
Oracle® Tuxedo
Programming an Oracle Tuxedo Application Using COBOL
11g Release 1 (11.1.1.1.0)

March 2010

Oracle Tuxedo Programming an Oracle Tuxedo Application Using COBOL, 11g Release 1 (11.1.1.1.0)

Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Programming an Oracle Tuxedo Application Using COBOL iii

Contents

1. Introduction to Oracle Tuxedo Programming
Oracle Tuxedo Distributed Application Programming . 1-1

Communication Paradigms . 1-2

Oracle Tuxedo Clients. 1-4

Oracle Tuxedo Servers . 1-5

Basic Server Operation . 1-6

Servers as Requesters. 1-7

Oracle Tuxedo API: ATMI . 1-7

2. Programming Environment
Updating the UBBCONFIG Configuration File . 2-1

Setting Environment Variables . 2-5

Defining Equivalent Data Types . 2-9

Starting and Stopping the Application . 2-10

3. Managing Typed Records
Overview of Typed Records . 3-1

Defining Typed Records . 3-6

Using a VIEW Typed Record . 3-7

Setting Environment Variables for a VIEW Typed Record 3-7

Creating a View Description File. 3-8

Executing the VIEW Compiler . 3-11

Using an FML Typed Record . 3-13

iv Programming an Oracle Tuxedo Application Using COBOL

Setting Environment Variables for an FML Typed Record 3-14

Creating a Field Table File . 3-14

Initializing a Typed Record . 3-16

Creating an FML Header File . 3-19

Using an XML Typed Record . 3-20

4. Writing Clients
Joining an Application . 4-1

Using Features of the TPINFDEF-REC Record . 4-3

Client Naming . 4-4

Unsolicited Notification Handling . 4-5

System Access Mode . 4-6

Resource Manager Association. 4-7

Client Authentication . 4-7

Leaving the Application . 4-8

Building Clients . 4-8

See Also . 4-10

Client Process Examples . 4-10

5. Writing Servers
Oracle Tuxedo System Controlling Program . 5-1

System-supplied Server and Services. 5-3

System-supplied Server: AUTHSVR() . 5-3

System-supplied Services: TPSVRINIT Routine . 5-3

Receiving Command-line Options. 5-4

Opening a Resource Manager . 5-6

System-supplied Services: TPSVRDONE Routine . 5-8

Guidelines for Writing Servers. 5-9

Programming an Oracle Tuxedo Application Using COBOL v

Defining a Service . 5-11

Terminating a Service Routine . 5-19

Sending Replies . 5-19

Invalidating Descriptors . 5-25

Forwarding Requests . 5-26

Advertising and Unadvertising Services. 5-29

Advertising Services . 5-30

Unadvertising Services . 5-30

Example: Dynamic Advertising and Unadvertising of a Service 5-31

Building Servers . 5-32

See Also. 5-34

6. Writing Request/Response Clients and Servers
Overview of Request/Response Communication . 6-1

Sending Synchronous Messages. 6-2

Example: Using the Same Record for Request and Reply Messages 6-3

Example: Sending a Synchronous Message with TPSIGRSTRT Set 6-6

Example: Sending a Synchronous Message with TPNOTRAN Set 6-8

Sending Asynchronous Messages. 6-10

Sending an Asynchronous Request . 6-11

Getting an Asynchronous Reply . 6-14

Setting and Getting Message Priorities. 6-15

Setting a Message Priority. 6-15

Getting a Message Priority . 6-17

7. Writing Conversational Clients and Servers
Overview of Conversational Communication . 7-1

Joining an Application . 7-3

vi Programming an Oracle Tuxedo Application Using COBOL

Establishing a Connection . 7-3

Sending and Receiving Messages . 7-4

Sending Messages . 7-5

Receiving Messages . 7-6

Ending a Conversation . 7-7

Example: Ending a Simple Conversation . 7-8

Example: Ending a Hierarchical Conversation . 7-9

Executing a Disorderly Disconnect. 7-10

Building Conversational Clients and Servers. 7-11

Understanding Conversational Communication Events. 7-11

8. Writing Event-based Clients and Servers
Overview of Events . 8-1

Unsolicited Events . 8-2

Brokered Events . 8-2

Notification Actions. 8-2

EventBroker Servers . 8-3

System-defined Events. 8-4

Programming Interface for the EventBroker . 8-4

Defining the Unsolicited Message Handler . 8-5

Sending Unsolicited Messages. 8-6

Broadcasting Messages by Name . 8-6

Broadcasting Messages by Identifier . 8-8

Checking for Unsolicited Messages . 8-8

Getting Unsolicited Messages . 8-10

Subscribing to Events. 8-11

Unsubscribing from Events . 8-15

Posting Events . 8-15

Programming an Oracle Tuxedo Application Using COBOL vii

9. Writing Global Transactions
What Is a Global Transaction? . 9-1

Starting the Transaction . 9-2

Terminating the Transaction. 9-10

Committing the Current Transaction . 9-11

Prerequisites for a Transaction Commit . 9-11

Two-phase Commit Protocol . 9-12

Aborting the Current Transaction . 9-13

Example: Committing a Transaction in Conversational Mode 9-14

Example: Testing for Participant Errors . 9-15

Implicitly Defining a Global Transaction. 9-16

Defining Global Transactions for an XA-Compliant Server Group. 9-17

Testing Whether a Transaction Has Started . 9-18

See Also. 9-20

10. Programming a Multithreaded and Multicontexted ATMI
Application

Support for Programming a Multithreaded/Multicontexted ATMI Application 10-1

Platform-specific Considerations for Multithreaded/Multicontexted Applications10-2

Planning and Designing a Multithreaded/Multicontexted ATMI Application. 10-3

What Are Multithreading and Multicontexting? . 10-3

What Is Multithreading? . 10-3

What Is Multicontexting? . 10-5

Licensing a Multithreaded or Multicontexted Application 10-6

Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application10-7

Advantages of a Multithreaded/Multicontexted ATMI Application 10-7

Disadvantages of a Multithreaded/Multicontexted ATMI Application. 10-8

How Multithreading and Multicontexting Work in a Client 10-10

viii Programming an Oracle Tuxedo Application Using COBOL

Start-up Phase . 10-10

Client Threads Join Multiple Contexts . 10-10

Client Threads Switch to an Existing Context. 10-11

Work Phase . 10-11

Service Requests . 10-11

Replies to Service Requests . 10-12

Transactions . 10-12

Unsolicited Messages. 10-12

Userlog Maintains Thread-specific Information . 10-14

Completion Phase . 10-14

How Multithreading and Multicontexting Work in an ATMI Server 10-15

Start-up Phase . 10-15

Work Phase . 10-15

Server-dispatched Threads Are Used. 10-16

Application-created Threads Are Used . 10-17

Bulletin Board Liaison Verifies Sanity of System Processes. 10-17

System Keeps Statistics on Server Threads . 10-18

Userlog Maintains Thread-specific Information . 10-18

Completion Phase . 10-18

Design Considerations for a Multithreaded and Multicontexted ATMI Application 10-19

Environment Requirements. 10-19

Design Requirements . 10-20

Is the Task of Your Application Suitable for Multithreading and/or Multicontexting?
10-20

How Many Applications and Connections Do You Want? 10-21

What Synchronization Issues Need to Be Addressed? . 10-22

Will You Need to Port Your Application?. 10-22

Which Threads Model Is Best for You? . 10-22

Programming an Oracle Tuxedo Application Using COBOL ix

Interoperability Restrictions for Workstation Clients . 10-22

Implementing a Multithreaded/ Multicontexted ATMI Application 10-23

Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI
Application . 10-23

Prerequisites for a Multithreaded ATMI Application . 10-23

General Multithreaded Programming Considerations. 10-24

Concurrency Considerations . 10-24

Writing Code to Enable Multicontexting in an ATMI Client. 10-26

Context Attributes . 10-26

Setting Up Multicontexting at Initialization . 10-27

Implementing Security for a Multicontexted ATMI Client 10-28

Synchronizing Threads Before an ATMI Client Termination 10-28

Switching Contexts . 10-28

Handling Unsolicited Messages . 10-31

Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI Application
10-32

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server . . 10-33

Context Attributes . 10-33

Coding Rules for a Multicontexted ATMI Server . 10-33

Initializing and Terminating ATMI Servers and Server Threads 10-34

Programming an ATMI Server to Create Threads. 10-35

Creating Threads . 10-35

Associating Threads with a Context. 10-35

Sample Code for Creating an Application Thread in a Multicontexted ATMI Server .
10-36

Writing a Multithreaded ATMI Client . 10-38

Coding Rules for a Multithreaded ATMI Client . 10-38

Initializing an ATMI Client to Multiple Contexts . 10-39

x Programming an Oracle Tuxedo Application Using COBOL

Context State Changes for an ATMI Client Thread . 10-40

Getting Replies in a Multithreaded Environment . 10-41

Using Environment Variables in a Multithreaded and/or Multicontexted Environment
10-42

Using Per-context Functions and Data Structures in a Multithreaded ATMI Client . .
10-44

Using Per-process Functions and Data Structures in a Multithreaded ATMI Client . .
10-46

Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client10-47

Sample Code for a Multithreaded ATMI Client . 10-47

Writing a Multithreaded ATMI Server . 10-50

Compiling Code for a Multithreaded/Multicontexted ATMI Application. 10-50

Testing a Multithreaded/Multicontexted ATMI Application. 10-50

Testing Recommendations for a Multithreaded/Multicontexted ATMI Application . .
10-51

Troubleshooting a Multithreaded/Multicontexted ATMI Application 10-51

Improper Use of the TPMULTICONTEXTS Flag to tpinit() 10-51

Calls to tpinit() Without TPMULTICONTEXTS . 10-51

Insufficient Thread Stack Size . 10-52

Error Handling for a Multithreaded/Multicontexted ATMI Application 10-52

11. Managing Errors
System Errors . 11-1

Abort Errors . 11-3

Oracle Tuxedo System Errors . 11-3

Communication Handle Errors. 11-3

Limit Errors. 11-4

Invalid Descriptor Errors. 11-4

Programming an Oracle Tuxedo Application Using COBOL xi

Conversational Errors . 11-4

Duplicate Object Error . 11-5

General Communication Call Errors . 11-5

TPESVCFAIL and TPESVCERR Errors . 11-5

TPEBLOCK and TPGOTSIG Errors . 11-6

Invalid Argument Errors. 11-6

No Entry Errors. 11-7

Operating System Errors. 11-7

Permission Errors . 11-8

Protocol Errors . 11-8

Queuing Error . 11-8

Release Compatibility Error . 11-8

Resource Manager Errors . 11-9

Timeout Errors . 11-9

Transaction Errors. 11-10

Typed Record Errors. 11-10

Application Errors. 11-11

Handling Errors. 11-11

Transaction Considerations. 11-12

Communication Etiquette . 11-12

Transaction Errors. 11-13

Non-fatal Transaction Errors . 11-13

Fatal Transaction Errors . 11-14

Heuristic Decision Errors . 11-15

Transaction Timeouts . 11-16

TPCOMMIT Call . 11-16

TPNOTRAN . 11-16

TPRETURN and TPFORWAR Calls . 11-17

xii Programming an Oracle Tuxedo Application Using COBOL

tpterm() Function. 11-17

Resource Managers . 11-18

Sample Transaction Scenarios . 11-19

Called Service in Same Transaction as Caller . 11-19

Called Service in Different Transaction with AUTOTRAN Set. 11-19

Called Service That Starts a New Explicit Transaction 11-20

Oracle TUXEDO System-supplied Subroutines . 11-21

Central Event Log . 11-21

Log Name . 11-22

Log Entry Format . 11-22

Writing to the Event Log. 11-23

12. COBOL Language Bindings for the Workstation Component
UNIX Bindings. 12-1

Writing Client Programs . 12-1

Building Client Programs . 12-1

Setting Environment Variables . 12-2

Microsoft Windows Bindings . 12-4

Writing Client Programs . 12-4

Building Client Programs . 12-4

Building ACCEPT/DISPLAY Clients . 12-5

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

C H A P T E R 1

Introduction to Oracle Tuxedo
Programming

This topic includes the following sections:

Oracle Tuxedo Distributed Application Programming

Communication Paradigms

Oracle Tuxedo Clients

Oracle Tuxedo Servers

Oracle Tuxedo API: ATMI

Oracle Tuxedo Distributed Application Programming
A distributed application consists of a set of software modules that reside on multiple hardware
systems, and that communicate with one another to accomplish the tasks required of the
application. For example, as shown in Figure 1-1, a distributed application for a remote online
banking system includes software modules that run on a bank customer’s home computer, and a
computer system at the bank on which all bank account records are maintained.

1-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Figure 1-1 Distributed Application Example - Online Banking System

The task of checking an account balance, for example, can be performed simply by logging on
and selecting an option from a menu. Behind the scenes, the local software module communicates
with the remote software module using special application programming interface (API) routines.

The Oracle Tuxedo distributed application programming environment provides the API routines
necessary to enable secure, reliable communication between the distributed software modules.
This API is referred to as the Application-to-Transaction Monitor Interface (ATMI).

The ATMI enables you to:

Send and receive messages between clients and servers, possibly across a network of
heterogeneous machines

Establish and use client naming and security features

Define and manage transactions in which data may be stored in several locations

Generically open and close a resource manager such as a Database Management System
(DBMS)

Manage the flow of service requests and the availability of servers to process them

Communication Paradigms
Table 1-1 describes the Oracle Tuxedo ATMI communication paradigms available to application
developers.

Communicat i on Paradigms

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-3

Table 1-1 Communication Paradigms

Paradigm Description

Request/response
communication

Request/response communication enables one software module
to send a request to a second software module and wait for a
response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processing
continues while the requester waits for the response).

This mode is also referred to as client/server interaction. The
first software module assumes the role of the client; the second,
of the server.

Refer to “Writing Request/Response Clients and Servers” on
page 6-1 for more information on this paradigm.

Conversational
communication

Conversational communication is similar to request/response
communication, except that multiple requests and/or responses
need to take place before the “conversation” is terminated. With
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the client
and server.

Conversational communication is commonly used to buffer
portions of a lengthy response from a server to a client.

Refer to “Writing Conversational Clients and Servers” on
page 7-1 for more information on this paradigm.

1-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

Oracle Tuxedo Clients
An Oracle Tuxedo ATMI client is a software module that collects a user request and forwards it
to a server that offers the requested service. Almost any software module can become an Oracle
Tuxedo client by calling the ATMI client initialization routine and “joining” the Oracle Tuxedo
application. The client can then exchange information with the server.

The client calls the ATMI termination routine to “leave” the application and notify the Oracle
Tuxedo system that it (the client) no longer needs to be tracked. Consequently, Oracle Tuxedo
application resources are made available for other operations.

Application queue-based
communication

Application queue-based communication supports deferred or
time-independent communication, enabling a client and server
to communicate using an application queue. The Oracle
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is useful
for enqueuing requests when a system goes offline for
maintenance, or for buffering communications if the client and
server systems are operating at different speeds.

Refer to Using the ATMI /Q Component for more information on
the /Q facility.

Event-based
communication

Event-based communication allows a client or server to notify a
client when a specific situation (event) occurs.

Events are reported in one of two ways:
• Unsolicited events are unexpected situations that are

reported by clients and/or servers directly to clients.
• Brokered events are unexpected situations or predictable

occurrences with unpredictable timeframes that are reported
by servers to clients indirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the Oracle Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clients and Servers” on page 8-1
for more information on this paradigm.

Table 1-1 Communication Paradigms

Paradigm Description

Orac le Tuxedo Se rve rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-5

The operation of a basic client process can be summarized by the pseudo-code shown in
Listing 1-1.

Listing 1-1 Pseudo-code for a Client

START PROGRAM

enroll as a client of the BEA TUXEDO application

place initial client identification in data structure

perform until end

get user input

place user input in DATA-REC

send service request

receive reply

pass reply to the user

end perform

leave application

END PROGRAM

Most of the actions described in the above listing are implemented with ATMI calls. Others—
placing the user input in DATA-REC and passing the reply to the user—are implemented with
COBOL routines.

An ATMI client may send and receive any number of service requests before leaving the
application. The client may send these requests as a series of request/response calls or, if it is
important to carry state information from one call to the next, by establishing a connection to a
conversational server. In both cases, the logic in the client program is similar, but different ATMI
calls are required for these two approaches.

Before you can execute an ATMI client, you must run the buildclient -C command to compile
it and link it with the Oracle Tuxedo ATMI and required libraries. Refer to “Writing Clients” on
page 4-1 for information on the buildclient(1) command.

Oracle Tuxedo Servers
An Oracle Tuxedo ATMI server is a process that provides one or more services to a client. A
service is a specific business task that a client may need to perform. Servers receive requests from
clients and dispatch them to the appropriate service subroutines.

../rfcm/rfcmd.html

1-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Basic Server Operation
To build server processes, applications combine their service subroutines with a controlling
program provided by the Oracle Tuxedo system. This system-supplied controlling program is a
set of predefined routines. It performs server initialization and termination and places user input
in data structures that can be used to receive and dispatch incoming requests to service routines.
All of this processing is transparent to the application.

Figure 1-2 summarizes, in pseudo-code, the interaction between a server and a service
subroutine.

Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subroutine

After initialization, an ATMI waits until a request message is delivered to its message queue,
dequeues the request, and dispatches it to a service subroutine for processing. If a reply is
required, the reply is considered part of request processing.

The conversational paradigm is somewhat different from request/response, as illustrated by the
pseudo-code in Figure 1-3.

Orac le Tuxedo AP I : ATMI

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-7

Figure 1-3 Pseudo-code for a Conversational Service Subroutine

The Oracle Tuxedo system-supplied controlling program contains the code needed to enroll a
process as an ATMI server, advertise services, and dequeue requests. ATMI calls are used in
service subroutines that process requests. When you are ready to compile and test your service
subroutines, you must link edit them with the server and generate an executable server. To do so,
run the buildserver -C command.

Servers as Requesters
If a client requests several services, or several iterations of the same service, a subset of the
services might be transferred to another server for execution. In this case, the server assumes the
role of a client, or requester. Both clients and servers can be requesters; a client, however, can
only be a requester. This coding model is easily accomplished using the Oracle Tuxedo ATMI
calls.

Note: A request/response server can also forward a request to another server. In this case, the
server does not assume the role of client (requester) because the reply is expected by the
original client, not by the server forwarding the request.

Oracle Tuxedo API: ATMI
In addition to the COBOL code that expresses the logic of your application, you must use the
Application-to-Transaction Monitor Interface (ATMI), the interface between your application
and the Oracle Tuxedo system.

1-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

The ATMI is a reasonably compact set of calls used to open and close resources, begin and end
transactions, and support communication between clients and servers. Table 1-2 summarizes the
ATMI calls. Each call is described in the Oracle Tuxedo ATMI COBOL Function Reference.

Table 1-2 Using the ATMI Calls

For a Task
Related to . . .

Use This COBOL Function . .
.

To . . . For More Information,
Refer to . . .

Client membership TPINITIALIZE Have a client join an
application

“Writing Clients” on
page 4-1

TPTERM Have a client leave an
application

Multiple application
context management

TPGETCTXT(3cbl) Retrieve an identifier for the
current threads context

“Programming a
Multithreaded and
Multicontexted ATMI
Application” on
page 1-1

TPSETCTXT(3cbl) Set the current thread’s context
in a multicontexted process

Service entry and
return

TPSVCSTART Get service information “Writing Servers” on
page 5-1

TPSVRINIT Initialize a server

TPSVRDONE Terminate a server

TPRETURN End a service routine

TPFORWAR Forward a request

Dynamic
advertisement

TPADVERTISE Advertise a service name “Writing Servers” on
page 5-1

TPUNADVERTISE Unadvertise a service name

Message priority TPGPRIO Get the priority of the last
request

“Writing Servers” on
page 5-1

TPSPRIO Set the priority of the next
request

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Orac le Tuxedo AP I : ATMI

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-9

Request/Response
communications

TPCALL Initiate a synchronous
request/response to a service

• “Writing Servers”
on page 5-1

• “Writing
Request/Response
Clients and
Servers” on
page 6-1

TPACALL Initiate an asynchronous
request (fanout)

TPGETRPLY Receive an asynchronous
response

TPCANCEL Cancel an asynchronous
request

Conversational
communications

TPCONNECT Begin a conversation with a
service

“Writing
Conversational
Clients and Servers”
on page 7-1TPDISCON Abnormally terminate a

conversation

TPSEND Send a message in a
conversation

TPRECV Receive a message in a
conversation

Reliable queuing TPENQUEUE(3cbl) Enqueue a message to a
message queue

Using the ATMI /Q
Component

TPDEQUEUE(3cbl) Dequeue a message from a
message queue

Table 1-2 Using the ATMI Calls (Continued)

For a Task
Related to . . .

Use This COBOL Function . .
.

To . . . For More Information,
Refer to . . .

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

1-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

Event-based
communications

TPNOTIFY Send an unsolicited message to
a client

“Writing Event-based
Clients and Servers”
on page 8-1

TPBROADCAST Send messages to several
clients

TPSETUNSOL Set unsolicited message
call-back

TPCHKUNSOL Check the arrival of unsolicited
messages

TPGETUNSOL Get an unsolicited message

TPPOST Post an event message

TPSUBSCRIBE Subscribe to event messages

TPUNSUBSCRIBE Unsubscribe to event messages

Transaction
management

TPBEGIN Begin a transaction “Writing Global
Transactions” on
page 9-1TPCOMMIT Commit the current transaction

TPABORT Roll back the current
transaction

TPGETLEV Check whether in transaction
mode

Resource management TPOPEN(3cbl) Open a resource manager • “Programming a
Multithreaded and
Multicontexted
ATMI
Application” on
page 1-1

• Getting Started
with Oracle
Tuxedo CORBA
Applications

TPCLOSE(3cbl) Close a resource manager

Table 1-2 Using the ATMI Calls (Continued)

For a Task
Related to . . .

Use This COBOL Function . .
.

To . . . For More Information,
Refer to . . .

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Orac le Tuxedo AP I : ATMI

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-11

Nontransactional
blocking time
management

TPGBLKTIME(3cbl) Get blocktime value Oracle Tuxedo ATMI
COBOL Function
ReferenceTPSBLKTIME(3cbl) Set blocktime value in seconds

Security TPKEYOPEN(3cbl) Open a key handle for digital
signature generation, message
encryption, or message
decryption

Using Security in
CORBA Applications

TPKEYGETINFO(3cbl) Get information associated
with a key handle

TPKEYSETINFO(3cbl) Set optional attributes
associated with a key handle

TPKEYCLOSE(3cbl) Close a key handle previously
opened using TPKEYOPEN

Table 1-2 Using the ATMI Calls (Continued)

For a Task
Related to . . .

Use This COBOL Function . .
.

To . . . For More Information,
Refer to . . .

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

1-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-1

C H A P T E R 2

Programming Environment

This topic includes the following sections:

Updating the UBBCONFIG Configuration File

Setting Environment Variables

Defining Equivalent Data Types

Starting and Stopping the Application

Updating the UBBCONFIG Configuration File
The application administrator initially defines the configuration settings for an application in the
UBBCONFIG configuration file. To customize your programming environment, you may need to
create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelines:

Copy and edit a file that already exists. For example, the file ubbshm that comes with the
bankapp sample application can provide a good starting point.

Minimize complexity. For test purposes, set up your application as a shared memory,
single-processor system. Use regular operating system files for your data.

Make sure the IPCKEY parameter in the configuration file does not conflict with any other
parameters being used at your installation. Check with your Oracle Tuxedo application
administrator, and refer to Setting Up an Oracle Tuxedo Application for more information.

2-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Set the UID and GID parameters so that you are the owner of the configuration.

Review the documentation. The configuration file is described in UBBCONFIG(5) in the
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Table 2-1 summarizes the UBBCONFIG configuration file parameters that affect the programming
environment. Parameters are listed by functional category.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category

Functional
Category

Parameter Section Description

Global resource
limits

MAXSERVERS RESOURCES Specifies the maximum number of
servers in the configuration. When
setting this value, you need to
consider the MAX values for all
servers.

MAXSERVICES RESOURCES Specifies the maximum total number
of services in the configuration.

Data-dependent
routing

BUFTYPE ROUTING List of types and subtypes of data
records for which the specified
routing entry is valid.

Link-level
encryption

MINENCRYPTBITS NETWORK Sets the minimum encryption level
that a process accepts.

MAXENCRYPTBITS NETWORK Sets the maximum encryption level
that a process accepts.

../rf5/rf5.html

Updat ing the UBBCONFIG Conf igurat ion F i l e

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-3

Load balancing LDBAL RESOURCES Flag for specifying whether or not
load balancing is enabled. If enabled,
the Oracle Tuxedo system attempts to
balance requests across the network.

NETLOAD MACHINES Numeric value that is added to the
load factor of services that are remote
from the invoking client, providing a
bias for choosing a local server over a
remote server. Load balancing must
be enabled (that is, LDBAL must be
set to Y).

LOAD SERVICES Relative load factor associated with a
service instance. The default is 50.

Security AUTHSVC RESOURCES Specifies the name of an application
authentication service that is invoked
by the system for each client joining
the system.

SECURITY RESOURCES Specifies the type of application
security to be enforced.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional
Category

Parameter Section Description

2-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

Conversational
communication

MAXCONV RESOURCES Sets the maximum number of
simultaneous conversations for a
single machine. You can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in the SERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in the MACHINES
section.

CONV SERVERS Specifies whether or not
conversational communication is
supported. If this parameter is set to N
or unspecified, a TPCONNECT call to
a service fails.

MIN/MAX SERVERS Specifies the minimum and
maximum number of occurrences of
the server to be started by
tmboot(1). If not specified, MIN
defaults to 1 and MAX defaults to MIN.
The same parameters are available for
use with request/response servers.
However, conversational servers are
automatically spawned as needed. So
if you set MIN=1 and MAX=10, for
example, tmboot starts one server
initially. When a TPCONNECT call is
made to a service offered by that
server, the system starts a second
copy of a server. As each copy is
called, a new one is spawned, up to a
limit of 10.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional
Category

Parameter Section Description

../rfcm/rfcmd.html

Set t ing Env i ronment Var iab les

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-5

The configuration file is an operating system text file. To make it usable by the system, you must
execute the tmloadcf(1) command to convert the file to a binary file.

See Also
Setting Up an Oracle Tuxedo Application

UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Setting Environment Variables
Initially, the application administrator sets the variables that define the environment in which
your application runs. These environment variables are set by assigning values to the ENVFILE
parameter in the MACHINES section of the UBBCONFIG file. (Refer to Setting Up an Oracle Tuxedo
Application for more information.)

For the client and server routines in your application, you can update existing environment
variables or create new ones. Table 2-2 summarizes the most commonly used environment
variables. The variables are listed by functional category.

Transaction
management

AUTOTRAN SERVICES Controls whether a service routine is
placed in transaction mode. If you set
this parameter to Y, a transaction in
the service subroutine is
automatically started whenever a
request message is received from
another process.

Multithreaded
servers

MAXDISPATCHTHREADS SERVERS Specifies the maximum number of
concurrently dispatched threads that
each server process may spawn.

MINDISPATCHTHREADS SERVERS Specifies the number of server
dispatch threads started on initial
server boot.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional
Category

Parameter Section Description

../rf5/rf5.html
../rfcm/rfcmd.html

2-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Table 2-2 Programming-related Environment Variables

Function Environment Variable Defines the . . . Used by . . .

Global TUXDIR Location of the Oracle
Tuxedo system binary files.

Oracle Tuxedo application
programs.

Configuration TUXCONFIG Location of the Oracle
Tuxedo configuration file.

Oracle Tuxedo application
programs.

Compiling ALTCC1 Command that invokes the
COBOL compiler. Default
is cobcc.

Specify cobcc85 to use
the Fujitsu NetCOBOL
compiler.

buildclient() -C and
buildserver() -C
commands.

ALTCFLAGS1 Link edit flags to be passed
to the COBOL compiler.
Link edit flags are optional.

buildclient() -C and
buildserver() -C
commands.

COBOPT Arguments that you may
want to use on the compile
command line.

COBOPT cannot be used
with Fujitsu NetCOBOL
compiler. Please refer to
Fujitsu’s NetCOBOL
manuals for COBOL
environment variables.

buildclient() -C and
buildserver() -C
commands.

COBCPY Directories that contain a
set of the COBOL COPY
files to be used by the
compiler.

COBCPY cannot be used
with Fujitsu NetCOBOL
compiler. Please refer to
Fujitsu’s NetCOBOL
manuals for COBOL
environment variables.

buildclient() -C and
buildserver() -C
commands.

Set t ing Env i ronment Var iab les

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-7

Data compression TMCMPPRFM Level of compression
between 1 and 9.

Oracle Tuxedo application
programs that perform data
compression.

Load balancing TMNETLOAD Numeric value that is added
to the load value for remote
queues, making the remote
queues appear to have more
work than they actually do.
As a result, even if load
balancing is enabled, local
requests are sent to local
queues more often than to
remote queues.

Oracle Tuxedo application
programs that perform load
balancing.

Table 2-2 Programming-related Environment Variables

Function Environment Variable Defines the . . . Used by . . .

2-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

If operating in a UNIX environment, add $TUXDIR/bin to your environment PATH to ensure that
your application can locate the executables for the Oracle Tuxedo system commands. For more
information on setting up the environment, refer to Setting Up an Oracle Tuxedo Application.

Record management FIELDTBLS or
FIELDTBLS32

Comma-separated list of
field table filenames for
FML and FML32 typed
records, respectively.
Required only for FML
VIEW types.

FML and FML32 record types
and FML VIEWs.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of
directories to be searched
for the field table files for
FML and FML32,
respectively. For Windows
2003, a
semicolon-separated list is
used.

FML and FML32 record types
and FML VIEWs.

VIEWFILES or
VIEWFILES32

Comma-separated list of
allowable filenames for
VIEW and VIEW32 typed
records, respectively.

VIEW and VIEW32 record types.

VIEWDIR or
VIEWDIR32

Colon-separated list of
directories to be searched
for VIEW and VIEW32
files, respectively. For
Windows 2003, a
semicolon-separated list is
used.

VIEW and VIEW32 record types.

1. On a Windows system, the ALTCC and ALTCFLAGS environment variables are not applicable
and setting them will produce unexpected results. You must compile your application first using
a COBOL compiler and then pass the resulting object file to the buildclient or buildserver
command.

Table 2-2 Programming-related Environment Variables

Function Environment Variable Defines the . . . Used by . . .

Def in ing Equiva lent Data Types

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-9

See Also
Setting Up an Oracle Tuxedo Application

Defining Equivalent Data Types
Table 2-3 lists the C data types for which equivalent COBOL data types are available.

For storage efficiency, COBOL supports packed decimals: two decimal digits packed into each
byte with the low-order half byte used to store the sign. The length of a packed decimal may be
1 to 9 bytes with storage available for 1 to 17 digits, including the sign.

The dec_t field is defined in a VIEW. The size is specified as two values separated by a comma.
The first value indicates the total number of bytes occupied by the decimal in COBOL. The
second value indicates the number of digits to the right of the decimal point in COBOL. You can
use the following formula to convert the dec_t field to a COBOL declaration:

dec_t(m, n) => S9(2*m-(n+1),n)COMP-3

For example, a size specification of 6,4 in the VIEW indicates that there are 4 digits to the right of
the decimal point and 7 digits to the left, and the last half byte is used to store the sign. A COBOL
application programmer represents this as 9(7)V9(4), where the V represents the decimal point
between each value. Note that FML does not support the dec_t type; if FML-dependent VIEWs are
used, then each field must be mapped to a C type in the VIEW file. For instance, a packed decimal

Table 2-3 COBOL Equivalents for C Data Types

C Data Type Equivalent COBOL Data Type

float COMP-1

double COMP-2

long S9(9) COMP-51

1. COMP-5, provided for use with MicroFocus COBOL, allows the COBOL
integer fields to match the data format of the corresponding C fields. The data type
for VS COBOL II is COMP.

short S9(4) COMP-51

dec_t COBOL COMP-3 packed decimal field

2-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

can be mapped to an FML string field, and then the mapping functions can be used to do the
conversion between formats.

Starting and Stopping the Application
To start the application, execute the tmboot(1) command. The command gets the IPC resources
required by the application, and starts administrative processes and application servers.

To stop the application, execute the tmshutdown(1) command. The command stops the servers
and releases the IPC resources used by the application, except any that might be used by the
resource manager, such as a database.

See Also
tmboot(1) and tmshutdown(1) in the Oracle Tuxedo Command Reference

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-1

C H A P T E R 3

Managing Typed Records

This topic includes the following sections:

Overview of Typed Records

Defining Typed Records

Using a VIEW Typed Record

Using an FML Typed Record

Using an XML Typed Record

Overview of Typed Records
In order to send data to another application program, the sending program first places the data in
a record. Oracle Tuxedo ATMI clients use typed records to send messages to ATMI servers. The
term “typed record” refers to a pair of COBOL records: a data record and an auxiliary type record.
The data record is defined in static storage and contains application data to be passed to another
application program. An auxiliary type record accompanies the data record. It specifies the
interpretation and translation rules of the data record to be used by the Oracle Tuxedo system
when passing the information between heterogeneous systems. Typed records make up one of the
fundamental features of the distributed programming environment supported by the Oracle
Tuxedo system.

Why typed? In a distributed environment, an application may be installed on heterogeneous
systems that communicate across multiple networks using different protocols. Different types of
records require different routines to initialize, send and receive messages, and encode and decode

3-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

data. Each record is designated as a specific type so that the appropriate routines can be called
automatically without programmer intervention.

Table 3-1 lists the typed records supported by the Oracle Tuxedo system and indicates whether
or not:

The record is self-describing; in other words, the record data type and length can be
determined simply by (a) knowing the type and subtype, and (b) looking at the data.

The record requires a subtype.

The system supports data-dependent routing for the typed record.

The system supports encoding and decoding for the typed record.

If any routing routines are required, the application programmer must provide them as part of the
application.Records.

Overv iew o f T yped Reco rds

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-3

Table 3-1 Typed Buffers

Typed Record Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding

CARRAY Undefined array of characters, any of
which can be LOW-VALUE. This typed
record is used to handle the data opaquely,
as the Oracle Tuxedo system does not
interpret the semantics of the array.
Because a CARRAY is not self-describing,
the length must always be provided during
transmission. Encoding and decoding are
not supported for messages sent between
machines because the bytes are not
interpreted by the system.

No No No No

FML (Field
Manipulation
Language)

Proprietary Oracle Tuxedo system type of
self-describing record in which each data
field carries its own identifier, an
occurrence number, and possibly a length
indicator. T record offers
data-independence and greater flexibility

The FML record uses 16 bits for field
identifiers and lengths of fields.

Refer to “Using an FML Typed Record”
on page 3-13 for more information.

Yes No Yes Yes

FML32 Equivalent to FML but uses 32 bits for field
identifiers and lengths of fields, which
allows for larger and more fields and,
consequently, larger overall records.

However, the FML routines that are
available for manipulating the FML typed
record in the C programming language are
not available in COBOL.The primary use
of FML32 in COBOL is simply to work
with C programs in which VIEW32 or
FML32 typed records are used.

Refer to “Using an FML Typed Record”
on page 3-13 for more information.

Yes No Yes Yes

3-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

STRING Array of characters that terminates with a
LOW-VALUE character. The Oracle
Tuxedo system can convert data
automatically when data is exchanged by
machines with different character sets.

No No No No

VIEW COBOL data structure defined by the
application. VIEW types must have
subtypes that designate individual data
structures. A view description file, in
which the fields and types that appear in
the data structure are defined, must be
available to client and server processes that
use a data structure described in a VIEW
typed record. Encoding and decoding are
performed automatically if the record is
passed between machines of different
types. Refer to “Using a VIEW Typed
Record” on page 3-7 for more information.

No Yes Yes Yes

VIEW32 Equivalent to VIEW but uses 32 bits for
length and count fields, which allows for
larger and more fields and, consequently,
larger overall records.

The primary use of VIEW32 in COBOL is
simply to work with C programs in which
VIEW32 or FML32 typed records are used.

Refer to “Using a VIEW Typed Record”
on page 3-7 for more information.

No Yes Yes Yes

X_COMMON Equivalent to VIEW, but used for
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

No Yes Yes Yes

Table 3-1 Typed Buffers (Continued)

Typed Record Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding

Overv iew o f T yped Reco rds

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-5

All record types are defined in a file called tmtypesw.c in the $TUXDIR/lib directory. Only
record types defined in tmtypesw.c are known to your client and server programs. You can edit
the tmtypesw.c file to add or remove record types. In addition, you can use the BUFTYPE
parameter (in UBBCONFIG) to restrict the types and subtypes that can be processed by a given
service.

The tmtypesw.c file is used to build a shared object or dynamic link library. This object is
dynamically loaded by both Oracle Tuxedo administrative servers, and application clients and
servers.

See Also
 “Using a VIEW Typed Record” on page 3-7

“Using an FML Typed Record” on page 3-13

XML An XML document that consists of:
• Text, in the form of a sequence of

encoded characters
• A description of the logical structure

of the document and information about
that structure

The routing of an XML document can be
based on element content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if the encoding differs from the
native character sets (US-ASCII or
EBCDIC) used in the Oracle Tuxedo
configuration files (UBBCONFIG(5) and
DMCONFIG(5)), the element and attribute
names are converted to US-ASCII or
EBCDIC. Refer to “Using an XML Typed
Record” on page 3-20 for more
information.

No No Yes No

X_OCTET Equivalent to CARRAY. No No No No

Table 3-1 Typed Buffers (Continued)

Typed Record Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding

../rf5/rf5.html
../rf5/rf5.html

3-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

“Using an XML Typed Record” on page 3-20

tuxtypes(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Defining Typed Records
The TPTYPE-REC COBOL structure is used whenever sending or receiving application data.

The following table lists the TPTYPE-REC structure fields.

The following shows the TPTYPE data structure:

05 REC-TYPE PIC X(8).
 88 X-OCTET VALUE “X_OCTET”.
 88 X-COMMON VALUE “X_COMMON”.
05 SUB-TYPE PIC X(16).
05 LEN PIC S9(9) COMP-5.
 88 NO-LENGTH VALUE 0.
05 TPTYPE-STATUS PIC S9(9) COMP-5.
 88 TPTYPEOK VALUE 0.
 88 TPTRUNCATE VALUE 1.

Field Description

REC-TYPE Specifies which record type the application wishes to send or
receive.

SUB-TYPE Specifies the subtype of the record type, if further classification
is required (as it is, for example, in a VIEW record).

LEN When data is being sent, specifies the number of bytes to be sent.
After a successful transfer, LEN contains the number of bytes
transferred. When data is being received, LEN in TPTYPE-REC
specifies the number of bytes to be moved into the data record.
After a successful call, LEN contains the number of bytes moved
into the data record. If the size of the incoming message is larger
than the size specified in LEN, the data is truncated, all data after
the LEN length is reached is discarded, and TPTYPE-STATUS is
set to TPTRUNCATE.

