

[1] Oracle® JRockit
JDK Tools Guide

Release R28

E15061-07

July 2016

Oracle JRockit JDK Tools Guide, Release R28

E15061-07

Copyright © 2001, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Savija T.V.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

About the Document... v
Documentation Accessibility ... v
Conventions ... v

1 Overview of Oracle JRockit JDK Tools

1.1 Customizable Verbose Logs .. 1-1
1.2 Thread Dumps... 1-1
1.3 Diagnostic Commands ... 1-1
1.4 Time Zone Updater... 1-1
1.5 Oracle JRockit Mission Control Client ... 1-2
1.5.1 JRockit Browser.. 1-2
1.5.2 JRockit Management Console .. 1-2
1.5.3 JRockit Flight Recorder ... 1-3
1.5.4 JRockit Memory Leak Detector.. 1-3
1.5.5 Mission Control Documentation ... 1-3

2 Understanding Verbose Output

2.1 Memory Management Verbose Log Modules .. 2-1
2.1.1 Verbose memory Log Module ... 2-2
2.1.1.1 Initial Output of the memory Module... 2-2
2.1.1.2 Garbage Collection Output of the memory Module ... 2-2
2.1.1.3 Page Fault Warning.. 2-3
2.1.2 Verbose nursery Log Module .. 2-3
2.1.2.1 Young Collection Output of the nursery Module.. 2-3
2.1.2.2 Verbose Nursery-Size-Adjustment Output of the nursery Module 2-4
2.1.3 Verbose memdbg Log Module .. 2-4
2.1.3.1 Initial Output of the memdbg Module.. 2-4
2.1.3.2 Parallel Old Collection Output of the memdbg Module .. 2-5
2.1.3.3 Concurrent Old Collection Output of the memdbg Module 2-5
2.1.3.4 Young Collection Output of the memdbg Module ... 2-6
2.1.3.5 Parallel Sweep in Concurrent Old Collections... 2-7
2.1.4 Verbose Compaction Log Module .. 2-7
2.1.4.1 Output of a Skipped Compaction .. 2-8
2.1.5 Verbose gcpause Log Module.. 2-9

iv

2.1.5.1 Parallel Old Collection Output of the gcpause Module.. 2-9
2.1.5.2 Concurrent Old Collection Output of the gcpause Module................................... 2-9
2.1.6 Verbose gcreport Log Module ... 2-9
2.1.7 Verbose refobj Log Module ... 2-11
2.1.8 Verbose alloc Log Module... 2-11
2.2 Other Verbose Log Modules .. 2-12
2.2.1 Output of the opt Module ... 2-12
2.2.2 Verbose exceptions Log Module .. 2-12

3 Using Thread Dumps

3.1 Creating Thread Dumps .. 3-1
3.2 Reading Thread Dumps... 3-1
3.2.1 The Beginning of the Thread Dump ... 3-2
3.2.2 Stack Trace for the Main Application Thread ... 3-2
3.2.3 Locks and Lock Chains ... 3-2
3.2.3.1 Presentation of Locks Out of Order ... 3-3
3.2.4 JVM Internal Threads.. 3-3
3.2.5 Other Java Application Threads .. 3-4
3.2.6 Lock Chains .. 3-4
3.3 Thread Status in Thread Dumps... 3-5
3.3.1 Life States .. 3-5
3.3.2 Run States.. 3-5
3.3.3 Special States .. 3-6
3.4 Troubleshooting with Thread Dumps ... 3-7
3.4.1 Detecting Deadlocks.. 3-7
3.4.2 Detecting Processing Bottlenecks .. 3-7
3.4.3 Viewing the Run-time Profile of an Application .. 3-7

4 Running Diagnostic Commands

4.1 Methods for Running Diagnostic Commands.. 4-1
4.2 Using jrcmd.. 4-1
4.2.1 How to Use jrcmd.. 4-2
4.2.2 jrcmd Examples.. 4-2
4.2.2.1 Listing JRockit JVM Processes .. 4-2
4.2.2.2 Sending a Command to a Process .. 4-2
4.2.2.3 Sending Several Commands ... 4-3
4.2.3 Known Limitations of jrcmd .. 4-3
4.3 Using the Ctrl-Break Handler ... 4-4
4.4 Getting Help .. 4-5

v

Preface

This document describes how to use the Oracle JRockit JDK diagnostic tools.

About the Document
This document contains the following chapters:

■ Chapter 1, "Overview of Oracle JRockit JDK Tools" provides an overview of the
tools included in the Oracle JRockit JDK.

■ Chapter 2, "Understanding Verbose Output" describes how to interpret verbose
output generated by the Oracle JRockit JVM.

■ Chapter 3, "Using Thread Dumps" describes how to get and use Oracle JRockit
JVM thread dumps.

■ Chapter 4, "Running Diagnostic Commands" how to run diagnostic commands
and lists the available commands.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

vi

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Overview of Oracle JRockit JDK Tools 1-1

1Overview of Oracle JRockit JDK Tools

[2] This chapter provides an overview of the following Oracle JRockit JDK tools and
features that you can use to identify and resolve problems when running an
application on the JVM.

■ Customizable Verbose Logs

■ Thread Dumps

■ Diagnostic Commands

■ Time Zone Updater

■ Oracle JRockit Mission Control Client

1.1 Customizable Verbose Logs
Verbose logs can be enabled and configured by using the -Xverbose command-line
option. These logs provide low-overhead, run-time information on various aspects of
the JRockit JVM (for example, memory management and code optimizations). You can
use the information in the verbose logs for monitoring, tuning, and diagnostics.

Chapter 2, "Understanding Verbose Output", describes some of the useful verbose
modules and how to interpret their output.

1.2 Thread Dumps
Thread dumps, described in Chapter 3, "Using Thread Dumps", are snapshots of the
state of all threads that are part of the process. These dumps reveal information about
an application's thread activity, which can help you diagnose problems and optimize
the performance of the application and the JVM.

1.3 Diagnostic Commands
Diagnostic commands enable you to communicate with a running Oracle JRockit JVM
process. As described in Chapter 4, "Running Diagnostic Commands", these
commands tell the JRockit JVM to perform tasks such as printing a heap report or a
garbage collection activity report, or to enable a specific verbose module.

1.4 Time Zone Updater
The TZUpdater tool updates the installed JDK/JRE images with more recent time zone
data to accommodate the U.S. 2007 daylight saving time changes (US2007DST)
established in the U.S. Energy Policy Act of 2005.

Oracle JRockit Mission Control Client

1-2 Oracle JRockit JDK Tools Guide

Oracle recommends using the latest Oracle JRockit JDK release as the preferred
method for delivering both time zone data updates and other product improvements,
such as security fixes. If you are unable to use the latest JRockit JDK release, this tool
provides a way to update time zone data while leaving other system configurations
unchanged.

TZUpdater (version 1.3.33 and above) supports Oracle JRockit JDK. For more
information about TZUpdater, see the TZUpdater documentation on the Oracle
Technology Network at:
http://www.oracle.com/technetwork/java/javase/tzupdater-readme-136440.html.

You can download the TZUpdater tool from:
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.h
tml#timezone.

1.5 Oracle JRockit Mission Control Client
In addition to the tools supplied in the JDK, Oracle JRockit includes a suite of
monitoring, management, and analysis tools called the JRockit Mission Control Client.

This suite of tools helps you monitor, manage, profile, and eliminate memory leaks in
your Java application without undue performance overhead. The performance
overhead of the JRockit Mission Control Client is low because it uses data that is
collected as part of the JRockit JVM’s adaptive dynamic optimization. This also
eliminates the problem with the Heisenberg anomaly that can occur when tools using
byte code instrumentation alter the execution characteristics of the system.

The JRockit Mission Control Client features can be available on-demand, and the small
performance overhead occurs only while the tools are running.

The JRockit Mission Control Client consists of the following tools, which are also
available as plug-in applications for Eclipse:

■ JRockit Browser

■ JRockit Management Console

■ JRockit Flight Recorder

■ JRockit Memory Leak Detector

1.5.1 JRockit Browser
The JRockit Browser enables you to set up and manage all running instances of the
JRockit JVM on your system. From the JRockit Browser, you can activate different
tools, such as starting a flight recording from the JRockit Flight Recorder, connecting to
a Management Console, and starting memory leak detection.

1.5.2 JRockit Management Console
The JRockit Management Console is used to monitor a JRockit JVM instance. Several
Management Consoles can be running concurrently. The console captures and presents
active data about memory usage, CPU usage, and other run-time metrics.

■ On a JRockit Management Console connected to JRockit JVM 5.0 and 6,
information from any JMX MBean deployed in the Oracle JRockit JVM internal
MBean server also can be displayed.

■ On a console connected to Oracle JRockit JVM 1.4, RMP capabilities are exposed
by a JMX proxy.

Oracle JRockit Mission Control Client

Overview of Oracle JRockit JDK Tools 1-3

1.5.3 JRockit Flight Recorder
The JRockit Flight Recorder is a performance monitoring and profiling tool that makes
diagnostic information available, even following catastrophic failure, such as a system
failure. The Flight Recorder is a rotating buffer of diagnostic and profiling data that is
available on-demand. Like its aeronautic namesake, the Flight Recorder provides an
account of events leading up to a system (or application) failure. Whenever a Java
application running on Oracle JRockit is started with the Flight Recorder enabled, data
is constantly collected in the Flight Recorder or its buffers. In the event of a system
failure, the content of this recording can be transferred to a file and used to analyze
what went wrong: a JVM crash, an unexpected application termination, or a power
failure.

