

Oracle® Fusion Middleware
Desktop Integration Developer's Guide for Oracle Application
Development Framework

11g Release 1 (11.1.1)

E10139-02

October 2009

Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development
Framework 11g Release 1 (11.1.1)

E10139-02

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Walter Egan, Himanshu Marathe

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

1 Introduction to Oracle ADF Desktop Integration

1.1 About the Oracle ADF Desktop Integration Module .. 1-1
1.2 About Oracle ADF Desktop Integration with Microsoft Excel .. 1-2
1.2.1 Overview of Creating an Integrated Excel Workbook .. 1-2
1.2.2 The Advantages of Integrating Excel with a Fusion Web Application 1-3

2 Introduction to the Oracle ADF Desktop Integration Sample Application

2.1 Introduction to the Master Price List Module .. 2-1
2.2 Setting Up and Executing the Master Price List Module .. 2-1
2.3 Overview of the Integrated Excel Workbooks in the Master Price List Module 2-2
2.3.1 Log on to the Fusion Web Application from an Integrated Excel Workbook 2-3
2.3.2 Download Rows of Data About Product Pricing.. 2-4
2.3.3 Simple Search for Products in the Workbooks.. 2-4
2.3.4 Advanced Search for Products in the Edit Price List Workbook 2-5
2.3.5 Modify Product Pricing Information in the Edit Price List Workbook 2-5
2.3.6 Upload Modified Product Information to the Fusion Web Application 2-6

3 Setting Up Your Development Environment

3.1 Introduction to Setting Up Your Development Environment.. 3-1
3.2 Required Oracle ADF Modules and Third-Party Software .. 3-2
3.3 Enabling Microsoft .NET Programmability Support... 3-3
3.4 Allowing Excel to Run an Integrated Excel Workbook... 3-3
3.5 Setting Up the Oracle ADF Desktop Integration Client Framework 3-3
3.6 Upgrading the Oracle ADF Desktop Integration Client Framework.................................. 3-4
3.7 Removing the Oracle ADF Desktop Integration Client Framework................................... 3-5
3.8 Using the Oracle ADF Desktop Integration Module on a System with Multiple Instances of

JDeveloper ... 3-5
3.8.1 What Happens When an Integrated Workbook is Opened in a New Version of Oracle

ADF Desktop Integration Module 3-6

iv

3.9 Localizing the Setup of the Oracle ADF Desktop Integration Client Framework 3-6

4 Preparing Your Integrated Excel Workbook

4.1 Introduction to Preparing Your Integrated Excel Workbooks ... 4-1
4.2 Adding Oracle ADF Desktop Integration to a Fusion Web Application............................ 4-1
4.2.1 How to Add Desktop Integration to Your JDeveloper Project 4-2
4.2.2 What Happens When You Add Desktop Integration to Your JDeveloper Project 4-2
4.3 Working with Page Definition Files for an Integrated Excel Workbook 4-4
4.3.1 How to Create a Page Definition File for an Integrated Excel Workbook 4-5
4.3.2 What Happens When You Create a Page Definition File .. 4-6
4.3.3 Reloading a Page Definition File in an Excel Workbook ... 4-6
4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel

Workbook ... 4-7
4.4 Preparing Your Workbook .. 4-7
4.4.1 How to Run the Conversion Utility .. 4-8
4.4.2 How to Open an Excel Workbook for the First Time ... 4-8
4.4.3 How to Add Additional Worksheets to an Integrated Excel Workbook 4-11

5 Getting Started with the Development Tools

5.1 Introduction to the Development Tools .. 5-1
5.2 Using the Bindings Palette... 5-4
5.3 Using the Components Palette.. 5-6
5.4 Using the Property Inspector .. 5-6
5.5 Using the Binding ID Picker.. 5-7
5.6 Using the Expression Builder.. 5-8
5.7 Using the Web Page Picker.. 5-9
5.8 Using the File System Folder Picker.. 5-10
5.9 Using the Page Definition Picker... 5-11
5.10 Using the Collection Editors... 5-12

6 Working with Oracle ADF Desktop Integration Form-type Components

6.1 Introduction to Oracle ADF Desktop Integration Form-type Components....................... 6-1
6.2 Inserting an ADF Button Component.. 6-2
6.3 Inserting an ADF Label Component .. 6-3
6.4 Inserting an ADF Input Text Component ... 6-4
6.5 Inserting an ADF Output Text Component .. 6-6
6.6 Inserting an ADF Desktop Integration List of Values Component 6-7
6.7 Displaying Output from a Managed Bean in an ADF Component..................................... 6-8
6.7.1 How to Display Output from a Managed Bean .. 6-8
6.7.2 What Happens at Runtime When an ADF Component Displays Output from a

Managed Bean .. 6-9
6.8 Displaying Concatenated or Calculated Data in Components ... 6-10
6.8.1 How to Configure a Component to Display Calculated Data 6-10

7 Working with Oracle ADF Desktop Integration Table-type Components

7.1 Introduction to Oracle ADF Desktop Integration Table-type Components 7-2

v

7.2 Page Definition Requirements for an ADF Table Component... 7-2
7.3 Inserting an ADF Table Component into an Excel Worksheet .. 7-3
7.3.1 How to Add a Column in an ADF Table Component ... 7-5
7.4 Configuring an ADF Table Component to Update Existing Data....................................... 7-5
7.4.1 How to Configure an ADF Table Component to Update Data 7-5
7.4.2 What Happens at Runtime When an ADF Table Component Updates Data............. 7-6
7.5 Configuring an ADF Table Component to Insert Data ... 7-6
7.5.1 How to Configure an ADF Table Component to Insert Data Using a View Object’s

Operations... 7-6
7.6 Configuring Oracle ADF Component to Download Data to an ADF Table Component 7-7
7.6.1 How to Configure an Oracle ADF Component to Download Data to an ADF Table

Component ... 7-8
7.6.2 What Happens at Runtime When an ADF Table Component Downloads Data 7-9
7.7 Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component .. 7-9
7.7.1 How to Configure a Worksheet to Download Pre-Insert Data to an ADF Table

Component .. 7-10
7.7.2 What Happens at Runtime When an ADF Table Component Downloads Pre-Insert

Data ... 7-10
7.8 Configuring an Oracle ADF Component to Upload Changes from an ADF Table

Component .. 7-10
7.8.1 How to Configure an Oracle ADF Component to Upload Data from an ADF Table

Component .. 7-11
7.8.2 What Happens at Runtime When an ADF Table Component Uploads Data 7-11
7.8.3 What Happens at Runtime When an Upload Fails ... 7-13
7.8.4 How to Create a Custom Upload Dialog .. 7-13
7.8.5 What Happens at Runtime When a Custom Upload Dialog Appears 7-14
7.9 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

 ... 7-14
7.9.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web

Application .. 7-14
7.9.2 What Happens at Runtime When an ADF Table Component Deletes Rows in a Fusion

Web Application ... 7-15
7.10 Batch Processing in an ADF Table Component... 7-16
7.10.1 Configuring Batch Options for an ADF Table Component 7-16
7.10.2 Row Flagging in an ADF Table Component... 7-17
7.11 Special Columns in the ADF Table Component ... 7-18
7.12 Creating a List of Values in an ADF Table Component Column 7-19
7.12.1 How to Create a List of Values in an ADF Table Component Column.................... 7-20
7.12.2 What Happens at Runtime When a Column Renders a List of Values 7-21
7.13 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table

Component ... 7-21
7.14 Adding a Dynamic Column to Your ADF Table Component... 7-22
7.14.1 How to Configure a Dynamic Column ... 7-22
7.14.2 What Happens at Runtime When Data Is Downloaded or Uploaded 7-23
7.14.3 How to Specify Header Labels for Dynamic Columns ... 7-24
7.14.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type . 7-24
7.15 Creating an ADF Read-Only Table Component ... 7-25
7.15.1 How to Insert an ADF Read-only Table Component .. 7-26

vi

7.15.2 How to Manually Add a Column to the ADF Read-only Table Component.......... 7-26
7.16 Limiting the Number of Rows Your Table-Type Component Downloads 7-26
7.16.1 How to Limit the Number of Rows a Component Downloads 7-27
7.16.2 What Happens at Runtime When You Limit the Number of Rows a Component

Downloads .. 7-28
7.17 Clearing the Values of Cached Attributes in an ADF Table Component........................ 7-28
7.17.1 How to Clear the Values of Cached Attributes in an ADF Table Component 7-29
7.17.2 What Happens at Runtime When the ADF Table Component Clears Cached Values

 ... 7-29
7.18 Tracking Changes in an ADF Table Component .. 7-29

8 Adding Interactivity to Your Integrated Excel Workbook

8.1 Introduction to Adding Interactivity to an Integrated Excel Workbook............................ 8-1
8.2 Using Action Sets .. 8-2
8.2.1 How to Invoke an ADFm Action in an Action Set.. 8-3
8.2.2 How to Invoke Component Actions in an Action Set .. 8-4
8.2.3 What You May Need to Know About an Action Set Invoking a Component Action.......

 ... 8-5
8.2.4 How to Invoke an Action Set from a Worksheet Event ... 8-6
8.2.5 How to Display a Status Message While an Action Set Executes................................. 8-7
8.2.6 What Happens at Runtime When an Action Set Displays a Status Message 8-8
8.2.7 How to Provide an Alert After the Invocation of an Action Set................................... 8-9
8.2.8 What Happens at Runtime When an Action Set Provides an Alert 8-11
8.2.9 How to Configure Error Handling for an Action Set .. 8-11
8.2.10 How to Invoke a Confirmation Action in an Action Set... 8-12
8.2.11 What Happens at Runtime When an Action Set Provides a Confirmation 8-13
8.3 Creating Menu Items... 8-13
8.3.1 How to Configure a Workbook Menu Item.. 8-14
8.3.2 How to Configure a Worksheet Menu Item ... 8-15
8.4 Displaying Web Pages from a Fusion Web Application.. 8-16
8.4.1 How to Display a Web Page in a Popup Dialog .. 8-17
8.4.2 How to Display a Web Page in Excel’s Document Actions.. 8-18
8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web

Application .. 8-19
8.5 Inserting Values in an ADF Table Component from a Web Page Pick Dialog............... 8-20
8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook 8-22
8.6.1 How to Create a Simple Search Form in an Integrated Excel Workbook................. 8-22
8.6.2 How to Create an Advanced Search Form in an Integrated Excel Workbook 8-24
8.7 Adding a Form to an Integrated Excel Workbook.. 8-26
8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook 8-27
8.8.1 How to Create a Dependent List of Values in an Excel Worksheet 8-29
8.8.2 What Happens at Runtime When a Dependent List of Values Renders in an Excel

Worksheet .. 8-30
8.8.3 How to Create a Dependent List of Values in an ADF Table Component’s Columns......

8-30
8.8.4 What Happens at Runtime When a Dependent List of Values Renders in an ADF Table

Component’s Columns .. 8-32

vii

8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table
Component Column... 8-33

8.8.6 What Happens at Runtime When a Dependent List of Values Renders in an Excel
Worksheet and an ADF Table Component Column .. 8-35

8.9 Configuring a Cell to Display a Dynamically Generated Hyperlink............................... 8-35
8.9.1 How to Configure a Cell to Display a Dynamically Generated Hyperlink 8-35
8.9.2 What Happens at Runtime When a Cell Displays Dynamically Generated Hyperlink ...

 ... 8-36
8.10 Using Calculated Cells in an Integrated Excel Workbook... 8-37
8.10.1 How to Create a Column That Displays Values Generated by an Excel Formula.. 8-37
8.10.2 What Happens at Runtime When a Column Displays Values Generated by an Excel

Formula ... 8-38
8.10.3 How to Calculate the Sum of a Table-Type Component Column............................. 8-38
8.10.4 What Happens at Runtime When Excel Calculates the Sum of a Table-Type

Component Column... 8-39
8.11 Using Macros in an Integrated Excel Workbook .. 8-39

9 Configuring the Appearance of an Integrated Excel Workbook

9.1 Introduction to Configuring the Appearance of an Integrated Excel Workbook 9-1
9.2 Working with Styles ... 9-2
9.2.1 How to Apply a Style to an Oracle ADF Component .. 9-4
9.2.2 What Happens at Runtime When a Style Is Applied to an Oracle ADF Component

.. 9-5
9.3 Applying Styles Dynamically Using EL Expressions.. 9-5
9.3.1 What Happens at Runtime When an EL Expression Is Evaluated............................... 9-6
9.3.2 How to Write an EL Expression That Applies a Style at Runtime 9-6
9.3.3 What You May Need to Know About EL Expressions That Apply Styles 9-7
9.3.4 How to Add a Hyperlink in an Integrated Excel Workbook .. 9-8
9.4 Using Labels in an Integrated Excel Workbook ... 9-8
9.5 Using Styles to Make Integrated Excel Workbooks Usable... 9-10
9.6 Branding Your Integrated Excel Workbook... 9-12
9.6.1 How to Brand an Integrated Excel Workbook ... 9-12
9.6.2 What Happens at Runtime to the Branding Items in an Integrated Excel Workbook

.. 9-13
9.7 Changing an Integrated Excel Workbook at Runtime.. 9-13

10 Internationalizing Your Integrated Excel Workbook

10.1 Introduction to Internationalizing Your Integrated Excel Workbook 10-1
10.2 Using Resource Bundles in an Integrated Excel Workbook .. 10-2
10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook 10-3
10.2.2 How to Replace String Key Values from the Reserved Resource Bundle 10-3
10.2.3 How to Override the Reserved Resource Bundle .. 10-4
10.2.4 What Happens at Runtime When You Override the Reserved Resource Bundle . 10-5
10.2.5 What You May Need to Know About Resource Bundles... 10-5
10.3 Localization in Oracle ADF Desktop Integration.. 10-6

viii

11 Securing Your Integrated Excel Workbook

11.1 Introduction to Securing Your Integrated Excel Workbook.. 11-1
11.2 Authenticating the Excel Workbook User.. 11-1
11.2.1 How a Fusion Web Application Determines If an Excel Workbook Has a Web Session

ID... 11-2
11.2.2 What Happens at Runtime When the Login Mechanism Is Invoked 11-2
11.2.3 What Happens at Runtime When the Logout Mechanism Is Invoked..................... 11-3
11.3 Checking the Integrity of an Integrated Excel Workbook’s Metadata............................. 11-3
11.3.1 How to Reset the Workbook ID.. 11-4
11.3.2 How to Disable the Metadata Tamper-Check in the Fusion Web Application....... 11-4
11.3.3 How to Allow Missing Entries in the Oracle ADF Desktop Integration Client Registry .

 ... 11-5
11.3.4 What Happens When the Metadata Tamper-Check is Performed............................ 11-5
11.4 What You May Need to Know About Securing an Integrated Excel Workbook 11-6

12 Adding Validation to an Integrated Excel Workbook

12.1 Introduction to Adding Validation to an Integrated Excel Workbook............................ 12-1
12.2 Providing Server-Side Validation for an Integrated Excel Workbook............................. 12-1
12.3 Providing Client-Side Validation for an Integrated Excel Workbook 12-2
12.4 Error Reporting in an Integrated Excel Workbook ... 12-2
12.5 Providing a Row-by-Row Status on an ADF Table Component 12-5
12.6 Adding Detail to Error Messages in an Integrated Excel Workbook 12-6
12.7 Handling Data Conflicts When Uploading Data from a Workbook................................ 12-6
12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data 12-7
12.7.2 What Happens at Runtime When You Configure a Workbook to Handle Data

Conflicts ... 12-7

13 Testing Your Integrated Excel Workbook

13.1 Introduction to Testing Your Integrated Excel Workbook .. 13-1
13.2 Testing Your Fusion Web Application ... 13-1
13.3 Testing Your Integrated Excel Workbook .. 13-2

14 Deploying Your Integrated Excel Workbook

14.1 Introduction to Deploying Your Integrated Excel Workbook... 14-1
14.2 Making the Oracle ADF Desktop Integration Client Framework Available to End Users

 ... 14-2
14.3 Configuring Security Settings for Excel.. 14-2
14.4 Publishing Your Integrated Excel Workbook .. 14-2
14.4.1 How to Publish an Integrated Excel Workbook... 14-3
14.4.2 What Happens When You Publish an Integrated Excel Workbook 14-3
14.5 Deploying a Published Workbook with Your Fusion Web Application 14-3
14.6 Passing Parameter Values from a Fusion Web Application Page to a Workbook 14-5
14.6.1 How to Configure the Fusion Web Application’s Page to Pass Parameters............ 14-6
14.6.2 How to Configure the Page Definition File for the Worksheet to Receive Parameters.....

