Oracle® Tuxedo
Using the CORBA Notification Service
11g Release 1 (11.1.1.1.0)

March 2010

ORACLE

Oracle Tuxedo Using the CORBA Notification Service, 11g Release 1 (11.1.1.1.0)
Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Overview

Introduction. 1-1
Functional Overview. 1-2
Product Components.ttt et e 1-3
2. CORBA Notification Service APl Reference

Introduction.o 2-1
Quality Of Serviceot 2-2
Obtaining the Channel Factory 2-3
Using Transactions.out ettt ettt et 2-4
Structured Event Fields, Types,and Filters 2-5
Designing Events.ot 2-6
Creating FML Field Table Files for Events. 2-7
Interoperability with Oracle Tuxedo Applications 2-9
Parameters Used When Creating Subscriptions.oooun.. 2-11
Oracle Simple Events APL i 2-15
TOBIJ_SimpleEvents::Channel Interface. 2-16
Channel::subscribe 2-17
Channel::unsubscribe 2-19
Channel::push_structured event................. ccvinon... 2-20
Channel:zexistsottt e 2-21
TOBJ_SimpleEvents::ChannelFactory Interface. 2-22

Using the CORBA Notification Service iii

Channel Factory::find channel............. 2-23

CosNotification Service APL 2-23
Overview of Supported CosNotification Service Classes. 2-24
Detailed Descriptions of CosNotification Service Classes. 2-27

CosNotifyFilter::Filter::add_constraints 2-28
CosNotifyFilter::Filter::destroy 2-29
CosNotifyFilter::FilterFactory::create filter......................... 2-30
CosNotifyChannel Admin::StructuredProxyPushSupplier::

connect_structured push consumer. 2-32
CosNotifyChannel Admin::StructuredProxyPushSupplier::set qos 2-33
CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter. 2-35
CosNotifyChannel Admin::StructuredProxyPushSupplier::get filter 2-36
CosNotifyChannel Admin::StructuredProxyPushSupplier::

disconnect_structured push supplier................. 2-37
CosNotifyChannel Admin::StructuredProxyPushSupplier::MyType. 2-38

CosNotifyChannel Admin::StructuredProxyPushConsumer::

connect_structured push supplier............................. 2-38

CosNotifyChannel Admin::StructuredProxyPushConsumer::

push structured event 2-39

CosNotifyChannel Admin::StructuredProxyPushConsumer::

disconnect_structured push consumer 2-41
CosNotifyChannel Admin::StructuredProxyPushConsumer::MyType 2-41
CosNotifyChannelAdmin::ConsumerAdmin::

obtain_notification push supplier............................. 2-42
CosNotifyChannelAdmin::ConsumerAdmin::get proxy supplier........ 2-44

CosNotifyChannel Admin::SupplierAdmin::

obtain_notification push consumer.............. 2-45

Using the CORBA Notification Service

CosNotifyChannelAdmin::EventChannel::

ConsumerAdmin default consumer admin...................... 2-47

CosNotifyChannelAdmin::EventChannel::

ConsumerAdmin default supplier admin 2-48
CosNotifyChannelAdmin::EventChannel::default filter factory......... 2-48
CosNotifyChannelAdmin::EventChannelFactory::get event channel. 2-49
CosNotifyComm::StructuredPushConsumer::push_structured event. 2-51

CosNotifyComm::StructuredPushConsumer::

disconnect_structured push consumer. 2-52
CosNotifyComm::StructuredPushConsumer::Offer change............. 2-52
Exception Minor Codes. . ..ottt 2-53

3. Using the Oracle Simple Events AP

Development Processo vttt e 3-1
Designing EVents i e 3-2
Step 1: Writing an Applicationto Post Events. 3-2
Getting the Event Channel. 3-2
Creating and Posting Events 3-3
Step 2: Writing an Application to Subscribe to Events 3-4
Implementing the CosNotifyComm::StructuredPushConsumer Interface 3-5
Getting the Event Channel. 3-7
Creating a Callback Object ot 3-7
Creating a SUDSCIIPLIONottt e e et 3-8
Step 3: Compiling and Running Notification Service Applications. 3-11
Generating the Client Stub and Skeleton Files 3-12
Building and Running Applications, 3-12
4. Using the CosNotification Service API
Development Processot 4-1

Using the CORBA Notification Service

Designing Events 4-2

Step 1: Writing an Applicationto Post Events. 4-2
Getting the Event Channel i .. 4-2
Creating and Posting Events i 4-3

Step 2: Writing an Application to Subscribeto Events 4-5
Implementing the CosNotifyComm::StructuredPushConsumer Interface 4-5

Getting the Event Channel, ConsumerAdmin Object, and Filter Factory Object. . 4-8

Creating a Callback Object.t i 4-9
Creating a SUDSCIIPtION.ottt e et 4-10
Step 3: Compiling and Running Notification Service Applications 4-12
Generating the Client Stub and Skeleton Files 4-12
Compiling and Linking the ApplicationCode 4-13

5. Building the Introductory Sample Application

OVEIVIEW . . ottt ettt e e e e e e e e e e e e e 5-1
Building and Running the Introductory Sample Application. 5-4
Verifying the Settings of the Environment Variables 5-4

Copying the Files for the Introductory Sample Application into a Work Directory 5-6

Changing the Protection Attribute on the Files for the Introductory Sample

ApPPLication. 5-8
Setting Up the Environment 5-9
Building the Introductory Sample Application. 5-9
Starting the Introductory Sample Application 5-10
Using the Introductory Sample Application 5-11
Shutting Down the System and Cleaning Up the Directory 5-12

6. Building the Advanced Sample Application
OVEIVIEW . . ottt e e e e 6-1

Building and Running the Advanced Sample Application 6-6

vi Using the CORBA Notification Service

Verifying the Settings of the Environment Variables 6-7
Copying the Files for the Advanced Sample Application into a Work Directory. . 6-8
Changing the Protection Attribute on the Files for the Advanced Sample Application

6-11
Setting Up the Environment 0t .. 6-12
Building the Advanced Sample Application. 6-12
Starting the Advanced Sample Application. oo . 6-13
Using the Advanced Sample Application, 6-14
Shutting Down the System and Cleaning Up the Directory 6-17
/. CORBA Notification Service Administration
Introduction. 7-2
Configuring the Notification Service 7-2
Configuring Data Filters.t e e e 7-2
Setting the Hostand Port 7-5
Creating a Transaction Log.ot e 7-6
Creating Event QUeUeS oot e e 7-6
Determining Space Parameters for Transient and Persistent Subscriptions 7-7
Creating a Device on Disk for the Queue Space. 7-9
Configuring a Queue Space.ttt 7-10
Creating the QUEUES. it 7-11
Setting IPC Parameters on Microsoft Windows 7-12
Creating the UBBCONFIG File and the TUXCONFIG File.................... 7-15
Managing the Notification Service. 7-23
Synchronizing Databases.ttt 7-23
Purging the System of Dead Subscriptions 7-23
Monitoring Queue Utilization 7-24
Purging the Queues of Unwanted Events 7-25

Using the CORBA Notification Service vii

Managing the ErrorQueue 7-25

Notification Service Administration Utility and Commands. 7-25
ntsadmin Utility. o 7-26
NESAAMIN. . o .t 7-26
ntsadmin Commands.t 7-27
Using the ntsadmin Utility, 7-30
Notification SEIVEISottt e e 7-32
TN TS 7-32
TMNTSFWD T. . e e i 7-33
TMNTSFWD P. . e e 7-34

Index

viii Using the CORBA Notification Service

Overview

This topic includes the following sections:
e Introduction
e Functional Overview

e Product Components

Introduction

The Notification Service provides an event service for the Oracle Tuxedo CORBA environment.
It is not meant to be a standalone product, but rather a layered product on Oracle Tuxedo.

The Notification Service offers similar capabilities to those of the Oracle Tuxedo EventBroker,
but with a programming model and interface that is natural for CORBA users. A side effect of
this approach is that the majority of the CORBA-based Notification Service is not supported since
it is either incompatible with, or provides capabilities well beyond that of the Oracle Tuxedo
EventBroker.

The Notification Service is an Oracle Tuxedo subsystem that receives event posting messages,
filters them, and distributes them to subscribers. A poster is an Oracle Tuxedo CORBA
application that detects when an event of interest has occurred and reports (posts) it to the
Notification Service. A subscriber is an Oracle Tuxedo CORBA application that requests that
some notification action be taken when an event of interest is posted.

The concept of an “anonymous” service—the Notification Service—that receives and distributes
messages provides another client-server communication paradigm to Oracle Tuxedo CORBA

Using the CORBA Notification Service 1-1

environment. Instead of a one-to-one relationship between a requester and a provider, an arbitrary
number of posters can post a message for an arbitrary number of subscribers. The posters simply
post events, without knowing who receives the information or what is done about it. The
subscribers can receive whatever information they are interested in from the Notification Service,
without knowing who posted it, and subscribers can be notified and take action in a variety of
ways.

Typically, Notification Service applications are designed to handle exception events. The
application designer has to decide what events in the application need to be monitored. In a
banking application, for example, an event might be posted for an unusually large withdrawal
transaction; but it would not be particularly useful to post an event for every withdrawal
transaction. And not all users would need to subscribe to that event; perhaps just the branch
manager, would need to be notified.

The programming model for the Notification Service is based on the CORBA programming
model. There are two sets of interfaces: one is a minimal subset of the CORBA-based
Notification Service interface (referred to in this document as the CosNotification Service
interface), and the other is the Oracle Simple Events interface (an Oracle proprietary interface)
designed to be easy to use. Both interfaces pass standard, structured events, as defined by the
CORBA-based Notification Service specification.

The two interfaces are compatible with each other; that is, events posted using the
CosNotification Service interface can be subscribed to by the Oracle Simple Events interface and
vice versa.

Functional Overview

The Notification Service system comprises three basic components (see Figure 1-1):

e The event poster, or supplier.

The supplier is the producer of events. It creates events and posts them to the Notification
Service.

e The Notification Service, also known as the event channel.
The Notification Service processes events.
e The event subscriber, or consumer.

The consumer is the recipient of the events. It connects to the Notification Service and
subscribes to some set of events.

Using the CORBA Notification Service

Product Components

When the Notification Service receives an event that matches a consumer’s subscription, it
attempts to deliver the event to that consumer. There can be many suppliers and consumers.
Logically, there is only one Notification Service, even though the Notification Service can be
replicated.

Figure 1-1 Notification Service Model

Event Subscribe

Poster l\ push

Event
Notification Subscriber

Service

According to the CORBA-based Notification Service specification, event posters always use the
push model. Thus, event posters push events to the Notification Service by invoking an operation.
The Notification Service takes responsibility for filtering and delivering the event. There is no
direct association between event posters and event subscribers. At any point in time there may be
zero, one, or many event posters or event subscribers.

Also, according to the CORBA-based Notification Service specification, subscribers can select
one of two event delivery models, push or pull. Only the push model is supported in this release
of Oracle Tuxedo. Thus, the Notification Service pushes events to the consumer by invoking an
operation on the consumer. Depending on the Quality of Service (QoS) of the matching
subscription, the event might be stored durably, pending delivery to the consumer.

Product Components

The Oracle Tuxedo CORBA Notification Service supports the following:
e An Oracle Simple Events application programming interface (API) for ease-of-use.
e A minimal set of operations defined by the CosNotification Service API.

e Two Qualities of Service (QoS) for subscriptions: transient and persistent.

For transient subscriptions, the Notification Service makes only one attempt to deliver the
event to a subscriber. If that attempt fails, the event is discarded and if the Notification
Service determines that the subscriber is shutdown or otherwise not available, the
subscription is cancelled.

Using the CORBA Notification Service 1-3

1-4

For persistent subscriptions, if the first delivery attempt fails, the Notification Service holds
the event and keeps attempting to deliver the subscription until the configurable retry limit
is reached. After the retry limit is reached, the Notification Service moves the event to an
error queue, where it is held for disposition by the system administrator. The system
administrator either removes the event from the error queue, which in effect discards it, or
moves it back to the pending queue so that further attempts to deliver it can be made.

e Using the uBBCONFIG file for initial configuration of the system, event queues, and server
processes.

e Using the Oracle Tuxedo style FML field tables. Through the use of FML field tables, the
Notification Service can support:

— Event data filtering between event posters and event subscribers.

— Interoperability with Oracle Tuxedo EventBroker such that events posted by the
Notification Service can be consumed by the Tuxedo EventBroker and vice versa.

e Using the following Oracle Tuxedo Notification Service servers to process events:
— TMNTS
— TMNTSFWD _ P
— TMNTSFWD_T
e Using the following Oracle Tuxedo system servers to process events:
— TMSYSEVT
— TMUSREVT
— TMQUEUE
— TMQFORWARD
e Using the Oracle Tuxedo ntsadmin administrative utility to manage event queues.

e Using the Oracle Tuxedo gmadmin administrative utility to configure and manage event
queues.

e Using the Oracle Tuxedo tmadmin administrative utility to configure and manage
transaction logs.

Using the CORBA Notification Service

CHAPTERa

CORBA Notification Service AP
Reference

This topic includes the following sections:
e Introduction
e Oracle Simple Events API

e CosNotification Service API

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Introduction

The Oracle Tuxedo CORBA Notification Service supports two application programming
interfaces. One is based on the CORBA-based Notification Service as defined by the
CORBAservices: Common Object Services Specification. This interface is referred to in this
document as the CosNotification Service interface. The other interface, called the Oracle Simple
Events interface, is an Oracle proprietary interface designed as an easier to use alternative.

Using the CORBA Notification Service 2-1

Both interfaces pass structured events as defined by the CORBA-based Notification Service
specification and are compatible with each other; that is, events posted using the CosNotification
Service interface can be subscribed to by the Oracle Simple Events interface and vice versa.

Before using the Notification Service APIs, consider the following topics:
e Quality of Service
e Obtaining the Channel Factory
e Using Transactions

Structured Event Fields, Types, and Filters

Creating FML Field Table Files for Events

Interoperability with Oracle Tuxedo Applications

Quality of Service

To determine the persistence of the subscription and whether or not events delivery is retried
following a failed delivery, subscribers specify a Quality of Service (QoS). There are two Quality
of Service settings: persistent and transient Quality of Service (QoS). The QoS is a property of
the subscription.

Persistent Subscriptions

Persistent subscriptions provide strong guarantees about event delivery and the permanence of
the subscription. Persistent subscriptions do come with a cost, however, as they consume more
system resources (for example, disk space, CPU cycles, and so on), and require more
administration (such as managing queues and detecting dead subscribers).

Persistent subscriptions exhibit the following properties:

e The subscription is in effect until an unsubscribe operation is performed. This means that a
subscriber application can be shut down and its subscription can still be active. In this case,
events are stored for the subscriber and, when the subscriber restarts, are delivered to the
subscriber without it having to recreate the subscription.

e If an event cannot be delivered, event delivery is retried until the administrative retry limit
is exceeded.When the event retry limit has been exceeded, the event is moved from the
pending queue to an error queue. An administrator can move events from the error queue
back to the pending queue, where delivery attempts will restart.

2-2 Using the CORBA Notification Service

Introduction

e Ifan event is successfully delivered to a subscriber, but the Notification Service for some
reason does not receive the “successful delivery” return message, the Notification Service
may deliver the same event more than once.

Transient Subscriptions

Transient subscriptions provide the best performance with the least overhead and exhibit the
following properties:

e One attempt is made to deliver the event to each matching subscription. If that attempt
fails, the event is lost.

The subscription is in effect until a failed event delivery is detected. On detection of a failed
delivery, the subscription is terminated. Normally, the Notification Service, for performance
reasons, does not check whether it successfully delivered an event to a transient subscriber.
However, occasionally, when the Notification Service delivers an event to a transient subscriber,
it checks whether or not the event was successfully delivered. If it was not successfully delivered
and the CORBA : : TRANSIENT exception is not returned, the Notification Service assumes that the
subscription has gone away and cancels the subscription. If the Notification Service receives the
CORBA': : TRANSIENT exception when an attempt to deliver fails, it assumes that the subscriber is
busy and discards the event, but it does not cancel the subscription.

The automatic cancellation of dead transient subscriptions provides a cleanup mechanism for
transient subscribers that forget to unsubscribe. Note, however, that the Notification Service
checks for successful delivery the first time it sends an event to a subscriber, but does not perform
it again until five minutes have elapsed and it delivers another event. Therefore, the interval
between checks is at least five minutes, but will be longer if there is no event to deliver when five
minutes have elapsed. The minimum interval of five minutes is fixed and cannot be changed.
Therefore, event delivery failure is not necessarily detected on the first failed delivery attempt. It
is only detected when the Notification Service checks.

Obtaining the Channel Factory

The Channel Factory is used by event poster applications and subscriber applications to find the
event channel. The event channel is then used to post events and to subscribe, or create
subscriptions, and unsubscribe, or cancel subscriptions.

Notification Service applications use the Bootstrap object to obtain an object reference to the
event channel factory. This is done by using the

Tobj_Bootstrap::resolve_initial references operation. The Bootstrap object supports
two service IDs for Notification Service applications, NotificationService and

Using the CORBA Notification Service 2-3

Tobj_SimpleEventsService. The NotificationService object is used in applications that
use the CosNotification Service APIL. The Tobj_SimpleEventsService object is used in
applications that use the Oracle SimpleEvents API.

Service ID Object Type

NotificationService CosNotifyChannelAdmin: :EventChannelFactory

Tobj_SimpleEventsService Tobj_SimpleEvents::ChannelFactory

2-4

Note: Release 8.0 of Oracle Tuxedo CORBA continues to include the Oracle client
environmental objects provided in previous releases of Oracle WebLogic Enterprise for
use with the Tuxedo 8.0 CORBA clients. Oracle Tuxedo 8.0 clients should continue to
use these environmental objects to resolve initial references bootstrapping, security and
transaction objects. In release 8.0 of Oracle Tuxedo CORBA, support has been added for
using the OMG Interoperable Naming Service (INS) to resolve initial references to
bootstrapping, security, and transaction objects. For information on INS, see the CORBA
Programming Reference.

Using Transactions

The behavior regarding transactions is the same for the Oracle SimpleEvents API and the
CosNotification Service API. The only operation that supports transactional behavior is
push_structured_event, which is supported by the
CosNotifyChannelAdmin: : StructuredProxyPushConsumer and

Tobj_SimpleEvents: : Channel interfaces. All other operations can be used in the context of
a transaction, but work the same regardless of whether they are executed in a transaction or not.

The behavior when posting an event is tied to the QoS of the subscription. If an event is posted
in the context of a transaction, and the event delivery QoS of the subscription is persistent, the
delivery will be affected by the outcome of the transaction; that is, if the transaction is committed,
the Notification Service attempts to deliver the event to subscribers as it normally would. If the
transaction is rolled back, then the Notification Service does not attempt to deliver the event.

If an event is posted in the context of a transaction, and the event delivery QoS of the subscriber’s
subscription is transient, one attempt will be made to deliver the event, regardless of the
transaction outcome. That is, the transaction has no effect on whether the event is delivered or
not, and one attempt will be made to deliver the event.

Using the CORBA Notification Service

Introduction

Note: There is no transaction context associated with event delivery. However, in the case of
persistent subscriptions, once the poster’s transaction commits, the Notification Service
guarantees that the event will be delivered to the subscriber or put on the error queue to
await administrative action.

Structured Event Fields, Types, and Filters

All events that are either pushed by posters to the Notification Service, or delivered to
subscribers, are COS Structured Events; that is, they conform to the definition of Structured
Events as specified by the CORBA-based Notification Service—a service which extends the
CORBAservices Event Service (see Figure 2-1). If the events are to be filtered based on content
(versus filtering on domain and type), or if the events are going to be subscribed to by Oracle
Tuxedo applications, then additional restrictions apply. The restrictions apply to data types and
filtering based on event content. These restrictions are explained below.

Figure 2-1 Structured Event

domain_name

type_name — Fixed Header

Event Header— event_name

priority 1-100 Variable Header
name value
name value
—— Filterable Body
Event Body — Fields
name value
remainder_of_body Remaining Body

e The Fixed Header section consists of three fields that can be used when you create
structured events: fixed header.event type.domain_name and
fixed header.event_type.type name, and fixed header.event type.event name. When an
event is posted all three of the these fields are passed in the Notification Service. However,
when subscriptions are created, only the first two fields, domain_name and type name, are
used to filter events. These fields are defined in the subscription as regular expressions.
The event_name field cannot be used in subscriptions.

e The Variable Header consists of a single name/value (NV) pair, namely Priority. Priority
can take a value in the range 1-100 (versus a range of —32767 to 32767 as specified in

Using the CORBA Notification Service 2-5

2-6

CORBA Notification Service specification). Priority is used internally to the system to
prioritize the processing of events. The highest priority is 100. There is no guarantee that
higher priority events will, in fact, be given priority over lower priority events. The support
provided for the Variable Header differs from that specified in the CORBA Notification
Service specification in two ways: first, there is a single field supported (Priority) versus
the five fields listed in the specification; and second, user-defined fields are supported, but
no action is taken in response to their content. The user-defined fields are merely passed
through.

e The Filterable Body consists of zero or more NV pairs. The values in these pairs are
limited to the following types: any, long, unsigned long, short, unsigned short,
octet, char, float, double, string, boolean, void, and null. These fields can be used
in filter expressions.

e The Remaining Body consists of a single anNy. The value is limited to the following types:
any, long, unsigned long, short, unsigned short, octet, char, float, double,
string, boolean, void, and null. This field cannot be used in a filter expression.

Designing Events

The design of events is basic to any notification service. The design impacts not only the volume
of information that is delivered to matching subscriptions, but the efficiency and performance of
the Notification Service as well. Therefore, careful planning should be done to ensure that your
Notification Service will be able to handle your needs now and allow for future growth.

The Notification Service supports five levels of event design: (1) domain name, (2) type name,
(3) priority, (4) filterable data, and (5) remainder of body. When designing an event, you must
specify a domain name and a type name; priority and filterable data are optional. The domain
name you choose can relate to your business. Hospitals, for example, are in the health care
business, so for a Notification Service application for a hospital you might choose
“HEALTHCARE” as a domain name. You might want to categorize the events by the type of
insurance provider, so you may choose “HMO” or “UNINSURED” as the type name. You may
want to further define the events by the entity responsible for payment, so you might choose to
use the filterable data to identify the entity as “billing” for a specific “HMO_Account” or a
specific or “Patient_Account.” Listing 2-1 shows an example of this type of event design.

Listing 2-1 Event Design

domain_name = “HEALTHCARE”
type_name = “HMO”

Using the CORBA Notification Service

Introduction

#Filterable data name/value pairs.
filterable_data.name = “billing”
filterable_data.value = 4498
filterable_data.name = “patient_account”
filterable_data.value = 37621

Obviously, the more specific and precise you are in designing the events that you want your
Notification Service application to post and receive, the fewer will be the events the Notification
Service will have to process. This has a direct impact on system resources and configuration
requirements. Therefore, a lot of thought should be given to event design.

Creating FML Field Table Files for Events

You must create Field Manipulation Language (FML) field table files for events only if one of
the following capabilities is required; otherwise FML tables are not required.

e Event data filtering (in addition to domain and type fields) between Oracle Tuxedo event
posters and subscribers

o Interoperability between the Oracle Tuxedo Notification Service and the Oracle Tuxedo
EventBroker

A structured event’s filterable_data field contains a list of name/value (NV) pairs. An
event’s data is typically stored in this list. The field names in the FML field table files must match
the name in the structured event. The field type can be any allowable FML type (1ong, short,
double, float, char, string) except carray. The value in the structured event must be the
same type as defined in the field table. Table 2-1 shows the CORBA Any Types supported by
Oracle Tuxedo, and which ones can be used for data filtering and Oracle Tuxedo interoperability.

Table 2-1 Supported CORBA Any Types
CORBA Any Types Supported for Data Filtering and Tuxedo Interoperability

short Yes
long Yes
unsigned No
short

Using the CORBA Notification Service 2-1

Table 2-1 Supported CORBA Any Types (Continued)

CORBA Any Types Supported for Data Filtering and Tuxedo Interoperability

unsigned No
long

float Yes
double Yes
char Yes
boolean No
octet No
string Yes
void No
null No
any No

Listing 2-2 shows an example of an FML field table file. The *base 2000 is the base number for
the fields. The first entry has a field name of billing, a field number of 1 relative to the base,
and a field type of long.

Listing 2-2 Data Filtering FML Field Table File

*base 2000

#Field Name Field # Field Type Flags Comments
__
billing 1 long - -
stock_name 2 string - -
price_per_share 3 double - -
number_ of_shares 5 long - -

2-8 Using the CORBA Notification Service

Introduction

The following guidelines and restrictions apply to Oracle Tuxedo FML field table files:
e The FML filename cannot exceed 15 characters in length.

e Because Oracle Tuxedo uses FML32, the base number plus the field number is restricted to
be between 101 and 33,554,431, inclusive.

e When FML is used with other software that also uses fields, additional restrictions may be
imposed on field numbers.

For information on how to create and configure FML field table files, see field_tables in the
Oracle Tuxedo Command Reference and the Programming Oracle Tuxedo ATMI Applications
Using FML.

Interoperability with Oracle Tuxedo Applications

Applications that use the Oracle Tuxedo CORBA Notification Service are interoperable with
Oracle Tuxedo applications that use the Oracle Tuxedo EventBroker. An application using the
Oracle Tuxedo Notification Service can post events that are delivered to Oracle Tuxedo
EventBroker subscribers, and can receive events that have been posted by Oracle Tuxedo
EventBroker.

To achieve this interoperability, it is necessary to understand the mapping between
CosNotification Structured Events and the Oracle Tuxedo FML buffer so that the contents of the
FML field tables can be coordinated by Oracle Tuxedo. There are two cases to consider: posting
events that are to be received by Oracle Tuxedo applications via Oracle Tuxedo EventBroker; and
receiving events that have been posted to the Notification Service Event Channel by Oracle
Tuxedo applications.

Posting Events

For an Oracle Tuxedo application to subscribe to events posted by an Oracle Tuxedo application,
you must understand how an Oracle Tuxedo structured event is mapped to FML32 and the event
name at posting time. The mapping is as follows:

e The domain_name and type name are assembled into a string in the form
domain_name. type_name to form the event name. This is the event name (eventname
parameter) used on the tppost operation.

e Each name/value (NV) pair in the Filterable Body and the variable header portion of the
structured event is mapped to an FML32 field of the same name if the field is also defined
in FML. If you set the domain to *TMEVT”, then the event name equals the type name.

Using the CORBA Notification Service 2-9

2-10

Receiving Events

Oracle Tuxedo system events and user events can be received by Oracle Tuxedo applications.
System events are generated by the Oracle Tuxedo system—not by applications. User events are
generated by Oracle Tuxedo applications. For a listing of System events see EVENTS in the Oracle
Tuxedo Command Reference. System events and user events are mapped in CosNotification
Structured Events as follows:

Structured Event Fields Value

domain_name Always set to “TMEVT”
type_name Empty string
event_name Empty string

Variable Header (Priority) Empty sequence

Filterable Body Fields Same as FML field name

Note: Filterable body fields consist of name/value pair,
where the name portion is the same as the FML field
name.

Remainder of Body Always set to void

The Oracle Tuxedo system detects and posts certain predefined events related to system warnings
and failures. For example, system-generated events report on configuration changes, state
changes, connection failures, and machine partitioning.

In order for an Oracle Tuxedo application to receive events posted by an Oracle Tuxedo
application, it is necessary to understand how a FML buffer containing an Oracle Tuxedo event
is used to fabricate an Oracle Tuxedo structured event. It is also necessary to know how the
domain_name and type_name are related to the Oracle Tuxedo event name. There are two cases
to consider: system events and user events.

Note that Oracle Tuxedo uses a leading dot (".") in the event name to distinguish
system-generated events from application-defined events. An example of a system event is

. SysNetworkDropped. An example of a user event is eventsdropped. To subscribe to these
events, the Notification Service subscriber application must define the subscription as follows:

e System event

Using the CORBA Notification Service

Introduction

domain_name =“TMEVT”
type name="*.SysNetworkDropped”

e User event

domain_name ="TMEVT”
type_name="eventsdropped”

When the events are received, the Notification Service subscriber application parses each
event as follows:

domain_name="TMEVT”

type_name=""

event_name=""

variable_header=empty

Filterable data=(content of the FML buffer)

Parameters Used When Creating Subscriptions

When you create subscriptions, you can specify the following parameters. These parameters
support the Oracle Simple Events API and the CosNotification Service APL

subscription_name
Specifies a name that identifies the subscription to the Notification Service and the
subscriber. Applications should use names that are meaningful to a system administrator
since this is the primary way that an administrator associates an application with a
subscription and the events that are delivered to the subscriber via the subscription. This
parameter is optional (that is, an empty string can be passed in). More than one
subscription can use the same name.