Data displayed by the Flight Recorder GUI is collected by the Flight Recorder Run
Time component, which is part of the Oracle JRockit JVM. For more information about
the Flight Recorder Run Time component, see Oracle JRockit Flight Recorder Run Time
Guide.

Flight recordings are displayed in the Flight Recorder GUI, which is part of the JRockit
Mission Control Client. It enables users who are running a Flight Recorder-compliant
version of Oracle JRockit (that is, release R28.0 or later) to view the JVM’s recordings,
the current recording settings, and the run time parameters. The GUI consists of a
series of tabs that aggregate performance data into logical groupings.

The Flight Recorder replaces the JRockit Runtime Analyzer (JRA) that was provided
with earlier releases of the JRockit Mission Control Client.

1.5.4 JRockit Memory Leak Detector
The JRockit Memory Leak Detector helps you discover memory leaks in a Java
application and determine their cause. The JRockit Memory Leak Detector’s trend
analyzer discovers slow leaks, shows detailed heap statistics (including referring types
and instances to leaking objects) and allocation sites, and provides a quick drill down
to the cause of the memory leak. The Memory Leak Detector uses advanced graphical
presentation techniques to make it easier to navigate and understand complex
information.

1.5.5 Mission Control Documentation
Comprehensive online help is included in the product for all of the tools described in
this document. In addition, the Introduction to Oracle JRockit Mission Control Client
document, which is available on the Oracle Technology Network, provides
introductory information about configuration and set up, communication protocols,
and use cases.

Oracle JRockit Mission Control Client

1-4 Oracle JRockit JDK Tools Guide

2

Understanding Verbose Output 2-1

2Understanding Verbose Output

[3] The -Xverbose command-line option enables verbose output from the Oracle JRockit
JVM. You can use the verbose output for monitoring, tuning, and diagnostics. This
chapter describes some of the most useful verbose modules and how to interpret the
output from them.

This chapter contains the following sections:

■ Section 2.1, "Memory Management Verbose Log Modules"

■ Section 2.2, "Other Verbose Log Modules"

2.1 Memory Management Verbose Log Modules
Table 2–1 lists the verbose log modules available in the JRockit JVM for memory
management and garbage collection.

Most verbose modules are available at several log levels. With the exception of the
memdbg module, this section covers only the default (info) log level. This is the most
useful level for general tuning and monitoring purposes.

Note: Output can differ between JVM releases. The exact format of
the output is subject to change at any time.

Table 2–1 Memory Management Verbose Modules

Log Module Description Uses

memory Basic garbage collection information Tuning and monitoring

nursery Nursery information Tuning and monitoring

memdbg Memory management information Tuning, monitoring, and diagnostics

compaction Compaction information Tuning, monitoring, and diagnostics

gcpause Garbage collection pause times Tuning, monitoring, and diagnostics

gcreport Garbage collection summary Tuning and monitoring

refobj Reference object information Monitoring and diagnostics

alloc Allocation and out of memory
information

Monitoring and diagnostics

Memory Management Verbose Log Modules

2-2 Oracle JRockit JDK Tools Guide

2.1.1 Verbose memory Log Module
The -Xverbose:memory (or -Xverbose:gc) module provides basic information about
garbage collection events. The overhead for this module is very low, which means that
you can enable it in a production environment.

2.1.1.1 Initial Output of the memory Module
At JVM startup, the memory module displays some basic numbers on the memory
management system configuration and a guide to how to read the garbage collection
output.

Example 2–1 shows an example of the initial output from the memory log module. Line
numbers have been added.

Example 2–1 Initial Output of the memory Module

1: [INFO][memory] Running with 32 bit heap and compressed references.
2: [INFO][memory] GC mode: Garbage collection optimized for throughput, strategy: Generational
Parallel Mark & Sweep.
3: [INFO][memory] Heap size: 65536KB, maximum heap size: 3145728KB, nursery size: 32768KB.
4: [INFO][memory] <start>-<end>: <type> <before>KB-><after>KB (<heap>KB), <time> ms, sum of
pauses <pause> ms.
5: [INFO][memory] <start> - start time of collection (seconds since jvm start).
6: [INFO][memory] <type> - OC (old collection) or YC (young collection).
7: [INFO][memory] <end> - end time of collection (seconds since jvm start).
8: [INFO][memory] <before> - memory used by objects before collection (KB).
9: [INFO][memory] <after> - memory used by objects after collection (KB).
10: [INFO][memory] <heap> - size of heap after collection (KB).
11: [INFO][memory] <time> - total time of collection (milliseconds).
12: [INFO][memory] <pause> - sum of pauses during collection (milliseconds).
13: [INFO][memory] Run with -Xverbose:gcpause to see individual phases.

■ Line 1 indicates whether compressed references are used.

■ Line 2 describes the garbage collection mode used in this run, and the initial
garbage collection strategy.

■ Line 3 shows the initial and maximum heap size, and the initial nursery size.

■ Lines 4–13 describe the format of the garbage collection output.

2.1.1.2 Garbage Collection Output of the memory Module
The memory module displays a line for each garbage collection.

Example 2–2 shows an example of verbose output from the memory module. Line
numbers have been added.

Example 2–2 Garbage Collection Output of the memory Module

1: [INFO][memory] [YC#1] 0.981-1.019: YC 35001KB->33131KB (65536KB), 0.038 s, sum of pauses
37.851 ms, longest pause 37.851 ms.
2: [INFO][memory] [YC#2] 1.688-1.706: YC 58229KB->45536KB (65536KB), 0.019 s, sum of pauses
18.683 ms, longest pause 18.683 ms.
3: [INFO][memory] [OC#1] 1.706-1.718: OC 65536KB->57671KB (86176KB), 0.012 s, sum of pauses
10.364 ms, longest pause 10.364 ms.
4: [INFO][memory] [YC#3] 1.997-2.006: YC 65143KB->55299KB (86176KB), 0.008 s, sum of pauses 8.328
ms, longest pause 8.328 ms.

Each garbage collection output starts with a timestamp, which is the time in seconds
since the JVM started. The format of these lines is described at line 4 in Example 2–1.

Memory Management Verbose Log Modules

Understanding Verbose Output 2-3

■ Lines 1, 2 and 4 are output from young collections. The young collection on line 1
reduced the size of the heap from 35001 KB to 33131 KB.

■ Line 3 is an output from an old collection, which reduced the size of the heap from
65536 KB to 57671 KB.

2.1.1.3 Page Fault Warning
Page faults cause memory access to become slow, and page faults during garbage
collection might increase garbage collection time. Because of this, the verbose memory
log module displays a warning whenever the number of page faults during the
garbage collection was more than five percent of the number of pages in the heap. This
output is not available on Windows platforms.

Example 2–3 shows a page fault warning.

Example 2–3 Page Fault Warning

[INFO][memory] [OC#1] Warning: Your computer has generated 9435 page faults during the last
garbage collection.
[INFO][memory] [OC#1] If you find this swapping problematic, consider running JRockit with a
smaller heap.

2.1.2 Verbose nursery Log Module
The -Xverbose:nursery log module provides details about young collections and
nursery sizing. Some of this information is useful for monitoring and tuning the
JRockit JVM. The overhead is very low, which means that you can enable this module
in a production environment.

2.1.2.1 Young Collection Output of the nursery Module
Example 2–4 shows the output from the nursery log module during young and old
collections. Line numbers have been added.

Example 2–4 Young Collection Output of the nursery Module

1: [INFO][nursery] [YC#2] Young collection 2 started. This YC is running while the OC is in phase:
not running.
2: [INFO][nursery] [YC#2] Setting forbidden area for keeparea: 0x40ffdff0-0x417fdfe8.
3: [INFO][nursery] [YC#2] Next keeparea will start at 0x417fdfe8 and end at 0x41ffe000.
4: [INFO][nursery] [OC#1] Setting keepAreaMarkers[0] to 0x43883f00.
5: [INFO][nursery] [OC#1] Setting keepAreaMarkers[1] to 0x43dc8860.
6: [INFO][nursery] [OC#1] Setting keepAreaMarkers[2] to 0x43f9ba88.
7: [INFO][nursery] [OC#1] Next keeparea will start at 0x43dc8860 and end at 0x43f9ba88.

■ Lines 1–3 are young collection output (denoted by [YC#2]); lines 4–7 are old
collection output (denoted by [OC#1]).

■ Line 1 shows the sequence number of the young collection. It also indicates that
the old collection is not running while this young collection is running. Other
possible old collection phases are marking, precleaning, and sweeping, which are
the concurrent phases of the concurrent old collection.

■ Lines 2–7 contain information related to the size and position of the keep area.
This information is useful for advanced diagnostics.

