Oracle® Tuxedo
CORBA Technical Articles

11g Release 1 (11.1.1.1.0)

March 2010

ORACLE

Oracle Tuxedo CORBA Technical Articles, 11g Release 1 (11.1.1.1.0)
Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. The CORBA Programming Model

Pre-CORBA Approach to Client/Server Development.
CORBA Approach to Client/Server Development.............................

2. CORBA Objects

Definition of a CORBA Object.ttt e
How a CORBA Object ComesintoBeing,
Components of a CORBA Object.ii i
The Object IDt
The Object Interface. i e

The Object’ s Data.cov e et

The Object’s Operationso vvu ettt ettt et

Where an Object Gets Its Operationsovi ettt

How Object Invocation Worksot

3. Process-Entity Design Pattern
About the Process-Entity Design Pattern
Increasing Scalability and Resource Utilization.
Limitations of the Two-tier System,
Advantages of the Process-Entity Design Pattern
Applicabilityo
Request Flow in CORBA Applications.vuiinerninennnenn...
Request Flow in EJB Applicationsc.. i,

CORBA Technical Articles

iv

PartiCIPaAntS oo 3-5
Other Considerationsvtnt ittt ettt ettt 3-5
Related Concepts . ..o vttt e e 3-5

4. Client Data Caching Design Pattern

MOIVALION . . . ottt e et e e e 4-1
Applicability.o 4-1
Participants.ot 4-3
Other Considerationsu ottt e e 4-3

CORBA Technical Articles

CHAPTERa

The CORBA Programming Model

CORBA is a specification for creating distributed object-based applications. The CORBA
architecture and specification were developed by the Object Management Group (OMG). The
OMG is a consortium of several hundred information systems vendors. The goal of CORBA is
to promote an object-oriented approach to building and integrating distributed software
applications.

The CORBA specification provides a broad and consistent model for building distributed
applications by defining:

e An object model for building distributed applications.

e A common set of application programming objects to be used by the client and server
applications.

e A syntax for describing the interfaces of objects used in the development of distributed
applications.

e Support for use by applications written in multiple programming languages.

The CORBA specification describes how to develop an implementation of CORBA. It also
describes programming language bindings that developers use to develop applications.

To illustrate the advantages of using the CORBA architecture, this section compares early
client/server application development techniques to CORBA development techniques.

CORBA Technical Articles 1-1

Pre-CORBA Approach to Client/Server Development

1-2

Client/server computing is an application development methodology that allows programmers to
distribute processing among networked machine systems, thus enabling more efficient use of
machine resources. In client/server computing, an application consists of two parts: the client
application and the server application. These two applications typically run on different
machines, connected by a network, as shown in the following figure.

Requests service

Client Server
Application Application

\ 4

Returns response

A

The client application makes requests for information or services and typically provides users
with a means to display results. The server application fulfills the requests of one or more client
applications and usually performs compute-intensive functions.

The key advantages of the client/server model are:
e Computing functions run on the most appropriate machine system.
e Developers can balance the load of application processing among several servers.

e Server applications can be shared among numerous client applications.

For example, desktop systems provide many business users with an easy-to-use graphical
environment for displaying information. However, desktop systems may have restricted disk
space and memory and are typically single-user systems. Larger, more powerful machine systems
are better suited to perform compute-intensive functions and provide multiple user access and
shared database access.

Therefore, larger systems usually run the server portion of the application. In this way, distributed
desktop systems and networked servers provide a perfect computing environment for deploying
distributed client/server applications.

Although the non-CORBA client/server approach provides the means to distribute processing in
a heterogeneous network, it has the following disadvantages:

e For communications, the client application must know how to access the server
application, including any necessary network protocol information.

CORBA Technical Articles

CORBA Approach to Client/Server Development

Client/server applications might use the same, single network protocol or different
protocols. If they use multiple protocols, the applications must logically repeat the
protocol-specific code for each network.

e Applications must handle data format conversions when they are integrated with machines
that use different data formats.

