

Oracle® JRockit
Diagnostics and Troubleshooting Guide

Release R28

E15059-04

January 2011

This document describes how to diagnose and troubleshoot
problems that may occur when you use Oracle JRockit.

Oracle JRockit Diagnostics and Troubleshooting Guide, Release R28

E15059-04

Copyright © 2001, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Savija T.V.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

About This Document ... vii
Documentation Accessibility .. vii
Conventions ... viii

1 Diagnostics Roadmap

2 Slow JVM Startup

2.1 Possible Causes for Slow JVM Startup .. 2-1
2.2 Diagnosing Slow JVM Startup .. 2-1
2.3 Diagnosing Slow Application Startup ... 2-2
2.4 Measuring Timing .. 2-2
2.5 Recommended Solutions for Slow JVM Startup .. 2-3

3 Long Latencies

3.1 Tune the JVM to Reduce Latency ... 3-1
3.2 Troubleshooting Latency Issues ... 3-2
3.2.1 GC Trigger Value Keeps Increasing.. 3-2
3.2.2 GC Reason for Old Collections is Failed Allocations ... 3-2
3.2.3 Long Young-Collection Pause Times.. 3-2
3.2.4 Long Pauses in Deterministic Mode ... 3-2
3.3 Contact Oracle Support.. 3-2

4 Low Overall Throughput

5 Performance Degradation

5.1 Tune for Performance... 5-1
5.2 Troubleshoot Optimization Problems ... 5-1
5.3 Troubleshoot Memory Leak Problems .. 5-2
5.4 Contact Oracle Support.. 5-2

6 Crashing JVM

6.1 Classify the Crash ... 6-1
6.1.1 Using a Crash File.. 6-1

iv

6.1.2 Determine the Crash Type.. 6-2
6.2 Out-Of-Virtual-Memory Crash ... 6-2
6.2.1 Verify the Out-Of-Virtual-Memory Error .. 6-2
6.2.2 Troubleshoot the Out-Of-Virtual-Memory Error.. 6-3
6.2.2.1 Upgrade to the Latest JRockit JVM Release.. 6-3
6.2.2.2 Reduce the Java Heap Size .. 6-4
6.2.2.3 Use the Windows /3GB Startup Option ... 6-4
6.2.2.4 Check for Memory Leaks in JNI Code... 6-4
6.2.2.5 Record Virtual Memory Usage... 6-4
6.2.2.6 Contact Oracle Support ... 6-5
6.3 Stack Overflow Crash... 6-5
6.3.1 Verify the Stack Overflow Crash... 6-5
6.3.2 Troubleshoot a Stack Overflow Crash.. 6-5
6.3.2.1 Application Level Changes ... 6-5
6.3.2.2 Increase the Default Stack Size ... 6-6
6.3.2.3 Make the JRockit JVM More Robust Against Stack Overflow Errors................... 6-6
6.3.2.4 Contact Oracle Support ... 6-6
6.4 Crash Caused by Unsupported Linux Configuration ... 6-6
6.5 JVM Crash .. 6-7
6.5.1 Crash During Code Generation... 6-7
6.5.1.1 Identify the Method that Might Have Caused the Code-Generation Crash 6-7
6.5.1.2 Verify Whether the Crash is Due to Optimization Problems 6-7
6.5.1.3 Exclude the Problem Method from the Optimization Process 6-7
6.5.1.4 Check Whether the Problem is Caused by an External Instrumentation Tool.... 6-9
6.5.1.5 Contact Oracle Support ... 6-9
6.5.2 Crash During Garbage Collection .. 6-10
6.5.2.1 Identify the Garbage Collection Crash ... 6-10
6.5.2.2 Upgrade to the Latest Release of the JRockit JVM.. 6-10
6.5.2.3 Try the Following Workarounds... 6-10
6.5.2.4 Contact Oracle Support .. 6-11

7 Freezing JVM

7.1 Diagnosing Where the Freeze is Occurring .. 7-1
7.2 Troubleshooting a Java Application Freeze .. 7-1
7.3 Troubleshooting a JVM Freeze.. 7-2
7.3.1 Force the JRockit JVM to Crash (on a Linux System) ... 7-2
7.3.2 Force the JRockit JVM to Crash (on a Windows System) .. 7-3
7.3.3 Collecting State Information When the JRockit JVM is Running as a Service............ 7-3

8 About Crash Files

8.1 Differences Between Text and Binary Crash Files ... 8-1
8.2 Enabling Crash Files ... 8-2
8.3 Specifying the Location of the Crash Files .. 8-2
8.4 Specifying the Size of the Binary Crash File ... 8-2
8.5 Disabling Crash Files.. 8-3
8.6 Troubleshooting by Using the Text Crash File ... 8-3
8.6.1 Symptoms to Look for... 8-3

v

8.6.2 Example of a Text Dump File... 8-4
8.7 Generating Java Heap Dumps in the HPROF Binary Format.. 8-7

9 Contacting Oracle for Support

vi

vii

Preface

This document provides information to help you solve problems that you might
encounter while running the Oracle JRockit JVM.

About This Document
This document contains the following chapters:

■ Chapter 1, "Diagnostics Roadmap" outlines the steps you should follow to arrive
at the best solution for your problem.

■ Chapter 2, "Slow JVM Startup" describes how you can recognize and troubleshoot
a slow-starting JVM.

■ Chapter 3, "Long Latencies" describes how to recognize and troubleshoot long
garbage collection pauses that have an adverse impact on system performance.

■ Chapter 4, "Low Overall Throughput" describes how to recognize and
troubleshoot when the application runs too slowly.

■ Chapter 5, "Performance Degradation" describes measures you can take when
your application begins to behave erratically, return incorrect results, or throw
OutOfMemory exceptions.

■ Chapter 6, "Crashing JVM" describes what to do when your system—the JVM or
the application—stops sending signals.

■ Chapter 8, "About Crash Files" provides information about the crash files that the
JRockit JVM creates if it crashes.

■ Chapter 7, "Freezing JVM" describes what to do when the JVM or Java application
becomes unresponsive but has not crashed.

■ Chapter 9, "Contacting Oracle for Support" provides the best practices to follow
when you want to report a JRockit JVM problem to Oracle Support.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

viii

accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Diagnostics Roadmap 1-1

1Diagnostics Roadmap

This chapter provides a roadmap to help you solve problems with the Oracle JRockit
JVM.

The roadmap to solve problems with the Oracle JRockit JVM consists of the following
steps:

■ Step 1: Eliminate or Identify Common Causes

■ Step 2: Observe the Symptoms

■ Step 3: Identify and Resolve the Problem

■ Step 4: Contact Oracle Support

Step 1: Eliminate or Identify Common Causes
Often, problems that you encounter while running an application on the JRockit JVM
are caused by issues that can be diagnosed and solved with minimal effort. Table 1–1
provides a list of actions that you can take to quickly diagnose and solve basic JVM
problems.

Note: The list is not in any particular order. You can perform each
action separately.

Table 1–1 Actions to Identify and Eliminate Common Causes for JRockit JVM Problems

Action Effect or Significance

Reinstall the JRockit
JVM

This action might correct problems that are caused by installation
issues. You can find the relevant installation instructions in Oracle
JRockit Installation Guide.

Install the latest
patches for the
application running on
the JRockit JVM

This action might correct problems that are caused by issues in the
application running on the JRockit JVM.

Install the latest release
of the JRockit JVM

This action corrects problems that are fixed in a later release of the
JRockit JVM.

For information about problems fixed in the release, see the Oracle
JRockit Release Notes.

Try to reproduce the
problem on the same
machine

A problem that can be reproduced every time a certain sequence of
steps are performed could indicate a straightforward programming
error. If, however, the problem occurs intermittently (at varying or
fixed intervals), thread interaction and timing problems are more
likely.

1-2 Oracle JRockit Diagnostics and Troubleshooting Guide

Step 2: Observe the Symptoms
When you encounter a problem, observe the application behavior carefully and record
the symptoms.

Step 3: Identify and Resolve the Problem
Table 1–2 lists symptoms of common JRockit JVM problems, and points you to
chapters that contain information to help you diagnose and resolve the problems.
Perform the tasks described in the chapters corresponding to the problem you are
trying to resolve.

Step 4: Contact Oracle Support
If you are a licensed JRockit JVM user and are unable to resolve the problem on your
own, contact Oracle Support.

Try to reproduce the
problem on another
machine

A problem that occurs on only one machine might be caused by the
hardware (number of processors), the operating system, and the
application software. For example, the visibility of a race condition in
the JVM or a user Java application might be influenced by the speed
at which certain operations are performed by the JVM.

Ensure that you are
using a supported
operating system with
the latest patches
installed

This action might correct problems that are caused by an
unsupported operating system.

Ensure that third-party
JNI code you run is of
the latest version

This action might correct problems that are caused by issues in the
third-party JNI code.

If the JRockit JVM has crashed, you can find out the libraries (.dll
or .so files) that are loaded by looking in the text crash file (.dump).
You can then identify the updates you might need.

Turn off code
optimization by using
-XnoOpt

Optimization makes code more efficient. Turning off code
optimization might help you identify problems related to
optimization.