Memory Management Verbose Log Modules

2-4 Oracle JRockit JDK Tools Guide

2.1.2.2 Verbose Nursery-Size-Adjustment Output of the nursery Module
Some garbage collection modes and strategies adjust the nursery size at run time for
optimal performance. The nursery log module shows some information about the
nursery sizing calculations and nursery size changes.

Example 2–5 shows the nursery sizing output from an old collection. Line numbers
have been added.

Example 2–5 Nursery-Size-Adjustment Output of the nursery Module

1: [INFO][nursery] [OC#1] Nursery size increased from 0KB to 7474KB. Nursery list consists of 5
parts.
2: [INFO][nursery] [OC#1] Nursery size remains at 7474KB. Nursery list consists of 5 parts.

■ Line 1 shows that the extent to which the nursery size is being increased and the
number of parts that the nursery contains.

■ Line 2 shows that the size of the nursery was not changed.

2.1.3 Verbose memdbg Log Module
The -Xverbose:memdbg log module is an alias that starts several memory-related log
modules to provide a complete picture of the memory management. The output from
these modules is documented in the respective module. The memdbg log module sets
the memory module to the debug level. Only output from memory at the debug level is
documented in this section. This information can also be obtained by setting
-Xverbose:memory=debug.

The overhead of the verbose memdbg output is low, which means it can be used in
production environments.

2.1.3.1 Initial Output of the memdbg Module
Example 2–6 shows the initial output from the memdbg verbose module. Line numbers
have been added.

Example 2–6 Initial Output of the memdbg Module

1: [DEBUG][memory] Minimum TLA size is 2048 bytes.
2: [DEBUG][memory] Preferred TLA size is 65536 bytes.
3: [DEBUG][memory] TLA waste limit is 2048 bytes.
4: [DEBUG][memory] Nursery object limit max is 65536 bytes.
5: [DEBUG][memory] Nursery object limit percentage is 1.0%.
6: [DEBUG][memory] Java heap regions:
7: [000000003fffe000 - 0000000043ffe000] rw-- (pagesize=0x1000)
8: [0000000043ffe000 - 000000007fffe000] ----
9: [0000000080000000 - 0000000100000000] ----
10: 64MB committed, 3008MB reserved.
11: [DEBUG][memory] Initial and maximum number of gc threads: 8, of which 8 parallel threads, 4
concurrent threads, and 8 yc threads.
12: [DEBUG][memory] Maximum nursery percentage of free heap is 95%.
13: [DEBUG][memory] Prefetch distance in workpacket: 4. Packet size: 493 objects.
14: [DEBUG][memory] Using prefetch linesize: 64 bytes chunks: 512 bytes pf_dist: 256 bytes.

■ Lines 1–5 shows the minimum and preferred thread local area sizes, the TLA
waste limit, and information about the size of the objects that will be allocated in
the nursery. These values depend on the heap size and the garbage collector, and
the JRockit JVM release.

Memory Management Verbose Log Modules

Understanding Verbose Output 2-5

■ Lines 6–10 display a memory map over the Java heap and the amount of memory
committed and reserved in the virtual address space.

There can be several heap regions. The regions might, but are not required to, be
located at consecutive addresses.

■ Line 11 shows the number of garbage collection threads.

■ Line 12 shows the maximum size of the nursery.

■ Lines 13 and 14 show information about prefetching, which is useful for advanced
diagnostics and tuning.

2.1.3.2 Parallel Old Collection Output of the memdbg Module
The memdbg module adds information to the garbage collection output. For some
tuning and diagnostic work, this information is essential. The output differs among
garbage collection types.

Example 2–7 shows the verbose memdbg output from a parallel old collection. Line
numbers have been added.

Example 2–7 Parallel Old Collection Output of the memdbg Module

1: [DEBUG][memory] [OC#1] GC reason: Allocation request failed.
2: [DEBUG][memory] [OC#1] 1.706: OC started.
3: [DEBUG][memory] [OC#1] Starting parallel marking phase.
4: [DEBUG][memory] [OC#1] SemiRef phase Finalizers run in single threaded mode.
5: [DEBUG][memory] [OC#1] SemiRef phase WeakJNIHandles run in single threaded mode.
6: [DEBUG][memory] [OC#1] SemiRef phase ClassConstraints run in single threaded mode.
7: [DEBUG][memory] [OC#1] SemiRef phase FinalMemleak run in single threaded mode.
8: [DEBUG][memory] [OC#1] Removing 4 permanent work packets from pool, now 60 packets.
9: [DEBUG][memory] [OC#1] Total mark time: 5.145 ms.
10: [DEBUG][memory] [OC#1] Ending marking phase.
11: [DEBUG][memory] [OC#1] Starting parallel sweeping phase.
12: [DEBUG][memory] [OC#1] Total sweep time: 4.735 ms.
13: [DEBUG][memory] [OC#1] Ending sweeping phase.
14: [DEBUG][memory] [OC#1] Expanded the heap from 65536KB to 86176KB.
15: [DEBUG][memory] [OC#1] Page faults before OC: 1, page faults after OC: 1, pages in heap:
21544.
16: [DEBUG][memory] [OC#1] Nursery size after OC: 7474KB. (Free: 7472KB Parts: 5)

■ Line 1 displays the reason for the garbage collection.

■ Line 2 displays a timestamp of when the old collection was started.

■ Lines 3–10 describe the actions taken during the mark phase. This mark phase
took 5.145 ms, including pauses and concurrent phases. In this case, the Java
threads were paused during the entire mark phase.

■ Lines 11–13 describe the sweep phase.

■ Line 14 shows the extent to which the Java heap size was increased.

■ Line 15 indicates the number of page faults before and after the old collection.
Page faults during the garbage collection may slow the garbage collection.

■ Line 16 shows how large the nursery is after the old collection.

2.1.3.3 Concurrent Old Collection Output of the memdbg Module
The memdbg memory module adds useful information to the garbage collection output.
For tuning and diagnostic evaluation, this information is essential. The output differs
among garbage collection types.

Memory Management Verbose Log Modules

2-6 Oracle JRockit JDK Tools Guide

Example 2–8 shows the verbose memdbg output from a concurrent old collection. Line
numbers have been added.

Example 2–8 Concurrent Old Collection Output of the memdbg Module

1: [DEBUG][memory] [OC#1] GC reason: Allocation request failed.
2: [DEBUG][memory] [OC#1] 1.768: OC started.
3: [DEBUG][memory] [OC#1] Starting initial marking phase (OC1).
4: [DEBUG][memory] [OC#1] SemiRef phase Finalizers run in single threaded mode.
5: [DEBUG][memory] [OC#1] SemiRef phase WeakJNIHandles run in single threaded mode.
6: [DEBUG][memory] [OC#1] SemiRef phase ClassConstraints run in single threaded mode.
7: [DEBUG][memory] [OC#1] Initial marking phase promoted 0 objects (0KB).
8: [DEBUG][memory] [OC#1] Starting concurrent marking phase (OC2).
9: [DEBUG][memory] [OC#1] Concurrent mark phase lasted 5.137 ms.
10: [DEBUG][memory] [OC#1] Starting precleaning phase (OC3).
11: [DEBUG][memory] [OC#1] Precleaning phase lasted 0.300 ms.
12: [DEBUG][memory] [OC#1] Starting final marking phase (OC4).
13: [DEBUG][memory] [OC#1] SemiRef phase Finalizers run in single threaded mode.
14: [DEBUG][memory] [OC#1] SemiRef phase WeakJNIHandles run in single threaded mode.
15: [DEBUG][memory] [OC#1] SemiRef phase ClassConstraints run in single threaded mode.
16: [DEBUG][memory] [OC#1] SemiRef phase FinalMemleak run in single threaded mode.
17: [DEBUG][memory] [OC#1] Final marking phase promoted 0 objects (0KB).
18: [DEBUG][memory] [OC#1] Adding 27 temporary work packets to permanent pool, now 91 packets.
19: [DEBUG][memory] [OC#1] Total mark time: 11.528 ms.
20: [DEBUG][memory] [OC#1] Ending marking phase.
21: [DEBUG][memory] [OC#1] Starting concurrent sweeping phase.
22: [DEBUG][memory] [OC#1] Total sweep time: 1.732 ms.
23: [DEBUG][memory] [OC#1] Ending sweeping phase.
24: [DEBUG][memory] [OC#1] Expanded the heap from 65536KB to 93216KB.
25: [DEBUG][memory] [OC#1] GC Trigger is now 13.2%, was 12.0%.
26: [DEBUG][memory] [OC#1] Page faults before OC: 1, page faults after OC: 1, pages in heap:
23304.
27: [DEBUG][memory] [OC#1] Nursery size after OC: 29260KB. (Free: 29256KB Parts: 9)

■ Line 1 shows the reason for the garbage collection.

■ Line 2 shows a timestamp for when the old collection was started.

■ Lines 3–20 describe the actions taken during the mark phase. Line 19 shows the
time taken for the mark phase, which includes pauses and concurrent phases.

■ Lines 21–23 describe the sweep phase. Line 20 shows the time taken for the sweep
phase.

■ Line 24 shows the extent to which the Java heap size was increased.

■ Line 25 shows information about the garbage collection trigger.

■ Line 26 shows the number of page faults before and after the old collection. Page
faults during the garbage collection may slow the garbage collection.