 .. 14-7
14.6.3 How to Configure Properties in the Integrated Excel Workbook to Receive Parameters

 ... 14-8

ix

14.6.4 What Happens at Runtime When a Fusion Web Application Page Passes Parameters to
an Integrated Excel Workbook ... 14-10

15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in
Disconnected Mode

15.1 Introduction to Disconnected Workbooks ... 15-1
15.2 Deferring Login for an Integrated Excel Workbook ... 15-2
15.3 Restore Server Data Context Between Sessions... 15-3
15.3.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context 15-3
15.3.2 What Happens at Runtime When an Integrated Excel Workbook Restores Server Data

Context ... 15-4
15.4 Caching Lists of Values for Use in Disconnected Mode .. 15-4

A Oracle ADF Desktop Integration Component Properties and Actions

A.1 Frequently Used Properties in the Oracle ADF Desktop Integration Module A-1
A.2 ADF Input Text Component Properties .. A-3
A.3 ADF Output Text Component Properties ... A-4
A.4 ADF Label Component Properties ... A-4
A.5 ADF Desktop Integration List of Values Component Properties A-4
A.6 TreeNodeList Subcomponent Properties .. A-5
A.7 ModelDrivenColumnComponent Subcomponent Properties .. A-5
A.8 ADF Button Component Properties ... A-6
A.9 ADF Table Component Properties and Actions ... A-6
A.9.1 ADF Table Component Properties ... A-6
A.9.2 ADF Table Component Column Properties ... A-9
A.9.3 ADF Table Component Actions.. A-10
A.10 ADF Read-only Table Component Properties and Actions... A-13
A.11 Action Set Properties .. A-13
A.11.1 Confirmation Action Properties ... A-15
A.11.2 Dialog Action Properties ... A-16
A.12 Workbook Actions and Properties .. A-16
A.13 Worksheet Actions and Properties.. A-20

B Oracle ADF Desktop Integration EL Expressions

B.1 Guidelines for Creating EL Expressions... B-1
B.2 EL Syntax for Oracle ADF Desktop Integration Components .. B-2
B.3 Attribute Control Hints in the Oracle ADF Desktop Integration Module B-3

C Troubleshooting an Integrated Excel Workbook

C.1 Verifying That Your Fusion Web Application Supports Desktop Integration C-1
C.2 Verifying End-User Authentication for Integrated Excel Workbooks............................... C-2
C.3 Generating Log Files for an Integrated Excel Workbook... C-2
C.3.1 About Server-Side Logging... C-2
C.3.2 About Client-Side Logging.. C-3
C.3.2.1 How to Generate Log Files using a Configuration File ... C-4
C.3.2.2 How to Configure Logging Using User Environment Variables C-5

x

C.3.2.3 What You May Need to Know About adfdi-common Object............................... C-6
C.4 Exporting Excel Workbook Metadata... C-6
C.5 Common Desktop Integration Problems.. C-6

D Using Workbook Management Tools

D.1 Using the Workbook Conversion Utility.. D-1
D.1.1 Configuring JDeveloper To Run Workbook Conversion Utility D-2
D.2 Using the Workbook Administration Tool .. D-3

E Desktop Integration Settings in the Web Application Deployment Descriptor

E.1 Configuring the Oracle ADF Desktop Integration Module Servlet E-1
E.2 Configuring the ADF Desktop Integration Excel Download Filter E-3
E.3 Examples in a Deployment Descriptor File.. E-6

F String Keys in the Reserved Resource Bundle

G Java Data Types Supported By Oracle ADF Desktop Integration

H Using ADF Desktop Integration Model API

H.1 About Temporary Row Object ... H-1
H.2 Introduction to ADF Desktop Integration Model API ... H-2
H.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project .

 ..H-2
H.3 ADF Desktop Integration Model API Classes and Methods... H-3
H.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class H-3
H.3.1.1 The getAdfdiTempChildRow Method ... H-3
H.3.1.2 The getAdfdiTempRowForView Method.. H-3
H.3.1.3 The getChildViewDef Method .. H-3

I End User Actions

I.1 Importing Data From a Non-Integrated Excel Worksheet .. I-1
I.2 Removing Personal Information.. I-2
I.3 Limitations of Integrated Excel Workbook at Runtime.. I-2

Index

xi

Preface

Welcome to the Desktop Integration Developer's Guide for Oracle Application Development
Framework.

Audience
This manual is intended for enterprise developers who configure desktop applications
to integrate with the Oracle Fusion Middleware Application Development Framework
(Oracle ADF).

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

xii

Related Documents
For more information, see the following:

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and
file names, URLs, text that appears on the screen, or text that you enter.

1

Introduction to Oracle ADF Desktop Integration 1-1

1 Introduction to Oracle ADF Desktop
Integration

This chapter provides an introduction to the Oracle ADF Desktop Integration module.

This chapter includes the following sections:

■ Section 1.1, "About the Oracle ADF Desktop Integration Module"

■ Section 1.2, "About Oracle ADF Desktop Integration with Microsoft Excel"

1.1 About the Oracle ADF Desktop Integration Module
Many end users of Fusion web applications use desktop applications, such as
Microsoft Excel, to manage information also used by their web application. The Oracle
ADF Desktop Integration module provides a framework for Oracle ADF developers to
extend the functionality provided by a Fusion web application to desktop applications.
It allows end users to avail themselves of Oracle ADF functionality when they are
disconnected from their company network. End users may also prefer the Oracle ADF
Desktop Integration module because it provides Excel's familiar user interface to
undertake information management tasks, such as performing complex calculations or
uploading a large amount of data, easily and seamlessly.

The Oracle ADF Desktop Integration module is part of the Oracle ADF architecture.
More information about the Oracle ADF architecture can be found in the "Oracle
ADF Architecture" section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Figure 1–1 illustrates the architecture of the Oracle ADF Desktop Integration module.
The module comprises the following components:

■ Oracle ADF Desktop Integration client framework

■ Oracle ADF Desktop Integration remote servlet

■ Oracle ADF Model layer (ADFm)

About Oracle ADF Desktop Integration with Microsoft Excel

1-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 1–1 Oracle ADF Desktop Integration Module Architecture

1.2 About Oracle ADF Desktop Integration with Microsoft Excel
Currently, the Oracle ADF Desktop Integration module supports integration with
Microsoft Office Excel 2007.

1.2.1 Overview of Creating an Integrated Excel Workbook
Creating an integrated Excel workbook involves the steps described in Table 1–1.

Note: This guide uses the term integrated Excel workbook to refer to
Excel workbooks that you integrate with a Fusion web application
and to distinguish these workbooks from workbooks that have not
been integrated with a Fusion web application or configured with
Oracle ADF functionality.

Table 1–1 Steps to Create an Integrated Excel Workbook

Use To

JDeveloper Create a secure Fusion web application.

For information about creating a secure Fusion web
application, see the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Additional information about securing an integrated Excel
workbook with a Fusion web application can be found in
Chapter 11, "Securing Your Integrated Excel Workbook".

Add data controls that expose the elements you require in
Microsoft Excel.

Create page definition files that expose the Oracle ADF bindings
to use in Excel.

For more information, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook".

About Oracle ADF Desktop Integration with Microsoft Excel

Introduction to Oracle ADF Desktop Integration 1-3

1.2.2 The Advantages of Integrating Excel with a Fusion Web Application
Advantages that accrue from integrating Microsoft Excel workbooks with your Fusion
web application include:

■ Providing end users with access to data and functionality hosted by a Fusion web
application through a desktop interface (Microsoft Excel) that may be more
familiar to them.

■ Users can access data hosted by a Fusion web application while not connected to
the application. They must log on to the Fusion web application to download data.
Once data is downloaded to an Excel workbook, they can modify it while
disconnected from the Fusion web application.

Excel Create the Excel workbooks that you intend to configure with
Oracle ADF functionality. Run the conversion utility that the
Oracle ADF Desktop Integration module provides on the
workbooks so that you can begin to create your integrated Excel
workbook.

For more information, see Section 4.4, "Preparing Your
Workbook".

Configure the Excel workbook using the Oracle ADF bindings
that you exposed in the page definition files and the Oracle ADF
components that the Oracle ADF Desktop Integration module
provides.

For more information, see the following sections and chapters:

■ Chapter 5, "Getting Started with the Development Tools"

This chapter provides an overview of the tools that the
Oracle ADF Desktop Integration module provides so that
you can configure an Excel workbook with Oracle ADF
functionality.

■ Chapter 6, "Working with Oracle ADF Desktop Integration
Form-type Components"

This chapter describes how you insert Oracle ADF Desktop
Integration form-type components into Excel worksheets
and configure their properties to determine behavior at
runtime.

■ Chapter 7, "Working with Oracle ADF Desktop Integration
Table-type Components"

This chapter describes how you can use the Oracle ADF
Desktop Integration Table and Read-only Table components
to provide end users with a means of displaying and editing
data hosted by a Fusion web application.

■ Chapter 12, "Adding Validation to an Integrated Excel
Workbook"

This chapter describes how you provide validation for your
integrated Excel workbook.

Test your integrated Excel workbook. For more information, see
Chapter 13, "Testing Your Integrated Excel Workbook".

Once you complete the integration of your Excel workbook with
your Fusion web application, you deploy it to make it available
to your end users. For information about this task, see
Chapter 14, "Deploying Your Integrated Excel Workbook".

Table 1–1 (Cont.) Steps to Create an Integrated Excel Workbook

Use To

About Oracle ADF Desktop Integration with Microsoft Excel

1-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ Bulk entry and update of data may be easier to accomplish through a
spreadsheet-style interface.

2

Introduction to the Oracle ADF Desktop Integration Sample Application 2-1

2 Introduction to the Oracle ADF Desktop
Integration Sample Application

This chapter provides an overview of the Master Price List module which is the Oracle
ADF Desktop Integration module’s sample application. The Master Price List module
is a module in the Fusion Order Demo application. It contains several Microsoft Excel
workbooks that are integrated with a Fusion web application.

This chapter includes the following sections:

■ Section 2.1, "Introduction to the Master Price List Module"

■ Section 2.2, "Setting Up and Executing the Master Price List Module"

■ Section 2.3, "Overview of the Integrated Excel Workbooks in the Master Price List
Module"

2.1 Introduction to the Master Price List Module
The Master Price List module allows end users to download information (product
names, prices, and so on) about electronic devices that are sold through a
storefront-type web application. End users can search the downloaded information,
modify pricing information, and upload the modified information to the Fusion web
application.

You must set up your development environment before you can set up and run the
Master Price List module. After you set up your development environment, you can
download the Fusion Order Demo application, which includes the Master Price List
module.

2.2 Setting Up and Executing the Master Price List Module
Set up your development environment as described in Chapter 3, "Setting Up Your
Development Environment" so that you can run the Master Price List module.

Once you have set up your development environment, download the Fusion Order
Demo application, which includes the Master Price List module. For information about
how to download the Fusion Order Demo application, see the "How to Download the
Application Resources" section in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

The Fusion Order Demo application that you download includes a directory named
Infrastructure. This directory includes scripts that create the users and data that
the Fusion Order Demo application and Master Price List module require. For
information about how to run these scripts, see the "How to Install the Fusion Order

Overview of the Integrated Excel Workbooks in the Master Price List Module

2-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Demo Schema" section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

To execute the Master Price List module:
1. Open the MasterPriceList.jws file in JDeveloper.

This file is located in the MasterPriceList subdirectory of the directory into
which you extracted the Fusion Order Demo application.

2. In the Application Navigator, click the Application Resources accordion title to
expand the panel.

3. Right-click FOD connection and choose Properties.

4. In the Edit Database Connection dialog, modify the connection information shown
in Table 2–1 for your environment.

Do not modify the user name and password fod/fusion. These must remain
unchanged. Click OK.

5. In the Application Navigator, right-click Model and choose Rebuild Model.jpr.

6. In the Application Navigator, right-click ViewController and choose Rebuild
ViewController.jpr.

7. In the Application Navigator, expand the ViewController project, right-click
login.jspx and choose Run.

The login.jspx page runs and displays a login form.

8. To log on as an administrator, enter sking in the User Name field and welcome1
in the Password field. To log on as a manager, enter ahunold in the User Name
field and welcome1 in the Password field. For more information about users, see
Section 2.3.1, "Log on to the Fusion Web Application from an Integrated Excel
Workbook".

You can now open and connect the integrated Excel workbooks described in
Section 2.3, "Overview of the Integrated Excel Workbooks in the Master Price List
Module" to the Fusion web application that the Master Price List module
deploys.

2.3 Overview of the Integrated Excel Workbooks in the Master Price List
Module

The Master Price List module provides the EditPriceList.xlsx,
AdvEditPriceList.xlsx and ReadOnlyPriceList.xlsx integrated Excel
workbooks. All workbooks allow end users to:

Table 2–1 Database Connection Properties for Master Price List Module

Property Description

Host Name The host name for your database. For example:

localhost

JDBC Port The port for your database. For example:

1521

SID The SID of your database. For example:

ORCL or XE

Overview of the Integrated Excel Workbooks in the Master Price List Module

Introduction to the Oracle ADF Desktop Integration Sample Application 2-3

■ Log on to the Fusion web application from the workbook

■ Download rows of data about product pricing

■ Search the workbook for information it contains about product pricing

In addition, the EditPriceList.xlsx and AdvEditPriceList.xlsx workbooks
permits end users to:

■ Search the Master Price List module Fusion web application for information about
products and product pricing

■ Modify product pricing information in the workbook

■ Use Excel formulas to perform calculations on values in an ADF Table component

■ Upload modified product pricing information to the Master Price List module
Fusion web application from the workbook

Subsequent sections in this chapter provide more information about the functionality
in the workbooks along with cross-references to implementation details.

2.3.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
At runtime, both workbooks in the Master Price List module render a menu that
allows end users to log on to the Fusion web application. Figure 2–1 shows the
runtime menu in the EditPriceList.xlsx workbook.

Figure 2–1 Runtime Menu

The EditPriceList.xlsx workbook prompts the end user to log on to the Fusion
web application when the end user clicks Login or invokes an action that requires a
connection with the Fusion web application. Because the worksheet Startup event
in the EditPriceList.xlsx workbook invokes the ADF Table component
Download action, end users are prompted to log on immediately after starting up the
EditPriceList.xlsx workbook.

The Login menu item is a workbook menu item that invokes the workbook Login
action. For information about configuring the Login menu item (and other menu items
in Figure 2–1), see Section 8.3, "Creating Menu Items".

The workbook Login action invokes the Fusion web application’s authentication
process. For more information about implementing this functionality, see Chapter 11,
"Securing Your Integrated Excel Workbook".

The Master Price List module provides two user profiles to log in to the application.
Table 2–2 summarizes both user profiles.

Overview of the Integrated Excel Workbooks in the Master Price List Module

2-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

2.3.2 Download Rows of Data About Product Pricing
The EditPriceList.xlsx workbook uses an ADF Table component to host
information downloaded from the Fusion web application about product pricing.
This component allows end users to edit rows and upload modified rows to the
Fusion web application.

The following sections provide information about how to implement the download
functionality:

■ Each worksheet that you integrate with a Fusion web application requires an
associated page definition file. The Price List worksheet in the
EditPriceList.xlsx workbook is associated with the
ExcelPriceListPageDef.xml page definition file. In the Application
Navigator, expand the following nodes to view this file:

ViewController > Application Sources > oracle.foddemo.masterpricelist > view
> pageDefs

For information about how to configure a page definition file, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel Workbook".

■ The ADF Table component Download action downloads data from the Fusion
web application to the worksheet. For information about how you invoke this
action, see Section 7.6, "Configuring Oracle ADF Component to Download Data to
an ADF Table Component".

■ In the EditPriceList.xlsx workbook, the worksheet Startup event invokes
an action set that includes the ADF Table component Download action. For
information about configuring worksheet events, see Section 8.2.4, "How to Invoke
an Action Set from a Worksheet Event".

The ReadOnlyPriceList.xlsx workbook uses an ADF Read-only Table
component to download data from the Fusion web application about product
pricing. End users can view this data, but they cannot modify data or save changes to
the Fusion web application.

The following sections provide information about how to implement the download
functionality of the ReadOnlyPriceList.xlsx workbook:

■ For information about creating an ADF Read-only Table component, see
Section 7.15, "Creating an ADF Read-Only Table Component".

■ An ADF Button component is configured to invoke an action set that includes the
ADF Read-only Table component Download action. For information about
creating an ADF Button component, see Section 6.2, "Inserting an ADF Button
Component".

2.3.3 Simple Search for Products in the Workbooks
Both the EditPriceList.xlsx and the ReadOnlyPriceList.xlsx workbooks
have ADF components configured to provide end users with a search form. End users

Table 2–2 User Profiles for Master Price List Module

Login Name Password Role Description

sking welcome1 Administrator Enables you to access and modify
information.

ahunold welcome1 Manager Enables you to access information, but
not to modify it.

