
Oracle® Tuxedo
Tutorials for Developing Oracle Tuxedo ATMI Applications
11g Release 1 (11.1.1.1.0)

March 2010

Oracle Tuxedo Tutorials for Developing Oracle Tuxedo ATMI Applications, 11g Release 1 (11.1.1.1.0)

Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Tutorials for Developing Oracle Tuxedo ATMI Applications iii

Contents

1. Developing an Oracle Tuxedo Application
Before Developing Your Oracle Tuxedo Application . 1-1

Creating an Oracle Tuxedo ATMI Client . 1-2

Client Tasks . 1-2

Creating an Oracle Tuxedo ATMI Server. 1-3

Server Tasks . 1-4

Using Typed Buffers in Your Application . 1-5

Using Oracle Tuxedo Messaging Paradigms in Your Application. 1-6

Using the Request/Response Model (Synchronous Calls) . 1-6

Using the Request/Response Model (Asynchronous Calls) . 1-7

Using Nested Calls . 1-8

Using Forwarded Calls . 1-9

Using Conversational Communication . 1-10

Using Unsolicited Notification . 1-11

Using Event-based Communication . 1-12

Using Queue-based Communication. 1-13

Using Transactions . 1-15

2. Tutorial for simpapp, a Simple C Application
What Is simpapp? . 2-1

Preparing simpapp Files and Resources . 2-2

Before You Begin. 2-2

iv Tutorials for Developing Oracle Tuxedo ATMI Applications

About This Tutorial . 2-2

What You Will Learn . 2-3

Step 1: How to Copy the simpapp Files . 2-3

Step 2: Examining and Compiling the Client. 2-4

How to Examine the Client . 2-4

How to Compile the Client . 2-7

Step 3: Examining and Compiling the Server . 2-7

How to Examine the Server . 2-7

How to Compile the Server. 2-9

Step 4: Editing and Loading the Configuration File . 2-10

How to Edit the Configuration File. 2-10

How to Load the Configuration File . 2-11

Step 5: How to Boot the Application . 2-12

Step 6: How to Execute the Run-time Application . 2-13

Step 7: How to Monitor the Run-time Application . 2-13

Step 8: How to Shut Down the Application . 2-14

3. Tutorial for bankapp, a Full C Application
What Is bankapp? . 3-1

About This Tutorial . 3-1

Familiarizing Yourself with bankapp. 3-2

Learning About the bankapp Files . 3-3

Exploring the Banking Application Files . 3-3

Examining the bankapp Clients . 3-7

What Is the bankclt.c File? . 3-7

How ud(1) Is Used in bankapp . 3-10

A Request/Response Client: audit.c . 3-11

A Conversational Client: auditcon.c . 3-12

Tutorials for Developing Oracle Tuxedo ATMI Applications v

A Client that Monitors Events: bankmgr.c . 3-13

Examining the bankapp Servers and Services . 3-14

bankapp Request/Response Servers . 3-15

bankapp Conversational Server . 3-15

bankapp Services . 3-16

Algorithms of bankapp Services . 3-17

Utilities Incorporated into Servers. 3-23

Alternative Way to Code Services. 3-23

Preparing bankapp Files and Resources . 3-24

Step 1: How to Set the Environment Variables . 3-25

Step 2: Building Servers in bankapp. 3-30

How to Build ACCT Server . 3-30

How to Build the BAL Server . 3-32

How to Build the BTADD Server . 3-33

How to Build the TLR Server . 3-33

How to Build the XFER Server. 3-34

Servers Built in the bankapp.mk File . 3-35

Step 3: Editing the bankapp Makefile. 3-35

How to Edit the TUXDIR Parameter . 3-35

How to Edit the APPDIR Parameter . 3-35

How to Set the Resource Manager Parameters . 3-36

How to Run the bankapp.mk File . 3-36

Step 4: Creating the bankapp Database . 3-36

How to Create the Database in SHM Mode . 3-37

How to Create the Database in MP Mode . 3-37

Step 5: Preparing for an XA-Compliant Resource Manager . 3-37

How to Change the bankvar File . 3-38

How to Change the bankapp Services . 3-38

vi Tutorials for Developing Oracle Tuxedo ATMI Applications

How to Change the bankapp.mk File . 3-38

How to Change crbank and crbankdb . 3-39

How to Change the Configuration File . 3-40

How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform 3-40

Step 6: How to Edit the Configuration File . 3-46

Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File 3-50

Before Creating the Binary Configuration File. 3-50

How to Load the Configuration File . 3-51

How to Create the Transaction Log (TLOG) File. 3-51

Step 9: How to Create a Remote Service Connection on Each Machine. 3-52

How to Stop the Listener Process (tlisten) . 3-53

Sample tlisten Error Messages . 3-53

Running bankapp . 3-54

Step 1: How to Prepare to Boot . 3-55

Step 2: How to Boot bankapp. 3-56

Step 3: How to Populate the Database . 3-56

Step 4: How to Test bankapp Services. 3-57

Step 5: How to Shut Down bankapp . 3-58

4. Tutorial for CSIMPAPP, a Simple COBOL Application
What Is CSIMPAPP? . 4-1

Preparing CSIMPAPP Files and Resources . 4-2

Before You Begin . 4-3

What You Will Learn . 4-4

Step 1: How to Copy the CSIMPAPP Files . 4-4

Step 2: Examining and Compiling the Client. 4-5

How to Examine the Client . 4-5

How to Compile the Client . 4-9

Tutorials for Developing Oracle Tuxedo ATMI Applications vii

Step 3: Examining and Compiling the Server . 4-9

How to Examine the Server. 4-9

How to Compile the Server . 4-13

Step 4: Editing and Loading the Configuration File. 4-14

How to Edit the Configuration File . 4-14

How to Load the Configuration File . 4-16

Step 5: How to Boot the Application . 4-16

Step 6: How to Test the Run-time Application. 4-17

Step 7: How to Monitor the Run-time Application . 4-17

Step 8: How to Shut Down the Application . 4-18

5. Tutorial for STOCKAPP, a Full COBOL Application
What Is STOCKAPP?. 5-1

Familiarizing Yourself with STOCKAPP . 5-2

Learning About the STOCKAPP Files. 5-2

Exploring the Stock Application Files. 5-3

Examining the STOCKAPP Clients . 5-4

System Client Programs . 5-5

Typed Buffers . 5-5

A Request/Response Client: BUY.cbl . 5-6

BUY.cbl Source Code. 5-6

Building Clients. 5-6

Examining the STOCKAPP Servers. 5-7

STOCKAPP Services . 5-7

Preparing STOCKAPP Files and Resources . 5-8

Step 1: How to Set Environment Variables . 5-8

Additional Requirements. 5-11

Step 2: Building Servers in STOCKAPP . 5-12

viii Tutorials for Developing Oracle Tuxedo ATMI Applications

How to Build the BUYSELL Server. 5-12

Servers Built in STOCKAPP.mk. 5-13

Step 3: Editing the STOCKAPP.mk File . 5-14

How to Edit the TUXDIR Parameter . 5-14

How to Edit the APPDIR Parameter. 5-14

How to Run the STOCKAPP.mk File . 5-15

Step 4: How to Edit the Configuration File . 5-15

Step 5: Creating a Binary Configuration File. 5-18

Before Creating the Binary Configuration File. 5-18

How to Load the Configuration File . 5-18

 Running STOCKAPP . 5-19

Step 1: How to Prepare to Boot . 5-19

Step 2: How to Boot STOCKAPP . 5-20

Step 3: How to Test STOCKAPP Services . 5-21

Step 4: How to Shut Down STOCKAPP . 5-22

6. Tutorial for XMLSTOCKAPP: a C and C++ XML Parser
Application

What Is XMLSTOCKAPP? . 6-1

Familiarizing Yourself with XMLSTOCKAPP. 6-2

Learning About the XMLSTOCKAPP Files . 6-2

Examining the XMLSTOCKAPP Clients. 6-3

A Request/Response Client: stock_quote_beas.xml . 6-3

See Also . 6-4

Examining the XMLSTOCKAPP Servers . 6-4

Preparing XMLSTOCKAPP Files and Resources . 6-4

Step1: Copy the XMLSTOCKAPP Files to a New Directory 6-4

Step 2: Set Environment Variables . 6-5

Tutorials for Developing Oracle Tuxedo ATMI Applications ix

Additional Requirements . 6-5

Step 3: Building Clients. 6-5

Step 4: Building Servers in XMLSTOCKAPP . 6-6

How to Build the stockxml and stockxml_c Servers . 6-6

See Also . 6-7

Step 5: How to Edit the Configuration File . 6-8

See Also . 6-9

Step 6: Creating a Binary Configuration File . 6-9

How to Load the Configuration File . 6-9

See Also . 6-10

 Running XMLSTOCKAPP . 6-10

Step 1: How to Prepare to Boot . 6-10

Step 2: How to Boot XMLSTOCKAPP . 6-10

See Also . 6-11

Step 3: How to Test XMLSTOCKAPP Services. 6-11

Step 4: How to Shut Down XMLSTOCKAPP . 6-11

See Also . 6-12

7. Tutorial for xmlfmlapp: A Full C XML/FML32 Conversion
Application

What Is xmlfmlapp? . 7-2

Familiarizing Yourself with xmlfmlapp . 7-2

Learning About the xmlfmlapp Files. 7-3

TExamining the xmlfmlapp Client . 7-3

Request/Response Client . 7-4

See Also . 7-4

Examining the xmlfmlapp Server . 7-4

Preparing xmlfmlapp Files and Resources . 7-5

x Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 1: Copy the xmlfmlapp Files to a New Directory . 7-5

Step 2: Set Environment Variables . 7-5

Additional Requirements . 7-6

Step 3: Create FML32 Field Table . 7-6

Step 4: Build the xmlfmlapp Binaries . 7-6

Step 5: Edit the Configuration File . 7-7

See Also . 7-8

Step 6: Create the Binary Configuration File . 7-8

Loading the Configuration File . 7-8

See Also . 7-9

 Running xmlfmlapp. 7-9

Step 1: xmlfmlapp Boot Preparation. 7-9

Step 2: Boot xmlfmlapp . 7-10

See Also . 7-10

Step 3: Test xmlfmlapp Services. 7-10

Step 4: Shut Down xmlfmlapp . 7-10

See Also . 7-11

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-1

C H A P T E R 1

Developing an Oracle Tuxedo
Application

This topic includes the following sections:

Before Developing Your Oracle Tuxedo Application

Creating an Oracle Tuxedo ATMI Client

Creating an Oracle Tuxedo ATMI Server

Using Typed Buffers in Your Application

Using Oracle Tuxedo Messaging Paradigms in Your Application

Before Developing Your Oracle Tuxedo Application
Before you begin developing your Oracle Tuxedo Application-to-Transaction Monitor Interface
(ATMI) application, it may be helpful to review the various concepts related to its design and the
tools that are available to you. These concepts include identifying clients or the various ways
input from the outside world is gathered and presented to your business for processing, and
identifying servers or the programs containing the business logic that process the input data. Also
important is reviewing the concept of typed buffers or how a client program allocates a memory
area before sending data to another program. Another concept worth reviewing is that of the
Oracle Tuxedo messaging paradigms. ATMI client programs access the Oracle Tuxedo system
by calling the ATMI library. Most calls in the ATMI library support these different
communication styles available to programmers, such as request/response and conversational.
These are the building blocks of every Oracle Tuxedo application.

1-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

For more information about concepts, such as application queues, event-based communication,
and using ATMI, and on the tools available to you, refer to “Basic Architecture of the Oracle
Tuxedo ATMI Environment” in Introducing Oracle Tuxedo ATMI. For information about
programming an application, refer to Programming Oracle Tuxedo ATMI Applications Using C
and Programming Oracle Tuxedo ATMI Applications Using COBOL.

Creating an Oracle Tuxedo ATMI Client
Creating an Oracle Tuxedo client is just like creating any other program in the C or C++
programming language. The Oracle Tuxedo system provides you with a C-based programming
interface known as the Oracle Tuxedo Application-to-Transaction Monitor Interface or ATMI.
The ATMI is an easy-to-use interface that enables the rapid development of Oracle Tuxedo
clients and servers.

Note: Oracle Tuxedo ATMI also supports a COBOL interface. (The examples shown here
illustrate the C/C++ API.)

Client Tasks
Clients perform the following basic tasks:

Clients may need to call tpchkauth() to determine the level of security required to join
an application. Possible responses are: no security enabled, application password enabled,
application authentication enabled, access control lists enabled, link-level encryption,
public key encryption, auditing. (This is optional depending on whether you are using
security levels.)

Clients call tpinit() to connect to an Oracle Tuxedo application. Any required security
information is passed to the application as arguments for tpinit().

Clients perform service requests.

Clients call tpterm() to disconnect from an Oracle Tuxedo application.

../int/intatm.html

Creat ing an Orac le Tuxedo ATMI Se rve r

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-3

Figure 1-1 Tasks Performed by a Client

See Also
“Writing Clients” in Programming Oracle Tuxedo ATMI Applications Using C

“Administering Security” in Using Security in CORBA Applications

“Using Oracle Tuxedo Messaging Paradigms in Your Application” on page 1-6

“What Are Typed Buffers?” in Introducing Oracle Tuxedo ATMI

“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

Creating an Oracle Tuxedo ATMI Server
Developers use the ATMI programming interface to create an Oracle Tuxedo client and server.
However, Oracle Tuxedo servers are not written by application developers as complete programs
(that is, with a standard main). Instead, application developers write a set of specific business
functions (known as services) that are compiled along with the Oracle Tuxedo binaries to produce
a server executable.

When an Oracle Tuxedo server is booted, it continues running until it receives a shutdown
message. A typical Oracle Tuxedo server may perform thousands of service calls before being
shut down and rebooted.

../int/intatm.html
../int/intatm.html
../pgc/pgclt.html
../sec/secadm.html

1-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

Server Tasks
Application developers write the code and the Oracle Tuxedo ATMI servers invoke the
tpsvrinit() function only when the Oracle Tuxedo server is booted. Programmers use
this function to open an application resource (such as a database) for later use.

Application developers write the code and the Oracle Tuxedo ATMI servers invoke the
tpsvrdone() function only when the Oracle Tuxedo server is shut down. Programmers
use this function to close any application resources opened by tpsvrinit().

Application developers write the code and the Oracle Tuxedo ATMI servers request named
application services that process client requests. Oracle Tuxedo ATMI clients do not call
servers by name; they call services. An Oracle Tuxedo ATMI client does not “know” the
location of the server processing its request.

ATMI servers call the tpreturn() function to end a service request and return a buffer, if
required, to the calling client.

Figure 1-2 Tasks Performed by a Server

Using Typed Buf fe rs in Your App l i cat ion

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-5

See Also
“Writing Servers” on page 5-1 in Programming Oracle Tuxedo ATMI Applications Using C

“Using Oracle Tuxedo Messaging Paradigms in Your Application” on page 1-6

“What Are Typed Buffers?” in Introducing Oracle Tuxedo ATMI

“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

Using Typed Buffers in Your Application
All communication in the Oracle Tuxedo system is transmitted through typed buffers. The Oracle
Tuxedo system offers application developers the choice of many different buffer types to
facilitate this communication. All buffers passed through the Oracle Tuxedo system have special
headers, and must be allocated and freed through the Oracle Tuxedo ATMI (tpalloc(),
tprealloc(), and tpfree()).

Figure 1-3 Different Types of Buffers

The typed buffers facility allows for generic well-defined processing to be implemented once a
buffer type is shared across any type of network and protocol and any type of CPU architecture
and operating system supported by the Oracle Tuxedo system. The advantage of typed buffers in
a distributed environment is that they relieve your clients and servers from the details of preparing
data to be transferred between heterogeneous computers linked by various communications
networks. This affords an application programmer time to concentrate on their business logic,
instead of focusing attention on writing this facility into their own programs.

See Also
“What Are Typed Buffers?” in Introducing Oracle Tuxedo ATMI

../int/intatm.html
../int/intatm.html
../int/intatm.html
../pgc/pgserv.html

1-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

Using Oracle Tuxedo Messaging Paradigms in Your
Application

The Oracle Tuxedo ATMI offers several communication models that you can use in your
application:

Using the Request/Response Model (Synchronous Calls)

Using the Request/Response Model (Asynchronous Calls)

Using Nested Calls

Using Forwarded Calls

Using Conversational Communication

Using Unsolicited Notification

Using Event-based Communication

Using Queue-based Communication

Using Transactions

Using the Request/Response Model (Synchronous Calls)
To make a synchronous call, an Oracle Tuxedo ATMI client uses the ATMI function tpcall()
to send a request to an Oracle Tuxedo ATMI server. The function does not invoke an Oracle
Tuxedo server by name; instead, it invokes a specified service, which is provided by any server
that offers the service and is available. The client then waits for the requested service to be
performed. Until it receives a reply to its request, the client is not available for any other work.
In other words, the client blocks until it receives a reply.

Figure 1-4 Using the Synchronous Request/Response Model

Using the Request /Response Mode l (Asynchronous Ca l ls)

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-7

See Also
“Request/Response Communication” in Introducing Oracle Tuxedo ATMI

Using the Request/Response Model (Asynchronous Calls)
To make an asynchronous call, a client calls two ATMI functions: the tpacall(3c) function, to
request a service, and the tpgetrply(3c) function, to retrieve the reply. This method is
commonly used when a client can perform additional tasks after issuing a request and before
receiving a reply.

../rf3c/rf3c.html
../rf3c/rf3c.html
../int/intatm.html

1-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

Figure 1-5 Using Asynchronous Calls

See Also
“Request/Response Communication” in Introducing Oracle Tuxedo ATMI

Using Nested Calls
Services can act as Oracle Tuxedo ATMI clients and call other Oracle Tuxedo services. In other
words, you can request a service that, in turn, requests other services. For example, suppose an
Oracle Tuxedo client calls service X and waits for a reply. Service X then calls service Y and also
waits for a reply. When service X receives a reply, it returns the reply to the calling client. This
method is efficient because service X can take the reply from service Y, do more work on it, and
modify the return buffer before sending a final reply back to the client.

../int/intatm.html

Using Fo rwarded Ca l ls

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-9

Figure 1-6 Using Nested Calls

See Also
“Nested Requests” in Introducing Oracle Tuxedo ATMI

Using Forwarded Calls
With call forwarding, a nested service can return a reply directly to an ATMI client without going
through the first service that was called, thereby freeing the first service to handle other requests.
This capability is useful when the first service is acting strictly as a delivery agent, without adding
data to the reply returned by the nested service.

To facilitate call forwarding, a service called by a client uses the tpforward(3c) function to pass
the request to another service Y. This is the only situation in which an Oracle Tuxedo service can
end a service call without calling tpreturn(3c).

Call forwarding is transparent to the client. In other words, the same client code is valid for
service requests handled by one service and requests handled by more than one service.

../rf3c/rf3c.html
../rf3c/rf3c.html
../int/intatm.html

1-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

Figure 1-7 Using Forwarded Calls

See Also
“Forwarded Requests” in Introducing Oracle Tuxedo ATMI

Using Conversational Communication
If multiple buffers need to be sent between an Oracle Tuxedo ATMI client and an Oracle Tuxedo
service in a stateful manner, then the Oracle Tuxedo conversation may be a suitable option.

Use Oracle Tuxedo conversations judiciously because a server engaged in a conversation is
unavailable until the conversation has ended. To implement a conversation, incorporate the
following steps into your code:

1. The Oracle Tuxedo client starts the conversation with the tpconnect() function.

2. The Oracle Tuxedo client and the conversational server exchange buffers using the tpsend()
and tprecv() functions. A special flag is set in the service calls to indicate which participant
has control of the conversation.

3. The conversation ends in normal conditions, when the server calls tpreturn() or the
tpdiscon() function.

../int/intatm.html

Using Unso l i c i ted Not i f i cat ion

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-11

Figure 1-8 Using Conversations

See Also
“Conversational Communication” in Introducing Oracle Tuxedo ATMI

Using Unsolicited Notification
To enable unsolicited notification, an Oracle Tuxedo ATMI client creates an unsolicited message
handle using the tpsetunsol() function. To send an unsolicited message, an Oracle Tuxedo
client or server can use either the tpnotify() function, to send a message to a single client, or
the tpbroadcast() function, to send a message to multiple clients at the same time. When a
client receives a message, the Oracle Tuxedo system calls the client’s unsolicited handler
function.

In a signal-based system, a client does not have to poll for unsolicited messages. However, in a
non-signal based system, a client must check for unsolicited messages using the tpchkunsol()
function. Whenever a client makes a service request, tpchkunsol() is called implicitly.

../int/intatm.html

1-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

Figure 1-9 Handling Unsolicited Notification

Note: If you call tpnotify() with the tpack flag bit set, you will receive an acknowledgement
of your request.

See Also
“Unsolicited Communication” in Introducing Oracle Tuxedo ATMI

Using Event-based Communication
In event-based communication, events can also be posted to application queues, log files, and
system commands. Any Oracle Tuxedo ATMI client can subscribe to a user-defined event using
the tpsubscribe() function and receive an unsolicited message whenever an Oracle Tuxedo
service or client issues a tppost() function. ATMI clients can also subscribe to system-defined
events that are triggered whenever the Oracle Tuxedo system detects the event. When a server
dies, for example, the .SysServerDied event is posted. No application server is needed to post
this event, because it is performed by the Oracle Tuxedo system.

../int/intatm.html

Using Queue-based Communicat ion

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-13

Figure 1-10 Using Event-based Communication

See Also
“How Events Are Reported” in Introducing Oracle Tuxedo ATMI

Using Queue-based Communication
To interface with the /Q system, an Oracle Tuxedo client uses two ATMI functions:
tpenqueue(), to put messages into the queue space, and tpdequeue(), to take messages out of
the queue space.

The following model represents peer-to-peer asynchronous messaging. Here, a client enqueues a
message to a service using tpenqueue(). Optionally, the names of a reply queue and a failure
queue can be included in the call to tpenqueue(). The client can also specify a correlation
identifier value to accompany the message. This value is persistent across queues so that any
reply or failure message associated with the queued message can be identified when it is read
from the reply or the failure queue.

../int/intatm.html

1-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

The client can use the default queue ordering (for example, a time after which the message should
be dequeued), or can specify an override of the default queue ordering (asking, for example, that
this message be put at the top of the queue or ahead of another message on the queue). The call
to tpenqueue() sends the message to the TMQUEUE server, the message is queued to stable
storage, and an acknowledgment is sent to the client. The acknowledgment is not seen directly by
the client, but can be assumed when the client gets a successful return. (A failure return includes
information about the nature of the failure.) A message identifier assigned by the queue manager
is returned to the application. The identifier can be used to dequeue a specific message. It can also
be used in another tpenqueue() to identify a message on the queue ahead of the next message
to be enqueued.

Before an enqueued message is made available for dequeuing, the transaction in which the
message is enqueued must be committed successfully. A client uses tpdequeue() to dequeue
messages from the queue.

Figure 1-11 Peer-to-Peer Asynchronous Messaging Model

In the following graphic, forwarding a message to another server is illustrated.

The client enqueues a message intended for service X on the server. The service receives this
message when it is active and when the handling instructions for the message are met (for
example, the message can be encoded to be activated on Friday at 6 PM). Once the service is
completed, it returns the reply to the queue space, from which it can be retrieved by the client.

Us ing T ransact ions

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-15

This system of queuing is transparent to services. In other words, the same application code is
used for a service, regardless of whether the service is invoked through queuing or direct service
invocation using tp(a)call.

Figure 1-12 Using Queue Forwarding for Queue-based Service Invocation

See Also
“Message Queuing Communication” Introducing Oracle Tuxedo ATMI

Using Transactions
To implement transactions, an application programmer uses three ATMI functions:

tpbegin() to start the transaction.

tpcommit() to start the two-phase commit process.

tpabort() to immediately cancel the transaction.

Any code placed outside the begin and commit/abort sequence is not included in the transaction.

In the following example, a client begins a transaction, requests two services, and then commits
the transaction. Because the service requests are made between the beginning and the
commitment of the transaction, both services join the transaction.

../int/intatm.html

1-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

Figure 1-13 Using Transactions

See Also
“Tutorial for bankapp, a Full C Application” on page 3-1

“Tutorial for CSIMPAPP, a Simple COBOL Application” on page 4-1

“Tutorial for simpapp, a Simple C Application” on page 2-1

“Tutorial for STOCKAPP, a Full COBOL Application” on page 5-1

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-1

C H A P T E R 2

Tutorial for simpapp, a Simple C
Application

This topic includes the following sections:

What Is simpapp?

Preparing simpapp Files and Resources

– Step 1: How to Copy the simpapp Files

– Step 2: Examining and Compiling the Client

– Step 3: Examining and Compiling the Server

– Step 4: Editing and Loading the Configuration File

– Step 5: How to Boot the Application

– Step 6: How to Execute the Run-time Application

– Step 7: How to Monitor the Run-time Application

– Step 8: How to Shut Down the Application

What Is simpapp?
simpapp is a sample ATMI application that includes one client and one server. This application
is distributed with the Oracle Tuxedo software. The server performs only one service: it accepts
a lowercase alphabetic string from the client and returns the same string in uppercase.

2-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

Preparing simpapp Files and Resources
This topic is a tutorial that leads you, step-by-step, through the process of developing and running
a sample Oracle Tuxedo ATMI application. Figure 2-1 summarizes the process. Click on each
task for instructions on completing that task.

Figure 2-1 simpapp Development Process

Before You Begin
Before you can run this tutorial, the Oracle Tuxedo ATMI client and server software must be
installed so that the files and commands referred to are available. If the installation has already
been done by someone else, you need to know the pathname of the directory in which the
software is installed (TUXDIR). You also need to have read and write permissions on the
directories and files in the Oracle Tuxedo directory structure so you can copy simpapp files and
execute Oracle Tuxedo commands.

About This Tutorial
The instructions for the simpapp tutorial are based on a UNIX system platform. While specific
platform instructions for the UNIX operating system environment remain largely the same,
instructions for performing tasks (such as copying simpapp files or setting environment

Step 1 : How to Copy the s impapp F i l es

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-3

variables) on non-UNIX platforms (such as Windows 2003) may be different. For this reason, the
examples used in the tutorial may or may not provide reliable procedures for your platform.