■ Line 27 shows the nursery size after the old collection.

2.1.3.4 Young Collection Output of the memdbg Module
Example 2–9 shows the verbose memdbg output from a young collection. Line numbers
have been added.

Example 2–9 Young Collection Output of the memdbg Module

1: [DEBUG][memory] [YC#1] GC reason: Allocation request failed.
2: [DEBUG][memory] [YC#1] 0.981: YC started.
3: [DEBUG][memory] [YC#1] Returning duplicate cardTablePart entry 2 (0x4201e000-0x4202e000)

Memory Management Verbose Log Modules

Understanding Verbose Output 2-7

4: [DEBUG][memory] [YC#1] SemiRef phase Finalizers run in single threaded mode.
5: [DEBUG][memory] [YC#1] SemiRef phase WeakJNIHandles run in single threaded mode.
6: [DEBUG][memory] [YC#1] SemiRef phase ClassConstraints run in single threaded mode.
7: [DEBUG][memory] [YC#1] YC promoted 26760 objects (24201KB).
8: [DEBUG][memory] [YC#1] Page faults before YC: 1, page faults after YC: 1, pages in heap: 16384.
9: [DEBUG][memory] [YC#1] Nursery size after YC: 32768KB. (Free: 24574KB Parts: 1)

■ Line 1 shows the reason for the garbage collection. In this example, the garbage
collection was started because an allocation failed. This is the typical reason for
starting a young collection.

■ Line 2 shows a timestamp for when the young collection was started.

■ Line 3 shows what happens if several threads try to process the same memory.
Note that this is the debug level.

■ Lines 4–6 show information about different phases in the young collection.

■ Line 7 shows the number (and size) of objects that were promoted during the
young collection.

■ Line 8 shows statistics about page faults before and after the garbage collection.
Page faults during the garbage collection may slow the garbage collection.

■ Line 9 shows the nursery size after the young collection.

2.1.3.5 Parallel Sweep in Concurrent Old Collections
If the heap becomes full during the mark phase of a concurrent old collection, the
garbage collector will, by default, override the concurrent sweep phase and use a
parallel sweep instead. Example 2–10 shows the output that this behavior generates.

Example 2–10 Output When a Promotion Fails

[INFO][memory] [OC#1] Changing GC strategy from: genconcon to: genconpar, reason: Emergency
parallel sweep requested.

2.1.4 Verbose Compaction Log Module
The JRockit JVM performs partial compaction of the heap at each old collection.
Compaction reduces fragmentation in the heap, which makes object allocation faster.
The verbose compaction log module displays information about the compaction. The
overhead of this log module is low, which means that it can be enabled in production
environments.

Example 2–11 shows the verbose output from the compaction log module. Line
numbers have been added.

Example 2–11 Old Collection Output of the compaction Module

1: [INFO][compact] [OC#1] Compaction reason: Normal.
2: [INFO][compact] [OC#1] Compacting 256 of 4096 parts at index 3840. Compaction type is external.
Exceptional: No.
3: [INFO][compact] [OC#1] Compaction area start: 0x43bfe000, end: 0x43ffe000. Timeout: 100.000 ms.
4: [INFO][compact] [OC#1] Compactset limit (per thread): 37487 (dynamic), not using matrixes.
5: [INFO][compact] [OC#1] Adjusted compaction area to start at 0x43bfe170 and end at 0x43ffe000.
6: [INFO][compact] [OC#1] Average compact time ratio (move phase/total time): 0.855877.
7: [INFO][compact] [OC#1] Too few references, doubling compact ratio.
8: [INFO][compact] [OC#1] Adjusting compactset limit to 248535.
9: [INFO][compact] [OC#1] Pause per 1000 refs, current: 0.201178, average: 0.201178. Target pause:
50.000.
10: [INFO][compact] [OC#1] Compaction time, total: 4.191 ms (target 100.000 ms).

Memory Management Verbose Log Modules

2-8 Oracle JRockit JDK Tools Guide

11: [INFO][compact] [OC#1] Compaction moved 3967 objects and left 0 objects. Total moved size
4125680B.
12: [INFO][compact] [OC#1] Compaction added 4193936B of free memory in 1 parts.
13: [INFO][compact] [OC#1] Compaction time, move phase: 3.587 ms (target 50.000 ms).
14: [INFO][compact] [OC#1] Compaction time, update phase: 0.604 ms (target 50.000 ms).
15: [INFO][compact] [OC#1] Found 3967 references. Internal: 0 External: 3967.
16: [INFO][compact] [OC#1] Updated 3967 references. Internal: 0 External: 3967.

■ Line 1 shows the reason for the compaction. In this case, a normal compaction is
triggered by the old collection. Other reasons for compaction can be that allocation
requests require a larger compaction due to lack of free memory or that the heap is
shrinking.

■ Line 2 shows a summary of the upcoming compaction. In this example, 256 out of
a total of 4096 heap parts will be compacted, starting at index 3840. The
compaction type is external, which means that objects will be moved away from
the compaction area. The compaction is not exceptional, which means that it can
be stopped if it takes too long.

■ Line 3 shows the physical addresses of the start and the end of the compaction
area and for how long this compaction is allowed to run. This information is
useful for advanced diagnostics.

■ Line 4 shows the current compactset limit. The compactset contains references to
the compaction area, and the size of this set determines how much compaction is
performed during one old collection.

■ Line 5 shows how the compaction area was adjusted. The heuristics adjusts the
compaction area so that no active objects span the borders.

■ Lines 6–9 is information from the heuristics. It informs you about changes to the
compactset based on how much time the compaction took.

■ Lines 10–12 show the result of the compaction. How much time it took, how many
objects were moved, and how much free memory it returned to the allocator.

■ Lines 13–14 show detailed information about the two components of the pause
time caused by compaction, and the current pause targets for these components. In
this example, moving objects took 3.587 ms and updating references to moved
objects took 0.604 ms, while the target was 50 ms for each of the components.

■ Lines 15–16 show the number of references found in the compaction area and
updated due to moved objects. In this example, all 3967 references found were
updated (which is good). Internal references are found within the compaction
area, and external references originate from objects outside the compaction area.
This information is useful for monitoring and tuning.

2.1.4.1 Output of a Skipped Compaction
Whenever a compaction is stopped, the verbose compaction log module will display
information about the reason for the skipped compaction. In Example 2–12, the
compactset for a garbage collection thread reached its top limit, which means that
there were too many pointers to objects within the selected compaction area. In
exceptional cases, the compaction may be skipped because there is not enough native
memory available when trying to expand the data structure.

Example 2–12 Output of a Skipped Compaction

[INFO][compact] [OC#3] Compaction was skipped due to 'Too many references, compact set limit
exceeded'.

Memory Management Verbose Log Modules

Understanding Verbose Output 2-9

[INFO][compact] [OC#5] Compact set for thread '(OC Main Thread)' failed to extend beyond 890854
elements - Out of memory.

2.1.5 Verbose gcpause Log Module
The -Xverbose:gcpause log module displays information about individual garbage
collection pauses. For monitoring, tuning, and diagnosing latencies, this information is
essential. The overhead of the log module is low, which means that it can be used in
production environments.

2.1.5.1 Parallel Old Collection Output of the gcpause Module
A parallel old collection pauses all Java threads during the entire garbage collection.
The output from -Xverbose:gcpause during a parallel old collection is thus fairly
simple, as shown in Example 2–13. Line numbers have been added.

Example 2–13 Parallel Old Collection Output of the gcpause Module

1: [INFO][gcpause] [OC#1] [---] 11.511 ms (1.706000-1.718000) OC
2: [INFO][gcpause] [OC#1] [con] 0.039 ms (1.706000-1.707000) OC:PreGC
3: [INFO][gcpause] [OC#1] [pau] 10.364 ms (1.707000-1.717000) OC:Main
4: [INFO][gcpause] [OC#1] [con] 1.064 ms (1.717000-1.718000) OC:PostGC

■ Line 1 is a summary that shows that this old collection took 11.511 ms.

■ Lines 2–4 show the times for each of the parts in the collection. con means that the
part is done concurrently with the Java execution, pau means a pause in the Java
execution.

2.1.5.2 Concurrent Old Collection Output of the gcpause Module
A mostly concurrent (or concurrent) old collection consists of several concurrent
garbage collection phases interspersed by short pauses.

Example 2–14 shows the output from a mostly concurrent old collection. Line numbers
have been added.

Example 2–14 Concurrent Old Collection Output of the gcpause Module

1: [INFO][gcpause] [OC#1] [---] 14.946 ms (1.768000-1.783000) OC
2: [INFO][gcpause] [OC#1] [con] 0.058 ms (1.768000-1.769000) OC:PreGC
3: [INFO][gcpause] [OC#1] [pau] 5.180 ms (1.769000-1.774000) OC:Initial
4: [INFO][gcpause] [OC#1] [con] 5.393 ms (1.774000-1.779000) OC:ConcurrentMark
5: [INFO][gcpause] [OC#1] [pau] 3.112 ms (1.779000-1.782000) OC:Main
6: [INFO][gcpause] [OC#1] [con] 1.128 ms (1.782000-1.783000) OC:PostGC

■ Line 1 shows the total time taken for the old collection.