Overview of the Integrated Excel Workbooks in the Master Price List Module

Introduction to the Oracle ADF Desktop Integration Sample Application 2-5

can enter a search term in the form to invoke a query on the Fusion web application
and download the results to the workbook. Figure 2–2 shows a runtime view of these
components in the EditPriceList.xlsx workbook.

Figure 2–2 Runtime View of a Simple Search Form in the EditPriceList.xlsx Workbook

The following sections provide information about how to implement a simple search
form that you can use in the EditPriceList.xlsx workbook:

■ For information about creating a search form, see Section 8.6, "Creating ADF
Databound Search Forms in an Integrated Excel Workbook".

■ For information about creating a form, Section 8.7, "Adding a Form to an
Integrated Excel Workbook".

2.3.4 Advanced Search for Products in the Edit Price List Workbook
The EditPriceList.xlsx workbook has search functionality configured that
allows an end user to invoke a page from the Fusion web application, specify search
criteria, and download the results to the ADF Table component in the workbook.
Figure 2–3 shows the page from the Fusion web application that end users invoke by
clicking the Advanced Search button.

Figure 2–3 Advanced Search Dialog in the EditPriceList.xlsx Workbook

For more information about how to implement the advanced search functionality in
the EditPriceList.xlsx workbook, see Section 8.6, "Creating ADF Databound
Search Forms in an Integrated Excel Workbook".

2.3.5 Modify Product Pricing Information in the Edit Price List Workbook
End users of the EditPriceList.xlsx workbook can edit product pricing
information that the ADF Table component downloads from the Fusion web
application. Columns in the runtime ADF Table component that have an
UpdateComponent property configured permit end users to modify values and
upload the changes to the Fusion web application. For example, end users can modify
the values that appear in the ProductId, ProductName, and CostPrice columns.

End users can enter or modify the values that appear in the cells of other columns.
However, the ADF Table component does not upload these changes to the Fusion web

Overview of the Integrated Excel Workbooks in the Master Price List Module

2-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

application, because some of these columns display the results of evaluating Excel
formulas using values downloaded from the Fusion web application. Such columns
should use a read-only style to distinguish themselves from other columns. For
example, the Difference column displays the result of an Excel formula that subtracts
the cost price from the list price and uses a read-only style, which makes it easily
distinguishable from other input columns.

Other columns, such as Status and Changed, appear in the ADF Table component to
provide status information about upload operations and changed columns.

The following sections provide information about how to implement this
functionality:

■ For information about inserting an ADF Table component, see Section 7.3,
"Inserting an ADF Table Component into an Excel Worksheet".

■ For information about using Excel formulas, see Section 8.10, "Using Calculated
Cells in an Integrated Excel Workbook".

■ For information about special columns, such as Status and Changed, see
Section 7.11, "Special Columns in the ADF Table Component".

2.3.6 Upload Modified Product Information to the Fusion Web Application
The EditPriceList.xlsx workbook allows end users to upload modified data in
the ADF Table component to the Fusion web application. An action set is configured
for the runtime Save Changes button that invokes the ADF Table component’s
Upload action. For information about implementing this functionality, see Section 7.8,
"Configuring an Oracle ADF Component to Upload Changes from an ADF Table
Component".

3

Setting Up Your Development Environment 3-1

3 Setting Up Your Development Environment

This chapter describes how you set up your development environment so that you can
integrate an Excel workbook with a Fusion web application.

This chapter includes the following sections:

■ Section 3.1, "Introduction to Setting Up Your Development Environment"

■ Section 3.2, "Required Oracle ADF Modules and Third-Party Software"

■ Section 3.3, "Enabling Microsoft .NET Programmability Support"

■ Section 3.4, "Allowing Excel to Run an Integrated Excel Workbook"

■ Section 3.5, "Setting Up the Oracle ADF Desktop Integration Client Framework"

■ Section 3.6, "Upgrading the Oracle ADF Desktop Integration Client Framework"

■ Section 3.7, "Removing the Oracle ADF Desktop Integration Client Framework"

■ Section 3.8, "Using the Oracle ADF Desktop Integration Module on a System with
Multiple Instances of JDeveloper"

■ Section 3.9, "Localizing the Setup of the Oracle ADF Desktop Integration Client
Framework"

3.1 Introduction to Setting Up Your Development Environment
Setting up your development environment involves making sure that you have the
correct versions of JDeveloper, Microsoft Office, and Microsoft Internet Explorer
installed. You must also enable support for Microsoft .NET programmability, if it is not
enabled. Once you verify that you have the required software and enabled Microsoft
.NET programmability, complete the setup of your development environment by:

■ Allowing Excel to run an integrated Excel workbook

■ Setting up the Oracle ADF Desktop Integration client framework

The chapter concludes by describing how you can remove the Oracle ADF Desktop
Integration client framework and use the Oracle ADF Desktop Integration module on
a system where you have multiple instances of JDeveloper. These latter sections
provide information that is useful if you want to move the Oracle ADF Desktop
Integration client framework to a directory that is independent of your JDeveloper
installation.

Required Oracle ADF Modules and Third-Party Software

3-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

3.2 Required Oracle ADF Modules and Third-Party Software
Before you begin to integrate your desktop application with a Fusion web application,
ensure that you have the required Oracle ADF modules and third-party software
installed and configured:

■ JDeveloper

Install the current release of JDeveloper. The Oracle ADF Desktop Integration
module is located in the JDEV_HOME\jdeveloper\adfdi directory, where
JDEV_HOME is the directory into which you installed JDeveloper. The adfdi
directory is also known as ADFDI_HOME.

The bin\excel\client subdirectory under ADFDI_HOME contains a setup tool
(setup.exe) that installs the Oracle ADF Desktop Integration client framework
on the system where you run this tool. For more information, see Section 3.5,
"Setting Up the Oracle ADF Desktop Integration Client Framework".

■ Microsoft Windows

Microsoft Windows operating systems support the development and deployment
of Excel workbooks that integrate with Fusion web applications. For more
information about supported versions of Windows, see the "Oracle JDeveloper
and Application Development Framework Certification Information" page on
OTN at:

http://www.oracle.com/technology/products/jdev/collateral/pap
ers/11/certification/index.html

■ Microsoft Office Excel 2007

The Oracle ADF Desktop Integration module supports the integration of Fusion
web applications with the following types of Excel workbook:

– Excel Workbook

The default file format for Excel 2007 workbooks is the Excel 2007 XML-based
file format (.xlsx).

– Excel Macro-Enabled Workbook

Workbooks in this format (.xlsm) use the Excel 2007 XML-based file format
and can store VBA macro code.

The Oracle ADF Desktop Integration module does not support the use of other
Excel file formats.

■ Internet Explorer

Parts of the Oracle ADF Desktop Integration module use a browser control that is
hosted in a Microsoft .NET Framework web browser control. Internet Explorer is
the only web browser that supports this feature. For more information about
supported versions of Internet Explorer, see the "Oracle JDeveloper and
Application Development Framework Certification Information" page on OTN at:

http://www.oracle.com/technology/products/jdev/collateral/pap
ers/11/certification/index.html

■ Application server

For information about the application servers that you can use to deploy an
application developed using the Oracle ADF Desktop Integration module, see the
see the "Oracle JDeveloper and Application Development Framework Certification
Information" page on OTN at:

Setting Up the Oracle ADF Desktop Integration Client Framework

Setting Up Your Development Environment 3-3

http://www.oracle.com/technology/products/jdev/collateral/pap
ers/11/certification/index.html

3.3 Enabling Microsoft .NET Programmability Support
Microsoft Office Excel 2007 must have Microsoft .NET programmability support
enabled before you can set up the Oracle ADF Desktop Integration module and start
development of an Excel workbook that integrates with a Fusion web application. If
you enabled Microsoft .NET programmability support during installation of Microsoft
Office Excel 2007, no further action is required.

To enable Microsoft .NET programmability support:
1. Click the Windows Start button, click Settings > Control Panel.

2. In the Control Panel, select and open Add or Remove Programs.

3. Select the entry in the Add or Remove Programs dialog box for Microsoft Office
2007 and click Change.

4. Follow the instructions on the wizard that appears to enable Microsoft .NET
programmability support for Microsoft Office Excel.

3.4 Allowing Excel to Run an Integrated Excel Workbook
You must configure security settings for the Excel application so that you can
successfully run an integrated Excel workbook in design mode, test mode and when
published post-development. To configure the settings, select the checkbox for Trust
access to the VBA project object model as described in the following procedure.
Perform this procedure once.

To allow Excel to run an integrated Excel workbook:
1. Open Excel.

2. Click the Microsoft Office button and then click Excel Options.

3. Click the Trust Center tab and then click Trust Center Settings.

4. Click the Macro Settings tab and then click the Trust access to the VBA project
object model checkbox.

5. Click OK.

For more information about securing an Excel workbook that is integrated with a
Fusion web application, see Chapter 11, "Securing Your Integrated Excel Workbook"
and Section 14.3, "Configuring Security Settings for Excel" for additional information
that may be required.

3.5 Setting Up the Oracle ADF Desktop Integration Client Framework
The Oracle ADF Desktop Integration module includes a setup tool (setup.exe) that
verifies if software in the following list is installed on the system where you run the
setup tool. If one or more of these pieces of software is not installed, the setup tool
installs it in the order specified.

1. Windows Installer 3.1

2. Microsoft .NET Framework

Upgrading the Oracle ADF Desktop Integration Client Framework

3-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

The Microsoft .NET Framework 3.5 Service Pack 1 provides the runtime and
associated files required to run applications developed to target the Microsoft
.NET Framework.

3. Microsoft Visual Studio Tools for Microsoft Office

The Microsoft Visual Studio Tools for the Microsoft Office system (version 3.0
Runtime) Service Pack 1 (x86) is required to run VSTO solutions for the 2007
Microsoft Office system.

4. Oracle ADF Desktop Integration client framework

This appears as Oracle ADF 11g Release 1 (11.1.1)Desktop Integration in the
Microsoft Windows Add or Remove Programs dialog box.

Although you do not require administrator privileges to execute the setup.exe tool
(available in ADFDI_HOME\bin\excel\client directory), administrator privileges
may be required to execute the installers for the software that setup.exe attempts to
download and install. You should also ensure that the proxy settings for Internet
Explorer are configured to allow access to *.microsoft.com because the
setup.exe tool attempts to automatically download missing prerequisite software
from Microsoft’s web site.

If you use multiple instances of JDeveloper or if you have an existing instance of the
Oracle ADF Desktop Integration client framework on the system where you plan to
invoke the setup.exe tool, review the information in Section 3.8, "Using the Oracle
ADF Desktop Integration Module on a System with Multiple Instances of JDeveloper"
before you perform the following procedure.

By default, the setup.exe tool executes in English. You can change the language that
appears when the setup.exe tool executes by following the instructions in
Section 3.9, "Localizing the Setup of the Oracle ADF Desktop Integration Client
Framework".

To set up the Oracle ADF Desktop Integration client framework:
1. Execute the setup.exe file located in the ADFDI_HOME\bin\excel\client

folder. For example, if you installed JDeveloper in D:\JDev, then setup.exe is
available in following folder:

D:\JDev\jdeveloper\adfdi\bin\excel\client

2. Follow the instructions that appear in the dialog boxes launched by setup.exe to
successfully install the required components.

3. If prompted, click Yes to restart the system and complete the setup of the Oracle
ADF Desktop Integration module.

3.6 Upgrading the Oracle ADF Desktop Integration Client Framework
If you are using an old version of Oracle ADF Desktop Integration client framework,
the following procedure guides you how to upgrade to a new version.

Note: Installation of Microsoft .NET Framework may require you to
restart the system where you install it. After you restart, the setup tool
automatically recommences to finalize installation.

Using the Oracle ADF Desktop Integration Module on a System with Multiple Instances of JDeveloper

Setting Up Your Development Environment 3-5

To upgrade the Oracle ADF Desktop Integration client framework:
1. Uninstall the old Oracle ADF Desktop Integration client framework. For more

information, see Section 3.7, "Removing the Oracle ADF Desktop Integration
Client Framework".

2. Install the new version of Oracle ADF Desktop Integration client framework. For
more information, see Section 3.5, "Setting Up the Oracle ADF Desktop Integration
Client Framework".

3.7 Removing the Oracle ADF Desktop Integration Client Framework
You use the Microsoft Windows Control Panel to remove the Oracle ADF Desktop
Integration client framework from the system where you set it up. After you remove
the Oracle ADF Desktop Integration client framework, you can no longer use
integrated Excel workbooks on this system unless you reinstall the framework.

To remove the Oracle ADF Desktop Integration client framework:
1. Click the Windows Start button and then click Settings > Control Panel.

2. In the Control Panel, select and open Add or Remove Programs.

3. In the Add or Remove Programs dialog box, select Oracle ADF 11g Release 1
(11.1.1) Desktop Integration and then click Remove.

3.8 Using the Oracle ADF Desktop Integration Module on a System with
Multiple Instances of JDeveloper

You can have only one active installation of the Oracle ADF Desktop Integration
module on a given system. By default, the Oracle ADF Desktop Integration module
is extracted to ADFDI_HOME. If you decide to move to another version of JDeveloper in
a different directory, you must remove the old version of the Oracle ADF Desktop
Integration module, as described in Section 3.7, "Removing the Oracle ADF Desktop
Integration Client Framework". You must then set up the Oracle ADF Desktop
Integration module provided with the new version of JDeveloper that you are moving
to, as described in Section 3.5, "Setting Up the Oracle ADF Desktop Integration Client
Framework".

Alternatively, set up the Oracle ADF Desktop Integration module in a directory that is
independent of your JDeveloper installation. This approach means that you do not
have to remove the Oracle ADF Desktop Integration module before moving to a newer
version.

To set up the Oracle ADF Desktop Integration module in an independent
directory:
1. Create a directory independent of the JDeveloper installation directory. For

example, you may create the following directory:

D:\adfdi-excel-setup

2. When you move to a newer version of JDeveloper, copy the contents of the
following directory:

ADFDI_HOME\bin\excel\

Note: If you do not uninstall the old version, an error occurs unless
the new installer is in the exact same location as the old installer.

Localizing the Setup of the Oracle ADF Desktop Integration Client Framework

3-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

to:

D:\adfdi-excel-setup

where ADFDI_HOME is the directory where Oracle ADF Desktop Integration
module is extracted.

3. Execute the setup.exe file located in D:\adfdi-excel-setup\client.

4. Follow the instructions that appear in the dialog boxes launched by setup.exe to
set up the new version of the Oracle ADF Desktop Integration module.

5. If prompted, click Yes to restart the system and complete the setup of the Oracle
ADF Desktop Integration module.

3.8.1 What Happens When an Integrated Workbook is Opened in a New Version of
Oracle ADF Desktop Integration Module

Each integrated workbook includes a set of hidden metadata that describes and
controls the integration of the workbook with the web application.

When you open an integrated workbook created in a previous version, the Oracle ADF
Desktop Integration module detects the version and upgrades the metadata of the
integrated workbook to the version installed on client.

3.9 Localizing the Setup of the Oracle ADF Desktop Integration Client
Framework

Follow the instructions in this section to localize the setup of the Oracle ADF Desktop
Integration client framework. By default, the setup tool described in Section 3.5,
"Setting Up the Oracle ADF Desktop Integration Client Framework" executes in
English. You download and install a language pack from the Microsoft Download
Centre for the language that you want to appear when the setup tool executes.

This section assumes that no instance of the Oracle ADF Desktop Integration client
framework is present on your system and that your system uses a non-English version
of the operating system. If the Oracle ADF Desktop Integration client framework is
present, remove it as described in Section 3.7, "Removing the Oracle ADF Desktop
Integration Client Framework".

For information about supported operating systems, see Section 3.2, "Required Oracle
ADF Modules and Third-Party Software".

To localize the setup of the Oracle ADF Desktop Integration client framework:
1. Download the appropriate language pack (for example, French) for Microsoft

Visual Studio Tools for the Microsoft Office from the Microsoft Download Centre
at:

http://www.microsoft.com/downloads/

2. Install the language pack that you downloaded in Step 1.

3. Set up the Oracle ADF Desktop Integration client framework as described in
Section 3.5, "Setting Up the Oracle ADF Desktop Integration Client Framework".

The installers invoked by the setup.exe tool appear in the language of the
language pack you installed.

4

Preparing Your Integrated Excel Workbook 4-1

4 Preparing Your Integrated Excel Workbook

This chapter describes preparatory tasks that you must perform in developing your
Fusion web application so that you can integrate an Excel workbook with the finalized
application. This chapter also describes how you configure an Excel workbook before
you add Oracle ADF functionality, using the tools provided in the Oracle ADF
Desktop Integration module.