The subscription_name must not exceed 128 characters in length.

domain_type
Same parameter as the domain_type field in the Fixed Header portion of a structured
event, as defined by the CORBA-based Notification Service specification. This field is a
string that is used to identify a particular vertical industry domain in which the event type
is defined, for example, “Telecommunications”, “Finance”, and “Health Care”. Because
this parameter is a regular expression, you can also use it to set domain patterns on which
to filter. For example, to subscribe to all domains that begin with the letter F, set the
domain to “F. *~. For information on how to construct regular expressions, see the
recomp command in the Oracle Tuxedo ATMI C Function Reference.

Using the CORBA Notification Service 2-11

type_name
Same parameter as the type_name field in the Fixed Header portion of a structure event,
as defined in the CORBA-based Notification Service specification. It is a string that
categorizes the type of event, uniquely within the domain, for example, Comm_alarm,
StockQuote, and VitalSigns. Because this parameter is a regular expression, you can also
use it to set event type patterns on which to filter. For example, to subscribe to all event
types that begin with the letter F, you would set the type to “F . *~. For information on how
to construct regular expressions, see the recomp command in the Oracle Tuxedo ATMI C
Function Reference.

data_filter
Specifies the values of the fields of filterable data and variable headers on which you want
to filter. For example, a subscription to news stories may have a domain of “News”, a type
of “Sports”, and a data_filter of “Scores > 20”.

This parameter defines the data that the subscription must match in Boolean expressions.

The following data types are supported: short, long, char, float, double, and
string. Table 2-2 lists the Boolean expression operators that are supported.

Tahle 2-2 Boolean Expression Operators

Expression Operators

unary +, -~
multiplicative * 1, %

additive +, -

relational <, >, <= = == 1=
equality and matching ==, 1=, %%, 1%

exclusive OR

logical AND &&

logical OR I

To use data filtering, you must set up an FML table, include filters in the subscription, filter the
data, and post the event. Listing 2-3 shows an example of these tasks.

2-12 Using the CORBA Notification Service

Listing 2-3 Data Filtering Requirements

Introduction

//Setting up the FML Table

Field table file.

*base 2000

*Field Name Field # Field Type Flags Comments
StockName 1 string - -
PricePerShare 2 double - -
CustomerId 3 long - -
CustomerName 4 string - -

//Subscription data filtering.
1) "NumberOfShares > 100 && NumberOfShares < 1000"

2) "CustomerId == 3241234"

3) "PricePerShare > 125.00"

4) "StockName == 'BEAS'"

5) "CustomerName %% '.*Jones.*'" // CustomerName contains "Jones"

6) "StockName == 'BEAS' && PricePerShare > 150.00"

//Posting the event.

// C++

CosNotification: :StructuredEvent ev;

ev.filterable_datal[0] .name = CORBA: :string_dup ("StockName") ;

ev.filterable_data[0] .value <<= "BEAS";

ev.filterable_datal[l] .name = CORBA: :string_dup ("PricePerShare") ;

ev.filterable_data[l].value <<= CORBA: :Double(175.00);

ev.filterable_datal[2] .name = CORBA::string_dup ("CustomerId") ;

ev.filterable_data[2].value <<= CORBA::Long(1234567) ;

ev.filterable_datal[3] .name = CORBA: :string_dup ("CustomerName") ;
[

ev.filterable_datal[3].value <<= "Jane Jones";

Using the CORBA Notification Service 2-13

For more information about filter grammar, see “Creating FML Field Table Files for
Events” on page -7 and the section “Boolean Expression of fielded Buffers” in
Programming Oracle Tuxedo ATMI Applications Using FML.

push_consumer

Identifies the callback object that will be used by the Notification Service to deliver a
structured event. Subscriber applications must implement the
CosNotifyComm::StructuredPushConsumer interface so that the Notification Service can
call it to deliver events.

Note:

You can use either transient or persistent object references for the callback objects.

Both QoS and application run times should be taken into consideration when deciding
which type of object reference to use. For information to assist you in deciding which
type of object reference to use, refer to Table 2-3.

Table 2-3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

If the subscription ...

Then ...

Will have a transient QoS
and will start and shut
down once.

You should use a transient object reference. It this case, Oracle Systems, Inc.
recommends the subscriber application unsubscribe on shutdown so as to release
system resources, however, this is not a requirement.

Will have a persistent QoS
and will start and shut
down once.

You should use a transient object reference.

Will have a persistent Qos
and will start and shut
down multiple times.

You must use a persistent object reference and store the host and port so the same
host and port is used each time the subscriber shuts down and restarts. In this case,
use of the bidirectional IIOP feature is not recommended.

Note: Ifajoint client/server is used, it must be remote (outside the Oracle Tuxedo
domain) because persistent object references are not supported inside the

domain.

Will have a transient QoS
and will start and shut
down multiple times.

You can use a persistent object reference; however, Oracle Systems, Inc. does not
recommend this configuration unless you can guarantee that no events for this
subscriber will be posted while the subscriber is shut down.

gos (quality of service)
Specifies the desired quality of service of the subscription. It can take one of two values:
transient or persistent.

2-14

Using the CORBA Notification Service

Oracle Simple Events API

For transient subscriptions, the Notification Service makes only one attempt to deliver the
event to a subscriber. If that attempt fails, the event is discarded and, if the Notification
Service does not receive the CORBA: : TRANSIENT exception, it concludes that the
subscriber is shutdown or otherwise not available and cancels the subscription. If the
Notification Service receives the CORBA: : TRANSIENT exception when an attempt to
deliver fails, it assumes that the subscriber is busy and discards the event, but it does not
cancel the subscription.

For persistent subscriptions, if the first delivery attempt fails, the Notification Service
holds the event in the pending queue and keeps attempting to deliver the subscription until
the configurable retry limit is reached. When the retry limit is reached, the Notification
Service moves the event on an error queue where it is held for disposition by the system
administrator. The system administrator either removes the event from the error queue,
which in effect discards it, or moves it back to the pending queue so that further attempts
to deliver it can be made.

Note: For persistent subscriptions, the Notification Service always does a two-way invoke
on callback objects to deliver events. If a joint client/server does not activate a
callback object (the event receiver) before it calls orb->run and then the Notification
Service invokes on the callback object, as far as the POA is concerned, the callback
object does not exist. In this case CORBA: : OBJECT_NOT_EXIST exception is returned.
If the Notification Service receives a CORBA: : OBJECT_NOT_EXIST exception, it
drops the subscription and the event; otherwise, the subscription is retained and the
event is retried.

Oracle Simple Events API

Simplicity and ease-of-use are the defining characteristics of the Oracle Simple Events
application programming interface (API). Its capabilities are similar to those of the Oracle
Tuxedo EventBroker.

The Oracle Simple Events API consists of the following interfaces (see Figure 2-2):
® Tobj_SimpleEvents: :Channel
® Tobj_SimpleEvents::ChannelFactory

® CosNotifyComm: : StructuredPushConsumer

Using the CORBA Notification Service 2-15

2-16

Figure 2-2 Oracle Simple Events Interfaces

Channel
Factory
Interface

! Implemented in the i
| Subscriber's Callback !
! i

Push
Consumer
Class

Channel
Interface

The Tobj_SimpleEvents: :Channel and the Tobj_SimpleEvents: :ChannelFactory
interfaces are implemented by the Notification Service and are described below.

The CosNotifyComm: : StructuredPushConsumer interface is implemented by the subscribers.
For a description of this interface, see
“CosNotifyComm::StructuredPushConsumer::push_structured_event” on page -51.

Note: The CosNotification Service classes referred to in this section are fully described in the
CosNotification Service IDL files, which are located in the tuxdir/include directory.

Note: Ifyou use class operations that are not supported, the CORBA : : NO_IMPLEMENT exception
is raised.

TOBJ_SimpleEvents::Channel Interface

The Channel interface is used:

e By subscribers to subscribe and unsubscribe to events and to determine if a subscription
exists

e By posters to post events to the Notification Service
This interface provides these operations:

- subscribe()
- unsubscribe ()

- exists()

Using the CORBA Notification Service

Oracle Simple Events API

- push_structured_event ()
The CORBA IDL for this interface:

module Tobj_SimpleEvents
{
typedef long SubscriptionID;
typedef string RegularExpression;

typedef string FilterExpression;

const SubscriptionType TRANSIENT SUBSCRIPTION = 0;
const SubscriptionType PERSISTENT_ SUBSCRIPTION = 1;

interface Channel
{

void push_structured_event (

in CosNotification::StructuredEvent event) ;

SubscriptionID subscribe (

in string subscription_name,
in RegularExpression domain,

in RegularExpression type,

in FilterExpression data_filter,

in CosNotification: :QoSProperties gos,

in CosNotifyComm: : StructuredPushConsumer push_consumer) ;

boolean exists(in SubscriptionID id);

void unsubscribe(in SubscriptionID id);
i
i

These operations are described in the following section.
Channel::subscribe
CORBA IDL

SubscriptionID subscribe (

in string subscription_name,
in RegularExpression domain,

in RegularExpression type,

in FilterExpression data_filter,

Using the CORBA Notification Service

2-17

// The filter expression must length 1 and the name must
// be TRANSIENT_SUBSCRIPTION or PERSISTENT_SUBSCRIPTION.
in CosNotification: :QoSProperties gos,

in CosNotifyComm: : StructuredPushConsumer push_consumer

)

Parameters

For a description of the parameters supported by this operation, see “Parameters Used When
Creating Subscriptions” on page -11.

Exceptions

CORBA: : BAD_PARAM
Indicates one of the following problems:
Tobj_Events: : SUB_INVALID_FILTER_EXPRESSION
Tobj_Events: : SUB_UNSUPPORTED_QOS_VALUE

CORBA: : IMP_LIMIT
Indicates one of the following problems:
Tobj_Events: : SUB_DOMAIN_BEGINS_WITH_SYSEV
Tobj_Events: : SUB_EMPTY_DOMATIN
Tobj_Events: : SUB_EMPTY_TYPE
Tobj_Events: : SUB_DOMATN_AND_TYPE_TOO_LONG
Tobj_Events: : SUB_FILTER_TOO_LONG
Tobj_Events: : SUB_NAME_TO_LONG
Tobj_Events: : TRANSTENT_ONLY_CONFIGURATION

CORBA: : INV_OBJREF
Indicates the following problem:
Tobj_Events: : SUB_NIL_CALLBACK_REF

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Description

2-18

Use this operation to subscribe to events. This operation is called by a subscriber application on
the Notification Service to create a subscription to a particular event. The subscription name,
domain name, type name, data filter, quality of service, and the object reference of the
subscriber’s callback object are passed in. The callback object implements the
CosNotifyComm::StructuredPushConsumer IDL interface.

Note: For subscribers that shut down and restart, you must write the subscription_idto
persistent storage.

Using the CORBA Notification Service

Oracle Simple Events API

To use data filtering or subscribe to Oracle Tuxedo system events or events posted by an Oracle
Tuxedo application, see the sections “Creating FML Field Table Files for Events” on page -7 and
“Interoperability with Oracle Tuxedo Applications” on page -9.

Return Value
Returns a unique subscription identifier. The effect of this operation is not instantaneous. There
can be a delay between returning from this operation and the actual start of event delivery. The
length of the delay period may be significant depending on your configuration. For more
information on factors impacting this delay period, see “Synchronizing Databases” on page -23.

Note: Notification Service applications that start and shut down only once can use the
subscription_id to determine if their subscription has been cancelled automatically
or by the system administrator.

Examples
Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
a Subscription” on page -8.
C++ code example:
subscription_id = channel->subscribe (
subscription_name,
"News", // domain
“Sports”, // type
"y, // No data filter.
gos,
news_consumer.in ()

)

Channel::unsubscribe
CORBA IDL

void unsubscribe(in SubscriptionID id);

Parameter

subscription_id
The subscription identifier.

Using the CORBA Notification Service 2-19

Exceptions

CORBA: : BAD_PARAM
Indicates the following problem: Tobj_Events: : INVALID_SUBSCRIPTION_ID

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Description

Used to unsubscribe. Subscriber applications use this operation to terminate subscriptions. On
return from this operation, no further events can be delivered. There is one input parameter:
SubscriptionID, which you got when you subscribed.

Note: This operation is not instantaneous. After returning from this operation, a subscriber may
continue to receive events for a period of time. The period of time may be significant
depending on your configuration. For more information on factors impacting this period
of time, see “Synchronizing Databases” on page -23.

Examples
C++ code example:

channel->unsubscribe (subscription_id) ;

Channel::push_structured_event
CORBA IDL

void push_structured_event (
in CosNotification: :StructuredEvent notification

)

Parameter

notification
This parameter contains the structured event as defined by the CosNotification Service
specification.

Exceptions

CORBA_IMP_LIMIT
Indicates one of the following problems with the subscription:
Tobj_Events: : POST_UNSUPPORTED_VALUE_IN_ANY
Tobj_Events: : POST_UNSUPPORTED_PRIORITY_VALUE
Tobj_Events: :POST DOMAIN CONTAINS SEPARATOR

2-20 Using the CORBA Notification Service

Oracle Simple Events API

Tobj_Events: : POST_TYPE_CONTAINS_SEPARATOR
Tobj_Events: : POST_SYSTEM_EVENTS_UNSUPPORTED
Tobj_Events: : POST_EMPTY_DOMAIN

Tobj_Events: : POST_EMPTY_ TYPE

Tobj_Events: : POST_DOMAIN_AND_TYPE_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Description
Used by the poster application to post an event to the Notification Service.

Note: This operation has transactional behavior when used in the context of a transaction. For
more information, see the section “Using Transactions” on page -4.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
and Posting Events” on page -3.

C++ code example:

channel->push_structured_event (notification) ;

Channel::exists
CORBA IDL

boolean exists(in SubscriptionID subscription_id) ;

Parameter

subscription_id
The subscription identifier.

Exceptions

CORBA: : BAD_PARAM
Indicates the following problem: Tobj_Events: : INVALID_SUBSCRIPTION_ID

If the subscription_id is for a subscription created using the CosNotification Service
API, this exception is always returned.

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Using the CORBA Notification Service 2-21

Description

Used by subscriber applications to determine if a subscription exists. Since the system
administrator can delete subscriptions manually and the Notification Service can delete transient
subscriptions automatically, a subscriber application might want to use this operation so that it
can recreate the subscription, if necessary. The subscription_id used in this operation is the
same one that you got when you subscribed.

Return Value

Returns Boolean True of the subscription exists and False if it does not.

Examples

2-22

C++ code example:
if channel->exists (subscription_id) {
// The subscription is still valid.

} else {

// The subscription no longer exists.

TOBJ_SimpleEvents::ChannelFactory Interface

The channelFactory interface is used to find event channels. This interface provides a single
operation: find_channel.

The CORBA IDL for this interface:

module Tobj_SimpleEvents

{
typedef long ChannellID;

interface ChannelFactory
{

Channel find_channel (
in ChannelID channel_id // Must be DEFAULT_ CHANNEL

Using the CORBA Notification Service

CosNotification Service API

Channel_Factory::find_channel

CORBA IDL

Channel find_channel (

in ChannelID channel_id);

Parameter

In this release of Oracle Tuxedo, there can only be one event channel; therefore, the Channel1D
that is passed in must be set to Tobj_SimpleEvents: : DEFAULT CHANNEL (for C++).

Exceptions

CORBA: : BAD_PARAM
Indicates the following problem:
Tobj_Events: : INVALID_CHANNEL_ID

Note: For more information on exceptions and corresponding minor codes, see “Exception

Minor Codes” on page -53.

Description

Used by poster applications and subscriber applications. This operation is used to find the event
channel so that it can be used by the poster to post events and by the subscriber to subscribe and
unsubscribe to events.

Return Value

Returns the default event channel’s object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Getting
the Event Channel” on page -2.

C++ code example:

channel_factory->find_channel (
Tobj_SimpleEvents: :DEFAULT_CHANNEL) ;

CosNotification Service API

This section contains a discussion of the operations defined by the CosNotification Service that
are implemented by the Oracle Tuxedo CORBA Notification Service. These operations are only

Using the CORBA Notification Service 2-23

2-24

a subset of the complete set of operations. This subset is a functionally complete API that can be
used as an alternative to the Oracle Simple Events API.

This API is more complex then the Oracle Simple Events API. There are two reasons for this.
First, the CosNotification Service API is more complex. Second, the Oracle Tuxedo
implementation of the CosNotification Service API places additional restrictions on the
operations that are supported. Because this complexity offers no advantages in terms of
performance or flexibility, Oracle Systems, Inc. recommends that you use the Oracle Simple
Events API whenever possible.

The CosNotification API is provided for those who require that a standard API be used whenever
possible for purposes of portability. In regard to functionality, this API provides no benefits
beyond those offered by the Simple Events API. Applications that are developed using this API
will be mostly, but not completely, portable. The reason for this is that not enough of the
CosNotification Service API is supported to facilitate portability. For example, the filtering
grammar required by the CORBA-based Notification Service is based on the COS Trader
grammar. Since Oracle Tuxedo does not support this grammar, but supports an alternative
grammar based on the Oracle Tuxedo EventBroker grammar, any application that requires
filtering will not be portable. The same is true for QoS, that is, the CosNotification Service API
does not support the CORBA-based Notification Service standard qualities of service, but it does
support alternative qualities of service.

Overview of Supported CosNotification Service Classes

Figure 2-3 shows the CosNotification Service classes implemented, in full or in part, in this
release of Oracle Tuxedo and their relationships.

Using the CORBA Notification Service

Figure 2-3 Implemented CosNotification Service Classes

CosNotification Service API

Event
Channel
Factory Class

Event
Channel
Class

Supplier
Admin Class

Proxy Push
Consumer
Class

! Implemented in the |
| Subscriber's Callback
1

Consumer
Admin Class

Proxy Push
Supplier
Class

Consumer
Class

The operations supported by each class are summarized below. For more detailed descriptions,
see “Detailed Descriptions of CosNotification Service Classes” on page -27.

e CosNotifyChannelAdmin::EventChannelFactory Class

This class is used by the event poster and subscriber applications. It supports the
get_channel_ factory operation which is used to get the channel factory when posting,

subscribing, and unsubscribing to events.

e CosNotifyChannelAdmin::EventChannel Class

This class is used by event poster and subscriber applications. It supports three operations:

— default_consumer_admin—used by event subscriber applications to get the

consumer admin object.

— default_supplier_admin—used by event poster applications to get the supplier

admin object.

Using the CORBA Notification Service

2-25

— default_filter_ factory—used by event subscriber applications to get the filter
factory object.

o CosNotifyChannelAdmin::SupplierAdmin Class

This class is used by event poster applications. It supports the
obtain_notification_push_consumer operation. Poster applications use this operation
to create proxy push consumer objects which in turn are used to post events to the
Notification Service.

e CosNotifyChannelAdmin::StructuredProxyPushConsumer Class
This class is used by event poster applications. It supports the following operations:

— connect_structured_push_supplier—used by event poster applications to connect
the proxy push supplier to the Notification Service event channel.

— push_structured_event—used by event poster applications to post the event to the
Notification Service event channel.

— disconnect_structured_push_consumer—used by event poster applications to
disconnect the proxy push supplier from the Notification Service event channel.

e CosNotifyFilter::FilterFactory Class

This class is used by event subscriber applications to create a filter object. It supports the
create_filter operation. The filter object provides all data filtering including domain,
type, and filterable data.

o CosNotifyFilter::Filter Class
This class is used by event subscriber applications. It supports the following operations:
— add_contraints operation—used to set the filter’s domain, type, and data filter.

— destroy operation—used to destroy the filter object.

e CosNotifyChannelAdmin::ConsumerAdmin Class
This class is used by event subscriber applications. It supports the following operations:

— obtain_notification_push_supplier—used by event subscriber applications to
create proxy push supplier objects which in turn are used to deliver events to the
subscriber’s callback object.

— get_proxy_supplier—used by event subscriber applications to retrieve the object
reference for the proxy push supplier object. This operation is only used when the
subscriber application shuts down then restarts and cancels the subscription. This is

2-26 Using the CORBA Notification Service

CosNotification Service API

because subscribers need to discard the object reference from the first run and get it
back again for the next run. Subscribers cannot reuse object references from one run to
the next.

o CosNotifyChannelAdmin::StructuredProxyPushSupplier Class
This class is used by event subscriber applications. It supports the following operations:

— connect_structured_push_consumer—used by event subscriber applications to
connect the subscriber to the proxy push supplier.

— set_gos—used by event subscriber applications to set the quality of service for
subscriptions.

— add_filter—used by event subscriber applications to add the filter object to the
subscription.

— get_filter—used by event subscriber applications when performing unsubscribe
operations to get the filter associated with the subscription. This operation is only used
when the subscriber application shuts down then restarts.

— disconnect_structured_push_supplier—used by event subscriber applications to
unsubscribe.

e CosNotifyComm::StructuredPushConsumer

This interface is implemented by event subscriber applications. It supports the
push_structured_event operation. The Notification Service invokes this operation to
deliver events to the subscriber.

Detailed Descriptions of CosNotification Service Classes

This section describes the CosNotification Service classes that this release of Oracle Tuxedo
implements. These classes are fully described in the CosNotification Service IDL files, which are
located in the tuxdir/include directory.

Note: Ifyou use class operations that are not supported, the CORBA : : NO_IMPLEMENT exception
is raised.

CosNotifyFilter::Filter Class

This class is used by event subscriber applications. The OMG IDL for this class is as follows:

Module CosNotifyFilter
{

interface Filter {

Using the CORBA Notification Service 2-21

ConstraintInfoSeq add_constraints (
in ConstraintExpSeqg constraint)

raises (InvalidConstraint);

void destroy () ;
}i
}; //CosNotifyFilter

CosNotifyFilter::Filter::add_constraints

Synopsis

Sets the domain, type, and data filter parameters on the filter object.

OMG IDL

ConstraintInfoSeq add_constraints (
in ConstraintExpSeq constraint)

raises (InvalidConstraint);

Exceptions

CosNotifyFilter::InvalidConstraint
Never raised.

CORBA: : BAD_PARAM
Indicates the following problem: Tobj_Events: : SUB_INVALID FILTER_EXPRESSION.

CORBA_IMP_LIMIT
Indicates one of the following problems:
Tobj_Notification::SUB_ADD_CONS_ON_TIMED_OUT_ FILTER
Tobj_Notification: :SUB_MULTIPLE_CALLS_TO_ADD_CONS
Tobj_Notification::SUB_MULTIPLE_CONSTRAINTS_IN_LIST
Tobj_Notification::SUB_MULTIPLE TYPES_IN_CONSTRAINT
Tobj_Notification: :SUB_SYSTEM_EVENTS_UNSUPPORTED
Tobj_Events: : SUB_DOMAIN_BEGINS_WITH_SYSEV
Tobj_Events: : SUB_EMPTY_DOMAIN
Tobj_Events: :SUB_EMPTY_TYPE
Tobj_Events: : SUB_FILTER_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

2-28 Using the CORBA Notification Service

CosNotification Service API

Description

Used when subscribing. This operation is used in subscriber applications to define the kind of
event to which you want to subscribe. You set the domain, type, and data filter parameters on the
filter object. For a description of these parameters, see “Parameters Used When Creating
Subscriptions” on page -11.

Note: The Oracle Tuxedo implementation of the add_constraints operation (1) can only be
called once, (2) must be called before the filter is added to the proxy object, and (3) must
consist of only a single constraint that has a single event type.

Return Value

Returns an empty list, which we recommend that the caller ignores.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
a Subscription” on page -10.

C++ code example:

// set the filtering parameters

// (domain = "News", type, and no data filter)

CosNotifyFilter::ConstraintExpSeq constraints;

constraints.length (1) ;

constraints[0] .event_types.length(1l);

constraints[0] .event_types[0] .domain_name =

CORBA: :string_dup ("News") ;

constraints[0] .event_types[0].type_name =
CORBA::string dup (“Sports”);

// no data filter

constraints[0] .constraint_expr = CORBA::string dup("");

CosNotifyFilter: :ConstraintInfoSeq var

add_constraints_results = // ignore this returned value

filter->add_constraints (constraints) ;

CosNotifyFilter::Filter::destroy

Synopsis
Destroys the filter object.

Using the CORBA Notification Service 2-29

OMG IDL

void destroy () ;

Exceptions

CORBA: :BAD_PARAM
Indicates the following problem: Tobj_Events: : SUB_INVALID FILTER_EXPRESSION.

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Description
Used when unsubscribing. This operation is used in subscriber applications to destroy the target

filter object.

Note: Do not destroy the filter object until you are ready to cancel the corresponding
subscription.

CosNotifyFilter::FilterFactory Class
This class is used by event subscriber applications. The OMG IDL for this class is as follows:

Module CosNotifyFilter
{
interface FilterFactory {
Filter create_ filter (
in string constraint_grammar)
raises (InvalidGrammar) ;
destroy () ;
};
}; //CosNotifyFilter

CosNotifyFilter::FilterFactory::create_filter

Synopsis

Determines which events are delivered to a subscription.

OMG IDL

Filter create_filter (
in string constraint_grammar)
raises (InvalidGrammar) ;

2-30 Using the CORBA Notification Service

CosNotification Service API

Exceptions

CosNotifyFilter: :InvalidGrammar
Indicates the constraint_grammar is not supported.

Description

Used in the subscriber application to create a new filter object. This filter is used to determine
which events are delivered to a subscription. The subscriber must set up the filter and add it to the
proxy within five minutes; otherwise, the filter will be destroyed. The filter grammar must be set
to Tobj_Notification::Constraint_grammar; otherwise, the InvalidGrammar exception
is raised.

Return Value

Returns the new filter’s object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
a Subscription” on page -10.

C++ code example:

filter_factory->create_filter(
Tobj_Notification: :CONSTRAINT_GRAMMAR
)

CosNotifyChannelAdmin::StructuredProxyPushSupplier Class
This class is used by event subscriber applications. The OMG IDL for this class is as follows:

Module CosNotifyChannelAdmin
{
interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm: : StructuredPushSupplier {

void connect_structured_push_consumer (
in CosNotifyComm: :StructuredPushConsumer push_consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;
};
// The following operations are inherited.

void set_qgos (in QoSProperties gos)

Using the CORBA Notification Service 2-31

raises (UnsupportedQoS) ;

FilterID add_filter (in Filter new_filter);

Filter get_filter(in FilterID filter)
raises (FilterNotFound) ;

void disconnect_structured_push_supplier () ;

readonly attribute ProxyType MyType;

Y
}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
connect_structured_push_consumer

Synopsis

Completes a subscription.

OMG IDL

void connect_structured_push consumer (
in CosNotifyComm: :StructuredPushConsumer push_consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Exceptions

CosEventChannelAdmin: : TypeError
Never raised.

CORBA: : INV_OREF
Tobj_Events::SUB_NIL_CALLBACK_REF

CORBA: : IMP_LIMIT
Indicates one of the following problems:
Tobj_Events: : SUB_DOMAIN_AND_TYPE_TOO_LONG
Tobj_Events: : SUB_NAME_TO_LONG
Tobj_Events: : TRANSIENT_ONLY_CONFIGURATION
Tobj_Notification::SUBSCRIPTION_DOESNT_EXIST.

CORBA: : OBJECT_NOT_EXIST
The proxy does not exist.

2-32 Using the CORBA Notification Service

CosNotification Service API

CosEventChannelAdmin: :AlreadyConnected
Indicates that the connect_structured_push_consumer operation has already been
invoked.

Note: For exception definitions and corresponding minor codes, see “Exception Minor Codes”
on page -53.
Description

Use this operation when subscribing. This operation is used in subscriber applications to
subscribe to events. The push_consumer parameter identifies the subscriber’s callback object.

Once the connect_structured_push_consumer has been called, the Notification Service will
proceed to send events to the subscriber by invoking the callback object’s
push_structured_event operation. If the connect_structured_push_consumer has
already been called, the AlreadyConnected exception is raised.

Note: You must call set_gos and add_filter before calling
connect_structured_push consumer
Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
a Subscription” on page -10.

C++ code example:

subscription->connect_structured_push_consumer (
news_consumer.in()

)

CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_gqos

Synopsis
Sets the QoS for the subscription.

OMG IDL

void set_gos(in QoSProperties gos)
raises (UnsupportedQoS) ;

Exceptions

UnsupportedQosS
Never raised.

