Oracle® Tuxedo
Guide to CORBA University Sample Applications
11g Release 1 (11.1.1.1.0)

March 2010

ORACLE

Oracle Tuxedo Guide to CORBA University Sample Applications, 11g Release 1 (11.1.1.1.0)
Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction

An Overview of the University Sample Applications. 1-1

Naming Conventions Used in the University Sample Applications. 1-3

2. Setting Up Your Environment

System Prerequisitesottt 2-2
Editing the setenv and UBBCONFIG Files oo, 2-2
Naming Conventions for the setenv and UBBCONFIG Files. 2-3
Setting setenv Parametersu it 2-4
Setting the UBBCONFIG Parameterscooitiiinnnninenenn... 2-6
Running the setenv Command. i .. 2-8

3. The Basic Sample Application

How the Basic Sample Application Works. o i i 3-2
The OMG IDL for the Basic Sample Application 3-3
Generating the Client Stubs and the Skeletons. 3-5
Writing the Client Application i i 3-6
Writing the Server Application 3-6
Configuring the Basic Sample Application. 3-7
Building the Basic Sample Applicationc.. ... 3-7
Copying the Files for the Basic Sample Application into a Work Directory. 3-8
Changing the Protection on the File for the Basic Sample Application 3-10
Setting the Environment Variables. o .. 3-10

Guide to the CORBA University Sample Applications iii

Initializing the University Database 3-10

Loading the UBBCONFIG File i, 3-10
Compiling the Basic Sample Application, 3-11
Running the Basic Sample Application iiiriinnenann.. 3-11

Starting the Server Application., 3-11

Starting the CORBA C++ Client Application. 3-12
Using the Client Applications in the Basic Sample Application................. 3-12

The CORBA C++ Client Application.oiiirnininennnn... 3-12

4. The Security Sample Application

How the Security Sample Application Works 4-2
The Development Process for the Security Sample Application. 4-3
OMG IDL . . o 4-3
The Client Applicationttt 4-4
The Server Application.ttt 4-4
The UBBCONFIG File. e 4-4
The ICF Fileo 4-4
Building the Security Sample Application. 4-4
Copying the Files for the Security Sample Application into a Work Directory . . . 4-5
Changing the Protection on the Files for the Security Sample Application. 4-7
Setting the Environment Variables o .. 4-7
Initializing the University Database 4-8
Loadingthe UBBCONFIG File 4-8
Compiling the Security Sample Application 4-8
Running the Security Sample Application. 4-9
Starting the University Server Application.oiven. .. 4-9
Starting the CORBA C++ Client Application. 4-10
Using the Client Applications in the Security Sample Application. 4-10

Guide to the CORBA University Sample Applications

The CORBA C++ Client Application.coviireininenenn... 4-10

5. The Transactions Sample Application

How the Transactions Sample Application Works. 5-2
The Development Process for the Transactions Sample Application. 5-3
OMGIIDL . ..o 5-3
The Client Applicationuutiit ittt 5-4
The University Server Applicationciitiininennenenan .. 5-4
The UBBCONFIG File e 5-4
The ICF File.o e 5-5
Building the Transactions Sample Application 5-5

Copying the Files for the Transactions Sample Application into a Work Directory 5-5

Changing the Protection on the Files for the Transactions Sample Application. . . 5-7

Setting the Environment Variables, 5-8
Initializing the University Database 5-8
Loading the UBBCONFIG File. i 5-8
Creating a Transaction Log i 5-9
Compiling the Transactions Sample Application., 5-9
Running the Transactions Sample Application, 5-10
Starting the Server Application. i, 5-10
Starting the CORBA C++ Client Application. 5-11
Using the Client Applications in the Transactions Sample Application 5-11
The CORBA C++ Client Application.oiiirneniienenn... 5-11

6. The Wrapper Sample Application

How the Wrapper Sample Application Works. 6-2
The Development Process for the Wrapper Sample Application. 6-3
OMG IDL . .o 6-3

Guide to the CORBA University Sample Applications

vi

The Client Applicationo ottt ittt et 6-3

The Server Application.ttt 6-4
The UBBCONFIG File.ot e e 6-5
The ICF File e e 6-5
Building the Wrapper Sample Application, 6-5
Copying the Files for the Wrapper Sample Application into a Work Directory. .. 6-6
Changing the Protection on the Files for the Wrapper Sample Application. 6-8
Setting the Environment Variables 6-9
Initializing the University Database, 6-9
Loading the UBBCONFIG File 6-9
Creating a Transaction Log.t 6-10
Compiling the Wrapper Sample Application. 6-10
Running the Wrapper Sample Applicationcciviriininan... 6-11
Starting the Server Application., 6-11
Starting the CORBA C++ Client Application.c...... 6-12
Using the Client Applications in the Wrapper Sample Application 6-12
The CORBA C++ Client Application.oiiiriininennnn... 6-12

/. The Production Sample Application

How the Production Sample Application Works. 7-2
Replicating Server Applicationsttt 7-2
Replicating Server Groupscouvtnte ettt 7-5
Using a Stateless Object Model 7-6
Using Factory-based Routing i, 7-7

The Development Process for the Production Sample Application. 7-8
OMGIIDL . ..o 7-8
The Client Applicationot ittt 7-8
The Server Application.ttt e 7-8

Guide to the CORBA University Sample Applications

The UBBCONFIG Fileo e 7-9

Replicating Server Application Processes and Server Groups. 7-9
Implementing Factory-based Routing 7-11

The ICF File.o e e 7-13
Building the Production Sample Application. 7-13

Copying the Files for the Production Sample Application into a Work Directory 7-13

Changing the Protection on the Files for the Production Sample Application . .. 7-16

Setting the Environment Variables 7-16
Initializing the University Database o on... 7-16
Loading the UBBCONFIG File. 7-16
Creating a Transaction Log i, 7-17
Compiling the Production Sample Applicationc..... 7-17
Running the Production Sample Application., 7-18
Starting the Server Application.i ... 7-18
Starting the CORBA C++ Client Application., 7-19
How the Production Sample Application Can Be Scaled Further 7-19

Guide to the CORBA University Sample Applications vii

viii Guide to the CORBA University Sample Applications

Introduction

This topic describes the University sample applications provided for the CORBA environment in
the Oracle Tuxedo product. The sample applications provide client and server programmers with
the basic concepts of developing distributed client/server applications using the CORBA
environment and introduces many of the more advanced CORBA features of the Oracle Tuxedo
product.

This topic includes the following sections:
e An Overview of the University Sample Applications

e Naming Conventions Used in the University Sample Applications

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

An Overview of the University Sample Applications

The Oracle Tuxedo software kit includes a CORBA sample application suite based on client and
server applications implemented at a university. Each University sample application
demonstrates a new set of CORBA features while building on the experience obtained from the

Guide to the CORBA University Sample Applications 1-1

previous examples. The University sample applications are intentionally simplified to
demonstrate only the steps and processes associated with using a particular CORBA feature of
the Oracle Tuxedo product.

Table 1-1 describes the University sample applications.

Table 1-1 The University Sample Applications

University Description
Sample Application

Basic Describes how to create CORBA client and server
applications, configure a CORBA application, and
build and run the client and server applications included
in the Basic sample application. CORBA C++ client
applications are provided as well as a CORBA C++
server application.

Security Adds application-level security to the CORBA client
applications in the Basic sample application and to the
configuration of the CORBA application.

Transactions Adds transactional objects to the CORBA client and
server applications in the Basic sample application. The
Transactions sample application demonstrates how to
use the Implementation Configuration File (ICF) to
define transaction policies for CORBA objects.

Wrapper Demonstrates how to wrap an ATMI application as a
CORBA object.
Production Demonstrates replicating CORBA server applications,

creating stateless CORBA objects, and implementing
factory-based routing in CORBA server applications.

Use the University sample applications in conjunction with the following manuals:
o Getting Started with Oracle Tuxedo CORBA Applications
o Creating CORBA Client Applications

o Creating CORBA Server Applications

1-2 Guide to the CORBA University Sample Applications

Naming Conventions Used in the University Sample Applications

Naming Conventions Used in the University Sample

Applications

The naming conventions listed and described in Table 1-2 are used in the code of the University

sample applications.

Table 1-2 Naming Conventions Used in the University Sample Applications

Convention Description

crs The abbreviation for course.

syn The abbreviation for synopsis.

det The abbreviation for details.

1st The abbreviation for list.

enum The abbreviation for enumerator.
stu The abbreviation for student.

num The abbreviation for number.

cur The abbreviation for current.
_oref A CORBA: : Object reference.
_ref A typed object reference.

o_ The abbreviation for ptr.

v_ The abbreviation for var.

S_ The abbreviation for file static data.
m The abbreviation for class member data.

Guide to the CORBA University Sample Applications 1-3

Tahle 1-2 Naming Conventions Used in the University Sample Applications (Continued) (Continued)

Convention Description
Method names and Use all lowercase letters for the name and underscores to
variable names separate words within the method name (for example,

m_v_crs_syn_list is member data that is a var holding a
course synopsis list).

Type names Start with an uppercase letter and use an uppercase letter to
separate words with a type name. Type names do not use
abbreviations. An example of a type name is
UniversityB: :CourseSynopsisEnumerator_var.

1-4 Guide to the CORBA University Sample Applications

CHAPTERa

Setting Up Your Environment

This topic describes how to configure your CORBA application so that you can run the
University sample applications.

This topic includes the following sections:

e System Prerequisites

o Editing the setenv and UBBCONFIG Files

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The University sample applications use a database (the University database) to store all the data
(for example, course names and course summaries) used in the sample applications. Before you
can build and run the University sample applications, you need to install and set up the database.

Note: The user is assumed to know how to setup RDBMS (e.g., Oracle) before running the
sample

For details about the setting up a database, see the product documentation for the database you
are using.

Guide to the CORBA University Sample Applications 2-1

System Prerequisites

For information about the operating system platforms supported by the product, see Installing the
Oracle Tuxedo System.

To run the client applications in the University sample applications, you need the following
development tools:

e Visual C++ NET 2003

Editing the setenv and UBBCONFIG Files

2-2

You need to set several parameters in the setenv and UBBCONF IG files in order for the University
sample applications to work properly, as follows:

e The setenv file sets the system environment variables needed to build and run the sample
applications. Each sample application directory contains a unique setenv file. The name
of the setenv file designates which sample application the file is to be used with. For
example, setenvb is for the Basic sample application. Each sample application directory
contains a setenv file for the Windows and UNIX operating systems. For a list of the
specific filenames for the setenv file, see Table 2-1.

e The UBBCONFIG file is the configuration file for the sample application. The UBBCONFIG
file defines parameters for how the client and server applications in the sample application
should work. Each sample application directory contains a unique UBBCONFIG file. The
name of the UBBCONFIG file designates which sample application the file is to be used
with. For example, ubb_b is for the Basic sample application. Each sample application
directory contains a UBBCONFIG file for the Windows and UNIX operating systems. For a
list of the specific filenames for the uBBcONFIG file, see Table 2-1.