Table 1–2 Symptoms of Common JRockit JVM Problems

Symptom For Diagnostics Information, See

The JVM crashes and produces a dump. Chapter 6, "Crashing JVM"

The JVM takes too long to start. Chapter 2, "Slow JVM Startup"

Some transactions take too long to execute even though
the overall throughput is acceptable.

Chapter 3, "Long Latencies"

The overall throughput is too low. Chapter 4, "Low Overall
Throughput"

After running well for a while, the JVM begins to
perform poorly. For example:

■ The overall throughput degrades.

■ The overall throughput is unstable.

■ The JVM starts reporting wrong results.

■ The JVM throws exceptions when it should not.

Chapter 5, "Performance
Degradation"

The JVM is freezing (without crashing). Chapter 7, "Freezing JVM"

Table 1–1 (Cont.) Actions to Identify and Eliminate Common Causes for JRockit JVM

Action Effect or Significance

Diagnostics Roadmap 1-3

For more information, see Chapter 9, "Contacting Oracle for Support".

1-4 Oracle JRockit Diagnostics and Troubleshooting Guide

2

Slow JVM Startup 2-1

2Slow JVM Startup

This chapter provides information to help you diagnose and troubleshoot problems
that cause the JRockit JVM to start slowly.

This chapter contains the following topics:

■ Possible Causes for Slow JVM Startup

■ Diagnosing Slow JVM Startup

■ Diagnosing Slow Application Startup

■ Measuring Timing

■ Recommended Solutions for Slow JVM Startup

2.1 Possible Causes for Slow JVM Startup
An application might seem slow when it starts because,

■ The application might be waiting to import files.

■ A large number of methods might have to be compiled.

■ There might be a problem in code optimization (especially on single-CPU
machines).

■ The problem might be caused by the Java application and not the JVM.

■ You recently migrated from a third-party development JVM to the JRockit JVM as
the production JVM.

The JRockit JVM is a just-in-time (JIT) compiling JVM designed for long-running
applications. It compiles methods into machine code when the methods are called
for the first time. So the application is relatively slow at startup because numerous
new methods are compiled. However, after the application starts, it runs fast.
Moreover, as the application runs, the JVM optimizes frequently called methods,
improving the performance further.

2.2 Diagnosing Slow JVM Startup
■ Check whether the JVM compiles numerous methods at startup, by using the

-Xverbose:codegen option. When you use this option, the following
information about the methods being compiled is displayed:

■ Name of the method

■ Memory location

Diagnosing Slow Application Startup

2-2 Oracle JRockit Diagnostics and Troubleshooting Guide

■ Duration of the compilation process

■ The total amount of time spent in compiling code since the application started.

 The following is an example of the output of the -Xverbose:codegen option.

[INFO][codegen][00004] #23 (Normal) java/lang/Object.registerNatives()V
[INFO][codegen][00004] #23 0.113-0.114 0x0000000100011B60-0x0000000100011C6B
 0.80 ms 128KB 0 bc/s (11.60 ms 63252 bc/s)
[INFO][codegen][00004] #24 (Normal)
 java/lang/OutOfMemoryError.<init>(Ljava/lang/String;)V
[INFO][codegen][00004] #24 0.115-0.115 0x0000000100011C80-0x0000000100011C92
0.38
 ms 64KB 15662 bc/s (11.99 ms 61731 bc/s

Note that after the JIT compilation is complete, the application runs faster than
during startup, because when the methods are called subsequently, the JVM runs
the precompiled code.

■ Check the time taken to optimize methods by using the -Xverbose:opt option.

2.3 Diagnosing Slow Application Startup
The startup could be slow when, for example, the application is searching for a data
file, looking up data in a database, and so on.

If you suspect that the application is causing the slow startup, use the Flight Recorder
tool to record and analyze the application data.

For information about the Flight Recorder tool, see the Oracle JRockit Flight Recorder
Run Time Guide.

2.4 Measuring Timing
You can measure the timing inside the application by inserting the
System.nanoTime() and System.currentTimeMillis() methods. Note that
these methods consume additional resources at run time, but the performance impact
should be minimal.

System.nanoTime()
This method returns a monotonic timer value by using the most precise available
system timer. The returned value is in nanoseconds, however the factual resolution of
the timer can vary depending on the operating system and the hardware. Note that
there is no conventional zero point to which you can relate the timer value. So you
must measure the time at least twice to get any meaningful data.

nanoTime() uses different methods on different operating systems:

■ Windows: QueryPerformanceCounter()

■ Solaris: gethrtime()

■ Linux: clock_gettime() in librt if available; else gettimeofday()

To get information about timer resolution (and, on Linux, the method used to get a
time value), start the JRockit JVM with the -Xverbose:timing command-line
option.

The following is an example of a verbose timing report on Windows:

[INFO][timing] Fast time frequency is 1995000000hz
[INFO][timing] Drift is 0.00000021 = per day 0.018secs (max 300.000)

Recommended Solutions for Slow JVM Startup

Slow JVM Startup 2-3

[INFO][timing] Hardware fast time enabled
[INFO][timing] Counter timer using resolution of 1995MHz

System.currentTimeMillis()
This method returns the current time in milliseconds. The current time is defined as
the time since 00:00:00 UTC, January 1, 1970.

Milliseconds and Nanotime at Application Startup
To get the values of System.currentTimeMillis() and System.nanoTime() at
the time the JVM started, use the -Xverbose:starttime command-line option.

The following is an example of the output for the -Xverbose:starttime
command-line option:

INFO][startti] VM start time: 1260962573921 millis 6922526 nanos
18442244770397334 ticks

The millis value is the same value that the System.currentTimeMillis()
method would provide and the nanos value is the value that the
System.nanoTime() method would provide.

2.5 Recommended Solutions for Slow JVM Startup

Tune for Faster Startup
Sometimes, the problem may be with how the JVM is tuned using command-line
options.

For tips on how to tune the JVM for a faster startup, see the Oracle JRockit Performance
Tuning Guide.

Eliminate Optimization Problems
At times, optimization could be the cause of the slow JVM startup, especially on
single-CPU machines. For more information, see Section 5.2, "Troubleshoot
Optimization Problems."

Eliminate Application Problems
If you determine that the slow start is due to problems in the Java application,
investigate the cause of the problem from the application viewpoint. The problem is
probably caused by methods that are subject to unnecessary synchronization or an
insufficient number of synchronized resources. Try to locate the methods that are
causing the bottleneck and, if possible, modify the code of your Java application.

Note that you can use the Flight Recorder tool to analyze synchronization problems.
For more information, see the Oracle JRockit Flight Recorder Run Time Guide.

Contact Oracle Support
If the tuning solutions suggested in the Oracle JRockit Performance Tuning Guide do not
help you solve the problem, contact Oracle Support as described in Chapter 9,
"Contacting Oracle for Support"

Recommended Solutions for Slow JVM Startup

2-4 Oracle JRockit Diagnostics and Troubleshooting Guide

3

Long Latencies 3-1

3Long Latencies

Long latencies might manifest, for example, as single transactions that time out in a
transaction-based application while the overall performance is good. The problem
usually is uneven performance and nondeterministic latencies.

This chapter includes the following topics:

■ Section 3.1, "Tune the JVM to Reduce Latency"

■ Section 3.2, "Troubleshooting Latency Issues"

■ Section 3.3, "Contact Oracle Support"

3.1 Tune the JVM to Reduce Latency
Long latencies might indicate that the application is not tuned for short and
deterministic pause times. Before engaging in time-consuming troubleshooting and
mitigation tasks, try tuning the JVM to optimize for short pause times. For information
about tuning the JVM for short pause times, see the Oracle JRockit Performance Tuning
Guide.

Note that there are trade-offs exist between low latencies and high overall application
throughput.

■ High latencies that cause transactions to time out are often caused by pauses for
garbage collection. To reduce the individual garbage-collection pause times the
garbage collector runs in a mostly concurrent mode; that is, the garbage collection
is, mostly, performed while the Java threads are still running. This causes some
additional work for the garbage collector, which has to keep track of changes
during the concurrent phases of the garbage collection. The garbage collections are
also less efficient because objects that are allocated during the concurrent garbage
collection, are not garbage collected until the next garbage collection cycle. This
can force the JVM to collect garbage more frequently.

■ If you have disabled or limited compaction by using the -XXcompaction
command-line option, to reduce the pause times caused by compaction, the heap
might become fragmented. (You can analyze fragmentation by using the Flight
Recorder tool.)

You can increase the overall throughput while keeping the latencies low by allowing
longer garbage collection pauses or by manually tuning the garbage collection. For
more information, see the Oracle JRockit Performance Tuning Guide.

Troubleshooting Latency Issues

3-2 Oracle JRockit Diagnostics and Troubleshooting Guide

3.2 Troubleshooting Latency Issues
This section provides information to troubleshoot latency issues related mostly to
concurrent garbage collection; for example, -Xgc:deterministic and
-Xgc:pausetime.

3.2.1 GC Trigger Value Keeps Increasing
The garbage collection trigger (gctrigger) value is the amount of free heap space
that should be available when a concurrent garbage collection starts, to allow the Java
threads to continue allocating objects during the entire garbage collection. The
gctrigger value changes at run time, to avoid situations where the heap becomes
full during concurrent garbage collection.