■ Line 2–6 show the times for each of the parts in the collection. con means that the
part is done concurrently with the Java execution; pau means a pause in the Java
execution.

2.1.6 Verbose gcreport Log Module
The -Xverbose:gcreport log module displays a summary of garbage collection
activity at the end of the run.

Example 2–15 shows the verbose gcreport output. Line numbers have been added.

Memory Management Verbose Log Modules

2-10 Oracle JRockit JDK Tools Guide

Example 2–15 Output of the gcreport Module

1: [INFO][gcrepor]
2: [INFO][gcrepor] Memory usage report:
3: [INFO][gcrepor]
4: [INFO][gcrepor] Young Collections:
5: [INFO][gcrepor] number of collections = 30.
6: [INFO][gcrepor] total promoted = 166897 (size 170523360).
7: [INFO][gcrepor] max promoted = 26760 (size 24781800).
8: [INFO][gcrepor] total YC time = 0.380 s (total paused 0.378 s).
9: [INFO][gcrepor] mean YC time = 12.670 ms (mean total paused 12.596 ms).
10: [INFO][gcrepor] maximum YC Pauses = 29.256 , 37.851, 55.795 ms.
11: [INFO][gcrepor]
12: [INFO][gcrepor] Old Collections:
13: [INFO][gcrepor] number of collections = 5.
14: [INFO][gcrepor] total promoted = 0 (size 0).
15: [INFO][gcrepor] max promoted = 0 (size 0).
16: [INFO][gcrepor] total OC time = 0.128 s (total paused 0.119 s).
17: [INFO][gcrepor] mean OC time = 25.579 ms (mean total paused 23.739 ms).
18: [INFO][gcrepor] maximum OC Pauses = 16.818 , 26.550, 51.602 ms.
19: [INFO][gcrepor]
20: [INFO][gcrepor]
21: [INFO][gcrepor] number of internal compactions = 3.
22: [INFO][gcrepor] number of external compactions = 2.
23: [INFO][gcrepor] 1 of these were stopped because they timed out.
24: [INFO][gcrepor]

■ Lines 4–10 show information about the young collections during this run.

■ Line 5 shows the total number of young collections.

■ Line 6 shows the total number of objects promoted and their total size in bytes.

■ Line 7 shows the largest number of objects promoted during a single young
collection and their total size in bytes.

■ Line 8 shows the total time spent in young collections.

■ Line 9 shows the average time spent in a single young collection.

■ Line 10 shows the three longest pause times caused by a young collection.

■ Lines 12–18 show statistics about old collections.

■ Line 13 shows the total number of old collections.

■ Line 14 shows the number of objects promoted during old collections and their
total size in bytes.

■ Line 15 shows the largest number of objects promoted during a single old
collection and their total size in bytes.

■ Line 16 shows the total time spent in old collections and the sum of all garbage
collection pauses caused by old collections.

■ Line 17 shows the average time spent in a single old collection and the average
number of pauses during a single old collection.

■ Line 18 shows the three longest old collection pauses.

■ Line 21 shows the number of internal compactions.

■ Line 22 shows the number of external compactions.

■ Line 23 shows that one compaction was stopped due to a timeout.

Memory Management Verbose Log Modules

Understanding Verbose Output 2-11

2.1.7 Verbose refobj Log Module
The -Xverbose:refobj log module shows a summary of the number of reference
objects and how they are handled at each garbage collection.

Example 2–16 shows the verbose refobj output. Line numbers have been added.

Example 2–16 Output of the refobj Module

1: [INFO][refobj] [YC#1] SoftRef: Reach: 10 Act: 0 PrevAct: 0 Null: 0
2: [INFO][refobj] [YC#1] WeakRef: Reach: 14 Act: 0 PrevAct: 0 Null: 0
3: [INFO][refobj] [YC#1] Phantom: Reach: 0 Act: 0 PrevAct: 0 Null: 0
4: [INFO][refobj] [YC#1] ClearPh: Reach: 0 Act: 0 PrevAct: 0 Null: 0
5: [INFO][refobj] [YC#1] Finaliz: Reach: 4 Act: 2 PrevAct: 0 Null: 0
6: [INFO][refobj] [YC#1] WeakHnd: Reach: 49 Act: 0 PrevAct: 0 Null: 0
7: [INFO][refobj] [YC#1] SoftRef: @Mark: 10 @Preclean: 0 @FinalMark: 0
8: [INFO][refobj] [YC#1] WeakRef: @Mark: 11 @Preclean: 0 @FinalMark: 3
9: [INFO][refobj] [YC#1] Phantom: @Mark: 0 @Preclean: 0 @FinalMark: 0
10: [INFO][refobj] [YC#1] ClearPh: @Mark: 0 @Preclean: 0 @FinalMark: 0
11: [INFO][refobj] [YC#1] Finaliz: @Mark: 0 @Preclean: 0 @FinalMark: 6
12: [INFO][refobj] [YC#1] WeakHnd: @Mark: 0 @Preclean: 0 @FinalMark: 49
13: [INFO][refobj] [YC#1] SoftRef: SoftAliveOnly: 10 SoftAliveAndReach: 0
14: [INFO][refobj] [YC#1] NOTE: This count only applies to a part of the heap.

■ Lines 1–6 show the number of occurrences of each reference object type, finalizers,
weak handles and object monitors. The references objects are categorized by
status,

– Reachable: Reference objects with reachable referents. A referent that is
reachable on a harder level is considered reachable; for example, a referent of a
soft reference is reachable if it also is hard reachable.

– Activated: Activated references are such that the referent is no longer
reachable on any harder level than this reference, which means that the
reference can be cleared or put on a reference queue.

– Previously Activated: References that have been activated at a previous
garbage collection but have not yet been cleared are previously activated.

– Null: Null references are such that the reference in the reference object is null,
but the reference object itself still exists.

■ Lines 7–12 show statistics about which garbage collection phases the reference
objects were handled.

■ Line 13 shows how many soft references are soft alive only and how many are also
hard reachable.

2.1.8 Verbose alloc Log Module
The -Xverbose:alloc log module gives information about memory allocations. The
module was introduced in R28.0.

Example 2–17 shows the alloc output. Line numbers have ben added.

Example 2–17 Output of the alloc Module

1: [INFO][alloc] [YC#1] Pending requests at 'Before YC' - Total: 1, TLAs: 1 (approx 65536
bytes), objects: 0 (0 bytes). Max age: 0.
2: [INFO][alloc] [YC#1] Satisfied 0 object and 1 tla allocations. Pending requests went from 1
to 0.

Other Verbose Log Modules

2-12 Oracle JRockit JDK Tools Guide

3: [INFO][alloc] [YC#1] Pending requests at 'After YC' - Total: 0, TLAs: 0 (approx 0 bytes),
objects: 0 (0 bytes). Max age: 0.

■ Line 1 shows information about the status of the object allocation queue before the
garbage collection.

■ Line 2 shows how many allocation requests were satisfied as a result of this
collection.

■ Line 3 shows information about the status of the object allocation queue after the
garbage collection. You can compare this information to the information in line 1
to get an idea of how well object allocation is doing. Many objects in the allocation
queue at the end of a garbage collection may be an indication that object allocation
is difficult, for example due to heavy fragmentation.

2.2 Other Verbose Log Modules
Among the various log modules available in the JRockit JVM, opt and exceptions are
two of the commonly used and most useful.

2.2.1 Output of the opt Module
The -Xverbose:opt log module displays information about code optimizations done
by the optimizing compiler.

Example 2–18 shows the verbose opt output. Line numbers have been added.

Example 2–18 Output of the opt Module

1: [INFO][opt][00036] #1 (Opt) ObjAlloc.main([Ljava/lang/String;)V

2: [INFO][opt][00036] #1 3.756-3.758 0x0000000100060000-0x000000010006004E 2.10
ms 128KB 7633 bc/s (2.10 ms 7633 bc/s)

■ Line 1 shows the names of two methods that are optimized.

■ Line 2 shows the addresses of the methods and the time it took to optimize them.

You can use the verbose opt information to diagnose and monitor the optimizations.

2.2.2 Verbose exceptions Log Module
The -Xverbose:exceptions log module displays each Java exception that is thrown in
the application. You can use this information to monitor and troubleshoot exceptions
in your application.

Example 2–19 shows output from the verbose exceptions log module. Each line
displays the name of the exception thrown and the exception message, if one is
available.

Example 2–19 Output of the exceptions Module

[excepti][00004] java/lang/NullPointerException
[excepti][00004] java/lang/NullPointerException: null array passed into arraycopy
[excepti][00004] java/lang/ArrayIndexOutOfBoundsException
[excepti][00004] java/lang/ArrayIndexOutOfBoundsException
[excepti][00004] java/lang/NullPointerException: null array passed into arraycopy

-Xverbose:exceptions=debug prints the same information and provides stack traces
for each exception.

3

Using Thread Dumps 3-1

3Using Thread Dumps

[4] This chapter describes how to get and use Oracle JRockit JVM thread dumps. For basic
information about threads and thread synchronization, see Oracle JRockit Introduction to
the JDK.

A thread dump is a snapshot of the state of all threads that are part of the process. The
state of each thread is presented with a stack trace, which shows the contents of a
thread's stack. Some of the threads belong to the Java application you are running,
while others are JVM internal threads.