Using the CORBA Notification Service 2-33

ORBA: :IMP_LIMIT
Indicates one of the following problems:
Tobj_Notification::SUB_MULTIPLE_CALLS_TO_SET_QOS
Tobj_Notification: :SUB_CANT_SET_QOS_AFTER_CONNECT
Tobj_Notification: :SUBSCRIPTION_DOESNT_EXIST
Tobj_Notification: :SUB_UNSUPPORTED_QOS_VALUE

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Description

Used when subscribing. This operation is used in subscriber applications to set the QoS for the
subscription. It takes as an input parameter a sequence of name-value pairs which encapsulates
quality-of-service property settings that the subscriber is requesting.

There are two components of the QoS: the subscription type and the subscription name. The
subscription type is set by constructing a name-value pair where the name is
Tobj_Notification::SUBSCRIPTION_TYPE and the value is either
Tobj_Notification::PERSISTENT SUBSCRIPTION, Of

Tobj_Notification:: TRANSIENT SUBSCRIPTION. For more information and additional
usage details, see “Quality of Service” on page -2.

The subscription name is set by constructing a name-value pair, where the name is
Tobj_Notification::SUBSCRIPTION_NAME, and the value is a user-defined string.

For more information on this parameter, see “Parameters Used When Creating Subscriptions” on
page -11.

Examples

2-34

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
a Subscription” on page -10.

C++ code example:

CosNotification: :QoSProperties gos;
gos.length(2);
gos[0] .name =

CORBA: :string dup (Tobj_Notification: :SUBSCRIPTION_NAME) ;
gos[0] .value <<= “MySubsription”;
gos[1l] .name =

CORBA: :string_dup (Tobj_Notification: :SUBSCRIPTION_TYPE) ;
gos[1l].value <<=

Tobj_Notification::TRANSIENT SUBSCRIPTION;

Using the CORBA Notification Service

CosNotification Service API

subscription->set_gos (gos) ;

CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter

Synopsis

Sets the filter object on the subscriber’s callback object.

OMG IDL

add_filter(

in Filter new_filter

)

Exceptions

CORBA: : IMP_LIMIT

Indicates one of the following problems:

Tobj_Notification:
Tobj_Notification:
Tobj_Notification:
Tobj_Notification:

CORBA: : OBJECT_NOT_EXIST

: SUB_MULTIPLE_CALLS_TO_SET FILTER
:SUB_ADD_FILTER_AFTER_CONNECT
:SUB_NIL_FILTER_REF

: SUB_NO_CUSTOM_FILTERS

Indicates that the subscription does not exist.

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Description

Used when subscribing. This operation is used in subscriber applications to set the filter object to
the subscriber’s callback object. If the application using this operation will be shut down and
restarted, the £ilter_id should be written to persistent storage.

Note: This operation: (1) cannot be called after the subscriber callback object is connected (see
connect_structured_push_consumerabove)(2)CannotbeCaHedInorethm10nCQ
and (3) when it is called, the filter constraint expression must already be present in the
filter (see CosNotifyFilter::Filter add_constraints).

Note: Only filters created by the event channel’s default filter factory can be added.

Return Value

Returns a filter_id.

Using the CORBA Notification Service 2-35

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
a Subscription” on page -10.

C++ code example:

CosNotifyFilter::FilterID filter_id =

subscription->add_filter (filter.in());

CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter

Synopsis

Gets an object reference to the filter currently associated with the subscriber’s callback object.

OMG IDL

Filter get_filter(in FilterID filter)

raises (FilterNotFound) ;

Exceptions

CosNotifyChannelAdmin: :FilterNotFound
The filter could not be found.

Description

Used when a restartable subscriber wants to unsubscribe. This operation is used in subscriber
applications to get an object reference to the filter currently associated with the subscriber’s
callback object. The FilterID that is passed in must be valid for the subscriber’s
StructuredProxyPushSupplier object. If the FilterIDis not valid for any proxy object associated
with the event channel, then a FilterNotFound exception is thrown. The operation is only used
by subscribers that shut down and restart.

Restrictions

2-36

The following usage restrictions and guidelines apply to this operation:

a. Filter object references that are returned from this operation cannot be used in comparison
operations.

b. Filter object references returned by this operation can be used by the
CosNotifyFilter: :Filter: :destroy operations but are of little use since they cannot
be modified or added to proxy objects.

Using the CORBA Notification Service

CosNotification Service API

Return Value

Returns a filter object reference to the filter currently associated with the subscriber’s callback
object.

Examples
C++ code example:

CosNotify::Filter_var filter =
subscription->get_filter(filter_id());

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
disconnect_structured_push_supplier

Synopsis

Used to unsubscribe.

OMG IDL

void disconnect_structured_push_supplier () ;

Exceptions

CORBA: : OBJECT_NOT_EXIST
Indicates that the subscription to be disconnected does not exist.

Note: For more information on exceptions and corresponding minor codes, see “Exception

Minor Codes” on page -53.

Description

Used by subscriber applications when unsubscribing. This operation is used in subscriber
applications to terminate a connection between the Notification Service and the subscriber’s
callback object.

Note: This operation does not stop event delivery instantaneously. After returning from this
operation, a subscriber may continue to receive events for a period of time.

Examples
C++ code example:

subscription->disconnect_structured_push_supplier () ;

Using the CORBA Notification Service 2-31

CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType

Synopsis

Always returns CosNotifyChannelAdmin: : PUSH_STRUCTURED Proxy.

OMG IDL

readonly attribute ProxyType MyType

Description

Always returns CosNotifyChannelAdmin: : PUSH_STRUCTURED Proxy

CosNotifyChannelAdmin::StructuredProxyPushConsumer Class
This class is used by event posting applications. The OMG IDL for this class is as follows:

Module CosNotifyChannelAdmin
{
interface StructuredProxyPushConsumer :
ProxyConsumer,

CosNotifyComm: : StructuredPushConsumer {

void connect_structured_push_supplier (
in CosNotifyComm: :StructuredPushSupplier push_supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;
// The following operations are inherited.
readonly attribute MyType;
void push_structured_event (
in CosNotification::StructuredEvent notification)
raises(CosEventComm: :Disconnected) ;
void disconnect_structured_push_consumer () ;
Y

}; \\StructuredProxyPushConsumer

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
connect_structured_push_supplier

Synopsis

Prepares the Notification Service to receive an event.

2-38 Using the CORBA Notification Service

CosNotification Service API

OMG IDL

void connect_structured_push_ supplier (
in CosNotifyComm: :StructuredPushSupplier push_supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Exception

CosEventChannelAdmin: :AlreadyConnected
Never raised.

Description

Used by poster applications when posting events. You must call this operation to prepare the
Notification Service to receive an event and you must pass in a NIL when you use this operation.
The sequence of usage is as follows:

1. Make a proxy.

2. Use this operation to connect to the Notification Service and pass in a NIL.
3. Post events.

4. Before exiting the poster program, disconnect.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
and Posting Events” on page -3.

C++ code example:

proxy_push_consumer->connect_structured_push_supplier (
CosNotifyComm: : StructuredPushSupplier::_nil()
)

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
push_structured_event

Synopsis

Posts events to the event channel.

Using the CORBA Notification Service 2-39

OMG IDL

void push_structured_event (

in CosNotification::StructuredEvent notification)

raises(CosEventComm: :Disconnected) ;

Exceptions

CosEventComm: : Disconnected

Never raised.

CORBA: : IMP_LIMIT

Indicates one of the following problems:

Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:

: POST_UNSUPPORTED_VALUE_IN_ANY
:POST_UNSUPPORTED_PRIORITY_VALUE
: POST_DOMAIN_CONTAINS_SEPARATOR
:POST_TYPE_CONTAINS_SEPARATOR
:POST_SYSTEM_EVENTS_UNSUPPORTED
:POST_EMPTY_DOMAIN
:POST_EMPTY_TYPE

: POST_DOMAIN_AND_TYPE_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see “Exception
Minor Codes” on page -53.

Descriptions

Used when posting events. This operation is used in poster applications to post events to the event

2-40

channel.

Note: This operation differs from the standard CORBA definition in the following ways:

a. The Priority in the variable header section of the event, if specified, must be short
value in the range of 1 to 100.

b. If event filterable data filtering (versus filtering on domain and type only) is required,
or if events are to be received by an Oracle Tuxedo subscriber, then additional restrictions
apply. See “Structured Event Fields, Types, and Filters” on page -5 and “Interoperability
with Oracle Tuxedo Applications” on page -9.

Note: This operation has transactional behavior when used in the context of a transaction. For
more information, see “Using Transactions” on page 2-4.

Using the CORBA Notification Service

CosNotification Service API

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
and Posting Events” on page -3.

C++ code example:

proxy_push_consumer->push_structured_event (notification) ;

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
disconnect_structured_push_consumer

Synopsis

Stops posting events.

OMG IDL

void disconnect_structured_push_consumer () ;

Descriptions

Used when posting events. This operation is used by poster applications to stop posting events.
It takes no input parameters and returns no values. The recommended usage sequence is as
follows:

1. Make a proxy.

2. Connect and disconnect on every run of the poster application.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
and Posting Events” on page -3.

C++ code example:
proxy_push_consumer->disconnect_structured_push_consumer () ;

CosNotifyChannelAdmin::StructuredProxyPushConsumer:MyType
Synopsis

Always returns CosNotifyChannelAmdmin: : PUSH_STRUCTURED proxy.

Using the CORBA Notification Service 2-11

OMG IDL

readonly attribute ProxyType MyType

Description

Always returns CosNotifyChannelAmdmin: : PUSH_STRUCTURED pProxy.

CosNotifyChannelAdmin::ConsumerAdmin Class
This class is used by event subscriber applications. The OMG IDL for this class is as follows:

Module CosNotifyChannelAdmin
{

interface ConsumerAdmin

CosNotification: :QoSAdmin,
CosNotifyComm: :NotifySubscribe,
CosNotifyFilter::FilterAdmin,

CosEventChannelAdmin: :ConsumerAdmin {

ProxySupplier obtain notification_ push supplier (
in ClientType ctype,
out ProxyID proxy_ id)

raises (AdminLimitExceeded)

ProxySupplier get_proxy supplier (
in ProxyID proxy_id)

raises (ProxyNotFound) ;

}i
}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::ConsumerAdmin::
obtain_notification_push_supplier

Synopsis

Creates proxy push supplier objects.

OMG IDL

ProxySupplier obtain notification_push_supplier (

in ClientType ctype,

2-42 Using the CORBA Notification Service

CosNotification Service API

out ProxyID proxy_id)

raises (AdminLimitExceeded)

Exceptions

CosNotifyChannelAdmin: :AdminLimitExceeded
Never raised.

CORBA: : IMP_LIMIT
Indicates the following problem:
Tobj_Notification::SUB_UNSUPPORTED_CLIENT TYPE

Description
Used when subscribing. This operation is used in subscriber applications to create proxy push
supplier objects. Only structured events are supported (that is, ANY_EVENT and SEQUENCE_EVENT
ClientTypes are not supported). Therefore, the C1ientType input parameter must be set to
CosNotifyComm: : STRUCTURED_EVENT. If you shut down and restart the subscriber and
subscription survives more than one run of your program, the ProxyID returned by this operation
should be durably stored. The subscriber must narrow the proxy supplier to
CosNotifyChannelAdmin: : StructuredProxyPushSupplier. All required operations must
be completed in five minutes.

Note: Notification Service applications that start and shut down only once can use the
proxy_id to determine if their subscription has been cancelled automatically or by the
system administrator.

Return Value

This operation returns the new proxy’s object reference. The new proxy_id is also returned
through the proxy_id out parameter.

Examples
Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
a Subscription” on page -10.
C++ code example:
CosNotifyChannelAdmin: :ProxySupplier_var generic_proxy =
consumer_admin->obtain_notification_push_supplier (
CosNotifyChannelAdmin: : STRUCTURED_EVENT,
proxy_id
)

Using the CORBA Notification Service 2-43

CosNotifyChannelAdmin: : StructuredProxyPushSupplier_var proxy =
CosNotifyChannelAdmin: : StructuredProxyPushSupplier: :_narrow (
generic_proxy.in ()
)

CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier

Synopsis

Returns the proxy push supplier object created using the consumer admin object
obtain_notification_push_supplier operation

OMG IDL
ProxySupplier get_proxy supplier (
in ProxyID proxy_id)
raises (ProxyNotFound) ;
Exceptions

CosNotifyChannelAdmin: : ProxyNotFound
Indicates that the ProxyID could not be found.

Descriptions

Used when unsubscribing. This operation is used in subscriber applications to return the proxy
push supplier object created using the consumer admin object

obtain notification_push_ supplier operation. The ProxyID input parameter uniquely
identifies the proxy object. Callers should be aware that the proxy object can be destroyed either
due to an error in delivering a transient subscription or through an ntsadmin administrative
command. When a proxy object is destroyed, the ProxyID associated with it is invalidated. If the
ProxyIDisinvalid, a ProxyNotFound exception is raised. The subscriber must narrow the proxy
Suppﬁerﬂ)CosNotifyChannelAdmin::StructuredProxyPushSupplier

Return Value
Returns the object reference for the existing proxy.

Examples
C++ code example:

CosNotifyChannelAdmin: :ProxySupplier_var generic_proxy =

m_consumer_admin->get_proxy_supplier (

2-44 Using the CORBA Notification Service

CosNotification Service API

m_subscription_info.news_proxy_id()
)
CosNotifyChannelAdmin: :StructuredProxyPushSupplier_var proxy =
CosNotifyChannelAdmin: : StructuredProxyPushSupplier: :_narrow (
generic_proxy.in()

) ;

CosNotifyChannelAdmin::SupplierAdmin Class

This class is used by event poster applications. The OMG IDL for this class is as follows:

Module CosNotifyChannelAdmin
{
interface SupplierAdmin
CosNotification: :QoSAdmin,
CosNotifyComm: :NotifyPublish,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin: : SupplierAdmin {

ProxyConsumer obtain notification_push_consumer (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);
}i
}; //SupplierAdmin

CosNotifyChannelAdmin::SupplierAdmin::
obtain_notification_push_consumer

Synopsis

Creates proxy push consumer objects.

OMG IDL

ProxyConsumer obtain notification_push_ consumer (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded) ;

Using the CORBA Notification Service

2-45

Exceptions

CosNotifyChannelAdmin: :AdminLimitExceeded
Never raised.

CORBA: : IMP_LIMIT
Indicates the following problem:
Tobj_Notification: :SUB_UNSUPPORTED_CLIENT TYPE

Description

Used when posting events. This operation is used in poster applications to create proxy push
consumer objects. ClientType must be set to

“CosNotifyChannelAdmin: : STRUCTURED_EVENT”. The ProxyID returned should be ignored.
The Proxy Consumer must be narrowed the proxy supplier to

CosNotifyChannelAdmin: : StructuredProxyPushConsumer

Note: Notification Service applications that start and shut down only once can use the
proxy_id to determine if their subscription has been cancelled automatically or by the
system administrator.

Return Value

This operation returns the new proxy’s object reference. The new proxy_id is also returned
through the proxy_id out parameter.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
and Posting Events” on page -3.

C++ code example:

CosNotifyChannelAdmin: : ProxyConsumer_var generic_proxy_consumer =
supplier_admin->obtain_notification_push_consumer (
CosNotifyChannelAdmin: : STRUCTURED_EVENT,
proxy_id
) ;

CosNotifyChannelAdmin: : StructuredProxyPushConsumer_var
proxy_push_consumer =
CosNotifyChannelAdmin: : StructuredProxyPushConsumer: : _narrow (
generic_proxy_consumer

)i

2-46 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannel Class
This class is used by event poster applications. The OMG IDL for this class is as follows:

Module CosNotifyChannelAdmin
{

interface EventChannel :
CosNotification: :QoSAdmin,
CosNotification: :AdminPropertiesAdmin,
CosEventChannelAdmin: :EventChannel {

readonly attribute ConsumerAdmin default_consumer admin;

readonly attribute SupplierAdmin default_supplier admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

}i
}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_consumer_admin

Synopsis

Gets the ConsumerAdmin object.

OMG IDL

readonly attribute ConsumerAdmin default_consumer admin;

Description

Used when subscribing and unsubscribing. This operation is used in subscriber applications to
get the ConsumerAdmin object.

Return Value

Returns the object reference to the ConsumerAdmin object.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Getting
the Event Channel, ConsumerAdmin Object, and Filter Factory Object” on page -8.

C++ code example:

Using the CORBA Notification Service 2-41

channel->default_consumer_admin() ;

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_supplier_admin

Synopsis
Gets the SupplierAdmin object.

OMG IDL

readonly attribute SupplierAdmin default_supplier admin;

Description

Used when posting events. This operation is used in event poster applications to get the
SupplierAdmin object.

Return Value

SupplierAdmin object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Creating
and Posting Events” on page -3.

C++ code example:

channel->default_supplier_admin();

CosNotifyChannelAdmin::EventChannel::default_filter_factory

Synopsis
Gets the default FilterFactory object.

OMG IDL

readonly attribute CosNotifyFilter::FilterFactory
default_filter factory;

2-48 Using the CORBA Notification Service

CosNotification Service API

Description
Used when subscribing. This operation is used in subscriber applications to get the default
FilterFactory object.

Return Value

Default FilterFactory object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “Getting
the Event Channel, ConsumerAdmin Object, and Filter Factory Object” on page -8.

C++ code example:

channel->default_filter factory();

CosNotifyChannelAdmin::EventChannelFactory Class
This class is used by event poster applications. The OMG IDL for this class is as follows:

Module CosNotifyChannelAdmin
{
interface EventChannelFactory {
EventChannel get_event_channel (in ChannelID id)
raises (ChannelNotFound) ;
Y
}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::EventChannelFactory::get_event_channel

Synopsis

Gets the EventChannel object.

OMG IDL

EventChannel get_event_channel (in ChannelID id)

raises (ChannelNotFound) ;

Exceptions

CosNotifyChannelAdmin: :ChannelNotFound
Indicates the channel cannot be found.

Using the CORBA Notification Service 2-49

Description

Used when subscribing, unsubscribing, and posting events. This operation is used in applications
to get the EventChannel object. When subscribing, the EventChannel object is used to get the
filter factory object and the ConsumerAdmin object. When unsubscribing, the EventChannel
object is used to get the ConsumerAdmin object. When posting an event, the EventChannel object
is used to get the SupplierAdmin object. The ChannelID parameter that is passed in must be set
to Tobj_Notification: : DEFAULT_CHANNEL; otherwise, the ChannelNotFound exception is
raised.

Return Value

Returns the default event channel’s object reference.

Examples

2-50

Note: Code examples shown here are abbreviated. For complete code examples, see “Getting
the Event Channel” on page -2 and “Getting the Event Channel, ConsumerAdmin
Object, and Filter Factory Object” on page -8.

C++ code example:

channel_factory->get_event_channel (
Tobj_Notification: :DEFAULT_CHANNEL) ;

CosNotifyComm::StructuredPushConsumer Interface

This interface is used by event subscriber applications for event delivery. You must implement
this interface so that the Notification Service can invoke on it to deliver events to subscribers. It
has three methods which you have to implement.

The OMG IDL for this class is as follows:

Module CosNotifyComm
{

interface StructuredPushConsumer : NotifyPublish {

void push_structured_event (
in CosNotification::StructuredEvent event)
raises (CosEventComm: : Disconnected) ;
void disconnect_structured_push_consumer:
//The following operations are inherited.
void offer_change (

in CosNotification: :EventTypeSeq added,

Using the CORBA Notification Service

i

CosNotification Service API

in CosNotification::EventTypeSeq removed)

raises (InvalidEventType);

}; //CosNotifyComm

CosNotifyComm::StructuredPushConsumer::push_structured_event

Synopsis

Delivers a structured event.

OMG IDL

void push_structured_event (

Exceptions

in CosNotification::StructuredEvent event)

raises (CosEventComm: : Disconnected) ;

CosEventComm: : Disconnected

Description

The subscriber should never raise this exception.

Used when subscribing. This operation is implemented by the subscriber’s callback object and is
invoked by the Notification Service each time a structured event is delivered. This operation
contains a single input parameter, which is a structured event.

Note:

Examples
Note:

This operation will not be called in a transaction. Also, when this operation is called, it
must return quickly because the Notification Service might not start delivering events to
other subscribers until this operation returns.

Code examples shown here are abbreviated. For complete code examples, see
“Implementing the CosNotifyComm::StructuredPushConsumer Interface” on page -5.

C++ code example:

virtual void push_structured_event (

const CosNotification::StructuredEvent& notification);

{
// Process the event.

}

Using the CORBA Notification Service 2-51

CosNotifyComm::StructuredPushConsumer::
disconnect_structured_push_consumer

Synopsis

Never invoked.

OMG IDL

void disconnect_structured_push_consumer;

Description

This operation is never invoked. The subscriber application must provide a stubbed-out version
of this operation.

Examples
C++ code example:

virtual void push_structured_event (

const CosNotification::StructuredEvent& notification);

throw new CORBA: :NO_IMPLEMENT () ;

CosNotifyComm::StructuredPushConsumer::0ffer_change

Synopsis

Never invoked.

OMG IDL

void offer_change (
in CosNotification: :EventTypeSeq added,
in CosNotification: :EventTypeSeqg removed)

raises (InvalidEventType);

Exceptions

CosNotifyComm: : InvalidEventType
The subscriber should never raise this exception.

2-52 Using the CORBA Notification Service

CosNotification Service API

Description

This operation is never invoked. The subscriber application must provide a stubbed-out version
of this operation.

Examples
C++ code example:

virtual void offer_change (
const CosNotification: :EventTypeSeqg& added,

const CosNotification: :EventTypeSeg& removed)

throw CORBA::NO_IMPLEMENT () ;

Exception Minor Codes

This section provides information about the Notification Service exception symbols and minor
codes. The minor codes are in the Tobj_Events.idl and Tobj_Notification.idl files.
These files are located in the tuxdir\include directory (for Microsoft Windows systems) and
tuxdir/include directory (for UNIX systems).

Table 2-4 and Table 2-5 list the exception symbols and corresponding minor codes for the
Tobj_Events and Tobj_Notification exceptions respectively. CORBA system events have a
minor code field and those minor codes are also defined in these tables.

Note: The exception symbols are organized within the tables by the higher-level exceptions
(CORBA: : IMP_LIMIT, CORBA: : CORBA: : BAD_ PARAM, CORBA: : BAD_INV_ORDER,
CORBA: : INV_OBHJREF, and CORBA: : OBJECT_NOT_EXIST) and listed in alphabetical
order.

Using the CORBA Notification Service 2-53

Table 2-4 Tobj_Events Exception Minor Codes

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

CORBA: : IMP_LIMIT Exceptions

Tobj_Events::
POST_DOMAIN_AND_ TYPE_TOO_LONG

This exception is raised by:

Tobj_SimpleEvents: :Channel: :
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified a domain name and type
name whose combined length was
greater than 31 characters.

5455580D

Tobj_Events::
POST_DOMAIN_CONTAINS_SEPARATOR

This exception is raised by:

Tobj_SimpleEvents: :Channel::
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified a domain name that
contained the " . " character.

54555802

Tobj_Events: : POST_EMPTY_ DOMAIN

This exception is raised by:

Tobj_SimpleEvents: :Channel: :
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified an empty domain name.

5455580B

Tobj_Events: :POST_EMPTY_TYPE

This exception is raised by:

Tobj_SimpleEvents: :Channel: :
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified an empty type name.

5455580C

2-54

Using the CORBA Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Minor Codes
(Hexadecimal)

Definitions

Tobj_Events::
POST_SYSTEM_EVENTS_UNSUPPORTED

This exception is raised by:

e Tobj_SimpleEvents::Channel::
push_structured_event

e CosNotifyChannelAdmin: :
StructuredProxyPushConsumer: :
push_structured_event

When posting an event, the user tried 54555804
to post an Oracle Tuxedo system

event; that is, the domain name is

"TMEVT" and the type name starts

with the " . " character.

Tobj_Events:: When posting an event, the user 54555803
POST_TYPE_CONTAINS_SEPARATOR specified a type name that contained
This exception is raised by: the " . character.
e Tobj_SimpleEvents: :Channel::

push_structured_event
e CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event
Tobj_Events:: When posting an event, the user 54555801
POST_UNSUPPORTED_PRIORITY_ VALUE added a "Priority" field in the
This is exception is raised by: variable header. However, the user

s did not set the field's value to a

e Tobj_SimpleEvents:: R

Channel: :push_structured_event "short" in the range of 1-100.
e CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event
Tobj_Events:: When posting an event, the user put 54555800

POST_UNSUPPORTED_VALUE_IN_ANY

This exception is raised by:

e Tobj_SimpleEvents::
Channel: :push_structured_event

e CosNotifyChannelAdmin: :
StructuredProxyPushConsumer: :
push_structured_event

an unsupported type (for example, a
structure, union, sequence, etc.) into
one of the "anys" in the structured
event field. The unsupported type is
in the variable header's value field,
the filterable data's value field, or the
remainder_of body field.

Using the CORBA Notification Service

2-55

Tahle 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)

Tobj_Events: : When subscribing, the user specified 54555809
SUB_DOMAIN_AND_TYPE_TOO_LONG a domain name and type name
whose combined length is greater

This exception is raised by:
than 255 characters.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
connect_structured_push_consumer

Tobj_Events:: When subscribing, the user specified 54555805
SUB_DOMAIN_BEGINS_WITH_SYSEV a domain name that begins with the
This exception is raised by: ". " character.
e Tobj_SimpleEvents::Channel::
subscribe
e CosNotifyFilter::Filter::
add_constraints
Tobj_Events::SUB_EMPTY DOMAIN The user specified an empty domain 54555807

This exception is raised by: name when subscribing.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyFilter::Filter::
add_constraints

Tobj_Events::SUB_EMPTY TYPE The user specified an empty type 54555808

This exception is raised by: name when subscribing.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyFilter::Filter::
add_constraints

Tobj_Events: :SUB_FILTER_TOO_LONG The user specified a data filter 5455580A
This exception is raised by: expression longer than 255
characters.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyFilter::Filter::
add_constraints

2-56 Using the CORBA Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Minor Codes
(Hexadecimal)

Definitions

Tobj_Events: :SUB_NAME_TO_LONG

This exception is raised by:

e Tobj_SimpleEvents::Channel::
push_structured_event

e CosNotifyChannelAdmin: :
StructuredProxyPushConsumer: :
push_structured_event

When subscribing, the user specified 5455580E
a subscription name longer than 127
characters.

Tobj_Events:: The user tried to create a persistent 54555806
TRANSIENT_ONLY_ CONFIGURATION subscription, but the system was
This exception is raised by: cogﬁg}lre'd to su{)port transient
. . subscriptions only.

e Tobj_SimpleEvents::Channel:: P y

subscribe
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :

connect_structured_push_consumer
CORBA: : BAD_PARAM Exceptions
Tobj_Events: : INVALID_CHANNEL_ID When looking up the channel using 54555813

This exception is raised by:

e Tobj_SimpleEvents::ChannelFactory
:: find_channel

the Simple Events API, the user
specified an invalid channel ID, that
is, a channel ID that is not
Tobj_SimpleEvents::
DEFAULT_ CHANNEL.

Using the CORBA Notification Service

2-57

Tahle 2-4 Tobj_Events Exception Minor Codes (Continued)

Minor Codes
(Hexadecimal)

Exception Symbols Definitions

Tobj_Events::
INVALID_SUBSCRIPTION_ID

This exception is raised by:

e Tobj_SimpleEvents::Channel::

unsubscribe

e CosNotifyChannelAdmin: :
ConsumerAdmin: :get_proxy_
supplier

e Tobj_SimpleEvents::
Channel: :exists

When unsubscribing using the 54555812
Simple Events API, the user

specified an invalid subscription ID,

that is, a non-existent or a

CosNotification subscription ID.

When looking up a subscription
using the CosNotification Service
API, the user specified an invalid
subscription ID, that is, a
non-existent or a Simple Events API
subscription ID.

When calling the exists operation
using the Oracle Simple Events API,
the user passed in a CosNotification
subscription_id.

Tobj_Events::
SUB_INVALID_FILTER_EXPRESSION

This exception is raised by:

e Tobj_SimpleEvents::Channel::

subscribe

e CosNotifyFilter::Filter::
add_constraints

When subscribing, the user specified 54555810
an invalid data filter expression.

This either means that there is a

syntax error in the expression or that

one of the field names in the

expression is not defined as an FML

field.

Check that you have correctly
created FML field tables that contain
all fields that you want to data filter
on, and check that the UBBCONFIG
file is properly configured so that the
field table files can be found.