Monitor the gctrigger value by using the output of the -Xverbose:memdbg option
or by using the Flight Recorder tool.

■ A continuously increasing gctrigger value indicates that the load on the
application is too high for the concurrent garbage collector. Decrease the load on
the application.

■ A continuously increasing gctrigger value could also indicate that the Java
heap size is too small; the behavior might improve if you increase the heap size.

3.2.2 GC Reason for Old Collections is Failed Allocations
Monitor the garbage collection reasons for the old collections by using either the
-Xverbose:memdbg option or the Flight Recorder tool. The normal garbage
collection reason for a mostly concurrent old collection is heap too full.

If the old collections are triggered frequently due to failed object allocation, the
gctrigger is too low. Increase the gctrigger by using the -XXgcTrigger option
or decrease the load on the application.

3.2.3 Long Young-Collection Pause Times
Monitor the pause times for young collections by using the output of the
-Xverbose:gcpause option or through Flight Recorder recordings.

If the young-collection pause times are too long, decrease the nursery size by using the
-Xns option; alternatively, run a single-generational garbage collector.

3.2.4 Long Pauses in Deterministic Mode
Monitor the garbage-collection pause times in a Flight Recorder recording. Check the
pause parts for pause times that are too long. If the pause parts for Compaction are
too long, decrease the pause target. If the pause parts in Mark:Final, especially the
ones concerning RefrenceQueues, are too long, the problem might be due to
numerous java.lang.ref.Reference objects in the application. Redesign the Java
application using fewer reference objects. You could also try decreasing the heap size;
this causes reference objects to be handled more frequently, but reduces the number of
reference objects to handle at each old collection.

3.3 Contact Oracle Support
If the solutions provided in this section do not help you solve the performance
degradation problem, contact Oracle Support, as described in Chapter 9, "Contacting
Oracle for Support."

4

Low Overall Throughput 4-1

4Low Overall Throughput

Low overall throughput manifests as, for example, a low score in benchmarks, too few
transactions executing per minute in a transaction-based system, or long processing
times for large batches of data.

Low overall throughput usually means that the JVM is not tuned to maximize
application throughput. Before engaging in time-consuming troubleshooting and
mitigation tasks, try tuning the JVM to optimize application throughput.

For information about tuning the JVM for optimal throughput, see the Oracle JRockit
Performance Tuning Guide.

Note that a trade-off exists between overall application throughput and low individual
latencies. A JVM that is tuned for optimal overall throughput, consumes as little CPU
time as possible in garbage collection and memory management, allowing the Java
application to run as much as possible. To minimize unnecessary overhead and extra
work during garbage collection, the Java application should be paused for the entire
duration of the garbage collection process. The individual pauses might be long; but,
in the long run, the overall throughput would be maximized.

You can reduce the latencies without losing too much overall throughput by, for
example, limiting the compaction or using a generational garbage collector. For more
information, see the Oracle JRockit Performance Tuning Guide.

If the solutions provided in this section do not help you solve the performance
degradation problem, contact Oracle Support, as described in Chapter 9, "Contacting
Oracle for Support."

4-2 Oracle JRockit Diagnostics and Troubleshooting Guide

5

Performance Degradation 5-1

5Performance Degradation

The JRockit JVM is designed to provide stable performance throughout an application
run in large server environments. Occasionally, you might notice a degradation in
performance after the application runs for a while.

This chapter provides information to help you identify and address performance
degradation problems. It contains the following topics:

■ Section 5.1, "Tune for Performance"

■ Section 5.2, "Troubleshoot Optimization Problems"

■ Section 5.4, "Contact Oracle Support"

5.1 Tune for Performance
When system performance begins to deteriorate, the problem is often with tuning.
Incorrectly tuned compaction might, for example, cause the performance to degrade
over time because the fragmentation of the heap increases until the garbage collector
must perform a full compaction to avoid throwing an out-of-memory error.

Before engaging in time-consuming troubleshooting and mitigation tasks, try tuning
the JRockit JVM for stable performance as described in the Oracle JRockit Performance
Tuning Guide.

5.2 Troubleshoot Optimization Problems
Poor performance might be caused by optimization problems,. Such problems usually
occur after the program has been running well for a while, and result in symptoms
such as the following:

■ The JVM crashes (for more information, see Chapter 6, "Crashing JVM").

■ NullPointerExceptions are thrown from unexpected points in the program.

■ A method returns wrong results.

Before reporting such problems, try running the JVM after disabling optimization (by
using the -XnoOpt option).

If the performance improves after you disable optimization, you can assume that the
performance degradation was caused by optimization problems. Follow the
procedures for isolating and excluding the miscompiled methods as described in
Section 6.5.1.3, "Exclude the Problem Method from the Optimization Process".

Troubleshoot Memory Leak Problems

5-2 Oracle JRockit Diagnostics and Troubleshooting Guide

5.3 Troubleshoot Memory Leak Problems
A memory leak in Java causes the application to run slower over time, because the
garbage collector must work harder to free memory. After a while, the JVM throws an
out-of-memory error. Note that applications with a small memory leak can sometimes
run for days until an out-of-memory error occurs.

To look for initial signs of a memory leak, you can take a Flight Recorder recording
and check the heap usage after each old collection. A continuously rising memory
usage could indicate a memory leak. For information about creating and interpreting a
Flight Recorder recording, see the Oracle JRockit Flight Recorder Run Time Guide.

You can diagnose memory leaks by using the Memory Leak Detector, which helps you
pinpoint the class that causes the memory leak. For information about using the
Memory Leak Detector, see the Oracle JRockit Mission Control Online Help.

5.4 Contact Oracle Support
If the solutions provided in this section do not help you solve the performance
degradation problem, contact Oracle Support, as described in Chapter 9, "Contacting
Oracle for Support."

6

Crashing JVM 6-1

6Crashing JVM

A Java application might stop running for several reasons. The most common reason is
that the application finished running or was halted normally. Other reasons might be
Java application errors, exceptions that cannot be handled, and irrecoverable Java
errors like OutOfMemoryError. Occasionally, a JRockit JVM crash might occur,
which means that the JVM encountered a problem from which it could not recover
gracefully.

This chapter describes how to diagnose and troubleshoot JVM crashes. It includes
information about the following topics:

■ Section 6.1, "Classify the Crash"

■ Section 6.2, "Out-Of-Virtual-Memory Crash"

■ Section 6.3, "Stack Overflow Crash"

■ Section 6.4, "Crash Caused by Unsupported Linux Configuration"

■ Section 6.5, "JVM Crash"

6.1 Classify the Crash
The first step in diagnosing and resolving a JVM crash is to classify the crash; that is,
try to determine where and why the crash occurred.

6.1.1 Using a Crash File
When the JRockit JVM crashes, it creates a snapshot of the state of the computer and
the JVM process at the time of the crash, and writes the state information into the
following crash files:

■ .dump file: The .dump file is a text file that is like an executive summary of the
complete memory image and the environment in which the JVM was running at
the time of the crash. This file is produced by the JVM itself when it crashes and is
useful for classifying crashes; it can also sometimes be used for identifying
problems that have already been fixed. This file rarely reveals enough information
to determine the cause of the problem.

■ .core file: The .core file is a binary crash file produced on UNIX-like systems
such as Linux and Solaris. By default, the .core file captures complete
information about the entire JVM process at the time of the crash.

■ .mdmp file (or a minidump file): The .mdmp file is the Windows equivalent of the
.core file described earlier.

Out-Of-Virtual-Memory Crash

6-2 Oracle JRockit Diagnostics and Troubleshooting Guide

If you have a support agreement with Oracle, you can contact Oracle Support for
troubleshooting JRockit JVM problems. The binary crash file (.core or .mdmp) is
essential when you contact Oracle Support.

For more information about crash files, see Chapter 8, "About Crash Files."

6.1.2 Determine the Crash Type
Table 6–1 lists the symptoms you can look for and the probable crash types
corresponding to those symptoms.

6.2 Out-Of-Virtual-Memory Crash
The JVM reserves virtual memory for many purposes; for example, the Java heap, Java
methods, thread stacks, and JVM-internal data structures. In addition, native (JNI)
code can also allocate memory. The process size consists of all the memory reserved by
the JVM and any third-party libraries running inside the process, and is subject to
operating system limitations.

If the virtual memory allocation of the JVM process exceeds the operating system
limitations, the JVM runs out of virtual memory, which may cause it to crash.

This section contains the following topics:

■ Section 6.2.1, "Verify the Out-Of-Virtual-Memory Error"

■ Section 6.2.2, "Troubleshoot the Out-Of-Virtual-Memory Error"

6.2.1 Verify the Out-Of-Virtual-Memory Error
Before you start troubleshooting an out-of-virtual-memory error, you must verify that
the error is indeed due to the JVM process running out of virtual memory.

Table 6–2 shows the maximum virtual memory available to a single process on various
32-bit operating systems. Virtual memory is practically unlimited on 64-bit platforms.

Table 6–1 Crash Symptoms and Crash Types

Symptom For Troubleshooting Information, See

The .dump file indicates that the JVM process has
run out of virtual memory.