What You Will Learn
After you complete this tutorial, you will be able to understand the tasks ATMI clients and servers
can perform, edit a configuration file for your own environment, and invoke tmadmin to check
on the activity of your application. You will understand the basic elements of all Oracle Tuxedo
applications—client processes, server processes, and a configuration file—and you will know
how to use Oracle Tuxedo system commands to manage your application.

Step 1: How to Copy the simpapp Files
Note: The following instructions are based on a UNIX system platform. Instruction for

non-UNIX platforms, such as Windows 2003, may be different. Examples used in the
sample applications may vary significantly, depending on the specific platform.

1. Make a directory for simpapp and cd to it:

mkdir simpdir
cd simpdir

Note: This step is suggested so you can see the simpapp files you have at the start and the
additional files you create along the way. Use the standard shell (/bin/sh) or the
Korn shell; do not use csh.

2. Set and export environment variables:

TUXDIR=pathname of the Oracle Tuxedo system root directory
TUXCONFIG=pathname of your present working directory/tuxconfig
PATH=$PATH:$TUXDIR/bin
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib
 export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH

You need TUXDIR and PATH to be able to access files in the Oracle Tuxedo system
directory structure and to execute Oracle Tuxedo system commands. On Sun Solaris,
/usr/5bin must be the first directory in your PATH. With AIX on the RS/6000, use
LIBPATH instead of LD_LIBRARY_PATH. On HP-UX on the HP 9000, use SHLIB_PATH
instead of LD_LIBRARY_PATH.

You need to set TUXCONFIG to be able to load the configuration file, described in “Step 4:
Editing and Loading the Configuration File” on page 2-10.

3. Copy the simpapp files:

2-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

cp $TUXDIR/samples/atmi/simpapp/* .

Note: It is best to begin with a copy of the files rather than the originals delivered with the
software because you will edit some of the files to make them executable.

4. List the files:

$ ls
README env simpapp.nt ubbmp wsimpcl
README.as400 setenv.cmd simpcl.c ubbsimple
README.nt simpapp.mk simpserv.c ubbws

$

Note: Except for the README files, the other files are variations of simp*.* and ubb* files
for non-UNIX system platforms. The README files provide explanations of the other
files.

The three files that are central to the application are:

– simpcl.c—the source code for the client program.

– simpserv.c—the source code for the server program.

– ubbsimple—the text form of the configuration file for the application.

See Also
“What Is simpapp?” on page 2-1

Step 2: Examining and Compiling the Client

How to Examine the Client
 Review the ATMI client program source code:

 $ more simpcl.c

 The output is shown in Listing 2-1.

Listing 2-1 Source Code of simpcl.c

1 #include <stdio.h>
2 #include "atmi.h" /* TUXEDO */
3
4

Step 2 : Examin ing and Compi l ing the C l i ent

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-5

5
6
7 #ifdef __STDC__
8 main(int argc, char *argv[])
9
10 #else
11
12 main(argc, argv)
13 int argc;
14 char *argv[];
15 #endif
16
17 {
18
19 char *sendbuf, *rcvbuf;
20 int sendlen, rcvlen;
21 int ret;
22
23 if(argc != 2) {
24 fprintf(stderr, "Usage: simpcl string\n");
25 exit(1);
26 }
27 /* Attach to BEA TUXEDO as a Client Process */
28 if (tpinit((TPINIT *) NULL) == -1) {
29 fprintf(stderr, "Tpinit failed\n");
30 exit(1);
31 }
32 sendlen = strlen(argv[1]);
33 if((sendbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL){
34 fprintf(stderr,"Error allocating send buffer\n");
35 tpterm();
36 exit(1);
37 }
38 if((rcvbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL){
39 fprintf(stderr,"Error allocating receive buffer\n");
40 tpfree(sendbuf);
41 tpterm();
42 exit(1);
43 }
44 strcpy(sendbuf, argv[1]);
45 ret = tpcall("TOUPPER", sendbuf, NULL, &rcvbuf, &rcvlen, 0);
46 if(ret == -1) {
47 fprintf(stderr, "Can't send request to service TOUPPER\n");
48 fprintf(stderr, "Tperrno = %d, %s\n", tperrno,
49 tmemsgs[tperrno]);
50 tpfree(sendbuf);
51 tpfree(rcvbuf);
52 tpterm();
53 exit(1);

2-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

54 }
55 printf("Returned string is: %s\n", rcvbuf);
56
57 /* Free Buffers & Detach from Oracle TUXEDO */
58 tpfree(sendbuf);
59 tpfree(rcvbuf);
60 tpterm();
61 }

Table 2-1 Significant Lines in the simpcl.c Source Code

Line(s) File/Function Purpose

2 atmi.h Header file required whenever Oracle Tuxedo ATMI
functions are used.

28 tpinit() The ATMI function used by a client program to join an
application.

33 tpalloc() The ATMI function used to allocate a typed buffer.
STRING is one of the five basic Oracle Tuxedo buffer
types; NULL indicates there is no subtype argument.
The remaining argument, sendlen + 1, specifies the
length of the buffer plus 1 for the null character that
ends the string.

38 tpalloc() Allocates another buffer for the return message.

45 tpcall() Sends the message buffer to the TOUPPER service
specified in the first argument. Also includes the
address of the return buffer. tpcall() waits for a
return message.

35, 41, 52, 60 tpterm() The ATMI function used to exit an application. A call
to tpterm() is used to exit the application before
exiting in response to an error condition (lines 36, 42,
and 53). The final call to tpterm() (line 60) is issued
after the message has been printed.

Step 3 : Examin ing and Compi l ing the Se rve r

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-7

How to Compile the Client
1. Run buildclient to compile the ATMI client program:

 buildclient -o simpcl -f simpcl.c

The output file is simpcl and the input source file is simpcl.c.

2. Check the results:

$ ls -l
total 97
-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-rw-r----- 1 usrid grpid 392 May 28 07:51 ubbsimple

As can be seen, we now have an executable module called simpcl. The size of simpcl
may vary.

See Also
“What Is simpapp?” on page 2-1

buildclient(1) in Oracle Tuxedo Command Reference

Oracle Tuxedo ATMI C Function Reference

Step 3: Examining and Compiling the Server

How to Examine the Server
Review the ATMI server program source code.

$ more simpserv.c

40, 50, 51, 58,
59

tpfree() Frees allocated buffers. tpfree() is the functional
opposite of tpalloc().

55 printf() The successful conclusion of the program. It prints out
the message returned from the server.

Table 2-1 Significant Lines in the simpcl.c Source Code (Continued)

Line(s) File/Function Purpose

../rfcm/rfcmd.html

2-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

Listing 2-2 Source Code of simpserv.c

*/

/* #ident"@(#) apps/simpapp/simpserv.c$Revision: 1.1 $" */
1 #include <stdio.h>
2 #include <ctype.h>
3 #include <atmi.h>/* TUXEDO Header File */
4 #include <userlog.h>/* TUXEDO Header File */
5 /* tpsvrinit is executed when a server is booted, before it begins

processing requests. It is not necessary to have this function.
Also available is tpsvrdone (not used in this example), which is
called at server shutdown time.

9 */
10 #if defined(__STDC__) || defined(__cplusplus)

12 tpsvrinit(int argc, char *argv[])
13 #else
14 tpsvrinit(argc, argv)
15 int argc;
16 char **argv;
17 #endif
18 {
19 /* Some compilers warn if argc and argv aren't used.
20 */
21 argc = argc;
22 argv = argv;
23 /* userlog writes to the central TUXEDO message log */
24 userlog("Welcome to the simple server");
25 return(0);
26 }
27 /* This function performs the actual service requested by the client.

Its argument is a structure containing, among other things, a pointer
to the data buffer, and the length of the data buffer.

30 */
31 #ifdef __cplusplus
32 extern "C"
33 #endif
34 void
35 #if defined(__STDC__) || defined(__cplusplus)
36 TOUPPER(TPSVCINFO *rqst)
37 #else
38 TOUPPER(rqst)
39 TPSVCINFO *rqst;
40 #endif
41 {
42 int i;

Step 3 : Examin ing and Compi l ing the Se rve r

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-9

43
44 for(i = 0; i < rqst->len-1; i++)
45 rqst->data[i] = toupper(rqst->data[i]);
46 /* Return the transformed buffer to the requestor. */
47 tpreturn(TPSUCCESS, 0, rqst->data, 0L, 0);
48 }

How to Compile the Server
1. Run buildserver to compile the ATMI server program:

 buildserver -o simpserv -f simpserv.c -s TOUPPER

Table 2-2 Significant Parts of the simpserv.c Source Code

Line(s) File/Function Purpose

Whole file An Oracle Tuxedo server does not contain a main().
The main() is provided by the Oracle Tuxedo system
when the server is built.

12 tpsvrinit() This subroutine is called during server initialization,
that is, before the server begins processing service
requests. A default subroutine (provided by the Oracle
Tuxedo system) writes a message to USERLOG
indicating that the server has been booted.
userlog(3c) is a log used by the Oracle Tuxedo
system and can be used by applications.

38 TOUPPER() The declaration of a service (the only one offered by
simpserv). The sole argument expected by the
service is a pointer to a TPSVCINFO structure, which
contains the data string to be converted to uppercase.

45 for loop Converts the input to uppercase by repeated calls to
TOUPPER.

49 tpreturn() Returns the converted string to the client with the
TPSUCCESS flag set.

2-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

The executable file to be created is named simpserv and simpserv.c is the input source
file. The -s TOUPPER option specifies the service to be advertised when the server is
booted.

2. Check the results:

$ ls -l
total 97
-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-rw-r----- 1 usrid grpid 392 May 28 07:51 ubbsimple

You now have an executable module called simpserv.

See Also
“What Is simpapp?” on page 2-1

buildserver(1) in Oracle Tuxedo Command Reference

Oracle Tuxedo ATMI C Function Reference

Step 4: Editing and Loading the Configuration File

How to Edit the Configuration File
1. In a text editor, familiarize yourself with ubbsimple, which is the configuration file for

simpapp.

Listing 2-3 The simpapp Configuration File

1$
2
3 #Skeleton UBBCONFIG file for the BEA Tuxedo Simple Application.
4 #Replace the <bracketed> items with the appropriate values.
5 RESOURCES
6 IPCKEY <Replace with valid IPC Key greater than 32,768>
7
8 #Example:
9
10 #IPCKEY 62345

../rfcm/rfcmd.html

Step 4 : Ed i t ing and Loading the Conf igurat i on F i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-11

11
12 MASTER simple
13 MAXACCESSERS 5
14 MAXSERVERS 5
15 MAXSERVICES 10
16 MODEL SHM
17 LDBAL N
18
19 *MACHINES
20
21 DEFAULT:
22
23 APPDIR="<Replace with the current pathname>"
24 TUXCONFIG="<Replace with TUXCONFIG Pathname>"
25 UXDIR="<Root directory of Tuxedo (not /)>"
26 #Example:
27 # APPDIR="/usr/me/simpdir"
28 # TUXCONFIG="/usr/me/simpdir/tuxconfig"
29 # TUXDIR="/usr/tuxedo"
30
31 <Machine-name> LMID=simple
32 #Example:
33 #tuxmach LMID=simple
34 *GROUPS
35 GROUP1
36 LMID=simple GRPNO=1 OPENINFO=NONE
37
38 *SERVERS
39 DEFAULT:
40 CLOPT="-A"
41 simpserv SRVGRP=GROUP1 SRVID=1
42 *SERVICES
43 TOUPPER

2. For each <string> (that is, for each string shown between angle brackets), substitute an
appropriate value.

How to Load the Configuration File
1. Run tmloadcf to load the configuration file:

$ tmloadcf ubbsimple
Initialize TUXCONFIG file: /usr/me/simpdir/tuxconfig [y, q] ? y
$

2. Check the results:

2-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

$ ls -l
total 216
-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-rw-r----- 1 usrid grpid 106496 May 29 09:27 tuxconfig
-rw-r----- 1 usrid grpid 382 May 29 09:26 ubbsimple

You now have a file called TUXCONFIG. The TUXCONFIG file is a new file under the control of the
Oracle Tuxedo system.

See Also
“What Is simpapp?” on page 2-1

tmloadcf(1) in the Oracle Tuxedo Command Reference

UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 5: How to Boot the Application
1. Execute tmboot to bring up the application:

$ tmboot
Boot all admin and server processes? (y/n): y
Booting all admin and server processes in /usr/me/simpdir/tuxconfig
Booting all admin processes ...
 exec BBL -A:
 process id=24223 ... Started.

Booting server processes ...

 exec simpserv -A :
 process id=24257 ... Started.
2 processes started.
$

The BBL is the administrative process that monitors the shared memory structures in the
application. simpserv is the simpapp server that runs continuously, awaiting requests.

See Also
“What Is simpapp?” on page 2-1

../rfcm/rfcmd.html
../rf5/rf5.html

Step 6 : How to Execute the Run-t ime Appl i cat ion

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-13

tmboot(1) in the Oracle Tuxedo Command Reference

“How to Boot the Application” in Administering an Oracle Tuxedo Application at Run
Time

Step 6: How to Execute the Run-time Application
To execute your simpapp, have the client submit a request.

$ simpcl “hello, world”
Returned string is: HELLO, WORLD

See Also
“What Is simpapp?” on page 2-1

Step 7: How to Monitor the Run-time Application
As the administrator, you can use the tmadmin command interpreter to check an application and
make dynamic changes. To run tmadmin, you must have the TUXCONFIG environment variable
set.

tmadmin can interpret and run over 50 commands. For a complete list, see tmadmin(1). The
following uses two of the tmadmin commands.

1. Enter the following command:

$ tmadmin

The following lines are displayed:

tmadmin - Copyright (c) 1999 BEA Systems, Inc. All rights reserved.
>

Note: The greater-than sign (>) is the tmadmin prompt.

2. Enter the printserver(psr) command to display information about servers:

> psr
a.out Name Queue Name Grp Name ID RqDone Load Done Current Service
---------- ---------- -------- -- ------ --------- ---------------
BBL 531993 simple 0 0 0 (IDLE)
simpserv 00001.00001 GROUP1 1 0 0 (IDLE)
>

3. Enter the printservice(psc) command to display information about the services:

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../ada/adboot.html

2-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status
------------ ------------ ---------- -------- -- ------- ------ ------
TOUPPER TOUPPER simpserv GROUP1 1 simple - AVAIL
>

See Also
“What Is simpapp?” on page 2-1

tmadmin(1) in the Oracle Tuxedo Command Reference

Step 8: How to Shut Down the Application
1. Run tmshutdown to bring down the application:

$ tmshutdown
Shutdown all admin and server processes? (y/n): y
Shutting down all admin and server processes in /usr/me/simpdir/tuxconfig
Shutting down server processes ...

Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown succeeded.
Shutting down admin processes ...

Server Id = 0 Group Id = simple Machine = simple: shutdown succeeded.
2 processes stopped.
$

2. Check the ULOG:

$ cat ULOG*
$
113837.tuxmach!tmloadcf.10261: CMDTUX_CAT:879: A new file system has been
created. (size = 32 4096-byte blocks)
113842.tuxmach!tmloadcf.10261: CMDTUX_CAT:871: TUXCONFIG file
/usr/me/simpdir/tuxconfig has been created
113908.tuxmach!BBL.10768: LIBTUX_CAT:262: std main starting
113913.tuxmach!simpserv.10925: LIBTUX_CAT:262: std main starting
113913.tuxmach!simpserv.10925: Welcome to the simple server
114009.tuxmach!simpserv.10925: LIBTUX_CAT:522: Default tpsvrdone()
function used.
114012.tuxmach!BBL.10768: CMDTUX_CAT:26: Exiting system

See Also
“What Is simpapp?” on page 2-1

../rfcm/rfcmd.html

Step 8 : How to Shut Down the Appl i cat i on

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-15

tmshutdown(1) in the Oracle Tuxedo Command Reference

userlog(3c) in the Oracle Tuxedo ATMI C Function Reference

“How to Shut Down Your Application” in Administering an Oracle Tuxedo Application at
Run Time

“What Is the User Log (ULOG)?” in Administering an Oracle Tuxedo Application at Run
Time

../rfcm/rfcmd.html
../rf3c/rf3c.html
../ada/adboot.html
../ada/admon.html

2-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-1

C H A P T E R 3

Tutorial for bankapp, a Full C
Application

This topic includes the following sections:

What Is bankapp?

Familiarizing Yourself with bankapp

Preparing bankapp Files and Resources

Running bankapp

What Is bankapp?
bankapp is a sample ATMI banking application that is provided with the Oracle Tuxedo
software. The application performs the following banking functions: opens and closes accounts,
retrieves account balances, deposits or withdraws money from an account, and transfers monies
from one account to another.

About This Tutorial
This tutorial leads you, step-by-step, through the procedure you must perform to develop the
bankapp application. Once you have “developed” bankapp through this tutorial, you will be
ready to start developing applications of your own.

The bankapp tutorial is presented in three sections:

Familiarizing Yourself with bankapp

3-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

Preparing bankapp Files and Resources

Running bankapp

Note: This information has been written for UNIX and Windows 2003 system users with some
experience in application development, administration, or system programming. We
assume some familiarity with the Oracle Tuxedo software.

Familiarizing Yourself with bankapp
Instructions in this sample application are automated for your convenience through shell scripts
that work in a UNIX or Windows 2003 environment: RUNME.sh and RUNME.cmd. The associated
readme files discuss how to run these files. Go through these files to understand the procedure
more thoroughly and then follow these step-by-step instructions to help you set up and manage a
distributed application.

bankapp uses a demo relational database delivered with the software that enables you to use the
sample application. Various commands and SQL code within the sample application (included
for demo purposes only) provide access to the database.

This documentation provides a tour of the files, client, and services that make up the bankapp
application. Click on any of the following activities for more information about that part of the
tour.

Learn ing About the bankapp F i l es

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-3

Learning About the bankapp Files
The files that make up the bankapp application are delivered in a directory called bankapp,
which is positioned as follows:

Exploring the Banking Application Files
The bankapp directory contains the following files:

Five source files for service subroutines using embedded SQL statements

Eight C source files

One request/response client program (audit)

One conversational server (AUDIT)

One conversational client (auditcon)

Three servers (or files associated with servers)

Two files that generate data or transactions for the application

Miscellaneous files

Generic Oracle Tuxedo application files (that is, files needed in any Oracle Tuxedo
application)

Makefile for various add-ons

Files provided to facilitate the use of bankapp as an example

The following table lists the files of the banking application. The table lists the source files
delivered with the Oracle Tuxedo software, files that are generated when the bankapp.mk is run,
and a summary of the contents of each file.

3-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

Table 3-1 Description of the Banking Application Files

Source File Generated File Contents

ACCT.ec ACCT.c, ACCT.o, ACCT Contains two services: OPEN_ACCT and CLOSE_ACCT to
open and close accounts.

ACCTMGR.c ACCTMGR A server that subscribes to events and logs notifications.
Contains WATCHDOG and Q_OPENACCT_LOG services.

AUDITC.c AUDITC Contains a conversational server that handles service requests
from the client auditcon.

BAL.ec BAL.c, BAL.o, BAL Contains a set of services: ABAL, TBAL, ABAL_BID, and
TBAL_BID that allow the audit client to obtain bank-wide or
branch-wide account or teller balances.

BALC.ec BALC.c, BALC.o, BALC Contains two services: ABALC_BID, and TBALC_BID. These
services are the same as TBAL_BID and ABAL_BID, except
that TPSUCCESS is returned when a branch ID is not found,
which allows auditcon to continue running.

bankmgr.c bankmgr A client program that subscribes to events of special interest.

BTADD.ec BTADD.c, BTADD.o,
BTADD

Contains two services: BR_ADD and TLR_ADD for adding
branches and tellers to the database.

cracl.sh - A shell script that creates access control lists (ACL) to
demonstrate the access control security level.

crqueue.sh - A shell script that creates application queues for use in event
notification.

crusers.sh - A shell script that creates groups and users to demonstrate the
authentication security level.

event.flds - A field table file used in the event feature.

FILES - A descriptive list of all the files in bankapp.

README - Installation and boot procedures for all platforms except
Windows 2003.

README.nt - Installation and boot procedures for the Windows 2003
platform.

Learn ing About the bankapp F i l es

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-5

README2 - Documentation of additions to bankapp that demonstrate
new features. The file is located in the
samples/atmi/bankapp directory.

README2.nt - Documentation of additions to bankapp that demonstrate
new features for the Windows 2003 platform. The file is
located in the samples\atmi\bankapp directory.

RUNME.cmd An interactive script to build, configure, boot, and shut down
the application for Windows 2003.

RUNME.sh - An interactive script to build, configure, boot, and shut down
the application for UNIX.

showq.sh! - A shell script that displays the status and contents of a message
queue.

TLR.ec TLR.c, TLR.o, TLR Contains three services: WITHDRAWAL, DEPOSIT, and
INQUIRY.

usrevtf.sh - A shell script that creates an ENVFILE for the Oracle Tuxedo
server TMUSREVT.

XFER.c XFER.o, XFER Contains TRANSFER service.

aud.v aud.V, aud.h An FML view used to define the structure passed between the
audit client and the BAL server.

appinit.c appinit.o Contains customized versions of tpsvrinit() and
tpsvrdone() for all servers other than TLR.

audit.c audit.o, audit A client that obtains bank-wide or branch-wide account and
teller balances via the ABAL, TBAL, ABAL_BID, and
TBAL_BID services.

auditcon.c auditcon An interactive version of audit that uses conversations and four
services: ABAL, TBAL, ABALC_BID, and TBALC_BID.

bankapp.mk - An application makefile for UNIX.

bankapp.nt - An application makefile for Windows 2003.

Table 3-1 Description of the Banking Application Files

Source File Generated File Contents

3-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

bank.flds bank.flds.h A field table file containing bank database fields and auxiliary
FML fields used by servers.

bank.h - Contains data definitions pertinent to multiple C programs in
the application.

bankvar - Contains some environment variables for bankapp. Other
environment variables are defined in ENVFILE, but because
ENVFILE is set from within bankvar, you can control the
entire environment for your application through bankvar.

crbank.sh crbank A shell script that creates databases for all banks when
bankapp is run in SHM mode.

crbankdb.sh crbankdb A shell script that creates a database for one server group.

crtlog.sh crtlog, TLOG A shell script that creates a UDL and a TLOG on the master site
and a UDL on the non-master sites.

driver.sh driver A shell script that drives the application by piping FML buffers
with transaction requests through ud(1).

envfile.sh envfile, ENVFILE A shell script that creates ENVFILE for use by tmloadcf.

gendata.c gendata A program that generates ud-readable requests to add ten
branches, thirty tellers, and two hundred accounts.

gentran.c gentran A program that generates ud-readable transaction requests
from four services: DEPOSIT, WITHDRAWAL, TRANSFER, and
INQUIRY.

populate.sh populate A shell script that populates the database by piping FML
buffers with requests to add branches, tellers, and accounts
through ud(1).

ubbmp TUXCONFIG A sample UBBCONFIG file for use in an MP mode
configuration.

ubbshm TUXCONFIG A sample UBBCONFIG file for use in a SHM-mode
configuration.

Table 3-1 Description of the Banking Application Files

Source File Generated File Contents

Examin ing the bankapp C l i ents

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-7

See Also
“Familiarizing Yourself with bankapp” on page 3-2

Examining the bankapp Clients

What Is the bankclt.c File?
The bankclt file contains the client program that requests Oracle Tuxedo services from the
bankapp application. This client program is text-based and provides the following options:

Balance Inquiry

Withdrawal

Deposit

Transfer

Open Account

Close Account

Exit Application

Each of these options, except Exit Application, calls a subroutine that performs the following
tasks:

1. Obtains the user input from the keyboard using the get_account(), get_amount(),
get_socsec(), get_phone(), and the get_val() functions.

2. Puts the values into a global FML buffer (*fbfr). (Some functions add more fields than
others. This is dependent on the information needed by the servers.)

util.c util.o A set of functions, such as getstrl(), that are commonly
used by services.

bankclt.c bankclt Client for bankapp.

Table 3-1 Description of the Banking Application Files

Source File Generated File Contents

3-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

3. Enables routines that make a request to the Oracle Tuxedo system through the do_tpcall()
function to invoke the required service. The following table lists the functions and the services
they invoke.

1The number in parentheses is the FML occurrence number for that field.

4. After the call completes successfully, each function gets the fields it needs from the returned
FML buffer and prints the results.

The do_tpcall() function (that begins on line 447 in bankclt.c) follows:

Listing 3-1 do_tpcall() in bankclt.c

/*

 * This function does the tpcall to Tuxedo.

Table 3-2 Services Called by Function

Function Name Input FML Fields Output FML Fields Service Name

BALANCE() ACCOUNT_ID SBALANCE INQUIRY

WITHDRAWAL() ACCOUNT_ID
SAMOUNT

SBALANCE WITHDRAWAL

DEPOSIT() ACCOUNT_ID
SAMOUNT

SBALANCE DEPOSIT

TRANSFER() ACCOUNT_ID (0)1
ACCOUNT_ID (1)
SAMOUNT

SBALANCE (0)
SBALANCE (1)

TRANSFER

OPEN_ACCT() LAST_NAME
FIRST_NAME
MID_INIT
SSN
ADDRESS
PHONE
ACCT_TYPE
BRANCH_ID
SAMOUNT

ACCOUNT_ID
SBALANCE

OPEN_ACCT

CLOSE_ACCT() ACCOUNT_ID SBALANCE CLOSE_ACCT

Examin ing the bankapp C l i ents

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-9

 */

static int

do_tpcall(char *service)

{

long len;

char *server_status;

/* Begin a Global transaction */

if (tpbegin(30, 0) == -1) {

(void)fprintf(stderr, "ERROR: tpbegin failed (%s)\n",

tpstrerror(tperrno));

return(-1);

}

/* Request the service with the user data */

if (tpcall(service, (char *)fbfr, 0, (char **)&fbfr, &len,

0) == -1) {

if(tperrno== TPESVCFAIL && fbfr != NULL &&

(server_status=Ffind(fbfr,STATLIN,0,0)) != 0) {

/* Server returned failure */

(void)fprintf(stderr, "%s returns failure

(%s)\n",

service,server_status);

}

else {

(void)fprintf(stderr,

"ERROR: %s failed (%s)\n", service,

tpstrerror(tperrno));

}

/* Abort the transaction */

(void) tpabort(0);

return(-1);

}

/* Commit the transaction */

if(tpcommit(0) < 0) {

(void)fprintf(stderr, "ERROR: tpcommit failed

(%s)\n",

tpstrerror(tperrno));

3-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

return(-1);

}

return(0);

}

The do_tpcall() function performs the following tasks:

Begins a global transaction by calling tpbegin(), which ensures that all work is done as a
single unit.