2-58 Using the CORBA Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions Minor Codes
(Hexadecimal)

Tobj_Events::
SUB_UNSUPPORTED_QOS_VALUE

This exception is raised by:

e Tobj_SimpleEvents::Channel::

subscribe
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :

set_gos

54555811

When subscribing, the user specified an invalid subscription
quality of service.

For the Simple Events API, this means that the quality of
service specified did not meet one of the following
requirements:

* The sequence must be of length one.

e The name must be Tobj_SimpleEvents: :
SUBSCRIPTION_TYPE

¢ The value must be either Tobj_SimpleEvents: :
TRANSIENT_SUBSCRIPTION or
Tobj_SimpleEvents::
PERSISTENT SUBSCRIPTION.

For the CosNotification Service API, this means that the
quality of service specified did not meet one of the following
requirements:

* The quality of service must contain a name/value pair
where the name is Tobj_Notification::
SUBSCRIPTION_TYPE and the value is
Tobj_Notification::

TRANSIENT_ SUBSCRIPTION or
Tobj_Notification::
PERSISTENT_ SUBSCRIPTION.

* The quality of service may contain a name/value pair
where the name is
Tobj_Notification::SUBSCRIPTION_NAME
and the value is a string containing the subscription’s
administrative name.

Using the CORBA Notification Service 2-59

Tahle 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions

Minor Codes
(Hexadecimal)

CORBA: : INV_OBHJREF

Tobj_Events:: When subscribing, the user specified 54555830
SUB_NIL_CALLBACK_REF a NIL object reference for the
This exception is raised by: callback object which receives
e Tobj_SimpleEvents::Channel:: events.

subscribe
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :

connect_structured_push_consumer

Tahle 2-5 Tobj_Notification Exception Minor Codes
Exception Symbols Definitions Minor Codes
(Hexadecimal)
CORBA: :IMP_LIMIT Exceptions
Tobj_Notification:: A CosNotification subscriber waited 54555858
SUB_ADD_CONS_ON_TIMED_ OUT_ FILTER more than five minutes after creating
This exception is raised by: a filter to call add_constraints
. CosNotifyFilter::Filter:: ontheﬁhm:Thmrneymthmtheﬁher
. has been destroyed (timed out) and
add_constraints R
the subscriber must create a new
filter.

Tobj_Notification:: A CosNotification subscriber called ~ 5455585E
SUB_ADD_CONS_TO_ADDED_FILTER add_constraints on a filter that
This exception is raised by: had already been added to a proxy.

e CosNotifyFilter::Filter::
add_constraints

2-60 Using the CORBA Notification Service

CosNotification Service API

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Minor Codes
(Hexadecimal)

Definitions

Tobj_Notification:: After creating a filter and calling 5455585D
SUB_ADDED_ TIMED OUT_FILTER "add constraints" on it, a
This exception is raised by: CosNotification subscriber waited
. . more than five minutes to call
e CosNotifyChannelAdmin: : .
. add_filter to add the filter to the
StructuredProxyPushSupplier:: R
add filter proxy. This means that the filter has
- been destroyed (timed out) and that
the subscriber must create a new
filter.

Tobj_Notification:: A CosNotification subscriber called 54555852
SUB_ADD_FILTER AFTER CONNECT add_filter after connecting to the
This exception is raised by: proxy.
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier::

add_filter
Tobj_Notification:: A CosNotification subscriber called 54555856
SUB_CANT_SET_QOS_AFTER_CONNECT set_gos after connecting to the
This exception is raised by: proxy.
e CosNotifyChannelAdmin: :Structured

ProxyPushSupplier: :set_gos
Tobj_Notification:: A CosNotification subscriber called 54555859
SUB_MULTIPLE_CALLS_TO_ADD_ CONS add_constraints more than once
This exception is raised by: on a filter.
e CosNotifyFilter::Filter::

add_constraints
Tobj_Notification:: A CosNotification subscriber called 54555851

SUB_MULTIPLE CALLS_TO_SET FILTER

This exception is raised by:

e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
add_filter

add_filter more than once on a
proxy.

Using the CORBA Notification Service

2-61

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Notification:: A CosNotification subscriber called 54555855
SUB_MULTIPLE_CALLS_TO_SET_ QOS set_qosnuneﬂmnonceonapmmy.
This exception is raised by:
e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
set_gos
Tobj_Notification:: When a CosNotification subscriber 5455585A
SUB_MULTIPLE CONSTRAINTS_ IN LIST called add_constraintsona
This exception is raised by: filter, the subscriber passed in a list of
e CosNotifyFilter::Filter:: 'constralnt's that had m(?re than One.
. item; that is, the subscriber was trying
add_constraints K . K
to send in a list of data filters instead
of one data filter.
Tobj_Notification:: When a CosNotification subscriber 5455585B
SUB_MULTIPLE_TYPES_IN_CONSTRAINT called add_constraintsona
This exception is raised by: filter, the subscriber passed on a
e CosNotifyFilter::Filter:: Conmﬁnntﬂmlhadnuﬁethanone
. domain/type set; that is, the
add_constraints R . . .
subscriber was trying to send in a list
of desired event types instead of one
event type.
Tobj_Notification:: A CosNotification subscriber passed 54555853

SUB_NIL_FILTER REF

This exception is raised by:

e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
add_filter

a NIL filter object reference into
add_filter.

2-62 Using the CORBA Notification Service

CosNotification Service API

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Minor Codes
(Hexadecimal)

Definitions

Tobj_Notification:: A CosNotification subscriber passed 54555854
SUB_NO_CUSTOM_FILTERS a filter object that was not created by
This exception is raised by: the default filter factory into
e CosNotifyChannelAdmin: : add_fl_lte_r. For example, a
. CosNotification subscriber
StructuredProxyPushSupplier:: .
add filter implemented the
- CosNotifyFilter::Filter
interface to do some kind of ""custom"
filtering and passed one of those filter
objects into add_filter.
Tobj_Notification:: A CosNotification subscriber did not 54555850
SUB_SET_FILTER_NOT_CALLED call add_filter to the proxy
This exception is raised by: before connecting to the proxy.
*» CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
connect_structured_push_
consumer
Tobj_Notification:: A CosNotification subscriber did not 54555857
SUB_SET_QOS_NOT_CALLED call add_filter to the proxy
This exception is raised by: before connecting to the proxy.
e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier::
connect_structured_push_
consumer
Tobj_Notification:: A CosNotification subscriber passed ~ 5455585C

SUB_SYSTEM EVENTS_UNSUPPORTED

This exception is raised by:
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :

set_gos

in a domain name of "TMEVT" and a
type name that begins with " . *; that
is, the CosNotification subscriber was
trying to subscribe to Tuxedo system
events. This is not supported. It is
only supported by the Simple Events
APIL

Using the CORBA Notification Service

2-63

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Notification:: When creating a proxy, a 5455585F
SUB_UNSUPPORTED_CLIENT TYPE CosNotification subscriber or poster
This is exception raised by: passed in a client type other than
) CosNotifyChannelAdmin: : ST
e ConsumerAdmin: : RUCTURED EVENT
obtain_notification_push_ - :
supplier
e SupplierAdmin::
obtain_notification_push_
consumer
CORBA: :OBJECT NOT_EXIST Exception
Tobj_Notification:: A CosNotification subscriber calleda 54555880

SUBSCRIPTION_DOESNT_EXIST

This exception is raised by:

Note:

StructuredProxyPushSupplier: :

add_filter

StructuredProxyPushSupplier::

set_gos

StructuredProxyPushSupplier::

connect_structured_push_
consumer

StructuredProxyPushSupplier: :

disconnect_structured_push_
supplier

connect_structured_push_

consumer can raise this exception since
a user can create the proxy, then use the

ntsadmin utility to delete the
subscription, and then call
connect_structured_push_
consumer on the proxy.

method on a proxy that had already
been destroyed. The proxy has been
destroyed by one of the following
actions:

The CosNotification subscriber
disconnected the proxy.

The CosNotification subscriber
waited more than five minutes
from creating the proxy to
connecting it; that is, it took
longer than five minutes to
complete the subscription.

The administrator used the
ntsadmin utility to destroy the
subscription.

2-64

Using the CORBA Notification Service

CHAPTERa

Using the Oracle Simple Events API

This chapter describes the development steps required to create Notification Service applications
using the Oracle Simple Events API and the C++ languages.

This topic includes the following sections:
e Development Process
e Step 1: Writing an Application to Post Events
e Step 2: Writing an Application to Subscribe to Events

e Step 3: Compiling and Running Notification Service Applications

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Development Process

Table 3-1 outlines the development process for creating Notification Service applications.

Using the CORBA Notification Service 3-1

Table 3-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

3 Writing an application that subscribes to events
4 Compiling a Notification Service application

These steps are explained in detail in subsequent topics.

Designing Events

The design of events is basic to any notification service. The design impacts not only the volume
of information that is delivered to matching subscriptions, but the efficiency and performance of
the Notification Service as well. Therefore, careful planning should be done to ensure that your
Notification Service will be able to handle your needs now and allow for future growth. For a
discussion of event design, see “Designing Events” on page -6.

Step 1: Writing an Application to Post Events

The following types of CORBA applications can post events:
e C++ clients, joint client/servers and servers.

e Foreign ORB clients.

To post events, an application must, at a minimum, implement the following functions:
e Get the event channel factory object reference and use it to get the event channel.

e Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must first get the event channel.

3-2 Using the CORBA Notification Service

Step 1: Writing an Application to Post Events

This development step is illustrated in Listing 3-1. Listing 3-1 is based on the Notification
Service sample applications that use the Oracle Simple Events API.

To get the event channel factory object reference, the resolve_initial references method
is invoked on the Bootstrap object using the "Tobj_SimpleEventsService" environmental
object. The object reference is used to get the channel factory, which is in turn is used to get the
event channel. Listing 3-1 show code examples in C++.

Listing 3-1 Getting the Event Channel (C++)

// Get the Simple Events channel factory object reference.
CORBA: :Object_var channel_factory_oref =
bootstrap.resolve_initial_references (
"Tobj_SimpleEventsService") ;
Tobj_SimpleEvents: :ChannelFactory_var channel_factory =
Tobj_SimpleEvents: :ChannelFactory: :_narrow (
channel_factory_oref.in());
// Use the channel factory to get the default channel.
Tobj_SimpleEvents: :Channel_var channel =
channel_factory->find_channel (
Tobj_SimpleEvents: : DEFAULT_CHANNEL) ;

Creating and Posting Events

Before an event can be posted, it must be created. The following listings are based on the
Notification Service sample applications.

Listing 3-2 show how this is implemented in C++. To report news to the events channel, this
application executes the following steps:

1. Creates an event and sets the domain name and type name. In the code samples, the domain
name is set to “News” and the event type is set to “Sports”.

2. Adds a field to the event’s filterable data to contain the story, sets the name of the added field
to “Story”, and the value of the field to a string containing the story.

3. Uses the push_structured_event operation to post the event to the Notification Service.

Using the CORBA Notification Service 3-3

Listing 3-2 Creating and Posting the Event (C++)

// Create an event.
CosNotification: :StructuredEvent notification;
// Set the domain to "News".
notification.header.fixed_header.event_type.domain_name =
CORBA: :string_dup ("News") ;
// Set the type to the news category.
notification.header.fixed_header.event_type.type_name =
CORBA: :string_dup (“Sports”) ;
// Add one field, which will contain the story, to the
// event's filterable data. Set the field's name to
// "Story" and value to a string containing the story.
notification.filterable_data.length(1l);
notification.filterable_data[0] .name =
CORBA: :string dup("Story");
notification.filterable_data[0].value <<= “John Smith wins again”;
// Post the event.
// Subscribers who subscribed to events whose domain is
// "News" and whose type matches the news category will
// receive this event

channel->push_structured_event (notification) ;

Step 2: Writing an Application to Subscribe to Events

The following types of CORBA applications can subscribe to events:
e C++ joint client/servers and servers.

e Foreign ORB clients.

To subscribe to events, an application must, at a minimum, implement the following functions:

e Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_eventOpmaﬁon

e Get the event channel factory object reference and use it to get the event channel.

e Define and create a subscription that includes the callback object reference.

34 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

e Create a callback object that implements the CosNotifyComm::StructuredPushConsumer
interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback object to receive events, it must implement the
CosNotifyComm::StructuredPushConsumer interface that supports the
push_structured_event operation. When an event occurs that has a matching subscription,
the Notification Service invokes this operation on the callback object to push the event to the
subscriber application.

The CosNotifyComm::StructuredPushConsumer interface also defines the operations
offer_changeanddisconnect_structured_push_consumer.TheIQOﬁﬁcaﬁonSerVke
never invokes these operations, so you should implement stubbed out versions that throw
CORBA: :NO_IMPLEMENT.

Listing 3-3 and Listing 3-4 show how this interface is implemented in C++.

Listing 3-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsGonsumer_i.h)

#ifndef _news_consumer_i_h
#define _news_consumer_i_h
#include "CosNotifyComm_s.h"
// For the servant class to receive news events,
// it must implement the CosNotifyComm: :StructuredPushConsumer
// idl interface.
class NewsConsumer_3i : public POA_CosNotifyComm: :StructuredPushConsumer
{
public:
// This method will be called when a news event occurs.
virtual void push_structured_event (
const CosNotification::StructuredEvent& notification
)
// OMG's CosNotifyComm: :StructuredPushConsumer idl
// interface defines the methods "offer_change" and

// "disconnect_structured_push_consumer". Since the

Using the CORBA Notification Service 3-5

3-6

// Notification Service never invokes these methods, just

// have
virtual
const

const

throw
}
virtual
{

throw

#endif

them throw a CORBA: :NO_IMPLEMENT exception

void offer_change (

CosNotification: :EventTypeSeqg& added,

CosNotification: :EventTypeSeg& removed)

CORBA: : NO_IMPLEMENT () ;

void disconnect_structured_push_consumer ()

CORBA: :NO_IMPLEMENT () ;

Listing 3-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsConsumer_i.cpp)

#include

"NewsConsumer_1i.h"

#include <iostream.h>

// Subscriber.cpp creates a simple events subscription to "News"

// events and has the events delivered to a NewsConsumer_i

// object. When a news event occurs

(this happens when a user

// runs the Reporter application and reports a news story), this
// method will be invoked:

void NewsConsumer_i::push_structured_event (

const CosNotification::StructuredEvent& notification)

{

// Extract the story from the first field in the event's
// filterable data.

char* story;

notification.filterable_datal[0].value >>= story;

// For coding simplicity, assume "story" is not "null".

// Print out the event.

cout

Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

R e et "

<< endl

<< "Category : "

<< notification.header.fixed_header.
event_type.type_name.in|()

<< endl

<< "Story

<< story

<< endl;

Getting the Event Channel

This step is the same for event posters and event subscribers. For a discussion of this step, see
“Implementing the CosNotifyComm::StructuredPushConsumer Interface” on page -5.

Creating a Callback Object

To receive events, the application must also be a server; that is, the application must implement
a callback object that can be invoked (called back) when an event occurs that matches the
subscriber’s subscription.

Creating a callback object includes the following steps:

Note: The following steps apply to an Oracle Tuxedo CORBA joint client/server. Oracle
Tuxedo CORBA servers can also subscribe to events.

1. Create a callback object. Callback objects can be implemented using either the BEAWrapper
Callback API or the CORBA Portable Object Adaptor (POA).

2. Create the servant.

3. Create an object reference to the callback servant.

For a complete description of the BEAWrapper Callbacks object and its methods, see the Joint
Client/Servers chapter in the CORBA Programming Reference.

pay attention to”BEAWrapper”

Using the CORBA Notification Service 3-7

3-8

Note: Using the BEAWrapper Callback object to create a callback object is discussed below.
For a discussion of how to implement a callback object using the POA, see Using
CORBA Server-to-Server Communication.

Listing 3-5 show show to use the BEAWrapper Callbacks object to create a callback object in
C++. In the code examples, the NewsConsumber_i servant is created and the
start_transient method is used to create a transient object reference.

Listing 3-5 Sample Code for Creating a Callback 0bject With Transient Object Reference (Introductory
Application Subscriber.cpp)

// Create a callback wrapper object since this client needs to
// support callbacks.
BEAWrapper: :Callbacks wrapper (orb.in());
NewsConsumer_i* news_consumer_impl = new NewsConsumer_i;
CORBA: :Object_var news_consumer_oref =
wrapper.start_transient (
news_consumer_impl,
CosNotifyComm: :_tc_StructuredPushConsumer->id ()
)
CosNotifyComm: : StructuredPushConsumer_var
news_consumer =
CosNotifyComm: : StructuredPushConsumer: : _narrow (
news_consumer_oref.in ()

)i

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification Service. You
can create either a transient subscription or a persistent subscription.

Listing 3-6 from the Introductory sample application, show how to create a transient subscription
in C++.

The following steps must be performed:

1. Set the subscription’s quality of service (QoS) to either transient or persistent.

Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

2. De&xnﬂnethesubscription_name(OpﬁonaD,domain_name,type_name,and
data_filter (optional).

3. Create the subscription. The subscription sets the domain_name, type_name, and
data_filter (optional), the Quality of Service (QoS), and supplies the object reference to
the subscriber’s callback object to the Notification Service.

Listing 3-6 Creating a Transient Subscription (C++)

// Set the quality of service to TRANSIENT.
CosNotification: :QoSProperties gos;
gos.length(1);
gos[0] .name =
CORBA: :string dup (Tobj_SimpleEvents: :SUBSCRIPTION_TYPE) ;
gos[0] .value <<=
Tobj_SimpleEvents: : TRANSIENT SUBSCRIPTION;
// Set the type to the news category.
const char* type = “Sports”;
// Create the subscription. Set the domain to "News" and
// the data filter to age greater than 30.
Tobj_SimpleEvents: :SubscriptionID subscription_id =
channel->subscribe (
subscription_name,
"News", // domain
“Sports”, // type
"Age > 30", // Data filter.
qgos,
news_consumer.in()

)i

Note: When you use data filtering, you must also perform some configuration tasks. For a
discussion of data filtering configuration requirements, see “Configuring Data Filters” on
page -2.

Listing 3-7, which show code in the Advanced sample application in C++, illustrates the coding
steps required to create a persistent subscription to the Notification Service. The steps required to

Using the CORBA Notification Service 3-9

create a persistent subscription are the same as those required to create a transient subscription,
as described previously.

Note: While the code examples shown here assume that the news_consumer callback object
has a persistent object reference, you can also create persistent subscriptions with
transient callback object references. For a discussion of transient versus persistent
callback object references, see Table 2-3.

Listing 3-7 Creating a Persistent Subscription (Advanced Subscriber.cpp)

CosNotification: :QoSProperties gos;
gos.length(1);
gos[0] .name =
CORBA: :string dup (Tobj_SimpleEvents: :SUBSCRIPTION_TYPE) ;
gos[0] .value <<= Tobj_SimpleEvents: :PERSISTENT_ SUBSCRIPTION;
CosNotifyComm: : StructuredPushConsumer_var
news_consumer =
CosNotifyComm: : StructuredPushConsumer: : _narrow (
news_consumer_oref.in()
) ;
Tobj_SimpleEvents: :SubscriptionID sub_id =
channel->subscribe (
subscription_info.subscription_name(),
"News", // domain
“Sports”, // type
w, // No data filter.
qos,

news_consumer.in()

Threading Considerations for C++ Joint Client/Server Applications

A joint client/server application may first function as a client application and then switch to
functioning as a server application. To do this, the joint client/server application turns complete
control of the thread to the Object Request Broker (ORB) by making the following invocation:

3-10 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

orb -> run();

If a method in the server portion of a joint client/server application invokes ORB: : shutdown (),
all server activity stops and control is returned to the statement after ORB: : run () is invoked in
the server portion of the joint client/server application. Only under this condition does control
return to the client functionality of the joint client/server application.

Since a client application has only a single thread, the client functionality of the joint client/server
application must share the central processing unit (CPU) with the server functionality of the joint
client/server application. This sharing is accomplished by occasionally checking with the ORB
to see if the joint client/server application has server application work to perform. Use the
following code to perform the check with the ORB:

if (orb->work_pending()) orb->perform_work() ;

After the ORB completes the server application work, the ORB returns to the joint client/server
application, which then performs client application functions. The joint client/server application
must remember to occasionally check with the ORB; otherwise, the joint client/server application
will never process any invocations.

You should be aware that the ORB cannot service callbacks while the joint client/server
application is blocking on a request. If a joint client/server application invokes an object in
another Oracle Tuxedo CORBA server application, the ORB blocks while it waits for the
response. While the ORB is blocking, it cannot service any callbacks, so the callbacks are queued
until the request is completed.

Step 3: Compiling and Running Notification Service
Applications

The final step in the development of a Notification Service application is to compile, build, and
run the application. To do this, you need to perform the following steps.

1. Generate the required client stub and skeleton files to define interfaces between the
Notification Service and event poster and subscriber applications. Event poster applications
can be clients, joint client/servers, or servers. Event subscriber applications can be joint
client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.
3. Build the application.

4. Run the application.

Using the CORBA Notification Service 3-11

3-12

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute the 1d1 command for each of the
Notification IDL files that your application uses. Table 3-2 shows the idl commands used for
each type of subscriber.

Table 3-2 idl Command Requirements

Language Oracle Tuxedo CORBA Joint Oracle Tuxedo CORBA Server
Client/Server

CH++ idl -Pp idl

The following is an example of an id1 command:

>idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl

Table 3-3 lists the IDL files required by each type of Notification Service application that uses
the Oracle Simple Events Interface.

Table 3-3 IDL Files Required by Notification Service Applications

Application Type Required OMG IDL Files

Event poster (can be a client, a joint client/server, or CosEventComm.idl

a server). (Stubs are required for all files.) CosNotification.idl
CosNotifyComm.idl
Tobj_Events.idl
Tobj_SimpleEvents.idl

Subscriber (can be a server or a joint client/server). CosEventComm.idl

(Stubs are required for all files. Skeleton is required CosNotification.idl

for the CosNotifyComm. idl file.) CosNotifyComm.idl
Tobj_Events.idl
Tobj_SimpleEvents.idl

Building and Running Applications

The build procedure differs depending on the type of Notification Service application you are
building. Table 3-4 provides an overview of the commands and types of files used to build each
type of the Notification Service application.

Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Table 3-4 Application Build Requirements

Application Type Client Joint Client/Server Server
C++ Events Poster Use the Use the buildobjclient Use the
buildobjclient command with the -P option buildobjserver

command to compile the

to compile the application

command to compile the

application files and the files and the IDL stubs. application files and the
IDL stubs. IDL client stubs.

C++ Events Not applicable. Use the buildobjclient Use the

Subscriber command with the -P option buildobjserver

to compile the application
files, the IDL stubs, the IDL
skeletons, and link with the
BEAWTrapper library.

command to compile the
application files, the IDL
stubs, and the IDL
skeletons.

Listing 3-8 shows the commands used for a C++ poster application (Reporter.cpp) on a
Microsoft Windows system. To form a C++ executable, the 1d1 command is run on the required
IDL file and the buildobjclient command compiles the C++ client application file and the
IDL stubs.

Listing 3-8 C++ Reporter Application Build and Run Commands (Microsoft Windows)

#

Run the idl command.

idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\Tobj_Events.idl \
C:\tuxdir\include\Tobj_SimpleEvents.idl

#

buildobjclient -v -o subscriber.exe -f "

Run the buildobjclient command.

-DWIN32

Reporter.cpp
CosEventComm_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
Tobj_Events_c.cpp

P A

Using the CORBA Notification Service

3-13

Tobj_SimpleEvents_c.cpp \
Run the application.

is_reporter

Listing 3-9 and Listing 3-10 show the commands used for a C++ subscriber application
(Subscriber . cpp) on Microsoft Windows and UNIX respectively. To form a C++ executable,
the buildobjclient command, with the -P option, compiles the joint client/server application
files (Subscriber.cpp and NewsConsumer_i . cpp), the IDL stubs, and the IDL skeleton
(CosNotifyComm_s.cpp)

Listing 3-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)

Run the idl command.
idl -P -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\Tobj_Events.idl \
C:\tuxdir\include\Tobj_SimpleEvents.idl
Run the buildobjclient command.
buildobjclient -v -P -o subscriber.exe -f "

-DWIN32

Subscriber. cpp

NewsConsumer_i .cpp

CosEventComm_c.cpp

CosNotification_c.cpp

CosNotifyComm_c.cpp

CosNotifyComm_s.cpp

P g N

Tobj_Events_c.cpp
Tobj_SimpleEvents_c.cpp \
c:\tuxdir\lib\libbeawrapper.lib \
Run the application.

is_subscriber

3-14 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Listing 3-10 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.
idl -P -I/usr/local/tuxdir/include
/usr/local/tuxdir/include/CosEventComm.idl \
/usr/local/tuxdir/include/CosNotification.idl \
/usr/local/tuxdir/include/CosNotifyComm.idl \
/usr/local/tuxdir/include/Tobj_Events.idl \
/usr/local/tuxdir/include/Tobj_SimpleEvents.idl
Run the buildobjclient command.
buildobjclient -v -P -o subscriber -f "
Subscriber. cpp
NewsConsumer_i .cpp
CosEventComm_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
CosNotifyComm_s.cpp
Tobj_Events_c.cpp
Tobj_SimpleEvents_c.cpp

P g g

-lbeawrapper

Run the application.

is_subscriber

Using the CORBA Notification Service 3-15

3-16 Using the CORBA Notification Service

CHAPTERa

Using the CosNotification Service API

This chapter describes the development steps required to create Notification Service applications
using the CosNotification Service API and the C++ programming language.

This topic includes the following sections:
e Development Process
e Step 1: Writing an Application to Post Events
e Step 2: Writing an Application to Subscribe to Events

e Step 3: Compiling and Running Notification Service Applications

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Development Process

Table 4-1 outlines the development process for creating Notification Service applications.

Using the CORBA Notification Service 4-1

Table 4-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

3 Writing an application that subscribes to events
4 Compiling a Notification Service application

These steps are explained in detail in subsequent topics.

Designing Events

The design of events is basic to any notification service. The design impacts not only the volume
of information that is delivered to matching subscriptions, but the efficiency and performance of
the Notification Service as well. Therefore, careful planning should be done to ensure that your
Notification Service will be able to handle your needs now and allow for future growth. For a
discussion of event design, see “Designing Events” on page -6.

Step 1: Writing an Application to Post Events

The following types of CORBA applications can post events:
e C++ clients, joint client/servers and servers.

e Foreign ORB clients.

To post events, an application must, at a minimum, implement the following functions:
e Get the event channel factory object reference and use it to get the event channel.

e Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must get the event channel.

4-2 Using the CORBA Notification Service

Step 1: Writing an Application to Post Events

This development step is illustrated in Listing 4-1. Listing 4-1 is code from the Reporter.cpp
file in the Introductory sample application that uses the CosNotification Service API.

To get the event channel factory object reference, the resolve_initial references method
is invoked on the Bootstrap object using the "NotificationService" environmental object.
The object reference is used to get the channel factory, which is, in turn, is used to get the event
channel. Listing 4-1 shows code examples in C++.

Listing 4-1 Getting the Event Channel (Reporter.cpp)

// Get the CosNotification channel factory object reference.
CORBA: :Object_var channel_factory_oref =
bootstrap.resolve_initial_references (
"NotificationService");
CosNotifyChannelAdmin: :EventChannelFactory_var
channel_factory =
CosNotifyChannelAdmin: :EventChannelFactory: :_narrow (
channel_factory_oref.in());
// use the channel factory to get the default channel
CosNotifyChannelAdmin: :EventChannel_var channel =
channel_factory->get_event_channel (
Tobj_Notification: :DEFAULT_CHANNEL) ;

Creating and Posting Events

To post events, you must get the SupplierAdmin object, use it to create a proxy, create the event,
and then post the event to the proxy.

Listing 4-2 shows how this is implemented in C++.