The information in the setenv and UBBCONFIG files must match. The following sections explain
how to edit the setenv and UBBCONFIG files.

Guide to the CORBA University Sample Applications

Editing the setenv and UBBCONFIG Files

Naming Conventions for the setenv and UBBCONFIG Files

Table 2-1 describes the naming conventions for the setenv and UBBCONFIG files. The bold letter
is the identifying letter for the sample application.

Table 2-1 Naming Conventions for setenv and uBeconFza Files

University Naming Convention
Sample Application

Basic * setenvb.cmd—the setenv file for Windows
* setenvb.sh—the setenv file for UNIX
* ubb_b.nt—the UBBCONFIG file for Windows
* ubb_b.mk—the UBBCONFIG file for UNIX

Security * setenvs.cmd—the setenv file for Windows
* setenvs.sh—the setenv file for UNIX
* ubb_s.nt—the UBBCONFIG file for Windows
* ubb_s.mk—the UBBCONFIG file for UNIX

Transactions * setenvt.cmd—the setenv file for Windows
* setenvt.sh—the setenv file for UNIX
* ubb_t.nt—the UBBCONFIG file for Windows
* ubb_t.mk—the UBBCONFIG file for UNIX

Wrapper * setenvw.cmd—the setenv file for Windows
* setenvw.sh—the setenv file for UNIX
* ubb_w.nt—the UBBCONFIG file for Windows
* ubb_w.mk—the UBBCONFIG file for UNIX

Production *+ setenvp.cmd—the setenv file for Windows
* setenvp.sh—the setenv file for UNIX
* ubb_p.nt—the UBBCONFIG file for Windows
* ubb_p.mk—the UBBCONFIG file for UNIX

Guide to the CORBA University Sample Applications 2-3

Setting setenv Parameters

Table 2-2 lists the parameters you need to modify in the setenv file.

Table 2-2 Parameters in the setenv File

Parameter Description
APPDIR The directory path where you copied the sample application files. For example:
Windows

APPDIR=c:\work\university\basic
UNIX

APPDIR=/usr/work/university/basic

TUXCONFIG The directory path and name of the configuration file. For example:
Windows
TUXCONFIG=c:\work\university\basic\tuxconfig
UNIX
TUXCONFIG=/usr/work/university/basic/tuxconfig

TUXDIR The directory path where you installed the Oracle Tuxedo software. For example:
Windows
TUXDIR=c:\Tux8
UNIX
TUXDIR=/usr/local/Tux8

ORACLE_HOME The directory path where you installed the Oracle software. For example:
Windows
ORADIR=c:\Orant
UNIX

ORACLE_HOME=/usr/local/oracle

TOBJADDR If you are using a CORBA C++ client application that does not reside on the same
machine as the server application, enter the host and port of the machine where the
server application runs. It must be specified exactly (including case) as it appears in
the UBBCONFIG file for the machine. For example: //BEANIE:2500

2-4 Guide to the CORBA University Sample Applications

Editing the setenv and UBBCONFIG Files

Tahle 2-2 Parameters in the setenv File (Continued)

Parameter

Description

USERID

If you are using a remote instance of the Oracle database, the format is as follows:
USERID=username/password@aliasname

This is the same information you defined when you set up a remote instance of the
Oracle database.

If you are using a local instance of the Oracle database, the format is as follows:

USERID=username/password

ORACLE_SID

The instance ID of the Oracle database. On Windows, you do not need to specify the
ORACLE_SID, the parameter automatically defaults to ORCL.

CCMPL

The directory location of the C compiler. This parameter is set to a typical installation
directory. Verify that your installation matches this directory location and change the
location if necessary. This parameter applies only to the UNIX operating system.

CPPCMPL

The directory location of the C++ compiler. This parameter is set to a typical
installation directory. Verify that your installation matches this directory location and
change the location if necessary. This parameter applies only to the UNIX operating
system.

CPPINC

The directory location of the C++ include directory. This parameter is set to a typical
installation directory. Verify that your installation matches this directory location and
change the location if necessary. This parameter applies only to the UNIX operating
system.

SHLIB_PATH,
LD_LIBRARY_PATH,
or

The directory location of the shared library. This parameter is set to a typical
installation directory. Verify that your installation matches this directory location and
change the location if necessary. This parameter applies only to the UNIX operating
system.

LIBPATH

PROC The directory location of the Oracle Programmer C/C++ SQL Precompiler. You only
need to specify this parameter if you are using the Windows operating system.

PRODIR The directory location of the Oracle Programmer C/C++ SQL Precompiler. You only

need to specify this parameter if you are using the Windows operating system.

Guide to the CORBA University Sample Applications 2-5

Setting the UBBCONFIG Parameters

Table 2-3 lists the parameters you need to modify in the UBBCONFIG file.

Table 2-3 Parameters in the uBBCcONFIG File

Parameter

Description

MY_SERVER_MACHINE

Delete this parameter and replace it with the name of the server machine.

On Windows, you can obtain the server machine name by entering the following
command at the MS-DOS prompt:

set COMPUTERNAME

On UNIX, you can obtain the server machine name by entering the following
command at the shell prompt:

prompt>uname -n

You must enter the server machine name exactly (including case) as it appears in
the output of the command.

Specify the server machine name as it appears. For example, BEANIE.

Full names must be included in quotation marks. For example:
"beanie.bea.com".

APPDIR

The full directory path where you copied the sample application files. The
directory path needs to be included in quotation marks. For example:

Windows
APPDIR="c:\work\university\basic"
UNIX
APPDIR="/usr/work/university/basic"

This parameter needs to match the APPDIR parameter in the setenv file.

TUXCONFIG

The full directory path of the configuration file. This is the subdirectory of the
sample application. The directory path needs to be included in quotation marks.
For example:

Windows
TUXCONFIG="c:\work\university\basic\tuxconfig"
UNIX
TUXCONFIG="usr/work/university/basic/tuxconfig"

This parameter needs to match the TUXCONFIG parameter in the setenv file.

2-6 Guide to the CORBA University Sample Applications

Editing the setenv and UBBCONFIG Files

Tahle 2-3 Parameters in the usBconFza File (Continued)

Parameter

Description

TUXDIR

The full directory path where you installed the Oracle Tuxedo software. The
directory path needs to be included in quotation marks. For example:

Windows

TUXDIR="c:\Tux8"

UNIX
TUXDIR="/usr/local/Tux8"

This parameter needs to match the TUXDIR parameter in the setenv file.

CLOPT for the ISL
process

Enter the host name and port number of the machine on which the server
application is installed. For example:

ISL
SRVGRP = SYS_GRP

SRVID =
CLOPT = "-A --n //BEANIE:2500"

OPENINFO

If you are using the Transactions, Wrapper, or Production sample applications,
you need to specify this parameter for the Oracle database.

If you are using a remote instance of the Oracle database, the OPENINFO
parameter is specified as follows:

OPENINFO =
"Oracle_XA:Oracle_XA+SglNet=aliasname+Acc=P/account
/password+SesTM=100+LogDir=.+MaxCur=5"

For example, on Windows:

OPENINFO = "Oracle_XA:0Oracle_XA+SglNet=0ORCL+Acc=P/scott/
tiger+SesTM=100+LogDir=.+MaxCur=5"

If you are using a local instance of the Oracle database, the OPENINFO parameter
is specified as follows:

OPENINFO = "Oracle_XA:0Oracle_XA+Acc=P
/account/password+SesTM=100+LogDir=.+MaxCur=5"

For example, on Windows:

OPENINFO = "Oracle_XA:0Oracle_XA+Acc=P
/scott/tiger+SesTM=100+LogDir=.+MaxCur=5"

Guide to the CORBA University Sample Applications 2-1

2-8

Running the setenv Command

Before you can use the University sample applications, you need to run the setenv script to
ensure your system environment variables reflect all the changes made in the process of setting
up the database and your configuration. Instructions for running the setenv command are
included in the descriptions of building the individual sample applications.

Note: The makefiles for the University sample applications assume Microsoft Visual C++.NET
2003 is installed in the following location on Windows:

c:\Program Files\Microsoft Visual Studio.NET 2003\vc7

If your copy of Microsoft Visual C++ is not installed in that directory, run the following
command procedure to set the appropriate system environment variables.

c:\Program Files\Microsoft Visual Studio.NET 2003 \Common7\Tools\
vsvars32.bat

Guide to the CORBA University Sample Applications

The Basic Sample Application

This topic includes the following sections:

How the Basic Sample Application Works

The OMG IDL for the Basic Sample Application
Generating the Client Stubs and the Skeletons
Writing the Client Application

Configuring the Basic Sample Application
Building the Basic Sample Application
Compiling the Basic Sample Application
Running the Basic Sample Application

Using the Client Applications in the Basic Sample Application

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB

were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Guide to the CORBA University Sample Applications 3-1

For an explanation of concepts associated with CORBA applications and a description of the
development process for CORBA applications, see Getting Started with Oracle Tuxedo CORBA
Applications.

How the Basic Sample Application Works

The Basic sample application allows users to browse for available courses and get details on
selected courses. Figure 3-1 illustrates how the Basic sample application works.

Figure 3-1 The Basic Sample Application

| Get Course Details | Uni it
: niversity

CORBA C++ Client
Server Application

Application

v

| Browse Courses |

University
Database

The Basic sample application demonstrates the following features:
e Creating CORBA client and server applications
e Defining the configuration information for a CORBA application

e Building client and server applications using the CORBA commands and tools provided by
the Oracle Tuxedo product.

3-2 Guide to the CORBA University Sample Applications

The OMG IDL for the Basic Sample Application

The OMG IDL for the Basic Sample Application

The first step in creating client and server applications is to specify all of the CORBA interfaces
and their methods using OMG IDL. The Basic sample application implements the following

CORBA interfaces:
Interface Description Operations
RegistrarFactory Creates object references to the find_registrar()
Registrar object.
Registrar Obtains course information from the get_courses_synopsis ()

database.

get_courses_details ()

CourseSynopsisEnumerator

Gets synopses of courses that match the
search criteria from the course database
and reads them into memory; returns the
first subset of the synopses to the
Registrar object, which in turns returns
them to the client application; and
provides a means for a client application
to retrieve the remainder of the
synopses.

get_next_n{()

destroy ()

Listing 3-1 shows the univb.id1 file that defines the CORBA interfaces in the Basic sample
application. A copy of this file is included in the directory for the Basic sample application.