Section 6.2, "Out-Of-Virtual-Memory
Crash"

The size of the .core file (or .mdmp) file is close
to the maximum virtual memory of the process
on the operating system.

Section 6.2, "Out-Of-Virtual-Memory
Crash"

The .dump file indicates that stack overflow
errors have occurred.

Section 6.3, "Stack Overflow Crash"

On Linux only:

The .dump file indicates that the LD_ASSUME_
KERNEL environment variable is set.

Section 6.4, "Crash Caused by Unsupported
Linux Configuration"

On Linux only:

You are using a nonstandard or unsupported
Linux configuration.

Section 6.4, "Crash Caused by Unsupported
Linux Configuration"

You observe symptoms other than those listed in
this table.

Section 6.5, "JVM Crash"

Out-Of-Virtual-Memory Crash

Crashing JVM 6-3

You can verify whether an out-of-virtual-memory error has occurred in the following
ways:

■ Look in the text crash file.

The text crash file .dump might indicate that memory allocations have failed. This
is a strong indication that the JRockit JVM process has run out of virtual memory.
For more information about the text crash file, see Chapter 8, "About Crash Files."

■ Check the size of the binary crash file.

When the JRockit JVM crashes, it generates a binary crash file (.core or .mdmp).
By default, the binary crash file contains a copy of the entire JVM process.

Check the size of the binary crash file to determine whether the JVM process has
indeed run out of virtual memory.

■ Verify that the binary crash file size has not been limited with the
command-line option -XXdumpSize or with the operating system command
ulimit (Linux and Solaris only). Use the command ulimit -a to verify that
the crash file size is unlimited on Linux and Solaris. If the size of the binary
crash file has been limited, you cannot use it to verify that the JVM process has
run out of virtual memory.

■ Verify whether the size of the binary crash file is larger than the size of the
heap. This is a sanity check to ensure that the binary crash file has not been
truncated (due to limited disk space, for example).

■ Check whether the size of the binary crash file is close to the maximum
process size allowed by the operating system (see Table 6–2).

6.2.2 Troubleshoot the Out-Of-Virtual-Memory Error
After verifying that the JVM process has run out of virtual memory, you can start
troubleshooting the problem as described in this section.

■ Section 6.2.2.1, "Upgrade to the Latest JRockit JVM Release"

■ Section 6.2.2.2, "Reduce the Java Heap Size"

■ Section 6.2.2.3, "Use the Windows /3GB Startup Option"

■ Section 6.2.2.4, "Check for Memory Leaks in JNI Code"

■ Section 6.2.2.5, "Record Virtual Memory Usage"

■ Section 6.2.2.6, "Contact Oracle Support"

6.2.2.1 Upgrade to the Latest JRockit JVM Release
Ensure that you run the latest JRockit JVM release. The memory usage problems that
are causing the JVM crash might have been fixed in the latest JRockit JVM release.

Table 6–2 Approximate Maximum Virtual Memory Available to IA32 Architectures

Operating System Approximate Maximum Virtual Memory

Windows 2 GB

Windows /3GB Startup Option 3 GB

Linux (normally) 3 GB

Out-Of-Virtual-Memory Crash

6-4 Oracle JRockit Diagnostics and Troubleshooting Guide

6.2.2.2 Reduce the Java Heap Size
The Java heap is only a part of the total memory usage of the JVM. If the Java heap is
too large, the JVM may fail to start or run out of virtual memory when Java methods
are compiled and optimized or when native libraries are loaded. If this happens, you
should try lowering the maximum heap size.

6.2.2.3 Use the Windows /3GB Startup Option
On Windows 2000 Advanced Server and Datacenter, Windows 2003, Windows XP,
and subsequent Windows versions, you have the option of starting the operating
system with the /3GB option (by specifying the option in the BOOT.INI file). This
option changes the maximum virtual memory process size from 2 GB to 3 GB.

6.2.2.4 Check for Memory Leaks in JNI Code
Check the JNI code you are using for memory leaks. Incorrectly written or used JNI
code might be causing memory leaks, which results in the Java process growing until
it reaches the maximum virtual memory size on the platform.

6.2.2.5 Record Virtual Memory Usage
Recording the virtual memory usage can help in diagnosing the
out-of-virtual-memory problem.

This section describes how you can collect virtual memory usage statistics on
Windows and Linux.

Recording Virtual Memory Usage on Windows
Use the Windows tool perfmon to record the PrivateBytes process counter. Collect
information about the amount of reserved virtual memory for the JVM process. To do
this:

1. Open Performance Monitor, which you can find in the administrative tools.

2. Click + to open the Add Counters dialog box.

3. In the Performance Object list, select Process.

4. From the Process list, select the Private Bytes counter.

5. Select the process to monitor and click Add.

Recording Virtual Memory Usage on Linux
Create a script that records the virtual memory usage at regular intervals.

For example: top -b -n 10 > virtualmemory.log

This script runs top every ten seconds and puts the resulting data in the file,
virtualmemory.log.

The virtual memory usage for all the running processes can be found in the VIRT
column in the log file. To view only the current status, type top and press
[Shift]-[M] to sort the output by memory usage. This usually puts the JVM
processes at the top of the output.

Creating a recording such as virtualmemory.log can be useful as it enables you to
check whether the JRockit JVM process is actually growing and provide evidence
about the growth to Oracle Support.

Stack Overflow Crash

Crashing JVM 6-5

6.2.2.6 Contact Oracle Support
If the solutions provided in this section do not help you resolve the problem, contact
Oracle Support, as described in Chapter 9, "Contacting Oracle for Support."

6.3 Stack Overflow Crash
A stack overflow crash occurs when the JRockit JVM cannot handle a stack overflow
error gracefully. According to the J2SE Javadoc, a gracefully handled
java.lang.StackOverflowError is a java.lang.VirtualMachineError
thrown to indicate that the JVM is broken or has run out of resources necessary for it
to continue operating.

For more information, see the following J2SE java.lang Javadocs:

■ Java SE 6:

– Class StackOverflowError

http://java.sun.com/javase/6/docs/api/java/lang/StackOverf
lowError.html

– Class VirtualMachineError

http://java.sun.com/javase/6/docs/api/java/lang/VirtualMac
hineError.html

■ J2SE 5.0:

– Class StackOverflowError

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/StackOve
rflowError.html

– Class VirtualMachineError

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/VirtualM
achineError.html

The JRockit JVM .dump file includes information about the number of stack overflow
errors thrown.

6.3.1 Verify the Stack Overflow Crash
When the JRockit JVM crashes due to stack overflow, the text crash file (.dump) shows
Error Message: Stack overflow near the top of the file. Other indications
might be an extremely long stack trace in the crash file or no stack trace at all. If the
.dump file shows something like StackOverFlow: 2 StackOverFlowErrors
occurred, this is an indication that the crash might be triggered by a previous stack
overflow problem.

6.3.2 Troubleshoot a Stack Overflow Crash
This section describes possible solutions for stack overflow errors.

6.3.2.1 Application Level Changes
Often, a stack overflow error is caused by the application being coded to require stack
space that exceeds the memory limits of the JRockit JVM.

Examine the stack trace in the .dump file to determine whether the Java code can be
changed to use less stack space. For example, the application code might contain
recursive method calls. Deep recursions can cause StackOverflow errors.

Crash Caused by Unsupported Linux Configuration

6-6 Oracle JRockit Diagnostics and Troubleshooting Guide

6.3.2.2 Increase the Default Stack Size
If it is not possible to change the stack requirements of the application, you can change
the thread stack size by using the -Xss command-line option.

6.3.2.3 Make the JRockit JVM More Robust Against Stack Overflow Errors
The -XX:+CheckStacks command-line option makes the JRockit JVM more robust
against stack overflow errors. It usually prevents the JVM from dumping and
throwing a java.lang.StackOverflowError.

Note that the -XX:+CheckStacks command-line option results in a slight
performance penalty because the JVM touches pages on the stack.

6.3.2.4 Contact Oracle Support
If the solutions provided in this section do not help you resolve the problem, contact
Oracle Support, as described in Chapter 9, "Contacting Oracle for Support."

6.4 Crash Caused by Unsupported Linux Configuration
If your application crashes when you run the JRockit JVM on Linux, even if the stack
trace indicates a reason for the crash, you should ensure that you run the JRockit JVM
on a supported Linux configuration.

Do the following:

■ Verify whether the version of your operating system is supported for the
JRockit JVM.

For more information, see Oracle JRockit JDK Supported Configurations at
http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html.

■ Verify whether the correct glibc binary is installed.

Linux on IA32 must be configured to use the glibc compiled for the i686
architecture; otherwise, the JRockit JVM might crash.

You can check the version of the glibc that is installed by running the following
command:

rpm -q --queryformat '\n%{NAME} %{VERSION} %{RELEASE} %{ARCH}\n' glibc

If the output shows something like glibc 2.3.4 2.25 i386, you are using an
unsupported glibc binary.

Upgrade glibc to a version that is compiled for the i686 architecture.

■ Examine the thread library.

If you have a .core file in gdb, you can get a hint about the thread library you are
using by running the command, info shared.