Calls tpcall() with the requested service name (char *service) and the supplied FML
buffer (the global *fbfr pointer).

If tpcall() fails with a server-indicated failure (TPSVCERR), it prints the message from
the server in the STATLIN FML field. The transaction is rolled back with tpabort() and it
returns -1.

If tpcall() fails with any other error, it prints the error message and rolls back the
transaction with tpabort() and returns -1.

If tpcall() succeeds, it commits the transaction using tpcommit() and returns 0.

Note: The unsolfcn() function is invoked if there is an unsolicited message to the client. It
only supports STRING buffer types and prints the message.

How ud(1) Is Used in bankapp
bankapp uses the Oracle Tuxedo program ud(1), which allows fielded buffers to be read from
standard input and sent to a service. In the sample application, ud is used by both the populate
and driver programs:

In populate, a program called gendata passes service requests to ud with customer
account information to be entered in the bankapp database.

In driver, the data flow is similar, but the program is gentran and the purpose is to pass
transactions to the application to simulate an active system.

Examin ing the bankapp C l i ents

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-11

A Request/Response Client: audit.c
audit is a request/response client program that makes branch-wide or bank-wide balance
inquiries, using the services: ABAL, TBAL, ABAL_BID, and TBAL_BID. You can invoke it in two
ways:

audit [-a | -t]—prints the bank-wide total value of all accounts, or bank-wide cash
supply of all tellers. Option -a or -t must be specified to indicate whether account
balances or teller balances are to be tallied.

audit [-a | -t] branch_ID—prints the branch-wide total value of all accounts, or
branch-wide cash supply of all tellers, for branch denoted by branch_ID. Option -a or -t
must be specified to indicate whether account balances or teller balances are to be tallied.

The source code for audit contains two major parts: main() and a subroutine called sum_bal().
Oracle Tuxedo ATMI functions are used in both parts. The program uses a VIEW typed buffer and
a structure that is defined in the aud.h header file. The source code for the structure can be found
in the view description file, aud.v.

The following pseudo-code shows the algorithm for the program.

Listing 3-2 audit Pseudo-code

main()
{

Parse command-line options with getopt();
Join application with tpinit();
Begin global transaction with tpbegin();
If (branch_ID specified) {

Allocate buffer for service requests with tpalloc();
Place branch_ID into the aud structure;
Do tpcall() to "ABAL_BID" or "TBAL_BID";
Print balance for branch_ID;
Free buffer with tpfree();

}
else /* branch_ID not specified */

all subroutine sum_bal();
Commit global transaction with tpcommit();
Leave application with tpterm();

}
sum_bal()
}

Allocate buffer for service requests with tpalloc();
For (each of several representative branch_ID's,

3-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

one for each site)
Do tpacall() to "ABAL" or "TBAL";

For (each representative branch_ID) {
Do tpgetrply() wtith TPGETANY flag set

to retrieve replies;
Add balance to total;
Print total balance;

}
Free buffer with tpfree();

}

Following is a summary of the two main parts of the audit source code.

In the programs main():

1. /* Join application */

2. /* Start global transaction */

3. /* Create buffer and set data pointer */

4. /* Do tpcall */

5. /* Commit global transaction */

6. /* Leave application /*

In the subroutine sum_bal:

1. /* Create buffer and set data pointer */

2. /* Do tpacall */

3. /* Do tpgetrply to retrieve answers to questions */

A Conversational Client: auditcon.c
auditcon is a conversational version of the audit program. The source code for auditcon uses
the ATMI functions for conversational communication: tpconnect() to establish the
connection between the client and service, tpsend() to send a message, and tprecv() to
receive a message.

The following pseudo-code shows the algorithm for the program.

Examin ing the bankapp C l i ents

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-13

Listing 3-3 auditcon Pseudo-code

main()
{

Join the application
Begin a transaction
Open a connection to conversational service AUDITC
Do until user says to quit: {

Query user for input
Send service request
Receive response
Print response on user's terminal
Prompt for further input

}

Commit transaction
Leave the application

}

A Client that Monitors Events: bankmgr.c
bankmgr is included with bankapp as an example of a client that is designed to run constantly.
It subscribes to application-defined events of special interest, such as the opening of a new
account or a withdrawal above $10,000. (The bankmgr.c client is more fully described in the
README2 file of bankapp and in the bankmgr.c code itself.)

See Also
“Familiarizing Yourself with bankapp” on page 3-2

“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

“What Are the Oracle Tuxedo ATMI Messaging Paradigms?” in Introducing Oracle
Tuxedo ATMI

“What Is bankapp?” on page 3-1

“What Are Typed Buffers?” in Introducing Oracle Tuxedo ATMI

“Using Event-based Communication” on page 1-12

Oracle Tuxedo Command Reference

../int/intatm.html
../int/intatm.html
../int/intatm.html

3-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

Oracle Tuxedo ATMI C Function Reference

Examining the bankapp Servers and Services
This topic provides the following information:

A description of the servers and services delivered with bankapp.

A description of how the services are link-edited into servers.

Pseudo-code for each service that is either accessed by the Oracle Tuxedo bankclt.c,
or the application client, audit.c.

Descriptions of the relationships between the bankapp services and servers.

Descriptions of the buildserver(1) command options used to compile and build each
server with the main() defined by the Oracle Tuxedo system.

An alternative method for structuring servers.

Servers are executable processes that offer one or more services. In the Oracle Tuxedo system,
they continually accept requests (from processes acting as clients) and dispatch them to the
appropriate services. Services are subroutines of C language code written specifically for an
application. Oracle Tuxedo’s applications are written to make services available and capable of
accessing resource managers. Service routines must be written by Oracle Tuxedo application
programmers.

All bankapp services are coded in C with embedded SQL except for the TRANSFER service,
which does not interact directly with the database. The TRANSFER service is offered by the XFER
server and is a C program (that is, its source file is a .c file rather than a .ec file).

All bankapp services of bankapp use functions provided in the Application-to-Transaction
Management Interface (ATMI) for performing the following tasks:

Managing typed buffers

Communicating synchronously or asynchronously with other services

Defining global transactions

Generically accessing a resource manager

Sending replies back to clients

Examin ing the bankapp Servers and Serv ices

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-15

bankapp Request/Response Servers
Five bankapp servers operate in request/response mode. Four of the five use embedded SQL
statements to access a resource manager; the names of the source files for these servers (located
in the bankapp sample application subdirectory), include a .ec filename extension.

The fifth server, XFER, for transfer, makes no calls to the resource manager itself; it calls the
WITHDRAWAL and DEPOSIT services (offered by the TLR server) to transfer funds between
accounts. The source file for XFER is a .c file, because XFER makes no resource manager calls
and contains no embedded SQL statements.

bankapp Conversational Server
AUDITC is an example of a conversational server. It offers one service, which is also called
AUDITC. The conversational client, auditcon, establishes a connection to AUDITC and sends it
requests for auditing information.

AUDITC evaluates requests and calls an appropriate service (ABAL, TBAL, ABAL_BID, or
TBAL_BID) to get the appropriate information. When a reply is received from the service called,
AUDITC sends it back to auditcon. A service in a conversational server can make calls to
request/response services. It can also initiate connections to other conversational servers, but this
functionality is not provided by AUDITC.

This Server Provides this Functionality

BTADD.ec Allows branch and teller records to be added to the appropriate
database from any site.

ACCT.ec Provides customer representative services, namely the opening
and closing of accounts (OPEN_ACCT and CLOSE_ACCT).

TLR.ec Provides teller services, namely WITHDRAWAL, DEPOSIT, and
INQUIRY. Each TLR process identifies itself as an actual teller
in the TELLER file, via the user-defined -T option on the
server’s command line.

XFER.c Provides fund transfers for accounts anywhere in the database.

BAL.ec Calculates the account for all branches of the database or for a
specified branch.

3-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

bankapp Services
bankapp offers 12 request/response services. The name of each bankapp service matches the
name of a C function in the source code of a server.

This Service Offered by this
Server

With this Input Performs this Function

BR_ADD BTADD FML buffer • Adds a new branch record

TLR_ADD BTADD FML buffer • Adds a new teller record

OPEN_ACCT ACCT FML buffer • Inserts a record into the
ACCOUNT file and calls
DEPOSIT to add the initial
balance

• Chooses an ACCOUNT_ID
for a new account based on
the BRANCH_ID of the teller
involved

CLOSE_ACCT ACCT FML buffer • Deletes an ACCOUNT record
• Validates ACCOUNT_ID
• Calls WITHDRAWAL to

remove the final balance

WITHDRAWAL TLR FML buffer • Subtracts an amount from the
specified branch, teller, and
account balance

• Validates the ACCOUNT_ID
and SAMOUNT fields

• Checks that funds are
available from account and
tell

DEPOSIT TLR FML buffer • Adds an amount to specified
branch, teller, and account
balances

• Validates the ACCOUNT_ID
and SAMOUNT fields

Examin ing the bankapp Servers and Serv ices

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-17

Algorithms of bankapp Services
The following listings show pseudo-code for the algorithms used for the bankapp services:
BR_ADD, TLR_ADD, OPEN_ACCT, CLOSE_ACCT, WITHDRAWAL, DEPOSIT, INQUIRY, TRANSFER,
ABAL, TBAL, ABAL_BID, and TBAL_BID. You can use them as road maps through the source code
of the bankapp servers.

Listing 3-4 BR_ADD Pseudo-code

void BR_ADD (TPSVCINFO *transb)
{

-set pointer to TPSVCINFO data buffer;
-get all values for service request from field buffer;
-insert record into BRANCH;
-tpreturn() with success;

}

INQUIRY TLR FML buffer • Retrieves an account balance
• Validates ACCOUNT_ID

TRANSFER XFER FML buffer • Issues a tpcall()
requesting WITHDRAWAL
followed by one requesting
DEPOSIT

ABAL BAL VIEW buffer of
aud.v

• Calculates account balances
for all branches on a given
site

TBAL BAL VIEW buffer of
aud.v as input

• Calculates the teller balances
for all branches on a given
site

ABAL_BID BAL VIEW buffer of
aud.v as input

• Calculates the account
balances for a specific
BRANCH_ID

TBAL_BID BAL VIEW buffer of
aud.v as input

• Calculates the teller balances
for a specific BRANCH_ID

This Service Offered by this
Server

With this Input Performs this Function

3-18 Tutorials for Developing Oracle Tuxedo ATMI Applications

Listing 3-5 TLR_ADD Pseudo-code

void TLR_ADD (TPSVCINFO *transb)
{

-set pointer to TPSVCINFO data buffer;
-get all values for service request from fielded buffer;
-get TELLER_ID by reading branch's LAST_ACCT;
-insert teller record;
-update BRANCH with new LAST_TELLER;
-tpreturn() with success;

}

Listing 3-6 OPEN_ACCT Pseudo-code

void OPEN_ACCT(TPSVCINFO *transb)
{

-Extract all values for service request from fielded buffer using Fget()
and Fvall();
-Check that initial deposit is positive amount and tpreturn() with
failure if not;
-Check that branch ID is a legal value and tpreturn() with failure if it
is not;
-Set transaction consistency level to read/write;
-Retrieve BRANCH record to choose new account based on branch's LAST_ACCT
field;
-Insert new account record into ACCOUNT file;
-Update BRANCH record with new value for LAST_ACCT;
-Create deposit request buffer with tpalloc(); initialize it for FML with
Finit();
-Fill deposit buffer with values for DEPOSIT service request;
-Increase priority of coming DEPOSIT request since call is from a

service;
-Do tpcall() to DEPOSIT service to add amount of initial balance;
-Prepare return buffer with necessary information;
-Free deposit request buffer with tpfree();
tpreturn() with success;

}

Examin ing the bankapp Servers and Serv ices

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-19

Listing 3-7 CLOSE_ACCT Pseudo-code

void CLOSE_ACCT(TPSVCINFO *transb)
{

-Extract account ID from fielded buffer using Fvall();
-Check that account ID is a legal value and tpreturn() with failure if it
is not;

-Set transaction consistency level to read/write;
-Retrieve ACCOUNT record to determine amount of final withdrawal;
-Create withdrawal request buffer with tpalloc(); initialize it for FML
with Finit();

-Fill withdrawal buffer with values for WITHDRAWAL service request;
-Increase priority of coming WITHDRAWAL request since call is from
a service;

-Do tpcall() to WITHDRAWAL service to withdraw balance of account;
-Delete ACCOUNT record;
-Prepare return buffer with necessary information;
-Free withdrawal request buffer with tpfree();
tpreturn with success;

}

Listing 3-8 WITHDRAWAL Pseudo-code

void WITHDRAWAL(TPSVCINFO *transb)
{

-Extract account id and amount from fielded buffer using Fvall() and
Fget();

-Check that account id is a legal value and tpreturn() with failure if not;
-Check that withdraw amount (amt) is positive and tpreturn() with

failure
if not;

-Set transaction consistency level to read/write;
-Retrieve ACCOUNT record to get account balance;
-Check that amount of withdrawal does not exceed ACCOUNT balance;
-Retrieve TELLER record to get teller's balance and branch id;
-Check that amount of withdrawal does not exceed TELLER balance;
-Retrieve BRANCH record to get branch balance;
-Check that amount of withdrawal does not exceed BRANCH balance;
-Subtract amt to obtain new account balance;
-Update ACCOUNT record with new account balance;
-Subtract amt to obtain new teller balance;
-Update TELLER record with new teller balance;
-Subtract amt to obtain new branch balance;
-Update BRANCH record with new branch balance;
-Insert new HISTORY record with transaction information;

3-20 Tutorials for Developing Oracle Tuxedo ATMI Applications

-Prepare return buffer with necessary information;
tpreturn with success;

}

Listing 3-9 DEPOSIT Pseudo-code

void DEPOSIT(TPSVCINFO *transb)
{

-Extract account id and amount from fielded buffer using Fvall() and
Fget();

-Check that account ID is a legal value and tpreturn() with failure if not;
-Check that deposit amount (amt) is positive and tpreturn() with failure if

not;
-Set transaction consistency level to read/write;
-Retrieve ACCOUNT record to get account balance;
-Retrieve TELLER record to get teller's balance and branch ID;
-Retrieve BRANCH record to get branch balance;
-Add amt to obtain new account balance;
-Update ACCOUNT record with new account balance;
-Add amt to obtain new teller balance;
-Update TELLER record with new teller balance;
-Add amt to obtain new branch balance;
-Update BRANCH record with new branch balance;
-Insert new HISTORY record with transaction information;
-Prepare return buffer with necessary information;
tpreturn() with success;

}

Listing 3-10 INQUIRY Pseudo-code

void INQUIRY(TPSVCINFO *transb)
{

-Extract account ID from fielded buffer using Fvall();
-Check that account ID is a legal value and tpreturn() with failure if not;
-Set transaction consistency level to read only;
-Retrieve ACCOUNT record to get account balance;
-Prepare return buffer with necessary information;
tpreturn() with success;

}

Examin ing the bankapp Servers and Serv ices

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-21

Listing 3-11 TRANSFER Pseudo-code

void TRANSFER(TPSVCINFO *transb)
{

-Extract account ID's and amount from fielded buffer using Fvall()
and Fget();

-Check that both account IDs are legal values and tpreturn() with
failure if not;

-Check that transfer amount is positive and tpreturn() with failure if
it is not;

-Create withdrawal request buffer with tpalloc(); initialize it for
FML with
Finit();
-Fill withdrawal request buffer with values for WITHDRAWAL service

request;
-Increase priority of coming WITHDRAWAL request since call is from
a service;

-Do tpcall() to WITHDRAWAL service;
-Get information from returned request buffer;
-Reinitialize withdrawal request buffer for use as deposit request buffer

with Finit();
-Fill deposit request buffer with values for DEPOSIT service request;
-Increase priority of coming DEPOSIT request;
-Do tpcall() to DEPOSIT service;
-Prepare return buffer with necessary information;
-Free withdrawal/deposit request buffer with tpfree();
tpreturn() with success;

}

Listing 3-12 ABAL Pseudo-code

void ABAL(TPSVCINFO *transb)
{

-Set transaction consistency level to read only;
-Retrieve sum of all ACCOUNT file BALANCE values for the

database of this server group (A single ESQL
statement is sufficient);

-Place sum into return buffer data structure;
tpreturn() with success;

}

3-22 Tutorials for Developing Oracle Tuxedo ATMI Applications

Listing 3-13 TBAL Pseudo-code

void TBAL(TPSVCINFO *transb)
{

-Set transaction consistency level to read only;
-Retrieve sum of all TELLER file BALANCE values for the

database of this server group (A single ESQL
statement is sufficient);

-Place sum into return buffer data structure;
tpreturn() with success;

}

Listing 3-14 ABAL_BID Pseudo-code

void ABAL_BID(TPSVCINFO *transb)
{

-Set transaction consistency level to read only;
-Set branch_ID based on transb buffer;
-Retrieve sum of all ACCOUNT file BALANCE values for records

having BRANCH_ID = branch_ID (A single ESQL
statement is sufficient);

-Place sum into return buffer data structure;
tpreturn() with success;

}

Listing 3-15 TBAL_BID Pseudo-code

void TBAL_BID(TPSVCINFO *transb)
{

-Set transaction consistency level to read only;
-Set branch_ID based on transb buffer;
-Retrieve sum of all TELLER file BALANCE values for records

having BRANCH_ID = branch_ID (A single ESQL
statement is sufficient);

-Place sum into return buffer data structure;
tpreturn() with success;

}

Examin ing the bankapp Servers and Serv ices

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-23

Utilities Incorporated into Servers
Two C subroutines are included among the source files for bankapp: appinit.c and util.c:

appinit.c contains application-specific versions of the tpsvrinit() and tpsvrdone()
subroutines. tpsvrinit() and tpsvrdone() are subroutines included in the standard
Oracle Tuxedo ATMI main(). The default version of tpsvrinit() calls two functions:
tpopen(), to open the resource manager, and userlog(), to post a message that the
server has started. The default version of tpsvrdone() also calls two functions:
tpclose(), to close the resource manager, and userlog(), to post a message that the
server is about to shut down. Any application subroutines named tpsvrinit() and
tpsvrdone() can be used in place of the default subroutines, thus enabling an application
to provide initialization and pre-shutdown procedures of its own.

util.c contains a subroutine called getstr(), which is used in bankapp to process SQL
error messages.

Alternative Way to Code Services
In the bankapp source files all the services were incorporated into files that are referred to as the
source code for servers. These files have the same names as the bankapp servers, but are not
really servers because they do not contain a main() section. A standard main() is provided by
Oracle Tuxedo ATMI at buildserver time.

An alternative organization for an Oracle Tuxedo system application is to keep each service
subroutine in a separate file. Suppose, for example, that you want to use this alternative structure
for the TLR server. The TLR.ec file contains three services that you maintain in three separate
.ec files: INQUIRY.ec, WITHDRAW.ec, and DEPOSIT.ec. Follow these steps.

1. Compile each .ec file into a .o file.

2. Run the buildserver command specifying each .o file with a separate invocation of the -f
option.

 buildserver -r TUXEDO/SQL \
 -s DEPOSIT -s WITHDRAWAL -s INQUIRY \
 -o TLR \
 -f DEPOSIT.o -f WITHDRAW.o -f INQUIRY.o \
 -f util.o -f -lm

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates a line break for presentation purposes only. You should enter the
command and options on one line

3-24 Tutorials for Developing Oracle Tuxedo ATMI Applications

As this example illustrates, you do not need to code all the service functions in a single source
file. In other words, a server does not need to exist as a source program file at all. It can be derived
from various source files and exist as a server executable through the files specified on the
buildserver command line. This can give you greater flexibility in building servers.

See Also
“Familiarizing Yourself with bankapp” on page 3-2

“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

buildserver(1) in the Oracle Tuxedo Command Reference

Oracle Tuxedo Command Reference

Preparing bankapp Files and Resources
This documentation leads you through the procedures you must complete to create the files and
other resources you need to run bankapp.

Click on each task for instructions on completing that task.

../int/intatm.html

Step 1 : How to Se t the Env i ronment Var iab les

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-25

Step 1: How to Set the Environment Variables
The environment variables are defined in the bankvar file. The file is large (approximately 185
lines) because it includes extensive comments.

1. In a text editor, familiarize yourself with the bankvar file.

– The first key line checks whether TUXDIR is set. If it is not set, execution of the file
fails with the following message:

TUXDIR: parameter null or not set

2. Set TUXDIR to the root directory of your Oracle Tuxedo system directory structure, and export
it.

3. Another line in bankvar sets APPDIR to the directory ${TUXDIR}/samples/atmi/bankapp,
which is the directory where bankapp source files are located. APPDIR is a directory where
the Oracle Tuxedo system looks for your application-specific files. You may prefer to copy

3-26 Tutorials for Developing Oracle Tuxedo ATMI Applications

the bankapp files to a different directory to safeguard the original source files. If you do, enter
the directory there. It does not have to be under TUXDIR.

4. Set a value for DIPCKEY. This is an IPCKEY for an Oracle Tuxedo system database. The value
of DIPCKEY must be different from the value of the Oracle Tuxedo system IPCKEY specified
in the UBBCONFIG file.

Note: Other variables specified in bankvar play various roles in the sample application;
you need to be aware of them when you are developing your own application. By
including them all in bankvar, we provide you with a “template” that you may want
to adapt at a later time for use with a real application.

5. When you have made all the required changes to bankvar, execute bankvar as follows:

. ./bankvar

Listing 3-16 bankvar: Environment Variables for bankapp

Copyright (c) 1997, 1996 BEA Systems, Inc.
Copyright (c) 1995, 1994 Novell, Inc.
Copyright (c) 1993, 1992, 1991, 1990 Unix System Laboratories, Inc.
All rights reserved

This file sets all the environment variables needed by the TUXEDO software
to run the bankapp
#
This directory contains all the TUXEDO software
System administrator must set this variable
#
if [-z "${TUXDIR}"] ; then
 if [! -z "${ROOTDIR}"] ; then
 TUXDIR=$ROOTDIR
 export TUXDIR
 fi
 fi
TUXDIR=${TUXDIR:?}
#
Reset LANG if necessary
#
if [! -d ${TUXDIR}/locale/C -a -d ${TUXDIR}/locale/english_us] ; then
 export LANG
 LANG=english_us.ascii
fi
#
This directory contains all the user written code
#

Step 1 : How to Se t the Env i ronment Var iab les

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-27

Contains the full path name of the directory that the application
generator should place the files it creates
#
APPDIR=${TUXDIR}/apps/bankapp
#
This path contains the shared objects that are dynamically linked at
runtime in certain environments, e.g., SVR4.
#
LD_LIBRARY_PATH=${TUXDIR}/lib:${LD_LIBRARY_PATH}
#
Set the path to shared objects in HP-UX
#
SHLIB_PATH=${TUXDIR}/lib:${SHLIB_PATH}
#
Set the path to shared objects in AIX
#
LIBPATH=${TUXDIR}/lib:/usr/lib:${LIBPATH}
#
Logical block size; Database Administrator must set this variable
#
BLKSIZE=512
#
Set default name of the database to be used by database utilities
and database creation scripts
#
DBNAME=bankdb
#
Indicate whether database is to be opened in share or private mode
#
DBPRIVATE=no

Set Ipc Key for the database; this MUST differ from the UBBCONFIG
*RESOURCES IPCKEY parameter
#
DIPCKEY=80953
#
Environment file to be used by tmloadcf
#
ENVFILE=${APPDIR}/ENVFILE
#
List of field table files to be used by mc, viewc, tmloadcf, etc.
#
FIELDTBLS=Usysflds,bankflds,creditflds,eventflds
#
FIELDTBLS32=Usysfl32,evt_mib,tpadm
#
List of directories to search to find field table files
#
FLDTBLDIR=${TUXDIR}/udataobj:${APPDIR}

3-28 Tutorials for Developing Oracle Tuxedo ATMI Applications

#
FLDTBLDIR32=${TUXDIR}/udataobj:${APPDIR}
#
Universal Device List for database
#
FSCONFIG=${APPDIR}/bankdl1
#
Network address, used in MENU script
#
NADDR=
#
Network device name
#
NDEVICE=
#
Network listener address, used in MENU script
#
NLSADDR=
#
Make sure TERM is set
#
TERM=${TERM:?}
#
Set device for the transaction log; this should match the TLOGDEVICE
parameter under this site's LMID in the *MACHINES section of the
UBBCONFIG file
#
TLOGDEVICE=${APPDIR}/TLOG
#
Device for binary file that gives the BEA Tuxedo system all its information
#
TUXCONFIG=${APPDIR}/tuxconfig
#
Set the prefix of the file which is to contain the central user log;
this should match the ULOGPFX parameter under this site's LMID in the
*MACHINES section of the UBBCONFIG file
#
ULOGPFX=${APPDIR}/ULOG
#
System name, used by RUNME.sh
#
UNAME=
#
List of view files to be used by viewc, tmloadcf, etc.
#
VIEWFILES=aud.V
#
VIEWFILES32=mib_views,tmib_views
#

Step 1 : How to Se t the Env i ronment Var iab les

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-29

List of directories to search to find view files
#
VIEWDIR=${TUXDIR}/udataobj:${APPDIR}
#
VIEWDIR32=${TUXDIR}/udataobj:${APPDIR}
#
Specify the Q device (if events included in demo)
#
QMCONFIG=${APPDIR}/qdevice
#
Export all variables just set
#
export TUXDIR APPDIR BLKSIZE DBNAME DBPRIVATE DIPCKEY ENVFILE
export LD_LIBRARY_PATH SHLIB_PATH LIBPATH
export FIELDTBLS FLDTBLDIR FSCONFIG MASKPATH OKXACTS TERM
export FIELDTBLS32 FLDTBLDIR32
export TLOGDEVICE TUXCONFIG ULOGPFX
export VIEWDIR VIEWFILES
export VIEWDIR32 VIEWFILES32
export QMCONFIG
#
Add TUXDIR/bin to PATH if not already there
#
a="`echo $PATH | grep ${TUXDIR}/bin`"
if [x"$a" = x]
then
 PATH=${TUXDIR}/bin:${PATH}
 export PATH
fi
#
Add APPDIR to PATH if not already there
#
a="`echo $PATH | grep ${APPDIR}`"
if [x"$a" = x]
then
 PATH=${PATH}:${APPDIR}
 export PATH
fi

#
Check for other machine types bin directories
#
for DIR in /usr/5bin /usr/ccs/bin /opt/SUNWspro/bin
do

if [-d ${DIR}] ; then
 PATH="${DIR}:${PATH}"
fi
done

3-30 Tutorials for Developing Oracle Tuxedo ATMI Applications

Note: If your operating system is Sun Solaris, you must do two things: use /bin/sh rather than
csh for your shell place; and specify /usr/5bin at the beginning of your PATH, as
follows.
PATH=/usr/5bin:$PATH;export PATH

See Also
“Preparing bankapp Files and Resources” on page 3-24

Step 2: Building Servers in bankapp
buildserver(1) puts together an executable ATMI server built on the Oracle Tuxedo ATMI
main(). Options identify the names of the output file, the input files provided by the application,
and various libraries that permit you to run an Oracle Tuxedo system application in a variety of
ways.

buildserver invokes the cc command. The environment variables CC and CFLAGS can be set to
name an alternative compile command and to set flags for the compile and link edit phases. The
buildserver command is used in bankapp.mk to compile and build each server in the banking
application. The following sections describe the six bankapp servers:

How to Build ACCT Server

How to Build the BAL Server

How to Build the BTADD Server

How to Build the TLR Server

How to Build the XFER Server

Step 3: Editing the bankapp Makefile

How to Build ACCT Server
The ACCT server is derived from a file called ACCT.ec that contains the code for the OPEN_ACCT
and CLOSE_ACCT functions. It is created in two steps. ACCT.ec is first compiled to an ACCT.o
file, which is then specified to the buildserver command so that any compile-time errors can
be identified and resolved.