Listing 3-1 OMG IDL for the Basic Sample Application

module UniversityB

{

typedef unsigned long CourseNumber;

typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis

{
CourseNumber

string

course_number;

title;

Guide to the CORBA University Sample Applications 3-3

typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator
{
CourseSynopsisList get_next_n/(
in unsigned long number_to_get,
out unsigned long number_ remaining
)

void destroy () ;

typedef unsigned short Days;

const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRIDAY = 16;
struct ClassSchedule

{

Days class_days; // bitmask of days

unsigned short start_hour; // whole hours in military time
unsigned short duration; // minutes
Y
struct CourseDetails
{
CourseNumber course_number;
double cost;
unsigned short number_of_credits;
ClassSchedule class_schedule;

unsigned short number_of_seats;

string title;
string professor;
string description;

}i

typedef sequence<CourseDetails> CourseDetailsList;

34 Guide to the CORBA University Sample Applications

Generating the Client Stubs and the Skeletons

interface Registrar
{
CourseSynopsisList

get_courses_synopsis (

in string search_criteria,
in unsigned long number_to_get, // 0 = all
out unsigned long number_remaining,

out CourseSynopsisEnumerator rest
) ;
CourseDetailsList get_courses_details(in CourseNumberList
courses) ;
interface RegistrarFactory
{
Registrar find_registrar(

)

Generating the Client Stubs and the Skeletons

Note: The CORBA client applications in the University sample applications use static
invocation. For an example of using the dynamic invocation interface, see Creating
CORBA Client Applications.

The interface specification defined in OMG IDL is used by the IDL compiler to generate client
stubs for the client application and skeletons for the server application. The client stubs are used
by the client application for all operation invocations. You use the skeleton, along with the code
you write, to create the server application that implements the CORBA objects. For information
about generating and using client stubs and skeletons, see Getting Started with Oracle Tuxedo
CORBA Applications.

During the development process, you would use the 1d1 command to compile the OMG IDL file
and produce client stubs and skeletons. This task has been automated in the makefile for the
Basic sample application. For a description of the idl command, see the Oracle Tuxedo
Command Reference.

Guide to the CORBA University Sample Applications 3-5

Writing the Client Application

3-6

The CORBA environment in Oracle Tuxedo only supports CORBA C++ types of client
applications.

During the development process, you would write client application code that does the following:
o Initializes the ORB

e Uses the Bootstrap environmental object or the standard CORBA mechanism to establish
communication with the Oracle Tuxedo domain

e Resolves initial references to the FactoryFinder environmental object

e Uses a factory to get an object reference for the Registrar object

e Invokes the get_courses_synopsis() and get_courses_details () methods on the
Registrar object

C++ versions of the client application code in the Basic sample application are provided. For
information about writing client applications, see Getting Started with Oracle Tuxedo CORBA
Applications and Creating CORBA Client Applications.

Writing the Server Application

During the development process, you would write the following:

e The Server object that initializes the University server application and registers a factory
for the Registrar object with the Oracle Tuxedo domain.

e The method implementations for the operations on the Registrar, RegistrarFactory,
and CourseSynopsisEnumerator objects.
C++ code for the Server object and the method implementations in the University server
application are provided.

During the development process, you use the genicf command to create an Implementation
Configuration File (ICF). You then edit the ICF file to define activation and transaction policies
for the Registrar, RegistrarFactory, and CourseSynopsisEnumerator objects. For the
Basic sample application, the Registrar, RegistrarFactory, and
CourseSynopsisEnumerator objects have an activation policy of process and a transaction
policy of ignore. An ICF file for the Basic sample application is provided.

For information about writing server applications, see Creating CORBA Server Applications.

Guide to the CORBA University Sample Applications

Configuring the Basic Sample Application

Configuring the Basic Sample Application

A key part of any CORBA application is the uBBCONFIG file. Although creating a UBBCONFIG
file is the task of the administrator, it is important for programmers to understand that the file
exists and how the file is used. When system administrators create a configuration file, they are
describing the CORBA application using a set of parameters that the Oracle Tuxedo software
interprets to create a runnable application.

There are two forms of the configuration file:

e The uBBCONFIG file, an ASCII version of the file, created and modified with any editor.
“Setting Up Your Environment” describes setting the required parameters in the
UBBCONFIG file used by all University sample applications.

e The TUXCONFIG file, a binary version of the UBBCONFIG file created using the tmloadcf
command. When the tmloadcf command is executed, the environment variable
TUXCONFIG must be set to the name and directory location of the TUXxCONFIG file.

For information about the UBBCONFIG file and the tmloadcf command, see Setting Up an Oracle
Tuxedo Application and the Oracle Tuxedo Command Reference.

Building the Basic Sample Application

To build the Basic sample application, complete the following steps:

1. Copy the files for the Basic sample application into a work directory.
2. Change the protection on the files for the Basic sample application.
3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Build the client and server sample applications.

The following sections describe these steps.

Note: Before you can build or run the Basic sample application, you need to complete the steps
in “Setting Up Your Environment.”

Guide to the CORBA University Sample Applications 3-7

Copying the Files for the Basic Sample Application into a
Work Directory

The files for the Basic sample application are located in the following directories:
Windows

drive:\TUXDIR\samples\corba\university\basic

UNIX

/usr/TUXDIR/samples/corba/university/basic

In addition, you need to copy the utils directory into your work directory. The utils directory
contains files that set up logging, tracing, and access to the University database.

Table 3-1 lists and describes the files you will use to create the Basic sample application.

Table 3-1 Files Included in the Basic Sample Application

File Description

univb.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar, and
RegistrarFactory interfaces.

univbs.cpp The C++ source code for the University server application
in the Basic sample application.

univb_i.h The C++ source code for method implementations of the
univb_1i.cpp CourseSynopsisEnumerator, Registrar, and
RegistrarFactory interfaces.

univbc.cpp The C++ source code for the CORBA C++ client
application in the Basic sample application.

univb_utils.h The files that define database access functions for the
univb_utils.cpp CORBA C++ client application.
univb.icf The Implementation Configuration File (ICF) for the

Basic sample application.

setenvb.sh A UNIX script that sets the environment variables needed
to build and run the Basic sample application.

3-8 Guide to the CORBA University Sample Applications

Building the Basic Sample Application

Table 3-1 Files Included in the Basic Sample Application (Continued)

File

Description

setenvb.cmd

An MS-DOS command procedure that sets the
environment variables needed to build and run the Basic
sample application.

ubb_b.mk The configuration file for the UNIX operating system
platform.
ubb_b.nt The configuration file for the Windows operating system

platform.

makefileb.mk

The makefile for the Basic sample application on the
UNIX operating system platform.

makefileb.nt

The makefile for the Basic sample application on the
Windows operating system platform.

log.cpp, 1log.h,
log_client.cpp, and
log_server.cpp

The client and server applications that provide logging
and tracing functions for the sample applications. These
files are located in the \utils directory.

oradbconn. cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL database
instance. These files are located in the \utils directory.

samplesdb. cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications. These files are
located in the \utils directory.

unique_id. cpp and
unique_id.h

C++ Unique ID class routines for the sample applications.
These files are located in the \utils directory.

samplesdbsgl .h and
samplesdbsqgl . pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils directory.

university.sql

The SQL for the University database. This file is located
in the \utils directory.

Guide to the CORBA University Sample Applications

3-10

Changing the Protection on the File for the Basic Sample
Application

During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Basic sample application, you need
to change the protection of the files you copied into your work directory, as follows:

Windows

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client and server
applications in the Basic sample application:

Windows

prompt>setenvb

UNIX
prompt>/bin/ksh

prompt>. ./setenvb.sh

Initializing the University Database

Use the following command to initialize the University database used with the Basic sample
application:

Windows

prompt>nmake -f makefileb.nt initdb
UNIX

prompt>make -f makefileb.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

Guide to the CORBA University Sample Applications

Compiling the Basic Sample Application

Windows
prompt>tmloadcf -y ubb_b.nt

UNIX

prompt>tmloadcf -y ubb_b.mk

Compiling the Basic Sample Application

During the development process, you would use the buildobjclient and buildobjserver
commands to build the client and server applications. However, for the Basic sample application,
this step has been done for you.

The directory for the Basic sample application contains a makefile that builds the client and
server sample applications.

Use the following commands to build the CORBA C++ client and server application in the Basic
sample application:

Windows

prompt>nmake -f makefileb.nt

UNIX

prompt>make -f makefileb.mk

Running the Basic Sample Application

To run the Basic sample application, complete the following steps:
1. Start the University server application.

2. Start one or more of the client applications.

Starting the Server Application

Start the system and sample application server applications in the Basic sample application by
entering the following command:

prompt>tmboot -y
This command starts the following server processes:

® TMSYSEVT

Guide to the CORBA University Sample Applications 3-11

The Oracle Tuxedo system EventBroker.
® TMFFNAME

The transaction management services, including the NameManager and the FactoryFinder
services.

e TMIFSRVR

The Interface Repository server process.
® univb_server

The University server process.
e ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the system and
sample application server processes:

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Basic sample application by entering the
following command:

prompt>univb_client

Using the Client Applications in the Basic Sample
Application

The following sections briefly explain how to use the client applications that are included in the
Basic sample application.

The CORBA C++ Client Application

After starting the CORBA C++ client application, a menu with the following options appears:

<F> Find courses
<A> List all courses
<D> Display course details

3-12 Guide to the CORBA University Sample Applications

Using the Client Applications in the Basic Sample Application

<E> Exit

To find courses that match a particular curriculum subject, complete the following steps:
1. At the Options prompt, enter F.

2. Enter a text string at the Enter search string: prompt. For example, computer. You can
enter any combination of uppercase and lowercase letters.

A list of all the courses that match that search string appears.

To list all the courses in the database, complete the following steps:

1. At the Options prompt, enter A.
A list of ten courses appears.

2. Enter y to continue viewing lists of ten courses or n to return to the Options menu.

To display the details of a particular course, complete the following steps:
1. At the Options prompt, enter D.

2. Enter a course number followed by -1 at the Course Number prompt. For example:

100011
100039
-1

A summary of that course appears.

To exit the C++ CORBA client application, enter E at the Options prompt.

Guide to the CORBA University Sample Applications 3-13

3-14 Guide to the CORBA University Sample Applications

CHAPTERa

The Security Sample Application

This topic includes the following sections:

How the Security Sample Application Works

The Development Process for the Security Sample Application

Building the Security Sample Application

Compiling the Security Sample Application
e Running the Security Sample Application

e Using the Client Applications in the Security Sample Application

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

For a full discussion of implementing security in a CORBA application, see Using Security in
CORBA Applications.

Guide to the CORBA University Sample Applications 4-1

How the Security Sample Application Works

The Security sample application enhances the Basic sample application by adding
application-level security to the CORBA application. Application-level security requires each
student to have an ID and a password. Therefore, the concept of a Student is added to the Security
sample application.

The following functionality is added to the Basic sample application:

e The client applications add a logon operation. This operation uses a SecurityCurrent
environmental object to invoke operations on the Principal Authenticator object, which is
part of the process of logging on to access the domain.

e The University server application implements an additional operation,
get_student_details (), on the Registrar object to return information about a student.
After a proper CORBA logon is complete, the get_student_details () operation
accesses the student information in the database to obtain the student information needed
by the client logon operation.

e The University database contains student information in addition to course information.

Figure 4-1 illustrates how the Security sample application works.

Figure 4-1 The Security Sample Application

4-2 Guide to the CORBA University Sample Applications

CORBA C++ Client

The Development Process for the Security Sample Application

| Browse Courses |

| Get Course Details |

L4

Application

|Lugun| | Get Student Details |

I:I Security Required

CORBA

University
Server Application

University
Database

The Development Process for the Security Sample

Application

This section describes the development process required when adding security to CORBA client
and server applications. These steps are in addition to the development steps outlined in
Chapter 3, “The Basic Sample Application.”