Look at the path of the loaded libpthreadx.so file.

If the file is in /lib/, check the result of the rpm command. If the output shows
i386, you are using an unsupported glibc.

Upgrade glibc to a version that is compiled for the i686 architecture.

If solutions provided in this section do not help you resolve the problem, contact
Oracle Support, as described in Chapter 9, "Contacting Oracle for Support."

JVM Crash

Crashing JVM 6-7

6.5 JVM Crash
A JVM crash could be caused by a programming error in the JRockit JVM or by errors
in third-party library code.

Identifying and troubleshooting a JVM crash can help you find a temporary
workaround until the problem is solved in the JRockit JVM. This may also help Oracle
Support to identify and fix the problem faster.

The process of diagnosing and troubleshoot JVM crashes varies depending on whether
the crash occurred during code generation or garbage collection.

6.5.1 Crash During Code Generation
This section describes how to identify and troubleshoot a JVM crash that occurs
during code generation. It contains the following topics:

■ Section 6.5.1.1, "Identify the Method that Might Have Caused the Code-Generation
Crash"

■ Section 6.5.1.2, "Verify Whether the Crash is Due to Optimization Problems"

■ Section 6.5.1.3, "Exclude the Problem Method from the Optimization Process"

■ Section 6.5.1.4, "Check Whether the Problem is Caused by an External
Instrumentation Tool"

■ Section 6.5.1.5, "Contact Oracle Support"

6.5.1.1 Identify the Method that Might Have Caused the Code-Generation Crash
If the JVM crashed while generating code, the most common cause could be a
miscompiled method. If the JRockit JVM miscompiles a method, either the JVM
crashes or the behavior of the method is different from the expected behavior.

The text crash file identifies the method that was being compiled at the time of the
crash. The method is identified in a line that starts with Method, located near the
beginning of the .dump file.

6.5.1.2 Verify Whether the Crash is Due to Optimization Problems
The JRockit JVM might miscompile methods due to a problem in the optimizing
compiler.

To determine whether optimization is the cause of the crash, disable optimization by
specifying the -XnoOpt command-line option and then restart the application, as
shown in the following example:

java -XnoOpt myApplication

If the JRockit JVM runs the application as expected, the crash is caused by code
optimization.

6.5.1.3 Exclude the Problem Method from the Optimization Process
The JRockit JVM might miscompile methods due to a problem in the optimizing
compiler.

If the JRockit JVM stopped crashing after you disabled global optimization, you can
exclude only the offending methods (that you identified earlier) from the optimization
process by using optimization directives. If the application runs successfully without
the offending method being optimized, this workaround should solve the problem.

JVM Crash

6-8 Oracle JRockit Diagnostics and Troubleshooting Guide

Specifying Optimization Directives
You can control how the JRockit JVM optimizes code by specifying directives in a
control file and then specifying the control file by using the -XX:OptFile=filename
command-line option.

Example 6–1 is for a control file containing a single optimization directive.

Example 6–1 Directive to Perform Optimized Compilation for Specific Methods

{
 match: ["java/lang/FloatingDecimal.dtoa*", "java/lang/Object.*"],
 jit: { preset : opt, } ,
}

The directive in Example 6–1 directs the JRockit JVM to optimize the methods
matching the patterns specified by the match keyword when the JVM compiles the
method for the first time.

Example 6–2 Directives to Restrict Optimization to Specific Methods

[
 {
 match: ["java/lang/FloatingDecimal.dtoa*", "java/lang/Object.*"],
 jit: { preset : opt, } ,
 },
 {
 match: "*",
 hotspot : { enable : false },
 }
]

The directive in Example 6–2 directs the JRockit JVM to allow optimization (hotspot)
for only the java/lang/FloatingDecimal.dtoa* and java/lang/Object.*
methods.

Example 6–3 Directive to Control Method Inlining

{
 match: "java.lang.*",
 inline: ["+java.util.*", "-com.sun.*", "sun.*"],
}

The directive in Example 6–3 directs the JRockit JVM to do the following:

■ Allow inlining of method calls from java.lang.* to java.util.*

■ Forbid inlining of method calls from java.lang.* to com.sun.*

■ Allow, if applicable, inlining of method calls from java.lang.* to sun.*

Enabling Optimization Directives
After creating the control file containing the required optimization directives, specify
the pathname of control file by using the -XX:OptFile=filename command-line
option.

Note: -XX:OptFile is an internal diagnostic option. So to use it,
you should include -XX:+UnlockDiagnosticVMOptions as well
on the command line, before -XX:OptFile.

JVM Crash

Crashing JVM 6-9

Verifying the Behavior of the Optimization Directives
To verify whether the directives work as expected, use the -Xverbose:opt
command-line option and check the output; the methods that you excluded from the
optimization process should not appear in the output. For more information about
-Xverbose:opt, see the Oracle JRockit Command-Line Reference.

Guidelines for Creating Optimization Directives
■ Use the match keyword to specify the patterns of classes and methods to which

the directive must be applied. The value that you specify can be either a string
containing a single pattern or an array of patterns.

■ Use the jit keyword to specify any task for the JVM to perform when it compiles
a method for the first time.

■ Use the inline keyword to specify method calls that should be inlined.

■ Enclose each directive in a pair of braces.

■ The control file can contain multiple directives, in which case:

– Adjacent directives must be separated by a comma.

– All of the directives must be enclosed in an array.

6.5.1.4 Check Whether the Problem is Caused by an External Instrumentation Tool
If you determine that a miscompiled method is not the reason for the JVM crash,
investigate whether any external instrumentation tool you are using (for example
JProbe or OptimizeIt) is causing the problem. These tools can alter bytecode, which
can cause unexpected behavior.

To eliminate the possibility of the problem being caused by external instrumentation
tools, disable the tools and then run the application.

■ If the JVM continues to crash after disabling the external tool, the problem is not
caused by that tool.

■ If the application runs as expected, consider using a different tool or running
without the tool.

6.5.1.5 Contact Oracle Support
If solutions provided in this section do not help you resolve the problem, contact
Oracle Support, as described in Chapter 9, "Contacting Oracle for Support."

For code generation crashes, you must provide the following data to Oracle Support:

■ The .core or .mdmp file

■ The .dump file

■ The .class file containing the method that was being generated

■ Source code for the class containing the method that was being generated

Note: -XX:OptFile is an internal diagnostic option. So to use it,
you should include -XX:+UnlockDiagnosticVMOptions as well
on the command line, before -XX:OptFile.

JVM Crash

6-10 Oracle JRockit Diagnostics and Troubleshooting Guide

6.5.2 Crash During Garbage Collection
This section describes how to identify and troubleshoot a JVM crash that occurs
during garbage collection. It contains the following topics:

■ Section 6.5.2.1, "Identify the Garbage Collection Crash"

■ Section 6.5.2.2, "Upgrade to the Latest Release of the JRockit JVM"

■ Section 6.5.2.3, "Try the Following Workarounds"

■ Section 6.5.2.4, "Contact Oracle Support"

6.5.2.1 Identify the Garbage Collection Crash
You can identify a garbage collection crash by looking at the stack trace in the text
crash file (.dump).

If garbage collection functions are shown in the stack trace or if the thread that caused
the crash is a garbage collection thread, the crash probably occurred during garbage
collection.

Garbage collection functions in the stack trace are identified by prefixes such as mm,
gc, yc, and oc.

6.5.2.2 Upgrade to the Latest Release of the JRockit JVM
The problem might have been fixed in the latest release of the JRockit JVM. Upgrade to
the latest release and check whether the problem continues.

6.5.2.3 Try the Following Workarounds
■ Change the Garbage Collector

■ Disable Compaction

■ Disable Inlining

■ Use the Optimizing Compiler

Change the Garbage Collector
The garbage collection mode that you are using might be causing problems that you
could avoid by changing to another garbage collection mode. For example, if you are
using -Xgc:pausetime try switching to -Xgc:throughput. Note though, that if
you change the garbage collection mode, you will not receive the same performance
profile from the JRockit JVM.

If you are using the deterministic garbage collection mode, you cannot change to
another garbage collection and yet retain the guarantees provided by deterministic
garbage collection. In such a case, instead of changing the garbage collection mode,
contact Oracle Support.

For more information, see the Oracle JRockit Performance Tuning Guide.

Disable Compaction
Bugs in heap compaction can sometimes cause problems leading to crashes during
garbage collection. You can disable compaction by using the
-XXcompaction:enable=false command-line option.

Note that using the -XXcompaction:enable=false option can lead to heap
fragmentation; use it only for troubleshooting purposes. If the heap becomes too
fragmented, you might encounter out-of-memory errors.

JVM Crash

Crashing JVM 6-11

Disable Inlining
Erroneous inlining might cause broken code, which makes the garbage collector lose
track of live objects. You can disable inlining by using the optimization directives as
described in Specifying Optimization Directives.

Use the Optimizing Compiler
You might be experiencing garbage collection crashes because the nonoptimizing JIT
compiler is generating broken code that makes the garbage collector lose track of live
objects. Use the -XX:+PreOpt command at startup to use the optimizing compiler for
everything. Note that using the optimizing compiler can slow down the JVM startup.