Listing 4-2 Creating and Posting the Event (Reporter.cpp)

// Since we are a supplier (that is, we post events),

// get the SupplierAdmin object

Using the CORBA Notification Service 4-3

44

CosNotifyChannelAdmin: : SupplierAdmin_var supplier_admin =
channel->default_supplier_admin() ;
// Use the supplier admin to create a proxy. Events are posted
// to the proxy (unlike the simple events interface where events
// are posted to the channel).
CosNotifyChannelAdmin: : ProxyID proxy_id;
CosNotifyChannelAdmin: : ProxyConsumer_var generic_proxy_consumer =
supplier_admin->obtain_notification_push_consumer (
CosNotifyChannelAdmin: : STRUCTURED_EVENT, proxy_id);
CosNotifyChannelAdmin: : StructuredProxyPushConsumer_var
proxy_push_consumer =
CosNotifyChannelAdmin: : StructuredProxyPushConsumer: :_narrow (
generic_proxy_consumer) ;
// Connect to the proxy so that we can post events.
proxy_push_consumer->connect_structured_push_supplier (

CosNotifyComm: : StructuredPushSupplier::_nil());

// create an event
CosNotification: :StructuredEvent notification;

// set the domain to "News"
notification.header.fixed_header.event_type.domain_name =

CORBA: :string_dup ("News") ;
// set the type to the news category
notification.header.fixed_header.event_type.type_name =

CORBA: :string_dup (“Sports”) ;
// add one field, which will contain the story, to the
// event's filterable data. set the field's name to
// "Story" and value to a string containing the story
notification.filterable_data.length(1l);
notification.filterable_datal[0] .name =

CORBA: :string dup("Story");

notification.filterable_datal[0].value <<= “John Smith wins again”;
// post the event
// Subscribers who subscribed to events whose domain is
// "News" and whose type matches the news category will
// receive this event

proxy_push_consumer->push_structured_event (notification) ;

Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

// Disconnect.
proxy_push_consumer->disconnect_structured_push_consumer () ;

Step 2: Writing an Application to Subscribe to Events

The following types of CORBA applications can subscribe to events:
e C++ joint client/servers and servers.
e Foreign ORB clients that support callbacks.
To subscribe to events, an application must, at a minimum, support the following functions:

e Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_event operation.

e Get the event channel factory object reference and use it to get the event channel.
e Define and create a subscription that includes the callback object reference.

e Create a callback object that implements the
CosNotifyComm: : StructuredPushConsumer interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback servant object to receive events, it must implement the
CosNotifyComm::StructuredPushConsumer interface that supports the
push_structured_event operation. When an event occurs that has a matching subscription,
the Notification Service invokes this operation on the servant callback object in the subscriber
application to deliver the event to the subscriber application.

The CosNotifyComm::StructuredPushConsumer interface also defines the operations
offer change and disconnect_structured_push_consumer. The Notification Service
never invokes these operations, so you should implement stubbed out versions that throw
CORBA: : NO_IMPLEMENT.

Listing 4-3 and Listing 4-4 show how this interface is implemented in C++.

Using the CORBA Notification Service 4-5

Listing 4-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsConsumer_i.h)

#ifndef _news_consumer_i_h
#define _news_consumer_i_h
#include "CosNotifyComm_s.h"
// For the servant class to receive news events,
// it must implement the CosNotifyComm: :StructuredPushConsumer
// idl interface
class NewsConsumer_i : public POA_CosNotifyComm: : StructuredPushConsumer
{
public:
// this method will be called when a news event occurs
virtual void push_structured_event (
const CosNotification::StructuredEvent& notification
)
// OMG's CosNotifyComm: :StructuredPushConsumer idl
// interface defines the methods "offer_change" and
// "disconnect_structured_push_consumer". Since the
// Notification Service never invokes these methods, just
// have them throw a CORBA::NO_IMPLEMENT exception

virtual void offer_change (
const CosNotification: :EventTypeSeqg& added,

const CosNotification: :EventTypeSeg& removed)

throw CORBA: :NO_IMPLEMENT () ;
}
virtual void disconnect_structured_push_consumer ()
{

throw CORBA: :NO_IMPLEMENT () ;

#endif

4-6 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing 4-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsConsumer_i.cpp)

#include "NewsConsumer_i.h"

#include <iostream.h>

// Subscriber.cpp creates a simple events subscription to "News"
// events and has the events delivered to a NewsConsumer_i
// object. When a news event occurs (this happens when a user
// runs the Reporter application and reports a news story), this
// method will be invoked:
void NewsConsumer_i::push_structured_event (
const CosNotification::StructuredEvent& notification)
{

// extract the story from the first field in the event's
// filterable data
char* story;
notification.filterable_data[0].value >>= story;
// for coding simplicity, assume "story" is not "null"
// print out the event
cout

<< M- "

<< endl

<< "Category : "

<< notification.header.fixed_header.

v event_type.type_name.in()

<< endl

<< "Story HE

<< story

<< endl;

Using the CORBA Notification Service 4-7

Getting the Event Channel, ConsumerAdmin Object, and
Filter Factory Object

Before an application can create a subscription, it must get the event channel and the
ConsumerAdmin and Filter Factory objects. Listing 4-5 shows how this is implemented in C++.

To get the event channel factory object reference, the resolve_initial references method
is invoked on the Bootstrap object using the "NotificationService" environmental object.
The object reference is used to get the channel factory, which is, in turn, used to get the event
channel. Finally, the event channel is used to get the ConsumerAdmin object and the
FilterFactory object.

Listing 4-5 Getting the Event Channel and ConsumerAdmin and Filter Factory Objects (Subscriber.cpp)

// Get the CosNotification channel factory object reference.
CORBA: :Object_var
channel_factory oref =
bootstrap.resolve_initial_references(
"NotificationService");
channel_factory =
CosNotifyChannelAdmin: :EventChannelFactory: :_narrow (
channel_factory_oref.in());
// Use the channel factory to get the default channel.
CosNotifyChannelAdmin: :EventChannel_var channel =
channel_factory->get_event_channel (
Tobj_Notification: :DEFAULT_CHANNEL) ;
// Use the channel to get the consumer admin and the filter factory.
CosNotifyChannelAdmin: :ConsumerAdmin_var consumer_admin =
channel->default_consumer_admin() ;
CosNotifyFilter::FilterFactory_var filter_factory =

channel->default_filter_ factory();

4-8 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

Creating a Callback Object

To receive events, the application must also be a server; that is, the application must implement
a callback object that can be invoked (called back) when an event occurs that matches the
subscriber’s subscription.

Creating a callback object includes the following steps:

Note: The following steps apply to a joint client/server. Oracle Tuxedo CORBA servers can
also subscribe to events.

1. Creating a callback wrapper object. This can be implemented using either the BEAWrapper
Callbacks object or the CORBA Portable Object Adaptor (POA).

2. Creating the servant.

3. Creating an object reference to the callback servant.

For a complete description of the BEAWrapper Callbacks object and its methods, see the Joint
Client/Servers chapter in the CORBA Programming Reference.

Note: Using the BEAWrapper Callback object to create a callback object is discussed below.
For a discussion of how to implement a callback object using the POA, see Using
CORBA Server-to-Server Communication.

Listing 4-6 shows how to use the BEAWrapper Callbacks object to create a callback object in
C++. In the code examples, the NewsConsumber_i servant is created and the
start_transient method is used to create a transient object reference.

Listing 4-6 Sample Code for Creating a Callback Object with Transient Object Reference (Introductory
Application Subscriber.cpp)

// Create a callback wrapper object since this client needs to
// support callbacks
BEAWrapper: :Callbacks wrapper (orb.in()) ;
NewsConsumer_i* news_consumer_impl = new NewsConsumer_i;
// Create a transient object reference to this servant.
CORBA: :Object_var news_consumer_oref =
wrapper.start_transient (
news_consumer_impl,
CosNotifyComm: : _tc_StructuredPushConsumer->id ()
)

Using the CORBA Notification Service 4-9

CosNotifyComm: : StructuredPushConsumer_var
news_consumer =
CosNotifyComm: : StructuredPushConsumer: : _narrow (

news_consumer_oref.in());

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification Service. You
can create a transient subscription or a persistent subscription.

To create a subscription, the following steps must be performed:

1. Create a notification proxy push supplier and use it to create a StructuredProxySupplier
object.

2. Set the subscription’s Quality of Service (QoS). You can set the QoS to transient or persistent.

3. Create a filter object and assign the domain_name, type_name, and data_filter (optional)
to it.

4. Add the filter to the proxy.

5. Connect to the proxy passing in the subscription’s callback object reference.

Listing 4-7 from the Introductory sample application, shows how to create a transient
subscription in C++.

Listing 4-7 Creating a Transient Subscription

// Create a new subscription (at this point, it is not complete).
CosNotifyChannelAdmin: :ProxyID subscription_id;
CosNotifyChannelAdmin: : ProxySupplier_var generic_subscription =
consumer_admin->obtain_notification_push_supplier (
CosNotifyChannelAdmin: : STRUCTURED_EVENT,
subscription_id);
CosNotifyChannelAdmin: : StructuredProxyPushSupplier_var
subscription =
CosNotifyChannelAdmin: : StructuredProxyPushSupplier: :_narrow (

generic_subscription);

4-10 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

s_subscription = subscription.in();
// Set the quality of service. This sets the subscription name
// and subscription type (=TRANSIENT).
CosNotification: :QoSProperties gos;
gos.length(2) ;
gos[0] .name =
CORBA: :string dup (Tobj_Notification::SUBSCRIPTION_NAME) ;
gos[0] .value <<= subscription_name;
gos[1l] .name =
CORBA: :string_dup (Tobj_Notification: :SUBSCRIPTION_TYPE) ;
gos[1l] .value <<=
Tobj_Notification::TRANSIENT_SUBSCRIPTION;
subscription->set_gos (gos) ;
// Create a filter (used to specify domain, type and data filter).
CosNotifyFilter::Filter_var filter =
filter factory->create_filter (
Tobj_Notification: :CONSTRAINT_GRAMMAR) ;
s_filter = filter.in();
// Set the filtering parameters.
// (domain = "News", type = “Sports”, and no data filter)
CosNotifyFilter::ConstraintExpSeq constraints;
constraints.length(1l) ;
constraints[0] .event_types.length(l);
constraints[0].event_types[0] .domain_name =
CORBA: :string_dup ("News") ;
constraints[0].event_types[0].type_name =
CORBA: :string_dup (“Sports”) ;
constraints[0].constraint_expr =
CORBA: :string_dup(""); // No data filter.
CosNotifyFilter::ConstraintInfoSeq_var
add_constraints_results = // ignore this returned value
filter->add_constraints (constraints) ;
// Add the filter to the subscription.
CosNotifyFilter::FilterID filter_id =
subscription->add_filter (filter.in());
// Now that we have set the subscription name, type and filtering
// parameters, complete the subscription by passing in the

// reference of the callback object to deliver the events to.

Using the CORBA Notification Service 4-1

subscription->connect_structured_push_consumer (

news_consumer.in());

Step 3: Compiling and Running Notification Service
Applications

4-12

The final step in the development of a Notification Service application is to compile, build, and
run the application. To do this, you need to perform the following steps.

1. Generate the required client stub and skeleton files to define interfaces between the
Notification Service and event poster and subscriber applications. Event poster applications
can be clients, joint client/servers, or servers. Event subscriber applications can be joint
client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.
3. Build the application.

4. Run the application.

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute the 1d1 command for each of the
Notification IDL files that your application uses. Table 4-2 shows the idl commands used for
each type of subscriber.

Table 4-2 idl Command Requirements

Language Oracle Tuxedo CORBA Joint Oracle Tuxedo CORBA
Client/Server Server

C++ idl -P idl

The following is an example of an id1 command:
>idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl

Table 4-3 lists the IDL files required by each type of Notification Service application.

Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Table 4-3 IDL Files Required by Notification Service Applications

Application Type

Required OMG IDL Files

Event poster (can be a client, a joint client/server, or

a server)

CosEventChannelAdmin.idl
CosEventComm. idl
CosNotification.idl
CosNotifyChannelAdmin
CosNotifyComm.idl
CosNotifyFilter
Tobj_Events.idl
Tobj_Notification.idl

Subscriber (can be joint client/server or a server)

CosEventChannelAdmin.idl
CosEventComm. idl
CosNotification.idl
CosNotifyChannelAdmin
CosNotifyComm.idl
CosNotifyFilter
Tobj_Events.idl
Tobj_Notification.idl

Compiling and Linking the Application Code

The compiling and linking procedure differs depending on the type of Notification Service
application you are building. Table 4-4 provides an overview of the commands and files used to

compile each type of application.

Using the CORBA Notification Service 4-13

Table 4-4 Application Build Requirements

Application Type Client Joint Client/Server Server
C++ Events Poster Use the Use the buildobjclient Use the
buildobjclient command with the -P option buildobjserver
command to compile the to compile the application command to compile the
application files and the files and the IDL stubs. application files and the
IDL stubs. IDL client stubs.
C++ Events Not applicable. Use the buildobjclient Use the
Subscriber command with the -P option buildobjserver
to compile the application command to compile the
files, the IDL stubs, and the application files, the IDL
IDL skeletons. stubs, and the IDL
skeletons.

Listing 4-8 shows the commands used for a C++ Reporter application (Reporter.cpp) on a
Microsoft Windows system. To form a C++ executable, the 1d1 command is run on the required
IDL file and the buildobjclient command compiles the C++ client application file and the
IDL stubs.

Listing 4-8 C++ Reporter Application Build and Run Commands

Run the idl command.
idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \

C:\tuxdir\include\CosEventChannelAdmin \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\CosNotifyFilter.idl \
C:\tuxdir\include\Tobj_Notification.idl
Run the buildobjclient command.
buildobjclient -v -0 is_reporter.exe -f ”\
-DWIN32 \
Reporter.cpp \
CosEventComm_c.cpp \
CosEventChannelAdmin_c.cpp \
CosNotification_c.cpp \

4-14 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

CosNotifyComm_c.cpp
CosNotifyFilter_c.cpp
CosNotifyChannelAdmin_c.cpp

~ s s

Tobj_Events_c.cpp
Tobj_Notification_c.cpp ”
Run the application.

is_reporter

Listing 4-9 and Listing 4-10 show the commands used for a C++ Subscriber application

(Subscriber . cpp) on Microsoft Windows and UNIX, respectively. To form a C++ executable,
the buildobjclient command, with the -P option, compiles the joint client/server application

files (subscriber.cpp and NewsConsumer_i . cpp), the IDL stubs, the IDL skeleton (for
CosNotifyComm_s.cpp).

Listing 4-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)

Run the idl command.

idl -P -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
:\tuxdir\include\CosEventChannelAdmin \
:\tuxdir\include\CosNotification.idl \
:\tuxdir\include\CosNotifyComm.idl \
:\tuxdir\include\CosNotifyFilter.idl \
:\tuxdir\include\CosNotifyChannelAdmin \
\C:\tuxdir\include\Tobj_Events.idl \
\C:\tuxdir\include\Tobj_Notification

Q0 00N

Run the buildobjclient command.

buildobjclient -v -P -o is_subscriber.exe -f " \
-DWIN32 \
Subscriber.cpp
NewsConsumer_i .cpp
CosEventComm_c.cpp
CosEventChannelAdmin_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
CosNotifyComm_s.cpp

P g

CosNotifyFilter_c.cpp

Using the CORBA Notification Service

CosNotifyChannelAdmin_c.cpp
Tobj_Events_c.cpp
Tobj_Notification_c.cpp
C:\tuxdir\lib\libbeawrapper.lib

~ - = =

Run the application.

is_subscriber

Listing 4-10 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.
idl -P -I/usr/local/tuxdir/include
/usr/local/tuxdir/include/CosEventChannelAdmin \
/usr/local/tuxdir/include/CosEventComm.idl \
/usr/local/tuxdir/include/CosNotification.idl \
/usr/local/tuxdir/include/CosNotifyComm.idl \
/usr/local/tuxdir/include/CosNotifyFilter.idl \
/usr/local/tuxdir/include/CosNotifyChannelAdmin \
/usr/local/tuxdir/include/Tobj_Events.idl \
/usr/local/tuxdir/include/Tobj_SimpleEvents.idl
Run the buildobjclient command.
buildobjclient -v -P -o subscriber -f "
Subscriber. cpp
NewsConsumer_i .cpp
CosEventComm_c.cpp
CosEventChannelAdmin_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
CosNotifyComm_s.cpp
CosNotifyFilter_c.cpp
CosNotifyChannelAdmin_c.cpp
Tobj_Events_c.cpp
Tobj_SimpleEvents_c.cpp

P

-lbeawrapper

4-16 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Run the application.

is_subscriber

Using the CORBA Notification Service 4-11

4-18 Using the CORBA Notification Service

CHAPTERa

Building the Introductory Sample
Application

This topic includes the following sections:
e Overview

e Building and Running the Introductory Sample Application

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Overview

The Introductory sample applications simulate a newsroom environment in which a news
reporter posts a story and a news subscriber consumes the story.

One implementation of the Introductory sample application is provided: the C++ programming
language that uses the Oracle Simple Events application programming interface (API). The
Introductory sample application consists of the Reporter and Subscriber applications and the
Notification Service. The Reporter application implements a client application that prompts the
user to enter news articles, and then posts the news articles as events to the Oracle Tuxedo
CORBA Notification Service. The Subscriber application implements a joint client/server

Using the CORBA Notification Service 5-1

5-2

application that acts as client when it subscribes and unsubscribes for events, and acts as a server
when it receives events. To receive events, the subscriber implements a callback object which is
invoked by the Notification Service when an event needs to be delivered.

The Introductory sample application shows the simplest usage of the Notification Service. It
demonstrates how to use the Oracle Simple Events API, the CosNotification API, transient
subscriptions, and transient object references. It does not demonstrate the use of persistent
subscriptions or data filtering. For a sample application that uses persistent subscriptions and data
filtering, see Chapter 6, “Building the Advanced Sample Application.”

This Introductory sample application provides two executables (see Figure 5-1):

e A Reporter application that posts events to the Notification Service. It is a client without
callback capability.

e A Subscriber application that subscribes to the Notification Service and receives events.
The subscriber is a joint client/server that acts as a client when it subscribes to events and
acts as a server when it receives events.

Figure 5-1 Introductory Sample Application Components

Reporter
(C?ient) Push Event /' BEA Tuxedo Domain

Subscrib -.'

Subscriber ri Notification

(Joint Client/ \ Service
Server)

The event poster, the Reporter application, uses the structured event domain_name, type_name,
and filterable_data fields to construct the event. The domain name defines the industry. In
this application, domain_name is set to “News”. The type_name defines the kind of event in the
industry and it is set to the category of news story (for example, “Sports”). The application user
specifies this value. In the filterable_ data fields, a field named “Story” is added, which
contains the text of the news story being posted. This text is also specified by the application user.

Using the CORBA Notification Service

Overview

The Subscriber application uses the structured event domain_name and type_name fields to
create a subscription to the Notification Service. The subscription defines the domain_name as a
fixed string with the content of “News”. At run time, the Subscriber application queries the user
for the “News Category” and uses the input to define the type_name field in the subscription.
Obviously, the users of both applications, the reporter and the subscriber, must collaborate on the
“News Category” string for the subscription to match an event, otherwise, no events will be
delivered to the subscriber. The subscription does not do any checking of the filterable_data
field, but rather assumes that the body of the story will be a string, and that the story will be in
the first Named/Value pair in the filterable_data field of a structured event.

To post events, the Reporter application uses the push_structured_event method to push
news events to the Notification Service. For each event, the Reporter application queries the user
for a “News category” (for example, “Sports”) and a story (a multiple-line text string).

To subscribe to news events, the Subscriber application invokes the Notification Service to
subscribe to news events. For each subscription, the Subscriber application queries the user for a
“News category” (for example, “Sports™). The Subscriber application also implements a callback
object (via the NewsConsumer _i servant class) which is used to receive and process news events.
When the Subscriber subscribes, it gives the Notification Service a reference to this callback
object. When a matching event occurs; that is, when the Reporter posts an event with a “News
category” that matches the news category of the subscription, the Notification Service invokes
the push_structured_event method on the callback object to deliver the event to the callback
object in the subscriber. This method prints out the event, invokes the unsubscribe method on
the Notification Service to cancel the subscription, and shuts down the Subscriber. For simplicity,
the push_structured_event method assumes that the domain_name, type_name, length,
and name field match and the story is in the value field.

Note: The “News category” is just a string that the Reporter user and the Subscriber user agree
on. There are no fixed categories in this sample. Therefore, both the Reporter user and
the Subscriber user must type the same string when prompted for a category (including
case and white space).

To run this sample, you must start at least one Reporter application and at least one Subscriber
application; however, you may run multiple Reporters and Subscribers. Events posted by any
Reporter will be delivered to all matching Subscribers (based on “News category”).

Also, be sure to start any subscribers before posting events; otherwise, the events will be lost.

Using the CORBA Notification Service 5-3

Building and Running the Introductory Sample
Application

To build and run the Introductory sample application, you must perform these steps:

1.
2.

8.
9.

Verify that the "TUXDIR" environment variable are set to the correct directory path.
Unset “JAVA_HOME”

Copy the files for the Introductory sample application into a work directory.
Change the protection attributes on the files to grant write and execute access.

For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake
file is in your path

Set the application environment variables.
Build the sample.
Boot the system.

Run the Subscriber and Reporter applications.

10. Shut down the system.

11. Restore the directory to its original state.

These steps are described in detail in the following sections.

Verifying the Settings of the Environment Variables

Before you build and run the Introductory sample application, you need to ensure that the TUXDIR
environment variable is set on your system. In most cases, this environment variable is set as part
of the installation procedure. However, you need to check the environment variables to ensure
they reflect correct information.

Table 5-1 lists the environment variables required to run the Introductory sample application.

5-4

Using the CORBA Notification Service

Table 5-1

Building and Running the Introductory Sample Application

Required Environment Variables for the Introductory Sample Application

Environment Variable Description

TUXDIR

The directory path where you installed the Oracle Tuxedo software. For example:
Windows

TUXDIR=c: \tuxdir

UNIX

TUXDIR=/usr/local/tuxdir

To verify that the information for the environment variables defined during installation is correct,
perform the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.
The Environment page appears.

5. Check the setting for TUXDIR

UNIX

ksh prompt>printenv TUXDIR

To change the settings, perform the following steps:

‘Windows

1.

On the Environment page in the System Properties window, click the environment variable
you want to change.

Enter the correct information for the environment variable in the Value field.

. Click OK to save the changes.

Using the CORBA Notification Service 5-5

5-6

UNIX

ksh prompt>export TUXDIR=directorypath
Or

csh> setenv TUXDIR=directorypath

Copying the Files for the Introductory Sample Application
into a Work Directory

You need to copy the files for the Introductory sample application and files in the common
directory into a work directory on your local machine.

Note: The application directory and the common directory must be copied to the same parent
directory.
The files are located in the following directories:

Windows

For the C++ Introductory sample:
drive: \tuxdir\samples\corba\notification\introductory_ simple_cxx
drive: \tuxdir\samples\corba\notification\common

UNIX

For the C++ Introductory sample:
/usr/local/tuxdir/samples/corba/notification/
introductory_simple_cxx
/usr/local/tuxdir/samples/corba/notification/common

You use the files listed in Table 5-2 and Table 5-3 to build and run the C++ Introductory sample
application, which is implemented using the Oracle Simple Events API.

Table 5-2 Files Located in the introductory_sample_c++ Directory

File Description

Readme. txt Describes the Introductory sample application and
provides instructions for setting up the environment and
building and running the application.

setenv.cmd Sets the environment for Microsoft Windows systems.

setenv.ksh Sets the environment for UNIX systems.

Using the CORBA Notification Service

Building and Running the Introductory Sample Application

Tahle 5-2 Files Located in the introductory_sample_c++ Directory (Continued)

File

Description

makefile.nt

Makefile for Microsoft Windows systems.

makefile.mk

Makefile for UNIX systems.

makefile.inc

Common makefile used by the makefile.nt and the
makefile.mk files.

Reporter.cpp

Code for the reporter.

Subscriber.cpp

Code for the subscriber.

NewsConsumer_1i.h and
NewsConsumer . cpp

The callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

Table 5-3 lists other files that the Introductory sample application uses.

Table 5-3 Other Files the Introductory Sample Application Uses

File

Description

The following files are located in the common directory.

common.nt

Makefile symbols for Microsoft Windows systems.

common . mk

Makefile symbols for UNIX systems.

introductory.inc

Makefile for administrative targets.

ex.h

Utilities to print exceptions. (For C++ only.)

client_ex.h

Client utilities to handle exceptions. (For C++ only.)

The following files are located in the \tuxdir\include directory.

CosEventComm. idl

The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl

The OMG IDL code that declares the
CosNotification module.

CosNotifyComm.idl

The OMG IDL code that declares the
CosNotifyComm module.

Using the CORBA Notification Service 5-1

5-8

Tahle 5-3 Other Files the Introductory Sample Application Uses (Continued)

File Description

Tobj_Events.idl The OMG IDL code that declares the Tobj Events
module.

Tobj_SimpleEvents.idl The OMG IDL code that declares the

Tobj_SimpleEvents module.

Note: This file is needed only for the application
that was developed using Oracle Simple
Events API.

The following files are needed only for the application that was developed using
CosNotification Service API.

CosEventChannelAdmin.idl The OMG IDL code that declares the
CosEventChannel Admin module.

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNotifyChannelAdmin.idl The OMG IDL code that declares the
CosNotifyChannel Admin module.

Tobj_Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Introductory Sample Application

During the installation of the Oracle Tuxedo CORBA software, the sample application files are
marked read-only. Before you can edit or build the files in the Introductory sample application,
you need to change the protection attribute of the files you copied into your work directory, as
follows:

Windows
1. In a DOS window, change (cd) to your work directory.

2. prompt>attrib -r drive:\workdirectory*.*

UNIX

Using the CORBA Notification Service

Building and Running the Introductory Sample Application

1. Change (cd) to your work directory.
2. prompt>/bin/ksh
3. ksh prompt>chmod u+w /workdirectory/*.*

On UNIX systems, you also need to change the permission of setenv.ksh to give execute
permission to the file, as follows:

ksh prompt>chmod +x setenv.ksh

Setting Up the Environment

To set up the environment, enter the following command:
Windows
prompt>.\setenv.cmd

UNIX

ksh prompt>. ./setenv.ksh

Building the Introductory Sample Application

You use the make command to run makefiles, which are provided for Microsoft Windows and
UNIX, to build the sample application. For UNIX, use make. For Microsoft Windows, use nmake.

Makefile Summary

The makefile automates the following steps:

1. Checks that the set environment command (setenv.cmd) has been run. If the environment
variables have not been set, the makefile prints an error message to the screen and exits.

2. Includes the common .nt (for Microsoft Windows) or common . mk (for UNIX) command file.
This file defines the makefile symbols used by the samples. These symbols allow the UNIX
and Microsoft Windows makefiles to delegate the build rules to platform-independent
makefiles.

3. Includes the makefile.inc command file. This file builds the is_reporter and
is_subscriber executables, and cleans up the directory of unneeded files and directories.

4. Includes the introductory. inc command file. This file creates the UBBCONFIG file and
executes the tmloadcf -y ubb command to create the TUxCONFIG file. This is a

Using the CORBA Notification Service 5-9

5-10

platform-independent makefile fragment that defines the administrative build rules common
to the Introductory sample application.

Executing the Makefile

Before executing the makefile, you need to check the following:

e Ensure that you have the appropriate administrative privileges to build and run
applications.

e On Microsoft Windows, verify that nmake is in the path of your machine.

e On UNIX, verify that make is in the path of your machine.
To build the Introductory sample application, enter the make command as follows:
Windows
nmake -f makefile.nt

UNIX

make -f makefile.mk

Starting the Introductory Sample Application

To start the Introductory sample application, enter the following commands:

1. To boot the Oracle Tuxedo system:
prompt>tmboot -y
This command starts the following server processes:
- TMSUSREVT

An Oracle Tuxedo system-provided, EventBroker server that is used by the Notification
Service.

- TMNTS

An Oracle Tuxedo Notification Service server that processes requests for subscriptions
and event postings.

- TMNTSFWD_T

An Oracle Tuxedo Notification Service server that forwards events to subscribers that
have transient subscriptions.

- ISL

Using the CORBA Notification Service

Building and Running the Introductory Sample Application

The IIOP Listener/Handler process.

To start the Subscriber application:
For C++: prompt>is_subscriber

To start another Subscriber, open another window, change (cd) to your work directory, set
the environment variables (by running setenv.cmd or setenv.ksh), and enter the start
command that is appropriate for your platform.

To start the Reporter application, open another window and enter the following:
For C++: prompt>is_reporter

To start another Reporter, open another window, change (cd) to your work directory, set
the environment variables (by running setenv.cmd or setenv.ksh), and enter the start
command that is appropriate for your platform.

Using the Introductory Sample Application

To use the Introductory sample application, you must use the Subscriber application to subscribe
to an event and the Reporter application to post an event. Be sure to subscribe before you post
each event; otherwise, events will be lost.

Note: The Subscriber application shuts down after it receives one event.

Using the Subscriber Application to Subscribe to Events

Perform these steps:

1.

