

[image: Oracle Corporation]

Oracle® Fusion Middleware

Programming Enterprise JavaBeans for Oracle WebLogic Server

11g Release 1 (10.3.1)

E13719-02

October 2009

This document is a resource for software developers who develop applications that include WebLogic Server Enterprise Java Beans (EJBs).

Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server, 11g Release 1 (10.3.1)

E13719-02

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples and Tutorials for the EJB Developer
	Avitek Medical Records Application (MedRec) and Tutorials
	EJB Examples in the WebLogic Server Distribution

	New and Changed Features in This Release

2 Understanding Enterprise JavaBeans

	How Do Applications Use EJBs?
	Session EJBs Implement Business Logic
	Stateless Session Beans
	Stateful Session Beans

	Entity EJBs Maintain Persistent Data
	Message-Driven Beans Implement Loosely Coupled Business Logic

	EJB Anatomy and Environment
	EJB Components
	The EJB Container
	EJB Deployment Descriptors
	Key Deployment Element Mappings
	Bean and Resource References
	Security Roles

	EJBs, Clients, and Application Objects
	EJB Communications

	EJBs and Message Destination References
	WebLogic Server Value-Added EJB Features
	Performance-Enhancing Features for WebLogic Server EJBs
	Pooling Improves EJB Response Time
	Caching Improves EJB Performance
	Additional Caching Capabilities for CMP Entities
	Field Groups for Efficient Queries (CMP Entities)
	Configurable Write Behaviors
	Operation Ordering and Batching (CMP Entities)
	Optimized Database Updates (CMP Entities)
	Read-Only Pattern and Read-Only Invalidation (CMP Entities)
	CMP Beans Increase Developer Productivity
	Automatic Primary Key Generation (CMP Entities)
	Automatic Table Creation (CMP Entities)
	Dynamic Queries (CMP Entities)
	Reliability and Availability Features
	Load Balancing Among Clustered EJBs Increases Scalability
	Failover for Clustered EJBs Increases Reliability

	Securing EJBs

3 Designing Enterprise Java Beans

	Choosing the Right Bean Type
	Session Bean Features
	Stateful Session Beans
	Stateless Session Beans
	Stateless Beans Offer Performance and Scalability Advantages
	Exposing Stateless Session Beans as Web Services

	Entity Bean Features
	Key Features of Entity Beans
	Read-Write versus Read-Only Entity Beans
	Entity Bean Performance and Data Consistency Characteristics

	Message-Driven Beans

	Persistence Management Alternatives
	Use Container-Managed Persistence (CMP) for Productivity and Portability
	Use Bean-Managed Persistence (BMP) Only When Necessary

	Transaction Design and Management Options
	Understanding Transaction Demarcation Strategies and Performance
	Demarcating Transactions at the Server Level is Most Efficient
	Container-Managed Transactions Are Simpler to Develop and Perform Well
	Rollback
	Transaction Boundaries
	Distributing Transactions Across Beans
	Costly Option: Distributing Transactions Across Databases

	Bean-Level Transaction Management
	When to Use Bean-Managed Transactions
	Keep Bean-Managed Transactions Short

	Client-Level Transaction Management is Costly
	Transaction Isolation: A Performance vs. Data Consistency Choice

	Satisfying Application Requirements with WebLogic Server EJBs

4 Implementing Enterprise Java Beans

	Overview of the EJB Development Process
	Create a Source Directory
	Create EJB Classes and Interfaces
	Using WebLogic Server Generic Bean Templates
	Programming Client Access to EJBs
	Programming Client to Obtain Initial Context
	Programming Client to Look Up a Home Interface
	Using EJB Links

	Configuring EJBs to Send Requests to a URL
	Specifying an HTTP Resource by URL
	Specifying an HTTP Resource by Its JNDI Name
	Accessing HTTP Resources from Bean Code
	Configuring Network Communications for an EJB
	Programming and Configuring Transactions
	Programming Container-Managed Transactions
	Configuring Automatic Retry of Container-Managed Transactions
	Programming Bean-Managed Transactions
	Programming Transactions That Are Distributed Across EJBs
	Calling multiple EJBs from a client's transaction context
	Using an EJB "Wrapper" to Encapsulate a Cross-EJB Transaction

	Programming the EJB Timer Service
	Clustered Versus Local EJB Timer Services
	Clustered EJB Timer Services
	Local EJB Timer Services
	Using Java Programming Interfaces to Program Timer Objects
	EJB 2.1 Timer-related Programming Interfaces
	WebLogic Server-specific Timer-related Programming Interfaces
	Timer Deployment Descriptors
	Configuring Clustered EJB Timers

	Declare Web Service References
	Compile Java Source
	Generate Deployment Descriptors
	Edit Deployment Descriptors
	Security Elements
	Resource Mapping Elements
	Persistence Elements
	Clustering Elements
	Data Consistency Elements
	Container-Managed Transactions Elements
	Performance Elements
	Network Communications Elements

	Generate EJB Wrapper Classes, and Stub and Skeleton Files
	appc and Generated Class Name Collisions

	Package
	Packaging Considerations for EJBs with Clients in Other Applications

	Deploy
	Solving Problems During Development
	Adding Line Numbers to Class Files
	Monitoring Data
	Creating Debug Messages

	WebLogic Server Tools for Developing EJBs
	Oracle JDeveloper
	Oracle Enterprise Pack for Eclipse
	Administration Console
	javac
	EJBGen
	DDInit
	WebLogic Server Ant Utilities
	weblogic.Deployer
	appc
	DDConverter
	Comparison of EJB Tool Features

5 Session EJBs

	Comparing Stateless and Stateful Session Beans
	Pooling for Stateless Session EJBs
	Caching and Passivating Stateful Session EJBs
	Stateful Session EJB Creation
	Stateful Session EJB Passivation
	Controlling Passivation
	Eager Passivation (LRU)
	Lazy Passivation (NRU)

	Specifying the Persistent Store Directory for Passivated Beans
	Configuring Concurrent Access to Stateful Session Beans

	Design Decisions for Session Beans
	Choosing Between Stateless and Stateful Beans
	Choosing the Optimal Free Pool Setting for Stateless Session Beans

	Implementing Session Beans
	WebLogic-Specific Configurable Behaviors for Session Beans

6 Entity EJBs

	Managing Entity Bean Pooling and Caching
	Understanding Entity Pooling
	Understanding Entity Caching
	Understanding Passivation of Entity Beans
	Understanding ejbLoad() and ejbStore() Behavior
	Controlling the Behavior of ejbLoad() and ejbStore()
	Disabling Cache Flushing
	Configuring Application-Level Caching

	Using Primary Keys
	Specifying Primary Keys and Primary Key Classes
	Guidelines for Primary Keys
	Automatically Generating Primary Keys
	Specifying Automatic Key Generation for Oracle Databases
	Specifying Automatic Key Generation for Microsoft SQL Server
	Generating Primary Keys with a Named Sequence Table
	Declaring Primary Key Field Type
	Support for Oracle Database SEQUENCE
	String-Valued CMP Field Trimming
	Benefits of String Trimming
	Disabling String Trimming

	Configuring Entity EJBs for Database Operations
	Configuring Table Mapping
	Automatic Table Creation (Development Only)
	Delaying Database Inserts
	Why Delay Database Inserts?
	Configuring Delayed Database Inserts
	Limiting Database Reads with cache-between-transactions
	Updating the Database Before Transaction Ends
	Dynamic Queries
	Enabling Dynamic Queries
	Executing Dynamic Queries
	Enabling BLOB and CLOB Column Support for Oracle or DB2 Databases
	Specifying a BLOB Column Using the Deployment Descriptor
	Serialization for cmp-fields of Type byte[] Mapped to an Oracle Blob
	Specifying a CLOB Column Using the Deployment Descriptor
	Optimized CLOB Column Insertion on Oracle 10g
	Specifying Field Groups
	Ordering and Batching Operations
	Operation Ordering
	Batch Operations Guidelines and Limitations
	Using Query Caching (Read-Only Entity Beans)

	Using SQL in Entity Beans
	Using Container-Managed Relationships (CMRs)
	CMR Requirements and Limitations
	CMR Cardinality
	CMR Direction
	Removing CMRs
	Defining Container-Managed Relationships (CMRs)
	Specifying Relationships in ejb-jar.xml
	Specifying Relationship Cardinality
	Specifying Relationship Directionality

	Specifying Relationships in weblogic-cmp-jar.xml
	One-to-One and One-to-Many Relationships
	Many-to-Many Relationships
	Specifying CMRs for EJBs that Map to Multiple Tables

	About CMR Fields and CMR Field Accessor Methods
	Using Cascade Delete for Entities in CMRs
	Relationship Caching
	Enabling Relationship Caching

	Choosing a Concurrency Strategy
	Exclusive Concurrency
	Database Concurrency
	Optimistic Concurrency
	Preventing Stale Optimistic Bean Data
	Explicit Invalidation of Optimistic Beans
	Invalidation Options for Optimistic Concurrency in Clusters
	Check Data for Validity with Optimistic Concurrency
	Optimistic Concurrency and Oracle Databases
	Read Only Concurrency
	Concurrency Strategy Trade-Offs
	Configuring Concurrency Strategy
	Deadlock Prevention for Exclusive Concurrency and Cascade Deletes
	Using the Read-Mostly Pattern
	Configuring Entity Beans for Read-Mostly Pattern
	Invalidating Read-Only Entity EJBs Implicitly
	Invalidating Entity EJBs Explicitly

	CMP Entity Bean Descriptors Element by Feature
	Container-Managed Relationship Elements
	Primary Key Elements

7 Message-Driven EJBs

8 Deployment Guidelines for Enterprise Java Beans

	Before You Deploy an EJB
	Understanding and Performing Deployment Tasks
	Deployment Guidelines for EJBs
	Deploy EJBs as Part of an Enterprise Application
	Deploy EJBs That Call Each Other in the Same Application
	Deploying EJBs that Use Dependency Injection
	Deploy Homogeneously to a Cluster
	Deploying Pinned EJBs to a Cluster
	Redeploying an EJB
	Using FastSwap Deployment to Minimize Deployment
	Understanding Warning Messages
	Disabling EJB Deployment Warning Messages

A Deployment Descriptor Schema and Document Type Definitions Reference

	XML Schema Definitions and Namespace Declarations
	weblogic-ejb-jar.xml Namespace Declaration and Schema Location
	weblogic-cmp-jar.xml Namespace Declaration and Schema Location
	ejb-jar.xml Namespace Declaration and Schema Location

	Document Type Definitions and DOCTYPE Header Information

B weblogic-ejb-jar.xml Deployment Descriptor Reference

	2.1 weblogic-ejb-jar.xml File Structure
	2.1 weblogic-ejb-jar.xml Elements
	allow-concurrent-calls
	Function
	Example

	allow-remove-during-transaction
	Function
	Example

	cache-between-transactions
	Function
	Example

	cache-type
	Function
	Example

	client-authentication
	Function
	Example

	client-cert-authentication
	Function
	Example

	clients-on-same-server
	Function
	Example

	component-factory-class-name
	Function

	concurrency-strategy
	Function
	Example

	confidentiality
	Function
	Example

	connection-factory-jndi-name
	Function
	Example

	connection-factory-resource-link
	Function

	create-as-principal-name
	Function

	delay-updates-until-end-of-tx
	Function
	Example

	description
	Function
	Example

	destination-jndi-name
	Function
	Example

	destination-resource-link
	Function

	disable-warning
	Function
	Example

	dispatch-policy
	Function
	Example

	distributed-destination-connection
	Function
	Example

	durable-subscription-deletion
	Function
	Example

	ejb-local-reference-description
	Function
	Example

	ejb-name
	Function
	Example

	ejb-reference-description
	Function
	Example

	ejb-ref-name
	Function
	Example

	enable-bean-class-redeploy
	Function
	Example

	enable-call-by-reference
	Function
	Example

	enable-dynamic-queries
	Function
	Example

	entity-always-uses-transaction
	Function

	entity-cache
	Function
	Example

	entity-cache-name
	Function
	Example

	entity-cache-ref
	Function
	Example

	entity-clustering
	Function
	Example

	entity-descriptor
	Function
	Example

	estimated-bean-size
	Function
	Example

	externally-defined
	Function

	finders-load-bean
	Function
	Example

	generate-unique-jms-client-id
	Function

	global-role
	home-call-router-class-name
	Function
	Example

	home-is-clusterable
	Function
	Example

	home-load-algorithm
	Function
	Example

	idempotent-methods
	Function
	Example

	identity-assertion
	Function
	Example

	idle-timeout-seconds
	Function
	Example

	iiop-security-descriptor
	Function
	Example

	init-suspend-seconds
	Function

	initial-beans-in-free-pool
	Function
	Example

	initial-context-factory
	Function
	Example

	integrity
	Function
	Example

	invalidation-target
	Function
	Example

	is-modified-method-name
	Function
	Example

	isolation-level
	Function
	Oracle Database-Only Isolation Levels
	Example

	jms-client-id
	Function
	Example

	jms-polling-interval-seconds
	Function
	Example

	jndi-name
	Function
	Example

	local-jndi-name
	Function
	Example

	max-beans-in-cache
	Function
	Example

	max-beans-in-free-pool
	Function
	Example

	max-messages-in-transaction
	Function

	max-queries-in-cache
	Function

	max-suspend-seconds
	Function

	message-destination-descriptor
	Function
	Example

	message-destination-name
	Function
	Example

	message-driven-descriptor
	Function
	Example

	method
	Function
	Example

	method-intf
	Function
	Example

	method-name
	Function
	Example

	method-param
	Function
	Example

	method-params
	Function
	Example

	network-access-point
	Function
	Example

	passivate-as-principal-name
	Function

	persistence
	Function
	Example

	persistence-use
	Function
	Example

	persistent-store-dir
	Function
	Example

	persistent-store-logical-name
	Function

	pool
	Function
	Example

	principal-name
	Function
	Example

	provider-url
	Function
	Example

	read-timeout-seconds
	Function
	Example

	remote-client-timeout
	Function
	Example

	remove-as-principal-name
	Function

	replication-type
	Function
	Example

	resource-env-ref-name
	Function
	Example

	res-ref-name
	Function
	Example

	resource-adapter-jndi-name
	Function

	resource-description
	Function
	Example

	resource-env-description
	Function
	Example

	resource-link
	Function
	Example

	retry-count
	Function

	retry-methods-on-rollback
	Function

	role-name
	Function
	Example

	run-as-identity-principal
	Function
	Example

	run-as-principal-name
	Function
	Example

	run-as-role-assignment
	Function
	Example
	A_EJB_with_runAs_role_X
	B_EJB_with_runAs_role_X
	C_EJB_with_runAs_role_Y

	security-permission
	Function
	Example

	security-permission-spec
	Function
	Example

	security-role-assignment
	Function
	Example

	service-reference-description
	Function
	Example

	session-timeout-seconds
	Function
	Example

	stateful-session-cache
	Function
	Example

	stateful-session-clustering
	Function
	Example

	stateful-session-descriptor
	Function
	Example

	stateless-bean-call-router-class-name
	Function
	Example

	stateless-bean-is-clusterable
	Function
	Example

	stateless-bean-load-algorithm
	Function
	Example

	stateless-bean-methods-are-idempotent
	Function
	Example

	stateless-clustering
	Function
	Example

	stateless-session-descriptor
	Function
	Example

	stick-to-first-server
	Function
	Example

	timer-descriptor
	Function

	timer-implementation
	Function
	Example

	transaction-descriptor
	Function
	Example

	transaction-isolation
	Function
	Example

	transport-requirements
	Function
	Example

	trans-timeout-seconds
	Function
	Example

	type-identifier
	Function
	Example

	type-storage
	Function
	Example

	type-version
	Function
	Example

	use-serverside-stubs
	Function
	Example

	use81-style-polling
	Function
	Example

	weblogic-compatibility
	Function

	weblogic-ejb-jar
	Function

	weblogic-enterprise-bean
	Function

	work-manager
	Function

C weblogic-cmp-jar.xml Deployment Descriptor Reference

	2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure
	2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements
	allow-readonly-create-and-remove
	Function
	Example

	automatic-key-generation
	Function
	Example

	caching-element
	Function
	Example

	caching-name
	Function
	Example

	check-exists-on-method
	Function
	Example

	cluster-invalidation-disabled
	Function
	Example

	cmp-field
	Function
	Example

	cmr-field
	Function
	Example

	column-map
	Function
	Example

	compatibility
	Function
	Example

	create-default-dbms-table
	Function
	Automatic Table Creation
	Automatic Oracle Database SEQUENCE Generation
	Example

	database-specific-sql
	Function
	Example

	database-type
	Function
	Example

	data-source-jndi-name
	Function
	Example

	db-cascade-delete
	Function
	Setting up Oracle Database for Cascade Delete
	Example

	dbms-column
	Function
	Example

	dbms-column-type
	Function
	Example

	dbms-default-value
	Function
	Example

	default-dbms-tables-ddl
	Function

	delay-database-insert-until
	Function
	Example

	description
	Function
	Example

	disable-string-trimming
	Function
	Example

	ejb-name
	Function
	Example

	ejb-ql-query
	Function
	Example

	enable-batch-operations
	Function
	Example

	enable-query-caching
	Function
	Example

	field-group
	Function
	Example

	field-map
	Function
	Example

	finders-return-nulls
	Function
	Example

	foreign-key-column
	Function
	Example

	foreign-key-table
	Function
	Example

	generator-name
	Function
	Example

	generator-type
	Function
	Example

	group-name
	Function
	Example

	include-updates
	Function
	Example

	instance-lock-order
	Function
	Example

	key-cache-size
	Function
	Example

	key-column
	Function
	Example

	lock-order
	Function
	Example

	max-elements
	Function
	Example

	method-name
	Function
	Example

	method-param
	Function
	Example

	method-params
	Function
	Example

	optimistic-column
	Function
	Example

	order-database-operations
	Function
	Example

	pass-through-columns
	Function
	Example

	primary-key-table
	Function
	Example

	query-method
	Function
	Example

	relation-name
	Function
	Example

	relationship-caching
	Function
	Example

	relationship-role-map
	Function
	Example
	Mapping a Bean on Foreign Key Side of a Relationship to Multiple Tables
	Mapping a Bean on Primary Key Side of a Relationship to Multiple Tables

	relationship-role-name
	Function
	Example

	serialize-byte-array-to-oracle-blob
	Function
	Example

	serialize-char-array-to-bytes
	Function
	Example

	sql
	Function
	Example

	sql-query
	Function
	Example

	sql-select-distinct
	Function
	Example

	sql-shape
	Function
	Example

	sql-shape-name
	Function
	Example

	table-map
	Function
	Example

	table-name
	Function
	Example

	trigger-updates-optimistic-column
	Function
	Example

	unknown-primary-key-field
	Function
	Example

	use-select-for-update
	Function
	Example

	validate-db-schema-with
	Function
	Example

	verify-columns
	Function
	Example

	verify-rows
	Function
	Example

	version-column-initial-value
	Function
	Example

	weblogic-ql
	Function
	Example

	weblogic-query
	Function
	Example

	weblogic-rdbms-bean
	Function
	Example

	weblogic-rdbms-jar
	Function
	Example

	weblogic-rdbms-relation
	Function
	Examples
	Defining a One-to-One Relationship
	Defining a One-to-Many Relationship
	Defining a Many-to-Many Relationship

	weblogic-relationship-role
	Function
	Example

D appc Reference

	appc
	Advantages of Using appc
	appc Syntax
	Designating Alternative Deployment Descriptors
	appc Options
	appc and EJBs

E EJBGen Reference

	Running EJBGen
	EJBGen Distribution and Examples
	Invoking EJBGen
	EJBGen Command Options
	Using Key EJBGen Features
	Controlling the Files EJBGen Generates
	Using Property Files with EJBGen
	Using User Variables
	Using Predefined Variables
	Surround Attributes that Contain Spaces With Double Quotes
	EJBGen Supports Tag Inheritance

	Examples of EJBGen Tag Usage
	Mapping an Entity Bean to Several Tables with EJBGen
	Specifying Relationship Caching with EJBGen Tags
	Specifying Relationships with EJBGen Tags
	Upgrading Relationships to Use Local Interfaces

	Enum Attribute Constant Values
	Constants.Bool
	Constants.TransactionAttribute
	Constants.IsolationLevel
	Constants.RefType
	Constants.HomeLoadAlgorithm
	Constants.Interface
	Constants.ConcurrencyStrategy

	EJBGen Annotation Reference
	EJB Container Annotations
	weblogic.ejbgen.ActivationConfigProperties
	weblogic.ejbgen.ActivationConfigProperty
	Attributes
	weblogic.ejbgen.AutomaticKeyGeneration
	Attributes
	weblogic.ejbgen.CmpField
	Attributes
	weblogic.ejbgen.CmrField
	Attributes
	weblogic.ejbgen.Compatibility
	Attributes
	weblogic.ejbgen.CreateDefaultDbmsTables
	weblogic.ejbgen.CreateDefaultRdbmsTables
	weblogic.ejbgen.DBSpecificSQL
	Attributes
	weblogic.ejbgen.EjbClientJar
	weblogic.ejbgen.EjbInterface (deprecated)
	Attributes
	weblogic.ejbgen.EjbLocalRef
	Attributes
	weblogic.ejbgen.EjbLocalRefs
	weblogic.ejbgen.EjbRef
	Attributes
	weblogic.ejbgen.EjbRefs
	weblogic.ejbgen.Entity
	Attributes
	weblogic.ejbgen.EntityCacheRef
	Attributes
	weblogic.ejbgen.EnvEntries
	weblogic.ejbgen.EnvEntry
	Attributes
	weblogic.ejbgen.FileGeneration
	Attributes
	weblogic.ejbgen.Finder
	Attributes
	weblogic.ejbgen.Finders
	weblogic.ejbgen.ForeignJmsProvider
	Attributes
	weblogic.ejbgen.JarSettings
	Attributes
	weblogic.ejbgen.JndiName
	Attributes
	weblogic.ejbgen.LocalHomeMethod
	Attributes
	weblogic.ejbgen.LocalMethod
	Attributes
	weblogic.ejbgen.MessageDestination
	Attributes
	weblogic.ejbgen.MessageDestinationRef
	Attributes
	weblogic.ejbgen.MessageDestinationRefs
	weblogic.ejbgen.MessageDestinations
	weblogic.ejbgen.MessageDriven
	Attributes
	weblogic.ejbgen.MethodIsolationLevelPattern
	Attributes
	weblogic.ejbgen.MethodIsolationLevelPatterns
	weblogic.ejbgen.MethodPermissionPattern
	Attributes
	weblogic.ejbgen.MethodPermissionPatterns
	weblogic.ejbgen.PrimKeyField
	weblogic.ejbgen.Relation
	Attributes
	weblogic.ejbgen.Relations
	weblogic.ejbgen.RelationshipCachingElement
	Attributes
	weblogic.ejbgen.RelationshipCachingElements
	weblogic.ejbgen.RemoteHomeMethod
	Attributes
	weblogic.ejbgen.RemoteMethod
	Attributes
	weblogic.ejbgen.ResourceEnvRef
	Attributes
	weblogic.ejbgen.ResourceEnvRefs
	weblogic.ejbgen.ResourceRef
	Attributes
	weblogic.ejbgen.ResourceRefs
	weblogic.ejbgen.RoleMapping
	Attributes
	weblogic.ejbgen.RoleMappings
	weblogic.ejbgen.SecurityRoleRef
	Attributes
	weblogic.ejbgen.SecurityRoleRefs
	weblogic.ejbgen.Select
	Attributes
	weblogic.ejbgen.ServiceEndpointMethod
	Attributes
	weblogic.ejbgen.ServiceRef
	Attributes
	weblogic.ejbgen.ServiceRefs
	weblogic.ejbgen.Session
	Attributes
	weblogic.ejbgen.SqlFinder
	Attributes
	weblogic.ejbgen.SqlFinders
	weblogic.ejbgen.SqlShape
	Attributes
	weblogic.ejbgen.SqlShapeTable
	Attributes
	weblogic.ejbgen.SqlShapes
	weblogic.ejbgen.ValueObject
	Attributes
	weblogic.ejbgen.ValueObjectField
	Attributes

F Important Information for EJB 1.1 Users

	Writing for RDBMS Persistence for EJB 1.1 CMP
	Finder Signature
	finder-list Element
	finder-query Element

	Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
	WLQL Syntax
	WLQL Operators
	WLQL Operands
	Examples of WLQL Expressions

	Using SQL for CMP 1.1 Finder Queries
	Tuned EJB 1.1 CMP Updates in WebLogic Server
	Using is-modified-method-name to Limit Calls to ejbStore()
	5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
	caching-descriptor
	max-beans-in-free-pool
	initial-beans-in-free-pool
	max-beans-in-cache
	idle-timeout-seconds
	cache-strategy
	read-timeout-seconds
	persistence-descriptor
	is-modified-method-name
	delay-updates-until-end-of-tx
	persistence-type
	db-is-shared
	stateful-session-persistent-store-dir
	persistence-use
	clustering-descriptor
	home-is-clusterable
	home-load-algorithm
	home-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-call-router-class-name
	stateless-bean-methods-are-idempotent
	transaction-descriptor
	trans-timeout-seconds
	reference-descriptor
	resource-description
	ejb-reference-description
	enable-call-by-reference
	jndi-name
	transaction-isolation
	isolation-level
	Oracle-Only Isolation Levels
	method
	security-role-assignment

	1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure
	1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements
	RDBMS Definition Elements
	enable-tuned-updates
	pool-name
	schema-name
	table-name
	EJB Field-Mapping Elements
	attribute-map
	object-link
	bean-field
	dbms-column
	Finder Elements
	finder-list
	finder
	method-name
	method-params
	method-param
	finder-query
	finder-expression

G EJB Query Language (EJB-QL) and WebLogic Server

	EJB QL Requirement for EJB 2.x Beans
	Using the EJB 2.x WebLogic QL Extension for EJB QL
	upper and lower Functions
	upper
	lower
	Using ORDER BY
	Using Subqueries
	Subquery Return Types
	Subqueries as Comparison Operands
	Correlated and Uncorrelated Subqueries
	DISTINCT Clause with Subqueries

	Using Arithmetic Functions
	Using Aggregate Functions
	Using Queries that Return ResultSets
	Using Oracle SELECT HINTS
	"get" and "set" Method Restrictions

	Properties-Based Methods of the Query Interface
	Migrating from WLQL to EJB QL
	Known Issue with Implied Cross Products
	EJB QL Error-Reporting
	Visual Indicator of Error in Query
	Multiple Errors Reported after a Single Compilation

Preface

This preface describes the document accessibility features and conventions used in this guide—Programming Enterprise JavaBeans for Oracle WebLogic Server.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction and Roadmap

This section describes the contents and organization of this guide—Programming Enterprise JavaBeans for Oracle WebLogic Server.

	
Document Scope and Audience

	
Guide to this Document

	
Related Documentation

	
Samples and Tutorials for the EJB Developer

	
New and Changed Features in This Release

Document Scope and Audience

This document is a resource for software developers who develop applications that include WebLogic Server Enterprise Java Beans (EJBs). It also contains information that is useful for business analysts and system architects who are evaluating WebLogic Server or considering the use of WebLogic Server EJBs for a particular application.

The topics in this document are relevant during the design and development phases of a software project. The document also includes topics that are useful in solving application problems that are discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance tuning. For links to WebLogic Server documentation and resources for these topics, see Related Documentation.

It is assumed that the reader is familiar with J2EE and EJB concepts. This document emphasizes the value-added features provided by WebLogic Server EJBs and key information about how to use WebLogic Server features and facilities to get an EJB application up and running.

Guide to this Document

	
This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization of this guide.

	
Chapter 2, "Understanding Enterprise JavaBeans," reviews the different bean types, their capabilities, and how they work with other application objects and WebLogic Server.

	
Chapter 3, "Designing Enterprise Java Beans," discusses design options for WebLogic Server Enterprise Java Beans (EJBs), factors to consider during the design process, and recommended design patterns.

	
Chapter 4, "Implementing Enterprise Java Beans," describes the EJB implementation process, and provides guidance for how to get an EJB up and running in WebLogic Server.

	
Chapter 5, "Session EJBs," describes how session beans work within the EJB container, and provides design and development guidelines that are specific to session beans.

	
Chapter 6, "Entity EJBs," describes how entity beans work within the EJB container, and provides design and development guidelines that are specific to entity beans.

	
Chapter 7, "Message-Driven EJBs," describes how message-driven beans work within the EJB container, and provides design and development guidelines that are specific to message-driven beans.

	
Chapter 8, "Deployment Guidelines for Enterprise Java Beans," discusses EJB-specific deployment issues and procedures.

	
Chapter A, "Deployment Descriptor Schema and Document Type Definitions Reference," describes the EJB XML Schema Definitions (XSDs) and the namespace declarations that deployment descriptor files must contain.

	
Appendix B, "weblogic-ejb-jar.xml Deployment Descriptor Reference," describes the EJB 2.x deployment descriptor elements in weblogic-ejb-jar.xml file, the WebLogic Server-specific deployment descriptor.

	
Appendix C, "weblogic-cmp-jar.xml Deployment Descriptor Reference," describes the EJB 2.x elements in weblogic-cmp-jar.xml file, the WebLogic Server-specific deployment descriptor for container-managed persistence features.

	
Appendix D, "appc Reference," is a complete reference for the WebLogic Server appc tool for compiling, validating, and generating EJB code.

	
Appendix E, "EJBGen Reference," is a reference for the WebLogic Server EJBGen EJB 2.x code generator.

	
Appendix F, "Important Information for EJB 1.1 Users," contains important design and implementation information specific to EJB 1.1.

	
Appendix G, "EJB Query Language (EJB-QL) and WebLogic Server," discusses issues pertinent to using EJB QL with WebLogic Server.

Related Documentation

This document contains EJB-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server applications, see the following documents:

	
Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server is a resource for developing applications that use message-driven beans (MDBs).

	
Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic Server applications.

	
Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server is the primary source of information about deploying WebLogic Server applications in development and production environments.

	
Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server provides information on how to monitor performance and tune the components in a WebLogic Server.

Samples and Tutorials for the EJB Developer

In addition to this document, Oracle provides a variety of code samples and tutorials for EJB developers. The examples and tutorials illustrate WebLogic Server EJBs in action, and provide practical instructions on how to perform key EJB development tasks.

Oracle recommends that you run some or all of the EJB examples before developing your own EJBs.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates an independent, centralized medical record management system. The MedRec application provides a framework for patients, doctors, and administrators to manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights Oracle-recommended best practices. MedRec is included in the WebLogic Server distribution, and can be accessed from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level installation directory for WebLogic Platform.

MedRec includes a service tier comprised primarily of EJBs that work together to process requests from Web applications, Web services, and workflow applications, and future client applications. The application includes message-driven, stateless session, stateful session, and entity EJBs.

As companion documentation to the MedRec application, Oracle provides tutorials that provide step-by-step procedures for key development tasks, including EJB-specific tasks, such as:

	
Using EJBGen to Generate EJB deployment descriptors

	
Exposing a stateless Session EJB as a Web service

	
Securing EJB resources using the Administration Console

EJB Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in WL_HOME\samples\server\examples\src\examples\ejb, where WL_HOME is the top-level directory of your WebLogic Server installation. You can start the examples server, and obtain information about the samples and how to run them from the WebLogic Server Start menu.

New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see "What's New in WebLogic Server" in Oracle Fusion Middleware What's New in Oracle WebLogic Server.

2 Understanding Enterprise JavaBeans

These sections briefly review the different Enterprise JavaBean (EJB) types and the functions they can serve in an application, and describe how they work with other application objects and WebLogic Server.

It is assumed the reader is familiar with Java programming and EJB 2.x concepts and features.

	
How Do Applications Use EJBs?

	
EJB Anatomy and Environment

	
EJBs, Clients, and Application Objects

	
EJBs and Message Destination References

	
WebLogic Server Value-Added EJB Features

	
Securing EJBs

How Do Applications Use EJBs?

These sections describe the purpose and capabilities of each bean type:

	
Session EJBs Implement Business Logic.

	
Entity EJBs Maintain Persistent Data.

	
Message-Driven Beans Implement Loosely Coupled Business Logic.

Session EJBs Implement Business Logic

Session beans implement business logic. A session bean instance serves one client at a time. There are two types of session beans: stateful and stateless.

Stateless Session Beans

A stateless session bean does not store session or client state information between invocations—the only state it might contain is not specific to a client, for instance, a cached database connection or a reference to another EJB. At most, a stateless session bean may store state for the duration of a method invocation. When a method completes, state information is not retained. Any instance of a stateless session bean can serve any client—any instance is equivalent. Stateless session beans can provide better performance than stateful session beans, because each stateless session bean instance can support multiple clients, albeit one at a time.

Example: An Internet application that allows visitors to click a "Contact Us" link and send an email could use a stateless session bean to generate the email, based on the to and from information gathered from the user by a JSP.

Stateful Session Beans

Stateful session beans maintain state information that reflects the interaction between the bean and a particular client across methods and transactions. A stateful session bean can manage interactions between a client and other enterprise beans, or manage a workflow.

Example: A company Web site that allows employees to view and update personal profile information could use a stateful session bean to call a variety of other beans to provide the services required by a user, after the user clicks "View my Data" on a page:

	
Accept the login data from a JSP, and call another EJB whose job it is to validate the login data.

	
Send confirmation of authorization to the JSP.

	
Call a bean that accesses profile information for the authorized user.

Entity EJBs Maintain Persistent Data

An entity bean represents a set of persistent data, usually rows in a database, and provides methods for maintaining or reading that data. An entity bean is uniquely identified by a primary key, and can provide services to multiple clients simultaneously. Entity beans can participate in relationships with other entity beans. The relationships between entity beans are a function of the real-world entities that the entity beans model. An entity bean's fields and its relationships to other entity beans are defined in an object schema, which is specified in the bean's ejb-jar.xml deployment descriptor.

An entity bean can have other bean types, such as message-driven or session beans, as clients, or be directly accessed by Web components. The client uses the entity bean to access data in a persistent store. An entity bean encapsulates the mechanics of database access, isolating that complexity from its clients and de-coupling physical database details from business logic.

Example: The stateful session bean in the previous example, which orchestrates services for an employee accessing personal profile information on a company intranet, could use an entity bean for getting and updating the employee's profile.

Message-Driven Beans Implement Loosely Coupled Business Logic

A message-driven bean implements loosely coupled or asynchronous business logic in which the response to a request need not be immediate. A message-driven bean receives messages from a JMS Queue or Topic, and performs business logic based on the message contents. It is an asynchronous interface between EJBs and JMS.

Throughout its life cycle, an MDB instance can process messages from multiple clients, although not simultaneously. It does not retain state for a specific client. All instances of a message-driven bean are equivalent—the EJB container can assign a message to any MDB instance. The container can pool these instances to allow streams of messages to be processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean instances and passing JMS messages to those instances as necessary. The container creates bean instances at deployment time, adding and removing instances during operation based on message traffic.

For detailed information, see Programming Message-Driven Beans for Oracle WebLogic Server.

Example: In an on-line shopping application, where the process of taking an order from a customer results in a process that issues a purchase order to a supplier, the supplier ordering process could be implemented by a message-driven bean. While taking the customer order always results in placing a supplier order, the steps are loosely coupled because it is not necessary to generate the supplier order before confirming the customer order. It is acceptable or beneficial for customer orders to "stack up" before the associated supplier orders are issued.

EJB Anatomy and Environment

These sections briefly describe classes required for each bean type, the EJB run-time environment, and the deployment descriptor files that govern a bean's run-time behavior.

	
EJB Components

	
The EJB Container

	
EJB Deployment Descriptors

EJB Components

The composition of a bean varies by bean type. Table 2-1 defines the classes that make up each type of EJB, and defines the purpose of the class type.

Table 2-1 Components of an EJB

	EJB Component	Description	Stateless Session	Stateful Session	Entity	MDB
	
Remote interface

	
The remote interface exposes business logic to remote clients—clients running in a separate application from the EJB. It defines the business methods a remote client can call.

	
Yes

	
Yes

	
Yes

	
No

	
Local interface

	
The local interface exposes business logic to local clients—those running in the same application as the EJB. It defines the business methods a local client can call.

Note: Not available for 1.1 EJBs.

	
Yes

	
Yes

	
Yes

	
No

	
Local home interface

	
The local home interface, also referred to as an EJB factory or life-cycle interface, provides methods that local clients—those running in the same application as the EJB—can use to create, remove, and in the case of an entity bean, find instances of the bean.

The local home interface also has "home methods"—business logic that is not specific to a particular bean instance.

	
Yes

	
Yes

	
Yes

	
No

	
Remote home interface

	
The remote home interface, also referred to as an EJB factory, or life-cycle interface, provides methods that remote clients—those running in a separate application from the EJB—can use to create, remove, and find instances of the bean.

	
Yes

	
Yes

	
Yes

	
No

	
Bean class

	
The bean class implements business logic.

	
Yes

	
Yes

	
Yes

	
Yes

	
Primary key class

	
Only entity beans have a primary key class. The primary key class maps to one or more fields in a database—identifying the persistent data to which the entity bean corresponds.

	
No

	
No

	
Yes

	
No

The EJB Container

An EJB container is a run-time container for beans that are deployed to an application server. The container is automatically created when the application server starts up, and serves as an interface between a bean and run-time services such as:

	
Life cycle management

	
Code generation

	
Persistence management

	
Security

	
Transaction management

	
Locking and concurrency control

EJB Deployment Descriptors

The structure of a bean and its run-time behavior are defined in one or more XML deployment descriptor files. Programmers create deployment descriptors during the EJB packaging process, and the descriptors become a part of the EJB deployment when the bean is compiled.

WebLogic Server EJBs have three deployment descriptors:

	
ejb-jar.xml—The standard J2EE deployment descriptor. All beans must be specified in an ejb-jar.xml. An ejb-jar.xml can specify multiple beans that will be deployed together.

	
weblogic-ejb-jar.xml—WebLogic Server-specific deployment descriptor that contains elements related to WebLogic Server features such as clustering, caching, and transactions. This file is required if your beans take advantage of WebLogic Server-specific features. Like ejb-jar.xml, weblogic-ejb-jar.xml can specify multiple beans that will be deployed together. See "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server.

	
weblogic-cmp-jar.xml—WebLogic Server-specific deployment descriptor that contains elements related to container-managed persistence for entity beans. Entity beans that use container-managed persistence must be specified in a weblogic-cmp-jar.xml file. See "weblogic-cmp-jar.xml Deployment Descriptor Reference" in Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server.

Key Deployment Element Mappings

As described in EJB Deployment Descriptors, a WebLogic Server EJB's runtime behavior can be controlled by elements in three different descriptor files: ejb-jar.xml, weblogic-ejb-jar.xml, and weblogic-cmp-jar.xml.

Table 2-2 lists the elements whose values should match in each descriptor file. The elements listed in the table are defined in Bean and Resource References and Security Roles.

Table 2-2 Element Mapping Among Descriptor Files

	Map this element...	in this element of ejb-jar.xml...	to the same element in this element of weblogic-ejb-jar.xml...	and to this element in weblogic-cmp-jar.xml...
	
role-name

	
security-role

	
security-role-assignment

	
N/A

	
ejb-name

	
message-driven, entity, or session

	
weblogic-enterprise-bean

	
weblogic-rdbms-bean

	
ejb-ref-name

	
assembly-descriptor

	
ejb-reference-description if the referenced bean runs in a different container than the current bean.

or

ejb-local-reference-description if the referenced bean runs in the same container as the current bean.

	
N/A

	
res-ref-name

	
resource-ref

	
resource-description

	
N/A

Bean and Resource References

Each descriptor file contains elements that identify a bean, and the runtime factory resources it uses:

	
ejb-name—the name used to identify a bean in each deployment descriptor file, independent of the name that application code uses to refer to the bean.

	
ejb-ref-name—the name by which a bean in another JAR is referred to in the referencing bean's code.

	
res-ref-name—the name by which a resource factory is referred to in the referencing bean's code.

A given bean or resource factory is identified by the same value in each descriptor file that contains it. Table 2-1 lists the bean and resource references elements, and their location in each descriptor file.

For instance, for a container-managed persistence entity bean named LineItem, this line:

<ejb-name>LineItem</ejb-name>

would appear in the:

	
assembly-descriptor element of ejb-jar.xml

	
enterprise-bean element of weblogic-ejb-jar.xml

	
weblogic-rdbms-bean element of weblogic-cmp-jar.xml

Security Roles

Security roles are defined in the role-name element in ejb-jar.xml and weblogic-ejb-jar.xml.

For information on:

	
Programming security features for an EJB, see "Securing Enterprise JavaBeans (EJBs)" in Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

	
Creating or generating deployment descriptor files, see Generate Deployment Descriptors.

	
Editing deployment descriptor files, see Edit Deployment Descriptors.

	
Elements in ejb-jar.xml, see http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd.

	
Elements in weblogic-ejb-jar.xml, see Appendix B, "weblogic-ejb-jar.xml Deployment Descriptor Reference."

	
Elements in weblogic-cmp-jar.xml, see Appendix C, "weblogic-cmp-jar.xml Deployment Descriptor Reference."

EJBs, Clients, and Application Objects

Figure 2-1 illustrates how EJBs typically relate to other components of a WebLogic Server application and to clients.

Figure 2-1 EJBs and Other Application Components

[image: Description of Figure 2-1 follows]

An EJB can be accessed by server-side or client-side objects such as servlets, Java client applications, other EJBs, applets, and non-Java clients.

Any client of an EJB, whether in the same or a different application, accesses it in a similar fashion. WebLogic Server automatically creates implementations of an EJB's home and business interfaces that can function remotely, unless the bean has only a local interface.

All EJBs must specify their environment properties using the Java Naming and Directory Interface (JNDI). You can configure the JNDI namespaces of EJB clients to include the home interfaces for EJBs that reside anywhere on the network—on multiple machines, application servers, or containers.

Most beans do not require a global JNDI name—specified in the jndi-name and local-jndi-name elements of weblogic-ejb-jar.xml. Most beans reference to each other using ejb-links, as described in Using EJB Links.

Because of network overhead, it is more efficient to access beans from a client on the same machine than from a remote client, and even more efficient if the client is in the same application.

See Programming Client Access to EJBs for information on programming client access to an EJB.

EJB Communications

WebLogic Server EJBs use:

	
T3—To communicate with remote objects. T3 is a WebLogic-proprietary remote network protocol that implements the Remote Method Invocation (RMI) protocol.

	
RMI—To communicate with remote objects. RMI enables an application to obtain a reference to an object located elsewhere in the network, and to invoke methods on that object as though it were co-located with the client on the same JVM locally in the client's virtual machine.

An EJB with a remote interface is an RMI object. An EJB's remote interface extends java.rmi.remote. For more information on WebLogic RMI, see Oracle Fusion Middleware Programming RMI for Oracle WebLogic Server.

	
HTTP—An EJB can obtain an HTTP connection to a Web server external to the WebLogic Server environment by using the java.net.URL resource connection factory. For more information, see Configuring EJBs to Send Requests to a URL.

You can specify the attributes of the network connection an EJB uses by binding the EJB to a WebLogic Server custom network channel. For more information, see Configuring Network Communications for an EJB.

EJBs and Message Destination References

In this release of WebLogic Server, you can use logical message destinations to map a logical message destination, defined in ejb-jar.xml, to an actual message destination, defined in weblogic-ejb-jar.xml, as described in "Configuring EJBs to Use Logical Message Destinations" in Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server.

If a message destination reference cannot be resolved during deployment, a warning is issued but the deployment will succeed. MDBs linked to unavailable message destinations periodically attempt to connect to the message destination. Until the message destination is available, attempts to look up message-destination-references declared in ejb-jar.xml fail with a javax.naming.NamingException. When the message destination becomes available, the MDBs will connect to it and service messages from it.

WebLogic Server Value-Added EJB Features

This section describes key WebLogic Server features that ease the process of EJB development, and enhance the performance, reliability, and availability of EJB applications.

Performance-Enhancing Features for WebLogic Server EJBs

WebLogic Server supports pooling, caching, and other features that improve the response time and performance of EJBs. In a production environment, these features can reduce the time it takes for a client to obtain an EJB instance and access and maintain persistent data.

Pooling Improves EJB Response Time

WebLogic Server maintains a free pool of ready-to-use EJB instances for stateless session beans, message-driven beans, and entity beans. The EJB container creates a configurable number of bean instances at startup, so that a new instance does not have to be created for every request. When a client is done with an EJB instance, the container returns it to the pool for reuse. For more information see:

	
Understanding Entity Pooling

	
"Message-Driven EJB Life Cycle and the Free Pool" in Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server

	
Pooling for Stateless Session EJBs

In this release of WebLogic Server, Administrators can initialize EJB pools on demand via the Administration Console. When an EJB's pool is initialized, it is reset to the state it was immediately after the EJB was deployed. For more information, see "Initialize the idle bean cache and pool of an EJB" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

Caching Improves EJB Performance

WebLogic Server supports caching for stateful session beans and entity beans.

An inactive cached bean instance can be passivated—removed from the cache and written to disk—and restored to memory later as necessary. Passivating bean instances optimizes use of system resources.

You can configure the size of the cache, and related behaviors such as rules for removing beans from the cache. Caching is supported for entity EJBs, whether they use container-managed or bean-managed persistence.

Additionally, in this release of WebLogic Server, Administrators can initialize EJB caches on demand via the Administration Console. When an EJB's cache is initialized, it is reset to the state it was in immediately after the EJB was deployed. For more information, see "Initialize the idle bean cache and pool of an EJB" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

For more information, see:

	
Understanding Entity Caching

	
Caching and Passivating Stateful Session EJBs

Additional caching features are available for EJBs that use container-managed persistence, as described in the following section.

Additional Caching Capabilities for CMP Entities

WebLogic Server provides these caching capabilities for entity beans that use container managed persistence:

	
Relationship caching—Relationship caching improves the performance of entity beans by loading related beans into the cache and avoiding multiple queries by issuing a join query for the related beans. For more information, see Relationship Caching.

	
Application-level caching—Application-level caching, also known as "combined caching," allows multiple entity beans that are part of the same J2EE application to share a single runtime cache. For more information, see Configuring Application-Level Caching.

	
Caching between transactions—Use caching between transactions or long term caching to enable the EJB container to cache an entity bean's persistent data between transactions. For more information, see Limiting Database Reads with cache-between-transactions.

Field Groups for Efficient Queries (CMP Entities)

A group specifies a set of persistent attributes of an entity bean. A field-group represents a subset of the container-managed persistence (CMP) and container-managed relation (CMR) fields of a bean. You can put related fields in a bean into groups that are faulted into memory together as a unit. You can associate a group with a query or relationship, so that when a bean is loaded as the result of executing a query or following a relationship, only the fields mentioned in the group are loaded. For more information, see Specifying Field Groups.

Configurable Write Behaviors

You can configure the behavior of the ejbLoad() and ejbStore() methods to enhance performance, by avoiding unnecessary calls to ejbStore(). As appropriate, you can ensure that WebLogic Server calls ejbStore() after each method call, rather than at the conclusion of the transaction. For more information, see Understanding ejbLoad() and ejbStore() Behavior.

Operation Ordering and Batching (CMP Entities)

WebLogic Server allows you to batch and order multiple database operations so that they can be completed in a single database "round-trip". This allows you to avoid the bottlenecks that might otherwise occur when multiple entity instances are affected by a single transaction. For more information, see Ordering and Batching Operations.

Optimized Database Updates (CMP Entities)

In this release of WebLogic Server, for CMP 2.0 entity beans, the setXXX() method does not write the values of unchanged primitive and immutable fields to the database. This optimization improves performance, especially in applications with a high volume of database updates.

Read-Only Pattern and Read-Only Invalidation (CMP Entities)

For EJB data that is only occasionally updated, you can create a "read-mostly pattern" by implementing a combination of read-only and read-write EJBs. If you use the read-mostly pattern, you can use multicast invalidation to maintain data consistency—an efficient mechanism for invalidating read-only cached data after updates. Use of the invalidate() method after the transaction update has completed invalidates the local cache and results in a multicast message sent to the other servers in the cluster to invalidate their cached copies. For more information, see Using the Read-Mostly Pattern.

CMP Beans Increase Developer Productivity

WebLogic Server provides a variety of value-added database access features for entity beans that use container-managed persistence:

Automatic Primary Key Generation (CMP Entities)

WebLogic Server supports multiple methods to automatically generate simple primary key for CMP entity EJBs, including use of an Oracle SEQUENCE (which can be automatically generated by WebLogic Server). For more information, see Automatically Generating Primary Keys.

Automatic Table Creation (CMP Entities)

You can configure the EJB container to automatically change the underlying table schema as entity beans change, ensuring that tables always reflect the most recent object-relationship mapping. For more information, see Automatic Table Creation (Development Only).

Dynamic Queries (CMP Entities)

WebLogic Server allows you to construct and execute EJB-QL queries programmatically in your application code. This allows you to create and execute new queries without having to update and deploy an EJB. It also reduces the size and complexity of the EJB deployment descriptors. For more information, see Choosing a Concurrency Strategy.

Reliability and Availability Features

WebLogic Server EJBs can be deployed to a cluster, allowing support for load balancing, and failover for remote clients of an EJB. EJBs must be deployed to all clustered servers.

A WebLogic Server cluster consists of multiple WebLogic Server server instances running simultaneously and working together to provide increased scalability and reliability. A cluster appears to clients as a single WebLogic Server instance. The server instances that constitute a cluster can run on the same machine, or be located on different machines.

Failover and load balancing for EJBs are handled by replica-aware stubs, which can locate instances of the object throughout the cluster. Replica-aware stubs are created for EJBs as a result of the object compilation process. EJBs can have two different replica-aware stubs: one for the EJBHome interface and one for the EJBObject interface. This allows some bean types to take advantage of load balancing and failover features at the home level when a client looks up an EJB object using the EJBHome stub and at the method level when a client makes method calls against the EJB using the EJBObject stub. Table 2-1 summarizes the load balancing and failover support (method level and home level) for each EJB type.

Load Balancing Among Clustered EJBs Increases Scalability

The bean stub contains the load balancing algorithm (or the call routing class) used to load balance method calls to the object. On each call, the stub can employ its load algorithm to choose which replica to call.

WebLogic Server clusters support multiple algorithms for load balancing clustered EJBs; the default is the round-robin method. For more information, see "Load Balancing in a Cluster" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

All bean types support load balancing at the home level. All bean types, except read-write entity beans, support load balancing at the method level.

	
Note:

WebLogic Server does not always load-balance an object's method calls. In most cases, it is more efficient to use a replica that is collocated with the stub itself, rather than using a replica that resides on a remote server.

Failover for Clustered EJBs Increases Reliability

Failover for EJBs is accomplished using the EJBHome stub or, when supported, the EJBObject stub. When a client makes a call through a stub to a service that fails, the stub detects the failure and retries the call on another replica.

EJB failover requires that bean methods must be idempotent, and configured as such in weblogic-ejb-jar.xml. For more information see "Replication and Failover for EJBs and RMI Objects" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Table 2-3 summarizes failover and load balancing features for clustered EJBs.

Table 2-3 Failover and Load Balancing for Clustered EJBs

	EJB Type	Home Level Failover	Method Level Failover	Notes
	
Stateless Session

	
Supported

	
Supported

	
Stateless session EJB clustering behaviors are configured in weblogic-ejb-jar.xml. See WebLogic-Specific Configurable Behaviors for Session Beans.

	
Stateful session

	
Supported

	
Supported

	
The EJBObject stub maintains the location of the EJB's primary and secondary states. Secondary server instances are selected using the same rules defined in "Using Replication Groups" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Stateful session EJB clustering behaviors are configured in weblogic-ejb-jar.xml. See WebLogic-Specific Configurable Behaviors for Session Beans.

	
Read-Write Entity

	
Supported

	
Not supported

	
EJBHome stubs do not fail over in the event of a recoverable call failure.

Failover is not supported during method execution, only after method completion, or if the method fails to connect to a server instance.

A read-write bean's home obtains a local instance of the bean and returns a stub pinned to the local server instance.

Entity clustering behaviors are configured in weblogic-ejb-jar.xml. See Clustering Elements.

	
Read-Only Entity

	
Supported

	
Supported

	
EJBHome stubs do not failover in the event of a recoverable call failure.

Entity clustering behaviors are configured in weblogic-ejb-jar.xml. See Clustering Elements.

	
Message- Driven

	
N/A

	
N/A

	
WebLogic Java Messaging Service (JMS) supports clustering of JMS servers. For more information, see "JMS and Clustering" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

For more information, see "Replication and Failover for EJBs and RMIs" and "Load Balancing for EJBs and RMI Objects" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Securing EJBs

Using WebLogic Server security features, you control both access to your EJBs (authorization) and verification of an EJB's identity when it interacts with other application components and other EJBs (authentication).

WebLogic Server enables application developers to build security into their EJB applications using J2EE and WebLogic Server deployment descriptors, or allows system administrators to control security on EJB applications from the WebLogic Server Administration Console. The latter option frees developers from having to code security, and provides administrators with a centralized tool for defining security policies on: entire enterprise applications (EARs); an EJB JAR containing multiple EJBs; a particular EJB within that JAR; or a single method within that EJB.

For more information about security and EJBs:

	
"Security Fundamentals" in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server has introductory information about authentication, authorization and other security topics.

	
"Securing Enterprise JavaBeans (EJBs)" in Oracle Fusion Middleware Programming Security for Oracle WebLogic Server provides instructions for configuring authentication and authorization for EJBs.

	
Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server contains instructions for on configuring authentication and authorization for your EJBs using the Administration Console.

3 Designing Enterprise Java Beans

These sections discuss design options for WebLogic Server Enterprise Java Beans (EJBs), bean behaviors to consider during the design process, and recommended design patterns.

	
Choosing the Right Bean Type

	
Persistence Management Alternatives

	
Transaction Design and Management Options

	
Satisfying Application Requirements with WebLogic Server EJBs

It is assumed the reader is familiar with Java programming, EJB 2.x, and the features described in WebLogic Server Value-Added EJB Features.

After finalizing your bean design, refer to programming and other implementation topics in Chapter 4, "Implementing Enterprise Java Beans."

Choosing the Right Bean Type

When you choose the bean type for a processing task, consider the different natures and capabilities of the various bean types.

Bean types vary in terms of the bean's relationship with its client. Some bean types stick with a client throughout a series of processes, serving as a sort of general contractor—acquiring and orchestrating services for the client. There are other bean types that act like subcontractors, they deliver the same single function to multiple client-oriented general contractor beans. A client-oriented bean keeps track of client interactions and other information associated with the client process, throughout a client session—a capability referred to as maintaining state. Beans that deliver commodity services to multiple client-oriented beans do not maintain state.

The following sections describe the client interaction and state management characteristics of each bean type.

	
Note:

For a basic overview of each bean type, including an example of a business process to which each bean type is well suited, see How Do Applications Use EJBs?.

Session Bean Features

A session bean represents a single client inside the server. To access an application that is deployed on the server, the client invokes the session bean's methods. The session bean performs work for its client, shielding the client from complexity by executing business tasks inside the server.

A session bean instance has a single client. Session beans are not persistent—when the client terminates, its session bean appears to terminate and is no longer associated with the client.

A session bean can be used as a facade, between Web applications and entity beans to contain complex interactions and reduce RMI calls. When a client application accesses a remote entity bean directly, each getter method is a remote call. A session facade bean can access the entity bean locally, collect the data in a structure, and return it by value. The two types of session beans, those that maintain state and those that do not, are described in the following sections.

Stateful Session Beans

Stateful session beans support conversational services with tightly-coupled clients. A stateful session bean accomplishes a task for a particular client. It maintains state for the duration of a client session. After session completion, state is not retained.

Stateful session beans are instantiated on a per client basis, and can multiply and consume resources rapidly.

Stateless Session Beans

Like a stateful session bean, a stateless session bean performs a task for a particular client. Unlike a stateful session bean, stateless session beans do not maintain client state. A stateless session bean may maintain state only for the duration of a method invocation. When the method is finished, the state is no longer retained.

Except during method invocation, all instances of a stateless bean are equivalent, allowing the EJB container to assign an instance to any client request. When a home interface creates a stateless bean, it returns a replica-aware stub that can route to any server where the bean is deployed. Because a stateless bean holds no state on behalf of the client, the stub is free to route any call to any server that hosts the bean.

Stateless Beans Offer Performance and Scalability Advantages

Because stateless session beans are never written to secondary storage, they typically offer better performance than stateful beans.

For applications that require large numbers of clients, stateless session beans offer better scalability than stateful session beans.

The system overhead of creating an instance is less for a stateless session bean than for a stateful session bean.

	
You can simply obtain a stateless session bean instance from the free pool.

	
A stateful session bean instance is instantiated upon client request, has to set the session context, and must be garbage-collected at the end of the session.

You can typically support more clients with a stateless session bean than a stateful session bean. A stateless session bean instance is only reserved for the duration of a single client request, while a stateful session bean is reserved for the duration of a session.

The number of stateless session bean instances required is usually roughly equivalent to the number of threads in the server execute queue—in the order of hundreds, while the number of stateful session bean instances required corresponds more closely to the number of clients of the application—which for some applications may be hundreds of thousands.

Exposing Stateless Session Beans as Web Services

In this release of WebLogic Server, you can expose stateless session beans as Web Services through the Web service endpoint interface. For more information, see Oracle Fusion Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Entity Bean Features

An entity bean represents a business object in a persistent storage mechanism. Some examples of business objects are customers, orders, and products. In the J2EE SDK, the persistent storage mechanism is a relational database. Typically, each entity bean has an underlying table in a relational database, and each instance of the bean corresponds to a row in that table.

Key Features of Entity Beans

These are the key features of entity beans:

	
Persistence—Entity bean persistence can be managed by the EJB container, or the bean itself. If a bean uses container-managed persistence, the EJB container automatically generates the necessary database access calls. The code that you write for the entity bean does not include these calls. With bean-managed persistence, you must write the database access code and include it in the bean.

	
Shared Access—Throughout its life cycle, an entity bean instance can support multiple clients, although not at the same time. Because the clients might want to change the same data, it is important that entity beans work within transactions. Typically, the EJB container provides transaction management. In this case, you specify the transaction attributes in the bean's ejb-jar.xml file that control how transactions are managed. You do not have to code the transaction boundaries in the bean—the container marks the boundaries for you. For information about transaction management, see Transaction Design and Management Options.

	
Primary Key—Each entity bean has a unique object identifier. A customer entity bean, for example, might be identified by a customer number. The unique identifier, or primary key, enables the client to locate a particular entity bean. For more information, see Using Container-Managed Relationships (CMRs).

	
Relationships—Like a table in a relational database, an entity bean may be related to other entity beans. You implement relationships differently for entity beans with bean-managed persistence and for those with container-managed persistence. With bean-managed persistence, the code that you write implements the relationships. But with container-managed persistence, the EJB container takes care of the relationships for you. For this reason, relationships in entity beans with container-managed persistence are often referred to as container-managed relationships. For more information, see Using Cascade Delete for Entities in CMRs.

Read-Write versus Read-Only Entity Beans

WebLogic Server supports two types of entity beans: read-write and read-only.

Read-only beans perform better than read-write beans, because they reduce the number of times that data is read from the database.

Some applications require the use of read-write entity beans—the choice depends on frequency of updates and data consistency requirements. Table 3-1 provide key guidelines.

Table 3-1 Comparing Read-Write and Read-Only Entity Beans

	Application Requirement	Choose read-write entity beans if...	Choose read-only entity beans if...
	
Frequency of updates

	
Your application data is updated often.

Example: A real-time stock quote feed.

	
Your application data is not updated often, or at all.

Example: A swimwear catalogue.

	
Data consistency

	
Your application requires transactionally consistent snapshots of data as it is updated.

Example: An application that updates bank account balances.

	
You can tolerate some level of staleness in the data: it does not have to be completely up-to-date.

Example: A news feed. Users want to see the story as soon as it is in the database, but it is not updated transactionally.

Entity Bean Performance and Data Consistency Characteristics

These sections describe approaches for choosing the entity bean implementation, based on your requirements for performance and data consistency.