Step 2 : Bu i ld ing Serve rs in bankapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-31

1. Create the ACCT.o file (performed for you in bankapp.mk):

– The .c file is generated as follows: esql ACCT.ec.

– The .o file is generated as follows: cc -I $TUXDIR/include -c ACCT.c.

– The ACCT server is created by running the following buildserver command line.

 buildserver -r TUXEDO/SQL \
 -s OPEN_ACCT -s CLOSE_ACCT \
 -o ACCT \
 -f ACCT.o -f appinit.o -f util.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates a line break for presentation purposes only. You should enter the
command and options on one line.

Following is an explanation of the buildserver command-line options:

The -r option is used to specify which resource manager access libraries should be link
edited with the executable server. The choice is specified with the string TUXEDO/SQL.

The -s option is used to specify the names of the services in the server that are available to
be advertised when the server is booted. If the name of a function that performs a service is
different from the corresponding service name, the function name becomes part of the
argument to the -s option.
In bankapp, the function name is always the same as the name of the corresponding
service so only the service names themselves need to be specified. It is our convention to
spell all service names in all uppercase. For example, the OPEN_ACCT service is processed
by the function OPEN_ACCT(). However, the -s option to buildserver does allow you to
specify an arbitrary name for the processing function for a service within a server. Refer to
the buildserver(1) reference page for details. It is also possible for an administrator to
specify that only a subset of the services used to create the server with the buildserver
command is to be available when the server is booted.

The -o option is used to assign a name to the executable output file. If no name is
provided, the file is named SERVER.

The -f option specifies the files that are used in the link-edit phase. (For related
information, see the description of the -l option on the buildserver(1) reference page.)
The order in which the files are listed depends on function references and the libraries in
which those references are resolved. Source modules should be listed before libraries that
might be used to resolve their references. If these are .c files, they are first compiled. (In
the example above, appinit.o and util.o have been already compiled.) Object files can
be either separate .o files or groups of files in archive (.a) files. If more than one filename
is given as an argument to the -f option, the list must be enclosed in double quotation

3-32 Tutorials for Developing Oracle Tuxedo ATMI Applications

marks. Although the -f option takes only one file or one list of files (enclosed in double
quotation marks) as an argument, you can include the -f option as many times as
necessary on a single command line.

To summarize, the options specified on the buildserver command line used to create the ACCT
server performed the following functions:

The -r option specifies the Oracle Tuxedo system SQL resource manager.

The -s option names the OPEN_ACCT and CLOSE_ACCT services (which are defined by
functions of the same name in the ACCT.ec file) to be the services that make up the ACCT
server.

 The -o option assigns the name ACCT to the executable output file.

The -f option specifies that the ACCT.o, appinit.o, and util.o files are to be used in
the link-edit phase of the build.

Note: The appinit.c file contains the system-supplied tpsvrinit() and tpsvrdone().
(Refer to tpservice(3c) reference pages for an explanation of how these routines are
used.)

How to Build the BAL Server
The BAL server is derived from a file called BAL.ec that contains the code for the ABAL, TBAL,
ABAL_BID, and TBAL_BID functions. As with ACCT.ec, the BAL.ec is first compiled to a BAL.o
file before being supplied to the buildserver command so that any compile-time errors can be
identified and resolved.

1. Modify the buildserver command used to create the BAL server as follows:

 buildserver -r TUXEDO/SQL \
 -s ABAL -s TBAL -s ABAL_BID -s TBAL_BID\
 -o BAL \
 -f BAL.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates a line break for presentation purposes only. You should enter the
command and options on one line.

– Use the -r option to specify the Oracle Tuxedo system SQL resource manager.

– Use the -s option to name the ABAL, TBAL, ABAL_BID, TBAL_BID services that make up
the BAL server. The functions in the BAL.ec file that define these services have
identical names.

Step 2 : Bu i ld ing Serve rs in bankapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-33

– Use the -o option to assign the name BAL to the executable server.

– Use the -f option to specify that the BAL.o and the appinit.o files are to be used in
the link-edit phase.

How to Build the BTADD Server
The BTADD server is derived from a file called BTADD.ec that contains the code for the BR_ADD
and TLR_ADD functions. The BTADD.ec is compiled to a BTADD.o file before being supplied to
the buildserver command.

1. Modify the buildserver command used to create the BTADD server as follows:

 buildserver -r TUXEDO/SQL \
 -s BR_ADD -s TLR_ADD \
 -o BTADD \
 -f BTADD.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates a line break for presentation purposes only. You should enter the
command and options on one line.

– Use the -r option to specify the Oracle Tuxedo system SQL resource manager.

– Use the -s option to name the BR_ADD and TLR_ADD services that make up the BTADD
server. The functions in the BTADD.ec file that define these services have identical
names.

– Use the -o option to assign the name BTADD to the executable server.

– Use the -f option to specify that the BTADD.o and appinit.o files are to be used in
the link-edit phase.

How to Build the TLR Server
The TLR server is derived from a file called TLR.ec that contains the code for the DEPOSIT,
WITHDRAWAL, and INQUIRY functions. The TLR.ec is also compiled to a TLR.o file before being
supplied to the buildserver command.

1. Modify the buildserver command used to create the TLR server as follows:

 buildserver -r TUXEDO/SQL \
 -s DEPOSIT -s WITHDRAWAL -s INQUIRY \
 -o TLR \
 -f TLR.o -f util.o -f -lm

3-34 Tutorials for Developing Oracle Tuxedo ATMI Applications

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates a line break for presentation purposes only. You should enter the
command and options on one line.

– Use the -r option to specify the Oracle Tuxedo system SQL resource manager.

– Use the -s option to name the DEPOSIT, WITHDRAWAL, and INQUIRY services that make
up the TLR server. The functions in the TLR.ec file that define these services have
identical names.

– Use the -o option to assign the name TLR to the executable server.

– Use the -f option to specify that the TLR.o and the util.o files are to be used in the
link-edit phase.

Note: In this example, the -f option is used to pass an option (-lm) to the cc command,
which is invoked by buildserver. The -lm argument to -f causes the math libraries
to be linked in at compile time.

(Refer to cc(1) in the UNIX System V User's Reference Manual for a complete list of
compile-time options.)

How to Build the XFER Server
The XFER server is derived from a file called XFER.c that contains the code for the TRANSFER
function. The XFER.c is also compiled to an XFER.o file before being supplied to the
buildserver command.

1. Modify the buildserver command used to create the XFER server as follows:

 buildserver -r TUXEDO/SQL \
 -s TRANSFER \
 -o XFER \
 -f XFER.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates a line break for presentation purposes only. You should enter the
command and options on one line.

– Use the -r option to specify the Oracle Tuxedo system SQL resource manager.

– Use the -s option to name the TRANSFER service that makes up the XFER server. The
function in the XFER.c file that defines the TRANSFER service has the identical name.

– Use the -o option to assign the name XFER to the executable server.

Step 3 : Ed i t ing the bankapp Makef i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-35

– Use the -f option to specify that the XFER.o and the appinit.o files are to be used in
the link-edit phase.

Servers Built in the bankapp.mk File
The topics on creating the bankapp servers are important to your understanding of how the
buildserver command is specified. However, in actual practice you are apt to incorporate the
build into a makefile; that is the way it is done in bankapp.

Step 3: Editing the bankapp Makefile
bankapp includes a makefile that makes all scripts executable, converts the view description file
to binary format, and does all the precompiles, compiles, and builds necessary to create
application servers. It can also be used to clean up when you want to make a fresh start.

As bankapp.mk is delivered, there are a few fields you may want to edit, and some others that
may benefit from some explanation.

How to Edit the TUXDIR Parameter
1. Review bankapp.mk, about 40 lines into the file, where you come to the following comment

and the TUXDIR parameter:

 #
 # Root directory of TUXEDO System. This file must either be edited to set
 # this value correctly, or the correct value must be passed via "make -f
 # bankapp.mk TUXDIR=/correct/tuxdir", or the build of bankapp will fail.
 #
 TUXDIR=../..

2. Set the TUXDIR parameter to the absolute pathname of the root directory of your Oracle
Tuxedo system installation.

How to Edit the APPDIR Parameter
1. Review the setting of the APPDIR parameter. As bankapp is delivered, APPDIR is set to the

directory in which the bankapp files are located, relative to TUXDIR. The following section
of bankapp.mk defines and describes the setting of APPDIR.

 #
 # Directory where the bankapp application source and executables reside.
 # This file must either be edited to set this value correctly, or the
 # correct value must be passed via "make -f bankapp.mk

3-36 Tutorials for Developing Oracle Tuxedo ATMI Applications

 # APPDIR=/correct/appdir", or the build of bankapp will fail.
 #
 APPDIR=$(TUXDIR)/samples/atmi/bankapp
 #

2. If you copied the files to another directory, as suggested in the README file, you should set
APPDIR to the name of the directory to which you copied the files. When you run the makefile,
the application is built in this directory.

How to Set the Resource Manager Parameters
By default, bankapp is set up to use the Oracle Tuxedo/SQL as the database resource manager.
This arrangement is based on the assumption that you have the Oracle Tuxedo system database
on your system. If this is not the case, you should set the RM parameter to the name of your
resource manager as listed in TUXDIR/udataobj/RM.

 #

 # Resource Manager

 #

 RM=TUXEDO/SQL

 #

Note: The Oracle Tuxedo SQL resource manager is included for demonstration purposes only.

How to Run the bankapp.mk File
1. When you have completed the changes you wish to make to bankapp.mk, run it with the

following command line:

 nohup make -f bankapp.mk &

2. Check the nohup.out file to make sure the process completed successfully.

Note: bankvar sets a number of parameters that are referenced when bankapp.mk is run.

See Also
“Preparing bankapp Files and Resources” on page 3-24

Step 4: Creating the bankapp Database
This documentation describes the interface between bankapp and a resource manager, typically
a database management system, and how to create the database for bankapp. bankapp is

Step 5 : P repar ing fo r an XA-Compl iant Resource Manager

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-37

designed to use the Oracle Tuxedo/SQL facilities of the Oracle Tuxedo system database, which
is an XA-compliant resource manager.

Note: The Oracle Tuxedo SQL resource manager is included for demonstration purposes only.

How you create the bankapp database depends on whether you bring up the application on a
single processor (SHM mode) or on a network of more than one processor (MP mode).

How to Create the Database in SHM Mode
1. Set the environment by typing the following:

 . ./bankvar

2. Execute crbank. crbank calls crbankdb three times, changing some environment variables
each time, so that you end up with three database files on a single machine. As a result, you
can simulate the multi-machine environment of the Oracle Tuxedo system without a network
of machines.

How to Create the Database in MP Mode
1. Set the environment by typing the following:

 . ./bankvar

Note: You may have already set your environment variables. For detailed instructions, see
“How to Set Environment Variables.”

2. Run crbankdb to create the database for this site.

3. On each additional machine in your Oracle Tuxedo system network, edit bankvar to
provide the pathname for the FSCONFIG variable that is used for that site in the configuration
file, ubbmp. Then repeat steps 1 and 2.

See Also
“Preparing bankapp Files and Resources” on page 3-24

Step 5: Preparing for an XA-Compliant Resource
Manager

To run bankapp with an alternative XA-compliant resource manager, you must modify various
files. This section describes the following:

3-38 Tutorials for Developing Oracle Tuxedo ATMI Applications

How to Change the bankvar File

How to Change the bankapp Services

How to Change the bankapp.mk File

How to Change crbank and crbankdb

How to Change the Configuration File

How to Change the bankvar File
1. Review the following environment variables that are assigned the values shown here, by

default, to create the Oracle Tuxedo system database:
 BLKSIZE=512

 DBNAME=bankdb

 DBPRIVATE=no

 DIPCKEY=80953

 FSCONFIG=${APPDIR}/bankdl1

Note: These environment variables pertain to the Oracle Tuxedo system only; you may
need to set different environment variables or other mechanisms depending on your
specific database management system requirements.

2. Change the value of these variables as needed to create the database for your resource
manager.

How to Change the bankapp Services
Because all database access in bankapp is performed with embedded SQL statements, if your
new resource manager supports SQL, you should have no problem. The utility appinit.c
includes calls to tpopen() and tpclose().

How to Change the bankapp.mk File
1. Edit the RM parameter in bankapp.mk to name the new resource manager.

2. Ensure that the following entry is in the RM file.

$TUXDIR/udataobj/RM

Step 5 : P repar ing fo r an XA-Compl iant Resource Manager

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-39

3. If necessary, change the name of the SQL compiler and its options. The name of the source
file may or may not include .ec. You may have to specify a non-default for compiling the
resulting .c file.

How to Change crbank and crbankdb
1. crbank may be ignored by your alternate resource manager. Its only functions are to reset

variables and to run crbankdb three times.

2. crbankdb, on the other hand, requires close attention. The following code listing is the
beginning of the crbankdb script. It is followed by an explanation of parts of the code that do
not work with a resource manager that is not supplied with the Oracle Tuxedo system.

Listing 3-17 Excerpt from the crbankdb Script

#Copyright (c) BEA Systems, Inc.
#All rights reserved
#
Create device list
#
dbadmin<<!
echo
crdl
Replace the following line with your device zero entry
${FSCONFIG} 0 2560
!
#
Create database files, fields, and secondary indices
#
sql<<!
echo
create database ${DBNAME} with (DEVNAME='${FSCONFIG}',

IPCKEY=${DIPCKEY}, LOGBLOCKING=0, MAXDEV=1,
NBLKTBL=200, NBLOCKS=2048, NBUF=70, NFIELDS=80,
NFILES=20, NFLDNAMES=60, NFREEPART=40, NLCKTBL=200,
NLINKS=80, NPREDS=10, NPROCTBL=20, NSKEYS=20,
NSWAP=50, NTABLES=20, NTRANTBL=20, PERM='0666',
STATISTICS='n'

)

create table BRANCH (
BRANCH_ID integer not null,
BALANCE real,
LAST_ACCT integer,
LAST_TELLER integer,

3-40 Tutorials for Developing Oracle Tuxedo ATMI Applications

PHONE char(14),
ADDRESS char(60),
primary key(BRANCH_ID)

) with (
FILETYPE='hash', ICF='PI', FIELDED='FML',
BLOCKLEN=${BLKSIZE}, DBLKS=8, OVBLKS=2

)

The first 40 lines give you an idea of what needs to be changed and what may be kept unchanged.
As you can see, crbankdb is made up of two documents that provide input to the dbadmin and
sql shell commands. The first here file is passed to the Oracle Tuxedo system command
dbadmin to create a device list for the database.

This command does not work with non-Oracle Tuxedo resource managers. Other commands may
be needed to create table spaces and/or grant the correct privileges.

How to Change the Configuration File
In the GROUPS section, specify appropriate values (that is, values that are recognized by your
resource manager) for the TMSNAME and OPENINFO parameters.

How to Integrate bankapp with Oracle (XA RM) for a
Windows 2003 Platform

1. Edit the nt\bankvar.cmd and supply suitable values for the following environment
variables:

TUXDIR : Root directory for the BEA TUXEDO system installation

APPDIR : Application directory in which bankapp files are located

ORACLE_HOME : Root directory of the Oracle8 installation

ORACLE_SID : Oracle System ID

BLK_SIZE: Logical block size

DBNAME: default name of the database to be used by database utilities
and database creation scripts

DBPRIVATE: indicates whether database is to be opened in share or
private mode (yes or no)

FSCONFIG:Universal Device List for database

How to In tegra te bankapp wi th Orac le (XA RM) fo r a Windows 2003 P la t fo rm

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-41

PATH=%TUXDIR%\bin;%TUXDIR%\include;%TUXDIR%\lib;%ORACLE_HOME%\bin;%P
ATH%

INCLUDE=%ORACLE_HOME%\rdbms80\xa;
%ORACLE_HOME%\pro80\c\include;%include%

NLSPATH=%TUXDIR%\locale\C

PLATFORM=inwnt40

LIB=%TUXDIR%\lib; %ORACLE_HOME%\pro80\lib\msvc;
%ORACLE_HOME%\rdbms80\xa; %lib%;

2. Run the script to set up the environment:

>bankvar

3. Edit the TUXDIR\udataobj\RM file as follows:

– Append the following line to the $TUXDIR\udataobj\RM file:

Oracle_XA;xaosw;%ORACLE_HOME%\pro80\lib\msvc\sqllib80.lib
%ORACLE_HOME%\RDBMS80\XA\xa80.lib

or if Oracle exists over the network:

– Map the machine to a drive, for example, F.

– Append the following line to the $TUXDIR\udataobj\RM file:

Oracle_XA;xaosw;f:\orant\pro80\lib\msvc\sqllib80.lib
f:\orant\RDBMS80\XA\xa80.lib

– Remove any previous entry of Oracle_XA in the RM file>

4. Build the Transaction Manager Server for Oracle8:

cd $APPDIR
buildtms -r Oracle_XA -o TMS_ORA

5. Edit the nt\bankapp.mak file as indicated in the following table.

Task Value

Specify values for the following
environment variables.

TUXDIR=Root directory for the Oracle Tuxedo system installation

APPDIR=Application directory in which bankapp files are located

RM=Oracle_XA

3-42 Tutorials for Developing Oracle Tuxedo ATMI Applications

6. Update the *.ec files. Use Oracle SQL commands.

7. Run the makefile:

copy nt\bankapp.mak to %APPDIR%
nmake -f bankapp.mak

8. Edit nt\ubbshm as follows:

USER_ID=0
GROUP_ID=0
UNAME_SITE1=nodename returned by hostname
TUXDIR=same as specified in bankvar
APPDIR=same as specified in bankvar

9. In the GROUPS section of the configuration file, enter the following changes:

TMSNAME=TMS_ORA
BANKB1 GRPNO=1
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/user1/PaSsWd1+SesTm=0+LogDir=."

ORACLE_LIBS=$(ORACLE_HOME)\PRO80\LIB

RMNAME=Oracle_XA

SQLPUBLIC=$(ORACLE_HOME)\PRO80\C\INCLUDE

CFLAGS=$(HOST) -DNOWHAT=1 $(CGFLAGS) $(DFML32)

CGFLAGS=-DWIN32 -W3 -MD -nologo

ORACLE_DIR=$(ORACLE_HOME)\bin

INCDIR=$(TUXDIR)\include

CC=cl

In the .ec.c section, Edit rules for
creating C programs from embedded
SQL programs, (use the proc compiler),
set the following values.

set TUXDIR=$(TUXDIR) & $(ORACLE_DIR)\proc80
mode=ansi release_cursor=yes
include=$(SQLPUBLIC) include=$(INCDIR)
$(SQL_PLATFORM_INC) -c iname=$*.ec

In the .c.obj section, Edit rule for
creating object files from C programs,
set the following values.

$(CC) -c $(CFLAGS) $(SQLPUBLIC) $(INCLUDE) $*.c

Task Value

How to In tegra te bankapp wi th Orac le (XA RM) fo r a Windows 2003 P la t fo rm

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-43

[
Oracle_XA +
 required fields:
 Acc=P/oracle_user_id/oracle_password +
 SesTm=Session_time_limit (maximum time a transaction can be inactive) +
 optional fields:
 LogDir=logdir (where XA library trace file is located) +
 MaxCur=maximum_#_of_open cursors +
 SqlNet=connect_string (if Oracle exists over the network)
 (eg. SqlNet=hqfin@NEWDB indicates the database with sid=NEWDB accessed
at host hqfin by TCP/IP)
]
BANKB2 GRPNO=2
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/user2/PaSsWd2+SesTm=0+LogDir=."
BANKB3 GRPNO=3
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/user3/PaSsWd3+SesTm=0+LogDir=."

10. Create the Oracle Tuxedo configuration binary file:

tmloadcf -y nt/ubbshm

11. Create the device list and the TLOG device on the master machine:

crtlog -m

12. Start up the Oracle database instance if not already started.

13. Boot the Oracle Tuxedo system servers:

tmboot -y

14. Ensure that the view v$XATRANS$ exists on the database. (The view V$XATRANS$ should have
been created during the XA library installation.)

15. If the v$XATRANS$ view has not been created, create it as follows:

– Ensure that the environment variables ORACLE_HOME and ORACLE_SID are set.

– Log in to the database as user SYS:

Execute the sql script ${ORACLE_HOME}/RDBMS80/ADMIN/XAVIEW.sql

– Grant select privileges to this view for all Oracle account applications that will use the
XA library.

16. Create the bankapp database and database objects for Oracle RM:

– Log in to any of the Oracle utilities SQL*plus or SQL*DBA as any Oracle user.
– notepad crbank-ora8.sql

3-44 Tutorials for Developing Oracle Tuxedo ATMI Applications

– When Oracle8 is installed, a sample database is created. You can use this database for
the bankapp application. The sql script provided, creates a new tablespace in the
database to hold all the database objects of bankapp.The script prompts for the Oracle
system user password as well as a full path name of a file to use as the new tablespace.

– Edit crbank-ora8.sql as follows:

WHENEVER OSERROR EXIT ;
/*Obtain the password for user "system" */
PROMPT
PROMPT
PROMPT -- Some of the operations require "system" user privileges
PROMPT -- Please specify the Oracle "system" user password
PROMPT
ACCEPT syspw CHAR PROMPT 'system passwd:' HIDE ;
CONNECT system/&syspw ;
SHOW user ;
PROMPT
/* Create a new tablespace in the default DB for use with "bankapp" */
DROP TABLESPACE bank1
 INCLUDING CONTENTS
CASCADE CONSTRAINTS;
PROMPT
PROMPT
PROMPT -- Will create a 3MB tablespace for bankapp ;
PROMPT -------- Please specify full pathname below for Datafile ;
PROMPT -------- Ex: %ORACLE_HOME%/dbs/bankapp.dbf
PROMPT
ACCEPT datafile CHAR PROMPT 'Datafile:' ;

CREATE TABLESPACE bank1
 DATAFILE '&datafile' SIZE 3M REUSE
 DEFAULT STORAGE (INITIAL 10K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 120
 PCTINCREASE 5)
 ONLINE;

/***************** Create a user called "user1" ***************/

DROP USER user1 CASCADE;

PROMPT Creating user "user1"

CREATE USER user1 IDENTIFIED by PaSsWd1
 DEFAULT TABLESPACE bank1
 QUOTA UNLIMITED ON bank1 ;

GRANT CREATE SESSION TO user1 ;
GRANT CREATE TABLE TO user1 ;

How to In tegra te bankapp wi th Orac le (XA RM) fo r a Windows 2003 P la t fo rm

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-45

CONNECT user1/PaSsWd1 ;
SHOW user ;

PROMPT Creating database objects for user "user1" ;
PROMPT Creating table "branch" ;

 CREATE TABLE branch (
 branch_id NUMBER NOT NULL PRIMARY KEY,
 balance NUMBER,
 last_acct NUMBER,
 last_teller NUMBER,
 phoneCHAR(14),
 address CHAR(60)

)
 STORAGE (INITIAL 5K NEXT 2K
 MINEXTENTS 1 MAXEXTENTS 5 PCTINCREASE 5) ;

PROMPT Creating table "account" ;

 CREATE TABLE account (
 account_id NUMBER NOT NULL PRIMARY KEY,
 branch_id NUMBER NOT NULL,
 ssn CHAR(12) NOT NULL,
 balance NUMBER,
 acct_type CHAR,
 last_name CHAR(20),
 first_name CHAR(20),
 mid_init CHAR,
 phoneCHAR(14),
 address CHAR(60)

)
 STORAGE (INITIAL 50K NEXT 25K
 MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 5) ;

PROMPT Creating table "teller" ;
 CREATE TABLE teller (
 teller_id NUMBER NOT NULL PRIMARY KEY,
 branch_id NUMBER NOT NULL,
 balance NUMBER,
 last_name CHAR(20),
 first_name CHAR(20),
 mid_init CHAR
)
 STORAGE (INITIAL 5K NEXT 2K
 MINEXTENTS 1 MAXEXTENTS 5 PCTINCREASE 5) ;
PROMPT Creating table "history" ;
 CREATE TABLE history (
 account_id NUMBER NOT NULL,

3-46 Tutorials for Developing Oracle Tuxedo ATMI Applications

 teller_id NUMBER NOT NULL,
 branch_id NUMBER NOT NULL,
 amount NUMBER

)
 STORAGE (INITIAL 400K NEXT 200K
 MINEXTENTS 1 MAXEXTENTS 5 PCTINCREASE 5) ;

17. Write the code to create user2 and user3 with passwords PaSsWd2 and PaSsWd3,
respectively, following the method described in the above steps:

SQL*plus> start $APPDIR/ crbank-ora8.sql

18. Populate the database:

nt\populate

19. Generate transactions against the database:

driver

20. Run the bankapp client:

run

21. Shut down the application:

tmshutdown -y

See Also
“Preparing bankapp Files and Resources” on page 3-24

Step 6: How to Edit the Configuration File
A configuration file defines how an application runs. bankapp is delivered with two
configuration files in the text format described in UBBCONFIG(5): ubbshm, which defines an
application on a single computer, and ubbmp, which defines a networked application.