../rf5/rf5.html
../rf5/rf5.html

Using a V IEW Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-7

Using a VIEW Typed Record
There are two kinds of VIEW typed records. The first, FML VIEW, is a COBOL record generated
from an FML record. The second is simply an independent COBOL record.

The reason for converting FML records into COBOL records and back again (and the purpose of
the FML VIEW typed records) is that FML functions are not available in the COBOL programming
environment.

For more information on the FML typed record, refer to the Oracle Tuxedo ATMI FML Function
Reference.

To use VIEW typed records, you must perform the following steps:

Set the appropriate environment variables.

Describe each structure in view description files.

Compile the view description files using viewc -C, the Oracle Tuxedo view compiler. By
running this command you will produce one or more COBOL COPY files (one per view),
each of which contains data description records. These records can be used in the LINKAGE
section or the WORKING STORAGE section of the DATA DIVISION, according to the
demands of the program.

Setting Environment Variables for a VIEW Typed Record
To use a VIEW typed record in an application, you must set the following environment variables
shown in Table 3-2.

Table 3-2 Environment Variables for a VIEW Typed Record

Environment Variable Description

FIELDTBLS or
FIELDTBLS32

Comma-separated list of field table filenames for FML or FML32
typed records. Required only for FML VIEW types.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of directories to search for the field table
files for FML and FML32 typed records. For Microsoft
Windows, use a semicolon-separated list. Required only for FML
VIEW types.

3-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

Creating a View Description File
To use a VIEW typed record, you must define the COBOL record in a view description file. The
view description file includes, a view for each entry, a view that describes the characteristic
COBOL procedure mapping and the potential FML conversion pattern. The name of the view
corresponds to the name of the copy file that is included in COBOL program.

The following format is used for each record in the view description file:

$ /* View structure */

 VIEW viewname

 type cname fbname count flag size null

Table 3-3 describes the fields that must be specified in the view description file for each COBOL
record.

VIEWFILES or
VIEWFILES32

Comma-separated list of allowable filenames for VIEW or
VIEW32 description files.

VIEWDIR or
VIEWDIR32

Colon-separated list of directories to search for VIEW or
VIEW32 files. For Microsoft Windows, use a
semicolon-separated list.

Table 3-3 View Description File Fields

Field Description

type Data type of the field. Can be set to short, long, float,
double, char, string, or carray.

cname Name of the field as it appears in the COBOL record.

fbname If you will be using the FML-to-VIEW or VIEW-to-FML
conversion routines, this field must be included to indicate the
corresponding FML name. This field name must also appear in
the FML field table file. This field is not required for
FML-independent VIEWs.

count Number of times field occurs.

Table 3-2 Environment Variables for a VIEW Typed Record

Environment Variable Description

Using a V IEW Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-9

flag Specifies any of the following optional flag settings:
• P—change the interpretation of the LOW-VALUE value
• S—one-way mapping from fielded record to structure
• F—one-way mapping from structure to fielded record
• N—zero-way mapping
• C—generate additional field for associated count member

(ACM)
• L—hold number of bytes transferred for STRING and

CARRAY

size For STRING and CARRAY record types, specifies the maximum
length of the value. This field is ignored for all other record
types.

null User-specified LOW-VALUE value, or minus sign (-) to
indicate the default value for a field. LOW-VALUE values are
used in VIEW typed records to indicate empty COBOL record
members.

The default LOW-VALUE value for all numeric types is 0 (0.0
for dec_t). For character types, the default LOW-VALUE
value is ‘\0’. For STRING and CARRAY types, the default
LOW-VALUE value is “ ”.

Constants used, by convention, as escape characters can also be
used to specify a LOW-VALUE value. The view compiler
recognizes the following escape constants: \ddd (where d is
an octal digit), \0, \n, \t, \v, \r, \f, \\, \’, and \”.

You may enclose STRING, CARRAY, and LOW-VALUE
values in double or single quotes. The view compiler does not
accept unescaped quotes within a user-specified
LOW-VALUE value.

You can also specify the keyword NONE in the LOW-VALUE
field of a view member description, which means that there is
no LOW-VALUE value for the member. The maximum size of
default values for string and character array members is 2660
characters. For more information, refer to the Oracle Tuxedo
ATMI FML Function Reference.

Table 3-3 View Description File Fields (Continued)

Field Description

3-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

You can include a comment line by prefixing it with the # or $ character. Lines prefixed by a $
sign are included in the .h file.

Listing 3-1 is an excerpt from an example view description file based on an FML record. In this
case, the fbname field must be specified and match that which appears in the corresponding field
table file. Note that the CARRAY1 field includes an occurrence count of 2 and sets the C flag to
indicate that an additional count element should be created. In addition, the L flag is set to
establish a length element that indicates the number of characters with which the application
populates the CARRAY1 field.

Listing 3-1 View Description File for FML VIEW

$ /* View structure */

 VIEW MYVIEW

 #type cname fbname count flag size null

 float float1 FLOAT1 1 - - 0.0

 double double1 DOUBLE1 1 - - 0.0

 long long1 LONG1 1 - - 0

 short short1 SHORT1 1 - - 0

 int int1 INT1 1 - - 0

 dec_t dec1 DEC1 1 - 9,16 0

 char char1 CHAR1 1 - - '\0'

 string string1 STRING1 1 - 20 '\0'

 carray carray1 CARRAY1 2 CL 20 '\0'

 END

Listing 3-2 illustrates the same view description file for an independent VIEW.

Listing 3-2 View Description File for an Independent View

$ /* View data structure */

 VIEW MYVIEW

 #type cname fbname count flag size null

 float float1 - 1 - - -

 double double1 - 1 - - -

 long long1 - 1 - - -

Using a V IEW Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-11

 short short1 - 1 - - -

 int int1 - 1 - - -

 dec_t dec1 - 1 - 9,16 -

 char char1 - 1 - - -

 string string1 - 1 - 20 -

 carray carray1 - 2 CL 20 -

 END

Note that the format is similar to the FML-dependent view, except that the fbname and null fields
are not relevant and are ignored by the viewc compiler. You must include a value (for example,
a dash) as a placeholder in these fields.

Executing the VIEW Compiler
To compile a VIEW typed record, run the viewc -C command, specifying the name of the view
description file as an argument. To specify an independent VIEW, use the -n option. You can
optionally specify a directory in which the resulting output file should be written. By default, the
output file is written to the current directory.

For example, for an FML-dependent VIEW, the compiler is invoked as follows:

viewc -C myview.v

Note: To compile a VIEW32 typed record, run the viewc32 -C command.

For an independent VIEW, use the -n option on the command line, as follows:

viewc -C -n myview.v

The output of the viewc command includes:

One or more COBOL COPY files; for example, MYVIEW.cbl

Header file containing a structure definition that may be used by application programs for
C routines that share the same view

Binary version of the source description file; for example, myview.V

Note: On case-insensitive platforms (for example, Microsoft Windows), the extension used
for the names of such files is vv; for example, myview.vv.

Listing 3-3 provides an example of the COBOL COPY file created by viewc.

3-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

Listing 3-3 COBOL COPY File Example

* VIEWFILE: "myview.v"

* VIEWNAME: "MYVIEW"

 05 FLOAT1 USAGE IS COMP-1.

 05 DOUBLE1 USAGE IS COMP-2.

 05 LONG1 PIC S9(9) USAGE IS COMP-5.

 05 SHORT1 PIC S9(4) USAGE IS COMP-5.

 05 FILLER PIC X(02).

 05 INT1 PIC S9(9) USAGE IS COMP-5.

 05 DEC1.

 07 DEC-EXP PIC S9(4) USAGE IS COMP-5.

 07 DEC-POS PIC S9(4) USAGE IS COMP-5.

 07 DEC-NDGTS PIC S9(4) USAGE IS COMP-5.

* DEC-DGTS is the actual packed decimal value

 07 DEC-DGTS PIC S9(1)V9(16) COMP-3.

 07 FILLER PIC X(07).

 05 CHAR1 PIC X(01).

 05 STRING1 PIC X(20).

 05 FILLER PIC X(01).

 05 L-CARRAY1 OCCURS 2 TIMES PIC 9(4) USAGE IS COMP-5.

* LENGTH OF CARRAY1

 05 C-CARRAY1 PIC S9(4) USAGE IS COMP-5.

* COUNT OF CARRAY1

 05 CARRAY1 OCCURS 2 TIMES PIC X(20).

 05 FILLER PIC X(02).

COBOL COPY files for views must be brought into client programs and service subroutines with
COPY statements.

In the previous example, the compiler includes FILLER files so that the alignment of fields in
COBOL code matches the alignment in C code.

The format of the packed decimal value, DEC1, is composed of five fields. Four fields—DEC-EXP,
DEC-POS, DEC-NDGTS, and FILLER—are used only in C (they are defined in the dec_t type); they
are included in the COBOL record for filler. Do not use these fields in COBOL applications.

Using an FML Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-13

The fifth field, DEC-DGTS, is used by the system to store the actual packed decimal value. You
should use this value within the COBOL program. ATMI calls operate on the DEC-DGTS field to:

Populate the field before the record is passed from a C program to a COBOL program.

Convert the field back to the dec_t type when passed from the COBOL program to the C
program.

The only restriction is that a COBOL program cannot directly pass a record to a C function
outside of the ATMI interface because the decimal formats in the COBOL program and C
function do not match.

Finally, note that the sample COBOL COPY file includes an L-CARRAY1 length field that occurs
twice, once for each occurrence of CARRAY1, and a C-CARRAY1 count field.

viewc creates a C version of the header file that you can use to mix C and COBOL service and/or
client programs.

See Also
“Using an FML Typed Record” on page 3-13

“Using an XML Typed Record” on page 3-20

viewc, viewc32(1) in the Oracle Tuxedo Command Reference

Using an FML Typed Record
The FML interface was designed for use with the C language. For COBOL, routines are provided
that allow you to convert a received FML record type to a COBOL record for processing, and then
convert the record back to FML.

To use FML typed records, you must perform the following steps:

Set the appropriate environment variables.

Describe the potential fields in an FML field table.

Initialize the FML record using FINIT.

Create an FML header file and specify the header file in a #include statement C routines
that share the same view in the application.

FML routines are used to manipulate typed records, including those that convert fielded records to
C structures and vice versa. By using these functions, you can access and update data values

../rfcm/rfcmd.html
../rfcm/rfcmd.html

3-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

without having to know how data is structured and stored. For more information on FML routines,
refer to the Oracle Tuxedo ATMI FML Function Reference.

Setting Environment Variables for an FML Typed Record
To use an FML typed record in an application program, you must set the following environment
variables shown in Table 3-4.

Creating a Field Table File
Field table files are always required when FML records and/or FML-dependent VIEWs are used. A
field table file maps the logical name of a field in an FML record to a string that uniquely identifies
the field.

The following format is used for the description of each field in the FML field table:

$ /* FML structure */

 *base value

 name number type flags comments

Table 3-5 describes the fields that must be specified in the FML field table file for each FML field.

Table 3-4 FML Typed Record Environment Variables

Environment Variable Description

FIELDTBLS or
FIELDTBLS32

Comma-separated list of field table filenames for FML or FML32
typed records, respectively.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of directories to search for the field table
files for FML and FML32, respectively. For Microsoft Windows,
use a semicolon-separated list.

Using an FML Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-15

All fields are optional, and may be included more than once.

Table 3-5 Field Table File Fields

Field Description

*base value Specifies a base for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The *base option allows field numbers to be reused. For
a 16-bit record, the base plus the relevant number must be
greater than or equal to 100 and less than 8191. This field is
optional.

Note: The Oracle Tuxedo system reserves field numbers
1-100 and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FML; field numbers 101-33, 554, and 431, for
FML32.

name Identifier for the field. The value must be a string of up to 256
characters, consisting of alphanumeric and underscore
characters only.

rel-number Relative numeric value of the field. This value is added to the
current base, if specified, to calculate the field number.

type Type of the field. This value can be any of the following: char,
string, short, long, float, double, or carray.

flag Reserved for future use. A dash (-) should be included as a
placeholder.

comment Optional comment.

3-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

Listing 3-4 illustrates a field table file that may be used with the FML-dependent VIEW example.

Listing 3-4 Field Table File for FML VIEW

name number type flags comments

 FLOAT1 110 float - -

 DOUBLE1 111 double - -

 LONG1 112 long - -

 SHORT1 113 short - -

 INT1 114 long - -

 DEC1 115 string - -

 CHAR1 116 char - -

 STRING1 117 string - -

 CARRAY1 118 carray - -

Initializing a Typed Record
An FML typed record must be initialized using the FINIT procedure. The TPINIT procedure takes
the specified FML record (preferably aligned on a full-word boundary) and uses the value
specified in the FML-LENGTH field in the FMLINFO record as the length.

If TPNOCHANGE is set, then any FML record received by a program (rather than created by the
program) is initialized automatically. In this case, it is unnecessary to call FINIT.

Listing 3-5 shows how to perform an initialization.

Listing 3-5 FML/VIEW Conversion

WORKING-STORAGE SECTION.

*RECORD TYPE AND LENGTH

 01 TPTYPE-REC.

 COPY TPTYPE.

*STATUS OF CALL

 01 TPSTATUS-REC.

 COPY TPSTATUS.

* SERVICE CALL FLAGS/RECORD

Using an FML Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-17

 01 TPSVCDEF-REC.

 COPY TPSVCDEF.

* TPINIT FLAGS/RECORD

 01 TPINFDEF-REC.

 COPY TPINFDEF.

* FML CALL FLAGS/RECORD

 01 FML-REC.

 COPY FMLINFO.

*

*

* APPLICATION FML RECORD - ALIGNED

 01 MYFML.

 05 FBFR-DTA OCCURS 100 TIMES PIC S9(9) USAGE IS COMP-5.

* APPLICATION VIEW RECORD

 01 MYVIEW.

 COPY MYVIEW.

.....

* MOVE DATA INTO MYVIEW

.....

* INITIALIZE FML RECORD

 MOVE LENGTH OF MYFML TO FML-LENGTH.

 CALL "FINIT" USING MYFML FML-REC.

 IF NOT FOK

 MOVE "FINIT Failed" TO LOGMSG-TEXT

 PERFORM DO-USERLOG

 PERFORM EXIT-PROGRAM

 END-IF.

* Convert VIEW to FML Record

 SET FUPDATE TO TRUE.

 MOVE "MYVIEW" TO VIEWNAME.

 CALL "FVSTOF" USING MYFML MYVIEW FML-REC.

 IF NOT FOK

 MOVE "FVSTOF Failed" TO LOGMSG-TEXT

 PERFORM DO-USERLOG

 PERFORM EXIT-PROGRAM

 END-IF.

3-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

* CALL THE SERVICE USING THE FML RECORD

 MOVE "FML" TO REC-TYPE IN TPTYPE-REC.

 MOVE SPACES TO SUB-TYPE IN TPTYPE-REC.

 MOVE LENGTH OF MYFML TO LEN.

 CALL "TPCALL" USING TPSVCDEF-REC

 TPTYPE-REC

 MYFML

 TPTYPE-REC

 MYFML

 TPSTATUS-REC.

 IF NOT TPOK

 MOVE "TPCALL MYFML Failed" TO LOGMSG-TEXT

 PERFORM DO-USERLOG

 PERFORM EXIT-PROGRAM

 END-IF.

* CONVERT THE FML RECORD BACK TO MYVIEW

 CALL "FVFTOS" USING MYFML MYVIEW FML-REC.

 IF NOT FOK

 MOVE "FVFTOS Failed" TO LOGMSG-TEXT

 PERFORM DO-USERLOG

 PERFORM EXIT-PROGRAM

 END-IF.

In the preceding listing, the FVSTOF procedure converts an FML record into a VIEW record. The
view is defined by including the copy file generated by the view compiler. The FML-REC record
provides the VIEWNAME and the FML-MODE transfer mode, which can be set to FUPDATE, FOJOIN,
FJOIN, or FCONCAT. The actions associated with these modes are the same as those described in
Fupdate, Fupdate32(3fml), Fojoin, Fojoin32(3fml), Fjoin, Fjoin32(3fml), and
Fconcat, Fconcat32(3fml).

The FVFTOS procedure converts a VIEW record into an FML record. The parameters are the same
as those for an FVSTOF procedure but you do not need to set FML-MODE. The system copies the
fields from the fielded record into the structure, based on the element descriptions in the view. If
there is no corresponding element in the COBOL record for a field in the fielded record, then the
system ignores the field. If there is no corresponding field in the fielded record for an element
specified in the COBOL record, the system copies a null value into the element. The null value
used can be defined for each element in the view description.

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Using an FML Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-19

To store multiple occurrences of a field in the COBOL record, a record element should be defined
with OCCURS. If the number of occurrences of the field in the record is smaller than the number
of occurrences of the element, the extra element slots are assigned null values. Alternatively, if
the number of occurrences of the field in the record is higher than the number of occurrences of
the element, then the surplus occurrences are ignored.

For FML32 and VIEW32, the FINIT32, FVSTOF32, and FVFTOS32 procedures should be used.

Upon successful completion, the system sets the FML-STATUS to FOK. On error, the system sets
the FML-STATUS to a non-zero value.

Creating an FML Header File
In order to use an FML typed record in client programs or service subroutines, you must create an
FML header file and specify it in the application #include statements.

To create an FML header file from a field table file, use the mkfldhdr(1) command. For example,
to create a file called myview.flds.h, enter the following command:

mkfldhdr myview.flds

For FML32 typed records, use the mkfldhdr32 command.

Listing 3-6 shows the myview.flds.h header file that is created by the mkfldhdr command.

Listing 3-6 myview.flds.h Header File

/* fname fldid */
/* ----- ----- */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHAR1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#define CARRAY1 ((FLDID)49270) /* number: 118 type: carray */

Specify the new header file in the #include statement of your application. Once the header file
is included, you can refer to fields by their symbolic names.

3-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

See Also
 “Using a VIEW Typed Record” on page 3-7

“Using an XML Typed Record” on page 3-20

mkfldhdr, mkfldhdr32(1) in the Oracle Tuxedo Command Reference

Using an XML Typed Record
XXML records enable Oracle Tuxedo applications to use XML for exchanging data within and
between applications. Oracle Tuxedo applications can send and receive simple XML records, and
route those records to the appropriate servers. All logic for dealing with XML documents,
including parsing, resides in the application.

An XML document consists of:

A sequence of characters that encode the text of a document

A description of the logical structure of the document and information about that structure

Formatting and filtering for Events processing (which are supported when a STRING record type
is used) are not supported for the XML record type. Therefore, the _tmfilter and _tmformat
pointers in the record type switch for XML records are set to LOW-VALUE.

The XML parser in the Oracle Tuxedo system performs the following routines:

Autodetection of character encodings

Character code conversion

Detection of element content and attribute values

Data type conversion

Data-dependent routing is supported for XML records. The routing of an XML document can be
based on element content, or on element type and an attribute value. The XML parser determines
the character encoding being used; if the encoding differs from the native character sets
(US-ASCII or EBCDIC) used in the Oracle Tuxedo configuration files (UBBCONFIG and
DMCONFIG), the element and attribute names are converted to US-ASCII or EBCDIC.

Attributes configured for routing must be included in an XML document. If an attribute is
configured as a routing criteria but it is not included in the XML document, routing processing
fails.

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Using an XML Typed Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-21

The content of an element and the value of an attribute must conform to the syntax and semantics
required for a routing field value. The user must also specify the type of the routing field value.
XML supports only character data. If a range field is numeric, the content or value of that field is
converted to a numeric value during routing processing.

See Also
 “Using a VIEW Typed Record” on page 3-7

“Using an FML Typed Record” on page 3-13

3-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-1

C H A P T E R 4

Writing Clients

This topic includes the following sections:

Joining an Application

Using Features of the TPINFDEF-REC Record

Leaving the Application

Building Clients

Client Process Examples

Joining an Application
Before an ATMI client can perform any service request, it must join the Oracle Tuxedo ATMI
application, either explicitly or implicitly. Once the client has joined the application, it can initiate
requests and receive replies.

A client joins an application explicitly by calling TPINITIALIZE(3cbl) with the following
signature:

01 TPINFDEF-REC.

 COPY TPINFDEF.

01 USER-DATA-REC PIC X(any-length).

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPINITIALIZE" USING TPINFDEF-REC USER-DATA-REC TPSTATUS-REC.

../rf3cbl/rf3cbl.html

4-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

A client joins an application implicitly by issuing a service request (or any ATMI call) without
first calling TPINITIALIZE. In this case, TPINITIALIZE is called by the Oracle Tuxedo system
on behalf of the client with the SPACES parameter.The TPINFDEF-REC record is a special Oracle
Tuxedo system typed record used by a client program to pass client identification and
authentication information to the system when the client attempts to join the application. It is
defined in a COBOL COPY file, as follows:

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.

 88 TPU-SIG VALUE 1.

 88 TPU-DIP VALUE 2.

 88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.

 88 TPSA-FASTPATH VALUE 1.

 88 TPSA-PROTECTED VALUE 2.

05 DATALEN PIC S9(9) COMP-5.

Table 4-1 lists the fields that are defined in a COBOL COPY file.

Table 4-1 COBOL COPY File Fields

Field Description

USRNAME Name representing the caller. You may want to specify the value
returned by the UNIX command getuid(2) within this field.
The value of USRNAME may contain up to MAXTIDENT
characters (which is defined as 30).

CLTNAME Name of a client for which the semantics are
application-defined. The value of CLTNAME may contain up to
MAXTIDENT characters (which is defined as 30).

PASSWD Application password in unencrypted format that is used by
TPINITIALIZE for validation against the application
password stored in the TUXCONFIG file. PASSWD is a string of
up to MAXTIDENT characters.

Using Featu res o f the TP INFDEF-REC Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-3

The USRNAME and CLTNAME fields are associated with the client process when TPINITIALIZE is
called. Both fields are used for both broadcast notification and the retrieval of administrative
statistics.

See Also
TPINITIALIZE(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

Using Features of the TPINFDEF-REC Record
The ATMI client must explicitly invoke TPINITIALIZE in order to take advantage of the
following features of the TPINFDEF-REC record:

Client Naming

Unsolicited Notification Handling

GRPNAME Resource manager group name with which you want to associate
the client. The client can access an XA-compliant resource
manager as part of a global transaction. The GRPNAME can be a
value up to MAXTIDENT characters (which is defined as 30).
Currently, however, the GRPNAME must be passed as SPACES
specifying that the client is not associated with a resource
manager group and is in the default client group.

NOTIFICATION-FLAG Notification mechanism and system access mode to be used.
Refer to “Unsolicited Notification Handling” on page 4-5 for a
list of valid values.

ACCESS-FLAG System access mode used. Refer to “System Access Mode” on
page 4-6 for a list of values.

DATALEN Length of the application-specific data that will be sent to the
authentication service. For native clients, it is not encoded by the
system, but passed to the authentication service as provided by
the client. For workstation clients, client authentication is
handled by the system, and passed over the network in encrypted
form.

Table 4-1 COBOL COPY File Fields

Field Description

../rf3cbl/rf3cbl.html

4-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

System Access Mode

Resource Manager Association

Client Authentication

Client Naming
When an ATMI client joins an application, the Oracle Tuxedo system assigns a unique client
identifier to it. The identifier is passed to each service called by the client. It can also be used for
unsolicited notification.

You can also assign unique client and usernames of up to 30 characters each, by passing them to
TPINITIALIZE via the TPINFDEF-REC record. The Oracle Tuxedo system establishes a unique
identifier for each process by combining the client and usernames associated with it, with the
logical machine identifier (LMID) of the machine on which the process is running. You may
choose a method for acquiring the values for these fields.

Note: If a process is executing outside the administrative domain of the application (that is, if
it is running on a workstation connected to the administrative domain), the LMID of the
machine used by the Workstation client to access the application is assigned.

Once a unique identifier for a client process is created:

Client authentication can be implemented.

Unsolicited messages can be sent to a specific client or to groups of clients via TPNOTIFY
and TPBROADCAST.

Detailed statistical information can be gathered via tmadmin(1).

Refer to “Writing Event-based Clients and Servers” for information on sending and receiving
unsolicited messages, and the Oracle Tuxedo ATMI C Function Reference for more information
on tmadmin(1).

Figure 4-1 shows how names might be associated with clients accessing an application. In the
example, the application uses the cltname field to indicate a job function.

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Using Featu res o f the TP INFDEF-REC Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-5

Figure 4-1 Client Naming

Unsolicited Notification Handling
Unsolicited notification refers to any communication with an ATMI client that is not an expected
response to a service request (or an error code). For example, an administrator may broadcast a
message to indicate that the system will go down in five minutes.

A client can be notified of an unsolicited message in a number of ways. For example, some
operating systems might send a signal to the client and interrupt its current processing. By default,
the Oracle Tuxedo system checks for unsolicited messages each time an ATMI call is invoked.
This approach, referred to as dip-in, is advantageous because it:

Is supported on all platforms

Does not interrupt the current processing

As some time may elapse between “dip-ins,” the application can call the TPCHKUNSOL call to
check for any waiting unsolicited messages. Refer to “Writing Event-based Clients and Servers”
in Programming An Oracle Tuxedo ATMI Application Using C for more information on the
TPCHKUNSOL call.

When a client joins an application using TPINITIALIZE, it can control how to handle unsolicited
notification messages by defining flags. For client notification, the possible values for
NOTIFICATION-FLAG are defined in Table 4-2.

../pgc/pgevb.html

4-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Refer to TPINITIALIZE(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference for
more information on the TPINFDEF-REC flags.

System Access Mode
An application can access the Oracle Tuxedo system through either of two modes: protected or
fastpath. The ATMI client can request a mode when it joins an application using TPINITIALIZE.
To specify a mode, a client passes one of the following values in the ACCESS-FLAG field of the
TPINFDEF-REC record to TPINITIALIZE.

Table 4-2 Client Notification Flags in a TPINFDEF-REC Record

Flag Description

TPU_SIG Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. The
advantage of using this mode is immediate notification. The
disadvantages include:
• The calling process must have the same UID as the sending

process when you are running a native client. (Workstation
clients do not have this limitation.)

• TPU_SIG is not available on all platforms (specifically, it is
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, the flag is set to TPU_DIP and the
event is logged.

TPU_DIP (default) Select unsolicited notification by dip-in. In this case, the client
can specify the name of the message handling routine using the
TPSETUNSOL call, and check for waiting unsolicited messages
using the TPCHKUNSOL call.

TPU_THREAD Select THREAD notification in a separate thread. This flag is
allowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support
multithreading, it is considered an invalid argument. As a result,
an error is returned and TP-STATUS is set to TPEINVAL.

TPU_IGN Ignore unsolicited notification.

../rf3cbl/rf3cbl.html

Using Featu res o f the TP INFDEF-REC Record

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-7

Resource Manager Association
An application administrator can configure groups for servers associated with a resource
manager, including servers that provide administrative processes for coordinating transactions.
Refer to Setting Up an Oracle Tuxedo Application for information on defining groups.

When joining the application, a client can join a particular group by specifying the name of that
group in the grpname field of TPINFDEF-REC.

Client Authentication
The Oracle Tuxedo system provides security at incremental levels, including operating system
security, application password, user authentication, optional access control lists, mandatory
access control lists, and link-level encryption. Refer to Setting Up an Oracle Tuxedo Application
for information on setting security levels.

The application password security level requires every client to provide an application password
when it joins the application. The administrator can set or change the application password and
must provide it to valid users.

If this level of security is used, Oracle Tuxedo system-supplied client programs, such as ud(),
prompt for the application password. (Refer to Administering an Oracle Tuxedo Application at

Table 4-3 System Access Flags in a TPINFDEF-REC Record

Mode Description

TPSA-PROTECTED Allows ATMI calls within an application to access the Oracle
Tuxedo system internal tables via shared memory, but protects
shared memory against access by application code outside of the
Oracle Tuxedo system libraries. Overrides the value in
UBBCONFIG, except when NO_OVERRIDE is specified. Refer to
Setting Up an Oracle Tuxedo Application for more information
on UBBCONFIG.

TPSA-FASTPATH
(default)

Allows ATMI calls within application code access to Oracle
Tuxedo system internals via shared memory. Does not protect
shared memory against access by application code outside of the
Oracle Tuxedo system libraries. Overrides the value of
UBBCONFIG except when NO_OVERRIDE is specified. Refer to
Setting Up an Oracle Tuxedo Application for more information
on UBBCONFIG.

4-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

Run Time for more information on ud, wud(1).) In turn, application-specific client programs
must include code for obtaining the password from a user. The unencrypted password is placed
in the TPINFDEF-REC record and evaluated when the client calls TPINITIALIZE to join the
application.

Note: The password should not be displayed on the screen.

You can use TPCHKAUTH(3cbl) to determine:

Whether the application requires any authentication

If the application requires authentication, which of the following types of authentication is
needed:

– System authentication based on an application password

– Application authentication based on an application password and user-specific
information

Typically, a client should call TPCHKAUTH before TPINITIALIZE to identify any additional
security information that must be provided during initialization.

Refer to Using Security in CORBA Applications for more information on security programming
techniques.

Leaving the Application
Once all service requests have been issued and replies received, the ATMI client can leave the
application using TPTERM(3cbl). The TPTERM call signature is as follows:

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPTERM" USING TPSTATUS-REC.

Building Clients
To build an executable ATMI client, compile your application with the Oracle Tuxedo system
libraries and all other referenced files using the buildclient(1) command. Include the -C
option to indicate that you are compiling a COBOL program. Use the following syntax for the
buildclient command:

buildclient -C filename.cbl -o filename -f filenames -l filenames

Table 4-4 describes the options to the buildclient command.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Bui ld ing C l ients

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-9

Note: The Oracle Tuxedo libraries are linked in automatically; you do not need to specify any
Oracle Tuxedo libraries on the command line.

The order in which you specify the library files to be link edited is significant: it depends on the
order in which functions are called in the code, and which libraries contain references to those
functions.

By default, the buildclient command invokes the UNIX cc command. You can set the ALTCC
and ALTCFLAGS environment variables to specify an alternative compile command, and to set

Table 4-4 buildclient Options

This Option or Argument .
. .

Allows You to Specify . . .

filename.cbl The COBOL application to be compiled.

-o filename The executable output file. The default name for the output file
is a.out.

-f filenames A list of files that are to be link edited before the Oracle Tuxedo
system libraries are link edited. You can specify -f more than
once on the command line, and you can include multiple
filenames for each occurrence of -f. If you specify a COBOL
program file (file.cbl), it is compiled before it is linked. You
can specify other object files (file.o) separately, or in groups
in an archive file (file.a).

-l filenames A list of files that are to be link edited after the Oracle Tuxedo
system libraries are link edited. You can specify -l more than
once on the command line, and you can include multiple
filenames for each occurrence of -l. If you specify a COBOL
program file (file.cbl), it is compiled before it is linked. You
can specify other object files (file.o) separately, or in groups
in an archive file (file.a).

-r The resource manager has access to libraries that should be link
edited with the executable server. The application administrator
is responsible for predefining all valid resource manager
information in the $TUXDIR/updataobj/RM file using the
buildtms(1) command. Only one resource manager can be
specified. Refer to Setting Up an Oracle Tuxedo Application for
more information.

4-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

flags for the compile and link-edit phases, respectively. By default, ALTCC is set to cobcc, which
uses the MicroFocus Net Express compiler. To use Fujitsu’s NetCOBOL ALTCC must be set, even
on a Windows system. You must set ALTCC=cobcc85 for NetCOBOL. For more information,
refer to “Setting Environment Variables” in Programming An Oracle Tuxedo ATMI Application
Using C.

Note: On a Windows system, the ALTCC and ALTCFLAGS environment variables are not
applicable; setting them will produce unexpected results. You must compile your
application by first using a COBOL compiler, and then passing the resulting object file
to the buildclient command. For example:
buildclient -C -o audit -f audit.o

The following example command line compiles a COBOL program called audit.cbl
and generates an executable file named audit.
buildclient -C –o audit –f audit.cbl

See Also
“Building Servers in Programming An Oracle Tuxedo ATMI Application Using C

buildclient(1) in the Oracle Tuxedo Command Reference

Client Process Examples
The following pseudo-code in Listing 4-1shows how a typical ATMI client process works from
the time at which it joins an application to the time at which it leaves the application.

Listing 4-1 Typical Client Process Paradigm

. . .

Check level of security

CALL TPSETUNSOL to name your handler routine for TPU-DIP

get USRNAME, CLTNAME

prompt for application PASSWD

SET TPU-DIP TO TRUE.

CALL "TPINITIALIZE" USING TPINFDEF-REC

USER-DATA-REC

TPSTATUS-REC.

../pgc/pgenv.html
../pgc/pgserv.html
../rfcm/rfcmd.html

Cl i ent P rocess Examples

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-11

IF NOT TPOK

error processing

. . .

make service call

receive the reply

check for unsolicited messages

. . .

CALL "TPTERM" USING TPSTATUS-REC.

IF NOT TPOK

error processing

. . .

EXIT PROGRAM.

In this example, TPINITIALIZE takes three arguments:

TPINFDEF-REC, a structure defined in the COBOL COPY file

User data (USER-DATA-REC)

TPSTATUS-REC, a status structure defined in the COBOL COPY file

Both TPINITIALIZE and TPTERM return [TPOK] in TP-STATUS IN TPSTATUS-REC upon
success. If either command encounters an error, the command fails and sets TP-STATUS to a value
that indicates the nature of the error. TPSTATUS-REC is defined in a COBOL COPY file. Refer to
“Managing Errors” in Programming An Oracle Tuxedo ATMI Application Using C for possible
TP-STATUS values. Refer to “Introduction to the COBOL Application-Transaction Monitor
Interface” in the Oracle Tuxedo ATMI COBOL Function Reference for a complete list of error
codes that can be returned for each of the ATMI calls.

The following example illustrates how to use the TPINITIALIZE and TPTERM routines. This
example is borrowed from, bankapp, the sample banking application that is provided with the
Oracle Tuxedo system.

Listing 4-2 Joining and Leaving an Application

IDENTIFICATION DIVISION.

PROGRAM-ID. FIG1-3.

AUTHOR. TUXEDO DEVELOPMENT.

../pgc/pgerr.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

4-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

*

WORKING-STORAGE SECTION.

* Tuxedo definitions

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPINFDEF-REC.

COPY TPINFDEF.

* Log messages definitions

01 LOGMSG.

05 FILLER PIC X(10) VALUE "FIG12-3 =>".

05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

*

01 USER-DATA-REC PIC X(75).

**

PROCEDURE DIVISION.

START-HERE.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Now register the client with the system.

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

MOVE SPACES TO PASSWD.

MOVE SPACES TO GRPNAME.

MOVE ZERO TO DATALEN.

SET TPU-DIP TO TRUE.

*

CALL "TPINITIALIZE" USING TPINFDEF-REC

USER-DATA-REC

Cl i ent P rocess Examples

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-13

TPSTATUS-REC.

IF NOT TPOK

MOVE "TPINITIALIZE FAILED" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM EXIT-PROGRAM.

* Application specific code

. . .

*Leave Application

CALL "TPTERM" USING TPSTATUS-REC.

IF NOT TPOK

MOVE "TPTERM FAILED" TO LOGMSG-TEXT

PERFORM DO-USERLOG.

EXIT-PROGRAM.

STOP RUN.

* Log messages to the userlog

DO-USERLOG.

CALL "USERLOG" USING LOGMSG

LOGMSG-LEN

TPSTATUS-REC.

The previous example shows the client process attempting to join the application with a call to
TPINITIALIZE. If an error is encountered, a message is written to the central event log via a call
to USERLOG.

4-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-1

C H A P T E R 5

Writing Servers

This topic includes the following sections:

Oracle Tuxedo System Controlling Program

System-supplied Server and Services

Guidelines for Writing Servers

Defining a Service

Terminating a Service Routine

Advertising and Unadvertising Services

Building Servers

Oracle Tuxedo System Controlling Program
To facilitate the development of ATMI servers, the Oracle Tuxedo system provides a predefined
controlling program for server load modules. When you execute the buildserver -C command,
the controlling program is automatically included as part of the server.

Note: The controlling program that the system provides is a closed abstraction; you cannot
modify it.

In addition to joining and exiting from an application, the predefined controlling program
accomplishes the following tasks on behalf of the server.

Executes the process ignoring any hangups (that is, it ignores the SIGHUP signal).

5-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Initiates the cleanup process on receipt of the standard operating system software
termination signal (SIGTERM). The server is shut down and must be rebooted if needed
again.

Attaches to shared memory for bulletin board services.

Creates a message queue for the process.

Advertises the initial services to be offered by the server. The initial services are either all
the services link edited with the predefined controlling program, or a subset specified by
the Oracle Tuxedo system administrator in the configuration file.

Processes command-line arguments up to the double dash (--), which indicates the end of
system-recognized arguments.

Calls the routine TPSVRINIT to process any command-line arguments listed after the
double dash (--) and optionally to open the resource manager. These command-line
arguments are used for application-specific initialization.

Until ordered to halt, checks its request queue for service request messages.

When a service request message arrives on the request queue, main() performs the
following tasks until ordered to halt:

– If the -r option is specified, records the starting time of the service request.

– Updates the bulletin board to indicate that the server is BUSY.

– Dispatches the service; that is, calls the service subroutine.

When the service returns from processing its input, main() performs the following tasks
until ordered to halt:

– If the -r option is specified, records the ending time of the service request.

– Updates statistics.

– Updates the bulletin board to indicate that the server is IDLE; that is, that the server is
ready for work.

– Checks its queue for the next service request.

When the server is required to halt, calls TPSVRDONE to perform any required shutdown
operations.

As indicated above, the main() routine handles all of the details associated with joining and
exiting from an application, managing records and transactions, and handling communication.

Sys tem-suppl i ed Serve r and Serv ices

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-3

Note: Because the system-supplied controlling program accomplishes the work of joining and
leaving the application, you should not include calls to the TPINITIALIZE or TPTERM
routine in your code. If you do, the routine encounters an error and returns TPEPROTO in
TP-STATUS. For more information on the TPINITIALIZE or TPTERM routine, refer to
“Writing Clients” in Programming Oracle Tuxedo ATMI Applications Using C.

System-supplied Server and Services
The controlling program provides one system-supplied ATMI server, AUTHSVR, and two
subroutines, TPSVRINIT and TPSVRDONE. The default versions of all three, which are described
in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions of TPSVRINIT and TPSVRDONE, remember that
the default versions of these two routines call tx_open() and tx_close(), respectively.
If you write a new version of TPSVRINIT that calls tpopen() rather than tx_open(),
you should also write a new version of TPSVRDONE that calls tpclose(). In other words,
both routines in an open/close pair must belong to the same set.

System-supplied Server: AUTHSVR()
You can use the AUTHSVR(5) server to provide individual client authentication for an application.
The TPINITIALIZE routine calls this server when the level of security for the application is
TPAPPAUTH, USER_AUTH, ACL, or MANDATORY_ACL.