Use Read-Only Beans to Improve Performance If Stale Data Is Tolerable

Read-only entity beans are recommended whenever stale data is tolerable—they are suitable for product catalogs and the majority of content within many applications. Primary key-based reads are performed against a local entity cache that is invalided on a timer basis. Other queries are made against the database. Read-only entity beans perform three to four times faster than transactional entities.

	
Note:

A client can successfully call setter methods on a read-only entity bean; however, the data will never be moved into the persistent store.

Use Read-Write Beans for Higher Data Consistency

Read-write entity beans are recommended for applications that require high data consistency, for example, customer account maintenance. All reads and writes are performed against the database.

	
Note:

For entity beans that use bean-managed persistence, or EJB 1.1 entity beans that use container-managed persistence, you can reduce the number of database writes by specifying the isModified method in weblogic-ejb-jar.xml.

Combine Read-Only and Read-Write Beans to Optimize Performance

For read-mostly applications, characterized by frequent reads, and occasional updates (for instance, a catalog)—a combination of read-only and read-write beans that extend the read-only beans is suitable. The read-only bean provides fast, weakly consistent reads, while the read-write bean provides strongly consistent writes.

Use Session Facades to Optimize Performance for Remote Entity Beans

To avoid the overhead imposed by remote calls, avoid accessing remote EJB entity beans from client or servlet code. Instead, use a session bean, referred to as a facade, to contain complex interactions and reduce calls from Web applications to RMI objects. When a client application accesses a remote entity bean directly, each getter method is a remote call. A session facade bean can access the entity bean locally, collect the data in a structure, and return it by value.

Alternatively, there are no disadvantages to accessing a local entity bean instance directly from the Web tier—it is preferable to do so than to use a facade.

Avoid the Use of Transfer Objects

Avoid the use of transfer objects, also referred to as value objects or helper classes. (A transfer object is a serializable class within an EJB that groups related attributes, forming a composite value, which is used as the return type of a remote business method.)

To optimize performance, accessing local entity instances is always preferable to the use of transfer objects.

Message-Driven Beans

A message-driven bean (MDB) is an enterprise bean that allows J2EE applications to process messages asynchronously. An MDB acts as a JMS or JCA message listener, which is similar to an event listener except that it receives messages instead of events. The messages may be sent by any J2EE component—an application client, another enterprise bean, or a Web component—or by non-J2EE applications.

See Programming Message-Driven Beans for Oracle WebLogic Server.

Persistence Management Alternatives

Persistence management strategy determines how an entity bean's database access is performed.

Configure the persistence management strategy—either container-managed or bean-managed—for an entity bean in the persistence-type element in ejb-jar.xml.

	
Note:

You can specify the use of a third-party persistence service for entity beans that use container-managed persistence in the persistence-use element in weblogic-ejb-jar.xml.

Use Container-Managed Persistence (CMP) for Productivity and Portability

A CMP bean relies upon the EJB container for all database interaction. The bean does not contain code that accesses the database. Instead, the EJB container generates the database access methods, based on information about the entity bean's persistent fields and relationships, in weblogic-cmp-jar.xml. For more information, see "weblogic-cmp-jar.xml Deployment Descriptor Reference".

CMP beans use EJB QL for database access. See Appendix G, "EJB Query Language (EJB-QL) and WebLogic Server."

Container-managed persistence offers these advantages:

	
Reduced programming effort—You do not write methods to perform database access for a CMP bean. The EJB container generates the methods automatically.

	
Increased portability—CMP increases bean portability in these ways:

	
De-coupling physical database details from business logic makes a bean logically independent of the associated database. If you implement a modified database design, or change to a different database server, you do not have to modify bean code.

	
You can redeploy the bean on a different J2EE application server without modifying or recompiling bean code.

	
Note:

If you redeploy a bean that uses features that are not supported by the target application server, changes to the bean code might be necessary.

For more information on features supported by CMP entities, see Entity EJBs.

Use Bean-Managed Persistence (BMP) Only When Necessary

A bean that manages its own persistence must contain the methods that perform data access.

BMP is not encouraged—CMP offers many advantages over bean-managed persistence, as described in Use Container-Managed Persistence (CMP) for Productivity and Portability.

However, some application requirements cannot be satisfied by CMP beans. For instance, you must use BMP if:

	
Your application must use an existing library of stored SQL procedures.

	
The target database does not support JDBC.

	
There is complex mapping between the bean and database tables. For instance, the bean maps multiple tables that do not share a primary key.

Transaction Design and Management Options

A transaction is a unit of work that changes application state—whether on disk, in memory or in a database—that, once started, is completed entirely, or not at all.

Understanding Transaction Demarcation Strategies and Performance

Transactions can be demarcated—started, and ended with a commit or rollback—by the EJB container, by bean code, or by client code.

Demarcating Transactions at the Server Level is Most Efficient

Transactions are costly application resources, especially database transactions, because they reserve a network connection for the duration of the transaction. In a multi-tiered architecture—with database, application server, and Web layers—you optimize performance by reducing the network traffic "round trip." The best approach is to start and stop transactions at the application server level, in the EJB container.

Container-Managed Transactions Are Simpler to Develop and Perform Well

Container-managed transactions (CMTs) are supported by all bean types: session, entity, and message-driven. They provide good performance, and simplify development because the enterprise bean code does not include statements that begin and end the transaction.

Each method in a CMT bean can be associated with a single transaction, but does not have to be. In a container-managed transaction, the EJB container manages the transaction, including start, stop, commit, and rollback. Usually, the container starts a transaction just before a bean method starts, and commits it just before the method exits.

For information about the elements related to transaction management in ejb-jar.xml and weblogic-ejb-jar.xml, see Container-Managed Transactions Elements.

Rollback

If an exception is thrown during a transaction, the container will automatically roll back the transaction. You can configure the EJB container to automatically retry container-managed transactions that have rolled back, provided the transactions did not roll back as the result of system exception-based errors. You can also explicitly program rollbacks in your bean. For more information see Chapter 4, "Implementing Enterprise Java Beans."

Transaction Boundaries

You control how the EJB container manages the transaction boundaries when delegating a method invocation to an enterprise bean's business method for different invocation scenarios, with the trans-attribute element in ejb-jar.xml.

For example, if the client calling a transaction is itself running in a transaction, the trans-attribute element for the called transaction determines whether it will run in a new transaction or within the calling transaction.

Distributing Transactions Across Beans

A single database transaction can span multiple beans, on multiple servers instances. For information about implementing transactions that involve more than one bean, see Programming Transactions That Are Distributed Across EJBs.

Costly Option: Distributing Transactions Across Databases

Transactions that update multiple datastores must commit or roll back as a logical unit. The two-phase commit protocol is a method of coordinating a single transaction across multiple resource managers to ensure that updates are committed in all participating databases, or are fully rolled back out of all the databases.

Two-phase commit is resource-intensive. Avoid distributing transactions across databases.

Bean-Level Transaction Management

In a bean-managed transaction, the EJB code manages the transaction, including start, stop, commit, and rollback. Bean-managed transactions are supported by all session and message-driven beans; you cannot use bean-managed transactions with entity beans.

	
Note:

Bean-managed transactions cannot use container-provided transaction management features. Do not combine bean-managed and container-managed transactions in the same bean.

When to Use Bean-Managed Transactions

These are examples of requirements that may dictate the use of bean-managed transactions:

	
You need to define multiple transactions with a single method call. With container-managed transactions, a method can only be associated with a single transaction. You can use a bean-managed transaction to define multiple transactions with a single method. However, consider avoiding the need for a bean-managed transaction by breaking the method in to multiple methods, each with its own container-managed transaction.

	
You need to define a single transaction that spans multiple EJB method calls. For example, a stateful session EJB that uses one method to begin a transaction, and another method to commit or roll back a transaction.

Try to avoid this practice, because it requires detailed information about the workings of the EJB object. However, if this scenario is required, you must use bean-managed transaction coordination, and you must coordinate client calls to the respective methods.

Keep Bean-Managed Transactions Short

To simplify development, and improve reliability, keep bean-managed transactions reasonably short.

For information about implementing bean-managed transactions, see Programming Bean-Managed Transactions.

Client-Level Transaction Management is Costly

Client applications are subject to interruptions or unexpected terminations. If you start and stop a transaction at the client level, you risk:

	
Consumption of network resources during waits for user actions, interruptions, until resumption of client activity or timeout.

	
Consumption of processing resources and network resources to rollback the transaction after timeout or termination of the transaction.

Do not manage transactions in client applications unless there are overriding reasons to do so.

Transaction Isolation: A Performance vs. Data Consistency Choice

A transaction's isolation level is the degree to which it exposes updated but uncommitted data to other transactions. Allowing access to uncommitted data can improve performance, but increases the risk of incorrect data being supplied to other transactions.

Set the isolation level for bean-managed transactions in the bean's Java code. For instructions, see Programming Bean-Managed Transactions.

Set the isolation level for container-managed transactions in the isolation-level sub-element of the transaction-isolation element of weblogic-ejb-jar.xml. WebLogic Server passes this value to the underlying database. The behavior of the transaction depends both on the EJB's isolation level setting and the concurrency control of the underlying persistent store.

For more information on setting container-managed transaction isolation levels, see Oracle Fusion Middleware Programming JTA for Oracle WebLogic Server.

Satisfying Application Requirements with WebLogic Server EJBs

WebLogic Server offers a variety of value-added features for enterprise beans that you can configure to meet the requirements of your application. They are described in WebLogic Server Value-Added EJB Features.

Table 3-2 cross references requirement types with topics that describe design strategies and WebLogic Server features you can use to satisfy your application requirements.

Table 3-2 Features and Design Patterns

	When designing for...	Consider these design patterns and WebLogic Server features...
	
Availability and reliability

	
	
Failover for Clustered EJBs Increases Reliability

	
Load Balancing Among Clustered EJBs Increases Scalability

	
Scalability

	
	
Stateless Beans Offer Performance and Scalability Advantages

	
Data Consistency

	
	
Use Container-Managed Persistence (CMP) for Productivity and Portability

	
Use Read-Write Beans for Higher Data Consistency.

	
Transaction Isolation: A Performance vs. Data Consistency Choice

	
Keep Bean-Managed Transactions Short

	
Developer and Administrator Productivity

	
	
Use Container-Managed Persistence (CMP) for Productivity and Portability

	
Container-Managed Transactions Are Simpler to Develop and Perform Well

	
Performance

	
Choosing bean types and design patterns:

	
Combine Read-Only and Read-Write Beans to Optimize Performance

	
Use Read-Only Beans to Improve Performance If Stale Data Is Tolerable

	
Use Session Facades to Optimize Performance for Remote Entity Beans

	
Avoid the Use of Transfer Objects

	
Stateless Beans Offer Performance and Scalability Advantages

Clustering features:

	
Load Balancing Among Clustered EJBs Increases Scalability

Pooling and caching:

	
Performance-Enhancing Features for WebLogic Server EJBs

Transaction management:

	
Container-Managed Transactions Are Simpler to Develop and Perform Well

	
Demarcating Transactions at the Server Level is Most Efficient

	
Transaction Isolation: A Performance vs. Data Consistency Choice

	
Costly Option: Distributing Transactions Across Databases

	
Keep Bean-Managed Transactions Short

4 Implementing Enterprise Java Beans

The sections that follow describe the EJB implementation process, and provide guidance for how to get an EJB up and running in WebLogic Server.

It is assumed that you understand WebLogic Server's value-added EJB features, have selected a design pattern for your application, and have made key design decisions.

For a review of WebLogic Server EJB features, see WebLogic Server Value-Added EJB Features.

For discussion of design options for EJBs, factors to consider during the design process, and recommended design patterns see Designing Enterprise Java Beans.

	
Overview of the EJB Development Process

	
Create a Source Directory

	
Create EJB Classes and Interfaces

	
Programming the EJB Timer Service

	
Declare Web Service References

	
Compile Java Source

	
Generate Deployment Descriptors

	
Edit Deployment Descriptors

	
Generate EJB Wrapper Classes, and Stub and Skeleton Files

	
Package

	
Deploy

	
Solving Problems During Development

	
WebLogic Server Tools for Developing EJBs

Overview of the EJB Development Process

This section is a brief overview of the EJB development process. It describes the key implementation tasks and associated results.

Figure 4-1 illustrates the process of developing an EJB. The steps in the process, and the results of each are described in Table 4-1. Subsequent sections detail each step in the process.

Figure 4-1 EJB Development Process Overview

[image: Description of Figure 4-1 follows]

Table 4-1 EJB Development Tasks and Results

	Step	Description	Result
	
Create a Source Directory

	
Create the directory structure for your source files, deployment descriptors, and files that are generated during the implementation process.

	
A directory structure on your local drive.

	
Create EJB Classes and Interfaces

	
Create the classes that make up your bean. Insert appropriate tags in your source code to enable automatic generation of deployment descriptor elements later in the implementation process.

	
.java file for each class

	
Compile Java Source

	
Compile source code.

	
.class file for each class

	
Generate Deployment Descriptors

	
Write or generate deployment descriptors that configure the runtime behavior and environment for the bean.

	
ejb-jar.xml, and optionally:

	
weblogic-ejb-jar.xml, which contains elements that control WebLogic Server-specific features, and

	
weblogic-cmp-jar.xml, if the bean is a container-managed persistence entity bean.

	
Edit Deployment Descriptors

	
You may need to edit deployment descriptors to ensure they correctly reflect all desired runtime behaviors for your bean.

If your source was thoroughly annotated with markup that specifies the optional features the bean uses, and you used EJBGen to generate the deployment descriptors automatically, edits to your deployment descriptor should be minimal.

	
	
ejb-jar.xml,

	
weblogic-ejb-jar.xml, which contains elements that control WebLogic Server-specific features, and

	
weblogic-cmp-jar.xml, if the bean is a container-managed persistence entity bean.

	
Generate EJB Wrapper Classes, and Stub and Skeleton Files

	
Generate the container classes used to access the deployment unit, including classes for home and remote interfaces.

	
Generated classes are added to archive or directory.

	
Package

	
Package compiled files, generated files, and deployment descriptors for deployment.

If appropriate, you can leave your files unarchived in an exploded directory.

	
Archive, either a JAR or an EAR

	
Deploy

	
Target the archive or application directory to desired Managed Server, or a WebLogic Server cluster, in accordance with selected staging mode.

	
The deployment settings for the bean are written to EJBComponent element in config.xml.

Create a Source Directory

Create a source directory where you will assemble the EJB.

Oracle recommends a split development directory structure, which segregates source and output files in parallel directory structures. For instructions on how to set up a split directory structure and package your EJB as an enterprise application archive (EAR), see "Overview of the Split Development Directory Environment" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

If you prefer to package and deploy your EJB in a JAR file, create a directory for your class files, and within that directory, a subdirectory named META-INF for deployment descriptor files.

Example 4-1 Directory Structure for Packaging JAR

myEJB/
 META-INF/
 ejb-jar.xml
 weblogic-ejb-jar.xml
 weblogic-cmp-jar.xml
 foo.class
 fooHome.class
 fooBean.class

Create EJB Classes and Interfaces

The classes required depend on the type of EJB you are developing, as described in EJB Components..

Oracle offers productivity tools for developing class and interface files. The EJBGen command line utility automates the process of creating class and interface files, and also generates deployment descriptor files for the EJB. For more information and instructions for using these tools see EJBGen Reference.

The sections that follow provide tips and guidelines for using WebLogic Server-specific EJB features.

Using WebLogic Server Generic Bean Templates

For each EJB type, WebLogic Server provides a generic class that contains Java callbacks, or listeners, that are required for most EJBs. The generic classes are in the weblogic.ejb package:

	
GenericEnterpriseBean

	
GenericEntityBean

	
GenericMessageDrivenBean

	
GenericSessionBean

You can implement a generic bean template in a class of your own by importing the generic class into the class you are writing. This example imports the GenericSessionBean class into HelloWorldEJB:

import weblogic.ejb.GenericSessionBean;
 ...
public class HelloWorldEJB extends GenericSessionBean {

Programming Client Access to EJBs

The following sections provide guidelines for programming client access to an EJB.

Programming Client to Obtain Initial Context

Local clients obtain initial context using the getInitialContext method, similar to the following excerpt.

Example 4-2 Local Client Performing a Lookup

...
Context ctx = getInitialContexLt("t3://localhost:7001", "user1", "user1Password");
...
static Context getInitialContext(String url, String user, String password) {
 Properties h = new Properties();
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL, url);
 h.put(Context.SECURITY_PRINCIPAL, user);
 h.put(Context.SECURITY_CREDENTIALS, password);

 return new InitialContext(h);
}

Remote clients obtain an InitialContext from the WebLogic Server InitialContext factory.

Programming Client to Look Up a Home Interface

A client can look up the entity bean's home interface in one of two ways:

	
By following an EJB reference. This approach offers better performance than the alternative, looking up the home interface directly from the Java Naming and Directory Interface, and is a Oracle best practice. For instructions on using EJB references, see the following section, Using EJB Links.

	
Directly from the Java Naming and Directory Interface (JNDI). The container binds the entity bean's home interface in the global, server-side JNDI name space. For instructions see Oracle Fusion Middleware Programming JNDI for Oracle WebLogic Server.

Using EJB Links

Using EJB links is a Oracle best practice and WebLogic Server fully supports EJB links as defined in the EJB 2.1 Specification. You can link an EJB reference that is declared in one application component to an enterprise bean that is declared in the same J2EE application.

In the ejb-jar.xml file, specify the link to the EJB using the ejb-link element of the ejb-ref element of the referencing application component. The value of ejb-link must match that of the ejb-name in both ejb-jar.xml and weblogic-ejb-jar.xml of the target EJB. The target EJB can be in any EJB JAR file in the same J2EE application as the referencing application component.

Because ejb-names are not required to be unique across EJB JAR files, you may need to provide the qualified path for the link. Use the following syntax to provide the path name for the EJBs within the same J2EE application.

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

This reference provides the path name of the EJB JAR file that contains the referenced EJB with the appended ejb-name of the target bean separated from the path by "#". The path name is relative to the referencing application component JAR file.

Configuring EJBs to Send Requests to a URL

To enable an EJB to open an HttpURLConnection to an external HTTP server using the java.net.URL resource manager connection factory type, specify the URL, or specify an object bound in the JNDI tree that maps to a URL, using the resource-ref element in ejb-jar.xml and the res-ref-name element in weblogic-ejb-jar.xml.

Specifying an HTTP Resource by URL

To specify the URL to which an EJB sends requests:

	
In ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-ref element.

	
In weblogic-ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-description element:

<resource-description>
 <res-ref-name>url/MyURL</res-ref-name>
 <jndi-name>http://www.rediff.com/</jndi-name>
</resource-description>

WebLogic Server creates a URL object with the jndi-name provided and binds the object to the java:comp/env.

Specifying an HTTP Resource by Its JNDI Name

To specify an object that is bound in JNDI and maps to a URL, instead of specifying a URL:

	
In ejb-jar.xml, specify the name by which the URL is bound in JNDI in the <jndi-name> element of the resource-ref element.

	
In weblogic-ejb-jar.xml, specify the name by which the URL is bound in JNDI in the <jndi-name> element of the resource-description element:

<resource-description>
 <res-ref-name>url/MyURL1</res-ref-name>
 <jndi-name>firstName</jndi-name>
</resource-description>

where firstName is the object bound to the JNDI tree that maps to the URL. This binding could be done in a startup class. When jndi-name is not a valid URL, WebLogic Server treats it as an object that maps to a URL and is already bound in the JNDI tree, and binds a LinkRef with that jndi-name.

Accessing HTTP Resources from Bean Code

Regardless of how you specified an HTTP resource—by its URL or a JNDI name that maps to the URL—you can access it from EJB code in this way:

URL url = (URL) context.lookup("java:comp/env/url/MyURL");
connection = (HttpURLConnection)url.openConnection();

Configuring Network Communications for an EJB

You can control the attributes of the network connection an EJB uses for communications by configuring a custom network channel and assigning it to the EJB. For information about WebLogic Server network channels and associated configuration instructions see "Configure Network Resources" in Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server. After you configure a custom channel, assign it to an EJB using the network-access-point element in weblogic-ejb-jar.xml.

Programming and Configuring Transactions

Transaction design decisions are discussed in Transaction Design and Management Options. The following sections contain guidelines for programming transactions.

For information using transactions with entity beans, see Understanding ejbLoad() and ejbStore() Behavior.

Programming Container-Managed Transactions

Container-managed transactions are simpler to program than bean-managed transactions, because they leave the job of demarcation—starting and stopping the transaction—to the EJB container.

You configure the desired transaction behaviors in ejb-jar.xml and weblogic-ejb-jar.xml. For related information see Container-Managed Transactions Elements.

Key programming guidelines for container-managed transactions include:

	
Preserve transaction boundaries—Do not invoke methods that interfere with the transaction boundaries set by the container. Do not use:

	
The commit, setAutoCommit, and rollback methods of java.sql.Connection

	
The getUserTransaction method of javax.ejb.EJBContext

	
Any method of javax.transaction.UserTransaction

	
Roll back transactions explicitly—To cause the container to roll back a container-managed transaction explicitly, invoke the setRollbackOnly method of the EJBContext interface. (If the bean throws an application exception, typically an EJBException, the rollback is automatic.)

	
Avoid serialization problems—Many data stores provide limited support for detecting serialization problems, even for a single user connection. In such cases, even with transaction-isolation in weblogic-ejb-jar.xml set to TransactionSerializable, exceptions or rollbacks in the EJB client might occur if contention occurs between clients for the same rows. To avoid such exceptions, you can:

	
Include code in your client application to catch SQL exceptions, and resolve them appropriately; for example, by restarting the transaction.

	
For Oracle databases, use the transaction isolation settings described in isolation-level.

Configuring Automatic Retry of Container-Managed Transactions

In this release of WebLogic Server, you can specify that, if a business method that has started a transaction fails because of a transaction rollback that is not related to a system exception, the EJB container will start a new transaction and retry the failed method up to a specified number of times. If the method fails for the specified number of retry attempts, the EJB container throws an exception.

	
Note:

The EJB container does not retry any transactions that fail because of system exception-based errors.

To configure automatic retry of container-managed transactions:

	
Make sure your bean is a container-managed session or entity bean.

You can configure automatic retry of container-managed transactions for container-managed session and entity beans only. You cannot configure automatic retry of container-managed transactions for message-driven beans because MDBs do not acknowledge receipt of a message they are processing when the transaction that brackets the receipt of the message is rolled back; messages are automatically retried until they are acknowledged. You also cannot configure automatic retry of container-managed transactions for timer beans because, when a timer bean's ejbTimeout method starts and is rolled back, the timeout is always retried.

	
Make sure the business methods for which you want to configure automatic retry of transactions are defined in the bean's remote or local interface or as home methods (local home business logic that is not specific to a particular bean instance) in the home interface; the methods must have one of the following container-managed transaction attributes:

	
RequiresNew. If a method's transaction attribute (trans-attribute element in ejb-jar.xml) is RequiresNew, a new transaction is always started prior to the invocation of the method and, if configured, automatic retry of transactions occurs if the transaction fails.

	
Required. If a method's transaction attribute (trans-attribute element in ejb-jar.xml) is Required, the method is retried with a new transaction only if the failed transaction was begun on behalf of the method.

For more information on:

	
Programming interfaces, see Create EJB Classes and Interfaces and Sun documentation.

	
The trans-attribute element in ejb-jar.xml, see trans-attribute in Container-Managed Transactions Elements, and the Sun documentation.

	
Make sure the methods for which you want to enable automatic retry of transactions are safe to be re-invoked. A retry of a failed method must yield results that are identical to the results the previous attempt, had it been successful, would have yielded. In particular:

	
If invoking a method initiates a call chain, it must be safe to reinvoke the entire call chain when the method is retried.

	
All of the method's parameters must be safe for reuse; when a method is retried, it is retried with the same parameters that were used to invoke the failed attempt. In general, parameters that are primitives, immutable objects, or are references to read-only objects are safe for reuse. If a parameter is a reference to an object that is to be modified by the method, reinvoking the method must not negatively affect the result of the method call.

	
If the bean that contains the method that is being retried is a stateful session bean, the bean's conversational state must be safe to re-invoke. Since a stateful session bean's state is not transactional and is not restored during a transaction rollback, in order to use the automatic retry of transactions feature, you must first be sure the bean's state is still valid after a rollback.

	
Specify the methods for which you want the EJB container to automatically retry transactions and the number of retry attempts you want the EJB container to make in the retry-methods-on-rollback element in weblogic-ejb-jar.xml.

The retry-count subelement to retry-methods-on-rollback can also be modified via the Administration Console.

Programming Bean-Managed Transactions

This section contains programming considerations for bean-managed transactions. For a summary of the distinguishing features of bean-level transactions and a discussion of related design considerations, see Bean-Level Transaction Management.

	
Demarcate transaction boundaries—To define transaction boundaries in EJB or client code, you must obtain a UserTransaction object and begin a transaction before you obtain a Java Transaction Service (JTS) or JDBC database connection. To obtain the UserTransaction object, use this command:

ctx.lookup("javax.transaction.UserTransaction");

After obtaining the UserTransaction object, specify transaction boundaries with tx.begin(), tx.commit(), tx.rollback().

If you start a transaction after obtaining a database connection, the connection has no relationship to the new transaction, and there are no semantics to "enlist" the connection in a subsequent transaction context. If a JTS connection is not associated with a transaction context, it operates similarly to a standard JDBC connection that has autocommit equal to true, and updates are automatically committed to the datastore.

Once you create a database connection within a transaction context, that connection is reserved until the transaction commits or rolls back. To optimize performance and throughput, ensure that transactions complete quickly, so that the database connection can be released and made available to other client requests.

	
Note:

You can associate only a single database connection with an active transaction context.

	
Setting transaction isolation level—For bean-managed transactions, you define isolation level in the bean code. Allowable isolation levels are defined on the java.sql.Connection interface. F or information on isolation level behaviors, see isolation-level.

See Example 4-3 for a code sample.

Example 4-3 Setting Transaction Isolation Level in BMT

import javax.transaction.Transaction;
import java.sql.Connection
import weblogic.transaction.TxHelper:
import weblogic.transaction.Transaction;
import weblogic.transaction.TxConstants;
User Transaction tx = (UserTransaction)
ctx.lookup("javax.transaction.UserTransaction");
//Begin user transaction
 tx.begin();
//Set transaction isolation level to TransactionReadCommitted
Transaction tx = TxHelper.getTransaction();
 tx.setProperty (TxConstants.ISOLATION_LEVEL, new Integer
 (Connection.TransactionReadCommitted));
//perform transaction work
 tx.commit();

	
Avoid restricted methods—Do not invoke the getRollbackOnly and setRollbackOnly methods of the EJBContext interface in bean-managed transactions. These methods should be used only in container-managed transactions. For bean-managed transactions, invoke the getStatus and rollback methods of the UserTransaction interface.

	
Use one connection per active transaction context—You can associate only a single database connection with an active transaction context.

Programming Transactions That Are Distributed Across EJBs

This section describes two approaches for distributing a transaction across multiple beans, which may reside on multiple server instances.

Calling multiple EJBs from a client's transaction context

The code fragment below is from a client application that obtains a UserTransaction object and uses it to begin and commit a transaction. The client invokes two EJBs within the context of the transaction.

import javax.transaction.*;
...
u = (UserTransaction) jndiContext.lookup("javax.transaction.UserTransaction");
u.begin();
account1.withdraw(100);
account2.deposit(100);
u.commit();
...

The updates performed by the account1 and account2 beans occur within the context of a single UserTransaction. The EJBs commit or roll back together, as a logical unit, whether the beans reside on the same server instance, different server instances, or a WebLogic Server cluster.

All EJBs called from a single transaction context must support the client transaction—each beans' trans-attribute element in ejb-jar.xml must be set to Required, Supports, or Mandatory.

Using an EJB "Wrapper" to Encapsulate a Cross-EJB Transaction

You can use a "wrapper" EJB that encapsulates a transaction. The client calls the wrapper EJB to perform an action such as a bank transfer, and the wrapper starts a new transaction and invokes one or more EJBs to do the work of the transaction.

The wrapper EJB can explicitly obtain a transaction context before invoking other EJBs, or WebLogic Server can automatically create a new transaction context, if the wrapper's trans-attribute element in ejb-jar.xml is set to Required or RequiresNew.

All EJBs invoked by the wrapper EJB must support the wrapper EJB's transaction context— their trans-attribute elements must be set to Required, Supports, or Mandatory.

Programming the EJB Timer Service

This release of WebLogic Server supports the EJB timer service defined in the EJB 2.1 Specification. The EJB timer service is an EJB-container provided service that allows you to create timers that schedule callbacks to occur when a timer object expires. Timer objects can be created for entity beans, message-driven beans, and stateless session beans. Timer objects expire at a specified time, after an elapsed period of time, or at specified intervals. For instance, you can use the timer service to send out notification when an EJB remains in a certain state for an elapsed period of time.

The WebLogic EJB timer service is intended to be used as a coarse-grained timer service. Rather than having a large number of timer objects performing the same task on a unique set of data, Oracle recommends using a small number of timers that perform bulk tasks on the data. For example, assume you have an EJB that represents an employee's expense report. Each expense report must be approved by a manager before it can be processed. You could use one EJB timer to periodically inspect all pending expense reports and send an email to the corresponding manager to remind them to either approve or reject the reports that are waiting for their approval.

Clustered Versus Local EJB Timer Services

You can configure two types of EJB timer services: clustered or local.

Clustered EJB Timer Services

Clustered EJB timer services provide the following advantages:

	
Better visibility.

Timers are accessible from any node in a cluster. For example, the javax.ejb.TimerService.getTimers() method returns a complete list of all stateless session or message-driven bean timers in a cluster that were created for the EJB. If you pass the primary key of the entity bean to the getTimers() method, a list of timers for that entity bean are returned.

	
Automatic load balancing and failover.

Clustered EJB timer services take advantage of the load balancing and failover capabilities of the Job Scheduler.

For information about the configuring a clustered EJB timer service, see Configuring Clustered EJB Timers.

Local EJB Timer Services

Local EJB timer services execute only on the server on which they are created and are visible only to the beans on that server. With a local EJB timer service, you do not have to configure a cluster, database, JDBC data source, or leasing service, as you do for clustered EJB timer services.

You cannot migrate a local EJB timer object from one server to another; timer objects can only be migrated as part of an entire server. If a server that contains EJB timers goes down for any reason, you must restart the server or migrate the entire server in order for the timers to execute.

Using Java Programming Interfaces to Program Timer Objects

This section summarizes the Java programming interfaces defined in the EJB 2.1 Specification that you can use to program timers. For detailed information on these interfaces, refer to the EJB 2.1 Specification. This section also provides details about the WebLogic Server-specific timer-related interfaces.

EJB 2.1 Timer-related Programming Interfaces

EJB 2.1 interfaces you can use to program timers are described in the following table.

Table 4-2 EJB 2.1 Timer-related Programming Interfaces

	Programming Interface	Description
	
javax.ejb.TimedObject

	
Implement for the enterprise bean class of a bean that will be registered with the timer service for timer callbacks. This interface has a single method, ejbTimeout.

	
EJBContext

	
Access the timer service using the getTimerService method.

	
javax.ejb.TimerService

	
Create new EJB timers or access existing EJB timers for the EJB.

	
javax.ejb.Timer

	
Access information about a particular EJB timer.

	
javax.ejb.TimerHandle

	
Define a serializable timer handle that can be persisted. Since timers are local objects, a TimerHandle must not be passed through a bean's remote interface or Web service interface.

For more information on EJB 2.1 timer-related programming interfaces, see the EJB 2.1 Specification.

WebLogic Server-specific Timer-related Programming Interfaces

WebLogic Server-specific interfaces you can use to program timers include:

	
weblogic.management.runtime.EJBTimerRuntimeMBean—provides runtime information and administrative functionality for timers from a particular EJBHome. The weblogic.management.runtime.EJBTimerRuntimeMBean interface is shown in Example 4-4.

Example 4-4 weblogic.management.runtime.EJBTimerRuntimeMBean Interface

public interface weblogic.management.runtime.EJBTimerRuntimeMBean {
 public int getTimeoutCount(); // get the number of successful timeout notifications that have been made
 public int getActiveTimerCount(); // get the number of active timers for this EJBHome
 public int getCancelledTimerCount(); // get the number of timers that have been cancelled for this EJBHome
 public int getDisabledTimerCount(); // get the number of timers temporarily disabled for this EJBHome
 public void activateDisabledTimers(); // activate any temporarily disabled timers
}

	
weblogic.ejb.WLTimerService interface—extends the javax.ejb.TimerService interface to allow users to specify WebLogic Server-specific configuration information for a timer. The weblogic.ejb.WLTimerService interface is shown in Example 4-5; for information on the javax.ejb.TimerService, see the EJB 2.1 Specification.

	
Note:

The weblogic.ejb.WLTimerService interface is not supported by the clustered EJB timer service, as described in Configuring Clustered EJB Timers.

Example 4-5 weblogic.ejb.WLTimerService Interface

public interface WLTimerService extends TimerService {
 public Timer createTimer(Date initial, long duration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(Date expiration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(long initial, long duration, Serializable info
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(long duration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
}

	
weblogic.ejb.WLTimerInfo interface—used in the weblogic.ejb.WLTimerService interface to pass WebLogic Server-specific configuration information for a timer. The weblogic.ejb.WLTimerInfo method is shown in Example 4-6.

	
Note:

The weblogic.ejb.WLTimerService interface is not supported by the clustered EJB timer service, as described in Configuring Clustered EJB Timers.

Example 4-6 weblogic.ejb.WLTimerInfo Interface

public final interface WLTimerInfo {
 public static int REMOVE_TIMER_ACTION = 1;
 public static int DISABLE_TIMER_ACTION = 2;
 public static int SKIP_TIMEOUT_ACTION = 3;
 /**
 * Sets the maximum number of retry attempts that will be
 * performed for this timer. If all retry attempts
 * are unsuccesful, the timeout failure action will
 * be executed.
 */
 public void setMaxRetryAttempts(int retries);
 public int getMaxRetryAttempts();
 /**
 * Sets the number of milliseconds that should elapse
 * before any retry attempts are made.
 */
 public void setRetryDelay(long millis);
 public long getRetryDelay();
 /**
 * Sets the maximum number of timeouts that can occur
 * for this timer. After the specified number of
 * timeouts have occurred successfully, the timer
 * will be removed.
 */
 public void setMaxTimeouts(int max);
 public int getMaxTimeouts();
/**
 * Sets the action the container will take when ejbTimeout
 * and all retry attempts fail. The REMOVE_TIMER_ACTION,
 * DISABLE_TIMER_ACTION, and SKIP_TIMEOUT_ACTION fields
 * of this interface define the possible values.
 */
 public void setTimeoutFailureAction(int action);
 public int getTimeoutFailureAction();
}

	
weblogic.ejb.WLTimer interface—extends the javax.ejb.Timer interface to provide additional information about the current state of the timer. The weblogic.ejb.WLTimer interface is shown in Example 4-7.

	
Note:

The weblogic.ejb.WLTimerService interface is not supported by the clustered EJB timer service, as described in Configuring Clustered EJB Timers.

Example 4-7 weblogic.ejb.WLTimer Interface

public interface WLTimer extends Timer {
 public int getRetryAttemptCount();
 public int getMaximumRetryAttempts();
 public int getCompletedTimeoutCount();
}

Timer Deployment Descriptors

The following deployment descriptor elements pertain to timers.

Table 4-3 Timer Deployment Descriptors

	Element	Description
	
timer-descriptor

	
EJB timer object.

	
timer-implementation

	
Whether the EJB timer service is clustered or non-clustered. For information about the clustered EJB timer service, see Configuring Clustered EJB Timers.

	
persistent-store-logical-name

	
Name of a persistent store on the server's file system where WebLogic Server stores timer objects.

For more information on these elements, see weblogic-ejb-jar.xml Deployment Descriptor Reference.

Configuring Clustered EJB Timers

	
Note:

To review the advantages of using clustered EJB timers, see Clustered Versus Local EJB Timer Services.

To configure the clustering of EJB timers, perform the following steps:

	
Ensure that you have configured the following:

	
A clustered domain. For more information, see "Setting up WebLogic Clusters" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

	
Features of the Job Scheduler, including:

	
HA database, such as Oracle, DB2, Informix, MySQL, Sybase, or MSSQL.

	
JDBC data source that is mapped to the HA database using the <data-source-for-job-scheduler> element in the config.xml file.

	
Leasing service. By default, database leasing will be used and the JDBC data source defined by the <data-source-for-job-scheduler> element in the config.xml file will be used.

For more information about configuring the Job Scheduler, see "The Timer and Work Manager API" in Oracle Fusion Middleware Timer and Work Manager API (CommonJ) Programmer's Guide for Oracle WebLogic Server.

	
To enable the clustered EJB timer service, set the timer-implementation element in the weblogic-ejb-jar.xml deployment descriptor to Clustered. For more information, see timer-implementation.

Please note the following changes in the behavior of the clustered EJB timer service:

	
The weblogic.ejb.WLTimer* interfaces are not supported with clustered EJB timer services.

	
When creating a new clustered EJB timer using the createTimer() method, you may notice a delay in timeout execution during the initial setup of the timer.

	
The Job Scheduler provides an "at least once" execution guarantee. When a clustered EJB timer expires, the database is not updated until the timer listener callback method completes. If the server were to crash before the database is updated, the timer expiration would be executed twice.

	
Timer configuration options related to the actions to take in the event of failure are not valid for the clustered EJB timer service. These configuration options include: retry delay, maximum number of retry attempts, maximum number of timeouts, and timeout failure actions.

	
The Job Scheduler queries the database every 30 seconds to identify timers that are due to expire. Execution may be delayed for timers with an interval duration less than 30 seconds.

	
Only transactional timers will be retried in the event of failure.

	
Fixed rate scheduling of timer execution is not supported.

Declare Web Service References

This release of WebLogic Server complies with the EJB 2.1 requirements related to declaring and accessing external Web Services. Web Service references, declared in an EJB's deployment descriptor, maps a logical name for a Web Service to an actual Web Service interface, which allows you to refer to the Web Service using a logical name. The bean code then performs a JNDI lookup using the Web Service reference name.

For more information, see Oracle Fusion Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Compile Java Source

For a list of tools that support the compilation process, see Table 4-1.

For information on the compilation process, see Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

Generate Deployment Descriptors

If you annotate your Bean class file with JDK 1.5 annotations, you can use EJBGen to generate the Remote and Home classes and the deployment descriptor files for an EJB application.

Oracle recommends that you use EJBGen to generate deployment descriptors. For more information, see Appendix E, "EJBGen Reference."

Edit Deployment Descriptors

Elements in ejb-jar.xml, weblogic-ejb-jar.xml, and for container-managed persistence entity beans, weblogic-cmp-jar.xml, control the run-time characteristics of your application.

If you need to modify a descriptor element, you can edit the descriptor file with any plain text editor. However, to avoid introducing errors, use a tool designed for XML editing. Descriptor elements that you can edit with the WebLogic Server Administration Console are listed in Table 4-1.

The following sections are a quick reference to WebLogic Server-specific deployment elements. Each section contains the elements related to a type of feature or behavior. The table in each section defines relevant elements in terms of the behavior it controls, the bean type it relates to (if bean type-specific), the parent element in weblogic-ejb-jar.xml that contains the element, and the behavior you can expect if you do not explicitly specify the element in weblogic-ejb-jar.xml.

	
Security Elements

	
Resource Mapping Elements

	
Persistence Elements

	
Clustering Elements

	
Data Consistency Elements

	
Container-Managed Transactions Elements

	
Performance Elements

	
Network Communications Elements

For comprehensive documentation of the elements in each descriptor file, definitions, and sample usage, refer to:

	
Appendix B, "weblogic-ejb-jar.xml Deployment Descriptor Reference"

	
Appendix C, "weblogic-cmp-jar.xml Deployment Descriptor Reference"

	
Your Sun documentation for elements in ejb-jar.xml.

	
Note:

In the sections that follow, click the element name in the "Element" column to view detailed documentation on the element.

Security Elements

This table lists the elements in weblogic-ejb-jar.xml related to security.

Table 4-4 Security Elements in weblogic-ejb-jar.xml

	Element	Description	Default
	
security-role-assignment

	
Maps security roles in ejb-jar.xml file to the names of security principals in WebLogic Server.

Required if ejb-jar.xml defines application roles.

	
none

	
security-permission

	
Additional Java security permission that is granted to this EJB.

	
none

	
run-as-principal-name

	
Security principal name to use as the run-as principal for a bean that has specified a security-identity run-as-role-name in ejb-jar.xml.

	
none

	
iiop-security-descriptor

	
Security options for beans that use the RMI-IIOP protocol.

	
none

Resource Mapping Elements

This table lists the elements in weblogic-ejb-jar.xml that map the names of beans or resources used in source code to their JNDI names in the deployment environment.

Table 4-5 Resource Mapping Elements in weblogic-ejb-jar.xml

	Element	Bean Type	Description	Default
	
jndi-name

	
All

	
JNDI name of a resource or reference available in WebLogic Server.

Note: Assigning a JNDI name to a bean is not recommended. Global JNDI names generate heavy multicast traffic during clustered server startup. See Using EJB Links for the better practice.

	
none

	
local-jndi-name

	
All

	
JNDI name for a bean's local home. If a bean has both a remote and a local home, then it must have two JNDI names; one for each home.

	
none

	
concurrency-strategy

	
MDB

	
JNDI name of the JMS connection factory that the bean uses to create queues and topics.

	
weblogic.jms.Message.DrivenBeanConnectionFactory

	
destination-jndi-name

	
MDB

	
JNDI name that associates a message-driven bean with a queue or topic in the JNDI tree.

	
none

	
initial-context-factory

	
MDB

	
Initial context factory that the EJB container uses to create connection factories.

	
weblogic.jndi.WLInitial.Context.Factory

	
jms-client-id

	
MDB

	
Client ID for the message-driven bean associated with a durable subscriber topic.

	
Value of ejb-name

	
message-destination-descriptor

	
MDB

	
Maps a message destination reference in the ejb-jar.xml file to an actual message destination, such as a JMS Queue or Topic, in WebLogic Server.

	
n/a

	
provider-url

	
MDB

	
Specifies the URL provider to be used by the InitialContext.

	
t3://localhost:7001

Persistence Elements

This table lists elements in weblogic-ejb-jar.xml that specify how the state of a bean is persisted.

Table 4-6 Persistence Elements in weblogic-ejb-jar.xml

	Element	Bean Type	Description	Default
	
type-identifier

	
Entity

	
Specifies EJB persistence type. WebLogic Server RDBMS-based persistence uses the identifier, WebLogic_CMP_RDBMS

	
n/a

	
type-storage

	
Entity

	
Defines path, relative to the top level of the EJB's JAR deployment file or deployment directory, of the file that stores data for this persistence type.

WebLogic Server RDBMS-based persistence generally uses an XML file named weblogic-cmp-jar.xml to store persistence data for a bean. This file is stored in the META-INF subdirectory of the JAR file.

	
n/a

	
type-version

	
Entity

	
Version of the persistence type specified by type-identifier. For WebLogic 2.0 CMP persistence, use the value 2.0.

For WebLogic 1.1 CMP persistence, use the value 1.1.

	
n/a

	
delay-updates-until-end-of-tx

	
Entity

	
If true, the EJB container attempts to delay writing updates to a bean's state to the database until the end of a transaction. However, the container still flushes updates to the database before executing an EJB finder or select query if the include-updates element (in the weblogic-query element of weblogic-cmp-jar.xml) for the query is true.

Applicable to both container-managed persistence and bean-managed persistence beans.

	
True

	
finders-load-bean

	
Entity

	
Causes beans returned by a finder or ejbSelect method to be loaded immediately into the cache before the method returns.

Note: Applicable to container-managed persistence beans only.

	
True

	
persistent-store-dir

	
Stateful Session

	
Directory where state of passivated stateful session bean instances is stored.

	
pstore

	
is-modified-method-name

	
Entity

	
The method called by the container to determine whether or not the bean has been modified and needs to have its changes written to the database.

Applies to bean-managed persistence or EJB 1.1 container-managed persistence beans.

	
If not specified, bean state is persisted after each method completes.

Clustering Elements

This table lists the elements in weblogic-ejb-jar.xml related to clustering. These elements control failover and load balancing behaviors for clustered beans in a WebLogic Server cluster.

Table 4-7 Clustering Elements in weblogic-ejb-jar.xml

	Element	Bean Type	Description	Default
	
home-call-router-class-name

	
Stateful Session

Stateless Session

Entity

	
Custom class to be used for routing home method calls. This class must implement weblogic.rmi.extensions.CallRouter().

	
None

	
home-is-clusterable

	
Stateful Session

Stateless Session

Entity

	
Indicates whether the bean home can be clustered.

	
True

	
home-load-algorithm

	
Stateful Session

Stateless Session

Entity

	
Algorithm to use for load-balancing among replicas of the bean home.

	
Value of weblogic.cluster.defaultLoadAlgorithm

	
idempotent-methods

	
Stateless Session

Entity

	
Idempotent methods for a clustered EJB. An idempotent method can be repeated with no negative side-effects.

Methods of stateless session bean homes and read-only entity bean interfaces do not need to be explicitly identified—they are automatically set to be idempotent.

	
None

	
replication-type

	
Stateful Session

	
Indicates the replication used for stateful session beans in a cluster: in-memory or none.

	
none

	
stateless-bean-call-router-class-name

	
Stateless Session

	
Custom class to be used for routing bean method calls.

	
None

	
stateless-bean-is-clusterable

	
Stateless Session

	
Indicates that the bean is clusterable.

Use only for session beans whose session-type in ejb-jar.xml is Stateless.

	
True

	
stateless-bean-load-algorithm

	
Stateless Session

	
Algorithm to use for load-balancing among replicas of the bean.

	
Value of the property weblogic.cluster.defaultLoadAlgorithm

	
use-serverside-stubs

	
Stateless Session

	
Causes the bean home to use server-side stubs in the server context.

	
False

Data Consistency Elements

This table lists the elements in weblogic-ejb-jar.xml related to the consistency of the bean instance data and the database. These elements control behaviors such as how and when the database is updated to reflect the values in the bean instance is done.

	
Note:

For elements related to container-managed persistence, see Managing Entity Bean Pooling and Caching.

Table 4-8 Data Consistency Elements in weblogic-ejb-jar.xml

	Element	Bean Type	Description	Default
	
concurrency-strategy

	
Entity

	
How concurrent access to an entity bean is managed.

	
Database

	
invalidation-target

	
Entity

	
The read-only entity bean to invalidate when this container-managed persistence entity bean is modified.

Note: Only applicable to EJB 2.x CMP beans.

	
None

	
delay-updates-until-end-of-tx

	
Entity

	
If true, the EJB container attempts to delay writing updates to a bean's state to the database until the end of a transaction. However, the container still flushes updates to the database before executing an EJB finder or select query if the include-updates element (in the weblogic-query element of weblogic-cmp-jar.xml) for the query is true.

Applicable to both container-managed persistence and bean-managed persistence beans.

	
True

Container-Managed Transactions Elements

Table 4-9 lists the elements in ejb-jar.xml related to container-managed transactions.

Table 4-9 Container-Managed Transaction Elements in ejb-jar.xml

	Element	Description	Default
	
transaction-type

	
Allowable values are Bean or Container.

	
None, EJB 2.x requires this attribute to be specified.

	
trans-attribute

	
Specifies how the container manages the transaction boundaries when delegating a method invocation to an enterprise bean's business method. Allowable values are:

	
NotSupported

With the NotSupported value, when an entity bean runs in an unspecified transaction, if a transaction exists, the EJB container suspends the transaction; when an entity bean runs in an unspecified transaction, and no transaction exists, the EJB container takes no action.

	
Supports

With the Supports value, when an entity bean runs in an unspecified transaction, if a transaction exists, the EJB container uses the current transaction; when an entity bean runs in an unspecified transaction, and no transaction exists, the EJB container takes no action.

	
Required

	
RequiresNew

	
Mandatory

	
Never

With the Never value, when an entity bean runs in an unspecified transaction, if a transaction exists, the EJB container throws an exception; when an entity bean runs in an unspecified transaction, and no transaction exists, the EJB container takes no action.

Note: In in pre-9.0 releases of WebLogic Server, the EJB container would start a new transaction when no transaction existed and the value of trans-attribute was NotSupported, Supports, and Never. Set entity-always-uses-transaction in weblogic-ejb-jar.xml to True if you want the EJB container to behave as it did in pre-9.0 releases of WebLogic Server and create a new transaction.

Because clients do not provide a transaction context for calls to an MDB, MDBs that use container-managed transactions must have trans-attribute of Required.

	
If not specified, the EJB container issues a warning, and uses NotSupported for MDBs and Supports for other types of EJBs.

	
transaction-scope

	
This optional element specifies whether an enterprise bean requires distributed transactions for its methods or whether the local transaction optimization may be used.

Allowable values are Local and Distributed.

	
If not specified, the container assumes that distributed transactions must be used.

Table 4-10 lists the elements in weblogic-ejb-jar.xml related to container-managed transactions.

Table 4-10 Container-Managed Transaction Elements in weblogic-ejb-jar.xml

	Element	Description	Default
	
retry-methods-on-rollback

	
The methods for which you want the EJB container to automatically retry container-managed transactions that have rolled back.

Note: Regardless of the methods specified in this element, the EJB container does not retry any transactions that fail because of system exception-based errors.

	
None

	
transaction-isolation

	
The transaction isolation level used when method starts a transaction. The specified transaction level is not used if the method inherits an existing transaction.

	
The default of the underlying DBMS

	
trans-timeout-seconds

	
Maximum duration for a transaction.

	
None

Performance Elements

This table lists the elements in weblogic-ejb-jar.xml related to performance.

Table 4-11 Performance Elements in weblogic-ejb-jar.xml

	Element	Bean Type	Description	Default
	
allow-concurrent-calls

	
Stateful Session

	
Whether multiple clients can simultaneously access a bean without triggering a Remote Exception.

The server throws a RemoteException when a stateful session bean instance is currently handling a method call and another (concurrent) method call arrives on the server.

	
False

	
cache-between-transactions

	
Entity

	
Causes the container to cache the persistent data of an entity bean between transactions.

	
False

	
cache-type

	
Stateful Session

	
Order in which stateful session beans are removed from the cache.

	
NRU

(not recently used)

	
clients-on-same-server

	
All

	
Indicates that all clients of the bean are collocated with the bean on the same server instance. This element is only used if the EJB has a global JNDI name; setting it to true prevents the JNDI name from being replicated.

A value of true can reduce cluster startup time in large clusters.

	
False

	
delay-updates-until-end-of-tx

	
Entity

	
If true, the EJB container attempts to delay writing updates to a bean's state to the database until the end of a transaction.

However, the container still flushes updates to the database before executing an EJB finder or select query if the include-updates element (in the weblogic-query element of weblogic-cmp-jar.xml) for the query is true.

Applicable to both container-managed persistence and bean-managed persistence beans.

	
True

	
dispatch-policy

	
All

	
Specifies the thread pool used to handle requests to the bean.

	
None

	
ejb-local-reference-description

	
All

	
Improves performance of method invocation for methods called within the same application, by allowing parameters to be passed by reference.

Note: Method parameters are always passed by value when an EJB is called remotely.

	
False

	
entity-cache-name

	
Entity

	
The application-level entity cache, which can cache instances of multiple entity beans that are part of the same application.

Note: Application level caches are declared in the weblogic-application.xml.

	
None

	
estimated-bean-size

	
Entity

	
Estimated average size, in bytes, of an entity bean instance.

	
None

	
finders-load-bean

	
Entity

	
Causes beans returned by a finder or ejbSelect method to be loaded immediately into the cache before the method returns.

Note: Applicable to container-managed persistence beans only.

	
True

	
idle-timeout-seconds

	
Entity

	
Number of seconds of inactivity after which a bean is passivated.

Note: This element is not currently used.

	
600

	
idle-timeout-seconds

	
Stateful Session

	
Number of seconds of inactivity after which a bean is passivated.

	
600

	
initial-beans-in-free-pool

	
Entity

Message-Driven

Stateless Session

	
Number of instances of an EJB instantiated by the container at startup.

	
0

	
is-modified-method-name

	
Entity

	
The method that changes the state of bean. Specifying this method causes WebLogic server to persist the bean state when the method completes.

Note: Applies to bean-managed persistence or EJB 1.1 container-managed persistence beans.

	
If not specified, bean state is persisted after each method completes.

	
jms-polling-interval-seconds

	
Message-driven

	
The number of seconds between attempts by the EJB container to reconnect to a JMS destination that has become unavailable.

	
10

	
max-beans-in-cache

	
Entity

Stateful Session

	
Maximum number of instances in the cache.

	
1000

	
max-beans-in-free-pool

	
Entity

Stateless Session

Message-Driven

	
Maximum number of instances in the free pool.

	
1000

	
read-timeout-seconds

	
Entity

	
The number of seconds between ejbLoad calls on a read-only entity bean. If read-timeout-seconds is 0, ejbLoad is only called when the bean is brought into the cache.

	
600

Network Communications Elements

This table lists the elements in weblogic-ejb-jar.xml related to network communications.

Table 4-12 Communications Elements in weblogic-ejb-jar.xml

	Element	Bean Type	Description	Default
	
network-access-point

	
all

	
Assigns a custom network channel to an EJB.

	
n/a

Generate EJB Wrapper Classes, and Stub and Skeleton Files

Container classes include the internal representation of the EJB that WebLogic Server uses and the implementation of the external interfaces (home, local, and/or remote) that clients use. You can use Oracle Workshop for WebLogic Platform or appc to generate container classes.

Container classes are generated in according to the descriptor elements in weblogic-ejb-jar.xml. For example, if you specify clustering elements, appc creates cluster-aware classes that will be used for deployment. You can use appc directly from the command line by supplying the required options and arguments. See appc for more information.

The following figure shows the container classes added to the deployment unit when the EAR or JAR file is generated.

Figure 4-2 Generating EJB Container Classes

[image: Description of Figure 4-2 follows]

appc and Generated Class Name Collisions

Although infrequent, when you generate classes with appc, you may encounter a generated class name collision which could result in a ClassCastException and other undesirable behavior. This is because the names of the generated classes are based on three keys: the bean class name, the bean class package, and the ejb-name for the bean. This problem occurs when you use an EAR file that contains multiple JAR files and at least two of the JAR files contain an EJB with both the same bean class, package, or classname, and both of those EJBs have the same ejb-name in their respective JAR files. If you experience this problem, change the ejb-name of one of the beans to make it unique.

Because the ejb-name is one of the keys on which the file name is based and the ejb-name must be unique within a JAR file, this problem never occurs with two EJBs in the same JAR file. Also, because each EAR file has its own classloader, this problem never occurs with two EJBs in different EAR files.

Package

Oracle recommends that you package EJBs as part of an enterprise application. For more information, see "Deploying and Packaging from a Split Development Directory" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

Packaging Considerations for EJBs with Clients in Other Applications

WebLogic Server supports the use of ejb-client.jar files for packaging the EJB classes that a programmatic client in a different application requires to access the EJB.

Specify the name of the client JAR in the ejb-client-jar element of the bean's ejb-jar.xml file. When you run the appc compiler, a JAR file with the classes required to access the EJB is generated.

Make the client JAR available to the remote client. For Web applications, put the ejb-client.jar in the /lib directory. For non-Web clients, include ejb-client.jar in the client's classpath.

	
Note:

WebLogic Server classloading behavior varies, depending on whether the client is stand-alone. Stand-alone clients with access to the ejb-client.jar can load the necessary classes over the network. However, for security reasons, programmatic clients running in a server instance cannot load classes over the network.

Deploy

Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients. You can deploy an EJB using one of several procedures, depending on your environment and whether or not your EJB is in production.

For general instructions on deploying WebLogic Server applications and modules, including EJBs, see Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server. For EJB-specific deployment issues and procedures, see Chapter 8, "Deployment Guidelines for Enterprise Java Beans" in this book — Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server.

Solving Problems During Development

The following sections describe WebLogic Server features that are useful for checking out and debugging deployed EJBs.

Adding Line Numbers to Class Files

If you compile your EJBs with appc, you can use the appc -lineNumbers command option to add line numbers to generated class files to aid in debugging. For information, see Appendix D, "appc Reference."

Monitoring Data

WebLogic Server collects a variety of data about the run-time operation of a deployed EJB. This data, which you can view in the Deployments node of the Administration Console, can be useful in determining if an EJB has completed desired processing steps. To access EJB run-time statistics, expand the Deployment node in the Administration Console, navigate to the JAR EAR that contains the bean, and select the Monitoring tab.

For information about the data available, see these pages in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help:

	
"Deployments-->EJB --> Monitoring --> Stateful Session EJBs"

	
"Deployments-->EJB-->Monitoring-->Stateless EJBs"

	
"Deployments-->EJB --> Monitoring--> Message-Driven EJBs"

	
"Deployments-->EJB --> Monitoring --> Entity EJBs"

Creating Debug Messages

For instructions on how to create messages in your application to help you troubleshoot and solve bugs and problems, see Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

WebLogic Server Tools for Developing EJBs

This section describes Oracle tools that support the EJB development process. For a comparison of the features available in each tool, see Table 4-14.

Oracle JDeveloper

Oracle JDeveloper is a full-featured Java IDE that can be used for end-to-end development of EJBs. For more information, see the Oracle JDeveloper online help. For information about installing JDeveloper, see Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

Oracle Enterprise Pack for Eclipse

Oracle Enteprise Eclipse (OEPE) rovides a collection of plug-ins to the Eclipse IDE platform that facilitate development of WebLogic Web services. For more information, see the Eclipse IDE platform online help.

Administration Console

In the Administration Console, you can view, modify, and persist to the descriptor file within the EJB a number of deployment descriptor elements. Descriptors are modified in the Administration Server copy of the EJB as well as in any deployed copies of the EJB (after deployment). When you modify descriptors, changes are made to your (the user's) original copy of the EJB (prior to deployment).

However, updating these descriptor elements takes place dynamically at runtime without requiring that the EJB be redeployed. The descriptor element that you can change in the Administration Console are limited to only those that may be dynamically changed at runtime, as summarized in Table 4-13.

Table 4-13 Descriptor Elements Available from Administration Console

	EJB Type	Editable Elements
	
Entity

	
	
max-beans-in-cache

	
max-beans-in-free-pool

	
key-cache-size

	
trans-timeout-seconds

	
read-timeout-seconds (read-only Entity beans only)

	
Message-Driven

	
	
max-beans-in-free-pool

	
message-selector (see http://www.java.sun.com/dtd/ejb-jar_2_0.dtd)

	
jms-polling-interval-seconds

	
trans-timeout-seconds

	
Stateless

	
	
max-beans-in-free-pool

	
trans-timeout-seconds

	
Stateful

	
	
max-beans-in-free-pool

	
idle-timeout-seconds

	
trans-timeout-seconds

javac

The javac compiler provided with the Sun Java J2SE SDK provides java compilation capabilities. For information on javac, see http://java.sun.com/docs.

EJBGen

EJBGen is an EJB 2.x code generator. You can annotate your bean class file with javadoc tags and then use EJBGen to generate the remote and home interface classes and the deployment descriptor files for an EJB application, reducing to one the number of EJB files you need to edit and maintain.

Oracle recommends that you use EJBGen to generate deployment descriptors; this is a Oracle best practice which allows for easier and simpler maintenance of EJBs. When you use EJBGen, you have to write and annotate only one bean class file, which simplifies writing, debugging, and maintenance. If you use Oracle Workshop for WebLogic Platform as a development environment, Workshop automatically inserts EJBGen tags for you.

For information on EJBGen, see Appendix E, "EJBGen Reference."

DDInit

DDInit is a utility for generating deployment descriptors for WebLogic Server applications. DDInit uses information from the class files to create deployment descriptor files.

See "DDInit" in Oracle Fusion Middleware Command Reference for Oracle WebLogic Server.

WebLogic Server Ant Utilities

WebLogic Server includes Ant utilities to create skeleton deployment descriptors.

The Ant task examines a directory containing an EJB and creates deployment descriptors based on the directory contents. Because the Ant utility does not have information about all desired configurations and mappings for your EJB, the skeleton deployment descriptors the utility creates are incomplete. After the utility creates the skeleton deployment descriptors, you can use a text editor or an XML editor to edit the deployment descriptors and complete the configuration of your EJB.