6.5.2.4 Contact Oracle Support
If the solutions provided in this section do not help you solve the problem, contact
Oracle Support as described in Chapter 9, "Contacting Oracle for Support." When you
contact Oracle Support, you must include the following information:

■ For crashes in garbage collection, include a complete .core or .mdmp file,
otherwise the support staff won't be able to resolve your issue. Verify that the
.core or .mdmp file is at least as big as the Java heap.

■ If you can reproduce the crash, include the steps you used to reproduce it.

■ If you tried using another garbage collector indicate whether one garbage collector
worked better than another or if crashes continued regardless of the collector used.

■ Include information about any workaround you attempted.

JVM Crash

6-12 Oracle JRockit Diagnostics and Troubleshooting Guide

7

Freezing JVM 7-1

7Freezing JVM

When the JRockit JVM or Java application becomes unresponsive but has not crashed,
it is considered to be frozen: the application stops responding to requests but the
process still exists.

This chapter describes how to diagnose a freezing JVM and how to collect information
that is essential for Oracle Support personnel to resolve the problem.

This chapter contains the following topics:

■ Section 7.1, "Diagnosing Where the Freeze is Occurring"

■ Section 7.2, "Troubleshooting a Java Application Freeze"

■ Section 7.3, "Troubleshooting a JVM Freeze"

7.1 Diagnosing Where the Freeze is Occurring
A system can freeze in either the JVM or the application. To determine whether the
freeze is occurring in the application or in the JVM, try to generate a thread dump.

■ On Windows, press Ctrl-Break.

■ On Linux and Solaris, send SIGQUIT (kill -3) to the parent Java Process ID.

If the system responds with a Java thread dump, then the application is freezing. For
information about troubleshooting this type of freeze, see Section 7.2, "Troubleshooting
a Java Application Freeze."

If you cannot obtain a thread dump, the JVM is freezing. For information about
troubleshooting this type of freeze, see Section 7.3, "Troubleshooting a JVM Freeze."

7.2 Troubleshooting a Java Application Freeze
Review the thread dumps (look near the end of the thread dump) for locks and
deadlocks.

Note: Alternatively, on all platforms, you can obtain the thread
dump by using jrcmd; for example:

jrcmd nnnn "print_threads nativestack=true"

nnnn is the ID of the Java process. To view a list of the IDs of all Java
processes running on the machine, run jrcmd without any
command-line parameters.

Troubleshooting a JVM Freeze

7-2 Oracle JRockit Diagnostics and Troubleshooting Guide

If you cannot determine the cause of the freeze or if you cannot fix the problem easily
by yourself, contact the developer of the application.

If neither you nor the application developer are able to diagnose the problem, contact
Oracle Support as described in Chapter 9, "Contacting Oracle for Support." When you
contact Oracle Support about a Java application freeze, provide the following
information:

■ Three thread dumps from the application when it works fine.

■ Three thread dumps from the application when it has frozen.

■ One 120s Flight Recorder recording from the application when it works fine.

■ One 120s Flight Recorder recording from the application when it has frozen.

7.3 Troubleshooting a JVM Freeze
If you cannot get thread dumps with Ctrl-Break or by sending SIGQUIT (kill -3)
to the parent Java process ID after a few attempts, the JVM has stopped handling
signals and is freezing.

When this happens, you should force the JVM to crash and then contact Oracle
Support for help. The crash file is essential for Oracle Support personnel to diagnose
and troubleshoot the problem.

This section describes how you can force a frozen JRockit JVM to crash. It contains the
following topics:

■ Force the JRockit JVM to Crash (on a Linux System)

■ Force the JRockit JVM to Crash (on a Windows System)

■ Collecting State Information When the JRockit JVM is Running as a Service

7.3.1 Force the JRockit JVM to Crash (on a Linux System)
You can force a frozen JRockit JVM on a Linux system to crash by sending a SIGABRT
signal, which aborts the process and causes a crash, thus producing a crash file.

To invoke SIGABRT, perform the following steps:

1. Find the process ID of the JRockit JVM process, by running the following
command:

pstree -p user | grep java

In this command, user is the Linux username (for example, webadmin) used to
run the JRockit JVM process.

– If the command results in excessive output, try unsetting the LANG
environment variable first, by running unset LANG.

– If the command shows only one Java process, proceed to step 2.

– If the command shows several processes, print the command-line parameters
for the required process, by running the following command:

cat /proc/nnnn/cmdline | xargs --null -n1 echo

Note: The following instructions are valid on 2.6 kernel-based Linux
systems and on Red Hat Enterprise Linux 3.0 (or later versions).

Troubleshooting a JVM Freeze

Freezing JVM 7-3

In this command, nnnn is the ID of the JRockit JVM process.

This command displays the command-line options for the specified JVM
process. Check whether any of the command-line options could be causing the
problem.

2. Find out the directory in which the binary crash file (.core) for the process will
be created, by entering the following command:

ls -l /proc/nnnn/cwd

In this command, nnnn is the ID of the JRockit JVM process.

3. Create the binary crash file (and terminate the process) by running the following
commands:

ulimit -c unlimited
kill -SIGABRT nnnn

In this command, nnnn is the ID of the JRockit JVM process.

7.3.2 Force the JRockit JVM to Crash (on a Windows System)
You can force a frozen JRockit JVM on a Windows system to crash by using the
windbg command, as follows:

windbg.exe -Q -pd -p nnnn -c ".dump /u /ma hung.mdmp; q"

In this command, nnnn is the ID of the JRockit JVM process.

7.3.3 Collecting State Information When the JRockit JVM is Running as a Service
If the JRockit JVM starts as a service, you can collect thread dumps by doing one of the
following:

■ If you are collecting information from your own machine, run jrcmd with the
print_threads diagnostic command.

For more information about the jrcmd command, see the Oracle JRockit JDK Tools.

■ If you are collecting information from another machine, use Oracle JRockit
Mission Control with the diagnostics bean. For more information, see the
Oracle JRockit Mission Control Online Help.

■ If you run the JRockit JVM with Oracle WebLogic Server, you can use beasvc
–dump to obtain thread dumps from the JVM.

For more information, see the Oracle WebLogic Server documentation.

■ If you want to see the messages that a server instance prints to stdout and
stderr (including stack traces and thread dumps), redirect stdout and stderr
to a file, see the Oracle WebLogic Server documentation.

To make the WebLogic Server instance print a thread dump to stdout, do one of
the following:

Note: windbg is included in the Debugging Tools for Windows
package that you can download from:

http://www.microsoft.com/whdc/devtools/debugging/default.
mspx

Troubleshooting a JVM Freeze

7-4 Oracle JRockit Diagnostics and Troubleshooting Guide

– Use the weblogic.Admin THREAD_DUMP command.

– Enter the following command at the command prompt:

WL_HOME\bin\beasvc -dump -svcname:service-name

In this command, WL_HOME is the directory in which you installed WebLogic
Server and service-name is the Windows service that is running a server
instance; for example.:

D:\Oracle\Middleware\wlserver_10.3\server\bin\beasvc -dump
-svcname:mydomain_myserver

8

About Crash Files 8-1

8About Crash Files

When the JRockit JVM crashes, it creates snapshots of the state of the computer and
the JVM process at the time of the crash. These snapshots are in the form of two crash
files: a text crash file (.dump); and a binary crash file (.mdmp, a Windows platform
minidump or .core, a Linux and Solaris platform core file). The names of the crash
files are jrockit.pid.dump and jrockit.pid.mdmp/core, where pid is the
process ID (for example, jrockit.72.dump).

You can use information in the crash files to determine the problem that caused the
JVM to crash. The information in the crash files is also essential for Oracle Support
personnel to help troubleshoot problems with the JVM.

This chapter provides information about the differences between the crash files and
how to enable and disable them. It also provides an example of a text crash file and
describes how you can use the text crash file for troubleshooting.

This chapter contains the following topics:

■ Section 8.1, "Differences Between Text and Binary Crash Files"

■ Section 8.4, "Specifying the Size of the Binary Crash File"

■ Section 8.3, "Specifying the Location of the Crash Files"

■ Section 8.2, "Enabling Crash Files"

■ Section 8.5, "Disabling Crash Files"

■ Section 8.6, "Troubleshooting by Using the Text Crash File"

■ Section 8.7, "Generating Java Heap Dumps in the HPROF Binary Format"

8.1 Differences Between Text and Binary Crash Files

Figure 8–1 JRockit JVM Crash Files

Enabling Crash Files

8-2 Oracle JRockit Diagnostics and Troubleshooting Guide

You can open the text crash file (.dump) in any text editor. It contains information that
can provide hints about the reasons for the crash (see Section 8.6.2, "Example of a Text
Dump File."

You can open the binary crash file (.core or .mdmp) in a debugger. The crash file
contains information about the entire JRockit JVM process.

8.2 Enabling Crash Files
Creation of crash files is enabled by default.

On Linux and Solaris systems, you must set ulimit -c to a value greater than zero
(recommendation: ulimit -c unlimited). This value is measured in blocks, with
each block equaling one kilobyte. You can specify the value from either the command
line or a shell script.