This chapter includes the following sections:

■ Section 4.1, "Introduction to Preparing Your Integrated Excel Workbooks"

■ Section 4.2, "Adding Oracle ADF Desktop Integration to a Fusion Web
Application"

■ Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook"

■ Section 4.4, "Preparing Your Workbook"

4.1 Introduction to Preparing Your Integrated Excel Workbooks
This chapter, and this guide as a whole, assumes that you have developed a
functioning Fusion web application as described in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Having developed your Fusion web application, you perform the tasks described in
this chapter and elsewhere in this guide to configure an integrated Excel workbook
with your Fusion web application. These tasks include adding the bindings that you
require at runtime in the Excel workbook, preparing the Excel workbook for
configuration with Oracle ADF functionality, and configuring the workbook by adding
the Oracle ADF components that provide the functionality you require at runtime.

4.2 Adding Oracle ADF Desktop Integration to a Fusion Web Application
You enable Excel desktop integration for your Fusion web application by adding
Oracle ADF Desktop Integration to the technology scope of the JDeveloper project
where you develop the Fusion web application.

You must add ADF Library Web Application Support to the technology scope if you
plan to distribute integrated Excel workbooks by adding them to ADF library files
through EAR and JAR files.

Adding Oracle ADF Desktop Integration to a Fusion Web Application

4-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

4.2.1 How to Add Desktop Integration to Your JDeveloper Project
Use the Project Properties dialog box in JDeveloper to add Oracle ADF Desktop
Integration to the technology scope of your project.

To add Oracle ADF Desktop Integration to your project:
1. In the Application Navigator, right-click the project to which you want to add the

Oracle ADF Desktop Integration module and choose Project Properties from the
context menu.

If your application uses the Fusion Web Application (ADF) application template,
you select the ViewController project. If your application uses another application
template, select the project that corresponds to the web application.

2. In the Project Properties dialog, select Technology Scope to view the list of
available technologies.

3. Select the ADF Desktop Integration and ADF Library Web Application Support
(optional) project technologies and add them to the Selected Technologies list.

4. Click OK.

4.2.2 What Happens When You Add Desktop Integration to Your JDeveloper Project
When you add the Oracle ADF Desktop Integration module to the technology scope of
your project, the following events occur:

■ The project adds the Oracle ADF Desktop Integration runtime library. This library
references the following .jar files in its class path:

– wsclient.jar

– adf-desktop-integration.jar

– resourcebundle.jar

■ The project adds an ADF bindings filter (adfBindings).

■ The project’s deployment descriptor (web.xml) is modified to include the
following entries:

– A servlet named adfdiRemote

– A filter named adfdiExcelDownload

– A MIME mapping for Excel files (.xlsx and .xlsm)

The previous list is not exhaustive. Adding Oracle ADF Desktop Integration to a
project makes other changes to web.xml. Note that some entries in web.xml will
be added only if they do not exist.

When you add ADF Library Web Application Support to the technology scope of your
project, the project’s web.xml file is modified to include the following entries:

 <filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>

Note: The value for the url-pattern attribute of the
servlet-mapping element for adfdiRemote must match the value
of the RemoteServletPath workbook property described in
Table A–18.

Adding Oracle ADF Desktop Integration to a Fusion Web Application

Preparing Your Integrated Excel Workbook 4-3

 </filter>
 <filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>adflibResources</servlet-name>
 <servlet-class>oracle.adf.library.webapp.ResourceServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>adflibResources</servlet-name>
 <url-pattern>/adflib/*</url-pattern>
 </servlet-mapping>

Ensure that you observe the following points while updating filter and filter mapping
information in the web.xml file:

■ the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

■ the adfdiExcelDownload <filter> element appears before the <filter>
element for ADFLibraryFilter, and the <filter-mapping> elements for
adfdiExcelDownload appears before the <filter-mapping> elements for
ADFLibraryFilter.

The following example shows the <filter> and <filter-mapping> elements in
the web.xml file:

 <filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>
 oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
 </filter-class>
 </filter>
 <filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
 </filter>
 ...
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsx</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsm</url-pattern>
 </filter-mapping>
 ...
 <filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>

For more information about web.xml, see Appendix E, "Desktop Integration Settings
in the Web Application Deployment Descriptor".

Working with Page Definition Files for an Integrated Excel Workbook

4-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

4.3 Working with Page Definition Files for an Integrated Excel Workbook
Page definition files define the bindings that populate the data in the Oracle ADF
components at runtime. Page definition files also reference the action bindings and
method action bindings that define the operations or actions to use on this data. You
must define a separate page definition file for each Excel worksheet that you are going
to integrate with a Fusion web application. The integrated Excel workbook can include
worksheets that do not reference page definition files.

The Oracle ADF Desktop Integration Designer displays only those bindings that the
Oracle ADF Desktop Integration module supports in the bindings palette. If a page
definition file references a binding that the Oracle ADF Desktop Integration module
does not support (for example, a table binding), it is not displayed.

Table 4–1 lists and describes the binding types that the Oracle ADF Desktop
Integration module supports.

For information about the bindings that components in the Oracle ADF Desktop
Integration module use, see Appendix A, "Oracle ADF Desktop Integration
Component Properties and Actions".

More information about the elements and attributes in page definition files can be
found in the "pageNamePageDef.xml" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

For information about ADF data binding and page definition files in a Fusion web
application, see the "Using Oracle ADF Model in a Fusion Web Application" chapter in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Table 4–1 Binding Requirements for Oracle ADF Desktop Integration Components

Oracle ADF
Desktop
Integration
component Supported Binding Additional comments

ADF Input Text Attribute binding

ADF Output Text Attribute binding

ADF Label Attribute and list bindings This Oracle ADF Desktop Integration
component uses the label property of a
control binding.

ADF Desktop
Integration List of
Values

List binding

Tree Node List Tree binding attributes and
list binding

Tree binding attributes must be associated
with a model-driven list.

ADF Button Various The ADF Button component in the Oracle
ADF Desktop Integration module can invoke
action sets. Action sets can reference action
bindings, method action bindings, or actions
exposed by components in the Oracle ADF
Desktop Integration module. For more
information about action sets, see Section 8.2,
"Using Action Sets".

ADF Read-only
Table

Tree binding

ADF Table Tree binding

Working with Page Definition Files for an Integrated Excel Workbook

Preparing Your Integrated Excel Workbook 4-5

4.3.1 How to Create a Page Definition File for an Integrated Excel Workbook
You create and configure a page definition file that determines the Oracle ADF
bindings to expose in your JDeveloper project.

To create a page definition file for an integrated Excel workbook:
1. In JDeveloper, create a new JSF page in your Oracle ADF Desktop Integration

application’s project.

2. In the Application Navigator, select the page, right-click it, and select Go to Page
Definition from the context menu.

3. In the Confirm Create New Page Definition dialog box, click Yes.

4. Add the bindings that you require for your integrated Excel workbook to the page
definition file.

5. Save the page definition file.

Figure 4–1 shows the ExcelPriceListPageDef.xml page definition file that
the Price List worksheet in the EditPriceList-DT.xlsx workbook references.

Figure 4–1 Page Definition File with Bindings for an Integrated Excel Workbook

For information about working with page definition files, see the "Working with
Page Definition Files" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Tip: Add an ADF Faces Table component to the JSF page.
JDeveloper generates the tree bindings in the JSF page that the Oracle
ADF Desktop Integration table-type components use in the page
definition file.

Note: JDeveloper creates a page definition file’s name based on the
name of the JSF page you choose. If you want a page definition file’s
name to indicate an association with a particular workbook or
worksheet, choose this name when creating the JSF page.

Working with Page Definition Files for an Integrated Excel Workbook

4-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

6. Make and run your Fusion web application if you plan to run the integrated Excel
workbook in test mode or publish it.

4.3.2 What Happens When You Create a Page Definition File
JDeveloper creates the DataBindings.cpx file the first time that you add a page
definition file in your JDeveloper project using the procedure described in
Section 4.3.1, "How to Create a Page Definition File for an Integrated Excel Workbook".

The DataBindings.cpx file defines the binding context for the Fusion web
application and provides the metadata from which the Oracle ADF bindings are
created at runtime. Information about working with this file can be found in the
"Working with the DataBindings.cpx File" section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework. Information
about the elements and attributes in the file can be found the "DataBindings.cpx"
section of the same guide.

4.3.3 Reloading a Page Definition File in an Excel Workbook
If you make changes in your JDeveloper desktop integration project to a page
definition file that is associated with an Excel worksheet, rebuild the JDeveloper
desktop integration project and reload the page definition file in the Excel worksheet
to ensure that the changes appear in the Oracle ADF Desktop Integration Designer.
You associate a page definition file with an Excel worksheet when you choose the page
definition file, as described in Section 4.4.2, "How to Open an Excel Workbook for the
First Time".

The Oracle ADF Desktop Integration Designer toolbar provides a button that reloads
all page definition files in an Excel workbook.

Errors may occur when you switch an integrated Excel workbook from design mode
to runtime if you do not rebuild the JDeveloper desktop integration project and restart
the application after making changes to a page definition file. For example, if you:

■ Remove an element in a page definition file

■ Do not rebuild and restart the Fusion web application

■ Or do not reload the page definition file in the integrated Excel workbook

an error message such as the following may appear when you attempt to switch a
workbook to test mode:

[ADFDI-05530] unable to initialize worksheet: MyWorksheet
[ADFDI-05517] unable to find control MyBindingThatWasRemoved

To reload page definition files in an Excel workbook:
1. Rebuild and run the Fusion web application that the Excel workbook is integrated

with.

2. In the Excel workbook, click the Reload button on the Oracle ADF Desktop
Integration Designer toolbar.

For information about the Reload button, see Section 5.1, "Introduction to the
Development Tools".

Preparing Your Workbook

Preparing Your Integrated Excel Workbook 4-7

4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel
Workbook

Note the following points about page definition files in an Oracle ADF Desktop
Integration project.

Integrating Multiple Excel Worksheets
You can integrate multiple worksheets in an Excel workbook with a Fusion web
application. You associate a page definition file with each worksheet as described in
Section 4.4.3, "How to Add Additional Worksheets to an Integrated Excel Workbook".

EL Expressions in a Page Definition File
Use the following syntax to write EL expressions in a page definition file:

${}

Do not use the following syntax to write EL expressions:

#{}

EL expressions using this syntax generate errors as they attempt to access the Oracle
ADF Faces context which is not available.

4.4 Preparing Your Workbook
Before you can configure an Excel workbook with Oracle ADF functionality, you need
to prepare the workbook by:

■ Running the conversion utility so that it can execute the Oracle ADF Desktop
Integration client framework

■ Setting several properties when you open the workbook for the first time

■ (Optional) adding additional worksheets

Once you complete these steps, you can add Oracle ADF functionality using the tools
provided by the Oracle ADF Desktop Integration module.

Although you can store the Excel workbooks that you integrate with Fusion web
applications anywhere you choose, there are several advantages to storing them with
the other files in your Oracle ADF Desktop Integration project. These advantages
include source control of the workbooks, facilitating the download of workbooks from
web pages, and the fact that the file system folder picker that appears the first time a
workbook is opened defaults to the location where you store the workbook. For
example, the Master Price List module of the Fusion Order Demo stores the Excel
workbooks it integrates in the following subdirectory:

FOD_HOME\MasterPriceList\ViewController\public_html\excel

where FOD_HOME is the root directory that stores the source files for the Fusion Order
Demo application.

Note: EL expressions that you write for Oracle ADF Desktop
Integration components in the integrated Excel workbook, such as
ADF Input Text, must use the #{} syntax.

Preparing Your Workbook

4-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

4.4.1 How to Run the Conversion Utility
The conversion utility is a command-line executable
(convert-adfdi-excel-solution.exe) provided with the Oracle ADF Desktop
Integration module that prepares the specified Excel workbook so that you can
integrate it with a Fusion web application by configuring it with Oracle ADF
functionality. For information about the file formats of Excel workbooks that you can
convert for integration with a Fusion web application, see Section 3.2, "Required
Oracle ADF Modules and Third-Party Software".

The Oracle ADF Desktop Integration module stores
convert-adfdi-excel-solution.exe in the following directory:

ADFDI_HOME\bin\excel\convert

where ADFDI_HOME is the folder in which you set up the Oracle ADF Desktop
Integration module, as described in Section 3.8, "Using the Oracle ADF Desktop
Integration Module on a System with Multiple Instances of JDeveloper".

To run the conversion utility to convert an Excel workbook:
1. Open a command window and navigate to the following directory location:

ADFDI_HOME\bin\excel\convert

where ADFDI_HOME refers to the directory in which you set up the Oracle ADF
Desktop Integration module.

2. Execute the following command to convert the Excel workbook:

convert-adfdi-excel-solution.exe directory\workbook.xlsx -attach

where directory refers to the directory that stores your Excel workbook and
workbook.xlsx is the file name of the Excel workbook.

If the command executes successfully, a message similar to the following appears
in the command window:

Solution id is: fb43e1d8-0595-4c3f-8926-0de0494c37d3
Deployment manifest full path is: file:///C:/jdev/JDEVADF_MAIN_GENERIC_
4773/adfdi/bin/excel/client/adfdi-excel-client.vsto
Attaching customization...
Using relative path: adfdi-excel-client.vsto
VSTO manifest attached successfully

You can now open the Excel workbook and set several properties that allow you to
start configuring the workbook with Oracle ADF functionality. For more information
about the supported arguments of the conversion utility, see Appendix D, "Using
Workbook Management Tools".

4.4.2 How to Open an Excel Workbook for the First Time
After you convert your workbook using the conversion utility, you can open it. When
you open a workbook for the first time, you must set several properties, as described
in the following procedure.

Preparing Your Workbook

Preparing Your Integrated Excel Workbook 4-9

To open an Excel workbook for the first time:
1. Navigate to the directory that stores your Excel workbook and open it.

2. Use the dialog box that appears to select the JDeveloper application home folder.

In a typical JDeveloper project, the JDeveloper application home folder stores the
application_name.jws file. The value you select is assigned to the
ApplicationHomeFolder workbook property.

3. In the Oracle ADF Desktop Integration Designer, click Workbook Properties to
display the Edit Workbook Properties dialog box.

4. Set or verify the values for the following properties so that you can switch
between design mode and test mode as you configure your workbook:

■ ApplicationHomeFolder

The value for this property corresponds to the absolute path for the root folder
of the JDeveloper application workspace (.jws). You specified this value in
Step 2.

■ Login.ProtectedWebPage

Set the value for this property to a protected page with a directory path that is
relative to the value of WebAppRoot. For example, in the Master Price List
module’s EditPriceList-DT.xlsx workbook, the value of WebAppRoot is
http://127.0.0.1:7101/FODMasterPriceList and the value of
ProtectedWebPage is /faces/secured/LandingPad.jspx.

Create a blank protected page that you specify as the value for this property.
Apply a security constraint to this protected page. For more information about
securing an integrated Excel workbook, see Chapter 11, "Securing Your
Integrated Excel Workbook".

■ Project

Specify the folder that contains a JDeveloper project (.jpr) in the JDeveloper
application workspace. Typically the folder name is ViewController in a
Fusion web application that uses the model-view-controller architecture. The
Oracle ADF Desktop Integration module loads the names of the available
projects from the application_name.jws specified as a value for
ApplicationHomeFolder. The folder path specified as a value for Project
should be relative to the value of ApplicationHomeFolder.

■ WebAppRoot

Note: The procedure assumes that you store the workbook in a
folder external to the Oracle ADF Desktop Integration project. If you
store the workbook in a subfolder of the Oracle ADF Desktop
Integration project, many properties (for example, the
ApplicationHomeFolder workbook property) get populated
automatically.

Note: If you are opening the Excel file after moving your application
directory, ensure that the ApplicationHomeFolder property’s
value reflects the correct path.

Preparing Your Workbook

4-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Set the value for this property to the fully qualified URL for the web context
root that you want to integrate your desktop application with. The fully
qualified URL has the following format:

http://hostname:portnumber/context-root

In JDeveloper, you specify the web context root (context-root) in Java EE
Application page of the Project Properties dialog. Figure 4–2 shows the web
context root for the Master Price List module.

Figure 4–2 Setting Web Context Root in JDeveloper

Note that the fully qualified URL is similar to the following if you set up a test
environment on your system using the Master Price List module:

http://127.0.0.1:7101/FODMasterPriceList

For information about how to verify that the Fusion web application is online
and supports Oracle ADF Desktop Integration, see Section C.1, "Verifying
That Your Fusion Web Application Supports Desktop Integration".

If you are integrating an Excel file with a secure Fusion web application, it is
recommended that you use the https protocol while entering WebAppRoot’s
value. For more information about securing your Fusion web application, see
Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

■ WebPagesFolder

Set the value for this property to the folder that contains web pages for the
Fusion web application. The folder path should be relative to the value of
ApplicationHomeFolder. You must set a value for this property before you
can set a value for Login.ProtectedWebPage.