Note: The steps in this section have been done for you and are included in the Security sample

application.

OMG IDL

During the development process, you would define the studentDetails struct and the
get_student_details()operation in Object Management Group (OMG) Interface Definition

Language (IDL).

Guide to the CORBA University Sample Applications 4-3

The Client Application

During the development process, you would add the following code to your client application:

e The Bootstrap environmental object to obtain a reference to the SecurityCurrent
environmental object in the specified Oracle Tuxedo domain.

e The Tobj: :PrincipalAuthenticator operation of the SecurityCurrent environmental
object to return the type of authentication expected by the Oracle Tuxedo domain.

e Operations to log on to the Oracle Tuxedo domain using the required security information.

For the Security sample application, this code has already been added for you. For information
about adding security to CORBA client applications, see Using Security in CORBA Applications.

The Server Application

During the development process, you would write the method implementation for the
get_student_details ()operation. For information about writing method implementations,
see Creating CORBA Server Applications.

The UBBCONFIG File

In the Oracle Tuxedo software, security levels are defined for the configuration by the system
administrator. The system administrator defines the security for the Oracle Tuxedo domain by
setting the SECURITY parameter RESOURSES section of the UBBCONFIG file to the desired security
level. In the Security sample application, the SECURITY parameter is set to APP_Pw for
application-level security. For information about adding security to an Oracle Tuxedo domain,
see Setting Up an Oracle Tuxedo Application and Using Security in CORBA Applications.

The ICF File

No changes to the Implementation Configuration File (ICF) are required.

Building the Security Sample Application

To build the Security sample application, complete the following steps:
1. Copy the files for the Security sample application.

2. Change the protection on the files for the Security sample application.

4-4 Guide to the CORBA University Sample Applications

Building the Security Sample Application

3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Build the client and server sample applications.
The following sections describe these steps.

Note: Before you can build or run the Security sample application, you need to perform the
steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Security Sample Application into a
Work Directory

The files for the Security sample application are located in the following directories:

Windows

drive:\TUXDIR\samples\corba\university\security

UNIX

/usr/TUXDIR/samples/corba/university/security

In addition, you need to copy the utils directory into your work directory. The utils directory
contains files that set up logging, tracing, and access to the University database.

You will use the files listed in Table 4-1 to create the Security sample application.

Table 4-1 Files Included in the Security Sample Application

File Description

univs.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces.

univss.cpp The C++ source code for the University server
application in the Security sample application.

univs_i.h The C++ source code for method implementations of
univs_1i.cpp the CourseSynopsisEnumerator,
Registrar, and RegistrarFactory interfaces.

Guide to the CORBA University Sample Applications 4-5

Table 4-1 Files Included in the Security Sample Application (Continued)

File

Description

univsc.cpp

The C++ source code for the CORBA C++ client
application in the Security sample application.

univs_utils.h
univs_utils.cpp

The files that define database access functions for the
CORBA C++ client application.

univs.icf

The Implementation Configuration File (ICF) for the
Security sample application.

setenvs.sh

A UNIX script that sets the environment variables
needed to build and run the Security sample
application.

setenvs.cmd

An MS-DOS command procedure that sets the
environment variables needed to build and run the
Security sample application.

ubb_s.mk The UBBCONF IG file for the UNIX operating
system.
ubb_s.nt The UBBCONFIG file for the Windows operating

system.

makefiles.mk

The makefile for the Security sample application
on the UNIX operating system.

makefiles.nt

The makefile for the Security sample application
on the Windows operating system.

log.cpp, 1log.h,
log_client.cpp, and
log_server.cpp

The client and server applications that provide
logging and tracing functions for the sample
applications. These files are located in the \utils
directory.

oradbconn. cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance. These files are located in the
\utils directory.

samplesdb. cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications.These files are
located in the \utils directory.

4-6 Guide to the CORBA University Sample Applications

Building the Security Sample Application

Table 4-1 Files Included in the Security Sample Application (Continued)

File Description

unigque_id.cpp and C++ Unique ID class routines for the sample

unique_id.h applications.These files are located in the \utils
directory.

samplesdbsgl.h and C++ class methods that implement access to the SQL

samplesdbsqgl.pc database. These files are located in the \utils
directory.

university.sqgl The SQL for the University database. This file is

located in the \utils directory.

Changing the Protection on the Files for the Security
Sample Application

During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Security sample application, you
need to change the protection of the files you copied into your work directory, as follows:

Windows

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client and server
applications in the Security sample applications:

‘Windows

prompt>setenvs

UNIX

prompt>/bin/ksh

prompt>. ./setenvs.sh

Guide to the CORBA University Sample Applications 4-7

Initializing the University Database

Use the following command to initialize the University database used with the Security sample
application:

Windows

prompt>nmake -f makefiles.nt initdb

UNIX

prompt>make -f makefiles.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:
Windows

prompt>tmloadcf -y ubb_s.nt

UNIX

prompt>tmloadcf -y ubb_s.mk

The build process for the UBBCONFIG file prompts you for an application password. This
password will be used to log on to the client applications. Enter the password and press Enter.
You are then prompted to verify the password by entering it again.

Compiling the Security Sample Application

4-8

During the development process, you would use the buildobjclient and buildobjserver
commands to build the client and server applications. However, for the Security sample
application, this step has been done for you.

The directory for the Security sample application contains a makefile that builds the client and
server sample applications.

Use the following commands to build the CORBA C++ client and server applications in the
Security sample application:

Windows
prompt>nmake -f makefiles.nt

UNIX

Guide to the CORBA University Sample Applications

Running the Security Sample Application

prompt>make -f makefiles.mk

Running the Security Sample Application

To run the Security sample application, complete the following steps:

1.

2.

Start the University server application.

Start one or more of the client applications.

These steps are explained in the following sections.

Starting the University Server Application

Start the system and sample application server applications in the Security sample application by
entering the following command:

prompt>tmboot -y

This command starts the following server processes:

TMSYSEVT
The Oracle Tuxedo system EventBroker.
TMFFNAME

The transaction management services, including the NameManager and the FactoryFinder
services.

TMIFSRVR

The Interface Repository server process.
univs_server

The University server process.

ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the system and
sample application server processes:

prompt>tmshutdown

Guide to the CORBA University Sample Applications 4-9

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Security sample application by completing the
following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univs_client
2. Atthe Enter student id: prompt, enter any number between 100001 and 100010.
3. Press Enter.

4. Atthe Enter domain password: prompt, enter the password you defined when you loaded
the UBBCONFIG file.

5. Press Enter.

Using the Client Applications in the Security Sample
Application

4-10

The following sections briefly explain how to use the client applications in the Security sample
application.

The CORBA C++ Client Application

The CORBA C++ client application in the Security sample application has the following
additional option:

<L> List your registered courses

This option displays the list of courses registered under the student ID that was used to log on to
the CORBA C++ client application.

Guide to the CORBA University Sample Applications

CHAPTERa

The Transactions Sample Application

This topic includes the following sections:

How the Transactions Sample Application Works

The Development Process for the Transactions Sample Application

Building the Transactions Sample Application

Compiling the Transactions Sample Application
e Running the Transactions Sample Application

e Using the Client Applications in the Transactions Sample Application

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

For a complete discussion of using transactions in a CORBA application, see Using CORBA
Transactions.

Guide to the CORBA University Sample Applications 5-1

How the Transactions Sample Application Works

In the Transactions sample application, students can register for classes. The operation of
registering for courses is executed within the scope of a transaction. The Transactions sample
application works in the following way:

1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the University server application checks whether:
— The course is in the database.
— The student is already registered for a course.

— The student exceeds the maximum number of credits the student can take.

3. One of the following occurs:

— If the course meets all the criteria, the University server application registers the
student for the course.

— If the course is not in the database or if the student is already registered for the course,
the University server application adds the course to a list of registered courses for
which the student could not be registered. After processing all the registration requests,
the server application returns the list of courses for which registration failed. The client
application prompts the student to either commit the transaction (thereby registering the
student for the courses for which registration request succeeded) or to roll back the
transaction (thus not registering the student for any of the courses).

— If the student exceeds the maximum number of credits the student can take, the
University server application returns a TooManyCredits user exception to the client
application. The client application provides a brief message explaining that the request
was rejected. The client application then rolls back the transaction.

Figure 5-1 illustrates how the Transactions sample application works.

Figure 5-1 The Transactions Sample Application

5-2 Guide to the CORBA University Sample Applications

The Development Process for the Transactions Sample Application

‘ Get Student Details |

‘ Get Course Details |

‘ Browse Courses |

CORBA C++ Client University
Application T : ; Server Application

‘ Register for Courses |

| X
CORBA A

L J

University

Database

LT Part of a Transaction

The Development Process for the Transactions Sample
Application

This section describes the steps used to add transactions to the Transactions sample application.
These steps are in addition to the development process outlined in Chapter 3, “The Basic Sample
Application.”

Note: The steps in this section have been done for you and are included in the Transactions
sample application.

OMG IDL

During the development process, you would define in Object Management Group (OMGQG)
Interface Definition Language (IDL) the register_for_ courses () operation for the
Registrar.The register for_courses () operation has a parameter, NotRegisteredList,
which returns to the client application the list of courses for which registration failed. If the value
of NotRegisteredList is empty, the client application commits the transaction.

Guide to the CORBA University Sample Applications 5-3

You also need to define the TooManyCredits user exception.

The Client Application

During the development process, you would add the following to your client application:

o The Bootstrap environmental object to obtain a reference to the TransactionCurrent
environmental object in the specified Oracle Tuxedo domain.

e The operations of the TransactionCurrent environmental object to include a CORBA object
in a transaction.

e A call to the register_for_courses () operation so that students can register for
courses.

For information about using Transactions in client applications, see Getting Started with Oracle
Tuxedo CORBA Applications and Using CORBA Transactions.

The University Server Application

During the development process, you would add the following to the University server
application:

e Invocations to the TP: : open_xa_rm() and TP: :close_xa_rm() operations in the
Server::initialize() and Server::release() operations of the Server object

o A method implementation for the register_for_ courses() operation

For information about these tasks, see Creating CORBA Server Applications.

The UBBCONFIG File

During the development process, you need the following in the UBBCONFIG file:

e A server group that includes both the University server application and the server
application that manages the database. This server group needs to be specified as
transactional.

e The OPENINFO parameter defined according to the xa parameter for the Oracle database.
The xa parameter for the Oracle database is described in the "Developing and Installing
Applications that Use the XA Libraries" section of the Oracle7 Server Distributed Systems
manual.

5-4 Guide to the CORBA University Sample Applications

Building the Transactions Sample Application

Note: If you use a database other than Oracle, refer to the product documentation for
information about defining the XA parameter.

e The pathname to the transaction log (TLOG) in the TLOGDEVICE parameter.

For information about the transaction log and defining parameters in the UBBCONFIG file, see
Setting Up an Oracle Tuxedo Application.