For example, some machines read an integer value from the lowest byte address to the
highest (little endian), while others read the highest byte address to the lowest (big endian).
Some machine systems might also use different formats for floating-point numbers or text
strings. If an application sends data to a machine that uses a different data format, but the
application does not convert the data, the data is misinterpreted.

Transporting data over the network and converting it to its proper representation on the
target system is called data marshaling. In many non-CORBA client/server models,
applications must perform all data marshaling. Data marshaling requires that the
application use features of the network and operating system to move data from one
machine to another. It also requires that the application perform all data format translations
to ensure that the data is read in the same way it was sent.

e There is less flexibility for extension of the application.

The non-CORBA client/server approach ties the client and server applications together.
Therefore, if either the client or server application changes, the programmer must change
the interface, network address, and network transport. Additionally, if the programmer
ports the client and server applications to a machine that supports a different network
interface, the programmer must create a new network interface for those applications.

CORBA Approach to Client/Server Development

The CORBA model provides a more flexible approach to developing distributed applications.
The CORBA model:

e Formally separates the client and server portions of the application

A CORBA client application knows only how to ask for something to be done, and a
CORBA server application knows only how to accomplish a task that a client application
has requested it to do. Because of this separation, developers can change the way a server
accomplishes a task without affecting how the client application asks for the server
application to accomplish the task.

e Logically separates an application into objects that can perform certain tasks, called
operations

CORBA Technical Articles 1-3

1-4

CORBA is based on the distributed object computing model, which combines the concepts
of distributed computing (client and server) and object-oriented computing (based on
objects and operations).

In object-oriented computing, objects are the entities that make up the application, and
operations are the tasks that a server can perform on those objects. For example, a banking
application could have objects for customer accounts, and operations for depositing,
withdrawing, and viewing the balance in the accounts.

e Provides data marshaling to send and receive data with remote or local machine
applications

For example, the CORBA model automatically formats for big or little endian as needed.
(Refer to the preceding section for a description of data marshaling.)

e Hides network protocol interfaces from the applications

The CORBA model handles all network interfaces. The applications see only objects. The
applications can run on different machines and, because all the network interface code is
handled by the ORB, the application does not require any network-related changes if it is
later deployed on a machine that supports a different network protocol.

The CORBA model allows client applications to make requests to server applications, and to
receive responses from them without direct knowledge of the information source or its location.
In a CORBA environment, applications do not need to include network and operating system
information to communicate; instead, client and server applications communicate with the Object
Request Broker (ORB). The following figure shows the ORB in a client/server environment.

CORBA Technical Articles

CORBA Approach to Client/Server Development

Client Server
Application Application
(Directs Directs)
Requgsts Response Request Returns
Service Response

\ to Client to Server

Object Request Broker

CORBA defines the ORB as an intermediary between client and server applications. The ORB
delivers client requests to the appropriate server applications and returns the server responses to
the requesting client application. Using an ORB, a client application can request a service without
knowing the location of the server application or how the server application will fulfill the
request.

In the CORBA model, client applications need to know only what requests they can make and
how to make the requests; they do not need to be coded with any implementation details of the
server or of the data formats. Server applications need only know how to fulfill the requests, not
how to return data to the client application.

This means that programmers can change the way a server application accomplishes a task
without affecting how the client application asks for the server application to accomplish that
task. For example, as long as the interfaces between the client and the server applications do not
change, programmers can evolve and create new implementations of a server application without
changing the client application; in addition, they can create new client applications without
changing the server applications.

CORBA Technical Articles 1-5

1-6 CORBA Technical Articles

CORBA Objects

Before any discussion of CORBA programming can be meaningful, it is important to have a clear
understanding of what a CORBA object is and the object terminology used throughout the Oracle
Tuxedo information set.

This topic includes the following sections:

e Definition of a CORBA Object

How a CORBA Object Comes into Being
e Components of a CORBA Object
e Where an Object Gets Its Operations

e How Object Invocation Works

There are a number of variations on the definition of an object, depending on what architecture
or programming language is involved. For example, the concept of a C++ object is significantly
different from the concept of a CORBA object. Also, the notion of a Component Object Model
(COM) object is quite different from the notion of a CORBA object.