For example, Figure 4–3 shows an implementation of workbook properties in the
Edit Workbook Properties dialog of Master Price List module’s
EditPriceList-DT.xlsx workbook.

Preparing Your Workbook

Preparing Your Integrated Excel Workbook 4-11

Figure 4–3 Edit Workbook Properties Dialog

5. Click OK.

6. In the Oracle ADF Desktop Integration Designer, click Worksheet Properties to
display the Edit Worksheet Properties dialog box.

7. Click the ellipsis button (...) beside the Page Definition input field and select a
page definition file from the dialog box that appears.

8. Click OK.

The Excel worksheet appears with the Oracle ADF Desktop Integration Designer
in Excel's Document Actions. The bindings in the page definition file you selected
in Step 7 appear in the Bindings view tab.

9. Save the Excel workbook.

4.4.3 How to Add Additional Worksheets to an Integrated Excel Workbook
To use Oracle ADF functionality, you must associate each worksheet with a page
definition file. You associate a page definition file with a worksheet when you add a
worksheet to the integrated Excel workbook. You can integrate multiple worksheets in
an integrated Excel workbook with a Fusion web application. Use a different page
definition file for each worksheet in the integrated Excel workbook.

To associate a page definition file with an Excel worksheet:
1. While the Excel workbook is in design mode, click Home, and then click Insert >

Insert Sheet in the Cells group.

2. Select the page definition file from the Choose Page Definition dialog box that
appears.

This populates the bindings palette in the Oracle ADF Desktop Integration
Designer with the bindings contained in the page definition file. You can now
configure the worksheet with Oracle ADF functionality.

Preparing Your Workbook

4-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

5

Getting Started with the Development Tools 5-1

5 Getting Started with the Development Tools

This chapter describes how to use the development tools provided by the Oracle ADF
Desktop Integration module. It provides an overview of the authoring environment
that Oracle ADF exposes within Excel and goes on to describe how you display and
use the different elements of this environment.

This chapter includes the following sections:

■ Section 5.1, "Introduction to the Development Tools"

■ Section 5.2, "Using the Bindings Palette"

■ Section 5.3, "Using the Components Palette"

■ Section 5.4, "Using the Property Inspector"

■ Section 5.5, "Using the Binding ID Picker"

■ Section 5.6, "Using the Expression Builder"

■ Section 5.7, "Using the Web Page Picker"

■ Section 5.8, "Using the File System Folder Picker"

■ Section 5.9, "Using the Page Definition Picker"

■ Section 5.10, "Using the Collection Editors"

5.1 Introduction to the Development Tools
The Oracle ADF Desktop Integration module provides a number of tools that you use
to configure Excel workbooks so that they can access Oracle ADF functionality. Before
you use these tools, you must know that there are two modes in which you can work
while you configure the Excel workbook that you integrate with a Fusion web
application. The first mode is design and the second mode is test. In design mode, you
use the tools provided by Oracle ADF in Excel to design and configure your integrated
Excel workbook. In test mode, you can view and test the changes you make in design
mode in the same way that an end user views the published integrated Excel
workbook: the difference is that you can switch back to design mode using a button on
the Oracle ADF Desktop Integration Designer toolbar.

Figure 5–1 shows the Oracle ADF Desktop Integration Designer toolbar in design
mode.

Introduction to the Development Tools

5-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 5–1 Oracle ADF Desktop Integration Designer Toolbar in Design Mode

The Oracle ADF Desktop Integration Designer toolbar provides menu buttons that let
you invoke the actions that are described in Table 5–1.

Table 5–1 Oracle ADF Desktop Integration Designer Toolbar Menu Options

Click this button... To...

Display the property inspector window to view and edit component
properties.

Delete a component from the Excel worksheet.

Switch the Excel workbook from design mode to test mode.

Switch the Excel workbook from test mode to design mode. This button is
active only when you are in test mode.

For more information about switching between design mode and test
mode, see Section 13.3, "Testing Your Integrated Excel Workbook".

Publish the Excel workbook after you complete the integration between
the Excel workbook and the Fusion web application.

For more information about publishing an integrated Excel workbook,
see Chapter 14, "Deploying Your Integrated Excel Workbook".

■ Reload the application workspace file (.jws) and project file (.jpr)
referenced by the workbook properties of the integrated Excel
workbook

■ Refresh the list of IDs for page definition files that the integrated
Excel workbook uses

Any modifications that you made to the page definition files in the
JDeveloper project now become available in the Excel workbook. For
more information, see Section 4.3.3, "Reloading a Page Definition File in
an Excel Workbook".

Tools Use Tools > Reset WorkbookID to reset the value of the WorkbookID
workbook property. The value of this property is unique to each
workbook and cannot be modified by you.

For more information, see Section 11.3.1, "How to Reset the Workbook
ID".

Tip: For quick and easy access to the Oracle ADF Desktop
Integration Designer toolbar, you can add it in the Excel’s Quick
Access toolbar.

Introduction to the Development Tools

Getting Started with the Development Tools 5-3

Table 5–2 displays the Oracle ADF Desktop Integration Designer.

Figure 5–2 Oracle ADF Desktop Integration Designer

The Oracle ADF Desktop Integration Designer appears in Excel’s Document Actions.
Use the View > Document Actions options on the Excel Ribbon to control the display
of the Oracle ADF Desktop Integration Designer. Table 5–2 lists the view tabs and
links that appear in the designer, provides a brief description of each item, and
provides a cross-reference to a section that gives more detailed information.

Table 5–2 Overview of the Oracle ADF Desktop Integration Designer

Designer UI Element Description

Workbook Properties Click to display the Edit Workbook Properties dialog box. This
dialog box allows you to view and edit properties that affect the
whole workbook. Examples include properties that reference the
directory paths to page definition files, the URL for your Fusion
web application, and so on.

Worksheet Properties Click to display the Edit Worksheet Properties dialog box. This
dialog box allows you to view and edit properties specific to the
active worksheet. An example is the file name of the page
definition file that you associate with the worksheet.

Using the Bindings Palette

5-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

5.2 Using the Bindings Palette
The bindings palette presents the available Oracle ADF bindings that you can insert
into the Excel worksheet. The page definition file for the current Excel worksheet
determines what Oracle ADF bindings appear in the bindings palette. Figure 5–3
shows a bindings palette populated with Oracle ADF bindings in the Oracle ADF
Desktop Integration Designer. Note that the bindings palette does not display bindings
that an integrated Excel workbook cannot use, so the bindings that appear may differ
from those that appear in the page definition file viewed in JDeveloper.

About Oracle ADF 11g
Desktop Integration

Click to display the About Oracle ADF 11g Desktop Integration
dialog box. This dialog box provides a variety of version and
property information that can be useful when troubleshooting
an integrated Excel workbook. For example, it provides
information about the underlying Microsoft .NET and Oracle
ADF frameworks that support an integrated Excel workbook.

Bindings The bindings palette displays the list of Oracle ADF bindings
that you can insert into an Excel worksheet. For information on
how to use this palette, see Section 5.2, "Using the Bindings
Palette".

Components The components palette displays the list of Oracle ADF
components that you can insert into an Excel worksheet. For
information on how to use this palette, Section 5.3, "Using the
Components Palette".

Table 5–2 (Cont.) Overview of the Oracle ADF Desktop Integration Designer

Designer UI Element Description

Using the Bindings Palette

Getting Started with the Development Tools 5-5

Figure 5–3 Oracle ADF Bindings Palette in the Oracle ADF Desktop Integration Designer

You use the bindings palette in design mode to insert a binding. When you attempt to
insert a binding, the Oracle ADF Desktop Integration module inserts an Oracle ADF
component that references the binding you selected. The Oracle ADF Desktop
Integration module also prepopulates the properties of the Oracle ADF component
with appropriate values. For example, if you insert a binding, such as the Commit
(action) binding illustrated in Figure 5–3, the property inspector for an Oracle ADF
Button component appears. This Oracle ADF Button component has values specified
for its ClickActionSet that include invoking the Commit action binding.

To insert an Oracle ADF binding, you first select the cell that you want to anchor the
Oracle ADF component that is going to reference the binding in the Excel worksheet,
and then insert the binding in one of the following ways:

■ Double-click the Oracle ADF control binding you want to insert.

■ Select the control binding and click Insert Binding in the Oracle ADF Desktop
Integration Designer.

A property inspector for the Oracle ADF component that is associated with the
binding you attempt to insert appears. In some instances, you may be prompted to
select one Oracle ADF component from a list of Oracle ADF components where

Using the Components Palette

5-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

multiple Oracle ADF components can be associated with the binding. Once you
select an Oracle ADF component from the list, a property inspector appears.

5.3 Using the Components Palette
The components palette displays the available Oracle ADF Desktop Integration
module components that you can insert into an Excel worksheet. Figure 5–4 shows the
components palette as it appears in the Oracle ADF Desktop Integration Designer.

Figure 5–4 Oracle ADF Components Palette in the Oracle ADF Desktop Integration
Designer

You use the components palette in design mode to insert an Oracle ADF component.
First, select the cell to anchor the Oracle ADF component in the Excel worksheet, and
then insert the Oracle ADF component in one of the following ways:

■ Double-click the Oracle ADF component you want to insert.

■ Select the component and click Insert Component in the Oracle ADF Desktop
Integration Designer.

In both cases, the Oracle ADF component’s property inspector appears. Use the
property inspector to specify values for the component before you complete its
insertion into the Excel worksheet.

5.4 Using the Property Inspector
The property inspector is a dialog box that allows you to view and edit the properties
of Oracle ADF bindings, Oracle ADF components, Excel worksheets, or the Excel
workbook. You can open the property inspector in one of the following ways:

■ Select the component or binding, and click the component properties icon in the
Oracle ADF Desktop Integration Designer toolbar.

■ Select the component or binding, right-click and choose Edit ADF Component
Properties from the context menu.

The property inspector also appears automatically after you insert an Oracle ADF
binding or component into an Excel worksheet. Figure 5–5 shows a property inspector
window where you can view and edit the properties of an Oracle ADF Button
component.

Using the Binding ID Picker

Getting Started with the Development Tools 5-7

You can display the properties in an alphabetical list or in a list where the properties
are grouped by categories such as Behavior, Data, and so on. The following table
describes the buttons that you can use to change how properties display in the
property inspector.

In Figure 5–5, the property inspector displays the properties grouped by category.

Figure 5–5 Property Inspector Window for an Oracle ADF Component

5.5 Using the Binding ID Picker
The binding ID picker is a dialog box that allows you to select Oracle ADF bindings
at design time to configure the behavior of Oracle ADF components at runtime. You
invoke the binding ID picker from the property inspector. The binding ID picker filters
the Oracle ADF bindings that appear, based on the type of binding that the Oracle
ADF component property accepts. For example, the SuccessActionID property for
an ADF Button component supports only action bindings. As a result, the binding ID
picker filters the bindings from the page definition file so that only action bindings
appear, as illustrated in Figure 5–6.

Note: The property inspector does not validate that values you enter
for a property or combinations of properties are valid. Invalid values
may cause runtime errors. To avoid runtime errors, make sure you
specify valid values for properties in the property inspector.

Button Description

Use this button to display the properties according to category.

Use this button to display the properties in an alphabetical list.

Using the Expression Builder

5-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 5–6 Binding ID Picker

For more information about Oracle ADF Desktop Integration component properties
and the bindings they support, see Appendix A, "Oracle ADF Desktop Integration
Component Properties and Actions".

5.6 Using the Expression Builder
You use the expression builder to write Expression Language, or EL, expressions that
configure the behavior of components at runtime in the Excel workbook. You invoke
the expression builder from the property inspector of component properties that
support EL expressions. For example, the Label property in Figure 5–7 supports EL
expressions and, as a result, you can invoke the expression builder to set a value for
this property.

You can reference bindings in the EL expressions that you write. Note that the
expression builder does not filter bindings. It displays all bindings that the page
definition file exposes. See Table 4–1 to identify the types of bindings that each Oracle
ADF Desktop Integration component supports.

To add an expression in the Expression box, select the item and click Insert Into
Expression. You can also double-click the item to add it in the Expression box.
Table 5–3 describes the folders available in the expression builder.

Using the Web Page Picker

Getting Started with the Development Tools 5-9

Figure 5–7 Expression Builder

For more information about using the expression builder, see Section 9.3, "Applying
Styles Dynamically Using EL Expressions". For information about the syntax of EL
expressions in the Oracle ADF Desktop Integration module and guidelines on how
you write these expressions, see Appendix B, "Oracle ADF Desktop Integration EL
Expressions".

5.7 Using the Web Page Picker
Use the web page picker to select a web page from your Fusion web application. At
runtime, an Oracle ADF component, for example an Oracle ADF Button component,
can invoke the web page that you associate with the Oracle ADF component.

Table 5–3 Expression Builder Folders

Folder Name Description

Bindings Lists the bindings supported in the Oracle ADF Desktop
Integration module from the current worksheet's page
definition.

Components Lists the ADF components available in the current worksheet.

Resources Lists the resource bundles registered in Workbook.Resources
along with the built-in resource bundle _ADFDIres.

Styles Lists all Excel styles defined in the current workbook. For more
information, see Section 9.2, "Working with Styles".

Workbook Lists parameters defined in Workbook.Parameters.

Worksheet Lists the errors expression.

Excel Functions Lists sample Excel functions that you can use with Oracle ADF
Desktop Integration. For more information, see Excel's
documentation.

Using the File System Folder Picker

5-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

You can invoke the web page picker when you add a Dialog action to an action set in
the Action Collector Editor. You use the web page picker to specify a web page for the
Page property of the Dialog action, as illustrated in Figure 5–8. You can also invoke
the web page picker when you set a value for the ProtectedWebPage workbook
property.

Figure 5–8 Web Page Picker Dialog Box

For more information about displaying web pages in your integrated Excel workbook,
see Section 8.4, "Displaying Web Pages from a Fusion Web Application".

5.8 Using the File System Folder Picker
Use the file system folder picker to navigate over the Windows file system and select
folders. You use this picker to specify values for the following workbook properties:

■ ApplicationHomeFolder

■ WebPagesFolder

The first time you open an Excel workbook the picker appears so that you can set
values for the previously listed properties. For more information about opening an
Excel workbook for the first time and the properties you set, see Section 4.4.2, "How to
Open an Excel Workbook for the First Time".

Figure 5–9 shows the file system folder picker selecting a value for the
ApplicationHomeFolder workbook property.

Using the Page Definition Picker

Getting Started with the Development Tools 5-11

Figure 5–9 File System Folder Picker

5.9 Using the Page Definition Picker
Use the page definition picker to select the page definition ID of a page definition file
and associate the file with a worksheet. The picker appears the first time that you
activate a worksheet in an integrated Excel workbook. It can also be invoked when
you attempt to set a value for the worksheet property, PageDefinition, as
illustrated in Figure 5–10.

Figure 5–10 Page Definition Picker

Using the Collection Editors

5-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

For more information about page definition files, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook".

5.10 Using the Collection Editors
The Oracle ADF Desktop Integration module uses collection editors to manage the
properties of elements in a collection. The title that appears in a collection editor’s title
bar describes what the collection editor allows you to configure. Examples of titles for
collection editors include CacheDataContext Collection Editor, TableColumn
Collection Editor, and the Action Collection Editor. These collection editors allow
you to configure collections of cached data, table columns in the ADF Table
component, and actions in an action set. Figure 5–11 shows the collection editor that
configures an action set for the Search button that appears at runtime in the Master
Price List module’s EditPriceList-DT.xlsx workbook.

Figure 5–11 Collection Editor

Tip: Write a description in the Annotation field for each element that
you add to the Action Collection Editor. The description you write
appears in the Members list view and, depending on the description
you write, may be more meaningful than the default entry that the
Oracle ADF Desktop Integration module generates.

6

Working with Oracle ADF Desktop Integration Form-type Components 6-1

6 Working with Oracle ADF Desktop
Integration Form-type Components

This chapter describes how you can insert and configure components that the Oracle
ADF Desktop Integration module provides to allow end users to manage data
retrieved from a Fusion web application.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Oracle ADF Desktop Integration Form-type
Components"

■ Section 6.2, "Inserting an ADF Button Component"

■ Section 6.3, "Inserting an ADF Label Component"

■ Section 6.4, "Inserting an ADF Input Text Component"

■ Section 6.5, "Inserting an ADF Output Text Component"

■ Section 6.6, "Inserting an ADF Desktop Integration List of Values Component"

■ Section 6.7, "Displaying Output from a Managed Bean in an ADF Component"

■ Section 6.8, "Displaying Concatenated or Calculated Data in Components"

6.1 Introduction to Oracle ADF Desktop Integration Form-type
Components

Rather than expose an ADF Form component in the components palette described in
Section 5.3, "Using the Components Palette", the Oracle ADF Desktop Integration
module uses the following components to create form-type functionality in an
integrated Excel workbook:

■ ADF Input Text

■ ADF Output Text

■ ADF Label

■ ADF Desktop Integration List of Values

■ ADF Button

These components, along with those described in Chapter 7, "Working with Oracle
ADF Desktop Integration Table-type Components", allow end users to manage data
retrieved from the Fusion web application in the integrated Excel workbook.