The ICF File

During the development process, change the Transaction policy of the Registrar object from
optional to always. The always Transaction policy indicates that this object must be part of
a transaction. For information about defining Transaction policies for CORBA objects, see Using
CORBA Transactions.

Building the Transactions Sample Application

To build the Transactions sample application, complete the following steps:

1. Copy the files for the Transactions sample application.

2. Change the protection on the files for the Transactions sample application files.
3. Set the environment variables.

4. Initialize the University database.

5. Load the uBBCONFIG file.

6. Create a transaction log.

7. Build the client and server sample applications.

The following sections describe these steps.

Note: Before you can build or run the Transactions sample application, you need to complete
the steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Transactions Sample Application
into a Work Directory

The files for the Transactions sample application are located in the following directories:

Windows

Guide to the CORBA University Sample Applications 5-5

drive:\TUXDIR\samples\corba\university\transaction

UNIX

/usr/TUXDIR/samples/corba/university/transaction

In addition, you need to copy the utils directory into your work directory. The utils directory

contains files that set up logging, tracing, and access to the University database.

You will use the files listed in Table 5-1 to create the Transactions sample application.

Table 5-1 Files Included in the Transactions Sample Application

File

Description

univt.idl

The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces.

univts.cpp

The C++ source code for the University server
application in the Transactions sample application.

univt_1i.h
univt_1i.cpp

The C++ source code for method implementations of
the CourseSynopsisEnumerator
Registrar, and RegistrarFactory interfaces.

univtc.cpp

The C++ source code for the CORBA C++ client
application in the Transactions sample application.

univt_utils.h
univt_utils.cpp

The files that define database access functions for the
CORBA C++ client application.

univt.icf

The ICF file for the Transactions sample application.

setenvt.sh

A UNIX script that sets the environment variables
needed to build and run the Transactions sample
application.

setenvt.cmd

An MS-DOS command procedure that sets the
environment variables needed to build and run the
Transactions sample application.

ubb_t .mk The UBBCONFIG file for the UNIX operating
system.
ubb_t.nt The UBBCONFIG file for the Windows operating

system.

Guide to the CORBA University Sample Applications

Building the Transactions Sample Application

Tahle 5-1 Files Included in the Transactions Sample Application (Continued)

File Description

makefilet.mk The makefile for the Transactions sample
application on the UNIX operating system.

makefilet.nt The makefile for the Transactions sample
application on the Windows operating system.

log.cpp, log.h, The client and server applications that provide

log_client.cpp, and logging and tracing functions for the sample

log_server.cpp applications. These files are located in the \utils
directory.

oradbconn. cpp and The files that provide access to an Oracle SQL

oranoconn.cpp database instance. These files are located in the

\utils directory.

samplesdb. cpp and The files that provide print functions for the database
samplesdb.h exceptions in the sample applications. These files are
located in the \utils directory.

unique_id.cpp and C++ Unique ID class routines for the sample

unique_id.h applications. These files are located in the \utils
directory.

samplesdbsgl.h and C++ class methods that implement access to the SQL

samplesdbsqgl.pc database. These files are located in the \utils
directory.

university.sqgl The SQL for the University database. This file is

located in the \utils directory.

Changing the Protection on the Files for the Transactions
Sample Application

During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Transactions sample application,
you need to change the protection of the files you copied into your work directory, as follows:

Windows

prompt>attrib -r drive:\workdirectory*.*

Guide to the CORBA University Sample Applications 5-1

5-8

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client and server
applications in the Transactions sample application:

Windows
prompt>setenvt
UNIX
prompt>/bin/ksh

prompt>. ./setenvt.sh

Initializing the University Database

Use the following command to initialize the University database used with the Transactions
sample application:

Windows
prompt>nmake -f makefilet.nt initdb

UNIX

prompt>make -f makefilet.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:
Windows

prompt>tmloadcf -y ubb_t.nt

UNIX

prompt>tmloadcf -y ubb_t.mk

The build process for the UBBCONFIG file prompts you for an application password. This
password will be used to log on to the client applications. Enter the password and press Enter.
You are then prompted to verify the password by entering it again.

Guide to the CORBA University Sample Applications

Compiling the Transactions Sample Application

Creating a Transaction Log

The transaction log records the transaction activities in a CORBA application. During the
development process, you need to define the location of the transaction log (specified by the
TLOGDEVICE parameter) in the UBBCONFIG file. For the Transactions sample application, the
transaction log is placed in your work directory.

To open the transaction log for the Transactions sample application, complete the following
steps:
1. Enter the following command to start the Interactive Administrative Interface:

tmadmin

2. Enter the following command to create a transaction log:

crdl -b blocks -z directorypath
clog -m SITEl

where

blocks specifies the number of blocks to be allocated for the transaction log and
directorypath indicates the location of the transaction log. The directorypath option
needs to match the location specified in the TLOGDEVICE parameter in the UBBCONFIG file.
The following is an example of the command on Windows:

crdl -b 500 -z c:\mysamples\university\Transaction\TLOG

3. Enter q to exit the Interactive Administrative Interface.

Compiling the Transactions Sample Application

During the development process, you would use the buildobjclient and buildobjserver
commands to build the client and server applications. You would also build a database-specific
transaction manager to coordinate the transactional events in the client/server application.
However, for the Transactions sample application, this step has been done for you. The directory
for the Transactions sample application contains a makefile that builds the client and server
sample applications and creates a transaction manager called TMS_ORA.

Note: Inthe makefile, the following parameter is hard coded to build a transaction manager
for the Oracle database:

RM=Oracle_XA

If you use a database other than Oracle, you need to change this parameter.

Guide to the CORBA University Sample Applications 5-9

Use the following commands to build the CORBA C++ client and server applications in the
Transactions sample application:

Windows

prompt>nmake -f makefilet.nt

UNIX

prompt>make -f makefilet.mk

Running the Transactions Sample Application

To run the Transactions sample application, complete the following steps:

5-10

1.

2.

Start the server application.

Start one or more of the client applications.

These steps are described in the following sections.

Starting the Server Application

Start the system and sample application server applications in the Transactions sample
application by entering the following command:

prompt>tmboot -y

This command starts the following server processes:

TMSYSEVT
The Oracle Tuxedo system EventBroker.
TMFFNAME

The transaction management services, including the NameManager and the FactoryFinder
services.

TMIFSRVR

The Interface Repository server process.
univt_server

The University server process.

ISL

Guide to the CORBA University Sample Applications

Using the Client Applications in the Transactions Sample Application

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the system and
sample application server processes:

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Transactions sample application by completing
the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univt_client
2. Atthe Enter student id: prompt, enter any number between 100001 and 100010.
3. Press Enter.

4. Atthe Enter domain password: prompt, enter the password you defined when you loaded
the UBBCONFIG file.

5. Press Enter.

Using the Client Applications in the Transactions Sample
Application

The following sections briefly explain how to use the client applications in the Transactions
sample application.

The CORBA C++ Client Application

The CORBA C++ client application in the Transactions sample application has the following
additional option:

<R> Register for Courses

To register for a course, complete the following steps:
1. At the Options prompt, enter R.

2. Atthe Course Number prompt, enter a course number followed by -1 . For example:

Guide to the CORBA University Sample Applications 5-11

100011
100039
-1

3. Press Enter.

4. At the Options prompt, enter L to view a list of courses for which the student ID is registered.

To exit the C++ CORBA client application, enter E at the Options prompt.

5-12 Guide to the CORBA University Sample Applications

CHAPTERa

The Wrapper Sample Application

The topic includes the following sections:

How the Wrapper Sample Application Works

The Development Process for the Wrapper Sample Application

Building the Wrapper Sample Application

Compiling the Wrapper Sample Application
e Running the Wrapper Sample Application

e Using the Client Applications in the Wrapper Sample Application

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Guide to the CORBA University Sample Applications 6-1

How the Wrapper Sample Application Works

6-2

In the Wrapper sample application, when a student registers for classes, the student’s account is
charged for the classes and the balance of the student’s account is updated. In addition, students
can get information about their account balances.

The Wrapper sample application incorporates a ATMI service. The Billing server application
contains a Teller object, which calls the ATMI application Teller. The Teller application
performs the following billing operations:

e Debiting a student account
e Crediting a student account

e Obtaining the current balance of a student account
The University database is modified to include account information.

Figure 6-1 illustrates how the Wrapper sample application works.

Figure 6-1 The Wrapper Sample Application

Billing
Server Application ATMI Application

Teller

TellerFactary

CURRBALANCE()
DEBIT()
CREDIT()

| Get Student Details |

|
|
|
|
|
|
|
|
T : Teller g
: : |
|
|
|
|
|
|

| Get Course Details |

| Browse Courses |

'ORBA C++ Client § g University
Application : —® | Server Application

| Register for Courses |

University
Database

Guide to the CORBA University Sample Applications

The Development Process for the Wrapper Sample Application

The Development Process for the Wrapper Sample
Application

This section describes the development process required when wrapping an ATMI service in a
CORBA application. These steps are in addition to the development process outlined in
Chapter 3, “The Basic Sample Application.”

Note: The steps in this section have been done for you and are included in the Wrapper sample
application.

OMG IDL

When wrapping an ATMI service, you need to define an object that interoperates with the ATMI
service and a factory that creates that object. In the Wrapper sample application, the Teller and
TellerFactory objects interact with the ATMI service. During the development process, you
would define the interfaces of the Teller and the TellerFactory objects in Object
Management Group (OMG) Interface Definition Language (IDL), as follows:

Object Description Operations
TellerFactory Returns an object reference tothe find_teller()
Teller object
Teller Interoperates with the ATMI get_balance()
application Teller to perform credit ()
billing and accounting operations
debit ()

You need to add a Balance field to the StudentDetails structure. Client applications use the
Balance field to show the student’s account balance. A user exception DelinguentAccount is
also added.

The Client Application

During the development process, you would add code to the client application to handle the user
exception Delinquent Account that the register for_courses() Operation can raise.

Guide to the CORBA University Sample Applications 6-3

6-4

The Server Application

During the development process, you would write the following for the Billing server application:

e Method implementations for the get_balance (), credit (), and debit () operations for
the Teller object. The method implementations need to include the code that does the
following:

— Allocates an FML message buffer.

— Fills the FML message buffer with the data you want to send to the ATMI application
Teller.

— Calls the ATMI application Teller.

— Extracts information from the FML message buffer returned from the ATMI application
Teller.

— Returns the information from the FML message buffer to the University server
application.

o A method implementation for the find_teller () operation of the TellerFactory
object.

e A Billing server object that creates and registers the TellerFactory object and calls the
open_XA_ RM and close_XA_ RM functions.

During the development process, you would add the following to the University server
application:

e In the server initialization portion of the code for the University server application, include
the Bootstrap object to get a FactoryFinder object for the TellerFactory object. The
University server application is using the Bootstrap and FactoryFinder objects like a client
application would.

o In the code for the University server application, include a reference to the
TellerFactory object in the constructor of the servant for the Registrar object. Use the
TellerFactory object to create a Teller object.

e In the method implementations for the get_student_details () and
register_for_courses () operations for the Registrar object, invoke the
get_balance () and debit () operations on the Teller object.