Most importantly, the notion of a CORBA object in this chapter is consistent with the definition
presented by the Object Management Group (OMG). The OMG has a number of specifications
and other documents that go into complete details on objects.

CORBA Technical Articles 2-1

Definition of a CORBA Object

A CORBA object is a virtual entity in the sense that it does not exist on its own, but rather is
brought to life when, using the reference to that CORBA object, the client application requests
an operation on that object. The reference to the CORBA object is called an object reference.
The object reference is the only means by which a CORBA object can be addressed and
manipulated in an Oracle Tuxedo system. For more information about object references, see
Creating CORBA Server Applications in the Oracle Tuxedo online documentation.

When the client or server application issues a request on an object via an object reference, the
Oracle Tuxedo server application instantiates the object specified by the object reference, if the
object is not already active in memory. (Note that a request always maps to a specific operation
invocation on an object.)

Instantiating an object typically involves the server application initializing the object’s state,
which may include having the object’s state read from durable storage, such as a database.

The object contains all the data necessary to do the following:
e Execute the object’s operations.

e Store the object’s state in durable storage when the object is no longer needed.

How a CORBA Object Comes into Being

2-2

The data that makes up a CORBA object may have its origin as a record in a database. The record
in the database is the persistent, or durable, state of the object. This record becomes accessible
via a CORBA object in an Oracle Tuxedo domain when the following sequence has occurred:

1. The server application’s factory creates a reference for the object. The object reference
includes information about how to locate the record in the database.

2. Using the object reference created by the factory, the client application issues a request on the
object.

3. The object is instantiated. The object is instantiated by the TP Framework by invoking the
Server: :create_servant method, which exists in the Server object.

4. The Oracle Tuxedo domain invokes the activate_object operation on the object, which
causes the record containing state to be read into memory.

Whereas a language object exists only within the boundaries of the execution of the application,
a CORBA object may exist across processes and machine systems. The Oracle Tuxedo system

CORBA Technical Articles

Components of a CORBA Object

provides the mechanism for constructing an object and for making that object accessible to the
application.

The Oracle Tuxedo CORBA server application programmer is responsible for writing the code
that initializes an object’s state and the code that handles that object’s state after the object is no
longer active in the application. If the object has data in durable storage, this code includes the
operations that read from and write to durable storage. For more information about developing
server applications, see Creating CORBA Server Applications in the Oracle Tuxedo online
documentation.

Components of a CORBA Object

CORBA objects typically have the following components, shown in the figure that follows:
e An ID, also known as an object ID, or OID

e An interface, which specifies the CORBA object’s data and operations

4)

Object ID

Interface

Data:

int teller id;

int transactions;

float drawer_balance;
Operations:

get_balance();

credit();
_ debit () ; Y,

The sections that follow describe each of these object components in detail.

The Object ID

The object ID (OID) associates an object with its state, such as a database record, and identifies
the instance of the object. When the factory creates an object reference, the factory assigns an

CORBA Technical Articles 2-3

2-4

OID that may be based on parameters that are passed to the factory in the request for the object
reference.

Note: The server application programmer must create the factories used in the Oracle Tuxedo
client/server application. The programmer is responsible for writing the code that assigns
OIDs. Factories, and examples of creating them, are discussed in Creating CORBA
Server Applications.

The Oracle Tuxedo system can determine how to instantiate the object by using the following
information:
e The OID

o Addressing data in the object reference

e The group ID in the object reference

The Object Interface

The object’s interface, described in the application’s OMG IDL file, identifies the set of data and
operations that can be performed on an object. For example, the interface for a university teller
object would identify:

e The data types associated with the object, such as a teller ID, cash in the teller’s drawer;
and the data managed by the object, such as an account.

e The operations that can be performed on that object, such as obtaining an account’s current
balance, debiting an account, or crediting an account.