For more information, see "Deploying Applications Using wldeploy" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

weblogic.Deployer

The weblogic.Deployer command-line tool is a Java-based deployment tool that provides a command line interface to the WebLogic Server deployment API. This tool was developed for administrators and developers who need to initiate deployment from the command line, a shell script, or any automated environment other than Java.

See "weblogic.Deployer Command-Line Reference" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

appc

The appc compiler generates and compiles the classes needed to deploy EJBs and JSPs to WebLogic Server. It validates the deployment descriptors for compliance with the current specifications at both the individual module level and the application level. The application-level checks include checks between the application-level deployment descriptors and the individual modules as well as validation checks across the modules.

	
Note:

The appc compiler replaces the deprecated ejbc utility. Therefore, Oracle recommends that you use appc instead of the deprecated ejbc.

See Appendix D, "appc Reference."

DDConverter

DDConverter is a command line tool that upgrades deployment descriptors from earlier releases of WebLogic Server. Oracle recommends that you always upgrade your deployment descriptors in order to take advantage of the features in the current J2EE specification and release of WebLogic Server.

You can use weblogic.DDConverter to upgrade your deployment descriptors. For information on using weblogic.DDConverter, see Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

	
Note:

With this release of WebLogic Server, the EJB-specific DDConverter, weblogic.ejb20.utils.DDConverter, is deprecated. Instead, use the new application-level DDConverter, weblogic.DDConverter, to convert your application's deployment descriptors, including the EJB-specific deployment descriptors.

Comparison of EJB Tool Features

The following table lists Oracle tools for EJB development, and the features provided by each. (Yes indicates the tool contains the corresponding feature.

Table 4-14 EJB Tools and Features

	EJB Tool	Generate Interfaces and Home Interfaces	Compile Java Code	Generate Deployment Descriptors	View and Edit Deployment Descriptors	Deploy
	
WebLogic Workshop

	
Yes

	
Yes

	
Yes

	
No

	
Yes

	
appc

	
No

	
Yes

	
No

	
No

	
No

	
javac

	
No

	
Yes

	
No

	
No

	
No

	
EJBGen

	
Yes

	
No

	
Yes

	
Yes

	
No

	
DDinit

	
No

	
No

	
Yes

	
No

	
No

	
Administration Console

	
No

	
No

	
No

	
Yes

	
Yes

	
Deployer

	
No

	
No

	
No

	
No

	
Yes

	
DDConverter

	
No

	
No

	
Yes

	
No

	
No

5 Session EJBs

This section describes how session beans work within the EJB container, and provides design and development guidelines that are specific to session beans. For a description of the overall bean development process, see Implementing Enterprise Java Beans.

It is assumed that the reader is familiar with Java programming and session bean features and capabilities. For an introduction to session bean features and how they are typically used in applications, see Session EJBs Implement Business Logic and Session Bean Features.

The following sections describe the session bean life-cycle, design considerations, and instructions for key implementation tasks.

	
Comparing Stateless and Stateful Session Beans

	
Pooling for Stateless Session EJBs

	
Caching and Passivating Stateful Session EJBs

	
Design Decisions for Session Beans

	
Implementing Session Beans

Comparing Stateless and Stateful Session Beans

This section compares the key differences between stateless and stateful session beans.

Table 5-1 Comparing Stateless and Stateful Session Beans

	Stateless Session Beans	Stateful Sessions Beans
	
Are pooled in memory, to save the overhead of creating a bean every time one is needed. WebLogic Server uses a bean instance when needed and puts it back in the pool when the work is complete.

Stateless sessions beans provide faster performance than stateful beans.

	
Each client creates a new instance of a bean, and eventually removes it. Instances may be passivated to disk if the cache fills up.

An application issues an ejbRemove() to remove the bean from the cache.

Stateful sessions beans do not perform as well as stateless sessions beans.

	
Have no identity and no client association; they are anonymous.

	
Are bound to particular client instances.Each bean has an implicit identity. Each time a client interacts with a stateful session bean during a session, it is the same object.

	
Do not persist. The bean has no state between calls.

	
Persist. A stateful session bean's state is preserved for the duration of a session.

See Choosing Between Stateless and Stateful Beans for a discussion of when to use which type of session bean.

Pooling for Stateless Session EJBs

By default, no stateless session EJB instances exist in WebLogic Server at startup time. As individual beans are invoked, WebLogic Server initializes new instances of the EJB.

However, in a production environment, WebLogic Server can provide improved performance and throughput for stateless session EJBs by maintaining a free pool of unbound stateless session EJBs—instances that are not currently processing a method call. If an unbound instance is available to serve a request, response time improves, because the request does not have to wait for an instance to be created. The free pool improves performance by reusing objects and skipping container callbacks when it can.

Upon startup, WebLogic Server automatically creates and populates the free pool with the quantity of instances you specify in the bean's initial-beans-in-free-pool deployment element in the weblogic-ejb-jar.xml file. By default, initial-beans-in-free-pool is set to 0.

Additionally, in this release of WebLogic Server, Administrators can initialize EJB pools on demand via the Administration Console. When an EJB's pool is initialized, it is reset to the state it was in immediately after the EJB was deployed. For more information, see "Initialize the idle bean cache and pool of an EJB" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

The following figure illustrates the WebLogic Server free pool, and the processes by which stateless EJBs enter and leave the pool. Dotted lines indicate the "state" of the EJB from the perspective of WebLogic Server.

Figure 5-1 WebLogic Server Free Pool Showing Stateless Session EJB Life Cycle

[image: Description of Figure 5-1 follows]

If you configure a pool, WebLogic Server will service method calls with an EJB instance from the free pool, if one is available. The EJB remains active for the duration of the client's method call. After the method completes, the EJB instance is returned to the free pool. Because WebLogic Server unbinds stateless session beans from clients after each method call, the actual bean class instance that a client uses may be different from invocation to invocation.

If all instances of an EJB class are active and max-beans-in-free-pool has been reached, new clients requesting the EJB class will be blocked until an active EJB completes a method call. If the transaction times out (or, for non-transactional calls, if five minutes elapse), WebLogic Server throws a RemoteException for a remote client or an EJBException for a local client.

	
Note:

The maximum size of the free pool is limited by the value of the max-beans-in-free-pool element, available memory, or the number of execute threads.

You can configure the WebLogic Server to remove bean instances that have remained unused in the pool for a period of time specified in idle-timeout-seconds element in the pool element. When beans have been in the pool unused for the amount of time you specify in idle-timeout-seconds, they are removed from the pool until the number of beans in the pool reaches the number specified in initial-beans-in-free-pool; the number of beans in the pool will never fall below the number specified in initial-beans-in-free-pool.

When an application requests a bean instance from the free pool, there are three possible outcomes:

	
An instance is available in the pool. WebLogic Server makes that instance available and your application proceeds with processing.

	
No instance is available in the pool, but the number of instances in use is less than max-beans-in-free-pool. WebLogic Server allocates a new bean instance and gives it to you.

	
No instances are available in the pool and the number of instances in use is already max-beans-in-free-pool. Your application must wait until either your transaction times out or a bean instance that already exists in the pool becomes available.

Caching and Passivating Stateful Session EJBs

WebLogic Server uses a cache of bean instances to improve the performance of stateful session EJBs. The cache stores active EJB instances in memory so that they are immediately available for client requests. The cache contains EJBs that are currently in use by a client and instances that were recently in use. Stateful session beans in cache are bound to a particular client.

The following figure illustrates the WebLogic Server cache, and the processes by which stateful EJBs enter and leave the cache.

Figure 5-2 Stateful Session EJB Life Cycle

[image: Description of Figure 5-2 follows]

Stateful Session EJB Creation

No stateful session EJB instances exist in WebLogic Server at startup. Before a client begins accessing a stateful session bean, it creates a new bean instance to use during its session with the bean. When the session is over the instance is destroyed. While the session is in progress, the instance is cached in memory.

Stateful Session EJB Passivation

Passivation is the process by which WebLogic Server removes an EJB instance from cache while preserving its state on disk. While passivated, EJBs are not in memory and are not immediately available for client requests, as they are when in the cache.

The EJB developer must ensure that a call to the ejbPassivate() method leaves a stateful session bean in a condition such that WebLogic Server can serialize its data and passivate the instance. During passivation, WebLogic Server attempts to serialize any fields that are not declared transient. This means that you must ensure that all non-transient fields represent serializable objects, such as the bean's remote or home interface. EJB 2.1 specifies the field types that are allowed.

Controlling Passivation

The rules that govern the passivation of stateful session beans vary, based on the value of the beans cache-type element, which can be:

	
LRU—least recently used, or eager passivation.

	
NRU—not recently used, or as lazy passivation

The idle-timeout-seconds and max-beans-in-cache elements also affect passivation and removal behaviors, based on the value of cache-type.

Eager Passivation (LRU)

When you configure eager passivation for a stateful session bean by setting cache-type to LRU, the container passivates instances to disk:

	
As soon as an instance has been inactive for idle-timeout-seconds, regardless of the value of max-beans-in-cache.

	
When max-beans-in-cache is reached, even though idle-timeout-seconds has not expired.

The container removes a passivated instance from disk after it has been inactive for idle-timeout-seconds after passivation. This is referred to as a lazy remove.

	
Note:

ejbRemove may not be called on bean instances that are deleted after idle-timeout-seconds is reached.

Lazy Passivation (NRU)

When lazy passivation is configured by setting cache-type to NRU, the container avoids passivating beans, because of the associated systems overhead—pressure on the cache is the only event that causes passivation or eager removal of beans.

When the cache is full and a bean instance must be removed from the cache to make room for another instance, the container:

	
Note:

ejbRemove may not be called on bean instances that are deleted after idle-timeout-seconds is reached.

	
Removes the bean instance from the cache without passivating it to disk if idle-timeout-seconds has expired. This is referred to as a eager remove. An eager remove ensures that an inactive instance does not consume memory or disk resources.

	
Passivates the bean instance to disk if idle-timeout-seconds has not expired.

Specifying the Persistent Store Directory for Passivated Beans

When a stateful session bean is passivated, its state is stored in a file system directory. Each server instance has its own directory for storing the state of passivated stateful session beans, known as the persistent store directory. The persistent store directory contains one subdirectory for each passivated bean.

The persistent store directory is created by default in the server instance directory, for example:

D:\releases\<version>\bea\user_domains\mydomain\myserver\pstore\

The path to the persistence store is:

RootDirectory\ServerName\persistent-store-dir

where:

	
RootDirectory—the directory where WebLogic Server runs.

RootDirectory can be specified at server startup with the -Dweblogic.RootDirectory property.

	
ServerName—the name of the server instance.

	
persistent-store-dir—the value of the of the persistent-store-dir element in the <stateful-session-descriptor> element of weblogic-ejb-jar.xml. If no value is specified for <persistent-store-dir>, the directory is named pstore by default.

The persistent store directory contains a subdirectory, named with a hash code, for each passivated bean. For example, the subdirectory for a passivated bean in the example above might be:

D:\releases\810\bea\user_domains\mydomain\myserver\pstore\14t89gex0m2fr

Configuring Concurrent Access to Stateful Session Beans

In accordance with the EJB 2.x specification, simultaneous access to a stateful session EJB results in a RemoteException. This access restriction on stateful session EJBs applies whether the EJB client is remote or internal to WebLogic Server. To override this restriction and configure a stateful session bean to allow concurrent calls, set the allow-concurrent-calls deployment element.

If multiple servlet classes access a stateful session EJB, each servlet thread (rather than each instance of the servlet class) must have its own session EJB instance. To prevent concurrent access, a JSP/servlet can use a stateful session bean in request scope.

Design Decisions for Session Beans

This section discusses some design decisions relevant to session beans.

Choosing Between Stateless and Stateful Beans

Stateless session beans are a good choice if your application does not need to maintain state for a particular client between business method calls. WebLogic Server is multi-threaded, servicing multiple clients simultaneously. With stateless session beans, the EJB container is free to use any available, pooled bean instance to service a client request, rather than reserving an instance for each client for the duration of a session. This results in greater resource utilization, scalability and throughput.

Stateless session beans are preferred for their light-weight implementation. They are a good choice if your application's beans perform autonomous, distinct tasks without bean-to-bean interaction.

Stateful session beans are a good choice if you need to preserve the bean's state for the duration of the session.

For examples of applications of stateless and stateful session beans, see Stateless Session Beans and Stateful Session Beans.

Choosing the Optimal Free Pool Setting for Stateless Session Beans

When you choose values for initial-beans-in-free-pool and max-beans-in-free-pool you must weigh memory consumption against slowing down your application. If the number of stateless session bean instances is too high, the free pool contains inactive instances that consume memory. If the number is too low, a client may not obtain an instance when it needs it. This leads to client threads blocking until an instance frees up, slowing down the application.

Usually max-beans-in-free-pool should be equal to the number of worker threads in the server instance, so that when a thread tries to do work an instance is available.

Implementing Session Beans

Chapter 4 takes you through session bean implementation step-by-step. This section explains the details of configuring WebLogic-Server specific session bean behavior by setting bean-specific deployment descriptor elements.

WebLogic-Specific Configurable Behaviors for Session Beans

Table 5-2 summarizes the deployment descriptor elements you set to configure the behavior of a stateless session bean and how the bean behaves if you do not configure the element. All of the elements listed are sub-elements of the stateless-session-descriptor element in weblogic-ejb-jar.xml.

Table 5-3 summarizes the deployment descriptor elements you set to configure the behavior of a stateful session bean and how the bean behaves if you do not configure the element. All of the elements listed are sub-elements of the stateful-session-descriptor element in weblogic-ejb-jar.xml.

Table 5-2 WebLogic-Specific Features for Stateless Session EJBs

	To control	Set the following weblogic-ejb-jar.xml element	Default behavior
	
The number of inactive instances of a stateless session bean that exist in WebLogic Server when it is started.

See Pooling for Stateless Session EJBs.

	
initial-beans-in-free-pool

	
WebLogic Server creates 0 beans in the free pool.

	
The number of seconds a bean can be idle in the pool before WebLogic Server can remove it.

Note: Idle beans can only be removed from the pool until the number of beans in the pool reaches initial-beans-in-free-pool.

	
idle-timeout-seconds

	
WebLogic Server removes beans from the free pool when they have been idle for 600 seconds.

	
The maximum size of the free pool of inactive stateless session beans.

	
max-beans-in-free-pool

	
WebLogic Server limits the maximum number of beans in the free pool to 1000.

	
How WebLogic Server replicates stateless session EJB instances in a cluster.

See Reliability and Availability Features.

	
	
stateless-clustering

	
home-is-clusterable

	
home-load-algorithm

	
home-call-router-class-name

	
stateless-bean-is-clusterable

	
stateless-bean-load-algorithm

	
stateless-bean-call-router-class-name

	
stateless-bean-methods-are-idempotent

	
The EJB can be deployed to multiple servers in a cluster.

Table 5-3 WebLogic-Specific Features for Stateful Session EJBs

	Behavior	weblogic-ejb-jar.xml element	Default
	
Whether multiple clients can simultaneously access a bean without triggering a Remote Exception.

See Configuring Concurrent Access to Stateful Session Beans.

	
allow-concurrent-calls

	
False—The server throws a RemoteException when a stateful session bean instance is currently handling a method call and another (concurrent) method call arrives on the server.

	
Whether the EJB container can remove a stateful session bean within a transaction context without provoking an error.

	
allow-remove-during-transaction

	
False—The server throws an exception when a stateful session bean is removed within a transaction context.

	
The number of stateful been instances that can exist in cache.

	
max-beans-in-cache

	
1000

	
The period of inactivity before a stateful session bean instance remains in cache (given that max-beans-in-cache has not been reached), and after passivation, remains on disk.

	
idle-timeout-seconds

	
600 seconds

	
The rules for removing a stateful session bean instance from the cache.

	
cache-type

	
NRU (not recently used)—For a description of this behavior, see Lazy Passivation (NRU).

	
Where WebLogic Server stores the state of passivated stateful session bean instances.

	
persistent-store-dir

	
pstore

	
To support method failover, specify the idempotent methods for a clustered EJB. An idempotent method can be repeated with no negative side-effects.

	
idempotent-methods

	
None

	
Custom class to be used for routing home method calls.

	
home-call-router-class-name

	
None

	
Indicates if the bean home can be clustered.

	
home-is-clusterable

	
True

	
Algorithm to use for load-balancing among replicas of the bean home.

	
home-load-algorithm

	
Algorithm specified by the property weblogic.cluster.defaultLoadAlgorithm

	
Indicates the replication used for stateful session beans in a cluster: in-memory or none.

	
replication-type

	
None

6 Entity EJBs

The sections that follow describe WebLogic Server value-added features for programming and using entity beans in applications, and provide associated design and development guidelines.

It is assumed that the reader is familiar with Java programming and entity bean features and capabilities. For an introduction to entity beans and how they are typically used in applications, see Entity EJBs Maintain Persistent Data and Entity Bean Features.

For a description of the overall bean development process, see Implementing Enterprise Java Beans.

	
Managing Entity Bean Pooling and Caching

	
Using Primary Keys

	
Configuring Entity EJBs for Database Operations

	
Using SQL in Entity Beans

	
Using Container-Managed Relationships (CMRs)

	
Choosing a Concurrency Strategy

	
CMP Entity Bean Descriptors Element by Feature

Managing Entity Bean Pooling and Caching

WebLogic Server provides these features to improve performance and throughput for entity EJBs:

	
Free pool—stores anonymous entity beans that are used for invoking finders, home methods, and creating entity beans.

	
Cache—contains instances that have an identity—a primary key, or are currently enlisted in a transaction (READY and ACTIVE entity EJB instances).

Figure 6-1 illustrates the life cycle of an entity bean instance. The sections that follow describe pooling and how the container populates and manages the free pool and the cache.

Figure 6-1 Entity Bean Life Cycle

[image: Description of Figure 6-1 follows]

Understanding Entity Pooling

If you specify a non-zero value for the initial-beans-in-free-pool element in weblogic-ejb-jar.xml, WebLogic Server populates the pool with the specified quantity of bean instances at startup.

The default value of initial-beans-in-free-pool is zero. Populating the free pool at startup improves initial response time for the EJB, because initial requests for the bean can be satisfied without generating a new instance. In this release of WebLogic Server, administrators can also initialize pools on demand via the Administration Console. When a pool is initialized, it is reset to the state it was in immediately after the EJB was deployed. For information, see "Initialize the idle bean cache and pool of an EJB" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

An attempt to obtain an entity bean instance from the free pool will always succeed, even if the pool is empty. If the pool is empty, a new bean instance is be created and returned.

Pooled beans are anonymous instances, and are used for finders and home methods. The maximum number of instances the pool can contain is specified by the max-beans-in-free-pool element, in weblogic-ejb-jar.xml which set to 1,000 by default.

You can configure WebLogic Server to remove entity beans that have remained in the pool unused for a period of time specified in idle-timeout-seconds element in the pool element. When beans have been in the pool unused for the amount of time you specify in idle-timeout-seconds, they are removed from the pool until the number of beans in the pool reaches the number specified in initial-beans-in-free-pool; the number of beans in the pool will never fall below the number specified in initial-beans-in-free-pool.

Understanding Entity Caching

When a business method is called on a bean, the container obtains an instance from the pool, calls ejbActivate, and the instance services the method call.

A READY instance is in the cache, has an identity—an associated primary key, but is not currently enlisted in a transaction. WebLogic maintains READY entity EJB instances in least-recently-used (LRU) order.

An ACTIVE instance is currently enlisted in a transaction. After completing the transaction, the instance becomes READY, and remains in cache until space is needed for other beans.

The Current Beans in Cache field in the Administration Console Monitoring tab displays the count of READY and ACTIVE beans. Additionally, in this release of WebLogic Server, Administrators can initialize caches on demand via the Administration Console. When a cache is initialized, it is reset to the state it was in immediately after the EJB was deployed. For information, see "Initialize the idle bean cache and pool of an EJB" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

The effect of the max-beans-in-cache element, and the quantity of instances with the same primary key allowed in the cache vary by concurrency strategy. Table 6-0 lists, for each concurrency strategy, how the value of the max-beans-in-cache element in weblogic-ejb-jar.xml limits the number of entity bean instances in the cache, and how many entity bean instances with the same primary key are allowed in the cache.

Table 6-1 Entity EJB Caching Behavior by Concurrency Type

	Concurrency Option	What is the effect of max-beans-in-cache on the number of bean instances in the cache?	How many instances with same primary key can exist in cache simultaneously?
	
Exclusive

	
max-beans-in-cache = number of ACTIVE bean + number of READY instances.

	
one

	
Database

	
The cache can contain up to max-beans-in-cache ACTIVE bean instances and up to max-beans-in-cache READY bean instances.

	
multiple

	
ReadOnly

	
max-beans-in-cache = number of ACTIVE bean + number of READY instances.

	
one

READY entity EJB instances are removed from the cache when the space is needed for other beans. When a READY instance is removed from cache, ejbPassivate is called on the bean, and the container will try to put it back into the free pool.

You can configure WebLogic Server to periodically remove entity instances from cache when they have been idle—not participated in a transaction—for a period of time specified in idle-timeout-seconds. For a dedicated cache, the fixed periodicity of the cleaning task is equal to the value of idle-timeout-seconds. For an application level cache, multiple types of entity beans may share the cache each of which is allowed to have its own value of idle-timeout-seconds. In this case, the fixed periodicity of the cleaning task is equal to MIN(Set of idle-timeout-seconds for all beans in cache), and the cleaning task may run with a variable periodicity.

When the container tries to return an instance to the free pool and the pool already contains max-beans-in-free-pool instances, the instance is discarded.

ACTIVE entity EJB instances will not be removed from cache until the transaction they are participating in commits or rolls back, at which point they will become READY, and hence eligible for removal from the cache.

Understanding Passivation of Entity Beans

Entity beans that are involved in transactions can be passivated when necessary in order to attempt to prevent a CacheFullException when an attempt is made to insert an entity bean into a cache that is full. Passivation is handled automatically by the EJB container and you do not need to change the way you program EJBs in order to take advantage of this feature. However, you can optionally program your EJBs to communicate to the cache that they are done performing all operations in the current transaction. The cache can then make use of this information when evaluating beans for the possibility of passivation.

To optionally program EJBs to notify their cache that they are done performing operations in the current transaction, you can use the operationsComplete Java API as follows:

weblogic.ejb.interfaces.EJBLocalObject
public.void.operationsComplete()
weblogic.ejb.EJBObject
public.void.operationsComplete()

Understanding ejbLoad() and ejbStore() Behavior

This section describes how and when the persistent data for a CMP 2.1 entity bean is loaded to cache and written back to persistent storage.

	
findXXX()—By default, calling a finder method on a CMP bean results in immediate load of the bean's persistent data to cache. This behavior is controlled by the finders-load-bean element in the persistence element of weblogic-ejb-jar.xml.

	
ejbLoad()—For CMP 2.1 entity beans, ejbLoad() causes a "lazy" load of a bean's persistent data to the entity cache when the next getXXX() for the bean's data is called. That is, when a transaction is initiated for a CMP 2.0 entity bean instance, WebLogic Server reads the bean's data from the entity cache, rather than the database, unless ejbLoad() has been called since the bean was last loaded to cache.

By default, WebLogic Server calls ejbLoad() each time a new transaction is initiated for the entity bean.

	
Note:

When used with CMP 1.1 entity beans and entity beans that use bean-managed persistence, ejbLoad() does not perform the lazy load—for these bean types, the bean's persistent data is loaded to cache during the ejbLoad().

	
ejbStore()—WebLogic Server writes the persistent fields of an entity EJB to the database using calls to ejbStore().

By default, WebLogic Server calls ejbStore() when the transaction commits.

Controlling the Behavior of ejbLoad() and ejbStore()

For applications in which multiple clients can currently access and modify a bean's underlying data, the default behavior of ejbLoad() and ejbStore() described in Understanding ejbLoad() and ejbStore() Behavior ensures database integrity by:

	
Ensuring that each new transaction uses the latest version of the EJB's persistent data, and

	
Updating the database upon transaction commitment.

However, depending on your requirements, you may prefer to call ejbLoad() and ejbStore() either more or less frequently. For instance, you might want to limit calls that access the database for performance reasons. If your application does not allow multiple transactions to concurrently access the EJB—for example, if the bean uses Exclusive concurrency—loading the data at the beginning of each transaction is unnecessary. Given that no other clients or systems update the EJB's underlying data, the cached EJB data is always up-to-date, and calling ejbLoad() results in extra overhead. In such cases, you can safely reduce calls to ejbLoad(), as described in Limiting Database Reads with cache-between-transactions.

Alternatively, you might want to deviate from the standard ejbStore() behavior, by calling it before a transaction commits, in order to access and use intermediate transaction results. For instructions, see Updating the Database Before Transaction Ends.

Disabling Cache Flushing

According to the EJB specification, updates made by a transaction must be reflected in the results of query-finders and ejbSelects issued during the transaction. This requirement can slow performance. If you prefer not to flush the cache before the query is executed, you can change the value of the include-updates element in weblogic-cmp-jar.xml from its default value of True to False.

The decision to disable cache flushing depends on whether performance is more important than seeing the most current data. Setting include-updates to False provides the best performance but updates of the current transaction are not reflected in the query. If include-updates is True the container flushes all changes for the transactions to the database before executing the new query.

You can safely turn cache flushing off if your transactions do not re-query modified data—a common scenario—and get the best performance.

Configuring Application-Level Caching

Application-level caching—also known as "combined caching"—allows multiple entity beans that are part of the same J2EE enterprise application to share a single runtime cache. There are no restrictions on the number of different entity beans that may reference an individual cache.

Application-level caching offers the following advantages:

	
Reduces the number of entity bean caches, and hence the effort to configure the cache.

	
Better utilization of memory and heap space, because of reduced fragmentation. For example, if a particular EJB home experiences a burst of activity, it can make use of all memory available to the combined cache, while other EJBs that use the cache are paged out. If two EJBs use different caches, when one bean's cache becomes full, the container cannot page out EJBs in the other bean's cache, resulting in wasted memory.

	
Simplifies management; combined caching enables a system administrator to tune a single cache, instead of many caches.

	
Provides better scalability

Application-level caching is not the best choice, however, for applications that experience high throughput. Because one thread of control exists per cache at a time, high throughput can create a bottleneck situation as tasks compete for control of the thread.

To configure an application-level cache:

	
Verify that the weblogic-application.xml file is located in the META-INF directory of the EAR file.

	
Define the application-level cache in the entity-cache element of weblogic-application.xml. For a definition of this element and the child elements it contains, see "entity-cache" in "Enterprise Application Deployment Descriptor Elements" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

	
Reference the application-level cache in the entity-cache-ref element of the entity-descriptor element in weblogic-ejb-jar.xml.

Note that:

	
entity-cache-name should be the name of the application-level cache, as specified in weblogic-application.xml.

	
The concurrency-strategy you specify for the bean must be compatible with the caching-strategy specified in weblogic-application.xml. A read-only entity can only use a multiversion application-level cache. For more information, see "caching-strategy" in "Enterprise Application Deployment Descriptor Elements" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

The weblogic-application.xml deployment descriptor is documented in "Enterprise Application Deployment Descriptor Elements" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Using Primary Keys

Every entity EJB must have a primary key that uniquely identifies an entity bean within its home. Each entity bean instance can define a different class for its primary key; multiple entity beans can use the same primary key class, as appropriate.

If two entity bean instances have the same home and the same primary key, they are considered identical. A client can invoke the getPrimaryKey() method on the reference to an entity bean instance's remote interface to determine the instance's identity within its home.

The instance identity associated with a reference does not change during the lifetime of the reference. Therefore, the getPrimaryKey() method always returns the same value when called on the same entity object reference. A client that knows the primary key of an entity object can obtain a reference to the entity object by invoking the findByPrimaryKey(key) method on the bean's home interface.

Specifying Primary Keys and Primary Key Classes

You can map a primary key to one or multiple fields:

	
Mapping a Primary Key to a Single CMP Field

In the entity bean class, you can have a primary key that maps to a single CMP field. CMP fields must be specified in both ejb-jar.xml and weblogic-cmp-jar.xml. In both descriptor files, CMP fields are specified in the cmp-field element. For simple primary keys, also specify the primary key in the primkey-field element in the ejb-jar.xml. In addition, specify the primary key field's class in the prim-key-class element in ejb-jar.xml.

	
Wrapping One or More CMP Fields in a Primary Key Class

You can define your own primary key class that maps to single or multiple CMP fields. The primary key class must be public, and have a public constructor with no parameters. Specify the name of the primary key class in the prim-key-class element in ejb-jar.xml. All fields in the primary key class must be public, and must have the same names as the corresponding cmp-fields in ejb-jar.xml and weblogic-ejb-jar.xml. For compound primary keys, which map to multiple CMP fields, do not specify primkey-field in ejb-jar.xml.

	
Anonymous Primary Key Class

If your entity EJB uses an anonymous primary key class, you must subclass the EJB and add a cmp-field of type java.lang.Integer to the subclass. Enable automatic primary key generation for the field so that the container fills in field values automatically, and map the field to a database column in the weblogic-cmp-jar.xml deployment descriptor.

Finally, update the ejb-jar.xml file to specify the EJB subclass, rather than the original EJB class, and deploy the bean to WebLogic Server.

	
Note:

If you use the original EJB (instead of the subclass) with an anonymous primary key class, WebLogic Server displays the following error message during deployment:
In EJB ejb_name, an 'Unknown Primary Key Class' (<prim-key-class> == java.lang.Object) MUST be specified at Deployment time (as something other than java.lang.Object).

Guidelines for Primary Keys

Follow these suggestions when using primary keys with WebLogic Server:

	
Do not construct a new primary key class with an ejbCreate. Instead, allow the container to create the primary key class internally, as described in Automatically Generating Primary Keys.

	
In an application that manages its own primary key values, for a simple primary key—one composed of a single atomic value such as a String or an Integer—make the primary key class a container-managed field. Set the value of the primary key cmp-field using the setXXX method within the ejbCreate method.

	
Do not use a cmp-field of the type BigDecimal as a primary key field for CMP beans. The boolean BigDecimal.equals (object x) method considers two BigDecimal equal only if they are equal in value and scale. This is because there are differences in precision between the Java language and different databases. For example, the method does not consider 7.1 and 7.10 to be equal. Consequently, this method will most likely return False or cause the CMP bean to fail.

If you need to use BigDecimal as the primary key, you should:

	
Implement a primary key class.

	
In the primary key class, implement the boolean equal (Object x) method.

	
In the equal method, use boolean BigDecimal.compareTo(BigDecimal val).

	
If you are mapping a database column to a cmp-field and a cmr-field concurrently and the cmp-field is a primary key field, set the value when the ejbCreate() method is invoked by using the setXXX method for the cmp-field. In this case, the cmr-field is initialized automatically, and the setXXX method for the cmr-field cannot be used. Conversely, if the cmp-field is not a primary key field, the cmp-field is read-only. The column is updated using the cmr-field, and the cmp-field provides a read-only view of the foreign key.

Automatically Generating Primary Keys

WebLogic Server supports the automatic primary key generation feature for CMP entity beans. This feature is supported for simple (non-compound) primary keys only.

WebLogic Server supports two methods of automatic primary key generation:

	
Native database primary key generation—The database generates the primary key. To enable this feature, specify the database and a generator name in the <automatic-key-generation> element of weblogic-cmp-jar.xml. Based on the values you configure, the container generates code that obtains the primary key from the database. This feature is supported for Oracle and Microsoft SQL Server databases only. In addition, see the instructions in Declaring Primary Key Field Type.

	
Primary keys generated from a SEQUENCE table.

Whichever method of generated primary keys you use, see the instructions in Declaring Primary Key Field Type.

Specifying Automatic Key Generation for Oracle Databases

Generated primary key support for Oracle databases uses a SEQUENCE entity in the Oracle database to generate unique primary keys. The Oracle database SEQUENCE is called when a new number is needed. Specify automatic key generation in the automatic-key-generation element in weblogic-cmp-jar.xml. Specify the name of the Oracle database SEQUENCE in the generator-nam element. If the Oracle database SEQUENCE was created with a SEQUENCE INCREMENT, specify a key-cache-size. The value of key-cache-size must match the value of the Oracle database SEQUENCE INCREMENT. If these two values are different, duplicate keys can result.

When using the Oracle database SEQUENCE object for generating primary keys:

	
Do not set the generator-type to USER_DESIGNATED_TABLE with Oracle. Doing so sets the TX ISOLATION LEVEL to SERIALIZABLE, which can cause the following exception:

javax.ejb.EJBException: nested exception is: java.sql.SQLException: Automatic
Key Generation Error: attempted to UPDATE or QUERY NAMED SEQUENCE TABLE
NamedSequenceTable, but encountered SQLException java.sql.SQLException:
ORA-08177: can't serialize access for this transaction.

Instead, use the AutoKey option with Oracle databases.

	
In this release, WebLogic Server does not support Oracle database's synonym feature for the SEQUENCE schema object. If you migrate an application that uses synonyms for SEQUENCEs from a release prior to WebLogic Server 8.1 to this release, the following errors result:

[EJB:011066]During EJB deployment, error(s) were encountered while setting up The ORACLE SEQUENCE named 'XXX' with INCREMENT value '1'
[EJB:011064]The ORACLE SEQUENCE named 'XXX' with INCREMENT '1' was not found in the database'

Specifying Automatic Key Generation for Microsoft SQL Server

Generated primary key support for Microsoft SQL Server databases uses SQL Server's IDENTITY column. When the bean is created and a new row is inserted in the database table, SQL Server automatically inserts the next primary key value into the column that was specified as an IDENTITY column.

	
Note:

For instructions on creating a SQL Server table that contains an IDENTITY column, see Microsoft documentation.

Once the IDENTITY column is created in the table, specify automatic key generation in weblogic-cmp-jar.xml as shown below.

<automatic-key-generation>
 <generator-type>SQLServer</generator-type>
</automatic-key-generation>

Generating Primary Keys with a Named Sequence Table

A sequence table is a database-neutral way to generate primary keys. The sequence table holds a monotonically increasing integer sequence value that is used as the primary key value in bean instances as they are created.

Create a table named SEQUENCE to hold the current primary key value. The table consists of a single row with a single column, as defined by the following statement:

CREATE table_name (SEQUENCE int)
INSERT into table_name VALUES (0)

To use this feature, make sure that the underlying database supports a transaction isolation level of Serializable. The Serializable value indicates that simultaneously executing a transaction multiple times has the same effect as executing the transaction multiple times in a serial fashion. This is important in a WebLogic Server cluster, in which multiple servers instances access the sequence table concurrently. See your database documentation to determine the isolation levels it supports.

Specify automatic key generation in the weblogic-cmp-jar.xml file, as shown below. In addition, see the instructions in Declaring Primary Key Field Type.

<automatic-key-generation>
 <generator-type>NamedSequenceTable</generator-type>
 MY_SEQUENCE_TABLE_NAME</generator-name>
 <key-cache-size>100</key-cache-size>
</automatic-key-generation>

Specify the name of the sequence table in the generator-name element.

Specify the size of the key cache— how many keys the container will fetch in a single DBMS call—in the key-cache-size element. Oracle recommends a key-cache-size greater than one. This setting reduces the number of calls to the database to fetch the next key value.

Oracle recommends that you define one NAMED SEQUENCE table per bean type. Beans of different types should not share a common NAMED SEQUENCE table. This reduces contention for the key table.

Declaring Primary Key Field Type

For both native DBMS primary key generation, or key generation using a named sequence table, in the abstract get and set methods of the associated entity bean, declare the primary field type to be either:

	
java.lang.Integer

	
java.lang.Long

In weblogic-cmp-jar.xml, set the key-cache-size element to specify how many primary key values in the sequence should be fetched from the database at a time. For example, setting key_cache_size to 10 results in one database access for every 10 beans created, to update the sequence. The default value of key_cache_size is 1. Oracle recommends that you set key_cache_size to a value greater than one, to minimize database accesses and to improve performance.

Support for Oracle Database SEQUENCE

WebLogic Server can automatically create an Oracle database SEQUENCE—a number generator that generates a unique integer each time it is called.

An Oracle database SEQUENCE can use a specified "increment value", which is the value by which the integer is incremented on each subsequent generation. For example, if a SEQUENCE generates the integer 24 and the increment value is 10, then the next integer the SEQUENCE generates will be 34.

String-Valued CMP Field Trimming

In this release of WebLogic Server, by default, the EJB container trims string-valued CMP fields of their trailing spaces when they are retrieved from a database. All string-valued CMP fields are also trimmed of their trailing spaces in their set method.

Benefits of String Trimming

Untrimmed primary key fields can cause comparison operators to fail and can result in non-portable behavior. Automatic string trimming is beneficial because it causes a string retrieved from a database to be identical to the string that was inserted into the database. For instance, suppose:

	
a primary key field is mapped to the char(10) datatype in database

	
you insert the value "smith" into the database column

	
since "smith" is five characters in length and the char datatype is a fixed-length—of ten characters, in this case—the database pads the value by appending five blank spaces, resulting in "smith " being inserted into the database

	
you issue a SELECT statement to retrieve "smith" from the database, only, due to the database-appended characters, "smith " is retrieved

A comparison of the retrieved "smith " value with the original "smith" string would fail unless the retrieved value was first trimmed of its trailing spaces. With this release of WebLogic Server, the trailing spaces are trimmed automatically and, therefore, the comparison would not fail.

Disabling String Trimming

Automatic string trimming is enabled by default in this release. When you use DDConverter to convert deployment descriptors from prior releases of WebLogic Server, DDConverter automatically disables string trimming in the new deployment descriptors it creates.

If you want to disable string trimming for deployment descriptors that are newly created in this release of WebLogic Server, you can set disable-string-trimming in weblogic-cmp-jar.xml to True. For more information on the disable-string-trimming element, see disable-string-trimming.

Configuring Entity EJBs for Database Operations

The following sections provide instructions for mapping entity EJBs to database tables and controlling database access behaviors.

Configuring Table Mapping

A CMP bean can be mapped to one or more database tables. When a CMP bean is mapped to multiple tables, each table contains a row that corresponds to a particular bean instance. So, each table to which a bean maps will have the same number of rows at any point in time, and contain the same set of homogeneous primary key values. Consequently, each table must have the same number of primary key columns, and corresponding primary key columns in different tables must have the same type, though they may have different names. Tables that map to the same bean must not have referential integrity constraints declared between their primary keys. If they do, removal of a bean instance can result in a runtime error.

You map the cmp-fields of a bean to the columns of a table using the table-map element in weblogic-cmp-jar.xml, specifying one table-map element for each database table to which the bean maps. Each table-map element maps the primary key column(s) of the table to the primary key field(s) of the bean. Non-primary key fields may only be mapped to a single table.

Example 6-1 and Example 6-2 contain table-map elements for a bean that maps to a single and a bean that maps to multiple tables, respectively.

Example 6-1 Mapping a CMP Entity to One Database Table

<table-map>
 <table-name>TableName</table-name>
 <field-map>
 <cmp-field>name</cmp-field>
 <dbms-column>name_in_tablename</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>street_address</cmp-field>
 <dbms-column>street_address_in_tablename
 </dbms_column>
 </field-map>
 <field-map>
 <cmp-field>phone</cmp-field>
 <dbms-column>phone_in_tablename</dbms-column>
 </field-map>

Example 6-2 Mapping a CMP Entity to Two DBMS Tables

<table-map>
 <table-name>TableName_1</table-name>
 <field-map>
 <!--Note 'name'is the primary key field of this EJB -->
 <cmp-field>name</cmp-field>
 <dbms-column>name_in_tablename_1</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>street_address</cmp-field>
 <dbms-column>street_address_in_tablename_1</dbms-column>
 </field-map>
</table-map>
<table-map>
 <table-name>TableName_2</table-name>
 <field-map>
 <!--Note 'name'is the primary key field of this EJB -->
 <cmp-field>name</cmp-field>
 <dbms-column>name_in_tablename_2</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>phone</cmp-field>
 <dbms-column>phone_in_tablename_2</dbms-column>
 </field-map>
</table-map>

Automatic Table Creation (Development Only)

To make iterative development easier, the WebLogic Server EJB container can be configured to automatically change the underlying table schema as entity beans change, ensuring that tables always reflect the most recent object relationship mapping.

	
Note:

This feature is disabled when a server instance is running in production mode, as a production environment may require the use of more precise table schema definitions. To ensure that the container only changes tables it created, container-created tables include an extra column, called wls_temp.

The syntax of table creation statements (DDL) varies from database to database, so table creation may fail on databases that are not fully supported. If this occurs, create the tables manually.

Table 6-2 Controlling Automatic Table Creation Behavior With <create-default-dbms-tables>

	Setting <create-default-dbms-tables> to this value...	Results in this behavior...
	
Disabled

	
The EJB container takes no action when underlying table schema changes. This is the default value.

	
CreateOnly

	
For each CMP bean in the JAR, if there is no table in the database for the bean, the container attempts to create the table based on information found in the deployment descriptor, including join tables, sequence tables, and Oracle database sequences. If table creation fails, a Table Not Found error is thrown, and the user must create the table manually.

	
DropAndCreate

	
For each CMP bean in the JAR:

	
if table columns have not changed, no action is taken, and the existing data is preserved.

	
if the columns have changed, then the container drops and recreates the table and all table data is lost.

Note: You must ensure that the column type and cmp-field types are compatible. The EJB container does not attempt to ensure the column type and cmp-field types are compatible.

	
DropAndCreate

Always

	
For each CMP bean listed in the JAR, the container drops and creates the table whether or not columns have changed.

	
AlterOrCreate

	
For each CMP bean in the JAR:

	
if the table exists, the container attempts to alter the table schema using the ALTER TABLE SQL command and the container saves the data.

	
if the table does not exist, the container creates the table during deployment.

Note: Do not use AlterOrCreate if a new column is specified as a primary key or a column with null values is specified as the new primary key column. Due to database limitations, use DropAndCreate instead.

	
Note:

Sequence tables, join tables, and Oracle database SEQUENCEs are supported.

Enable this feature using the create-default-dbms-table element in weblogic-cmp-jar.xml. The behavior of this feature varies according to the value of the element, as described in the following table. The EJB container actions described in the table occur during deployment.

Delaying Database Inserts

Because of timing issues that may occur when creating a CMP bean, WebLogic Server enables you to specify at what point during the bean creation process the bean is inserted into the database.

Why Delay Database Inserts?

You cannot set a cmr-field until the primary key value for the bean—which is set when ejbPostCreate is called—is available. Hence, you cannot set a cmr-field until ejbPostCreate. This factor in combination with other conditions can lead to these problems:

	
Problem 1: Non-null foreign key constraint

If a database row is inserted after ejbCreate (that is, before ejbPostCreate), then the foreign key is given a null value. This is because foreign key columns are set when cmr-fields are set.

Solution: Set delay-insert-until in weblogic-cmp-jar.xml to ejbCreate, which causes the insert to be done immediately after the ejbCreate, and set the relationship during ejbPostCreate.

	
Problem 2: Creating beans during ejbPostCreate

When a related bean is created, the database insert for that bean happens before the create call finishes. If the database row for the related bean contains a foreign key that refers to the current bean and the foreign key has a referential integrity constraint defined, the insert will fail if the current bean's database row has not been inserted yet.

Solution: Set delay-insert-until to ejbCreate so that the row for the current bean exists during the ejbPostCreate.

	
Note:

In a one-to-one relationship, if the parent bean's primary key is embedded in the child bean's CMR field, when the EJB container creates the beans, it will not check if the parent bean has children, for performance reasons. To avoid a duplicationKeyException database exception, you must set the foreign key constraint on the child table in the database.

	
Problem 3: Both Problem 1 and Problem 2 exist

Solution: Do not create related beans during ejbPostCreate. Create the current bean and after the creation is finished, create the related beans and set up relationships.

Oracle recommends that applications always do this. Applications should never create related beans during creation of another bean.

Configuring Delayed Database Inserts

You can delay database inserts until the end of the ejbCreate method or ejbPostCreate method, using the delay-database-insert-until element in weblogic-cmp-jar.xml. To batch, order, and perform updates at the end of the transaction, set both enable-batch-operations and order-database-operations in weblogic-cmp-jar.xml to "True".

If you choose to delay database updates for a transaction that updates related beans, you must define the relationship between the beans in the weblogic-rdbms-relation of weblogic-cmp-jar.xml. Otherwise, database constraint errors may result when the EJB container attempts to perform the updates.

Limiting Database Reads with cache-between-transactions

As described in Understanding ejbLoad() and ejbStore() Behavior, by default, WebLogic Server calls ejbLoad() each time a transaction is initiated for an entity bean.

You can configure WebLogic Server to call ejbLoad() only when a client first references the bean or when a transaction is rolled back. This behavior is referred to as long-term caching. You enable long-term caching by setting the cache-between-transactions element in weblogic-ejb-jar.xml to true.

Long-term caching is allowed only if the concurrency-strategy for a bean is Exclusive, ReadOnly, or Optimistic. When long-term caching is configured for a:

	
ReadOnly bean, WebLogic Server ignores the value of the cache-between-transactions. WebLogic Server always performs long-term caching of read-only data, regardless of the value of cache-between-transactions.

	
Exclusive bean, the EJB container must have exclusive update access to the underlying data: the data must not be updated by another application outside of the EJB container.

	
Note:

If a bean with Exclusive concurrency is deployed in a cluster long-term caching is automatically disabled because any server instance in the cluster may update the bean data. This would make caching between transactions impossible.

	
Optimistic bean, the EJB container reuses cached data for each transaction after the client first references the bean, but ensures that updates are transactionally consistent by checking for optimistic conflicts at the end of each transaction.

	
Note:

In a cluster, when a bean with Optimistic concurrency is updated, notifications are broadcast to other cluster members to prevent optimistic conflicts.

Table 6-3 lists the allowable values for the cache-between-transactions element by entity bean type and concurrency strategy.

Table 6-3 Permitted cache-between-transactions values, by Concurrency Strategy and Entity Type

	Concurrency Strategy	BMP Entity	CMP 2.0 Bean	CMP 1.1 Entity
	
Database

	
False

	
False

	
False

	
Exclusive

	
True or False

	
True or False

	
True or False

	
Optimistic

	
Not applicable. Optimistic concurrency is not available for BMP beans.

	
True or False

	
Not applicable. Optimistic concurrency is not available for CMP 1.1 beans.

Updating the Database Before Transaction Ends

As described in Understanding ejbLoad() and ejbStore() Behavior, by default, WebLogic Server calls ejbStore() only when the transaction commits.

To make intermediate results of uncommitted transactions available to other database users, set delay-updates-until-end-of-tx in the persistence element of weblogic-ejb-jar.xml to False—this causes WebLogic Server to call ejbStore() after each method call.

	
Note:

While setting delay-updates-until-end-of-tx to false results in database updates after each method call, the updates are not committed until the end of the transaction.

Dynamic Queries

Dynamic queries allow you to construct and execute EJB-QL or SQL queries programmatically in your application code.

Using dynamic queries provides the following benefits:

	
The ability to create and execute new queries without having to update and deploy an EJB.

	
The ability to reduce the size of the EJB's deployment descriptor file. This is because finder queries can be dynamically created instead of statically defined in the deployment descriptors.

Enabling Dynamic Queries

To enable dynamic queries:

	
Set the enable-dynamic-queries element in the EJB's weblogic-ejb-jar.xml to True:

<enable-dynamic-queries>True</enable-dynamic-queries>

	
Set standard method permissions to control access to dynamic queries by specifying the method-permission element in the ejb-jar.xml deployment descriptor file.

Setting method-permission for the createQuery() method of the weblogic.ejb.QueryHome interface controls access to the weblogic.ejb.Query object necessary to execute the dynamic queries.

If you specify method-permission for the createQuery() method, the method-permission settings apply to the execute and find methods of the Query class.

Executing Dynamic Queries

The following code sample demonstrates how to execute a dynamic query.

InitialContext ic=new InitialContext();
FooHome fh=(FooHome)ic.lookup("fooHome");
QueryHome qh=(QueryHome)fh;
String ejbql="SELECT OBJECT(e)FROM EmployeeBean e WHERE e.name='rob'"
Query query=qh.createQuery();
query.setMaxElements(10)
Collection results=query.find(ejbql);

Enabling BLOB and CLOB Column Support for Oracle or DB2 Databases

WebLogic Server supports Oracle and DB2 databases Binary Large Object (BLOB) and Character Large Object (CLOB) DBMS columns for CMP entity beans.

WebLogic Server maps BLOBs to a cmp-field that has a byte array or serializable type. At this time, no support is available for mapping char arrays to a CLOB column.

To enable BLOB/CLOB support:

	
In the bean class, declare the variable.

	
Edit the XML by declaring the dbms-default-value and dbms-column-type deployment descriptors in the weblogic-cmp-jar.xml file.

	
Create the BLOB or CLOB in the Oracle or DB2 database.

Specifying a BLOB Column Using the Deployment Descriptor

The following XML code shows how to specify a BLOB object using the dbms-column-type element in weblogic-cmp-jar-xml file.

<field-map>
 <cmp-field>photo</cmp-field>
 <dbms-column>PICTURE</dbms-column>
 <dbms-column-type>Blob</dbms-column-type>
 <dbms-default-value>DB2</dbms-default-value>
</field-map>

Serialization for cmp-fields of Type byte[] Mapped to an Oracle Blob

In this release of WebLogic Server, cmp-fields of type byte[] mapped to a Blob are not serialized by default; the EJB container persists the byte[] directly and does not serialize it.

To cause WebLogic Server to serialize cmp-fields of type byte[] mapped to a Blob in an Oracle database, set the serialize-byte-array-to-oracle-blob compatibility flag, which was introduced in WebLogic Server 8.1 SP02, to True.

Specifying a CLOB Column Using the Deployment Descriptor

The following XML code shows how to specify a CLOB object using the dbms-column element in weblogic-cmp-jar-xml.

<field-map>
 <cmp-field>description</cmp-field>
 <dbms-column>product_description</dbms-column>
 <dbms_column-type>Clob</dbms-column-type>
 <dbms-default-value>Oracle</dbms-default-value>
</field-map>

Optimized CLOB Column Insertion on Oracle 10g

The Oracle 9i and 10g drivers have different requirements for successful insertion of CLOB column values into database rows. The Oracle 9i driver requires that a database row is locked before a CLOB value can be inserted into it. As a result, on Oracle 9i, WebLogic Server does the following to insert a row that contains a CLOB column value into a table:

	
Inserts a row with all values other than the CLOB column into the table.

	
Issues a SELECT FOR UPDATE statement on the row created in step 1, above.

	
Inserts the CLOB value into the row.

While these steps are necessary for successful insertion of a row that contains a CLOB column value on Oracle 9i, the steps cause an unnecessary performance hit on Oracle 10g. The Oracle 10g driver features improved handling of CLOBS and does not require a lock on a row before a CLOB column value can be inserted into it. On Oracle 10g, WebLogic Server uses a single INSERT statement to insert a row with a CLOB column value into a table, which results in increased performance of CMP EJBs.

To make use of this WebLogic Server optimization for Oracle 10g, you do not need to configure anything additional. Simply specify Oracle as your database and WebLogic Server checks to see if your Oracle version is Oracle 9i or Oracle 10g. If WebLogic Server identifies your database as Oracle 10g, rows containing CLOB values are inserted into tables in single INSERT statements. If WebLogic Server identifies your database as Oracle 9i, rows containing CLOB values are inserted into tables in three steps as previously described.

For more information, see "Handling CLOBs - Made easy with Oracle JDBC 10g" at http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#DUPS_OK_ACKNOWLEDGE.

Specifying Field Groups

A field group represents a subset of a bean's container-managed persistence (CMP) and container-managed relationship (CMR) fields. To improve performance, you can put related fields in a bean into groups that are faulted into memory together as a unit.

You can associate a group with a query or relationship, so that when a bean is loaded as the result of executing a query or following a relationship, only the fields mentioned in the group are loaded.

A special group named "default" is used for queries and relationships that have no group specified. By default, the default group contains all of a bean's CMP fields and any CMR fields that add a foreign key to the bean's table.

A field can belong to multiple groups. In this case, the getXXX() method for the field faults in the first group that contains the field.

You specify field groups in the field-group element of weblogic-cmp-jar.xml file, as shown in Example 6-3.

Example 6-3 Specifying Field Groups

<weblogic-rdbms-bean>
 <ejb-name>XXXBean</ejb-name>
 <field-group>
 <group-name>medical-data</group-name>
 <cmp-field>insurance</cmp-field>
 <cmr-field>doctors</cmr-fields>
 </field-group>
</weblogic-rdbms-bean>

Ordering and Batching Operations

Multiple instances of the same container-managed persistence (CMP) entity bean are often changed in a single transaction. If the EJB container issues SQL for every CMP entity bean instance, updates can become a performance bottleneck.

The EJB batch operations features solves this problem by updating multiple entries in a database table in one batch of SQL statements. This can dramatically improve performance by doing multiple database inserts, deletes, or updates for CMP beans in one database round-trip.

To permit batch database inserts, updates or deletes, set the enable-batch-operations element in the weblogic-cmp-jar.xml file to True.

Operation Ordering

Database operation ordering prevents constraint errors by taking into account database dependencies, and ordering inserts, updates and deletes accordingly.

Enabling database ordering causes the EJB container to do two things:

	
Delay all database operations—insert, update, and delete—to commit time

	
Order database operations at commit time

For example, assume a Customer A, who is related to Salesman A. If Salesman A is deleted, and Customer A is assigned to Salesman B, the container would order the operations in this fashion:

	
Update Customer A to refer to Salesman B.

	
Remove Salesman A.

This ensures that Customer A never refers to a salesman that does not exist, which would cause a database referential integrity error.

To enable the EJB container to correctly order database operations for related beans, you must specify the relationship between the beans, in the weblogic-rdbms-relation of weblogic-cmp-jar.xml. Otherwise, database constraint errors may result when the EJB container attempts to perform the updates.

Batch Operations Guidelines and Limitations

When using batch operations, you must set the boundary for the transaction, as batch operations only apply to the inserts, updates or deletes between transaction begin and transaction commit.

Batch operations only work with drivers that support the addBatch() and executeBatch() methods. If the EJB container detects unsupported drivers, it reports that batch operations are not supported and disables batch operations.

There are several limitations on using batch operations:

	
You cannot use the Automatically Generating Primary Keys feature with batch operations if the generator-type is set to sybase or sqlServer. If you have enabled automatic primary key generation with either of these types, WebLogic Server automatically disables batch operations and issues a warning.

	
The total number of entries created in a single batch operation cannot exceed the max-beans-in-cache setting, which is specified in the weblogic-ejb-jar.xml file.

	
If you set the dbms-column-type element in weblogic-cmp-jar.xml to either Blob or Clob, batch operation automatically turns off because you will not save much time if a Blob or Clob column exists in the database table. In this case, WebLogic Server performs one insert per bean, which is the default behavior.

Using Query Caching (Read-Only Entity Beans)

You can choose to cache read-only entity EJBs at the query level. Caching read-only entity EJBs at the query level improves performance because it enables the EJBs to be accessed in cache by any finder, thereby avoiding the need to access the database. For information, see enable-query-caching.

Using SQL in Entity Beans

In this release of WebLogic Server, you can use EJB-QL or standard or database-specific SQL for entity beans that use container-managed persistence (CMP). Oracle recommends that you use EJB-QL (with or without WebLogic extensions) for most queries and use SQL only when needed (for instance, to make use of vendor-specific features that cannot be accessed without using vendor-specific SQL).

You can use SQL in queries that cache multiple related objects, to implement finder and select methods, or with stored procedures.

To use EJB-QL in queries in this release of WebLogic Server, you do not need to change any mapping information in weblogic-cmp-jar.xml. You simply continue to map each CMP and CMR field to database columns as you did in pre-9.0 releases of WebLogic Server. For information, see, Configuring Entity EJBs for Database Operations and Using Container-Managed Relationships (CMRs). To use SQL in queries, you must describe the shape of the SQL result with the sql-shape element. SQL shape primarily consists of the SQL tables and columns that are returned. The EJB containers uses the SQL shape together with the CMP and CMP field mappings to return objects from the query. For more information, see:

	
sql-shape

	
sql-query

Using Container-Managed Relationships (CMRs)

Container-managed relationships (CMRs) are relationships that you define between two entity EJBs, analogous to the relationships between the tables in a database. If you define a CMR between two EJBs that are involved in the same processing task, your application can benefit from these features:

	
Related beans can be cached together, reducing the number of queries necessary to accomplish a processing task.

	
Batched database operations can be ordered correctly at the end of a transaction, avoiding data consistency problems.

	
Related beans can be deleted automatically, using the cascade delete feature.

The sections that follow describe the features and limitations of WebLogic Server CMRs. For instruction on configuring CMRs, see Defining Container-Managed Relationships (CMRs).

CMR Requirements and Limitations

You can define a relationship between two WebLogic Server entity beans that will be packaged in the same JAR and whose data persist in the same database. Entities that participate in the same relationship must map to the same datasource. WebLogic Server does not support relationships between entity beans that are mapped to different datasources. The abstract schema for each bean that participates in a container-managed relationship must be defined in the same ejb-jar.xml file.

EJB 2.1 states that if an entity bean does not have a local interface, the only CMR in which it can participate is a unidirectional one, from itself to another entity bean. However, WebLogic Server allows an entity bean with only a remote interface to:

	
Participate in CMRs that are bidirectional, or

	
Be the target of a unidirectional CMR with another entity.

Because this feature is not specified in EJB 2.1, entity beans that have only remote interfaces, and either participate in bidirectional relationships or are the target of a unidirectional relationship, may not be portable to other application servers.

CMR Cardinality

An entity bean can have a one-to-one, one-to-many, or many-to-many relationship with another entity bean.

CMR Direction

Any CMR, whether one-to-one, one-to-many, or many-to-many, can be either unidirectional or bidirectional. The direction of a CMR determines whether the bean on one side of the relationship can be accessed by the bean on the other side.

Unidirectional CMRs can be navigated in one direction only—the "dependent bean" is unaware of the other bean in the relationship. CMR-related features such as cascade deletes can only be applied to the dependent bean. For example, if cascade deletes have been configured for a unidirectional CMR from to EJB1 to EJB2, deleting EJB1 will cause deletion of EJB2, but deleting EJB2 will not cause deletion of EJB1.

	
Note:

For the cascade delete feature, the cardinality of the relationship is a factor—cascade deletes are not supported from the many side of a relationship, even if the relationship is bidirectional.

Bidirectional relationships can be navigated in both directions—each bean in the relationship is aware of the other. CMR-related features are supported in both directions. For example, if cascade deletes have been configured for a bidirectional CMR between EJB1 to EJB2, deleting either bean in the CMR will cause deletion of the other bean.

Removing CMRs

When a bean instance that participates in a relationship is removed, the container automatically removes the relationship. For instance, given a relationship between an employee and a department, if the employee is removed, the container removes the relationship between the employee and the department as well.

Defining Container-Managed Relationships (CMRs)

Defining a CMR involves specifying the relationship and its cardinality and direction in ejb-jar.xml. You define database mapping details for the relationship and enable relationship caching in weblogic-cmp-jar.xml. These sections provide instructions:

	
Specifying Relationships in ejb-jar.xml

	
Specifying Relationships in weblogic-cmp-jar.xml

Specifying Relationships in ejb-jar.xml

Container-managed relationships are defined in the ejb-relation element of ejb-jar.xml. Example 6-4 shows the ejb-relation element for a relationship between two entity EJBs: TeacherEJB and StudentEJB.

The ejb-relation element contains a ejb-relationship-role for each side of the relationship. The role elements specify each bean's view of the relationship.

Example 6-4 One-to-Many, Bidirectional CMR in ejb-jar.xml

<ejb-relation>
 <ejb-relation-name>TeacherEJB-StudentEJB</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>teacher-has-student
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>TeacherEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>teacher</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>student-has-teacher
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>StudentEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>student</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>

Specifying Relationship Cardinality

The cardinality on each side of a relationship is indicated using the multiplicity element in its ejb-relationship-role element.

In Example 6-5, the cardinality of the TeacherEJB-StudentEJB relationship is one-to-many—it is specified by setting multiplicity to one on the TeacherEJB side and Many on the StudentEJB side.