For information about writing server applications that wrap ATMI services, see Creating CORBA
Server Applications.

Guide to the CORBA University Sample Applications

Building the Wrapper Sample Application

The UBBCONFIG File

During the development process, you need to make the following changes to the UBBCONFIG file:

e Define the following server groups in the GROUPS section of the UBBCONFIG file:

— ORA_GRP, which contains the University server application, the Teller application, and
the server application for the University database. This server group allows both the
University server application and the Teller application to access the University
database.

— APP_GRP, which contains the Billing server application.

e Specify the server applications in the Wrapper sample application in the order in which
they should be booted in the SERVERS section of the UBBCONFIG file. Start the server
applications in the following order:

a. ATMI application Teller
b. Billing server application

¢. University server application

The ICF File

During the development process, you need to define activation and transaction policies for the
Teller and TellerFactory objects. The Teller and TellerFactory objects have the
following policies:

e The Teller object has an activation policy of process and a transaction policy of
optional.

e The TellerFactory object has an activation policy of process and a transaction policy

of ignore.

For information about defining activation and transaction policies for CORBA objects, see
Creating CORBA Server Applications.

Building the Wrapper Sample Application

To build the Wrapper sample application, complete the following steps:
1. Copy the files for the Wrapper sample application.

2. Change the protection on the files for the Wrapper sample application.

Guide to the CORBA University Sample Applications 6-5

3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Create a transaction log.

7. Build the client and server sample applications.
The following sections describe these steps.

Note: Before you can build or run the Wrapper sample application, you need to complete the
steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Wrapper Sample Application into a
Work Directory

The files for the Wrapper sample application are located in the following directories:
Windows

drive:\TUXDIR\samples\corba\university\wrapper

UNIX

/usr/TUXDIR/samples/corba/university/wrapper

In addition, you need to copy the utils directory into your work directory. The utils directory
contains files that set up logging, tracing, and access to the University database.

You will use the files listed in Table 6-1 to create the Wrapper sample application.

Table 6-1 Files Included in the Wrapper Sample Application

File Description

billw.idl The OMG IDL that declares the Teller and
TellerFactory interfaces.

univw.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces.

billws.cpp The C++ source code for the Billing server
application in the Wrapper sample application.

Guide to the CORBA University Sample Applications

Building the Wrapper Sample Application

Table 6-1 Files Included in the Wrapper Sample Application (Continued)

File

Description

univws .cpp

The C++ source code for the University server
application in the Wrapper sample application.

billw__i.h
billw_i.cpp

The C++ source code for the method
implementations of the Teller and
TellerFactory interfaces.

univw_1i.h
univw_i.cpp

The C++ source code for the method
implementations of the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces.

univwc.cpp

The C++ source code for the CORBA C++ client
application in the Wrapper sample application.

univw_utils.h
univw_utils.cpp

The files that define database access functions for the
CORBA C++ client application.

univw.icf

The ICF file for the University server application in
the Wrapper sample application.

billw.icf

The ICF file for the Billing server application in the
Wrapper sample application.

setenvw.sh

A UNIX script that sets the environment variables
needed to build and run the Wrapper sample
application.

tellw_flds, tellw_u.c,
tellw_c.h, tellws.ec

The files for the ATMI application Teller.

setenvw.cmd

An MS-DOS command procedure that sets the
environment variables needed to build and run the
Wrapper sample application.

ubb_w.mk The UBBCONFIG file for the UNIX operating
system.
ubb_w.nt The UBBCONFIG file for the Windows operating

system.

makefilew.mk

The makefile for the Wrapper sample application
on the UNIX operating system.

Guide to the CORBA University Sample Applications 6-7

6-8

Tahle 6-1 Files Included in the Wrapper Sample Application (Continued)

File

Description

makefilew.nt

The makefile forthe Wrapper sample application
on the Windows operating system.

log.cpp, 1log.h,
log_client.cpp, and
log_server.cpp

The files for the client and server applications that
provide logging and tracing functions for the sample
applications. These files are located in the \utils
directory.

oradbconn. cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance. These files are located in the
\utils directory.

samplesdb. cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications. These files are
located in the \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample
applications.These files are located in the \utils
directory.

samplesdbsqgl.h and
samplesdbsqgl .pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils
directory.

university.sql

The SQL for the University database. This file is
located in the \utils directory.

Changing the Protection on the Files for the Wrapper
Sample Application

During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Wrapper sample application, you
need to change the protection of the files you copied into your work directory, as follows:

Windows

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Guide to the CORBA University Sample Applications

Building the Wrapper Sample Application

Setting the Environment Variables

Use the following command to set the environment variables used to build the client and server
applications in the Wrapper sample application:

Windows

prompt>setenvw
UNIX
prompt>/bin/ksh

prompt>. ./setenvw.sh

Initializing the University Database

Use the following command to initialize the University database used with the Wrapper sample
application:

Windows
prompt>nmake -f makefilew.nt initdb

UNIX

prompt>make -f makefilew.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:
Windows

prompt>tmloadcf -y ubb_w.nt

UNIX

prompt>tmloadcf -y ubb_w.mk

The build process for the UBBCONFIG file prompts you for an application password. This
password will be used to log on to the client applications. Enter the password and press Enter.
You are then prompted to verify the password by entering it again.

Guide to the CORBA University Sample Applications 6-9

Creating a Transaction Log

The transaction log records the transaction activities in a CORBA application. During the
development process, you need to define the location of the transaction log (specified by the
TLOGDEVICE parameter) in the UBBCONFIG file. For the Wrapper sample application, the
transaction log is placed in your work directory.

To open the transaction log for the Wrapper sample application, complete the following steps:

1.

Enter the following command to start the Interactive Administrative Interface:

tmadmin

Enter the following command to create a transaction log:

crdl -b blocks -z directorypath
crlog -m SITE1l

where

blocks specifies the number of blocks to be allocated for the transaction log, and
directorypath indicates the location of the transaction log. The directorypath option
needs to match the location specified in the TLOGDEVICE parameter in the UBBCONFIG file.
The following is an example of the command on Windows:

crdl -b 500 -z c:\mysamples\university\wrapper\TLOG

3. Enter q to quit the Interactive Administrative Interface.

Compiling the Wrapper Sample Application

During the development process, you would use the buildobjclient and buildobjserver
commands to build the client and server applications. However, for the Wrapper sample
application, this step has been done for you. The directory for the Wrapper sample application
contains a makefile that builds the client and server sample applications.

6-10

Use the following commands to build the CORBA C++ client and server application in the
Wrapper sample application:

Windows

prompt>nmake -f makefilew.nt

UNIX

prompt>make -f makefilew.mk

Guide to the CORBA University Sample Applications

Running the Wrapper Sample Application

Running the Wrapper Sample Application

To run the Wrapper sample application, complete the following steps:
1. Start the server application.

2. Start one or more of the client applications.

These steps are described in the following sections.

Starting the Server Application

Start the system and sample application server processes in the Wrapper sample application by
entering the following command:

prompt>tmboot -y
This command starts the following server processes:
® TMSYSEVT
The Oracle Tuxedo system EventBroker.
® TMFFNAME

The transaction management services, including the NameManager and the FactoryFinder
services.

® TMIFSRVR
The Interface Repository server process.
® univw_server
The University server process.
® tellw_server
The application process for the ATMI application Teller.
® billw_server
The Billing server application process.
e ISL
The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the system and
sample application server processes:

Guide to the CORBA University Sample Applications 6-11

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Wrapper sample application by completing the
following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univw_client
2. Atthe Enter student id: prompt, enter any number between 100001 and 100010.
3. Press Enter.

4. Atthe Enter domain password: prompt, enter the password you defined when you loaded
the UBBCONFIG file.

5. Press Enter.

Using the Client Applications in the Wrapper Sample
Application

The following sections explain how to use the client applications in the Wrapper sample
application.

The CORBA C++ Client Application

The CORBA C++ client application in the Wrapper sample application has the following
additional option:

 Display Your Balance

The Display Your Balance option displays the account balance associated with the student
ID used to log on to the CORBA C++ client application.

To exit the C++ CORBA client application, enter E at the Options prompt.

6-12 Guide to the CORBA University Sample Applications

CHAPTERa

The Production Sample Application

This topic includes the following sections:
e How the Production Sample Application Works

e The Development Process for the Production Sample Application

Building the Production Sample Application

Compiling the Production Sample Application
e Running the Production Sample Application

e How the Production Sample Application Can Be Scaled Further

Notes: The client applications in the Production sample application work in the same manner as
the client applications in the Wrapper sample application.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Guide to the CORBA University Sample Applications 1-1

How the Production Sample Application Works

1-2

The Production sample application provides the same end-user functionality as the Wrapper
sample application. The Production sample application demonstrates how to use CORBA
features of the Oracle Tuxedo software to scale a CORBA application. The Production sample
application does the following:

e Replicates the University server application, the Billing server application, and the ATMI
Teller application within the oRA_GRP and APP_GRP server groups defined in the
UBBCONFIG file.

e Replicates the ORA_GRP1 and APP_GRP1 server groups on an additional server machine,
Production Machine 2, as orRA_GRP2 and APP_GRP2 and partitions the database.

e Implements a stateless object model to scale up the number of requests from client
applications the server application can manage simultaneously.

e Assigns unique object IDs (OIDs) to the following objects so that they can be instantiated
multiple times simultaneously in their respective server groups, thereby making them
available on a per-client-application (and not per-process) basis:

- Registrar

- RegistrarFactory
- Teller

- TellerFactory

e Implements factory-based routing to direct requests from client applications on behalf of
some students to one server machine, and other students to another server machine.

Note: To make the Production sample application easy for you to use, the sample application
is configured on the Oracle Tuxedo software kit to run on one machine using one
database. However, the Production sample application is set up so that it can be
configured to run on several machines and to use multiple databases. Changing the
configuration to multiple machines and databases involves simply modifying the
UBBCONFIG file and partitioning the database.

The following sections describe how the Production sample application uses replicated server
applications, replicated server groups, object state management, and factory-based routing to
scale the Production sample application.

Replicating Server Applications

When you replicate server applications:

Guide to the CORBA University Sample Applications

How the Production Sample Application Works

e You obtain a means to balance the load of incoming requests from client applications on
that server application. As requests arrive in the Tuxedo domain for the server group, the
Oracle Tuxedo system routes the request to the least busy server application within that

group.

e You can specify how many copies of a given server application process are running on a
server machine. The number of copies determines the extent to which the Tuxedo domain
can process requests in-parallel from client applications.

e You obtain a useful failover protection in the event that one of the server application
processes stops.

In the Production sample application, the server applications are replicated in the following
manner:

e The University server application, the ATMI Teller application, and the server application
for the University database are replicated within the ORA_GRP group.

e The Billing server application is replicated within the APP_GRP group.

Figure 7-1 shows the replicated oOrRA_GRP and APP_GRP server groups.