Inserting an ADF Button Component

6-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

6.2 Inserting an ADF Button Component
The ADF Button component renders a button in the Excel worksheet at runtime. End
users click this button to invoke one or more actions specified by the
ClickActionSet group of properties.

The LowerRightCorner and Position properties determine the area that the
button occupies on the Excel worksheet at runtime.

Figure 6–1 shows a button in an Excel worksheet in design mode. The property
inspector for the button is in the foreground. When a user clicks the button at runtime,
it invokes the array of actions specified by ClickActionSet.

Figure 6–1 ADF Button Component

For more information about the properties of the ADF Button component, see
Section A.8, "ADF Button Component Properties".

To insert an ADF Button component:
1. Select the cell in the Excel worksheet where you want to anchor the component.

2. In the components palette, select ADF Button and click Insert Component.

3. Configure properties in the property inspector to determine the actions the
component invokes at runtime in addition to the appearance, design, and layout of
the component. The following table outlines some properties you need to specify
values for and provides links to additional information.

Note: The Oracle ADF Desktop Integration module does not support
components inserted in a merged cell.

Inserting an ADF Label Component

Working with Oracle ADF Desktop Integration Form-type Components 6-3

4. Click OK.

6.3 Inserting an ADF Label Component
The ADF Label component is a component that you can insert into the active
worksheet to display a static string value. You specify a value in the input field for
Label in the property inspector or alternatively you invoke the expression builder to
write an EL expression that resolves to a string at runtime. The retrieved string can be
defined in a resource bundle or in an attribute control hint for an entity or view object.
For example, the following EL expression resolves to the value of a string key defined
in a resource bundle at runtime:

#{bindings.ProductList.label}

The value that you specify for the Label property in an ADF Label component or
other Oracle ADF components is evaluated once when the worksheet that hosts the
Oracle ADF component is initialized (opened for the first time).

You can configure a number of properties for the component, such as style and
position, in the worksheet using the property inspector.

Figure 6–2 shows an ADF Label component with its property inspector in the
foreground. The ADF Label component references an EL expression that resolves to
the value of a string key defined in the res resource bundle at runtime.

For this property... Specify...

Label A string or an EL expression that resolves to a label at runtime to indicate
the purpose of the ADF Button component. For example, the Label
property for the Advanced Search button in the runtime
EditPriceList-DT.xlsx workbook of the Master Price List module
has the following value in design mode:

#{res['excel.advSearchButton.label']}

This EL expression references a string key in the res resource bundle.
For more information about resource bundles, see Section 10.2, "Using
Resource Bundles in an Integrated Excel Workbook". For more
information about using labels in integrated Excel workbooks, see
Section 9.4, "Using Labels in an Integrated Excel Workbook".

ClickActionSet Specify one or more actions in the Actions array of the
ClickActionSet that the end user invokes when he or she clicks the
ADF Button component. For more information about action sets, see
Section 8.2, "Using Action Sets".

Notes:

■ You can modify the properties of the component at a later time by
selecting the cell in the worksheet that anchors the component
and then displaying the property inspector.

■ The ADF Button components are active at 100% zoom only, and
are disabled when an end user zooms in or out on an integrated
Excel worksheet.

Tip: In design mode, you can click the button to open the property
inspector.

Inserting an ADF Input Text Component

6-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 6–2 ADF Label Component

To insert an ADF Label component:
1. Select the cell in the Excel worksheet where you want to anchor the component.

2. In the components palette, select ADF Label and click Insert Component.

3. Configure properties in the property inspector to determine the appearance,
design, and layout of the component.

4. Click OK.

For more information about using labels in an integrated Excel workbook, see
Section 9.4, "Using Labels in an Integrated Excel Workbook".

6.4 Inserting an ADF Input Text Component
The ADF Input Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component’s binding after
the worksheet DownSync action is invoked. End users can edit this value at runtime.
You configure the worksheet UpSync action to transfer changes end users make to the
value back to the Fusion web application and a Commit action binding to commit the
changes in the Fusion web application.

You can configure a number of properties for the component, such as its position, style
and behavior when a user double-clicks the cell (DoubleClickActionSet
properties), in the worksheet using the property inspector. For more information about
DoubleClickActionSet, see Section 8.2, "Using Action Sets".

The ADF Table component can invoke this component as a subcomponent when you
set values for the ADF Table component column’s InsertComponent or

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

Inserting an ADF Input Text Component

Working with Oracle ADF Desktop Integration Form-type Components 6-5

UpdateComponent properties. In this context, the ADF Input Text component allows
an end user to input data into the ADF Table component. For more information, see
Section 7.5, "Configuring an ADF Table Component to Insert Data".

Figure 6–3 shows an ADF Input Text component with its property inspector in the
foreground. The ADF Input Text component binds to the searchTerm attribute
binding in the Master Price List module of the Fusion Order Demo application. An
end user enters a search term in this component and then uses an ADF Button
component to invoke a search.

Figure 6–3 ADF Input Text Component

To insert an ADF Input Text component:
1. Select the cell in the Excel worksheet where you want to anchor the component.

2. In the components palette, select ADF Input Text and click Insert Component.

3. Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component. The following table outlines some
properties that you need to specify values for. For information about the
component’s other properties, see Section A.2, "ADF Input Text Component
Properties".

4. Click OK.

For this property... Specify...

InputText.Value An EL expression for the Value property to determine what
binding the component references.

InputText.ReadOnly An EL expression that resolves to False so that changes an end
user makes are uploaded. Write an EL expression that resolves to
True if you want the component to ignore changes. False is the
default value.

Inserting an ADF Output Text Component

6-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

6.5 Inserting an ADF Output Text Component
The ADF Output Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component’s binding after
you invoke the worksheet DownSync action. The value the component displays is
read-only. Changes that an end user makes to the value in the cell that anchors the
component are ignored when changes are sent to the Fusion web application.

This component can also serve as a subcomponent for the ADF Table and ADF
Read-only Table components. Columns in the ADF Table and ADF Read-only Table
components can be configured to use the ADF Output Text component.

You can configure a number of properties for the component such as style, behavior
when a user double-clicks the cell (DoubleClickActionSet properties), and
position, in the worksheet using the property inspector.

Figure 6–4 shows an ADF Output Text component with its property inspector in the
foreground. The ADF Output Text component references an ADF Table component in
the Master Price List module of the Fusion Order Demo application. At runtime, the
cell that anchors the ADF Output Text component displays any errors returned by the
ADF Table component.

Figure 6–4 ADF Output Text Component

To insert an ADF Output Text component:
1. Select the cell in the Excel worksheet where you want to anchor the component.

2. In the components palette, select ADF Output Text then click Insert Component.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

Inserting an ADF Desktop Integration List of Values Component

Working with Oracle ADF Desktop Integration Form-type Components 6-7

3. Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component.

For example, you must write or specify an EL expression for the Value property
to determine what binding the ADF Output Text component references. For more
information about the values that you specify for the properties of the ADF
Output Text component, see Section A.3, "ADF Output Text Component
Properties".

4. Click OK.

6.6 Inserting an ADF Desktop Integration List of Values Component
The ADF Desktop Integration List of Values component is a component that displays a
dropdown menu in the Excel worksheet cell at runtime. It displays a maximum of 250
values at runtime. You can insert the List of Values component into a cell in the Excel
worksheet.

You must specify a value for the ListID property. The ListID property references
the list binding which populates the dropdown menu with a list of values at runtime
after you invoke the worksheet DownSync action.

Figure 6–5 shows an ADF Desktop Integration List of Values component with its
property inspector in the foreground. The ADF Desktop Integration List of Values
component references a list binding (ProductList) that populates a dropdown menu
in the Excel worksheet at runtime.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

Note: You can display a dropdown menu in an ADF Table
component’s column by selecting TreeNodeList as the
subcomponent to create when you specify a value for the
TableColumn array’s InsertComponent property. For more
information, see Section 7.12, "Creating a List of Values in an ADF
Table Component Column".

Displaying Output from a Managed Bean in an ADF Component

6-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 6–5 ADF Desktop Integration List of Values Component

To insert an ADF Desktop Integration List of Values component:
1. Select the cell in the Excel worksheet where you want to anchor the component.

2. In the components palette, select ADF List of Values and click Insert Component.

3. Invoke the binding ID picker by clicking the ellipsis button (...) beside the input
field for the ListID property and select a list binding that the page definition file
exposes.

4. Configure other properties in the property inspector to determine the appearance,
design, and layout of the component. For information about ADF Desktop
Integration List of Values component properties, see Section A.5, "ADF Desktop
Integration List of Values Component Properties".

5. Click OK.

6.7 Displaying Output from a Managed Bean in an ADF Component
You can configure an ADF component to display output from a managed bean in your
Fusion web application. Information about how to use managed beans in a Fusion web
application can be found in the "Using a Managed Bean in a Fusion Web Application"
section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework. You reference a managed bean in an integrated Excel
workbook through an EL expression. Add a method action binding to the page
definition file you associate with the Excel worksheet to retrieve the value of the
managed bean and assign it to an attribute binding. Use an EL expression to retrieve
the value of the attribute binding at runtime.

6.7.1 How to Display Output from a Managed Bean
You write an EL expression for a property that supports EL expressions (for example,
the Label property).

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

Displaying Output from a Managed Bean in an ADF Component

Working with Oracle ADF Desktop Integration Form-type Components 6-9

To display output from a managed bean:
1. Select the ADF component that you want to configure to display output from the

managed bean, and display its property inspector.

Figure 6–6 shows an example from the EditPriceList-DT.xlsx workbook in
the Master Price List module where an ADF Label component is configured to
display the output from an attribute binding that has its value populated by an
action binding.

Figure 6–6 ADF Label Component That Displays Output from a Managed Bean at
Runtime

2. Write an EL expression that gets the output from a managed bean at runtime.

The example in Figure 6–6 shows an EL expression that retrieves the value of a
string key (excel.connectionPrefix) from the res resource bundle and the
value of the loggedInUser attribute binding. This attribute binding references
the output from the managed bean.

3. Click OK.

6.7.2 What Happens at Runtime When an ADF Component Displays Output from a
Managed Bean

The method action binding retrieves values from the managed bean and populates the
attribute binding. The EL expression that you write retrieves the value from the
attribute binding and displays it to the end user through the ADF component that you
configured to display output. For example, the ADF Label component shown in design
mode in Figure 6–7 displays a string similar to the following at runtime:

Connected as sking

Figure 6–7 Output from a Managed Bean at Runtime

In Figure 6–7, sking is the user name of the user that is logged on to the Fusion web
application through the integrated Excel workbook.

Displaying Concatenated or Calculated Data in Components

6-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

6.8 Displaying Concatenated or Calculated Data in Components
The ADF Desktop Integration module supports EL expressions within components
that allow a single component to display data that is based on a calculation or
concatenation of more than one binding expression.

6.8.1 How to Configure a Component to Display Calculated Data
You write an EL expression for the Value property of an Input Text or Output Text
component.

Figure 6–8 shows an EL expression example from the EditPriceList-DT.xlsx
workbook in the Master Price List module where an ADF Output Text component of a
column is configured to display the margin between the List Price and Cost Price
columns.

Figure 6–8 ADF Output Text Component That Displays Calculated Data

To create an EL expression to display calculated data
1. Select the ADF Input Text or ADF Output Text component that you want to

configure to display calculated data.

2. Open the property inspector and click the ellipses button (...) of the Value
property.

3. Write an EL expression that gets the output from two, or more, expressions.

Example 6–1 shows an EL expression that calculates the difference between the
values of List Price and Cost Price columns of an item, and then divides it with
value of Cost Price column to generate a margin.

Example 6–1 An EL Expression for Calculated Data

=(("#{row.bindings.ListPrice.inputValue}"-"#{row.bindings.CostPrice.inputValue}")/
"#{row.bindings.CostPrice.inputValue}")

4. Click OK.

For more information about EL expressions, see Appendix B, "Oracle ADF Desktop
Integration EL Expressions".

Displaying Concatenated or Calculated Data in Components

Working with Oracle ADF Desktop Integration Form-type Components 6-11

Note: If the Value property of an ADF Input Text component
contains a formula, the ADF Input Text component becomes read-only
at runtime regardless of the value of the ReadOnly property.

Displaying Concatenated or Calculated Data in Components

6-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

7

Working with Oracle ADF Desktop Integration Table-type Components 7-1

7 Working with Oracle ADF Desktop
Integration Table-type Components

This chapter describes how you work with the table-type components that the Oracle
ADF Desktop Integration module provides.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Oracle ADF Desktop Integration Table-type
Components"

■ Section 7.2, "Page Definition Requirements for an ADF Table Component"

■ Section 7.3, "Inserting an ADF Table Component into an Excel Worksheet"

■ Section 7.4, "Configuring an ADF Table Component to Update Existing Data"

■ Section 7.5, "Configuring an ADF Table Component to Insert Data"

■ Section 7.6, "Configuring Oracle ADF Component to Download Data to an ADF
Table Component"

■ Section 7.7, "Configuring a Worksheet to Download Pre-Insert Data to an ADF
Table Component"

■ Section 7.8, "Configuring an Oracle ADF Component to Upload Changes from an
ADF Table Component"

■ Section 7.9, "Configuring an ADF Table Component to Delete Rows in the Fusion
Web Application"

■ Section 7.10, "Batch Processing in an ADF Table Component"

■ Section 7.11, "Special Columns in the ADF Table Component"

■ Section 7.12, "Creating a List of Values in an ADF Table Component Column"

■ Section 7.13, "Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component"

■ Section 7.14, "Adding a Dynamic Column to Your ADF Table Component"

■ Section 7.15, "Creating an ADF Read-Only Table Component"

■ Section 7.16, "Limiting the Number of Rows Your Table-Type Component
Downloads"

■ Section 7.17, "Clearing the Values of Cached Attributes in an ADF Table
Component"

■ Section 7.18, "Tracking Changes in an ADF Table Component"

Introduction to Oracle ADF Desktop Integration Table-type Components

7-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

7.1 Introduction to Oracle ADF Desktop Integration Table-type
Components

The Oracle ADF Desktop Integration module provides the following table-type
components:

■ ADF Table component

■ ADF Read-only Table component

The ADF Table and ADF Read-only Table components provide end users with the
functionality to download rows of data. The ADF Table component provides
additional functionality that allows end users to edit downloaded data or to insert new
rows of data. The ADF Table component’s Upload action can upload the resulting
data.

The number of rows that an ADF Table or ADF Read-only Table component contains
expands or contracts based on the number of rows to download from a Fusion web
application. You should not place anything to the left or right of a table-type
component unless you want to replicate it when Excel inserts rows to accommodate
the data that one of the table-type components downloads. You can place other
components above or below a table-type component as they maintain their position
relative to the table-type component at runtime. End users who want to insert new
rows of data into an ADF Table component at runtime must insert full rows into the
Excel worksheet that hosts the ADF Table component.

The other Oracle ADF Desktop Integration module components that you can use in
conjunction with these table-type components are described in Chapter 6, "Working
with Oracle ADF Desktop Integration Form-type Components".

7.2 Page Definition Requirements for an ADF Table Component
The ADF Table component is one of the Oracle ADF components that the Oracle ADF
Desktop Integration module exposes. It appears in the components palette of the
Oracle ADF Desktop Integration Designer and, once inserted into an Excel worksheet,
allows the following operations:

■ Read-only

■ Insert-only

■ Update-only

■ Insert and update

Review the following sections for information about page definition file requirements
specific to an ADF Table component.

Before you can configure an ADF Table component to provide data-entry functionality
to your end users, you must configure the underlying page definition file for the Excel
worksheet with ADF bindings. For general information about the page definition file
requirements for an integrated Excel workbook, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook".

Expose the following control bindings when you create a page definition file for
authoring an ADF Table component:

■ Tree binding that exposes desired attribute bindings and a tree binding attribute
that uniquely identifies each row in the table.

■ Method action bindings and action bindings if you intend to configure values for
the ADF Table component’s RowActions and BatchOptions groups of

Inserting an ADF Table Component into an Excel Worksheet

Working with Oracle ADF Desktop Integration Table-type Components 7-3

properties. Examples of procedures where you set values for these groups of
properties include:

– Section 7.3, "Inserting an ADF Table Component into an Excel Worksheet"

– Section 7.5, "Configuring an ADF Table Component to Insert Data"

– Section 7.7, "Configuring a Worksheet to Download Pre-Insert Data to an ADF
Table Component"

■ (Optional) Update record action binding.