The cardinality of the CMR in Example 6-5, is one-to-one—the multiplicity is set to one in both role elements for the relationship.

Example 6-5 One-to-One, Unidirectional CMR in ejb-jar.xml

<ejb-relation>
 <ejb-relation-name>MentorEJB-StudentEJB</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>mentor-has-student
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>MentorEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>mentorID</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>student-has-mentor
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>StudentEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>

If a side of a relationship has a <multiplicity> of Many, its <cmr-field> is a collection, and you must specify its <cmr-field-type> as java.util.Collection, as shown in the StudentEJB side of the relationship in Example 6-4. It is not necessary to specify the cmr-field-type when the cmr-field is a single valued object.

Table 6-4 lists the contents of cmr-field for each bean in a relationship, based on the cardinality of the relationship.

Table 6-4 Cardinality and cmr-field-type

	If relationship between EJB1 and EJB2 is ...	EJB1's cmr-field contains ...	EJB2's cmr-field contains ...
	
one-to-one

	
single valued object

	
single valued object

	
one-to-many

	
single valued object

	
Collection

	
many-to-many

	
Collection

	
Collection

Specifying Relationship Directionality

The directionality of a CMR is configured by the inclusion (or exclusion) of a cmr-field in the ejb-relationship-role element for each side of the relationship

A bidirectional CMR has a cmr-field element in the ejb-relationship-role element for both sides of the relationship, as shown in Figure 6-1.

A unidirectional relationship has a cmr-field in only one of the role elements for the relationship. The ejb-relationship-role for the starting EJB contains a cmr-field, but the role element for the target bean does not. Figure 6-1 specifies a unidirectional relationship from MentorEJB to StudentEJB— there is no cmr-field element in the ejb-relationship-role element for StudentEJB.

Specifying Relationships in weblogic-cmp-jar.xml

Each CMR defined in ejb-jar.xml must also be defined in a weblogic-rdbms-relation element in weblogic-cmp-jar.xml. weblogic-rdbms-relation identifies the relationship, and contains the relationship-role-map element, which maps the database-level relationship between the participants in the relationship, for one or both sides of the relationship.

The relation-name in weblogic-rdbms-relation must be the same as the ejb-relation-name for the CMR in ejb-jar.xml.

One-to-One and One-to-Many Relationships

For one-to-one and one-to-many relationships, relationship-role-map is defined for only one side of the relationship.

For one-to-one relationships, the mapping is from a foreign key in one bean to the primary key of the other.

Figure 6-1 is the weblogic-rdbms-relation element for a the one-to-one relationship between MentorEJB and StudentEJB, whose <ejb-relation> is shown in Figure 6-1.

Example 6-6 One-to-One CMR weblogic-cmp-jar.xml

<weblogic-rdbms-relation>
 <relation-name>MentorEJB-StudentEJB</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>
 mentor-has-student
 </relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>student</foreign-key-column>
 <key-column>StudentID/key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>

For one-to-many relationships, the mapping is also always from a foreign key in one bean to the primary key of another. In a one-to-many relationship, the foreign key is always associated with the bean that is on the many side of the relationship.

Example 6-7 is the weblogic-rdbms-relation element for a the one-to-many relationship between TeacherEJB and StudentEJB, whose <ejb-relation> is shown in Figure 6-1.

Example 6-7 weblogic-rdbms-relation for a One-to-Many CMR

<weblogic-rdbms-relation>
 <relation-name>TeacherEJB-StudentEJB</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>
 teacher-has-student
 </relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>student</foreign-key-column>
 <key-column>StudentID/key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>

Many-to-Many Relationships

For many-to-many relationships, specify a weblogic-relationship-role element for each side of the relationship. The mapping involves a join table. Each row in the join table contains two foreign keys that map to the primary keys of the entities involved in the relationship. The direction of a relationship does not affect how you specify the database mapping for the relationship.

Example 6-8 shows the weblogic-rdbms-relation element for the friends relationship between two employees.

The FRIENDS join table has two columns, first-friend-id and second-friend-id. Each column contains a foreign key that designates a particular employee who is a friend of another employee. The primary key column of the employee table is id. The example assumes that the employee bean is mapped to a single table. If employee bean is mapped to multiple tables, then the table containing the primary key column must be specified in the relation-role-map. For an example, see Specifying CMRs for EJBs that Map to Multiple Tables.

Example 6-8 weblogic-rdbms-relation for a Many-to-Many CMR

<weblogic-rdbms-relation>
 <relation-name>friends</relation-name>
 <table-name>FRIENDS</table-name>
 <weblogic-relationship-role>
 <relationship-role-name>first-friend
 </relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>first-friend-id</foreign-key-column>
 <key-column>id</key-column>
 </column-map
 </relationship-role-map>
 <weblogic-relationship-role>
 <weblogic-relationship-role>
 <relationship-role-name>second-friend</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>second-friend-id</foreign-key-column>
 <key-column>id</key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

Specifying CMRs for EJBs that Map to Multiple Tables

A CMP bean that is involved in a relationship may be mapped to multiple DBMS tables.

	
If the bean on the foreign-key side of a one-to-one or one-to-many relationship is mapped to multiple tables then the name of the table containing the foreign-key columns must be specified using the foreign-key-table element.

	
Conversely, if the bean on the primary-key side of a one-to-one or one-to-many relationship or a bean participating in a many-to-many relationship is mapped to multiple tables then the name of the table containing the primary-key must be specified using the primary-key-table element.

If neither of the beans in a relationship is mapped to multiple tables, then the foreign-key-table and primary-key-table elements may be omitted since the tables being used are implicit.

Example 6-9 contains a relationship-role-map for a CMR in which the bean on the foreign-key side of a one-to-one relationship, Fk_Bean, is mapped to two tables: Fk_BeanTable_1 and Fk_BeanTable_2.

The foreign key columns for the relationship, Fk_column_1 and Fk_column_2, are located in Fk_BeanTable_2. The bean on the primary key side, Pk_Bean, is mapped to a single table with primary-key columns Pk_table_pkColumn_1 and Pk_table_pkColumn_2.

The table that contains the foreign-key columns is specified by the <foreign-key-table> element.

Example 6-9 One-to-One CMR, One Bean Maps to Multiple Tables

<relationship-role-map
 <foreign-key-table>Fk_BeanTable_2</foreign-key-table>
 <column-map>
 <foreign-key-column>Fk_column_1</foreign-key-column>
 <key-column>Pk_table_pkColumn_1</key-column>
 </column-map>
 <column-map>
 <foreign-key-column>Fk_column_2</foreign-key-column>
 <key-column>Pk_table_pkColumn_2</key-column>
 </column-map>
</relationship-role-map>

About CMR Fields and CMR Field Accessor Methods

CMR fields are not stored as attributes of an implementation class—they are accessible in the bean through CMR field accessor methods that you write. CMR field accessor methods:

	
Must begin with get...() and set...() and the text following get.../set... must match the name of the relation field as it is declared in the ejb-jar.xml.

	
Must exist in the implementation class for every CMR field.

	
Must be declared abstract

To allow remote clients to use CMR field accessor methods, put the getter and/or setter method signatures in the remote interface. However, CMR fields of a Collection datatype cannot be exposed in the remote interface. A CMR field that is a Collection can only be accessed by local methods.

Using Cascade Delete for Entities in CMRs

When a cascade delete is performed, the deletion of a bean instance that participates in a relationship with another bean instance causes the container to also automatically delete all of the dependent bean instances. This feature is an efficient way to maintain data integrity.

For example, if the Employee bean has a one-to-many relationship to the Employee_Projects bean, deleting an Employee bean instance causes instances of the Employee_Projects bean to also be deleted.

You can specify cascade delete for one-to-one and one-to-many relationships; many-to-many relationships are not supported.

WebLogic Server supports two methods of cascade delete:

	
J2EE Cascade Delete—This method does not require that the underlying database have built-in support for cascade deletes. Configure the behavior using the cascade-delete element in ejb-jar.xml, as shown in the following example:

<ejb-relation>
 <ejb-relation-name>Customer-Account</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Account-Has-Customer
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <cascade-delete/>
 </ejb-relationship-role>
</ejb-relation>

	
Note:

The cascade-delete element can only be specified for a ejb-relationship-role element if the other ejb-relationship-role in the relationship has multiplicity of one.

	
Database-Level Cascade Delete (Oracle only)—This method allows an application to take advantage of a database's built-in support for cascade delete, and possibly improve performance. When db-cascade-delete is enabled, the underlying database must be set up for cascade deletes. For instructions and examples of setting up database cascade delete in Oracle WebLogic Server, db-cascade-delete.

In a high volume transaction environment, transactions that use exclusive concurrency can encounter deadlocks when a transaction that performs a cascade delete needs access to the same entity bean as a transaction that does not perform a cascade delete. For information on how to avoid such deadlocks, see Deadlock Prevention for Exclusive Concurrency and Cascade Deletes.

Relationship Caching

Relationship caching—also known as "pre-fetching" or "eager relationship caching'—improves the performance of entity beans by loading related beans into the cache and preventing multiple queries by issuing a join query for the related bean. If a set of beans is accessed as part of the same unit of work, then your application should load them into cache at the same time.

Suppose your application contains entity beans with the following relationships:

customerBean has a one-to-many relationship with accountBean
accountBean has a one-to-one relationship with addressBean
customerBean has a one-to-one relationship with phoneBean

Consider the following EJB code for accountBean and addressBean, which have a 1-to-1 relationship:

Account acct = acctHome.findByPrimaryKey("103243");
Address addr = acct.getAddress();

Without relationship caching, an SQL query is issued by the first line of code to load the accountBean and another SQL query is issued by the second line of code to load the addressBean; this results in two queries to the database.

With relationship caching, a single query is issued to load both accountBean and addressBean by the first line of code, which should result in better performance. So, if you know that a related bean will be accessed after executing a particular finder method, it is a good idea to let the finder method know via the relationship caching feature.

The relationship caching feature has the following limitations:

	
Relationship caching is supported for one-to-one, one-to-many, and many-to-one relationships. It is not supported for many-to-many relationships.

	
When using weblogic-ql, this feature only works with finder methods that return references to either EJBObject or EJBLocalObject beans.

If you enable relationship caching for a finder or a select method, the result of the query will always be a distinct set even if the distinct keyword is not specified. This is due to a technical limitation that does not allow the EJB container to distinguish duplicates in the underlying JDBC result set.

With relationship caching enabled, changes to the relationship are automatically reflected in cache. For instance, if an instance is added on the "many" side of a one-to-many relationship, that change is reflected in the cached relationship—a subsequent query to the bean on the "one" side of the relationship causes the relationship to be refreshed in cache, so that the new instance is available to the query.

Enabling Relationship Caching

To enable relationship caching:

	
Specify the caching-name element in the weblogic-query element of the weblogic-cmp-jar.xml file.

If a caching-name element is specified in the weblogic-query element, when the finder query is executed, WebLogic Server loads data for related beans as specified by the relationship-caching element that the caching-name element specifies.

	
Make sure that the finders-load-bean element (in weblogic-ejb-jar.xml) for the bean that contains the finder is not set to False or relationship caching will not be enabled. The default value of finder-load-bean is True.

	
Specify the database-type element in the weblogic-cmp-jar.xml file. Relationship caching uses outer joins for queries and outer join syntax can vary by database type.

Because relationship caching uses join queries, the number of caching-element elements in the relationship-caching element can increase duplicates in the result set. Specify one one-to-many relationships per caching-element to avoid duplicates in the result set.

Specify the relationship-caching element in weblogic-cmp-jar.xml, as shown in this example:

<relationship-caching>
 <caching-name>cacheMoreBeans</caching-name>
 <caching-element>
 <cmr-field>accounts</cmr-field>
 <group-name>acct_group</group-name>
 <caching-element>
 <cmr-field>address</cmr-field>
 <group-name>addr_group</group-name>
 </caching-element>
 </caching-element>
 <caching-element>
 <cmr-field>phone</cmr-field>
 <group-name>phone_group</group-name>
 </caching-element>
</relationship-caching>

The accounts and phone fields are cmr-fields in customerBean; the address field is a cmr-field in the accountBean; and addr_group and phone_group are groups in addressBean and phoneBean.

Using nested caching-element elements enables the bean to load more than one level of related beans. In the above sample, addressBean is the second level related bean because it is nested in the accountBean. Currently, there is no limitation on the number of caching-elements that you can specify. However, setting too many caching-element levels could have an impact on the performance of the current transaction.

Choosing a Concurrency Strategy

An entity bean's concurrency strategy specifies how the EJB container should manage concurrent access to the bean; it determines how and when WebLogic Server synchronizes its cached copy of the entity with the database.

Concurrency strategies supported by WebLogic Server are described in the following sections.

Exclusive Concurrency

With exclusive concurrency, the container places an exclusive lock on cached EJB instances when the bean is associated with a transaction. Other requests for the EJB instance are blocked until the transaction completes. Exclusive locks are local to the server instance, so this strategy is most appropriate for a single server architecture. When used in a cluster, exclusive concurrency serializes all requests to a bean instance within a server instance, but concurrency between servers in the cluster that access the same bean concurrently is governed by the database.

Multiple clients can use the exclusive concurrency option to access entity EJBs in a serial fashion. Using this exclusive option means that if two clients simultaneously attempt to access the same entity EJB instance (an instance having the same primary key), the second client is blocked until the EJB is available.

Database Concurrency

With database concurrency, concurrency control for an EJB for each transaction is deferred to the underlying datastore. WebLogic Server allocates a separate entity bean instance to each transaction and allows concurrency control to be handled by the database. This is the default option.

With the Database mechanism, the EJB container continues to cache instances of entity bean instances. However, the container does not cache the intermediate state of a bean instance between transactions. Instead, WebLogic Server issues a SQL SELECT for each instance at the beginning of a transaction to obtain the latest EJB data. A SQL UPDATE is issued if there are changes.

The request to commit data is subsequently passed along to the database. The database, therefore, handles all concurrency control and deadlock detection for the EJB's data.

Optimistic Concurrency

As with the Database concurrency strategy, Optimistic concurrency gives each transaction its own bean instance. The Optimistic concurrency strategy does not hold any locks in the EJB container or the database while the transaction is in process.

	
Note:

For databases that do read-locking (non-Oracle databases) optimistic beans read data in a separate, local transaction. The local transaction commits as soon as the read completes. This strategy avoids read locks and can allow for better scalability when transactions do not update the same data concurrently.

Preventing Stale Optimistic Bean Data

To prevent optimistic data from going stale, the container activates a new bean instance for each transaction so that requests proceed in parallel. WebLogic Server calls ejbLoad() for entity beans based on the value specified in read-timeout-seconds, provided the value of cache-between-transactions is True.

Explicit Invalidation of Optimistic Beans

You can invalidate optimistic beans explicitly when the underlying data is updated outside the EJB container (this is also known as a "backdoor update"). For information, see Invalidating Entity EJBs Explicitly.

Invalidation Options for Optimistic Concurrency in Clusters

By default, when a bean that has a concurrency-strategy of Optimistic is deployed in a cluster and a member of the cluster updates the bean, the EJB container attempts to invalidate all copies of the bean in all servers in the cluster. This invalidation allows you to avoid optimistic concurrency failures, but can be a drain on performance because it is a resource-intensive operation. If you prefer, you can set cluster-invalidation-disabled in weblogic-cmp-jar.xml to True to prevent the EJB container from attempting to invalidate copies of the bean across the cluster.

Check Data for Validity with Optimistic Concurrency

You can configure the EJB container to validate an Optimistic bean's transaction data before committing the transaction, to verify that no data read or updated by the transaction has bean changed by another transaction. If it detects changed data, the EJB container rolls back the transaction.

	
Note:

The EJB container does not validate Blob or Clob fields in a bean with Optimistic concurrency. The workaround is to use version or timestamp checking.

Configure validity checking for a bean with Optimistic concurrency using the verify-columns and verify-rows elements in the table-map element for the bean in weblogic-cmp-jar.xml file.

The verify-rows element specifies the rows in a table that the EJB container should check when optimistic concurrency is used; the verify-columns element specifies how columns in a table are checked for validity when you use the optimistic concurrency strategy.

	
Set the verify-rows element to:

	
Read—To check all rows in the table that have been read during the transaction. This includes both rows that are simply read and rows that are read and then updated or deleted by the transaction. Checking all rows entails additional overhead because it generally increases the amount of optimistic checking that must be performed by the EJB container. With the Read option, committed transactions read a set of rows that are guaranteed not to be modified by another transaction until after the transaction commits. This results in a high level of consistency which is very close to the ANSI definition of SERIALIZABLE consistency.

	
Modified—To check only the rows that have been updated or deleted by the current transaction. This setting ensures that two transactions will not update the same row concurrently, resulting in a lost update, but it allows reads and updates of different transactions to be interleaved. This results in a level of consistency that falls between the ANSI READ_COMMITTED and REPEATABLE_READ levels of consistency.

	
Set the value of the verify-columns element to:

	
Read—To check all columns in the table that have been read during the transaction. This includes both rows that are simply read and rows that are read and then updated or deleted by the transaction.

	
Modified—To check only the columns that have been updated or deleted by the current transaction.

	
Note:

If verify-rows is set to Read then the verify-columns element cannot have a value of Modified since this combination would result in only checking the modified rows.

	
Version—To check that a version column exists in the table and that this column is used to implement optimistic concurrency.

A version column must be created with an initial value of 0 or any positive integer, and must increment by 1 whenever the row is modified. For more information, see version-column-initial-value.

Additionally, if you use database triggers to update version columns in the database and you set trigger-updates-optimistic-column to True, the database triggers must initialize the version column in the database when the bean is created.

	
Timestamp—To check that a timestamp column exists in the table and that this column is used to implement optimistic concurrency. Timestamp-based optimistic concurrency requires a 1 second granularity for the database column.

By default, the EJB container manages the version and timestamp columns and ensures that these columns are kept up to date. If you choose to instead let database triggers maintain version and timestamp columns, set the value of trigger-updates-optimistic-column to True.

	
Note:

The version or timestamp column is not updated if the transaction did not modify any regular CMP or CMR fields—if the only data changed during the transaction was the value of the version or timestamp column (as a result of transaction initiation) the column used for optimistic checking will not be updated at the end of the transaction.

	
If verify-columns is set to Version or Timestamp:

	
Specify the version or timestamp column using the optimistic-column in the table-map element in the weblogic-cmp-jar.xml file. Mapping this column to a cmp-field is optional.

The optimistic-column element identifies a database column that contains a version or timestamp value used to implement optimistic concurrency. This element is case maintaining, though not all databases are case sensitive. The value of this element is ignored unless verify-columns is set to Version or Timestamp.

	
Specify the initial value of the version column using the version-column-initial-value element in the weblogic-cmp-jar.xml file.

If the EJB is mapped to multiple tables, optimistic checking is only performed on the tables that are updated during the transaction.

Optimistic Concurrency and Oracle Databases

For Oracle databases, if you set verify-columns to Modified for an entity EJB with a CMP non-key field type java.util.Date and implementation type Oracle DATE, WebLogic Server throws an optimistic concurrency violation exception when a simple update is made to the non-key DATE field—even though only one user is updating the record.

This problem occurs because of a mismatch in date value precision between the Oracle DATE column and the java.util.Date type. The java.util.Date type is in milliseconds, and the Oracle DATE column is not. There are two ways to avoid this error:

	
Set the Oracle database column type to Timestamp, a higher precision type introduced in Oracle9i.

	
Include logic in your application to zero out the milliseconds of a java.util.Date value. To accomplish this, prepare a date field for an entity bean java.util.Date field in this way:

Calendar cal = Calendar.getInstance();
cal.set(Calendar.MILLISECOND, 0); // clears millisecond
Date myDate = cal.getTime();

Read Only Concurrency

Used to signify that a bean is read-only. The container activates a new bean instance for each transaction so that requests proceed in parallel. WebLogic Server calls ejbLoad() for read-only beans based on the read-timeout-seconds parameter.

To allow generation of more efficient code for read-only beans, create and remove operations are not allowed for EJBs that use ReadOnly concurrency in this release of WebLogic Server.

To allow read-only beans to use create and remove operations—for instance, to support legacy behavior—set the allow-readonly-create-and-remove element in weblogic-cmp-jar.xml to True.

Concurrency Strategy Trade-Offs

Concurrency strategies present a trade-off between performance and freshness of data. You should choose a concurrency strategy based on which of these factors weighs more heavily in your application. The trade-offs are summarized in Table 6-5.

Table 6-5 Concurrency Strategy Trade-offs

	Concurrency Strategy	Benefits	Risks and Limitations	When to Choose It
	
Database

	
Deferring concurrency control to the database improves throughput, compared to exclusive concurrency, for concurrent access to data and provides deadlock detection.

	
Risk of deadlock, as each transaction must obtain an update lock from the database.

Mitigate deadlock risk by setting use-select-for-update in weblogic-cmp-jar.

xml. This causes the database to take out an exclusive lock when the read is done, avoiding the deadlock that can occur when a read lock is upgraded to an exclusive lock.

Makes the bean more dependent on the database's lock policies, which might reduce the bean's portability.

	
If the database concurrency control is sufficient for your application and you do not require additional features provided by the container.

Note: Use the transaction-isolation element in combination with Database concurrency to achieve the desired concurrency behavior.

	
Optimistic

	
Provides highest level of concurrent access, as it holds no locks in the EJB container or database during a transaction.

	
Multiple transactions can access the same application data at the same time.

	
If multiple transactions are unlikely to attempt to modify the same application data at the same time.

	
Exclusive

	
Serializes access to EJB data in a single server (non-clustered environment) for a high level of consistency. Avoids deadlocks due to lock upgrades, and prevents unnecessary calls to ejbLoad() to refresh the bean instance's persistent fields.

	
Performance degradation can result. Once a client has locked an EJB instance, other clients are blocked from the EJB's data, even those who require only read-access.

	
To provide backwards compatibility for applications that rely on this strategy.

For applications in which a high level of concurrency is essential, and more important than performance.

	
Read Only

	
N/A

	
N/A

	
N/A

Configuring Concurrency Strategy

Specify the concurrency mechanism for a bean by setting the concurrency-strategy element in the entity-cache element in weblogic-ejb-jar.xml. Because concurrency-strategy is defined at the bean level, different beans in the same application can use different concurrency strategies, as appropriate.

If you do not specify a concurrency-strategy, WebLogic Server uses Database concurrency by default.

Deadlock Prevention for Exclusive Concurrency and Cascade Deletes

In situations of high throughput, transactions that use an exclusive concurrency strategy can encounter deadlocks if a transaction that performs a cascade delete needs access to the same entity bean as a transaction that does not perform a cascade delete.

You can prevent such deadlocks with the lock-order element of weblogic-cmp-jar.xml deployment descriptor file. lock-order defines the order in which beans are locked during a cascade delete of related beans. Its value is an integer value. The bean with the lowest lock-order value is processed first, the bean with the next lowest lock-order value is processed next, and so on.

The locking order specified should be the same as the locking order used by other transactions in the application.

lock-order causes a cascade delete to lock bean instances in the same order as their other transactions. If the normal lock order is BeanA, then BeanB, specify this lock-order, and cascade delete will use it.

Using the Read-Mostly Pattern

For persistent data that is only occasionally updated, you can implement a "read-mostly pattern" in WebLogic Server by mapping a read-only and a read-write entity bean to the same data. You use the read-only entity bean for reads and the read-write entity bean for writes.

The read-only entity EJB loads bean data at intervals specified by the read-timeout-seconds element in the entity-cache (or entity-cache-ref) element for the bean in weblogic-ejb-jar.xml. To ensure that the read-only bean always returns current data, the read-only bean must be invalidated when the read-write bean changes the entity bean data. You can configure WebLogic Server to automatically invalidate the read-only bean, or explicitly invalidate it in bean code, as described in Invalidating Read-Only Entity EJBs Implicitly and Invalidating Entity EJBs Explicitly respectively.

In a WebLogic Server cluster, the read-mostly pattern gives clients of the read-only EJB the performance advantage of reading from cache, while clients of the read-write EJB enjoy true transactional behavior—the read-write EJB's cached state always matches the persistent data in the database.

Configuring Entity Beans for Read-Mostly Pattern

These practices will reduce the likelihood of data consistency problems with the read-mostly pattern.

	
Configuring the read-only beans' read-timeout-seconds element in weblogic-ejb-jar.xml:

	
To the same value in all beans that can be updated in the same transaction.

	
To the shortest period that yields acceptable performance levels.

	
Design read-write beans:

	
To update the minimum data set necessary; avoid implementing beans that write numerous, unchanged fields to the datastore at each ejbStore().

	
To update their data on a timely basis; do not use a read-write bean in lengthy transactions that might run longer than the read-timeout-seconds setting for its read-only counterparts.

	
To invalidate the read-only counterpart of a read-write bean when the read-write bean updates bean data.

If you are running EJB 2.x, you can approximate the read-mostly pattern using a single bean that uses optimistic concurrency. An optimistic bean acts like a read-only bean when performing a read—it reads from the cache and can return stale data. However, when an optimistic bean performs a write, the container ensures that the data being updated has not changed—providing the same level of consistency for writes as a bean that uses Database concurrency. See Choosing a Concurrency Strategy.

Invalidating Read-Only Entity EJBs Implicitly

The invalidation-target element in the entity-descriptor element in weblogic-ejb-jar.xml identifies a read-only entity EJB that should be invalidated when a CMP entity bean has been modified.

invalidation-target may only be specified for an EJB 2.x CMP entity bean. The target ejb-name must be a read-only entity EJB.

Invalidating Entity EJBs Explicitly

In this release of WebLogic Server, you can invalidate any optimistic entity bean that has cache-between-transactions enabled, by calling the following invalidate() method on either the CachingHome or CachingLocalHome interface.

Example 6-10 CachingHome and CachingLocalHome interfaces

package weblogic.ejb;

public interface CachingHome {
 public void invalidate(Object pk) throws RemoteException;
 public void invalidate (Collection pks) throws RemoteException;
 public void invalidateAll() throws RemoteException;

public interface CachingLocalHome {
 public void invalidate(Object pk) throws RemoteException;
 public void invalidate (Collection pks) throws RemoteException;
 public void invalidateAll() throws RemoteException
}

The following example code shows how to cast the home to CachingHome and then call the method:

Example 6-11 Casting the Home and Calling the Method

import javax.naming.InitialContext;
import weblogic.ejb.CachingHome;

Context initial = new InitialContext();
Object o = initial.lookup("CustomerEJB_CustomerHome");
CustomerHome customerHome = (CustomerHome)o;

CachingHome customerCaching = (CachingHome)customerHome;
customerCaching.invalidateAll();

The invalidate() method causes the entity beans to be invalidated in the local server instance. If the server instance is a member of a cluster, it multicasts a message to the other clustered servers to invalidate their cached copies of the bean. Upon the next getXXX() to an invalidated entity bean, the container loads the current version of the bean's persistent data to the entity cache from the database, as described in Understanding ejbLoad() and ejbStore() Behavior.

WebLogic Server calls invalidate() after the update transaction has completed. If the invalidation occurs during a transaction update, the previous version might be read if the isolation-level for transactions does not permit reading uncommitted data.

CMP Entity Bean Descriptors Element by Feature

The following sections are a quick reference to WebLogic Server-specific deployment for CMP entity beans. Each section contains the elements related to a particular type of feature or behavior. The table in each section defines relevant elements terms of: the behavior it controls, the parent element in weblogic-cmp-jar.xml that contains the element, and the behavior you can expect if you do not explicitly specify the element in weblogic-cmp-jar.xml.

	
Container-Managed Relationship Elements

	
Primary Key Elements

Container-Managed Relationship Elements

The following lists the container-managed relationship elements in weblogic-cmp-jar.xml.

Table 6-6 Container-managed Relationship Elements in weblogic-cmp-jar.xml

	Element	Description
	
relation-name

	
Name of the relationship.

Note: If an ejb-relation-name for the relationship is specified in ejb-jar.xml, relation-name must contain the same value as ejb-relation-name.

	
relationship-role-name

	
The name of the relationship role. (A relationship has two roles—one for each side of the relationship).

For a 1-1 or 1-m relationship, specify only the role on the foreign-key side. For examples, see Defining a One-to-One Relationship and Defining a One-to-Many Relationship.

For a m:m relationship, specify the roles on both sides of the relationship. roles. For an example, see Defining a Many-to-Many Relationship.

Note: The value of <relationship-role-

name> should match the name of an ejb-relationship-role in ejb-jar.xml.

	
foreign-key-column

	
Specifies the target side of the key column mapping for the relationship—the foreign key column.

	
key-column

	
Specifies the initiating side of the key column mapping for the relationship—the primary key column.

Primary Key Elements

The following lists the primary key elements in weblogic-cmp-jar.xml.

Table 6-7 Primary Key Elements in weblogic-cmp-jar.xml

	Element	Description	Default
	
generator-type

	
Identifies the facility used to generate primary keys. Values include Oracle, SQLServer, or SQLServer2000, NamedSequenceTable.

	
n/a

	
generator-name

	
Defines the Oracle SEQUENCE, or the name of a SEQUENCE table used.

	
n/a

	
key-cache-size

	
Specifies the size of the key cache.

	
1

	
create-default-dbms-table

	
Determines behavior related to if and how the EJB container will create database tables.

	
Disabled

7 Message-Driven EJBs

Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server describes the message-driven bean (MDB) life cycle, design considerations, and instructions for key implementation tasks. For a description of the overall EJB development process, see Implementing Enterprise Java Beans.

8 Deployment Guidelines for Enterprise Java Beans

The following sections contain EJB-specific deployment guidelines. For deployment topics that are common to all deployable application units, you will see cross-references to topics in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server, a comprehensive guide to deploying WebLogic Server applications and modules.

	
Before You Deploy an EJB

	
Understanding and Performing Deployment Tasks

	
Deployment Guidelines for EJBs

Before You Deploy an EJB

Before starting the deployment process you should have:

	
Functional, tested bean code, in an exploded directory format or packaged in an archive file—a JAR for a stand-alone EJB or an EAR if the EJB is part of an enterprise application—along with the deployment descriptors. For production environments, Oracle recommends that you package your application as an EAR.

For an overview of the steps required to create and package an EJB, see Overview of the EJB Development Process.

	
Configured the required deployment descriptors—ejb-jar.xml and weblogic-ejb-jar.xml, and, for entity EJBs that use container-managed persistence, weblogic-cmp-jar.xml.

To create EJB deployment descriptors, see Generate Deployment Descriptors.

Understanding and Performing Deployment Tasks

Table 8-1 is a guide to WebLogic Server documentation topics that help you make decisions about deployment strategies and provide instructions for performing deployment tasks. For EJB-specific deployment topics, see Deployment Guidelines for EJBs.

Table 8-1 Deployment Tasks and Topics

	If You Want To....	See This Topic
	
Deploy in a development environment

	
"Deploying and Packaging from a Split Development Directory" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

	
Select a deployment tool

	
"Deployment Tools" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server

	
Determine appropriate packaging for a deployment

	
"Preparing Applications and Modules for Deployment" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

	
Organizing EJB components in a split directory structure.

	
"EJBs" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

	
Select staging mode

	
"Controlling Deployment File Copying with Staging Modes" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

	
Perform specific deployment tasks

	
"Overview of the Deployment Process" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Deployment Guidelines for EJBs

The following sections provide guidelines for deploying EJBs.

	
Deploy EJBs as Part of an Enterprise Application

	
Deploy EJBs That Call Each Other in the Same Application

	
Deploying EJBs that Use Dependency Injection

	
Deploy Homogeneously to a Cluster

	
Deploying Pinned EJBs to a Cluster

	
Redeploying an EJB

	
Using FastSwap Deployment to Minimize Deployment

	
Understanding Warning Messages

	
Disabling EJB Deployment Warning Messages

Deploy EJBs as Part of an Enterprise Application

Oracle recommends that you package and deploy your stand-alone EJB applications as part of an Enterprise application. An Enterprise application is a J2EE deployment unit that bundles together Web applications, EJBs, and Resource Adapters into a single deployable unit.

This is a Oracle best practice, which allows for easier application migration, additions, and changes. Also, packaging your applications as part of an Enterprise application allows you to take advantage of the split development directory structure, which provides a number of benefits over the traditional single directory structure. See "Overview of the Split Development Directory Environment" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

Deploy EJBs That Call Each Other in the Same Application

When an EJB in one application calls an EJB in another application, WebLogic Server passes method arguments by value, due to classloading requirements. When EJBs are in the same application, WebLogic Server can pass method arguments by reference; this improves the performance of method invocation because parameters are not copied.

For best performance, package components that call each other in the same application, and set enable-call-by-reference in weblogic-ejb-jar.xml to True. (By default, enable-call-by-reference is False.)

Deploying EJBs that Use Dependency Injection

When an EJB uses dependency injection, the resource name defined in the class and the superclass must be unique. For example:

public class ClientServlet extends HttpServlet {
 @EJB(name = 'DateServiceBean', beanInterface = DateService.class)
 private DateService bean; }
public class DerivedClientServlet extends ClientServlet {
 @EJB(name = MyDateServiceBean', beanInterface = DateService.class)
 private DateService bean; }

For more information about dependency injection, see "Using Java EE Annotations and Dependency Injection" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

Deploy Homogeneously to a Cluster

If your EJBs will run on a WebLogic Server cluster, Oracle recommends that you deploy them homogeneously—to each Managed Server in the cluster. Alternatively, you can deploy an EJB to only to a single server in the cluster (that is, "pin" a module to a server). This type of deployment is less common, and should be used only in special circumstances where pinned services are required. For more information, "Understanding Cluster Configuration" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Deploying Pinned EJBs to a Cluster

There is a known issue with deploying or redeploying EJBs to a single server instance in a cluster—referred to as pinned deployment—if the JAR file contains contain uncompiled classes and interfaces.

During deployment, the uncompiled EJB is copied to each server instance in the cluster, but it is compiled only on the server instance to which it has been deployed. As a result, the server instances in the cluster to which the EJB was not targeted lack the classes generated during compilation that are necessary to invoke the EJB. When a client on another server instance tries to invoke the pinned EJB, it fails, and an Assertion error is thrown in the RMI layer.

If you are deploying or redeploying an EJB to a single server instance in a cluster, compile the EJB with appc before deploying it, to ensure that the generated classes are copied to all server instances available to all nodes in the cluster.

For more information on pinned deployments, see "Deploying to a Single Server Instance (Pinned Deployment)" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Redeploying an EJB

When you make changes to a deployed EJB's classes, you must redeploy the EJB. If you use automatic deployment, deployment occurs automatically when you restart WebLogic Server. Otherwise, you must explicitly redeploy the EJB.

Redeploying an EJB deployment enables an EJB provider to make changes to a deployed EJB's classes, recompile, and then "refresh" the classes in a running server.

When you redeploy, the classes currently loaded for the EJB are immediately marked as unavailable in the server, and the EJB's classloader and associated classes are removed. At the same time, a new EJB classloader is created, which loads and maintains the revised EJB classes.

When clients next acquire a reference to the EJB, their EJB method calls use the changed EJB classes.

You can redeploy an EJB that is standalone or part of an application, using the weblogic.Deployer tool or the Administration Console. For instructions, see "Redeploying Applications in a Production Environment" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Production redeployment is not supported for:

	
applications that use JTS drivers.

	
applications that include EJB 1.1 container-managed persistence (CMP) EJBs. To use production redeployment with applications that include CMP EJBs, use EJB 2.x CMP instead of EJB 1.1 CMP.

For more information on production redeployment limitations, see "Requirements and Restrictions for Production Redeployment" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Using FastSwap Deployment to Minimize Deployment

During iterative development of an EJB application, you make many modifications to the EJB implementation class file, typically redeploying an EJB module multiple times during its development.

Java EE 5 introduces the ability to redefine a class at runtime without dropping its ClassLoader or abandoning existing instances. This allows containers to reload altered classes without disturbing running applications, vastly speeding up iterative development cycles and improving the overall development and testing experiences.

With FastSwap, Java classes are redefined in-place without reloading the ClassLoader, thereby having the decided advantage of fast turnaround times. This means that you do not have to wait for an application to redeploy for your changes to take affect. Instead, you can make your changes, auto compile, and then see the effects immediately.

For more information about FastSwap, see "Using FastSwap Deployment to Minimize Redeployment" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Understanding Warning Messages

To get information about a particular warning, use the weblogic.GetMessage tool. For example:

java weblogic.GetMessage -detail -id BEA-010202

Disabling EJB Deployment Warning Messages

You can disable certain WebLogic Server warning messages that occur during deployment. You may find this useful if the messages provide information of which you are already aware.

For example, if the methods in your EJB makes calls by reference rather than by value, WebLogic Server generates this warning during deployment: "Call-by-reference not enabled."

You can use the disable-warning element in weblogic-ejb-jar.xml to disable certain messages. For a list of messages you can disable, and instructions for disabling the messages, see disable-warning.

A Deployment Descriptor Schema and Document Type Definitions Reference

In this release of WebLogic Server, deployment descriptors are XML Schema Definition-based (XSD). In pre-9.0 releases of WebLogic Server, deployment descriptors were Document Type Definition-based (DTD). For backward compatibility, this release of WebLogic Server supports XSD- or DTD-based deployment descriptors; you can deploy applications that use DTD-based descriptors without modifying them.

The following sections describe EJB XSD-based deployment descriptors and namespace declarations for this release of WebLogic Server as well as EJB DTD-based deployment descriptors and DOCTYPE headers for deployment descriptors from pre-9.0 releases of WebLogic Server.

	
XML Schema Definitions and Namespace Declarations

	
Document Type Definitions and DOCTYPE Header Information

For information on the elements in WebLogic Server EJB deployment descriptors, see the following sections:

	
Appendix B, "weblogic-ejb-jar.xml Deployment Descriptor Reference"

	
Appendix C, "weblogic-cmp-jar.xml Deployment Descriptor Reference"

For information on the EJB 1.1 deployment descriptor elements, see Appendix F, "Important Information for EJB 1.1 Users."

XML Schema Definitions and Namespace Declarations

The contents and arrangement of elements in your deployment descriptor files must conform to the appropriate XSD.

An XSD deployment descriptor file requires a namespace declaration in the root element of the file. Namespace declarations in the root element of a deployment descriptor file apply to all elements in the descriptor unless a specific element includes another namespace declaration that overrides the root namespace declaration.

	
Note:

If you use DDConverter to convert your DTD-based deployment descriptors to XSD-based, the correct namespace declaration is automatically written to your descriptor files.

Oracle recommends that you always include the schema location URL along with the namespace declaration in your XML deployment descriptor files; if you do not include the schema location in your XML deployment descriptor files, you may not be able to edit the descriptor files with a third-party tool.

weblogic-ejb-jar.xml Namespace Declaration and Schema Location

The correct text for the namespace declaration and schema location for the WebLogic Server weblogic-ejb-jar.xml file is as follows.

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar" http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd ">
...
</weblogic-ejb-jar>

weblogic-cmp-jar.xml Namespace Declaration and Schema Location

The correct text for the namespace declaration and schema location for the WebLogic Server weblogic-cmp-jar.xml file is as follows.

<weblogic-rdbms-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.0/weblogic-rdbms-jar.xsd">
...
</weblogic-rdbms-jar>

ejb-jar.xml Namespace Declaration and Schema Location

The correct text for the namespace declaration and schema location for the Enterprise JavaBeans 2.1 ejb-jar.xml file is as follows.

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">
...
</ejb-jar>

Document Type Definitions and DOCTYPE Header Information

In prior releases of WebLogic Server, the contents and arrangement of elements in your deployment descriptor files must have conformed to the appropriate DTD.

WebLogic Server ignores the DTD locations embedded within the DOCTYPE header of XML deployment files, and instead uses the DTD locations that were installed along with the server. However, the DOCTYPE header information must include a valid URL syntax in order to avoid parser errors.

When editing or creating XML deployment files, it is critical to include the correct DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC element within the DOCTYPE header can result in parser errors that may be difficult to diagnose.

The header refers to the location and version of the Document Type Definition (DTD) file for the deployment descriptor. Although this header references an external URL at java.sun.com, WebLogic Server contains its own copy of the DTD file, so your host server need not have access to the Internet. However, you must still include this <!DOCTYPE...> element in your weblogic-ejb-jar.xml and weblogic-cmp-jar.xml files, and have them reference the external URL because the version of the DTD contained in this element is used to identify the version of this deployment descriptor.

XML files with incorrect header information may yield error messages similar to the following, when used with a tool that parses the XML (such as appc):

SAXException: This document may not have the identifier `identifier_name'

where identifier_name generally includes the invalid text from the PUBLIC element.

The correct text for the PUBLIC elements for the WebLogic-Server-specific weblogic-ejb-jar.xml file is listed, by WebLogic Server release, in Table A-1.

Table A-1 PUBLIC Elements of weblogic-ejb-jar.xml

	WebLogic Server Release	XML File	PUBLIC Element String
	
8.1.x

	
weblogic-ejb-jar.xml

	
'-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN' 'http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd'

	
7.0.x

	
weblogic-ejb-jar.xml

	
'-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN' 'http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd'

	
6.1.x

and

6.0.x

	
weblogic-ejb-jar.xml

	
'-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN' 'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd'

	
5.1.0

	
weblogic-ejb-jar.xml

	
'-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN'

'http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd'

The correct text for the PUBLIC elements for the WebLogic-Server-specific weblogic-cmp-jar.xml file is listed, by WebLogic Server release, in Table A-2.

Table A-2 PUBLIC Elements of weblogic-cmp-jar.xml

	WebLogic Server Release	XML File	PUBLIC Element String
	
8.1.x

	
weblogic-cmp-jar.xml

	
'-// BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB RDBMS Persistence//EN' 'http://www.bea.com/servers/wls810/dtd/weblogic-rdbms20-persistence-810.dtd'

	
7.0.x

	
weblogic-cmp-jar.xml

	
'-// BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB RDBMS Persistence//EN' 'http://www.bea.com/servers/wls700/dtd/weblogic-rdbms20-persistence-700.dtd'

	
6.1.x

and

6.0.x

	
weblogic-cmp-jar.xml

	
'-// BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS Persistence//EN' 'http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-persistence-600.dtd'

See Appendix A, "Deployment Descriptor Schema and Document Type Definitions Reference" for more information on the weblogic-cmp-jar.xml file.

The correct text for the PUBLIC elements for the Sun-Microsystems-specific ejb-jar.xml file is listed, by Enterprise JavaBeans version, in Table A-3.

Table A-3 PUBLIC Elements of ejb-jar.xml

	EJB Version	XML File	PUBLIC Element String
	
2.0

	
ejb-jar.xml

	
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'

'http://java.sun.com/dtd/ejb-jar_2_0.dtd'

	
1.1

	
ejb-jar.xml

	
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'

'http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'

B weblogic-ejb-jar.xml Deployment Descriptor Reference

The following sections describe the elements in the WebLogic-specific deployment descriptor, weblogic-ejb-jar.xml. In this release of WebLogic Server, weblogic-ejb-jar.xml is XML Schema-based (XSD). In prior releases, weblogic-ejb-jar.xml was Document Type Definition-based (DTD). For backward compatibility, this release of WebLogic Server supports XSD- or DTD-based EJB descriptors. In this release of WebLogic Server, the EJB container still supports all older DTD-based descriptors; you can deploy applications that use DTD-based descriptors in this release of WebLogic Server without modifying the descriptors.

	
2.1 weblogic-ejb-jar.xml File Structure

	
2.1 weblogic-ejb-jar.xml Elements

For information on:

	
XML Schema Definitions and the namespace declaration required in weblogic-ejb-jar.xml, as well as Document Type Definitions and DOCTYPE headers, see Appendix A, "Deployment Descriptor Schema and Document Type Definitions Reference."

	
the weblogic-cmp-jar.xml file, see Appendix C, "weblogic-cmp-jar.xml Deployment Descriptor Reference."

	
EJB 1.1 deployment descriptor elements, see Appendix F, "Important Information for EJB 1.1 Users."

2.1 weblogic-ejb-jar.xml File Structure

The WebLogic Server weblogic-ejb-jar.xml deployment descriptor file describes the elements that are unique to WebLogic Server.

The top level elements in the WebLogic Server weblogic-ejb-jar.xml are as follows:

	
description

	
weblogic-enterprise-bean

	
ejb-name

	
entity-descriptor | stateless-session-descriptor | stateful-session-descriptor | message-driven-descriptor

	
transaction-descriptor

	
iiop-security-descriptor

	
enable-call-by-reference

	
network-access-point

	
clients-on-same-server

	
run-as-principal-name

	
create-as-principal-name

	
remove-as-principal-name

	
passivate-as-principal-name

	
jndi-name

	
local-jndi-name

	
dispatch-policy

	
remote-client-timeout

	
stick-to-first-server

	
security-role-assignment

	
run-as-role-assignment

	
security-permission

	
transaction-isolation

	
message-destination-descriptor

	
idempotent-methods

	
retry-methods-on-rollback

	
enable-bean-class-redeploy

	
timer-implementation

	
disable-warning

	
work-manager

	
component-factory-class-name

	
weblogic-compatibility

2.1 weblogic-ejb-jar.xml Elements

The following list of the elements in weblogic-ejb-jar.xml includes all elements that are supported in this release of WebLogic Server.

	
allow-concurrent-calls

	
allow-remove-during-transaction

	
cache-between-transactions

	
cache-type

	
client-authentication

	
client-cert-authentication

	
clients-on-same-server

	
component-factory-class-name

	
concurrency-strategy

	
confidentiality

	
connection-factory-jndi-name

	
connection-factory-resource-link

	
create-as-principal-name

	
delay-updates-until-end-of-tx

	
description

	
destination-jndi-name

	
destination-resource-link

	
disable-warning

	
dispatch-policy

	
distributed-destination-connection

	
durable-subscription-deletion

	
ejb-local-reference-description

	
ejb-name

	
ejb-reference-description

	
ejb-ref-name

	
enable-bean-class-redeploy

	
enable-call-by-reference

	
enable-dynamic-queries

	
entity-always-uses-transaction

	
entity-cache

	
entity-cache-name

	
entity-cache-ref

	
entity-clustering

	
entity-descriptor

	
estimated-bean-size

	
externally-defined

	
finders-load-bean

	
generate-unique-jms-client-id

	
global-role

	
home-call-router-class-name

	
home-is-clusterable

	
home-load-algorithm

	
idempotent-methods

	
identity-assertion

	
idle-timeout-seconds

	
iiop-security-descriptor

	
init-suspend-seconds

	
initial-beans-in-free-pool

	
initial-context-factory

	
integrity

	
invalidation-target

	
is-modified-method-name

	
isolation-level

	
jms-client-id

	
jms-polling-interval-seconds

	
jndi-name

	
local-jndi-name

	
max-beans-in-cache

	
max-beans-in-free-pool

	
max-messages-in-transaction

	
max-queries-in-cache

	
max-suspend-seconds

	
message-destination-descriptor

	
message-destination-name

	
message-driven-descriptor

	
method

	
method-intf

	
method-name

	
method-param

	
method-params

	
network-access-point

	
passivate-as-principal-name

	
persistence

	
persistence-use

	
persistent-store-dir

	
persistent-store-logical-name

	
pool

	
principal-name

	
provider-url

	
read-timeout-seconds

	
remote-client-timeout

	
remove-as-principal-name

	
replication-type

	
resource-env-ref-name

	
res-ref-name

	
resource-adapter-jndi-name

	
resource-description

	
resource-env-description

	
resource-link

	
retry-count

	
retry-methods-on-rollback

	
role-name

	
run-as-identity-principal

	
run-as-principal-name

	
run-as-role-assignment

	
security-permission

	
security-permission-spec

	
security-role-assignment

	
service-reference-description

	
session-timeout-seconds

	
stateful-session-cache

	
stateful-session-clustering

	
stateful-session-descriptor

	
stateless-bean-call-router-class-name

	
stateless-bean-is-clusterable

	
stateless-bean-load-algorithm

	
stateless-bean-methods-are-idempotent

	
stateless-clustering

	
stateless-session-descriptor

	
stick-to-first-server

	
timer-descriptor

	
timer-implementation

	
transaction-descriptor

	
transaction-isolation

	
transport-requirements

	
trans-timeout-seconds

	
type-identifier

	
type-storage

	
type-version

	
use-serverside-stubs

	
use81-style-polling

	
weblogic-compatibility

	
weblogic-ejb-jar

	
weblogic-enterprise-bean

	
work-manager

allow-concurrent-calls

Range of values: True | False

Default value: False

Parent elements:

	
weblogic-enterprise-bean

	
stateful-session-descriptor

Function

Specifies whether a stateful session bean instance allows concurrent method calls. By default, allows-concurrent-calls is False, in accordance with the EJB specification, and WebLogic Server will throw a RemoteException when a stateful session bean instance is currently handling a method call and another (concurrent) method call arrives on the server.

When this value is set to True, the EJB container blocks the concurrent method call and allows it to proceed when the previous call has completed.

Example

See stateful-session-descriptor.

allow-remove-during-transaction

Range of values: True | False

Default value: False

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

Function

Specifies that the remove method on a stateful session bean can be invoked within a transaction context.

	
Note:

Stateful session beans implementing the Synchronization interface should not use this tag and then call remove before the transaction ends. If this is done the EJB container will not invoke the synchronization callbacks.

Example

See stateful-session-descriptor.

cache-between-transactions

Range of values: True | False

Default value: False

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache or entity cache-ref

Function

Formerly the db-is-shared element, specifies whether the EJB container will cache the persistent data of an entity bean across (between) transactions.

Specify True to enable the EJB container to perform long term caching of the data. Specify False to enable the EJB container to perform short term caching of the data.

A Read-Only bean ignores the value of the cache-between-transactions element because WebLogic Server always performs long term caching of Read-Only data.

See Limiting Database Reads with cache-between-transactions for more information.

Example

See persistence.

cache-type

Range of values: NRU | LRU

Default value: NRU

Parent elements:

weblogic-enterprise-bean
 stateful-session-cache

Function

Specifies the order in which EJBs are removed from the cache. The values are:

	
Least recently used (LRU)

	
Not recently used (NRU)

The minimum cache size for NRU is 8. If max-beans-in-cache is less than 3, WebLogic Server uses a value of 8 for max-beans-in-cache.

Example

<stateful-session-cache>
 <cache-type>NRU</cache-type>
</stateful-session-cache>

client-authentication

Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor

Function

Specifies whether the EJB supports or requires client authentication.

Example

See iiop-security-descriptor.

client-cert-authentication

Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor
 transport-requirements

Function

Specifies whether the EJB supports or requires client certificate authentication at the transport level.

Example

See transport-requirements.

clients-on-same-server

Range of values: True | False

Default value: False

Parent element:

weblogic-enterprise-bean

Function

Determines whether WebLogic Server sends JNDI announcements for this EJB when it is deployed. When this attribute is False (the default), a WebLogic Server cluster automatically updates its JNDI tree to indicate the location of this EJB on a particular server. This ensures that all clients can access the EJB, even if the client is not collocated on the same server.

You can set clients-on-same-server to True when you know that all clients that will access this EJB will do so from the same server on which the bean is deployed. In this case, a WebLogic Server cluster does not send JNDI announcements for this EJB when it is deployed. Because JNDI updates in a cluster utilize multicast traffic, setting clients-on-same-server to True can reduce the startup time for very large clusters.

See "Optimization for Collocated Objects" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server for more information on collocated EJBs.

Example

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 ...
 <clients-on-same-server>True</clients-on-same-server>
</weblogic-enterprise-bean>

component-factory-class-name

Range of values: N/A

Default value: null

Parent element:

weblogic-ejb-jar

Function

Enable the Spring extension by setting this element to org.springframework.jee.interfaces.SpringComponentFactory. This element exists in EJB, Web, and application descriptors. A module-level descriptor overwrites an application-level descriptor. If the tag is set to null (default), the Spring extension is disabled.

concurrency-strategy

Range of values: Exclusive | Database | ReadOnly | Optimistic

Default value: Database

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

Or

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

Function

Specifies how the container should manage concurrent access to an entity bean. Set this element to one of four values:

	
Exclusive causes WebLogic Server to place an exclusive lock on cached entity EJB instances when the bean is associated with a transaction. Other requests for the EJB instance are blocked until the transaction completes. This option was the default locking behavior for WebLogic Server 3.1 through 5.1.

	
Database causes WebLogic Server to defer locking requests for an entity EJB to the underlying datastore. With the Database concurrency strategy, WebLogic Server allocates a separate entity bean instance and allows locking and caching to be handled by the database. This is the default option.

	
ReadOnly is used for read-only entity beans. Activates a new instance for each transaction so that requests proceed in parallel. WebLogic Server calls ejbLoad() for ReadOnly beans are based on the read-timeout-seconds parameter.

	
Optimistic holds no locks in the EJB container or database during a transaction. The EJB container verifies that none of the data updated by a transaction has changed before committing the transaction. If any updated data changed, the EJB container rolls back the transaction.

	
Note:

When a cluster member updates a bean with a concurrency-strategy of Optimistic that is deployed to a cluster, the EJB container attempts to invalidate all copies of the bean in all servers in the cluster. You can disable this behavior by setting cluster-invalidation-disabled in weblogic-cmp-jar.xml to True. For more information, see Invalidation Options for Optimistic Concurrency in Clusters.

See Choosing a Concurrency Strategy for more information on the Exclusive and Database locking behaviors. See Read-Write versus Read-Only Entity Beans for more information about read-only entity EJBs.

Example

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <entity-descriptor>
 <entity-cache>
 <concurrency-strategy>ReadOnly</concurrency-strategy>
 </entity-cache>
 </entity-descriptor>
</weblogic-enterprise-bean>

confidentiality

Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor
 transport-requirements

Function

Specifies the transport confidentiality requirements for the EJB. Using the confidentiality element ensures that the data is sent between the client and server in such a way as to prevent other entities from observing the contents.

Example

See transport-requirements.

connection-factory-jndi-name

Range of values: Valid JNDI name

Default value: If not specified, the default is weblogic.jms.MessageDrivenBeanConnectionFactory, which must have been declared in the JMSConnectionFactory element in config.xml.

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

Function

Specifies the JNDI name of the JMS Connection Factory that a message-driven EJB looks up to create its queues and topics. See "Configuring MDBs for Destinations" and "How to Set connection-factory-jndi-name" in

Example

<message-driven-descriptor>
 <connection-factory-jndi-name>
 java:comp/env/jms/MyConnectionFactory
 </connection-factory-jndi-name>
</message-driven-descriptor>

connection-factory-resource-link

Range of values: Valid resource within a JMS module

Default value: n/a.

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

Function

Maps to a resource within a JMS module defined in ejb-jar.xml to an actual JMS Module Reference in WebLogic Server.

create-as-principal-name

Range of values: Valid principal name

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Introduced in WebLogic Server 8.1 SP01, specifies the principal to be used in situations where ejbCreate would otherwise run with an anonymous principal. Under such conditions, the choice of which principal to run as is governed by the following rule:

if create-as-principal-name is set

then use that principal

else

If a run-as role has been specified for the bean in ejb-jar.xml

then use a principal according to the rules for setting the run-as-role-assignment

else

run ejbCreate as an anonymous principal.

The create-as-principal-name element only needs to be specified if operations within ejbCreate require more permissions than the anonymous principal would have.

This element effects the ejbCreate methods of stateless session beans and message-driven beans.

See also remove-as-principal-name, passivate-as-principal-name, and principal-name.

delay-updates-until-end-of-tx

Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

Function

Set the delay-updates-until-end-of-tx element to True (the default) to update the persistent store of all beans in a transaction at the completion of the transaction. This setting generally improves performance by avoiding unnecessary updates. However, it does not preserve the ordering of database updates within a database transaction.

If your datastore uses an isolation level of TransactionReadUncommitted, you may want to allow other database users to view the intermediate results of in-progress transactions. In this case, set delay-updates-to-end-of-tx to False to update the bean's persistent store at the conclusion of each method invoke. See Understanding ejbLoad() and ejbStore() Behavior for more information.

	
Note:

Setting delay-updates-until-end-of-tx to False does not cause database updates to be "committed" to the database after each method invoke; they are only sent to the database. Updates are committed or rolled back in the database only at the conclusion of the transaction.

Example

<entity-descriptor>
 <persistence>
 ...
 ...
 <delay-updates-until-end-of-tx>False</delay-updates-until-end-of-tx>
 </persistence>
</entity-descriptor>

description

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

and

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

and

weblogic-ejb-jar
 retry-methods-on-rollback

Function

Describes the parent element.

Example

<description>Contains a description of parent element</description>

destination-jndi-name

Range of values: Valid JNDI name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

and

weblogic-enterprise-bean
 message-driven-descriptor

Function

Specifies the JNDI name used to associate a message-driven bean with an actual JMS Queue or Topic deployed in the WebLogic Server JNDI tree.

Example

See message-destination-descriptor and message-driven-descriptor.

destination-resource-link

Range of values: Valid resource within a JMS module

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

Function

Maps to a resource within a JMS module defined in ejb-jar.xml to an actual JMS Module Reference in WebLogic Server.

disable-warning

Range of values: BEA-010001 | BEA-010054 | BEA-010200 | BEA-010202

Default value: n/a

Parent element:

weblogic-ejb-jar

Function

Specifies that WebLogic Server should disable the warning message whose ID is specified. Set this element to one of four values:

	
BEA-010001—Disables this warning message: "EJB class loaded from system classpath during deployment."

	
BEA-010054—Disables this warning message: "EJB class loaded from system classpath during compilation."

	
BEA-010200—Disables this warning message: "EJB impl class contains a public static field, method or class."

	
BEA-010202—Disables this warning message: "Call-by-reference not enabled."

Example

To disable the warning message: "Call-by-reference not enabled", set <disable-warning>, as shown below.

<disable-warning>BEA-010202</disable-warning>

dispatch-policy

Range of values: Valid execute queue name

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Designates which server execute thread pool the EJB should run in. Dispatch polices are supported for all types of beans, including entity, session, and message-driven.

If no dispatch-policy is specified, or the specified dispatch-policy refers to a nonexistent server execute thread pool, then the server's default execute thread pool is used instead.

WebLogic Server ignores dispatch-policy if the host server instance does not have an execute thread queue bearing a corresponding name.

If a message-driven bean (MDB) is driven by a foreign (non-WebLogic) destination source, WebLogic Server might ignore dispatch-policy, as the MDB may instead run in the foreign provider's threading mechanism. For example, for the IBM WebSphere MQSeries messaging software, dispatch-policy is not honored for non-transactional queues; instead the application code runs in an MQSeries thread. For MQSeries transactional queues, and both non-transactional and transactional topics, dispatch-policy is honored.

The maximum number of concurrently running MDB instances is designated by a combination of max-beans-in-free-pool and dispatch-policy values. See "MDB Thread Management" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

Example

<dispatch-policy>queue_name</dispatch-policy>

distributed-destination-connection

Range of values: LocalOnly | EveryMember

Default value: LocalOnly

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

Function

	
Note:

This element is valid for WebLogic JMS 9.0 or later.

Specifies whether an MDB that accesses a WebLogic JMS distributed queue in the same cluster consumes from all distributed destination members or only those members local to the current Weblogic Server.

Valid values include:

	
LocalOnly—Deployment descriptor and message-driven bean are in the same cluster.

	
EveryMember—Deployment descriptor is on a remote server.

If set to EveryMember, the total number of connections will be equal to: (the number of servers where message-driven bean is deployed) x (the number of destinations). For larger deployments, the number of connections may consume a considerable amount of resources.

The EveryMember setting incurs additional network and CPU overhead transferring messages from remote servers to the local MDB; it is normally only recommended for limited use cases (such as MDBs with JMS selector filters that are unique to the current server).

Example

<distributed-destination-connection>EveryMember</distributed-destination-connection>

durable-subscription-deletion

Range of values: True | False

Default value: False

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

Function

Indicates whether you want durable topic subscriptions to be automatically deleted when an MDB is undeployed or removed.

Example

<durable-subscription-deletion>True</durable-subscription-deletion>

ejb-local-reference-description

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Maps the JNDI name of an EJB in the WebLogic Server instance that is referenced by the bean in the ejb-local-ref element.