When you start the Subscriber application (prompt>is_subscriber), the following prompts
are displayed:

Name? (Enter a name (without spaces).)
Category (or all)? (Enter the category of news you want or "all".)

You may type in any string for the news category; that is, there is no fixed list of news
categories. However, when you use the Reporter application to post an event, make sure to
specify the same string for the news category.

The Subscriber application creates a subscription then prints “Ready” when it is ready to
receive events. After the Subscriber receives one event, it shuts down.

Note: You should always use the Subscriber application to subscribe to events before you
use the Reporter application to post events; otherwise, events will be lost.

Using the CORBA Notification Service 5-11

5-12

Using the Reporter Application to Post Events

Perform these steps:

1.

When you start the Reporter application (prompt> is_reporter), the following prompts are
displayed:

(r) Report news
(e) Exit

Option?
Enter r to report news. The following prompt is displayed:
Category?

Enter the news category. It must match exactly the category you typed on the Subscriber
application (including white space and case).

After you enter the news category, the following prompt is displayed:

Enter story (terminate with '.')

Enter your story. It can span multiple lines. Finish the story by typing a period only (" . ") on
a line, followed by a carriage return.

Subscribers whose category matches the category of this story will receive, and print out
the story. When a subscriber receives a story, the subscriber automatically shuts down.

To send and receive more news stories, start another subscriber, then report another story.
When you are done reporting news, choose the Exit (e) option.

Note: The Subscriber application shuts down after it receives one event. Therefore, always
use the Subscriber application to subscribe to events before you use the Reporter
application to post an event; otherwise, events will be lost.

Shutting Down the System and Cleaning Up the Directory

Perform the following steps:

Note: Make sure the Reporter and Subscriber processes have stopped.

To shut down the system, in any window, type:

prompt>tmshutdown -y

To restore the directory to its original state, in any window, type:

‘Windows

Using the CORBA Notification Service

Building and Running the Introductory Sample Application

prompt>nmake -f makefile.nt clean
UNIX

prompt>make -f makefile.mk clean

Using the CORBA Notification Service 5-13

5-14 Using the CORBA Notification Service

CHAPTERa

Building the Advanced Sample
Application

This topic includes the following sections:
e Overview

e Building and Running the Advanced Sample Application

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Overview

The Advanced sample application simulates a newsroom environment in which a news reporter
posts a story, a wire service posts the story as an event to the Notification Service, and a news
subscriber consumes the story.

One implementation of the Advanced sample application is provided: the C++ that uses the
CosNotification Service APL

The Advanced sample application consists of the reporter, subscriber, and wire service
applications that use the Oracle Tuxedo CORBA Notification Service. The reporter application
implements a client application. This application prompts the user to enter news articles and calls

Using the CORBA Notification Service 6-1

6-2

the WireService server using application specific IDL. The WireService server, in turn, posts the
events. The subscriber implements a joint client/server application. This application acts as client
when it subscribes and unsubscribes for events, and acts as a server when it receives events. To
receive events, the Subscriber implements callback objects which are invoked by the Notification
Service when an event needs to be delivered.

Note: On UNIX systems, you cannot immediately restart the subscriber because the port takes
some time (the actual time depends on the platform) to become available again. If you
restart too soon, you will get a CORBA: : OBJ_ADAPTER exception. If this occurs, just wait
and try again. On Solaris systems, the port can take up to 10 minutes to become available.
To see if the port is still in use, use this command: “Restart -a | grep <the port

number>".

This Advanced sample application demonstrates how to use the Oracle Simple Events API, the
CosNotification Service API, transient and persistent subscriptions, and data filtering.

This Advanced sample provides three executables (see Figure 6-1):

e A WireService application that posts events. It is a Notification Service client and an
Oracle Tuxedo CORBA server. It implements an OMG IDL interface, which the Reporter
application uses.

e A Reporter application that reports news stories by invoking methods on the WireService.
The WireService, in turn, converts the stories into events and posts them using the
Notification Service. The reporter is a pure client.

e A Subscriber application that subscribes to the Notification Service and receives events.
The subscriber is a joint client/server that acts as a client when it subscribes for events, and
acts as a server when it receives events.

Using the CORBA Notification Service

Overview

Figure 6-1 Advanced Sample Application Components

Report_news
Reporter \ Shutdown / WireSevice

ol
(Client) A)ancel A/ '& Server

BEA Tuxedo Domain Push Event

Notification Service

Subsgribe a
Subscriber] space
Unsubscribe
(Joint Client/ —
Server) Push Ev Pending
Events

The event poster, the WireService application, uses the structured event domain_name,
type_name, and filterable_data fields to construct three events: a news event, a subscriber
shutdown event, and a subscriber cancel event.

— News event

For this event, the domain name is a string and is preset by the application as “News”.
The type name is a string and defined by the Reporter application user at run time. It is
set to the category of news (for example, “Sports™). Filterable data contains a
name/value pair whose name is “Story” and whose value is a string that contains the
body of the news story being posted.

— Subscriber Shutdown event

For this event, the domain name is a string and is preset by the application as
“NewsAdmin”. The type name is a string and is preset by the application as
“Shutdown”. The filterable data is not used.

— Subscriber Cancel event

For this event, the domain name is a string and is preset by the application as
“NewsAdmin”. The type name is a string and is preset by the application as “Cancel”.
The filterable data is not used.

Using the CORBA Notification Service 6-3

6-4

The Subscriber application uses the structured event domain_name, type_name, and
filterable_data fields to construct two subscriptions: a news subscription that processes news
stories; and a shutdown subscription that processes Cancel and Shutdown events. At run time, the
Subscriber application establishes these two subscriptions with the Notification Service.

— News subscription

The Subscriber application uses the structured event domain_name, type_name, and
filterable_data fields to create a subscription to the Notification Service. The
subscription defines the domain name as a fixed string with the content of “News”. At
run time, the Subscriber application queries the user for the “News Category” and
“Keyword” and uses the inputs to define the type name and data_filter fields in the
subscription. Obviously, the users of both applications, the reporter and the subscriber,
must collaborate on the “News Category” and “keyword” strings for the subscription to
match an event, otherwise, no News events will be delivered to the subscriber. The
subscription does not do any checking of the filterable_data field, but rather
assumes that the body of the story will be a string, and that the story will be in the first
Named/Value pair in the filterable_data field of a structured event.

— Shutdown subscription

The Subscriber application uses the structured event domain_name and type name,
fields to create a subscription to the Notification Service. The subscription defines the
domain_name as a fixed string with the content of “NewsAdmin”, the type name as a
string of either “Shutdown” or “Cancel”. The filterable data field is an empty string.

The Reporter application is responsible for implementing the user interface for reporting news as
well as for producing Shutdown and Cancel events. Rather than use the Notification Service
directly to post events, it calls methods on the WireService server.

The WireService server uses the Notification Service to post three kinds of events:
e “News” events (used to deliver news to subscribers)
e “Shutdown” events (used to shut down subscribers temporarily)
e “Cancel” events (used to shut down subscribers permanently)

The Notification Service, in turn, delivers the events to the subscribers.

The subscriber uses the Notification Service to create a persistent subscription to news events.
The subscriber implements a persistent callback object (via the NewsConsumer_i servant class),
which is used to receive and process news events. When the subscriber subscribes, it gives the
Notification Service a reference to this callback object. When a matching event occurs, the

Using the CORBA Notification Service

Overview

Notification Service invokes a push_structured_event method on this callback object to push
the event to the subscriber. This method prints out the event.

The subscriber also uses the Notification Service to create a transient subscription to Shutdown
and Cancel events. The subscriber implements another callback object (via the
ShutdownConsumer_i servant class), which is used to receive and process these events.

Whenever the subscriber runs, it prompts the user for a name. The first time this user runs the
subscriber program, the subscriber creates a persistent subscription to News events. To do this,
the subscriber prompts the user for which kind of news stories to subscribe to and which port
number the subscriber should run on. The subscriber runs on this port, subscribes, then writes the
subscription ID, the filter ID (if using the CosNotification API), and the port number to a file (the
name of the file is <user_name>.pstore). The next time the subscriber runs, the subscriber
prompts the user for a name, opens up the file <user_name>.pstore then reads the subscription
ID, filter ID (if using the CosNotification APIT) and port number for this user from the file. This
satisfies the requirement that the subscriber runs on the same port number each time because its
news callback object's object reference is persistent.

The Subscriber creates a transient subscription to receive the Shutdown and Cancel events,
therefore, the transient subscription is created and destroyed every time the subscriber is run and
shut down. This subscription ID is not written out to the file <user_name>.pstore.

When the subscriber receives a Shutdown event, it destroys the shutdown/callback subscription
but leaves the News subscription intact. If News events are posted after the subscriber is shut
down and before it is restarted, then the notification service will either deliver the events when
the subscriber is restarted, or will put the events on the error queue. (You can use the ntsadmin
utility to either delete these events from the error queue or retry delivering them.)

Whether the event is redelivered or is put on the error queue depends on whether the subscriber
restarts quickly enough. This depends on the retry parameters of the queue. See advanced. inc
(in the notification samples' common directory) for the values of the queue retry parameters.

News events have two parts: a category (for example, headline) and a story (a multiple-line text
string). The Subscriber application prompts the user to input a news category. Next the subscriber
subscribes to news events whose category matches this string. The Reporter application prompts
the user for a news category and a story. Next the reporter (by invoking a method on the wire
service) posts a corresponding news event. The event will only be delivered to subscribers who
subscribed to that category of news.

Note: The category is a string. The same string must be used by the Reporter user and the
Subscriber user. There are no fixed categories in this sample. Therefore both users, the

Using the CORBA Notification Service 6-5

Reporter user and the Subscriber user, must type the same string when prompted for a
category (including case and white space).

This sample also uses data filtering. When a user first runs the Subscriber, the user will be
prompted for a “keyword.” Events whose category matches and whose story contains the
keyword will be delivered to the subscriber. For example, if the user enters a keyword of “none,”
data filtering will not be used (thus the user will receive all events for the chosen news category).
If the user enters a keyword “smith”, it translates to “Story %% ’.*smith.* ', This keyword
specifies that the subscription only accepts events that have a “Story” field that contains a string,
and that the field starts with any number of characters, has a literal string “smith”, and then ends
with any number of characters.

To run this sample, you need to run at least one Reporter and at least one Subscriber; however,
you may run multiple Reporters and multiple Subscribers. Events posted by any Reporter will be
delivered to all matching Subscribers (based on the category).

Also, be sure to start any subscribers before posting events. Events posted before the subscribers
are started will not be delivered.

Building and Running the Advanced Sample Application

To build and run the Introductory sample application, you must perform these steps:
1. Verify that the "TUXDIR" environment variable is set to the correct directory path.
2. Unset and “JAVA_HOME"”

3. Copy the files for the Introductory sample application into a work directory.

4. Change the protection attributes on the files to grant write and execute access.

5. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake
file is in your path

6. Set the application environment variables.

7. Build the sample.

8. Boot the system.

9. Run the Subscriber and Reporter applications.
10. Shut down the system.

11. Restore the directory to its original state.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

These steps are described in detail in the following sections.

Verifying the Settings of the Environment Variables

Before you build and run the Advanced sample application, you need to ensure that the TUXDIR
environment variable is set on your system. In most cases, this environment variable is set as part
of the installation procedure. However, you need to check the environment variables to ensure
they reflect the correct information.

Table 6-1 lists the environment variables required to run the Callback sample application.

Table 6-1 Required Environment Variables for the Callback Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the Oracle Tuxedo software. For example:
Windows
TUXDIR=c: \tuxdir
UNIX

TUXDIR=/usr/local/tuxdir

To verify that the information for the environment variables defined during installation is correct,
perform the following steps:

Windows
1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.
The Environment page appears.

5. Check the setting for TUXDIR
UNIX

Using the CORBA Notification Service 6-7

6-8

ksh prompt>printenv TUXDIR
To change the settings, perform the following steps:

Windows

1. On the Environment page in the System Properties window, click the environment variable
you want to change.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.
UNIX

ksh prompt>export TUXDIR=directorypath

Copying the Files for the Advanced Sample Application into
a Work Directory

You need to copy the files for the Advanced sample application into a work directory on your
local machine.

Note: The application directory and the common directory must be copied to the same parent
directory.

The files for the Advanced sample application are located in the following directories:

Windows

For the C++ Advanced sample:
drive: \tuxdir\samples\corba\notification\advanced_cos_cxx
drive: \tuxdir\samples\corba\notification\common

UNIX

For the C++ Advanced sample:
/usr/local/tuxdir/samples/corba/notification/advanced_cos_cxx
/usr/local/tuxdir/samples/corba/notification/common

You use the files listed in Table 6-2 and Table 6-3 to build and run the C++ Advanced sample
application, which is implemented using the CosNotification API.

You use the files listed in Table 6-2 and Table 6-3 to build and run the Advanced sample
application.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

Tahle 6-2 Files Located in the advanced_cos_c++ Notification Directory

File

Description

Readme. txt

Describes the Advanced sample application and provides
instructions for setting up the environment and building
and running the application.

setenv.cmd

Sets the environment for Microsoft Windows systems.

setenv.ksh

Sets the environment for UNIX systems.

makefile.nt

Makefile for Microsoft Windows systems.

makefile.mk

Makefile for UNIX systems.

makefile.inc

Common makefile used by the makefile.nt and the
makefile.mk files.

Reporter.cpp

Code for the reporter.

Subscriber. cpp

Code for the subscriber.

NewsConsumer_i.hand
NewsConsumer . cpp

Callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

ShutdownConsumer_1i.h
and
ShutdownConsumer . cpp

Callback servant classes that subscribers use to receive
Shutdown and Cancel events. (For the Subscriber
application.)

WireServiceServer.cpp

Code for the WireService server.

News.icf

ICF file for the WireService interfaces.

WireService_i.hand
WireService.cpp

Implements the WireService interfaces.

Table 6-3 lists other files that the Advanced sample application uses. With the exception of the
IDL files, the files are located in the Notification common directory.

Using the CORBA Notification Service 6-9

6-10

Table 6-3 Other Files That the Advanced Sample Uses

File

Description

The following files are located in the common directory.

News.idl

IDL definitions for the WireService server.

news_flds

FML field definitions used to perform data filtering
and news events.

common.nt

Makefile symbols for Microsoft Windows systems.

common . mk

Makefile symbols for UNIX systems.

advanced. inc

Makefile for administrative targets.

ex.h

Utilities to print exceptions (C++ only).

client_ex.h

Client utilities to handle exceptions (C++ only).

server_ex.h

Server utilities to handle exceptions.

The following files are located in the \tuxdir\include directory.

CosEventComm. idl

The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl

The OMG IDL code that declares the
CosNotification module.

CosNotifyComm.idl

The OMG IDL code that declares the
CosNotifyComm module.

Tobj_Events.idl

The OMG IDL code that declares the Tobj Events
module.

Tobj_SimpleEvents.idl

The OMG IDL code that declares the
Tobj_SimpleEvents module.

Note: This file is needed only for the application
that was developed using Oracle Simple
Events API.

The following files are needed only for the application that was developed using

CosNotification Service API.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

Tahle 6-3 Other Files That the Advanced Sample Uses (Continued)

File Description

CosEventChannelAdmin.idl The OMG IDL code that declares the
CosEventChannelAdmin module.

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNotifyChannelAdmin.idl The OMG IDL code that declares the
CosNotifyChannel Admin module.

Tobj_Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Advanced Sample Application

During the installation of the Oracle Tuxedo software, the Advanced sample application files are
marked read-only. Before you can edit or build the files in the Advanced sample application, you
need to change the protection attribute of the files you copied into your work directory, as
follows:

Windows
1. Change (cd) to your work directory
2. prompt>attrib -r drive:\workdirectory*.*

UNIX

1. Change (cd) to your work directory
2. prompt>/bin/ksh
3. ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of setenv.ksh
to give execute permission to the file, as follows:

ksh prompt>chmod +x setenv.ksh

Using the CORBA Notification Service 6-11

6-12

Setting Up the Environment

To set up the environment, enter the following command:
Windows
prompt>.\setenv.cmd

UNIX

prompt>. ./setenv.ksh

Building the Advanced Sample Application

You use the make command to run makefiles, which are provided for Microsoft Windows and
UNIX, to build the sample application. For Microsoft Windows, use nmake. For UNIX, use make.

Makefile Summary

The makefile automates the following steps:

1. Checks that the set environment command (setenv.cmd) has been run. If the environment
variables have not been set, the makefile prints an error message to the screen and exits.

2. Includes the common .nt (for Microsoft Windows) or common . mk (for UNIX) command file.
This file defines the makefile symbols used by the samples. These symbols allow the UNIX
and Microsoft Windows makefiles to delegate the build rules to platform-independent
makefiles.

3. Includes the makefile.inc command file. This file builds the is_reporter,
is_subscriber and AS_WIRESERVICE executables, and cleans up the directory of
unnecessary files and directories.

4. Includes the advanced. inc command file. This file executes tmadmin and gadmin
commands to create the transaction log and the queues required by the persistent
subscriptions. It also creates the UBBCONFIG file and executes the tmloadcf -y ubb
command to create the TUXCONFIG file.

Executing the Makefile

Before executing the makefile, you need to check the following:

e Ensure that you have the appropriate administrative privileges to build and run
applications.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

e On Microsoft Windows, make sure nmake is in the path of your machine.

e On UNIX, make sure make is in the path of your machine.

To build the Advanced sample application, enter the make command as follows:

Windows

nmake -f makefile.nt

UNIX

make -f makefile.mk

Starting the Advanced Sample Application

To start the Advanced sample application, enter the following commands:

1. To boot the Oracle Tuxedo system:

prompt>tmboot -y

This command starts the following server processes:

TMSUSREVT

An Oracle Tuxedo system-provided, EventBroker server that is used by the Notification
Service.

TMNTS

An Oracle Tuxedo CORBA Notification Service server that processes requests for
subscriptions and event postings.

TMNTSFWD_T

An Oracle Tuxedo CORBA Notification Service server that forwards events to
subscribers that have transient subscriptions. This server is required for transient
subscriptions.

TMNTSFWD_P

An Oracle Tuxedo CORBA Notification Service server that forwards persistent events
to subscribers that have persistent subscriptions. This server is required for persistent
subscriptions.

TMQUEUE

The message queue manager is an Oracle Tuxedo system-provided server that enqueues
and dequeues messages on behalf of programs calling tpenqueue(3) and
tpdequeue(3), respectively. This server is required for persistent subscriptions.

Using the CORBA Notification Service 6-13

6-14

- TMQFORWARD

The message forwarding server is an Oracle Tuxedo system-provided server that
forwards messages that have been stored using tpenqueue(3c) for later processing.
This server is required for persistent subscriptions.

— WIRE_SERVICE_SERVER

A server, specifically built for the Advanced sample application, that receives events
from the Reporter application and posts them to the Notification Service. This receive
and server posts three types of events: News, Shutdown, and Cancel.

- ISL
The IIOP Listener/Handler process.
2. To start the Subscriber application:
For C++: prompt>is_subscriber

To start another Subscriber, open another window, change (cd) to your work directory, set
the environment variables (by running setenv.cmd or setenv.ksh), and enter the start
command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

For C++: prompt>is_reporter

To start another Reporter, open another window, change (cd) to your work directory, set
the environment variables (by running setenv.cmd or setenv.ksh), and enter the start
command that is appropriate for your platform.

Using the Advanced Sample Application

To use the Advanced sample application, you must use the Subscriber application to subscribe to
an event and the Reporter application to post to an event. Be sure to subscribe before you post
each event; otherwise, events will be lost.

Using the Subscriber Application to Subscribe to Events

Perform the following steps:

1. When you start the Subscriber application (prompt>is_subscriber) for the first time, the
following prompts are displayed:

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

Name? (Enter a name (without spaces).)

pPort (e.g. 2463) (Enter the port number that this subscriber should run on.)

Category (or all) (Enter the category of news you want or "all.")

Keyword (or none) (Enter a keyword that you want all delivered stories to
contain.)

Note: If the Subscriber application is shut down by a Shutdown event from the Reporter
application (Shutdown events do not cancel persistent subscriptions), on subsequent
startups of the Subscriber application, you will only be prompted for your name. The
Subscriber application retrieves the remaining information from the
<user_name>.pstore file. This guarantees that the same port number is used, which is
required for persistent subscriptions.

If the Subscriber application is shut down by a Cancel event from the Reporter
application (Cancel events cancel all subscriptions including persistent subscriptions), on
subsequent startups of the Subscriber application, you will be prompted for your name,
port number, category, and keyword.

2. You may type in any string for the news category, that is, there is no fixed list of news
categories. However, when you use the Reporter application to post an event, make sure you
specify the same string for the news category.

Similarly, you may type in a string for a keyword. There is no fixed list of keywords either
so when you run the reporter and enter the story, make sure that the story contains the same
string; otherwise, the story will not be delivered to your subscription.

The first time the Subscriber application is run for your username, category (or all), and
keyword (optional), it creates a news subscription. On subsequent runs, the subscriber
reuses this subscription. In all cases, the Subscriber application prints “Ready” when it is
ready to receive events.

The Subscriber application creates a subscription then prints “Ready” when it is ready to
receive events.

Note: You should always use the Subscriber application to subscribe to events before you
use the Reporter application to post events; otherwise, events will be lost. This is
because even though the Subscriber application creates a persistent subscription to
News events, that subscription is not created until the Subscriber application is
started.

Note: You can start multiple subscribers by opening another window and repeating this
procedure.

Using the CORBA Notification Service 6-15

6-16

Using the Reporter Application to Post Events

Perform the following steps:

1.

When you start the Reporter application (prompt> is_reporter), the following prompt is
displayed:

(r) Report news

(s) Shutdown subscribers
(c) Cancel Subscribers
(e) Exit

Option?

Enter r to report news. The following prompt is displayed:
Category?

Enter the news category. It must match exactly the category you typed on the Subscriber
application (including white space and case).

After you enter the news category, the following prompt is displayed:

Enter story (terminate with '.')

Enter your story. It can span multiple lines. Finish the story by typing a period only (".") on a
line, followed by a carriage return. If you typed in a keyword when subscribing, make sure
the story contains this string (including white space and case).

Subscribers whose category and keyword (if specified) matches the category and a
keyword in this story will receive and print out the story.

9

If you choose the “s” option, a Shutdown event will be posted and received by all the
subscribers and the subscribers will shut down. While the subscribers are shut down, you may
post another news story (by using the “r” option again). The Notification Service will place
the news story on the pending queue but the News event subscription is persistent and,
therefore, is still in effect. After you restart the subscribers, they will receive this second news
story (unless a restart delay caused the event to be moved to the error queue). This is because

the subscriber created a persistent subscription for news stories.

Note: You can use the ntsadmin retryerrevents command to move events from the
error queue back to the pending queue.

9

If you choose the “c” option, a Cancel event will be posted and received by all the subscribers.
The subscribers will cancel their news subscriptions and shut down. If you try to restart the
subscribers, then you will be prompted again for port, category, and keyword because you are
creating a new subscription.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

7. When you are finished reporting news, choose the Exit (e) option.

Note: You can start multiple reporters by opening another window and repeating this
procedure. Any news story reported by any reporter will be delivered to all matching
subscribers. Make sure you have exited all reporters before shutting down the system.

Shutting Down the System and Cleaning Up the Directory
Make sure the Reporter and Subscriber processes have stopped and perform the following steps:
1. To shut down the system, in any window, type:

prompt>tmshutdown -y
2. To restore the directory to its original state, in any window, type:

Windows

prompt>nmake -f makefile.nt clean

UNIX

prompt>make -f makefile.mk clean

Using the CORBA Notification Service 6-17

6-18 Using the CORBA Notification Service

CORBA Notification Service
Administration

This topic includes the following sections:
e Introduction

e Configuring the Notification Service. This section includes the following topics:

Configuring Data Filters

Setting the Host and Port

Creating a Transaction Log

Creating Event Queues

Creating the UBBCONFIG File and the TUXCONFIG File
e Managing the Notification Service
e Notification Service Administration Utility and Commands

e Notification Servers

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using the CORBA Notification Service 1-1

Introduction

The Oracle Tuxedo CORBA Notification Service is layered on the Oracle Tuxedo EventBroker
and Queuing systems. This means that administering the CORBA Notification Service requires
that you also administer these other Oracle Tuxedo systems. You use the Oracle Tuxedo utilities
tmadmin, amadmin, and ntsadmin to administer the Notification Service.

Notification Service administration is comprised of two related tasks: configuration and
management. Although these areas are discussed separately, they are in fact, interrelated. Thus,
to fully understand configuration, you must also understand management and vice versa.

Configuring the Notification Service

Before you can run event Notification Service applications, the following configuration
requirements must be satisfied:

o [f data filtering or Oracle Tuxedo ATMI interoperability is to be used, create Oracle
Tuxedo ATMI FML field definition files that describe the fields on which to filter or to
interoperate.

o [f persistent subscriptions are to be used:

— Ifusing a a joint client/server, set the host and port number for the callback object
references.

— Create a transaction log.

— Create queues to hold events.

e Create a system configuration file (UBBCONFIG) and a TUXCONFIG file.

Configuring Data Filters

If data filtering or Oracle Tuxedo ATMI interoperability is used in subscriber applications, you
must perform the following steps to use data filtering in subscriptions:

1. Create the Oracle Tuxedo ATMI FML field table definition file that describes the fields on
which to filter (see Listing 7-2).

2. In the uBBCONFIG file, specify where the FML field table definition file is located so that
when the application is started, the location of field definition files is passed to the
Notification Service servers (see Listing 7-3).

1-2 Using the CORBA Notification Service

Configuring Data Filters

In Listing 7-1, the code that is shown in bold text shows how the data filtering is implemented in
an event poster application. Only subscriptions that contain the name/value pair billing and
patient_account will receive the event.

Listing 7-1 Sample Data Filtering Using the Oracle Simple Events APl (C++)

CosNotification: :StructuredEvent notif;
notif.header.fixed_header.event_type.domain_name =

CORBA: :string_dup ("HEALTHCARE") ;
notif.header.fixed _header.event_type.type_name =

CORBA: :string_dup ("HMO") ;
// Specify an additional filter, based upon name and value
// for this event.
notif.filterable_data.length(2);
notif.filterable_data[0] .name = CORBA::string_dup ("billing");
notif.filterable_data[0].value <<= CORBA: :Long(1999);
notif.filterable_datal[l] .name =

CORBA: :string_dup ("patient_account") ;

notif.filterable_datal[l].value <<= CORBA::Long (2345) ;
// Push the structured event onto the channel.

testChannel->push_structured_event (notif) ;

Listing 7-2 shows the FML field table definitions file needed to use data filtering.

Listing 7-2 Data Filtering FML Field Tahle File

*base 2000

#Field Name Field # Field Type Flags Comments
__
billing 1 long - -
patient_account 2 long - -

Using the CORBA Notification Service 1-3

7-4

Listing 7-3 shows the content of environment variable file (envfile). The envfile contains the
location of the FML field definitions file.

Note: You can name the environment variable file whatever you want, but the name used must
match the name specified for the ENVFILE configuration option n, the SERVERS section
of the UBBCONFIG file.

Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows)

FLDTBLDIR32=D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_cxx\common
FIELDTBLS32=news_flds

Listing 7-4 shows, in bold text, how the location of the FML field table file is specified in the
UBBCONFIG file for the Advanced samples.

Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

*SERVERS
TMSYSEVT
SRVGRP = NTS_GRP
SRVID 1
TMUSREVT
SRVGRP = NTS_GRP>>%@
SRVID = 2
ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED_ Simple_ CXX\envfile"
TMNTS
SRVGRP = NTS_GRP
SRVID = 3
ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED Simple_ CXX\envfile"
CLOPT = "-A -- -s TMNTSQS"
TMNTSFWD_T
SRVGRP = NTS_GRP
SRVID = 4
ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED_ Simple_CXX\envfile"
TMNTSFWD_P
SRVGRP = NTS_GRP

Using the CORBA Notification Service

Setting the Host and Port

SRVID = 5
ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED Simple_ CXX\envfile"

Setting the Host and Port

The object references host and port number requirements for the callback object are as follows:

e For transient callback objects, any port is sufficient and can be obtained dynamically by the
ORB.

e For persistent callback objects, the ORB must be configured to accept requests for the
callback object on the same port on which the object reference for the callback object was
created.

You specify the port number from the user range of port numbers, rather than from the dynamic
range. Assigning port numbers from the user range prevents joint client/server applications from
using conflicting ports.