Figure 7–1 shows the bindings that the ExcelPriceListPageDef.xml page
definition file includes. This page definition file can support the use of an ADF Table
component in the Excel worksheet that it is associated with.

Figure 7–1 ADF Bindings Supporting Use of an ADF Table Component

7.3 Inserting an ADF Table Component into an Excel Worksheet
Once you have configured a page definition file correctly, you can insert the ADF Table
component into the worksheet and configure its properties to achieve the functionality
you want.

To insert an ADF Table component into an Excel worksheet:
1. Select the cell in the Excel worksheet where you want to insert the ADF Table

component. When inserting an ADF Table component, you must ensure that the
data of two tables does not overlap at runtime.

2. In the bindings palette of the Oracle ADF Desktop Integration Designer, select the
tree binding that you want to use and click Insert Binding. Based on your

Note: The previous list is not exhaustive.

Note: Use descriptive names for the attributes of different iterators.
Excel displays a flat list of bindings, so you will not see the iterators.

Inserting an ADF Table Component into an Excel Worksheet

7-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

selection, the Select Component dialog box or the Insert Component dialog box
appears.

3. In the dialog box that appears, select ADF Table and click OK.

4. Configure properties for the ADF Table component using the property inspector
shown in Figure 7–2.

Figure 7–2 ADF Table Property Inspector

5. Specify a binding expression for the attribute that uniquely identifies each row in
the iterator associated with the tree binding. The UniqueAttribute property
may be left blank if the binding's iterator supports row keys.

6. Configure the BatchOptions properties of the ADF Table component as
described in the following table.

Notes:

■ You can also insert an ADF Table component by using the
components palette. Select ADF Table and click Insert
Component. If you use the components palette to create the
component, you have to add each column that you want to appear
in the component at runtime.

■ When you insert an ADF Table component using Insert Binding,
then by default, InputText is defined as the subcomponent type
for all columns. If you want a column to have a list subcomponent
(TreeNodeList or ModelDrivenColumnComponent), then
delete the old column and reinsert it with your desired
subcomponent type.

Set this property to... This value...

CommitBatchActionID The Commit action binding that the page definition file exposes.

Configuring an ADF Table Component to Update Existing Data

Working with Oracle ADF Desktop Integration Table-type Components 7-5

7. Optionally, configure the RowLimit group of properties to determine what
number of rows the ADF Table component can download.

For more information, see Section 7.16, "Limiting the Number of Rows Your
Table-Type Component Downloads".

8. Click OK.

For more information about the properties that you can set for the ADF Table
component, see Section A.9, "ADF Table Component Properties and Actions".

7.3.1 How to Add a Column in an ADF Table Component
After inserting an ADF Table component in the worksheet of your integrated Excel
workbook, you may want to add a column that is not available in the tree binding. For
example, you may want to add a column that displays values calculated by an Excel
formula.

To add a column in an ADF Table component:
1. Select the cell in the Excel worksheet that references the ADF Table component and

click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar to display the Edit Component: ADF Table dialog box.

2. Click ellipses button (...) of the Columns property to open the TableColumn
Collection Editor dialog box. The dialog box lists all columns of the selected ADF
Table component.

3. Click Add to add a new column. The new column is inserted at the end of the
Members list. To move the column to a specific position, select the column and use
Up and Down arrow keys.

4. Configure the new column’s properties in the right pane of the dialog. For
information about ADF Table component properties, see Section A.9, "ADF Table
Component Properties and Actions".

5. Click OK.

7.4 Configuring an ADF Table Component to Update Existing Data
When you add the ADF Table component, by default, it allows end users to edit the
existing data, but it does not allow them to add new data rows or delete existing data
rows.

7.4.1 How to Configure an ADF Table Component to Update Data
If you want the end user to be able to edit existing data, but would like to restrict
addition or deletion of data rows, no additional configuration is required. Ensure that
the ADF Table component RowAction properties are set as described in the following
table.

Property Value

InsertRowEnabled False

DeleteRowEnabled False

UpdateRowEnabled True

Configuring an ADF Table Component to Insert Data

7-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

7.4.2 What Happens at Runtime When an ADF Table Component Updates Data
When an end user changes data in a row, the Oracle ADF Desktop Integration module
marks the row and an upward pointing arrow appears in a row of the _ADF_
ChangedColumn column. After updating the existing data, the end user initiates
upload process to save the changes. For more information about the ADF Table
component's upload process, see Section 7.8, "Configuring an Oracle ADF Component
to Upload Changes from an ADF Table Component".

Excel uploads modified rows from the integrated workbook in batches rather than row
by row. You can configure the size of batches and the actions an ADF Table
component invokes when it uploads a batch. For more information about batch
processing, see Section 7.10, "Batch Processing in an ADF Table Component".

For more information about the properties that you can set for the ADF Table
component, see Section A.9, "ADF Table Component Properties and Actions".

7.5 Configuring an ADF Table Component to Insert Data
The primary purpose of an ADF Table component is to provide end users with an
interface where they can input or edit data which can then be uploaded to the
database that serves your Fusion web application. For this to happen, you must expose
methods on data controls, create action bindings in your page definition file, and set
properties for the ADF Table component that an Excel worksheet hosts. Note that a full
Excel row must be inserted for this functionality to work correctly.

7.5.1 How to Configure an ADF Table Component to Insert Data Using a View Object’s
Operations

If you want the changes that an end user makes in an ADF Table component to be
committed once he or she invokes the ADF Table component’s Upload action, you
need to configure a number of the ADF Table component’s properties.

To configure an ADF Table component to insert data using a view object’s
operations:
1. If not already present, add a CreateInsert and a Commit action binding to the

page definition file that is associated with the Excel worksheet that hosts the ADF
Table component.

For more information, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook" and Section 7.2, "Page Definition Requirements for an
ADF Table Component".

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar to display the Edit Component: ADF Table dialog box.

3. Configure the RowActions properties of the ADF Table component as described
in the following table.

Set this property to... This value...

InsertRowEnabled True

InsertBeforeRowActionID The CreateInsert action binding that the page definition
file exposes.

Configuring Oracle ADF Component to Download Data to an ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-7

4. Configure the BatchOptions properties of the ADF Table component as
described in the following table.

5. Configure the Columns property of the ADF Table component as described in the
following table.

6. Repeat Step 5 for each column that contains data that you want to commit during
invocation of the Upload action.

For information about ADF Table component properties, see Section A.9, "ADF
Table Component Properties and Actions".

7.6 Configuring Oracle ADF Component to Download Data to an ADF
Table Component

Once you add an ADF Table component to a worksheet, you configure it and the
worksheet that hosts it so that the ADF Table component downloads data from the
Fusion web application. To achieve this, you configure an Oracle ADF component,
such as ADF Button, a worksheet menu item, or a worksheet event to invoke an action

Set this property to... This value...

CommitBatchActionID The Commit action binding that the page definition file exposes.

Set this property to... This value...

InsertUsesUpdate True

UpdateComponent ■ Set the Value field of the UpdateComponent property to the
update attribute from the page definition file. For example,
#{row.bindings.ProductId.inputValue}.

■ Verify that ReadOnly property of UpdateComponent is set
appropriately.

This property only appears if you selected InputText or
TreeNodeList as the subcomponent to associate with the
column. Set ReadOnly to False if you do want users to edit the
values in the column, set to True otherwise.

For more information about the components that you can use as a
subcomponent, see Chapter 6, "Working with Oracle ADF
Desktop Integration Form-type Components".

ID Set a value in this field that uniquely identifies the column in the ADF
Table component’s list of columns. A value for this property is
required. The ADF Table component generates an initial value that you
do not need to modify.

CellStyleName Set this property to a style defined in the workbook or to an EL
expression that applies a style to the cells in the column at runtime. For
more information about styles, see Chapter 9, "Configuring the
Appearance of an Integrated Excel Workbook".

HeaderLabel Set this property to a label or to an EL expression that evaluates to a
label which is rendered in the column header at runtime. For more
information about labels, see Section 9.4, "Using Labels in an
Integrated Excel Workbook".

HeaderStyleName Set this property to a style defined in the workbook or to an EL
expression that applies a style to the column’s header cell at runtime.
For more information about styles, see Chapter 9, "Configuring the
Appearance of an Integrated Excel Workbook".

Configuring Oracle ADF Component to Download Data to an ADF Table Component

7-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

set. The action set that is invoked must include the ADF Table component Download
action among the actions that it invokes.

7.6.1 How to Configure an Oracle ADF Component to Download Data to an ADF Table
Component

Configure an Oracle ADF component, a worksheet menu item, or a worksheet event to
invoke an action set that, in turn, invokes the ADF Table component Download action.

To configure an Oracle ADF component to download data to an ADF Table
component:
1. Open the Action Collection Editor to configure an action set for the worksheet

event, worksheet menu item, or Oracle ADF component (a button, for example)
that is going to invoke the action set at runtime.

For more information about invoking action sets, see Section 8.2, "Using Action
Sets".

2. Add the ADF Table component Download action to the list of actions that the
action set invokes at runtime.

The ADF Table component Download action downloads the current state of the
binding referenced by the ADF Table component TreeID property. To make sure
that the state of this binding is up to date prior to download, add a query action
that refreshes the binding before the action set invokes the ADF Table component
Download action.

Figure 7–3 shows the Action Collection Editor in the EditPriceList-DT.xlsx
workbook where the action set invoked by the worksheet event Startup is
configured.

Figure 7–3 Action Set Downloading Data to an ADF Table Component

3. Click OK.

Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-9

7.6.2 What Happens at Runtime When an ADF Table Component Downloads Data
The end user invokes the action set that you configured. The action set invokes the list
of actions specified in order. These include an action that invokes the Download action
of the ADF Table component. This action downloads the current state of the binding
referenced by the ADF Table component TreeID property. If the tree binding
referenced by the TreeID property contains data with a master-detail relationship (for
example, a product category with multiple products), the ADF Table component
shows the first record in the detail result set (for example, the first product). How you
configured the tree binding in the Fusion web application determines which of the
detail records is defined as the first record. For more information about using tree
bindings to display master-detail data, see the "Using Trees to Display Master-Detail
Objects" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

The number of rows that the action downloads depends on the values set for the
RowLimit group of properties in the ADF Table component. For more information,
see Section 7.16, "Limiting the Number of Rows Your Table-Type Component
Downloads".

7.7 Configuring a Worksheet to Download Pre-Insert Data to an ADF
Table Component

Pre-insert data is data contained in one or more rows of data that you configure an
iterator in a Fusion web application to reference. These rows of data have not yet been
committed to the Fusion web application’s database. You can configure the iterator to
populate values for some or all of its attributes.

At design time in the integrated Excel workbook, you can configure an ADF Table
component and the worksheet that hosts it so that the ADF Table component
downloads pre-insert data from the Fusion web application. To achieve this, you
configure an Oracle ADF component, such as an ADF Button component, a worksheet
menu item, or a worksheet event to invoke an action set. The action set that is invoked
must include the ADF Table component DownloadForInsert action among the
actions that it invokes.

The DownloadForInsert action differs from the Download action as follows:

■ DownloadForInsert populates table cell data with the value of the EL
expression for the insert component that is associated with each column in the
ADF Table component. Download populates the table cell data with the EL
expression for the update component that is associated with each column in the
ADF Table component.

■ The EL expression #{components.componentID.currentRowMode} returns
Insert when evaluated by the DownloadForInsert action. In contrast, the
same EL expression evaluated by the Download action returns Update. The
componentID part of the EL expression references the ID of the ADF Table
component.

Note the following points if you decide to invoke the DownloadForInsert action:

■ Use the action with data rows that are in the STATUS_INITIALIZED state as these
data rows will be ignored when the transaction is committed.

■ An action set that includes the DownloadForInsert action does not execute this
action if an ADF Table component’s RowActions.InsertRowEnabled property
is set to False.

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

7-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ It serves no purpose to include both the DownloadForInsert and Download
actions in the same action set, as the last executed action determines what data
appears in the ADF Table component.

7.7.1 How to Configure a Worksheet to Download Pre-Insert Data to an ADF Table
Component

Configure an Oracle ADF component, a worksheet menu item, or a worksheet event to
invoke an action set that, in turn, invokes the ADF Table component
DownloadForInsert action.

To configure a worksheet to download pre-insert data to an ADF Table
component:
1. Open the Action Collection Editor to configure an action set for the worksheet

event, worksheet menu item, or Oracle ADF component that is going to invoke the
action set at runtime.

For more information about invoking action sets, see Section 8.2, "Using Action
Sets".

2. Add the ADF Table component DownloadForInsert action to the list of actions
that the action set invokes at runtime.

3. Click OK.

7.7.2 What Happens at Runtime When an ADF Table Component Downloads Pre-Insert
Data

The end user invokes the action set that you configured. The action set invokes the list
of actions specified in order. These include an action that invokes the
DownloadForInsert action of the ADF Table component. This action downloads
pre-insert data from the Fusion web application and inserts it in rows of the ADF Table
component in the Excel worksheet. The InsertComponent property is configured for
the ADF Table component columns associated with the rows inserted to host the
pre-insert data. End users can invoke the ADF Table component’s Upload action to
commit the pre-insert data to the Fusion web application’s database.

7.8 Configuring an Oracle ADF Component to Upload Changes from an
ADF Table Component

You configure the ADF Table component and the worksheet that hosts it so an end
user can upload changes he or she makes to data in the ADF Table component to the
Fusion web application. To configure this functionality, you decide what user gesture
or worksheet event invokes the action set that invokes the ADF Table component’s
Upload action.

If you want to present end users with upload options in a web page from the Fusion
web application that differ from the default upload dialog box, you specify a Dialog
action in the action set before the action that invokes the ADF Table Component’s
Upload action. For more information, see Section 7.8.4, "How to Create a Custom
Upload Dialog".

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-11

7.8.1 How to Configure an Oracle ADF Component to Upload Data from an ADF Table
Component

Configure an Oracle ADF component, a worksheet menu item, a component (a button,
for example), or a worksheet event to invoke an action set that, in turn, invokes the
ADF Table component Upload action.

To configure an Oracle ADF component to upload changed data from an ADF
Table component:
1. Open the Action Collection Editor to configure the action set that invokes the ADF

Table component Upload action.

For more information about action sets, see Section 8.2, "Using Action Sets".

2. Add the ADF Table component Upload action to the list of actions that the action
set invokes at runtime.

Figure 7–4 shows the Action Collection Editor in the EditPriceList-DT.xlsx
workbook where the action set invoked by the ADF Button labeled Save Changes
at runtime is configured.

Figure 7–4 Action Set Uploading Data from an ADF Table Component

3. Click OK.

7.8.2 What Happens at Runtime When an ADF Table Component Uploads Data
At runtime, the end user invokes the action set through whatever mechanism you
configured (ADF component, worksheet menu item, worksheet event). This triggers
the following sequence of events:

1. If the ADF Table component contains dynamic columns, the Oracle ADF Desktop
Integration module checks to see whether the dynamic columns that were
expanded the last time the ADF Table component’s Download action was invoked
are still present in the Fusion web application. If the columns are not present, the
Oracle ADF Desktop Integration module prompts the end user to determine
whether to continue upload process. If the end user decides not to continue, the

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

7-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Oracle ADF Desktop Integration module returns an abort code to the executing
action set.

2. If the ADF Table component contains no pending changes to upload, the ADF
Table component’s Upload action returns a success code to the executing action
set.

3. If you did not configure a custom upload dialog for the action set, as described in
Section 7.8.4, "How to Create a Custom Upload Dialog", the Oracle ADF Desktop
Integration module presents the default upload dialog box shown in Figure 7–5.

Figure 7–5 Default Upload Dialog Box

If the end user clicks Cancel, the Oracle ADF Desktop Integration module returns
an abort code to the executing action set. If the end user clicks OK, the action set
continues executing with the options specified in the dialog for the upload
operation.

4. The ADF Table component uploads modified rows in batches, rather than row by
row. You can configure the batch options using the BatchOptions group of
properties. For more information about batch options for the ADF Table
component, see Section 7.10, "Batch Processing in an ADF Table Component".

Each row of a batch is processed in the following way, and the process continues
until all changed rows of each batch are processed:

a. For inserted rows, invoke the InsertBeforeRowActionID action, if
specified.

b. Set attributes from the worksheet into the model, including any cached row
attribute values.

c. For edited rows, invoke the UpdateRowActionID action; and for inserted
rows, invoke the InsertAfterRowActionID action, if specified.

d. For each uploaded row, displays a status message in the Status column. For
more information, see Section 8.2.5, "How to Display a Status Message While
an Action Set Executes".

e. For any row failure, it verifies the value of AbortOnFail. If AbortOnFail is
set to False, it continues upload process, otherwise it stops uploading data
and invokes the commit action.