Example

<ejb-local-reference-description>
 <ejb-ref-name>AdminBean</ejb-ref-name>
 <jndi-name>payroll.AdminBean</jndi-name>
</ejb-local-reference-description>

ejb-name

Range of values: Name, which conforms to the lexical rules for an NMTOKEN, of an EJB that is defined in ejb-jar.xml

Default value: n/a

Parent elements:

weblogic-enterprise-bean

and

weblogic-enterprise-bean
 method

Function

Specifies an enterprise bean's name, using the same name for the bean that is specified in ejb-jar.xml. The enterprise bean code does not depend on the name; therefore the name can be changed during the application assembly process without breaking the enterprise bean's function. There is no architected relationship between the ejb-name in the deployment descriptor and the JNDI name that the Deployer will assign to the enterprise bean's home.

	
Note:

Not recommended in weblogic-enterprise-bean. For more information, see Using EJB Links.

Example

See method.

ejb-reference-description

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Maps the JNDI name of an EJB in WebLogic Server to the name by which it is specified in the ejb-ref-name element in ejb-jar.xml.

Example

<ejb-reference-description>
 <ejb-ref-name>AdminBean</ejb-ref-name>
 <jndi-name>payroll.AdminBean</jndi-name>
</ejb-reference-description>

ejb-ref-name

Range of values: Valid ejb-ref-name specified in the associated ejb-jar.xml file

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 ejb-reference-description

Function

Specifies a resource reference name. This element is the reference that the EJB provider places within the ejb-jar.xml deployment file.

Example

<ejb-reference-description>
 <ejb-ref-name>AdminBean</ejb-ref-name>
 <jndi-name>payroll.AdminBean</jndi-name>
</ejb-reference-description>

enable-bean-class-redeploy

Range of values: True | False

Default value: False

Parent element:

weblogic-enterprise-jar

Function

By default, the EJB implementation class is loaded in the same classloader as the rest of the EJB classes. When the enable-bean-class-redeploy element is enabled, the implementation class, along with its super classes, gets loaded in a child classloader of the EJB module classloader. This allows the EJB implementation class to be redeployed without redeploying the entire EJB module.

There are some potential problems with loading the bean class in a child classloader. First, the bean class will no longer be visible to any classes loaded in the parent classloader, so those classes cannot refer to the bean class or errors will occur. Also, the bean class will not be able to invoke any package protected methods on any classes loaded in a different classloader. So, if your bean class invokes a helper class in the same package, the helper class methods must be declared public or IllegalAccessErrors will result.

Example

The following XML element enables redeployment of an individual bean class:

<enable-bean-class-redeploy>True</enable-bean-class-redeploy>

enable-call-by-reference

Range of values: True | False

Default value: False

Parent element:

weblogic-enterprise-bean

Function

When enable-call-by-reference is False, parameters to the EJB methods are copied—or passed by value—regardless of whether the EJB is called remotely or from within the same EAR.

When enable-call-by-reference is True, EJB methods called from within the same EAR file or standalone JAR file will pass arguments by reference. This improves the performance of method invocation since parameters are not copied.

	
Note:

Method parameters are always passed by value when an EJB is called remotely.

Example

<weblogic-enterprise-bean>
 <entity-descriptor>
 <ejb-name>AccountBean</ejb-name>
 ...
 <enable-call-by-reference>False</enable-call-by-reference>
 </entity-descriptor>
</weblogic-enterprise-bean>

enable-dynamic-queries

Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

Set to True to enable dynamic queries. Dynamic queries are only available for use with EJB 2.x CMP beans.

Example

<enable-dynamic-queries>True</enable-dynamic-queries>

entity-always-uses-transaction

Range of values: True | False

Default value: False

Parent elements:

weblogic-ejb-jar
 weblogic-compatibility

Function

This element, introduced in WebLogic Server 9.0, allows you to specify whether an entity bean must always use a transaction. Before WebLogic Server 9.0, when an entity bean ran in an unspecified transaction, the EJB container would create a transaction for the entity bean. Now, the EJB container no longer creates a transaction when an entity bean runs in an unspecified transaction. To disable this behavior and cause the EJB container to create a transaction for entity beans that run in unspecified transaction, set the value of this element to True.

entity-cache

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

Defines the following options used to cache entity EJB instances within WebLogic Server:

	
max-beans-in-cache

	
idle-timeout-seconds

	
read-timeout-seconds

	
concurrency-strategy

See Understanding Entity Caching for more information.

Example

<entity-descriptor>
 <entity-cache>
 <max-beans-in-cache>...</max-beans-in-cache>
 <idle-timeout-seconds>...</idle-timeout-seconds>
 <read-timeout-seconds>...<read-timeout-seconds>
 <concurrency-strategy>...</concurrency-strategy>
 </entity-cache>
 <persistence>...</persistence>
 <entity-clustering>...</entity-clustering>
</entity-descriptor>

entity-cache-name

Range of values: Name assigned to an application level entity cache in the weblogic-application.xml file

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

Function

Refers to an application level entity cache that the entity bean uses. An application level cache is a cache that may be shared by multiple entity beans in the same application. The value you specify for entity-cache-name must match the name assigned to an application level entity cache in the weblogic-application.xml file.

For more information about the weblogic-application.xml file, see "Enterprise Application Deployment Descriptor Elements" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Example

See entity-cache-ref.

entity-cache-ref

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

Refers to an application level entity cache which can cache instances of multiple entity beans that are part of the same application. Application level entity caches are declared in the weblogic-application.xml file.

Use concurrency-strategy to define the type of concurrency you want the bean to use. The concurrency-strategy must be compatible with the application level cache's caching strategy. For example, an Exclusive cache only supports beans with a concurrency-strategy of Exclusive. A MultiVersion cache supports the Database, ReadOnly, and Optimistic concurrency strategies.

Example

<entity-cache-ref>
 <entity-cache-name>AllEntityCache</entity-cache-name>
 <read-timeout-seconds>600</read-timeout-seconds>
 <cache-between-transactions>true</cache-between-transactions>
 <concurrency-strategy>ReadOnly</concurrency-strategy>
 <estimated-bean-size>20</estimated-bean-size>
</entity-cache-ref>

entity-clustering

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

Specifies how an entity bean will be replicated in a WebLogic cluster:

	
home-is-clusterable

	
home-load-algorithm

	
home-call-router-class-name

	
use-serverside-stubs

Example

<entity-clustering>
 <home-is-clusterable>True</home-is-clusterable>
 <home-load-algorithm>random</home-load-algorithm>
 <home-call-router-class-name>beanRouter</home-call-router-class-name>
 <use-serverside-stubs>True</use-serverside-stubs>
</entity-clustering>

entity-descriptor

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Specifies the following deployment parameters that are applicable to an entity bean:

	
pool

	
timer-descriptor

	
entity-cache or entity-cache-ref

	
persistence

	
entity-clustering

	
invalidation-target

	
enable-dynamic-queries

Example

<entity-descriptor>
 <pool>...</pool>
 <timer-descriptor>...</timer-descriptor>
 <entity-cache>...</entity-cache>
 <persistence>...</persistence>
 <entity-clustering>...</entity-clustering>
 <invalidation-target>...</invalidation-target>
 <enable-dynamic-queries>...</enable-dynamic-queries>
</entity-descriptor>

estimated-bean-size

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

Specifies the estimated average size of the instances of an entity bean in bytes. This is the average number of bytes of memory that is consumed by each instance.

Use the estimated-bean-size element when the application level cache you use to cache beans is also specified in terms of bytes and megabytes.

Although you may not know the exact number of bytes consumed by the entity bean instances, specifying a size allows you to give some relative weight to the beans that share a cache at one time.

For example, suppose bean A and bean B share a cache, called AB-cache, that has a size of 1000 bytes and the size of A is 10 bytes and the size of B is 20 bytes, then the cache can hold at most 100 instances of A and 50 instances of B. If 100 instances of A are cached, this implies that 0 instances of B are cached.

Example

See entity-cache-ref.

externally-defined

Range of values: True | False

Default value: none

Parent elements:

weblogic-ejb-jar
 security-role-assignment

Function

Indicates that a particular security role is defined externally in a security realm, outside of the deployment descriptor. Because the security role and its principal-name mapping is defined elsewhere, principal-names are not to be specified in the deployment descriptor. This tag is used as an indicative placeholder instead of a set of principal-name elements. Use this element instead of global-role, which has been deprecated and was removed from WebLogic Server in release 9.0.

finders-load-bean

Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

Function

Valid only for CMP entity EJBs. The finders-load-bean element determines whether WebLogic Server loads the EJB into the cache after a call to a finder method returns a reference to the bean. If you set this element to True, WebLogic Server immediately loads the bean into the cache if a reference to a bean is returned by the finder. If you set this element to False, WebLogic Server does not automatically load the bean into the cache until the first method invocation; this behavior is consistent with the EJB 1.1 specification.

Example

<entity-descriptor>
 <persistence>
 <finders-load-bean>True</finders-load-bean>
 </persistence>
</entity-descriptor>

generate-unique-jms-client-id

Range of values: True | False

Default value: False

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

Function

Indicates whether or not you want the EJB container to generate a unique client-id for every instance of an MDB. Enabling this flag makes it easier to deploy durable MDBs to multiple server instances in a WebLogic Server cluster.

global-role

The global-role element is deprecated and was removed from WebLogic Server in release 9.0. Use the externally-defined element instead.

home-call-router-class-name

Range of values: Valid name of a custom class

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-session-clustering

Function

Specifies the name of a custom class to use for routing bean method calls. This class must implement weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is called before each method call. The router class has the opportunity to choose a server to route to based on the method parameters. The class returns either a server name or null, which indicates that the current load algorithm should select the server.

Example

See entity-clustering and stateful-session-clustering.

home-is-clusterable

Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateless-clustering

Function

When home-is-clusterable is True, the EJB can be deployed from multiple WebLogic Servers in a cluster. Calls to the home stub are load-balanced between the servers on which this bean is deployed, and if a server hosting the bean is unreachable, the call automatically fails over to another server hosting the bean.

Example

See entity-clustering.

home-load-algorithm

Range of values: round-robin | random | weight-based | RoundRobinAffinity | RandomAffinity | WeightBasedAffinity

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

Function

Specifies the algorithm to use for load balancing between replicas of the EJB home in a cluster. If this element is not defined, WebLogic Server uses the algorithm specified by the server element, weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

	
round-robin—Load balancing is performed in a sequential fashion among the servers hosting the bean.

	
random—Replicas of the EJB home are deployed randomly among the servers hosting the bean.

	
weight-based—Replicas of the EJB home are deployed on host servers according to the servers' current workload.

	
round-robin-affinity—server affinity governs connections between external Java clients and server instances; round robin load balancing is used for connections between server instances.

	
weight-based-affinity—server affinity governs connections between external Java clients and server instances; weight-based load balancing is used for connections between server instances.

	
random-affinity—server affinity governs connections between external Java clients and server instances; random load balancing is used for connections between server instances.

For more information, see "Load Balancing for EJBs and RMI Objects" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Example

See entity-clustering and stateful-session-clustering.

idempotent-methods

Range of values: n/a

Default value: n/a

Parent element:

weblogic-ejb-jar

Function

Defines list of methods of a clustered EJB which are written in such a way that repeated calls to the same method with the same arguments has exactly the same effect as a single call. This allows the failover handler to retry a failed call without knowing whether the call actually compiled on the failed server. When you enable idempotent-methods for a method, the EJB stub can automatically recover from any failure as long as it can reach another server hosting the EJB.

Clustering must be enabled for the EJB. To enable clustering, see entity-clustering, stateful-session-clustering, and stateless-clustering.

The methods on stateless session bean homes and read-only entity beans are automatically set to be idempotent. It is not necessary to explicitly specify them as idempotent.

Example

<idempotent-method>
 <method>
 <description>...</description>
 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
 </method>
</idempotent-method>

identity-assertion

Range of values: none | supported | required

Default value: none

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor

Function

Specifies whether the EJB supports or requires identity assertion.

Example

See iiop-security-descriptor.

idle-timeout-seconds

Range of values: 1 to maxSeconds, where maxSeconds is the maximum value of an int

Default value: 600

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

and

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-cache

and

weblogic-enterprise-bean
 stateless-session-descriptor or message-driven-descriptor or entity-descriptor
 pool

Function

Defines the maximum length of time an EJB should remain in the cache. After this time has elapsed, WebLogic Server removes the bean instance if the number of beans in cache approaches the limit of max-beans-in-cache. The removed bean instances are passivated. See Caching and Passivating Stateful Session EJBs and Managing Entity Bean Pooling and Caching for more information.

Also defines the maximum length of time an EJB should remain idle in the free pool before it is removed. After this time has elapsed, WebLogic Server removes the bean instance from the free pool so long as doing so will not cause the number of beans in the pool to fall below the number specified in initial-beans-in-free-pool.

	
Note:

Although idle-timeout-seconds appears in the entity-cache element, WebLogic Server 8.1 SP1 and SP2 do not use its value in managing the life cycle of entity EJBs—in those service packs, idle-timeout-seconds has no effect on when entity beans are removed from cache.

Example

The following entry indicates that the stateful session EJB, AccountBean, should become eligible for removal if max-beans-in-cache is reached and the bean has been in cache for 20 minutes:

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <stateful-session-descriptor>
 <stateful-session-cache>
 <max-beans-in-cache>200</max-beans-in-cache>
 <idle-timeout-seconds>1200</idle-timeout-seconds>
 </stateful-session-cache>
 </stateful-session-descriptor>
</weblogic-enterprise-bean>

iiop-security-descriptor

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Specifies security configuration parameters at the bean level. These parameters determine the IIOP security information contained in the IOR.

Example

<iiop-security-descriptor>
 <transport-requirements>...</transport-requirements>
 <client-authentication>supported<client-authentication>
 <identity-assertion>supported</identity-assertion>
</iiop-security-descriptor>

init-suspend-seconds

Range of values: any integer

Default value: 5

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

Function

Specifies the initial number of seconds to suspend an MDB's JMS connection when the EJB container detects a JMS resource outage. For more information, see "Configuring Suspension of Message Delivery During JMS Resource Outages" in Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server.

initial-beans-in-free-pool

Range of values: 0 to maxBeans

Default value: 0

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor or message-driven-descriptor or entity-descriptor
 pool

Function

If you specify a value for initial-beans-in-free-pool, you set the initial size of the pool. WebLogic Server populates the free pool with the specified number of bean instances for every bean class at startup. Populating the free pool in this way improves initial response time for the EJB, because initial requests for the bean can be satisfied without generating a new instance.

Example

See pool.

initial-context-factory

Range of values: Valid name of an initial context factory

Default value: weblogic.jndi.WLInitialContextFactory

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

and

weblogic-enterprise-bean
 message-driven-descriptor

Function

Specifies the initial context factory used by the JMS provider to create initial context. See "Configuring MDBs for Destinations" and "How to Set initial-context-factory" in Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server.

Example

<message-driven-descriptor>
 <initial-context-factory>fiorano.jms.rtl.FioranoInitialContextFactory
 </initial-context-factory>
</message-driven-descriptor>

See also message-destination-descriptor.

integrity

Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor
 transport-requirements

Function

Specifies the transport integrity requirements for the EJB. Using the integrity element ensures that the data is sent between the client and server in such a way that it cannot be changed in transit.

Example

See transport-requirements.

invalidation-target

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

Specifies a Read-Only entity EJB that should be invalidated when this container-managed persistence entity EJB has been modified.

The target ejb-name must be a Read-Only entity EJB and this element can only be specified for an EJB 2.x container-managed persistence entity EJB.

Example

<invalidation-target>
 <ejb-name>StockReaderEJB</ejb-name>
</invalidation-target>

is-modified-method-name

Range of values: Valid entity EJB method name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

Function

Specifies a method that WebLogic Server calls when the EJB is stored. The specified method must return a boolean value. If no method is specified, WebLogic Server always assumes that the EJB has been modified and always saves it.

Providing a method and setting it as appropriate can improve performance for EJB 1.1-compliant beans, and for beans that use bean-managed persistence. However, any errors in the method's return value can cause data inconsistency problems.

	
Note:

isModified() is no longer required for 2.x CMP entity EJBs based on the EJB 2.x specification. However, it still applies to BMP and 1.1 CMP EJBs. When you deploy EJB 2.x entity beans with container-managed persistence, WebLogic Server automatically detects which EJB fields have been modified, and writes only those fields to the underlying datastore.

Example

<entity-descriptor>
 <persistence>
 <is-modified-method-name>semidivine</is-modified-method-name>
 </persistence>
</entity-descriptor>

isolation-level

Range of values: TransactionSerializable | TransactionReadCommitted | TransactionReadUncommitted | TransactionRepeatableRead | TransactionReadCommittedForUpdate | TransactionReadCommittedForUpdateNoWait

Default value: Default value of the underlying database

Parent elements:

weblogic-ejb-jar
 transaction-isolation

Function

Defines method-level transaction isolation settings for an EJB. Allowable values include:

	
TransactionSerializable—Simultaneously executing this transaction multiple times has the same effect as executing the transaction multiple times in a serial fashion.

	
Note:

For Oracle databases, Oracle recommends that you use the TransactionReadCommittedForUpdate isolation level instead of the TransactionSerializable isolation level. This is because Oracle databases do not lock read data at the TransactionSerializable isolation level. Additionally, at the TransactionSerializable isolation level, it is possible for concurrent transactions on Oracle databases to proceed without throwing the Oracle exception ORA-08177 "can't serialize access for this transaction"). For more information on the TransactionReadCommittedForUpdate isolation level, see Oracle Database-Only Isolation Levels.

	
TransactionReadCommitted—The transaction can view only committed updates from other transactions.

	
TransactionReadUncommitted—The transaction can view uncommitted updates from other transactions.

	
TransactionRepeatableRead—Once the transaction reads a subset of data, repeated reads of the same data return the same values, even if other transactions have subsequently modified the data.

Oracle Database-Only Isolation Levels

These addition values are supported only for Oracle databases, and only for container-managed persistence (CMP) EJBs:

	
TransactionReadCommittedForUpdate— Supported only for Oracle databases, for container-managed persistence (CMP) EJBs only. This value sets the isolation level to TransactionReadCommitted, and for the duration of the transaction, all SQL SELECT statements executed in any method are executed with FOR UPDATE appended to them. This causes the secluded rows to be locked for update. If the Oracle database cannot lock the rows affected by the query immediately, then it waits until the rows are free. This condition remains in effect until the transaction does a COMMIT or ROLLBACK.

This isolation level can be used to avoid the error:

java.sql.SQLException: ORA-08177: can't serialize access for this transaction

which can (but does not always) occur when using the TransactionSerializable isolation level with Oracle databases.

	
Note:

For Oracle databases, Oracle recommends that you use this isolation level (TransactionReadCommittedForUpdate) instead of the TransactionSerializable isolation level. This is because Oracle databases do not lock read data at the TransactionSerializable isolation level.

	
TransactionReadCommittedForUpdateNoWait—Supported only for Oracle databases, for container-managed persistence (CMP) EJBs only.

This value sets the isolation level to TransactionReadCommitted, and for the duration of the transaction, all SQL SELECT statements executed in any method are executed with FOR UPDATE NO WAIT appended to them. This causes the selected rows to be locked for update.

In contrast to the TransactionReadCommittedForUpdate setting, TransactionReadCommittedForUpdateNoWait causes the Oracle DBMS to NOT WAIT if the required locks cannot be acquired immediately—the affected SELECT query will fail and an exception will be thrown by the container.

Refer to your database documentation for more information on support for different isolation levels.

Example

See transaction-isolation.

jms-client-id

Range of values: n/a

Default value: ejb-name for the EJB

Parent element:

message-driven-descriptor

Function

Specifies a client ID for the MDB when it connects to a JMS destination. Required for durable subscriptions to JMS topics.

If you specify the connection factory that the MDB uses in connection-factory-jndi-name, the client ID can be defined in the ClientID element of the associated JMSConnectionFactory element in config.xml.

If JMSConnectionFactory in config.xml does not specify a ClientID, or if you use the default connection factory, (you do not specify connection-factory-jndi-name) the message-driven bean uses the jms-client-id value as its client id.

Example

<jms-client-id>MyClientID</jms-client-id>

jms-polling-interval-seconds

Range of values: n/a

Default value: 10 seconds

Parent element:

message-driven-descriptor

Function

Specifies the number of seconds between each attempt to reconnect to the JMS destination. Each message-driven bean listens on an associated JMS destination. If the JMS destination is located on another WebLogic Server instance or a foreign JMS provider, then the JMS destination may become unreachable. In this case, the EJB container automatically attempts to reconnect to the JMS Server. Once the JMS Server is up again, the message-driven bean can again receive messages.

Example

<jms-polling-interval-seconds>5</jms-polling-interval-seconds>

jndi-name

Range of values: Valid JNDI name

Default value: n/a

Parent elements:

weblogic-enterprise-bean

and

weblogic-enterprise-bean
 resource-description

and

weblogic-enterprise-bean
 ejb-reference-description

and

weblogic-enterprise-bean
 ejb-local-reference-description

Function

Specifies the JNDI name of an actual EJB, resource, or reference available in WebLogic Server.

	
Note:

Assigning a JNDI name to a bean is not recommended. Global JNDI names generate heavy multicast traffic during clustered server startup. See Using EJB Links for the better practice. If you have an EAR library that contains EJBs, you cannot deploy multiple applications that reference the library because attempting to do so will result in a JNDI name conflict. This is because global JNDI name cannot be set for individual EJBs in EAR libraries; it can only be set for an entire library.

Example

See resource-description and ejb-reference-description.

local-jndi-name

Range of values: Valid JNDI name

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

JNDI name for a bean's local home. If a bean has both a remote and a local home, then it can be assigned two JNDI names; one for each home.

	
Note:

Assigning a JNDI name to a bean is not recommended. See Using EJB Links for the better practice.

Example

<local-jndi-name>weblogic.jndi.WLInitialContext
</local-jndi-name>

max-beans-in-cache

Range of values: 1 to maxBeans

Default value: 1000

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-cache

Function

Specifies the maximum number of objects of this class that are allowed in memory. When max-bean-in-cache is reached, WebLogic Server passivates some EJBs that have not recently been used by a client. max-beans-in-cache also affects when EJBs are removed from the WebLogic Server cache, as described in Caching and Passivating Stateful Session EJBs.

Example

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <entity-descriptor>
 <entity-cache>
 <max-beans-in-cache>200</max-beans-in-cache>
 </entity-cache>
 </entity-descriptor>
</weblogic-enterprise-bean>

max-beans-in-free-pool

Range of values: 0 to maxBeans

Default value: 1000

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 pool

and

weblogic-enterprise-bean
 message-driven-descriptor
 pool

and

weblogic-enterprise-bean
 entity-descriptor
 pool

Function

WebLogic Server maintains a free pool of EJBs for every entity bean, stateless session bean, and message-driven bean class. The max-beans-in-free-pool element defines the size of this pool.

Example

See pool.

max-messages-in-transaction

Range of values: All positive integers

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

Function

Specifies the maximum number of messages that can be in a transaction for this MDB.

max-queries-in-cache

Range of values: All positive integers

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

This element, introduced in WebLogic Server 9.0, specifies the maximum number of read-only entity queries to cache at the bean level. For information on caching read-only entity queries at the application level, see Using Query Caching (Read-Only Entity Beans).

max-suspend-seconds

Range of values: Any integer

Default value: 60

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

Function

Specifies the maximum number of seconds to suspend an MDB's JMS connection when the EJB container detects a JMS resource outage. To disable JMS connection suspension when the EJB container detects a JMS resource outage, set the value of this element to 0. For more information, see "Configuring Suspension of Message Delivery During JMS Resource Outages" in Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server.

message-destination-descriptor

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

Maps a message destination reference in the ejb-jar.xml file to an actual message destination, such as a JMS Queue or Topic, in WebLogic Server.

Example

<message-destination-descriptor>
 <message-destination-name>...</message-destination-name>
 <destination-jndi-name>...</destination-jndi-name>
 <resource-link>...</resource-link>
 <initial-context-factory>...</initial-context-factory>
 <provider-url>...</provider-url>
</message-destination-descriptor>

message-destination-name

Range of values: A valid message destination reference name from the ejb-jar.xml file

Default value: n/a

Requirements: This element is required if the EJB specifies messages destination references in ejb-jar.xml.

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

Function

Specifies the name of a message destination reference. This is the reference that the EJB provider places within the ejb-jar.xml deployment file.

Example

See message-destination-descriptor.

message-driven-descriptor

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Associates a message-driven bean with a JMS destination in WebLogic Server.

Example

<message-driven-descriptor>
 <pool>...</pool>
 <timer-descriptor>...</timer-descriptor>
 <destination-jndi-name>...</destination-jndi-name>
 <initial-context-factory>...</initial-context-factory>
 <provider-url>...</provider-url>
 <connection-factory-jndi-name>...</connection-factory-jndi-name>
 <jms-polling-interval-seconds>...</jms-polling-interval-seconds>
 <jms-client-id>...</jms-client-id>
 <generate-unique-jms-client-id>...</generate-unique-jms-client-id>
 <durable-subscription-deletion>...</durable-subscription-deletion>
 <max-messages-in-transaction>...</max-messages-in-transaction>
 <distributed-destination-connection>...</distributed-destination-connection>
 <use81-style-polling>...</use81-style-polling>
 <init-suspend-seconds>...</init-suspend-seconds>
 <max-suspend-seconds>...</max-suspend-seconds>
</message-driven-descriptor>

method

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation

and

weblogic-ejb-jar
 idempotent-methods

and

weblogic-ejb-jar
 retry-methods-on-rollback

Function

Defines a method or set of methods for an enterprise bean's home or remote interface.

Example

<method>
 <description>...</description>
 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
</method>

method-intf

Range of values: Home | Remote | Local | Localhome

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

Function

Specifies the EJB interface to which WebLogic Server applies isolation level properties, if the method has the same signature in multiple interfaces.

Example

See method.

method-name

Range of values: Name of an EJB defined in ejb-jar.xml | *

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

Function

Specifies the name of an individual EJB method to which WebLogic Server applies isolation level properties. Use the asterisk (*) to specify all methods in the EJB's home and remote interfaces.

If you specify a method-name, the method must be available in the specified ejb-name.

Example

See method.

method-param

Range of values: Fully-qualified Java type name of a method parameter

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation
 method
 method-params

and

weblogic-ejb-jar
 idempotent-methods
 method
 method-params

Function

Specifies the fully-qualified Java type name of a method parameter.

Example

See method-params.

method-params

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

Function

Contains one or more elements that define the Java type name of each of the method's parameters.

Example

The method-params element contains one or more method-param elements, as shown here:

<method-params>
 <method-param>java.lang.String</method-param>
 ...
</method-params>

network-access-point

Range of values: Name of a custom network access point

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

Assigns a custom network channel that the EJB will use for network communications. A network channel defines a set of connection attributes. For more information, see "Configuring Network Resources" in Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.

Example

<weblogic-enterprise-bean>
 <network-access-point>SSLChannel</network-access-point>
</weblogic-enterprise-bean>

passivate-as-principal-name

Range of values: Valid WebLogic Server principal

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

The passivate-as-principal-name element, introduced in WebLogic Server 8.1 SP01, specifies the principal to be used in situations where ejbPassivate would otherwise run with an anonymous principal. Under such conditions, the choice of which principal to run as is governed by the following rule:

If passivate-as-principal-name is set

then use that principal

else

if a run-as role has been specified for the bean in ejb-jar.xml

then use a principal according to the rules for setting the run-as-role-assignment

else

run ejbPassivate as an anonymous principal.

The passivate-as-principal-name element only needs to be specified if operations within ejbPassivate require more permissions than the anonymous principal would have.

This element affects the ejbPassivate methods of stateless session beans when passivation occurs due to a cache timeout.

See also remove-as-principal-name, create-as-principal-name, and principal-name.

persistence

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

Function

Required only for entity EJBs that use container-managed persistence services. The persistence element defines the following options that determine the persistence type, transaction commit behavior, and ejbLoad() and ejbStore() behavior for entity EJBs in WebLogic Server:

	
is-modified-method-name

	
delay-updates-until-end-of-tx

	
finders-load-bean

	
persistence-use

Example

<entity-descriptor>
 <persistence>
 <is-modified-method-name>...</is-modified-method-name>
 <delay-updates-until-end-of-tx>...</delay-updates-until-end-of-tx>
 <finders-load-beand>...</finders-load-bean>
 <persistence-use>...</persistence-use>
 </persistence>
</entity-descriptor>

persistence-use

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

Function

Required only for entity EJBs that use container-managed persistence services. The persistence-use element stores an identifier of the persistence type to be used for this particular bean.

Example

<persistence-use>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>5.1.0</type-version>
 <type-storage>META-INF/weblogic-cmp-jar.xml</type-storage>
</persistence-use>

persistent-store-dir

Range of values: Valid file system directory

Default value: pstore

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

Function

Specifies a file system directory where WebLogic Server stores the state of passivated stateful session bean instances. For more information, see Specifying the Persistent Store Directory for Passivated Beans.

Example

<stateful-session-descriptor>
 <stateful-session-cache>...</stateful-session-cache>
 <allow-concurrent-calls>...</allow-concurrent-calls>
 <persistent-store-dir>MyPersistenceDir</persistent-store-dir>
 <stateful-session-clustering>...</stateful-session-clustering>
 <allow-remove-during-transaction>
</stateful-session-descriptor>

persistent-store-logical-name

Range of values: Valid name of a persistent store on the file system

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 timer-descriptor

and

weblogic-enterprise-bean
 message-driven-descriptor
 timer-descriptor

Function

Specifies the name of a persistent store on the server's file system where WebLogic Server stores timer objects. If you do not specify a persistent store name in this element, WebLogic Server stores timer objects in the default store.

pool

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor or message-driven-descriptor

and

 entity-descriptor

Function

Configures the behavior of the WebLogic Server free pool for entity EJBs, stateless session EJBs, and message-driven EJBs. The options are:

	
max-beans-in-free-pool

	
initial-beans-in-free-pool

	
idle-timeout-seconds

Example

<stateless-session-descriptor>
 <pool>
 <max-beans-in-free-pool>500</max-beans-in-free-pool>
 <initial-beans-in-free-pool>250</initial-beans-in-free-pool>
 </pool>
</stateless-session-descriptor>

principal-name

Range of values: Valid WebLogic Server principal name

Default value: n/a

Parent elements:

weblogic-ejb-jar
 security-role-assignment

Function

Specifies the name of an actual WebLogic Server principal to apply to the specified role-name. At least one principal-name is required in the security-role-assignment element. You may define more than one principal-name for each role-name.

Example

See security-role-assignment.

provider-url

Range of values: Valid URL

Default value: t3://localhost:7001

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

and

weblogic-enterprise-bean
 message-driven-descriptor

Function

Specifies the URL to be used by the InitialContext. See "Configuring MDBs for Destinations" and "How to Set provider-url" in Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server.

Example

<message-driven-descriptor>
 <provider-url>WeblogicURL:Port</provider-url>
</message-driven-descriptor>

See also message-destination-descriptor.

read-timeout-seconds

Range of values: 0 to maxSeconds, where maxSeconds is the maximum value of an int

Default value: 600

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

or

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

Function

Specifies the number of seconds between ejbLoad() calls on a Read-Only entity bean. A value of 0 causes WebLogic Server to call ejbLoad() only when the bean is brought into the cache.

Example

The following entry causes WebLogic Server to call ejbLoad() for instances of the AccountBean class only when the instance is first brought into the cache:

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <entity-descriptor>
 <entity-cache>
 <read-timeout-seconds>0</read-timeout-seconds>
 </entity-cache>
 </entity-descriptor>
</weblogic-enterprise-bean>

remote-client-timeout

Range of values: 0 to maxSeconds, where maxSeconds is the maximum value of an int

Default value: 0

Parent elements:

weblogic-enterprise-bean

Function

Specifies the length of time that a remote RMI client will wait before it will time out. See "Using the RMI Timeout" in Oracle Fusion Middleware Programming RMI for Oracle WebLogic Server.

Example

The following entry causes a remote RMI client to timeout after waiting 5 seconds.

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 ...
 <remote-client-timeout>5</remote-client-timeout>
</weblogic-enterprise-bean>

remove-as-principal-name

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

This parameter only needs to be specified if operations within ejbRemove need more permissions than the anonymous principal would have.

The remove-as-principal-name element, introduced in WebLogic Server 8.1 SP1, specifies the principal to be used in situations where ejbRemove would otherwise run with an anonymous principal. Under such conditions, the choice of which principal to run as is governed by the following rule:

If remove-as-principal-name is set

then use that principal

else

if a run-as role has been specified for the bean in ejb-jar.xml

then use a principal according to the rules for setting the run-as-role-assignment

else

run ejbRemove as an anonymous principal

The remove-as-principal-name element only needs to be specified if operations within ejbRemove require more permissions than the anonymous principal would have.

This element effects the ejbRemove methods of stateless session beans and message-drive beans.

See also passivate-as-principal-name, create-as-principal-name, and principal-name.

replication-type

Range of values: InMemory | None

Default value: None

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

Function

Determines whether WebLogic Server replicates the state of stateful session EJBs across WebLogic Server instances in a cluster. If you select InMemory, the state of the EJB is replicated. If you select None, the state is not replicated.

Example

See stateful-session-clustering.

resource-env-ref-name

Range of values: A valid resource environment reference name from the ejb-jar.xml file

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 resource-env-description

Function

Specifies the name of a resource environment reference.

Example

See resource-description.

res-ref-name

Range of values: A valid resource reference name from the ejb-jar.xml file

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 resource-description

Function

Specifies the name of a resourcefactory reference. This is the reference that the EJB provider places within the ejb-jar.xml deployment file. Required element if the EJB specifies resource references in ejb-jar.xml

Example

See resource-description.

resource-adapter-jndi-name

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

Function

Identifies the resource adapter that this MDB receives messages from.

resource-description

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Maps a resource reference defined in ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

Example

<resource-description>
 <res-ref-name>. . .</res-ref-name>
 <jndi-name>...</jndi-name>
</resource-description>
<ejb-reference-description>
 <ejb-ref-name>. . .</ejb-ref-name>
 <jndi-name>. . .</jndi-name>
</ejb-reference-description>

resource-env-description

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Maps a resource environment reference defined in ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

Example

<resource-env-description>
 <resource-env-ref-name>. . .</resource-env-ref-name>
 <jndi-name>...</jndi-name>
</reference-env-description>

When jndi-name is not a valid URL, WebLogic Server treats it as a object that maps to a URL and is already bound in the JNDI tree, and binds a LinkRef with that jndi-name.

resource-link

Range of values: Valid resource within a JMS module

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

Function

Maps to a resource within a JMS module defined in ejb-jar.xml to an actual JMS Module Reference in WebLogic Server.

Example

See message-destination-descriptor.

retry-count

Range of values: Any positive integer

	
Note:

While it is possible to set this value to less than or equal to 0, Oracle recommends that you do not do so because the EJB container will not retry transactions when this value is not greater than or equal to 1.

Default value: n/a

Parent elements:

weblogic-ejb-jar
 retry-methods-on-rollback

Function

Specifies the number of times you want the EJB container to automatically retry a container-managed transaction method that has rolled back.

retry-methods-on-rollback

Range of values: n/a

Default value: n/a

Parent element:

weblogic-ejb-jar

Function

Specifies the methods for which you want the EJB container to automatically retry container-managed transactions that have rolled back. Automatic transaction retry is supported for session and entity beans that use container-managed transaction demarcation. Additionally, regardless of the methods specified in this element, the EJB container does not retry transactions that fail because of system exception-based errors.

role-name

Range of values: Valid application role name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 security-role-assignment

Function

Identifies an application role name that the EJB provider placed in the ejb-jar.xml deployment descriptor. Subsequent principal-name elements in the element map WebLogic Server principals to the specified role-name.

Example

See security-role-assignment.

run-as-identity-principal

Range of values: Valid security principal name

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

	
Note:

The run-as-identity-principal element is deprecated in this release of WebLogic Server. Use run-as-principal-name instead.

The run-as-identity-principal element specifies which security principal name is to be used as the run-as principal for a bean that has specified a security identity run-as-role-name its ejb-jar.xml deployment descriptor.

For an explanation of how the mapping of run-as role-names to run-as-identity-principals or run-as-principal-names occurs, see the comments for the run-as-role-assignment element.

Example

<run-as-identity-principal>
 Fred
</run-as-identity-principal>

run-as-principal-name

Range of values: Valid principal

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

Specifies which security principal name is to be used as the run-as principal for a bean that has specified a security-identity run-as role-name in its ejb-jar.xml deployment descriptor.

For an explanation of how the mapping of run-as role-names to run-as-principal-names occurs, see the comments for the run-as-role-assignment element.

Example

<run-as-principal-name>
 Fred
</run-as-principal-name>

run-as-role-assignment

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

Maps a given security-identity run-as role-name specified in the ejb-jar.xml deployment descriptor file to a run-as-principal-name.

The value of the run-as-principal-name for a given role-name that is specified here is scoped to all beans in the ejb-jar.xml deployment descriptor; it applies to all beans that specify that role-name as their security-identity run-as-role-name.

The run-as-principal-name value specified here can be overridden at the individual bean level by specifying a run-as-principal-name under that bean's weblogic-enterprise-bean element.

	
Note:

For a given bean, if there is no run-as-principal-name specified in either a run-as-role-assignment or in a bean specific run-as-principal-name tag, then the EJB container chooses the first principal-name of a security user in the weblogic-enterprise-bean security-role-assignment for the role-name and uses that principal-name as the run-as-principal-name.

Example

Suppose that in the ejb-jar.xml deployment descriptor file:

	
Beans 'A_EJB_with_runAs_role_X' and 'B_EJB_with_runAs_role_X'

specify a security-identity run-as role-name 'runAs_role_X'.

	
Bean 'C_EJB_with_runAs_role_Y'

specifies a security-identity run-as role-name 'runAs_role_Y'.

Consider the following excerpts from the corresponding weblogic-ejb-jar.xml deployment descriptor file:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>
 A_EJB_with_runAs_role_x
 </ejb-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>
 B_EJB_with_runAs_role_X
 </ejb-name>
 <run-as-principal-name>
 Joe
 </run-as-principal-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>
 C_EJB_with_runAs_role_Y
 </ejb-name>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>
 runAs_role_Y
 </role-name>
 <principal-name>
 first_principal_of_role_Y
 </principal-name>
 <principal-name>
 second_principal_of_role_Y
 </principal-name>
 </security-role-assignment>
 <run-as-role-assignment>
 <role-name>
 runAs_role_X
 </role-name>
 <run-as-principal-name>
 Fred
 </run-as-principal-name>
 </run-as-role-assignment>
</weblogic-ejb-jar>

Each of the beans chooses a different principal name to use as its run-as-principal-name.

A_EJB_with_runAs_role_X

This bean's run-as role-name is 'runAs_role_X'. The jar scoped <run-as-role-assignment> mapping will be used to look up the name of the principal to use.

The <run-as-role-assignment> mapping specifies that for <role-name> 'runAs_role_X' we are to use <run-as-principal-name> 'Fred'.

"Fred" is the principal name that will be used.

B_EJB_with_runAs_role_X

This bean's run-as role-name is also 'runAs_role_X'. This bean will not use the jar scoped <run-as-role-assignment> to look up the name of the principal to use because that value is overridden by this bean's <weblogic-enterprise-bean> <run-as-principal-name> value 'Joe'.

"Joe" is the principal name that will be used.

C_EJB_with_runAs_role_Y

This bean's run-as role-name is 'runAs_role_Y'. There is no explicit mapping of 'runAs_role_Y' to a run-as principal name; that is, there is no jar-scoped <run-as-role-assignment> for 'runAs_role_Y' nor is there a bean scoped <run-as-principal-name> specified in this bean's weblogic-enterprise-bean.

To determine the principal name to use, the <security-role-assignment> for <role-name> "runAs_role_Y" is examined. The first <principal-name> corresponding to a User (i.e. not a Group) is chosen.

"first_principal_of_role_Y" is the principal name that will be used.

security-permission

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

Function

Specifies a security permission that is associated with a J2EE Sandbox.

For more information, see Sun's implementation of the security permission specification:

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Example

<security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
 ...
 </security-permission-spec>
</security-permission>

security-permission-spec

Range of values: n/a

Default value: n/a

Parent element:

security-permission

Function

Specifies a single security permission based on the Security policy file syntax.

For more information, see Sun's implementation of the security permission specification:

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Example

To grant the "read" permission to "java.vm.version," and prevent it from being overwritten:

	
Set the security-permission-spec as shown below:

<security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec> grant { permission java.util.PropertyPermission "java.vm.version", "read"; };
 </security-permission-spec>
</security-permission>

	
Modify the startWeblogic script to start the server using this option:

JAVA_OPTIONS=-Djava.security.manager

	
Create a directory named lib in your domain directory.

	
Add this line to the %WL_HOME%\server\lib\weblogic.policy file:

add grant codeBase "file:/<Your user_projects dir>/YourDomain/lib/-" { permission java.security.AllPermission; };

This is necessary because the EJB stub's classpath is lib.

security-role-assignment

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

Function

Maps application roles in the ejb-jar.xml file to the names of security principals available in WebLogic Server.

Example

<security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>system</principal-name>
 <externally-defined>True</externally-defined>
 ...
</security-role-assignment>

service-reference-description

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Maps a Web Service destination reference in the ejb-jar.xml file to an actual Web Service in WebLogic Server.

	
wsdl-url — the url of the dynamic wsdl of the referenced web service used by the client to create stub to invoke remote web service.

	
port-info — defines wsdl:port information specified in wsdl.

	
port-name — defines the local name of wsdl:port.

	
stub-property — property to be set on the client-side stub, it has the same effect of as javax.xml.rpc.Stub._setProperty(prop_name, prop_value).

Example

<service-reference-description>
 <service-ref-name>service/WebServiceBroker</service-ref-name>
 <wsdl-url>
 http://@PROXY_SERVER@/webservice/BrokerServiceBean?wsdl
 </wsdl-url>
 <call-property>...</call-property>
 <port-info>
 <port-name>BrokerServiceIntfPort</port-name>
 <stub-property>
 <name>javax.xml.rpc.service.endpoint.address</name>
 <value>http://@PROXY_SERVER@/webservice/BrokerServiceBean<;/value>
 </stub-property>
 </port-info>
</service-reference-description>

session-timeout-seconds

Range of values: (None specified)

Default value: idle-timeout-seconds

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-cache

Function

Determines how long the EJB container leaves a passivated stateful session bean on disk. The container removes a passivated EJB session-timeout-seconds after passivating the bean instance to disk. If session-timeout-seconds is not specified, the default is the value specified by idle-timeout-seconds.

Example

<stateful-session-descriptor>
 <stateful-session-cache>
 <max-beans-in-cache>4</max-beans-in-cache>
 <idle-timeout-seconds>5</idle-timeout-seconds>
 <session-timeout-seconds>120</session-timeout-seconds>
 <cache-type>LRU</cache-type>
 </stateful-session-cache>
</stateful-session-descriptor>

stateful-session-cache

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

Function

Defines the following options used to cache stateful session EJB instances.

	
max-beans-in-cache

	
idle-timeout-seconds

	
session-timeout-sections

	
cache-type

See Caching and Passivating Stateful Session EJBs for more information about caching of stateful session beans.

Example

The following example shows how to specify the stateful-session-cache element

<stateful-session-cache>
 <max-beans-in-cache>...</max-beans-in-cache>
 <idle-timeout-seconds>...</idle-timeout-seconds>
 <session-timeout-seconds>...</session-timeout-seconds>
 <cache-type>...</cache-type>
</stateful-session-cache>

stateful-session-clustering

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

Function

Specifies the following options that determine how WebLogic Server replicates stateful session EJB instances in a cluster:

	
home-is-clusterable

	
home-load-algorithm

	
home-call-router-class-name

	
replication-type

Example

<stateful-session-clustering>
 <home-is-clusterable>True</home-is-clusterable>
 <home-load-algorithm>random</home-load-algorithm>
 <home-call-router-class-name>beanRouter</home-call-router-class-name>
 <replication-type>InMemory</replication-type>
</stateful-session-clustering>

stateful-session-descriptor

Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Function

Defines deployment behaviors, such as caching, clustering, and persistence, for stateless session EJBs in WebLogic Server.

Example

<stateful-session-descriptor>
 <stateful-session-cache>...</stateful-session-cache>
 <allow-concurrent-calls>...</allow-concurrent-calls>
 <allow-remove-during-transaction>...
 </allow-remove-during-transaction>
 <persistent-store-dir>/myPersistenceStore</persistent-store-dir>
 <stateful-session-clustering>...</stateful-session-clustering>
</stateful-session-descriptor>

stateless-bean-call-router-class-name

Range of values: Valid custom class name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-clustering

Function

Specifies the name of a custom class to use for routing bean method calls. This class must implement weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is called before each method call. The router class has the opportunity to choose a server to route to based on the method parameters. The class returns either a server name or null, which indicates that the current load algorithm should select the server.

Example

See stateless-clustering.

stateless-bean-is-clusterable

Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-clustering

Function

When stateless-bean-is-clusterable is True, the EJB can be deployed from multiple WebLogic Servers in a cluster. Calls to the home stub are load-balanced between the servers on which this bean is deployed, and if a server hosting the bean is unreachable, the call automatically fails over to another server hosting the bean.

Example

See stateless-clustering.

stateless-bean-load-algorithm

Range of values: round-robin | random | weight-based | RoundRobinAffinity | RandomAffinity | WeightBasedAffinity

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-clustering

Function

Specifies the algorithm to use for load balancing between replicas of the EJB home.

You can define stateless-bean-load-algorithm as one of the following values:

	
round-robin—Load balancing is performed in a sequential fashion among the servers hosting the bean.

	
random—Replicas of the EJB home are deployed randomly among the servers hosting the bean.

	
weight-based—Replicas of the EJB home are deployed on host servers according to the servers' current workload.

	
round-robin-affinity—Server affinity governs connections between external Java clients and server instances; round robin load balancing is used for connections between server instances.

	
weight-based-affinity—Server affinity governs connections between external Java clients and server instances; weight-based load balancing is used for connections between server instances.

	
random-affinity—Server affinity governs connections between external Java clients and server instances; random load balancing is used for connections between server instances.

For more information, see "Load Balancing for EJBs and RMI Objects" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Example

See stateless-clustering.

stateless-bean-methods-are-idempotent

Range of values: True | False

Default value: False

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-clustering

	
Note:

This element is deprecated in this release.

Function

Set stateless-bean-methods-are-idempotent to True only if the bean is written such that repeated calls to the same method with the same arguments have exactly the same effect as a single call. This allows the failover handler to retry a failed call without knowing whether the call actually completed on the failed server. Setting this property to True makes it possible for the bean stub to recover automatically from any failure as long as another server hosting the bean can be reached.

Example

See stateless-clustering.

stateless-clustering

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor

Function

Specifies options that determine how WebLogic Server replicates stateless session EJB instances in a cluster.

Example

<stateless-clustering>
 <stateless-bean-is-clusterable>
 True
 </stateless-bean-is-clusterable>
 <stateless-bean-load-algorithm>
 random</stateless-bean-load-algorithm>
 <stateless-bean-call-router-class-name>
 beanRouter
 </stateless-bean-call-router-class-name>
 <stateless-bean-methods-are-idempotent>
 True
 </stateless-bean-methods-are-idempotent>
</stateless-clustering>

stateless-session-descriptor

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

Defines deployment parameters, such as caching, clustering, and persistence for stateless session EJBs in WebLogic Server.

Example

<stateless-session-descriptor>
 <pool>...</pool>
 <stateless-clustering>...</stateless-clustering>
</stateless-session-descriptor>

stick-to-first-server

Range of values: True or False

Default value: False

Parent element:

weblogic-enterprise-bean

Function

Defines "sticky" load balancing in a cluster. The server chosen for servicing the first request is used for all subsequent requests.

Example

<stick-to-first-server>
 True
</stick-to-first-server>

timer-descriptor

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

or

 message-driven-descriptor

or

 stateless-session-descriptor

Function

Specifies an EJB timer object.

timer-implementation

Range of values:

Valid values include:

	
Clustered—Specifies that timers are cluster aware. This option provides EJB timers with features such as automatic failover, load balancing, and improved accessibility within the cluster. This option is recommended for EJBs that will be deployed to a cluster of WebLogic servers.

	
Local—Specifies that timers will only execute on the server on which they are created and are only visible to the beans on that server. When you set this element to Local, if you deploy an EJB to a cluster, and invoke the EJB to create a timer, that call could go to any server on the cluster. Another invocation (for instance, to cancel the timer) could also go to any server on the cluster and will not necessarily go to the same server in which the call to create the timer went. For instance, if the call to create a timer is directed to server1, and the call to cancel it is directed to server2, the EJB on server2 would not see the timer on server1 and would, therefore, fail to cancel it.

To avoid the limitation when using local timers, you can use one of the following approaches:

	
Pin the EJB deployment to a single server in the cluster. This causes all calls to the EJB to go to server to which the EJB is pinned and all timers to exist on that same server. The trade-off to using this approach is that the EJB cannot take advantage of clustering benefits such as load balancing and failover.

	
Ensure that calls to cancel timers go to all servers in the cluster by using a message-driven bean (MDB) that listens on a JMS topic. The message to cancel the timer can be published to the JMS topic and serviced by an MDB on each server. Then, the MDB on each server can invoke a cancelTimer method on the bean. The trade-off to using this approach is that it makes your application more complex and attempting to cancel timers on all servers is inefficient.

Default value: Local (the current file store-backed EJB timer service is used)

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

or

 message-driven-descriptor

or

 stateless-session-descriptor

Function

Specifies whether the EJB timer service is cluster aware.

Example

<timer-implementation>
 Clustered
</timer-implementation>

transaction-descriptor

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Function

Specifies options that define transaction behavior in WebLogic Server. Currently, this element includes only one child element: trans-timeout-seconds.

Example

<transaction-descriptor>
<trans-timeout-seconds>20</trans-timeout-seconds>
</transaction-descriptor>

transaction-isolation

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

Function

Defines method-level transaction isolation settings for an EJB.

Example

<transaction-isolation>
 <isolation-level>...</isolation-level>
 <method>
 <description>...</description>
 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
 </method>
</transaction-isolation>

For more information, see isolation-level.

transport-requirements

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor

Function

Provides the transport requirements for the EJB.

Example

<iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authentication>suppoted
 </client-cert-authentication>
 </transport-requirements>
</iiop-security-descriptor>

trans-timeout-seconds

Range of values: 0 to max

Default value: 30

Parent elements:

weblogic-enterprise-bean
 transaction-descriptor

Function

Specifies the maximum duration for an EJB's container-initiated transactions. If a transaction lasts longer than trans-timeout-seconds, WebLogic Server rolls back the transaction.

Example

See transaction-descriptor.

type-identifier

Range of values: Valid string. WebLogic_CMP_RDBMS specifies WebLogic Server RDBMS-based persistence.

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence
 persistence-use

Function

Required only for entity EJBs that use container-managed persistence services. Specifies an entity EJB persistence type. WebLogic Server RDBMS-based persistence uses the identifier, WebLogic_CMP_RDBMS. If you use a different persistence vendor, consult the vendor's documentation for information on the correct type-identifier.

Example

See persistence-use for an example that shows the complete persistence type definition for WebLogic Server RDBMS-based persistence.

type-storage

Range of values: Valid string

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence
 persistence-use

Function

Required only for entity EJBs that use container-managed persistence services. Defines the full path of the file that stores data for this persistence type. The path must specify the file's location relative to the top level of the EJB's JAR deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named weblogic-cmp-jar.xml to store persistence data for a bean. This file is stored in the META-INF subdirectory of the JAR file.

Example

See persistence-use for an example that shows the complete persistence type definition for WebLogic Server RDBMS-based persistence.

type-version

Range of values: Valid string

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence
 persistence-use

Function

Required for entity EJBs that use container-managed persistence service, if multiple versions of the same persistence type are installed. Identifies the version of the specified persistence type. For example, for WebLogic 2.0 CMP persistence, use the value:

6.0

For WebLogic 1.1 CMP persistence, use the value:

5.1.0

This element is necessary if multiple versions of the same persistence type are installed.

If you use WebLogic Server RDBMS-based persistence, the specified version must exactly match the RDBMS persistence version for the WebLogic Server release. Specifying an incorrect version results in the error:

weblogic.ejb.persistence.PersistenceSetupException: Error initializing the CMP
Persistence Type for your bean: No installed Persistence Type matches the signature of
(identifier 'Weblogic_CMP_RDBMS', version 'version_number').

Example

See persistence-use for an example that shows the complete persistence type definition for WebLogic Server RDBMS-based persistence.

use-serverside-stubs

Range of values: true | false

Default value: false

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

Function

Causes the bean home to use server-side stubs in the context of server.

Example

See the example for entity-clustering.

use81-style-polling

Range of values: true | false

Default value: false

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

Function

Enables backwards compatibility for WLS Version 8.1-style polling.

In WLS version 8.1 and earlier, transactional MDBs with batching enabled created a dedicated polling thread for each deployed MDB. This polling thread was not allocated from the pool specified by dispatch-policy, it was an entirely new thread in addition to the all other threads running on the system. For more information, see "Backwards Compatibility for WLS 10.0 and Earlier-style Polling" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

Example

See the example for entity-clustering.

weblogic-compatibility

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

Function

This element, introduced in WebLogic Server 9.0 contains elements that specify compatibility flags.

weblogic-ejb-jar

Range of values: n/a

Default value: n/a

Parent elements: n/a

Function

weblogic-ejb-jar is the root element of the WebLogic component of the EJB deployment descriptor.

weblogic-enterprise-bean

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

Function

Contains the deployment information for a bean that is available in WebLogic Server.

work-manager

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

Function

Specifies a work manager to manage work requests for EJBs.

For more information on work managers, see "Using Work Managers to Optimize Scheduled Work" in Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.

C weblogic-cmp-jar.xml Deployment Descriptor Reference

The following sections describe the EJB 2.1 elements in the weblogic-cmp-jar.xml file, the WebLogic-specific XML Schema-based (XSD) deployment descriptor file. Use these definitions to create the WebLogic-specific weblogic-cmp-jar.xml file that is part of your EJB deployment. Use this deployment descriptor file to specify container-managed-persistence (CMP) behavior.

In this release of WebLogic Server, weblogic-cmp-jar.xml is XML Schema-based (XSD). In prior releases, weblogic-cmp-jar.xml was Document Type Definition-based (DTD). For backward compatibility, this release of WebLogic Server supports XSD- or DTD-based EJB descriptors. In this release of WebLogic Server, the EJB container still supports all older DTD-based descriptors; you can deploy applications that use DTD-based descriptors in this release of WebLogic Server without modifying the descriptors.

For information on the EJB 1.1 deployment descriptor elements see Appendix F, "Important Information for EJB 1.1 Users."

	
2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure

	
2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

For information on:

	
XML Schema Definitions and the namespace declaration required in weblogic-cmp-jar.xml, as well as Document Type Definitions and DOCTYPE headers, see Appendix A, "Deployment Descriptor Schema and Document Type Definitions Reference."

	
the weblogic-ejb-jar.xml file, see Appendix B, "weblogic-ejb-jar.xml Deployment Descriptor Reference."

EJB 1.1 deployment descriptor elements, see Appendix F, "Important Information for EJB 1.1 Users."

2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure

The weblogic-cmp-jar.xml file defines deployment descriptors for entity EJBs that use WebLogic Server RDBMS-based persistence services. The EJB container uses a version of weblogic-cmp-jar.xml that is different from the XML shipped with pre-9.0 releases of WebLogic Server.

You can continue to use the earlier weblogic-cmp-jar.xml DTD beans that you deploy to this release of WebLogic Server; likewise, you can continue to use the weblogic-cmp-jar.xml DTD that was supported in WebLogic Server 8.1. Though deployment descriptors are XSD-based beginning with WebLogic Server 9.0, for backward compatibility, WebLogic Server continues to support DTD-based descriptors. However, if you want to use any of the CMP 2.1 features, you must use the XSD described below.

Oracle recommends that you run DDConverter to convert EJB deployment descriptors from pre-9.0 releases of WebLogic Server to conform to the current release of WebLogic Server. DDConverter converts your DTD-based EJB deployment descriptors from pre-9.0 releases of WebLogic Server to XSD-based descriptors supported in this release.

	
Note:

Oracle recommends that you always convert descriptors when migrating applications to a new WebLogic Server release.

The top-level element of the WebLogic Server weblogic-cmp-jar.xml consists of a weblogic-rdbms-jar element:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 ejb-name
 data-source-jndi-name
 table-map
 field-group
 relationship-caching
 sql-shape
 weblogic-query
 delay-database-insert-until
 use-select-for-update
 lock-order
 instance-lock-order
 automatic-key-generation
 check-exists-on-method
 cluster-invalidation-disabled

weblogic-rdbms-relation
 relation-name
 table-name
 weblogic-relationship-role
order-database-operations
enable-batch-operations
create-default-dbms-tables
validate-db-schema-with
database-type
default-dbms-tables-ddl

compatibility
 serialize-byte-array-to-oracle-blob
 serialize-char-array-to-bytes
 allow-readonly-create-and-remove
 disable-string-trimming

2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

This list of the elements in weblogic-cmp-jar.xml includes all elements that are supported in WebLogic Server.

	
allow-readonly-create-and-remove

	
automatic-key-generation

	
caching-element

	
caching-name

	
check-exists-on-method

	
cluster-invalidation-disabled

	
cmp-field

	
cmr-field

	
column-map

	
compatibility

	
create-default-dbms-table

	
database-specific-sql

	
database-type

	
data-source-jndi-name

	
db-cascade-delete

	
dbms-column

	
dbms-column-type

	
dbms-default-value

	
default-dbms-tables-ddl

	
delay-database-insert-until

	
description

	
disable-string-trimming

	
ejb-name

	
ejb-ql-query

	
enable-batch-operations

	
enable-query-caching

	
field-group

	
field-map

	
finders-return-nulls

	
foreign-key-column

	
foreign-key-table

	
generator-name

	
generator-type

	
group-name

	
include-updates

	
instance-lock-order

	
key-cache-size

	
key-column

	
lock-order

	
max-elements

	
method-name

	
method-param

	
method-params

	
optimistic-column

	
order-database-operations

	
pass-through-columns

	
primary-key-table

	
query-method

	
relation-name

	
relationship-caching

	
relationship-role-map

	
relationship-role-name

	
serialize-byte-array-to-oracle-blob

	
serialize-char-array-to-bytes

	
sql

	
sql-query

	
sql-select-distinct

	
sql-shape

	
sql-shape-name

	
table-map

	
table-name

	
trigger-updates-optimistic-column

	
unknown-primary-key-field

	
use-select-for-update

	
validate-db-schema-with

	
verify-columns

	
verify-rows

	
version-column-initial-value

	
weblogic-ql

	
weblogic-query

	
weblogic-rdbms-bean

	
weblogic-rdbms-jar

	
weblogic-rdbms-relation

	
weblogic-relationship-role

allow-readonly-create-and-remove

Range of values: true | false

Default value: false

Parent elements:

weblogic-rdbms-jar
 compatibility

Function

This element, introduced in WebLogic Server 8.1 SP02, is a backward compatibility flag. It is used to enable create and remove operations for an EJB that uses ReadOnly concurrency.

Prior to WebLogic Server 8.1 SP2, these operations were allowed, although they had no transactional meaning. They have been disallowed so that more efficient code can be generated for ReadOnly beans, and because using them is a bad practice.

Example

<compatibility>
 <allow-readonly-create-and-remove>
 true
 </allow-readonly-create-and-remove>
</compatibility>

automatic-key-generation

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

Function

The automatic-key-generation element specifies how primary keys will be automatically generated. For more information about this feature, see Automatically Generating Primary Keys.

Example

The following code samples show the automatic-key-generation element for different primary key generation methods. For supported generation methods, see generator-type.

