoft.NET\Framework\v2.0.4322\gacutil.exe /i
$TUXDIR%\bin\libwscdnet.dll.

To unregister enter: $WINDIR%\Microsoft.NET\Framework\v2.0.4322\gacutil.exe /u
libwscdnet.dll.

Developing Tuxedo .NET Workstation Client Applications

Programmers developing Tuxedo .NET Workstation Client applications must:
1. Use the .NET wrapper classes/interfaces
2. Set up a Tuxedo workstation client environment

3. Access Tuxedo services via Tuxedo /WS protocol.

The Tuxedo .NET Workstation Client provides development utilities that can aid programmers
using Tuxedo FML/VIEW typed buffer and building .NET executable files. See Using
FML/FML32 Typed Buffers and Using VIEW/VIEW32 Typed Buffers.

Programming Tuxedo .NET Workstation Clients

Main changes in Tuxedo .NET Workstation Client interface (compared to Tuxedo ATMI and
FML C functions), are as follows:

e Class AppContext is used to organize almost all ATMI C functions.

Creating Tuxedo .NET Workstation Client Applications 5

Creating Tuxedo .NET Workstation Client Applications

e A Tuxedo transaction is encapsulated as a class. All transaction related functions are
defined as methods of Class Transaction, (for example, tpbegin (), tpcommit (), and
SO on).

e Exception classes control error handling

e Tuxedo typed buffer encapsulation is handled using class TypedBuf fer and its derived
classes. See Using Typed Buffers.

Tuxedo .NET Workstation Client Namespaces

Tuxedo .NET Workstation Client namespaces are divided into two categories. The first category
includes two namespaces, Bea . Tuxedo . ATMI and Bea . Tuxedo.FML that bundles ATMI and
FML wrapper classes.

The second category uses the Bea.Tuxedo.Autogen namespace to bundle all auto-generated
NET classes using .NET Client utilities.

These namespaces include all the classes and structures related to the functions listed in the
Tuxedo .NET Workstation Client API Reference.

Using AppContext Class

The appContext class is a key class used to perform Tuxedo service access functions.
AppContext leverages the OO programming style in a multi-contexted client application.

Note: For more multi-context information, see Programming a Multithreaded and
Multicontexted ATMI Application in Programming an Oracle Tuxedo ATMI
Application Using C.

Most Tuxedo ATMI C functions (for example, tpcall (), and tpnotify ()), are defined as
AppContext class methods. Creating an AppContext class instance is a key component in
connecting to a Tuxedo domain and call services provided by that Tuxedo domain.

In a multi-contexted application written in C or COBOL, programmers typically have to switch
between different Tuxedo context using two ATMI functions, tpgetctxt () and tpsetctxt ().
This is not required using the Tuxedo .NET Workstation Client. Creating a class AppContext
instance also creates specific Tuxedo context instance.

Operations on a particular AppContext will not impact other AppContext instances. You can
develop multi-context applications and easily switch between them.

To create a Tuxedo context instance you need to invoke the static class method,
AppContext . tpinit (TPINIT), instead of the class constructor.

6 Creating Tuxedo .NET Workstation Client Applications

../pgc/pgthr.html
../pgc/pgthr.html

Programming Tuxedo .NET Workstation Clients

Note: Tuxedo context instances are not destroyed automatically. You must invoke
AppContext.tpterm() before a Tuxedo context instance is destroyed, otherwise you
may encounter the following:

e The garbage collector (gc) may destroy AppContext class instances without
terminating the Tuxedo context session.

e The client and WSH connection remains live until it times-out.

The following sample shows how to connect to a single context Tuxedo domain.

Listing 1 C# Code Sample: Connecting to a Single Context Client

TypedTPINIT tpinfo = new TypedTPINIT() ;

AppContext ctxl = AppContext.tpinit (tpinfo); // connect to Tuxedo domain

ctxl.tpterm() ; // disconnect from Tuxedo domain

The following sample shows how to connect to a multi-context Tuxedo domain .