A thread dump reveals information about an application's thread activity that can help
you diagnose problems and better optimize application and JVM performance; for
example, thread dumps automatically show the occurrence of a deadlock. Deadlocks
bring some or all of an application to a complete halt.

This chapter contains the following sections:

■ Section 3.1, "Creating Thread Dumps"

■ Section 3.2, "Reading Thread Dumps"

■ Section 3.3, "Thread Status in Thread Dumps"

■ Section 3.4, "Troubleshooting with Thread Dumps"

3.1 Creating Thread Dumps
To create a thread dump from a process, do either of the following:

■ Press Ctrl-Break while the process is running (or send SIGQUIT to the process on
Linux and Solaris).

■ Enter the following at the command line:

bin\jrcmd.exe pid print_threads

The thread dump is displayed at the command line.

3.2 Reading Thread Dumps
This section describes the typical contents of a thread dump. An example thread dump
from beginning to end is shown. Example 3–1, Example 3–2, Example 3–3,
Example 3–4, and Example 3–5 show the components of a thread dump). Next,

Note: For more information about the jrcmd command and
Ctrl-Break handlers, see Section 4, "Running Diagnostic Commands."

Reading Thread Dumps

3-2 Oracle JRockit JDK Tools Guide

information about the main thread is shown, then all the JVM internal threads,
followed by all other Java application threads (if there are any). Finally, information
about lock chains is shown.

The example thread dump is taken from a program that creates three threads that are
quickly forced into a deadlock. The application threads Thread-0, Thread-1, and
Thread-2 correspond to three different classes in the Java code.

3.2.1 The Beginning of the Thread Dump
The thread dump starts with the date and time of the dump, and the version number
of the JRockit JVM used. See Example 3–1.

Example 3–1 Initial Information in a Thread Dump

===== FULL THREAD DUMP ===============
Wed Feb 21 13:46:45 2007
Oracle JRockit(R) R28.0.0-109-73164-1.5.0_08-20061129-1428-windows-ia32

3.2.2 Stack Trace for the Main Application Thread
Example 3–2 shows the stack trace of the main application thread. There is a thread
information line, followed by information about locks and a trace of the thread's stack
at the moment of the thread dump.

Example 3–2 Main Thread in the Thread Dump

"Main Thread" id=1 idx=0x2 tid=48652 prio=5 alive, in native, waiting
-- Waiting for notification on: util/repro/Thread1@0x01226528[fat lock]
at jrockit/vm/Threads.waitForSignal(J)Z(Native Method)
at java/lang/Object.wait(J)V(Native Method)
at java/lang/Thread.join(Thread.java:1095)
^-- Lock released while waiting: util/repro/Thread1@0x01226528[fat lock]
at java/lang/Thread.join(Thread.java:1148)
at util/repro/DeadLockExample.main(DeadLockExample.java:23)
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

After the name and other identification information, the different status messages of
the main application thread are printed. The main application thread in Example 3–2 is
a running thread (alive). It is either executing JVM internal code or user-defined JNI
code (in native). It is currently waiting for an object to be released (waiting). If a
thread is waiting for a notification about a lock (by calling Object.wait()), this is
indicated at the top of the stack trace (Waiting for notification on).

3.2.3 Locks and Lock Chains
For each thread, the JRockit JVM prints the following information:

■ If the thread is trying to take a lock (to enter a synchronized block), but the lock is
already held by another thread, this is indicated at the top of the stack trace,
(Blocked trying to get lock).

■ If the thread is waiting for a notification about a lock (by calling Object.wait()),
this is indicated at the top of the stack trace (Waiting for notification).

■ If the thread has taken locks, this is shown in the stack trace. After a line in the
stack trace describing a function call is a list of the locks taken by the thread in that

Reading Thread Dumps

Using Thread Dumps 3-3

function. This is described as ^-- Holding lock where the ^-- is a reminder that
the lock is taken in the function written above the line with the lock.

The semantics for waiting (for notification) for an object in Java is somewhat complex.
First, to enter a synchronized block, you must take the lock for the object, and then you
call wait() on that object. In the wait method, the lock is released before the thread
goes to sleep waiting for a notification. When the thread receives a notification, wait()
re-takes the lock before returning. If a thread has taken a lock, and is waiting for
notification about that lock, the line in the stack trace that describes when the lock was
taken is not shown as (Holding lock); it is shown as (Lock released while
waiting.)

All locks are described as Classname@0xLockID[LockType]; for example:

java/lang/Object@0x105BDCC0[thin lock]

Classname@0xLockID describes the object to which the lock belongs. The classname is
an exact description, the fully qualified classname of the object. LockID, is a temporary
ID that is valid for a single thread dump. If a thread A holds a lock
java/lang/Object@0x105BDCC0, and a thread B is waiting for a lock
java/lang/Object@0x105BDCC0 in a single thread dump, then it is the same lock. For
subsequent thread dumps, LockID might be different, even if a thread holds the same
lock. LockType describes the JVM internal type of the lock (fat, thin, recursive, or lazy).
The status of active locks (monitors) is also shown in stack traces.

3.2.3.1 Presentation of Locks Out of Order
The lines with the lock information might not be correct due to compiler
optimizations. This means two things:

■ If a thread, in the same function, takes lock A first and then lock B, the order in
which they are printed is unspecified.

■ If a thread, in method edit() calls method save(), and takes a lock A in save(),
the lock might be printed as being taken in edit().

Typically, this is not be a problem. The order of the lock lines never move much from
their correct positions. Also, lock lines will never be missing— all locks taken by a
thread are shown in the thread dump.

3.2.4 JVM Internal Threads
Example 3–3 shows the traces of JVM internal threads. The threads have been marked
as daemon threads, noted by their daemon state indicators. Daemon threads are either
JVM internal threads (as in this case) or threads marked as daemon threads by
java.lang.Thread.setDaemon().

Example 3–3 First and Last Thread in a List of JVM Internal Threads

"(Signal Handler)" id=2 idx=0x4 tid=48668 prio=5 alive, in native, daemon
[...]
"(Sensor Event Thread)" id=10 idx=0x1c tid=48404 prio=5 alive, in native, daemon

Lock information and stack traces are not printed for the JVM internal threads in
Example 3–3. This is the default setting.

If you want to see stack traces for the JVM internal threads, then use the parameter
nativestack=true when you run the print_threads command. At the command line,
enter the following:

bin\jrcmd.exe <pid> print_threads nativestack=true

Reading Thread Dumps

3-4 Oracle JRockit JDK Tools Guide

3.2.5 Other Java Application Threads
Typically, you would be interested in the threads of the Java application you are
running (including the main thread). All Java application threads, except the main
thread, are shown near the end of the thread dump. Example 3–4 shows the stack
traces of three different application threads.

Example 3–4 Additional Application Threads

"Thread-0" id=11 idx=0x1e tid=48408 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x01226300[fat lock]
at jrockit/vm/Threads.waitForSignal(J)Z(Native Method)
at jrockit/vm/Locks.fatLockBlockOrSpin(ILjrockit/vm/ObjectMonitor;II)V(Unknown Source)
at
jrockit/vm/Locks.lockFat(Ljava/lang/Object;ILjrockit/vm/ObjectMonitor;Z)Ljava/lang/Object;(Unknown
Source)
at
jrockit/vm/Locks.monitorEnterSecondStage(Ljava/lang/Object;I)Ljava/lang/Object;(Unknown Source)
at jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object;(Unknown Source)
at util/repro/Thread1.run(DeadLockExample.java:34)
^-- Holding lock: java/lang/Object@0x012262F0[thin lock]
^-- Holding lock: java/lang/Object@0x012262F8[thin lock]
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

"Thread-1" id=12 idx=0x20 tid=48412 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x012262F8[thin lock]
at jrockit/vm/Threads.sleep(I)V(Native Method)
at jrockit/vm/Locks.waitForThinRelease(Ljava/lang/Object;I)I(Unknown Source)
at jrockit/vm/Locks.monitorEnterSecondStage(Ljava/lang/Object;I)Ljava/lang/Object;(Unknown Source)
at jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object;(Unknown Source)
at util/repro/Thread2.run(DeadLockExample.java:48)
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

"Thread-2" id=13 idx=0x22 tid=48416 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x012262F8[thin lock]
at jrockit/vm/Threads.sleep(I)V(Native Method)
at jrockit/vm/Locks.waitForThinRelease(Ljava/lang/Object;I)I(Unknown Source)
at jrockit/vm/Locks.monitorEnterSecondStage(Ljava/lang/Object;I)Ljava/lang/Object;(Unknown Source)
at jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object;(Unknown Source)
at util/repro/Thread3.run(DeadLockExample.java:65)
^-- Holding lock: java/lang/Object@0x01226300[fat lock]
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

All three threads are in a blocked state (indicated by blocked), which means that they
are all trying to enter synchronized blocks. Thread-0 is trying to take the lock
Object@0x01226300[fat lock], but this lock is held by Thread-2. Both Thread-2 and
Thread-1 are trying to take Object@0x012262F8[thin lock] but this lock is held by
Thread-0. This means that Thread-0 and Thread-2 form a deadlock, while Thread-1 is
blocked.