Initialization scripts are provided in the sample applications. In addition, you can generate
completed configuration files by .sh for any number up to 10 for your configuration and
machines.

1. In a text editor, familiarize yourself with the ubbshm and ubbmp configuration files for
bankapp.

Step 6 : How to Ed i t the Conf igurat i on F i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-47

Listing 3-18 ubbmp Configuration File

#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved

*RESOURCES
IPCKEY 80952

001 UID <user id from id(1)>
002 GID <group id from id(1)>

PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 20
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
##SECURITY ACL
#
*MACHINES

003 <SITE1's uname> LMID=SITE1
004 TUXDIR="<TUXDIR>"
005 APPDIR="<APPDIR>"

ENVFILE="<APPDIR>/ENVFILE"
TLOGDEVICE="<APPDIR>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR>/tuxconfig"

006 TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"

007 <SITE2's uname> LMID=SITE2
TUXDIR="<TUXDIR>"
APPDIR="<APPDIR>"
ENVFILE="<APPDIR>/ENVFILE"
TLOGDEVICE="<APPDIR>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR>/tuxconfig"
TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"

#
*GROUPS
#

3-48 Tutorials for Developing Oracle Tuxedo ATMI Applications

Group for Authentication Servers
#
Group for Application Queue (/Q) Servers
#
##QGRP1 LMID=SITE1 GRP=102
TMSNAME=TMS_QM TMSCOUNT=2
OPENINFO=”TUXEDO/QM:<APPDIR>/qdevice:QSP_BANKAPP”
#
Group for Event Broker Servers
#
##EVBGRP1 LMID=SITE1 GRPNO=104

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1

008 OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl1:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2
OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl2:bankdb:readwrite"
*NETWORK

009 SITE1 NADDR="<network address of SITE1>"
010 NLSADDR="<network listener address of SITE1>"
011 SITE2 NADDR="<network address of SITE2>"
012 NLSADDR="<network listener address of SITE2>"

2. To enable the application password feature, add the following line to the RESOURCES section
of ubbshm or ubbmp:

 SECURITY APP_PW

3. In both configuration files, you may notice that the values of some parameters are enclosed
in angle brackets (< >). Values shown in angle brackets are generic; you need to replace them
with values that pertain to your installation. All of these fields occur within the RESOURCES,
MACHINES, and GROUPS sections in both files. In ubbmp, the NETWORK section also has values
you must replace. Table 3-3 shows the ubbmp through the NETWORK section and illustrates all
the changes you need to make in the RESOURCES, MACHINES, and GROUPS sections if you are
bringing up a single-machine application.

Step 6 : How to Ed i t the Conf igurat i on F i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-49

Table 3-3 Explanation of Values

Line String to Be
Replaced

Description

001 UID The effective user ID (UID) for the owner of the bulletin
board IPC structures. In a multiprocessor configuration, the
value must be the same on all machines. To avoid problems,
use the same UID as that of the owner of the Oracle Tuxedo
system software.

002 GID The effective group ID (GID) for the owner of the bulletin
board IPC structures. In a multiprocessor configuration, the
value must be the same on all machines. Users of the
application should share this group ID.

003 SITE1 name The name of the machine. (For UNIX platforms, use the
value produced by the UNIX command: uname -n)

004 TUXDIR The absolute path name of the root directory for the Oracle
Tuxedo software. Replace all occurrences of <TUXDIR> in
the file with the specified path name.

005 APPDIR The absolute path name of the directory in which the
application runs. Make this a global change so that all
occurrences of <APPDIR> in the file are replaced by the
specified path name.

006 machine type An identifying string used in networked applications that
include machines of different types. The Oracle Tuxedo
system checks the value of machine type for each machine
communicating with another. If the system identifies two
machines with different machine types trying to
communicate, it invokes the message encode and decode
routines to convert the data being transmitted to a form
recognizable by both machines.

007 SITE2 name The name of the second machine. (For UNIX platforms, use
the value produced by the UNIX command: uname -n)

008 OPENINFO The statement here and in the following entry are in a format
understood by Oracle Tuxedo system resource managers.
They need to be changed (or removed) to meet the
requirements of other resource managers.

3-50 Tutorials for Developing Oracle Tuxedo ATMI Applications

See Also
“Preparing bankapp Files and Resources” on page 3-24

UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“What Is the Configuration File?” in Setting Up an Oracle Tuxedo Application

Steps 7 and 8: Creating a Binary Configuration File and
Transaction Log File

Before Creating the Binary Configuration File
Before creating the binary configuration file, you need to be in the directory in which your
bankapp files are located and you must set the environment variables. Complete the following
tasks.

1. Go to the directory in which your bankapp files are located.

2. Set the environment variables by entering
. ./bankvar

009 Network address of
SITE1

The full address of the network listener for the BRIDGE
process on this machine.

010 Network listener
address of SITE1

The address of the network listener for the tlisten process
on this machine.

011 Network address of
SITE2

The full address of the network listener for the BRIDGE
process on this machine. This value must be different on
each machine.

012 Network listener
address of SITE2

The address of the network listener for the tlisten process
on this machine.

Table 3-3 Explanation of Values (Continued)

Line String to Be
Replaced

Description

../rf5/rf5.html
../ads/adconf.html

Steps 7 and 8 : C reat ing a B inary Conf igura t i on F i l e and T ransact i on Log F i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-51

Note: If you bring up bankapp in SHM mode, you do not have to create the tlisten process
or create a transaction log on another machine.

How to Load the Configuration File
Once you have finished editing the configuration file, you must load it into a binary file on your
MASTER machine. The name of the binary configuration file is TUXCONFIG; its path name is
defined in the TUXCONFIG environment variable. The file should be created by a person with the
effective user ID and group ID of the Oracle Tuxedo system administrator, which should be the
same as the UID and GID values in your configuration file. If this requirement is not met, you may
have permission problems in running bankapp.

1. To create TUXCONFIG, enter the following command:

 tmloadcf ubbmp

While the configuration file is being loaded, you are prompted several times to confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of IPC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can be installed only on the MASTER machine; it is propagated to other machines by
tmboot when the application is booted.

If you have specified SECURITY as an option for the configuration, tmloadcf prompts you to
enter an application password. The password you select can be up to 30 characters long. Client
processes joining the application are required to supply the password.

tmloadcf parses the text configuration file (UBBCONFIG) for syntax errors before it loads it, so if
there are errors in the file, the job fails.

How to Create the Transaction Log (TLOG) File
The TLOG is the transaction log used by the Oracle Tuxedo system in the management of global
transactions. Before an application can be booted, an entry for the TLOG must be created in every
file on every machine in the application, and a file for the log itself must be created on the MASTER
machine.

bankapp provides a script called crtlog that creates a device list and a TLOG for you. The device
list is created using the TLOGDEVICE variable from bankvar.

3-52 Tutorials for Developing Oracle Tuxedo ATMI Applications

1. To create your TLOG and device list, enter the command on the MASTER machine as follows:

 crtlog -m

Note: In a production environment, the device list may be the same as that used for the
database.

2. On all other machines, do not specify -m; when the system is booted, the BBL on each
non-MASTER machine creates the log.

If you are using a non-XA resource manager, you do not need a transaction log.

See Also
“Preparing bankapp Files and Resources” on page 3-24

Step 9: How to Create a Remote Service Connection on
Each Machine

tlisten is the listener process that provides a remote service connection for processes such as
tmboot between machines in an Oracle Tuxedo application. It must be installed on all the
machines in your network as defined in the NETWORK section of the configuration file.

Instructions for starting tlisten are provided in the “Starting the tlisten Process” in Installing
the Oracle Tuxedo System.

1. We recommend starting a separate tlisten process for bankapp. To do so, enter the
following command:

 tlisten -l nlsaddr

The nlsaddr value must be the same as that specified for the NLSADDR parameter for this
machine in your configuration file. Because this value changes from one machine to
another, it is important that your tlisten argument agrees with your configuration file
specification.

Note: Detection of an error in this specification is not easy. tmloadcf does not check for
agreement between your configuration file and your tlisten command. If the two
addresses do not match, then the application will probably fail to boot on the machine
with the mismatched value of nlsaddr or on which the tlisten process has not been
started.

../install/inspin.html

Step 9 : How to Create a Remote Se rv i ce Connect ion on Each Machine

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-53

The log file used by tlisten is separate from all other Oracle Tuxedo system log files, but one
log can be used by more than one tlisten process. The default filename is
TUXDIR/udataobj/tlog.

How to Stop the Listener Process (tlisten)
tlisten is designed to run as a daemon process. For suggestions about incorporating it in startup
scripts or running it as a cron job, see tlisten(1) in the Oracle Tuxedo Reference Manual.

For bankapp, you may prefer simply to start it and bring it down as you need it. To bring it down,
send it a SIGTERM signal such as the following:

 kill -15 pid

Note: In a Windows 2003 environment, you can start and stop the listener process in two
ways: using the tlisten on the command line or using the Control Panel.

Sample tlisten Error Messages
If no remote tlisten is running, the boot sequence is displayed on your screen as follows:

 Booting admin processes
 exec DBBL -A :
 on MASTER -> process id=17160Started.
 exec BBL -A :
 on MASTER -> process id=17161Started.
 exec BBL -A :
 on NONMAST2 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file
 tmboot: WARNING: No BBL available on site NONMAST2.
 Will not attempt to boot server processes on that site.
 exec BBL -A :
 on NONMAST1 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file
 tmboot: WARNING: No BBL available on site NONMAST1.
 Will not attempt to boot server processes on that site.
 2 processes started.
 and messages such as these will be in the ULOG:
 133757.mach1!DBBL.17160: LIBTUX_CAT:262: std main starting
 133800.mach1!BBL.17161: LIBTUX_CAT:262: std main starting
 133804.mach1!BRIDGE.17162: LIBTUX_CAT:262: std main starting
 133805.mach1!tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMAST2
 133805.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for remote
 machine NONMAST2
 133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for remote
 machine NONMAST2
 133806.mach1!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
 propagation request to TAGENT on NONMAST2

3-54 Tutorials for Developing Oracle Tuxedo ATMI Applications

 133806.mach1!tmboot.17159: WARNING: No BBL available on site NONMAST2.
 Will not attempt to boot server processes on that site.
 133806.mach1!tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMAST1
 133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for
 remote machine NONMAST1
 133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for
 remote machine NONMAST1
 133806.mach1!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
 propagation request to TAGENT on NONMAST1
 133806.mach1!tmboot.17159: WARNING: No BBL available on site NONMAST1.
 Will not attempt to boot server processes on that site.
If tlisten is started with the wrong machine address, the following messages
appear in the tlisten log.

 Mon Aug 26 10:51:56 1991; 14240; Oracle TUXEDO System Listener Process Started
 Mon Aug 26 10:51:56 1991; 14240; Could not establish listening endpoint
 Mon Aug 26 10:51:56 1991; 14240; Terminating listener process, SIGTERM

See Also
“Preparing bankapp Files and Resources” on page 3-24

tlisten(1)

tmadmin(1)

tmloadcf(1)

Running bankapp
This documentation leads you through the procedures for booting bankapp, testing it by running
various client programs and transactions, and shutting it down when you have finished. Click on
any of the following tasks for instructions on completing that task.

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Step 1 : How to P repare to Boo t

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-55

Step 1: How to Prepare to Boot
1. Before booting bankapp, verify that your machine has enough IPC resources to support your

application. To generate a report on IPC resources, run the tmboot command with the -c
option.

Note: Because insufficient IPC resources may lead to a boot failure, it is imperative that you
ensure you have appropriate values specified for your configuration.

Listing 3-19 IPC Report

 Ipc sizing (minimum /T values only)
 Fixed Minimums Per Processor
 SHMMIN: 1
 SHMALL: 1
 SEMMAP: SEMMNI

Variable Minimums Per Processor
SEMUME, A SHMMAX
SEMMNU, * *

 Node SEMMNS SEMMSL SEMMSL SEMMNI MSGMNI MSGMAP SHMSEG
 ------ ------ ------ ------ ------ ------ ------ ------
 sfpup 60 1 60 A + 1 10 20 76K
 sfsup 63 5 63 A + 1 11 22 76K
 where 1 <= A <= 8.

2. Add the number of application clients used per processor to each MSGMNI value. MSGMAP
should be twice MSGMNI.

3. Compare the minimum IPC requirements to the parameters set for your machine. The location
of these parameter settings is platform-dependent:

– On many UNIX system platforms, machine parameters are defined in
/etc/conf/cf.d/mtune.

– On Windows 2003 platforms, machine parameters are set and displayed through a
control panel.

See Also
“Running bankapp” on page 3-54

3-56 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 2: How to Boot bankapp
1. Set the environment:

. ./bankvar

2. Boot the application by entering the following:

 tmboot

The following prompt is displayed:

 Boot all admin and server processes? (y/n): y

A running report such as the following is displayed:

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes
exec BBL -A:
 process id=24223 Started.

The report continues until all servers in the configuration have been started. It ends with a count
of the number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -A option. If no options are specified, the entire application is
booted.

In addition to reporting on the number of servers booted, tmboot also sends messages to the
ULOG.

See Also
“Running bankapp” on page 3-54

Step 3: How to Populate the Database
The populate.sh script is provided to put records into the database so you can run bankapp and
test its functionality. populate is a one line script that pipes records from a program called
gendata to the system server, ud. The gendata program creates records for 10 branches, 30
tellers, and 200 accounts. A record of the files created is kept in pop.out, so you can use values
in the database when forming your sample service requests.

To run the script, enter populate.

Step 4 : How to Test bankapp Serv ices

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-57

Note: The output file that was created by the populate script, pop.out, can be used to provide
account numbers, branch IDs, and other fields you can specify, so your service requests
produce some output.

See Also
“Running bankapp” on page 3-54

tmboot(1) in the Oracle Tuxedo Command Reference

ud, wud(1) in the Oracle Tuxedo Command Reference

userlog(3c) in the Oracle Tuxedo ATMI C Function Reference

“What Is the User Log (ULOG)?” in Administering an Oracle Tuxedo Application at Run
Time

“How to Boot the Application” in Administering an Oracle Tuxedo Application at Run
Time

“How to Shut Down Your Application” in Administering an Oracle Tuxedo Application at
Run Time

Step 4: How to Test bankapp Services
1. If you are logging in cold to a running system, you must set your environment for bankapp.

To do so, enter the following command:

 . ./bankvar

2. Run the audit client program. To execute the audit client program, enter the following
command:

 audit {-a | -t} [branch_id]

specifying either -a for account balances or -t for teller balances. If you specify a
branch_id, the report is limited to the branch specified; if you do not, the report includes
data for all branches. For sample account numbers, branch IDs, and other values that you
can provide as input to audit, use values listed in pop.out, the output of the populate
program.

3. Run auditcon. To start the conversational version of the audit program, enter the following
command:

 auditcon

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rf3c/rf3c.html
../ada/adboot.html
../ada/admon.html

3-58 Tutorials for Developing Oracle Tuxedo ATMI Applications

The program displays the following message on your terminal:

 to request a TELLER or ACCOUNT balance for a branch,
 type the letter t or a, followed by the branch id,
 followed by <return>
 for ALL TELLER or ACCOUNT balances, type t or a <return>
 q <return> quits the program

When you have typed your request and pressed return, the requested information is
displayed on your terminal followed by the following message:

 another balance request ??

4. The program continues to offer you this service until you enter a q.

5. Use the driver program. By default, the driver program generates 300 transactions. You can
change that number with the -n option, as in the following example. The command

 driver -n1000

specifies that the program should run for 1,000 loops.

driver is a script that generates a series of transactions to simulate activity on the system.
It is included as part of bankapp so you can get realistic-looking statistics by running
tmadmin commands.

See Also
“Running bankapp” on page 3-54

Step 5: How to Shut Down bankapp
To bring down bankapp, enter the tmshutdown(1) command with no arguments, from the
MASTER machine, as follows:

$ tmshutdown
Shutdown all server processes? (y/n): y
Shutting down all server processes in /usr/me/BANKAPP/TUXCONFIG
Shutting down server processes ...

Server Id = 1 Group Id = BANKB1 Machine = Site1: shutdown succeeded.

Running this command (or the shutdown command of tmadmin) causes the following results:

All application servers, gateway servers, TMS’s, and administrative servers, are shut down.

All associated IPC resources are removed.

Step 5 : How to Shut Down bankapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-59

See Also
“Running bankapp” on page 3-54

tmadmin(1) in the Oracle Tuxedo Command Reference

tmshutdown(1) in the Oracle Tuxedo Command Reference

../rfcm/rfcmd.html
../rfcm/rfcmd.html

3-60 Tutorials for Developing Oracle Tuxedo ATMI Applications

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-1

C H A P T E R 4

Tutorial for CSIMPAPP, a Simple COBOL
Application

This topic includes the following sections:

What Is CSIMPAPP?

Preparing CSIMPAPP Files and Resources

– Step 1: How to Copy the CSIMPAPP Files

– Step 2: Examining and Compiling the Client

– Step 3: Examining and Compiling the Server

– Step 4: Editing and Loading the Configuration File

– Step 5: How to Boot the Application

– Step 6: How to Test the Run-time Application

– Step 7: How to Monitor the Run-time Application

– Step 8: How to Shut Down the Application

What Is CSIMPAPP?
CSIMPAPP is a basic sample ATMI application delivered with the Oracle Tuxedo system. While
instructions are written for the Microfocus COBOL compiler, these may vary depending on your
specific compiler. To find out which COBOL platforms are supported by the Oracle Tuxedo
system, consult Appendix A, “Oracle Tuxedo 10.0 Platform Data Sheets,” in Installing the
Oracle Tuxedo System.

../install/inspds.html

4-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

CSIMPAPP includes one client and one server. The server performs only one service: it accepts a
string from the client and returns the same string in uppercase.

Preparing CSIMPAPP Files and Resources
This topic leads you through the procedures you must complete to develop CSIMPAPP. Figure 4-1
summarizes this procedure.

Click on each task for instructions on completing that task.

Figure 4-1 CSIMPAPP Development Process

Prepar ing CS IMPAPP F i l es and Resources

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-3

Before You Begin
Before you can run this tutorial, the Oracle Tuxedo ATMI client and server software must be
installed so that the files and commands referred to are available. If you are responsible for
installing the Oracle Tuxedo system software, refer to Installing the Oracle Tuxedo System for
installation instructions. If the installation has already been done by someone else, you need to
find out the pathname of the directory in which the software is installed (TUXDIR). You also need
to have read and execute permissions on the directories and files in the Oracle Tuxedo system

4-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

directory structure so you can copy CSIMPAPP files and execute Oracle Tuxedo system
commands.

What You Will Learn
After you complete this procedure, you will be able to understand the tasks clients and servers
can perform, edit a configuration file for your own environment, and invoke tmadmin to check
on the activity of your application. In short, you will understand the basic elements of all Oracle
Tuxedo applications—client processes, server processes, and a configuration file—and you will
know how to use Oracle Tuxedo system commands to manage your application.

Step 1: How to Copy the CSIMPAPP Files
1. Make a directory for CSIMPAPP and change the directory to it:

mkdir CSIMPDIR
cd CSIMPDIR

Note: This step is suggested so you can see the CSIMPAPP files you have at the start and the
additional files you create along the way. Use the standard shell (/bin/sh) or the Korn
shell; do not use csh.

2. Set and export environment variables:
TUXDIR=<pathname of the BEA Tuxedo System root directory>

APPDIR=<pathname of your present working directory>

TUXCONFIG=$APPDIR/TUXCONFIG

COBDIR=<pathname of the COBOL compiler directory>

COBCPY=$TUXDIR/cobinclude

COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"

CFLAGS="-I$TUXDIR/include"

PATH=$TUXDIR/bin:$APPDIR: $PATH

LD_LIBRARY_PATH=$COBDIR/coblib:${LD_LIBRARY_PATH}

export TUXDIR APPDIR TUXCONFIG UBBCONFIG COBDIR COBCPY

export COBOPT CFLAGS PATH LD_LIBRARY_PATH

You need TUXDIR and PATH to be able to access files in the Oracle Tuxedo directory
structure and to execute Oracle Tuxedo commands:

– On Sun Solaris, /usr/5bin must be the first directory in your PATH.

– On an AIX platform on the RS/6000, use LIBPATH instead of LD_LIBRARY_PATH.

Step 2 : Examin ing and Compi l ing the C l i ent

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-5

– On an HP-UX platform on the HP 9000, use SHLIB_PATH instead of
LD_LIBRARY_PATH. You need to set TUXCONFIG to be able to load the configuration file
as shown in step 4.

3. Copy the CSIMPAPP files:

cp TUXDIR/samples/atmi/CSIMPAPP/* .

Note: Later, you will edit some files and make them executable, so we recommend using
copies of the files rather than the originals delivered with the software.

4. List the files:

$ ls
CSIMPCL.cbl
CSIMPSRV.cbl
README
TPSVRINIT.cbl
UBBCSIMPLE
WUBBCSIMPLE
envfile
ws
$

The files that make up the application are:

– CSIMPCL.cbl—the source code for the client program.

– CSIMPSRV.cbl—the source code for the server program.

– TPSVRINIT.cbl—the source code for the server initialization program.

– UBBCSIMPLE—the text form of the configuration file for the application.

– WUBBCSIMPLE—the configuration file for the Workstation example.

– ws—a directory with .MAK files for client programs for three workstation platforms.

Step 2: Examining and Compiling the Client

How to Examine the Client
Review the client program source code:

$ more CSIMPCL.cbl

The output is shown in the following list.

4-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

Listing 4-1 Source Code for CSIMPCL.cbl

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CSIMPCL.
3 AUTHOR. Tuxedo DEVELOPMENT.
4 ENVIRONMENT DIVISION.
5 CONFIGURATION SECTION.
6 WORKING-STORAGE SECTION.
7 ***
8 * Tuxedo definitions
9 ***
10 01 TPTYPE-REC.
11 COPY TPTYPE.
12 *
13 01 TPSTATUS-REC.
14 COPY TPSTATUS.
15 *
16 01 TPSVCDEF-REC.
17 COPY TPSVCDEF.
18 *
19 01 TPINFDEF-REC VALUE LOW-VALUES.
20 COPY TPINFDEF.
21 ***
22 * Log messages definitions
23 ***
24 01 LOGMSG.
25 05 FILLER PIC X(8) VALUE "CSIMPCL:".
26 05 LOGMSG-TEXT PIC X(50).
27 01 LOGMSG-LEN PIC S9(9) COMP-5.
28 *
29 01 USER-DATA-REC PIC X(75).
30 01 SEND-STRING PIC X(100) VALUE SPACES.
31 01 RECV-STRING PIC X(100) VALUE SPACES.
32 ***
33 * Command line arguments
34 ***
35 * Start program with command line args
36 **
37
38 PROCEDURE
39 START-CSIMPCL.
40 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
41 ACCEPT SEND-STRING FROM COMMAND-LINE.
42 DISPLAY “SEND-STRING:” SEND-STRING.
43
44 MOVE “Started” TO LOGMSG-TEXT.
45 PERFORM DO-TPINIT.
46 PERFORM DO-TPCALL.

Step 2 : Examin ing and Compi l ing the C l i ent

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-7

47 DISPLAY “RECV-STRING:” RECV-STRING.
48 PERFORM DO-TPTERM.
49 PERFORM EXIT-PROGRAM.
50 ***
51 * Now register the client with the system.
52 ***
53 DO-TPINIT.
54 MOVE SPACES TO USRNAME.
55 MOVE SPACES TO CLTNAME.
56 MOVE SPACES TO PASSWD.
57 MOVE SPACES TO GRPNAME.
58 MOVE ZERO TO DATALEN.
59 SET TPU-DIP TO TRUE.
60
61 CALL "TPINITIALIZE" USING TPINFDEF-REC
62 USER-DATA-REC
63 TPSTATUS-REC.
64
65 IF NOT TPOK
66 MOVE "TPINITIALIZE Failed" TO LOGMSG-TEXT
67 PERFORM DO-USERLOG
68 PERFORM EXIT-PROGRAM
69 END-IF.
70
71 ***
72 * Issue a TPCALL
73 ***
74 DO-TPCALL.
75 MOVE 100 to LEN.
76 MOVE "STRING" TO REC-TYPE.
77 MOVE "CSIMPSRV" TO SERVICE-NAME.
78 SET TPBLOCK TO TRUE.
79 SET TPNOTRAN TO TRUE.
80 SET TPNOTIME TO TRUE.
81 SET TPSIGRSTRT TO TRUE.
82 SET TPCHANGE TO TRUE.
83
84 CALL "TPCALL" USING TPSVCDEF-REC
85 TPTYPE-REC
86 SEND-STRING
87 TPTYPE-REC
88 RECV-STRING
89 TPSTATUS-REC.
90
91 IF NOT TPOK
92 MOVE "TPCALL Failed" TO LOGMSG-TEXT
93 PERFORM DO-USERLOG
94 END-IF.
95

4-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

96 ***
97 * Leave Tuxedo
98 ***
99 DO-TPTERM.
100 CALL "TPTERM" USING TPSTATUS-REC.
101 IF NOT TPOK
102 MOVE "TPTERM Failed" TO LOGMSG-TEXT
103 PERFORM DO-USERLOG
104 END-IF.
105
106 ***
107 * Log messages to the userlog
108 ***
109 DO-USERLOG.
110 CALL "USERLOG" USING LOGMSG
111 LOGMSG-LEN
112 TPSTATUS-REC.
113
114 ***
115 *Leave Application
116 ***
117 EXIT-PROGRAM.
118 MOVE "Ended" TO LOGMSG-TEXT.
119 PERFORM DO-USERLOG.
120 STOP RUN.