The service in AUTHSVR looks in the USER-DATA-REC record for a user password (not to be
confused with the application password specified in the PASSWD field of the TPINFDEF-REC
record). By default, the system takes the string in data and searches for a matching string in the
/etc/passwd file.

When called by a native-site client, TPINITIALIZE forwards the USER-DATA-REC record as it is
received. This means that if the application requires the password to be encrypted, the client
program must be coded accordingly.

When called by a Workstation client, TPINITIALIZE encrypts the data before sending it across
the network.

System-supplied Services: TPSVRINIT Routine
When a server is booted, the Oracle Tuxedo system controlling program calls TPSVRINIT(3cbl)
during its initialization phase, before handling any service requests.

../rf3cbl/rf3cbl.html
../rf5/rf5.html
../pgc/pgclt.html

5-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

If an application does not provide a custom version of this routine within the server, the system
uses the default routine provided by the controlling program, which opens the resource manager
and logs an entry in the central event log indicating that the server has successfully started. The
central user log is an automatically generated file to which processes can write messages by
calling the USERLOG(3cbl) routine. Refer to “Managing Errors” in Programming Oracle Tuxedo
ATMI Applications Using C for more information on the central event log.

You can use the TPSVRINIT routine for any initialization processes that might be required by an
application, such as the following:

Receiving command-line options

Opening a database

The following sections provide code samples showing how these initialization tasks are
performed through calls to TPSVRINIT. Although it is not illustrated in the following examples,
message exchanges can also be performed within this routine. However, TPSVRINIT fails if it
returns with asynchronous replies pending. In this case, the replies are ignored by the Oracle
Tuxedo system, and the server exits gracefully.

You can also use the TPSVRINIT routine to start and complete transactions, as described in
“Managing Errors” in Programming Oracle Tuxedo ATMI Applications Using C.

Use the following signature to call the TPSVRINIT :routine

LINKAGE SECTION.

01 CMD-LINE.

 05 ARGC PIC 9(4) COMP-5.

 05 ARGV.

 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.

01 TPSTATUS-REC.

 COPY TPSTATUS.

PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC.

* User code

EXIT PROGRAM.

Receiving Command-line Options
When a server is booted, its first task is to read the server options specified in the configuration
file. The options are passed through ARGC, which contains the number of arguments, and ARGV,
which contains the arguments separated by a single SPACE character. The predefined controlling
program then calls TPSVRINIT.

../rf3cbl/rf3cbl.html
../pgc/pgerr.html
../pgc/pgerr.html

Sys tem-suppl i ed Serve r and Serv ices

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-5

The following code example shows how the TPSVRINIT routine is used to receive command-line
options.

Listing 5-1 Receiving Command-line Options in TPSVRINIT

IDENTIFICATION DIVISION.

PROGRAM-ID. TPSVRINIT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. USL-486.

OBJECT-COMPUTER. USL-486.

*

DATA DIVISION.

WORKING-STORAGE SECTION.

*

LINKAGE SECTION.

*

01 CMD-LINE.

05 ARGC PIC 9(4) COMP-5.

05 ARGV.

10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.

01 SERVER-INIT-STATUS.

COPY TPSTATUS.

*

PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.

**

* ARGC indicates the number of arguments and ARGV contains the

* arguments separated by a single SPACE.

**

A-START.

*

. . . INSPECT the ARGV line and process arguments

IF arguments are invalid

SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE.

ELSE arguments are OK continue

SET TPOK IN SERVER-INIT-STATUS TO TRUE.

5-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

*

EXIT PROGRAM.

Opening a Resource Manager
The following example illustrates another common use of TPSVRINIT: opening a resource
manager. The Oracle Tuxedo system provides routines to open a resource manager,
TPOPEN(3cbl) and TXOPEN(3cbl). It also provides the complementary routines,
TPCLOSE(3cbl) and TXCLOSE(3cbl). Applications that use these routines to open and close
their resource managers are portable in this respect. They work by accessing the resource
manager instance-specific information that is available in the configuration file.

These routine calls are optional and can be used in place of the resource manager specific calls
that are sometimes part of the Data Manipulation Language (DML) if the resource manager is a
database. Note the use of the USERLOG(3cbl) routine to write to the central event log.

Note: To create an initialization function that both receives command-line options and opens a
database, combine the following example with the previous example.

Listing 5-2 Opening a Resource Manager in TPSVRINIT

IDENTIFICATION DIVISION.

PROGRAM-ID. TPSVRINIT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. USL-486.

OBJECT-COMPUTER. USL-486.

*

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TPSTATUS-REC.

COPY TPSTATUS.

01 LOGMSG PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

*

LINKAGE SECTION.

01 CMD-LINE.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Sys tem-suppl i ed Serve r and Serv ices

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-7

05 ARGC PIC 9(4) COMP-5.

05 ARGV.

10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.

01 SERVER-INIT-STATUS.

COPY TPSTATUS.

*

PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.

A-START.

. . . INSPECT the ARGV line and process arguments

IF arguments are invalid

MOVE "Invalid Arguments Passed" TO LOGMSG

PERFORM EXIT-NOW.

ELSE arguments are OK continue

CALL "TPOPEN" USING TPSTATUS-REC.

IF NOT TPOK

MOVE "TPOPEN Failed" TO LOGMSG

ELSE IF TPESYSTEM

MOVE "System /T error has occurred" TO LOGMSG

ELSE IF TPEOS

MOVE "An Operating System error has occurred" TO LOGMSG

ELSE IF TPEPROTO

MOVE "TPOPEN was called in an improper Context" TO LOGMSG

ELSE IF TPERMERR

MOVE "Resource manager Failed to Open" TO LOGMSG

PERFORM EXIT-NOW.

SET TPOK IN SERVER-INIT-STATUS TO TRUE.

EXIT PROGRAM.

EXIT-NOW.

SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE

MOVE 50 LOGMSG-LEN.

CALL "USERLOG" USING LOGMSG

LOGMSG-LEN

TPSTATUS-REC.

EXIT PROGRAM.

5-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

To guard against errors that may occur during initialization, TPSVRINIT can be coded to allow
the server to exit gracefully before starting to process service requests.

System-supplied Services: TPSVRDONE Routine
The TPSVRDONE routine calls TPCLOSE to close the resource manager, similarly to the way
TPSVRINIT calls TPOPEN to open it.

Use the following signature to call the TPSVRDONE routine:

 01 TPSTATUS-REC.

 COPY TPSTATUS.

 PROCEDURE DIVISION.

* User code

 EXIT PROGRAM.

The following example illustrates how to use the TPSVRDONE routine to close a resource manager
and exit gracefully.

Listing 5-3 Closing a Resource Manager with TPSVRDONE

IDENTIFICATION DIVISION.

PROGRAM-ID. TPSVRDONE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. USL-486.

OBJECT-COMPUTER. USL-486.

*

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TPSTATUS-REC.

COPY TPSTATUS.

01 LOGMSG PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

01 SERVER-DONE-STATUS.

COPY TPSTATUS.

PROCEDURE DIVISION.

A-START.

CALL "TPCLOSE" USING TPSTATUS-REC.

Guide l ines fo r Wr i t ing Se rve rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-9

IF NOT TPOK

MOVE "TPCLOSE Failed" TO LOGMSG

ELSE IF TPESYSTEM

MOVE "System /T error has occurred" TO LOGMSG

ELSE IF TPEOS

MOVE "An Operating System error has occurred" TO LOGMSG

ELSE IF TPEPROTO

MOVE "TPCLOSE was called in an improper Context" TO LOGMSG

ELSE IF TPERMERR

MOVE "Resource manager Failed to Open" TO LOGMSG

PERFORM EXIT-NOW.

SET TPOK IN SERVER-DONE-STATUS TO TRUE.

EXIT PROGRAM.

EXIT-NOW.

SET TPEINVAL IN SERVER-DONE-STATUS TO TRUE

MOVE 50 LOGMSG-LEN.

CALL "USERLOG" USING LOGMSG

LOGMSG-LEN

TPSTATUS-REC.

EXIT PROGRAM.

Guidelines for Writing Servers
Because the communication details are handled by the Oracle Tuxedo system controlling
program, you can concentrate on the application service logic rather than communication
implementation. For compatibility with the system-supplied controlling program, however,
application services must adhere to certain conventions. These conventions are referred to,
collectively, as the service template for coding service routines. They are summarized in the
following list.

A request/response service can receive only one request at a time and can send only one
reply.

When processing a request, a request/response service works only on that request. It can
accept another only after it has either sent a reply to the requester or forwarded the request
to another service for additional processing.

Service routines must terminate by calling either the TPRETURN or TPFORWAR routine.

5-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

When communicating with another server via TPACALL, the initiating service must either
wait for all outstanding replies or invalidate them with TPCANCEL before calling TPRETURN
or TPFORWAR.

Def in ing a Serv i ce

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-11

Defining a Service
When writing a service routine, you must call the TPSVCSTART(3cbl) routine before any others.
This routine is used to retrieve the service’s parameters and data. Use the following signature to
call the TPSVCSTART routine

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

The service information data structure is defined as TPSVCDEF in the COBOL COPY file. It
includes the following members:

 05 COMM-HANDLE PIC S9(9) COMP-5.

 05 TPBLOCK-FLAG PIC S9(9) COMP-5.

 88 TPBLOCK VALUE 0.

 88 TPNOBLOCK VALUE 1.

 05 TPTRAN-FLAG PIC S9(9) COMP-5.

 88 TPTRAN VALUE 0.

 88 TPNOTRAN VALUE 1.

 05 TPREPLY-FLAG PIC S9(9) COMP-5.

 88 TPREPLY VALUE 0.

 88 TPNOREPLY VALUE 1.

 05 TPACK-FLAG PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.

 88 TPNOACK VALUE 0.

 88 TPACK VALUE 1.

 05 TPTIME-FLAG PIC S9(9) COMP-5.

 88 TPTIME VALUE 0.

 88 TPNOTIME VALUE 1.

 05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.

 88 TPNOSIGRSTRT VALUE 0.

 88 TPSIGRSTRT VALUE 1.

 05 TPGETANY-FLAG PIC S9(9) COMP-5.

 88 TPGETHANDLE VALUE 0.

 88 TPGETANY VALUE 1.

../rf3cbl/rf3cbl.html

5-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

 05 TPSENDRECV-FLAG PIC S9(9) COMP-5.

 88 TPSENDONLY VALUE 0.

 88 TPRECVONLY VALUE 1.

 05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.

 88 TPCHANGE VALUE 0.

 88 TPNOCHANGE VALUE 1.

 05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.

 88 TPREQRSP VALUE 0.

 88 TPCONV VALUE 1.

*

 05 APPKEY PIC S9(9) COMP-5.

 05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.

 05 SERVICE-NAME PIC X(127).

The following table describes the members of a TPSVCDEF data structure.

Table 5-1 TPSVCDEF Data Structure

Field Description

COMM-HANDLE Specifies, to the service routine, the communication handle used
by the requesting process to invoke the service.

SETTINGS
(TPBLOCK-FLAG
 TPTRAN-FLAG, etc.)

Miscellaneous settings that control server characteristics. For
more information on the settings, refer to the Oracle Tuxedo
ATMI COBOL Function Reference.

APPKEY Reserved for use by the application. If application-specific
authentication is part of your design, the application-specific
authentication server, which is called at the time a client joins
the application, should return a client authentication key, as well
as a success or failure indication. The Oracle Tuxedo system
holds the APPKEY on behalf of the client and passes the
information to subsequent service requests in this field. By the
time the APPKEY is passed to the service, the client has already
been authenticated. However, the APPKEY field can be used
within the service to identify the user invoking the service or
some other parameters associated with the user.

CLIENTID Identifier of the client that originates a request.

SERVICE-NAME Name of the service routine used by the requesting process to
invoke the service.

Def in ing a Serv i ce

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-13

For a description of the TPTYPE-REC data structure, refer to “Defining Typed Records” on
page 3-6.

You must code the service in such a way that when it accesses the request data to be placed in
DATA-REC, it expects the data to be in a record of the type defined for the service in the
configuration file. Upon successful return, DATA-REC contains the data received and LEN contains
the actual number of bytes moved.

The following sample listing shows a typical service definition.

Listing 5-4 Typical Service Definition

IDENTIFICATION DIVISION.

PROGRAM-ID. BUYSR.

AUTHOR. TUXEDO DEVELOPMENT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. USL-486.

OBJECT-COMPUTER. USL-486.

*

INPUT-OUTPUT SECTION.

. . .

**

* Tuxedo definitions

**

01 TPSVCRET-REC.

COPY TPSVCRET.

*

01 TPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

**

* Log message definitions

5-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

**

01 LOGMSG.

05 LOGMSG-TEXT PIC X(50).

*

01 LOGMSG-LEN PIC S9(9) COMP-5.

**

* User defined data records

**

01 CUST-REC.

COPY CUST.

*

LINKAGE SECTION.

*

PROCEDURE DIVISION.

*

 START-BUYSR.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

OPEN files or DATABASE

**

* Get the data that was sent by the client

**

MOVE "Server Started" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

MOVE LENGTH OF CUST-REC TO LEN IN TPTYPE-REC.

CALL "TPSVCSTART" USING TPSVCDEF-REC

TPTYPE-REC

CUST-REC

TPSTATUS-REC.

IF TPTRUNCATE

MOVE "Input data exceeded CUST-REC length" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM A-999-EXIT.

IF NOT TPOK

MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM A-999-EXIT.

IF REC-TYPE NOT = "VIEW"

MOVE "REC-TYPE in not VIEW" TO LOGMSG-TEXT

Def in ing a Serv i ce

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-15

PERFORM DO-USERLOG

PERFORM A-999-EXIT.

IF SUB-TYPE NOT = "cust"

MOVE "SUB-TYPE in not cust" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM A-999-EXIT.

. . .

 set consistency level of the transaction

. . .

**

* Exit

**

A-999-EXIT.

MOVE "Exiting" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

SET TPFAIL TO TRUE.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC

TPTYPE-REC BY TPTYPE-REC

DATA-REC BY CUST-REC

TPSTATUS-REC BY TPSTATUS-REC.

**

* Write to userlog

**

DO-USERLOG.

CALL "USERLOG" USING LOGMSG

LOGMSG-LEN

TPSTATUS-REC.

In the preceding example, the request record on the client side was originally sent with REC-TYPE
set to VIEW and the SUB-TYPE set to cust. The BUYSR service is defined in the configuration file
as a service that knows about the VIEW typed record. BUYSR retrieves the data record by accessing
the CUST-REC record. The consistency level of the transaction is specified after this record is
retrieved but before the first database access is made. For more details on transaction consistency
levels, refer to “Writing Global Transactions” in Programming Oracle Tuxedo ATMI
Applications Using C.

../pgc/pgglob.html

5-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

Note: The TPGPRIO and TPSPRIO routines, used for getting and setting priorities, respectively,
are described in detail in “Setting and Getting Message Priorities” in Programming
Oracle Tuxedo ATMI Applications Using C.

The example code in this section shows how a service called PRINTER tests the priority level of
the request just received using the TPGPRIO routine. Then, based on the priority level, the
application routes the print job to the appropriate destination printer RNAME.

Next, the contents of INPUT-REC are sent to the printer. The application queries TPSVCDEF-REC
to determine whether a reply is expected. If so, it returns the name of the destination printer to the
client. For more information on the TPRETURN routine, refer to “Terminating a Service Routine”
on page 5-19.

Listing 5-5 Checking the Priority of a Received Request

IDENTIFICATION DIVISION.

PROGRAM-ID. PRINTSR.

AUTHOR. TUXEDO DEVELOPMENT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. USL-486.

OBJECT-COMPUTER. USL-486.

*

INPUT-OUTPUT SECTION.

. . .

**

* Tuxedo definitions

**

01 TPSVCRET-REC.

COPY TPSVCRET.

*

01 TPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

../pgc/pgreq.html

Def in ing a Serv i ce

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-17

*

01 TPPRIDEF-REC.

COPY TPPRIDEF.

**

* Log message definitions

**

01 LOGMSG.

05 FILLER PIC S9(9) VALUE

"TP-STATUS=".

05 LOG-TP-STATUS PIC S9(9).

05 LOGMSG-TEXT PIC X(50).

*

01 LOGMSG-LEN PIC S9(9) COMP-5.

**

* User defined data records

**

01 INPUT-REC PIC X(1000).

01 PRNAME PIC X(20).

*

LINKAGE SECTION.

*

PROCEDURE DIVISION.

*

START-PRINTSR.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

OPEN files or DATABASE

**

* Get the data that was sent by the client

**

MOVE ZERO to TP-STATUS.

MOVE "Server Started" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

MOVE LENGTH OF INPUT-REC TO LEN.

CALL "TPSVCSTART" USING TPSVCDEF-REC

TPTYPE-REC

INPUT-REC

TPSTATUS-REC.

IF NOT TPOK

5-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT

PERFORM DO-USERLOG

SET TPFAIL TO TRUE.

PERFORM A-999-EXIT.

. . .

Check other parameters

CALL "TPGPRIO" USING TPPRIDEF-REC

TPSTATUS-REC.

IF NOT TPOK

MOVE "TPGPRIO Failed" TO LOGMSG-TEXT

PERFORM DO-USERLOG

SET TPFAIL TO TRUE.

PERFORM A-999-EXIT.

IF PRIORITY < 20

MOVE "BIGJOBS" TO RNAME

ELSE IF PRIORITY < 60

MOVE "MEDJOBS" TO RNAME

ELSE

MOVE "HIGHSPEED" TO RNAME.

. . .

Print INPUT-REC on RNAME printer

. . .

IF TPNOREPLY

MOVE SPACES TO REC-TYPE

MOVE 0 TO LEN

SET TPSUCCESS TO TRUE

PERFORM A-999-EXIT

IF TPREPLY

MOVE "STRING" TO REC-TYPE

MOVE LENGTH OF PRNAME TO LEN

SET TPSUCCESS TO TRUE

PERFORM A-999-EXIT.

**

* Exit

**

 A-999-EXIT.

MOVE "Exiting" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

Terminat ing a Se rv ice Rout ine

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-19

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC

TPTYPE-REC buTPTYPE-REC

DATA-REC BY PRNAME

TPSTATUS-REC BY TPSTATUS-REC.

**

* Write to userlog

**

 DO-USERLOG.

MOVE TP-STATUS TO LOG-TP-STATUS.

CALL "USERLOG" USING LOGMSG

LOGMSG-LEN

TPSTATUS-REC.

Terminating a Service Routine
The TPRETURN(3cbl), TPCANCEL(3cbl), and TPFORWAR(3cbl) routines specify that a service
routine has completed with one of the following actions:

TPRETURN sends a reply to the calling client.

TPCANCEL cancels the current request.

TPFORWAR forwards a request to another service for further processing.

Sending Replies
The TPRETURN(3cbl) and TPFORWAR(3cbl) calls are COBOL copy files that contain EXIT
statements to mark the end of a service routine and send a message to the requester or forward
the request to another service, respectively. Use the following signature to call the TPRETURN
routine:

 01 TPSVCRET-REC.

 COPY TPSVCRET.

 01 TPTYPE-REC.

 COPY TPTYPE.

 01 DATA-REC.

 COPY User Data.

 01 TPSTATUS-REC.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

5-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

 COPY TPSTATUS.

 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC

 TPTYPE-REC BY TPTYPE-REC

 DATA-REC BY DATA-REC

 TPSTATUS-REC BY TPSTATUS-REC.

Note: You must use COPY here instead of CALL to ensure that the EXIT statement is called
properly, and the COBOL service routine returns control to the Oracle Tuxedo system.

The following listing provides the TPSVCRET-REC record signature:

 05 TPRETURN-VAL PIC S9(9) COMP-5.

 88 TPSUCCESS VALUE 0.

 88 TPFAIL VALUE 1.

 88 TPFAIL VALUE 2.

 05 APPL-CODE PIC S9(9) COMP-5.

Terminat ing a Se rv ice Rout ine

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-21

Table 5-2 describes the members of a TPSVCRET-REC data structure.

Refer to “Defining a Service” on page 5-11 for a description of the TPTYPE-REC record.

The primary function of a service routine is to process a request and return a reply to a client
process. It is not necessary, however, for a single service to do all the work required to perform
the requested function. A service can act as a requester and pass a request call to another service
the same way a client issues the original request: through calls to TPCALL or TPACALL.

Note: The TPCALL and TPACALL routines are described in detail in “Writing Request/Response
Clients and Servers” in Programming Oracle Tuxedo ATMI Applications Using C.

Table 5-2 TPSVCRET-REC Data Structure Members

Member Description

TP-RETURN-VAL Indicates whether or not the service has completed successfully
on an application-level. The value is an integer that is
represented by a symbolic name. Valid settings include:
• TPSUCCESS—the calling routine succeeded. The routine

stores the reply message in the caller’s record. If there is a
reply message, it is in the caller’s record.

• TPFAIL (default)—the service terminated unsuccessfully.
The routine reports an error message to the client process
waiting for the reply. In this case, the client’s TPCALL or
TPGETRPLY routine call fails and the system sets the
TP-STATUS variable to TPESVCFAIL to indicate an
application-defined failure. If a reply message was
expected, it is available in the caller’s record.

• TPEXIT—the service terminated unsuccessfully. The
routine reports an error message to the client process waiting
for the reply, and exits.

For a description of the effect that the value of this argument has
on global transactions, refer to “Writing Global Transactions” in
Programming Oracle Tuxedo ATMI Applications Using C.

APPLC-CODE Returns an application-defined return code to the caller. The
client can access the value returned in APPLC-CODE by
querying APPL-RETURN-CODE IN TPSTATUS-REC. The
routine returns this code regardless of success or failure.

../pgc/pgreq.html
../pgc/pgreq.html
../pgc/pgglob.html

5-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

When TPRETURN is called, control always returns to the controlling program. If a service has sent
requests with asynchronous replies, it must receive all expected replies or invalidate them with
TPCANCEL before returning control to the controlling program. Otherwise, the outstanding replies
are automatically dropped when they are received by the Oracle Tuxedo system controlling
program, and an error is returned to the caller.

If the client invokes the service with TPCALL, after a successful call to TPRETURN, the reply
message is available in the O-DATA-REC record. If TPACALL is used to send the request, and
TPRETURN returns successfully, the reply message is available in the DATA-REC record of
TPGETRPLY.

If a reply is expected and TPRETURN encounters errors while processing its arguments, it sends a
failed message to the calling process. The caller detects the error by checking the value placed
in TP-STATUS. In the case of failed messages, the system sets the TP-STATUS to TPESVCERR. This
situation takes precedence over the value of APPL-RETURN-CODE IN TPSTATUS-REC. If this type
of error occurs, no reply data is returned, and both the contents and length of the caller’s output
record remain unchanged.

If TPRETURN returns a message in a record of an unknown type or a record that is not allowed by
the caller (that is, if the call is made with TPNOCHANGE), the system returns TPEOTYPE in
TP-STATUS. In this case, application success or failure cannot be determined, and the contents
and length of the output record remain unchanged.

The value returned in APPL-RETURN-CODE IN TPSTATUS-REC is not relevant if the TPRETURN
routine is invoked and a timeout occurs for the call waiting for the reply. This situation takes
precedence over all others in determining the value that is returned in TP-STATUS. In this case,
TP-STATUS is set to TPETIME and the reply data is not sent, leaving the contents and length of the
caller’s reply record unchanged. There are two types of timeouts in the Oracle Tuxedo system:
blocking and transaction timeouts (discussed in “Writing Global Transactions” in Programming
Oracle Tuxedo ATMI Applications Using C).

The example code in this section shows the TRANSFER service that is part of the XFER server.
Basically, the TRANSFER service makes synchronous calls to the WITHDRAWAL and DEPOSIT
services. It allocates a separate record for the reply message since it must use the request record
for the calls to both the WITHDRAWAL and the DEPOSIT services. If the call to WITHDRAWAL fails,
the service writes the message cannot withdraw on the status line of the form and sets
TP-RETURN-VAL IN TPSVCRET-REC of the TPRETURN routine to TPFAIL. If the call succeeds,
the debit balance is retrieved from the reply record.

Note: In the following example, the application moves the identifier for the “destination
account” (which is retrieved from the cr_id variable) to the zeroth occurrence of the

../pgc/pgglob.html

Terminat ing a Se rv ice Rout ine

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-23

ACCOUNT_ID field in the transf fielded record. This move is necessary because this
occurrence of the field in an FML record is used for data-dependent routing. Refer to
Setting Up an Oracle Tuxedo Application for more information.

A similar scenario is followed for the call to DEPOSIT. On success, the service sets the
TP-RETURN-VAL IN TPSVCRET-REC to TPSUCCESS, returning the pertinent account information
to the status line.

Listing 5-6 TPRETURN Routine

IDENTIFICATION DIVISION.
PROGRAM-ID. TRANSFER.
AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

*
INPUT-OUTPUT SECTION.
. . .

**
* Tuxedo definitions
**

01 TPSVCRET-REC.
COPY TPSVCRET.

*
01 TPTYPE-REC.
COPY TPTYPE.

*
01 TPSTATUS-REC.
COPY TPSTATUS.

*
01 TPSVCDEF-REC.
COPY TPSVCDEF.

**
* User defined data records
**

01 TRANS-REC.
COPY TRANS-AMOUNT.

*
LINKAGE SECTION.

*
PROCEDURE DIVISION.

*
START-TRANSFER.

**

5-24 Programming an Oracle Tuxedo ATMI Application Using COBOL

* Get the data that was sent by the client
**

MOVE LENGTH OF TRANS-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC

TPTYPE-REC
TRANS-REC
TPSTATUS-REC.

IF NOT TPOK
MOVE "Transaction Encountered An Error" TO STATUS-LINE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC

TPTYPE-REC BY TPTYPE-REC
DATA-REC BY TRANS-REC
TPSTATUS-REC BY TPSTATUS-REC.

ELSE
. . . Check other parameters

**
* must have a valid debit and credit account number
**

CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-DEBIT-ACCOUNT IN TRANS-REC.

IF TRANS-DEBIT-ACCOUNT is not valid
MOVE "Invalid Debit Account Number"

TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING

DATA-REC BY TRANS-REC.

CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-CREDIT-ACCOUNT IN TRANS-REC.

IF TRANS-CREDIT-ACCOUNT is not valid
MOVE "Invalid Credit Account Number"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING

DATA-REC BY TRANS-REC.
**
* Check amount to transfer
**

IF TRANS-AMOUNT IN TRANS-REC < 0
MOVE "Invalid Transfer Amount Requested"

TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING

DATA-REC BY TRANS-REC.
**
* Make Withdrawal using another service
**

MOVE "WITHDRAWAL" TO SERVICE-NAME.

Terminat ing a Se rv ice Rout ine

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-25

. . . set other TPCALL parameters
CALL "TPCALL" USING . . .
IF NOT TPOK

MOVE "Cannot withdraw from debit account"
TO STATUS-LINE IN TRANS-REC

SET TPFAIL TO TRUE
COPY TPRETURN REPLACING

DATA-REC BY TRANS-REC.
**
* Make Deposit using another service
**

MOVE "DEPOSIT" TO SERVICE-NAME.
. . . set other TPCALL parameters
CALL "TPCALL" USING . . .
IF NOT TPOK

MOVE "Cannot Deposit into credit account"
TO STATUS-LINE IN TRANS-REC

SET TPFAIL TO TRUE
COPY TPRETURN REPLACING

DATA-REC BY TRANS-REC.
. . .
MOVE "Transfer completed" TO STATUS-LINE IN TRANS-REC
. . . MOVE all the data into TRANS-REC needed by the client
SET TPSUCCESS TO TRUE
COPY TPRETURN REPLACING

DATA-REC BY TRANS-REC.

Invalidating Descriptors
If a service calling TPGETRPLY (described in detail in “Writing Request/Response Clients and
Servers” in Programming Oracle Tuxedo ATMI Applications Using C) fails with TPETIME and
decides to cancel the request, it can invalidate the descriptor with a call to TPCANCEL(3cbl). If
a reply subsequently arrives, it is silently discarded.

TPCANCEL cannot be used for transaction replies (that is, for replies to requests made without the
TPNOTRAN flag set). Within a transaction, TPABORT(3cbl) does the same job of invalidating the
transaction call descriptor.

Listing 5-7 shows how to invalidate a reply after timing out.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgreq.html
../pgc/pgreq.html

5-26 Programming an Oracle Tuxedo ATMI Application Using COBOL

Listing 5-7 Invalidating a Reply After Timing Out

. . . Set up parameters to TPACALL

SET TPNOTRAN TO TRUE.

CALL "TPACALL" USING TPSVCDEF-REC

TPTYPE-REC

DEBIT-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

. . .

CALL "TPGETRPLY" USING TPSVCDEF-REC

TPTYPE-REC

DEBIT-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

IF TPETIME

CALL "TPCANCEL" TPSVCDEF-REC

TPSTATUS-REC.

. . .

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC

TPTYPE-REC BY TPTYPE-REC

DATA-REC BY DEBIT-REC

TPSTATUS-REC BY TPSTATUS-REC.

Forwarding Requests
The TPFORWAR(3cbl) routine allows a service to forward a request to another service for further
processing.

Use the following signature to call the TPFORWAR routine:

01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

../rf3cbl/rf3cbl.html

Terminat ing a Se rv ice Rout ine

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-27

01 DATA-REC.

 COPY User Data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

COPY TPFORWAR REPLACING TPSVCDEF-REC BY TPSVCDEF-REC

 TPTYPE-REC BY TPTYPE-REC

 DATA-REC BY DATA-REC

 TPSTATUS-REC BY TPSTATUS-REC.

For descriptions of the TPSVCDEF-REC and TPTYPE-REC records, refer to “Defining a Service”
on page 5-11.

The functionality of TPFORWAR differs from a service call: a service that forwards a request does
not expect a reply. The responsibility for providing the reply is passed to the service to which the
request has been forwarded. The latter service sends the reply to the process that originated the
request. It becomes the responsibility of the last server in the forward chain to send the reply to
the originating client by invoking TPRETURN.

Figure 5-1 shows one possible sequence of events when a request is forwarded from one service
to another. Here a client initiates a request using the TPCALL routine and the last service in the
chain (SVC_C) provides a reply using the TPRETURN routine.

Figure 5-1 Forwarding a Request

Service routines can forward requests at specified priorities in the same manner that client
processes send requests, by using the TPSPRIO routine.

5-28 Programming an Oracle Tuxedo ATMI Application Using COBOL

When a process calls TPFORWAR, the system that supplied the controlling program regains control,
and the server process is free to do more work.

Note: If a server process is acting as a client and a reply is expected, the server is not allowed
to request services from itself. If the only available instance of the desired service is
offered by the server process making the request, the call fails, indicating that a recursive
call cannot be made. However, if a service routine sends a request (to itself) with the
TPNOREPLY communication flag set, or if it forwards the request, the call does not fail
because the service is not waiting for itself.

Calling TPFORWAR can be used to indicate success up to that point in processing the request. If no
application errors have been detected, you can invoke TPFORWAR, otherwise, you can call
TPRETURN with TP-RETURN-VAL IN TPSVCRET-REC set to TPFAIL.

The following example illustrates how the service sends its data record to the DEPOSIT service
by calling TPFORWAR. If the new account is added successfully, the branch record is updated to
reflect the new account, and the data record is forwarded to the DEPOSIT service. On failure,
TPRETURN is called with TP-RETURN-VAL IN TPSVCRET-REC set to TPFAIL and the failure is
reported on the status line of the form.

Listing 5-8 How to Use TPFORWAR

. . .
**
* Get the data that was sent by the client
**

MOVE LENGTH OF TRANS-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC

TPTYPE-REC
TRANS-REC
TPSTATUS-REC.

IF NOT TPOK
MOVE "Transaction Encountered An Error" TO STATUS-LINE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING

 DATA-REC BY TRANS-REC.
ELSE

 . . . Check other parameters
**
* Insert new account record
**

CALL "ADD-NEW-ACCOUNT-FUNCTION" USING TRANS-ACCOUNT IN TRANS-REC.
IF Adding New Account Failed

MOVE "Account not added" TO STATUS-LINE IN TRANS-REC

Adver t i s ing and Unadver t i s ing Se rv ices

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-29

SET TPFAIL TO TRUE
COPY TPRETURN REPLACING

DATA-REC BY TRANS-REC.
**
* Forward record to the DEPOSIT service to add initial
* balance into account
**

MOVE "DEPOSIT" TO SERVICE-NAME.
. . . set other TPFORWAR parameters
COPY TPFORWAR REPLACING

DATA-REC BY TRANS-REC.

Advertising and Unadvertising Services
When a server is booted, it advertises the services it offers based on the values specified for the
CLOPT parameter in the configuration file.

Note: The services that a server may advertise are initially defined when the buildserver
command is executed. The -s option allows a comma-separated list of services to be
specified. It also allows you to specify a routine with a name that differs from that of the
advertised service that is to be called to process the service request. Refer to the
buildserver(1) in the Oracle Tuxedo Command Reference for more information.

The default specification calls for the server to advertise all services with which it was built. Refer
to the UBBCONFIG(5) or servopts(5) reference page in the File Formats, Data Descriptions,
MIBs, and System Processes Reference for more information.

Because an advertised service uses a service table entry in the bulletin board, and can therefore
be resource-expensive, an application may boot its servers in such a way that only a subset of the
services offered are available. To limit the services available in an application, define the CLOPT
parameter, within the appropriate entry in the SERVERS section of the configuration file, to
include the desired services in a comma-separated list following the -s option. The -s option also
allows you to specify a routine with a name other than that of the advertised service to be called
to process the request. Refer to the servopts(5) reference page in the File Formats, Data
Descriptions, MIBs, and System Processes Reference for more information.

An Oracle Tuxedo application administrator can use the advertise and unadvertise
commands of tmadmin(1) to control the services offered by servers. The TPADVERTISE and
TPUNADVERTISE routines enable you to dynamically control the advertisement of a service in a
request/response or conversational server. The service to be advertised (or unadvertised) must be
available within the same server as the service making the request.

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

5-30 Programming an Oracle Tuxedo ATMI Application Using COBOL

Advertising Services
Use the following signature to call the TPADVERTISE(3cbl) routine:

01 SERVICE-NAME PIC X(127).

01 PROGRAM-NAME PIC X(32).

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPADVERTISE" USING SERVICE-NAME PROGRAM-NAME TPSTATUS-REC.

Table 5-3 describes the members of a TPADVERTISE data structure.

Unadvertising Services
The TPUNADVERTISE(3cbl) routine removes the name of a service from the service table of the
bulletin board so that the service is no longer advertised.

Use the following signature for the TPUNADVERTISE routine:

01 SERVICE-NAME PIC X(127).

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPUNADVERTISE" USING SERVICE-NAME TPSTATUS-REC.

The TPUNADVERTISE data structure contains one member, which is described in Table 5-4.

Table 5-3 TPADVERTISE Data Structure Members

Member Description

SERVICE-NAME Name of the service to be advertised. The service name must be
a character string of up to 127 characters. Names longer than 127
characters are truncated. The SPACES string is not a valid value.
If it is specified, an error (TPEINVAL) results.

PROGRAM-NAME Oracle Tuxedo system routine that is called to perform a service.
Frequently, this name is the same as the name of the service. The
SPACES string is not a valid value. If it is specified, an error
results.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Adver t i s ing and Unadver t i s ing Se rv ices

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-31

Example: Dynamic Advertising and Unadvertising of a
Service
The following example shows how to use the TPADVERTISE routine. In this example, a server
called TLR is programmed to offer only the service called TLRINIT when booted. After some
initialization, TLRINIT advertises two services called DEPOSIT and WITHDRAW. Both are
performed by the TLRFUNCS routine, and both are built into the TLR server.

After advertising DEPOSIT and WITHDRAW, TLRINIT unadvertises itself.

Listing 5-9 Dynamic Advertising and Unadvertising

. . .

**

* Advertise DEPOSIT service to be processed by

* routine TLRFUNCS

**

MOVE "DEPOSIT" TO SERVICE-NAME.

MOVE "TLRFUNCS" TO PROGRAM-NAME.

CALL "TPADVERTISE" USING SERVICE-NAME

PROGRAM-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

**

* Advertise WITHDRAW service to be processed by

* the same routine TLRFUNCS

**

Table 5-4 TPUNADVERTISE Data Structure Member

Member Description

SERVICE-NAME Name of the service to be advertised. The service name must be
a character string of up to 127 characters. Names longer than 127
characters are truncated. The SPACES string is not a valid value.
If it is specified, an error (TPEINVAL) results.

5-32 Programming an Oracle Tuxedo ATMI Application Using COBOL

MOVE "WITHDRAW" TO SERVICE-NAME.

MOVE "TLRFUNCS" TO PROGRAM-NAME.

CALL "TPADVERTISE" USING SERVICE-NAME

PROGRAM-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

**

* Unadvertise TLRINIT service (yourself)

**

MOVE "TLRINIT" TO SERVICE-NAME.

CALL "TPUNADVERTISE" USING SERVICE-NAME

TPSTATUS-REC.

IF NOT TPOK

error processing

Building Servers
To build an executable ATMI server, compile your application service subroutines with the
Oracle Tuxedo system server adaptor and all other referenced files using the buildserver(1)
command with the -C option.

Note: The Oracle Tuxedo server adaptor accepts messages, dispatches work, and manages
transactions (if transactions are enabled).

Use the following syntax for the buildserver command:

buildserver -C -o filename -f filenames -l filenames -s -v

Table 5-5 describes the buildserver command-line options:

../rfcm/rfcmd.html

Bui ld ing Se rve rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-33

Note: The Oracle Tuxedo libraries are linked in automatically. You do not need to specify the
Oracle Tuxedo library names on the command line.

The order in which you specify the library files to be link edited is significant: it depends on the
order in which routines are called and which libraries contain references to those functions.

Table 5-5 buildserver Command-line Options

This Option . . . Allows You to Specify the . . .

-o filename Name of the executable output file. The default is SERVER.

-f filenames List of files that are link edited before the Oracle Tuxedo system
libraries. You can specify the -f option more than once, and
multiple filenames for each occurrence of -f. If you specify a
COBOL program file (file.cbl), it is compiled before it is linked.
You can specify other object files (file.o) separately, or in groups
in an archive file (file.a).

-l filenames List of files that are link edited after the Oracle Tuxedo system
libraries. You can specify the -l option more than once, and
multiple filenames for each occurrence of -l. If you specify a
COBOL program file (file.cbl), it is compiled before it is linked.
You can specify other object files (file.o) separately, or in groups
in an archive file (file.a).

-r filenames List of resource manager access libraries that are link edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the
$TUXDIR/updataobj/RM file using the buildtms(1)
command. You can specify only one resource manager. Refer to
Setting Up an Oracle Tuxedo Application for more information.

-s [service:]routine Name of service or services offered by the server and the name of
the routine that performs each service. You can specify the -s
option more than once, and multiple services for each occurrence of
-s. The server uses the specified service names to advertise its
services to clients.