The method you use to set the host and port depends on the programming language you are using.

e Setting Host and Port on C++ Subscriber Applications

For C++ subscriber applications, to specify a particular port for the joint client/server
application to use, include the following on the command line that starts the process for the
joint client/server application:

-ORBport nnnn -IRBid BEA_IIOP

where nnnn is the number of the port to be used by the ORB when creating invocations
and listening for invocations on the callback object in the joint client/server application.

Use this command when you want the object reference for the callback object in a joint
client/server application to be persistent and when you want to stop and restart the joint
client/server application. If this command is not used, the ORB uses a random port. If a
random port is used when the joint client/server application is stopped and then restarted,
invocations to persistent callback objects in the joint client/server application will fail.

The port number is part of the input to the argv argument of the CORBA: :orb_init
member function. When the argv argument is passed, the ORB reads that information,
establishing the port for any object references created in that process.

Using the CORBA Notification Service 1-5

Creating a Transaction Log

When you use persistent subscriptions, you must configure and boot the Oracle Tuxedo queuing
system. The queuing system requires a transaction log. Listing 7-5 shows how to use the tmadmin
utility to create a transaction log.

Listing 7-5 Creating a Transaction Log (createtlog) (Microsoft Windows)

>tmadmin

>crdl -b 100 -z D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_CXX\TLOG
>crlog -m SITE1L

>quit

>

Creating Event Queues

When you use persistent events, you must configure and boot the Oracle Tuxedo queuing system.
Two event queues must be created:

® TMNTSFWD_P

This is the event forwarding queue for persistent subscriptions. Events go to this queue
first and then are forwarded to matching persistent subscriptions. If an event cannot be
delivered on the first attempt, it is held in this queue and repeated attempts are made to
deliver it. If the settable retry limit is reached before the event can be successfully
delivered, the event is moved to the error queue.

This queue requires the following configuration parameters:
— Queuing order (for example, first in, first out).
— How to handle out-of-order enqueuing.
— Retry limit (how many retries before moving the event to the error queue).
— Retry time interval.
— How full the queue can get before administrative intervention is required.

— How low the queue can get after getting full before administrative intervention is
required.

1-6 Using the CORBA Notification Service

Creating Event Queues

— Definition of the administrative intervention command.
® TMNTSFWD_E

This is the error queue. This queue receives events from the TMNTSFWD_P queue that
cannot be delivered to subscriptions. This queue requires the same configuration
parameters as the TMNTSFWD_P forwarding queue, however, the retry limit and retry time
interval parameters are irrelevant because this is the error queue and errors are only
removed by administrative intervention.

To configure these queues, perform the following steps:
1. Create a device on disk for the queue space.
2. Configure a queue space.

3. Create the queues.

These steps are described in the following sections.

Determining Space Parameters for Transient and
Persistent Subscriptions

To tune your system for maximum performance, you should determine the optimal values for the
following parameters:

e The number of transient forwarding servers (TMNTSFWD_T) and persistent forwarding
servers (TMNTSFWD_P).

o [PC queue space (this is used for transient subscriptions).

e Size of /Q queues (this is used for persistent subscriptions).

IPC Queue Space for Transient Subscriptions

Proceed as follows to determine space parameters for transient subscriptions:

1. Determine how many events may be in the pipeline for transient subscriptions; that is, how
many events may be in the process of being delivered at any given time. This equals the
number of events multiplied by the number of subscribers receiving them.

2. Determine the size of your events. For purposes of this discussion, we will assume that they
are relatively small—about 300 bytes or less.

Using the CORBA Notification Service 1-1

1-8

3.

Determine how many transient forwarding servers you would like to start, most likely one or
two—one per processor on your machine is a good number to start with.

Determine how much IPC queue space you will need to hold your transient events. The
amount of space you need is 1000 bytes multiplied by the number of events you allow in the
pipeline. Divide this number by the number IPC queues your transient forwarders have. If you
use MSSQ sets, then your transient forwarders share one IPC queue; if you do not, then each
forwarder has its own IPC queue.

For example, if you estimate that there will be 10 events delivered to 50 subscribers in the
pipeline, and you start 2 transient forwarders and they do not share an IPC queue (that is,
you do not use MSSQ sets), the amount of IPC queue space you need is:

10 events * 50 subscribers * 1000 bytes / 2 forwarders = 250,000 bytes

Configure the IPC queue size to that number by changing the entries in the system registry.
How you do this is platform-specific.

— For Microsoft Windows systems, see “Setting IPC Parameters on Microsoft Windows”
on page -12.

— For UNIX systems, refer to the system reference manual supplied with the system.

/Q Queue Size Parameter Persistent Subscriptions

Proceed as follows to determine space parameters for persistent subscriptions:

1.

Determine how many events may be in the pipeline for persistent subscriptions; that is, how
many events may be in the process of being delivered at any given time. This equals the
number of events multiplied by the number of subscribers receiving them.

Determine the size of your events. For purposes of this discussion, we will assume that they
are relatively small—about 300 bytes or less.

Determine the size your /Q queues need to be to hold your persistent events (both for your
pending queue and error queue). Proceed as follows to do this:

a. Determine the size of a disk page. This is platform-specific. For example, on Microsoft
Windows, a disk page is 500 bytes. On UNIX machines, a disk page could range from 500
to 4000 bytes in size.

b. Determine how many disk pages you will need to store one event rounding up. For
example, if you need 1000 bytes per event and disk pages are 500 bytes, you will need 2
disk pages per event.

Using the CORBA Notification Service

Creating Event Queues

c. Determine how many disk pages you will need for your events. For example, if you want
to allow 500 pending events and 200 error events, and an event takes up 2 disk pages, you

will need 1400 disk pages.

d. Determine how many disk pages you will need for your gspace. This is the number of disk
pages you need for your events plus some pages for gspace overhead. For example, if you
need 1400 disk pages for events, then your gspace needs approximately 1450 disk pages

(50 pages of gspace overhead).

e. Determine how many pages you will need for your gspace device. This is the number of
pages you need for the gspace plus some pages for device overhead. For example, if you
need 1450 disk pages for your gspace, then your device needs approximately 1500 pages

(50 pages of device overhead).

4. When you use gmadmin to create the qspace for your persistent events, the first phase is to
create a device. Use the size computed above in step 3e above (approximately 1500 pages).
Next, specify the size of the gspace. Use the size computed in step 3d (approximately 1450
pages). Next, specify how many events can be in the pending queue and how many events can
be in the error queue. The following sections explain how to create and configure gspaces.

Creating a Device on Disk for the Queue Space

You use the gmadmin command utility to create a device on disk for the queue space.

Before you create a queue space, you must create an entry for it in the universal device list (UDL).

Listing 7-6 shows an example of the commands.

Listing 7-6 Creating a Device on Disk for Queue Space (UNIX)

prompt>gmadmin d:\smith\reg\QUE

amadmin - Copyright (c) 1996-1999 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.

Distributed under license by BEA Systems, Inc.

Oracle Tuxedo is a registered trademark.
QMCONFIG=d:\smith\reg\QUE

> crdl d:\smith\reg\QUE 0 1100
Created device d:\smith\reg\QUE, offset 0, size 1100
on d:\smith\reg\QUE

Using the CORBA Notification Service

1-9

1-10

For more information about creating a device on disk, see Using the ATMI /Q Component.

Configuring a Queue Space

You use the gmdamin gspacecreate command to configure queue spaces. A queue space makes
use of IPC resources; therefore, when you define a queue space you are allocating a shared
memory segment and a semaphore. The easiest way to use the gspacecreate command is to let
it prompt you. Listing 7-7 shows an example queue space that is configured for the Advanced
sample application.

Listing 7-7 Creating Queue Space

> gspacecreate

Queue space name: TMNTSQS

IPC Key for queue space: 52359

Size of queue space in disk pages: 1050

Number of queues in queue space: 2

Number of concurrent transactions in queue space: 10
Number of concurrent processes in queue space: 10
Number of messages in queue space: 500

Error queue name: TMNTSFWD_E

Initialize extents (y, n [default=n]): ¥y
Blocking factor [default=16]:

In the queue space created in Listing 7-7, take note of the following size settings:

Number of messages in queue space:500
Setting this parameter to 500 allows room for a total of 500 events in the pending and error
queues.

Size of queue space in disk pages:1050
On Microsoft Windows, each disk page is 500 bytes and each event needs 1000 bytes. In
addition, you must allow 2 disk pages per event. Since you estimate that there will be 500
events in the pending and error queues, then you must allow 1000 disk pages to store them
(500 * 2). Also, you must allow 50 disk pages for gspace overhead, so the gspace size is
set to 1050 disk pages. Finally, the device needs 50 disk pages of overhead too, so the
device size is 1100 disk pages, which you set using the crdl command (see Listing 7-6).

Using the CORBA Notification Service

Creating Event Queues

For more information about creating queue space, see Using the ATMI /Q Component.

Creating the Queues

You must use the gmadmin gcreate command to create each queue that you intend to use.
Before you can create a queue, you first have to open the queue space with the gmadmin gopen
command. If you do not provide a queue space name, gopen will prompt for it.

Listing 7-8 shows an example of creating the TMNTSFWD_P and TMNTSFWD_E queues that are
created for the Advanced sample application.

Listing 7-8 Creating Queues

> gopen

Queue space name: TMNTSQS

> gcreate

Queue name: TMNTSFWD_P

Queue order (priority, time, fifo, lifo): fifo

Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 5

Retry delay in seconds [default=0]: 3

High limit for queue capacity warning (b for bytes used, B for

Q

blocks used, % for percent used, m for messages [default=100%]):
80%

Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command:

No default queue capacity command

Queue 'TMNTSFWD_P' created

> gcreate

Queue name: TMNTSFWD_E

Queue order (priority, time, fifo, lifo): fifo

Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 2

Retry delay in seconds [default=0]: 30

High limit for queue capacity warning (b for bytes used, B for

Q

blocks used, % for percent used, m for messages [default=100%]):

80%

Using the CORBA Notification Service 1-11

1-12

Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command:

No default queue capacity command

Q_CAT:1438: INFO: Create queue - error queue TMNTSFWD_E created
Queue 'TMNTSFWD_E' created

> g

For more information about creating queues, see Using the ATMI /Q Component.

Setting IPC Parameters on Microsoft Windows

The Oracle Tuxedo software for Microsoft Windows systems provides you with Oracle Tuxedo
IPC Helper (TUXIPC), an interprocess communication subsystem, that is installed with the
product. On most machines, IPC Helper runs as installed; however, you can use the [PC
Resources page of the control panel applet to tune the TUXIPC subsystem and maximize
performance.

To display the IPC Resources page of the IPC Control Panel, perform these steps:

1. Click Start—>Settings—>Control Panel. The Microsoft Windows Control Panel is displayed
(Figure 7-1).

Using the CORBA Notification Service

Creating Event Queues

Figure 7-1 Microsoft Windows Control Panel
B3 Control Panel M=l E3

File Edit View Help
............................... & 8

iAccessibility: Add/Remove BEf Console Date/Time Devices

Options Programs Administration

Dizplay Find Fast Faontz Internet K.evboard Mail and Fax

4
-

g

5]
B
B
i

0
EE:

MGA Dizplay todems Multimedia M etwork,

Froperties

4

!
¢
0

PC Card Parts Regional SCSI Adapters Semer
[PCRCIA) Settingz
“» = &
Semvices Sounds System Tape Devices Telephony UPS
|20 object(z] A

2. Click the Oracle Administration icon. The Oracle Administration Control Panel is displayed
(Figure 7-2).

3. Click on the IPC Resources tab. The IPC Resources Control Panel portion of the Oracle
Administration Control Panel is displayed (Figure 7-2).

Using the CORBA Notification Service 1-13

Figure 7-2 Oracle Tuxedo Software for Microsoft Windows IPC Resources Control Panel

BEA Administration - \WPCWIZ1

tachines | Environmentl Logging | Listerner IPC Resaurces |
— Current Resource: Default —————— Mairum Allowed Message Size: |BS536
|PC Resournces K Mawirurn Murmber OF Message Headers: 128

M axirmumm kMessage Queue Size: |FR53E

Masimum Hurmber of Mezzage Queues: |25

=

RUALEL

Size of Meszage Segment:
Murmber Of Meszage Segments: |32767

b aximum Mumber of Proceszes Using IPC: |266

M axirmurn Mumber OF Semaphares: |1024

¥ Use Detault IPC Settings b axirnum Mumber OF Semaphore Sets: 1024

tlamirumn Murmmber Of Semaphore Undao Structures: 1024

(5]
=

19991

F &xirnunn Murmber OF Procezses Per Shared Segment; |50

MHurmber OF Shared Memaoy Segments: (50

0k I Cancel | Ll

To define IPC settings for your Oracle Tuxedo machine, proceed as follows:

1. Inthe Current Resource Default box, click the Use Default IPC Settings check box to clear it.
2. Click the insert box.

3. Enter the name of your machine and press Enter.

4. Click the fields next to the IPC resources you want to set, enter the desired values, and click
Apply. Clicking Apply saves the changes in the Registry Table. You must then stop and then
restart the tuxipc. exe service for the changes to take effect.

5. Click OK to close the Control Panel.

You can view the performance of a running Oracle Tuxedo server application on the Performance
Monitor.

1-14 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

To start the Performance Monitor, click
Start—>Programs—>Administration Tools—>Performance Monitor on the taskbar. The
Performance Monitor screen is displayed (Figure 7-3).

Figure 7-3 Oracle Tuxedo Software for Microsoft Windows Performance Monitor

iz Performance Monitor M= E
File Edit Wiew Options Help

100
90
20
70
B
5
1
30
20
10
0
Last| 0000 Awerage 0.000 Min 0.000 Max 0000 Graph Tirme 100000

Color Scale Counter Inztance P

Object Computer

|Data: Current Activity

Creating the UBBCONFIG File and the TUXCONFIG File

For event poster and subscriber applications to communicate with a CORBA object in the Oracle
Tuxedo domain, in this case the Notification Service, a UBBCONFIG file is required for the
Notification Service. The UBBCONFIG file must be written as part of the development of the
Notification Service application; otherwise, you will not be able to build and run the application.

After you write the UBBCONFIG file, you use the tmloadcf command to produce the TUXCONFIG
file, which is used at run time. Therefore, the TuxcoNFIG file must exist before the Notification
Service application is started. The TUxCONFIG file is simply a binary version of the UBBCONFIG
file. The following is an example of how to use the tmloadcf command:

tmloadcf -y ubb

Before writing the UBBCONFIG, you should list the configuration requirements of your
Notification Service application. To list requirements, determine the required servers and
processes to support the subscription. Table 7-1 shows the configuration requirements for the
different types of subscriptions.

Using the CORBA Notification Service 1-15

Table 7-1 Configuration Requirements for Transient and Persistent Subscriptions

To support these types of subscriptions Your uBeconrza file must include the following servers, and
processes

Transient subscription TMUSREVT, TMNTS, and TMNTSFWD_T

Persistent subscription TMUSREVT, TMNTS, TMNTSFWD_P, TMQUEUE,
TMQFORWARD

1-16

If you are using event subscriber applications that use IIOP, you need to configure the IIOP
Listener (ISL) command in the UBBCONFIG file with parameters that enable outbound IIOP to
invoke callback objects that are not connected to an IIOP Handler (ISH). The -0 option
(uppercase letter O) of the ISL command enables outbound IIOP. Additional parameters allow
system administrators to obtain the optimum configuration for their Notification Service
application. For more information about the ISL command, see Setting Up an Oracle Tuxedo
Application.

When developing a Notification Service application, the SERVERS section of the UBBCONFIG file
may include the following types of servers:

TMUSREVT

An Oracle Tuxedo system-provided server that processes event report message buffers
from tppost (3), and acts as an EventBroker to filter and distribute them. (Required)

TMNTS

An Oracle Tuxedo Notification Service server that processes requests for subscriptions and
event postings. (Required)

TMNTSFWD_T

An Oracle Tuxedo Notification Service server that forwards transient events to subscribers
of transient subscriptions. (Required for transient subscriptions)

TMNTSFWD_P

An Oracle Tuxedo Notification Service server that forwards persistent events to subscribers
that have persistent subscriptions. Events that cannot be delivered to subscribers are sent to
the error queue. (Required for persistent subscriptions)

TMQUEUE

Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

An Oracle Tuxedo server that manages event queues. (Required for persistent
subscriptions)

® TMQFORWARD

An Oracle Tuxedo server that forwards events to the Notification Service TMNTSFWD_P
server so that they can be forwarded to persistent subscribers. (Required for persistent
subscriptions)

® ISL

The Oracle Tuxedo IIOP Server Listener/Handler process. (Required if the event poster or
subscriber is remote, that is outside the local domain)

The uBBCONFIG file shown in Listing 7-9 is from the Notification Service Introductory sample
application. The Introductory sample application supports transient subscriptions only; it does
not support persistent subscriptions or data filtering.

Listing 7-9 The Introductory Sample UBBCONFIG File

This UBBCONFIG file supports transient subscriptions only; it does
not persistent subscriptions or data filtering.
*RESOURCES

IPCKEY 52359

DOMAINID events_intro_simple_cxx

MASTER SITE1l

MODEL SHM
B
*MACHINES

"BEANIE"

LMID = SITEl

APPDIR = "D:\tuxdir\EVENTS~1\INTROD~2"

TUXCONFIG = "D:\tuxdir\EVENTS~1\INTROD~2\tuxconfig"

TUXDIR = "d:\tuxdir"

MAXWSCLIENTS = 10

ULOGPFX = "D:\tuxdir\EVENTS~1\INTROD~2\ULOG"
o

Since we are using transient events, the group need not be
transactional.
*GROUPS

SYS_GRP

Using the CORBA Notification Service 1-11

LMID = SITEl

*SERVERS

DEFAULT:

CLOPT = "-A"

TMSYSEVT

SRVGRP = SYS_GRP

SRVID = 1
TMUSREVT

SRVGRP = SYS_GRP

SRVID = 2
TMFFNAME

SRVGRP = SYS_GRP

SRVID 3

CLOPT = "-A -- -N -M"
TMFFNAME

SRVGRP = SYS_GRP

SRVID = 4

CLOPT = "-A -- -N"
TMFFNAME

SRVGRP = SYS_GRP

SRVID = 5

CLOPT = "-A -- -F"

Start the notification service server.
#
TMNTS
SRVGRP = SYS_GRP
SRVID = 6
Start the Notification Service transient event forwarder.
#
TMNTSFWD_T
SRVGRP = SYS_GRP

SRVID = 7
Start the ISL with -O since we are using callbacks to clients.
ISL

SRVGRP = SYS_GRP

SRVID = 8

1-18 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

CLOPT = "-A -- -0 -n //BEANIE:2359"

*SERVICES

The code example shown in Listing 7-10 is from the Notification Service Advanced sample
application. The Advanced sample application supports transient and persistent subscriptions and
data filtering.

Listing 7-10 The Advanced Sample UBBCONFIG File

This UBBCONFIG file supports transient and persistent
subscriptions and data filtering.
*RESOURCES

IPCKEY 52363

DOMAINID events_advanced_simple_cxx

MASTER SITE1l

MODEL SHM
oo
*MACHINES

"BEANIE"

LMID = SITEl

APPDIR = "D:\tuxdir\EVENTS~1\ADVANC~1"

TUXCONFIG = "D:\tuxdir\EVENTS~1\ADVANC~1\tuxconfig"

TUXDIR = "d:\tuxdir"

MAXWSCLIENTS = 10

ULOGPFX = "D:\tuxdir\EVENTS~1\ADVANC~1\ULOG"

Since we are using persistent events, we need a transaction log.

TLOGDEVICE = "D:\tuxdir\EVENTS~1\ADVANC~I1\TLOG"
TLOGSIZE = 10

*GROUPS
SYS_GRP
LMID = SITEl
GRPNO = 1

Using the CORBA Notification Service 1-19

1-20

Create a null transactional group for the notification service

servers.

#

NTS_GRP
LMID = SITEl
GRPNO = 2

TMSNAME = TMS
TMSCOUNT = 2

Since we are using persistent events,

create a queue transactional group for the queue servers.

#

QUE_GRP
LMID = SITEL
GRPNO = 3
TMSNAME = TMS_QM
TMSCOUNT = 2

#

Make the queue group manage the QUE space we create.

The name of the queue space specified here as TMNTSQS must match

name of the queue space you created.

#
OPENINFO = "TUXEDO/QM:D:\tuxdir\EVENTS~1\ADVANC~1\QUE; TMNTSQS"

*SERVERS
DEFAULT:
CLOPT = "-A"
#
Start the queue server.
The name of the queue space specified in the -s option of
CLOPT must match the name of the queue space you created.
#
TMQUEUE
SRVGRP = QUE_GRP
SRVID = 1
CLOPT = "-s TMNTSQS:TMQUEUE -- "

Start the queue forwarder,

have it forward events to the

notification service persistent forwarder.

Using the CORBA Notification Service

we need a persistent gqueue

the

Creating the UBBCONFIG File and the TUXCONFIG File

#
TMQFORWARD
SRVGRP = QUE_GRP
SRVID = 2
CLOPT = "-- -1 2 -g TMNTSFWD_P"
TMSYSEVT
SRVGRP = NTS_GRP
SRVID = 1
#
Start the user EventBroker. Pass in the environment file
so that the user EventBroker can find the "Story" fml field
definition. This allows the user EventBroker to perform
data filtering.
#
TMUSREVT
SRVGRP = NTS_GRP
SRVID = 2
ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
TMFFNAME
SRVGRP = SYS_GRP
SRVID = 1
CLOPT = "-A -- -N -M"
TMFFNAME
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A -- -N"
TMFFNAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -F"
#
Start the notification service server. Pass in the environment
file so that the notification server can perform data filtering.
The -s option must be specified since we are using
persistent events. Note that the -s option specifies the name
of the queue space as TMNTSQS. This name must match the name
of the gueue space you created.
#

Using the CORBA Notification Service 1-21

1-22

TMNTS
SRVGRP = NTS_GRP

SRVID = 3
ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~Il\envfile"
CLOPT = "-A -- -s TMNTSQS"

Start the notification service transient event forwarder.

#
#
Pass in the environment file so that the server can perform
data filtering.

#

TMNTSFWD_T

SRVGRP = NTS_GRP

SRVID = 4

ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
#
Start the notification service persistent event forwarder.
Pass in the environment file so that the server can perform
data filtering.
#

TMNTSFWD_P
SRVGRP = NTS_GRP
SRVID = 5
ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
#
Start the ISL with -O since we're using callbacks to clients.
#

ISL

SRVGRP = SYS_GRP

SRVID = 4

CLOPT = "-A -- -O -n //BEANIE:2363"
o
*SERVICES

Using the CORBA Notification Service

Managing the Notification Service

Managing the Notification Service

After you have deployed the Notification Service application, you may need to perform the
following administrative tasks on an on-going basis:

1. Synchronize databases.

2. Purge the system of dead subscriptions.
3. Monitor queue utilization.

4. Purge the queues of unwanted events.

5. Move or remove events from the error queue.

Synchronizing Databases

If you configure more than one EventBroker, then your Notification Service subscription
databases will have to be synchronized. Because the synchronization process requires time—time
that can impact event delivery—and increases network traffic, you should not configure more
than one EventBroker unless the event traffic warrants it.

When you configure more than one EventBroker, you can configure time required to synchronize
the databases using the -p option on the TMUSREVT server. For more information on how to
set this option, see TMUSREVT (5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Note: The time required to synchronize the databases affects the elapsed time from when a
subscriber subscribes and when it receives events. It also affects the elapsed time from
when a subscriber unsubscribes and when it stops receiving events.

Purging the System of Dead Subscriptions

A subscription dies in one of two ways: (1) the subscriber creates a persistent subscription, shuts
down without unsubscribing, and then does not restart and reconnect to the Notification Service,
or, (2) the subscriber creates a subscription that never matches any event. While it is allowable
for a subscriber to create a persistent subscription and then shut down without unsubscribing, it
is an error if the subscriber does not periodically reconnect for the purpose of picking up
accumulated events. Because the Notification Service periodically attempts to deliver events that
match persistent subscriptions, such events accumulate while the subscriber is disconnected,
consume queue space, and waste system resources.

Using the CORBA Notification Service 1-23

1-24

Subscriptions that will never match any events should not be created because they serve no useful
purpose. Also, subscriptions consume system resources because each posted event must be
compared against each subscription.

Using the ntsadmin commands listed in Table 7-2, you can view all subscriptions and see how
many events are currently in the pending queue and in the error queue for each subscription. You
can also remove subscriptions using a ntsadmin command or move events from the error queue
to the pending queue. For a description of the ntsadmin utility, see “ntsadmin” on page -26.

Table 7-2 ntsadmin Commands Summary

Command Usage

subscriptions Lists subscriptions in the subscription database.
rmsubscriptions Removes subscriptions for the subscription database.
pendevents Lists information about events in the pending events

queue. (For persistent subscriptions only.)

rmpendevents Removes events in the pending events queue. (For
persistent subscriptions only.)

errevents Lists events in the event error queue. (For persistent
subscriptions only.)

rmerrevents Removes events in the events error queue. (For
persistent subscriptions only.)

Although there is no way of automatically detecting a dead subscription, the ntsadmin utility is
helpful in determining when and if a subscription is dead.

Monitoring Queue Utilization

Queues are created with a fixed amount of space allocated to them. This space is consumed as
events accumulate in the queues. If the queues become full, subsequent attempts to enqueue
events will fail.

You use gmadmin or ntsadmin to monitor queue utilization (see gmadmin (1) in the Oracle
Tuxedo Command Reference).

When the queue space was created to hold the pending events, the maximum number of events
that could be held by the queue space was specified. For example, in the Advanced sample

Using the CORBA Notification Service

Notification Service Administration Utility and Commands

application, the maximum number of events for the TMNTSQS queue space was set to 200 (see
“Creating Event Queues” on page -6). With knowledge of queue space capacity, you can use the
ntsadmin pendevents command to determine the number of events pending in the event queue.
If the event queue is full or nearly full, you may want to increase the setting for maximum number
of events or increase the number of event queues.

Note: Use the threshold command option (cmd) on the gmadmin gcreate command to generate
a warning when a queue is nearing capacity. For information on this command, see
amadmin(1) in the Oracle Tuxedo Command Reference.

Purging the Queues of Unwanted Events

You can purge events from either the pending queue or the error queue by using the ntsadmin
commands rmerrevents and rmpendevents.

WARNING: After an event has been removed from the queue there is no way to recover it. The
event is gone and the subscribing application will never receive the event.

Managing the Error Queue

After a preset number of attempts to deliver an event, the event is moved to the error queue. Once
on the error queue, the administrator must take some action to either purge the event from the
system, or move the event from the error queue back to the pending queue. Purging of events is
discussed in the previous section.

When you move an event from the error queue back to the pending queue, you are requesting that
the system resume delivery attempts of the event. Because failed attempts to deliver events
consume system resources, you should not do this unless you have some reason to believe that
the condition that prevented delivery before has been corrected. The ntsadmin
retryerrevents command is provided specifically to move events back to the pending queue.

Notification Service Administration Utility and
Commands

This topic includes the following sections:
e ntsadmin Utility
e ntsadmin Commands

e Using the ntsadmin Utility

Using the CORBA Notification Service 1-25

ntsadmin Utility

This section describes the ntsadmin utility.

ntsadmin

Synopsis

Oracle Tuxedo CORBA Notification Service administration command interpreter.

Syntax

ntsadmin

Description

1-26

The Notification Service includes an administration command interpreter, ntsadmin, that
provides commands to perform the following tasks for CORBA Notification Service
applications:

e List subscriptions

Delete subscriptions
e Display summary information about structured events on the pending and error queues
e Delete structured events on the pending and error queues

e Move structured events from the error queue to the pending queue

Note: When you enter ntsadmin to start the program, if your application only has transient
subscriptions, the commands for persistent subscriptions are disabled.

Note: The Notification Service must be running before you can use ntsadmin.

You can exit the ntsadmin program by entering a g (for quit) at the command prompt. You can
terminate the output from a command by pressing the Break key; the program then prompts for
anew command.

Output from ntsadmin is paginated according to the pagination command in use (see the
paginate Command).

Note: The subscription command has different output depending on the setting of the
verbose command.

Using the CORBA Notification Service

Security

Notification Service Administration Utility and Commands

This utility can only be used by the system administrator.

See Also

TMNTS,

TMNTSFWD_T, TMNTSFWD_P, gmadmin

ntsadmin Commands

Commands may be entered either by their full name or by an abbreviation (if available, the
abbreviation is listed below in parentheses following the full name), followed by appropriate
arguments. Arguments that appear in square brackets [] are optional; arguments in curly braces
{} indicate a selection from mutually exclusive options. Each command offers the following

options:

Option Definition

[-1i identifier] If specified, identifies the subscription that matches
identifier.