One distinguishing characteristic of a CORBA object is the run-time separation of the interface
definition from its data and operations. In a CORBA system, a CORBA object’s interface
definition may exist in a component called the Interface Repository. The data and operations are
specified by the interface definition, but the data and operations exist in the server application
process when the object is activated.

The Object’s Data

The object’s data includes all of the information that is specific to an object class or an object
instance. For example, within the context of a university application, a typical object might be a
teller. The data of the teller could be:

e AnID

e The amount of cash in the teller’s drawer

CORBA Technical Articles

Where an Object Gets Its Operations

e The number of transactions the teller has processed during a given interval, such as a day
or month

You can encapsulate the object’s data in an efficient way, such as by combining the object’s data
in a structure to which you can get access by means of an attribute. Attributes are a conventional
way to differentiate the object’s data from its operations.

The Object’s Operations

The object’s operations are the set of routines that can perform work using the object’s data. For
example, some of the operations that perform functions using teller object might include:

® get_balance()
® credit()
® debit ()

In a CORBA system, the body of code you write for an object’s operations is sometimes called
the object implementation, which is explained in the next section.

Where an Object Gets Its Operations

As explained in the preceding section, the data that makes up a CORBA object may exist in a
record in a database. Alternatively, the data could be established for a CORBA object only when
the object is active in memory. This section explains how to write operations fora CORBA object
and how to make the operations a part of the object.

The operations you write for a given CORBA object are also known as the object’s
implementation. You can think of the implementation as the code that provides the behavior of
the object. When you create an Oracle Tuxedo CORBA client/server application, one of the steps
you take is to compile the application’s OMG IDL file. The OMG IDL file contains statements
that describe the application’s interfaces and the operations that can be performed on those
interfaces.

If you are implementing your server application in C++, one of the several files optionally
produced by the IDL compiler is a template for the implementation file. The template for the
implementation file contains default constructors and method signatures for your application’s
objects. The implementation file is where you write the code that implements an object; that is,
this file contains the business logic of the operations for a given interface.

The Oracle Tuxedo system implements an interface as a CORBA object. The IDL compiler also
produces other files, which get built into the Oracle Tuxedo CORBA client and server

CORBA Technical Articles 2-5

application, that make sure that the implementation you write for a given object gets properly
connected to the correct object data during run time.

This is where the notion of a servant comes in. A servant is an instance of the object class; that
is, a servant is an instance of the method code you wrote for each operation in the implementation
file. When the Oracle Tuxedo CORBA client and server applications are running, and a client
request arrives in the server application for an object that is not active -- that is, the object is not
in memory -- the following events occur:

1. Ifno servant is currently available for the needed object, the Oracle Tuxedo system invokes
the Server: :create_servant method on the Server object.

The server: :create_servant method is entirely user-written. The code that you write
for the server: :create_servant method instantiates the servant needed for the request.
Your code can use the interface name, which is passed as a parameter to the
Server::create_servant method, to determine the type of servant that the Oracle
Tuxedo domain creates.

The servant that the Oracle Tuxedo domain creates is a specific servant object instance (it
is not a CORBA object), and this servant contains an executable version of the operations
you wrote earlier that implement the CORBA object needed for the request.

2. The Oracle Tuxedo domain passes control to the servant, and optionally invokes the servant’s
activate_object method, if you have implemented it. Invoking the activate_object
method gives life to the CORBA object, as follows:

a. You write the code for the activate_object method. The parameter to the
activate_object method is the string value of the object ID for the object to be
activated. You may use the object ID as a key to how to initialize the object.

b. You initialize the CORBA object’s data, which may involve reading state data from
durable storage, such as from a record in a database.

c. The servant’s operations become bound to the data, and the combination of those
operations and the data establish the activated CORBA object.

After steps a, b, and c are completed, the CORBA object is said to be activated.

Implementing the activate_object method on an object is optional. For more
information about when you want to implement this operation on an object, see Creating
CORBA Server Applications in the Oracle Tuxedo online documentation.