Listing 2 C# Code Sample: Connecting to a Multi-Context Client

TypedTPINIT tpinfo = new TypedTPINIT() ;

tpinfo.flags = TypedTPINIT.TPMULTICONTEXTS; // set multi context flag

// connect to the first Tuxedo domain

AppContext ctxl = AppContext.tpinit (tpinfo);

Creating Tuxedo .NET Workstation Client Applications 1

Creating Tuxedo .NET Workstation Client Applications

Utils.tuxputenv ("WSNADDR=//10.2.0.5:1001") ;

// connect to the second Tuxedo domain

AppContext ctx2 = AppContext.tpinit (tpinfo);

ctxl.tpterm() ; // disconnect from the first Tuxedo domain

ctx2.tpterm() ; // disconnect from the second Tuxedo domain

Using Typed Buffers

The Tuxedo .NET Workstation Client supports the following built-in Oracle Tuxedo buffer
types: FML, FML32, VIEW, VIEW32, CARRAY, and STRING. Figure 2 provides an illustration of the
Tuxedo .NET Workstation Client typed buffer class hierarchy.

The Tuxedo NET Workstation Client class TypedBuf fer is the base class of all concrete Tuxedo
buffer types and provides some low level functions to all derived classes. Class TypedBuffer is
an abstract class and cannot be used to create instances.

8 Creating Tuxedo .NET Workstation Client Applications

Programming Tuxedo .NET Workstation Clients

Figure 2 Tuxedo .NET Workstation Client Typed Buffer Class Hierarchy

TypedBuffer
TypedCArray TypedString TypedTPINIT TypedX ML
TypedFML TypedVIEW TypedFML32 TypedView32

e e I [

Using STRING Typed Buffers

The Tuxedo .NET Workstation Client uses class Typedstring to define STRING typed buffer
characters. TypedString instances can be used directly to communicate with AppContext
methods such as tpcall(). See the following example.

Listing 3 Using TypedString Class (C# code example)

TypedString snd_str = new TypedString ("Hello World") ;

TypedString rcv_str = new TypedString(1000);

AppContext ctx = AppContext.tpinit(null);

Creating Tuxedo .NET Workstation Client Applications 9

Creating Tuxedo .NET Workstation Client Applications

10

ctx.tpcall ("TOUPPER", snd_str, rcv_str, 0);

Using FML/FML32 Typed Buffers

The Tuxedo .NET Workstation Client uses class TypedFML/TypedFML32 to define most FML C
functions. You should do the following steps to develop Tuxedo .NET applications using FML
typed buffers:

1. Define FML field table files.

Compile field table files into C# source files using the mkfldcs Tuxedo .NET Workstation
Client utility. The generated C# files contain public classes including definitions of every
FML field ID defined in the field table files. See also mkfldcs (1)

2. Write your .NET application.
Use TypeFML class methods to create and access FML data.

For more FML typed buffer programming information, see Programming a Tuxedo ATMI
Application Using FML.

Listing 4 FML Auto-Generated Code Using mkfldcs (C# code example)

using Bea.Tuxedo.FML;

namespace Bea.Tuxedo.Autogen {

public class fnext_flds {

public static readonly FLDID F_short = 110;// number: 110 type: short

public static readonly FLDID F_view32 = 369098863;// number: 111 type:

view32

Creating Tuxedo .NET Workstation Client Applications

Programming Tuxedo .NET Workstation Clients

public static readonly FLDID F_double = 134217840;// number: 112 type:
double

public static readonly FLDID F_ptr = 301990001;// number: 113 type:
ptr

} // namespace Bea.Tuxedo.Autogen

Listing 5 Using TypedFML Class (C# code example)

TypedFML fmlbuf = new TypedFML (2048) ;

short s = 123;

fmlbuf.Fadd(fnext_flds.F_short, s);

Using VIEW/VIEW32 Typed Buffers

The Tuxedo .NET Workstation Client uses class TypedVIEW to create and access
VIEW/VIEW32 data. You should do the following steps to develop Tuxedo .NET Workstation
Client applications using VIEW/VIEW32 typed buffers:

Creating Tuxedo .NET Workstation Client Applications "

Creating Tuxedo .NET Workstation Client Applications

12

Define the VIEW definition file (.v).