3.2.6 Lock Chains
JRockit JVM automatically detects deadlocked, blocked, and open lock chains among
the running threads. Example 3–5 shows all the lock chains created by the threads T1,
T2, T3, T4, and T5. This information can be used to tune and troubleshoot your Java
code.

Thread Status in Thread Dumps

Using Thread Dumps 3-5

Example 3–5 Deadlocked and Blocked Lock Chains

Circular (deadlocked) lock chains
=================================
Chain 6:
"Dead T1" id=16 idx=0x48 tid=3648 waiting for java/lang/Object@0x01225018 held by:
"Dead T3" id=18 idx=0x50 tid=900 waiting for java/lang/Object@0x01225010 held by:
"Dead T2" id=17 idx=0x4c tid=3272 waiting for java/lang/Object@0x01225008 held by:
"Dead T1" id=16 idx=0x48 tid=3648
Blocked lock chains
===================
Chain 7:
"Blocked T2" id=20 idx=0x58 tid=3612 waiting for java/lang/Object@0x01225310 held by:
"Blocked T1" id=19 idx=0x54 tid=2500 waiting for java/lang/Object@0x01224B60 held by:
"Open T3" id=13 idx=0x3c tid=1124 in chain 1
Open lock chains
================
Chain 1:
"Open T5" id=15 idx=0x44 tid=4048 waiting for java/lang/Object@0x01224B68 held by:
"Open T4" id=14 idx=0x40 tid=3380 waiting for java/lang/Object@0x01224B60 held by:
"Open T3" id=13 idx=0x3c tid=1124 waiting for java/lang/Object@0x01224B58 held by:
"Open T2" id=12 idx=0x38 tid=3564 waiting for java/lang/Object@0x01224B50 held by:
"Open T1" id=11 idx=0x34 tid=2876 (active)

3.3 Thread Status in Thread Dumps
This section describes the different statuses or states of a thread in a thread dump:

■ Section 3.3.1, "Life States"

■ Section 3.3.2, "Run States"

■ Section 3.3.3, "Special States"

3.3.1 Life States
Table 3–1 describes the life states that a thread can show in a thread dump.

3.3.2 Run States
Table 3–2 describes the run states that a thread can show in a thread dump.

Table 3–1 Thread Life States

State Description

alive This is a typical, running thread. Virtually all threads in the thread dump
will be (alive).

not started The thread was requested to start running by java.lang.Thread.start(),
but the actual OS process has not yet started or executed far enough to
pass control to the JRockit JVM. It is unlikely to see this value. A
java.lang.Thread object that is created, but has not had start() executed,
will not show in the thread dump.

terminated This thread has finished its run() and has also notified any threads joining
on it, but it is still kept in the JVM internal thread structure for running
threads. It is unlikely to see this value. A thread that has been terminated
for a time longer than a few milliseconds will not show in the thread
dump.

Thread Status in Thread Dumps

3-6 Oracle JRockit JDK Tools Guide

3.3.3 Special States
Table 3–3 describes the special states that a thread can show in a thread dump. Note
that these states are not mutually exclusive.

Table 3–2 Thread Run States

State Description

blocked This thread tried to enter a synchronized block, but the lock was taken by
another thread. This thread is blocked until the lock gets released.

blocked (on
thin lock)

This is the same state as blocked, but the lock in question is a thin lock.

waiting This thread called Object.wait() on an object. The thread will remain
there until some other thread sends a notification to that object.

sleeping This thread called java.lang.Thread.sleep().

parked This thread called java.util.concurrent.locks.LockSupport.park().

suspended The thread's execution was suspended by java.lang.Thread.suspend() or
a JVMTI agent call.

Note: Each state in Table 3–2 represents a scenario where the thread
is currently blocked (that is, ineligible for scheduling by the operating
system) for some (ideally temporary) reason.

Java execution threads that are not currently blocked (that is, eligible
for scheduling by the operating system to run) will not have any of
the above states.

Table 3–3 Special Thread States

State Description

interrupted The user called java.lang.Thread.interrupt() on this thread.

daemon This is either JVM internal thread or a thread that was marked as a
daemon thread by java.lang.Thread.setDaemon().

in native This thread is executing native code: either user-supplied JNI code
or JVM internal code.

in suspend critical
mode

This thread is executing JVM internal code and has marked itself as
suspend critical. Garbage collection is stopped for a specified
time period.

native_blocked This thread is executing JVM internal code and has tried to take a
JVM internal lock. The thread is blocked because that lock is held by
another thread.

native_waiting This thread is executing JVM internal code and is waiting for
notification from another thread about a JVM internal lock.

Troubleshooting with Thread Dumps

Using Thread Dumps 3-7

3.4 Troubleshooting with Thread Dumps
This section contains information about using thread dumps for troubleshooting and
diagnostics.

To use thread dumps for troubleshooting, beyond detecting deadlocks, you must take
several thread dumps from the same process. For analyzing the behavior over longer
durations, a better option would be to combine thread dumps with other diagnostic
tools, such as the JRockit Flight Recorder, which is part of Oracle JRockit Mission
Control.

3.4.1 Detecting Deadlocks
The Oracle JRockit JVM automatically analyzes the thread dump information and
detects whether there exists any circular (deadlocked) or blocked lock chains in it. A
blocked lock chain is not a deadlock: it indicates contention.

3.4.2 Detecting Processing Bottlenecks
To detect more than deadlocks in your threads, you must make several consecutive
thread dumps. This lets you detect the occurrence of contention, when multiple
threads are trying to get the same lock. Contention might create long open lock chains
that, while not deadlocked, will degrade performance.

If you discover (in a set of consecutive thread dumps) that one or more threads in your
application are temporarily stuck waiting for a lock to be released, then review the
code of your Java application to see if the synchronization (serialization) is necessary
or if the threads can be organized differently.

3.4.3 Viewing the Run-time Profile of an Application
By making several consecutive thread dumps, you can get an overview of the parts of
your Java application that are used the most. Click the Threads tab in JRockit
Management Console for more detailed information about the workload on the
different parts of your application.

Note: None of the above states in Table 3–3 by themselves represent
a situation where a Java execution thread would be blocked from
making progress. By design, when a thread dump is collected, all Java
execution threads must be paused momentarily in a known state in
order to collect the necessary data (stack traces). As a result, in a
thread dump, every Java execution thread will be in one of these
states—in native, native_blocked, or native_waiting. As soon as
the thread dump is finished, these threads will be able to continue
making progress (as long as these threads are not also in one of the
states listed in Table 3–2). For analyzing the Java application behavior,
these threads should not be considered blocked.

Troubleshooting with Thread Dumps

3-8 Oracle JRockit JDK Tools Guide

4

Running Diagnostic Commands 4-1

4Running Diagnostic Commands

[5] This chapter describes how to use diagnostic commands to communicate with a
running Oracle JRockit JVM process.

The diagnostic commands tell the JRockit JVM to perform tasks such as printing a
heap report or a garbage collection activity report, or enabling a specific verbose
module.

This chapter contains the following sections:

■ Section 4.1, "Methods for Running Diagnostic Commands"

■ Section 4.2, "Using jrcmd"

■ Section 4.3, "Using the Ctrl-Break Handler"

■ Section 4.4, "Getting Help"

For more information about each diagnostic command, see the "Diagnostic
Commands" chapter in Oracle JRockit Command Line Reference.

4.1 Methods for Running Diagnostic Commands
You can send diagnostic commands to a running JVM process in several ways:

■ By using jrcmd, a command-line tool that sends the commands to a given JRockit
JVM process.

■ By pressing Ctrl-Break, the JVM will search for the ctrlhandler.act file and
execute the commands in it.

■ By using the JRockit Management Console in Oracle JRockit Mission Control to
send diagnostic commands to a running JRockit JVM process.

You can enable or disable diagnostic command by using the system property
-Djrockit.ctrlbreak.enable<name>=<true|false>, where name is the name of the
diagnostic command. The run_class handler is not enabled by default. To enable it,
enter the following:

-Djrockit.ctrlbreak.enablerun_class=true

4.2 Using jrcmd
jrcmd is a command-line tool included with the JRockit JDK that you can use to send
diagnostic commands to a running JVM process. jrcmd communicates with the JVM
by using the JDK attach mechanism. This section provides a brief overview of jrcmd. It
includes information about the following:

■ Section 4.2.1, "How to Use jrcmd"

Using jrcmd

4-2 Oracle JRockit JDK Tools Guide

■ Section 4.2.2, "jrcmd Examples"

■ Section 4.2.3, "Known Limitations of jrcmd"

4.2.1 How to Use jrcmd
Enter jrcmd at the command line with the appropriate parameters.

Example:

jrcmd <jrockit pid> [<command> [<arguments>]] [-l] [-f file] [-p] -h]

■ <jrockit pid> is either the process ID or the name of the Main class that runs the
application.

■ [<command> [<arguments>]] is any diagnostic command and its associated
arguments; for example, version, print_properties, command_line.

■ -l displays the counters exposed by this process. These counters are for internal
use by Oracle and are not officially supported or documented.

■ -f reads and executes commands from the file.

■ -p lists JRockit JVM processes on the local machine.