8.3 Specifying the Location of the Crash Files
The text and binary crash files are saved to the current working directory.

If you want the crash files to be saved in a different directory, specify the directory by
using the JROCKIT_DUMP_PATH environment variable.

■ On Linux and Solaris:

export JROCKIT_DUMP_PATH=path_to_directory

■ On Windows:

set JROCKIT_DUMP_PATH=path_to_directory

The directory that you specify must exist and must be writable.

8.4 Specifying the Size of the Binary Crash File
The text crash file is a small file, usually under 100KB. The binary crash file, however,
is usually very large because, by default, the JRockit JVM logs the entire JVM process
in the binary crash file. So you must ensure that there is adequate disk space for the
binary crash file to be written to the disk.

You can set the size of the crash file by using the -XXdumpSize command-line option.
The default setting is -XXdumpSize:large, which results in a binary crash file that
contains information about the entire JVM process, including the Java heap. While
small and normal settings are also available, neither of these sizes are adequate for
troubleshooting a JVM crash, because, with these settings, the Java heap is excluded
from the crash file.

If the disk on which the crash file is written does not have enough space for the binary
crash file, the file becomes as large as possible; that is, it fills up the disk.

Figure 8–2 illustrates the differences in information between small, normal, and large
binary crash files.

Troubleshooting by Using the Text Crash File

About Crash Files 8-3

Figure 8–2 Difference in information saturation between small, normal, and large binary
crash files

8.5 Disabling Crash Files
Creation of crash files is enabled by default, so that, if a crash occurs, you can be sure
to get as much information as possible about the application and the JRockit JVM
process. At times, however, you might want to disable the creation of crash files (for
example, when you have limited disk space).

Before disabling the creation of the crash files, note that the text crash file is a small,
useful source of information to get an initial understanding of what could be wrong
with the JVM. The binary crash file is essential when you contact Oracle Support.

■ You can disable creation of the text crash file by using the -XX:-DumpOnCrash
command-line option.

■ You can disable creation of the binary crash file by using the -XX:-CoreOnCrash
command-line option.

8.6 Troubleshooting by Using the Text Crash File
A JVM crash indicates that something happened that the JVM could not handle
gracefully. The crash could be caused by a programming error in the JVM, a problem
in the Java code, a problem in the JVM setup, or third-party libraries loaded in the
JVM process.

The text crash file .dump is a good starting point to diagnose the problem.

8.6.1 Symptoms to Look for
A text crash file does not necessarily tell you exactly why the crash occurred, but it
describes the environment in which the JRockit JVM was running and the state of the
JVM when the crash occurred.

The following are a few easily identifiable symptoms that you can look for in the text
crash file:

Note: When you contact Oracle Support, you must provide a large
binary crash file.

Troubleshooting by Using the Text Crash File

8-4 Oracle JRockit Diagnostics and Troubleshooting Guide

■ If the StackOverFlow field indicates that stack overflow errors have occurred,
the crash is likely to have been caused by a stack overflow.

Look for reports of Stack Overflow in the Error message field or in the stack
trace near the bottom of the crash file. Such occurrences might also indicate a stack
overflow.

For information about troubleshooting a crash caused by a stack overflow, see
Section 6.3, "Stack Overflow Crash."

■ If the C Heap field indicates that memory allocations have failed, the process
might have run out of virtual memory. For information about troubleshooting
crashes caused by virtual memory errors, see Section 6.2, "Out-Of-Virtual-Memory
Crash."

If the text crash file shows a symptom different from the symptoms described in this
section, try troubleshooting by using the information in Section 6.5, "JVM Crash."

8.6.2 Example of a Text Dump File
This section provides an example of a text crash file (.dump) and describes its parts.

Note that the text crash file does not provide a detailed description of what happened
during the crash. The layout of the file that the JVM produces might differ from the
layout shown in the example.

Table 8–1 Example of a Text Crash File (.dump)

Section Contents

Beginning of
the Text Crash
File

===== BEGIN DUMP
===
JRockit dump produced after 0 days, 00:00:01 on Mon Dec 7 16:28:40
2009

Additional information is available in:
 /localhome/mycomp/gdbtest/jrockit.17470.dump
 /localhome/mycomp/gdbtest/core or core.17470

Error Message
from the
Operating
System

Error Message: Illegal memory access. [54]
Signal info : si_signo=11, si_code=1 si_addr=0x7

JRockit JVM
Version

Version : Oracle JRockit(R) R28.0.0-606-124955-1.6.0_
17-20091130-2120-linux-ia32

CPU and
Memory
Information

CPU : Intel Pentium 4 (HT) SSE SSE2 NetBurst
Number CPUs : 8
Tot Phys Mem : 8248045568 (7865 MB)

Operating
System
Version
Information

OS version : Red Hat Enterprise Linux AS release 4 (Nahant Update
8)
Linux version 2.6.9-89.0.0.0.1.ELsmp
 (mockbuild@ca-build10.us.oracle.com) (gcc version 3.4.6
 20060404 (Red Hat 3.4.6-11.0.1)) #1 SMP
 Tue May 19 04:23:49 EDT 2009 (i686)

Thread and
State
Information

Thread System: Linux NPTL
LibC release : 2.3.4-stable
Java locking : Lazy unlocking enabled (class banning) (transfer
banning)
State : JVM is running

Troubleshooting by Using the Text Crash File

About Crash Files 8-5

Command-Lin
e Option
Information

Command Line : -Djava.library.path=.
 -Dsun.java.launcher=SUN_STANDARD Crash -static write

Environment
Information

java.home : /localhome/jrockits/R28.0.0_R28.0.0-606_1.6.0/jre
j.class.path : .
j.lib.path : .
JAVA_HOME : /localhome/jrockits/R27.6.3_R27.6.3-40_1.6.0
LD_LIBRARY_PATH: /localhome/jrockits/R28.0.0_R28.0.0-606
 _1.6.0/jre/lib/i386/jrockit:/localhome/jrockits/R28.0.0
 _R28.0.0-606_1.6.0/jre/lib/i386:/localhome/jrockits/R28.0.0
 _R28.0.0-606_1.6.0/jre/../lib/i386

Garbage
Collection
Information

GC Strategy : Mode: throughput, with strategy: genparpar (basic
strategy: genparpar)
GC Status : OC is not running. Last finished OC was OC#0.
 : YC is not running. Last finished YC was YC#0.
YC History : Ran 0 YCs since last OC.
Heap : 0x76eb7000 - 0x7aeb7000 (Size: 64 MB)
Compaction : (no compaction area)
NurseryList : 0x76eb7000 - 0x78eb7000
KeepArea : 0x786b6fe8 - 0x78eb7000
KA Markers : [0x77eb6ff0, 0x786b6fe8 , 0x78eb7000]

Registers and
Stack
Information

Registers (from ThreadContext: 0xb7ba4e60:
 eax = 00000007 ecx = b7ba519c edx = 00000000 ebx = b7ba6f70
 esp = b7ba514c ebp = b7ba5150 esi = b7ba5178 edi = b7ba70f4
 es = 0000007b cs = 00000073 ss = 0000007b ds = 0000007b
 fs = 00000000 gs = 00000033
 eip = 74405765 eflags = 00000292

Stack:
(* marks the word pointed to by the stack pointer)
b7ba514c: 00000007* b7ba5170 7440584c 00000007 b7ba6f70 00000001
b7ba5164: 74bb4405 00000007 00000000 00000001 746a9f80 b7ba70f4
b7ba517c: b7ba519c 00000007 00000000 74bb4400 744842a0 746a9f7b
b7ba5194: b7ba7228 b7ba5178 770643d0 b7ba6f70 00000001 770650d8

Thread Stack
Trace
Information

Thread:
"Main Thread" id=1 idx=0x4 tid=17471 lastJavaFrame=0xb7ba518c
Stack 0: start=0xb71a5000, end=0xb7ba6000, guards=0xb71aa000 (ok),
forbidden=0xb71a8000
Thread Stack Trace:
 at write+15()@0x74405765
 at Java_Crash_staticWrite+28()@0x7440584c
 -- Java stack --
 at Crash.staticWrite(J)V(Native Method)[optimized]
 at Crash.run(Crash.java:62)
 at Crash.main(Crash.java:121)
 at jrockit/vm/RNI.c2java(IIIII)V(Native
 Method)[optimized]
 -- end of trace

Table 8–1 (Cont.) Example of a Text Crash File (.dump)

Section Contents

Troubleshooting by Using the Text Crash File

8-6 Oracle JRockit Diagnostics and Troubleshooting Guide

Beginning of the Text Crash File
This part of the .dump file contains information about when the crash occurred and
for how long the JVM has been running.

It also provides a link to information to help you troubleshoot the crash.

The file locations refer to the locations of the text and binary crash files.

Error Message from the Operating System
This part of the .dump file contains the error message that the operation threw at the
time of the crash. For more information about the error, see the documentation for
your operating system.

JRockit JVM Version
This part of the .dump file indicates the release number of the JRockit JVM.

CPU and Memory Information
This part of the .dump file indicates the CPU in the system, the number of CPUs used,
and the amount of memory consumed by the Java process, application, or the JRockit
JVM.