Typically, you should assign the same name to both the service and
the routine that performs that service. Alternatively, you can specify
any names. To assign names, use the following syntax:
service:routine.

../rfcm/rfcmd.html

5-34 Programming an Oracle Tuxedo ATMI Application Using COBOL

By default, the buildserver command invokes the UNIX cobcc command, which uses the
MicroFocus Net Express compiler. To use Fujitsu’s NetCOBOL ALTCC must be set, even on a
Windows system. You must set ALTCC=cobcc85 for NetCOBOL. You can specify an alternative
compile command and set your own flags for the compile and link-edit phases, however, by
setting the ALTCC and ALTCFLAGS environment variables, respectively. For more information,
refer to “Setting Environment Variables” in Programming Oracle Tuxedo ATMI Applications
Using C.

Notes: 1. On a Windows system, the ALTCC and ALTCFLAGS environment variables are not
applicable and setting them will produce unexpected results. You must compile your
application first using a COBOL compiler and then pass the resulting object file to the
buildserver command.

2. ALTCFLAGS only works for the MicroFocus COBOL compiler. For other supported
COBOL compilers (i.e., IBMCOBOL or AccuCOBOL), CFLAGS is supported and is
sufficient.

The following command processes the acct.o application file and creates a server called ACCT
that contains two services: NEW_ACCT, which calls the OPEN_ACCT routine, and CLOSE_ACCT,
which calls a routine of the same name:

buildserver -C –o ACCT –f acct.o –s NEW_ACCT:OPEN_ACCT –s CLOSE_ACCT

See Also
“Building Clients” in Programming Oracle Tuxedo ATMI Applications Using C

buildclient(1) in the Oracle Tuxedo Command Reference

../rfcm/rfcmd.html
../pgc/pgglob.html
../pgc/pgclt.html

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-1

C H A P T E R 6

Writing Request/Response Clients and
Servers

This topic includes the following sections:

Overview of Request/Response Communication

Sending Synchronous Messages

Sending Asynchronous Messages

Setting and Getting Message Priorities

Overview of Request/Response Communication
In request/response communication mode, one software module sends a request to a second
software module and waits for a response. Because the first software module performs the role of
the client, and the second, the role of the server, this mode is also referred to as client/server
interaction. Many online banking tasks are programmed in request/response mode. For example,
a request for an account balance is executed as follows:

1. A customer (the client) sends a request for an account balance to the Account Record Storage
System (the server).

2. The Account Record Storage System (the server) sends a reply to the customer (the client),
specifying the dollar amount in the designated account.

6-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Figure 6-1 Example of Request/Response Communication in Online Banking

Once a client process has joined an application, it can then send the request message to a service
subroutine for processing and receive a reply message.

Sending Synchronous Messages
The TPCALL(3cbl) call sends a request to a service subroutine and synchronously waits for a
reply. Use the following signature to call the TPCALL routine:

01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 ITPTYPE-REC.

 COPY TPTYPE.

01 IDATA-REC.

 COPY User Data.

01 OTPYTPE-REC.

 COPY TPTYPE.

01 ODATA-REC.

 COPY User Data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPCALL" USING TPSVCDEF-REC

 ITPTYPE-REC

 IDATA-REC

 OTPTYPE-REC

 ODATA-REC

 TPSTATUS-REC.

../rf3cbl/rf3cbl.html

Send ing Synchronous Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-3

For more information on the TPSVCDEF data structure, refer to Programming Oracle Tuxedo
ATMI Applications Using C. The IDATA-REC and ITPTYPE-REC structures define the request
record. The ODATA-REC and OTPTYPE-REC structures define the reply record. The ITPTYPE-REC
and OTPTYPE-REC data structures are similar to the TPTYPE-REC data structure.

TPCALL waits for the expected reply.

Note: Calling the TPCALL routine is logically the same as calling the TPACALL routine,
immediately followed by TPGETRPLY, as described in “Sending Asynchronous
Messages” on page 6-10.

The request carries the priority set by the system for the specified service (SERVICE-NAME) unless
a different priority has been explicitly set by a call to the TPSPRIO routine (described in “Setting
and Getting Message Priorities” on page 6-15).

TPCALL returns an integer. On failure, the value of TP-STATUS is set to a value that reflects the
type of error that occurred. For information on valid error codes, refer to TPCALL(3cbl) in the
Oracle Tuxedo ATMI COBOL Function Reference.

Note: Communication calls may fail for a variety of reasons, many of which can be corrected
at the application level. Possible causes of failure include: application defined errors
(TPESVCFAIL), errors in processing return arguments (TPESVCERR), typed record errors
(TPEITYPE, TPEOTYPE), timeout errors (TPETIME), and protocol errors (TPEPROTO),
among others. For a detailed discussion of errors, refer to “Managing Errors” in
Programming Oracle Tuxedo ATMI Applications Using C. For a complete list of possible
errors, refer to TPCALL(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference.

The Oracle Tuxedo system automatically adjusts a record used for receiving a message if the
received message is too large for the allocated record. You should test for whether or not the reply
records have been resized.

To access the new size of the record, use the address returned in *LEN IN OTPTYPE-REC. To
determine whether a reply record has changed in size, compare the size of the reply record before
the call to TPCALL with the value of LEN IN OTPTYPE-REC after its return. If LEN IN
OTPTYPE-REC is larger than the original size, the record has grown. If not, the record size has not
changed.

Example: Using the Same Record for Request and Reply
Messages
The following example shows how the client program makes a synchronous call using the same
record for both the request and reply messages. In this case, using the same record is appropriate

../rf3cbl/rf3cbl.html
../pgc/pgerr.html
../rf3cbl/rf3cbl.html

6-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

because the AUDV-REC message record has been set up to accommodate both request and reply
information. The following actions are taken in this code:

1. The service queries the B_ID field, but does not overwrite it.

2. The application initializes the BALANCE field to zero in preparation for the values to be
returned by the service.

3. The SERVICE-NAME represents the service name requested. In this example, these variables
represent account and teller, respectively.

Listing 6-1 Using the Same Record for Request and Reply Messages

WORKING-STORAGE SECTION.

* Tuxedo definitions

01 TPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

* Log messages definitions

01 LOGMSG.

05 FILLER PIC X(6) VALUE "FIG =>".

05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

*

01 USER-DATA-REC PIC X(75).

* This VIEW record (audv) will be sent to the server

01 AUDV-REC.

COPY AUDV.

Send ing Synchronous Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-5

*

**

PROCEDURE DIVISION.

START-FIG.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Prepare the audv record

MOVE "BRANCH" TO B-ID IN AUDV-REC.

MOVE 0 TO BALANCE IN AUDV-REC.

MOVE LENGTH OF AUDV-REC TO LEN.

MOVE "VIEW" TO REC-TYPE.

MOVE "audv" TO SUB-TYPE.

MOVE "SOMESERVICE" TO SERVICE-NAME.

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPNOCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC

TPTYPE-REC

AUDV-REC

TPTYPE-REC

AUDV-REC

TPSTATUS-REC.

IF NOT TPOK

MOVE "Service Failed" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM EXIT-PROGRAM.

DISPLAY BRANCH and BALANCE

. . .

If the reply is larger than ODATA-REC, then ODATA-REC contains as much of the message as fits
in the record. The remainder is discarded and TPCALL sets TP-STATUS IN TPSTATUS-REC to
TPTRUNCATE.

6-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Example: Sending a Synchronous Message with TPSIGRSTRT
Set
The following example is based on the TRANSFER service, which is part of the XFER server
process of bankapp. (bankapp is a sample ATMI application delivered with the Oracle Tuxedo
system.) The example is based on a service that assumes the role of a client when it calls the
WITHDRAWAL and DEPOSIT services. The application sets the communication flag to TPSIGRSTRT
in these service calls to give the transaction a better chance of committing. The TPSIGRSTRT flag
specifies the action to take if there is a signal interrupt. For more information on communication
flags, refer to TPCALL(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference.

Listing 6-2 Sending a Synchronous Message with TPSIGRSTRT Set

WORKING-STORAGE SECTION.

* Tuxedo definitions

01 TPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

* This VIEW record (audv) will be sent to the server

01 AUDV-REC.

COPY AUDV.

*

**

PROCEDURE DIVISION.

START-FIG.

* Prepare the audv record for withdrawal

../rf3cbl/rf3cbl.html

Send ing Synchronous Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-7

. . .

MOVE "WITHDRAWAL" TO SERVICE-NAME.

SET TPSIGRSTRT TO TRUE.

PERFORM DO-TPCALL.

IF NOT TPOK

MOVE "Cannot withdraw from debit account" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM EXIT-PROGRAM.

MOVE "DEPOSIT" TO SERVICE-NAME.

SET TPSIGRSTRT TO TRUE.

PERFORM DO-TPCALL.

IF NOT TPOK

MOVE "Cannot deposit into credit account" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM EXIT-PROGRAM.

. . .

* Perform a TPCALL

 DO-TPCALL.

MOVE LENGTH OF AUDV-REC TO LEN.

MOVE "VIEW" TO REC-TYPE.

MOVE "audv" TO SUB-TYPE.

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPNOTIME TO TRUE.

SET TPNOCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC

TPTYPE-REC

AUDV-REC

TPTYPE-REC

AUDV-REC

TPSTATUS-REC.

. . .

6-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

Example: Sending a Synchronous Message with TPNOTRAN
Set
The following example illustrates a communication call that suppresses transaction mode. The
call is made to a service that is not affiliated with a resource manager; it would be an error to allow
the service to participate in the transaction. The application prints an accounts receivable report,
ACCRV, generated from information obtained from a database named ACCOUNTS.

The service routine REPORT interprets the specified parameters and sends the byte stream for the
completed report as a reply. The client uses TPCALL to send the byte stream to a service called
PRINTER, which, in turn, sends the byte stream to a printer that is conveniently close to the client.
The reply is printed. Finally, the PRINTER service notifies the client that the hard copy is ready
to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOTRAN or TPNOREPLY”
on page 6-12 shows a similar example using an asynchronous message call.

Listing 6-3 Sending a Synchronous Message with TPNOTRAN Set

WORKING-STORAGE SECTION.

* Tuxedo definitions

01 ITPTYPE-REC.

COPY TPTYPE.

01 OTPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 REPORT-REQUEST PIC X(100) VALUE SPACES.

01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.

**

Send ing Synchronous Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-9

PROCEDURE DIVISION.

START-FIG.

. . .

join application

start transaction

. . .

**

* Send report request to REPORT service

* Receive results into REPORT-OUTPUT

**

MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.

MOVE "STRING" TO REC-TYPE IN ITYPE-REC.

MOVE 29 TO LEN IN ITYPE-REC.

MOVE "STRING" TO REC-TYPE IN OITYPE-REC.

MOVE 50000 TO LEN IN OTYPE-REC.

MOVE "REPORT" TO SERVICE-NAME.

SET TPTRAN TO TRUE.

SET TPBLOCK TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPNOCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC

ITPTYPE-REC

REPORT-REQUEST

OTPTYPE-REC

REPORT-OUTPUT

TPSTATUS-REC.

IF NOT TPOK

error processing

IF TPETRUNCATE

The report was truncated

error processing

**

* Send REPORT-OUTPUT to PRINTER service

**

MOVE "PRINTER" TO SERVICE-NAME.

SET TPNOTRAN TO TRUE.

6-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

MOVE "STRING" TO REC-TYPE IN ITTYPE-REC.

MOVE LEN IN OTYPE-REC TO LEN IN ITYPE-REC.

CALL "TPCALL" USING TPSVCDEF-REC

ITPTYPE-REC

REPORT-OUTPUT

OTPTYPE-REC

REPORT-OUTPUT

TPSTATUS-REC.

IF NOT TPOK

error processing

. . .

terminate transaction

leave application

Note: In the preceding example, the term error routine indicates that the following tasks are
performed: an error message is printed, the transaction is aborted, the client leaves the
application, and the program is exited.

This example also shows how the TPNOCHANGE communication setting is used to enforce strong
record type checking by indicating that the reply message must be returned in the same type of
record that was originally allocated. The strong type check flag, TPNOCHANGE, forces the reply to
be returned in a record of type STRING.

A possible reason for this check is to guard against errors that may occur in the REPORT service
subroutine, resulting in the use of a reply record of an incorrect type. Another reason is to prevent
changes that are not made consistently across all areas of dependency. For example, another
programmer may have changed the REPORT service to standardize all replies in another STRING
format without modifying the client process to reflect the change.

Sending Asynchronous Messages
This section explains how to:

Send an asynchronous request using the TPACALL routine

Get an asynchronous reply using the TPGETRPLY routine

Send ing Asynchronous Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-11

The type of asynchronous processing discussed in this section is sometimes referred to as fan-out
parallelism because it allows a client’s requests to be distributed (or “fanned out”)
simultaneously to several services for processing.

The other type of asynchronous processing supported by the Oracle Tuxedo system is pipeline
parallelism in which the TPFORWAR routine is used to pass (or forward) a process from one service
to another. For a description of the TPFORWAR routine, refer to “Writing Servers” in Programming
Oracle Tuxedo ATMI Applications Using C.

Sending an Asynchronous Request
The TPACALL(3cbl) routine sends a request to a service and immediately returns. Use the
following signature to call the TPACALL routine:

01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User Data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

For more information on the TPSVCDEF and TPTYPE-REC data structures, refer to “Defining a
Service” in Programming Oracle Tuxedo ATMI Applications Using C.

The TPACALL routine sends a request message to the service named in the SERVICE-NAME and
immediately returns from the call. Upon successful completion of the call, the TPACALL routine
returns an integer that serves as a communication handle used to access the correct reply for the
relevant request. While TPACALL is in transaction mode (as described in “Writing Global
Transactions” in Programming Oracle Tuxedo ATMI Applications Using C) there may not be any
outstanding replies when the transaction commits; that is, within a given transaction, for each
request for which a reply is expected, a corresponding reply must eventually be received.

If the value TPNOREPLY is set, the parameter signals to TPACALL that a reply is not expected.
When set, on success TPACALL returns a value of 0 as the reply descriptor. If subsequently passed
to the TPGETRPLY routine, this value becomes invalid, this value becomes invalid. Guidelines for
using this setting correctly when a process is in transaction mode are discussed in “Writing
Global Transactions” in Programming Oracle Tuxedo ATMI Applications Using C.

../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgserv.html
../pgc/pgserv.html
../pgc/pgglob.html
../pgc/pgglob.html
../pgc/pgglob.html
../pgc/pgglob.html

6-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

On error, TPACALL sets TP-STATUS to a value that reflects the nature of the error. TPACALL
returns many of the same error codes as TPCALL. The differences between the error codes for
these functions are based on the fact that one call is synchronous and the other, asynchronous.
These errors are discussed at length in “Managing Errors” in Programming Oracle Tuxedo ATMI
Applications Using C.

The following example shows how TPACALL uses the TPNOTRAN and TPNOREPLY settings. This
code is similar to the code in “Example: Sending a Synchronous Message with TPNOTRAN Set”
on page 6-8. In this case, however, a reply is not expected from the PRINTER service. By setting
both TPNOTRAN and TPNOREPLY, the client is indicating that no reply is expected and the PRINTER
service will not participate in the current transaction. This situation is discussed more fully in
“Managing Errors” in Programming Oracle Tuxedo ATMI Applications Using C.

Listing 6-4 Sending an Asynchronous Message with TPNOTRAN or TPNOREPLY

WORKING-STORAGE SECTION.

* Tuxedo definitions

01 ITPTYPE-REC.

COPY TPTYPE.

01 OTPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 REPORT-REQUEST PIC X(100) VALUE SPACES.

01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.

**

PROCEDURE DIVISION.

 START-FIG.

. . .

join application

start transaction

../pgc/pgerr.html
../pgc/pgerr.html

Send ing Asynchronous Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-13

 . . .

 **

 * Send report request to REPORT service

 * Receive results into REPORT-OUTPUT

 **

MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.

MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.

MOVE 29 TO LEN IN ITPTYPE-REC.

MOVE "STRING" TO REC-TYPE IN OITYPE-REC.

MOVE 50000 TO LEN IN OTPTYPE-REC.

MOVE "REPORT" TO SERVICE-NAME.

SET TPTRAN TO TRUE.

SET TPBLOCK TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPREPLY TO TRUE.

SET TPNOCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC

ITPTYPE-REC

REPORT-REQUEST

OTPTYPE-REC

REPORT-OUTPUT

TPSTATUS-REC.

IF NOT TPOK

error processing

IF TPETRUNCATE

The report was truncated

error processing

**

* Send REPORT-OUTPUT to PRINTER service

**

MOVE "PRINTER" TO SERVICE-NAME.

SET TPNOTRAN TO TRUE.

SET TPNOREPLY TO TRUE.

MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.

6-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

MOVE LEN IN OTPTYPE-REC TO LEN IN ITPTYPE-REC.

CALL "TPACALL" USING TPSVCDEF-REC

ITPTYPE-REC

REPORT-OUTPUT

TPSTATUS-REC.

IF NOT TPOK

error processing

. . .

commit transaction

leave application

Getting an Asynchronous Reply
A reply to a service call can be received asynchronously by calling the TPGETRPLY(3cbl)
routine. The TPGETRPLY routine dequeues a reply to a request previously sent by TPACALL.

Use the following signature to call the TPGETRPLY routine:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

For more information on the TPSVCDEF and TPTYPE-REC data structures, refer to “Defining a
Service” in Programming Oracle Tuxedo ATMI Applications Using C.

By default, the function waits for the arrival of the reply that corresponds to the value referenced
by the communication handle. During this waiting interval, a blocking timeout may occur. A
time-out occurs when TPGETRPLY fails and TP-STATUS is set to TPETIME (unless TPNOTIME is
set).

../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgserv.html

Se t t ing and Get t ing Message P r io r i t i es

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-15

Setting and Getting Message Priorities
Two ATMI calls allow you to determine and set the priority of a message request:
TPSPRIO(3cbl) and TPGPRIO(3cbl). The priority affects how soon the request is dequeued by
the server; servers dequeue requests with the highest priorities first.

This section describes:

Setting a Message Priority

Getting a Message Priority

Setting a Message Priority
The TPSPRIO(3cbl) routine enables you to set the priority of a message request.

The TPSPRIO routine affects the priority level of only one request: the next request to be sent by
TPCALL or TPACALL, or to be forwarded by a service subroutine.

Use the following signature to call the TPSPRIO routine:

01 TPPRIDEF-REC.

 COPY TPPRIDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Use the following signature for the TPPRIDEF-REC data structure.

05 PRIORITY PIC S9(9) COMP-5.

05 PRIO-FLAG PIC S9(9) COMP-5.

 88 TPABSOLUTE VALUE 0.

 88 TPRELATIVE VALUE 1.

Table 6-1 describes the arguments to the TPSPRIO routine.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

6-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

The following sample code is an excerpt from the TRANSFER service. In this example, the
TRANSFER service acts as a client by sending a synchronous request, via TPCALL, to the
WITHDRAWAL service. TRANSFER also invokes TPSPRIO to increase the priority of its request
message to WITHDRAWAL, and to prevent the request from being queued for the WITHDRAWAL
service (and later the DEPOSIT service) after waiting on the TRANSFER queue.

Listing 6-5 Setting the Priority of a Request Message

WORKING-STORAGE SECTION.

* Tuxedo definitions

01 TPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

*

01 TPPRIDEF-REC.

Table 6-1 TPSPRIO Routine Fields

Field Description

PRIORITY Integer indicating a new priority value. The effect of this argument is
controlled by PRIO-FLAG. If PRIO-FLAG is set to 0, PRIORITY
specifies a relative value and the sign accompanying the value indicates
whether the current priority is incremented or decremented. Otherwise,
the value specified indicates an absolute value and PRIORITY must be
set to a value between 0 and 100. If you do not specify a value within this
range, the system sets the value to 50.

PRIO-FLAG Indicates whether the value of PRIORITY is treated as a relative value (0,
the default) or an absolute value (TPABSOLUTE).

Se t t ing and Get t ing Message P r io r i t i es

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-17

COPY TPPRIDEF.

01 DATA-REC PIC X(100) VALUE SPACES.

**

PROCEDURE DIVISION.

 START-FIG.

. . .

join application

. . .

MOVE 30 TO PRIORITY.

SET TPRELATIVE TO TRUE.

CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC

IF NOT TPOK

error processing

MOVE "CARRAY" TO REC-TYPE.

MOVE 100 TO LEN.

MOVE "WITHDRAWAL" TO SERVICE-NAME.

SET TPTRAN TO TRUE .

SET TPBLOCK TO TRUE .

SET TPNOTIME TO TRUE .

SET TPSIGRSTRT TO TRUE .

SET TPREPLY TO TRUE .

CALL "TPACALL" USING TPSVCDEF-REC

TPTYPE-REC

DATA-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

. . .

leave application

Getting a Message Priority
The TPGPRIO(3cbl) routine enables you to get the priority of a message request.

../rf3cbl/rf3cbl.html

6-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

Use the following signature to call the TPGPRIO routine:

01 TPPRIDEF-REC.

 COPY TPPRIDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

A requester can call the TPGPRIO routine after invoking the TPCALL or TPACALL routine to
retrieve the priority of the request message. If a requester calls the function but no request is sent,
the routine fails, setting TP-STATUS to TPENOENT. Upon success, TPGPRIO sets TP-STATUS to
TPOK and returns an integer value in the range of 1 to 100 (where the highest priority value is 100).

If a priority has not been explicitly set using the TPSPRIO routine, the system sets the message
priority to that of the service routine that handles the request. Within an application, the priority
of the request-handling service is assigned a default value of 50 unless a system administrator
overrides this value.

The following example shows how to determine the priority of a message that was sent in an
asynchronous call.

Listing 6-6 Determining the Priority of the Sent Request

WORKING-STORAGE SECTION.

* Tuxedo definitions

01 TPTYPE-REC-1.

COPY TPTYPE.

01 TPTYPE-REC-2.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPSVCDEF-REC-1.

COPY TPSVCDEF.

01 TPSVCDEF-REC-2.

COPY TPSVCDEF.

*

Se t t ing and Get t ing Message P r io r i t i es

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-19

01 TPPRIDEF-REC-1.

COPY TPPRIDEF.

01 TPPRIDEF-REC-2.

COPY TPPRIDEF.

01 DATA-REC-1 PIC X(100) VALUE SPACES.

01 DATA-REC-2 PIC X(100) VALUE SPACES.

**

PROCEDURE DIVISION.

START-FIG.

. . .

join application

populate DATA-REC1 and DATA-REC2 with send request

. . .

MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-1.

MOVE 100 TO LEN IN TYPE-REC-1.

MOVE "SERVICE1" TO SERVICE-NAME IN TPSVCDEV-REC-1.

SET TPTRAN TO TRUE IN TPSVCDEV-REC-1.

SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.

SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.

SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.

SET TPREPLY TO TRUE IN TPSVCDEV-REC-1.

CALL "TPACALL" USING TPSVCDEF-REC-1

TPTYPE-REC-1

DATA-REC-1

TPSTATUS-REC.

IF NOT TPOK

error processing

CALL "TPGPRIO" USING TPPRIDEF-REC-1 TPSTATUS-REC

IF NOT TPOK

error processing

MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-2.

MOVE 100 TO LEN IN TYPE-REC-2.

MOVE "SERVICE2" TO SERVICE-NAME IN TPSVCDEV-REC-2.

SET TPTRAN TO TRUE IN TPSVCDEV-REC-2.

SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.

SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.

SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.

6-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

SET TPREPLY TO TRUE IN TPSVCDEV-REC-2.

CALL "TPACALL" USING TPSVCDEF-REC-2

TPTYPE-REC-2

DATA-REC-2

TPSTATUS-REC.

IF NOT TPOK

error processing

CALL "TPGPRIO" USING TPPRIDEF-REC-2 TPSTATUS-REC

IF NOT TPOK

error processing

IF PRIORITY IN TPSVCDEF-REC-1 >= PRIORITY IN TPSVCDEF-REC-2

PERFORM DO-GETREPLY1

PERFORM DO-GETREPLY2

ELSE

PERFORM DO-GETREPLY2

PERFORM DO-GETREPLY1

END-IF.

. . .

leave application

DO-GETRPLY1.

SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-1.

SET TPCHANGE TO TRUE IN TPSVCDEV-REC-1.

SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.

SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.

SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.

CALL "TPGETRPLY" USING TPSVCDEF-REC-1

TPTYPE-REC-1

DATA-REC-1

TPSTATUS-REC.

IF NOT TPOK

error processing

 DO-GETRPLY2

SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-2.

SET TPCHANGE TO TRUE IN TPSVCDEV-REC-2.

SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.

SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.

SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.

CALL "TPGETRPLY" USING TPSVCDEF-REC-2

Se t t ing and Get t ing Message P r io r i t i es

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-21

TPTYPE-REC-2

DATA-REC-2

TPSTATUS-REC.

IF NOT TPOK

error processing

6-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

Programming an Oracle Tuxedo ATMI Application Using COBOL 7-1

C H A P T E R 7

Writing Conversational Clients and
Servers

This topic includes the following sections:

Overview of Conversational Communication

Joining an Application

Establishing a Connection

Sending and Receiving Messages

Ending a Conversation

Building Conversational Clients and Servers

Understanding Conversational Communication Events

Overview of Conversational Communication
Conversational communication is the Oracle Tuxedo system implementation of a human-like
paradigm for exchanging messages between ATMI clients and servers. In this form of
communication, a virtual connection is maintained between the client (initiator) and server
(subordinate) and each side maintains information about the state of the conversation. The
connection remains active until an event occurs to terminate it.

During conversational communication, a half-duplex connection is established between the client
and server. A half-duplex connection allows messages to be sent in only one direction at any
given time. Control of the connection can be passed back and forth between the initiator and the

7-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

subordinate. The process that has control can send messages; the process that does not have
control can only receive messages.

To understand how conversational communication works in an Oracle Tuxedo ATMI
application, consider the following example from an online banking application. In this example,
a bank customer requests checking account statements for the past two months.

Figure 7-1 Example of Conversational Communication in an Online Banking Application

1. The customer requests the checking account statements for the past two months.

2. The Account Records Storage System responds by sending the first month’s checking account
statement followed by a More prompt for accessing the remaining month’s statement.

3. The customer requests the second month’s account statement by selecting the More prompt.

Note: The Account Records Storage System must maintain state information so it knows which
account statement to return when the customer selects the More prompt.

4. The Account Records Storage System sends the remaining month’s account statement.

As with request/response communication, the Oracle Tuxedo system passes data using typed
records. The record types must be recognized by the application. For more information on record
types, refer to “Overview of Typed Records” on page 3-1.

Conversational clients and servers have the following characteristics:

The logical connection between them remains active until terminated.

Any number of messages can be transmitted across a connection between them.

Both clients and servers use the TPSEND and TPRECV routines to send and receive data in
conversations.

Conversational communication differs from request/response communication in the following
ways:

J o in ing an Appl i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 7-3

A conversational client initiates a request for service using TPCONNECT rather than TPCALL
or TPACALL.

A conversational client sends a service request to a conversational server.

The configuration file reserves part of the conversational server for addressing
conversational services.

Conversational servers are prohibited from making calls using TPFORWAR.

Joining an Application
A conversational client must join an application via a call to TPINITIALIZE before attempting to
establish a connection to a service. For more information, refer to “Writing Clients” in
Programming Oracle Tuxedo ATMI Applications Using C.

Establishing a Connection
The TPCONNECT(3cbl) routine sets up a conversation:

Use the following signature to call the TPCONNECT routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” for more information on the TPSVCDEF-REC record, and to
“Defining Typed Records” on page 3-6 for more information on the TPTYPE-REC record.

At the same time the connection is being established, data can be sent through the DATA-REC with
the length of the data specified by LEN IN TPTYPE-REC. The REC-TYPE and SUB-TYPE of the data
in DATA-REC must be types recognized by the service being called. If no data is being sent, the
value of REC-TYPE is SPACES, and DATA-REC and LEN are ignored.

The Oracle Tuxedo system returns a communication handle, COMM-HANDLE IN TPSVCDEF-REC,
when a connection is established with TPCONNECT or TPSVCSTART. COMM-HANDLE is used to

../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgclt.html

7-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

identify subsequent message transmissions with a particular conversation. A client or
conversational service can participate in more than one conversation simultaneously. The
maximum number of simultaneous conversations is 64.

In the event of a failure, TPCONNECT sets TP-STATUS to the appropriate error condition. For a list
of possible error codes, refer to TPCONNECT(3cbl) in the Oracle Tuxedo ATMI COBOL Function
Reference.

The following example shows how to use the TPCONNECT routine.

Listing 7-1 Establishing a Conversational Connection

. . .

* Prepare the record to send

MOVE "HELLO" TO DATA-REC.

MOVE 5 TO LEN.

MOVE "STRING" TO REC-TYPE.

*

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPSENDONLY TO TRUE.

*

CALL "TPCONNECT" USING TPSVCDEF-REC

TPTYPE-REC

DATA-REC

TPSTATUS-REC.

IF NOT TPOK

error processing ...

ELSE

COMM-HANDLE is valid.

Sending and Receiving Messages
Once the Oracle Tuxedo system establishes a conversational connection, communication
between the initiator and subordinate is accomplished using send and receive calls. The process

../rf3cbl/rf3cbl.html

Sending and Rece iv ing Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 7-5

with control of the connection can send messages using the TPSEND(3cbl) routine; the process
without control can receive messages using the TPRECV(3cbl) routine.

Note: Initially, the originator (that is, the client) decides which process has control using the
TPSENDONLY or TPRECVONLY flag value of the TPCONNECT call. TPSENDONLY specifies
that control is being retained by the originator; TPRECVONLY, that control is being passed
to the called service.

Sending Messages
To send a message, use the TPSEND(3cbl) routine with the following signature:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC USER-DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” in Programming Oracle Tuxedo ATMI Applications Using C for
more information on the TPSVCDEF-REC record, and refer to “Defining Typed Records” on
page 3-6 for more information on the TPTYPE-REC record.

In the event of a failure, the TPSEND routine sets TP-STATUS to the appropriate error condition.
For a list of possible error codes, refer to TPSEND(3cbl) in the Oracle Tuxedo ATMI COBOL
Function Reference.

You are not required to pass control each time you issue the TPSEND routine. In some
applications, the process authorized to issue TPSEND calls can execute as many calls as required
by the current task before turning over control to the other process. In other applications,
however, the logic of the program may require the same process to maintain control of the
connection throughout the life of the conversation.

The following example shows how to invoke the TPSEND routine.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgserv.html

7-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Listing 7-2 Sending Data in Conversational Mode

. . .

SET TPNOBLOCK TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPRECVONLY TO TRUE.

*

CALL "TPSEND" USING TPSVCDEF-REC

TPTYPE-REC

DATA-REC

TPSTATUS-REC.

IF NOT TPOK

error processing . . .

Receiving Messages
To receive data sent over an open connection, use the TPRECV(3cbl) routine with the following
signature:

01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User Data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” for more information on the TPSVCDEF-REC record. Refer to
“Defining Typed Records” on page 3-6 for more information on the TPTYPE-REC record.

The following example shows how to use the TPRECV routine.

../rf3cbl/rf3cbl.html
../pgc/pgserv.html

Ending a Conversat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 7-7

Listing 7-3 Receiving Data in Conversation

. . .

SET TPNOCHANGE TO TRUE.

SET TPBLOCK TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

*

MOVE LENGTH OF DATA-REC TO LEN.

*

CALL "TPRECV" USING TPSVCDEF-REC

TPTYPE-REC

DATA-REC

TPSTATUS-REC.

IF NOT TPOK

error processing . . .

Ending a Conversation
A connection can be taken down gracefully and a conversation ended normally through:

A successful call to TPRETURN in a simple conversation.

A series of successful calls to TPRETURN in a complex conversation based on a hierarchy of
connections.

Global transactions, as described in “Writing Global Transactions” in Programming Oracle
Tuxedo ATMI Applications Using C.

Note: The TPRETURN routine is described in detail in “Writing Request/Response Clients and
Servers” in Programming Oracle Tuxedo ATMI Applications Using C.

The following sections describe two scenarios for gracefully terminating conversations that do
not include global transactions in which the TPRETURN function is used.

The first example shows how to terminate a simple conversation between two components. The
second example illustrates a more complex scenario, with a hierarchical set of conversations.

If you end a conversation with connections still open, the system returns an error. In this case,
either TPCOMMIT or TPRETURN fails in a disorderly manner.

../pgc/pgreq.html
../pgc/pgreq.html
../pgc/pgglob.html

7-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

Example: Ending a Simple Conversation
Figure 7-2 shows a simple conversation between A and B that terminates gracefully.

Figure 7-2 Simple Conversation Terminating Gracefully

The program flow is as follows:

1. A sets up the connection by calling TPCONNECT with TPSENDONLY set, indicating that process
B is on the receiving end of the conversation.

2. A turns control of the connection over to B by calling TPSEND with TPRECVONLY set, resulting
in the generation of a TPEV_SENDONLY event.

3. The next call by B to TPRECV sets TP-STATUS to TPEEVENT, and returns TPEV_SENDONLY in
TPEVENT, indicating that control has passed to B.

Ending a Conversat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 7-9

4. B calls TPRETURN with TPRETURN-VAL IN TPSVCRET set to TPSUCCESS. This call generates
a TPEV_SVCSUCC event for A and gracefully brings down the connection.

5. A calls TPRECV, learns of the event, and recognizes that the conversation has been terminated.
Data can be received on this call to TPRECV even if the event is set to TPEV_SVCFAIL.

Note: In this example, A can be either a client or a server, but B must be a server.

Example: Ending a Hierarchical Conversation
Figure 7-3 shows a hierarchical conversation that terminates gracefully.

Figure 7-3 Connection Hierarchy

In the preceding example, service B is a member of a conversation that has initiated a connection
to a second service called C. In other words, there are two active connections: A-to-B and B-to-C.
If B is in control of both connections, a call to TPRETURN has the following effect: the call fails,
a TPEV_SVCERR event is posted on all open connections, and the connections are closed in a
disorderly manner.

7-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

In order to terminate both connections normally, an application must execute the following
sequence:

1. B calls TPSEND with the TPRECVONLY flag set on the connection to C, transferring control of
the B-to-C connection to C.

2. C calls TPRETURN with TPRETURN-VAL IN TPSVCRET set to TPSUCCESS, TPFAIL, or TPEXIT,
as appropriate.

3. B can then call TPRETURN, posting an event (either TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

Note: It is legal for a conversational service to make request/response calls if it needs to do so
to communicate with another service. Therefore, in the preceding example, the calls from
B to C may be executed using TPCALL or TPACALL instead of TPCONNECT. Conversational
services are not permitted to make calls to TPFORWAR.

Executing a Disorderly Disconnect
The only way in which a disorderly disconnect can be executed is through a call to the
TPDISCON(3cbl) routine (which is equivalent to “pulling the plug” on a connection). This
routine can be called only by the initiator of a conversation (that is, the client).

Note: This is not the preferred method for bringing down a conversation. To bring down an
application gracefully, the subordinate (the server) should call the TPRETURN routine.

Use the following signature to call the TPDISCON routine:

01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

The COMM-HANDLE argument specifies the communication handle returned by the TPCONNECT
routine when the connection is established.

The TPDISCON routine generates a TPEV_DISCONIMM event for the service at the other end of the
connection, rendering the COMM-HANDLE invalid. If a transaction is in progress, the system aborts
it and data may be lost.

If TPDISCON is called from a service that was not the originator of the connection identified by
COMM-HANDLE, the routine fails with an error code of TPEBADDESC.

../rf3cbl/rf3cbl.html

Bui ld ing Conversat iona l C l i ents and Se rve rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 7-11

For a list and descriptions of all event and error codes, refer to TPDISCON(3cbl) in the Oracle
Tuxedo ATMI COBOL Function Reference.

Building Conversational Clients and Servers
Use the following commands to build conversational clients and servers:

buildclient() as described in “Building Clients” in Programming Oracle Tuxedo ATMI
Applications Using C

buildserver() as described in “Building Servers” in Programming Oracle Tuxedo ATMI
Applications Using C

For conversational and request/response services, you cannot:

Build both in the same server

Assign the same name to both

Understanding Conversational Communication Events
The Oracle Tuxedo system recognizes five events in conversational communication. All five
events can be posted for TPRECV; three can be posted for TPSEND.

Table 7-1 lists the events, the routines for which they are returned, and a detailed description of
each.

Table 7-1 Conversational Communication Events

Event Received By Description

TPEV_SENDONLY TPRECV Control of the connection has been passed; this process
can now call TPSEND.

TPEV_DISCONIMM TPSEND,
TPRECV,
TPRETURN

The connection has been torn down and no further
communication is possible. The TPDISCON routine posts
this event in the originator of the connection, and sends it
to all open connections when TPRETURN is called, as long
as connections to subordinate services remain open.
Connections are closed in a disorderly fashion. If a
transaction exists, it is aborted.

../rf3cbl/rf3cbl.html

7-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

TPEV_SVCERR TPSEND Received by the originator of the connection, usually
indicating that the subordinate program issued a
TPRETURN without having control of the connection.

TPRECV Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN with
TPSUCCESS or TPFAIL and a valid data record, but an
error occurred that prevented the call from completing.

TPEV_SVCFAIL TPSEND Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN without
having control of the connection, and TPRETURN was
called with TPFAIL or TPEXIT and no data.

TPRECV Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(TPRETURN was called with TPFAIL or TPEXIT).

TPEV_SVCSUCC TPRECV Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it called TPRETURN with TPSUCCESS.

Table 7-1 Conversational Communication Events

Event Received By Description

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-1

C H A P T E R 8

Writing Event-based Clients and
Servers

This topic includes the following sections:

Overview of Events

Defining the Unsolicited Message Handler

Sending Unsolicited Messages

Checking for Unsolicited Messages

Getting Unsolicited Messages

Subscribing to Events

Unsubscribing from Events

Posting Events

Overview of Events
Event-based communication provides a method for an Oracle Tuxedo system process to be
notified when a specific situation (event) occurs.

The Oracle Tuxedo system supports two types of event-based communication:

Unsolicited events

Brokered events

8-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Unsolicited Events
Unsolicited events are messages used to communicate with client programs that are not waiting
for and/or expecting a message.

Brokered Events
Brokered events enable a client and a server to communicate transparently with one another via
an “anonymous” broker that receives and distributes messages. Such brokering is another
client/server communication paradigm that is fundamental to the Oracle Tuxedo system.

The EventBroker is an Oracle Tuxedo subsystem that receives and filters event posting messages,
and distributes them to subscribers. A poster is an Oracle Tuxedo system process that detects
when a specific event has occurred and reports (posts) it to the EventBroker. A subscriber is an
Oracle Tuxedo system process with a standing request to be notified whenever a specific event
has been posted.

The Oracle Tuxedo system does not impose a fixed ratio of service requesters to service
providers; an arbitrary number of posters can post a message for an arbitrary number of
subscribers. The posters simply post events, without knowing which processes receive the
information or how the information is handled. Subscribers are notified of specified events,
without knowing who posted the information. In this way, the EventBroker provides complete
location transparency.