Table 4-1 Significant Lines in the CSIMPCL.cbl Source Code

Line(s) File/Function Purpose

11, 14, 17, 20 COPY Command used to replicate files needed whenever
Oracle Tuxedo ATMI functions are used.

61 TPINITIALIZE The ATMI function used by a client program to join
an application.

84 TPCALL The ATMI function used to send the message record
to the service specified in SERVICE-NAME. TPCALL
waits for a return message. STRING is one of the three
basic Oracle Tuxedo record types. An argument, LEN
IN TPTYPE-REC, specifies the length of the record
in USER-DATA-REC.

Step 3 : Examin ing and Compi l ing the Se rve r

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-9

How to Compile the Client
1. Run buildclient to compile the ATMI client program:

buildclient -C -o CSIMPCL -f CSIMPCL.cbl

The output file is CSIMPCL and the input source file is CSIMPCL.cbl.

2. Check the results:

$ ls CSIMPCL*
CSIMPCL CSIMPCL.cbl CSIMPCL.idy CSIMPCL.int CSIMPCL.o

You now have an executable module called CSIMPCL.

See Also
buildclient(1) in the Oracle Tuxedo Command Reference

TPINITIALIZE(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

TPTERM(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

TPCALL(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

USERLOG(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

Step 3: Examining and Compiling the Server

How to Examine the Server
1. Review the source code from the CSIMPSRV ATMI server program:

$ more CSIMPSRV.cbl

100 TPTERM The ATMI function used to leave an application. A
call to TPTERM is used to exit an application before
performing a STOP RUN.

110 USERLOG The function that displays the message returned from
the server, the successful conclusion of tpcall.

Table 4-1 Significant Lines in the CSIMPCL.cbl Source Code (Continued)

Line(s) File/Function Purpose

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

4-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

Listing 4-2 Source Code for CSIMPSRV.cbl

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CSIMPSRV.
3 AUTHOR. BEA Tuxedo DEVELOPMENT.
4 ENVIRONMENT DIVISION.
5 CONFIGURATION SECTION.
6 WORKING-STORAGE SECTION.
7 **
8 * Tuxedo definitions
9 **
10 01 TPSVCRET-REC.
11 COPY TPSVCRET.
12 *
13 01 TPTYPE-REC.
14 COPY TPTYPE.
15 *
16 01 TPSTATUS-REC.
17 COPY TPSTATUS.
18 *
19 01 TPSVCDEF-REC.
20 COPY TPSVCDEF.
21 **
22 * Log message definitions
23 **
24 01 LOGMSG.
25 05 FILLER PIC X(10) VALUE
26 "CSIMPSRV :".
27 05 LOGMSG-TEXT PIC X(50).
28 01 LOGMSG-LEN PIC S9(9) COMP-5.
29 **
31 * User defined data records
32 **
33 01 RECV-STRING PIC X(100).
34 01 SEND-STRING PIC X(100).
35 *
36 LINKAGE SECTION.
37 *
38 PROCEDURE DIVISION.
39 *
40 START-FUNDUPSR.
41 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
42 MOVE "Started" TO LOGMSG-TEXT.
43 PERFORM DO-USERLOG.
44
45 **
46 * Get the data that was sent by the client
47 **

Step 3 : Examin ing and Compi l ing the Se rve r

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-11

48 MOVE LENGTH OF RECV-STRING TO LEN.
49 CALL "TPSVCSTART" USING TPSVCDEF-REC
50 TPTYPE-REC
51 RECV-STRING
52 TPSTATUS-REC.
53
54 IF NOT TPOK
55 MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
56 PERFORM DO-USERLOG
57 PERFORM EXIT-PROGRAM
58 END-IF.
59
60 IF TPTRUNCATE
61 MOVE "Data was truncated" TO LOGMSG-TEXT
62 PERFORM DO-USERLOG
63 PERFORM EXIT-PROGRAM
64 END-IF.
65
66 INSPECT RECV-STRING CONVERTING
67 "abcdefghijklmnopqrstuvwxyz" TO
68 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
69 MOVE "Success" TO LOGMSG-TEXT.
70 PERFORM DO-USERLOG.
71 SET TPSUCCESS TO TRUE.
72 COPY TPRETURN REPLACING
73 DATA-REC BY RECV-STRING.
74
75 **
76 * Write out a log err messages
77 **
78 DO-USERLOG.
79 CALL "USERLOG" USING LOGMSG
80 LOGMSG-LEN
81 TPSTATUS-REC.
82 **
83 * EXIT PROGRAM
84 **
85 EXIT-PROGRAM.
86 MOVE "Failed" TO LOGMSG-TEXT.
87 PERFORM DO-USERLOG.
88 SET TPFAIL TO TRUE.
89 COPY TPRETURN REPLACING
90 DATA-REC BY RECV-STRING.

4-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

2. During server initialization (that is, before the server starts processing service requests), the
Oracle Tuxedo system calls the TPSVRINIT subroutine. To familiarize yourself with
TPSVRINIT, page through the source code for it.

$ more TPSVRINIT.cbl

Listing 4-3 Source Code for TPSVRINIT.cbl

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. TPSVRINIT.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 *
6 DATA DIVISION.
7 WORKING-STORAGE SECTION.
8 *
9 01 LOGMSG.
10 05 FILLER PIC X(11) VALUE "TPSVRINIT :".
11 05 LOGMSG-TEXT PIC X(50).
12 01 LOGMSG-LEN PIC S9(9) COMP-5.
13 *
14 01 TPSTATUS-REC.
15 COPY TPSTATUS.
16 ***
17 LINKAGE SECTION.
18 01 CMD-LINE.
19 05 ARGC PIC 9(4) COMP-5.

Table 4-2 Significant Lines in the CSIMPSRV.cbl Source Code

Line(s) Routine Purpose

49 TPSVCSTART Routine used to start this service and to receive the
service’s parameters and data. After a successful call, the
RECV-STRING contains the data sent by the client.

66-68 INSPECT statement Statement that converts the input to uppercase
(Microfocus-specific).

72 COPY TPRETURN Command line that returns the converted string to the
client with TPSUCCESS set.

79 USERLOG Routine that logs messages used by the Oracle Tuxedo
system and applications.

Step 3 : Examin ing and Compi l ing the Se rve r

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-13

20 05 ARG.
21 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
22 *
23 01 SERVER-INIT-STATUS.
24 COPY TPSTATUS.
25 ***
26 PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
27 A-000.
28 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
29 ***
30 * There are no command line parameters in this TPSVRINIT
31 ***
32 IF ARG NOT EQUAL TO SPACES
33 MOVE "TPSVRINIT failed" TO LOGMSG-TEXT
34 CALL "USERLOG" USING LOGMSG
35 LOGMSG-LEN
36 TPSTATUS-REC
37 ELSE
38 MOVE "Welcome to the simple service" TO LOGMSG-TEXT
39 CALL "USERLOG" USING LOGMSG
40 LOGMSG-LEN
41 TPSTATUS-REC
42 END-IF.
43 *
44 SET TPOK IN SERVER-INIT-STATUS TO TRUE.
45 *
46 EXIT PROGRAM.

A default is provided by the Oracle Tuxedo system that writes a message to USERLOG indicating
that the server has been booted.

How to Compile the Server
1. Run buildserver as follows to compile the ATMI server program.

buildserver -C -o CSIMPSRV -f CSIMPSRV.cbl -f TPSVRINIT.cbl -s CSIMPSRV

The executable file to be created is named CSIMPSRV and CSIMPSRV.cbl and
TPSVRINIT.cbl are the input source files. The service being offered by the server
CSIMPSRV is indicated by -s CSIMPSRV.

2. Check the results by displaying a list of the files in your current directory.

$ ls
CSIMPCL CSIMPCL.int CSIMPSRV.cbl CSIMPSRV.o TPSVRINIT.int

4-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

CSIMPCL.cbl CSIMPCL.o CSIMPSRV.idy TPSVRINIT.cbl TPSVRINIT.o
CSIMPCL.idy CSIMPSRV CSIMPSRV.int TPSVRINIT.idy UBBCSIMPLE

You now have an executable module called CSIMPSRV.

See Also
buildserver(1) in Oracle Tuxedo Command Reference

TPSVCSTART(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

TPSVRINIT(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

TPRETURN(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

USERLOG(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

Step 4: Editing and Loading the Configuration File

How to Edit the Configuration File
1. In a text editor, familiarize yourself with the configuration file for CSIMPAPP.

Listing 4-4 CSIMPAPP Configuration File

#Skeleton UBBCONFIG file for the BEA Tuxedo COBOL Simple Application.
#Replace the <bracketed> items with the appropriate values.

*RESOURCES
IPCKEY <Replace with a valid IPC Key>

#Example:
#IPCKEY 123456

DOMAINID UBBCSIMPLE
MASTER simple
MAXACCESSERS 5
MAXSERVERS 5
MAXSERVICES 10
MODEL SHM
LDBAL N

*MACHINES
DEFAULT:

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Step 4 : Ed i t ing and Loading the Conf igurat i on F i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-15

 APPDIR="<Replace with the current pathname>"
 TUXCONFIG="<Replace with TUXCONFIG Pathname>"
 TUXDIR="<Root directory of BEA Tuxedo (not /)>"
 ENVFILE="<pathname of file of environment vars>"
#Example:
APPDIR="/home/me/simpapp"
TUXCONFIG="/home/me/simpapp/TUXCONFIG"
TUXDIR="/usr/tuxedo"
ENVFILE=”/home/me/simpapp/envfile”
<Machine-name> LMID=simple

#Example:
#usltux LMID=simple

*GROUPS
GROUP1
 LMID=simple GRPNO=1 OPENINFO=NONE

*SERVERS
DEFAULT:
 CLOPT="-A"

CSIMPSRV SRVGRP=GROUP1 SRVID=1

*SERVICES
CSIMPSRV

2. For each string (that is, for each string shown in italic between angle brackets), substitute
an appropriate value:

– IPCKEY—use a value that will not conflict with any other users.

– TUXCONFIG—provide the full pathname of the binary TUXCONFIG file.

– TUXDIR—the full pathname of your Oracle Tuxedo system root directory.

– APPDIR—the full pathname of the directory in which you intend to boot the
application; in this case, the current directory.

– ENVFILE—the full pathname for the environment file to be used by mc, viewc,
tmloadcf, and so on.

– machine-name—the machine name as returned by the uname -n command on a UNIX
platform.

Note: The pathnames for TUXCONFIG and TUXDIR must be identical to those you set and
exported earlier. You must specify actual pathnames; references to pathnames through

4-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

environment variables (such as TUXCONFIG) are not acceptable. Do not forget to remove
the angle brackets.

How to Load the Configuration File
1. Run tmloadcf to load the configuration file:
$ tmloadcf UBBCSIMPLE

Initialize TUXCONFIG file: /usr/me/CSIMPDIR/TUXCONFIG [y, q] ? y

$

2. Check the results by displaying a list of the files in your current directory:
$ ls

CSIMPCL CSIMPCL.o CSIMPSRV.int TPSVRINIT.int

CSIMPCL.cbl CSIMPSRV CSIMPSRV.o TPSVRINIT.o

CSIMPCL.idy CSIMPSRV.cbl TPSVRINIT.cbl TUXCONFIG

CSIMPCL.int CSIMPSRV.idy TPSVRINIT.idy UBBCSIMPLE

We now have a file called TUXCONFIG (a new file system under the control of the Oracle
Tuxedo system).

See Also
tmloadcf(1) in the Oracle Tuxedo Command Reference

UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 5: How to Boot the Application
Execute tmboot to bring up the application:

$ tmboot
Boot all admin and server processes? (y/n): y
Booting all admin and server processes in /usr/me/CSIMPDIR/TUXCONFIG

Booting all admin processes ...

exec BBL -A:
 process id=24223 ... Started.

Booting server processes ...

../rfcm/rfcmd.html
../rf5/rf5.html

Step 6 : How to Test the Run-t ime Appl i cat ion

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-17

exec CSIMPSRV -A :
 process id=24257 ... Started.
2 processes started.
$

The Bulletin Board Liaison (BBL) is the administrative process that monitors the shared memory
structures in the application. CSIMPSRV is the CSIMPAPP server that runs continuously, awaiting
requests.

See Also
tmboot(1) in the Oracle Tuxedo Command Reference

Step 6: How to Test the Run-time Application
To test CSIMPAPP, have the client submit a request:

$ CSIMPCL “hello world”
HELLO WORLD

Step 7: How to Monitor the Run-time Application
As the administrator, you can use the tmadmin command interpreter to check an application and
make dynamic changes. To run tmadmin, you must set the TUXCONFIG variable

tmadmin can interpret and run over 50 commands. For a complete list, see tmadmin(1) in the
Oracle Tuxedo Command Reference. The following demonstrates two of the many tmadmin
commands:

1. Enter the following command:

tmadmin

The following lines are displayed:

tmadmin - Copyright (c) 1999 BEA Systems Inc.; 1991 USL. All rights
reserved.

>

Note: The greater-than sign (>) is the tmadmin prompt.

2. Enter the printserver(psr) command to display information about servers:

> psr
a.out Name Queue Name Grp Name ID RqDone Load Done Current Service

../rfcm/rfcmd.html
../rfcm/rfcmd.html

4-18 Tutorials for Developing Oracle Tuxedo ATMI Applications

---------- ---------- -------- -- ------ --------- ---------------
BBL 531993 simple 0 0 0 (IDLE)
CSIMPSRV 00001.00001 GROUP1 1 0 0 (IDLE)
>

3. Enter the printservice(psc) command to display information about services:

> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status
------------ ------------ ---------- -------- -- ------- ---- -------
CSIMPSRV CSIMPSRV CSIMPSRV GROUP1 1 simple - AVAIL
>

4. Leave tmadmin by entering a q at the prompt. (You can boot and shut down the application
from within tmadmin.)

See Also
tmadmin(1) in the Oracle Tuxedo Command Reference

Step 8: How to Shut Down the Application
1. Run tmshutdown to bring down the application:

$ tmshutdown
Shutdown all admin and server processes? (y/n): y
Shutting down all admin and server processes in /usr/me/CSIMPDIR/TUXCONFIG

Shutting down server processes ...

Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown succeeded.

Shutting down admin processes ...

Server Id = 0 Group Id = simple Machine = simple: shutdown succeeded.
2 processes stopped.
$

2. Check the ULOG:

$ cat ULOG*
$
140533.usltux!BBL.22964: LIBTUX_CAT:262: std main starting
140540.usltux!CSIMPSRV.22965: COBAPI_CAT:1067: INFO: std main starting
140542.usltux!CSIMPSRV.22965: TPSVRINIT :Welcome to the simple service
140610.usltux!?proc.22966: CSIMPCL:Started
140614.usltux!CSIMPSRV.22965: CSIMPSRV :Started
140614.usltux!CSIMPSRV.22965: CSIMPSRV :Success

../rfcm/rfcmd.html

Step 8 : How to Shut Down the Appl i cat i on

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-19

140614.usltux!?proc.22966: switch to new log file
/home/usr_nm/CSIMPDIR/ULOG.112592
140614.usltux!?proc.22966: CSIMPCL:Ended

Each line of the ULOG for this session is significant. First look at the format of a ULOG line:

time (hhmmss).machine_uname!process_name.process_id: log message

Now look at an actual line.

140542. Message from TPSVRINIT in CSIMPSRV

See Also
tmshutdown(1) in the Oracle Tuxedo Command Reference

USERLOG(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html

4-20 Tutorials for Developing Oracle Tuxedo ATMI Applications

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-1

C H A P T E R 5

Tutorial for STOCKAPP, a Full COBOL
Application

This topic includes the following sections:

What Is STOCKAPP?

Familiarizing Yourself with STOCKAPP

Preparing STOCKAPP Files and Resources

– Step 1: How to Set Environment Variables

– Step 2: Building Servers in STOCKAPP

– Step 3: Editing the STOCKAPP.mk File

– Step 4: How to Edit the Configuration File

– Step 5: Creating a Binary Configuration File

Running STOCKAPP

What Is STOCKAPP?
STOCKAPP is a sample ATMI stocks application that is provided with the Oracle Tuxedo system
software. The application performs the following stock brokering functions: validates and
updates a customer’s account information, and executes buy and sell orders for stocks and/or
funds.

5-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

This documentation leads you, step-by-step, through the procedure you must perform to develop
the STOCKAPP application. Once you have “developed” STOCKAPP through this tutorial, you will
be ready to start developing applications of your own.

The STOCKAPP tutorial is presented in three sections:

“Familiarizing Yourself with STOCKAPP” on page 5-2

“Preparing STOCKAPP Files and Resources” on page 5-8

“Running STOCKAPP” on page 5-19

Note: This information is focused on system users with some experience in application
development, administration, or programming. We assume some familiarity with the
Oracle Tuxedo system software. A development license is required to build Oracle
Tuxedo applications.

Familiarizing Yourself with STOCKAPP
This documentation provides a tour of the files, client, and services that make up the STOCKAPP
application. Click on any of the following activities for more information about that part of the
tour.

Learning About the STOCKAPP Files
The files that make up the STOCKAPP application are delivered in a directory called STOCKAPP,
which is positioned as follows:

Learn ing About the STOCKAPP F i l es

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-3

Exploring the Stock Application Files
The STOCKAPP directory contains the following files:

Eight .cbl files

Four clients: BUY.cbl, SELL.cbl, FUNDPR.cbl and FUNDUP.cbl

One conversational server: FUNDUPSR.cbl

Three files that are servers or are associated with servers

Two servers to generate data or transactions for the application

Files provided to facilitate the use of STOCKAPP as an example

Table 5-1 lists the files that make up STOCKAPP. The table lists the source files delivered with the
Oracle Tuxedo system software, files that are generated when the stock application is built, and
a summary of the contents of each file.

Table 5-1 Purpose of the Stock Application Files

Source File Generated File Contents

BUY.cbl BUY.o

BUY

Client

BUYSR.cbl BUYSR.o

BUYSR

Contains BUY service

ENVFILE ENVFILE used by tmloadcf

FILES Descriptive list of all the files in STOCKAPP

FUNDPR.cbl FUNDPR.o
FUNDPR

Client

FUNDPRSR.cbl FUNDPRSR.o
FUNDPRSR

Contains PRICE QUOTE service

5-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

See Also
“Familiarizing Yourself with STOCKAPP” on page 5-2

Examining the STOCKAPP Clients
In the ATMI client-server architecture of the Oracle Tuxedo system, there are two modes of
communication:

Request/response mode, which is characterized by the sending of a single request for a
service to be performed by the server and getting back a single response.

FUNDUP.cbl FUNDUP.o
FUNDUP

Client

FUNDUPSR.cbl FUNDUPSR.o
FUNDUPSR

Contains FUND UPDATE service

README Online version of the installation and boot
procedures

SELL.cbl SELL.o SELL Client

SELLSR.cbl SELLSR.o
SELLSR

Contains SELL service

STKVAR Contains variable settings, except for those
within ENVFILE

STOCKAPP.mk Application makefile

UBBCBSHM TUXCONFIG Sample UBBCONFIG file for use in a SHM mode
configuration

cust CUST.cbl
cust.V cust.h

View used to define the structure passed between
the BUY and SELL clients and the BUYSR and
SELLSR servers

quote QUOTE.cbl
quote.V
quote.h

View used to define the structure passed between
the FUNDPR and FUNDUP clients and all the
servers

Table 5-1 Purpose of the Stock Application Files (Continued)

Source File Generated File Contents

Examin ing the STOCKAPP C l i ents

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-5

Conversational mode; in this mode a dedicated connection is established between a client
(or a server acting like a client) and a server. The connection remains active until
terminated. While the connection is active, messages containing service requests and
responses can be sent and received between the two participating processes.

System Client Programs
Figure 5-1 shows the hierarchy for STOCKAPP. The user selects one of the four service requests.
The oval shapes in the illustration represent application services.

Figure 5-1 STOCKAPP Requests

Typed Buffers
Typed buffers are an essential part of the Oracle Tuxedo system. In the Oracle Tuxedo system, a
typed buffer is designed to hold a specific data type. Six types are defined: VIEW, STRING,
CARRAY, X_OCTET, X_COMMON, and XML. Applications have the ability to define additional types.

5-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

A Request/Response Client: BUY.cbl
BUY is an example of a client program. It makes account inquiries that call on the service BUYSR.
As an executable, it is invoked as follows:

BUY

BUY.cbl Source Code
Review the following sections of the BUY.cbl program.

* Now register the client with the system

* Issue a TPCALL

* Clean up

The indicated sections contain all of the places in BUY.cbl where the Oracle Tuxedo ATMI
functions are used. Similar to csimpl.cbl, BUY.cbl needs to call TPINITIALIZE to join the
application; call TPCALL to make an RPC request to a service; and call TPTERM to leave an
application. Note also that BUY.cbl is an example of a program that uses a VIEW typed record and
a structure that is defined in the cust file. The source code for the structure can be found in the
view description file, cust.V.

Building Clients
View description files, of which cust is an example, are processed by the view compiler,
viewc(1). Run view(c) to compile the view:

viewc-C-n

 cust.v

where viewc has three output files: a COBOL file (CUST.cbl), a binary view description file
(cust.V), and a header file (cust.h).

The client programs, BUY.cbl, FUNDPR.cbl, FUNDUP.cbl, and SELL.cbl, are processed by
buildclient(1) to compile them and/or link edit them with the necessary Oracle Tuxedo
libraries.

You can use any of these commands individually, if you choose, but rules for all these steps are
included in STOCKAPP.mk.

See Also
“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

../int/intatm.html

Examin ing the STOCKAPP Se rve rs

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-7

“What Are Typed Buffers?” in Introducing Oracle Tuxedo ATMI

ATMI commands and functions in Oracle Tuxedo Command Reference and Oracle Tuxedo
ATMI C Function Reference

“Familiarizing Yourself with STOCKAPP” on page 5-2

Examining the STOCKAPP Servers
This topic provides the following information:

A description of a service that is part of the stock application

A description of the relationships between the STOCKAPP services and servers

Information on the buildserver command options used to compile and build each server

ATMI servers are executable processes that offer one or more services. In the Oracle Tuxedo
system, they continually accept requests (from processes acting as clients) and dispatch them to
the appropriate services. Services are subroutines of COBOL language code written specifically
for an application. It is the services accessing a resource manager that provide the functionality
for which your Oracle Tuxedo system transaction processing application is being developed.
Service routines are one part of the application that must be written by the Oracle Tuxedo system
programmer (user-defined clients being another part).

All STOCKAPP services use functions provided in the Application-to-Transaction Monitor
Interface (ATMI) for performing the following tasks:

Communicating synchronously or asynchronously with other services

Defining global transactions

Sending replies back to clients

STOCKAPP Services
There are four services in STOCKAPP. Each STOCKAPP service matches a COBOL function name
in the source code of a server as shown in the following list:

BUYSR

Buys a fund/stock record; offered by the BUYSELL server; accepts a VIEW record as input,
inserts a CUSTFILE record

../int/intatm.html

5-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

SELLSR

Sells a fund/stock record; offered by the BUYSELL server; accepts a VIEW record as input,
inserts a CUSTFILE record

FUNDPRSR

Price quote; offered by the PRICEQUOTE server; accepts a VIEW record as input

FUNDUPSR

Fund update; conversational service; offered by FUNDUPDATE server; accepts a VIEW
record as input

Preparing STOCKAPP Files and Resources
This documentation leads you through the procedures you must complete to create the files and
other resources you need to run STOCKAPP.

Click on each task for instructions on completing that task.

Step 1: How to Set Environment Variables
Environment variables required for STOCKAPP are defined in the STKVAR file. The file is large
(approximately 100 lines) because it includes extensive comments.

Step 1 : How to Se t Env i ronment Var iab les

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-9

1. In a text editor, familiarize yourself with the STKVAR file. Line 9 ensures that TUXDIR is set.
If it is not set, execution of the file fails with the following message:

TUXDIR: parameter null or not set

2. Set TUXDIR to the root directory of your Oracle Tuxedo system directory structure, and export
it.

3. Another line in STKVAR sets APPDIR to the directory {TUXDIR}/samples/atmi/STOCKAPP
which is the directory where STOCKAPP source files are located: APPDIR is a directory where
the Oracle Tuxedo system looks for your application-specific files. You might prefer to copy
the STOCKAPP files to a different directory to safeguard the original source files. If you do,
then enter the directory there. It does not have to be under TUXDIR.

Note: Other variables specified in STKVAR play various roles in the sample application; you
need to be aware of them when you are developing your own application. By
including them in STKVAR, we provide you with a template that you may want to adapt
at a later time for use with a real application.