Note: A servantis nota CORBA object. In fact, the servant is represented as a language object.
The server performs operations on an object via its servant.

2-6 CORBA Technical Articles

How Object Invocation Works

For more information about creating object implementations, see Creating CORBA Server
Applications in the Oracle Tuxedo online documentation.

How Object Invocation Works

Since CORBA objects are meant to function in a distributed environment, OMG has defined an
architecture for how object invocation works. A CORBA object can be invoked in one of two
ways:

e By means of generated client stubs and skeletons -- sometimes referred to as stub-style
invocation.

e By means of the dynamic invocation interface -- referred to as dynamic invocation.

Creating CORBA Client Applications describes how dynamic invocation works. This section
describes stub-style invocation, which is simpler to use than dynamic invocation.

When you compile your application’s OMG IDL file, one file that the compiler generates is a
source file called the client stub. The client stub maps OMG IDL operation definitions for an
object type to the operations in the CORBA server application that the Oracle Tuxedo system
invokes to satisfy a request. The client stub contains code generated during the client application
build process that is used in sending the request to the server application. Programmers should
never modify the client stub code.

Another file produced by the IDL compiler is the skeleton, which is also a source file. The
skeleton contains code used for operation invocations on each interface specified in the OMG
IDL file. The skeleton is a map that points to the appropriate code in the CORBA object
implementation that can satisfy the client request. The skeleton is connected to both the object
implementation and the Oracle Tuxedo Object Request Broker.

The following figure shows the client application, the client stub, the skeleton, and the CORBA
object implementation:

CORBA Technical Articles 2-1

2-8

Client
Application

Client
Stub

U

Skeleton

CORBA Object
Implementation

!

BEA Tuxedo ORB

When a client application sends a request, the request is implemented as an operation on the client
stub. When the client stub receives the request, the client stub sends the request to the Object
Request Broker (ORB), which then sends the request through the Oracle Tuxedo system to the
skeleton. The ORB interoperates with the TP Framework and the Portable Object Adapter (POA)

to locate the correct skeleton and object implementation.

For more information about generating client stubs and skeletons, see Creating CORBA Client
Applications and Oracle Tuxedo ATMI C Function Reference in the Oracle Tuxedo online

documentation.

CORBA Technical Articles

How Object Invocation Works

CORBA Technical Articles 2-9

2-10 CORBA Technical Articles

Process-Entity Design Pattern

This topic includes the following sections:

About the Process-Entity Design Pattern

Increasing Scalability and Resource Utilization

Applicability
e Participants
e Other Considerations

e Related Concepts

CORBA Technical Articles 3-1

About the Process-Entity Design Pattern

The Process-Entity design pattern encapsulates a design solution that incorporates a single
process object on the server machine that handles all client application interactions with database
records, known as entities. This design pattern is appropriate in situations where a client CORBA
or EJB application normally performs multiple interactions with a remote database.

By designing a single CORBA object or EJB on the server machine that represents all the
fine-grained data in the database, you can build an Oracle Tuxedo CORBA client/server
application that provides the following performance benefits:

o Instead of having multiple client interactions with a database, you can have a single
process object on the server machine that handles all client requests for database
interactions, thus simplifying network traffic.

e The process object can selectively pass data fields to the client, transferring only the
necessary data rather than full database records, thus reducing the amount of data sent over
the network and improving performance.

e The process object encapsulates access to the database. Clients make invocations on the
object, and the object in turn accesses the database.

Increasing Scalability and Resource Utilization

This topic includes the following sections:
e Limitations of the Two-tier System

e Advantages of the Process-Entity Design Pattern

Limitations of the Two-tier System

In a conventional two-tier system that presents the database layer as a set of shared data, a pure
object-oriented approach would be to represent the database records as shared CORBA objects
(in CORBA applications) or entity beans (in EJB applications). However, this approach has the
following limitations:

e It does not scale well. As the number of clients increases dramatically, the server machine
might be required to manage thousands (or even millions) of database objects, each
requiring its own transaction context.