Typically, EventBroker applications are designed to handle exception events. An application
designer must decide which events in the application constitute exception events and need to be
monitored. In a banking application, for example, it might be useful to post an event whenever
an unusually large amount of money is withdrawn, but it would not be particularly useful to post
an event for every withdrawal transaction. In addition, not all users would need to subscribe to
that event; perhaps only the branch manager would need to be notified.

Notification Actions
The EventBroker may be configured such that whenever an event is posted, the EventBroker
invokes one or more notification actions for clients and/or servers that have subscribed. Table 8-1
lists the types of notification actions that the EventBroker can take.

Overv i ew o f Events

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-3

In addition, the application administrator may create an EVENT_MIB(5) entry (by using the
Oracle Tuxedo administrative API) that performs the following notification actions:

Invokes a system command

Writes a message to the system’s log file on disk

Note: Only the Oracle Tuxedo application administrator is allowed to create an EVENT_MIB(5)
entry.

For information on the EVENT_MIB(5), refer to the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

EventBroker Servers
TMUSREVT is the Oracle Tuxedo system-supplied server that acts as an EventBroker for user
events. TMUSREVT processes event report message records, and then filters and distributes them.
The Oracle Tuxedo application administrator must boot one or more of these servers to activate
event brokering.

TMSYSEVT is the Oracle Tuxedo system-supplied server that acts as an EventBroker for
system-defined events. TMSYSEVT and TMUSREVT are similar, but separate servers are provided to

Table 8-1 EventBroker Notification Actions

Notification Action Description

Unsolicited notification
message

Clients may receive event notification messages in their
unsolicited message handling routine, just as if they were sent by
the TPNOTIFY routine.

Service call Servers may receive event notification messages as input to
service routines, just as if they were sent by TPACALL.

Reliable queue Event notification messages may be stored in an Oracle Tuxedo
system reliable queue, using TPDEQUEUE(3cbl). Event
notification records are stored until requests for contents are
issued. An Oracle Tuxedo system client or server process may
call TPDEQUEUE(3cbl) to retrieve these notification records,
or alternately TMQFORWARD(5) may be configured to
automatically dispatch an Oracle Tuxedo system service routine
that retrieves a notification record.

For more information on /Q, see Using the ATMI /Q Component.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

8-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

allow the application administrator the ability to have different replication strategies for
processing notifications of these two types of events. Refer to Setting Up an Oracle Tuxedo
Application for additional information.

System-defined Events
The Oracle Tuxedo system itself detects and posts certain predefined events related to system
warnings and failures. These tasks are performed by the EventBroker. For example,
system-defined events include configuration changes, state changes, connection failures, and
machine partitioning. For a complete list of system-defined events detected by the EventBroker,
see EVENTS(5) in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

System-defined events are defined in advance by the Oracle Tuxedo system code and do not
require posting. The name of a system-defined event, unlike that of an application-defined event,
always begins with a dot (“.”). Names of application-defined events may not begin with a leading
dot.

Clients and servers can subscribe to system-defined events. These events, however, should be
used mainly by application administrators, not by every client in the application.

When incorporating the EventBroker into your application, remember that it is not intended to
provide a mechanism for high-volume distribution to many subscribers. Do not attempt to post
an event for every activity that occurs, and do not expect all clients and servers to subscribe. If
you overload the EventBroker, system performance may be adversely affected and notifications
may be dropped. To minimize the possibility of overload, the application administrator should
carefully tune the operating system IPC resources, as explained in Installing the Oracle Tuxedo
System.

Programming Interface for the EventBroker
EventBroker programming interfaces are available for all Oracle Tuxedo system server and client
processes, including Workstation, in both C and COBOL.

The programmer’s job is to code the following sequence:

1. A client or server posts a record to an application-defined event name.

2. The posted record is transmitted to any number of processes that have subscribed to the event.

Subscribers may be notified in a variety of ways (as discussed in “Notification Actions”), and
events may be filtered. Notification and filtering are configured through the programming
interface, as well as through the Oracle Tuxedo system administrative API.

../rf5/rf5.html

Def in ing the Unso l i c i ted Message Handle r

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-5

Defining the Unsolicited Message Handler
To define the unsolicited message handler, use the TPSETUNSOL(3cbl) routine with the
following signature:

01 CURR-ROUTINE PIC S9(9) COMP-5.

01 PREV-ROUTINE PIC S9(9) COMP-5.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC.

TPSETUNSOL allows a client to identify the routine that should be invoked when an unsolicited
message is received by the Oracle Tuxedo system libraries. Before the first call to TPSETUNSOL,
any unsolicited messages received by the Oracle Tuxedo system libraries on behalf of the client
are logged and ignored. The method used by the system for notification and detection is
determined by the application default, which can be overridden on a per-client basis. For more
information, refer to TPINITIALIZE(3cbl) in the Oracle Tuxedo ATMI COBOL Function
Reference.

The CURR-ROUTINE parameter identifies one of 16 predefined routines that provide unsolicited
message handling: eight C routines, tm_displatch1 through _tm_dispatch8, and eight
COBOL routines, TMDISPATCH9 through TMDISPATCH16. (Alternatively, if you set
CURR-ROUTINE to a value of 0, any unsolicited messages received by the Oracle Tuxedo system
libraries on behalf of the client are logged and ignored.) The C routines must conform to the
parameter definition provided on TPSETUNSOL(3cbl). When a COBOL routine is used,
TPGETUNSOL must be called to receive the data.

The following sample code shows how to set an unsolicited routine in a COBOL program.

Listing 8-1 Setting an Unsolicited Routine

*

* Call TPSETUNSOL - Set a COBOL unsolicited message handler

* Routine TMDISPATCH9 will be called

*

MOVE 9 to CURR-ROUTINE.

CALL "TPSETUNSOL" USING

CURR-ROUTINE

PREV-ROUTINE

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

8-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

TPSTATUS-REC.

IF NOT TPOK

Routine TMDISPATCH9 will receive unsolicited messages

ELSE

Process error condition

Sending Unsolicited Messages
The Oracle Tuxedo system allows unsolicited messages to be sent to client processes without
disturbing the processing of request/response calls or conversational communications.

Unsolicited messages can be sent to client processes by name, using TPBROADCAST(3cbl), or by
an identifier received with a previously processed message, using TPNOTIFY(3cbl). Messages
sent via TPBROADCAST can originate either in a service or in another client. Messages sent via
TPNOTIFY can originate only in a service.

Broadcasting Messages by Name
The TPBROADCAST(3cbl) routine allows a message to be sent to registered clients of the
application. It can be called by a service or another client. Registered clients are those that have
successfully made a call to TPINITIALIZE and have not yet made a call to TPTERM.

Use the following signature to call the TPBROADCAST routine:

01 TPBCTDEF-REC.
 COPY TPBCTDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Table 8-2 describes the members of the TPBCTDEF-REC data structure.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Send ing Unso l ic i ted Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-7

Refer to “Defining a Service” in Programming Oracle Tuxedo ATMI Applications Using C for a
description of the TPTYPE-REC record.

The following example illustrates a call to TPBROADCAST for which all clients are targeted. The
message to be sent is contained in a STRING record.

Listing 8-2 Using TPBROADCAST

. . .

**

* Prepare the record to broadcasted

**

MOVE "HELLO, WORLD" TO DATA-REC.

MOVE 11 TO LEN.

MOVE "STRING" TO REC-TYPE.

*

SET TPNOBLOCK TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

Table 8-2 TPBCTDEF-REC Data Structure Members

Member Description

LMID Pointer to the logical machine identifier for the client. A value of
SPACES acts as a wildcard, so that a message can be directed to
groups of clients.

USRNAME Username of the client process, if one exists. A value of SPACES
acts as a wildcard, so that a message can be directed to groups of
clients.

CLTNAME Client name of the client process, if one exists. A value of NULL
acts as a wildcard, so that a message can be directed to groups of
clients.

Settings (such as
TPBLOCK-FLAG)

Settings for the TPBROADCAST command. Refer to
TPBROADCAST(3cbl) in the Oracle Tuxedo ATMI COBOL
Function Reference for information on available settings.

../rf3cbl/rf3cbl.html
../pgc/pgserv.html

8-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

*

MOVE SPACES TO LMID.

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

CALL "TPBROADCAST" USING TPBCTDEF-REC

TPTYPE-REC

DATA-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

Broadcasting Messages by Identifier
The TPNOTIFY(3cbl) routine is used to broadcast a message using an identifier received with a
previously processed message. It can be called only from a service.

Use the following signature to call the TPNOTIFY routine:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Writing Global Transactions” in Programming Oracle Tuxedo ATMI Applications
Using C for information on the TPSVCDEF-REC data structure, and “Defining a Service” in
Programming Oracle Tuxedo ATMI Applications Using C for a description of the TPTYPE-REC
record.

Checking for Unsolicited Messages
To check for unsolicited messages while running the client in “dip-in” notification mode, use the
TPCHKUNSOL(3cbl) routine with the following signature:

01 MSG-NUM PIC S9(9) COMP-5.

01 TPSTATUS-REC.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgglob.html

Check ing fo r Unso l i c i ted Messages

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-9

 COPY TPSTATUS.

CALL "TPCHKUNSOL" USING MSG-NUM TPSTATUS-REC.

If any messages are pending, the system invokes the unsolicited message handling routine that
was specified using TPSETUNSOL. Upon completion, the routine returns either the number of
unsolicited messages that were processed and sets TP-STATUS to [TPOK].

If you issue this routine when the client is running in SIGNAL-based, thread-based notification
mode, or is ignoring unsolicited messages, the routine has no impact and returns immediately.

The following example shows how to check for the arrival of an unsolicited message.

Listing 8-3 Arrival of an Unsolicited Message

*

* Check for unsolicited messages

*

CALL "TPCHKUNSOL" USING MESS-NUM

TPSTATUS-REC.

*

IF TPOK

IF MESS-NUM IS = 0

No messages were processed by the

unsolicited routine

ELSE

MESS-NUM number of messages were

processed by the unsolicited routine

END-IF

ELSE

process error

END-IF

8-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

Getting Unsolicited Messages
To get unsolicited messages, you must call the TPGETUNSOL(3cbl) routine. This routine can be
called, however, only from an unsolicited message handler. Use the following signature to call
the TPGETUNSOL routine:

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” in Programming Oracle Tuxedo ATMI Applications Using C for a
description of the TPTYPE-REC record.

The following example shows how to get an unsolicited message.

Listing 8-4 Getting an Unsolicited Message

IDENTIFICATION DIVISION.

PROGRAM-ID. TMDISPATCH9.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. USL-486.

OBJECT-COMPUTER. USL-486.

*

DATA DIVISION.

WORKING-STORAGE SECTION.

*

01 TPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 DATA-REC PIC X(1000).

../rf3cbl/rf3cbl.html
../pgc/pgserv.html

Subscr ib ing to Events

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-11

*

PROCEDURE DIVISION.

*

A-000.

*

MOVE "CARRAY" TO REC-TYPE.

MOVE 1000 TO LEN.

CALL "TPGETUNSOL" USING TPTYPE-REC

DATA-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

*

Process message

DISPLAY "TPGETUNSOL IS TPOK".

DISPLAY "MESSAGE IS" DATA-REC.

DISPLAY "LENGTH IS" LEN.

EXIT PROGRAM.

*

Subscribing to Events
The TPSUBSCRIBE(3cbl) routine enables an Oracle Tuxedo system ATMI client or server to
subscribe to an event.

A subscriber can be notified through an unsolicited notification message, a service call, a reliable
queue, or other notification methods configured by the application administrator. (For
information about configuring alternative notification methods, refer to Setting Up an Oracle
Tuxedo Application.)

Use the following signature to call the TPSUBSCRIBE routine:

01 TPEVTDEF-REC.

 COPY TPEVTDEF.

01 TPQUEDEF-REC.

 COPY TPQUEDEF.

../rf3cbl/rf3cbl.html

8-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL “TPSUBSCRIBE” USING TPEVTDEF-REC TPQUEDEF-REC TPSTATUS-REC

The TPEVTDEF-REC data structure signature is as follows:

05 TPBLOCK-FLAG PIC S9(9) COMP-5.

 88 TPBLOCK VALUE 0.

 88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.

 88 TPTRAN VALUE 0.

 88 TPNOTRAN VALUE 1.

05 TPREPLY-FLAG PIC S9(9) COMP-5.

 88 TPREPLY VALUE 0.

 88 TPNOREPLY VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.

 88 TPTIME VALUE 0.

 88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.

 88 TPNOSIGRSTRT VALUE 0.

 88 TPSIGRSTRT VALUE 1.

05 TPEV-METHOD-FLAG PIC S9(9) COMP-5.

 88 TPEVNOTIFY VALUE 0.

 88 TPEVSERVICE VALUE 1.

 88 TPEVQUEUE VALUE 2.

05 TPEV-PERSIST-FLAG PIC S9(9) COMP-5.

 88 TPEVNOPERSIST VALUE 0.

 88 TPEVPERSIST VALUE 1.

05 TPEV-TRAN-FLAG PIC S9(9) COMP-5.

 88 TPEVNOTRAN VALUE 0.

 88 TPEVTRAN VALUE 1.

*

05 EVENT-COUNT PIC S9(9) COMP-5.

05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.

05 NAME-1 PIC X(127).

05 NAME-2 PIC X(127).

05 EVENT-NAME PIC X(31).

05 EVENT-EXPR PIC X(255).

05 EVENT-FILTER PIC X(255).

Subscr ib ing to Events

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-13

The following table describes the members of the TPEVTDEF-REC data structure.

Member Description

EVENT-COUNT Event count.

SUBSCRIPTION-HANDLE Subscription handle.

NAME-1, NAME-2 Name of queued spaces. If the subscriber sets TPEVQUEUE, then
event notifications are enqueued to the queue space named by
NAME-1 and the queue named by NAME-2.

EVENT-NAME Event name.

EVENT-EXPR Set of events to which to subscribe. Consists of a null-terminated
string of up to 255 characters containing a regular expression.
Regular expressions are of the form specified in
tpsubscribe(3c) as described in the Programming Oracle
Tuxedo ATMI Applications Using C. For example, if
eventexpr is set to:

• "\\..*" — the caller is subscribing to all system-defined
events.

• "\\.SysServer.*" — the caller is subscribing to all
system-defined events related to servers.

• "[A-Z].*" — the caller is subscribing to all user events
starting with A-Z.

• ".*(ERR|err).*" — the caller is subscribing to all user
events containing either the substring ERR or the substring
err (for example, account_error and ERROR_STATE
events would both qualify).

../rf3c/rf3c.html

8-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Refer to Using the ATMI /Q Component for more information on the TPQUEDEF-REC data
structure.

You can subscribe to both system- and application-defined events using the TPSUBSCRIBE
routine.

For purposes of subscriptions (and for MIB updates), service routines executed in an Oracle
Tuxedo system server process are considered to be trusted code.

Refer to TPSUBSCRIBE(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference for more
information on the routine.

EVENT-FILTER String containing a Boolean filter rule that must be evaluated
successfully before the Event Broker posts the event. Upon
receiving an event to be posted, the Event Broker applies the
filter rule, if one exists, to the posted event’s data. If the data
passes the filter rule, the Event Broker invokes the notification
method specified; otherwise, the Event Broker ignores the
notification method. The caller can subscribe to the same event
multiple times with different filter rules.

By using the event filtering capability, subscribers can be more
discriminating about the events for which they are notified. For
example, a poster can post an event for withdrawals greater than
$10,000.00, but a subscriber may want to specify a higher
threshold for being notified, such as $50,000.00. Or, a
subscriber may want to be notified of large withdrawals only if
made by customers with specified IDs.

Filter rules are specific to the typed records to which they are
applied. Refer to the TPSUBSCRIBE(3cbl) reference page in
the Oracle Tuxedo ATMI COBOL Function Reference for
further information on filter rules.

SETTINGS
(TPBLOCK-FLAG,
 TPTRAN-FLAG, and so
on)

Miscellaneous settings that control the server characteristics.
For more information on the settings, refer to the Oracle Tuxedo
ATMI COBOL Function Reference.

Member Description

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Unsubscr ib ing f rom Events

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-15

Unsubscribing from Events
The TPUNSUBSCRIBE(3cbl) routine enables an Oracle Tuxedo system ATMI client or server to
unsubscribe from an event.

Use the following signature to call the TPUNSUBSCRIBE routine:

01 TPEVTDEF-REC.

 COPY TPEVTDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL “TPUNSUBSCRIBE” USING TPEVTDEF-REC TPSTATUS-REC

Refer to “Subscribing to Events” on page 8-11 for a detailed description of the TPEVTDEF-REC
data structure, and to Using the ATMI /Q Component for more information on the TPQUEDEF-REC
data structure.

Posting Events
The TPPOST(3cbl) routine enables an Oracle Tuxedo ATMI client or server to post an event.

Use the following signature to call the TPPOST routine:

01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPTYPE-REC.
 COPY TPSTATUS.

01 TPDATA-REC.
 COPY TPSTATUS.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL “TPPST” USING TPEVTDEF-REC TPTYPE-REC TPDATA-REC TPSTATUS-REC

Refer to “Subscribing to Events” on page 8-11 for a detailed description of the TPEVTDEF-REC
data structure, and to “Defining a Service” in Programming Oracle Tuxedo ATMI Applications
Using C for a description of the TPTYPE-REC record.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgserv.html

8-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-1

C H A P T E R 9

Writing Global Transactions

This topic includes the following sections:

What Is a Global Transaction?

Starting the Transaction

Terminating the Transaction

Terminating the Transaction

Implicitly Defining a Global Transaction

Defining Global Transactions for an XA-Compliant Server Group

Testing Whether a Transaction Has Started

What Is a Global Transaction?
A global transaction is a mechanism that allows a set of programming tasks, potentially using
more than one resource manager and potentially executing on multiple servers, to be treated as
one logical unit.

Once a process is in transaction mode, any service requests made to servers may be processed on
behalf of the current transaction. The services that are called and join the transaction are referred
to as transaction participants. The value returned by a participant may affect the outcome of the
transaction.

9-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

A global transaction may be composed of several local transactions, each accessing the same
resource manager. The resource manager is responsible for performing concurrency control and
atomicity of updates. A given local transaction may be either successful or unsuccessful in
completing its access; it cannot be partially successful.

A maximum of 16 server groups can participate in a single transaction.

The Oracle Tuxedo system manages a global transaction in conjunction with the participating
resource managers and treats it as a specific sequence of operations that is characterized by
atomicity, consistency, isolation, and durability. In other words, a global transaction is a logical
unit of work in which:

All portions either succeed or have no effect.

Operations are performed that correctly transform resources from one consistent state to
another.

Intermediate results are not accessible to other transactions, although some processes in a
transaction may access the data associated with another process.

Once a sequence is complete, its results cannot be altered by any kind of failure.

The Oracle Tuxedo system tracks the status of each global transaction and determines whether it
should be committed or rolled back.

Starting the Transaction
To start a global transaction, use the TPBEGIN(3cbl) routine with the following signature:

*

 01 TPTRXDEF-REC.

 COPY TPTRXDEF.

*

 01 TPSTATUS-REC.

 COPY TPSTATUS.

*

 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

Table 9-1 describes the TPTRXDEF-REC structure fields

../rf3cbl/rf3cbl.html

Sta r t ing the T ransact i on

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-3

Table 9-1 TPTRXDEF Structure Field

Field Description

T-OUT Specifies the amount of time, in seconds, a transaction can execute before
timing out. You can set this value to the maximum number of seconds allowed
by the system, by specifying a value of 0. In other words, you can set
timeout to the maximum value for an unsigned long as defined by the
system.

The use of 0 or an unrealistically large value for the T-OUT parameter delays
system detection and reporting of errors. The system uses the T-OUT
parameter to ensure that responses to service requests are sent within a
reasonable time, and to terminate transactions that encounter problems such as
network failures before executing a commit.

For a transaction in which a person is waiting for a response, you should set
this parameter to a small value: if possible, less than 30 seconds.

In a production system, you should set T-OUT to a value large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: The value assigned to the T-OUT parameter should be consistent with
that of the SCANUNIT parameter set by the Oracle Tuxedo application
administrator in the configuration file. The SCANUNIT parameter
specifies the frequency with which the system checks, or scans, for
timed-out transactions and blocked calls in service requests. The value
of this parameter represents the interval of time between these
periodic scans, referred to as the scanning unit.

You should set the T-OUT parameter to a value that is greater than the
scanning unit. If you set the T-OUT parameter to a value smaller than
the scanning unit, there will be a discrepancy between the time at
which a transaction times out and the time at which this timeout is
discovered by the system. The default value for SCANUNIT is 10
seconds. You may need to discuss the setting of the T-OUT parameter
with your application administrator to make sure the value you assign
to the T-OUT parameter is compatible with the values assigned to your
system parameters.

TRANID Transaction identifier.

9-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

Any process may call TPBEGIN unless the process is already in transaction mode. If TPBEGIN is
called in transaction mode, the call fails due to a protocol error and TP-STATUS is set to
TPEPROTO. If the process is in transaction mode, the transaction is unaffected by the failure.

The following example provides a high-level view of how a global transaction is defined.

Listing 9-1 Delineating a Transaction

. . .

MOVE 0 TO T-OUT.

CALL "TPBEGIN" USING

TPTRXDEF-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

. . .

program statements

. . .

CALL "TPCOMMIT" USING

TPTRXDEF-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

The following example shows how an outstanding reply can cause an error.

Listing 9-2 Error - Starting a Transaction with an Outstanding Reply

. . .

MOVE "BUY" TO SERVICE-NAME.

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPREPLY TO TRUE.

SET TPNOTIME TO TRUE.

Sta r t ing the T ransact i on

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-5

SET TPSIGRSTRT TO TRUE.

CALL "TPACALL" USING

TPSVCDEF-REC

TPTYPE-REC

BUY-REC

TPSTATUS-REC.

IF NOT TPOK

error processing

. . .

MOVE 0 TO T-OUT.

CALL "TPBEGIN" USING

TPTRXDEF-REC

TPSTATUS-REC.

vIF NOT TPOK

error processing

* ERROR TP-STATUS is set to TPEPROTO

. . .

program statements

. . .

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPCHANGE TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPGETANY TO TRUE.

CALL "TPGETRPLY" USING

TPSVCDEF-REC

TPTYPE-REC

WK-AREA

TPSTATUS-REC.

IF NOT TPOK

error processing

9-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

If a transaction times out, a call to TPCOMMIT causes the transaction to be aborted. As a result,
TPCOMMIT fails and sets TP-STATUS to TPEABORT.

The following example shows how to test for a transaction timeout. Note that the value of T-OUT
is set to 30 seconds.

Listing 9-3 Testing for Transaction Timeout

. . .

MOVE 30 TO T-OUT.

CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

IF NOT TPOK

MOVE "Failed to BEGIN a transaction" TO LOG-REC-TEXT.

MOVE 29 to LOG-REC-LEN

CALL "USERLOG" USING

LOG-REC-TEXT

LOG-REC-LEN

TPSTATUS-REC

CALL "TPTERM" USING

TPSTATUS-REC

PERFORM A-999-EXIT.

. . .

communication CALL statements

. . .

IF TPETIME

CALL "TPABORT" USING

TPTRXDEF-REC

TPSTATUS-REC

IF NOT TPOK

error processing

ELSE

CALL "TPCOMMIT" USING

TPTRXDEF-REC

TPSTATUS-REC

IF NOT TPOK

error processing

Sta r t ing the T ransact i on

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-7

Note: When a process is in transaction mode and makes a communication call with TPNOTRAN,
it prohibits the called service from becoming a participant in the current transaction.
Whether the service request succeeds or fails has no impact on the outcome of the
transaction. The transaction can still timeout while waiting for a reply that is due from a
service, whether it is part of the transaction or not. Refer to “Managing Errors” in
Programming Oracle Tuxedo ATMI Applications Using C for more information on the
effects of the TPNOTRAN flag.

The following example shows how to define a transaction.

Listing 9-4 Defining a Transaction

 DATA DIVISION.

 WORKING-STORAGE SECTION.

*

 01 TPTYPE-REC.

 COPY TPTYPE.

*

 01 TPSTATUS-REC.

 COPY TPSTATUS.

*

 01 TPINFDEF-REC.

 COPY TPINFDEF.

*

 01 TPSVCDEF-REC.

 COPY TPSVCDEF.

*

 01 TPTRXDEF-REC.

 COPY TPTRXDEF.

*

 01 LOG-REC PIC X(30) VALUE " ".

 01 LOG-REC-LEN PIC S9(9) COMP-5.

*

 01 USR-DATA-REC PIC X(16).

*

 01 AUDV-REC.

../pgc/pgerr.html

9-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

05 AUDV-BRANCH-ID PIC S9(9) COMP-5.

05 AUDV-BALANCE PIC S9(9) COMP-5.

05 AUDV-ERRMSG PIC X(60).

*

PROCEDURE DIVISION.

*

 A-000.

 . . .

* Get Command Line Options set Variables (Q-BRANCH)

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

MOVE SPACES TO PASSWD.

MOVE SPACES TO GRPNAME.

CALL "TPINITIALIZE" USING TPINFDEF-REC

USR-DATA-REC

TPSTATUS-REC.

IF NOT TPOK

MOVE "Failed to join application" TO LOG-REC

MOVE 26 TO LOG-REC-LEN

CALL "USERLOG" USING LOG-REC

LOG-REC-LEN

TPSTATUS-REC

PERFORM A-999-EXIT.

* Start global transaction

MOVE 30 TO T-OUT.

CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

IF NOT TPOK

MOVE 29 to LOG-REC-LEN

MOVE "Failed to begin a transaction" TO LOG-REC

CALL "USERLOG" USING LOG-REC

LOG-REC-LEN

TPSTATUS-REC

PERFORM DO-TPTERM.

* Set up record

MOVE Q-BRANCH TO AUDV-BRANCH-ID.

Sta r t ing the T ransact i on

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-9

MOVE ZEROS TO AUDV-BALANCE.

MOVE SPACES TO AUDV-ERRMSG.

* Set up TPCALL records

MOVE "GETBALANCE" TO SERVICE-NAME.

MOVE "VIEW" TO REC-TYPE.

MOVE LENGTH OF AUDV-REC TO LEN.

SET TPBLOCK TO TRUE.

SET TPTRAN IN TPSVCDEF-REC TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPCHANGE TO TRUE.

*

CALL "TPCALL" USING TPSVCDEF-REC

TPTYPE-REC

AUDV-REC

TPTYPE-REC

AUDV-REC

TPSTATUS-REC.

IF NOT TPOK

MOVE 19 to LOG-REC-LEN

MOVE "Service call failed" TO LOG-REC

CALL "USERLOG" USING LOG-REC

LOG-REC-LEN

TPSTATUS-REC

PERFORM DO-TPABORT

PERFORM DO-TPTERM.

* Commit global transaction

CALL "TPCOMMIT" USING TPTRXDEF-REC

TPSTATUS-REC

IF NOT TPOK

MOVE 16 to LOG-REC-LEN

MOVE "Failed to commit" TO LOG-REC

CALL "USERLOG" USING LOG-REC

LOG-REC-LEN

TPSTATUS-REC

9-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

PERFORM DO-TPTERM.

* Show results only when transaction has completed successfully

DISPLAY "BRANCH=" Q-BRANCH.

DISPLAY "BALANCE=" AUDV-BALANCE.

PERFORM DO-TPTERM.

* Abort the transaction

 DO-TPABORT.

CALL "TPABORT" USING TPTRXDEF-REC

TPSTATUS-REC

IF NOT TPOK

MOVE 26 to LOG-REC-LEN

MOVE "Failed to abort transaction" TO LOG-REC

CALL "USERLOG" USING LOG-REC

LOG-REC-LEN

TPSTATUS-REC.

* Leave the application

 DO-TPTERM.

CALL "TPTERM" USING TPSTATUS-REC.

IF NOT TPOK

MOVE 27 to LOG-REC-LEN

MOVE "Failed to leave application" TO LOG-REC

CALL "USERLOG" USING LOG-REC

LOG-REC-LEN

TPSTATUS-REC.

EXIT PROGRAM.

*

 A-999-EXIT.

*

 EXIT PROGRAM.

Terminating the Transaction
To end a global transaction, call TPCOMMIT(3cbl) to commit the current transaction, or
TPABORT(3cbl) to abort the transaction and roll back all operations.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Te rminat ing the T ransact ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-11

Note: If TPCALL, TPACALL, or TPCONNECT is called by a process that has explicitly set
TPNOTRAN, the operations performed by the called service do not become part of the
current transaction. In other words, when you call the TPABORT routine, the operations
performed by these services are not rolled back.

Committing the Current Transaction
The TPCOMMIT(3cbl) routine commits the current transaction. When TPCOMMIT returns
successfully, all changes to resources as a result of the current transaction become permanent.

Use the following signature to call the TPCOMMIT routine:

*

 01 TPTRXDEF-REC.

 COPY TPTRXDEF.

*

 01 TPSTATUS-REC.

 COPY TPSTATUS.

*

 CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC.

Refer to “Starting the Transaction” on page 9-2 for a description of the TPTRXDEF-REC structure.

Prerequisites for a Transaction Commit
For TPCOMMIT to succeed, the following conditions must be true:

The calling process must be the same one that initiated the transaction with a call to
TPBEGIN.

The calling process must have no transactional replies (calls made without the TPNOTRAN
flag) outstanding.

The transaction must not be in a rollback-only state and must not be timed out.

If the first condition is false, the call fails and TP-STATUS is set to TPEPROTO, indicating a
protocol error. If the second or third condition is false, the call fails and TP-STATUS is set to
TPEABORT, indicating that the transaction has been rolled back. If TPCOMMIT is called by the
initiator with outstanding transaction replies, the transaction is aborted and those reply
descriptors associated with the transaction become invalid. If a participant calls TPCOMMIT or
TPABORT, the transaction is unaffected.

../rf3cbl/rf3cbl.html

9-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

A transaction is placed in a rollback-only state if any service call returns TPFAIL or indicates a
service error. If TPCOMMIT is called for a rollback-only transaction, the routine cancels the
transaction, returns -1, and sets TP-STATUS to TPEABORT. The results are the same if TPCOMMIT
is called for a transaction that has already timed out: TPCOMMIT returns -1 and sets TP-STATUS to
TPEABORT. Refer to “Managing Errors” in Programming Oracle Tuxedo ATMI Applications
Using C for more information on transaction errors.

Two-phase Commit Protocol
When the TPCOMMIT routine is called, it initiates the two-phase commit protocol. This protocol,
as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. The initiator of the transaction gives permission to commit to each participating resource
manager.

The commit sequence begins when the transaction initiator calls the TPCOMMIT routine. The
Oracle Tuxedo TMS server process in the designated coordinator group contacts the TMS in each
participant group that is to perform the first phase of the commit protocol. The TMS in each group
then instructs the resource manager (RM) in that group to commit using the XA protocol that is
defined for communications between the Transaction Managers and RMs. The RM writes, to
stable storage, the states of the transaction before and after the commit sequence, and indicates
success or failure to the TMS. The TMS then passes the response back to the coordinating TMS.

When the coordinating TMS has received a success indication from all groups, it logs a statement
to the effect that a transaction is being committed and sends second-phase commit notifications
to all participant groups. The RM in each group then finalizes the transaction updates.

If the coordinator TMS is notified of a first-phase commit failure from any group, or if it fails to
receive a reply from any group, it sends a rollback notification to each RM and the RMs back out
all transaction updates. TPCOMMIT then fails and sets TP-STATUS to TPEABORT.

Selecting Criteria for a Successful Commit
When more than one group is involved in a transaction, you can specify which of two criteria
must be met for TPCOMMIT to return successfully:

When all participants have indicated a readiness to commit (that is, when all participants
have reported that phase 1 of the two-phase commit has been logged as complete and the
coordinating TMS has written its decision to commit to stable storage)

When all participants have finished phase 2 of the two-phase commit

../pgc/pgerr.html

Te rminat ing the T ransact ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-13

To specify one of these prerequisites, set the CMTRET parameter in the RESOURCES section of the
configuration file to one of the following values:

LOGGED—to require completion of phase 1

COMPLETE—to require completion of phase 2

By default, CMTRET is set to COMPLETE.

Trade-offs Between Possible Commit Criteria
In most cases, when all participants in a global transaction have logged successful completion of
phase 1, they do not fail to complete phase 2. By setting CMTRET to LOGGED, you allow a slightly
faster return of calls to TCOMMIT, but you run the slight risk that a participant may heuristically
complete its part of the transaction in a way that is not consistent with the commit decision.

Whether it is prudent to accept the risk depends to a large extent on the nature of your application.
If your application demands complete accuracy (for example, if you are running a financial
application), you should probably wait until all participants fully complete the two-phase commit
process before returning. If your application is more time-sensitive, you may prefer to have the
application execute faster at the expense of accuracy.

Aborting the Current Transaction
Use the TPABORT(3cbl) routine to indicate an abnormal condition and explicitly abort a
transaction. This function invalidates the call descriptors of any outstanding transactional replies.
None of the changes produced by the transaction are applied to the resource. Use the following
signature to call the TPABORT routine:

*

 01 TPTRXDEF-REC.

 COPY TPTRXDEF.

*

 01 TPSTATUS-REC.

 COPY TPSTATUS.

*

 CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC.

Refer to “Starting the Transaction” on page 9-2 for a description of the TPTRXDEF-REC structure.

../rf3cbl/rf3cbl.html

9-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Example: Committing a Transaction in Conversational Mode
Figure 9-1 illustrates a conversational connection hierarchy that includes a global transaction.

Figure 9-1 Connection Hierarchy in Transaction Mode

The connection hierarchy is created through the following process:

1. A client (process A) initiates a connection in transaction mode by calling TPBEGIN and
TPCONNECT.

Te rminat ing the T ransact ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-15

2. The client calls subsidiary services, which are executed.

3. As each subordinate service completes, it sends a reply indicating success or failure
(TPEV_SVCSUCC or TPEV_SVCFAIL, respectively) back up through the hierarchy to the
process that initiated the transaction. In this example the process that initiated the transaction
is the client (process A). When a subordinate service has completed sending replies (that is,
when no more replies are outstanding), it must call TPRETURN.

4. The client (process A) determines whether all subordinate services have returned
successfully.

– If so, the client commits the changes made by those services, by calling TPCOMMIT, and
completes the transaction.

– If not, the client calls TPABORT, since it knows that TPCOMMIT could not be successful.

Example: Testing for Participant Errors
In the following sample code, a client makes a synchronous call to the fictitious REPORT service
(line 24). Then the code checks for participant failures by testing for errors that can be returned
on a communication call (lines 30-42).

Listing 9-5 Testing for Participant Success or Failure

01 . . .
02 CALL "TPINITIALIZE" USING TPINFDEF-REC
03 USR-DATA-REC
04 TPSTATUS-REC.
05 IF NOT TPOK
06 error message,
07 EXIT PROGRAM .
08 MOVE 30 TO T-OUT.
09 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
10 IF NOT TPOK
11 error message,
12 PERFORM DO-TPTERM.
13 * Set up record
14 MOVE "REPORT=accrcv DBNAME=accounts" TP-RECORD.
15 MOVE 27 TO LEN.
16 MOVE "REPORTS" TO SERVICE-NAME.
17 MOVE "STRING" TO REC-TYPE.
18 SET TPBLOCK TO TRUE.
19 SET TPTRAN IN TPSVCDEF-REC TO TRUE.
20 SET TPNOTIME TO TRUE.

9-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

21 SET TPSIGRSTRT TO TRUE.
22 SET TPCHANGE TO TRUE.
23 *
24 CALL "TPCALL" USING TPSVCDEF-REC
25 TPTYPE-REC
26 TP-RECORD
27 TPTYPE-REC
28 TP-RECORD
29 TPSTATUS-REC.
30 IF TPOK
31 PERFORM DO-TPCOMMIT
32 PERFORM DO-TPTERM.
33 * Check return status
34 IF TPESVCERR
35 DISPLAY "REPORT service's TPRETURN encountered problems"
36 ELSE IF TPESVCFAIL
37 DISPLAY "REPORT service FAILED with return code=" APPL-RETURN-CODE
38 ELSE IF TPEOTYPE
39 DISPLAY "REPORT service's reply is not of any known REC-TYPE"
40 *
41 PERFORM DO-TPABORT
42 PERFORM DO-TPTERM.
43 * Commit global transaction
44 DO-TPCOMMIT.
45 CALL "TPCOMMIT" USING TPTRXDEF-REC
46 TPSTATUS-REC
47 IF NOT TPOK
48 error message
49 * Abort the transaction
50 DO-TPABORT.
51 CALL "TPABORT" USING TPTRXDEF-REC
52 TPSTATUS-REC
53 IF NOT TPOK
54 error message
55 * Leave the application
56 DO-TPTERM.
57 CALL "TPTERM" USING TPSTATUS-REC.
58 IF NOT TPOK
59 error message
60 EXIT PROGRAM.

Implicitly Defining a Global Transaction
An application can start a global transaction in either of two ways:

Explicitly, by calling ATMI calls, as described in “Starting the Transaction” on page 9-2.

Def in ing G loba l T ransact ions fo r an XA-Compl iant Se rve r G roup

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-17

Implicitly, from within a service routine

This section describes the second method.

You can implicitly place a service routine in transaction mode by setting the system parameter
AUTOTRAN in the configuration file. If you set AUTOTRAN to Y, the system automatically starts a
transaction in the service subroutine when a request is received from another process.

When implicitly defining a transaction, observe the following rules:

If a process requests a service from another process when the calling process is not in
transaction mode and the AUTOTRAN system parameter is set to start a transaction, the
system initiates a transaction.

If a process that is already in transaction mode requests a service from another process, the
system’s first response is to determine whether or not the caller is set to TPNOTRAN.

If not set to TPNOTRAN, then the system places the called process in transaction mode
through the “rule of propagation.” The system does not check the AUTOTRAN parameter.

If TPTRN-FLAG IN TPSVCDEF-REC is set to TPNOTRAN, the services performed by the
called process are not included in the current transaction (that is, the propagation rule is
suppressed). The system checks the AUTOTRAN parameter.

– If AUTOTRAN is set to N (or if it is not set), the system does not place the called process
in transaction mode.

– If AUTOTRAN is set to Y, the system places the called process in transaction mode, but
treats it as a new transaction.

Note: Because a service can be placed in transaction mode automatically, it is possible for a
service with the TPNOTRAN flag set to call services that have the AUTOTRAN parameter set.
If such a service requests another service, the member of the service information
structure returns TPTRAN when queried. For example, if the call is made with TPNOTRAN
| TPNOREPLY, and the service automatically starts a transaction when called, the
information structure is set to TPTRAN | TPNOREPLY.