Guide to the CORBA University Sample Applications 1-3

7-4

Figure 7-1 Replicated Server Groups in the Production Sample Application

Production Machine

ORA_GRP \\ : APP_GRP
| |
University Server — | Billing Server —
L | I
RegistrarFactory \1 : TellerFactory
i |
Registrar \\ : Teller
| |
CourseSynopsys I | |
Enumerator —H i | |
T Yoo
, —m————————————
| j

ATMI Application
Teller

dekbitc ()

credit ()

current_halance (]

Database

Oracle7 \
Transaction
Manager Server

In Figure 7-1, note the following:

e There can be no more than one instance of the RegistrarFactory, Registrar,
TellerFactory, or Teller objects within a single server application process.

e There can be any number of CourseSynopsisEnumerator objects within a server
application process.

Guide to the CORBA University Sample Applications

How the Production Sample Application Works

Replicating Server Groups

Server groups are a feature of the Oracle Tuxedo software that allow you to add server machines
to an existing CORBA application. When you replicate a server group, you can do the following:

e Spread the processing load for a CORBA application across multiple server machines.

e Use factory-based routing to send requests from client applications to a particular server
machine.

The way in which server groups are configured and replicated is specified in the UBBCONFIG file.

Figure 7-2 shows the server groups in the Production sample application replicated on a second
server machine. The replicated server groups are defined as ORA_GRP2 and APP_GRP2 in the
UBBCONFIG file for the Production sample application.

Guide to the CORBA University Sample Applications 1-5

1-6

Figure 7-2 Replicating Server Groups Across Server Machines

Production Machine 1 Production Machine 2
__________ | Fmmm = e e,
ORA_GRP1 APP_GRP1 ORA_GRP2 APP_GRP2

University University

Billing Server Server Billing Server

Server

Database 1 Databhase 2
ATMI ATMI
Application Application
Teller Teller
\t:/
Oracle? Oracle?
Transaction Transaction
Wanager Server Manager Server

In Figure 7-2, the only difference between the content of the server groups on Production
Machine 1 and Production Machine 2 is the database. The University database is partitioned into
two databases. The database on Production Machine 1 contains student and account information
for students with IDs between 100001 and 100005. The database on Production Machine 2
contains student and account information for students with IDs between 100006 and 100010.

Using a Stateless Object Model

To achieve scalability gains, the Registrar and Teller objects are configured in the Production
sample application to have the method activation policy. The method activation policy results in
the following behavior changes:

Guide to the CORBA University Sample Applications

How the Production Sample Application Works

e Whenever the objects are invoked, they are instantiated by the Tuxedo domain in the
appropriate server group.

o After the invocation is complete, the Tuxedo domain deactivates the objects.

In the Basic through the Production sample applications, the Registrar object had an activation
policy of process. All requests from client applications on the Registrar object went to the
same object instance in the memory of the server machine. This design is adequate for a
small-scale deployment. However, as client application demands increase, requests from client
applications on the Registrar object eventually become queued, and response time drops.

However, when the Registrar and Teller objects have an activation policy of method and the
server applications that manage these objects are replicated, the Registrar and Teller objects
can process multiple requests from client applications in parallel. The only constraint is the
number of server application processes that are available to instantiate the Registrar and
Teller objects.

For the CORBA application to instantiate copies of the Registrar and Teller objects in each
of the replicated server application processes, each copy of the Registrar and Teller objects
have an unique object ID (OID). The factories that create these objects are responsible for
assigning them unique OIDs. For information about generating unique object IDs, see Creating
CORBA Server Applications.

Using Factory-based Routing

Factory-based routing is a CORBA feature that allows you to send a request from a client
application to a specific server group. Using factory-based routing, you can spread the processing
load for a CORBA application across multiple server machines. The Production sample
application uses factory-based routing in the following way:

e Requests from client applications to the Registrar object are routed based on the student
ID. Requests from student ID 100001 to 100005 go to Production Machine 1. Requests
from student ID 100006 to 100010 go to Production Machine 2.

e Requests from the Registrar object to the Teller object are routed based on account
number. Billing requests for account 200010 to 200014 go to Production Machine 1.
Billing requests for account 200015 to 200019 go to Production Machine 2.

For information about setting up factory-based routing, see Creating CORBA Server
Applications.

Guide to the CORBA University Sample Applications 1-1

The Development Process for the Production Sample
Application

This section describes the development process required when scaling a CORBA application.
These steps are in addition to the development process outlined in Chapter 3, “The Basic Sample
Application.”

Note: The steps in this section have been done for you and are included in the Production
sample application.

OMG IDL

During the development process, to support factory-based routing, you would make
modifications to the Object Management Group (OMG) Interface Definition Language (IDL)
definitions for the following operations:

e The find_registrar () operation of the RegistrarFactory object to require a
student ID.

e The find_teller () operation of the TellerFactory object to require an account
number.

For information about implementing factory-based routing, see Creating CORBA Server
Applications.

The Client Application

During the development process, you would specify a STU_1D value when creating a Registrar
object. The sTU_1D value defines to which server group the request from the client application is
routed.

In the Production sample application, the University server application creates the Teller object
in the same way a client application would. Therefore, an acT_NUM value needs to be specified
when creating a Teller object.

The Server Application

During the development process, you need to modify the invocation to the
TP: :create_object_reference () operation for the RegistrarFactory and
TellerFactory objects to include an Nv1ist that specifies routing criteria. The criteria

1-8 Guide to the CORBA University Sample Applications

The Development Process for the Production Sample Application

parameter of the TP: : create_object_reference ()operation specifies a list of named values
to be used for factory-based routing, as follows:

e The RegistrarFactory object in the Production sample application specifies the value
for criteria to be STU_ID.

e The TellerFactory object in the Production sample application specifies the value for
criteria to be ACT_NUM.

The value of the criteria parameter must match exactly the routing criteria name, field, and
field type specified in the ROUTING section of the UBBCONFIG file.

For information about implementing factory-based routing in a factory, see Creating CORBA
Server Applications.

The UBBCONFIG File

The uBBCONFIG file is the key to achieving scalability in a CORBA application. This section
describes how the uBBCONFIG file for the Production sample application is modified to:

e Replicate server application processes and server groups

e Implement factory-based routing

Replicating Server Application Processes and Server Groups
During the development process, modify the UBBCONFIG file in the following way to configure

replicated server application processes and server groups:

1. In the GROUPS section of the UBBCONFIG file, specify the names of the groups you want to
configure. In the Production sample application, there are four server groups: APP_GRP1,
APP_GRP2, ORA_GRP1, and ORA_GRP2.

2. Inthe SERVERS section of the UBBCONFIG file, enter the following information for the server
application process you want to replicate:

— A server application name.

— The GrouP parameter, which specifies the name of the server group to which the server
application process belongs. If you are replicating a server process across multiple
groups, specify the server process once for each group.

— The srvID parameter, which specifies a unique administrative ID for the server
machine.

Guide to the CORBA University Sample Applications 1-9

— The MIN parameter, which specifies the number of instances of the server application
process to start when the CORBA application is started. You need to start at least two
server application processes.

— The MaX parameter, which specifies the maximum number of server application
processes that can be running at any one time.You can specify no more than five server
application processes.

The MIN and MAX parameters determine the degree to which a given server application can process
requests in parallel on a given object. During run time, the system administrator can examine
resource bottlenecks and start additional server processes, if necessary. In this sense, the
application is scaled by the system administrator.

The following example shows lines from the GROUPS and SERVERS sections of the UBBCONFIG
file for the Production sample application.

*GROUPS
APP_GRP1
LMID = SITEl
GRPNO = 2
TMSNAME = TMS
APP_GRP2
LMID = SITEl
GRPNO =3
TMSNAME = TMS
ORA_GRP1
LMID = SITELl
GRPNO =4
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir
=.+MaxCur=5"
CLOSEINFO = ""
TMSNAME = "TMS_ORA"
ORA_GRP2
LMID = SITEL
GRPNO =5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir
=.+MaxCur=5"
CLOSEINFO = ""
TMSNAME = "TMS_ORA"
*SERVERS

1-10

By default, activate 2 instances of each server
and allow the administrator to activate up to 5
instances of each server

DEFAULT:
MIN =2
MAX =5

Guide to the CORBA University Sample Applications

tellp_server
SRVGRP =
SRVID =
RESTART =
tellp_server
SRVGRP =
SRVID =
RESTART =
billp_server
SRVGRP =
SRVID =
RESTART =
billp_server
SRVGRP =
SRVID =
RESTART =
univp_server
SRVGRP =
SRVID =
RESTART
univp_server
SRVGRP =
SRVID =
RESTART =

ORA_GRP1
10
N

ORA_GRP2
10
N

APP_GRP1
10
N

APP_GRP2
10
N

ORA_GRP1
20
N

ORA_GRP2
20
N

The Development Process for the Production Sample Application

Implementing Factory-based Routing

For each interface for which you want to enable factory-based routing, you need to define the
following information in the UBBCONFIG file:

e Details about the data in the routing criteria

e For each kind of criteria, the values that route to specific server groups

During the development process, make the following changes to the UBBCONFIG file:

1. The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies the value on which the
interface routes. The routing value is specified in the FACTORYROUTING identifier.

The following example shows the FACTORYROUTING identifier for the Registrar and
Teller objects in the Production sample application:

INTERFACES

"IDL:beasys.com/UniversityP/Registrar:1.0"

FACTORYROUTING

= STU_ID

"IDL:beasys.com/BillingP/Teller:1.0"

FACTORYROUTING

= ACT_NUM

Guide to the CORBA University Sample Applications 1-11

2. The ROUTING section specifies the following data for each routing value:

The TYPE parameter, which specifies the type of routing. In the Production sample
application, the type of routing is factory-based routing. Therefore, this parameter is
defined to FACTORY .

The FIELD parameter, which specifies the name that the factory inserts in the routing
value. In the Production sample application, the field parameters are student_id and

account_number.

The FIELDTYPE parameter, which specifies the data type of the routing value. In the
Production sample application, the field types for STU_ID and ACT_NUM are long.

The RANGES parameter, which specifies the values that are routed to each group.

The following example shows the ROUTING section of the UBBCONFIG file used in the

Production sample application:
*ROUTING
STU_ID
FIELD = "student_id"
TYPE = FACTORY
FIELDTYPE = LONG
RANGES = "100001-100005:0RA_GRP1,100006-100010:0RA_GRP2"
ACT_NUM
FIELD = "account_number"
TYPE = FACTORY
FIELDTYPE = LONG

RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The example shows that Registrar objects for students with IDs 100001 through 100005

are

instantiated in OrRA_GRP1, and students with IDs 100006 through 100010 are

instantiated in ORA_GRP2 . Likewise, Teller objects for accounts 200010 through 200014

are

instantiated in App_GRP1, and accounts 200015 through 200019 are instantiated in

APP_GRP2.

3. The groups specified by the RANGES identifier in the ROUTING section of the UBBCONFIG file
need to be identified and configured. For example, the Production sample application

spe

cifies four groups: ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2. These groups need

to be configured, and the machines on which they run need to be identified.

Note:

The names of the server groups in the GROUPS section must exactly match the group
names specified in the ROUTING section.