3-2 CORBA Technical Articles

Applicability

e It does not use network resources efficiently. When database objects are instantiated in the
server machine’s memory, the entire database object is read into or written from memory
regardless of how much data the client application really needs from the object.

e For EJB applications, the conventional way to access a database is via entity beans, where
an entity bean represents a row in a database table. However, to access an entity bean, a
client application must make two calls: the first call obtains the object reference to the
entity bean, and the second call invokes a method on that entity bean. Obtaining the object
reference for the client is an expensive operation, particularly in high-volume enterprise
applications.

Advantages of the Process-Entity Design Pattern

However, if you design a class for the process object on the server machine that does database
interactions on behalf of clients, you can overcome these limitations by:

e Reducing the number of CORBA objects or EJBs that need to be managed on the server
machine.

e Reducing message traffic.

e For EJB applications, eliminating the need for client applications to obtain an object
reference to the entity bean, and avoiding the use of fine-grain (single-row) entity beans.

Applicability
This topic includes the following sections:
e Request Flow in CORBA Applications

e Request Flow in EJB Applications

The Process-Entity design pattern is almost universally applicable in enterprise-class,
mission-critical applications. It is appropriate for situations in which a client application needs to
interact with database records stored on a server machine.

Request Flow in CORBA Applications

Figure 3-1 shows the basic design of the Process-Entity design pattern in a CORBA application.

CORBA Technical Articles 3-3

3-4

Figure 3-1 CORBA Process-Entity Design Pattern

Client 1

r

Application [«—4

CORBA Object

Server Application

N\

A

> Database

This process flows in the following sequence:

1. The client application issues a request to the CORBA process object to access database

entities.

2. The CORBA object submits a request to the database.

3. The database returns a response to the CORBA object.

4. The CORBA object returns a response to the client that contains only the subset of database
information that the client requires.

Request Flow in EJB Applications

Figure 3-2 shows the basic design of the Process-Entity design pattern in an EJB application.

Figure 3-2 EJB Process-Entity Design Pattern

N

Client 1

r

Server Application

Application [«—4

Entity Bean

N\

> Database

A

This process flows in the following sequence:

1. The client application issues a request to the entity bean, using RMI on I1OP, to access

database entities.

2. The entity bean submits a request to the database.

3. The database returns a response to the entity bean.

CORBA Technical Articles

Participants

4. The entity bean returns a response to the client that contains only the subset of database
information that the client requires.

Participants

The client application obtains a reference to the process object from a factory (for CORBA
applications) or the home interface (for EJB applications). The process object implements all the
interactions with the database. Database records (entities) are retrieved when needed to handle
client invocations on the process object. Operations on the process object return specific data
fields to the client application, which then performs all the required processing on that data.

Other Considerations

You should design the process object to pass the minimum amount of information actually
needed by a particular client request. Implement the operations on a process object so that the
operations do as much “dense” processing as possible. Design your clients applications so that
they do not invoke more than one process operation to get the data they need to accomplish a task.

If more than one operation needs to be invoked, design the process object so that the additional
invocations are done by the process object on the database, and not by the client application on
the process object. This reduces the number of invocations that the client application sends over
the network. When the client application needs to make serial invocations on a process object,
make the process object stateful. For more information about making objects stateful, see
Creating CORBA Server Applications in the Oracle Tuxedo online documentation.

For CORBA applications, avoid the use of attributes in your OMG IDL. Attributes are expensive
to retrieve over the network. Instead, implement an operation on the process object that returns a
data structure containing all the values your client application is likely to need for an operation.

Related Concepts

e SmallTalk MVC (Model-View-Controller) design pattern.

e Flyweight design pattern, Object-Oriented Design Patterns, by Gamma et al.

CORBA Technical Articles 3-5

3-6 CORBA Technical Articles

CHAPTERa

Client Data Caching Design Pattern

This chapter describes the CORBA Client Data Caching design pattern. The purpose of this
design pattern is to make persistent state information from the server available locally to the client
for data-intensive processing. This way, the CORBA client application does not need to make
repeated invocations to the server application to retrieve data.