4. When you have made all necessary changes to STKVAR, execute STKVAR as follows:

. ./STKVAR

Listing 5-1 STKVAR: Environment Variables for STOCKAPP

#ident "@(#)samples/atmi:STOCKAPP/STKVAR
#
This file sets all the environment variables needed by the TUXEDO software
to run the STOCKAPP
#
This directory contains all the TUXEDO software
System administrator must set this variable
#
TUXDIR=${TUXDIR:?}
#
This directory contains all the user written code
#
Contains the full path name of the directory that the application
generator should place the files it creates
#
APPDIR=${HOME}/STOCKAPP
#
Environment file to be used by tmloadcf
#
COBDIR=${COBDIR:?}
#

5-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

This directory contains the cobol files needed
for compiling and linking.
#
LD_LIBRARY_PATH=$COBDIR/coblib:${LD_LIBRARY_PATH}
#
Add coblib to LD_LIBRARY_PATH
#
ENVFILE=${APPDIR}/ENVFILE
#
List of field table files to be used by CBLVIEWC, tmloadcf, etc.
#
FIELDTBLS=fields,Usysflds
#
List of directories to search to find field table files
#
FLDTBLDIR=${TUXDIR}/udataobj:${APPDIR}
#
Set device for the transaction log; this should match the TLOGDEVICE
parameter under this site's LMID in the *MACHINES section of the
UBBCBSHM file
#
TLOGDEVICE=${APPDIR}/TLOG
#
Device for the configuration file
#
UBBCBSHM=$APPDIR/UBBCBSHM
#
Device for binary file that gives /T all its information
#
TUXCONFIG=${APPDIR}/TUXCONFIG
#
Set the prefix of the file which is to contain the central user log;
this should match the ULOGPFX parameter under this site's LMID in the
*MACHINES section of the UBBCONFIG file
#
ULOGPFX=${APPDIR}/ULOG
#
List of directories to search to find view files
#
VIEWDIR=${APPDIR}
#
List of view files to be used by CBLVIEWC, tmloadcf, etc.
#
VIEWFILES=quote.V,cust.V
#
Set the COBCPY
#
COBCPY=$TUXDIR/cobinclude
#

Step 1 : How to Se t Env i ronment Var iab les

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-11

Set the COBOPT
#
COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
#
Set the CFLAGS
#
CFLAGS="-I$TUXDIR/include -I$TUXDIR/sysinclude"
#
Export all variables just set
#
export TUXDIR APPDIR ENVFILE
export FIELDTBLS FLDTBLDIR TLOGDEVICE
export UBBCBSHM TUXCONFIG ULOGPFX LD_LIBRARY_PATH
export VIEWDIR VIEWFILES COBDIR COBCPY COBOPT CFLAGS
#
Add TUXDIR/bin to PATH if not already there
#
a="`echo $PATH | grep ${TUXDIR}/bin`"
if [x"$a" = x]
then
PATH=${TUXDIR}/bin:${PATH}
export PATH
fi
#
Add APPDIR to PATH if not already there
#
a="`echo $PATH | grep ${APPDIR}`"
if [x"$a" = x]
then
PATH=${PATH}:${APPDIR}
export PATH
fi
#
Add COBDIR to PATH if not already there
#
a="`echo $PATH | grep ${COBDIR}`"
if [x"$a" = x]
then
PATH=${PATH}:${COBDIR}
export PATH
fi

Additional Requirements
On AIX, set LIBPATH instead of LD_LIBRARY_PATH.

5-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

On HP-UX, set SHLIB_PATH instead of LD_LIBRARY_PATH.

If your operating system is Sun Solaris, you need to: put /usr/5bin at the beginning of
your PATH. The following command can be used:

PATH=/usr/5bin:$PATH;export PATH

Use /bin/sh rather than csh for your shell.

See Also
“Preparing STOCKAPP Files and Resources” on page 5-8

Step 2: Building Servers in STOCKAPP
buildserver is used to put together an executable ATMI server. Options identify the names of
the output file, the input files provided by the application, and various libraries that permit you to
run an Oracle Tuxedo system application in a variety of ways.

buildserver with the -C option invokes the cobcc command. The environment variables
ALTCC and ALTCFLAGS can be set to name an alternative compile command and to set flags for
the compile and link edit phases. The key buildserver command-line options are illustrated in
the examples that follow.

The buildserver command is used in STOCKAPP.mk to compile and build each server in the
stock application. (Refer to buildserver(1) in the Oracle Tuxedo Command Reference for
complete details.)

How to Build the BUYSELL Server
The BUYSELL ATMI server is derived from files that contain the code for the BUYSR and SELLSR
functions. The BUYSELL server is first compiled to a BUYSELL.o file before supplying it to the
buildserver command so that any compile-time errors can be clearly identified and dealt with
before this step.

1. Create the BUYSELL.o file (performed for you in STOCKAPP.mk). The buildserver
command that was used to build the BUYSELL server follows:

buildserver -C -v -o BUYSELL -s SELLSR -f SELLSR.cbl -s BUYSR -f BUYSR.cbl

The explanation of the command-line options follows:

– The -C option is used to build servers with COBOL modules.

../rfcm/rfcmd.html

Step 2 : Bu i ld ing Se rve rs in STOCKAPP

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-13

– The -v option is used to specify the verbose mode. It writes the cc command to its
standard output.

– The -o option is used to assign a name to the executable output file. If no name is
provided, the file is named SERVER.

– The -s option is used to specify the service names in the server that are available to be
advertised when the server is booted. If the name of the function that performs a
service is different from the service name, the function name becomes part of the
argument of the -s option. In the STOCKAPP, the function name is the same as the name
of the service so only the service names themselves need to be specified. It is our
convention to specify all uppercase for the service name. However, the -s option of
buildserver does allow you to specify an arbitrary name for the processing function
for a service within a server. Refer to the buildserver(1) in the Oracle Tuxedo
Command Reference for details. It is also possible for the administrator to specify that
only a subset of the services that were used to create the server with the buildserver
command is to be available when the server is booted. For more information, refer to
Administering an Oracle Tuxedo Application at Run Time and Setting Up an Oracle
Tuxedo Application.

– The -f option specifies the files that are used in the link-edit phase. Also refer to the
-l option on the buildserver reference page. For more detail information on both of
these options, refer to the “Building Servers” in Programming Oracle Tuxedo ATMI
Applications Using COBOL. There is a significance to the order in which the files are
listed. The order is dependent on function references and in what libraries the
references are resolved. Source modules should be listed ahead of libraries that might
be used to resolve their references. If these are .cbl files, they are first compiled.
Object files can be either separate .o files or groups of files in archive (.a) files. If
more than a single filename is given as an argument to a -f, the syntax calls for a list
enclosed in double quotes. You can use as many -f options as you need.

– The -s option names the SELLSR and BUYSR services to be the services that comprise
the BUYSELL server. The -o option assigns the name BUYSELL to the executable output
file and the -f option specifies that the SELLSR.cbl and the BUYSR.cbl files are to be
used in the link edit phase of the build.

Servers Built in STOCKAPP.mk
The topics on creating the STOCKAPP servers are important to your understanding of how the
buildserver command is specified. However, in actual practice you are apt to incorporate the
build into a makefile; that is the way it is done in STOCKAPP.

../rfcm/rfcmd.html
../pgc/pgserv.html

5-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

See Also
“Familiarizing Yourself with STOCKAPP” on page 5-2

buildserver(1)

Step 3: Editing the STOCKAPP.mk File
STOCKAPP includes a makefile that makes all scripts executable, converts the view description
file to binary format, and does all the precompiles, compiles, and builds necessary to create the
application servers. It can also be used to clean up when you want to make a fresh start.

As STOCKAPP.mk is delivered, there are a few fields you may want to edit, and some others that
may benefit from some explanation.

How to Edit the TUXDIR Parameter
Go to the following comment in STOCKAPP.mk and to the TUXDIR parameter:

#
Root directory of TUXEDO System. This file must either be edited to set
this value correctly, or the correct value must be passed via "make -f
STOCKAPP.mk TUXDIR=/correct/rootdir", or the build of STOCKAPP will fail.
#
TUXDIR=../..

You should set the TUXDIR parameter to the absolute pathname of the root directory of your
Oracle Tuxedo system installation.

How to Edit the APPDIR Parameter
You may want to give some thought to the setting of the APPDIR parameter. As STOCKAPP is
delivered, APPDIR is set to the directory in which the STOCKAPP files are located, relative to
TUXDIR. The following section of STOCKAPP.mk defines and describes the setting of APPDIR.

#
Directory where the STOCKAPP application source and executables live.
This file must either be edited to set this value correctly, or the
correct value must be passed via "make -f STOCKAPP.mk
APPDIR=/correct/appdir", or the build of STOCKAPP will fail.
#
APPDIR=$(TUXDIR)/samples/atmi/STOCKAPP
#

../rfcm/rfcmd.html

Step 4 : How to Ed i t the Conf igurat i on F i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-15

If you have copied the files to another directory, as suggested in the README file, you should set
APPDIR to the name of the directory to which you copied the files. When you run the makefile,
the application will be built in this directory.

How to Run the STOCKAPP.mk File
1. When you have completed the changes you wish to make to STOCKAPP.mk, run it with the

following command line:

nohup make -f STOCKAPP.mk install &

2. Check the nohup.out file to make sure the process completed successfully.

See Also
“Preparing STOCKAPP Files and Resources” on page 5-8

Step 4: How to Edit the Configuration File
The STOCKAPP configuration file defines how an application runs on a set of machines. STOCKAPP
is delivered with a configuration file in text format described in UBBCONFIG(5). UBBCBSHM,
defines an application on a single computer.

1. In a text editor, familiarize yourself with the configuration file for STOCKAPP.

Listing 5-2 UBBCBSHM Configuration File Fields to Be Replaced

#Copyright (c) 1992 Unix System Laboratories, Inc.
#All rights reserved
#Skeleton UBBCONFIG file for the TUXEDO COBOL Sample Application.
*RESOURCES
IPCKEY 5226164
DOMAINID STOCKAPP

001 UID <user id from id(1)>
002 GID <group id from id(1)>

MASTER SITE1
PERM 0660
MAXACCESSERS 20
MAXSERVERS 15
MAXSERVICES 30
MODEL SHM
LDBAL Y

5-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

MAXGTT 100
MAXBUFTYPE 16
MAXBUFSTYPE 32
SCANUNIT 10
SANITYSCAN 12
DBBLWAIT 6
BBLQUERY 180
BLOCKTIME 10
TAGENT “TAGENT"
#
*MACHINES

003 <SITE1's uname> LMID=SITE1
004 TUXDIR="<TUXDIR1>"
005 APPDIR="<APPDIR1>"

ENVFILE="<APPDIR1>/ENVFILE"
TUXCONFIG="<APPDIR1>/TUXCONFIG"
TUXOFFSET=0

006 TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"
MAXWSCLIENTS=5

#
*GROUPS
COBAPI LMID=SITE1 GRPNO=1
#
#
*SERVERS
FUNDUPSR SRVGRP=COBAPI SRVID=1 CONV=Y ENVFILE="<APPDIR1>/ENVFILE"
FUNDPRSR SRVGRP=COBAPI SRVID=2 ENVFILE="<APPDIR1>/ENVFILE"
BUYSELL SRVGRP=COBAPI SRVID=3 ENVFILE="<APPDIR1>/ENVFILE"
#
#
*SERVICES

2. To enable the application password feature, add the following line to the RESOURCES section
of UBBCBSHM:

SECURITY APP_PW

3. You may notice that the values of some parameters are enclosed in angle brackets (<>). Values
shown in angle brackets are generic; you need to replace them with values that pertain to your
installation. All of these fields occur within the RESOURCES, MACHINES, and GROUPS sections
in the file. Table 5-2 describes the values with which you must replace the angle-bracketed
strings. For each string, substitute an appropriate value.

Step 4 : How to Ed i t the Conf igurat i on F i l e

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-17

See Also
“Preparing STOCKAPP Files and Resources” on page 5-8

UBBCONFIG(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

Table 5-2 Explanation of Values

Line String to Be
Replaced

Purpose

001 UID The effective user ID for the owner of the bulletin board IPC
structures. In a multiprocessor configuration, the value must
be the same on all machines. You avoid problems if this is the
same as the owner of the Oracle Tuxedo software.

002 GID The effective group ID for the owner of the bulletin board IPC
structures. In a multiprocessor configuration, the value must
be the same on all machines. Users of the application should
share this group ID.

003 SITE1 name The node name of the machine. Use the value produced by the
UNIX command:
uname -n

004 TUXDIR The absolute pathname of the root directory for the Oracle
Tuxedo system software. Make this a global change to put the
value in all occurrences of <TUXDIR1> in the file.

005 APPDIR The absolute pathname of the directory where the application
runs. Make this a global change to put the value in all
occurrences of <APPDIR1> in the file.

006 machine
type

This parameter is important in a networked application where
machines of different types are present. The Oracle Tuxedo
system checks for the value on all communication between
machines. Only if the values are different are the message
encode/decode routines called to convert the data.

../rf5/rf5.html

5-18 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 5: Creating a Binary Configuration File

Before Creating the Binary Configuration File
Before creating the binary configuration file, you need to be in the directory in which your
STOCKAPP files are located and you must set the environment variables. Complete the following
tasks.

1. Go to the directory in which your STOCKAPP files are located.

2. Set the environment variables by entering:

. ./STKVAR

How to Load the Configuration File
Once you have finished editing the configuration file, you must load it into a binary file on your
MASTER machine. The name of the binary configuration file is TUXCONFIG; its path name is
defined in the TUXCONFIG environment variable. The file should be created by a person with the
effective user ID and group ID of the Oracle Tuxedo system administrator, which should be the
same as the UID and GID values in your configuration file. If this requirement is not met, you may
have permission problems in running STOCKAPP.

1. To create TUXCONFIG, enter the following command:

 tmloadcf UBBCBSHM

While the configuration file is being loaded, you are prompted several times to confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of IPC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can be installed only on the MASTER machine; it is propagated to other
machines by tmboot when the application is booted.

If you have specified SECURITY as an option for the configuration, tmloadcf prompts you
to enter an application password. The password you select can be up to 30 characters long.
Client processes joining the application are required to supply the password.

tmloadcf parses the text configuration file (UBBCONFIG) for syntax errors before it loads
it, so if there are errors in the file, the job fails.

Runn ing STOCKAPP

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-19

See Also
“Preparing STOCKAPP Files and Resources” on page 5-8

tmloadcf(1) in Oracle Tuxedo Command Reference

 Running STOCKAPP
This documentation leads you through the procedures for booting STOCKAPP, testing it by running
various client programs and transactions, and shutting it down when you have finished.

Click on each task for instructions on completing that task.

Step 1: How to Prepare to Boot
1. Before booting STOCKAPP, verify that your machine has enough IPC resources to support your

application. To generate a report on IPC resources, run the tmboot command with the -c
option.

Listing 5-3 IPC Report

 Ipc sizing (minimum /T values only)
Fixed Minimums Per Processor

 SHMMIN: 1

../rfcm/rfcmd.html

5-20 Tutorials for Developing Oracle Tuxedo ATMI Applications

 SHMALL: 1
 SEMMAP: SEMMNI

Variable Minimums Per Processor
SEMUME, A SHMMAX
SEMMNU, * *

 Node SEMMNS SEMMSL SEMMSL SEMMNI MSGMNI MSGMAP SHMSEG
 ------ ------ ------ ------ ------ ------ ------ ------
 machine 1 60 1 60 A + 1 10 20 76K
 machine 2 63 5 63 A + 1 11 22 76K
 where 1 <= A <= 8.

2. You should add the number of application client used per processor to each MSGMNI value.
MSGMAP should be twice MSGMNI.

3. Compare the minimum IPC requirements to the parameters set for your machine. The location
of these parameter settings is platform-dependent:

– On many UNIX system platforms, machine parameters are defined in
/etc/conf/cf.d/mtune.

– On Windows 2003 platforms, machine parameters are set and displayed through a
control panel.

See Also
“Running STOCKAPP” on page 5-19

Step 2: How to Boot STOCKAPP
1. Set the environment:

../STKVAR

2. Boot the application by entering the following:

 tmboot

The following prompt is displayed:

 Boot all admin and server processes? (y/n): y

When you enter y after the prompt, a running report, such as the following, is displayed on
the screen:

Step 3 : How to Tes t STOCKAPP Serv ices

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-21

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes
exec BBL -A:
 process id=24223 Started.

The report continues until all servers in the configuration have been started. It ends by reporting
the total number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -A option. If no options are specified, the entire application is
booted.

In addition to reporting on the number of servers booted, tmboot also sends messages to the
ULOG.

See Also
“Running STOCKAPP” on page 5-19

tmboot(1) in the Oracle Tuxedo Command Reference

USERLOG(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

Step 3: How to Test STOCKAPP Services
1. If you are logging in cold to a running system, you must set your environment for STOCKAPP.

To do so, enter the following command:

../STKVAR

2. Run the BUY client program. To execute the BUY client program, enter the following
command:

BUY

3. Monitor STOCKAPP. While STOCKAPP is running, run the tmadmin subcommands and try
various commands with it to see the kind of status information you can produce.

See Also
“Running STOCKAPP” on page 5-19

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html

5-22 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 4: How to Shut Down STOCKAPP
To bring down STOCKAPP, enter the tmshutdown(1) command with no arguments, from the
MASTER machine, as follows.

 tmshutdown

Running this command (or the shutdown command of tmadmin) causes the following results:

All application servers, gateway servers, TMS servers, and administrative servers are shut
down.

All associated IPC resources are removed.

See Also
“Running STOCKAPP” on page 5-19

tmadmin(1) in the Oracle Tuxedo Command Reference

tmshutdown(1) in the Oracle Tuxedo Command Reference

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-1

C H A P T E R 6

Tutorial for XMLSTOCKAPP: a C and
C++ XML Parser Application

This topic includes the following sections:

What Is XMLSTOCKAPP?

Familiarizing Yourself with XMLSTOCKAPP

Preparing XMLSTOCKAPP Files and Resources

– Step1: Copy the XMLSTOCKAPP Files to a New Directory

– Step 2: Set Environment Variables

– Step 3: Building Clients

– Step 4: Building Servers in XMLSTOCKAPP

– Step 5: How to Edit the Configuration File

– Step 6: Creating a Binary Configuration File

Running XMLSTOCKAPP

What Is XMLSTOCKAPP?
XMLSTOCKAPP is a sample ATMI stock application that is provided with the Oracle Tuxedo
system software. The application runs two servers on a single machine and illustrates invoking
the parser from a C and a C++ Tuxedo server and routing of XML buffers. One server is a Tuxedo
server written in C++ (stockxml) and the other server is written in C (stockxml_c). The two

6-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

servers offer the same STOCKQUOTE service. The client calls the service and returns the stock
price and the client then prints the XML buffer.

This documentation leads you, step-by-step, through the procedure you must perform to develop
the XMLSTOCKAPP application. Once you have “developed” XMLSTOCKAPP through this tutorial,
you will be ready to start developing applications of your own.

The XMLSTOCKAPP tutorial is presented in three sections:

“Familiarizing Yourself with XMLSTOCKAPP” on page 6-2

“Preparing XMLSTOCKAPP Files and Resources” on page 6-4

“Running XMLSTOCKAPP” on page 6-10

Note: This information is focused on system users with some experience in application
development, administration, or programming. We assume some familiarity with the
Oracle Tuxedo system software. A development license is required to build Oracle
Tuxedo applications.

Familiarizing Yourself with XMLSTOCKAPP
This documentation provides a tour of the files, client, and services that make up the
XMLSTOCKAPP application. The following activities for more information about that part of the
tour.

Learning About the XMLSTOCKAPP Files

Examining the XMLSTOCKAPP Clients

Examining the XMLSTOCKAPP Servers

Learning About the XMLSTOCKAPP Files
The files that make up the XMLSTOCKAPP application are delivered in the
samples/atmi/xmlstockapp directory. The files that are delivered with this sample are:

The XMLSTOCKAPP directory contains the following files:

Two .xml input files to the client: stock_quote_beas.xml and stock_quote_msft.xml

One client: Client.cpp

Two files that are servers: stockxml and stockxml_c

Fami l ia r i z ing Yourse l f w i th XMLSTOCKAPP

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-3

Files provided to facilitate the use of STOCKAPP as an example:
– SAXPrint.cpp

– SAXPrintHandler.cpp

– DOMTreeErrorReporter.cpp

– xmlWrapper.cpp

Examining the XMLSTOCKAPP Clients
In the ATMI client-server architecture of the Oracle Tuxedo system, there are two modes of
communication:

Request/response mode, which is characterized by the sending of a single request for a
service to be performed by the server and getting back a single response.

Conversational mode; in this mode a dedicated connection is established between a client
(or a server acting like a client) and a server. The connection remains active until
terminated. While the connection is active, messages containing service requests and
responses can be sent and received between the two participating processes.

The XMLSTOCKAPP implements the request/response mode and uses the STOCKQUOTE service to
request a stock price.

1. A request for a stock price for BEAS or MSFT.

2. The client, which is run with a single argument in an XML file, calls the STOCKQUOTE
service.

3. The service updates the XML buffer with the stock price.

4. The client prints the XML buffer.

A Request/Response Client: stock_quote_beas.xml
Client.cpp is a client program that uses input from one of the XML files,
stock_quote_beas.xml or stock_quote_msft.xml. It makes an inquiry that calls on the
service STOCKQUOTE and returns the stock price for BEAS or MSFT. As an executable, it is
invoked as follows:

Client stock_quote_beas.xml

or

Client stock_quote_msft.xml

6-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

See Also
“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

“What Are Typed Buffers?” in Introducing Oracle Tuxedo ATMI

ATMI commands and functions in Oracle Tuxedo Command Reference and Oracle Tuxedo
ATMI C Function Reference

Examining the XMLSTOCKAPP Servers
ATMI servers are executable processes that offer one or more services. In the Oracle Tuxedo
system, they continually accept requests (from processes acting as clients) and dispatch them to
the appropriate services. It is the services accessing a resource manager that provide the
functionality for which your Oracle Tuxedo system transaction processing application is being
developed. Service routines are one part of the application that must be written by the Oracle
Tuxedo system programmer (user-defined clients being another part).

The STOCKQUOTE service in the XMLSTOCKAPP program uses functions provided in the
Application-to-Transaction Monitor Interface (ATMI) to return a stock price to the client as an
XML buffer.

Preparing XMLSTOCKAPP Files and Resources
This documentation leads you through the procedures you must complete to create the files and
other resources you need to run XMLSTOCKAPP.

Step1: Copy the XMLSTOCKAPP Files to a New Directory

Step 2: Set Environment Variables

Step 3: Building Clients

Step 4: Building Servers in XMLSTOCKAPP

Step 5: How to Edit the Configuration File

Step 6: Creating a Binary Configuration File

Step1: Copy the XMLSTOCKAPP Files to a New Directory
It is recommended that you copy the XMLSTOCKAPP files to your own directory prior to
editing any of the files or running the sample.

../int/intatm.html
../int/intatm.html

Prepar ing XMLSTOCKAPP F i l es and Resources

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-5

Step 2: Set Environment Variables
You will need to edit the environment variables file.

1. Ensure that TUXDIR is set. If it is not set, execution of the file fails with the following message:

TUXDIR: parameter null or not set

2. Set TUXDIR to the root directory of your Oracle Tuxedo system directory structure, and export
it.

3. Set APPDIR to the directory {TUXDIR}/samples/atmi/XMLSTOCKAPP which is the directory
where XMLSTOCKAPP source files are located: APPDIR is a directory where the Oracle Tuxedo
system looks for your application-specific files. If you copied the XMLSTOCKAPP files to a
different directory to safeguard the original source files, then enter the directory there. It does
not have to be under TUXDIR.

4. When you have made all necessary changes to the environment variables file, execute it as
follows:

. ./<VARFILE>

where <VARFILE> is the name of your environment variable file.

Additional Requirements
LD_LIBRARY_PATH must include $TUXDIR/lib on systems that use shared libraries, with the
exception of HP-UX and AIX.

On AIX, set LIBPATH instead of LD_LIBRARY_PATH.

On HP-UX, set SHLIB_PATH instead of LD_LIBRARY_PATH.

If your operating system is Sun Solaris, you need to: put /usr/5bin at the beginning of
your PATH. The following command can be used:

PATH=/usr/5bin:$PATH;export PATH

Use /bin/sh rather than csh for your shell.

Step 3: Building Clients
To build the client:

export CFLAGS=-I

Use the following commands for the specified opearting system:

6-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

For Solaris:

export CC=CC

For HP-UX:

export CC=aCC

For Digital Unix:

export CC=cxx

For AIX:

export CC=xlC_r

For Linux:

export CC=g++

The following command builds the client:

buildclient -o Client -f Client.cpp -f SAXPrint.cpp -f SAXPrintHandlers.cpp

-f -ltxml

Step 4: Building Servers in XMLSTOCKAPP
In the XMLSTOCKAPP sample, two servers are provided for you. However, if you want to build
the servers for this example, you will need to follow the directions inn the README file.

buildserver is used to put together an executable ATMI server. Options identify the names of
the output file, the input files provided by the application, and various libraries that permit you to
run an Oracle Tuxedo system application in a variety of ways.

The key buildserver command-line options are illustrated in the examples that follow.

The buildserver command is used in a .mk file to compile and build each server in the stock
application. (Refer to buildserver(1) in the Oracle Tuxedo Command Reference for complete
details.)

How to Build the stockxml and stockxml_c Servers
The buildserver command that was used to build the stockxml server and the stockxml_c
server follows:

buildserver -s STOCKQUOTE -o stockxml -f stockxml.cpp -f
DOMTreeErrorReporter.cpp -f -ltxml
buildserver -s STOCKQUOTE -f stockxml_c.c -o stockxml_c -f xmlWrapper.cpp -f
DOMTreeErrorReporter.cpp -f -ltxml

../rfcm/rfcmd.html

Prepar ing XMLSTOCKAPP F i l es and Resources

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-7

The explanation of the command-line options follows:

– The -o option is used to assign a name to the executable output file. If no name is
provided, the file is named SERVER.

– The -s option is used to specify the service names in the server that are available to be
advertised when the server is booted. If the name of the function that performs a
service is different from the service name, the function name becomes part of the
argument of the -s option. In the XMLSTOCKAPP, the function name is the same as the
name of the service so only the service names themselves need to be specified. It is our
convention to specify all uppercase for the service name. However, the -s option of
buildserver does allow you to specify an arbitrary name for the processing function
for a service within a server. Refer to the buildserver(1) in the Oracle Tuxedo
Command Reference for details. It is also possible for the administrator to specify that
only a subset of the services that were used to create the server with the buildserver
command is to be available when the server is booted. For more information, refer to
Administering an Oracle Tuxedo Application at Run Time and Setting Up an Oracle
Tuxedo Application.

– The -f option specifies the files that are used in the link-edit phase. Also refer to the
-l option on the buildserver reference page. There is a significance to the order in
which the files are listed. The order is dependent on function references and in what
libraries the references are resolved. Source modules should be listed ahead of libraries
that might be used to resolve their references. Object files can be either separate .o
files or groups of files in archive (.a) files. If more than a single filename is given as
an argument to a -f, the syntax calls for a list enclosed in double quotes. You can use
as many -f options as you need.

– The -s option names the STOCKQUOTE service to be the services that comprise the
stockxml and stockxml_c servers. The -o option assigns the name stockxml and
stockxml_c to the executable output file and the -f option specifies that the
stockxml.cpp, DOMTreeErrorReporter.cpp, and the xmlWrapper.cpp files are to
be used in the link edit phase of the build.

See Also
“Familiarizing Yourself with XMLSTOCKAPP” on page 6-2

buildserver(1)

../rfcm/rfcmd.html
../rfcm/rfcmd.html

6-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 5: How to Edit the Configuration File
The sample configuration file, ubbsimple, must be edited to replace the bracketed items with
values appropriate to your installation. Your TUXDIR and TUXCONFIG environment variables
must match the values in the configuration file.