Operating System Version Information
This part of the .dump file indicates the version of the operating system on which the
JRockit JVM is running. Ensure that the JRockit JVM is running on a supported
operating system.

For more information, see the see Oracle JRockit JDK Supported Configurations at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

Memory
Usage
Information

Memory usage report:
Total mapped 1133412KB (reserved=0KB)
- Java heap 1048576KB (reserved=983040KB)
- GC tables 35084KB
- Thread stacks 13332KB (#threads=18)
- Compiled code 384KB (used=256KB)
- Internal 520KB
- OS 7996KB
- Other 0KB
- JRockit malloc 24448KB (malloced=24397KB #290077)
 Does not track allocation sites!

- Native memory tracking 1024KB (malloced=46KB #11)
 Does not track allocation sites!

- Java class data 2048KB (malloced=1820KB #2455)
 Does not track allocation sites!

Set the env variable TRACE_ALLOC_SITES=1 or use the
print_memusage switch trace_alloc_sites=1 to enable
 alloc site tracing.

Table 8–1 (Cont.) Example of a Text Crash File (.dump)

Section Contents

Generating Java Heap Dumps in the HPROF Binary Format

About Crash Files 8-7

Thread and State Information
This part of the .dump file indicates the thread system that the JRockit JVM used at the
time of the crash and the state of the JVM. In this example, the JVM used the Native
POSIX Thread Library (NPTL).

Command-Line Option Information
This part of the .dump file shows all the command-line options that were used at JVM
startup.

Environment Information
This part of the .dump file provides information about the JVM environment:

■ JAVA_HOME is the path to the Java home catalog; that is, the directory in which the
JRockit JVM is installed.

■ _JAVA_OPTIONS shows command-line options that are automatically passed to
all newly started JRockit JVMs.

■ LD_LIBRARY_PATH is a Linux- and Solaris-specific environment variable that can
make the JRockit JVM find libraries other than the default system libraries.
Sometimes, you might have to set this variable for running JNI code.

Garbage Collection Information
This part of the .dump file indicates the garbage collection mode.

Depending on the garbage collection mode used, this part of the .dump file might
show other information such as the location of the nursery and keep area in the
memory.

Registers and Stack Information
This part of the .dump file provides the following information:

■ The Registers section is useful to Oracle Support personnel for troubleshooting.
If the value of the esp register does not match the first number of the stack, the
text crash file could be incorrect.

■ If the Stack section shows unreadable, the crash is probably due to a stack
overflow. The stack information is usually much longer than that shown in the
example.

Thread Stack Trace Information
This part of the .dump file shows what the crashed thread was doing when the JRockit
JVM crashed.

Memory Usage Information
This part of the .dump file shows details of memory usage (including native memory).

8.7 Generating Java Heap Dumps in the HPROF Binary Format
HPROF is a heap profiling tool that produces heap dumps in a specific format that
heap analysis tools can parse.

You can set up the Oracle JRockit JVM to produce a dump of the Java heap in the
HPROF binary format by using the following command-line options:

■ -XX:+HeapDumpOnOutOfMemoryError: Enables generation of Java heap dumps
when out-of-memory errors occur.

Generating Java Heap Dumps in the HPROF Binary Format

8-8 Oracle JRockit Diagnostics and Troubleshooting Guide

■ -XX:+HeapDumpOnCtrlBreak: Enables generation of Java heap dumps when
you press Ctrl-Break.

For more information about these and other related command-line options, see the
Oracle JRockit Command-Line Reference.

You can also generate an HPROF-formatted dump of the Java heap by using the
hprof diagnostic command. For more information, see Oracle JRockit JDK Tools.

For information about the HPROF tool, see
http://java.sun.com/developer/technicalArticles/Programming/HPRO
F.html.

9

Contacting Oracle for Support 9-1

9Contacting Oracle for Support

If you have a service agreement with Oracle, you can contact Oracle Support for help
with JRockit JVM problems.

Before contacting Oracle Support, perform the following actions:

■ Try all the appropriate diagnostics and troubleshooting guidelines described in
this document (Oracle JRockit Diagnostics and Troubleshooting Guide).

■ Check whether the problem (or a similar problem) has been discussed in the
JRockit forum at http://forums.oracle.com/.

If the information available on the forum is not sufficient to help you solve the
problem, post a question on the forum. Other JRockit users on the forum might
respond to your question.

■ Collect as much relevant data as possible about the problem. For example,

– If a deadlock occurs, generate a thread dump.

– If a crash occurs, locate the binary crash file (where applicable) and the
appropriate error file.

■ Document the environment and the actions performed just before you
encountered the problem.

If you run the JRockit JVM in a virtualized environment, information about the
type of virtualization and the software used would be useful to Oracle Support.

■ Where applicable, try to restore the original state of the system and reproduce the
problem using the documented steps. This helps to determine whether the
problem is reproducible or an intermittent issue.

■ If the issue can be reproduced, try to narrow down the steps for reproducing the
problem. Problems that can be reproduced by small test cases are typically easier
to diagnose when compared with large test cases.

Narrowing down the steps for reproducing problems enables Oracle Support to
provide solutions for potential problems faster.

Note: When you send files (.dump, .core, and so on) to Oracle
Support, remember to provide the MD5 checksum value for each file,
so that Oracle Support personnel can verify the integrity of the files
before using them for troubleshooting the problem.

9-2 Oracle JRockit Diagnostics and Troubleshooting Guide

	Contents
	Preface
	About This Document
	Documentation Accessibility
	Conventions

	1 Diagnostics Roadmap
	2 Slow JVM Startup
	2.1 Possible Causes for Slow JVM Startup
	2.2 Diagnosing Slow JVM Startup
	2.3 Diagnosing Slow Application Startup
	2.4 Measuring Timing
	2.5 Recommended Solutions for Slow JVM Startup

	3 Long Latencies
	3.1 Tune the JVM to Reduce Latency
	3.2 Troubleshooting Latency Issues
	3.2.1 GC Trigger Value Keeps Increasing
	3.2.2 GC Reason for Old Collections is Failed Allocations
	3.2.3 Long Young-Collection Pause Times
	3.2.4 Long Pauses in Deterministic Mode

	3.3 Contact Oracle Support

	4 Low Overall Throughput
	5 Performance Degradation
	5.1 Tune for Performance
	5.2 Troubleshoot Optimization Problems
	5.3 Troubleshoot Memory Leak Problems
	5.4 Contact Oracle Support

	6 Crashing JVM
	6.1 Classify the Crash
	6.1.1 Using a Crash File
	6.1.2 Determine the Crash Type

	6.2 Out-Of-Virtual-Memory Crash
	6.2.1 Verify the Out-Of-Virtual-Memory Error
	6.2.2 Troubleshoot the Out-Of-Virtual-Memory Error
	6.2.2.1 Upgrade to the Latest JRockit JVM Release
	6.2.2.2 Reduce the Java Heap Size
	6.2.2.3 Use the Windows /3GB Startup Option
	6.2.2.4 Check for Memory Leaks in JNI Code
	6.2.2.5 Record Virtual Memory Usage
	6.2.2.6 Contact Oracle Support

	6.3 Stack Overflow Crash
	6.3.1 Verify the Stack Overflow Crash
	6.3.2 Troubleshoot a Stack Overflow Crash
	6.3.2.1 Application Level Changes
	6.3.2.2 Increase the Default Stack Size
	6.3.2.3 Make the JRockit JVM More Robust Against Stack Overflow Errors
	6.3.2.4 Contact Oracle Support

	6.4 Crash Caused by Unsupported Linux Configuration
	6.5 JVM Crash
	6.5.1 Crash During Code Generation
	6.5.1.1 Identify the Method that Might Have Caused the Code-Generation Crash
	6.5.1.2 Verify Whether the Crash is Due to Optimization Problems
	6.5.1.3 Exclude the Problem Method from the Optimization Process
	6.5.1.4 Check Whether the Problem is Caused by an External Instrumentation Tool
	6.5.1.5 Contact Oracle Support

	6.5.2 Crash During Garbage Collection
	6.5.2.1 Identify the Garbage Collection Crash
	6.5.2.2 Upgrade to the Latest Release of the JRockit JVM
	6.5.2.3 Try the Following Workarounds
	6.5.2.4 Contact Oracle Support

	7 Freezing JVM
	7.1 Diagnosing Where the Freeze is Occurring
	7.2 Troubleshooting a Java Application Freeze
	7.3 Troubleshooting a JVM Freeze
	7.3.1 Force the JRockit JVM to Crash (on a Linux System)
	7.3.2 Force the JRockit JVM to Crash (on a Windows System)
	7.3.3 Collecting State Information When the JRockit JVM is Running as a Service

	8 About Crash Files
	8.1 Differences Between Text and Binary Crash Files
	8.2 Enabling Crash Files
	8.3 Specifying the Location of the Crash Files
	8.4 Specifying the Size of the Binary Crash File
	8.5 Disabling Crash Files
	8.6 Troubleshooting by Using the Text Crash File
	8.6.1 Symptoms to Look for
	8.6.2 Example of a Text Dump File

	8.7 Generating Java Heap Dumps in the HPROF Binary Format

	9 Contacting Oracle for Support