Example C-1 automatic-key-generation With generator-type=Oracle

<automatic-key-generation>
 <generator-type>Oracle</generator-type>
 <generator-name>test_sequence</generator-name>
 <key-cache-size>10</key-cache-size>
</automatic-key-generation>

Example C-2 automatic-key-generation With generator-type=SQL-SERVER

<automatic-key-generation>
 <generator-type>SQL-SERVER</generator-type>
</automatic-key-generation>

Example C-3 automatic-key-generation With generator-type=NamedSequenceTable

<automatic-key-generation>
 <generator-type>NamedSequenceTable</generator-type>
 <generator-name>MY_SEQUENCE_TABLE_NAME</generator-name>
 <key-cache-size>100</key-cache-size>
</automatic-key-generation>

caching-element

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 relationship-caching

Function

Specifies the cmr-field and the group-name in the related bean. If group-name is not specified, the default group-name (load all fields) is used. For more information, see group-name.

caching-element can contain nested caching elements, as in the example shown in relationship-caching.

For information about relationship caching, see Relationship Caching.

Example

See relationship-caching:

caching-name

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 relationship-caching

Function

The caching-name element specifies the name of a relationship cache. For more information about relationship caching, see Relationship Caching.

Example

See relationship-caching.

check-exists-on-method

Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-bean

Function

By default, the EJB container checks that a container-managed persistence (CMP) entity bean exists before any business method invoked on the bean completes. This means the container notifies an application as soon as any business method is invoked on a container-managed entity bean that has been removed.

To specify that the EJB container wait for transaction completion to perform the existence check, set check-exists-on-method to False. This results in high performance and still provides a sufficient level of checking for most applications.

Example

The following example specifies that WebLogic Server notify the application that a business method has been invoked on a CMP entity bean that has been removed.

<check-exists-on-method>True</check-exists-on-method>

cluster-invalidation-disabled

Range of values: true | false

Default value: false

Parent elements:

weblogic-rdbms-bean

Function

This flag, introduced in WebLogic Server 9.0, is used to disable or enable invalidation of an EJB that uses Optimistic or ReadOnly concurrency when the EJB is updated by a member of a cluster to which it is deployed. For more information, see Invalidation Options for Optimistic Concurrency in Clusters.

Example

<cluster-invalidation-disabled>true</cluster-invalidation-disabled>

cmp-field

Range of values: Valid name of field in the bean. Field must have matching cmp-entry in ejb-jar.xml. Field name is case-sensitive.

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 field-map

and

weblogic-rdbms-relation
 field-group

Function

This name specifies the mapped field in the bean instance which should be populated with information from the database.

Example

See field-map.

cmr-field

Range of values: Valid name of field in the bean. Field must have matching cmr-field entry in ejb-jar.xml

Default value: n/a

Parent elements:

weblogic-rdbms-relation
 field-group

and

relationship-caching
 caching-element

Function

Specifies the name of a container-managed relationship field.

Example

<cmr-field>stock options</cmr-field>

column-map

Range of values: n/a

Default value: n/a

Parent elements:

<weblogic-rdbms-relation>
 <weblogic-relationship-role>
 <relationship-role-map>

Function

This element represents the mapping of a foreign key column in one table in the database to a corresponding primary key. The two columns may or may not be in the same table. The tables to which the columns belong are implicit from the context in which the column-map element appears in the deployment descriptor.

Example

The following is an example of the column-map element:

	
Note:

You do not need to specify the key-column element if the foreign-key-column refers to a remote bean.

<column-map>
 <foreign-key-column>account-id</foreign-key-column>
 <key-column>id</key-column>
</column-map>

compatibility

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar

Function

The <compatibility> element, introduced in WebLogic Server 8.1 SP02, contains elements that specify compatibility flags for all of the cmp beans described in the descriptor file.

Example

<compatibility>
 <serialize-byte-array-to-oracle-blob>...</serialize-byte-array-to-oracle-blob>
 <serialize-char-array-to-bytes>...</serialize-char-array-to-bytes>
 <allow-readonly-create-and-remove>...</allow-readonly-create-and-remove>
 <disable-string-trimming>...</disable-string-trimming>
</compatibility>

create-default-dbms-table

Range of values: Disabled | CreateOnly | DropAndCreate | DropAndCreateAlways | AlterOrCreate

Default value: Disabled

Parent elements:

weblogic-rdbms-jar

Function

The create-default-dbms-table element performs two functions:

	
It determines whether or how WebLogic Server automatically creates a default table based on the descriptions in the deployment files and the bean class, when underlying table schema have changed.

	
It determines whether or how WebLogic Server automatically creates an Oracle database SEQUENCE.

Use this element only for convenience during development phases. This is because the table schema in the DBMS CREATE statement used are the EJB container's best approximation of the definition. A production environment typically requires more precise schema definition.

Automatic Table Creation

The following table describes how WebLogic Server handles automatic table creation, based on the value of create-default-dbms-tables.

Table C-1 Automatic Table Creation

	Setting <create-default-dbms-tables> to this value...	Results in this behavior with respect to automatic table creation...
	
Disabled

	
The EJB container takes no action with respect to automatic table creation. This is the default value.

	
CreateOnly

	
The EJB container automatically generates the table upon detecting changed schema.

The container attempts to create the table based on information found in the deployment files and in the bean class. If table creation fails, a 'Table Not Found' error is thrown, and the user must create the table manually.

	
DropAndCreate

	
The EJB container automatically generates the table upon detecting changed schema.

The container drops and recreates the table during deployment only if columns have changed. The container does not save data.

You must ensure that the column type and cmp-field types are compatible. The EJB container does not attempt to ensure the column type and cmp-field types are compatible.

	
DropAndCreateAlways

	
The EJB container automatically generates the table upon detecting changed schema.

The container drops and creates the table during deployment whether or not columns have changed. The container does not save the data.

	
AlterOrCreate

	
The EJB container automatically generates the table upon detecting changed schema.

The container creates the table if it does not yet exist. If the table does exist, the container alters the table schema. Table data is saved.

Note: Do not choose this setting if a new column is specified as a primary key or if a column with null values is specified as the new primary key column.

If TABLE CREATION fails, the server throws a Table Not Found error and the table must be created manually.

See Automatic Table Creation (Development Only).

Automatic Oracle Database SEQUENCE Generation

	
Note:

Automatic Oracle database SEQUENCE generation works only with servers running in development mode.

The following table describes how WebLogic Server handles automatic SEQUENCE generation, based on the value of create-default-dbms-tables.

Table C-2 Automatic Oracle Database SEQUENCE Generation

	Setting <create-default-dbms-tables> to this value...	Results in this behavior...
	
Disabled

	
The EJB container takes no action with respect to SEQUENCE generation. This is the default value.

	
CreateOnly

	
The EJB container creates a SEQUENCE, and constructs its name by appending "_WL" to the value of the generator-name element.

	
DropAndCreate

	
The EJB container creates a SEQUENCE, and constructs its name by appending "_WL" to the value of the generator-name element.

If the SEQUENCE's increment value does not match the value of the key-cache-size element, the container alters the increment value to match the value of key-cache-size.

	
DropAndCreateAlways

	
The EJB container creates a SEQUENCE, and constructs its name by appending "_WL" to the value of the generator-name element.

If the SEQUENCE's increment value does not match the value of the key-cache-size element, the container alters the increment value to match the value of key-cache-size.

	
AlterOrCreate

	
The EJB container creates a SEQUENCE, and constructs its name by appending "_WL" to the value of the generator-name element.

If the SEQUENCE's increment value does not match the value of the key-cache-size element, the container alters the increment value to match the value of key-cache-size.

For more information on automatic generation of an Oracle database SEQUENCE, see Support for Oracle Database SEQUENCE.

Example

The following example specifies the create-default-dbms-tables element.

<create-default-dbms-tables>CreateOnly</create-default-dbms-tables>

database-specific-sql

Range of values: n/a

Default value: n/a

Requirements: database-type must be specified.

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query
 sql-query

Function

The database-specific-sql element specifies a database-specific SQL statement.

Example

<database-specific-sql>
 <database-type>SQLServer</database-type>
 <sql>SELECT name, phone, location, testid FROM medrecappPharmacyBeanTable WHERE
 testid = ?1 AND SUBSTRING(testid, 1,5) = 'local' ORDER BY name
 </sql>
</database-specific-sql>

database-type

Range of values: DB2 | Informix | MySQL | Oracle | POINTBASE | SQLServer | SQLServer2000 | Sybase

Default value: n/a

Parent elements:

weblogic-rdbms-jar

and

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-quer
 sql-query
 database-specific-sql

Function

The database-type element specifies the database used as the underlying WebLogic Server dbms or the dbms against which to execute a vendor-specific SQL statement. If you specify database-type in the weblogic-rdbms-jar element, the database you specify applies to the entire weblogic-rdbms-jar deployment descriptor file unless it is overridden in a database-specific-sql element by another database-type element.

Example

<database-type>POINTBASE</database-type>

data-source-jndi-name

Range of values: Valid WebLogic Server JDBC data source name

Default value: n/a

Parent elements:

weblogic-rdbms-bean

Function

Specifies the JDBC data source name to be used for database connectivity for this bean. For more information on data sources, see Oracle Fusion Middleware Programming JDBC for Oracle WebLogic Server.

	
Note:

Prior to WebLogic Server 9.0, this element was data-source-name.

Example

See table-name.

db-cascade-delete

Range of values: n/a

Default value: By default, database cascade delete is not used. The EJB container performs cascade deletes by issuing an individual SQL DELETE.

Parent elements:

weblogic-rdbms-bean
 weblogic-relationship-role

Function

Allows an application to take advantage of a database's built-in support for cascade delete, and possibly improve performance. This functionality is supported only for:

	
Oracle databases

	
One-to-one or one-to-many relationships.

If db-cascade-delete is enabled in weblogic-cmp-rdbms-jar.xml, you must

	
Enable cascade-delete in ejb-jar.xml

	
Enable cascade delete in the database table definition.

	
Note:

If db-cascade-delete is not specified, do not enable the database's cascade delete functionality, as this will produce incorrect results.

Setting up Oracle Database for Cascade Delete

The following Oracle database table definition will cause deletion all of the emp rows if the owning dept is deleted in the database.

CREATE TABLE dept
(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
dname VARCHAR2(9));
CREATE TABLE emp
(empno NUMBER(4) PRIMARY KEY,
ename VARCHAR2(10),
deptno NUMBER(2) CONSTRAINT fk_deptno
REFERENCES dept(deptno)
ON DELETE CASCADE);

Example

<weblogic-relationship-role>
 <db-cascade-delete/>
</weblogic-relationship-role>

dbms-column

Range of values: Valid database column

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 field-map

Function

The name of the database column to which the field should be mapped.

	
Note:

dbms-column is case maintaining, although not all database are case sensitive.

Example

See field-map.

dbms-column-type

Range of values: Blob | Clob | LongString | SybaseBinary

Default value: n/a

Requirements: To specify Blob or Clob in this element, you must also set dbms-default-value to Oracle or DB2 databases.

Parent elements:

weblogic-rdbms-bean
 field-map

Function

Specifies the type of the cmp-field. Maps the current field to a Blob or Clob in an Oracle or DB2 database or to a LongString or SybaseBinary in a Sybase database.

	
Blob—maps the field to an Oracle or DB2 database Blob.

	
Clob—maps the field to an Oracle or DB2 database Clob.

	
LongString—tells the container to use setCharacterStream to write String data into the database. Some JDBC drivers have problems writing more than 4K of data using setString.

	
SybaseBinary—tells the container to use setBytes to write bytes into the binary column, because setBinaryStream does not work with SybaseXADriver.

Example

<field-map>
 <cmp-field>photo</cmp-field>
 <dbms-column>PICTURE</dbms-column>
 <dbms_column-type>OracleBlob</dbms-column-type>
</field-map>

dbms-default-value

Range of values: DB2 | Informix| MySQL | Oracle | POINTBASE | SQLServer | SQLServer2000 | Sybase

Default value:

Parent elements:

weblogic-rdbms-bean
 field-map

Function

Specifies the database used as the default underlying dbms. This value can be overridden by the database-type element.

Example

<dbms-default-value>Oracle</dbms-default-value>

default-dbms-tables-ddl

Range of values: Valid file name

Default value:

Parent elements:

weblogic-rdbms-jar

Function

Specifies the DDL file name to which the EJB container writes the table creation scripts.

delay-database-insert-until

Range of values: ejbCreate | ejbPostCreate

Default value: ejbPostCreate

Requirememts:

Parent elements:

weblogic-rdbms-bean

Function

Specifies when a new CMP bean is inserted into the database. The allowable values cause the following behavior:

	
ejbCreate - perform database insert immediately after ejbCreate. This setting yields better performance than ejbCreate by avoiding an unnecessary store operation.

	
ejbPostCreate - perform insert immediately after ejbPostCreate.

This element has an effect only when order-database-operations is False. By default, order-database-operations is true, which causes new beans to be inserted at the transaction commit time.

Delaying the database insert until after ejbPostCreate is required when a cmr-field is mapped to a foreign-key column that does not allow null values. In this case, the cmr-field must be set to a non-null value in ejbPostCreate before the bean is inserted into the database.

For maximum flexibility, avoid creating related beans in your ejbPostCreate method. If ejbPostCreate creates related beans, and database constraints prevent related beans from referring to a bean that has not yet been created, it is not possible to perform a database insert until after the method completion.

	
Note:

cmr-fields may not be set during ejbCreate, before the primary key of the bean is known.

Example

<delay-database-insert-until>ejbPostCreate</delay-database-insert-until>

description

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query

or

weblogic-rdbms-jar
 weblogic-rdbms-bean
 sql-shape

Function

The description element provides text that describes the parent element.

Example

<description>Contains a description of parent element</description>

disable-string-trimming

Range of values: True | False

Default value: False

Parent elements:

compatibility

Function

This element, introduced in WebLogic Server 9.0, is a compatibility flag. It is used to specify whether a cmp-field of type string[] should be trimmed. Set this flag to True to disable string trimming. For more information on string trimming, see String-Valued CMP Field Trimming and Disabling String Trimming.

Example

<compatibility>
 <disable-string-trimming>True</disable-string-trimming>
</compatibility>

ejb-name

Range of values: Must match the ejb-name of a cmp entity bean defined in the ejb-jar.xml

Default value: n/a

Parent elements:

weblogic-rdbms-bean

Function

The name that specifies an EJB as defined in the ejb-cmp-rdbms.xml. This name must match the ejb-name of a cmp entity bean contained in the ejb-jar.xml.

Example

See table-name.

ejb-ql-query

Range of values:

Default value:

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query

Function

The ejb-ql-query element specifies an EJB-QL query. You should only specify EJB-QL queries that implement EJB finders or contain WebLogic-specific extensions in the weblogic-cmp-jar.xml deployment descriptor; specify queries that use only standard EJB-QL features in the ejb-jar.xml deployment descriptor.

Example

See weblogic-query.

enable-batch-operations

Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-jar

Function

This element, introduced in WebLogic Server 8.1, controls whether or not the EJB container allows batch database operations, including batch inserts, batch updates, and batch deletes.

If this element is set to True, the EJB delays database operations in a transaction until commit time.

Example

The following XML sample demonstrates use of the enable-batch-operations element:

<enable-batch-operations>True</enable-batch-operations>

enable-query-caching

Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query

or

weblogic-rdbms-jar
 weblogic-rdbms-relation

Function

This element, introduced in WebLogic Server 9.0, controls whether read-only entity EJBs can be cached at the query level. Caching read-only entity EJBs at the query level improves performance because it enables the EJBs to be accessed in cache by any finder, thereby avoiding the need to access the database. If you set this value to True, you can specify the maximum number of queries to cache at the application or bean level. To specify the maximum number of queries to cache, set max-queries-in-cache in the weblogic-ejb-jar.xml deployment descriptor. For information, see max-queries-in-cache.

Example

The following XML sample demonstrates use of the enable-query-caching element:

<enable-query-caching>True</enable-query-caching>

field-group

Range of values: n/a

Default value: A special group named default is used for finders and relationships that have no field-group specified. The default group contains all of a bean's cmp-fields, but none of its cmr-fields.

Parent elements:

weblogic-rdbms-relation

Function

The field-group element represents a subset of the cmp-fields and cmr-fields of a bean. Related fields in a bean can be put into groups that are faulted into memory together as a unit. A group can be associated with a finder or relationship, so that when a bean is loaded as the result of executing a finder or following a relationship, only the fields specified in the group are loaded.

A field may belong to multiple groups. In this case, the getXXX method for the field faults in the first group that contains the field.

Example

The field-group element can contain the elements shown here:

<weblogic-rdbms-bean>
 <ejb-name>XXXBean</ejb-name>
 <field-group>
 <group-name>medical-data</group-name>
 <cmp-field>insurance</cmp-field>
 <cmr-field>doctors</cmr-fields>
 </field-group>
</weblogic-rdbms-bean>

field-map

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

Function

The field-map element represents a mapping between a particular column in a database and a cmp-field in the bean instance.

The optional group-name element specifies a field group that is to be loaded when the getXXX method for the cmp-field is called and the EJB container needs to read the value from the DBMS because it is not in memory. If group-name is omitted, the default group, which contains all cmp-fields, is used when the cmp-field is not explicitly listed in any field groups, otherwise a field group that contains the cmp-field is chosen. Thus, developers should specify a group-name if the cmp-field is listed in multiple field groups or the container will pick one of the groups arbitrarily.

The dbms-column-type element is optional.

Example

The field-map element can contain the elements shown here:

<field-map>
 <cmp-field>....</cmp-field>
 <dbms-column>...</dbms-column>
 <dbms-column-type>...</dbms-column-type>
 <group-name>...</group name>
</field-map>

finders-return-nulls

Range of values: True | False

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 compatibility
 weblogic-query

Function

This element, introduced in WebLogic Server 9.0, is a compatibility flag. It is used to specify whether finders can return null results.

By default

Example

<compatibility>
 <finders-return-nulls>True</finders-return-value>
</compatibility>

foreign-key-column

Range of values: Valid foreign key database column name

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 column-map

Function

The foreign-key-column element represents a column of a foreign key in the database.

Example

See column-map.

foreign-key-table

Range of values: Valid database table name

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-relation
 weblogic-relationship-role
 relationship-role-map

Function

The foreign-key-table element specifies the name of a DBMS table that contains a foreign key.

Example

See relationship-role-map.

generator-name

Range of values:

Default value:

Parent elements:

weblogic-rdbms-bean
 automatic-key-generation

Function

The generator-name element is used to specify the name of the primary key generator.

	
If the generator-type element is Oracle, and WebLogic Server is running in development mode, then the EJB container constructs the Oracle database SEQUENCE name by appending "_WL" to the generator-name as part of the container's automatic SEQUENCE generation feature.

For more information on automatic Oracle database SEQUENCE generation, see Support for Oracle Database SEQUENCE.

	
If the generator-type element is Oracle, and WebLogic Server is running in production mode, then the EJB container sets the name of the Oracle database SEQUENCE to the value of generator-name.

	
If the generator-type element is NamedSequenceTable, then the generator-name element would be the name of the SEQUENCE_TABLE to be used.

Example

See automatic-key-generation.

generator-type

Range of values: Identity | Sequence | SequenceTable

Default value:

Parent elements:

weblogic-rdbms-bean
 automatic-key-generation

Function

The generator-type element specifies the primary key generation method to use.

	
Note:

You must set the database-type element when using automatic-key-generation.

In addition, generator-type is used in conjunction with automatic Oracle database SEQUENCE generation. See Support for Oracle Database SEQUENCE.

The following databases are supported for each generator-type:

	
Identity: Oracle databases are not supported.

	
Sequence: Oracle, DB2, and Informix (version 9.2 and greater) databases are supported.

	
SequenceTable: All databases are supported.

Example

See automatic-key-generation.

group-name

Range of values: n/a

Default value:

field-group

and

caching-element

and

weblogic-query

and

field-map

and

weblogic-relationship-role

Parent elements:

weblogic-rdbms-relation
 field-group

Function

Specifies the name of a field group.

Example

See field-group.

include-updates

Range of values: True | False

Default value: False for beans that use optimistic concurrency. True for beans that use other concurrency types.

Parent elements:

weblogic-rdbms-bean
 weblogic-query

Function

Specifies whether updates made during the current transaction must be reflected in the result of a query. If this element is set to True, the container will flush all changes made by the current transaction to disk before executing the query. A value of False provides best performance.

Example

<weblogic-query>
 <query-method>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <ejb-ql-query>
 <weblogic-ql>WHERE BALANCE>10000 ORDER BY NAME</weblogic-ql>
 </ejb-ql-query>
 <include-updates>True</include-updates>
</weblogic-query>

instance-lock-order

Range of values: AccessOrder | ValueOrder

Default value: AccessOrder

Parent elements:

weblogic-rdbms-bean

Function

Specifies a locking or processing order for instances of a particular EJB. This element can be used to prevent deadlocks in an application that would otherwise experience deadlocks. instance-lock-order is used whenever database operations (update, for example) that apply to multiple instances of the same EJB are performed by the container. It specifies an order for operations that can cause a database lock to be acquired for a bean instance.

For example, instance-lock-order could be used to specify the order in which the EJB container calls ejbStore for instances of a particular EJB that uses database concurrency; ejbStore may acquire an exclusive lock when a database update is done. instance-lock-order also controls the order in which beans using optimistic concurrency are locked when optimistic checking is performed.

	
AccessOrder—The container will process beans so that locks are acquired (or upgraded) in the order in which the application originally accessed the beans during the transaction. This is the recommended value when all transactions in the system access instances of the bean, and ultimately rows in a database table, in the same order.

	
ValueOrder—Beans are processed in order based on the value of their primary key. ValueOrder should be specified to avoid deadlocks when concurrent transactions access instances of the same EJB in different orders.

	
Note:

The EJB's primary key class is not required to implement the java.lang.Comparable interface when ValueOrder is specified, although this will result in a total ordering. Beans are ordered partially using the hash code value of the primary key when the primary key does not implement java.lang.Comparable.

Example

<instance-lock-order>ValueOrder</instance-lock-order>

key-cache-size

Range of values:

Default value: 1

Parent elements:

weblogic-rdbms-bean
 automatic-key-generation

Function

Specifies the optional size of the primary key cache available in the automatic primary key generation feature. In addition, the EJB container uses this value to calculate the increment value for an Oracle database SEQUENCE when automatic SEQUENCE generation is enabled. See Support for Oracle Database SEQUENCE.

If generator-type is:

	
Oracle—key-cache-size must match the Oracle database SEQUENCE INCREMENT value. If there is a mismatch between this value and the Oracle database SEQUENCE INCREMENT value, then there will likely be duplicate key problems.

	
NamedSequenceTable—key-cache-size specifies how many keys the container will fetch in a single DBMS call.

	
SQLServer—key-cache-size is ignored.

Example

See automatic-key-generation.

key-column

Range of values: Valid primary key column name

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 column-map

Function

The key-column element represents a column of a primary key in the database.

Example

See column-map.

lock-order

Range of values: All positive integers

Default value: 0

Parent elements:

weblogic-rdbms-bean

Function

Use this flag to specify the database locking order of an entity bean when a transaction involves multiple beans and exclusive concurrency. The bean with the lowest number is locked first.

This flag should only be used to prevent a deadlock situation and, currently, only applies when a transaction performs cascade deletes.

Example

An example of the lock-order element is:

<lock-order>1</lock-order>
 <!ELEMENT lock-order (PCDATA)>

max-elements

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 weblogic-query

Function

max-elements specifies the maximum number of elements that should be returned by a multi-valued query. This element is similar to the maxRows feature in JDBC.

Example

An example of the max-elements element is shown here:

<max-elements>100</max-elements>
 <!ELEMENT max-element (PCDATA)>

method-name

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 query-method

Function

The method-name element specifies the name of a finder or ejbSelect method.

	
Note:

The '*' character cannot be used as a wildcard.

Example

See weblogic-query.

method-param

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 method-params

Function

The method-param element contains the fully qualified Java type name of a method parameter.

Example

<method-param>java.lang.String</method-param>

method-params

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 query-method

Function

The method-params element contains an ordered list of the fully-qualified Java type names of the method parameters.

Example

See weblogic-query.

optimistic-column

Range of values: Valid database column name

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 table-map

Function

The optimistic-column element denotes a database column that contains a version or timestamp value used to implement optimistic concurrency. For more information on optimistic concurrency, see Choosing a Concurrency Strategy.

	
Note:

Although not all databases are case sensitive, this element is case maintaining.

Example

The following sample XML shows the use of the optimistic-column element.

<optimistic-column>ROW_VERSION</optimistic-column>

where ROW_VERSION is the name of a database column that contains the value used for concurrency checking.

order-database-operations

Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-jar

Function

This element, introduced in WebLogic Server 8.1, determines whether the EJB container delays all database operations in a transaction until commit time, automatically sorts the database dependency between the operations, and sends these operations to the database in such a way to avoid any database constraint errors.

If enable-batch-operations is set to True, the container automatically sets order-database-operations to True. To turn off order-database-operations, set both order-database-operations and enable-batch-operations to False.

See also ejb-ql-query and delay-database-insert-until.

Example

<order-database-operations>True</order-database-operations>

pass-through-columns

Range of values: Any positive integer

Default value:

Parent elements:

weblogic-rdbms-bean
 sql-shape

Function

This element, introduced in WebLogic Server 9.0, specifies the number of aggregate columns that should be passed through to a SQL query result set without being mapped to anything.

Example

See sql-shape.

primary-key-table

Range of values: Valid database table name

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-relation
 weblogic-relationship-role
 relationship-role-map

Function

The primary-key-table element specifies the name of a DBMS table that contains a primary key. For more information about primary keys, see Using Primary Keys.

	
Note:

Although not all databases are case sensitive, this element is case maintaining.

Example

For examples, see relationship-role-map and Mapping a Bean on Primary Key Side of a Relationship to Multiple Tables.

query-method

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

Function

Specifies the method that is associated with a weblogic-query. It also uses the same format as the ejb-jar.xml descriptor.

Example

See weblogic-query.

relation-name

Range of values: Must match the ejb-relation-name of an ejb-relation in the associated ejb-jar.xml deployment descriptor file. The ejb-relation-name is optional, but is required for each relationship defined in the associated ejb-jar.xml deployment descriptor file.

Default value: n/a

Parent elements:

weblogic-rdbms-relation

Function

The relation-name element specifies the name of a relation.

For more information about container-managed relationships, see Using Container-Managed Relationships (CMRs).

Example

An example of the relationship-name element is shown here:

<weblogic-rdbms-jar>
 <weblogic-rdbms-relation>
 <relation-name>stocks-holders</relation-name>
 <table-name>stocks</table-name>
 </weblogic-rdbms-relation>
</weblogic-rdbms-jar>

relationship-caching

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean

Function

The relationship-caching element specifies relationship caching. For more information about relationship caching, see Relationship Caching.

Example

The relationship-caching element can contain the elements shown here:

<relationship-caching>
 <caching-name>cacheMoreBeans</caching-name>
 <caching-element>
 <cmr-field>accounts<</cmr-field>
 <group-name>acct_group</group-name>
 <caching-element>
 <cmr-field>address</cmr-field>
 <group-name>addr_group</group-name>
 </caching-element>
 </caching-element>
 <caching-element>
 <cmr-field>phone</cmr-field>
 <group-name>phone_group</group-name>
 </caching-element>
</relationship-caching>

relationship-role-map

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-relation
 weblogic-relationship-role

Function

The relationship-role-map element specifies foreign key column to key column mapping for beans involved in a relationship.

A CMP bean that is involved in a relationship may be mapped to multiple DBMS tables (see the table-map element for more details). If the bean on the foreign key side of a one-to-one or one-to-many relationship is mapped to multiple tables, then the name of the table containing the foreign-key columns must be specified using the foreign-key-table element.

Conversely, if the bean on the primary key side of a one-to-one or one-to-many relationship or a bean participating in a m-n relationship is mapped to multiple tables, then the name of the table containing the primary key must be specified using the primary-key-table element.

If neither of the beans in a relationship is mapped to multiple tables, then the foreign-key-table and primary-key-table elements can be omitted because the tables being used are implicit.

For more information about container-managed relationships, see Using Container-Managed Relationships (CMRs).

Example

Mapping a Bean on Foreign Key Side of a Relationship to Multiple Tables

The bean on the foreign-key side of a one-to-one relationship, Fk_Bean, is mapped to multiple tables. The table that holds the foreign key columns must be specified in the foreign-key-table element.

Fk_Bean is mapped to two tables: Fk_BeanTable_1 and Fk_BeanTable_2. The foreign key columns for the relationship are located in table Fk_BeanTable_2. The foreign key columns are named Fk_column_1 and Fk_column_2. The bean on the primary key side, Pk_Bean, is mapped to a single table with primary key columns Pk_table_pkColumn_1 and Pk_table_pkColumn_2:

<relationship-role-map
 <foreign-key-table>Fk_BeanTable_2</foreign-key-table>
 <column-map>
 <foreign-key-column>Fk_column_1</foreign-key-column>
 <key-column>Pk_table_pkColumn_1</key-column>
 </column-map>
 <column-map>
 <foreign-key-column>Fk_column_2</foreign-key-column>
 <key-column>Pk_table_pkColumn_2</key-column>
 </column-map>
</relationship-role-map>

The foreign-key-table element must be specified so that the container can know which table contains the foreign key columns.

Mapping a Bean on Primary Key Side of a Relationship to Multiple Tables

The bean on the primary key side of a one-to-one relationship, Pk_bean, is mapped to multiple tables, but the bean on the foreign key side of the relationship, Fk_Bean, is mapped to one table, Fk_BeanTable. The foreign key columns are named Fk_column_1 and Fk_column_2.

Pk_bean is mapped to tables:

	
Pk_BeanTable_1 with primary key columns Pk_table1_pkColumn_1 and Pk_table1_pkColumn_2 and

	
Pk_BeanTable_2 with primary key columns Pk_table2_pkColumn_1 and Pk_table2_pkColumn_2.

<relationship-role-map>
 <primary-key-table>Pk_BeanTable_1</primary-key-table>
 <column-map>
 <foreign-key-column>Fk_column_1</foreign-key-column>
 <key-column>Pk_table1_pkColumn_1</key-column>
 </column-map>
 <column-map>
 <foreign-key-column>Fk_column_2</foreign-key-column>
 <key-column>Pk_table1_pkColumn_2</key-column>
 </column-map>
</relationship-role-map>

relationship-role-name

Range of values: Must match the ejb-relationship-role-name of an ejb-relationship-role in the associated ejb-jar.xml.

Default value: n/a

Parent elements:

weblogic-rdbms-relation
 weblogic-relationship-role

Function

The relationship-role-name element specifies the name of a relationship role.

For more information about container-managed relationships, see Using Container-Managed Relationships (CMRs).

Example

See the examples for weblogic-relationship-role.

serialize-byte-array-to-oracle-blob

Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-jar
 compatibility

Function

This element, introduced in WebLogic Server 8.1 SP02, is a compatibility flag. It is used to specify whether a cmp-field of type byte[] mapped to a Blob in an Oracle database should be serialized. By default, the value of the tag is false, which means that the container will persist the byte[] directly and not serialize it.

In versions prior to WebLogic Server 8.1 SP02, the default behavior was to serialize a cmp-field of type byte[] mapped to a Blob in an Oracle database. To revert to the old behavior, set the value of serialize-byte-array-to-oracle-blob to true.

Example

<compatibility>
 <serialize-byte-array-to-oracle-blob>true</serialize-byte-array-to-oracle-blob>
</compatibility>

serialize-char-array-to-bytes

Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-jar
 compatibility

Function

This element, introduced in WebLogic Server 9.0, is a compatibility flag. It is used to specify whether a cmp-field of type char[] mapped to a byte should be serialized. By default, the value of the tag is False, which causes the EJB container to persist the char[] directly and not serialize it; If you want the EJB container to serialize the char[], set this value to True.

Example

<compatibility>
 <serialize-char-array-to-bytes>true</serialize-char-array-to-bytes>
</compatibility>

sql

Range of values: Valid SQL

Default value: n/a

Requirements: To use database-specific SQL, you must specify the database against which to execute the SQL in the in database-type element.

Parent elements:

weblogic-rdbms-bean
 weblogic-query
 sql-query

and

weblogic-rdbms-bean
 weblogic-query
 sql-query
 database-specific-query

Function

The sql element contains a standard or database-specific SQL query. You should specify queries that use only standard EJB-QL language features in the ejb-jar.xml deployment descriptor. Specify queries that contain standard SQL, database-specific SQL, or WebLogic extensions to EJB-QL in the weblogic-cmp-jar.xml deployment descriptor.

Example

...
<weblogic-rdbms-bean>
 <weblogic-query>
 <sql-query>
 <sql>SELECT date_prescribed, dosage, drug, id, frequency,
 instructions, pat_id, issuing_phys_id, record_id,
 refills_remaining FROM medrecappPrescription
 WHERE testid = ?1</sql>
 </sql-query>
 </weblogic-query>
...
</weblogic-rdbms-bean>

sql-query

Range of values:

Default value: n/a

Requirements: To use database-specific SQL, you must specify the database against which to execute the SQL in database-type.

Parent elements:

weblogic-rdbms-bean
 weblogic-query

Function

The sql-query element allows you to specify standard and database-specific SQL queries. EJB-QL queries that do not take advantage of WebLogic extensions to EJB-QL should be specified in the ejb-jar.xml deployment descriptor.

Prior to WebLogic Server 9.0, only EJB-QL queries (with or without WebLogic extensions) were supported; in this release of WebLogic Server, SQL queries, EJB-QL queries (with or without WebLogic extensions), or a combination of the two are supported.

Example

<sql-query>
 <sql-shape-name>...</sql-shape-name>
 <sql>...</sql>
 <database-specific-sql>...</database-specific-sql>
 <database-type>...</database-type>
 <sql>...</sql>
 <unknown-primary-key-field>...</unknown-primary-key-field>
 <cmp-field>...</cmp-field>
</sql-query>

sql-select-distinct

Range of values: True | False

Default value: False

Parent elements:

weblogic-query

	
Note:

This element is deprecated. To achieve the same functionality, use the SELECT DISTINCT clause directly in finder queries.

Function

The sql-select-distinct element controls whether the generated SQL SELECT statement will contain a a DISTINCT qualifier. Using the DISTINCT qualifier causes the database to return unique rows.

Oracle database does not allow use of a SELECT DISTINCT with a FOR UPDATE clause. Therefore, you cannot use the sql-select-distinct element if any bean in the calling chain has a method with isolation-level of TransactionReadCommittedForUpdate. You specify the transaction-isolation element in the weblogic-ejb-jar.xml.

Example

The XML example contains the element shown here:

<sql-select-distinct>True</sql-select-distinct>

sql-shape

Range of values:

Default value:

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 sql-query

Function

The sql-shape element describes the data that is returned by a SQL query. Specifying sql-shape is necessary because databases do not always provide this information. Usually the sql-shape element should simply specify the database tables and columns that are being returned. For more complex queries, sql-shape should also specify the relationships that are present in the data that is returned by the database, and whether there are aggregate columns that should be passed through (should not be mapped to anything).

Example

sql-shape
 description
 sql-shape-name
 table
 pass-through-columns
 ejb-relation-name

sql-shape-name

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query
 sql-query
 sql-shape

Function

The sql-shape-name element can be used to associate a sql-shape with multiple queries. If you have multiple queries that use the same sql-shape, you can define the shape once and use it multiple times by referencing sql-shape-name.

Example

See sql-shape.

table-map

Range of values: n/a

Default value: n/a

Requirements: Each table-map element must contain a mapping for the bean's primary key fields.

Parent elements:

weblogic-rdbms-bean

Function

A CMP bean can be mapped to one or more DBMS tables. The table-map element specifies a mapping between the cmp-fields of a bean and the columns of a table for all of the cmp-fields mapped to that table. If you map a CMP bean to multiple DBMS tables, then you must specify a table-map element for each of the tables.

When you map a CMP bean to multiple tables, each table contains a row that maps to a particular bean instance. Consequently, all tables will contain the same number of rows at any point in time. In addition, each table contains the same set of homogeneous primary key values. Therefore, each table must have the same number of primary key columns and corresponding primary key columns in different tables must have the same type, although they may have different names.

Each table-map element must specify a mapping from the primary key column(s) for a particular table to the primary key field(s) of the bean. You can only map non-primary key fields to a single table.

For information about using the verify-rows, verify-columns, and optimistic-column elements, see Check Data for Validity with Optimistic Concurrency.

Example

The table-map element can contain the elements shown here:

<table-map>
 <table-name>DeptTable</table-name>
 <field-map>
 <cmp-field>deptId1</cmp-field>
 <dbms-column>t1_deptId1_column</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>deptId2</cmp-field>
 <dbms-column>t1_deptId2_column</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>location</cmp-field>
 <dbms-column>location_column</dbms-column>
 </field-map>
 <cmp-field>budget</cmp-field>
 <dbms-column>budget</dbms-column>
 </field-map>
 <verify-rows>Read</verify-rows>
 <verify-columns>Version</verify-columns>
 <optimistic-column>ROW_VERSION</optimistic-column>
 <trigger-updates-optimistic-column>False
 </trigger-updates-optimistic-column>
 <version-column-initial-value>0</version-column-initial-value>
</table-map>

table-name

Range of values: Valid, fully qualified SQL name of the source table in the database.

Default value:

Requirements: table-name must be set in all cases.

Parent elements:

weblogic-rdbms-bean
 weblogic-rdbms-relation

Function

The fully-qualified SQL name of the table. The user defined for the data-source for this bean must have read and write privileges for this table, but does not necessarily need schema modification privileges.

Example

<weblogic-rdbms-jar>
 <weblogic-rdbms-bean>
 <ejb-name>containerManaged</ejb-name>
 <data-source-jndi-name>examples-dataSource-demoPool</data-source-jndi-name>
 <table-name>ejbAccounts</table-name>
 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

trigger-updates-optimistic-column

Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-bean
 table-map

Function

The trigger-updates-optimistic-column element, introduced in WebLogic Server 9.0, indicates whether you want the EJB container to automatically update the database column value specified in optimistic-column that is used for concurrency checking. By default, the value of trigger-updates-optimistic-column is False, and the EJB container automatically updates the database column specified in optimistic-column whenever it sends SQL UPDATE statements to JDBC. If you have legacy applications that use database triggers to update the version values whenever the legacy application updates a database row and you do not want the EJB container to automatically update version values, set the value of this element to True.

	
Note:

If you set trigger-updates-optimistic-column to True, you must also ensure that your database triggers initialize the version column in the database when the bean is created.

Example

See table-map.

unknown-primary-key-field

Range of values: A valid datatype

Default value: n/a

Parent elements:

weblogic-rdbms-bean

Function

The unknown-primary-key-field element allows you to specify which of your cmp fields should be used as the primary key when the primary key is not specified in the ejb-jar.xml descriptor. The specified primary key field must be mapped to a database column using the field-map element. If the specified primary key field was not declared as a cmp field in the ejb-jar.xml descriptor, automatic key generation must be enabled and the primary key type will be java.lang.Long.

Example

See weblogic-rdbms-bean.

use-select-for-update

Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-bean

Function

Enforces pessimistic concurrency on a per-bean basis. Specifying True causes SELECT ... FOR UPDATE to be used whenever the bean is loaded from the database. This is different from the transaction isolation level of TransactionReadCommittedForUpdate in that this is set at the bean level rather than the transaction level.

	
Note:

When using a pessimistic locking strategy (for example, HOLDLOCK) with Sybase JConnect drivers, you must specify SELECT_OPENS_CURSOR=true to generate a cursor when the query contains a FOR UPDATE clause.

Example

<weblogic-rdbms.jar>
 <weblogic-rdbms-bean>
 <ejb-name>containerManaged</ejb-name>
 <use-select-for-update>True</use-select-for-update>
 /weblogic-rdbms-bean>
</weblogic-rdbms-jar>

validate-db-schema-with

Range of values: MetaData | TableQuery

Default value: TableQuery

Parent elements:

weblogic-rdbms-jar

Function

The validate-db-schema-with element specifies that container-managed persistence checks that beans have been mapped to a valid database schema during deployment.

If you specify MetaData WebLogic Server uses the JDBC metadata to validate the schema.

If you specify TableQuery, the default setting, WebLogic Server queries the tables directly to verify that they have the schema expected by CMP runtime.

Example

An example of the validate-db-schema-with element is shown here:

<validate-db-schema-with>TableQuery</validate-db-schema-with>

verify-columns

Range of values: Read | Modified | Version | Timestamp

Default value: none

Requirements: table-name must be set in all cases.

Parent elements:

weblogic-rdbms-bean
 table-map

Function

The verify-columns element specifies the columns in a table that you want WebLogic Server to check for validity when you use the optimistic concurrency strategy. WebLogic Server checks columns at the end of a transaction, before committing it to the database, to make sure that no other transaction has modified the data.

See Choosing a Concurrency Strategy for more information.

Example

<verify-columns>Modified</verify-columns>

verify-rows

Range of values: Read | Modified

Default value: Modified

Requirements: table-name must be set in all cases.

Parent elements:

weblogic-rdbms-bean
 table-map

Function

The verify-rows element specifies the rows in a table that the EJB container should check when optimistic concurrency is used.

	
Modified— only rows that are updated or deleted by a transaction are checked. This value ensures that two transactions do not update the same row concurrently, resulting in a lost update, but allows reads and updates of different transactions to be interleaved. This results in a level of consistency that falls between the ANSI READ_COMMITTED and REPEATABLE_READ levels of consistency.

	
Read—specifies that any row that is read by the transaction should be checked. This includes both rows that are simply read and rows that are read and then updated or deleted by the transaction. Specifying a value of Read results in additional overhead since it generally increases the amount of optimistic checking the EJB container must perform. With the Read option, committed transactions read a set of rows that are guaranteed not to be modified by another transaction until after the transaction commits.This results in a high level of consistency which is very close to the ANSI definition of SERIALIZABLE consistency.

	
Note:

If verify-rows is set to Read then the verify-columns element cannot have a value of Modified, as this combination would result in the EJB container checking only the modified rows.

See Choosing a Concurrency Strategy for more information.

Example

<verify-rows>Modified</verify-rows>

version-column-initial-value

Range of values: 0 or any positive integer

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 table-map

Function

The version-column-initial-value element, introduced in WebLogic Server 9.0, specifies the initial value of the version column used to implement optimistic concurrency. The version column is the database column you specify in the optimistic-column element. For more information, see optimistic-column.

Example

See table-map.

weblogic-ql

Range of values:

Default value:

Parent elements:

weblogic-rdbms-bean
 weblogic-query

Function

The weblogic-ql element specifies a query that contains a WebLogic specific extension to the ejb-ql language. You should specify queries that only use standard EJB-QL language features in the ejb-jar.xml deployment descriptor.

Example

See weblogic-query.

weblogic-query

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

Function

The weblogic-query element allows you to specify queries that use standard or database-specific SQL or WebLogic-specific extensions to EJB-QL. Queries that do not take advantage of SQL or WebLogic extensions to EJB-QL should be specified in the ejb-jar.xml deployment descriptor.

The weblogic-query element is also used to associate a field-group with the query if the query retrieves an entity bean that should be pre-loaded into the cache by the query.

Example

The weblogic-query element can contain the elements shown here:

<weblogic-query>
 <description>...</description>
 <query-method>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <ejb-ql-query>
 <weblogic-ql>WHERE BALANCE>10000 ORDER BY NAME
 </weblogic-ql>
 <group-name>...</group-name>
 <caching-name>...</caching-name>
 </ejb-ql-query>
 <sql-query>
 <sql-shape>...</sql-shape>
 <sql>SELECT date_prescribed, dosage, drug, id, frequency, instructions,
 pat_id, issuing_phys_id, record_id, refills_remaining FROM
 medrecappPrescription WHERE testid = ?1</sql>
 <database-specific-sql>
 <database-type>SQLServer</database-type>
 <sql>SELECT name, phone, location, testid FROM medrecappPharmacyBeanTable
 WHERE testid = ?1 AND
 SUBSTRING(testid, 1,5) = 'local' ORDER BY name</sql>
 </database-specific-sql>
 </sql-query>
 <max-elements>...</max-elements>
 <include-updates>...</include-updates>
 <sql-select-distinct>...</sql-select-distinct>
</weblogic-query>

weblogic-rdbms-bean

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar

Function

The weblogic-rdbms-bean specifies an entity bean that is managed by the WebLogic RDBMS CMP persistence type.

Example

weblogic-rdbms-bean
 ejb-name
 data-source-jndi-name
 unkonown-primary-key-field
 table-map
 field-group
 relationship-caching
 weblogic-query
 dalay-database-insert-until
 automatic-key-generation
 check-exists-on-method

weblogic-rdbms-jar

This section describes and provides an example of the weblogic-rdbms-jar element.

Function

The weblogic-rdbms-jar element is the root level element of a WebLogic RDBMS CMP deployment descriptor. This element contains the deployment information for one or more entity beans and an optional set of relations.

Example

The XML structure of weblogic-rdbms-jar is:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-rdbms-relation
 create-default-dbms-tables
 validate-db-schema-with
 database-type

weblogic-rdbms-relation

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar

Function

The weblogic-rdbms-relation element represents a single relationship that is managed by the WebLogic CMP persistence type. deployment descriptor. WebLogic Server supports the following three relationship mappings:

	
For one-to-one relationships, the mapping is from a foreign key in one bean to the primary key of the other bean.

	
For one-to-many relationships, the mapping is also from a foreign key in one bean to the primary key of another bean.

	
For many-to-many relationships, the mapping involves a join table. Each row in the join table contains two foreign keys that map to the primary keys of the entities involved in the relationship.

For more information on container managed relationships, see Using Container-Managed Relationships (CMRs).

Examples

See the following sections for examples of how one-to-one, one-to-many, and many-to-many relationships are configured.

Defining a One-to-One Relationship

Example C-6 shows the weblogic-rdbms-bean element that defines a one-to-one relationship between the entities defined in Example C-4 and Example C-5. The weblogic-rdbms-relation element is in the weblogic-cmp-jar.xml file, after the weblogic-rdbms-bean elements.

Example C-4 Bean 1

<weblogic-rdbms-bean>
 <ejb-name>CountryEJB</ejb-name>
 <data-source-jndi-name>wlsd21-datasource</data-source-jndi-name>
 <table-map>
 <table-name>EXAMPLE07_COUNTRY</table-name>
 <field-map>
 <cmp-field>name</cmp-field>
 <dbms-column>NAME</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>continent</cmp-field>
 <dbms-column>CONTINENT</dbms-column>
 </field-map>
 </table-map>
</weblogic-rdbms-bean>

Example C-5 Bean 2

<weblogic-rdbms-bean>
 <ejb-name>CapitalEJB</ejb-name>
 <data-source-jndi-name>wlsd21-datasource</data-source-jndi-name>
 <table-map>
 <table-name>EXAMPLE07_CAPITAL</table-name>
 <field-map>
 <cmp-field>CAPITAL_NAME</cmp-field>
 <dbms-column>NAME</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>continent</cmp-field>
 <dbms-column>CONTINENT</dbms-column>
 </field-map>
 </table-map>
</weblogic-rdbms-bean>

Example C-6 <weblogic-rdbms-relation> Element for a One-to-One Relationship

<weblogic-rdbms-relation>
 <relation-name>CountryCapitalRel</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>CountryRole</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>CAPITAL_NAME</foreign-key-column>
 <key-column>NAME</key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

	
Note:

NAME is the column name for the primary key located in the Capital table.
<relationship-role-name> contains the relation field specified in <cmr-field> in the <ejb-relationship-role> element in ejb-jar.xml.

Defining a One-to-Many Relationship

Example C-7 contains a sample <weblogic-rdbms-relation> element that defines a one-to-many relationship:

Example C-7 <weblogic-rdbms-relation> Element for a One-to-Many Relationship

<weblogic-rdbms-relation>
 <relation-name>OwnerDogRel</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>DogRole</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>OWNER_NAME</foreign-<key-column>
 <key-column>NAME</key-column>
 </column-map>
 <relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

	
Note:

<relationship-role-name> contains the relation field specified in <cmr-field> in the <ejb-relationship-role> element in ejb-jar.xml.
<foreign-key-column> must specify the column in the table on the "many" side of the relationship.

Defining a Many-to-Many Relationship

A WebLogic Server many-to-many relationship involves the physical mapping of a join table. Each row in the join table contains two foreign keys that maps to the primary keys of the entities involved in the relationship.

The following example shows a many-to-many relationship between the FRIENDS bean and the EMPLOYEES bean.

Example C-8 <weblogic-rdbms-relation> Element for a Many-to-Many Relationship

<weblogic-rdbms-relation>
 <relation-name>friends</relation-name>
 <table-name>FRIENDS</table-name>
 <weblogic-relationship-role>
 <relationship-role-name>friend</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>first-friend-id</foreign-key-column>
 <key-column>id</key-column>
 </column-map
 </relationship-role-map>
 </weblogic-relationship-role>
 <weblogic-relationship-role>
 <relationship-role-name>second-friend</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>second-friend-id</foreign-key-column>
 <key-column>id</key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

In Figure C-0, the FRIENDS join table has two columns, called first-friend-id and second-friend-id. Each column contains a foreign key that designates a particular employee who is a friend of another employee. The primary key column (key-column) of the EMPLOYEES table is id. For this example, assume that the EMPLOYEES bean is mapped to a single table. If the EMPLOYEES bean is mapped to multiple tables, then the table containing the primary key column (key-column) must be specified in the relationship-role-map. For more information, see relationship-role-map.

weblogic-relationship-role

Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-relation

Function

The weblogic-relationship-role element specifies the following DBMS schema information for an ejb-relationship-role specified in ejb-jar.xml:

	
The relationship-role-map sub-element specifies the mapping between a foreign key and a primary key, for one side of a relationship. For a 1-1 or 1-n relationship, only the role on the foreign-key side of the relationship specifies a mapping. Both roles specify a mapping for a m-m relationship. For details and examples, see relationship-role-map.

	
A group-name can be used to indicate the field-group to be loaded when the bean corresponding to the role is loaded as a result of traversing the relationship, i.e. calling a cmr getXXX method.

	
The db-cascade-delete tag can to used to specify that cascade deletes use the built-in cascade delete facilities of the underlying DBMS. For more information, see db-cascade-delete.

For more information about container-managed relationships, see Using Container-Managed Relationships (CMRs).

Example

<weblogic-relationship-role>
 <relationship-role-name>...</relationship-role-name>
 <group-name></group-name>
 <relationship-role-map>...

 </relationship-role-map>
 <db-cascade-delete/>
</weblogic-relationship-role>

D appc Reference

The following sections provide a complete reference for the WebLogic Server appc tool for compiling, validating, and generating EJB code.

appc

The appc compiler generates and compiles the classes needed to deploy EJBs and JSPs to WebLogic Server. It also validates the deployment descriptors for compliance with the current specifications at both the individual module level and the application level. The application-level checks include checks between the application-level deployment descriptors and the individual modules as well as validation checks across the modules.

If you are compiling an application that contains Kodo persistence units, the appc complier also runs the Kodo enhancer. The Kodo enhancer performs post-processing of the bytecode generated by the Java compiler, adding the necessary fields and methods to implement the required persistence features. This bytecode modification perfectly preserves the line numbers in stack traces and is compatible with Java debuggers. For more information about using Kodo, see "Using Oracle Kodo with WebLogic Server" in Oracle Fusion Middleware Programming Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

	
Note:

When running appc against an application that contains both Kodo and non-Kodo managed persistence units, kodc will be run against the Kodo-managed persistence units only.

Advantages of Using appc

The appc tool offers the following benefits:

	
The flexibility of compiling an entire application, rather than compiling individual modules separately and combining them into an EAR after the fact.

	
Validation checks across all modules and validation of application-level deployment descriptors against the various modules, because WebLogic Server has access to all modules during EAR compilation.

Without appc, a user wanting to compile all modules within an EAR file had to extract the individual components of an EAR and manually execute the appropriate compiler (jspc or ejbc) to prepare the module for deployment. appc automates this process and makes additional pre-deployment validation checks not previously possible.

	
It is easy to identify and correct errors appc produces.

If an error occurs while running appc from the command line, appc exits with an error message.

By contrast, if you defer compilation to the time of deployment and a compilation error occurs, the server fails the deployment and goes on with its work. To determine why deployment failed, you must examine the server output, fix the problem and then redeploy.

	
By running appc prior to deployment, you potentially reduce the number of time a bean is compiled.

For example, if you deploy a JAR file to a cluster of 3 servers, the JAR file is copied to each of the three servers for deployment. If the JAR file wasn't precompiled, each of the three servers will have to compile the file during deployment.

appc Syntax

Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or directory>

Designating Alternative Deployment Descriptors

J2EE allows you to designate an alternative J2EE deployment descriptor for an EJB or Web application module, using the <alt-dd> element in the <module> element of application.xml.

You can use <alt-dd> to specify an alternate deployment descriptor only for the J2EE deployment descriptors, web.xml and ejb-jar.xml. As of WebLogic Server 8.1 SP01, if you specify an alternative deployment descriptor for a module in alt-dd, appc will compile the EJB using the alternative descriptor file.

For more information about the <alt-dd> element, see "module" in "Enterprise Application Deployment Descriptor Elements" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

In WebLogic Server 8.1 SP01and later, you can use appc command line options to designate alternative J2EE and WebLogic Server deployment descriptors for an application, as shown below:

	
-altappdd <file>—Use this option to specify the full path and file name of an alternative J2EE deployment descriptor file, application.xml.

	
-altwlsappdd <file>—Use this option to specify the full path and file name of an alternative WebLogic application deployment descriptor, weblogic-application.xml.

appc Options

Table D-1 lists appc command line options.

Table D-1 appc Command Line Options

	Option	Description
	
-advanced

	
Prints advanced usage options.

	
-altappdd

	
Designates an alternative J2EE application deployment descriptor.

	
-altwlsappdd

	
Designates an alternative WebLogic Server application deployment descriptor.

	
-basicClientJar

	
Does not include deployment descriptors in client JARs generated for EJBs.

	
-classpath <path>

	
Selects the classpath to use during compilation.

	
-clientJarOutputDir <dir>

	
Specifies a directory to place generated client jar files. If not set, generated jar files are placed into the same directory location where the JVM is running.

	
-compiler <javac>

	
Selects the Java compiler to use.

	
-deprecation

	
Warns about deprecated calls.

	
-forceGeneration

	
Forces generation of EJB and JSP classes. Without this flag, the classes will not be regenerated unless a checksum indicates that it is necessary.

	
-g

	
Compiles debugging information into a class file.

	
-help

	
Prints the standard usage message.

	
-idl

	
Generates IDL for EJB remote interfaces.

	
-idlDirectory <dir>

	
Specifies the directory where IDL files will be created (default: target directory or JAR)

	
-idlFactories

	
Generates factory methods for valuetypes.

	
-idlMethodSignatures <>

	
Specifies the method signatures used to trigger IDL code generation.

	
-idlNoAbstractInterfaces

	
Does not generate abstract interfaces and methods/attributes that contain them.

	
-idlNoValueTypes

	
Does not generate valuetypes and the methods/attributes that contain them.

	
-idlOrbix

	
Generates IDL somewhat compatible with Orbix 2000 2.0 C++.

	
-idlOverwrite

	
Always overwrites existing IDL files.

	
-idlVerbose

	
Displays verbose information for IDL generation.

	
-idlVisibroker

	
Generates IDL somewhat compatible with Visibroker 4.5 C++.

	
-iiop

	
Generates CORBA stubs for EJBs.

	
-iiopDirectory <dir>

	
Specifies the directory where IIOP stub files will be written (default: target directory or JAR)

	
-J<option>

	
Passes flags through to Java runtime.

	
-keepgenerated

	
Keeps the generated .java files.

	
-library <file>

	
Comma-separated list of libraries. Each library may optionally set its name and versions, if not already set in its manifest, with the syntax:

<file>[@name=<string>@libspecver=<version>

@libimplver=<version|string>]

	
-librarydir <dir>

	
Registers all files in the specified directory as libraries.

	
-lineNumbers

	
Adds line numbers to generated class files to aid in debugging.

	
-normi

	
Passes flags through to Symantec's sj.

	
-nowarn

	
Compiles without warnings.

	
-O

	
Compiles with optimization on.

	
-output <file>

	
Specifies an alternate output archive or directory. If not set, the output is placed in the source archive or directory.

	
-plan <file>

	
Specifies an optional deployment plan.

	
-verbose

	
Compiles with verbose output.

	
-version

	
Prints appc version information.

appc and EJBs

weblogic.appc performs the following EJB-related functions:

	
Generates WebLogic Server container classes for the EJBs.

	
Checks all EJB classes and interfaces for compliance with the EJB specification.

	
Checks deployment descriptors for potential configuration problems. For example, if there is a cmp field declared in ejb-jar.xml, appc verifies that the column is mapped in the weblogic-cmp-rdbms.xml deployment descriptor.

	
Runs each EJB container class through the RMI compiler to create RMI descriptors necessary to dynamically generate stubs and skeletons.

By default, appc uses javac as a compiler. For faster performance, specify a different compiler (such as Symantec's sj) using the command-line -compiler flag or via the Administration Console. See "Configuring Compiler Options" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

For the location of the public version of weblogic-ejb-jar.xml, see Appendix B, "weblogic-ejb-jar.xml Deployment Descriptor Reference." For the location of the public version of weblogic-cmp-jar.xml, see Appendix C, "weblogic-cmp-jar.xml Deployment Descriptor Reference."

E EJBGen Reference

EJBGen is an Enterprise JavaBeans 2.x code generator. If you annotate your Bean class file with JDK 1.5 annotations, you can use EJBGen to generate the Remote and Home classes and the deployment descriptor files for an EJB application.

Oracle recommends that you use EJBGen to generate deployment descriptors; this Oracle best practice allows for easier and simpler maintenance of EJBs. If you use EJBGen, you need to write and annotate only one bean class file, which simplifies writing, debugging, and maintenance. The following sections provide instructions on using EJBGen and define EJBGen command options and annotations:

	
Running EJBGen

	
Examples of EJBGen Tag Usage

	
Enum Attribute Constant Values

	
EJBGen Annotation Reference

	
EJB Container Annotations

Running EJBGen

These sections describe how to process an annotated bean file using EJBGen:

	
EJBGen Distribution and Examples

	
Invoking EJBGen

	
Using Key EJBGen Features

EJBGen Distribution and Examples

In this release of WebLogic Server, EJBGen and associated classes are included in weblogic.jar in the WL_HOME/server/lib of the WebLogic Server distribution. To use EJBGen, make sure weblogic.jar is in your CLASSPATH. EJBGen annotations can be found in the weblogic.ejbgen package.

If you have installed Oracle WebLogic Server examples, see WL_HOME\samples\server\examples\src\examples\ejb\ejb20\ and WL_HOME\samples\server\examples\src\examples\ejb\ejb21\ for an application that uses EJBGen.

Invoking EJBGen

Use this command to run EJBGen on a bean source file:

com.bea.wls.ejbgen.EJBGen

	
Note:

To run this command, weblogic.jar must be in your CLASSPATH.

If you are invoking EJBGen for an EJB that has relationships with other EJBs, invoke the related EJBs by naming them, following your EJB, in the invocation, as follows:

com.bea.wls.ejbgen.EJBGen (YourBean).java (RelatedBean).java

	
Note:

You can also invoke EJBGen via the ejbgen ant task, which is also included in weblogic.jar.

EJBGen Command Options

Table E-1 defines EJBGen command options.

Table E-1 EJBGen Command Options

	Option	Default	Definition
	
-checkTags

	
N/A

	
If invoked with this option, EJBGen will not generate any classes but will search the classes supplied on the command line for tags that are not valid EJBGen tags.

	
-classPath [directory]

	
N/A

	
Specifies the directory where the class loader can find dependent classes that are in .class format.

To specify more than one class path, separate paths with a semicolon (;).For instance: -classpath /dir1;/dir2

If dependent classes are in .java format, use -sourcePath instead.

	
-d [directory]

	
N/A

	
The directory under which all the files will be created.

	
-ddOnlyGen [boolean]

	
0

	
Tells the compiler to generate only the deployment descriptor files.

	
-descriptorDir [directory]

	
N/A

	
The directory under which all the descriptor files will be created, relative to the output directory specified with the -d [directory] option.

	
-docTag tagName

	
N/A

	
If specified, EJBGen prints out the detailed documentation for this tag, including all the recognized attributes. Note that even though this option does not need any source file, you still need to specify an existing .java class on the command line, or Javadoc will emit an error message even though it recognized the flag.