[-n name] If specified, identifies the subscription(s) with a subscription
name that matches name only. To specify names which match
the empty string (that is, subscriptions with no name), enclose an
empty string between quotes (*).

Note: This option does not support the wildcard character (*)
so name must match the subscription name exactly.

[-t] If specified, designates subscriptions with a QoS of transient
only.

[p] If specified, designates subscriptions with a QoS of persistent

only.

The ntsadmin commands are as follows:

subscriptions (sub)

Note:

[{-i identifier |-n name |-t | -p}]

Lists subscriptions in the subscription database.

The subscription command has different output depending on whether the verbose

mode is on or off (the verbose command is described below). Listing 7-11 shows
examples of subscription output with verbose on and off.

Using the CORBA Notification Service 1-21

Listing 7-11 Subscription Command Output with Verbose Mode On and Off

> verbose on
Verbose mode is now on
> sub
ID: 1000000006
Name: marcello
QoS: Transient
Qspace: <N/A>
Expression: stock trade\.quote
Filter: stock_name %% 'BEAS' && price_per_share > 150
ID: 1000000005
Name: marcello
QoS: Persistent
Qspace: TMNTSQS
Expression: stock trade\.sell
Filter:
ID: 1000000004
Name: marcello
QoS: Persistent
Qspace: TMNTSQS
Expression: stock trade\.buy
Filter:
> verbose off

Verbose mode is now off

> sub

ID Name Expression

1000000006 marcello [T] stock trade\.quote

1000000005 marcello [P] stock trade\.sell

1000000004 marcello [P] stock trade\.buy
rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -pl}I[-¥]

Removes subscriptions from the subscription database. This command prompts for
confirmation unless -y is used.

1-28 Using the CORBA Notification Service

Notification Service Administration Utility and Commands

This command displays the number of subscriptions removed.

pendevents (pevt) [{-i identifier |-n name}]
Lists information about events in the pending events queue.

rmpendevents (rmpevt) [{-i identifier |-n name |-o0}]I[-y]
Removes events in the pending events queue. If -o is specified, all events that do not
currently have a corresponding subscription in the subscription database will be removed.

This command prompts for confirmation unless -y is used and displays the number of
events removed.

errevents (eevt) [{-i identifier |-n name}]
Lists events in the events error queue.

rmerrevents (rmeevt) [{-i identifier |-n name |-o0}]I[-y]
Removes events in the events error queue. If —o is specified, all events that do not
currently have a corresponding subscription in the subscription database will be removed.

This command prompts for confirmation unless -y is used and displays the number of
events removed.

retryerrevents (reteevt) [{-i identifier |—n name}] [-v]
Retries the events in the events error queue. This will move the events from the error

queue to the pending queue.

This command prompts for confirmation unless -y is used and displays the number of
events moved from the error queue to the pending queue.

quit (q)
Terminates the session.

echo (e) [{off |on}]
Echoes input command lines when set to on. If no input is given, then the current setting
is toggled and the new setting is printed. The initial setting is of £.

help (h) [{command |all}]
Prints help messages. If command is specified, the abbreviation, arguments and description
for that command are printed. a1l causes a description of the commands to be displayed.
Omitting all arguments causes the syntax of all commands to be displayed.

paginate (page) [{off |on}]
Paginates output. If no input is given, the current setting is toggled and the new setting is
printed. The initial setting is on, unless either standard input or standard output is a
non-terminal device. Pagination may only be turned on when both standard input and
standard output are terminal devices. The shell environment variable PAGER may be used

Using the CORBA Notification Service 1-29

1-30

to override the default command used for paging output. The default paging command is
the pager indigenous to the native operating system environment; for example, the
command pg is the default on UNIX operating systems.

verbose (v) [{on | off }]
Produces output in verbose mode. If no option is given then the current setting will be
toggled, and the setting is printed. The initial setting is of £.

! shellcommand
Use this command to escape to shell and execute shellcommand.

Use this command to repeat the previous shell command.

#[text]
Use this command to designate the line as a comment.

<CR>
Use this command to repeat the previous command.

Using the ntsadmin Utility
This section provides examples of using the ntsadmin utility.

Listing 7-12 shows an example of using ntsadmin to move events from the error queue back to
the pending queue. The following steps are performed:

1. Look up all subscriptions for marcello.
2. Use the unique subscription_id to display information about events on the error queue.

3. Move the events from the error queue to the pending queue.

Listing 7-12 Moving Events from the Error Queue to the Pending Queue

D:\smith\reg>ntsadmin

ntsadmin - Copyright (c) 1996-1999 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.

Distributed under license by BEA Systems, Inc.

Oracle Tuxedo is a registered trademark.

INFO: /Q Qspace - TMNTSQS

INFO: /Q Device - D:\smith\reg\QUE (SITE1l)

> subscriptions -n marcello

Using the CORBA Notification Service

Notification Service Administration Utility and Commands

D Name Expression
1000000002 marcello [T] stock trade\.quote
1000000001 marcello [P] stock trade\.sell
1000000000 marcello [P] stock trade\.buy

> verbose off

Verbose mode is now off

> eevt -i 1000000003

ID Name Count

1000000003 marcello 1
> reteevt -i 1000000003 -y

1 event(s) retried

Listing 7-13 shows an example of using ntsadmin to remove subscriptions and purge events.

Listing 7-13 Removing a Subscription

rmsub -n BillJones -y
subscription(s) removed
rmeevt -n marcello -y

event (s) removed

vV B VvV NV

rmpevt -n BillJones -y

No events removed

Listing 7-14 shows how to check events pending for a specific subscription.

Listing 7-14 Checking for Pending Events

> pevt -n marcello

ID Name Count

1000000003 marcello 1

Using the CORBA Notification Service 1-31

Notification Servers

This section provides descriptions of the following servers:
® TMTNS
® TMNTSFWD_T
® TMNTSFWD_P

The Notification Service also uses the following Oracle Tuxedo system servers. For descriptions
of these servers, refer to the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

® TMSYSEVT (5)
® TMUSREVT (5)
® TMQFORWARD (5)

® TMQUEUE (5)

TMNTS
Synopsis

Processes requests for subscriptions and event postings.

Syntax

TMNTS SRVGRP="identifier” SRVID="number”
[CLOPT="[-A] [servopts options]

[--[-S queuespace] "]

Description
TMNTS is an Oracle Tuxedo-provided server that processes all requests for subscriptions and event
postings.

Parameter

-S queuespace
The name of the queue space to use. This queue space must contain two queues:
TMNTSFWD_P and TMNTSFWD_E. This option is required for persistent subscriptions only.

1-32 Using the CORBA Notification Service

Notification Servers

Note: If you plan to use subscriptions with a QoS of Persistent, you must create a queue
space, a queue for holding events, and an error queue before the system is operational.
The queue space name must match the queuespace name specified using the CLOPT -s
queuespace parameter for the TMNTS server. The event queue must be named
TMNTSFWD_P. The error queue must be named TMNTSFWD_E.

It is possible to boot more then one TMNTS server to increase reliability and availability.

The TMNTS server must be part of a transactional group if events will be posted in the context of
a transaction.

Interoperability
TMNTS must run on Oracle WebLogic Enterprise version 5.0 or later or Oracle Tuxedo 8.0 or later.

Notes

The TMnTS server relies on services provided by the TMUSREVT and TMSYSEVT servers. Therefore,
these servers must be booted before the system is operational. If transient subscriptions are used,
the TMNTSFWD_T server must also be booted before the system is operational. If persistent
subscriptions are used, the TMNTSFWD_P, TMQUEUE, and TMQFORWARD servers must also be booted
before the system is operational.

Example
*SERVERS

TMNTS SRVGRP = NTS_GRP SRVID = 3
CLOPT "-A -- -s TMNTSQS"

See Also

TMSYSEVT (5), TMUSREVT (5), TMQUEUE (5), TMQFORWARD (5), TMNTSFWD_P, TMNTSFWD_T (5),
UBBCONFIG(5)

TMNTSFWD_T

Synopsis

Forwards events to transient subscribers.

Syntax
TMNTSFWD_T SRVGRP="identifier” SRVID="number”
[CLOPT="[-A][--"]

Using the CORBA Notification Service 1-33

Description

TMNTSFWD_T is an Oracle Tuxedo-provided server that forwards events to subscribers who
specified a QoS of Transient. There is no transaction context associated with event delivery.

Note: It is possible to boot more then one TMNTSFWD_T server to increase reliability and

availability.

Interoperability

TMNTS must run on Oracle WebLogic Enterprise version 5.0 or later or Oracle Tuxedo 8.0 or later.

Notes

The TMNTSFWD_T server relies on services provided by the TMNTS, TMUSREVT, and TMSYSEVT
servers. Therefore, these servers must be booted before the system is operational.

Example
*SERVERS

TMNTSFWD_T SRVGRP = SYS_GRP SRVID = 7

See Also

TMSYSEVT (5), TMUSREVT (5), TMNTS (5) , TMNTSFWD_P, UBBCONFIG (5). Also, see “IPC Queue
Space for Transient Subscriptions” on page -7.

TMNTSFWD_P

Synopsis

Forwards events to persistent subscribers.

Synopsis
TMNTSFWD_P SRVGRP="identifier” SRVID="number”
CLOPT="[-A] [--"]
Description

TMNTSFWD_P is an Oracle Tuxedo-provided server that forwards events to subscribers who
specified a QoS of persistent. There is no transaction context associated with event delivery.

It is possible to boot more then one TMNTSFWD_P server to increase reliability and availability.

1-34 Using the CORBA Notification Service

Notification Servers

Interoperability

TMNTS must run on Oracle WebLogic Enterprise version 5.0 or later or Oracle Tuxedo 8.0 or later.

Notes

The TMNTSFWD_P server relies on services provided by the TMNTS, TMUSREVT, TMSYSEVT,
TMQUEUE, and TMQFORWARD servers. Consequently, these servers must be booted before the
system is operational.

This server must be booted in a transactional group.

The number of TMNTSFWD_P servers booted should be the same as the number of TMOQFORWARD
servers booted.

Example
*SERVERS

TMNTSFWD_P SRVGRP = NTS_GRP SRVID = 5

See Also

TMSYSEVT (5), TMUSREVT (5) , TMNTS, TMNTSFWD_T, servopts (5), UBBCONFIG (5)

Using the CORBA Notification Service 1-35

1-36 Using the CORBA Notification Service

Index

A transient 7-5
Callback sample application

Advanced sample application 6-13 environment variables 6-7
Advanced sample application JAVA_HOME directory path 6-7
building 6-6 required environment variables 5-4, 6-7

Channel Factory 2-3
client stub files 3-12, 4-13

Advanced application process

changing protection on files 6-11
setting up the work directory 6-8

source files 6-8 compiling
starting the server application 6-13 Gt joian}izent/ server applications 3-11,
ConsumerAdmin object 4-8
B copy sample files 5-6
Oracle Administration Control Panel copying sample files 6-8
IPC Resources page 7-12 COS Structured Events 2-5
Oracle Tuxedo system servers 1-4 filterable body 2-6
BEAWTrapper callback fixed header 2-5
object 3-8 remaining body 2-6
Boolean expression operators 2-12 variable header 2-5
Bootstrap Object CosNotification Service API
service IDs 2-3 overview 2-23
building Push Consumer class 2-51
C++ joint client/server applications 3-11, service classes
4-12 descriptions 2-27
buildobjclient command 3-13, 4-14 model 2-25
C D
C++ joint client/server applications data filtering 2-12, 6-6
compiling 3-11, 4-12 configuring 7-2
threading considerations 3-11 directory location of source files
callback object Advanced sample application 6-8
creating 3-7, 4-9 Introductory sample application 5-6
persistent 7-5 directory path 5-5, 6-7

Using the CORBA Notification Service Index-1

E

environment variables 5-4
Callback sample application 5-4, 6-7
JAVA HOME 5-4, 6-7
TUXDIR 5-4, 5-5, 6-7, 6-8

error queue 7-25

event channel
finding 2-3
getting 3-2, 4-2

event design 2-6, 3-2, 4-2

event queues
creating 7-6

events
creating and posting 3-3, 4-3
news 6-5
posting 2-9, 3-2
receiving 2-10
subscribing 3-4
system 2-10

example 2-10
user 2-10
example 2-11
exception
CORBA::TRANSIENT 2-3

F

Field Manipulation Language (FML)
buffer 2-9
creating field table files 2-7
field table definition
files 7-2
field table files 2-9
filenames 2-9
FML32 2-9
file protections
Advanced sample application 6-11
Introductory sample application 5-8
FilterFactory object 4-8
FML field table files 2-9
FML field tables 1-4

Index-2 Using the CORBA Notification Service

FML filename 2-9

host and port
number requirements 7-5

idl command 3-12
IDL files 3-12
Introductory application process
Introductory sample application 5-10
Introductory sample application
building 5-4
changing protection on files 5-8
description 5-1
setting up the work directory 5-6
source files 5-6
starting the server application 5-10
IPC Helper (TUXIPC) 7-12
ISL 7-17

J

JAVA_HOME parameter
Callback sample application 5-4, 6-7

makefile
executing 5-10, 6-12
summary 5-9, 6-12

news events 6-5

Notification servers 1-4, 7-32
TMNTSFWD P 7-32
TMNTSFWD T 7-32
TMQFORWARD 7-32
TMQUEUE 7-32

TMSYSEVT 7-32
TMTNS 7-32
TMUSREVT 7-32
Notification Service
application build
requirements 4-14
Bootstrap object 2-3
build requirements 3-13
compiling and running 4-12
configuring 7-2
defined 1-1
event design 2-6
exception symbols 2-53
managing 7-22
minor codes 2-53
product features 1-3
programming model 1-2
TUXCONFIG file 7-15
UBBCONFIG file 7-15
Notification Service system
components 1-2

ntsadmin
commands 7-27
utility
description 7-26
using 7-30
P

Performance Monitor screen 7-15

Q

gmadmin command 7-9
Quality of Service (QoS) 2-14
persistent 1-3, 2-2
persistent subscription 1-4, 2-2
setting 2-2
subscription
persistent
properties 2-2
transactions 2-4

transient 1-3, 2-2
transient subscription 1-3
properties 2-3

transient versus persistent 2-14
queue

creating a 7-11

managing error queue 7-25

monitoring space 7-24

purging unwanted events 7-25
queue space

configuring 7-10

creating a device 7-9

R

Reporter application 5-2, 6-4
post an event 6-16

retry limit 1-4

)

server applications
starting
Advanced sample application 6-13
Introductory sample application 5-10
servers 7-32
Setting IPC Parameters 7-12
Simple Events API 2-15
Channel Factory interface 2-22
Channel interface 2-16
skeleton files 3-12, 4-13
Subscriber application 5-2
news subscription 6-4
shutdown subscription 6-4
subscribe to event 6-14
subscription
cancellation 2-3
checking successful delivery 2-3
cleanup mechanism 2-3
creating 4-10
parameters 2-11
data_filter 2-12

Using the CORBA Notification Service Index-3

domain_type 2-11
push_consumer 2-14
QoS 2-14
subscription_name 2-11
type _name 2-12
persistent
/Q queue size parameter 7-8
creating 3-8
creating a transaction log 7-6
creating an event queue 7-6
IPC queue space 7-7
properties 2-2
purging dead subscriptions 7-23
retry limit 1-4
synchronizing databases 7-23
transient
creating 3-8, 4-11
IPC queue space 7-7
properties 2-3
viewing with ntsadmin 7-23

T

TMFFNAME application process
Advanced sample application 6-13
Introductory sample application 5-10

TMNTS 1-4, 7-16, 7-33, 7-34

TMNTSFWD P 1-4, 7-16, 7-35

TMNTSFWD T 1-4, 7-16, 7-34

TMQFORWARD 1-4, 7-17

TMQUEUE 1-4, 7-16

TMSUSREVT 1-4, 7-33, 7-34

TMSYSEVT 1-4, 7-33, 7-34

TMSYSEVT application process
Advanced sample application 6-13
Introductory sample application 5-10

TMUSREVT 7-16

transaction log
creating 7-6

transactions
QoS 2-4

Index-4 Using the CORBA Notification Service

TUXCONFIG file

creating 7-15
TUXDIR parameter

Callback sample application 5-4, 6-7
TUXIPC 7-12

U

UBBCONFIG file 1-4
creating 7-15

	Oracle® Tuxedo
	11g Release 1 (11.1.1.1.0)

	Oracle Tuxedo Using the CORBA Notification Service, 11g Release 1 (11.1.1.1.0)
	Overview
	Introduction
	Functional Overview
	Figure 1-1 Notification Service Model

	Product Components

	CORBA Notification Service API Reference
	Introduction
	Quality of Service
	Persistent Subscriptions
	Transient Subscriptions

	Obtaining the Channel Factory
	Using Transactions
	Structured Event Fields, Types, and Filters
	Figure 2-1 Structured Event

	Designing Events
	Listing 2-1 Event Design

	Creating FML Field Table Files for Events
	Table 2-1 Supported CORBA Any Types
	Listing 2-2 Data Filtering FML Field Table File

	Interoperability with Oracle Tuxedo Applications
	Posting Events
	Receiving Events

	Parameters Used When Creating Subscriptions
	subscription_name
	domain_type
	type_name
	data_filter
	Table 2-2 Boolean Expression Operators

	Listing 2-3 Data Filtering Requirements
	push_consumer
	Table 2-3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

	qos (quality of service)

	Oracle Simple Events API
	Figure 2-2 Oracle Simple Events Interfaces
	TOBJ_SimpleEvents::Channel Interface
	Channel::subscribe
	CORBA IDL
	Parameters
	Exceptions
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT
	CORBA::INV_OBJREF

	Description
	Return Value
	Examples

	Channel::unsubscribe
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Examples

	Channel::push_structured_event
	CORBA IDL
	Parameter
	notification

	Exceptions
	CORBA_IMP_LIMIT

	Description
	Examples

	Channel::exists
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples

	TOBJ_SimpleEvents::ChannelFactory Interface
	Channel_Factory::find_channel
	CORBA IDL
	Parameter
	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples

	CosNotification Service API
	Overview of Supported CosNotification Service Classes
	Figure 2-3 Implemented CosNotification Service Classes

	Detailed Descriptions of CosNotification Service Classes
	CosNotifyFilter::Filter Class
	CosNotifyFilter::Filter::add_constraints
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidConstraint
	CORBA::BAD_PARAM
	CORBA_IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyFilter::Filter::destroy
	Synopsis
	OMG IDL
	Exceptions
	CORBA::BAD_PARAM

	Description
	CosNotifyFilter::FilterFactory Class

	CosNotifyFilter::FilterFactory::create_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidGrammar

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: connect_structured_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosEventChannelAdmin::TypeError
	CORBA::INV_OREF
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST
	CosEventChannelAdmin::AlreadyConnected

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos
	Synopsis
	OMG IDL
	Exceptions
	UnsupportedQoS
	ORBA::IMP_LIMIT

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter
	Synopsis
	OMG IDL
	Exceptions
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::FilterNotFound

	Description
	Restrictions
	a. Filter object references that are returned from this operation cannot be used in comparison operations.
	b. Filter object references returned by this operation can be used by the CosNotifyFilter::Filter::destroy operations but are of little use since they cannot be modified or added to proxy objects.

	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: disconnect_structured_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CORBA::OBJECT_NOT_EXIST

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: connect_structured_push_supplier
	Synopsis
	OMG IDL
	Exception
	CosEventChannelAdmin::AlreadyConnected

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected
	CORBA::IMP_LIMIT

	Descriptions
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Descriptions
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::ConsumerAdmin Class

	CosNotifyChannelAdmin::ConsumerAdmin:: obtain_notification_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ProxyNotFound

	Descriptions
	Return Value
	Examples
	CosNotifyChannelAdmin::SupplierAdmin Class

	CosNotifyChannelAdmin::SupplierAdmin:: obtain_notification_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannel Class

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_consumer_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_supplier_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel::default_filter_factory
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannelFactory Class

	CosNotifyChannelAdmin::EventChannelFactory::get_event_channel
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ChannelNotFound

	Description
	Return Value
	Examples
	CosNotifyComm::StructuredPushConsumer Interface

	CosNotifyComm::StructuredPushConsumer::push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected

	Description
	Examples

	CosNotifyComm::StructuredPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Description
	Examples

	CosNotifyComm::StructuredPushConsumer::Offer_change
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyComm::InvalidEventType

	Description
	Examples

	Exception Minor Codes
	Table 2-4 Tobj_Events Exception Minor Codes
	Table 2-5 Tobj_Notification Exception Minor Codes

	Using the Oracle Simple Events API
	Development Process
	Table 3-1 Development Process

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 3-1 Getting the Event Channel (C++)

	Creating and Posting Events
	Listing 3-2 Creating and Posting the Event (C++)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 3-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 3-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.cpp)

	Getting the Event Channel
	Creating a Callback Object
	Listing 3-5 Sample Code for Creating a Callback Object With Transient Object Reference (Introductory Application Subscriber.cpp)

	Creating a Subscription
	Listing 3-6 Creating a Transient Subscription (C++)
	Listing 3-7 Creating a Persistent Subscription (Advanced Subscriber.cpp)
	Threading Considerations for C++ Joint Client/Server Applications

	Step 3: Compiling and Running Notification Service Applications
	Generating the Client Stub and Skeleton Files
	Table 3-2 idl Command Requirements
	Table 3-3 IDL Files Required by Notification Service Applications

	Building and Running Applications
	Table 3-4 Application Build Requirements
	Listing 3-8 C++ Reporter Application Build and Run Commands (Microsoft Windows)
	Listing 3-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 3-10 C++ Subscriber Application Build and Run Commands (UNIX)

	Using the CosNotification Service API
	Development Process
	Table 4-1 Development Process

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 4-1 Getting the Event Channel (Reporter.cpp)

	Creating and Posting Events
	Listing 4-2 Creating and Posting the Event (Reporter.cpp)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 4-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 4-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.cpp)

	Getting the Event Channel, ConsumerAdmin Object, and Filter Factory Object
	Listing 4-5 Getting the Event Channel and ConsumerAdmin and Filter Factory Objects (Subscriber.cpp)

	Creating a Callback Object
	Listing 4-6 Sample Code for Creating a Callback Object with Transient Object Reference (Introductory Application Subscriber.cpp)

	Creating a Subscription
	Listing 4-7 Creating a Transient Subscription

	Step 3: Compiling and Running Notification Service Applications
	Generating the Client Stub and Skeleton Files
	Table 4-2 idl Command Requirements
	Table 4-3 IDL Files Required by Notification Service Applications

	Compiling and Linking the Application Code
	Table 4-4 Application Build Requirements
	Listing 4-8 C++ Reporter Application Build and Run Commands
	Listing 4-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 4-10 C++ Subscriber Application Build and Run Commands (UNIX)

	Building the Introductory Sample Application
	Overview
	Figure 5-1 Introductory Sample Application Components

	Building and Running the Introductory Sample Application
	Verifying the Settings of the Environment Variables
	Table 5-1 Required Environment Variables for the Introductory Sample Application

	Copying the Files for the Introductory Sample Application into a Work Directory
	Table 5-2 Files Located in the introductory_sample_c++ Directory
	Table 5-3 Other Files the Introductory Sample Application Uses

	Changing the Protection Attribute on the Files for the Introductory Sample Application
	Setting Up the Environment
	Building the Introductory Sample Application
	Makefile Summary
	Executing the Makefile

	Starting the Introductory Sample Application
	Using the Introductory Sample Application
	Using the Subscriber Application to Subscribe to Events
	Using the Reporter Application to Post Events

	Shutting Down the System and Cleaning Up the Directory

	Building the Advanced Sample Application
	Overview
	Figure 6-1 Advanced Sample Application Components

	Building and Running the Advanced Sample Application
	Verifying the Settings of the Environment Variables
	Table 6-1 Required Environment Variables for the Callback Sample Application

	Copying the Files for the Advanced Sample Application into a Work Directory
	Table 6-2 Files Located in the advanced_cos_c++ Notification Directory
	Table 6-3 Other Files That the Advanced Sample Uses

	Changing the Protection Attribute on the Files for the Advanced Sample Application
	Setting Up the Environment
	Building the Advanced Sample Application
	Makefile Summary
	Executing the Makefile

	Starting the Advanced Sample Application
	Using the Advanced Sample Application
	Using the Subscriber Application to Subscribe to Events
	Using the Reporter Application to Post Events

	Shutting Down the System and Cleaning Up the Directory

	CORBA Notification Service Administration
	Introduction
	Configuring the Notification Service
	Configuring Data Filters
	Listing 7-1 Sample Data Filtering Using the Oracle Simple Events API (C++)
	Listing 7-2 Data Filtering FML Field Table File
	Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows)
	Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

	Setting the Host and Port
	Creating a Transaction Log
	Listing 7-5 Creating a Transaction Log (createtlog) (Microsoft Windows)

	Creating Event Queues
	Determining Space Parameters for Transient and Persistent Subscriptions
	IPC Queue Space for Transient Subscriptions
	/Q Queue Size Parameter Persistent Subscriptions
	a. Determine the size of a disk page. This is platform-specific. For example, on Microsoft Windows, a disk page is 500 bytes. On UNIX machines, a disk page could range from 500 to 4000 bytes in size.
	b. Determine how many disk pages you will need to store one event rounding up. For example, if you need 1000 bytes per event and disk pages are 500 bytes, you will need 2 disk pages per event.
	c. Determine how many disk pages you will need for your events. For example, if you want to allow 500 pending events and 200 error events, and an event takes up 2 disk pages, you will need 1400 disk pages.
	d. Determine how many disk pages you will need for your qspace. This is the number of disk pages you need for your events plus some pages for qspace overhead. For example, if you need 1400 disk pages for events, then your qspace needs approximately 1...
	e. Determine how many pages you will need for your qspace device. This is the number of pages you need for the qspace plus some pages for device overhead. For example, if you need 1450 disk pages for your qspace, then your device needs approximately ...

	Creating a Device on Disk for the Queue Space
	Listing 7-6 Creating a Device on Disk for Queue Space (UNIX)

	Configuring a Queue Space
	Listing 7-7 Creating Queue Space
	Number of messages in queue space:500
	Size of queue space in disk pages:1050

	Creating the Queues
	Listing 7-8 Creating Queues

	Setting IPC Parameters on Microsoft Windows
	Figure 7-1 Microsoft Windows Control Panel
	Figure 7-2 Oracle Tuxedo Software for Microsoft Windows IPC Resources Control Panel
	Figure 7-3 Oracle Tuxedo Software for Microsoft Windows Performance Monitor

	Creating the UBBCONFIG File and the TUXCONFIG File
	Table 7-1 Configuration Requirements for Transient and Persistent Subscriptions
	Listing 7-9 The Introductory Sample UBBCONFIG File
	Listing 7-10 The Advanced Sample UBBCONFIG File

	Managing the Notification Service
	Synchronizing Databases
	Purging the System of Dead Subscriptions
	Table 7-2 ntsadmin Commands Summary

	Monitoring Queue Utilization
	Purging the Queues of Unwanted Events
	Managing the Error Queue

	Notification Service Administration Utility and Commands
	ntsadmin Utility
	ntsadmin
	Synopsis
	Syntax
	Description
	Security
	See Also

	ntsadmin Commands
	subscriptions (sub) [{-i identifier |-n name |-t | -p}]
	Listing 7-11 Subscription Command Output with Verbose Mode On and Off
	rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -p]}[-y]
	pendevents (pevt) [{-i identifier |-n name}]
	rmpendevents (rmpevt) [{-i identifier |-n name |-o}][-y]
	errevents (eevt) [{-i identifier |-n name}]
	rmerrevents (rmeevt) [{-i identifier |-n name |-o}][-y]
	retryerrevents (reteevt) [{-i identifier |-n name}][-y]
	quit (q)
	echo (e) [{off |on}]
	help (h) [{command |all}]
	paginate (page) [{off |on}]
	verbose (v) [{on | off }]
	! shellcommand
	!!
	#[text]
	<CR>

	Using the ntsadmin Utility
	Listing 7-12 Moving Events from the Error Queue to the Pending Queue
	Listing 7-13 Removing a Subscription
	Listing 7-14 Checking for Pending Events

	Notification Servers
	TMNTS
	Synopsis
	Syntax
	Description
	Parameter
	-S queuespace

	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_T
	Synopsis
	Syntax
	Description
	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_P
	Synopsis
	Synopsis
	Description
	Interoperability
	Notes
	Example
	See Also
	Index