Motivation

This design pattern addresses the scalability and performance of distributed client/server
applications. The overhead associated with remote invocations to retrieve attributes of a CORBA
object may be quite high, depending on system load and other factors. Also, exposing persistent
data records as CORBA objects tends to create applications that do not scale well because of the
potentially large number of simultaneously active objects that must be managed by the system.
Client application processing that is either data-intensive or that requires user input (for example,
editing fields) can slow down both the client application and the system if multiple remote
invocations must be made to retrieve data.

Applicability
This design pattern is appropriate in situations where the CORBA process object needs to pass a
large amount of data to the client application for its use. The local language object on the client
application becomes a container for the data, and its constructor is used to populate the local
object state.

You implement this design pattern in the client application, which creates a local language object,
referred to in this chapter as the Dataobject. The server application implements a CORBA

CORBA Technical Articles 4-1

process object that interacts with entities in persistent storage. This CORBA object is referred to
in this chapter as the bataManager object.

The OMG IDL for the DataManager CORBA object defines a data structure that is used for
transferring data between the client and server applications. (This design pattern assumes
"optimistic locking," meaning that the data managed by the server application is not locked for
update, and that it is hoped that no other server processes modify the data while the client
application uses its local copy.)

When the client application instantiates the local bataobject, that object’s constructor invokes
an operation on the DataManager CORBA object, which passes a data structure back to the
DataObject. The Dataobject populates its class variables with the passed data.

If the client application needs to pass modified state back to the server machine, the client
application invokes the DataObject: :writeData () method, which, in turn, invokes the
writeRecord () operation on the DataManager CORBA object. In this invocation, the data
structure is passed as a parameter to the writeRecord () operation. The DataManager CORBA
object makes the appropriate updates to durable storage.

The following figure illustrates how the CORBA Client Data Caching design pattern works.

Server Application

DataManager

readRecord
writeRecord

Data Struct

Client Application

DataObject DataManager
DataObject readRecord
writeData writeRecord
Durable

Storage

Local language object

CORBA object

In the preceding figure:

4-2 CORBA Technical Articles

Participants

1. The pataobject constructor invokes the readrRecord () operation on the DataManager
CORBA object, and uses the returned data structure to initialize its local state.

2. The client application may modify the local state of the Dataobject instance.

3. To pass modified state back to the DataManager CORBA object, the client application
invokes the DataObject: :writeData () operation, passing a data structure containing the
modified data.

Participants

The DataObject methods read and write data by invoking operations on the DataManager
CORBA object.

Other Considerations

The data structure passed to the client application should be designed to provide the minimal set
of data required for an operation. If a large amount of data is involved, it may be more efficient
to provide multiple data structures with a subset of fields required for each operation. Operations
on the CORBA process object should be designed to involve only the subset of data needed for
each operation; this helps reduce network traffic.

CORBA Technical Articles 4-3

4-4 CORBA Technical Articles

	Oracle® Tuxedo
	11g Release 1 (11.1.1.1.0)

	Oracle Tuxedo CORBA Technical Articles, 11g Release 1 (11.1.1.1.0)
	The CORBA Programming Model
	Pre-CORBA Approach to Client/Server Development
	CORBA Approach to Client/Server Development

	CORBA Objects
	Definition of a CORBA Object
	How a CORBA Object Comes into Being
	Components of a CORBA Object
	The Object ID
	The Object Interface
	The Object’s Data
	The Object’s Operations

	Where an Object Gets Its Operations
	How Object Invocation Works

	Process-Entity Design Pattern
	About the Process-Entity Design Pattern
	Increasing Scalability and Resource Utilization
	Limitations of the Two-tier System
	Advantages of the Process-Entity Design Pattern

	Applicability
	Request Flow in CORBA Applications
	Request Flow in EJB Applications

	Participants
	Other Considerations
	Related Concepts

	Client Data Caching Design Pattern
	Motivation
	Applicability
	Participants
	Other Considerations