Defining Global Transactions for an XA-Compliant Server
Group

Generally, the application programmer writes a service that is part of an XA-compliant server
group to perform some operation via the group’s resource manager. In the normal case, the
service expects to perform all operations within a transaction. If, on the other hand, the service is

9-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

called with the communication setting of TPNOTRAN, you may receive unexpected results when
executing database operations.

In order to avoid unexpected behavior, design the application so that services in groups associated
with XA-compliant resource managers are always called in transaction mode or are always
defined in the configuration file with AUTOTRAN set to Y. You should also test the transaction level
in the service code early.

Testing Whether a Transaction Has Started
It is important to know whether or not a process is in transaction mode in order to avoid and
interpret certain error conditions. For example, it is an error for a process already in transaction
mode to call TPBEGIN. When TPBEGIN is called by such a process, it fails and sets TP-STATUS to
TPEPROTO to indicate that it was invoked while the caller was already participating in a
transaction. The transaction is not affected.

You can design a service subroutine so that it tests whether it is in transaction mode before
invoking TPBEGIN. You can test the transaction level by either of the following methods:

Querying the settings of the service information structure that is passed to the service
routine. The service is in transaction mode if the value is set to TPTRAN.

Calling the TPGETLEV(3cbl) routine.

Use the following signature to call the TPGETLEV routine:

01 TPTRXLEV-REC.

 COPY TPTRXLEV.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC.

TPGETLEV returns TP-NOT-IN-TRAN if the caller is not in a transaction and TP-IN-TRAN if the
caller is.

The following code sample shows how to test for transaction level using the TPGETLEV routine
(line 3). If the process is not already in transaction mode, the application starts a transaction (line
5). If TPBEGIN fails, a message is returned to the status line (line 9) and APPL-CODE IN
TPSVCRET-REC of TPRETURN is set to a code that can be retrieved in APL-RETURN-CODE IN
TPSTATUS-REC (lines 1 and 11).

../rf3cbl/rf3cbl.html

Test ing Whether a T ransact ion Has S tar ted

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-19

Listing 9-6 Testing Transaction Level

. . . Application defined codes

001 77 BEG-FAILED PIC S9(9) VALUE 3.

. . .

002 PROCEDURE DIVISION.

. . .

003 CALL "TPGETLEV" USING TPTRCLEV-REC

TPSTATUS-REC.

004 IF NOT TPOK

error processing EXIT PROGRAM

005 IF TP-NOT-IN-TRAN

006 MOVE 30 TO T-OUT.

007 CALL "TPBEGIN" USING

TPTRXDEF-REC

TPSTATUS-REC.

008 IF NOT TPOK

009 MOVE "Attempt to TPBEGIN within service failed"

TO USER-MESSAGE.

010 SET TPFAIL TO TRUE.

011 MOVE BEG-FAILED TO APPL-CODE.

012 COPY TPRETURN REPLACING

013 DATA-REC BY USER-MESSAGE.

. . .

If the AUTOTRAN parameter is set to Y, you do not need to call the TPBEGIN, and TPCOMMIT or
TPABORT transaction routines explicitly. As a result, you can avoid the overhead of testing for
transaction level. In addition, you can set the TRANTIME parameter to specify the time-out
interval: the amount of time that may elapse after a transaction for a service begins, and before it
is rolled back if not completed.

For example, suppose you are revising the OPEN_ACCT service shown in the preceding code
listing. Currently, OPEN_ACCT defines the transaction explicitly and then tests for its existence.
To reduce the overhead introduced by these tasks, you can eliminate them from the code.
Therefore, you need to require that whenever OPEN_ACCT is called, it is called in transaction

9-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

mode. To specify this requirement, enable the AUTOTRAN and TRANTIME system parameters in the
configuration file.

See Also
Description of the AUTOTRAN configuration parameter in the section “Implicitly Defining a
Global Transaction” on page 9-16 of Setting Up an Oracle Tuxedo Application.

TRANTIME configuration parameter in Setting Up an Oracle Tuxedo Application.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-1

C H A P T E R 1

Programming a Multithreaded and
Multicontexted ATMI Application

This topic includes the following sections:

Support for Programming a Multithreaded/Multicontexted ATMI Application

Planning and Designing a Multithreaded/Multicontexted ATMI Application

Implementing a Multithreaded/ Multicontexted ATMI Application

Testing a Multithreaded/Multicontexted ATMI Application

Support for Programming a
Multithreaded/Multicontexted ATMI Application

The Oracle Tuxedo system supports only:

Kernel-level threads packages (user-level threads packages are not supported)

Multithreaded applications written in C (multithreaded COBOL applications are not
supported)

Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions as well as other types of threads
functions, we recommend using the POSIX threads functions, which make your code easier to
port to other platforms later.

10-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

To find out whether your platform supports a kernel-level threads package, C functions, or
POSIX functions, see the data sheet for your operating system in Installing the Oracle Tuxedo
System.

Platform-specific Considerations for
Multithreaded/Multicontexted Applications
Many platforms have idiosyncratic requirements for multithreaded and multicontexted
applications. Installing the Oracle Tuxedo System lists these platform-specific requirements. To
find out what is needed on your platform, check the appropriate data sheet.

See Also
“What Are Multithreading and Multicontexting?” on page 1-3

“Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 1-7

“How Multithreading and Multicontexting Work in a Client” on page 1-10

“How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

Planning and Des ign ing a Mul t i th readed/Mul t icontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-3

Planning and Designing a Multithreaded/Multicontexted
ATMI Application

This topic includes the following sections:

What Are Multithreading and Multicontexting?

Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application

How Multithreading and Multicontexting Work in a Client

How Multithreading and Multicontexting Work in an ATMI Server

Design Considerations for a Multithreaded and Multicontexted ATMI Application

What Are Multithreading and Multicontexting?
The Oracle Tuxedo system allows you to use a single process to perform multiple tasks
simultaneously. The programming techniques for implementing this sort of process usage are
multithreading and multicontexting. This topic provides basic information about these
techniques:

What Is Multithreading?

What Is Multicontexting?

What Is Multithreading?
Multithreading is the inclusion of more than one unit of execution in a single process. In a
multithreaded application, multiple simultaneous calls can be made from the same process. For
example, an individual process is not limited to one outstanding tpcall(3c).

In a server, multithreading requires multicontexting except when application-created threads are
used in a singled-context server. The only way to create a multithreaded, single-context
application is to use application-created threads.

The Oracle Tuxedo system supports multithreaded applications written in C. It does not support
multithreaded COBOL applications.

Figure 1-1 shows how a multithreaded client can issue calls to three servers simultaneously.

../rf3c/rf3c.html

10-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

Figure 1-1 Sample Multithreaded Process

In a multithreaded application, multiple service-dispatched threads are available in the
same server, which means that fewer servers need to be started for that application.

Figure 1-2 shows how a server process can dispatch multiple threads to different clients
simultaneously.

SERVER A SERVER B

SERVER C

CLIENT PROCESS

THREAD 1 THREAD 2

THREAD 3

tpcall() tpcall()

tpcall()

What Are Mul t i th read ing and Mu l t i contex t ing?

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-5

Figure 1-2 Multiple Service Threads Dispatched in One Server Process

What Is Multicontexting?
A context is an association to a domain. Multicontexting is the ability of a single process to have
one of the following:

More than one connection within a domain

Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers, multicontexting
implies the use of multithreading, as well.

For a more complete list of the characteristics of a context, see “Context Attributes” in one of the
following sections:

“Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

CLIENT A

CLIENT C

THREAD 1

THREAD 2

THREAD 3

SERVER

CLIENT B

PROCESS

10-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

“Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

The Oracle Tuxedo system supports multicontexted applications written in either C or COBOL.
Multithreaded applications, however, are supported only in C.

Figure 1-3 shows how a multicontexted client process works within a domain. Each arrow
represents an outstanding call to a server.

Figure 1-3 Multicontexted Process in Two Domains

Licensing a Multithreaded or Multicontexted Application
For licensing purposes, each context is counted as one user. Additional licenses are not required
to accommodate multiple threads within one context. For example:

If a process has two contexts associated with Application A and one with Application B,
the Oracle Tuxedo system counts a total of three users (two in Application A and one in
Application B).

If a process has multiple threads accessing one application within the same context, the
system counts only one user.

CLIENT PROCESS

Server 2

Oracle Tuxedo Application A Oracle Tuxedo Application B

Server 1

Server 3

Server 2

Server 1

Context 1

Context 2

Context 3

Advantages and D isadvantages o f a Mul t i th readed/Mul t icontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-7

See Also
“Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 1-7

“How Multithreading and Multicontexting Work in a Client” on page 1-10

“How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

Advantages and Disadvantages of a
Multithreaded/Multicontexted ATMI Application

Multithreading and multicontexting are powerful tools for enhancing the performance of Oracle
Tuxedo applications—given the appropriate circumstances. Before embarking on a plan to use
these techniques, however, it is important to understand potential benefits and pitfalls.

Advantages of a Multithreaded/Multicontexted ATMI
Application
Multithreaded and multicontexted ATMI applications offer the following advantages:

Improved performance and concurrency

For certain applications, performance and concurrency can be improved by using
multithreading and multicontexting together. In other applications, performance can be
unaffected or even degraded by using multithreading and multicontexting together. How
performance is affected depends on your application.

Simplified coding of remote procedure calls and conversations

In some applications it is easier to code different remote procedure calls and conversations
in separate threads than to manage them from the same thread.

Simultaneous access to multiple applications

Your Oracle Tuxedo clients can be connected to more than one application at a time.

Reduced number of required servers

Because one server can dispatch multiple service threads, the number of servers to start for
your application is reduced. This capability for multiple dispatched threads is especially
useful for conversational servers, which otherwise must be dedicated to one client for the
entire duration of a conversation.

10-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

For applications in which client threads are created by the Microsoft Internet Information Server
API or the Netscape Enterprise Server interface (that is, the NSAPI), the use of multiple threads
is essential if you want to obtain the full benefits afforded by these tools. This may be true of other
tools, as well.

Disadvantages of a Multithreaded/Multicontexted ATMI
Application
Multithreaded and multicontexted ATMI applications present the following disadvantages:

Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only experienced
programmers should undertake coding for these types of applications.

Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted application than
it is to do so in a single-threaded, single-contexted application. As a result, it is more
difficult, in the former case, to identify and verify root causes when errors occur.

Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the potential to
introduce new problems into an application.

Difficulty of testing

Testing a multithreaded application is more difficult than testing a single-threaded
application because defects are often timing-related and more difficult to reproduce.

Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of multithreading
and multicontexting. Programmers need to:

– Remove static variables

– Replace any function calls that are not thread-safe

– Replace any other code that is not thread-safe

Because the completed port must be tested and retested, the work required to port a
multithreaded and/or multicontexted application is substantial.

Advantages and D isadvantages o f a Mul t i th readed/Mul t icontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-9

See Also
“What Are Multithreading and Multicontexting?” on page 1-3

“How Multithreading and Multicontexting Work in a Client” on page 1-10

“How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

“Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

10-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

How Multithreading and Multicontexting Work in a Client
When a multithreaded and multicontexted application is active, the life cycle of a client can be
described in three phases:

Start-up Phase

Work Phase

Completion Phase

Start-up Phase
In the start-up phase the following events occur:

Some client threads join one or more Oracle Tuxedo applications by calling tpinit(3c).

Other client threads share the contexts created by the first set of threads by calling
tpsetctxt(3c).

Some client threads join multiple contexts.

Some client threads switch to an existing context.

Note: There may also be threads that work independently of the Oracle Tuxedo system. We do
not consider such threads in this documentation.

Client Threads Join Multiple Contexts
A client in an Oracle Tuxedo multicontexted application can have more than one application
association as long as the following rules are observed:

All associations must be made to the same installation of the Oracle Tuxedo system.

All application associations must be made from the same type of client. In other words,
one of the following must be true:

– All application associations must be made from native clients only.

– All application associations must be made from Workstation clients only.

To join multiple contexts, clients call the tpinit(3c) function with the TPMULTICONTEXTS flag
set in the flags element of the TPINFO data type.

When tpinit() is called with the TPMULTICONTEXTS flag set, a new application association is
created and is designated the current association for the thread. The Oracle Tuxedo domain to

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

How Mul t i th read ing and Mul t icontex t ing Work in a C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-11

which the new association is made is determined by the value of the TUXCONFIG or
WSENVFILE/WSNADDR environment variable.

Client Threads Switch to an Existing Context
Many ATMI functions operate on a per-context basis. (For a complete list, see “Using
Per-context Functions and Data Structures in a Multithreaded ATMI Client” on page 1-44.) In
such cases, the target context must be the current context. Although clients can join more than
one context, at any time, in any thread, only one context can be the current context.

As task priorities shift within an application, requiring interactions with one Oracle Tuxedo
domain rather than another, it is sometimes advantageous to reassign a thread from one context
to another.

In such situations, one client threads calls tpgetctxt(3c) and passes the handle that is returned
(the value of which is the current context) to a second client thread. The second thread then
associates itself with the current context by calling tpsetctxt(3c) and specifying the handle it
received from tpgetctxt(3c) via the first thread.

Once the second thread is associated with the desired context, it is available to perform tasks
executed by ATMI functions that operate on a per-context basis. For details, see “Using
Per-context Functions and Data Structures in a Multithreaded ATMI Client” on page 1-44.

Work Phase
In this phase each thread performs a task. The following is a list of sample tasks:

A thread issues a request for a service.

A thread gets the reply to a service request.

A thread initiates and/or participates in a conversation.

A thread begins, commits, or rolls back a transaction.

Service Requests
A thread sends a request to a server by calling either tpcall(3c) for a synchronous request or
tpacall(3c)for an asynchronous request. If the request is sent with tpcall(), then the reply is
received without further action by any thread.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

Replies to Service Requests
If an asynchronous request for a service has been sent with tpcall(3c), a thread in the same
context (which may or may not be the same thread that sent the request) gets the reply by calling
tpgetrply(3c).

Transactions
If one thread starts a transaction, then all threads that share the context of that thread also share
the transaction.

Many threads in a context may work on a transaction, but only one thread may commit or abort
it. The thread that commits or aborts the transaction can be any thread working on the transaction;
it is not necessarily the same thread that started the transaction. Threaded applications are
responsible for providing appropriate synchronization so that the normal rules of transactions are
followed. (For example, there can be no outstanding RPC calls or conversations when a
transaction is committed, and no stray calls are allowed after a transaction has been committed or
aborted.) A process may be part of at most one transaction for each of its application associations.

If one thread of an application calls tpcommit(3c) concurrently with an RPC or conversational
call in another thread of the application, the system acts as if the calls were issued in some serial
order. An application context may temporarily suspend work on a transaction by calling
tpsuspend(3c) and then start another transaction subject to the same restrictions that exist for
single-threaded and single-context programs.

Unsolicited Messages
For each context in a multithreaded or multicontexted application, you may choose one of three
methods for handling unsolicited messages.

A context may . . . By setting . . .

Ignore unsolicited messages TPU_IGN

Use dip-in notification TPU_DIP

Use dedicated thread notification.
(available only for C applications)

TPU_THREAD

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

How Mul t i th read ing and Mul t icontex t ing Work in a C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-13

The following caveats apply:

SIGNAL-based notification is not allowed in multithreaded or multicontexted processes.

If your application runs on a platform that supports multicontexting but not multithreading,
then you cannot use the TPU_THREAD unsolicited notification method. As a result, you
cannot receive immediate notification of events.

If receiving immediate notification of events is important to your application, then you
should carefully consider whether to use a multicontexted approach on this platform.

Dedicated thread notification is available only:

– For applications written in C

– On multithreaded platforms supported by the Oracle Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate thread to receive
unsolicited messages and dispatch the unsolicited message handler. Only one copy of the
unsolicited message handler can run at any one time in a given context.

If tpinit(3c) is called on a platform for which the Oracle Tuxedo system does not support
threads, with parameters indicating that TPU_THREAD notification is being requested on a
platform that does not support threads, tpinit() returns -1 and sets tperrno to TPEINVAL. If
the UBBCONFIG(5) default NOTIFY option is set to THREAD but threads are not available on a
particular machine, the default behavior for that machine is downgraded to DIPIN. The difference
between these two behaviors allows an administrator to specify a default for all machines in a
mixed configuration—a configuration that includes some machines that support threads and
some that do not—but it does not allow a client to explicitly request a behavior that is not
available on its machine.

If tpsetunsol(3c)is called from a thread that is not associated with a context, a per-process
default unsolicited message handler for all new tpinit(3c) contexts created is established. A
specific context may change the unsolicited message handler for that context by calling
tpsetunsol() again when the context is active. The per-process default unsolicited message
handler may be changed by again calling tpsetunsol() in a thread not currently associated with
a context.

If a process has multiple associations with the same application, then each association is assigned
a different CLIENTID so that it is possible to send an unsolicited message to a specific application
association. If a process has multiple associations with the same application, then any
tpbroadcast(3c) is sent separately to each of the application associations that meet the
broadcast criteria. When performing a dip-in check for receiving unsolicited messages, an
application checks for only those messages sent to the current application association.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

10-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

In addition to the ATMI functions permitted in unsolicited message handlers, it is permissible to
call tpgetctxt(3c) within an unsolicited message handler. This functionality allows an
unsolicited message handler to create another thread to perform any more substantial ATMI work
required within the same context.

Userlog Maintains Thread-specific Information
For each thread in each application, userlog(3c) records the following identifying information:

process_ID.thread_ID.context_ID

Placeholders are printed in the thread_ID and context_ID fields of entries for non-threaded
platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in the TA_THREADID and TA_CONTEXTID fields in the
T_ULOG class.

Completion Phase
In this phase, when the client process is about to exit, on behalf of the current context and all
associated threads, a thread ends its application association by calling tpterm(3c). Like other
ATMI functions, tpterm() operates on the current context. It affects all threads for which the
context is set to the terminated context, and terminates any commonality of context among these
threads.

A well-designed application normally waits for all work in a particular context to complete before
it calls tpterm(). Be sure that all threads are synchronized before your application calls
tpterm().

See Also
“What Are Multithreading and Multicontexting?” on page 1-3

“Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

“Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

“Writing a Multithreaded ATMI Client” on page 1-38

“Synchronizing Threads Before an ATMI Client Termination” on page 1-28

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

How Mul t i th read ing and Mul t i contex t ing Work in an ATMI Se rve r

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-15

How Multithreading and Multicontexting Work in an ATMI
Server

The events that occur in an ATMI server when a multithreaded and multicontexted application is
active can be described in three phases:

Start-up Phase

Work Phase

Completion Phase

Start-up Phase
What happens during the start-up phase depends on the value of the MINDISPATCHTHREADS and
MAXDISPATCHTHREADS parameters in the configuration file.

Work Phase
In this phase, the following activities occur:

If the value of
MINDISPATCHTHREADS
is . . .

And the value of
MAXDISPATCHTHREADS

is . . .

Then . . .

0 > 1 1. The Oracle Tuxedo system creates a thread
dispatcher.

2. The dispatcher calls tpsvrinit(3c) to join
the application.

> 0 > 1 1. The Oracle Tuxedo system creates a thread
dispatcher.

2. The dispatcher calls tpsvrinit(3c) to join
the application.

3. The Oracle Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.

4. Each new system-created thread calls
tpsvrthrinit(3c) to join the application.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

Multiple client requests to one server are handled concurrently in multiple contexts. The
system allocates a separate thread for each request.

If necessary, additional threads (up to the number indicated by MAXDISPATCHTHREADS) are
created.

The system keeps statistics on server threads.

Server-dispatched Threads Are Used
In response to clients’ requests for a service, the server dispatcher creates multiple threads (up to
a configurable maximum) in one server that can be assigned to various client requests
concurrently. A server cannot become a client by calling tpinit(3c).

Each dispatched thread is associated with a separate context. This feature is useful in
conversational and RPC servers. It is especially useful for conversational servers which otherwise
sit idle, waiting for the client side of a conversation while other conversational connections are
waiting for service.

This functionality is controlled by the following parameters in the SERVERS section of the
UBBCONFIG(5) file and the TM_MIB(5).

Each dispatched thread is created with the stack size specified by THREADSTACKSIZE (or
TA_THREADSTACKSIZE). If this parameter is not specified or has a value of 0, the operating
system default is used. On a few operating systems on which the default is too small to be
used by the Oracle Tuxedo system, a larger default is used.

If the value of this parameter is not specified or is 0, or if the operating system does not
support setting a THREADSTACKSIZE, then the operating system default is used.

MINDISPATCHTHREADS (or TA_MINDISPATCHTHREADS) must be less than or equal to
MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS).

UBBCONFIG Parameter MIB Parameter Default

MINDISPATCHTHREADS TA_MINDISPATCHTHREADS 0

MAXDISPATCHTHREADS TA_MAXDISPATCHTHREADS 1

THREADSTACKSIZE TA_THREADSTACKSIZE 0 (representing the
OS default)

../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

How Mul t i th read ing and Mul t i contex t ing Work in an ATMI Se rve r

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-17

If MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS) is 1, then the dispatcher thread
and the service function thread are the same thread.

If MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS) is greater than 1, any separate
thread used for dispatching other threads does not count toward the limit of dispatched
threads.

Initially, the system boots MINDISPATCHTHREADS (or TA_MINDISPATCHTHREADS) server
threads.

The system never boots more than MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS)
server threads.

Application-created Threads Are Used
Using your operating system functions, you may create additional threads within an application
server. Application-created threads may:

Operate independently of the Oracle Tuxedo system

Operate in the same context as an existing server dispatch thread

Perform work on behalf of server dispatch contexts

Some restrictions govern what you can do if you create threads in your application.

Servers may not become clients by calling tpinit(3c).

Initially, application-created server threads are not associated with any server dispatch
context. An application-created server thread may call tpsetctxt(3c) (and pass it a value
returned by a previous call to tpgetctxt(3c) within a server-dispatched thread) to
associate itself with that server-dispatched context.

An application-created server thread cannot call tpreturn(3c) or tpforward(3c). When
an application-created server thread has finished its work, it must call tpsetctxt(3c)
with the context set to TPNULLCONTEXT before the originally dispatched thread calls
tpreturn().

Bulletin Board Liaison Verifies Sanity of System Processes
The Bulletin Board Liaison (BBL) periodically checks servers. If a server is taking too long to
execute a particular service request, the BBL kills that server. (If specified, the BBL then restarts
the server.) If the BBL kills a multicontexted server, the other service calls that are currently
being executed are also terminated as a result of the process being killed.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

The BBL also sends a message to any process or thread that has been waiting longer than its
timeout value to receive a message. The blocking message receive call then returns an error
indicating a timeout.

System Keeps Statistics on Server Threads
For each server, the Oracle Tuxedo system maintains statistics for the following information:

Maximum number of server-dispatched threads allowed

Number of server-dispatched threads currently in use (TA_CURDISPATCHTHREADS)

High-water mark of concurrent server-dispatched threads since the server was booted
(TA_HWDISPATCHTHREADS)

Number of server-dispatched threads historically started (TA_NUMDISPATCHTHREADS)

Userlog Maintains Thread-specific Information
For each thread in each application, userlog(3c) records the following identifying information:

process_ID.thread_ID.context_ID

Placeholders are printed in the thread_ID and context_ID fields of entries for non-threaded
platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in the TA_THREADID and TA_CONTEXTID fields in the
T_ULOG class.

Completion Phase
When the application is shut down, tpsvrthrdone(3c) and tpsvrdone(3c) are called to
perform any termination processing that is necessary, such as closing a resource manager.

See Also
“What Are Multithreading and Multicontexting?” on page 1-3

“Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

“Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

“Writing a Multithreaded ATMI Server” on page 1-50

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Des ign Cons iderat ions fo r a Mul t i th readed and Mul t icontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-19

Design Considerations for a Multithreaded and
Multicontexted ATMI Application

Multithreaded and multicontexted ATMI applications are appropriate for some Oracle Tuxedo
domains, but not all. To decide whether to create such applications, you should answer several
basic questions about the following:

Your development and run-time environments

Design requirements for your application

Type of threads model to use

Interoperability restrictions for Workstation clients

Environment Requirements
When considering the development of multithreaded and/or multicontexted applications,
examine the following aspects of your development and run-time environments:

Do you have an experienced team of programmers capable of writing and debugging
multithreaded and multicontexted programs that successfully manage concurrency and
synchronization?

Are the multithreading features of the Oracle Tuxedo system supported on the platform on
which you are developing your application? These features are supported only on platforms
with an OS-provided threads package, providing an appropriate level of functionality.

Do the resource managers (RMs) used by your servers support multithreading? If so,
consider the following issues, as well:

– Do you need to set any parameters required by your RM to enable multithreaded access
by your servers? For example, if you use an Oracle database with a multithreaded
application, you must set the THREADS=true parameter as part of the OPENINFO string
passed to Oracle. By doing so, you make it possible for individual threads to operate as
separate Oracle associations.

– Does your RM support a mixed mode of operation? A mixed-mode operation is a form
of access such that multiple threads in a process can map to one RM association while
other threads in the same process simultaneously map to different RM associations.
Within one process, for example, Threads A and B map to RM Association X, while
Thread C maps to RM Association Y.

10-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

Not all RMs support mixed-mode operation. Some require all threads in a given
process to map to the same RM association. If you are designing an application that
will make use of transactional RM access within application-created threads, make sure
your RM supports mixed-mode operation.

Design Requirements
When designing a multithreaded and/or multicontexted application, you should consider the
following design questions:

Is the task performed by your application suitable for multithreading and/or
multicontexting?

Do you want to connect to more than one Oracle Tuxedo application? How many
connections to each target application do you want?

What synchronization issues need to be addressed in your application?

Will you need to port your application to another platform after you have put your initial
application into production?

Is the Task of Your Application Suitable for Multithreading
and/or Multicontexting?
The following table provides a list of questions to help you decide whether your application
would be improved if it were multithreaded and/or multicontexted. This list is not
comprehensive; your individual requirements will determine other factors that should be
considered.

For additional suggestions, we recommend that you consult a multithreaded and/or
multicontexted programming publication.

If the answer to this question . . . Is YES, then you might consider using . . .

Does your client need to connect to more than one application
without using the Domains feature?

Multicontexting.

Does your client perform the role of a multiplexer within your
application? For example, have you designated one machine in your
application the “surrogate” for 100 other machines?

Multicontexting.

Des ign Cons iderat ions fo r a Mul t i th readed and Mul t icontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-21

How Many Applications and Connections Do You Want?
Decide how many applications you want to access and the number of connections you want to
make.

If you want connections to more than one application, then we recommend one of the
following:

– A single-threaded, multicontexted application

– A multithreaded, multicontexted application

If you want more than one connection to an application, then we recommend a
multithreaded, multicontexted application.

If you want only one connection to one application, then we recommend one of the
following:

– Multithreaded, single-contexted clients

– Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Does your client use multicontexting? Multithreading. By allocating one thread
per context, you can simplify your code.

Does your client perform two or more tasks that can be executed
independently for a long time such that the performance gains from
concurrent execution outweigh the costs and complexities of threads
synchronization?

Multithreading.

Do you want one server to process multiple concurrent requests? Multithreading. Assign a value greater
than 1 to MAXDISPATCHTHREADS. This
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessary to
synchronize them after each thread had performed only a little work?

Not using multithreading.

If the answer to this question . . . Is YES, then you might consider using . . .

10-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

What Synchronization Issues Need to Be Addressed?
This issue is an important one during the design phase. It is, however, beyond the scope of this
documentation. Please refer to a publication about multithreaded and/or multicontexted
programming.

Will You Need to Port Your Application?
If you may need to port your application in the future, you should keep in mind that different
operating systems have different sets of functions. If you think you may want to port your
application after completing the initial version of it on one platform, remember to consider the
amount of staff time that will be needed to revise the code with a different set of functions.

Which Threads Model Is Best for You?
Various models for multithreaded programs are now being used, including the following:

Boss/worker model

Siblings model

Workflow model

We do not discuss threads models in this documentation. We recommend that you research all
available models and consider your design requirements carefully when choosing a programming
model for your application.

Interoperability Restrictions for Workstation Clients
Interoperability between release 7.1 Workstation clients and applications based on pre-7.1
releases of the Oracle Tuxedo system is supported in any of the following situations:

The client is neither multithreaded nor multicontexted.

The client is multicontexted.

The client is multithreaded and each thread is in a different context.

An Oracle Tuxedo Release 7.1 Workstation client with multiple threads in a single context cannot
interoperate with a pre-7.1 release of the Oracle Tuxedo system.

Imp lement ing a Mul t i th readed/ Mul t icontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-23

See Also
“Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 1-7

“Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI
Application” on page 1-23

Implementing a Multithreaded/ Multicontexted ATMI
Application

“Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI
Application” on page 1-23

“Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

“Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

“Writing a Multithreaded ATMI Client” on page 1-38

“Writing a Multithreaded ATMI Server” on page 1-50

“Compiling Code for a Multithreaded/Multicontexted ATMI Application” on page 1-50

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted ATMI Application

Before you start coding, make sure you have fulfilled or thought about the following:

“Prerequisites for a Multithreaded ATMI Application” on page 1-23

“General Multithreaded Programming Considerations” on page 1-24

“Concurrency Considerations” on page 1-24

Prerequisites for a Multithreaded ATMI Application
Make sure your environment meets the following prerequisites before starting your development
project.

10-24 Programming an Oracle Tuxedo ATMI Application Using COBOL

Your operating system must provide a suitable threads package supported by the Oracle
Tuxedo system.

The Oracle Tuxedo system does not supply tools for creating threads, but it supports
various threads packages provided by different operating systems. To create and
synchronize threads, you must use the functions native to your operating system. To find
out which, if any, threads packages are supported by your operating system, see Installing
the Oracle Tuxedo System.

If you are using multithreaded servers, the resource managers used by those servers must
support threads.

General Multithreaded Programming Considerations
Only experienced programmers should write multithreaded programs. In particular, programmers
should already be familiar with basic design issues specific to this task, such as:

The need for concurrency control among multiple threads

The need to avoid the use of static variables in most instances

Potential problems that may arise from the use of signals in multithreaded programs

These are just a few of the issues, too numerous to list here, with which we assume any
programmer undertaking the writing of a multithreaded program is already familiar. These issues
are discussed in many commercially available books on the subject of multithreaded
programming.

Concurrency Considerations
Multithreading enables different threads of an application to perform concurrent operations on
the same conversation. We do not recommend this approach, but the Oracle Tuxedo system does
not forbid it. If different threads perform concurrent operations on the same conversation, the
system acts as if the concurrent calls were issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency among them by
using mutexes or other concurrency-control functions. Here are three examples of the need for
concurrency control:

When multithreaded threads are operating on the same context, the programmer must
ensure that functions are being executed in the required serial order. For example, all RPC
calls and conversations must be compiled before tpcommit(3c) can be called. If
tpcommit() is called from a thread other than the thread from which all these RPC or

../rf3c/rf3c.html

Pre l iminary Gu ide l ines fo r P rogramming a Mul t i th readed/Mul t icontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-25

conversational calls are made, some concurrency control is probably required in the
application.

Similarly, it is permissible to call tpacall(3c) in one thread and tpgetrply(3c) in
another, but the application must either:

– Ensure that tpacall() is called before tpgetrply(), or

– Manage the consequences if tpacall() is not called before tpgetrply()

Multiple threads may operate on the same conversation but application programmers must
realize that if different threads issue tpsend(3c) at approximately the same time, the
system acts as though these tpsend() calls have been issued in an arbitrary order.

For most applications, the best strategy is to code all the operations for one conversation in
one thread. The second best strategy is to serialize these operations using concurrency
control.

See Also
“Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

“Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

“Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

“Writing a Multithreaded ATMI Client” on page 1-38

“Writing a Multithreaded ATMI Server” on page 1-50

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-26 Programming an Oracle Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting in an ATMI Client
To enable multicontexting in a client, you must write code that:

Sets up multicontexting at initialization time

Implements security

If multithreading is also being used, synchronizes threads

Switches contexts

Handles unsolicited messages for each context

If your application uses transactions, you should also keep in mind the consequences of
multicontexting for transactions. For more information, see “Coding Rules for Transactions in a
Multithreaded/Multicontexted ATMI Application” on page 1-32.

Note: The instructions and sample code provided in this section refer to the C library functions
provided by the Oracle Tuxedo system. Equivalent COBOL library functions are also
available; for details, see the Oracle Tuxedo COBOL Function Reference.

Context Attributes
When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the original
dispatched thread exits, then tpreturn(3c) or tpforward(3c) fails. The execution of a
thread exit does not automatically trigger a call to tpsetctxt(3c) to change the context
to TPNULLCONTEXT.

For all contexts in a process, the same buffer type switch must be used.

As with any other type of data structure, a multithreaded application must properly make
use of Oracle Tuxedo buffers, that is, buffers should not be used concurrently in two calls
when one of the following may be true:

– Both calls may use the buffer

– Both calls may free the buffer

– One call may use the buffer and one call may free the buffer

If you call tpinit(3c) more than once, either to join multiple applications or to make
multiple connections to a single application, keep in mind that on each tpinit() you must
accommodate whatever security mechanisms have been established.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Wri t ing Code to Enab le Mul t i contex t ing in an ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-27

Setting Up Multicontexting at Initialization
When a client is ready to join an application, specify tpiit(3c) with the TPMULTICONTEXTS
flag set, as shown in the following sample code.

Listing 1-1 Sample Code for a Client Joining a Multicontexted Application

#include <stdio.h>

#include <atmi.h>

TPINIT * tpinitbuf;

main()

{

tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));

tpinitbuf->flags = TPMULTICONTEXTS;

.

.

.

if (tpinit (tpinitbuf) == -1) {

ERROR_PROCESSING_CODE

}

.

.

.

}

A new application association is created and assigned to the Oracle Tuxedo domain specified in
the TUXCONFIG or WSENVFILE/WSNADDR environment variable.

Note: In any one process, either all calls to tpinit(3c) must include the TPMULTICONTEXTS
flag or else no call to tpinit() may include this flag. The only exception to this rule is
that if all of a client’s application associations are terminated by successful calls to
tpterm(3c), then the process is restored to a state in which the inclusion of the
TPMULTICONTEXTS flag in the next call to tpinit() is optional.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-28 Programming an Oracle Tuxedo ATMI Application Using COBOL

Implementing Security for a Multicontexted ATMI Client
Each application association in the same process requires a separate security validation. The
nature of that validation depends on the type of security mechanisms used in your application. In
an Oracle Tuxedo application you might, for example, use a system-level password or an
application password.

As the programmer of a multicontexted application, you are responsible for identifying the type
of security used in your application and implementing it for each application association in a
process.

Synchronizing Threads Before an ATMI Client Termination
When you are ready to disconnect a client from an application, invoke tpterm(3c). Keep in
mind, however, that in a multicontexted application tpterm() destroys the current context. All
the threads operating on that context are affected. As the application programmer, you must
carefully coordinate the use of multiple threads to make sure that tpterm() is not called
unexpectedly.

It is important to avoid calling tpterm(3c) on a context while other threads are still working on
that context. If such a call to tpterm() is made, the Oracle Tuxedo system places the other
threads that had been associated with that context in a special invalid context state. When in the
invalid context state, most ATMI functions are disallowed. A thread may exit from the invalid
context state by calling tpsetctxt(3c) or tpterm(). Most well designed applications never
have to deal with the invalid context state.

Note: The Oracle Tuxedo system does not support multithreading in COBOL applications.

Switching Contexts
The following is a summary of the coding steps that might be made by a client that calls services
from two contexts.

1. Set the TUXCONFIG environment variable to the value required by firstapp.

2. Join the first application by calling tpinit(3c) with the TPMULTICONTEXTS flag set.

3. Obtain a handle to the current context by calling tpgetctxt(3c).

4. Switch the value of the TUXCONFIG environment variable to the value required by the
secondapp context, by calling tuxputenv().

5. Join the second application by calling tpinit(3c) with the TPMULTICONTEXTS flag set.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Wri t ing Code to Enab le Mul t i contex t ing in an ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-29

6. Get a handle to the current context by calling tpgetctxt(3c).

7. Beginning with the firstapp context, start toggling between contexts by calling
tpsetctxt(3c).

8. Call firstapp services.

9. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp
services.

10. Switch the client to the firstapp context (by calling tpsetctxt(3c)) and call firstapp
services.

11. Terminate the firstapp context by calling tpterm(3c).

12. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp
services.

13. Terminate the secondapp context by calling tpterm(3c).

The following sample code provides an example of these steps.

Note: In order to simplify the sample, error checking code is not included.

Listing 1-2 Sample Code for Switching Contexts in a Client

#include <stdio.h>
#include "atmi.h"/* BEA Tuxedo header file */

#if defined(__STDC__) || defined(__cplusplus)
main(int argc, char *argv[])
#else
main(argc, argv)
int argc;
char *argv[];
#endif
{

TPINIT * tpinitbuf;
TPCONTEXT_T firstapp_contextID, secondapp_contextID;

/* Assume that TUXCONFIG is initially set to /home/firstapp/TUXCONFIG*/
/*

* Attach to the BEA Tuxedo system in multicontext mode.
*/

tpinitbuf=tpalloc(TPINIT, NULL, TPINITNEED(0));
tpinitbuf->flags = TPMULTICONTEXTS;

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-30 Programming an Oracle Tuxedo ATMI Application Using COBOL

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);
}

/*
* Obtain a handle to the current context.
*/
tpgetctxt(&firstapp_contextID, 0);

/*
* Use tuxputenv to change the value of TUXCONFIG,
* so we now tpinit to another application.
*/
tuxputenv("TUXCONFIG=/home/second_app/TUXCONFIG");

/*
* tpinit to secondapp.
*/

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);
}

/*
* Get a handle to the context of secondapp.

*/
tpgetctxt(&secondapp_contextID, 0);

/*
* Now you can alternate between the two contexts
* using tpsetctxt and the handles you obtained from

* tpgetctxt. You begin with firstapp.
*/

tpsetctxt(firstapp_contextID, 0);

/*
* You call services offered by firstapp and then switch
* to secondapp.
*/

tpsetctxt(secondapp_contextID, 0);

/*
* You call services offered by secondapp.
* Then you switch back to firstapp.
*/

Wri t ing Code to Enab le Mul t i contex t ing in an ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-31

tpsetctxt(firstapp_contextID, 0);

/*
* You call services offered by firstapp. When you have
* finished, you terminate the context for firstapp.

*/

tpterm();

/*
* Then you switch back to secondapp.
*/

tpsetctxt(secondapp_contextID, 0);
/*

* You call services offered by secondapp. When you have
finished, you terminate the context for secondapp and
end your program.

*/

tpterm();

return(0);
}

Handling Unsolicited Messages
For each context in which you want to handle unsolicited messages, you must set up an
unsolicited message handler or use the process handler default if you have set one up.

If tpsetunsol(3c) is called from a thread that is not associated with a context, a per-process
default unsolicited message handler for all new tpinit(3c) contexts created is established. A
specific context may change the unsolicited message handler for that context by calling
tpsetunsol() again when the context is active. The per-process default unsolicited message
handler may be changed by again calling tpsetunsol() in a thread not currently associated with
a context.