Listing 6-1 The ubbsimple Configuration File

1$
2
3 #Skeleton UBBCONFIG file for the BEA Tuxedo Simple Application.
4 #Replace the <bracketed> items with the appropriate values.
5 RESOURCES
6 IPCKEY <Replace with valid IPC Key greater than 32,768>
7
8 #Example:
9
10 #IPCKEY 62345
11
12 MASTER simple
13 MAXACCESSERS 5
14 MAXSERVERS 5
15 MAXSERVICES 10
16 MODEL SHM
17 LDBAL N
18
19 *MACHINES
20
21 DEFAULT:
22
23 APPDIR="<Replace with the current pathname>"
24 TUXCONFIG="<Replace with TUXCONFIG Pathname>"
25 TUXDIR="<Root directory of Tuxedo (not /)>"
26 #Example:
27 # APPDIR="/usr/me/simpdir"
28 # TUXCONFIG="/usr/me/simpdir/tuxconfig"
29 # TUXDIR="/usr/tuxedo"
30
31 <Machine-name> LMID=simple
32 #Example:
33 #tuxmach LMID=simple
34 *GROUPS
35 GROUP1
36 LMID=simple GRPNO=1 OPENINFO=NONE
37
38 *SERVERS

Prepar ing XMLSTOCKAPP F i l es and Resources

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-9

39 DEFAULT:
40 CLOPT="-A"
41 stockxml SRVGRP=GROUP1 SRVID=1
42 stockxml_c SRVGRP=GROUP1 SRVID=1
43 *SERVICES
44 STOCKQUOTE

5. For each <string> (that is, for each string shown between angle brackets), substitute an
appropriate value.

See Also
“Preparing XMLSTOCKAPP Files and Resources” on page 6-4

UBBCONFIG(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 6: Creating a Binary Configuration File
Before creating the binary configuration file, you need to be in the directory in which your
XMLSTOCKAPP files are located and you must set the environment variables. Complete the
following tasks.

1. Go to the directory in which your XMLSTOCKAPP files are located.

2. Set the environment variables by entering:

. ./<variable_file>

where <variable_file> is the name of your variables file.

How to Load the Configuration File
Once you have finished editing the configuration file, you must load it into a binary file on your
MASTER machine. The name of the binary configuration file is TUXCONFIG; its path name is
defined in the TUXCONFIG environment variable. The file should be created by a person with the
effective user ID and group ID of the Oracle Tuxedo system administrator, which should be the
same as the UID and GID values in your configuration file. If this requirement is not met, you may
have permission problems in running XMLSTOCKAPP.

1. To create TUXCONFIG, enter the following command:

 tmloadcf ubbsimple

../rf5/rf5.html

6-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

While the configuration file is being loaded, you are prompted several times to confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of IPC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can be installed only on the MASTER machine; it is propagated to other
machines by tmboot when the application is booted.

tmloadcf parses the text configuration file (UBBCONFIG) for syntax errors before it loads
it, so if there are errors in the file, the job fails.

See Also
“Preparing XMLSTOCKAPP Files and Resources” on page 6-4

tmloadcf(1) in Oracle Tuxedo Command Reference

 Running XMLSTOCKAPP
This documentation leads you through the procedures for booting XMLSTOCKAPP, testing it by
running various client programs and transactions, and shutting it down when you have finished.

Step 1: How to Prepare to Boot
Before booting XMLSTOCKAPP, verify that your machine has enough IPC resources to support
your application. To generate a report on IPC resources, run the tmboot command with the -c
option.

Step 2: How to Boot XMLSTOCKAPP
1. Set the environment:

../<variable_file>

2. Boot the application by entering the following:

 tmboot -y

When you enter -y, a running report, such as the following, is displayed on the screen:

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes

../rfcm/rfcmd.html

Running XMLSTOCKAPP

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-11

exec BBL -A:
 process id=24223 Started.

The report continues until all servers in the configuration have been started. It ends by reporting
the total number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -A option. If no options are specified, the entire application is
booted.

In addition to reporting on the number of servers booted, tmboot also sends messages to the
ULOG.

See Also
tmboot(1) in the Oracle Tuxedo Command Reference

USERLOG(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

Step 3: How to Test XMLSTOCKAPP Services
1. If you are logging in cold to a running system, you must set your environment for

XMLSTOCKAPP. To do so, enter the following command:

../<variable_file>

2. Run the client program. To execute the client program, enter the following command:

Client stock_quote_beas.xml

Step 4: How to Shut Down XMLSTOCKAPP
To bring down XMLSTOCKAPP, enter the tmshutdown(1) command with no arguments, from the
MASTER machine, as follows.

 tmshutdown -y

Running this command (or the shutdown command of tmadmin) causes the following results:

All application servers, gateway servers, TMS servers, and administrative servers are shut
down.

All associated IPC resources are removed.

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html

6-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

See Also
tmadmin(1) in the Oracle Tuxedo Command Reference

tmshutdown(1) in the Oracle Tuxedo Command Reference

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Tutorials for Developing Oracle Tuxedo ATMI Applications 7-1

C H A P T E R 7

Tutorial for xmlfmlapp: A Full C
XML/FML32 Conversion Application

This topic includes the following sections:

What Is xmlfmlapp?

Familiarizing Yourself with xmlfmlapp

Preparing xmlfmlapp Files and Resources

– Step 1: Copy the xmlfmlapp Files to a New Directory

– Step 2: Set Environment Variables

– Step 3: Create FML32 Field Table

– Step 4: Build the xmlfmlapp Binaries

– Step 5: Edit the Configuration File

– Step 6: Create the Binary Configuration File

Running xmlfmlapp

– Step 1: xmlfmlapp Boot Preparation

– Step 2: Boot xmlfmlapp

– Step 3: Test xmlfmlapp Services

– Step 4: Shut Down xmlfmlapp

7-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

What Is xmlfmlapp?
xmlfmlapp is a sample ATMI stock application that demonstrates how to query, buy and sell
stocks via client request. The application runs three services, "QUERY", "BUY" and "SELL" on a
single server. These three services are written using C language and accept FML32 buffers for
input and output.

This documentation leads you, step-by-step, through the procedures you must perform to develop
the xmlfmlapp application. Once you have “developed” xmlfmlapp with this tutorial, you will
be ready to start developing applications of your own.

The xmlfmlapp tutorial is presented in three sections:

“Familiarizing Yourself with xmlfmlapp” on page 7-2

“Preparing xmlfmlapp Files and Resources” on page 7-5

“Running xmlfmlapp” on page 7-9

Note: This information is geared towards system users with some experience in application
development, administration, or programming. We assume some familiarity with the
Oracle Tuxedo system software. A development license is required to build Oracle
Tuxedo applications.

Familiarizing Yourself with xmlfmlapp
This sample demonstrates how to use XML to FML32 automatic and on-demand conversion
functions to operate XML data instead of using Xerces parser APIs. To use Xerces parser APIs
in a Tuxedo client/server application written in C, a dynamic library needs to be written using
CPP and wrapped for use with a C program (for more information, see What Is
XMLSTOCKAPP?). Using XML to FML32 on-demand and automatic conversion functionality,
provides the developer with the freedom to manipulate FML32 buffer data as desired. For more
information on the XML to FML/FML32 on-demand and automatic conversion functionality, see
Converting XML Data To and From FML/FML32 Buffers in Programming Oracle Tuxedo
ATMI Applications Using C.

In this sample, the client will send requests (query, buy or sell) to corresponding services. The
client sends and receives XML buffers. To communicate with server, all three services use the
"BUFTYPECONV=XML2FML32" parameter, which converts the input XML buffers to FML32
before sending the request to the corresponding service. Before returning information back to the
client, this parameter then converts FML32 buffers to XML buffers. The server handles FML32
data directly.

../pgc/pgbuf.html

Fami l ia r i z ing Yourse l f w i th xml fmlapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 7-3

The requesting XML buffer uses a schema to validate the XML document, thus ensuring that the
request sends valid data.

The server in this sample reads stock information from an XML document and converts it to an
FML32 buffer directly using the tpxmltofml32(3c) function. After that, it can get information
from this buffer based on requested FML32 data, and returns the required FML32 data.

This documentation provides a tour of the files, client, and services that make up the xmlfmlapp
application. The following activities for more information about that part of the tour.

Learning About the xmlfmlapp Files

TExamining the xmlfmlapp Client

Examining the xmlfmlapp Server

Learning About the xmlfmlapp Files
The files that make up the xmlfmlapp application are delivered in the
samples/atmi/xmlfmlapp directory. The xmlfmlapp directory contains the following files:

One client: stockclient.c

One server: stockserver.c

One. xml file to store stock information used by the service: stock.xml

One FML32 field definition file: stockflds

Four .xml client input files:
– stock_query_bea.xml

– stock_query_msft.xml

– stock_buy_bea.xml

– stock_sell_msft.xml

One .xml schema file to validate the XML input files: stock_operate.xsd

TExamining the xmlfmlapp Client
In the ATMI client-server architecture of the Oracle Tuxedo system, there are two modes of
communication:

../rf3c/rf3c.html

7-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

Request/response mode, which is characterized by the sending of a single request for a
service to be performed by the server and getting back a single response.

Conversational mode; in this mode a dedicated connection is established between a client
(or a server acting like a client) and a server. The connection remains active until
terminated. While the connection is active, messages containing service requests and
responses can be sent and received between the two participating processes.

The xmlfmlapp implements the request/response mode using the following three services:

QUERY - to query a stock price

BUY - to buy stock

SELL - to sell stock.

Request/Response Client
stockclient.c is a client program that uses input from the specified XML files. It calls the
QUERY, BUY, and SELL services and returns the executed results. As an executable, it is invoked
as follows:

stockclient stock_query_bea.xml

stockclient stock_buy_bea.xml

stockclient stock_query_msft.xml

stockclient stock_sell_msft.xml

See Also
“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

“What Are Typed Buffers?” in Introducing Oracle Tuxedo ATMI

ATMI commands and functions in Oracle Tuxedo Command Reference and Oracle Tuxedo
ATMI C Function Reference

Examining the xmlfmlapp Server
ATMI servers are executable processes that offer one or more services. In the Oracle Tuxedo
system, they continually accept requests (from processes acting as clients) and dispatch them to
the appropriate services. It is the services accessing a resource manager that provide the
functionality for which your Oracle Tuxedo system transaction processing application is being

../int/intatm.html
../int/intatm.html

Prepar ing xml fmlapp F i l es and Resources

Tutorials for Developing Oracle Tuxedo ATMI Applications 7-5

developed. Service routines are one part of the application that must be written by the Oracle
Tuxedo system programmer (user-defined clients being another part).

The QUERY service in the xmlfmlapp program accepts FML32 buffers. It uses functions provided
in the Application-to-Transaction Monitor Interface (ATMI) to query stock information and then
returns the results to the client using FML32 buffers.

The BUY service in the xmlfmlapp program accepts FML32 buffers. It uses functions provided
in the Application-to-Transaction Monitor Interface (ATMI) to buy stock.

The SELL service in the xmlfmlapp program accepts FML32 buffers. It uses functions provided
in the Application-to-Transaction Monitor Interface (ATMI) to sell stock.

Preparing xmlfmlapp Files and Resources
This section leads you through the procedures you must complete to create the files and other
resources you need to run xmlfmlapp.

Step 1: Copy the xmlfmlapp Files to a New Directory

Step 2: Set Environment Variables

Step 3: Create FML32 Field Table

Step 4: Build the xmlfmlapp Binaries

Step 5: Edit the Configuration File

Step 6: Create the Binary Configuration File

Step 1: Copy the xmlfmlapp Files to a New Directory
It is recommended that you copy the xmlfmlapp files to your own directory prior to editing any
of the files or running the sample.

Step 2: Set Environment Variables
You will need to edit the environment variables file.

1. Ensure that TUXDIR is set. If it is not set, execution of the file fails with the following message:

TUXDIR: parameter null or not set

2. Set TUXDIR to the root directory of your Oracle Tuxedo system directory structure, and export
it.

7-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

3. Set APPDIR to the directory {TUXDIR}/samples/atmi/xmlfmlapp which is the directory
where xmlfmlapp source files are located. APPDIR is a directory where the Oracle Tuxedo
system looks for your application-specific files. If you copied the xmlfmlapp files to a
different directory to safeguard the original source files, then enter the directory there. It does
not have to be under TUXDIR.

4. When you have made all necessary changes to the environment variables file, execute it as
follows:

. ./setenv.cmd

where setenv.cmd is the executable for Windows. Use setenv.sh on Unix systems.

Additional Requirements
LD_LIBRARY_PATH must include $TUXDIR/lib on systems that use shared libraries, with the
exception of HP-UX and AIX.

On AIX, set LIBPATH instead of LD_LIBRARY_PATH.

On HP-UX, set SHLIB_PATH instead of LD_LIBRARY_PATH.

If your operating system is Sun Solaris, you need to: put /usr/5bin at the beginning of
your PATH. The following command can be used:

PATH=/usr/5bin:$PATH;export PATH

Use /bin/sh rather than csh for your shell.

Step 3: Create FML32 Field Table
To create the FML32 field table, use the following:
mkfldhdr32 stockflds

Step 4: Build the xmlfmlapp Binaries
The following command builds the xmlfmlapp binary files:

On windows:

 nmake -f make.nt

On UNIX:

 make -f make.mk

Prepar ing xml fmlapp F i l es and Resources

Tutorials for Developing Oracle Tuxedo ATMI Applications 7-7

Step 5: Edit the Configuration File
The sample configuration file, ubbsimple, must be edited to replace the bracketed items with
values appropriate to your installation. Your TUXDIR and TUXCONFIG environment variables
must match the values in the configuration file.

Listing 7-1 The ubbsimple Configuration File

#(c) 2005 BEA Systems, Inc. All Rights Reserved.
#ident"@(#) samples/atmi/xmlfmlapp/ubbsimple$Revision: 1.3 $"

#Skeleton UBBCONFIG file for the TUXEDO Simple Application.
#Replace the <bracketed> items with the appropriate values.

*RESOURCES
IPCKEY<Replace with a valid IPC Key>

#Example:
#IPCKEY123456

DOMAINIDsimpapp
MASTERsimple
MAXACCESSERS10
MAXSERVERS5
MAXSERVICES10
MODELSHM
LDBALN

*MACHINES
DEFAULT:

APPDIR="<Replace with the current directory pathname>"
TUXCONFIG="<Replace with your TUXCONFIG Pathname>"
TUXDIR="<Directory where TUXEDO is installed>"
#Example:
#APPDIR="/home/me/simpapp"
#TUXCONFIG="/home/me/simpapp/tuxconfig"
#TUXDIR="/usr/tuxedo"

<Machine-name>LMID=simple
#Example:
#beatuxLMID=simple

*GROUPS

7-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

GROUP1
LMID=simpleGRPNO=1OPENINFO=NONE

*SERVERS
DEFAULT:
CLOPT="-A"

stockserverSRVGRP=GROUP1 SRVID=1

*SERVICES
QUERYBUFTYPECONV=XML2FML32
BUYBUFTYPECONV=XML2FML32
SELLBUFTYPECONV=XML2FML32

Note: For each <string> (that is, for each string shown between angle brackets), substitute an
appropriate value.

See Also
“Preparing xmlfmlapp Files and Resources” on page 7-5

UBBCONFIG(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 6: Create the Binary Configuration File
Before creating the binary configuration file, you need to be in the directory in which your
xmlfmlapp files are located and you must set the environment variables. Complete the following
tasks.

1. Go to the directory in which your xmlfmlapp files are located.

2. Set the environment variables by entering:

. ./setenv.cmd

where setenv.cmd is the executable for Windows. Use setenv.sh on Unix systems.

Loading the Configuration File
Once you have finished editing the configuration file, you must load it into a binary file on your
MASTER machine. The name of the binary configuration file is TUXCONFIG; its path name is
defined in the TUXCONFIG environment variable. The file should be created by a person with the

../rf5/rf5.html

Running xml fmlapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 7-9

effective user ID and group ID of the Oracle Tuxedo system administrator, which should be the
same as the UID and GID values in your configuration file. If this requirement is not met, you may
have permission problems in running xmlfmlapp.

1. To create TUXCONFIG, enter the following command:

 tmloadcf ubbsimple

While the configuration file is being loaded, you are prompted several times to confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of IPC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can be installed only on the MASTER machine; it is propagated to other
machines by tmboot when the application is booted.

tmloadcf parses the text configuration file (UBBCONFIG) for syntax errors before it loads
it, so if there are errors in the file, the job fails.

See Also
“Preparing xmlfmlapp Files and Resources” on page 7-5

tmloadcf(1) in Oracle Tuxedo Command Reference

 Running xmlfmlapp
This section leads you through the procedures for booting xmlfmlapp, testing it by running the
client program with several arguments, and shutting it down when you have finished.

Step 1: xmlfmlapp Boot Preparation

Step 2: Boot xmlfmlapp

Step 3: Test xmlfmlapp Services

Step 4: Shut Down xmlfmlapp

Step 1: xmlfmlapp Boot Preparation
Before booting xmlfmlapp, verify that your machine has enough IPC resources to support your
application. To generate a report on IPC resources, run the tmboot command with the -c option.

../rfcm/rfcmd.html

7-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 2: Boot xmlfmlapp
1. Set the environment:

../setenv.cmd

2. Boot the application by entering the following:

 tmboot -y

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -A option. If no options are specified, the entire application is
booted.

See Also
tmboot(1) in the Oracle Tuxedo Command Reference

Step 3: Test xmlfmlapp Services
1. Each time you log-in to the system, you must set your environment for xmlfmlapp. To do so,

enter the following command:

../setenv.cmd

2. Run the client program. To execute the client program, enter the following command:

stockclient stock_query_bea.xml

stockclient stock_query_msft.xml

stockclient stock_buy_bea.xml

stockclient stock_sell_msft.xml

Step 4: Shut Down xmlfmlapp
To bring down xmlfmlapp, enter the tmshutdown(1) command with no arguments, from the
MASTER machine, as follows.

 tmshutdown -y

Running this command (or the shutdown command of tmadmin) causes the following results:

All application servers, gateway servers, TMS servers, and administrative servers are shut
down.

All associated IPC resources are removed.

../rfcm/rfcmd.html

Running xml fmlapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 7-11

See Also
tmadmin(1) in the Oracle Tuxedo Command Reference

tmshutdown(1) in the Oracle Tuxedo Command Reference

../rfcm/rfcmd.html
../rfcm/rfcmd.html

7-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

	Oracle® Tuxedo
	11g Release 1 (11.1.1.1.0)

	Oracle Tuxedo Tutorials for Developing Oracle Tuxedo ATMI Applications, 11g Release 1 (11.1.1.1.0)
	Developing an Oracle Tuxedo Application
	Before Developing Your Oracle Tuxedo Application
	Creating an Oracle Tuxedo ATMI Client
	Client Tasks

	Creating an Oracle Tuxedo ATMI Server
	Server Tasks

	Using Typed Buffers in Your Application
	Using Oracle Tuxedo Messaging Paradigms in Your Application
	Using the Request/Response Model (Synchronous Calls)
	Using the Request/Response Model (Asynchronous Calls)
	Using Nested Calls
	Using Forwarded Calls
	Using Conversational Communication
	Using Unsolicited Notification
	Using Event-based Communication
	Using Queue-based Communication
	Using Transactions

	Tutorial for simpapp, a Simple C Application
	What Is simpapp?
	Preparing simpapp Files and Resources
	Before You Begin
	About This Tutorial
	What You Will Learn

	Step 1: How to Copy the simpapp Files
	Step 2: Examining and Compiling the Client
	How to Examine the Client
	How to Compile the Client

	Step 3: Examining and Compiling the Server
	How to Examine the Server
	How to Compile the Server

	Step 4: Editing and Loading the Configuration File
	How to Edit the Configuration File
	How to Load the Configuration File

	Step 5: How to Boot the Application
	Step 6: How to Execute the Run-time Application
	Step 7: How to Monitor the Run-time Application
	Step 8: How to Shut Down the Application

	Tutorial for bankapp, a Full C Application
	What Is bankapp?
	About This Tutorial

	Familiarizing Yourself with bankapp
	Learning About the bankapp Files
	Exploring the Banking Application Files

	Examining the bankapp Clients
	What Is the bankclt.c File?
	How ud(1) Is Used in bankapp
	A Request/Response Client: audit.c
	A Conversational Client: auditcon.c
	A Client that Monitors Events: bankmgr.c

	Examining the bankapp Servers and Services
	bankapp Request/Response Servers
	bankapp Conversational Server
	bankapp Services
	Algorithms of bankapp Services

	Utilities Incorporated into Servers
	Alternative Way to Code Services

	Preparing bankapp Files and Resources
	Step 1: How to Set the Environment Variables
	Step 2: Building Servers in bankapp
	How to Build ACCT Server
	How to Build the BAL Server
	How to Build the BTADD Server
	How to Build the TLR Server
	How to Build the XFER Server
	Servers Built in the bankapp.mk File

	Step 3: Editing the bankapp Makefile
	How to Edit the TUXDIR Parameter
	How to Edit the APPDIR Parameter
	How to Set the Resource Manager Parameters
	How to Run the bankapp.mk File

	Step 4: Creating the bankapp Database
	How to Create the Database in SHM Mode
	How to Create the Database in MP Mode

	Step 5: Preparing for an XA-Compliant Resource Manager
	How to Change the bankvar File
	How to Change the bankapp Services
	How to Change the bankapp.mk File
	How to Change crbank and crbankdb
	How to Change the Configuration File

	How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform
	Step 6: How to Edit the Configuration File
	Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File
	Before Creating the Binary Configuration File
	How to Load the Configuration File
	How to Create the Transaction Log (TLOG) File

	Step 9: How to Create a Remote Service Connection on Each Machine
	How to Stop the Listener Process (tlisten)
	Sample tlisten Error Messages

	Running bankapp
	Step 1: How to Prepare to Boot
	Step 2: How to Boot bankapp
	Step 3: How to Populate the Database
	Step 4: How to Test bankapp Services
	Step 5: How to Shut Down bankapp

	Tutorial for CSIMPAPP, a Simple COBOL Application
	What Is CSIMPAPP?
	Preparing CSIMPAPP Files and Resources
	Before You Begin
	What You Will Learn

	Step 1: How to Copy the CSIMPAPP Files
	Step 2: Examining and Compiling the Client
	How to Examine the Client
	How to Compile the Client

	Step 3: Examining and Compiling the Server
	How to Examine the Server
	How to Compile the Server

	Step 4: Editing and Loading the Configuration File
	How to Edit the Configuration File
	How to Load the Configuration File

	Step 5: How to Boot the Application
	Step 6: How to Test the Run-time Application
	Step 7: How to Monitor the Run-time Application
	Step 8: How to Shut Down the Application

	Tutorial for STOCKAPP, a Full COBOL Application
	What Is STOCKAPP?
	Familiarizing Yourself with STOCKAPP
	Learning About the STOCKAPP Files
	Exploring the Stock Application Files

	Examining the STOCKAPP Clients
	System Client Programs
	Typed Buffers
	A Request/Response Client: BUY.cbl
	BUY.cbl Source Code

	Building Clients

	Examining the STOCKAPP Servers
	STOCKAPP Services

	Preparing STOCKAPP Files and Resources
	Step 1: How to Set Environment Variables
	Additional Requirements

	Step 2: Building Servers in STOCKAPP
	How to Build the BUYSELL Server
	Servers Built in STOCKAPP.mk

	Step 3: Editing the STOCKAPP.mk File
	How to Edit the TUXDIR Parameter
	How to Edit the APPDIR Parameter
	How to Run the STOCKAPP.mk File

	Step 4: How to Edit the Configuration File
	Step 5: Creating a Binary Configuration File
	Before Creating the Binary Configuration File
	How to Load the Configuration File

	Running STOCKAPP
	Step 1: How to Prepare to Boot
	Step 2: How to Boot STOCKAPP
	Step 3: How to Test STOCKAPP Services
	Step 4: How to Shut Down STOCKAPP

	Tutorial for XMLSTOCKAPP: a C and C++ XML Parser Application
	What Is XMLSTOCKAPP?
	Familiarizing Yourself with XMLSTOCKAPP
	Learning About the XMLSTOCKAPP Files
	Examining the XMLSTOCKAPP Clients
	A Request/Response Client: stock_quote_beas.xml
	See Also

	Examining the XMLSTOCKAPP Servers

	Preparing XMLSTOCKAPP Files and Resources
	Step1: Copy the XMLSTOCKAPP Files to a New Directory
	Step 2: Set Environment Variables
	Additional Requirements

	Step 3: Building Clients
	Step 4: Building Servers in XMLSTOCKAPP
	How to Build the stockxml and stockxml_c Servers
	See Also

	Step 5: How to Edit the Configuration File
	See Also

	Step 6: Creating a Binary Configuration File
	How to Load the Configuration File
	See Also

	Running XMLSTOCKAPP
	Step 1: How to Prepare to Boot
	Step 2: How to Boot XMLSTOCKAPP
	See Also

	Step 3: How to Test XMLSTOCKAPP Services
	Step 4: How to Shut Down XMLSTOCKAPP
	See Also

	Tutorial for xmlfmlapp: A Full C XML/FML32 Conversion Application
	What Is xmlfmlapp?
	Familiarizing Yourself with xmlfmlapp
	Learning About the xmlfmlapp Files
	TExamining the xmlfmlapp Client
	Request/Response Client
	See Also

	Examining the xmlfmlapp Server

	Preparing xmlfmlapp Files and Resources
	Step 1: Copy the xmlfmlapp Files to a New Directory
	Step 2: Set Environment Variables
	Additional Requirements

	Step 3: Create FML32 Field Table
	Step 4: Build the xmlfmlapp Binaries
	Step 5: Edit the Configuration File
	See Also

	Step 6: Create the Binary Configuration File
	Loading the Configuration File
	See Also

	Running xmlfmlapp
	Step 1: xmlfmlapp Boot Preparation
	Step 2: Boot xmlfmlapp
	See Also

	Step 3: Test xmlfmlapp Services
	Step 4: Shut Down xmlfmlapp
	See Also