■ -h displays help.

If the PID is 0, commands will be sent to all Jrockit JVM processes. If no options are
given, the default is -p. If you are running a Flight Recorder-specific diagnostic
command and use 0 as the PID, the recorder does not remain active.

4.2.2 jrcmd Examples
This section provides examples of using jrcmd for the following tasks:

■ Listing JRockit JVM Processes

■ Sending a Command to a Process

■ Sending Several Commands

4.2.2.1 Listing JRockit JVM Processes
Do the following to list all JRockit JVM processes running on the machine:

■ Run jrcmd or jrcmd -p to list the running JRockit JVMs; for example:

> jrcmd -P
10064 Sleeper
 -Xverbose:memory -Xmx30m
>
You will see the PID of the process (10064), the program it is currently running
(Sleeper), and the parameters used to start the JVM (-Xverbose:memory -Xmx30m).

4.2.2.2 Sending a Command to a Process
To send a command to the process you identified in Section 4.2.2.1, "Listing JRockit
JVM Processes", do the following:

1. Find the PID. See Section 4.2.2.1, "Listing JRockit JVM Processes" (10064).

Note: jrcmd parameter strings are limited to 256 characters. If the
parameter string exceeds this limit, an exception will be thrown.

Using jrcmd

Running Diagnostic Commands 4-3

2. Run jrcmd with that PID and the version command; for example:

> jrcmd 10064 version

This command sends the version command to the JRockit JVM. The response will
be:

Oracle JRockit(R) build R28.0.0-679-130297-1.6.0_17-20100312-2122-windows-x86_
64, compiled mode
GC mode: Garbage collection optimized for throughput, strategy: genparpar

4.2.2.3 Sending Several Commands
You can create a file (similar to the ctrlhandler.act file) that contains several
commands and execute all of them. Use this procedure:

1. Create a file called commands.txt with the following contents:

■ version

■ timestamp

2. Execute the file with jrcmd; for example:

> jrcmd 10064 -f commands.txt

The system will respond:

Oracle JRockit(R) build R28.1.0-102-137086-1.6.0_20-20100825-2121-windows-ia32,
compiled mode
GC mode: Garbage collection optimized for throughput, strategy: genparpar
==== Timestamp ==== uptime: 0 days, 02:41:21 time: Mon Sep 06 16:23:43 2010

3. Set the PID to 0 to send the commands to all running JRockit JVM processes.

4.2.3 Known Limitations of jrcmd
When using jrcmd, be aware of these limitations:

■ In order to issue diagnostic commands to a process on Linux or Solaris, you must
run jrcmd with the same user as the one running the Java process.

■ When using jrcmd on Windows, you must run the Java process and jrcmd from
the same Windows station. If you run the Java process as a Windows service and
run jrcmd on your desktop, it will not work, because they are running in two
separate environments.

■ When a JRockit JVM is started as the root user and then changed to a
less-privileged user, security restrictions will prevent jrcmd from communicating
properly with the process.

The following actions are permitted:

– Root can list the running processes.

– The less-privileged user can send commands to the process.

The following actions are prohibited:

– Root cannot send commands to the process; commands will be treated as a
Ctrl-Break signal and print a thread dump instead.

Using the Ctrl-Break Handler

4-4 Oracle JRockit JDK Tools Guide

– Less privileged users cannot list the running JRockit JVM process but if they
know the process ID (PID), they can send commands to the process using
jrcmd <pid> <command>.

■ If the default Windows temporary directory (java.io.temp) is on a FAT file system,
jrcmd cannot discover local processes. For security reasons, local monitoring and
management is only supported if your default Windows temporary directory is on
a file system that supports setting permissions on files and directories (for
example, on an NTFS file system). It is not supported on FAT file systems, which
provide insufficient access controls.

4.3 Using the Ctrl-Break Handler
Another way you can run diagnostic commands is by pressing Ctrl-Break. When you
press Ctrl-Break, the JRockit JVM will search for a file named ctrlhandler.act (see
Example 4–1) in your current working directory. If it cannot find the file there, it will
search in the directory that contains the JVM. If it cannot find this file there, it will
revert to printing the thread dump. If it finds the file, it will read the file searching for
command entries, each of which invoke the corresponding diagnostic command.

Example 4–1 ctrlhandler.act File

set_filename filename=c:\output.txt append=true
print_class_summary
print_object_summary increaseonly=true
print_threads
print_threads nativestack=true
print_utf8pool
jrarecording filename=c:\myjra.xml time=120 nativesamples=true
verbosity set=memory,memdbg,codegen,opt,sampling filename="c:\output"
timestamp

stop
ctrl-break-handler will stop reading the file after it finds
the stop key-word
#
version - print JRockit version
#
print_threads - the normal thread dump that lists all the currently
running threads and there state
#
print_class_summary - prints a tree of the currently loaded classes
#
print_utf8pool - print the internal utf8 pool
#
print_object_summary - display info about how many objects of each
type that are live currently and how much size
they use. Also displays points to information
#
jrarecording - starts a jrarecording
#
verbosity - changes the verbosity level , not functional in ariane142_04
#
start_management_server - starts a management server
kill_management_server - shuts the management server down
(the managementserver.jar has to be in the bootclasspath for
these command to work)
#
#

Getting Help

Running Diagnostic Commands 4-5

In the ctrlhandler.act file, each command entry starts with a Ctrl-Break handler
name followed by the arguments to be passed to the Ctrl-Break handler. The
arguments should be in the proper format (that is, name=value; for example, set_
filename filename=c:\output.txt append=true). The acceptable property types are
string, integer, and Boolean values.

You can disable Ctrl-Break functionality by using the following option:

-Djrockit.dontusectrlbreakfile=true

4.4 Getting Help
To get help about the available commands, use the command help. This will print all
available commands.

For more information about each diagnostic command, see the "Diagnostic
Commands" chapter in Oracle JRockit Command Line Reference.

Getting Help

4-6 Oracle JRockit JDK Tools Guide

	Contents
	Preface
	About the Document
	Documentation Accessibility
	Conventions

	1 Overview of Oracle JRockit JDK Tools
	1.1 Customizable Verbose Logs
	1.2 Thread Dumps
	1.3 Diagnostic Commands
	1.4 Time Zone Updater
	1.5 Oracle JRockit Mission Control Client
	1.5.1 JRockit Browser
	1.5.2 JRockit Management Console
	1.5.3 JRockit Flight Recorder
	1.5.4 JRockit Memory Leak Detector
	1.5.5 Mission Control Documentation

	2 Understanding Verbose Output
	2.1 Memory Management Verbose Log Modules
	2.1.1 Verbose memory Log Module
	2.1.1.1 Initial Output of the memory Module
	2.1.1.2 Garbage Collection Output of the memory Module
	2.1.1.3 Page Fault Warning

	2.1.2 Verbose nursery Log Module
	2.1.2.1 Young Collection Output of the nursery Module
	2.1.2.2 Verbose Nursery-Size-Adjustment Output of the nursery Module

	2.1.3 Verbose memdbg Log Module
	2.1.3.1 Initial Output of the memdbg Module
	2.1.3.2 Parallel Old Collection Output of the memdbg Module
	2.1.3.3 Concurrent Old Collection Output of the memdbg Module
	2.1.3.4 Young Collection Output of the memdbg Module
	2.1.3.5 Parallel Sweep in Concurrent Old Collections

	2.1.4 Verbose Compaction Log Module
	2.1.4.1 Output of a Skipped Compaction

	2.1.5 Verbose gcpause Log Module
	2.1.5.1 Parallel Old Collection Output of the gcpause Module
	2.1.5.2 Concurrent Old Collection Output of the gcpause Module

	2.1.6 Verbose gcreport Log Module
	2.1.7 Verbose refobj Log Module
	2.1.8 Verbose alloc Log Module

	2.2 Other Verbose Log Modules
	2.2.1 Output of the opt Module
	2.2.2 Verbose exceptions Log Module

	3 Using Thread Dumps
	3.1 Creating Thread Dumps
	3.2 Reading Thread Dumps
	3.2.1 The Beginning of the Thread Dump
	3.2.2 Stack Trace for the Main Application Thread
	3.2.3 Locks and Lock Chains
	3.2.3.1 Presentation of Locks Out of Order

	3.2.4 JVM Internal Threads
	3.2.5 Other Java Application Threads
	3.2.6 Lock Chains

	3.3 Thread Status in Thread Dumps
	3.3.1 Life States
	3.3.2 Run States
	3.3.3 Special States

	3.4 Troubleshooting with Thread Dumps
	3.4.1 Detecting Deadlocks
	3.4.2 Detecting Processing Bottlenecks
	3.4.3 Viewing the Run-time Profile of an Application

	4 Running Diagnostic Commands
	4.1 Methods for Running Diagnostic Commands
	4.2 Using jrcmd
	4.2.1 How to Use jrcmd
	4.2.2 jrcmd Examples
	4.2.2.1 Listing JRockit JVM Processes
	4.2.2.2 Sending a Command to a Process
	4.2.2.3 Sending Several Commands

	4.2.3 Known Limitations of jrcmd

	4.3 Using the Ctrl-Break Handler
	4.4 Getting Help