Set up the handler in the same way you set one up for a single-threaded or single-contexted
application. See tpsetunsol(3c) for details.

You can use tpgetctxt(3c) in an unsolicited message handler if you want to identify the
context in which you are currently working.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-32 Programming an Oracle Tuxedo ATMI Application Using COBOL

Coding Rules for Transactions in a
Multithreaded/Multicontexted ATMI Application
The following consequences of using transactions should be kept in mind while you are writing
your application:

You can have only one transaction in any one context.

You can have a different transaction for each context.

All the threads associated with a given context at a given time share the same transaction
state (if any) of that context.

You must synchronize your threads so all conversations and RPC calls are complete before
you call tpcommit(3c).

You can call tpcommit(3c) from only one thread in any particular transaction.

See Also
“How Multithreading and Multicontexting Work in a Client” on page 1-10

“Writing a Multithreaded ATMI Client” on page 1-38

../rf3c/rf3c.html
../rf3c/rf3c.html

Wr i t ing Code to Enab le Mu l t i contex t ing and Mu l t i th read ing in an ATMI Se rve r

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-33

Writing Code to Enable Multicontexting and
Multithreading in an ATMI Server

This topic includes the following sections:

Coding Rules for a Multicontexted ATMI Server

Initializing and Terminating ATMI Servers and Server Threads

Programming an ATMI Server to Create Threads

Sample Code for Creating an Application Thread in a Multicontexted ATMI Server

Note: The instructions and sample code provided in this section refer to the C library functions
provided by the Oracle Tuxedo system. (See the Oracle Tuxedo C Function Reference
for details.) Equivalent COBOL routines are not available because multithreading (which
is required to create a multicontexted server) is not supported for COBOL applications.

Context Attributes
When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the original
dispatched thread exits, then tpreturn(3c) or tpforward(3c) fails. The execution of a
thread exit does not automatically trigger a call to tpsetctxt(3c) to change the context
to TPNULLCONTEXT.

For all contexts in a process, the same buffer type switch must be used.

As with any other type of data structure, a multithreaded application must properly make
use of Oracle Tuxedo buffers, that is, buffers should not be used concurrently in two calls
when one of the following may be true:

– Both calls may use the buffer.

– Both calls may free the buffer.

– One call may use the buffer and one call may free the buffer.

Coding Rules for a Multicontexted ATMI Server
Keep in mind the following rules for coding multicontexted servers:

The Oracle Tuxedo dispatcher on the server may dispatch the same service and/or different
services multiple times, creating a different dispatch context for each service dispatched.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-34 Programming an Oracle Tuxedo ATMI Application Using COBOL

A server is prohibited from calling tpinit(3c) or otherwise acting as a client. If a server
process calls tpinit(), tpinit() returns -1 and sets tperrno(5) to TPEPROTO. An
application-created server thread may not make ATMI calls before calling
tpsetctxt(3c).

Only a server-dispatched thread may call tpreturn(3c) or tpforward(3c).

A server cannot execute a tpreturn(3c) or tpforward(3c) if any application-created
thread is still associated with any application context. Therefore, before a server-dispatched
thread calls tpreturn(), each application-created thread associated with that context must
call tpsetctxt(3c) with the context set to either TPNULLCONTEXT or another valid
context.

If this rule is violated, then tpreturn(3c) or tpforward(3c) writes a message to the
user log, indicates TPESVCERR to the caller, and returns control to the main server dispatch
loop. The threads that had been in the context where the invalid tpreturn() was done are
placed in an invalid context.

If there are outstanding ATMI calls, RPC calls, or conversations when tpreturn(3c) or
tpforward(3c) is called, tpreturn() or tpforward() writes a message to the user log,
indicates TPESVCERR to the caller, and returns control to the main server dispatch loop.

A server-dispatched thread may not call tpsetctxt(3c).

Unlike single-contexted servers, it is permissible for a multicontexted server thread to call
a service that is offered only by that same server process.

Initializing and Terminating ATMI Servers and Server
Threads
To initialize and terminate your servers and server threads, you can use the default functions
provided by the Oracle Tuxedo system or you can use your own.

Table 1-1 Default Functions for Initialization and Termination

To . . . Use the default function

Initialize a server tpsvrinit(3c)

Initialize a server thread tpsvrthrinit(3c)

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Wr i t ing Code to Enab le Mu l t i contex t ing and Mu l t i th read ing in an ATMI Se rve r

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-35

Programming an ATMI Server to Create Threads
You may create additional threads within an application server, although most applications using
multicontexted servers use only the dispatched server threads created by the system. This section
provides instructions for doing so.

Creating Threads
You may create additional threads within an application server by using OS threads functions.
These new threads may operate independently of the Oracle Tuxedo system, or they may operate
in the same context as one of the server-dispatched threads.

Associating Threads with a Context
Initially, application-created server threads are not associated with any server-dispatched context.
If called before being initialized, however, most ATMI functions perform an implicit
tpinit(3c). Such calls introduce problems because servers are prohibited from calling
tpinit(). (If a server process calls tpinit(), tpinit() returns -1 and sets tperrno(5) to
TPEPROTO.)

Therefore, an application-created server thread must associate itself with an existing context
before calling any ATMI functions. To associate an application-created server thread with an
existing context, you must write code that implements the following procedure.

1. Server-dispatched-thread_A gets a handle to the current context by calling tpgetctxt(3c).

2. Server-dispatched-thread_A passes the handle returned by tpgetctxt(3c) to
Application_thread_B.

3. Application_thread_B associates itself with the current context by calling tpsetctxt(3c),
specifying the handle received from Server-dispatched-thread_A.

4. Application-created server threads cannot call tpreturn(3c) or tpforward(3c). Before
the originally dispatched thread calls tpreturn() or tpforward(), all application-created

Terminate a server tpsvrdone(3c)

Terminate a server thread tpsvrthrdone(3c)

Table 1-1 Default Functions for Initialization and Termination

To . . . Use the default function

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

10-36 Programming an Oracle Tuxedo ATMI Application Using COBOL

server threads that have been in that context must switch to TPNULLCONTEXT or another valid
context.

If this rule is not observed, then tpforward(3c) or tpreturn(3c) fails and indicates a
service error to the caller.

Sample Code for Creating an Application Thread in a
Multicontexted ATMI Server
For those applications with a need to create an application thread in a server, the following code
sample shows a multicontexted server in which a service creates another thread to help perform
its work. Operating system (OS) threads functions differ from one OS to another. In this sample
POSIX and ATMI functions are used.

Notes: In order to simplify the sample, error checking code is not included. Also, an example of
a multicontexted server using only threads dispatched by the Oracle Tuxedo system is not
included because such a server is coded in exactly the same way as a single-contexted
server, as long as thread-safe programming practices are used.

Listing 1-3 Code Sample for Creating a Thread in a Multicontexted Server

#include <pthread.h>
#include <atmi.h>

void *withdrawalthread(void *);

struct sdata {
TPCONTEXT_T ctxt;
TPSVCINFO *svcinfoptr;

};

void
TRANSFER(TPSVCINFO *svcinfo)
{

struct sdata transferdata;
pthread_t withdrawalthreadid;

tpgetctxt(&transferdata.ctxt, 0);
transferdata.svcinfoptr = svcinfo;
pthread_create(&withdrawalthreadid, NULL, withdrawalthread, &transferdata);
tpcall("DEPOSIT", ...);
pthread_join(withdrawalthreadid, NULL);
tpreturn(TPSUCCESS, ...);

../rf3c/rf3c.html
../rf3c/rf3c.html

Wr i t ing Code to Enab le Mu l t i contex t ing and Mu l t i th read ing in an ATMI Se rve r

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-37

}

void *
withdrawalthread(void *arg)
{

tpsetctxt(arg->ctxt, 0);
tpopen();
tpcall("WITHDRAWAL", ...);
tpclose();
return(NULL);

}

The previous example accomplishes a funds transfer by invoking the DEPOSIT service in the
originally dispatched thread, and WITHDRAWAL in an application-created thread. This example is
based on the assumption that the resource manager being used allows a mixed model such that
multiple threads of a server can be associated with a particular database connection without all
threads of the server being associated with that instance. Most resource managers, however, do
not support such a model.

A simpler way to code this example is to avoid the use of an application-created thread. To obtain
the same concurrency provided by the two calls to tpcall(3c) in the example, substitute two
calls to tpacall(3c) and two calls to tpgetrply(3c) in the server-dispatched thread.

See Also
“How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-38 Programming an Oracle Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client
This topic includes the following sections:

Coding Rules for a Multithreaded ATMI Client

Initializing an ATMI Client to Multiple Contexts

Getting Replies in a Multithreaded Environment

Using Environment Variables in a Multithreaded and/or Multicontexted Environment

Using Per-context Functions and Data Structures in a Multithreaded ATMI Client

Using Per-process Functions and Data Structures in a Multithreaded ATMI Client

Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client

Sample Code for a Multithreaded ATMI Client

Note: The Oracle Tuxedo system does not support multithreaded COBOL applications.

Coding Rules for a Multithreaded ATMI Client
Keep in mind the following rules for coding multithreaded clients:

Once a conversation has been started, any thread in the same process can work on that
conversation. Handles and call descriptors are portable within the same context in the same
process, but not between contexts or processes. Handles and call descriptors can be used
only in the application context in which they are originally assigned.

Any thread operating in the same context within the same process can invoke
tpgetrply(3c) to receive a response to an earlier call to tpacall(3c), regardless of
whether or not that thread originally called tpacall().

A transaction can be committed or aborted by only one thread, which may or may not be
the same thread that started it.

All RPC calls and conversations must be completed before an attempt is made to commit
the transaction. If an application calls tpcommit(3c) while RPC calls or conversations are
outstanding, tpcommit() aborts the transaction, returns -1, and sets tperrno(5) to
TPEABORT.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Wr i t ing a Mul t i th readed ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-39

Functions such as tpcall(3c), tpacall(3c), tpgetrply(3c), tpconnect(3c),
tpsend(3c), tprecv(3c), and tpdiscon(3c) should not be called in transaction mode
unless you are sure that the transaction is not already committing or aborting.

Two tpbegin(3c) calls cannot be made simultaneously for the same context.

tpbegin(3c) cannot be issued for a context that is already in transaction mode.

If you are using a client and you want to connect to more than one domain, you must
manually change the value of TUXCONFIG or WSNADDR before calling tpinit(3c). You
must synchronize the setting of the environment variable and the tpinit() call if multiple
threads may be performing such an action. All application associations in a client must
obey the following rules:

– All associations must be made to the same release of the Oracle Tuxedo system.

– Either every application association in a particular client must be made as a native
client, or every application association must be made as a Workstation client.

To join an application, a multithreaded Workstation client must always call tpinit(3c)
with the TPMULTICONTEXTS flag set, even if the client is running in single-context mode.

Initializing an ATMI Client to Multiple Contexts
To have a client join more than one context, issue a call to the tpinit(3c) function with the
TPMULTICONTEXTS flag set in the flags element of the TPINIT data structure.

In any one process, either all calls to tpinit(3c) must include the TPMULTICONTEXTS flag or
no call to tpinit() may include this flag. The only exception to this rule is that if all of a client’s
application associations are terminated by successful calls to tpterm(3c), then the process is
restored to a state in which the inclusion of the TPMULTICONTEXTS flag in the next call to
tpinit() is optional.

When tpinit(3c) is invoked with the TPMULTICONTEXTS flag set, a new application association
is created and is designated the current association. The Oracle Tuxedo domain to which the new
association is made is determined by the value of the TUXCONFIG or WSENVFILE/WSNADDR
environment variable.

When a client thread successfully executes tpinit(3c) without the TPMULTICONTEXTS flag, all
threads in the client are placed in the single-context state (TPSINGLECONTEXT).

On failure, tpinit(3c) leaves the calling thread in its original context (that is, in the context
state in which it was operating before the call to tpinit()).

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-40 Programming an Oracle Tuxedo ATMI Application Using COBOL

Do not call tpterm(3c) from a given context if any of the threads in that context are still
working. See the table labeled “Multicontext State Transitions” on page 1-40 for a description of
the context states that result from calling tpterm() under these and other circumstances.

Context State Changes for an ATMI Client Thread
In a multicontext application, calls to various functions result in context state changes for the
calling thread and any other threads that are active in the same context as the calling process.
Figure 1-4 illustrates the context state changes that result from calls to tpinit(3c),
tpsetctxt(3c), and tpterm(3c). (The tpgetctxt(3c) function does not produce any
context state changes.)

Figure 1-4 Multicontext State Transitions

Note: When tpterm(3c) is called by a thread running in the multicontext state
(TPMULTICONTEXTS), the calling thread is placed in the null context state

NULL

tpinit() without TPMULTICONTEXTS
 or

implicit tpinit() invoked by ATMI function

CONTEXT

INVALID
CONTEXT

MULTI-
CONTEXT

SINGLE
CONTEXT

tpinit() with TPMULTICONTEXTS
or

tpsetctxt() to a valid context

tpterm() tpterm()
or

tpsetctxt()

tpterm()
or

tpsetctxt()

tpsetctxt()

tpterm()

tpinit() without
TPMULTICONTEXTS

(see Note)

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Wr i t ing a Mul t i th readed ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-41

(TPNULLCONTEXT). All other threads associated with the terminated context are switched
to the invalid context state (TPINVALIDCONTEXT).

Table 1-2 lists all possible context state changes produced by calling tpinit(3c),
tpsetctxt(3c), and tpterm(3c).

Getting Replies in a Multithreaded Environment
tpgetrply(3c) receives responses only to requests made via tpacall(3c). Requests made
with tpcall(3c) are separate and cannot be retrieved with tpgetrply() regardless of the
multithreading or multicontexting level.

Table 1-2 Context State Changes for a Client Thread

When this function is
executed . . .

Then a thread in this context state results in . . .

Null Context Single Context Multicontext Invalid Context

tpinit(3c)
without
TPMULTICONTEXTS

Single context Single context Error Error

tpinit(3c) with
TPMULTICONTEXTS

Multicontext Error Multicontext Error

tpsetctxt(3c) to
TPNULLCONTEXT

Null Error Null Null

tpsetctxt(3c) to
context 0

Error Single context Error Error

tpsetctxt(3c) to
context > 0

Multicontext Error Multicontext Multicontext

Implicit
tpinit(3c)

Single context N/A N/A Error

tpterm(3c) in this
thread

Null Null Null Null

tpterm(3c) in a
different thread of this
context

N/A Null Invalid N/A

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-42 Programming an Oracle Tuxedo ATMI Application Using COBOL

tpgetrply(3c) operates in only one context, which is the context in which it is called.
Therefore, when you call tpgetrply() with the TPGETANY flag, only handles generated in the
same context are considered. Similarly, a handle generated in one context may not be used in
another context, but the handle may be used in any thread operating within the same context.

When tpgetrply(3c) is called in a multithreaded environment, the following restrictions apply:

If a thread calls tpgetrply(3c) for a specific handle while another thread in the same
context is already waiting in tpgetrply() for the same handle, tpgetrply() returns -1
and sets tperrno to TPEPROTO.

If a thread calls tpgetrply(3c) for a specific handle while another thread in the same
context is already waiting in tpgetrply() with the TPGETANY flag, the call returns -1 and
sets tperrno(5) to TPEPROTO.

The same behavior occurs if a thread calls tpgetrply(3c) with the TPGETANY flag while
another thread in the same context is already waiting in tpgetrply() for a specific
handle. These restrictions protect a thread that is waiting on a specific handle from having
its reply taken by a thread waiting on any handle.

At any given time, only one thread in a particular context can wait in tpgetrply(3c) with
the TPGETANY flag set. If a second thread in the same context invokes tpgetrply() with
the TPGETANY flag while a similar call is outstanding, this second call returns -1 and sets
tperrno(5) to TPEPROTO.

Using Environment Variables in a Multithreaded and/or
Multicontexted Environment
When an Oracle Tuxedo application is run in an environment that is multicontexted and/or
multithreaded, the following considerations apply to the use of environment variables:

A process initially inherits its environment from the operating system environment. On
platforms that support environment variables, such variables make up a per-process entity.
Therefore, applications that depend on per-context environment settings should use the
tuxgetenv(3c) function instead of an OS function.

Note: The environment is initially empty for those operating systems that do not recognize
an operating system environment.

Many environment variables are read by the Oracle Tuxedo system only once per process
or once per context and then cached within the Oracle Tuxedo system. Changes to such
variables once cached in the process have no effect.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

Wr i t ing a Mul t i th readed ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-43

The tuxputenv(3c) function affects the environment for the entire process.

When you call the tuxreadenv(3c) function, it reads a file containing environment
variables and adds them to the environment for the entire process.

The tuxgetenv(3c) function returns the current value of the requested environment
variable in the current context. Initially, all contexts have the same environment, but the
use of environment files specific to a particular context can cause different contexts to have
different environment settings.

If a client intends to initialize to more than one domain, the client must change the value of
the TUXCONFIG, WSNADDR, or WSENVFILE environment variable to the proper value before
each call to tpinit(3c). If such an application is multithreaded, a mutex or other
application-defined concurrency control will probably be needed to ensure that:

– The appropriate environment variable is reset.

– The call to tpinit(3c) is made without the environment variable being reset by any
other thread.

Caching is done on a . . . For environment variables such as . . .

Per-context basis TUXCONFIG

FIELDTBLS and FIELDTBLS32

FLDTBLDIR and FLDTBLDIR32

ULOGPFX

VIEWDIR and VIEWDIR32

VIEWFILES and VIEWFILES32

WSNADDR

WSDEVICE

WSENV

Per-process basis TMTRACE

TUXDIR

ULOGDEBUG

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-44 Programming an Oracle Tuxedo ATMI Application Using COBOL

When a client initializes to the system, the WSENVFILE and/or machine environment file is
read and affects the environment in that context only. The previous environment for the
process as a whole remains for that context to the extent that it is not overridden within the
environment file(s).

Using Per-context Functions and Data Structures in a
Multithreaded ATMI Client
The following ATMI functions affect only the application contexts in which they are called:

tpabort(3c)

tpacall(3c)

tpadmcall(3c)

tpbegin(3c)

tpbroadcast(3c)

tpcall(3c)

tpcancel(3c)

tpchkauth(3c)

tpchkunsol(3c)

tpclose(3c)

tpcommit(3c)

tpconnect(3c)

tpdequeue(3c)

tpdiscon(3c)

tpenqueue(3c)

tpforward(3c)

tpgetlev(3c)

tpgetrply(3c)

tpinit(3c)

tpnotify(3c)

tpopen(3c)

tppost(3c)

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Wr i t ing a Mul t i th readed ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-45

tprecv(3c)

tpresume(3c)

tpreturn(3c)

tpscmt(3c)

tpsend(3c)

tpservice(3c)

tpsetunsol(3c)

tpsubscribe(3c)

tpsuspend(3c)

tpterm(3c)

tpsubscribe(3c)

tx_begin(3c)

tx_close(3c)

tx_commit(3c)

tx_info(3c)

tx_open(3c)

tx_rollback(3c)

tx_set_commit_return(3c)

tx_set_transaction_control(3c)

tx_set_transaction_timeout(3c)

userlog(3c)

Note: For tpbroadcast(3c), the broadcast message is identified as having come from a
particular application association. For tpnotify(3c), the notification is identified as
having come from a particular application association. See “Using Per-process Functions
and Data Structures in a Multithreaded Client” for notes about tpinit(3c).

If tpsetunsol(3c) is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for all new tpinit(3c) contexts
created is established. A specific context may change the unsolicited message handler for
that context by calling tpsetunsol() again when the context is active. The per-process
default unsolicited message handler may be changed by again calling tpsetunsol() in
a thread not currently associated with a context.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-46 Programming an Oracle Tuxedo ATMI Application Using COBOL

The CLIENTID, client name, username, transaction ID, and the contents of the TPSVCINFO
data structure may differ from context to context within the same process.

Asynchronous call handles and connection descriptors are valid in the contexts in which
they are created. The unsolicited notification type is specific per-context. Although
signal-based notification may not be used with multiple contexts, each context may choose
one of three options:

– Ignoring unsolicited messages

– Using dip-in notification

– Using dedicated thread notification

Using Per-process Functions and Data Structures in a
Multithreaded ATMI Client
The following Oracle Tuxedo functions affect the entire process in which they are called:

tpadvertise(3c)

tpalloc(3c)

tpconvert(3c)—the requested structure is converted, although it is probably relevant to only a
subset of the process.

tpfree(3c)

tpinit(3c)—to the extent that the per-process TPMULTICONTEXTS mode or single-context mode
is established. See also “Using Per-context Functions and Data Structures in a Multithreaded ATMI
Client” on page 1-44.

tprealloc(3c)

tpsvrdone(3c)

tpsvrinit(3c)

tptypes(3c)

tpunadvertise(3c)

tuxgetenv(3c)—if the OS environment is per-process.

tuxputenv(3c)—if the OS environment is per-process.

tuxreadenv(3c)—if the OS environment is per-process.

Usignal(3c)

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Wr i t ing a Mul t i th readed ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-47

The determination of single-context mode, multicontext mode, or uninitialized mode affects an
entire process. The buffer type switch, the view cache, and environment variable values are also
per-process functions.

Using Per-thread Functions and Data Structures in a
Multithreaded ATMI Client
Only the calling thread is affected by the following:

CATCH

tperrordetail(3c)

tpgetctxt(3c)

tpgprio(3c)

tpsetctxt(3c)

tpsprio(3c)

tpstrerror(3c)

tpstrerrordetail(3c)

TRY(3c)

Uunix_err(3c)

The Ferror, Ferror32(5), tperrno(5), tpurcode(5), and Uunix_err variables are specific
to each thread.

The identity of the current context is specific to each thread.

Sample Code for a Multithreaded ATMI Client
The following example shows a multithreaded client using ATMI calls. Threads functions differ
from one operating system to another. In this example, POSIX functions are used.

Note: In order to simplify this example, error checking code has not been included.

Listing 1-4 Sample Code for a Multithreaded Client

#include <stdio.h>
#include <pthread.h>
#include <atmi.h>

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

10-48 Programming an Oracle Tuxedo ATMI Application Using COBOL

TPINIT * tpinitbuf;
int timeout=60;
pthread_t withdrawalthreadid, stockthreadid;
TPCONTEXT_T ctxt;
void * stackthread(void *);
void * withdrawalthread(void *);

main()
{

tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));
/*
* This code will perform a transfer, using separate threads for the
* withdrawal and deposit. It will also get the current
* price of BEA stock from a separate application, and calculate how
* many shares the transferred amount can buy.
*/

tpinitbuf->flags = TPMULTICONTEXTS;

/* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);

tpgetctxt(&ctxt, 0);
tpbegin(timeout, 0);
pthread_create(&withdrawalthreadid, NULL, withdrawalthread, NULL);
tpcall("DEPOSIT", ...);

/* Wait for the withdrawal thread to complete. */
pthread_join(withdrawalthreadid, NULL);

tpcommit(0);
tpterm();

/* Wait for the stock thread to complete. */
pthread_join(stockthreadid, NULL);

/* Print the results. */
printf("$%9.2f has been transferred \
from your savings account to your checking account.\n", ...);

printf("At the current BEA stock price of $%8.3f, \
you could purchase %d shares.\n", ...);

exit(0);
}

void *

Wr i t ing a Mul t i th readed ATMI C l i ent

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-49

stockthread(void *arg)
{

/* The other threads have now called tpinit(), so resetting TUXCONFIG can
* no longer adversely affect them.
*/

tuxputenv("TUXCONFIG=/home/users/xyz/stockconf");
tpinitbuf->flags = TPMULTICONTEXTS;
/* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);
tpcall("GETSTOCKPRICE", ...);
/* Save the stock price in a variable that can also be accessed in main(). */
tpterm();
return(NULL);

}

void *
withdrawalthread(void *arg)
{

/* Create a separate thread to get stock prices from a different
* application.

*/

pthread_create(&stockthreadid, NULL, stockthread, NULL);
tpsetctxt(ctxt, 0);
tpcall("WITHDRAWAL", ...);
return(NULL);

}

See Also
“How Multithreading and Multicontexting Work in a Client” on page 1-10

“Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI
Application” on page 1-23

“Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

10-50 Programming an Oracle Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Server
Multithreaded servers are almost always multicontexted, as well. For information about writing
a multithreaded server, see “Writing Code to Enable Multicontexting and Multithreading in an
ATMI Server” on page 1-33.

Compiling Code for a Multithreaded/Multicontexted ATMI
Application

The programs provided by the Oracle Tuxedo system for compiling or building executables, such
as buildserver(1) and buildclient(1), automatically include any required compiler flags.
If you use these tools, then you do not need to set any flags at compile time.

If, however, you compile your .c files into .o files before doing a final compilation, you may
need to set platform-specific compiler flags. Such flags must be set consistently for all code
linked into a single process.

If you are creating a multithreaded server, you must run the buildserver(1) command with the
-t option. This option is mandatory for multithreaded servers; if you do not specify it at build
time and later try to boot the new server with a configuration file in which the value of
MAXDISPATCHTHREADS is greater than 1, a warning message is recorded in the user log and the
server reverts to single-threaded operation.

To identify any operating system-specific compiler parameters that are required when you
compile .c files into .o files in a multithreaded environment, run buildclient(1) or
buildserver(1) with the -v option set on a test file.

See Also
“Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

“Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

“Writing a Multithreaded ATMI Client” on page 1-38

Testing a Multithreaded/Multicontexted ATMI Application
This topic includes the following sections:

Testing Recommendations for a Multithreaded/Multicontexted ATMI Application

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Test ing a Mul t i th readed/Mul t i c ontex ted ATMI App l i cat ion

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-51

Troubleshooting a Multithreaded/Multicontexted ATMI Application

Error Handling for a Multithreaded/Multicontexted ATMI Application

Testing Recommendations for a
Multithreaded/Multicontexted ATMI Application
We recommend following these recommendations during testing of your multithreaded and/or
multicontexted code:

Use a multiprocessor.

Use a multithreaded debugger (if your operating system vendor offers one).

Run stress tests to introduce a variety of timing conditions.

Troubleshooting a Multithreaded/Multicontexted ATMI
Application
When you need to investigate possible causes of errors, we recommend that you start by checking
whether and how the TPMULTICONTEXTS flag has been set. Errors are frequently introduced by
failures to set this flag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()
If a process includes the TPMULTICONTEXTS flag in a state for which this flag is not allowed (or
omits TPMULTICONTEXTS in a state that requires it), then tpinit(3c) returns -1 and sets
tperrno to TPEPROTO.

Calls to tpinit() Without TPMULTICONTEXTS
When tpinit(3c) is invoked without TPMULTICONTEXTS, it behaves as it does when called in
a single-contexted application. When tpinit() has been invoked once, subsequent tpinit()
calls without the TPMULTICONTEXTS flag succeed without further action. This is true even if the
value of the TUXCONFIG or WSNADDR environment variable in the application has been changed.
Calling tpinit() without the TPMULTICONTEXTS flag set is not allowed in multicontext mode.

If a client has not joined an application and tpinit(3c) is called implicitly (as a result of a call
to another function that calls tpinit()), then the Oracle Tuxedo system interprets the action as
a call to tpinit() without the TPMULTICONTEXTS flag for purposes of determining which flags
may be used in subsequent calls to tpinit().

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-52 Programming an Oracle Tuxedo ATMI Application Using COBOL

For most ATMI functions, if a function is invoked by a thread that is not associated with a context
in a process already operating in multicontext mode, the ATMI function fails with
tperrno(5)=TPEPROTO.

Insufficient Thread Stack Size
On certain operating systems, the operating system default thread stack size is insufficient for use
with the Oracle Tuxedo system. Compaq Tru64 UNIX and UnixWare are two operating systems
for which this is known to be the case. If the default thread stack size parameter is used,
applications on these platforms dump core when a function with substantial stack usage
requirements is called by any thread other than the main thread. Often the core file that is created
does not give any obvious clues to the fact that an insufficient stack size is the cause of the
problem.

When the Oracle Tuxedo system is creating threads on its own, such as server-dispatched threads
or a client unsolicited message thread, it can adjust the default stack size parameter on these
platforms to a sufficient value. However, when an application is creating threads on its own, the
application must specify a sufficient stack size. At a minimum, a value of 128K should be used
for any thread that will access the Oracle Tuxedo system.

On Compaq Tru64 UNIX and other systems on which POSIX threads are used, a thread stack size
is specified by invoking pthread_attr_setstacksize() before calling pthread_create().
On UnixWare, the thread stack size is specified as an argument to thr_create(). Consult your
operating system documentation for further information on this subject.

Error Handling for a Multithreaded/Multicontexted ATMI
Application
Errors are reported in the user log. For each error, whether in single-context mode or multicontext
mode, the following information is recorded:

process_ID.thread_ID.context_ID

See Also
“How Multithreading and Multicontexting Work in a Client” on page 1-10

“How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

“Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI
Application” on page 1-23

../rf5/rf5.html

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-1

C H A P T E R 11

Managing Errors

This topic includes the following sections:

System Errors

Application Errors

Handling Errors

Transaction Considerations

Central Event Log

System Errors
The Oracle Tuxedo system uses TP-STATUS IN TPSTATUS-REC to supply information to a
process when a routine fails. All ATMI calls set TP-STATUS to a value that describes the nature
of the error. When a call does not return to its caller, as in the case of TPRETURN or TPFORWAR,
which are used to terminate a service routine, the only way the system can communicate success
or failure is through TP-STATUS in the requester.

APPL-RETURN-CODE is used to communicate user-defined conditions only. The system sets the
value of APPL-RETURN-CODE to the value of APPL-CODE IN TPSVCRET-REC during TPRETURN.
The system sets APPL-RETURN-CODE, regardless of the value of APPL-RETURN-CODE IN
TPSTATUS-REC during TPRETURN, unless an error is encountered by TPRETURN or a transaction
timeout occurs.

The codes returned in TP-STATUS represent categories of errors, which are listed in Table 11-1.

11-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Table 11-1 TP-STATUS Error Categories

Error Category TP-STATUS Values

Abort TPEABORT2

Oracle Tuxedo system1 TPESYSTEM

Communication handle TPELIMIT and TPEBADDESC

Conversational TPEVENT

Duplicate operation TPEMATCH

General communication TPESVCFAIL, TPESVCERR,
TPEBLOCK, and TPGOTSIG

Heuristic decision TPEHAZARD2 and TPEHEURISTIC2

Invalid argument1 TPEINVAL

MIB TPEMIB

No entry TPENOENT

Operating system1 TPEOS

Permission TPEPERM

Protocol1

1. Applicable to all ATMI calls for which failure is reported by the
value returned in TP-STATUS.

TPEPROTO

Queueing TPEDIAGNOSTIC

Release compatibility TPERELEASE

Resource manager TPERMERR

Timeout TPETIME

Transaction TPETRAN2

Typed record mismatch TPEITYPE and TPEOTYPE

Abor t E r ro rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-3

As footnote 1 shows, four categories of errors are reported by TP-STATUS and are applicable to
all ATMI calls. The remaining categories are used only for specific ATMI calls.The following
sections describe some error categories in detail.

Abort Errors
For information on the errors that lead to abort, refer to “Fatal Transaction Errors” on page 11-14.

Oracle Tuxedo System Errors
Oracle Tuxedo system errors indicate problems at the system level, rather than at the application
level. When Oracle Tuxedo system errors occur, the system writes messages explaining the exact
nature of the errors to the central event log, and returns TPESYSTEM in TP-STATUS. For more
information, refer to the “Central Event Log” on page 11-21. Because these errors occur in the
system, rather than in the application, you may need to consult the system administrator to correct
them.

Communication Handle Errors
Communication handle errors occur as a result of exceeding the maximum limit of
communication handles or referencing an invalid value. Asynchronous and conversational calls
return TPELIMIT when the maximum number of outstanding communication handles has been
exceeded. TPEBADDESC is returned when an invalid communication handle value is specified for
an operation.

Communication handle errors occur only during asynchronous calls or conversational calls. (Call
descriptors are not used for synchronous calls.) Asynchronous calls depend on communication
handles to associate replies with the corresponding requests. Conversational send and receive
routines depend on communication handles to identify the connection; the call that initiates the
connection depends on the availability of a communication handle.

Communication handle errors can be done by checking for specific errors at the application level.

2. Refer to “Fatal Transaction Errors” on page 11-14 for more
information on this error category.

11-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

Limit Errors
The system allows up to 50 outstanding communication handles (replies) per context (or Oracle
Tuxedo application association). This limit is enforced by the system; it cannot be redefined by
your application.

The limit for communication handles for simultaneous conversational connections is more
flexible than the limit for replies. The application administrator defines the limit in the
configuration file. When the application is not running, the administrator can modify the
MAXCONV parameter in the RESOURCES section of the configuration file. When the application is
running, the administrator can modify the MACHINES section dynamically. Refer to tmconfig,
wtmconfig(1) in the Oracle Tuxedo Command Reference for more information.

Invalid Descriptor Errors
A communication handle can become invalid and, if referenced, cause an error to be returned to
TP-STATUS in either of two situations:

A communication handle is used to retrieve a message, which may be a failed message
(TPEBADDESC).

An attempt is made to reuse a stale communication handle (TPEBADDESC).

A communication handle might become stale, for example, in the following circumstances:

When the application calls TPABORT or TPCOMMIT and transaction replies (sent without
TPNOTRAN) remain to be retrieved.

A transaction times out. When the timeout is reported by a call to TPGETRPLY, no message
is retrieved using the specified handle and the handle becomes stale.

Conversational Errors
When an unknown handle is specified for conversational services, the TPSEND, TPRECV, and
TPDISCON routines return TPEBADDESC.

When TPSEND and TPRECV fail with a TPEEVENT error after a conversational connection is
established, an event has occurred. Data may or may not be sent by TPSEND, depending on the
event. The system returns TPEEVENT in the TPEVENT member of TPSTATUS-REC and the course
of action is dictated by the particular event.

For a complete description of conversational events, refer to “Understanding Conversational
Communication Events” in Programming Oracle Tuxedo ATMI Applications Using C.

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../pgc/pgconv.html
../pgc/pgconv.html

Dupl icate Ob jec t E r ro r

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-5

Duplicate Object Error
The TPEMATCH error code is returned in TP-STATUS when an attempt is made to perform an
operation that results in a duplicate object. The following table lists the routines that may return
the TPEMATCH error code and the associated cause.

For more information on these routines, refer to the Oracle Tuxedo ATMI COBOL Function
Reference.

General Communication Call Errors
General communication call errors can occur during any communication calls, regardless of
whether those calls are synchronous or asynchronous. Any of the following errors may be
returned in TP-STATUS: TPESVCFAIL, TPESVCERR, TPEBLOCK, or TPGOTSIG.

TPESVCFAIL and TPESVCERR Errors
If the reply portion of a communication fails as a result of a call to TPCALL or TPGETRPLY, the
system returns TPESVCERR or TPSEVCFAIL to TP-STATUS. The system determines the error by
the arguments that are passed to TPRETURN and the processing that is performed by this call.

If TPRETURN encounters an error in processing or handling arguments, the system returns an error
to the original requester and sets TP-STATUS to TPESVCERR. The receiver determines that an error
has occurred by checking the value of TP-STATUS. The system does not send the data from the
TPRETURN call, and if the failure occurred on TPGETRPLY, it renders the call handle invalid.

Routine Cause

TPADVERTISE The svcname specified is already advertised for the server but
with a function other than func. Although the function fails,
svcname remains advertised with its current function (that is,
func does not replace the current function name).

TPRESUME The tranid points to a transaction identifier that another
process has already resumed. In this case, the caller’s state with
respect to the transaction is not changed.

TPSUBSCRIBE The specified subscription information has already been listed
with the EventBroker.

11-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

If TPRETURN does not encounter the TPESVCERR error, then the value returned in TP-RETURN-VAL
determines the success or failure of the call. If the application specifies TPFAIL in the
TP-RETURN-VAL, the system returns TPESVCFAIL in TP-STATUS and sends the data message to
the caller. If TP-RETURN-VAL is set to TPSUCCESS, the system returns successfully to the caller,
TP-STATUS is not set, and the caller receives the data.

TPEBLOCK and TPGOTSIG Errors
The TPEBLOCK and TPGOTSIG error codes may be returned at the request or the reply end of a
message and, as a result, can be returned for all communication calls.

The system returns TPEBLOCK when a blocking condition exists and the process sending a request
(synchronously or asynchronously) indicates, by setting TPPNOBLOCK that it does not want to wait
on a blocking condition. A blocking condition can exist when a request is being sent if, for
example, all the system queues are full.

When TPCALL indicates a no blocking condition, only the sending part of the communication is
affected. If a call successfully sends a request, the system does not return TPEBLOCK, regardless
of any blocking situation that may exist while the call waits for the reply.

The system returns TPEBLOCK for TPGETRPLY when a call is made TPNOBLOCK and a blocking
condition is encountered while TPGETRPLY is awaiting the reply. This may occur, for example, if
a message is not currently available.

The TPGOTSIG error indicates an interruption of a system call by a signal; this situation is not
actually an error condition. If TPSIGRSTRT is set, the calls do not fail and the system does not
return the TPGOTSIG error code in TP-STATUS.

Invalid Argument Errors
Invalid argument errors indicate that an invalid argument was passed to a routine. Any ATMI call
that takes arguments can fail if you pass it arguments that are invalid. In the case of a call that
returns to the caller, the call fails and causes TP-STATUS to be set to TPEINVAL. In the case of
TPRETURN or TPFORWAR, the system sets TP-STATUS to TPESVCERR for either the TPCALL or
TPGETRPLY call that initiated the request and is waiting for results to be returned.

You can correct an invalid argument error at the application level by ensuring that you pass only
valid arguments to routines.

No Ent r y E r ro rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-7

No Entry Errors
No entry errors result from a lack of entries in the system tables or the data structure used to
identify record types. The meaning of the no entry type error, TPENOENT, depends on the call that
is returning it. Table 11-2 lists the calls that return this error and describes various causes of error.

Operating System Errors
Operating system errors indicate that an operating system call has failed. The system returns
TPEOS in TP-STATUS. On UNIX systems, the system returns a numeric value identifying the
failed system call in the global variable Uunixerr. To resolve operating system errors, you may
need to consult your system administrator.

Table 11-2 No Entry Errors

Call Cause

TPINITIALIZE The calling process cannot join the application because there is no
space left in the bulletin board to make an entry for it. Check with
the system administrator.

 TPCALL
TPACALL

The calling process references a service called SERVICE-NAME IN
TPSVCDEF-REC that is not known to the system since there is no
entry for it in the bulletin board. On an application level, ensure that
you have referenced the service correctly; otherwise, check with the
system administrator.

TPCONNECT The system cannot connect to the specified name because the service
named does not exist or it is not a conversational service.

TPGPRIO The calling process seeks a request priority when no request has
been made. This is an application-level error.

TPUNADVERTISE The system cannot unadvertise SERVICE-NAME IN
TPSVCDEF-REC because the name is not currently advertised by
the calling process.