Use the Tuxedo .NET Workstation Client viewcs utility to compile the VIEW definition file
into a VIEW binary file (.VV). For more information, see viewc (1), viewcs (1).

. Use the Tuxedo .NET Workstation Client viewcs utility to generate class TypedvIEw derived

definition C# code and corresponding .d11 library (if necessary) from the View binary file.

. Use class TypedvIEw to write your .NET application.

Using class TypedvIEW provides you with two options:
— Option 1: No Environment Variables
This is the most common usage of TypedVIEW.

Use the viewcs utility to generate derived class TypedvIiw definition C# code from
the xxx.VV file, then compile the C# code into an . exe file. No additional environment
variables are required.

See the following example:

viewcs (32) viewl.VV view2.VV
buildnetclient -o simpapp.exe simpapp.cs viewl.cs view2.cs

— Option 2: Use .NET Assembly Environment Variables

You can use the viewcs utility along with .NET assembly environment variables to
generate .d11 libraries. The .NET assembly environment variables ASSFILES, ASSDIR
(ASSFILES32, ASSDIR32 for view32) must be set accordingly in order to view
viewcs-generated .d11 libraries.

Note: Typedview must link to .d11 libraries instead of C# code in the NET
environment. This is because it compiles the class type into .d11 libraries or . exe
files. If the definition is compiled into both .d11 libraries and . exe files, the
output binaries for these two files are not the same.

Using these environment variables, .d11 libraries can be generated automatically or
manually:

Automatic viewcs-generated .d11l libraries

This method may be used when many xxx.VV files exist. To simplify management of
TypedvIEW C# code, these xxx.VV files can be compiled into a .d11 library.

Use the viewcs utility to generate derived class TypedvIiew definition C# code and
corresponding .d11 library from the xxx.VV files. Manually register the
libwscdnet.dll assembly, and then compile your client application using the .d11
library.

Creating Tuxedo .NET Workstation Client Applications

Programming Tuxedo .NET Workstation Clients

See the following example:

viewcs (32) view.dll viewl.VV view2.VV
gacutil.exe /i view.dll

buildnetclient -o simpapp.exe simpapp.cs view.dll
set ASSFILES(32)=view.dll

set ASSDIR(32)=%APDIRS

Manual-generated .d11 Libraries

In certain integrated programming environments (for example, VB .NET, and
ASP.NET). the framework provides the executing environment. Client applications are
integrated as .d11 files. In this case it is best to manually generate .d11 libraries.

Use the viewcs utility to generate derived class TypedvIEw definition C# code from
the xxx.VV file, then compile the C# code into an application .d11.

The .NET assembly environment variables ASSFILES, ASSDIR (ASSFILES32,
ASSDIR32 for view32) must be set to application .d11 libraries and directories that
have TypedviEw defined.

See the following example:

viewcs (32) viewl.VV view2.VV
csc /t:library /out:simpapp.dll /r:%TUXDIR%\bin\libwscdnet.dll
simpapp.cs
viewl.cs view2.cs
set ASSFILES(32)=simpapp.dll
set ASSDIR(32)=%APDIR%
The Typed Buffer Samples file (included in the Tuxedo . NET Workstation Client package)

demonstrates how to use FML and VIEW typed buffers.

Programming with Visual Basic (VB)

One benefit of the .NET Framework environment is language integration. Once a .NET assembly
is generated, you can use any .NET supported language to develop applications using that
assembly. Accordingly, you can also use J#, VB, C++ or other .NET supported languages to
develop Tuxedo .NET Workstation Client applications.