1-12 Guide to the CORBA University Sample Applications

Building the Production Sample Application

The ICF File

During the development process, you need to change the activation policy of the Registrar,
RegistrarFactory, Teller, and TellerFactory objects from process to method. For
information about defining activation and transaction policies for CORBA objects, see Creating
CORBA Server Applications.

Building the Production Sample Application

To build the Production sample application, complete the following steps:

1. Copy the files for the Production sample application into a work directory.

2. Change the protection on the files for the Production sample application files.
3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Create a transaction log.

7. Build the client and server sample applications.

The following sections describe these steps.

Note: Before you can build or run the Production sample application, you need to complete the
steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Production Sample Application
into a Work Directory

The files for the Production sample application are located in the following directories:
Windows

drive:\TUXDIR\samples\corba\university\production

UNIX

/usr/TUXDIR/samples/corba/university/production

In addition, you need to copy the utils directory into your work directory. The utils directory
contains files that set up logging, tracing, and access to the University database.

Guide to the CORBA University Sample Applications 1-13

1-14

You will use the files in Table 7-1 to create the Production sample application.

Table 7-1 Files Included in the Production Sample Application

File

Description

billp.idl

The OMG IDL that declares the Teller and
TellerFactory interfaces.

univp.idl

The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces.

billps.cpp The C++ source code for the Billing server
application in the Production sample application.

univps.cpp The C++ source code for the University server
application in the Production sample application.

billp__ i.h The C++ source code for the method

billp_1i.cpp

implementations of the Teller and
TellerFactory interfaces.

univp_i.h
univp_i.cpp

The C++ source code for method implementations of
the CourseSynopsisEnumerator,
Registrar, and RegistrarFactory interfaces.

univpc.cpp

The C++ source code for the CORBA C++ client
application in the Production sample application.

univp_utils.h
univp_utils.cpp

The files that define database access functions for the
CORBA C++ client application.

univp.icft

The Implementation Configuration File (ICF) for the
University server application in the Production
sample application.

billp.icf

The ICF file for the Billing server application in the
Production sample application.

tellw_flds, tellw u.c,
tellw_c.h, tellws.ec

The files for the ATMI application Teller.

setenvp.sh

A UNIX script that sets the environment variables
needed to build and run the Production sample
application.

Guide to the CORBA University Sample Applications

Building the Production Sample Application

Tahle 7-1 Files Included in the Production Sample Application (Continued)

File

Description

setenvp.cmd

An MS-DOS command procedure that sets the
environment variables needed to build and run the
Production sample application.

ubb_p.mk The UBBCONFIG file for the UNIX operating
system.
ubb_p.nt The UBBCONFIG file for the Windows operating

system.

makefilep.mk

The makefile for the Production sample
application on the UNIX operating system.

makefilep.nt

The makefile for the Production sample
application on the Windows operating system.

log.cpp, 1log.h,
log_client.cpp, and
log_server.cpp

The files for the client and server applications that
provide logging and tracing functions for the sample
applications. These files are located in the \utils
directory.

oradbconn. cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance.These files are located in the
\utils directory.

samplesdb.cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications. These files are
located in the \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample
applications.These files are located in the \utils
directory.

samplesdbsqgl.h and
samplesdbsqgl .pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils
directory.

university.sqgl

The SQL for the University database. This file is
located in the \utils directory.

Guide to the CORBA University Sample Applications 1-15

1-16

Changing the Protection on the Files for the Production
Sample Application

During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Production sample application,
you need to change the protection of the files you copied into your work directory, as follows:

Windows
prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client and server
applications in the Production sample application:

Windows
prompt>setenvp
UNIX
prompt>/bin/ksh

prompt>. ./setenvp.sh

Initializing the University Database

Use the following command to initialize the University database used with the Production sample
application:

Windows

prompt>nmake -f makefilep.nt initdb
UNIX

prompt>make -f makefilep.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

Guide to the CORBA University Sample Applications

Compiling the Production Sample Application

Windows

prompt>tmloadcf -y ubb_p.nt
UNIX

prompt>tmloadcf -y ubb_p.mk

The build process for the UBBCONFIG file prompts you for an application password. This
password will be used to log on to the client applications. Enter the password and press Enter.
You are then prompted to verify the password by entering it again.

Creating a Transaction Log

The transaction log records the transaction activities in a CORBA application. During the
development process you need to define the location of the transaction log (specified by the
TLOGDEVICE parameter) in the UBBCONFIG file. For the Production sample application, the
transaction log is placed in your work directory.

You need to complete the following steps to open the transaction log for the Production sample

application:

1. Enter the following command to start the Interactive Administrative Interface:
tmadmin

2. Enter the following command to create a transaction log:

crdl -b blocks -z directorypath
crlog -m SITE1l

where

blocks specifies the number of blocks to be allocated for the transaction log, and
directorypath indicates the location of the transaction log. The directorypath option
needs to match the location specified in the TLOGDEVICE parameter in the UBBCONFIG file.
The following is an example of the command on Windows:

crdl -b 500 -z c:\mysamples\university\production\TLOG

3. Enter g to quit the Interactive Administrative Interface.

Compiling the Production Sample Application

During the development process, you would use the buildobjclient and buildobjserver
commands to build the client and server applications. However, for the Production sample

Guide to the CORBA University Sample Applications 1-11

application, this step has been done for you. The directory for the Production sample application
contains a makefile that builds the client and server sample applications.

Use the following commands to build the CORBA C++ client and server application in the
Production sample application:

Windows
prompt>nmake -f makefilep.nt

UNIX

Running the Production Sample Application

1-18

To run the Production sample application, complete the following steps:
1. Start the server application.

2. Start one or more of the client applications.

The following sections describe these steps in detail.

Starting the Server Application

Start the system and sample application server applications in the Production sample application
by entering the following command:

prompt>tmboot -y
This command starts the following server processes:
® TMSYSEVT
The Oracle Tuxedo system EventBroker.
® TMFFNAME

The transaction management services, including the NameManager and the FactoryFinder
services.

e TMIFSRVR

The Interface Repository server process.

Four processes of the University server application.
® tellp_server

Four processes of the ATMI application Teller.

Guide to the CORBA University Sample Applications

How the Production Sample Application Can Be Scaled Further

® billp server

Four processes of the Billing server application.
e ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the system and
sample application server processes:

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Production sample application by completing the
following steps:

1. At the MS-DOS prompt, enter the following command:
prompt>univp_client
2. Atthe Enter student id: prompt, enter any number between 100001 and 100010.

3. Press Enter.

4. Atthe Enter domain password: prompt, enter the password you defined when you loaded
the UBBCONFIG file.

5. Press Enter.

Note: The CORBA C++ client application in the Production sample application works in the A
type library. By default, the type library is placed in \ TUXDIR\TypeLibraries.

How the Production Sample Application Can Be Scaled
Further

The Production sample application can be scaled even more by:

e Replicating the server groups in the Production sample application across additional
machines.

You need to modify the UBBCONFIG file to specify the additional server groups, the server
application processes that run in the new server groups, and the server machines on which
the server groups run.

Guide to the CORBA University Sample Applications 1-19

e Changing the factory-based routing tables

For example, instead of routing to the two existing server groups in the Production sample
application, you can modify the routing rules in the UBBCONFIG file to partition the
application further among additional server groups. Any modification to the routing tables
must match the information in the UBBCONFIG file.

Note: If you add capacity to an existing CORBA application that uses a database, you must
consider how the database is set up, particularly when you are using factory-based
routing. For example, if the Production sample application is spread across six machines,
the database on each machine must be set up appropriately and in accordance with the
routing tables in the UBBCONFIG file.

1-20 Guide to the CORBA University Sample Applications

	Oracle® Tuxedo
	11g Release 1 (11.1.1.1.0)

	Oracle Tuxedo Guide to CORBA University Sample Applications, 11g Release 1 (11.1.1.1.0)
	Introduction
	An Overview of the University Sample Applications
	Naming Conventions Used in the University Sample Applications

	Setting Up Your Environment
	System Prerequisites
	Editing the setenv and UBBCONFIG Files
	Naming Conventions for the setenv and UBBCONFIG Files
	Setting setenv Parameters
	Setting the UBBCONFIG Parameters
	Running the setenv Command

	The Basic Sample Application
	How the Basic Sample Application Works
	The OMG IDL for the Basic Sample Application
	Generating the Client Stubs and the Skeletons
	Writing the Client Application
	Writing the Server Application

	Configuring the Basic Sample Application
	Building the Basic Sample Application
	Copying the Files for the Basic Sample Application into a Work Directory
	Changing the Protection on the File for the Basic Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File

	Compiling the Basic Sample Application
	Running the Basic Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application

	Using the Client Applications in the Basic Sample Application
	The CORBA C++ Client Application

	The Security Sample Application
	How the Security Sample Application Works
	The Development Process for the Security Sample Application
	OMG IDL
	The Client Application
	The Server Application
	The UBBCONFIG File
	The ICF File

	Building the Security Sample Application
	Copying the Files for the Security Sample Application into a Work Directory
	Changing the Protection on the Files for the Security Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File

	Compiling the Security Sample Application
	Running the Security Sample Application
	Starting the University Server Application
	Starting the CORBA C++ Client Application

	Using the Client Applications in the Security Sample Application
	The CORBA C++ Client Application

	The Transactions Sample Application
	How the Transactions Sample Application Works
	The Development Process for the Transactions Sample Application
	OMG IDL
	The Client Application
	The University Server Application
	The UBBCONFIG File
	The ICF File

	Building the Transactions Sample Application
	Copying the Files for the Transactions Sample Application into a Work Directory
	Changing the Protection on the Files for the Transactions Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File
	Creating a Transaction Log

	Compiling the Transactions Sample Application
	Running the Transactions Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application

	Using the Client Applications in the Transactions Sample Application
	The CORBA C++ Client Application

	The Wrapper Sample Application
	How the Wrapper Sample Application Works
	The Development Process for the Wrapper Sample Application
	OMG IDL
	The Client Application
	The Server Application
	The UBBCONFIG File
	The ICF File

	Building the Wrapper Sample Application
	Copying the Files for the Wrapper Sample Application into a Work Directory
	Changing the Protection on the Files for the Wrapper Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File
	Creating a Transaction Log

	Compiling the Wrapper Sample Application
	Running the Wrapper Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application

	Using the Client Applications in the Wrapper Sample Application
	The CORBA C++ Client Application

	The Production Sample Application
	How the Production Sample Application Works
	Replicating Server Applications
	Replicating Server Groups
	Using a Stateless Object Model
	Using Factory-based Routing

	The Development Process for the Production Sample Application
	OMG IDL
	The Client Application
	The Server Application
	The UBBCONFIG File
	Replicating Server Application Processes and Server Groups
	Implementing Factory-based Routing

	The ICF File

	Building the Production Sample Application
	Copying the Files for the Production Sample Application into a Work Directory
	Changing the Protection on the Files for the Production Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File
	Creating a Transaction Log

	Compiling the Production Sample Application
	Running the Production Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application

	How the Production Sample Application Can Be Scaled Further