11-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

Permission Errors
If a calling process does not have the correct permissions to join the application, the
TPINITIALIZE call fails, returning TPEPERM in TP-STATUS. Permissions are set in the
configuration file, outside of the application. If you encounter this error, check with the
application administrator to make sure the necessary permissions are set in the configuration file.

Protocol Errors
Protocol errors occur when an ATMI call is invoked, either in the wrong order or using an
incorrect process. For example, a client may try to begin communicating with a server before
joining the application. Or TPCOMMIT may be called by a transaction participant instead of the
initiator.

You can correct a protocol error at the application level by enforcing the rules of order and proper
usage of ATMI calls.

To determine the cause of a protocol error, answer the following questions:

Is the call being made in the correct order?

Is the call being made by the correct process?

Protocol errors return the TPEPROTO value in TP-STATUS.

Refer to “Introduction to the COBOL Application-Transaction Monitor Interface” in the Oracle
Tuxedo ATMI COBOL Function Reference for more information.

Queuing Error
The TPENQUEUE(3cbl) or TPDEQUEUE(3cbl) routine returns TPEDIAGNOSTIC in TP-STATUS if
the enqueuing or dequeuing on a specified queue fails. The reason for failure can be determined
by the diagnostic returned via the ctl record. For a list of valid ctl flags, refer to
TPENQUEUE(3cbl) or TPDEQUEUE(3cbl) in the Oracle Tuxedo ATMI COBOL Function
Reference.

Release Compatibility Error
The Oracle Tuxedo system returns TPERELEASE in TP-STATUS if a compatibility issue exists
between multiple releases of an Oracle Tuxedo system participating in an application domain.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Resource Manager E r ro rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-9

For example, the TPERELEASE error may be returned if the TPACK flag is set when issuing the
TPNOTIFY(3cbl) routine (indicating that the caller blocks until an acknowledgment message is
received from the target client), but the target client is using an earlier release of the Oracle
Tuxedo system that does not support the TPACK acknowledgement protocol.

Resource Manager Errors
Resource manager errors can occur with calls to TPOPEN(3cbl) and TPCOSE(3cbl), in which
case the system returns the value of TPERMERR in TP-STATUS. This error code is returned for
TPOPEN when the resource manager fails to open correctly. Similarly, this error code is returned
for TPCLOSE when the resource manager fails to close correctly. To maintain portability, the
Oracle Tuxedo system does not return a more detailed explanation of this type of failure. To
determine the exact nature of a resource manager error, you must interrogate the resource
manager.

Timeout Errors
The Oracle Tuxedo system supports timeout errors to establish a limit on the amount of time that
the application waits for a service request or transaction. The Oracle Tuxedo system supports two
types of configurable timeout mechanisms: blocking and transaction.

A blocking timeout specifies the maximum amount of time that an application waits for a reply
to a service request. The application administrator defines the blocking timeout for the system in
the configuration file.

A transaction timeout defines the duration of a transaction, which may involve several service
requests. To define the transaction timeout for an application, pass the T-OUT argument to
TPBEGIN.

The system may return timeout errors on communication calls for either blocking or transaction
timeouts, and on TPCOMMIT for transaction timeouts only. In each case, if a process is in
transaction mode and the system returns TPETIME on a failed call, a transaction timeout has
occurred.

By default, if a process is not in transaction mode, the system performs blocking timeouts.

If a process is not in transaction mode and a blocking timeout occurs on an asynchronous call, the
communication call that blocked fails, but the call descriptor is still valid and may be used on a
reissued call. Other communication is not affected.

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

11-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

When a transaction timeout occurs, the communication handle to an asynchronous transaction
reply (specified without TPNOTRAN) becomes stale and may no longer be referenced.

TPETIME indicates a blocking timeout on a communication call if the call was not made in
transaction mode or if TPNOBLOCK was not set.

Note: If you set TPNOBLOCK, a blocking timeout cannot occur because the call returns
immediately if a blocking condition exists.

For additional information on handling timeout errors, refer to “Transaction Considerations” on
page 11-12.

Transaction Errors
For information on transactions and the non-fatal and fatal errors that can occur, refer to
“Transaction Considerations” on page 11-12.

Typed Record Errors
Typed record errors are returned when requests or replies to processes are sent in records of an
unknown type. The TPCALL and TPACALL calls return TPEITYPE when a request data record is
sent to a service that does not recognize the type of the record.

Processes recognize record types that are identified in both the configuration file and the Oracle
Tuxedo system libraries that are linked into the process. These libraries define and initialize a data
structure that identifies the typed records that the process recognizes. You can tailor the library
to each process, or an application can supply its own copy of a file that defines the record types.
An application can set up the record type data structure (referred to as a record type switch) on a
process-specific basis. For more information, see tuxtypes(5)and typesw(5) in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

The TPCALL and TPGETRPLY calls return TPEOTYPE when a reply message is sent in a record that
is not recognized or not allowed by the caller. In the latter case, the record type is included in the
type switch, but the type returned does not match the record that was allocated to receive the reply
and a change in record type is not allowed by the caller. The caller indicates this preference by
setting TPNOCHANGE. In this case, strong type checking is enforced; the system returns TPEOTYPE
when it is violated. By default, weak type checking is used. In this case, a record type other than
the type originally allocated may be returned, as long as that type is recognized by the caller. The
rules for sending replies are that the reply record must be recognized by the caller and, if strong
type checking has been indicated, you must observe it.

../rf5/rf5.html
../rf5/rf5.html

App l i cat i on E r ro rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-11

Application Errors
Within an application, you can pass information about user-defined errors to calling programs
using the rcode argument of TPRETURN. Also, the system sets the value of APPL-RETURN-CODE
to the value of APPL-CODE IN TPSVCRET-REC during TPRETURN. For more information about
TPRETURN(3cbl), refer to the Oracle Tuxedo ATMI COBOL Function Reference.

Handling Errors
Your application logic should test for error conditions for the calls that have return values, and
take appropriate action when an error occurs.

The following example shows a typical method of handling errors. The term ATMICALL(3) is used
in this example to represent a generic ATMI call.

Listing 11-1 Handling Errors

. . .

CALL "TPINITIALIZE" USING TPINFDEF-REC

USR-DATA-REC

TPSTATUS-REC.

IF NOT TPOK

error message, EXIT PROGRAM

CALL "TPBEGIN" USING TPTRXDEF-REC

TPSTATUS-REC.

IF NOT TPOK

error message, EXIT PROGRAM

Make atmi calls

Check return values

IF TPEINVAL

DISPLAY "Invalid arguments were given."

IF TPEPROTO

DISPLAY "A call was made in an improper context."

. . .

Include all error cases described in the ATMICALL(3)

reference page. Other return codes are not possible,

../rf3cbl/rf3cbl.html

11-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

so there is no need to test them.

. . .

continue

The values of TP-STATUS provide details about the nature of each problem and suggest the level
at which it can be corrected. If your application defines a list of error conditions specific to your
processing, the same can be said for the values of APPL-RETURN-CODE IN TPSTATUS-REC.

Transaction Considerations
The following sections describe how various programming features work when used in
transaction mode. The first section provides rules of basic communication etiquette that should
be observed in code written for transaction mode.

Communication Etiquette
When writing code to be run in transaction mode, you must observe the following rules of basic
communication etiquette:

Processes that are participants in the same transaction must require replies for all requests.
To include a request that requires no reply, set TPACALL to TPNOTRAN or TPNOREPLY.

A service must retrieve all asynchronous transaction replies before calling TPRETURN or
TPFORWAR. This rule must be observed regardless of whether the code is running in
transaction mode.

The initiator must retrieve all asynchronous transaction replies (made without TPNOTRAN)
before calling TPCOMMIT.

Replies must be retrieved for asynchronous calls that expect replies from non-participants
of the transaction, that is, replies to requests made with TPACALL in which the transaction,
but not the reply, is suppressed.

If a transaction has not timed out but is marked “abort-only,” any further communication
should be performed with TPNOTRAN set so that the results of the communication are
preserved after the transaction is rolled back.

If a transaction has timed out:

T ransact ion E r ro rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-13

– The handle for the timed-out call becomes stale and any further reference to it returns
TPEBADDESC.

– Further calls to TPGETRPLY or TPRECV for any outstanding handles return a global state
of transaction timeout; the system sets TP-STATUS to TPETIME.

– Asynchronous calls can be made with TPACALL set to TPNOREPLY, TPNOBLOCK, or
TPNOTRAN.

Once a transaction has been marked “abort-only” for reasons other than timeout, a call to
TPGETRPLY returns whatever value represents the local state of the call; that is, it returns
either success or an error code that reflects the local condition.

Once a handle is used with TPGETRPLY to retrieve a reply, or with TPSEND or TPRECV to
report an error condition, it becomes invalid and any further reference to it returns
TPEBADDESC. This rule is always observed, regardless of whether the code is running in
transaction mode.

Once a transaction is aborted, all outstanding transaction call handles (made without
TPNOTRAN) become stale, and any further references to them return TPEBADDESC.

Transaction Errors
The following sections describe transaction-related errors.

Non-fatal Transaction Errors
When transaction errors occur, the system returns TPETRAN in TP-STATUS. The precise meaning
of such an error, however, depends on the call that is returning it. Table 11-3 lists the calls that
return transaction errors and describes possible causes of them.

Table 11-3 Transaction Errors

Call Cause

TPBEGIN Usually caused by a transient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

TPCANCEL Returns TPETRAN when called from a transaction.

11-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Fatal Transaction Errors
When a fatal transaction error occurs, the application should explicitly abort the transaction by
having the initiator call TPABORT. Therefore, it is important to understand the errors that are fatal
to transactions. Three conditions cause a transaction to fail:

The initiator or a participant in the transaction causes it to be marked “abort-only” for one
of the following reasons:

– TPRETURN encounters an error while processing its arguments; TP-STATUS is set to
TPESVCERR.

– The TP-RETURN-VAL to TPRETURN was set to TPFAIL; TP-STATUS is set to
TPESVCFAIL.

TPRESUME The Oracle Tuxedo system is unable to resume a global transaction
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be completed before the global transaction can be
resumed. The caller’s state with respect to the local transaction is
unchanged.

TPCONNECT,
TPCALL, and
TPACALL

A call was made in transaction mode to a service that does not
support transactions. Some services belong to server groups that
access a database management system (DBMS) that, in turn, support
transactions. Other services, however, do not belong to such groups.
In addition, some services that support transactions may require
interoperation with software that does not. For example, a service
that prints a form may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participants in a transaction.

The grouping of services into servers and server groups is an
administrative task. In order to determine which services support
transactions, check with your application administrator.

You can correct transaction-level errors at the application level by
enabling the setting TPSVCDEF-REF or by accessing the service for
which an error was returned outside of the transaction.

Table 11-3 Transaction Errors

Call Cause

T ransact ion E r ro rs

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-15

– The type of the reply record is not known or not allowed by the caller and, as a result,
success or failure cannot be determined; TP-STATUS is set to TPEOTYPE.

The transaction times out; TP-STATUS is set to TPETIME.

TPCOMMIT is called by a participant rather than by the originator of a transaction;
TP-STATUS is set to TPEPROTO.

The only protocol error that is fatal to transactions is calling TPCOMMIT from the wrong
participant in a transaction. This error can be corrected in the application during the development
phase.

If TPCOMMIT is called after an initiator/participant failure or transaction timeout, the result is an
implicit abort error. Then, because the commit failed, the transaction should be aborted.

If the system returns TPESVCERR, TPESVCFAIL, TPEOTYPE, or TPETIME for any communication
call, the transaction should be aborted explicitly with a call to TPABORT. You need not wait for
outstanding communication handles before explicitly aborting the transaction. However, because
these communication handles are considered stale after the call is aborted, any attempt to access
them after the transaction is terminated returns TPEBADDESC.

In the case of TPESVCERR, TPESVCFAIL, and TPEOTYPE, communication calls continue to be
allowed as long as the transaction has not timed out. When these errors are returned, the
transaction is marked abort-only. To preserve the results of any further work, you should call any
communication functions with TPNOTRAN. By setting this flag, you ensure that the work
performed for the transaction marked “abort-only” will not be rolled back when the transaction
is aborted.

When a transaction timeout occurs, communication can continue, but communication requests
cannot:

Require replies

Block

Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you must set TPNOREPLY, TPNOBLOCK, or TPNOTRAN.

Heuristic Decision Errors
The TPCOMMIT call may return TPEHAZARD or TPEHEURISTIC, depending on how
TP-COMMIT-CONTROL is set.

11-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

If you set TP-COMMIT-CONTROL to TP-CMT-LOGGED, the application obtains control before the
second phase of a two-phase commit is performed. In this case, the application may not be aware
of a heuristic decision that occurs during the second phase.

TPEHAZARD or TPEHEURISTIC can be returned in a one-phase commit, however, if a single
resource manager is involved in the transaction and it returns a heuristic decision or a hazard
indication during a one-phase commit.

If you set TP_COMMIT_CONTROL to TP_CMT_COMPLETE, then the system returns TPEHEURISTIC
if any resource manager reports a heuristic decision, and TPEHAZARD if any resource manager
reports a hazard. TPEHAZARD specifies that a participant failed during the second phase of commit
(or during a one-phase commit) and that it is not known whether a transaction completed
successfully.

Transaction Timeouts
As described in “Transaction Errors” on page 11-13, two types of timeouts can occur in an Oracle
Tuxedo application: blocking and transaction. The following sections describe how various
programming features are affected by transaction timeouts. Refer to “Transaction Errors” on
page 11-13 for more information on timeouts.

TPCOMMIT Call
What is the state of a transaction if a timeout occurs after a call to TPCOMMIT? If the transaction
timed out and the system knows that it was aborted, the system reports these events by setting
TP-STATUS to TPEABORT. If the status of the transaction is unknown, the system sets the error
code to TPETIME.

When the state of a transaction is in doubt, you must query the resource manager. First, verify
whether or not any of the changes that were part of the transaction were applied. Then you can
determine whether the transaction was committed or aborted.

TPNOTRAN
When a process is in transaction mode and makes a communication call with TPNOTRAN, it
prohibits the called service from becoming a participant in the current transaction. Whether the
service request succeeds or fails has no impact on the outcome of the transaction. The transaction
can still timeout while waiting for a reply that is due from a service, whether it is part of the
transaction or not.

tp te rm() Funct i on

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-17

For additional information on using TPNOTRAN, refer to “TPRETURN and TPFORWAR Calls”
on page 11-17.

TPRETURN and TPFORWAR Calls
If you call a process while running in transaction mode, TPRETURN and TPFORWAR place the
service portion of the transaction in a state that allows it to be either committed or aborted when
the transaction completes. You can call a service several times on behalf of the same transaction.
The system does not fully commit or abort the transaction until the initiator of the transaction calls
TPCOMMIT or TPABORT.

Neither TPRETURN nor TPFORWAR should be called until all outstanding handles for the
communication calls made within the service have been retrieved. If you call TPRETURN with
outstanding handles for which TP-RETURN-VAL is set to TPSUCCESS, the system encounters a
protocol error and returns TPESVCERR to the process waiting on TPGETRPLY. If the process is in
transaction mode, the system marks the caller as “abort-only.” Even if the initiator of the
transaction calls TPCOMMIT, the system implicitly aborts the transaction. If you call TPRETURN
with outstanding handles for which TP-RETURN-VAL is set to TPFAIL, the system returns
TPESVCFAIL to the process waiting on TPGETRPLY. The effect on the transaction is the same.

When you call TPRETURN while running in transaction mode, this function can affect the result of
the transaction by the processing errors that it encounters or that are retrieved from the value
placed in TP-RETURN-VAL by the application.

You can use TPFORWAR to indicate that success has been achieved up to a particular point in the
processing of a request. If no application errors have been detected, the system invokes
TPFORWAR; otherwise, the system invokes TPRETURN with TPFAIL. If you call TPFORWAR
improperly, the system considers the call a processing error and returns a failed message to the
requester.

tpterm() Function
Use the TPTERM call to remove a client context from an application.

If the client context is in transaction mode, the call fails with TPEPROTO returned in TP-STATUS,
and the client context remains part of the application and in transaction mode.

When the call is successful, the client context is allowed no further communication or
participation in transactions because the current thread of execution is no longer part of the
application.

11-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

Resource Managers
When you use an ATMI call to define transactions, the Oracle Tuxedo system executes an
internal call to pass any global transaction information to each resource manager participating in
the transaction. When you call TPCOMMIT or TPABORT, for example, the system makes internal
calls to direct each resource manager to commit or abort the work it did on behalf of the caller’s
global transaction.

When a global transaction has been initiated, either explicitly or implicitly, you should not make
explicit calls to the resource manager’s transaction calls in your application code. Failure to
follow this transaction rule causes indeterminate results. You can use the TPGETLEV call to
determine whether a process is already in a global transaction before calling the resource
manager’s transaction call.

Some resource managers allow programmers to configure certain parameters (such as the
transaction consistency level) by specifying options available in the interface to the resource
managers themselves. Such options are made available in two forms:

Resource manager-specific function calls that can be used by programmers of distributed
applications to configure options.

Hard-coded options incorporated in the transaction interface supplied by the provider of the
resource manager.

Consult the documentation for your resource managers for additional information.

The method of setting options varies for each resource manager. In the Oracle Tuxedo System
SQL resource manager, for example, the set transaction statement is used to negotiate
specific options (consistency level and access mode) for a transaction that has already been
started by the Oracle Tuxedo system.

Sample T ransac t i on Scenar i os

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-19

Sample Transaction Scenarios
The following sections provide some considerations for the following transaction scenarios:

Called Service in Same Transaction as Caller

Called Service in Different Transaction with AUTOTRAN Set

Called Service That Starts a New Explicit Transaction

Called Service in Same Transaction as Caller
When a caller in transaction mode calls another service to participate in the current transaction,
the following facts apply:

 TPRETURN and TPFORWAR, when called by the participating service, place that service’s
portion of the transaction in a state from which it can be either aborted or committed by the
initiator.

The success or failure of the called process affects the current transaction. If any fatal
transaction errors are encountered by the participant, the current transaction is marked
“abort-only.”

Whether or not the tasks performed by a successful participant are applied depends on the
fate of the transaction. In other words, if the transaction is aborted, the work of all
participants is reversed.

TPNOREPLY cannot be used when calling another service to participate in the current
transaction.

Called Service in Different Transaction with AUTOTRAN Set
If you issue a communication call with TPNOTRAN set and the called service is configured such
that a transaction automatically starts when the service is called, the system places both the
calling and called processes in transaction mode, but the two constitute different transactions. In
this situation, the following facts apply:

 TPRETURN plays the initiator’s transaction role: it terminates the transaction in the service
in which the transaction was automatically started. Alternatively, if the transaction is
automatically started in a service that terminates with TPFORWAR, the TPRETURN call issued
in the last service in the forward chain plays the initiator’s transaction role: it terminates
the transaction. (For an example, refer to the figure called “Transaction Roles of
TPFORWAR and TPRETURN with AUTOTRAN” on page 11-20.)

11-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

Because it is in transaction mode, TPRETURN is vulnerable to the failure of any participant
in the transaction, as well as to transaction timeouts. In this scenario, the system is more
likely to return a failed message.

The state of the caller’s transaction is not affected by any failed messages or application
failures returned to the caller.

The caller’s own transaction may timeout as the caller waits for a reply.

If no reply is expected, the caller’s transaction cannot be affected in any way by the
communication call.

Figure 11-1 Transaction Roles of TPFORWAR and TPRETURN with AUTOTRAN

Called Service That Starts a New Explicit Transaction
If a communication call is made with TPNOTRAN, and the called service is not automatically
placed in transaction mode by a configuration option, the service can define multiple transactions
using explicit calls to TPBEGIN, TPCOMMIT, and TPABORT. As a result, the transaction can be
completed before a call is issued to TPRETURN.

In this situation, the following facts apply:

TPRETURN plays no transaction role; that is, the role of TPRETURN is always the same,
regardless of whether transactions are explicitly defined in the service routine.

Orac le TUXEDO Sys tem-supp l i ed Subrout ines

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-21

 TPRETURN can return any value in TP-RETURN-VAL, regardless of the outcome of the
transaction.

Typically, the system returns processing errors, record type errors, or application failure,
and follows the normal rules for TPESVCFAIL, TPEITYPE/TPEOTYPE, and TPESVCERR.

The state of the caller’s transaction is not affected by any failed messages or application
failures returned to the caller.

The caller is vulnerable to the possibility that its own transaction may time out as it waits
for its reply.

If no reply is expected, the caller’s transaction cannot be affected in any way by the
communication call.

Oracle TUXEDO System-supplied Subroutines
The Oracle Tuxedo system-supplied subroutines, TPSVRINIT and TPSVRDONE, must follow
certain rules when used in transactions.

The Oracle Tuxedo system server calls TPSVRINIT during initialization. Specifically,
TPSVRINIT is called after the calling process becomes a server but before it starts handling
service requests. If TPSVRINIT performs any asynchronous communication, all replies must be
retrieved before the function returns; otherwise, the system ignores all pending replies and the
server exits. If TPSVRINIT defines any transactions, they must be completed with all
asynchronous replies retrieved before the function returns; otherwise, the system aborts the
transaction and ignores all outstanding replies. In this case, the server exits gracefully.

The Oracle Tuxedo system server abstraction calls TPSVRDONE after it finishes processing service
requests but before it exits. At this point, the server’s services are no longer advertised, but the
server has not yet left the application. If TPSVRDONE initiates communication, it must retrieve all
outstanding replies before it returns; otherwise, pending replies are ignored by the system and the
server exits. If a transaction is started within TPSVRDONE, it must be completed with all replies
retrieved; otherwise, the system aborts the transaction and ignores the replies. In this case, too,
the server exits.

Central Event Log
The central event log is a record of significant events in your Oracle Tuxedo application.
Messages about these events are sent to the log by your application clients and services via the
USERLOG(3cbl) routine.

../rf3cbl/rf3cbl.html

11-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

Any analysis of the central event log must be provided by the application. You should establish
strict guidelines for the events that are to be recorded in the USERLOG(3cbl). Application
debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows 2003 platform, refer to
Using Oracle Tuxedo ATMI on Windows.

Log Name
The application administrator defines (in the configuration file) the absolute pathname that is
used as the prefix of the name of the error message file on each machine. The USERLOG(3cbl)
routine creates a date—in the form mmddyy, representing the month, day, and year—and adds this
date to the pathname prefix, forming the full filename of the central event log. A new file is
created daily. Thus, if a process sends messages to the central event log on succeeding days, the
messages are written into different files.

Log Entry Format
Entries in the log consist of the following components:

Tag consisting of:

– Time of day (hhmmss)

– Machine name (for example, the name returned by the uname(1) command on a UNIX
system)

– Name, process ID, and thread ID (which is 0 on platforms that do not support threads)
of the thread calling USERLOG(3cbl)

– Context ID of the thread calling USERLOG(3cbl)

Message text

The text of each message is preceded by the catalog name and number of that message.

For example, suppose that a security program executes the following call at 4:22:14pm on a
UNIX machine called mach1 (as returned by the uname command):

01 LOG-REC PIC X(15) VALUE "UNKNOWN USER ".
01 LOGREC-LEN PIC S9(9) VALUES IS 13.
CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC.

The resulting log entry appears as follows:

162214.mach1!security.23451: UNKNOWN USER

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Cent ra l Event Log

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-23

In this example, the process ID for security is 23451.

If the preceding message was generated by the Oracle Tuxedo system (rather than by the
application), it might appear as follows:

162214.mach1!security.23451: COBAPI_CAT: 999: UNKNOWN USER

In this case, the message catalog name is COBAPI_CAT and the message number is 999.

If the message is sent to the central event log while the process is in transaction mode, other
components are added to the tag in the user log entry. These components consist of the literal
string gtrid followed by three long hexadecimal integers. The integers uniquely identify the
global transaction and make up what is referred to as the global transaction identifier, that is, the
gtrid. This identifier is used mainly for administrative purposes, but it also appears in the tag
that prefixes the messages in the central event log. If the system writes the message to the central
event log in transaction mode, the resulting log entry appears as follows:

162214.mach1!security.23451: gtrid x2 x24e1b803 x239:
 UNKNOWN USER

Writing to the Event Log
To write a message to the event log, you must perform the following steps:

Assign the error message you wish to write to the log to a record and use the record name
as the argument to the call.

Specify the literal text of the message within double quotes, as the argument to the
USERLOG(3cbl) call, as shown in the following example:

01 TPSTATUS-REC.

 COPY TPSTATUS.

01 LOGMSG PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

. . .

CALL "TPOPEN" USING TPSTSTUS-REC.

IF NOT TPOK

 MOVE "TPSVRINIT: Cannot Open Data Base" TO LOGMSG

 MOVE 43 LOGMSG-LEN

 CALL "USERLOG" USING LOGMSG

 LOGMSG-LEN

 TPSTATUS-REC.

. . .

../rf3cbl/rf3cbl.html

11-24 Programming an Oracle Tuxedo ATMI Application Using COBOL

In this example, the message is sent to the central event log if TPOPEN(3cbl) returns -1.

../rf3cbl/rf3cbl.html

Programming an Oracle Tuxedo Application Using COBOL 12-1

C H A P T E R 12

COBOL Language Bindings for the
Workstation Component

This topic includes the following sections:

UNIX Bindings

Microsoft Windows Bindings

Refer to Using the Oracle Tuxedo Workstation Component for more information on the
Workstation platform.

UNIX Bindings
The following sections describe how to write and build client programs, and set appropriate
environment variables when developing, in COBOL, an Oracle Tuxedo application on a UNIX
platform.

Writing Client Programs
You can develop COBOL client programs for a UNIX platform in the same way that you develop
COBOL clients in the Oracle Tuxedo administrative domain. All ATMI calls are available.

Building Client Programs
To compile and link-edit Workstation client programs, use the buildclient(1) command. If
you are building a UNIX Workstation client on the native node, use the -w option to have the
client built using the Workstation libraries.

../rfcm/rfcmd.html

12-2 Programming an Oracle Tuxedo Application Using COBOL

If you are building a client on a native node, and both native and Workstation libraries are present,
the native libraries are used by default. In this case, specifying the -w option ensures that the
correct libraries for a Workstation client are used.

On a workstation, where only the Workstation libraries are present, it is not necessary to specify
-w.

Listing 12-3 shows how to use the buildclient command on a native node.

Listing 12-1 Example of Running buildclient on a UNIX Platform

ALTCC=cobcc ALTCFLAGS="-I /APPDIR/include"
COBCPY=$TUXDIR/cobinclude
COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
export COBOPT COBCPY ALTCC ALTCFLAGS
buildclient -C -w -o empclient -f name.cbl -f "userlib1.a userlib2.a"

The -o option enables you to specify a name for your output file. Input files specified with the -f
option are linkedited before system libraries.

As illustrated, the TUXDIR environment variable must be used to ensure that the buildclient
command can locate system libraries. Be sure that you have defined TUXDIR. The CC environment
variable defaults to cc, but can be set to another compiler through ALTCC.

Setting Environment Variables
Workstation clients make use of several environment variables.

Table 12-1 lists the environment variables that are checked by TPINITIALIZE when a
Workstation client attempts to join an application.

UNIX B ind ings

Programming an Oracle Tuxedo Application Using COBOL 12-3

Table 12-1 Environment Variables Checked by TPINITIALIZE on a UNIX Platform

Environment Variable Description

WSENVFILE Name of a file containing environment variable settings to be
used in the client’s environment.

WSNADDR Network address of the Workstation listener process through
which the client gains access to the application. Use the value
specified in the application configuration file for the
Workstation listener to be called. If the value begins with the
characters 0x, the system interprets it as a string of hexadecimal
digits; otherwise, the system interprets it as ASCII characters.

WSDEVICE Name of the device to be used to access the network. Not
required by all transport layer interfaces.

WSTYPE Workstation type. Used by TPINITIALIZE when that call is
invoked by a Workstation client to negotiate encode/decode
responsibilities with the native site. If you do not specify
WSTYPE, the system performs encoding, even if WSTYPE is not
specified on the native site, either. You must explicitly specify
the same WSTYPE value for both the native and Workstation
client sites to ensure that the encode/decode feature is turned off.

WSRPLYMAX Maximum amount of core memory that the ATMI uses for
buffering application replies before dumping them to disk. Used
by TPINITIALIZE. The default system limit is 256,000 bytes.
Whether you should use WSRPLYMAX to set a lower limit
depends on the amount of memory available on your machine.
Writing replies to disk causes a substantial reduction in
performance.

WSFADDR The network address used by the Workstation client when
connecting to the Workstation listener or Workstation handler.
This variable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a Workstation client will
attempt to bind before making an outbound connection. This
address must be a TCP/IP address.

WSFRANGE The range of TCP/IP ports to which a Workstation client process
attempts to bind before making an outbound connection. The
WSFADDR parameter specifies the base address of the range. The
default is 1.

12-4 Programming an Oracle Tuxedo Application Using COBOL

Other environment variables may be needed by Workstation COBOL clients on a UNIX
workstation, depending on which components of the Oracle Tuxedo system are being used.

Note: MicroFocus delivers LIBNSL.a as a shared object, which is required by buildclient
when linking a Workstation client. Because MicroFocus COBOL does not support
shared objects on UNIX 3.2, Workstation for UNIX 3.2 is not supported.

Microsoft Windows Bindings
The following sections describe how to write and build client programs, build
ACCEPT/DISPLAY clients, block network behavior, and restore the network environment when
developing, in COBOL, an Oracle Tuxedo application for the Microsoft Windows platform.

Writing Client Programs
All program-specific ATMI calls are available.

Building Client Programs
To compile the COBOL source files that call the ATMI, you must use the COBOL compiler with
the LITLINK option. To linkedit the Workstation client object files, use the buildclient(1)
command. While the syntax of the command is straightforward, the usage varies according to the
compilation system used.

Listing 12-2 shows how to use the buildclient command.

Listing 12-2 Example of Running buildclient on a Windows Platform

COBCPY=C:\TUXEDO\COBINC
COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL
PATH=C:\COBOL\EXEDLL;...
TUXDIR=C:\tuxedo
LIB=C:\NET\TOOLKIT\LIB;C:\MSVC\LIB;C:\TUXEDO\LIB;C:\COBOL\LIB
buildclient -C -o EMP.EXE -f EMP -f "/NOD/NOI/NOE/CO/SE:300" -l WLIBSOCK

For Windows NT:

buildclient -C -o EMP.EXE -f empobj

Table 12-2 describes the buildclient command options used in the preceding example.

../rfcm/rfcmd.html

Microsof t W indows B ind ings

Programming an Oracle Tuxedo Application Using COBOL 12-5

Building ACCEPT/DISPLAY Clients
The following example shows how to build an executable client for an ACCEPT/DISPLAY
application, such as CSIMPAPP.

Listing 12-3 Building ACCEPT/DISPLAY clients

a) compile the COBOL module and create a file.obj

cobol file.cbl omf(obj) litlink;

b) use the following link statement

link FILE+cblwinaf,,,\

wcobatmi+cobws+wtuxws+ \

lcobol+lcoboldw+cobw+cobfp87w+ \

wlibsock,FILE.def /nod/noe;

For Windows NT the link statement is:

cbllink -oEMP.exe EMP.obj \

cobws.lib ncobatmi.lib wtuxws32.lib \

libcmt.lib user32.lib

Table 12-2 buildclient Command Options for Windows Platform

Option Description

-o name Name of the executable file being created. The default is
client.exe.

-f firstfiles One or more object files to be included before the Oracle
Tuxedo libraries. You can use the -f option to pass options to
the compiler or linker. To specify more than one filename, enter
a list of files after -f, using white space to separate filenames
and double quotation marks around the list. You can also specify
multiple filenames using multiple occurrences of the -f option
on the command line.

-l libfiles Libraries to be included after the Oracle Tuxedo libraries. To
specify more than one filename, you must separate the names by
white space and enclose the list in quotation marks. You can also
specify multiple filenames using multiple occurrences of the -l
option on the command line.

12-6 Programming an Oracle Tuxedo Application Using COBOL

	Oracle® Tuxedo
	11g Release 1 (11.1.1.1.0)

	Oracle Tuxedo Programming an Oracle Tuxedo Application Using COBOL, 11g Release 1 (11.1.1.1.0)
	Introduction to Oracle Tuxedo Programming
	Oracle Tuxedo Distributed Application Programming
	Communication Paradigms
	Oracle Tuxedo Clients
	Oracle Tuxedo Servers
	Basic Server Operation
	Servers as Requesters

	Oracle Tuxedo API: ATMI

	Programming Environment
	Updating the UBBCONFIG Configuration File
	Setting Environment Variables
	Defining Equivalent Data Types
	Starting and Stopping the Application

	Managing Typed Records
	Overview of Typed Records
	Defining Typed Records
	Using a VIEW Typed Record
	Setting Environment Variables for a VIEW Typed Record
	Creating a View Description File
	Executing the VIEW Compiler

	Using an FML Typed Record
	Setting Environment Variables for an FML Typed Record
	Creating a Field Table File
	Initializing a Typed Record
	Creating an FML Header File

	Using an XML Typed Record

	Writing Clients
	Joining an Application
	Using Features of the TPINFDEF-REC Record
	Client Naming
	Unsolicited Notification Handling
	System Access Mode
	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	See Also

	Client Process Examples

	Writing Servers
	Oracle Tuxedo System Controlling Program
	System-supplied Server and Services
	System-supplied Server: AUTHSVR()
	System-supplied Services: TPSVRINIT Routine
	Receiving Command-line Options
	Opening a Resource Manager

	System-supplied Services: TPSVRDONE Routine

	Guidelines for Writing Servers
	Defining a Service
	Terminating a Service Routine
	Sending Replies
	Invalidating Descriptors
	Forwarding Requests

	Advertising and Unadvertising Services
	Advertising Services
	Unadvertising Services
	Example: Dynamic Advertising and Unadvertising of a Service

	Building Servers
	See Also

	Writing Request/Response Clients and Servers
	Overview of Request/Response Communication
	Sending Synchronous Messages
	Example: Using the Same Record for Request and Reply Messages
	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Example: Sending a Synchronous Message with TPNOTRAN Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Getting an Asynchronous Reply

	Setting and Getting Message Priorities
	Setting a Message Priority
	Getting a Message Priority

	Writing Conversational Clients and Servers
	Overview of Conversational Communication
	Joining an Application
	Establishing a Connection
	Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	Ending a Conversation
	Example: Ending a Simple Conversation
	Example: Ending a Hierarchical Conversation
	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events

	Writing Event-based Clients and Servers
	Overview of Events
	Unsolicited Events
	Brokered Events
	Notification Actions
	EventBroker Servers
	System-defined Events
	Programming Interface for the EventBroker

	Defining the Unsolicited Message Handler
	Sending Unsolicited Messages
	Broadcasting Messages by Name
	Broadcasting Messages by Identifier

	Checking for Unsolicited Messages
	Getting Unsolicited Messages
	Subscribing to Events
	Unsubscribing from Events
	Posting Events

	Writing Global Transactions
	What Is a Global Transaction?
	Starting the Transaction
	Terminating the Transaction
	Committing the Current Transaction
	Prerequisites for a Transaction Commit
	Two-phase Commit Protocol

	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Example: Testing for Participant Errors

	Implicitly Defining a Global Transaction
	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	See Also

	Programming a Multithreaded and Multicontexted ATMI Application
	Support for Programming a Multithreaded/Multicontexted ATMI Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications

	Planning and Designing a Multithreaded/Multicontexted ATMI Application
	What Are Multithreading and Multicontexting?
	What Is Multithreading?
	What Is Multicontexting?
	Licensing a Multithreaded or Multicontexted Application

	Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application
	Advantages of a Multithreaded/Multicontexted ATMI Application
	Disadvantages of a Multithreaded/Multicontexted ATMI Application

	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Client Threads Join Multiple Contexts
	Client Threads Switch to an Existing Context

	Work Phase
	Service Requests
	Replies to Service Requests
	Transactions
	Unsolicited Messages
	Userlog Maintains Thread-specific Information

	Completion Phase

	How Multithreading and Multicontexting Work in an ATMI Server
	Start-up Phase
	Work Phase
	Server-dispatched Threads Are Used
	Application-created Threads Are Used
	Bulletin Board Liaison Verifies Sanity of System Processes
	System Keeps Statistics on Server Threads
	Userlog Maintains Thread-specific Information

	Completion Phase

	Design Considerations for a Multithreaded and Multicontexted ATMI Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting?
	How Many Applications and Connections Do You Want?
	What Synchronization Issues Need to Be Addressed?
	Will You Need to Port Your Application?
	Which Threads Model Is Best for You?
	Interoperability Restrictions for Workstation Clients

	Implementing a Multithreaded/ Multicontexted ATMI Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI Application
	Prerequisites for a Multithreaded ATMI Application
	General Multithreaded Programming Considerations
	Concurrency Considerations

	Writing Code to Enable Multicontexting in an ATMI Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Implementing Security for a Multicontexted ATMI Client
	Synchronizing Threads Before an ATMI Client Termination
	Switching Contexts
	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI Application

	Writing Code to Enable Multicontexting and Multithreading in an ATMI Server
	Context Attributes
	Coding Rules for a Multicontexted ATMI Server
	Initializing and Terminating ATMI Servers and Server Threads
	Programming an ATMI Server to Create Threads
	Creating Threads
	Associating Threads with a Context

	Sample Code for Creating an Application Thread in a Multicontexted ATMI Server

	Writing a Multithreaded ATMI Client
	Coding Rules for a Multithreaded ATMI Client
	Initializing an ATMI Client to Multiple Contexts
	Context State Changes for an ATMI Client Thread
	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-process Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client
	Sample Code for a Multithreaded ATMI Client

	Writing a Multithreaded ATMI Server
	Compiling Code for a Multithreaded/Multicontexted ATMI Application
	Testing a Multithreaded/Multicontexted ATMI Application
	Testing Recommendations for a Multithreaded/Multicontexted ATMI Application
	Troubleshooting a Multithreaded/Multicontexted ATMI Application
	Improper Use of the TPMULTICONTEXTS Flag to tpinit()
	Calls to tpinit() Without TPMULTICONTEXTS
	Insufficient Thread Stack Size

	Error Handling for a Multithreaded/Multicontexted ATMI Application

	Managing Errors
	System Errors
	Abort Errors
	Oracle Tuxedo System Errors
	Communication Handle Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	No Entry Errors
	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Timeout Errors
	Transaction Errors
	Typed Record Errors
	Application Errors
	Handling Errors
	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Timeouts
	TPCOMMIT Call
	TPNOTRAN
	TPRETURN and TPFORWAR Calls

	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Called Service That Starts a New Explicit Transaction

	Oracle TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	COBOL Language Bindings for the Workstation Component
	UNIX Bindings
	Writing Client Programs
	Building Client Programs
	Setting Environment Variables

	Microsoft Windows Bindings
	Writing Client Programs
	Building Client Programs
	Building ACCEPT/DISPLAY Clients