The following is a VB language code example:

Listing 6 Visual Basic .NET Code Example

Imports System
Imports Bea.Tuxedo.ATMI

Creating Tuxedo .NET Workstation Client Applications 13

Creating Tuxedo .NET Workstation Client Applications

14

Module Main

Sub Main ()

Dim sndstr, rcvstr As TypedString

Dim ac As AppContext

Dim info As TypedTPINIT

info = New TypedTPINIT /()

info.cltname = "vb client"

Try

ac = AppContext.tpinit(info)

sndstr = New TypedString("hello world")
rcvstr = new TypedString(1000)

ac.tpcall ("TOUPPER", sndstr, rcvstr, 0)

Console.WriteLine("rcvstr = {0}"
rcvstr.GetString (0,1000))

ac.tpterm()

Catch e as ApplicationException

Console.WriteLine("Got Exception

End Try

End Sub

End Module

= {0}r",

e)

Creating Tuxedo .NET Workstation Client Applications

Programming Tuxedo .NET Workstation Clients

Building .NET Workstation Clients

The buildnetclient utility is provided to help compile C# source files into a .NET executable
files. See also buildnetclient (1). The following is a buildnetclient syntax example:

buildnetclient -v -o simpapp.exe simpapp.cs

Managing Errors

The error code return mechanism used with Tuxedo ATMI C and FML C functions is replaced
with an exception mechanism in the Tuxedo .NET Workstation Client. You can use the try
statement to handle errors using the Tuxedo .NET Workstation Client. Errors are defined into two
categories: TPException and FException.

Listing 7 Exception Handling (C# Code Example)

TypedTPINIT tpinfo = new TypedTPINIT() ;

AppContext ctxl = AppContext.tpinit (tpinfo); // connect to Tuxedo

domain

ctxl.tpterm() ; // disconnect from Tuxedo domain

} catch (ApplicationException e) {

Console.WriteLine ("******Error****** e = {0}", e);

Creating Tuxedo .NET Workstation Client Applications 15

Creating Tuxedo .NET Workstation Client Applications

Tuxedo .NET Workstation Client Samples

Three sample applications are bundled with Tuxedo .NET Workstation Client package:

e Basic Sample

Describes how to develop Tuxedo .NET Workstation Client applications
e Typed Buffer Sample

Demonstrates FML/VIEW typed buffer usage in Tuxedo .NET Workstation Client applications
e Unsolicited Message Sample

Demonstrates how to register unsolicited message handler in Tuxedo .NET Workstation
Client applications

You must do the following steps to access the sample applications:
1. Read the readme.nt file in each sample application directory.
2. Run setenv.cmd to set Tuxedo environment variable.

3. Runnmake -f xxx.nt to build the Tuxedo .NET Workstation Client application, Tuxedo
server program and Tuxedo TUXCONFIG file.

4. Run tmboot -y to start Tuxedo application.

5. Run Tuxedo .NET Workstation Client application.

See Also

e viewc, viewc32(1); viewcs, viewes32(1)

o mkfldhdr, mkfldhdr32(1); mkfldcs, mkfldes32(1)

e Programming Oracle Tuxedo ATMI Applications Using C
e Oracle Tuxedo ATMI C Function Reference

16 Creating Tuxedo .NET Workstation Client Applications

e Oracle Tuxedo ATMI FML Function Reference

e File Formats, Data Descriptions, MIBs, and System Processes Reference

Creating Tuxedo .NET Workstation Client Applications

See Also

Creating Tuxedo .NET Workstation Client Applications

18 Creating Tuxedo .NET Workstation Client Applications

	Oracle® Tuxedo
	11g Release 1 (11.1.1.1.0)

	Oracle Tuxedo Using the Tuxedo .NET Workstation Client, 11g Release 1 (11.1.1.1.0)
	Overview
	Limitations

	How Tuxedo .NET Workstation Client Works
	Microsoft .NET Framework
	Developing Tuxedo .NET Workstation Client Applications

	Programming Tuxedo .NET Workstation Clients
	Tuxedo .NET Workstation Client Namespaces
	Using AppContext Class
	Using Typed Buffers
	Using STRING Typed Buffers
	Using FML/FML32 Typed Buffers
	Using VIEW/VIEW32 Typed Buffers

	Programming with Visual Basic (VB)
	Building .NET Workstation Clients
	Managing Errors

	Tuxedo .NET Workstation Client Samples
	See Also