	
-docTags

	
N/A

	
Print out all the tags known by EJBGen. Note that even though this option does not need any source file, you still need to specify an existing .java class on the command line, or Javadoc will emit an error message even though it recognized the flag.

	
-docTagsHtml

	
N/A

	
Same as -docTags, but generates an HTML document.

	
-ejbPrefix [string]

	
" "

	
The prefix to use when generating the EJB class.

	
-ejbSuffix [string]

	
Bean or EJB

	
The suffix to use when generating the EJB class.

	
-ejbgenQuiet [boolean]

	
N/A

	
Make EJBGen less verbose.

	
-ejbgenVerbose [boolean]

	
N/A

	
Verbose mode.

	
-errorFile

	
N/A

	
The path of the file where errors will be redirected.

	
-exitOnError [boolean]

	
N/A

	
EJBGen should exit in case of an error.

	
-homeBaseClass [string (className)]

	
N/A

	
The base class for home remote interfaces.

	
-extractTemplates [directory]

	
N/A

	
The directory where to extract the templates.

	
-forceGeneration [boolean]

	
N/A

	
Force the generation of all files regardless of time stamps.

	
-homeBaseClass [string (className)]

	
N/A

	
The base class for home remote interfaces.

	
-ignorePackage

	
N/A

	
If this flag is set, EJBGen ignores the package name of the Java files it generates and creates those in the output directory as specified by the -d flag (or in the current directory if no -d was specified).

	
-jndiPrefix [string]

	
" "

	
The prefix to use for @remoteJndiName and @localJndiName.

	
-jndiSuffix [string]

	
" "

	
The suffix to use for @remoteJndiName and @localJndiName.

	
-localBaseClass [string (className)]

	
N/A

	
The base class for local interfaces.

	
-localHomeBaseClass [className]

	
N/A

	
The base class for local home interfaces.

	
-localHomePrefix [string]

	
" "

	
The prefix to use when generating the local EJB class.

	
-localHomeSuffix [string]

	
LocalHome

	
The suffix to use when generating the local EJB class.

	
-localPrefix [string]

	
" "

	
The prefix to use when generating the local EJB class.

	
-localSuffix [string] (

	
" "

	
The suffix to use when generating the local EJB class.

	
-noDDGen [boolean]

	
0

	
The compiler does not generate the deployment descriptor files.

	
-noImports [boolean]

	
false

	
Disable propagation of java imports to generated classes.

	
-noLocalInterfaces

	
N/A

	
If specified, local interfaces are not generated.

	
-noRedirection noRedirection ejbgen.noRedirection [boolean]

	
N/A

	
Cancels all redirection performed by EJBGen.

	
-noRemoteInterfaces [boolean]

	
N/A

	
If specified, remote interfaces are not generated.

	
-noticeFile [file]

	
N/A

	
The path of the file where notices will be redirected.

	
-noValueClasses [boolean]

	
N/A

	
If specified, value classes will not be generated.

	
-primaryKeyBaseClass [string (class name)]

	
N/A

	
The base class for generated primary keys.

	
-printDiagnostic [boolean]

	
N/A

	
Prints a diagnostic of all the tags found by EJBGen

	
-printTags [boolean]

	
N/A

	
Display all the tags recognized by EJBGen

	
-propertyFile [fileName]

	
N/A

	
The name of a property file that EJBGen reads to define substitution variables. See Using Property Files with EJBGen.

	
-remoteBaseClass [string (className)]

	
N/A

	
The base class for remote interfaces.

	
-remoteHomePrefix [string]

	
" "

	
The prefix to use when generating the remote EJB home class.

	
-remoteHomeSuffix [string]

	
" "

	
The suffix to use when generating the remote EJB home class.

	
-remotePrefix [string]

	
" "

	
The prefix to use when generating the remote EJB class.

	
-remoteSuffix [string]

	
" "

	
The suffix to use when generating the remote EJB class.

	
-source [version number]

	
1.5

	
Version of the JDK to use.

	
-sourcepath [directory]

	
N/A

	
Specifies the directory where the class loader can find dependent classes that are in .java format.

To specify more than one source path, separate paths with a semicolon (;).For instance: -sourcePath /dir1;/dir2

If dependent classes are in .class format, use -classPath instead.

	
-templateDir [directory]

	
N/A

	
The directory where the templates are stored.

	
-toStringForPrimitivesOnly

	
N/A

	
If specified, the toString() methods of value objects only display container-managed persistence fields that are primitives. This flag fixes the problem of circular references between value objects (AValue.toString() invoking BValue.toString() invoking AValue.toString(), etcetera).

	
-valueBaseClass [string (class name)]

	
N/A

	
The base class of the value class generated by EJBGen.

	
-valueObjectPrefix [string]

	
N/A

	
The prefix to use when generating the value object class.

	
-valueObjectSuffix [string]

	
N/A

	
The suffix to use when generating the value object class.

	
-valuePackage [string (package name)]

	
N/A

	
Package the value classes belong to.

	
-verbose [boolean]

	
false

	
Display more information.

	
-workshopDocTags [boolean]

	
N/A

	
Display the help in Oracle Workshop for WebLogic Platform HTML format.

	
-xmlEncoding [string]

	
N/A

	
The encoding to use when generating XML files (default: UTF-8).

Using Key EJBGen Features

These sections describe key EJBGen features and how to use them:

	
Controlling the Files EJBGen Generates

	
Using Property Files with EJBGen

	
Using User Variables

	
Surround Attributes that Contain Spaces With Double Quotes

	
Using Predefined Variables

	
Surround Attributes that Contain Spaces With Double Quotes

	
EJBGen Supports Tag Inheritance

Controlling the Files EJBGen Generates

By default, EJBGen generates the following files:

	
Remote bean and home interfaces (if weblogic.ejbgen.JndiName with "remote" was specified)

	
Local bean and home interfaces (if weblogic.ejbgen.JndiName with "local" was specified)

	
Value object classes

	
Primary key classes (if applicable)

You can selectively disable the generation of these files by using the weblogic.ejbgen.FileGeneration tag. This can be done on a per-bean basis.

Using Property Files with EJBGen

EJBGen can gather information for generation from property files, as discussed in this section.

Use the -propertyFile option to tell EJBGen to parse a properties file.

Use the following syntax to invoke EJBGen with the -propertyFile option:

com.bea.wls.ejbgen.EJBGen -propertyFile property-file AccountBean.java

EJBGen recognizes two kinds of variables in a properties file: user variables and predefined variables.

Using User Variables

EJBGen tags can use variables instead of strings. These variables must be enclosed with "${" and "}".

Variables can be used anywhere after an EJBGen tag, so they can contain whole tag definitions.

Using Predefined Variables

EJBGen recognizes a number of predefined variables. These variables are not supposed to be used in tags but EJBGen will use them at various places depending on their role. Recognized variables are:

	
remote.baseClass

If specified, the value of this variable will be used as the base class for all generated remote classes.

	
home.baseClass

If specified, the value of this variable will be used as the base class for all generated remote home classes.

	
local.baseClass

If specified, the value of this variable will be used as the base class for all generated local classes.

	
localHome.baseClass

If specified, the value of this variable will be used as the base class for all generated local home classes.

	
value.baseClass

If specified, the value of this variable will be used as the base class for all generated value classes.

	
value.package

If specified, the value of this variable will be used as the package for all generated value classes.

	
value.interfaces

If specified, the value of this variable will be used as the interfaces the value class should implement. This variable can be a list of interfaces separated by commas.

You can make these variables more specific by prefixing them with an EJBName. For example, consider the following property file.

#
property-file
#
Account.home.baseClass = BaseAccountHome
home.baseClass = BaseHome
value.package = value
containerManaged.value.package=valuePackageForContainerManaged

All homes generated by EJBGen extend the class BaseHome except the home of EJB "Account", which extends BaseAccountHome.

Surround Attributes that Contain Spaces With Double Quotes

When you specify an attribute that contains spaces, surround the attribute value with double quotes. For example:

group-names = "group1, group2"

EJBGen Supports Tag Inheritance

One of the main features in EJBGen 2.x is tag inheritance. You inherit EJBGen annotations the same way you do in Java. For example, assume that you have an EJB named AccountEJB with a base class BaseAccount, as in Example E-1:

weblogic.ejbgen.JndiName

Example E-1 Tag Inheritance

@JndiName(remote = "BaseRemote")

public class BaseAccount implements EntityBean {
// ...
}
Now, define your EJB class:
@Entity(ejbName = containerManaged,
 tableName = ejbAccounts,
 datasourceJndiName = examples-dataSource-demoPool)

//Note that we inherit the JNDI name defined in BaseAccount

public class AccountEJB extends BaseAccount {
// ...

Examples of EJBGen Tag Usage

These sections contain example source code annotated with EJBGen tags.

	
Mapping an Entity Bean to Several Tables with EJBGen

	
Specifying Relationship Caching with EJBGen Tags

	
Specifying Relationships with EJBGen Tags

Mapping an Entity Bean to Several Tables with EJBGen

By default, entity beans are mapped to one table, with the attribute tableName on the tag @Entity. If you want to map your entity bean to more than one table, you can use the table-name attribute on individual @CmpFields provided the CMP fields are primary key fields that are mapped to corresponding primary key columns in each table. Any container-managed persistence fields that do not have a tableName attribute will use the table specified on @Entity (which can therefore be considered as the "default" table).

If you want to map an entity bean to several tables, you need to specify a comma-separated list of tables in the tableName attribute (and also on a column). Make sure that the number of tables matches the number of columns, and that the columns exist in the corresponding table.

Specifying Relationship Caching with EJBGen Tags

You can specify relationship caching elements with the @RelationshipCaching tag. This element can be nested (recursive). In other words, you can specify a tree representing all the relationship elements that you want to see cached.

In order to support this tree structure, @RelationshipCaching has two attributes, id and parentId. These attributes do not correspond to any XML, they simply allow you to specify your tree structure.

For example, if a cachingElement A needs to have two children elements B and C, all you need to specify is an id for A (say "root0") and a parentId for B and C equal to that name.

Example E-2 illustrates specifying relationship caching.

Example E-2 Specifying Relationship Caching

@RelationshipCachingElements(
@RelationshipCachingElement(cachingName = cacheMoreBeans,
 cmrField = employee,
 groupName = emp-group,
 id = A),

@RelationshipCachingElement(cachingName = cacheMoreBeans,
 cmrField = employee_ssn,
 groupName = emp-group,
 parentId = A),

@RelationshipCachingElement(cachingName = cacheMoreBeans,
 cmrField = employee_zip,
 groupName = emp-group,
 parentId = A)
)

Specifying Relationships with EJBGen Tags

Unidirectional relationships are achieved by specifying only the first two parameters of the relation tag (no CMR_field, no join table).

	
Note:

"Join table" was called "joint table" in pre-9.0 releases of WebLogic Server.

Many-to-many relationships must specify an extra table (parameter "join table") which must contain at least two columns. The names of these columns must match the names of the columns containing the foreign keys of the two beans being joined.

Upgrading Relationships to Use Local Interfaces

If you have EJBs based on a version of the EJB 2.0 specification that predates PFD2, you must update them. As of PFD2, relationships must be based on local interfaces, not remote ones. To upgrade your EJBs:

	
Add a JNDI name for your local home interface:

@JndiName
remote = AccountHome
local = AccountLocalHome

	
Add @LocalMethod tags to any method you want to see appear on the local home interface. A method can have both @LocalMethod and @RemoteMethod.

	
Change the return type of your container-managed relationship (CMP) accessing methods to that of the local EJB object (this only applies to single-valued CMR fields since multi-valued CMR fields are collections. Keep in mind that these collections contain Local EJB objects):

@CmrField

@RemoteMethod
@LocalMethod

abstract public LocalCustomer getCustomer();

Enum Attribute Constant Values

The following enum values are used for many of the EJBGen attributes.

Constants.Bool

Valid values for Constant.Bool are as follows:

	
Constants.Bool.UNSPECIFIED

	
Constants.Bool.TRUE

	
Constants.Bool.FALSE

Constants.TransactionAttribute

Valid values for Constants.TransactionAttribute are as follows:

	
Constants.TransactionAttribute.UNSPECIFIED

	
Constants.TransactionAttribute.NOT_SUPPORTED

	
Constants.TransactionAttribute.SUPPORTS

	
Constants.TransactionAttribute.REQUIRED

	
Constants.TransactionAttribute.REQUIRES_NEW

	
Constants.TransactionAttribute.MANDATORY

	
Constants.TransactionAttribute.NEVER

Constants.IsolationLevel

Valid values for Constants.IsolationLevel are as follows:

	
Constants.IsolationLevel.UNSPECIFIED

	
Constants.IsolationLevel.TRANSACTION_SERIALIZABLE

	
Constants.IsolationLevel.TRANSACTION_READ_COMMITTED

	
Constants.IsolationLevel.TRANSACTION_READ_UNCOMMITTED

	
Constants.IsolationLevel.TRANSACTION_REPEATABLE_READ

	
Constants.IsolationLevel.TRANSACTION_READ_COMMITTED_FOR_UPDATE

Constants.RefType

Valid values for Constant.RefType are as follows:

	
Constants.RefType.UNSPECIFIED

	
Constants.RefType.ENTITY

	
Constants.RefType.SESSION

Constants.HomeLoadAlgorithm

Valid values for Constants.HomeLoadAlgorithm are as follows:

	
Constants.HomeLoadAlgorithm.UNSPECIFIED

	
Constants.HomeLoadAlgorithm.ROUND_ROBIN

	
Constants.HomeLoadAlgorithm.RANDOM

	
Constants.HomeLoadAlgorithm.WEIGHT_BASED

	
Constants.HomeLoadAlgorithm.ROUND_ROBIN_AFFINITY

	
Constants.HomeLoadAlgorithm.RANDOM_AFFINITY

	
Constants.HomeLoadAlgorithm.WEIGHT_BASED_AFFINITY

Constants.Interface

Valid values for Contants.Interface are as follows:

	
Constants.Interface.UNSPECIFIED

	
Constants.Interface.HOME

	
Constants.Interface.REMOTE

	
Constants.Interface.LOCAL_HOME

	
Constants.Interface.LOCAL

Constants.ConcurrencyStrategy

Valid values for Constants.ConcurrencyStrategy are as follows:

	
Constants.ConcurrencyStrategy.UNSPECIFIED

	
Constants.ConcurrencyStrategy.READ_ONLY

	
Constants.ConcurrencyStrategy.EXCLUSIVE

	
Constants.ConcurrencyStrategy.DATABASE

	
Constants.ConcurrencyStrategy.OPTIMISTIC

EJBGen Annotation Reference

This section provides a complete reference for the following EJBGen annotations you can use in your bean class file:

	
weblogic.ejbgen.ActivationConfigProperties

	
weblogic.ejbgen.ActivationConfigProperty

	
weblogic.ejbgen.AutomaticKeyGeneration

	
weblogic.ejbgen.CmpField

	
weblogic.ejbgen.CmrField

	
weblogic.ejbgen.Compatibility

	
weblogic.ejbgen.CreateDefaultDbmsTables

	
weblogic.ejbgen.CreateDefaultRdbmsTables

	
weblogic.ejbgen.DBSpecificSQL

	
weblogic.ejbgen.EjbClientJar

	
weblogic.ejbgen.EjbInterface (deprecated)

	
weblogic.ejbgen.EjbLocalRef

	
weblogic.ejbgen.EjbLocalRefs

	
weblogic.ejbgen.EjbRef

	
weblogic.ejbgen.EjbRefs

	
weblogic.ejbgen.Entity

	
weblogic.ejbgen.EntityCacheRef

	
weblogic.ejbgen.EnvEntries

	
weblogic.ejbgen.EnvEntry

	
weblogic.ejbgen.FileGeneration

	
weblogic.ejbgen.Finder

	
weblogic.ejbgen.Finders

	
weblogic.ejbgen.ForeignJmsProvider

	
weblogic.ejbgen.JarSettings

	
weblogic.ejbgen.JndiName

	
weblogic.ejbgen.LocalHomeMethod

	
weblogic.ejbgen.LocalMethod

	
weblogic.ejbgen.MessageDestination

	
weblogic.ejbgen.MessageDestinationRef

	
weblogic.ejbgen.MessageDestinationRefs

	
weblogic.ejbgen.MessageDestinations

	
weblogic.ejbgen.MessageDriven

	
weblogic.ejbgen.MethodIsolationLevelPattern

	
weblogic.ejbgen.MethodIsolationLevelPatterns

	
weblogic.ejbgen.MethodPermissionPattern

	
weblogic.ejbgen.MethodPermissionPatterns

	
weblogic.ejbgen.PrimKeyField

	
weblogic.ejbgen.Relation

	
weblogic.ejbgen.Relations

	
weblogic.ejbgen.RelationshipCachingElement

	
weblogic.ejbgen.RelationshipCachingElements

	
weblogic.ejbgen.RemoteHomeMethod

	
weblogic.ejbgen.RemoteMethod

	
weblogic.ejbgen.ResourceEnvRef

	
weblogic.ejbgen.ResourceEnvRefs

	
weblogic.ejbgen.ResourceRef

	
weblogic.ejbgen.ResourceRefs

	
weblogic.ejbgen.RoleMapping

	
weblogic.ejbgen.RoleMappings

	
weblogic.ejbgen.SecurityRoleRef

	
weblogic.ejbgen.SecurityRoleRefs

	
weblogic.ejbgen.Select

	
weblogic.ejbgen.ServiceEndpointMethod

	
weblogic.ejbgen.ServiceRef

	
weblogic.ejbgen.ServiceRefs

	
weblogic.ejbgen.Session

	
weblogic.ejbgen.SqlFinder

	
weblogic.ejbgen.SqlFinders

	
weblogic.ejbgen.SqlShape

	
weblogic.ejbgen.SqlShapeTable

	
weblogic.ejbgen.SqlShapes

	
weblogic.ejbgen.ValueObject

	
weblogic.ejbgen.ValueObjectField

EJB Container Annotations

The following is a list of container annotations that can only contain an array of annotations.

	
Note:

"A single class or method can be annotated by no more than one instance of any annotation.

For more information on an annotation, including the array of annotations it can contain, click the annotation name.

	
weblogic.ejbgen.ActivationConfigProperties

	
weblogic.ejbgen.EjbLocalRefs

	
weblogic.ejbgen.EjbRefs

	
weblogic.ejbgen.EnvEntries

	
weblogic.ejbgen.Finders

	
weblogic.ejbgen.MessageDestinationRefs

	
weblogic.ejbgen.MethodIsolationLevelPatterns

	
weblogic.ejbgen.MethodPermissionPatterns

	
weblogic.ejbgen.Relations

	
weblogic.ejbgen.RelationshipCachingElements

	
weblogic.ejbgen.ResourceEnvRefs

	
weblogic.ejbgen.ResourceRefs

	
weblogic.ejbgen.RoleMappings

	
weblogic.ejbgen.SecurityRoleRefs

	
weblogic.ejbgen.ServiceRefs

	
weblogic.ejbgen.SqlFinders

	
weblogic.ejbgen.SqlShapes

weblogic.ejbgen.ActivationConfigProperties

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.ActivationConfigProperty annotations.

weblogic.ejbgen.ActivationConfigProperty

Target: Class

Attributes

Table E-2 ActivationConfigProperty EJBGen Annotation Attributes

	Name	Description	Data Type	Required?
	
value

	
Property Value.

	
String

	
Yes

	
name

	
Property name.

	
String

	
Yes

weblogic.ejbgen.AutomaticKeyGeneration

Target: Class

Attributes

Table E-3 AutomaticKeyGeneration EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
type

	
The type of the key generator.

Valid values for this attribute are:

	
AutomaticKeyGeneration.AutomaticKeyGenerationType.UNSPECIFIED

	
AutomaticKeyGeneration.AutomaticKeyGenerationType.IDENTITY

	
AutomaticKeyGeneration.AutomaticKeyGenerationType.SEQUENCE

	
AutomaticKeyGeneration.AutomaticKeyGenerationType.SEQUENCE_TABLE

	
Enum

	
Yes

	
cacheSize

	
The size of the key cache. The default value of this attribute is UNSPECIFIED.

	
String

	
No (Previously yes)

	
name

	
The name of the generator. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.CmpField

Target: Method

Attributes

Table E-4 CmpField EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
column

	
The column where this CMP field will be mapped. See Mapping an Entity Bean to Several Tables with EJBGen.

	
String

	
Yes

	
readOnlyInValueObject

	
If True, only the getter will be generated for this field in the value object.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
tableName

	
The table(s) where this field should be mapped.

See Mapping an Entity Bean to Several Tables with EJBGen. The default value for this attribute is UNSPECIFIED.

	
String.

	
No

	
groupNames

	
Comma-delimited names of the groups this field belongs to. Surround the list of group names with double quotes. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
orderingNumber

	
The number where this field must appear in signatures and constructors. For this ordering to work, all cmr and cmp fields must set this attribute to a distinct numeric value.The default value for this attribute is 0.

	
String

	
No

	
excludeFromValueObject

	
If True, this field will not be generated in the value object.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
columnType

	
The type of this column.Valid values for this attribute are:

	
CmpField.ColumnType.UNSPECIFIED

	
CmpField.ColumnType.CLOB

	
CmpField.ColumnType.BLOB

	
CmpField.ColumnType.LONG_STRING

	
CmpField.ColumnType.SYBASE_BINARY

The default value is CmpField.ColumnType.UNSPECIFIED.

	
Enum

	
No

	
primkeyField

	
Whether this field is part of the compound primary key.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
dbmsDefaultValue

	
Whether this field is the default DBMS value.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

weblogic.ejbgen.CmrField

Target: Method

Attributes

Table E-5 CmrField EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
readOnlyInValueObject

	
If True, only the getter will be generated for this field in the value object.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
groupNames

	
Comma-delimited names of the groups this field belongs to. Surround the list of group names with double quotes.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
orderingNumber

	
The number where this field must appear in signatures and constructors. For this ordering to work, all cmr and cmp fields must have this attribute to a distinct numeric value. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
excludeFromValueObject

	
If True, this field will not be generated in the value object.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

weblogic.ejbgen.Compatibility

Target: Class

Attributes

Table E-6 Compatibility EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
serializeCharArrayToBytes

	
Whether a cmp-field of type byte[] mapped to a Blob in an Oracle database should be serialized.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
disableStringTrimming

	
Whether to disable String trimming.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
serializeByteArrayToOracleBlob

	
Whether a cmp-field of type byte[] mapped to an OracleBlob should be serialized.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
allowReadonlyCreateAndRemove

	
Whether to allow read only create and remove.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
findersReturnNulls

	
Whether to allow finder methods to return null.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

weblogic.ejbgen.CreateDefaultDbmsTables

This tag is deprecated; use weblogic.ejbgen.JarSettings instead.

weblogic.ejbgen.CreateDefaultRdbmsTables

This tag is deprecated; use weblogic.ejbgen.JarSettings instead.

weblogic.ejbgen.DBSpecificSQL

Target: Class, Method, Field

Attributes

Table E-7 DBSpecificSQL EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
databaseType

	
The database type.

	
String

	
Yes

	
sql

	
The SQL statement.

	
String.

	
Yes

weblogic.ejbgen.EjbClientJar

This tag is deprecated; use weblogic.ejbgen.JarSettings instead.

weblogic.ejbgen.EjbInterface (deprecated)

	
Note:

"This class has been deprecated and will be removed in a future release.

Target: Class

Attributes

Table E-8 EjbInterface EJBGen Annotation Attributes

	Attributes	Description	Data Type	Required?
	
ejbType

	
Specifies the type of this EJB. This tag is not normally used.

Valid values are:

	
javax.ejb.MessageDrivenBean

	
javax.ejb.EntityBean

	
javax.ejb.SessionBean

	
String

	
Yes

weblogic.ejbgen.EjbLocalRef

Target: Class

Attributes

Table E-9 EjbLocalRef EJBGen Annotation Attributes

	Attributes	Description	Data Type	Required?
	
jndiName

	
Specifies the JNDI name of the reference.

The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
type

	
Specifies the reference type.

See Constants.RefType for the list of valid values for this attribute. The default value is Constants.RefType.UNSPECIFIED.

	
Enum (Constants.RefType)

	
No

	
local

	
Names the Local class of the bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
name

	
Names the reference. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
link

	
Names the link of the bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
home

	
Names the Home class of this bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.EjbLocalRefs

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.EjbLocalRefs annotations.

weblogic.ejbgen.EjbRef

Target: Class

Attributes

Table E-10 EjbRef EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
jndiName

	
Specifies the JNDI name of the reference. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
type

	
Specifies the reference type.

See Constants.RefType for the list of valid values for this attribute. The default value is Constants.RefType.UNSPECIFIED.

	
Enum (Constants.RefType)

	
No

	
remote

	
Names the Local class of the bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
name

	
Names the reference. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
link

	
Names the link of the bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
home

	
Names the Home class of this bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.EjbRefs

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.EjbRef annotations.

weblogic.ejbgen.Entity

Target: Class

Attributes

Table E-11 Entity EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
ejbName

	
The name of this entity bean.

	
String

	
Yes

	
primKeyClass

	
Names the Java class of the primary key. In case of a compound primary key, this class will be generated by EJBGen.

	
String

	
Yes

	
tableName

	
Names the table to which this entity bean is mapped. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
verifyRows

	
Specifies the rows in a table that should be checked when optimistic concurrency is used.

The valid values for this attribute are:

	
Entity.VerifyRows.UNSPECIFIED

	
Entity.VerifyRows.READ

	
Entity.VerifyRows.MODIFIED

The default value is Entity.VerifyRows.UNSPECIFIED.

	
Enum

	
No

	
clientsOnSameServer

	
Specifies whether the clients are collocated with the EJB on the same server.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
invalidationTarget

	
Targets the ejb-name of a read-only entity bean to be invalidated when this container-managed persistence entity EJB is modified. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
useCallerIdentity

	
Determines whether or not this EJB uses the caller's identity.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
cacheBetweenTransactions

	
Specifies whether to cache the persistent data of an entity bean across (between) transactions.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
defaultDbmsTablesDdl

	
Defines the DDL filename. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
defaultTransaction

	
Sets the default transaction attribute to be applied to all methods that do not have a transaction attribute setting.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
checkExistsOnMethod

	
Specifies whether the container checks for the existence of a bean for each method call.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
clusterInvalidationDisabled

	
For an EJB that uses Optimistic or ReadOnly concurrency, specifies whether the EJB is invalidated when it is updated by a member of a cluster to which it is deployed. When true, the container does not send out multicast invalidation messages when such EJBs are updated.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
optimisticColumn

	
Specifies the column that holds the timestamp for optimistic concurrency. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
orderDatabaseOperations

	
Determines whether to sort the database operations.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
runAsIdentityPrincipal

	
Deprecated. Use runAsPrincipalName instead.

	
String

	
No

	
runAsPrincipalName

	
Gives the name of the principal in case the role maps to several principals. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
delayDatabaseInsertUntil

	
Specifies until when database inserts should be delayed.

Valid values for this attribute are as follows:

	
Entity.DelayDatabaseInsertUntil.UNSPECIFIED

	
Entity.DelayDatabaseInsertUntil.EJB_CREATE

	
Entity.DelayDatabaseInsertUntil.EJB_POST_CREATE

The default value is Entity.DelayDatabaseInsertUntil.UNSPECIFIED.

	
Enum

	
No

	
enableCallByReference

	
Specifies whether the container will call this EJB by reference.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
validateDbSchemaWith

	
Specifies the method used to validate the tables created by the EJB container.

Valid values for this attribute are as follows:

	
Entity.ValidateDBSchemaWith.UNSPECIFIED

	
Entity.ValidateDBSchemaWith.META_DATA

	
Entity.ValidateDBSchemaWith.TABLE_QUERY

The default value is Entity.ValidateDBSchemaWith.UNSPECIFIED.

	
Enum

	
No

	
dispatchPolicy

	
Specifies the dispatch policy queue for this bean. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
remoteClientTimeout

	
Specifies the length of time that a remote RMI client will wait before it will time out. The default value of this attribute is UNSPECIFIED

	
String

	
No

	
lockOrder

	
Sets the database locking order of this bean when a transaction involves multiple beans. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
findersLoadBean

	
If set to True, the beans will immediately be loaded into the cache by the finder.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
concurrencyStrategy

	
Defines the concurrency strategy for this bean.

See Constants.ConcurrencyStrategy for the list of valid values for this attribute. The default value is Constants.ConcurrencyStrategy.UNSPECIFIED.

	
Enum (Constants.ConcurrencyStrategy)

	
No

	
persistenceType

	
Sets the type of this Entity bean.

Valid values for this attribute are as follows:

	
Entity.PersistenceType.UNSPECIFIED

	
Entity.PersistenceType.CMP

	
Entity.PersistenceType.BMP

The default value is Entity.PersistenceType.UNSPECIFIED.

	
Enum

	
No

	
maxBeansInCache

	
Sets the maximum number of beans in the cache. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
primKeyClassNogen

	
If this keyword is specified, EJBGen will not generate the primary key class (it is assumed that you are providing it).

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
initialBeansInFreePool

	
Specifies the initial number of beans in the free pool.

Default value of this attribute is UNSPECIFIED.

	
String

	
No

	
verifyColumns

	
Specifies how optimistic concurrency verifies that the columns have or have not been modified during transactions.

The valid values for this attribute are:

	
Entity.VerifyColumns.UNSPECIFIED

	
Entity.VerifyColumns.READ

	
Entity.VerifyColumns.MODIFIED

	
Entity.VerifyColumns.VERSION

	
Entity.VerifyColumns.TIMESTAMP

The default value is Entity.VerifyColumns.UNSPECIFIED.

	
Enum

	
No

	
idleTimeoutSeconds

	
Sets the maximum duration an EJB should stay in the cache, in seconds. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
transTimeoutSeconds

	
Sets the transaction timeout (in seconds). The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
enableBatchOperations

	
Determines whether to perform batch operations.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
maxBeansInFreePool

	
Specifies the maximum number of beans in the free pool. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
disableWarning

	
A comma-separated line of warnings to disable when running ejbc. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
readTimeoutSeconds

	
Sets the number of seconds between each ejbLoad() call on a read-only Entity bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
databaseType

	
Specifies the database type of the underlying DBMS.

Valid values for this attribute are:

	
Entity.DatabaseType.UNSPECIFIED

	
Entity.DatabaseType.DB2

	
Entity.DatabaseType.INFORMIX

	
Entity.DatabaseType.ORACLE

	
Entity.DatabaseType.SQL_SERVER

	
Entity.DatabaseType.SYBASE

	
Entity.DatabaseType.POINTBASE

	
Entity.DatabaseType.SQL_SERVER200

The default value is Entity.DatabaseType.UNSPECIFIED.

	
Enum

	
No

	
reentrant

	
See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
homeLoadAlgorithm

	
Specifies the algorithm to use for load-balancing between replicas of this home.

See Constants.HomeLoadAlgorithm for the list of valid values for this attribute.

The default value is Constants.HomeLoadAlgorithm.UNSPECIFIED.

	
Enum (Constants.HomeLoadAlgorithm)

	
No

	
delayUpdatesUntilEndOfTx

	
Determines whether updates will be sent after the transaction has been committed.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
runAs

	
Specifies the role-name for this EJB. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
abstractSchemaName

	
Gives the abstract schema name for this EJB. If not specified, the ejb-name value will be used. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
dbIsShared

	
See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
enableDynamicQueries

	
Specifies whether dynamic queries are enabled.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
homeIsClusterable

	
Determines whether this bean can be deployed from multiple servers in a cluster.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
dataSourceName

	
Names the data source declared in config.xml. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
useSelectForUpdate

	
If true, causes SELECT ... FOR UPDATE to be used whenever the bean is loaded from the database.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
instanceLockOrder

	
The locking order for this Entity bean.

	
Valid values for this attribute are:

	
Entity.InstanceLockOrder.UNSPECIFIED

	
Entity.InstanceLockOrder.ACCESS_ORDER

	
Entity.InstanceLockOrder.VALUE_ORDER

The default value is Entity.InstanceLockOrder.UNSPECIFIED.

	
Enum

	
No

	
homeCallRouterClassName

	
Names the class to be used for routing home method calls. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
networkAccessPoint

	
Assigns a custom network channel that the EJB will use for network communications. A network channel defines a set of connection attributes The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
unknownPrimaryKeyField

	
The cmp fields to use as the primary key when the primary key is not specified. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.EntityCacheRef

Target: Class

Attributes

Table E-12 EntityCacheRef EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
concurrencyStrategy

	
Defines the concurrency strategy for this bean.

See Constants.ConcurrencyStrategy for valid values for this attribute.

	
Enum (Constants.ConcurrencyStrategy)

	
Yes

	
name

	
Names the cache.

	
String

	
Yes

	
idleTimeoutSeconds

	
Maximum duration an EJB should stay in the cache. The default value for this attribute is 0.

	
int

	
No

	
readTimeoutSeconds

	
The number of seconds between each ejbLoad() call on a read-only entity bean. The default value for this attribute is 0.

	
int

	
No

	
cacheBetweenTransactions

	
Indicates whether to cache the persistent data of an entity bean across (between) transactions.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
estimatedBeanSize

	
The estimated average size of the instances of an entity bean, in bytes. The default value for this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.EnvEntries

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.EnvEntry annotations.

weblogic.ejbgen.EnvEntry

Target: Class

Attributes

Table E-13 EnvEntry EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
value

	
Specifies the value for this environment entry.

	
String

	
Yes

	
type

	
Specifies the Java type for this environment entry (must be fully qualified, even if the type is java.lang).

Standard valid values include:

	
java.lang.Boolean

	
java.lang.String

	
java.lang.Character

	
java.lang.Integer

	
java.lang.Double

	
java.lang.Byte

	
java.lang.Short

	
java.lang.Long

	
java.lang.Float

	
String

	
Yes

	
name

	
Names this environment entry.

	
String

	
Yes

weblogic.ejbgen.FileGeneration

Target: Class

Attributes

Table E-14 FileGeneration EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
pkClass

	
Whether to generate the primary key class for this EJB.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.TRUE.

	
Enum (Constants.Bool)

	
No

	
remoteClassName

	
The name of the remote class to be generated.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
remotePackage

	
The package for the remote interface.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
valueClass

	
Specifies whether to generate the value class for this EJB.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
valueClassName

	
The name of the value class to be generated.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
localClassName

	
The name of the local class to be generated.

The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
localPackage

	
The package for the local interface.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
remoteHome

	
Specifies whether to generate the remote home interface for this EJB.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
localHomePackage

	
The package for the local home interface.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
remoteHomePackage

	
The package for the remote home interface.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
remoteClass

	
Specifies whether to generate the remote interface for this EJB.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
localHomeName

	
The name of the local home class to be generated.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
localHome

	
Whether to generate the local home interface for this EJB.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
remoteHomeName

	
The name of the remote home class to be generated.

The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
localClass

	
Whether to generate the local interface for this EJB.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

weblogic.ejbgen.Finder

Target: Class

Attributes

Table E-15 Finder EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
isolationLevel

	
Specifies the type of transaction isolation for this method.

See Constants.IsolationLevel for valid values for this attribute.

The default value is Constants.IsolationLevel.UNSPECIFIED.

	
Enum (Constants.IsolationLevel)

	
No

	
transactionAttribute

	
Specifies the transaction attribute for this local method. If not specified, the default transaction attribute will be used. Methods with this tag will be generated on the Local class.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
generateOn

	
Determines which Home this finder will be generated on. If the value of this attribute is unspecified, the finder will be generated on both the Remote and Local Home.

Valid values for this attribute are as follows:

	
Finder.GenerateOn.UNSPECIFIED

	
Finder.GenerateOn.LOCAL

	
Finder.GenerateOn.REMOTE

The default value is Finder.GenerateOn.UNSPECIFIED.

	
Enum

	
No

	
comment

	
Defines a comment that will be reproduced above the generated finder Java method. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
cachingName

	
Specifies the name of an eager relationship caching. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
groupName

	
Names the group for the WebLogic Server query. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
maxElements

	
Specifies the maximum number of elements that should be returned by a multi-valued query. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
signature

	
Specifies exactly the signature to be generated on the Home class. EJBGen will add the conformant exceptions, but you must specify the fully-qualified type of each parameter, even if it belongs to java.lang. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
sqlSelectDistinct

	
Determines whether the generated SQL SELECT will contain a DISTINCT qualifier.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
includeUpdates

	
Determines whether updates made during the current transaction must be reflected in the result of a query.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
ejbQL

	
Specifies the EJB QL request as it will appear in the deployment descriptor. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
weblogicEjbQl

	
Specifies the Weblogic Server EJB QL request as it will appear in the deployment descriptor.

Note: If this request is needed, enclose both EJB-QL and Weblogic Server EJB-QL within double quotes. The default value for this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.Finders

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.Finder annotations.

weblogic.ejbgen.ForeignJmsProvider

Target: Class

Attributes

Table E-16 ForeignJmsProvider EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
connectionFactoryJndiName

	
Specifies the connection factory JNDI name. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
providerUrl

	
Specifies the provider URL. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
initialContextFactory

	
Specifies the initial JNDI context factory. The default value for this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.JarSettings

Target: Class

Attributes

Table E-17 JarSettings EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
createTables

	
Specifies whether to create tables.

Valid values for this attribute are:

	
JarSettings.CreateTables.UNSPECIFIED

	
JarSettings.CreateTables.CREATE_ONLY

	
JarSettings.CreateTables.DISABLED

	
JarSettings.CreateTables.DROP_AND_CREATE

	
JarSettings.CreateTables.DROP_AND_CREATE_ALWAYS

	
JarSettings.CreateTables.ALTER_OR_CREATE

The default value is arSettings.CreateTables.UNSPECIFIED.

	
Enum

	
No

	
ejbClientJar

	
Specifies the name of the client JAR to be generated. If multiple EJBs have this tag, only one of the specified JAR files will be included in the deployment descriptor. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
enableBeanClassRedeploy

	
Determines whether this EJB can be redeployed without redeploying the entire module.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
disableWarning

	
A comma-separated line of warnings to disable when running ejbc. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.JndiName

Target: Class

Attributes

Table E-18 JndiName EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
local

	
Specifies the local JNDI name of this EJB. If a local JNDI name is not specified, no local interfaces will be generated. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
remote

	
Specifies the remote JNDI name of this EJB. If a remote JNDI name is not specified, no remote interfaces will be generated. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.LocalHomeMethod

Target: Method

Attributes

Table E-19 LocalHomeMethod EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
orderingNumber

	
Specifies the number where this method must appear in the generated class. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isolationLevel

	
Specifies the type of transaction isolation for this method.

See Constants.IsolationLevel for valid values for this attribute. The default value is Constants.IsolationLevel.UNSPECIFIED.

	
Enum (Constants.IsolationLevel)

	
No

	
transactionAttribute

	
Specifies the transaction attribute for this local method. If not specified, the default transaction attribute will be used. Methods with this tag will be generated on the Local class.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
roles

	
Defines a comma-separated list of roles that are allowed to invoke this method. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isIdempotent

	
Sets whether this method is idempotent.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
retryCount

	
The number of retries for this method on a rollback. The default value of this attribute is 0.

	
int

	
No

weblogic.ejbgen.LocalMethod

Target: Method

Attributes

Table E-20 LocalMethod EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
orderingNumber

	
Specifies the number where this method must appear in the generated class.

The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isolationLevel

	
Specifies the type of transaction isolation for this method.

See Constants.IsolationLevel for valid values for this attribute. The default value is Constants.IsolationLevel.UNSPECIFIED.

	
Enum (Constants.IsolationLevel)

	
No

	
transactionAttribute

	
Specifies the transaction attribute for this local method. If not specified, the default transaction attribute will be used. Methods with this tag will be generated on the Local class.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
roles

	
Defines a comma-separated list of roles that are allowed to invoke this method. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isIdempotent

	
Sets whether this method is idempotent.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
retryCount

	
The number of retries for this method on a rollback. The default value of this attribute is 0.

	
int

	
No

weblogic.ejbgen.MessageDestination

Target: Class

Attributes

Table E-21 MessageDestination EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
name

	
Logical name of the message destination.

	
String

	
Yes

	
destinationJndiName

	
The JNDI name of the physical message destination. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
providerUrl

	
The URL of the provider. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
initialContextFactory

	
The initial context factory. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.MessageDestinationRef

Target: Class

Attributes

Table E-22 MessageDestinationRef EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
messageDestinationType

	
The reference type.

	
String

	
Yes

	
messageDestinationLink

	
Link to the message destination.

	
String

	
Yes

	
name

	
Name of the reference.

	
String

	
Yes

	
messageDestinationUsage

	
Usage of the reference.

	
String

	
Yes

weblogic.ejbgen.MessageDestinationRefs

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.MessageDestinationRef annotations.

weblogic.ejbgen.MessageDestinations

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.MessageDestination annotations.

weblogic.ejbgen.MessageDriven

Target: Class

Attributes

Table E-23 MessageDriven EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
ejbName

	
Specifies the name of this Message-Driven bean.

	
String

	
Yes

	
destinationJndiName

	
Gives the JNDI name of the destination of this message-driven bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
destinationType

	
Valid values are javax.jms.Queue and javax.jms.Topic. The default value of this attribute is UNSPECIFIED.

	
String

	
Yes

	
messageSelector

	
The JMS message selector. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
durable

	
If the destinationType is Topic, setting this attribute to True will make the subscription durable.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
initialBeansInFreePool

	
Specifies the initial number of beans in the free pool. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
clientsOnSameServer

	
Specifies whether the clients are collocated with the EJB on the same server.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
jmsPollingIntervalSeconds

	
The number of seconds between each attempt to reconnect to the JMS destination. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
removeAsPrincipalName

	
Names the principal to be used when ejbRemove would otherwise run with an anonymous principal. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
transactionType

	
Specifies where the transactions for this EJB are managed.

Valid values for this attribute are:

	
MessageDriven.MessageDrivenTransactionType.UNSPECIFIED

	
MessageDriven.MessageDrivenTransactionType.BEAN

	
MessageDriven.MessageDrivenTransactionType.CONTAINER

The default value is MessageDriven.MessageDrivenTransactionType.UNSPECIFIED.

	
Enum

	
No

	
transTimeoutSeconds

	
Specifies the transaction timeout (in seconds). The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
useCallerIdentity

	
Specifies whether this EJB uses callers identity.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
maxBeansInFreePool

	
Specifies the maximum number of beans in the free pool. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
defaultTransaction

	
Specifies the transaction attribute to be applied to all methods that do not have a specific transaction attribute setting.

Valid values for this attribute are:

	
MessageDriven.DefaultTransaction.UNSPECIFIED

	
MessageDriven.DefaultTransaction.NOT_SUPPORTED

	
MessageDriven.DefaultTransaction.REQUIRED

The default value is MessageDriven.DefaultTransaction.UNSPECIFIED.

	
Enum

	
No

	
runAsIdentityPrincipal

	
Deprecated. Use runAsPrincipalName instead.

	
String

	
No

	
runAsPrincipalName

	
Gives the name of the principal in case the role maps to several principals. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
dispatchPolicy

	
Specifies the dispatch policy queue for this bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
remoteClientTimeout

	
Specifies the length of time that a remote RMI client will wait before it will time out. The default value of this attribute is UNSPECIFIED

	
String

	
No

	
passivateAsPrincipalName

	
Names the principal to be used when ejbPassivate would otherwise run with an anonymous principal.

The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
acknowledgeMode

	
Specifies the acknowledgement mode of this message-driven bean.

Valid values for this attribute are:

	
MessageDriven.AcknowledgeMode.UNSPECIFIED

	
MessageDriven.AcknowledgeMode.AUTO_ACKNOWLEDGE

	
MessageDriven.AcknowledgeMode.DUPS_OK_ACKNOWLEDGE

The default value is MessageDriven.AcknowledgeMode.UNSPECIFIED.

	
Enum

	
No

	
runAs

	
Specifies the role-name for this EJB. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
jmsClientId

	
The client ID of this EJB. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
createAsPrincipalName

	
Names the principal to be used when ejbCreate would otherwise run with an anonymous principal. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
networkAccessPoint

	
Assigns a custom network channel that the EJB will use for network communications. A network channel defines a set of connection attributes. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
messagingType

	
The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
initSuspendSeconds

	
The initial number of seconds to suspend an MDB's JMS connection when the EJB container detects a JMS resource outage. The default value of this attribute is 0.

	
int

	
No

	
maxSuspendSeconds

	
Specifies the maximum number of seconds to suspend an MDB's JMS connection when the EJB container detects a JMS resource outage. The default value of this attribute is 0.

	
int

	
No

	
generateUniqueJmsClientId

	
Indicates whether or not you want the EJB container to generate a unique client-id for every instance of an MDB which makes is easier to deploy durable MDBs to multiple server instances in a WebLogic Server cluster.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
durableSubscriptionDeletion

	
Specifies whether you want durable topic subscriptions to be automatically deleted when an MDB is undeployed or removed.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
maxMessagesInTransaction

	
The maximum number of messages in the transaction. The default value of this attribute is 0.

	
int

	
No

	
resourceAdapterJndiName

	
The resource adapter JNDI name. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.MethodIsolationLevelPattern

Target: Class

Attributes

Table E-24 MethodIsolationLevelPattern EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
isolationLevel

	
Specifies the isolation level for the methods specified in the pattern tag.

See Constants.IsolationLevel for valid values for this attribute.

	
Enum (Constants.IsolationLevel)

	
Yes

	
pattern

	
Specifies the pattern that matches all methods that will receive this isolation level (e.g. "*").

	
String

	
Yes

	
id

	
The identity of this tag (used for tag inheritance only). The default value for this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.MethodIsolationLevelPatterns

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.MethodIsolationLevelPattern annotations.

weblogic.ejbgen.MethodPermissionPattern

Target: Class

Attributes

Table E-25 MethodPermissionPattern EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
pattern

	
Specifies the pattern that matches all methods that will receive this method permission (e.g. "*").

	
String

	
Yes

	
roles

	
Specifies the roles for the methods specified in the pattern tag, separated by a comma.

	
String

	
Yes

	
itf

	
Specifies the interface to which this permission pattern applies.

See Constants.Interface for valid values for this attribute.

The default value is Constants.Interface.UNSPECIFIED.

	
Enum (Constants.Interface)

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
unchecked

	
Specifies whether this pattern will apply to unchecked methods.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

weblogic.ejbgen.MethodPermissionPatterns

Target: Class

This annotation does not have any values, other than the array of weblogic.ejbgen.MethodPermissionPattern annotations.

weblogic.ejbgen.PrimKeyField

This tag is deprecated, use the attribute primkeyField on weblogic.ejbgen.CmpField.

weblogic.ejbgen.Relation

Target: Class

Attributes

Table E-26 Relation EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
multiplicity

	
Sets the multiplicity of the relationship.

Valid values for this attribute are:

	
Relation.Multiplicity.UNSPECIFIED

	
Relation.Multiplicity.ONE

	
Relation.Multiplicity.MANY

	
Enum

	
Yes

	
name

	
Specifies the name of the relationship. Use the same name on both ends of a relationship (this constraint also applies to unidirectional relationships).

	
String

	
Yes

	
jointTable

	
Deprecated. Oracle recommends that you use joinTable instead.

	
String

	
No

	
joinTable

	
Only needed in a many-to-many relationship. The name of an existing table that will be used to hold the join table containing the relationships. If you are using a compound primary key, specify a set of corresponding foreign keys separated by a comma. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
fkColumn

	
Needed only in a relationship having at least one One side. The non-One side EJB must declare the column that it will use to store the primary key of its counterpart. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
roleName

	
The name of this role (such as "ParentHasChildren"). If no role name is given, EJBGen will generate one for you. You must specify a role-name in order to inherit relations. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
foreignKeyTable

	
The name of a DBMS table that contains a foreign-key. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
primaryKeyTable

	
The name of a DBMS table that contains a primary-key. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
cmrField

	
Specifies the CMR field where this relationship will be kept. This field is optional. If it not present, the relationship is unidirectional. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
dbCascadeDelete

	
Determines whether a cascade delete will use the built-in cascade delete facilities of the underlying DBMS.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
cascadeDelete

	
See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
targetEjb

	
Specifies the EJB name of the target of this relationship, which is used t generate the role name. If not supplied, a unique string will be generated. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.Relations

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.Relation annotations.

weblogic.ejbgen.RelationshipCachingElement

Target: Class

Attributes

Table E-27 RelationshipCachingElement EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
cachingName

	
Specifies the name of an eager relationship caching.

	
String

	
Yes

	
cmrField

	
Specifies a comma-separated list of CMR field names.

	
String

	
Yes

	
groupName

	
Specifies the name of the group to be loaded for the CMR field. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
parentId

	
Specifies the parent ID of this element. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.RelationshipCachingElements

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.RelationshipCachingElement annotations.

weblogic.ejbgen.RemoteHomeMethod

Target: Method

Attributes

Table E-28 RemoteHomeMethod EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
orderingNumber

	
Specifies the number where this method must appear in the generated class. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isolationLevel

	
Specifies the type of transaction isolation for this method.

See Constants.IsolationLevel for valid values for this attribute. The default value is Constants.IsolationLevel.UNSPECIFIED.

	
Enum (Constants.IsolationLevel)

	
No

	
transactionAttribute

	
Specifies the transaction attribute for this remote method. If not specified, the default transaction attribute will be used. Methods with this tag will be generated on the Remote class.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
roles

	
Defines a comma-separated list of roles that are allowed to invoke this method. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isIdempotent

	
Sets whether this method is idempotent.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
retryCount

	
The number of retries for this method on a rollback.

The default value of this attribute is 0.

	
int

	
No

weblogic.ejbgen.RemoteMethod

Target: Method

Attributes

Table E-29 RemoteMethod EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
orderingNumber

	
Specifies the number where this method must appear in the generated class. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isolationLevel

	
Specifies the type of transaction isolation for this method.

See Constants.IsolationLevel for valid values for this attribute. The default value is Constants.IsolationLevel.UNSPECIFIED.

	
Enum (Constants.IsolationLevel)

	
No

	
transactionAttribute

	
Specifies the transaction attribute for this remote method. If not specified, the default transaction attribute will be used. Methods with this tag will be generated on the Remote class.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
roles

	
Defines a comma-separated list of roles that are allowed to invoke this method. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
isIdempotent

	
Sets whether this method is idempotent.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
retryCount

	
The number of retries for this method on a rollback. The default value of this attribute is 0.

	
int

	
No

weblogic.ejbgen.ResourceEnvRef

Target: Class

Attributes

Table E-30 ResourceEnvRef EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
type

	
Specifies the type of the environment resource references (e.g., javax.jms.Queue).

	
String

	
Yes

	
name

	
Names the resource environment reference.

	
String

	
Yes

	
jndiName

	
Gives the JNDI name of the resource. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.ResourceEnvRefs

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.ResourceEnvRef annotations.

weblogic.ejbgen.ResourceRef

Target: Class

Attributes

Table E-31 ResourceRef EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
jndiName

	
Specifies the JNDI name of the resource.

	
String

	
Yes

	
type

	
Specifies the type of the resource (e.g., javax.sql.DataSource).

	
String

	
Yes

	
auth

	
Valid values for this attribute are:

	
ResourceRef.Auth.UNSPECIFIED

	
ResourceRef.Auth.APPLICATION

	
ResourceRef.Auth.CONTAINER

The default value ResourceRef.Auth.UNSPECIFIED.

	
Enum

	
No

	
name

	
Names the resource.

	
String

	
Yes

	
sharingScope

	
Defines the sharing scope.

Valid values for this attribute are:

	
ResourceRef.SharingScope.UNSPECIFIED

	
ResourceRef.SharingScope.SHAREABLE

	
ResourceRef.SharingScope.UNSHAREABLE

The default value ResourceRef.SharingScope.UNSPECIFIED.

	
Enum

	
No

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.ResourceRefs

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.ResourceRef annotations.

weblogic.ejbgen.RoleMapping

Target: Class

Attributes

Table E-32 RoleMapping EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
roleName

	
Specifies the name of the role.

	
String

	
Yes

	
externallyDefined

	
True if this role is defined externally.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

Note: The externallyDefined attribute must be specified if the principals attribute is not specified.

	
Enum (Constants.Bool)

	
(See description)

	
principals

	
Comma separated list of the names of the principals in this role. The default value of this attribute is UNSPECIFIED.

Note: The principals attribute must be specified if the externallyDefined attribute is not specified.

	
String

	
(See description

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.RoleMappings

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.RoleMapping annotations.

weblogic.ejbgen.SecurityRoleRef

Target: Class

Attributes

Table E-33 SecurityRoleRef EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
roleName

	
Specifies the name of the security role.

	
String

	
Yes

	
id

	
The identity of this tag (used for tag inheritance only). The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
roleLink

	
References a defined security role. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.SecurityRoleRefs

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.SecurityRoleRef annotations.

weblogic.ejbgen.Select

Target: Method

Attributes

Table E-34 Select EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
cachingName

	
Specifies the name of an eager relationship caching. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
groupName

	
Names the group for the WebLogic Server query. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
maxElements

	
Specifies the maximum number of elements that should be returned by a multi-valued query. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
sqlSelectDistinct

	
Determines whether the generated SQL SELECT will contain a DISTINCT qualifier.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
includeUpdates

	
Determines whether updates made during the current transaction must be reflected in the result of a query.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
orderingNumber

	
Specifies the number where this method must appear in the generated class. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
ejbQl

	
Specifies the EJB-QL that defines this select method. The method name must start with ejbSelect. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
weblogicEjbQl

	
Specifies the Weblogic Server EJB-QL request as it will appear in the deployment descriptor. Note: if this request is needed, enclose both EJB-QL and Weblogic Server EJB-QL within double quotes. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
resultTypeMapping

	
Specifies whether the returned objects are mapped to EJBLocalObject or EJBObject.

Valid values for this attribute are:

	
Select.ResultTypeMapping.UNSPECIFIED

	
Select.ResultTypeMapping.LOCAL

	
Select.ResultTypeMapping.REMOTE

The default value is Select.ResultTypeMapping.UNSPECIFIED.

	
Enum

	
No

weblogic.ejbgen.ServiceEndpointMethod

Target: Method

Attributes

Table E-35 ServiceEndpointMethod EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
transactionAttribute

	
Specifies the Transaction Attribute for a Service Endpoint method of a Stateless Session Bean

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
unchecked

	
Specifies whether this method accessible by everyone

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
roles

	
Specifies a comma-separated list of roles that are allowed to invoke this method. The default value for this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.ServiceRef

Target: Class

Attributes

Table E-36 ServiceRef EJBGen Annotation Attribute

	Attribute	Description	Data Type	Required?
	
serviceInterface

	
Name of this service in the WSDL file.

	
String

	
Yes

weblogic.ejbgen.ServiceRefs

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.ServiceRef annotations.

weblogic.ejbgen.Session

Target: Class

Attributes

Table E-37 Session EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
ejbName

	
Names this session bean.

	
String

	
Yes

	
isClusterable

	
Sets whether this bean is clusterable.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
replicationType

	
Specifies how to replicate stateful session beans in a cluster.

Valid values for this attribute are:

	
Session.ReplicationType.UNSPECIFIED

	
Session.ReplicationType.IN_MEMORY

	
Session.ReplicationType.NONE

The default value Session.ReplicationType.UNSPECIFIED.

	
Enum

	
No

	
clientsOnSameServer

	
Specifies whether the clients are collocated with the EJB on the same server.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
serviceEndpoint

	
The fully-qualified name of the enterprise beans web service endpoint interface. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
useCallerIdentity

	
Specifies whether this EJB uses callers identity.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
persistentStoreDir

	
Specifies the directory in which to store the passivated beans. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
callRouterClassName

	
Gives class name to be used for routing home method calls. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
defaultTransaction

	
Specifies the transaction attribute to be applied to all methods that do not have a specific transaction attribute setting.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
methodsAreIdempotent

	
Specifies whether the methods for this stateless session bean are idempotent or not.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
runAsIdentityPrincipal

	
Deprecated. Use runAsPrincipalName instead.

	
String

	
No

	
runAsPrincipalName

	
Gives the name of the principal in case the role maps to several principals. The default value for this attribute is UNSPECIFIED.

	
String

	
No

	
enableCallByReference

	
Specifies whether the container will call this EJB by reference.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
dispatchPolicy

	
Specifies the dispatch policy queue for this bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
remoteClientTimeout

	
Specifies the length of time that a remote RMI client will wait before it will time out. The default value of this attribute is UNSPECIFIED

	
String

	
No

	
passivateAsPrincipalName

	
Names the principal to be used when ejbPassivate would otherwise run with an anonymous principal. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
maxBeansInCache

	
Specifies the maximum number of beans in the cache. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
initialBeansInFreePool

	
Specifies the initial number of beans in the free pool. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
allowRemoveDuringTransaction

	
Specifies whether remove() can be invoked during a transaction.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
idleTimeoutSeconds

	
Specifies the maximum duration an EJB remains cached. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
type

	
Specifies the type of the Session bean. If this attribute is not specified, EJBGen will guess the right type by looking at the ejbCreate() methods on your class.

Valid values for this attribute are:

	
Session.SessionType.UNSPECIFIED

	
Session.SessionType.STATELESS

	
Session.SessionType.STATEFUL

The default value Session.SessionType.UNSPECIFIED.

	
Enum

	
No

	
removeAsPrincipalName

	
Names the principal to be used when ejbRemove would otherwise run with an anonymous principal.

The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
transTimeoutSeconds

	
Specifies the transaction timeout (in seconds). The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
transactionType

	
Specifies who manages the transactions for this EJB.

Valid values for this attribute are:

	
Session.SessionTransactionType.UNSPECIFIED

	
Session.SessionTransactionType.BEAN

	
Session.SessionTransactionType.CONTAINER

The default value Session.SessionTransactionType.UNSPECIFIED.

	
Enum

	
No

	
allowConcurrentCalls

	
Specifies whether to allow concurrent calls on that EJB.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
maxBeansInFreePool

	
Specifies the maximum number of beans in the free pool. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
sessionTimeoutSeconds

	
Specifies the number of seconds an EJB stays alive before being passivated. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
beanLoadAlgorithm

	
Specifies the algorithm to be used for load-balancing among replicas of this bean. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
homeLoadAlgorithm

	
Specifies the algorithm to use for load-balancing between replicas of this home.

See Constants.HomeLoadAlgorithm for valid values for this attribute. The default value is Constants.HomeLoadAlgorithm.UNSPECIFIED.

	
Enum (Constants.HomeLoadAlgorithm)

	
No

	
cacheType

	
Specifies the type of the cache for this stateful Session bean.

Valid values for this attribute are:

	
Session.CacheType.UNSPECIFIED

	
Session.CacheType.N_R_U

	
Session.CacheType.L_R_U

The default value Session.CacheType.UNSPECIFIED.

	
Enum

	
No

	
runAs

	
Specifies the role-name for this EJB. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
homeIsClusterable

	
Specifies whether this bean can be deployed from multiple servers in a cluster.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
homeCallRouterClassName

	
Names class to be used for routing home method calls. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
createAsPrincipalName

	
Names the principal to be used when ejbCreate would otherwise run with an anonymous principal. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
networkAccessPoint

	
Assigns a custom network channel that the EJB will use for network communications. A network channel defines a set of connection attributes. The default value of this attribute is UNSPECIFIED.

	
String

	
No

weblogic.ejbgen.SqlFinder

Target: Class

Attributes

Table E-38 SqlFinder EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
sql

	
Specifies the Weblogic Server EJB QL request as it will appear in the deployment descriptor.

Note: If this request is needed, enclose both EJB-QL and Weblogic Server EJB-QL within double quotes.

	
String

	
Yes

	
signature

	
Specifies exactly the signature to be generated on the Home class. EJBGen will add the conformant exceptions, but you must specify the fully qualified type of each parameter, even if it belongs to java.lang.

	
String

	
Yes

	
maxElements

	
Specifies the maximum number of elements that should be returned by a multi-valued query. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
includeUpdates

	
Determines whether updates made during the current transaction must be reflected in the result of a query.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
isolationLevel

	
Specifies the type of transaction isolation for this method.

See Constants.IsolationLevel for valid values for this attribute. The default value is Constants.IsolationLevel.UNSPECIFIED.

	
Enum (Constants.IsolationLevel)

	
No

	
dbSpecificSql

	
Specifies the Weblogic Server EJB QL request as it will appear in the deployment descriptor. Note: if this request is needed, enclose both EJB-QL and Weblogic Server EJB-QL within double quotes.

Valid value for this attribute is an array of weblogic.ejbgen.DBSpecificSQL annotations. The default value is an empty array.

	
Array of weblogic.ejbgen.DBSpecificSQL

	
No

	
sqlShapeName

	
Specifies the EJB QL request as it will appear in the deployment descriptor. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
transactionAttribute

	
Specifies thetransaction attribute for this local method. If not specified, the default transaction attribute will be used. Methods with this tag will be generated on the Local class.

See Constants.TransactionAttribute for valid values for this attribute. The default value is Constants.TransactionAttribute.UNSPECIFIED.

	
Enum (Constants.TransactionAttribute)

	
No

	
generateOn

	
Determines which Home this finder will be generated on. If unspecified, it will be generated on both.

Valid values for this attribute are:

	
SqlFinder.GenerateOn.UNSPECIFIED

	
SqlFinder.GenerateOn.LOCAL

	
SqlFinder.GenerateOn.REMOTE

The default value SqlFinder.GenerateOn.UNSPECIFIED.

	
Enum

	
No

	
sqlSelectDistinct

	
Determines whether the generated SQL SELECT will contain a DISTINCT qualifier.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

	
enableQueryCaching

	
Controls whether read-only entity EJBs can be cached at the query level.

See Constants.Bool for valid values for this attribute. The default value is Constants.Bool.UNSPECIFIED.

	
Enum (Constants.Bool)

	
No

weblogic.ejbgen.SqlFinders

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.SqlFinder annotations.

weblogic.ejbgen.SqlShape

Target: Class

Attributes

Table E-39 SqlShape EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
name

	
Specifies exactly the signature to be generated on the Home class. EJBGen will add the conformant exceptions, but you must specify the fully-qualified type of each parameter, even if it belongs to java.lang.

	
String

	
Yes

	
relationNames

	
Name of the SQL Shape to use for this finder query The default value of this attribute is an empty array.

	
Array of String

	
No

	
tables

	
Name of the SQL Shape to use for this finder query. The default value of this attribute is an empty array.

	
Array of weblogic.ejbgen.SqlShapeTable

	
No

	
passThroughColumns

	
Name of the SQL Shape to use for this finder query. The default value of this attribute is 0.

	
int

	
No

weblogic.ejbgen.SqlShapeTable

Target: Class, Method, Field

Attributes

Table E-40 SqlShapeTable EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
name

	
The name of the SQL shape table.

	
String

	
Yes

	
ejbRelationshipRoleName

	
The name of the relationship role. The default value of this attribute is UNSPECIFIED.

	
String

	
No

	
columns

	
Database columns.

	
Array of String

	
Yes

weblogic.ejbgen.SqlShapes

Target: Class

This annotation does not have any attributes, other than the array of weblogic.ejbgen.SqlShape annotations.

weblogic.ejbgen.ValueObject

Target: Class

Attributes

Table E-41 ValueObject EJBGen Annotation Attribute

	Attribute	Description	Data Type	Required?
	
reference

	
Specifies what objects the value object class should reference when accessing other EJBs.

Valid values for this attribute are:

	
ValueObject.Reference.UNSPECIFIED

	
ValueObject.Reference.UNSPECIFIED

	
ValueObject.Reference.UNSPECIFIED

Default value is ValueObject.Reference.UNSPECIFIED.

	
Enum

	
No

weblogic.ejbgen.ValueObjectField

Target: Class, Method, Field

Attributes

Table E-42 ValueObjectField EJBGen Annotation Attributes

	Attribute	Description	Data Type	Required?
	
int

	
The default value of this attribute is 0.

	
int

	
No

F Important Information for EJB 1.1 Users

Oracle strongly recommends that new users implement their distributed business applications using EJB 2.0 beans. However, if your existing application implements EJB 1.1 beans, read the following sections, which contain important design and implementation information specific to EJB 1.1. This section includes a detailed reference to EJB 1.1 deployment descriptors.

	
Writing for RDBMS Persistence for EJB 1.1 CMP

	
Using WebLogic Query Language (WLQL) for EJB 1.1 CMP

	
Using SQL for CMP 1.1 Finder Queries

	
Tuned EJB 1.1 CMP Updates in WebLogic Server

	
Using is-modified-method-name to Limit Calls to ejbStore()

	
5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure

	
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

	
1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure

	
Important Information for EJB 1.1 Users

Writing for RDBMS Persistence for EJB 1.1 CMP

Clients use finder methods to query and receive references to entity beans that fulfill query conditions. This section describes how to write finders for WebLogic-specific 1.1 EJBs that use RDBMS persistence. You use EJB QL, a portable query language, to define finder queries for 2.0 EJBs with container-managed persistence.

WebLogic Server provides an easy way to write finders.

	
Write the method signature of a finder in the EJBHome interface.

	
Define the finder's query expressions in the ejb-jar.xml deployment file.

appc creates implementations of the finder methods at deployment time, using the queries in ejb-jar.xml.

The key components of a finder for RDBMS persistence are:

	
The finder method signature in EJBHome.

	
A query element defined within ejb-jar.xml.

	
An optional finder-query element within weblogic-cmp-jar.xml.

The following sections explain how to write EJB finders using XML elements in WebLogic Server deployment files.

Finder Signature

Specify finder method signatures using the form findMethodName(). Finder methods defined in weblogic-cmp-jar.xml must return a Java collection of EJB objects or a single object.

	
Note:

"You can also define a findByPrimaryKey(primkey) method that returns a single object of the associated EJB class.

finder-list Element

The finder-list element associates one or more finder method signatures in EJBHome with the queries used to retrieve EJB objects. The following is an example of a simple finder-list element using WebLogic Server RDBMS-based persistence:

<finder-list>
 <finder>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 <finder-query><![CDATA[(> balance $0)]]></finder-query>
 </finder>
</finder-list>

	
Note:

"If you use a non-primitive data type in a method-param element, you must specify a fully qualified name. For example, use java.sql.Timestamp rather than Timestamp. If you do not use a qualified name, appc generates an error message when you compile the deployment unit.

finder-query Element

The finder-query element defines the WebLogic Query Language (WLQL) expression you use to query EJB objects from the RDBMS. WLQL uses a standard set of operators against finder parameters, EJB attributes, and Java language expressions. See Using WebLogic Query Language (WLQL) for EJB 1.1 CMP for more information on WLQL.

	
Note:

"Always define the text of the finder-query value using the XML CDATA attribute. Using CDATA ensures that any special characters in the WLQL string do not cause errors when the finder is compiled.

A CMP finder can load all beans using a single database query. So, 100 beans can be loaded with a single database round trip. A bean-managed persistence (BMP) finder must do one database round trip to get the primary key values of the beans selected by the finder. As each bean is accessed, another database access is also typically required, assuming the bean was not already cached. So, to access 100 beans, a BMP might do 101 database accesses.

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP

WebLogic Query Language (WLQL) for EJB 1.1 CMP allows you to query 1.1 entity EJBs with container-managed persistence. In the weblogic-cmp-jar.xml file, each finder-query element must include a WLQL string that defines the query used to return EJBs. Use WLQL for EJBs and their corresponding deployment files that are based on the EJB 1.1 specification.

WLQL Syntax

WLQL strings use the prefix notation for comparison operators, as follows:

(operator operand1 operand2)

Additional WLQL operators accept a single operand, a text string, or a keyword.

WLQL Operators

The following are valid WLQL operators.

Table F-1 WLQL Operators

	Operator	Description	Sample Syntax
	
=

	
Equals

	
(= operand1 operand2)

	
<

	
Less than

	
(< operand1 operand2)

	
>

	
Greater than

	
(> operand1 operand2)

	
<=

	
Less than or equal to

	
(<= operand1 operand2)

	
>=

	
Greater than or equal to

	
(>= operand1 operand2)

	
!

	
Boolean not

	
(! operand)

	
&

	
Boolean and

	
(& operand)

	
|

	
Boolean or

	
(| operand)

	
like

	
Wildcard search based on % symbol in the supplied text_string or an input parameter

	
(like text_string%)

	
isNull

	
Value of single operand is null

	
(isNull operand)

	
isNotNull

	
Value of single operand is not null

	
(isNotNull operand)

	
orderBy

	
Orders results using specified database columns

Note: Always specify a database column name in the orderBy clause, rather than a persistent field name. WebLogic Server does not translate field names specified in orderBy.

	
(orderBy 'column_name')

	
desc

	
Orders results in descending order. Used only in combination with orderBy.

	
(orderBy 'column_name desc')

WLQL Operands

Valid WLQL operands include:

	
Another WLQL expression

	
A container-managed field defined elsewhere in the weblogic-cmp-jar.xml file

	
Note:

You cannot use RDBMS column names as operands in WLQL. Instead, use the EJB attribute (field) that maps to the RDBMS column, as defined in the attribute-map in weblogic-cmp-jar.xml.

	
A finder parameter or Java expression identified by $n, where n is the number of the parameter or expression. By default, $n maps to the nth parameter in the signature of the finder method. To write more advanced WLQL expressions that embed Java expressions, map $n to a Java expression.

	
Note:

The $n notation is based on an array that begins with 0, not 1. For example, the first three parameters of a finder correspond to $0, $1, and $2. Expressions need not map to individual parameters. Advanced finders can define more expressions than parameters.

Examples of WLQL Expressions

The following example code shows excerpts from the weblogic-cmp-jar.xml file that use basic WLQL expressions.

	
This example returns all EJBs that have the balance attribute greater than the balanceGreaterThan parameter specified in the finder. The finder method signature in EJBHome is:

public Enumeration findBigAccounts(double balanceGreaterThan)
 throws FinderException, RemoteException;

The sample <finder> element is:

<finder>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 <finder-query><![CDATA[(> balance $0)]]></finder-query>
</finder>

Note that you must define the balance field n the attribute map of the EJB's persistence deployment file.

	
Note:

"Always define the text of the finder-query value using the XML CDATA attribute. Using CDATA ensures that any special characters in the WLQL string do not cause errors when the finder is compiled.

	
The following example shows how to use compound WLQL expressions. Also note the use of single quotes (') to distinguish strings:

<finder-query><![CDATA[(& (> balance $0) (! (= accountType 'checking')))]]></finder-query>

	
The following example finds all the EJBs in a table. It uses the sample finder method signature:

public Enumeration findAllAccounts()
 throws FinderException, RemoteException

The sample <finder> element uses an empty WLQL string:

<finder>
 <method-name>findAllAccounts</method-name>
 <finder-query></finder-query>
</finder>

	
The following query finds all EJBs whose lastName field starts with "M":

<finder-query><![CDATA[(like lastName M%)]]></finder-query>

	
This query returns all EJBs that have a null firstName field:

<finder-query><![CDATA[(isNull firstName)]]></finder-query>

	
This query returns all EJBs whose balance field is greater than 5000, and orders the beans by the database column, id:

<finder-query><![CDATA[WHERE >5000 (orderBy 'id' (> balance 5000))]]></finder-query>

	
This query is similar to the previous example, except that the EJBs are returned in descending order:

<finder-query><![CDATA[(orderBy 'id desc' (>))]]></finder-query>

Using SQL for CMP 1.1 Finder Queries

WebLogic Server allows you to use a SQL string instead of the standard WLQL query language to write SQL for a CMP 1.1 finder query. The SQL statement retrieves the values from the database for the CMP 1.1 finder query. Use SQL to write a CMP 1.1 finder query when a more complicated finder query is required and you cannot use WLQL.

For more information on WLQL, see Using WebLogic Query Language (WLQL) for EJB 1.1 CMP.

To specify this SQL finder query:

	
In the weblogic-cmp-jar.xml file write a SQL query using the finder-sql element in the weblogic-cmp-jar.xml file as follows.

findBigAccounts(double cutoff) as follows:

<finder-sql><![CDATA{balance >$0]]></finder-sql>

Use values such as $0 or $1 in the SQL string to reference the parameters to the finder method. The WebLogic Server EJB container replaces the $ parameters but will not interpret the SQL query.

	
The Container emits the following SQL:

SELECT <columns> FROM table WHERE balance > ?

The SQL should be the WHERE clause of an SQL statement. The Container prepends the SELECT and FROM clauses. The WHERE clause may contain arbitrary SQL.

If you use characters in your SQL query that may confuse an XML parser, such as the greater than (>) symbol and the less than (<) symbol, make sure that you declare the SQL query using the CDATA format shown in the preceding sample SQL statement.

You can use any amount of vendor-specific SQL in the SQL query.

Tuned EJB 1.1 CMP Updates in WebLogic Server

EJB container-managed persistence (CMP) automatically support tuned updates because the container receives get and set callbacks when container-managed EJBs are read or written. Tuning EJB 1.1 CMP beans helps improve their performance.

WebLogic Server now supports tuned updates for EJB 1.1 CMP. When ejbStore is called, the EJB container automatically determines which container-managed fields have been modified in the transaction. Only modified fields are written back to the database. If no fields are modified, no database updates occur.

With previous releases of WebLogic Server, you could to write an isModified method that notified the container whether the EJB 1.1 CMP bean had been modified. isModified is still supported in WebLogic Server, but Oracle recommends that you no longer use isModified methods and instead allow the container to determine the update fields.

This feature is enabled for EJB 2.0 CMP, by default. To enable tuned EJB 1.1 CMP updates, make sure that you set the following deployment descriptor element in the weblogic-cmp-jar.xml file to true.

<enable-tuned-updates>true</enable-tuned-updates>

You can disable tuned CMP updates by setting this deployment descriptor element as follows:

<enable-tuned-updates>false</enable-tuned-updates>

In this case, ejbStore always writes all fields to the database.

Using is-modified-method-name to Limit Calls to ejbStore()

The is-modified-method-name deployment descriptor element applies to EJB 1.1 container-managed-persistence (CMP) beans only. This element is found in the weblogic-ejb-jar.xml file. WebLogic Server CMP implementation automatically detects modifications of CMP fields and writes only those changes to the underlying datastore. Oracle recommends that you not use is-modified-method-name with bean-managed-persistence (BMP) because you would need to create both the is-modified-method-name element and the ejbstore method.

By default, WebLogic Server calls the ejbStore() method at the successful completion (commit) of each transaction. ejbStore() is called at commit time regardless of whether the EJB's persistent fields were actually updated, and results in a DBMS update. WebLogic Server provides the is-modified-method-name element for cases where unnecessary calls to ejbStore() may result in poor performance.

To use is-modified-method-name, EJB providers must first develop an EJB method that "cues" WebLogic Server when persistent data has been updated. The method must return "false" to indicate that no EJB fields were updated, or "true" to indicate that some fields were modified.

The EJB provider or EJB deployment descriptors then identify the name of this method by using the value of the is-modified-method-name element. WebLogic Server calls the specified method name when a transaction commits, and calls ejbStore() only if the method returns "true." For more information on this element, see is-modified-method-name.

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure

The WebLogic Server 5.1 weblogic-ejb-jar.xml file defines the EJB document type definitions (DTD)s you use with EJB 1.1 beans. These deployment descriptor elements are WebLogic-specific. The top level elements in the WebLogic Server 5.1 weblogic-ejb-jar.xml are:

	
description

	
weblogic-version

	
weblogic-enterprise-bean

	
ejb-name

	
caching-descriptor

	
persistence-descriptor

	
clustering-descriptor

	
transaction-descriptor

	
reference-descriptor

	
jndi-name

	
transaction-isolation

	
security-role-assignment

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

The following sections describe WebLogic-Server 5.1 weblogic-ejb-jar.xml deployment descriptor elements.

caching-descriptor

The caching-descriptor element affects the number of EJBs in the WebLogic Server cache as well as the length of time before EJBs are passivated or pooled. The entire element, as well as each of its child elements, is optional. WebLogic Server uses default values where no elements are defined.

The following is a sample caching-descriptor element that shows the caching elements described in this section:

<caching-descriptor>
 <max-beans-in-free-pool>500</max-beans-in-free-pool>
 <initial-beans-in-free-pool>50</initial-beans-in-free-pool>
 <max-beans-in-cache>1000</max-beans-in-cache>
 <idle-timeout-seconds>20</idle-timeout-seconds>
 <cache-strategy>Read-Write</cache-strategy>
 <read-timeout-seconds>0</read-timeout-seconds>
</caching-descriptor>

max-beans-in-free-pool

	
Note:

"This element is valid only for stateless session EJBs.

WebLogic Server maintains a free pool of EJBs for every bean class. This optional element defines the size of the pool. By default, max-beans-in-free-pool has no limit; the maximum number of beans in the free pool is limited only by the available memory.

initial-beans-in-free-pool

	
Note:

"This element is valid only for stateless session EJBs.

If you specify a value for initial-bean-in-free-pool, WebLogic Server populates the free pool with the specified number of bean instances at startup. Populating the free pool in this way improves initial response time for the EJB, since initial requests for the bean can be satisfied without generating a new instance.

initial-bean-in-free-pool defaults to 0 if the element is not defined.

max-beans-in-cache

	
Note:

"This element is valid only for stateful session EJBs and entity EJBs.

This element specifies the maximum number of objects of this class that are allowed in memory. When max-beans-in-cache is reached, WebLogic Server passivates some EJBs that have not been recently used by a client. max-beans-in-cache also affects when EJBs are removed from the WebLogic Server cache.

The default value of max-beans-in-cache is 100.

idle-timeout-seconds

idle-timeout-seconds defines the maximum length of time a stateful EJB should remain in the cache. After this time has elapsed, WebLogic Server may remove the bean instance if the number of beans in cache approaches the limit of max-beans-in-cache.

idle-timeout-seconds defaults to 600 if you do not define the element.

cache-strategy

The cache-strategy element can be one of the following:

	
Read-Write

	
Read-Only

The default value is Read-Write.

read-timeout-seconds

The read-timeout-seconds element specifies the number of seconds between ejbLoad() calls on a Read-Only entity bean. By default, read-timeout-seconds is set to 600 seconds. If you set this value to 0, WebLogic Server calls ejbLoad only when the bean is brought into the cache.

persistence-descriptor

The persistence-descriptor element specifies persistence options for entity EJBs. The following shows all elements contained in the persistence-descriptor element:

<persistence-descriptor>
 <is-modified-method-name>. . .</is-modified-method-name>
 <delay-updates-until-end-of-tx>. . .</delay-updates-until-end-of-tx>
 <persistence-type>
 <type-identifier>. . .</type-identifier>
 <type-version>. . .</type-version>
 <type-storage>. . .</type-storage>
 </persistence-type>
 <db-is-shared>. . .</db-is-shared>
 <stateful-session-persistent-store-dir>
 . . .
 </stateful-session-persistent-store-dir>
 <persistence-use>. . .</persistence-use>
</persistence-descriptor>

is-modified-method-name

is-modified-method-name specifies a method that WebLogic Server calls when the EJB is stored. The specified method must return a boolean value. If no method is specified, WebLogic Server always assumes that the EJB has been modified and always saves it.

Providing a method and setting it as appropriate can improve performance. However, any errors in the method's return value can cause data inconsistency problems.

delay-updates-until-end-of-tx

Set this property to true (the default), to update the persistent store of all beans in a transaction at the completion of the transaction. This generally improves performance by avoiding unnecessary updates. However, it does not preserve the ordering of database updates within a database transaction.

If your datastore uses an isolation level of TransactionReadCommittedUncommitted, you may want to allow other database users to view the intermediate results of in-progress transactions. In this case, set delay-updates-until-end-of-tx to false to update the bean's persistent store at the conclusion of each method invoke.

	
Note:

"Setting delay-updates-until-end-of-tx to false does not cause database updates to be "committed" to the database after each method invoke; they are only sent to the database. Updates are committed or rolled back in the database only at the conclusion of the transaction.

persistence-type

A persistence-type defines a persistence service that can be used by an EJB. You can define multiple persistence-type entries in weblogic-ejb-jar.xml for testing with multiple persistence services. Only the persistence type defined in persistence-use is used during deployment.

persistence-type includes several elements that define the properties of a service:

	
type-identifier contains text that identifies the specified persistence type. For example, WebLogic Server RDBMS persistence uses the identifier, WebLogic_CMP_RDBMS.

	
type-version identifies the version of the specified persistence type.

	
Note:

"The specified version must exactly match the RDBMS persistence version for the WebLogic Server release. Specifying an incorrect version results in the error:
weblogic.ejb.persistence.PersistenceSetupException: Error initializing the CMP Persistence Type for your bean: No installed Persistence Type matches the signature of (identifier 'Weblogic_CMP_RDBMS', version 'version_number').

	
type-storage defines the full path of the file that stores data for this persistence type. The path must specify the file's location relative to the top level of the EJB's JAR deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named weblogic-cmp-jar.xml to store persistence data for a bean. This file is stored in the META-INF subdirectory of the JAR file.

The following shows an example persistence-type element with values appropriate for WebLogic Server RDBMS persistence:

<persistence-type>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>5.1.0</type-version>
 <type-storage>META-INF\weblogic-cmp-jar.xml</type-storage>
</persistence-type>

db-is-shared

The db-is-shared element applies only to entity beans. When set to true (the default value), WebLogic Server assumes that EJB data could be modified between transactions and reloads data at the beginning of each transaction. When set to false, WebLogic Server assumes that it has exclusive access to the EJB data in the persistent store.

stateful-session-persistent-store-dir

stateful-session-persistent-store-dir specifies the file system directory where WebLogic Server stores the state of passivated stateful session bean instances.

persistence-use

The persistence-use property is similar to persistence-type, but it defines the persistence service actually used during deployment. persistence-use uses the type-identifier and type-version elements defined in a persistence-type to identify the service.

For example, to actually deploy an EJB using the WebLogic Server RDBMS-based persistence service defined in persistence-type, the persistence-use element would resemble:

<persistence-use>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>5.1.0</type-version>
</persistence-use>

clustering-descriptor

The clustering-descriptor element defines the replication properties and behavior for EJBs deployed in a WebLogic Server cluster. The clustering-descriptor element and each of its child elements are optional, and are not applicable to single-server systems.

The following shows all elements contained in the clustering-descriptor element:

<clustering-descriptor>
 <home-is-clusterable>. . .</home-is-clusterable>
 <home-load-algorithm>. . .</home-load-algorithm>
 <home-call-router-class-name>. . .</home-call-router-class-name>
 <stateless-bean-is-clusterable>. . .</stateless-bean-is-clusterable>
 <stateless-bean-load-algorithm>. . .</stateless-bean-load-algorithm>
 <stateless-bean-call-router-class-name>. . .
 </stateless-bean-call-router-class-name>
 <stateless-bean-methods-are-idempotent>. . .
 </stateless-bean-methods-are-idempotent>
</clustering-descriptor>

home-is-clusterable

You can set this element to either true or false. When home-is-clusterable is true, the EJB can be deployed from multiple WebLogic Servers in a cluster. Calls to the home stub are load-balanced between the servers on which this bean is deployed, and if a server hosting the bean is unreachable, the call automatically fails over to another server hosting the bean.

home-load-algorithm

home-load-algorithm specifies the algorithm to use for load balancing between replicas of the EJB home. If this property is not defined, WebLogic Server uses the algorithm specified by the server property, weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

	
round-robin: Load balancing is performed in a sequential fashion among the servers hosting the bean.

	
random: Replicas of the EJB home are deployed randomly among the servers hosting the bean.

	
weight-based: Replicas of the EJB home are deployed on host servers according to the servers' current workload.

home-call-router-class-name

home-call-router-class-name specifies the custom class to use for routing bean method calls. This class must implement weblogic.rmi.extensions.CallRouter(). If specified, an instance of this class is called before each method call. The router class has the opportunity to choose a server to route to based on the method parameters. The class returns either a server name or null, which indicates that the current load algorithm should select the server.

stateless-bean-is-clusterable

This property is similar to home-is-clusterable, but it is applicable only to stateless session EJBs.

stateless-bean-load-algorithm

This property is similar to home-load-algorithm, but it is applicable only to stateless session EJBs.

stateless-bean-call-router-class-name

This property is similar to home-call-router-class-name, but it is applicable only to stateless session EJBs.

stateless-bean-methods-are-idempotent

You can set this element to either true or false. Set stateless-bean-methods-are-idempotent to true only if the bean is written such that repeated calls to the same method with the same arguments has exactly the same effect as a single call. This allows the failover handler to retry a failed call without knowing whether the call actually completed on the failed server. Setting this property to true makes it possible for the bean stub to automatically recover from any failure as long as another server hosting the bean can be reached.

	
Note:

"This property is applicable only to stateless session EJBs.

transaction-descriptor

The transaction-descriptor element contains elements that define transaction behavior in WebLogic Server. Currently, this element includes only one child element:

<transaction-descriptor>
 <trans-timeout-seconds>20</trans-timeout-seconds>
</transaction-descriptor>

trans-timeout-seconds

The trans-timeout-seconds element specifies the maximum duration for the EJB's container-initiated transactions. If a transaction lasts longer than trans-timeout-seconds, WebLogic Server rolls back the transaction.

If you specify no value for trans-timeout-seconds, container-initiated transactions timeout after five minutes, by default.

reference-descriptor

The reference-descriptor element maps references in the ejb-jar.xml file to the JNDI names of actual resource factories and EJBs available in WebLogic Server.

The reference-descriptor element contains one or more additional elements to define resource factory references and EJB references. The following shows the organization of these elements:

<reference-descriptor>
 <resource-description>
 <res-ref-name>. . .</res-ref-name>
 <jndi-name>. . .</jndi-name>
 </resource-description>
 <ejb-reference-description>
 <ejb-ref-name>. . .</ejb-ref-name>
 <jndi-name>. . .</jndi-name>
 </ejb-reference-description>
</reference-descriptor>

resource-description

The following elements define an individual resource-description:

	
res-ref-name specifies a resource reference name. This is the reference that the EJB provider places within the ejb-jar.xml deployment file.

	
jndi-name specifies the JNDI name of an actual resource factory available in WebLogic Server.

ejb-reference-description

The following elements define an individual ejb-reference-description:

	
ejb-ref-name specifies an EJB reference name. This is the reference that the EJB provider places within the ejb-jar.xml deployment file.

	
jndi-name specifies the JNDI name of an actual EJB available in WebLogic Server.

enable-call-by-reference

By default, EJB methods called from within the same EAR pass arguments by reference. This increases the performance of method invocation since parameters are not copied.

If you set enable-call-by-reference to false, parameters to EJB methods are copied (pass by value) in accordance with the EJB 1.1 specification. Pass by value is always necessary when the EJB is called remotely (not from within the same application).

jndi-name

The jndi-name element specifies a jndi-name for a bean, resource, or reference.

transaction-isolation

The transaction-isolation element specifies the transaction isolation level for EJB methods. The element consists of one or more isolation-level elements that apply to a range of EJB methods. For example:

<transaction-isolation>
 <isolation-level>Serializable</isolation-level>
 <method>
 <description>...</description>
 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
 </method>
</transaction-isolation>

The following sections describe each element in transaction-isolation.

isolation-level

The transaction-isolation element defines method-level transaction isolation settings for an EJB. Allowable values include:

	
TransactionSerializable—Simultaneously executing this transaction multiple times has the same effect as executing the transaction multiple times in a serial fashion.

	
Note:

For Oracle databases, Oracle recommends that you use the TransactionReadCommittedForUpdate isolation level instead of the TransactionSerializable isolation level. This is because Oracle databases do not lock read data at the TransactionSerializable isolation level. Additionally, at the TransactionSerializable isolation level, it is possible for concurrent transactions on Oracle databases to proceed without throwing the Oracle exception ORA-08177 "can't serialize access for this transaction"). For more information on the TransactionReadCommittedForUpdate isolation level, see Oracle-Only Isolation Levels.

	
TransactionReadCommitted—The transaction can view only committed updates from other transactions

	
TransactionReadUncommitted—The transaction can view uncommitted updates from other transactions.

	
TransactionRepeatableRead—Once the transaction reads a subset of data, repeated reads of the same data return the same values, even if other transactions have subsequently modified the data.

Oracle-Only Isolation Levels

These additional values are supported only for Oracle databases, and only for container-managed persistence (CMP) EJBs:

	
TransactionReadCommittedForUpdate—Supported only for Oracle databases, and only for container-managed persistence (CMP) EJBs. This value sets the isolation level to TransactionReadCommitted, and for the duration of the transaction, all SQL SELECT statements executed in any method are executed with FOR UPDATE appended to them. This causes the selected rows to be locked for update. If Oracle cannot lock the rows affected by the query immediately, then it waits until the rows are free. This condition remains in effect until the transaction does a COMMIT or ROLLBACK.

This isolation level can be used to avoid the error:

java.sql.SQLException: ORA-08177: can't serialize access for this transaction

which can (but does not always) occur when using the TransactionSerializable isolation level with Oracle databases.

	
Note:

For Oracle databases, Oracle recommends that you use this isolation level (TransactionReadCommittedForUpdate) instead of the TransactionSerializable isolation level. This is because Oracle databases do not lock read data at the TransactionSerializable isolation level.

	
TransactionReadCommittedNoWait—Supported only for Oracle databases, and only for container-managed persistence (CMP) EJBs.

This value sets the isolation level to TransactionReadCommitted, and for the duration of the transaction, all SQL SELECT statements executed in any method are executed with FOR UPDATE NO WAIT appended to them. This causes the selected rows to be locked for update.

In contrast to the TransactionReadCommittedForUpdate setting, TransactionReadCommittedForUpdateNoWait causes the Oracle DBMS to NOT WAIT if the required locks cannot be acquired immediately—the affected SELECT query will fail and an exception will be thrown by the Container.

Refer to your database documentation for more information support for different isolation levels.

method

The method element defines the EJB methods to which an isolation level applies. method defines a range of methods using the following elements:

	
description is an optional element that describes the method.

	
ejb-name identifies the EJB to which WebLogic Server applies isolation level properties.

	
method-intf is an optional element that indicates whether the specified method(s) reside in the EJB's home or remote interface. The value of this element must be "Home" or "Remote". If you do not specify method-intf, you can apply an isolation to methods in both interfaces.

	
method-name specifies either the name of an EJB method or an asterisk (*) to designate all EJB methods.

	
method-params is an optional element that lists the Java types of each of the method's parameters. The type of each parameter must be listed in order, using individual method-param elements within the parent method-params element.

For example, the following method element designates all methods in the "AccountBean" EJB:

<method>
 <ejb-name>AccountBean</ejb-name>
 <method-name>*</method-name>
</method>

The following element designates all methods in the remote interface of "AccountBean:"

<method>
 <ejb-name>AccountBean</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
</method>

security-role-assignment

The security-role-assignment element maps application roles in the ejb-jar.xml file to the names of security principals available in WebLogic Server.

security-role-assignment can contain one or more pairs of the following elements:

	
role-name is the application role name that the EJB provider placed in the ejb-jar.xml deployment file.

	
principal-name specifies the name of an actual WebLogic Server principal.

1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure

weblogic-cmp-jar.xml defines deployment elements for a single entity EJB that uses WebLogic Server RDBMS-based persistence services.

The top-level element of the WebLogic Server 1.1 weblogic-cmp-jar.xml consists of a weblogic-enterprise-bean element:

description
weblogic-version
<weblogic-enterprise-bean>
 <pool-name>finance_pool</pool-name>
 <schema-name>FINANCE_APP</schema-name>
 <table-name>ACCOUNT</table-name>
 <attribute-map>
 <object-link>
 <bean-field>accountID</bean-field>
 <dbms-column>ACCOUNT_NUMBER</dbms-column>
 </object-link>
 <object-link>
 <bean-field>balance</bean-field>
 <dbms-column>BALANCE</dbms-column>
 </object-link>
 </attribute-map>
 <finder-list>
 <finder>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 <finder-query><![CDATA[(> balance $0)]]></finder-query>
 <finder-expression>. . .</finder-expression>
 </finder>
 </finder-list>
</weblogic-enterprise-bean>

1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

This section describes the weblogic-cmp-jar.xml deployment descriptor elements.

RDBMS Definition Elements

This section describes the RDBMS definition elements.

enable-tuned-updates

enable-tuned-updates specifies that when ejbStore is called the EJB container automatically determines which container-managed fields have been modified and then writes only those fields back to the database.

pool-name

pool-name specifies name of the WebLogic Server connection pool to use for this EJB's database connectivity.

schema-name

schema-name specifies the schema where the source table is located in the database. This element is required only if you want to use a schema that is not the default schema for the user defined in the EJB's connection pool.

	
Note:

"This field is case sensitive, although many SQL implementations ignore case.

table-name

table-name specifies the source table in the database. This element is required in all cases.

	
Note:

"The user defined in the EJB's connection pool must have read and write privileges to the specified table, though not necessarily schema modification privileges. This field is case sensitive, although many SQL implementations ignore case.

EJB Field-Mapping Elements

This section describes the EJB field-mapping elements.

attribute-map

The attribute-map element links a single field in the EJB instance to a particular column in the database table. The attribute-map must have exactly one entry for each field of an EJB that uses WebLogic Server RDBMS-based persistence.

object-link

Each attribute-map entry consists of an object-link element, which represents a link between a column in the database and a field in the EJB instance.

bean-field

bean-field specifies the field in the EJB instance that should be populated from the database. This element is case sensitive and must precisely match the name of the field in the bean instance.

The field referenced in this tag must also have a cmp-field element defined in the ejb-jar.xml file for the bean.

dbms-column

dbms-column specifies the database column to which the EJB field is mapped. This tag is case sensitive, although many databases ignore the case.

	
Note:

"WebLogic Server does not support quoted RDBMS keywords as entries to dbms-column. For example, you cannot create an attribute map for column names such as "create" or "select" if those names are reserved in the underlying datastore.

Finder Elements

This section describes the finder elements.

finder-list

The finder-list element defines the set of all finders that are generated to locate sets of beans.

finder-list must contain exactly one entry for each finder method defined in the home interface, except for findByPrimaryKey. If an entry is not provided for findByPrimaryKey, one is generated at compilation time.

	
Note:

"If you provide an entry for findByPrimaryKey, WebLogic Server uses that entry without validating it for correctness. In most cases, you should omit an entry for findByPrimaryKey and accept the default, generated method.

finder

The finder element describes a finder method defined in the home interface. The elements contained in the finder element enable WebLogic Server to identify which method in the home interface is being described, and to perform required database operations.

method-name

method-name defines the name of the finder method in the home interface. This tag must contain the exact name of the method.

method-params

The method-params element defines the list of parameters to the finder method being specified in method-name.

	
Note:

"WebLogic Server compares this list against the parameter types for the finder method in the EJB's home interface; the order and type for the parameter list must exactly match the order and type defined in the home interface.

method-param

method-param defines the fully-qualified name for the parameter's type. The type name is evaluated into a java.lang.Class object, and the resultant object must precisely match the respective parameter in the EJB's finder method.

You can specify primitive parameters using their primitive names (such as "double" or "int"). If you use a non-primitive data type in a method-param element, you must specify a fully qualified name. For example, use java.sql.Timestamp rather than Timestamp. If you do not use a qualified name, appc generates an error message when you compile the deployment unit.

finder-query

finder-query specifies the WebLogic Query Language (WLQL) string that is used to retrieve values from the database for this finder.

	
Note:

"Always define the text of the finder-query value using the XML CDATA attribute. Using CDATA ensures that any special characters in the WLQL string do not cause errors when the finder is compiled.

finder-expression

finder-expression specifies a Java language expression to use as a variable in the database query for this finder.

Future versions of the WebLogic Server EJB container will use the EJB QL query language (as required by the EJB 2.0 specification at http://java.sun.com/products/ejb/docs.html). EJB QL does not provide support for embedded Java expressions. Therefore, to ensure easier upgrades to future EJB containers, create entity EJB finders without embedding Java expressions in WLQL.

G EJB Query Language (EJB-QL) and WebLogic Server

EJB Query Language (EJB QL) is a portable query language that defines finder methods for 2.0 entity EJBs with container-managed persistence. Use this SQL-like language to select one or more entity EJB objects or fields in your query. You can create queries in the deployment descriptor for any finder method other than findByPrimaryKey(). findByPrimaryKey is automatically handled by the EJB container.

These sections describe EJB QL:

	
EJB QL Requirement for EJB 2.x Beans

	
Using the EJB 2.x WebLogic QL Extension for EJB QL

	
Properties-Based Methods of the Query Interface

	
Migrating from WLQL to EJB QL

	
Known Issue with Implied Cross Products

	
EJB QL Error-Reporting

EJB QL Requirement for EJB 2.x Beans

The deployment descriptors must define each finder query for EJB 2.x entity beans by using an EJB QL query string. You cannot use WebLogic Query Language (WLQL) with EJB 2.x entity beans. WLQL is intended for use with EJB 1.1 container-managed persistence. For more information on WLQL and EJB 1.1 container-managed persistence, see Using WebLogic Query Language (WLQL) for EJB 1.1 CMP.

Using the EJB 2.x WebLogic QL Extension for EJB QL

WebLogic Server has an SQL-like language, called WebLogic QL, that extends the standard EJB QL. You define the query in the weblogic-cmp-jar.xml deployment descriptor using the weblogic-ql element.

There must be a query element in the ejb-jar.xml file that corresponds to the weblogic-ql element in the weblogic-cmp-jar.xml file. However, the value of the weblogic-cmp-jar.xml query element overrides the value of the ejb-jar.xml query element.

These topics provide guidelines for using the WebLogic QL extension to EJB 2.x QL:

	
upper and lower Functions

	
Using ORDER BY

	
Using Subqueries

	
Using Arithmetic Functions

	
Using Aggregate Functions

	
Using Queries that Return ResultSets

	
Using Oracle SELECT HINTS

	
Visual Indicator of Error in Query

	
Multiple Errors Reported after a Single Compilation

upper and lower Functions

The EJB WebLogic QL upper and lower extensions convert the case of arguments to allow finder methods to return results that match the characters in a search expression but not the case. The case change is transient, for the purpose of string matching, and is not persisted in database. The underlying database must also support upper and lower functions.

upper

The upper function converts characters in its arguments from any case to upper case before string matching is performed. Use the upper function with an upper-case expression in a query to return all items that match the expression, regardless of case. For example:

select name from products where upper(name)='DETERGENT';

lower

The lower function converts characters in its arguments from any case to lower case before string matching is performed. Use the lower function with a lower-case expression in a query to return all items that match the expression, regardless of case.

select type from products where lower(name)='domestic';

Using ORDER BY

The EJB QL ORDER BY clause is a keyword that works with the Finder method to specify the CMP field selection sequence for your selections.

Example G-1 ORDER BY Showing Order by id

ORDER BY
SELECT OBJECT(A) from A for Account.Bean
ORDER BY A.id

You can specify an ORDER BY with ascending [ASC] or descending [DESC] order for multiple fields as follows. If you do not specify an order, ORDER BY defaults to ascending order.

Example G-2 ORDER BY Showing Order by id with ASC and DESC

ORDER BY <field> [ASC|DESC], <field> [ASC|DESC]
SELECT OBJECT(A) from A for Account.Bean, OBJECT(B) from B for Account.Bean
ORDER BY A.id ASC; B.salary DESC

Using Subqueries

WebLogic Server supports the use of the following features with subqueries in EJB QL:

	
Subquery return type

	
Single cmp-fields

	
Aggregate functions

	
Beans with simple primary keys

	
Subqueries as comparison operands

	
Correlated subqueries

	
Uncorrelated subqueries

	
DISTINCT clauses with subqueries

The relationship between WebLogic QL and subqueries is similar to the relationship between SQL queries and subqueries. Use WebLogic QL subqueries in the WHERE clause of an outer WebLogic QL query. With a few exceptions, the syntax for a subquery is the same as a WebLogic QL query.

To specify WebLogic QL, see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use those instructions with a SELECT statement that specifies a subquery as shown the following sample.

The following query selects all above average students as determined by the provided grade number:

SELECT OBJECT(s) FROM studentBean AS s WHERE s.grade > (SELECT AVG(s2.grade) FROM StudentBean AS s2)

	
Note:

"In the above query the subquery, (SELECT AVG(s2.grade) FROM StudentBean AS s2), has the same syntax as an EJB QL query.

You can create nested subqueries.The depth is limited by the underlying database's nesting capabilities.

In a WebLogic QL query, the identifiers declared in the FROM clauses of the main query and all of its subqueries must be unique. This means that a subquery may not re-declare a previously declared identifier for local use within that subquery.

For example, the following example is not legal because EmployeeBean is being declared as emp in both the query and the subquery:

SELECT OBJECT(emp)
FROM EmployeeBean As emp
WHERE emp.salary=(SELECT MAX(emp.salary) FROM
EmployeeBean AS emp WHERE employee.state=MA)

Instead, this query should be written as follows:

SELECT OBJECT(emp)
FROM EmployeeBean As emp
WHERE emp.salary=(SELECT MAX(emp2.salary) FROM
EmployeeBean AS emp2 WHERE emp2.state=MA)

The above examples correctly declare the subquery's employee bean to have a different identifier from the main query's employee bean.

Subquery Return Types

The return type of a WebLogic QL subquery can be one of a number of different types, such as:

Single cmp-field Type Subqueries

WebLogic Server supports a return type consisting of a cmp-field. The results returned by the subquery can consist of a single value or collection of values. An example of a subquery that returns value(s) of the type cmp-field is as follows:

SELECT emp.salary FROM EmployeeBean AS emp WHERE emp.dept = 'finance'

This subquery selects all of the salaries of employees in the finance department.

Aggregate Functions

WebLogic Server supports a return type consisting of an aggregate of a cmp-field. As an aggregate always consist of a single value, the value returned by the aggregate is always a single value. An example of a subquery that return a value of the type aggregate (MAX) of a cmp-field is as follows:

SELECT MAX(emp.salary) FROM EmployeeBean AS emp WHERE emp.state=MA

This subquery selects the single highest employee salary in Massachusetts.

For more information on aggregate functions, see Using Aggregate Functions.

Beans with Simple Primary Key

WebLogic Server supports a return type consisting of a cmp-bean with a simple primary key.

The following example illustrates a subquery that returns the value(s) of the type bean with a simple primary key:

SELECT OBJECT(emp) FROM EMployeeBean As emp WHERE emp.department.budget>1,000,000

This subquery provides a list of all employee in departments with budgets greater than $1,000,000.

	
Note:

"Beans with compound primary keys are NOT supported. Attempts to designate the return type of a subquery to a bean with a compound primary key will fail when you compile the query.

Subqueries as Comparison Operands

Use subqueries as the operands of comparison operators and arithmetic operators. WebLogic QL supports subqueries as the operands of:

	
these comparison operators: [NOT]IN, [NOT]EXISTS

and

	
these arithmetic operators: <, >, <=, >=, =, <> with ANY and ALL

[NOT]IN

The [NOT]IN comparison operator tests whether the left-had operand is or is not a member of the subquery operand on the right-hand side.

An example of a subquery which is the right-hand operand of the NOT IN operator is as follows:

SELECT OBJECT(item)
FROM ItemBean AS item
WHERE item.itemId NOT IN
(SELECT oItem2.item.itemID
FROM OrderBean AS orders2, IN(orders2.orderItems)oIttem2

The subquery selects all items from all orders.

The main query's NOT IN operator selects all the items that are not in the set returned by the subquery. So the end result is that the main query selects all unordered items.

[NOT]EXISTS

The [NOT]EXISTS comparison operator tests whether the set returned by the subquery operand is or is not empty.

An example of a subquery which is the operand of the NOT EXISTS operand is as follows:

SELECT (cust) FROM CustomerBean AS cust
WHERE NOT EXISTS
(SELECT order.cust_num FROM OrderBean AS order
WHERE cust.num=order_num)

This is an example of a query with a correlated subquery. See Correlated and Uncorrelated Subqueries for more information. the following query returns all customers that have not placed an order.

SELECT (cust) FROM CustomerBean AS cust
WHERE cust.num NOT IN
(SELECT order.cust_num FROM OrderBean AS order
WHERE cust.num=order_num)

Arithmetic Operators

Use arithmetic operators for comparison when the right-hand subquery operand returns a single value. If the right hand subquery instead returns multiple values, then the qualifiers ANY or ALL must precede the subquery.

An example of a subquery which uses the '=' operator is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem
WHERE oItem.quantityOrdered =
(SELECT MAX (subOItem.quantityOrdered)
FROM Order ItemBean AS subOItem
WHERE subOItem,item itemID = ?1)
AND oItem.item.itemId = ?1

For a given itemId, the subquery returns the maximum quantity ordered of that item. Note that this aggregate returned by the subquery is a single value as required by the '=' operator.

For the same given itemId, the main query's '=' comparison operator checks which order's OrderItem.quantityOrdered equals the maximum quantity returned by the subquery. The end result is that the query returns the OrderBean that contains the maximum quantity of a given item that has been ordered.

Use arithmetic operators in conjunction with ANY or ALL, when the right-hand subquery operand may return multiple values.

An example of a subquery which uses ANY and ALL is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem
WHERE oItem.quantityOrdered > ALL
(SELECT subOItem.quantityOrdered
FROM OrderBean AS suborder IN (subOrder.orderItems)subOItem
WHERE subOrder,orderId = ?1)

For a given orderId, the subquery returns the set of orderItem.quantityOrdered of each item ordered for that orderId. The main query's '>' ALL operator looks for all orders whose orderItem.quantityOrdered exceeds all values in the set returned by the subquery. The end result is that the main query returns all orders in which all orderItem.quantityOrdered exceeds every orderItem.quantityOrdered of the input order.

	
Note:

"Since the subquery can return multi-valued results that they '>'ALL operator is used rather then the '>' operator.

Correlated and Uncorrelated Subqueries

WebLogic Server supports both correlated and Uncorrelated subqueries.

Uncorrelated Subqueries

Uncorrelated subqueries may be evaluated independently of the outer query. An example of an uncorrelated subquery is as follows:

SELECT OBJECT(emp) FROM EmployeeBean AS emp
WHERE emp.salary>
(SELECT AVG(emp2.salary) FROM EmployeeBean AS emp2)

This example of a uncorrelated subquery selects the employees whose salaries are above average. This example uses the '>' arithmetic operator.

Correlated Subqueries

Correlated subqueries are subqueries in which values from the outer query are involved in the evaluation of the subquery. An example of a correlated subquery is as follows:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>
(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

This example of a correlated subquery selects the last 10 shipped orders. This example uses the NOT IN operator.

	
Note:

"Keep in mind that correlated subqueries can involve more processing overhead the uncorrelated subqueries.

DISTINCT Clause with Subqueries

Use the DISTINCT clause in a subquery to enable an SQL SELECT DISTINCT in the subquery's generated SQL. Using a DISTINCT clause in a subquery is different from using one in a main query because the EJB container enforces the DISTINCT clause in a main query; whereas the DISTINCT clause in the subquery is enforced by the generated SQL SELECT DISTINCT. The following is an example of a DISTINCT clause in a subquery:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>
(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

Using Arithmetic Functions

WebLogic Server supports arithmetic functions with WebLogic QL. To specify WebLogic QL, see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use those examples with a SELECT statement that specifies an arithmetic function.

Table G-1 Arithmetic Functions

	Arithmetic Function	Description
	
ABS(number)

	
Returns the absolute value of a (int, double, or float) number.

	
MOD(int, int)

	
Returns the value of x modulo y.

	
SQRT(double)

	
Returns the square root.

	
Note:

"EJB QL arithmetic functions may not work with query parameters on DB2.

Using Aggregate Functions

WebLogic Server supports aggregate functions with WebLogic QL. You only use these functions as SELECT clause targets, not as other parts of a query, such as a WHERE clause. The aggregate functions behave like SQL functions. They are evaluated over the range of the beans returned by the WHERE conditions of the query

To specify WebLogic QL, see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use those instructions with a SELECT statement that specifies an aggregate function as shown in the samples shown in the following table.

A list of the supported functions and sample statements follows:

Table G-2 Aggregate Functions

	Aggregate Function	Valid Argument Data Types	Description	Sample Statement
	
MIN(x)

	
	
character

	
date

	
numeric

	
string

	
Returns the minimum value of this field.

	
SELECT MIN(t.price) FROM TireBean AS t WHERE t.size=?1

This statement selects the lowest price for a tire of a given input size.

	
MAX(x)

	
	
character

	
date

	
numeric

	
string

	
Returns the maximum value of this field.

	
SELECT MAX(s.customer_count) FROM SalesRepBean AS s WHERE s.city='Los Angeles'

This statement selects the maximum number of customers served by any single sales representative in Los Angeles.

	
AVG([DISTINCT] x)

	
numeric

	
Returns the average value of this field

	
SELECT AVG(b.price) FROM BookBean AS b WHERE b.category='computer_science'

This statement selects the Average Price of a book in the Computer Science category.

	
SUM([DISTINCT] x)

	
numeric

	
Returns the sum of this field.

	
SELECT SUM(s.customer_count) FROM SalesRepBean AS s WHERE s.city='Los Angeles'

This statement retrieves the total number of customers served by sales representatives in Los Angeles.

	
COUNT([DISTINCT] x)

	
numeric

	
Returns the number of occurrences of a field.

	
SELECT COUNT(s.deal.amount) FROM SalesRepBean AS s, IN(deal)s WHERE s.deal.status='closed' AND s.deal.amount>=1000000

This statement retrieves the number of closed deals for at least 1 million dollars.

	
Note:

In this release of WebLogic Server, you receive an ObjectNotFoundException if all of the following are true:
	
your aggregate query uses the SUM, AVG, MAX, or MIN operator

	
the result type of the select method is a primitive

	
there are no values to which the aggregate function can be applied

In pre-9.0 releases of WebLogic Server, you received a return value of 0 when the above conditions were all true.

The SQL Specification requires queries that select individual fields along with aggregates to include a GROUP BY clause.

You can return aggregate functions in ResultSets as described below.

Using Queries that Return ResultSets

WebLogic Server supports ejbSelect() queries that return the results of multi-column queries in the form of a java.sql.ResultSet. To support this feature, WebLogic Server allows you to use the SELECT clause to specify a comma delimited list of target fields as shown in the following query:

SELECT emmp.name, emp.zip FROM EmployeeBean AS emp

This query returns a java.sqlResultSet with rows whose columns are the values Employee's Name and Employee's Zip.

To specify WebLogic QL, see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use those instructions with a query specifying a ResultSet as shown in the above query. Use those instructions with a SELECT statement that specifies an aggregate query like the samples shown in the following table.

ResultSets created in EJB QL can return cmp-field values or aggregates of cmp-field values, they cannot return beans.

In addition, you can create powerful queries, as described in the following example, when you combine cmp-fields and aggregate functions.

The following rows (beans) show the salaries of employees in different locations:

Table G-3 CMP Fields Showing Salaries of Employees in California

	Name	Location	Salary
	
Matt

	
CA

	
110,000

	
Rob

	
CA

	
100,000

Table G-4 CMP Fields Showing Salaries of Employees in Arizona

	Name	Location	Salary
	
Dan

	
AZ

	
120,000

	
Dave

	
AZ

	
80,000

Table G-5 CMP Fields Showing Salaries of Employees in Texas

	Name	Location	Salary
	
Curly

	
TX

	
70,000

	
Larry

	
TX

	
180,000

	
Moe

	
TX

	
80,00

	
Note:

"Each row represents a bean.

The following SELECT statement shows a query that uses ResultSets and the aggregate function (AVG) along with a GROUP BY statement and an ORDER BY statement using a descending sort to retrieve results from a multi-column query.

SELECT e.location, AVG(e.salary)
 FROM Finder EmployeeBean AS e
 GROUP BY e.location
 ORDER BY 2 DESC

The query shows the average salary of employees at each location in descending order. The number, 2, means that the ORDER BY sort is on the second item in the SELECT statement. The GROUP BY clause specifies the AVERAGE salary of employees with a matching e.location attribute.

The ResultSet, in descending order is as follows:

	Location	Average
	AZ	100,000
	CA	105,000
	TX	110,000

	
Note:

You can only use integers as ORDER BY arguments in queries that return ResultSets. WebLogic Server does not support the use of integers as ORDER BY arguments in any Finder or ejbselect() that returns beans.

Using Oracle SELECT HINTS

WebLogic Server supports an EJB QL extension that allows you to pass INDEX usage hints to the Oracle Query optimizer. With this extension, you can provide a hint to the database engine. For example, if you know that the database you are searching can benefit from an ORACLE_SELECT_HINT, you can define an ORACLE_SELECT_HINT clause that will take ANY string value and then insert that String value after the SQL SELECT statement as a hint to the database.

To use this option, declare a query that uses this feature in the weblogic-ql element in weblogic-cmp-jar.xml. The weblogic-ql element specifies a query that contains a WebLogic specific extension to the EJB-QL language.

The WebLogic QL keyword and usage is as follows:

SELECT OBJECT(a) FROM BeanA AS a WHERE a.field > 2 ORDER BY a.field SELECT_HINT '/*+ INDEX_ASC(myindex) */'

This statement generates the following SQL with the optimizer hint for Oracle:

SELECT /*+ INDEX_ASC(myindex) */ column1 FROM

In the WebLogic QL ORACLE_SELECT_HINT clause, whatever is between the single quotes (' ') is what gets inserted after the SQL SELECT. It is the query writer's responsibility to make sure that the data within the quotes makes sense to the Oracle database.

"get" and "set" Method Restrictions

WebLogic Server uses a series of accessor methods. The names of these methods begin with set and get. WebLogic Server uses these methods to read and modify container-managed fields. These container-generated classes must begin with "get" or "set" and use the actual name of a persistent field defined in ejb-jar.xml. The methods are also declared as public, protected, and abstract.

Properties-Based Methods of the Query Interface

The Query interface contains both find and execute methods. The find methods work like standard EJB methods, in that they return EJBObjects. The execute methods work more like Select statements in that you can select individual fields.

The Query interface return type is a disconnected ResultSet, meaning you access the information from the returned object the same way you would access it from a ResultSet, except that the ResultSet does not hold open a database connection.

The Query interface's properties-based methods offer an alternate way of specifying settings particular to a query. The QueryProperties interface holds standard EJB query settings while the WLQueryProperties interface holds WebLogic-specific query settings.

Although the Query interface extends QueryProperties, the actual Query implementation extends WLQueryProperties so it can be safely cast, as in the example in Example G-3, which sets field group settings:

Example G-3 Setting Field Group Settings with WLQueryProperties

Query query=qh.createQuery(); ((WLQueryProperties) query).setFieldGroupName("myGroup"); Collection results=query.find(ejbql);

or

Query query=qh.createQuery(); Properties props = new Properties(); props.setProperty(WLQueryProperties.GROUP_NAME, "myGroup"); Collection results=query.find(ejbql, props);

Migrating from WLQL to EJB QL

If you have an existing application that uses EJB 1.1, your container-managed entity EJBs can use WLQL for finder methods. This section provides a quick reference to common WLQL operations. Use this table to map the WLQL syntax to EJB QL syntax.

Table G-6 Migrating from WLQL to EJB QL

	Sample WLQL Syntax	Equivalent EJB QL Syntax
	
(= operand1 operand2)

	
WHERE operand1 = operand2

	
(< operand1 operand2)

	
WHERE operand1 < operand2

	
(> operand1 operand2)

	
WHERE operand1 > operand2

	
(<= operand1 operand2)

	
WHERE operand1 <= operand2

	
(>= operand1 operand2)

	
WHERE operand1 >= operand2

	
(! operand)

	
WHERE NOT operand

	
(& expression1 expression2)

	
WHERE expression1 AND expression2

	
(| expression1 expression2)

	
WHERE expression1 OR expression2

	
(like text_string%)

	
WHERE operand LIKE 'text_string%'

	
(isNull operand)

	
WHERE operand IS NULL

	
(isNotNull operand)

	
WHERE operand IS NOT NULL

Known Issue with Implied Cross Products

When an EJB QL query contains an implied cross product—as opposed to an explicit one—the EJB-QL query can return an empty result.

Consider this example query:

SELECT OBJECT(e) FROM EmployeeBean AS e WHERE e.name LIKE 'Joe' OR e.acct.balance < 100

This query references AccountEJB, but AccountEJB is not listed in the FROM clause. The result of this query is identical to that of a query with AccountEJB explicitly listed in the FROM clause.

EJB QL Error-Reporting

Compiler error messages in EJB QL provide a visual aid to identify which part of the query is in error and allow the reporting of more than one error per compilation.

Visual Indicator of Error in Query

When an error is reported, EJB QL indicates the location of the problem within these symbols: =>> <<=. These symbols are highlighted in red in the following sample compiler error report.

ERROR: Error from appc: Error while reading 'META-INF/FinderEmployeeBeanRDBMS.xml'. The error was:
Query:
EJB Name: FinderEmployeeEJB
Method Name: findThreeLowestSalaryEmployees
Parameter Types: (java.lang.String)
Input EJB Query: SELECT OBJECT(e) FROM FinderEmployeeBean e WHERE f.badField = '2' O
R (e.testId = ?1) ORDER BY e.salary
SELECT OBJECT(e) FROM FinderEmployeeBean e
WHERE =>> f.badField <<= = '2' OR (e.testId = ?1) ORDER BY e.salary
Invalid Identifier in EJB QL expression:
Problem, the path expression/Identifier 'f.badField' starts with an identifier: 'f'.
The identifier 'f', which can be either a range variable identifier or a collection member identifier,
is required to be declared in the FROM clause of its query or in the FROM clause of a parent query.
'f' is not defined in the FROM clause of either its query or in any parent query.
Action, rewrite the query paying attention to the usage of 'f.badField'.

Multiple Errors Reported after a Single Compilation

If a query contains multiple errors, EJB QL is now capable of reporting more than one of these after a single compilation. Previously, the compiler could only report one error per compilation. Reporting of subsequent errors required recompilation.

The compiler is not guaranteed to report all errors after a single compilation.

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/sfsblifecycle.gif
Lazy
Passivation

cache-type=NRU

AN

create.
instance of dlass Eager
upon frstclent request | Passivation

cache-type=LRU

after
+——idle-imeoutseconds —|
of inaciivty

Cache (memory)

“heTvE
e

passivato
least recenty used

idle nstances when
max-beans-in-cache

Passivate
cachad instances

that has been ida for
idie-imeoutseconds

e
o e
et imeoutssconds—| | TPASSIVATED } i have boen
ey 1 PASSVATED e on il for

idie-imecutseconds

OEBPS/img/implementation_process.gif
Write Java
classes and
interface
definitions

java files

Generate
Deployment
Descriptors

Compile
Java Source

Compiled classs

—

class files —

Generated classes

Deployment descriptor files

Edit
Deployment

Validate

Generate

Descriptors Deployment Package container
riptors Descriptors classes,
stubs,

skeletons

Archive fle or directory

Deploy

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Programming
Enterprise JavaBeans for Oracle
Weblogic Server, 11g Release 1
(10.3.1)

OEBPS/img/freepool.gif
the fiee

OEBPS/img/ejbenvironment.gif
 WebLogic Server

DI

oBC.

N\

‘Cannection Pool
Datasource

TS enabled criver

Message-Driven
EJB

Transaction

Manager
— [

HTTP Sorver

OEBPS/dcommon/oracle.gif

OEBPS/img/entitybeanlifecycle.gif
Request uses an instance
___—from the free pool, if available.
Otherwise, a new instance

s created
Free Pool - populated at startuj
by an administrator via the Ad
in accordance
| T voucan configwe
| | weblogeSenverto
POOLED Entty | asamsiciy e
[] B nstances | some beans fmive
POOLED icionce | | vt
becomes READY [Pt o
wnen L gets a PK ~

Cache - contains up to

READY instance is retumed
1o pool when space
is needed in cache or as
specified in <idle-timeout-seconds>

— ——=7 ACTWEbean

EJB Instances

becomes ACTIVE
when enlisted in tx

[
becomes READY | acTivE Entty |

READY Entty ‘r/"‘emmmew o 9 ntances |
\ READY instance /

OEBPS/img/gen_ejb_container.gif
JAR file or deployment directory JAR file or deployment directory

Local, remote, bean
Generate ejbHomelmp.c

container

eib-jarxml b HomelmplWLProsy.cla

weblogic-ejb-jarxml

JbEOImpL.cla

weblogic-cmp-jar.xml.

JbPSWeblogic_CMP_RDEMScla:

ETB bome, EIB localhome
Local, remote, bean

ejb-jarxml

weblogic-ejb-jarxml

weblogic-cmp-jarxml