5. While uploading data, the ADF Table component returns a success or failure code
to the executing action set based on the following:

■ If the ADF Table component uploads all batches successfully, it returns the
success status to the executing action set. If the end user has selected the
Download all rows after successful upload option in Step 3, the ADF Table
component then downloads all rows from the Fusion web application.

■ If the ADF Table component did not upload all batches successfully, the action
set invokes the action specified by the RowActions.FailureActionID

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-13

property, if an action is specified for this property. The Oracle ADF Desktop
Integration module returns a failure code to the action set.

If you selected On failure, continue to upload subsequent rows in the Upload
Options dialog box of Step 3, the Upload action returns a success code to the action set
even if some individual rows encountered validation failures.

7.8.3 What Happens at Runtime When an Upload Fails
When the ADF Table component starts uploading data, the Oracle ADF Desktop
Integration module creates a savepoint before initiating the upload process. In case of
any failure, the Oracle ADF Desktop Integration module reverts back to the same
savepoint, ensuring the integrity of the server-side state of the Fusion web application.

For each row that is uploaded, the Oracle ADF Desktop Integration module does the
following:

1. Creates a DataControlFrame savepoint on the server.

2. Applies row attribute value changes, and performs data validation.

3. In case of any error, reverts back to the savepoint state.

For more information about savepoints, see the "Using Trees to Display Master-Detail
Objects" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

7.8.4 How to Create a Custom Upload Dialog
You display a page from Fusion web application that offers end users different options
to those presented in the default upload dialog box. You add a Dialog action before
the action that invokes the ADF Table component’s Upload action in the action set.

To create a custom upload dialog:
1. Create a page in the JDeveloper project where you develop the Fusion web

application. For information on how to create this page, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application".

2. In addition to the ADFdi_CloseWindow element (for example, a span element)
described in Section 8.4, "Displaying Web Pages from a Fusion Web Application",
the page that you create in Step 1 must include the elements described in the
following table:

Note: If an ADF Table component column’s ReadOnly property
evaluates to True, the ADF Table component’s Upload action ignores
changes in the column’s cells.

For more information about an ADF Table component column’s
properties, see Table A–10.

Name Description

ADFdi_
AbortUploadOnFailure

If you set this element to True, the action set stops
uploading if it encounters a failure. If the element references
False, the action set attempts to upload all rows and
indicates if each row succeeded or failed to upload.

Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

7-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

3. Add a Dialog action to invoke the page you created in Step 1 before the action in
the action set that invokes the ADF Table component’s Upload action.

For more information about displaying pages from a Fusion web application, see
Section 8.4, "Displaying Web Pages from a Fusion Web Application".

7.8.5 What Happens at Runtime When a Custom Upload Dialog Appears
The page from the Fusion web application that you configure the Dialog action in the
action set to display appears instead of the default upload dialog box. For more
information about displaying a page from the Fusion web application, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application". Otherwise, the runtime
behavior of the action set that you configure to upload data is as described in
Section 7.8.2, "What Happens at Runtime When an ADF Table Component Uploads
Data".

7.9 Configuring an ADF Table Component to Delete Rows in the Fusion
Web Application

The ADF Table component exposes an action (DeleteFlaggedRows) that, when
invoked, deletes the rows in the Fusion web application that correspond to the flagged
rows in the ADF Table component. A flagged row in an ADF Table component is a row
where an end user has double-clicked or typed a character in the cell of the _ADF_
FlagColumn column as described in Section 7.10, "Batch Processing in an ADF Table
Component". The _ADF_FlagColumn column must be present in the ADF Table
component if you want to configure it to delete rows in the Fusion web application.

In addition, the page definition file that you associate with the worksheet that hosts
the ADF Table component must expose a Delete action binding.

7.9.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web
Application

Configure an action set to invoke a Delete action binding in the page definition file
that is associated with the worksheet that hosts the ADF Table component and set
values for a number of RowActions properties.

To configure an ADF Table component to delete rows in a Fusion web
application:
1. If not already present, add a Delete action binding to the page definition file that

is associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook".

ADFdi_
DownLoadAfterUpload

Set this element to True so the action set downloads data
from the Fusion web application to the ADF Table
component after the action set uploads modified data.

Note: The page you create must include both elements if you want to
prevent the Oracle ADF Desktop Integration module presenting the
default upload dialog box to end users.

Name Description

Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

Working with Oracle ADF Desktop Integration Table-type Components 7-15

2. Open the property inspector for the ADF Table component and set values for the
RowActions group of properties as described in the following table.

For more information about ADF Table component properties, see Section A.9,
"ADF Table Component Properties and Actions".

3. Click OK.

4. Open the Action Collection Editor to configure an action set for the Oracle ADF
component, worksheet menu item, or worksheet event that the end user uses to
invoke the action set at runtime.

5. Add the ADF Table component’s DeleteFlaggedRows action to the list of
actions that the action set invokes at runtime.

For more information about invoking action sets, see Section 8.2, "Using Action
Sets".

6. Click OK.

7.9.2 What Happens at Runtime When an ADF Table Component Deletes Rows in a
Fusion Web Application

The end user flags rows to delete, as described in Section 7.10.2, "Row Flagging in an
ADF Table Component". The end user then invokes the action set. The following
sequence of events occurs:

1. If specified, the action binding referenced by the
BatchOptions.StartBatchActionID property is invoked.

Failures from this step are treated as errors. An error stops the action set invoking.
It also returns the error condition to the action set. If an action binding is specified
for the ActionSet.FailureActionID property, the action set invokes the
specified action binding.

For more information about configuring batch options, see Section 7.10, "Batch
Processing in an ADF Table Component".

2. The action set invokes the Delete action binding specified by
RowActions.DeleteRowActionID.

3. If no errors occur during the invocation of the Delete action binding, a success
message entry appears in the _ADF_StatusColumn column. If a failure occurs,
the ADF Table component stops invocation of the Delete action binding and
continues to Step 4.

Set this property... To...

DeleteRowActionID The Delete action binding that the page definition file exposes.

DeleteRowEnabled True to enable the ADF Table component to delete rows in the
Fusion web application.

False is the default value.

Note: Rows inserted since the last invocation of the ADF Table
component’s Download action but not uploaded to the Fusion web
application are ignored even if flagged for deletion.

Batch Processing in an ADF Table Component

7-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

4. If an action binding is specified for the BatchOptions.CommitBatchActionID
property, the action set invokes it. If this step fails, the action set stops processing
batches. If no failures occur, the action set processes the next batch by invoking the
action binding specified by the BatchOptions.StartBatchActionID
property, and so on until the action set processes all batches.

5. If the action set processes all batches successfully, it invokes the action binding
specified by its ActionOptions.SuccessActionID property if an action
binding is specified for this property. It then removes the rows deleted in the
Fusion web application by invocation of the Delete action binding specified by
RowActions.DeleteRowActionID from the worksheet and returns a success
code to the action set.

If failures occur while the action set processes the batches, the action set invokes
the action binding specified by its ActionOptions.FailureActionID
property if an action binding is specified for this property. This action binding
returns a failure code to the action set.

6. If an unexpected exception occurs while the action set invokes its actions, an error
code is returned to the action set.

7.10 Batch Processing in an ADF Table Component
The ADF Table component uploads modified rows from the Excel workbook in
batches rather than row by row. You can configure a number of batch option properties
that determine the size of batches and what actions the ADF Table component invokes
when it uploads a batch.

7.10.1 Configuring Batch Options for an ADF Table Component
The ADF Table component has a group of properties (BatchOptions) that allow you
to configure how the ADF Table component manages batches of rows. Information
about these properties can be found in Section A.9, "ADF Table Component Properties
and Actions".

To configure batch options for an ADF Table component:
1. Select the cell in the Excel worksheet that references the ADF Table component and

then click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar.

2. Set values for the BatchOptions group of properties in the property inspector
that appears.

Set this property... To...

BatchSize Specify how many rows to process before an ADF Table component
action (Upload or DeleteFlaggedRows) invokes the action
binding specified by CommitBatchActionID. Any value other
than a positive integer results in all rows being processed in a
single batch. The default value is 100 rows.

CommitBatchActionID The action binding to invoke once the ADF Table component
processes each batch. Typically, this is the Commit action binding.

Batch Processing in an ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-17

3. Click OK.

7.10.2 Row Flagging in an ADF Table Component
By default, the ADF Table component includes a column, _ADF_FlagColumn, that
facilitates the selection of rows for flagged-row processing. One of the following
actions by an end user in a cell of the _ADF_FlagColumn column flags the
corresponding row for processing by actions invoked by a component action:

■ Double-click a cell

■ Type a character in a cell

When an end user carries out one of the previously listed actions, an arrow that points
to the right appears, or disappears, in the cell to indicate that the row is flagged, or not.
Figure 7–6 shows an example of a flagged column.

Figure 7–6 Flagged Column in an ADF Table Component

The following component actions can be invoked on flagged rows:

■ DeleteFlaggedRows

■ DownloadFlaggedRows

You can use the FlagAllRows component action to flag all rows, and the
UnflagAllRows component action to unflag all rows of the ADF Table component.

Use of these component actions is dependent on the appearance of the _ADF_
FlagColumn column in the ADF Table component. If you remove the _ADF_
FlagColumn column from the ADF Table component, you cannot invoke any of these
component actions. For more information about these component actions, see
Section A.9.3, "ADF Table Component Actions".

At runtime, an end user can invoke one of the previously listed component actions
from an action set. The invoked component action processes all flagged rows. For
example, it downloads or deletes all flagged rows. For more information about
configuring an action set to invoke a component action, see Section 8.2.2, "How to
Invoke Component Actions in an Action Set".

LimitBatchSize True

When True, the ADF Table component processes rows in batches
determined by the value of BatchSize. When False, the ADF
Table component uploads all modified rows in a single batch.

True is the default value.

StartBatchActionID Specify the action binding to invoke at the beginning of each batch.

Note: By default, the arrow character indicates a row flagged for
flagged-row processing. However, any non-empty cell in a _ADF_
FlagColumn column flags the corresponding row for flagged-row
processing.

Set this property... To...

Special Columns in the ADF Table Component

7-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

7.11 Special Columns in the ADF Table Component
By default, the ADF Table component includes a number of columns when you insert
an ADF Table component in a worksheet. You can retain or remove these columns. The
following list describes the columns and the purpose they serve:

■ _ADF_ChangedColumn

The cells in this column track changes to the rows in the ADF Table component. If
a change has been made to data in a row of the ADF Table component since
download or the last successful upload, a character that resembles an upward
pointing arrow appears in the corresponding cell of the _ADF_ChangedColumn
column. This character toggles (appears or disappears) when a user double-clicks
a cell in this column. Figure 7–7 shows an example.

Figure 7–7 Changed Column in an ADF Table Component

A confirmation dialog appears to end users when the ADF Table component’s
Download action is invoked, and one or more rows in this column are flagged as
changed. The end user clicks OK to allow the Download action to execute, or
Cancel to stop the execution of the Download action.

■ _ADF_FlagColumn

When an end user double-clicks a cell or types a character in this column, the
corresponding row is flagged for flagged-row processing. An arrow character
appears to indicate that the row is flagged for flagged-row processing. For more
information about the use of this column, see Section 7.10.2, "Row Flagging in an
ADF Table Component".

A confirmation dialog appears to end users when the ADF Table component’s
DownloadFlaggedRows action is invoked, and one or more rows in _
ADFChangedColumn and _ADF_FlagColumn are flagged. The end user clicks
OK to allow the action to execute or Cancel to stop the execution of the action.

■ _ADF_StatusColumn

This column reports the results of invocation of the following ADF Table
component actions:

– DeleteFlaggedRows

– Upload

A message appears in the cell of the _ADF_StatusColumn to indicate the result
of the invocation for the corresponding row. If the end user invokes a

Note: If an end user does not want the ADF Table component's
Upload action to upload changes in the rows flagged by this column,
he or she must clear the entry that appears in the corresponding cell.

Note: By default, the arrow character indicates a row flagged for
flagged-row processing. However, any non-empty cell in a _ADF_
FlagColumn flags the corresponding row for flagged-row processing.

Creating a List of Values in an ADF Table Component Column

Working with Oracle ADF Desktop Integration Table-type Components 7-19

DoubleClickActionSet defined in an ADF Table column and an error occurs,
the errors are also reported in the status column of the corresponding row.
Figure 7–8 shows an example of Status column message.

Figure 7–8 Status Column in an ADF Table Component

The ADF Table component treats the properties of the _ADF_ChangedColumn, _ADF_
FlagColumn, and _ADF_StatusColumn columns differently to the properties of
other columns that it references. It ignores the values set for properties such as
InsertComponent, InsertUsesUpdate, and UpdateComponent except when it
invokes the DisplayRowErrors action described in Table A–11. It reads the values
for properties related to style and appearance, for example CellStyleName and
HeaderStyleName.

7.12 Creating a List of Values in an ADF Table Component Column
Use the TreeNodeList subcomponent when you want to render a dropdown list of
values in an ADF Table component column. The list of values can display a maximum
of two hundred and fifty values at runtime. Unlike other Oracle ADF Desktop
Integration module components, the TreeNodeList subcomponent does not appear in
the components palette described in Section 5.3, "Using the Components Palette".
Instead, you invoke it as a subcomponent when you specify values for the
InsertComponent or UpdateComponent properties of an ADF Table component
column. For information about the properties of an ADF Table component column, see
Section A.9.2, "ADF Table Component Column Properties".

Once you invoke the TreeNodeList subcomponent, you must specify a tree binding
attribute associated with a model-driven list as a value for the TreeNodeList
subcomponent’s List property. The tree binding attribute associated with a
model-driven list populates the dropdown menu in the Table component’s column
with a list of values after invocation of the Table component’s Download action.

For information about the properties of a TreeNodeList subcomponent, see
Section A.6, "TreeNodeList Subcomponent Properties".

Figure 7–9 shows the property inspector for an ADF Table component column in
AdvEditPriceList-DT.xlsx after TreeNodeList is selected as the
subcomponent for the column’s UpdateComponent property.

Note: You can create a model-driven list of values in your ADF Table
component by choosing ModelDrivenColumnComponent as the
subcomponent type. For more information about creating a
model-driven list, see Section 7.13, "Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component".

Creating a List of Values in an ADF Table Component Column

7-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 7–9 ADF Table Component Column Configured to Display a List of Values

7.12.1 How to Create a List of Values in an ADF Table Component Column
You add a column to the ADF Table component column and select TreeNodeList as
the subcomponent. You then specify a tree binding attribute as the value for the
TreeNodeList subcomponent’s List property. A model-driven list must be
associated with the tree binding attribute that you specify.

To create a list of values in an ADF Table component column:
1. Select the cell in the Excel worksheet that references the ADF Table component and

click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar to display the Edit Component: ADF Table dialog box.

2. Click the ellipsis button (...) beside the input field for Columns to invoke the
TableColumn Collection Editor.

3. Click Add to add a new column.

4. Choose the appropriate option for the newly created column:

■ Click the ellipsis button (...) beside the input field for InsertComponent if you
want to configure the runtime list of values for insert operations.

■ Click the ellipsis button (...) beside the input field for UpdateComponent if
you want to configure the runtime list of values for update and download
operations.

In both options, the Select subcomponent to create dialog box appears.

5. Select TreeNodeList and click OK.

6. Expand the property that you selected in Step 4 and configure values as follows:

Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-21

■ Select a tree binding attribute associated with a model-driven list for the List
property.

■ Select a value for DependsOnList only if you intend to create a dependent
list of values as described in Section 8.8, "Creating Dependent Lists of Values
in an Integrated Excel Workbook". The tree binding attribute or list binding
you select for DependsOnList serves as the parent list of values in a
dependent list of values.

■ Configure the ReadOnly property as desired.

For information about these properties, see Section A.6, "TreeNodeList
Subcomponent Properties".

7. Click OK.

7.12.2 What Happens at Runtime When a Column Renders a List of Values
At runtime, the ADF Table component invokes the Download action and populates
each column. This action also populates the list of values in the column that you
configure to render a list of values. Figure 7–10 shows an example from
AdvEditPriceList-DT.xlsx of the Master Price List module where Category is
the column configured to display a list of values.

Figure 7–10 Runtime View of an ADF Table Component Column Displaying a List of
Values

7.13 Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component

You can add a ModelDrivenColumnComponent subcomponent to an ADF Table
component. The value of ModelDrivenColumnComponent is determined by the
Control Type hint specified for each attribute on the server.

At design time, for a column, specify the subcomponent type as
ModelDrivenColumnComponent for the UpdateComponent or
InsertComponent properties. At runtime, if there is a model-driven list associated
with the attribute, then the column uses a dropdown list using the TreeNodeList
subcomponent. If there is no model-driven list associated with the attribute, or one of
the non-list based control types is specified, then the column will use an InputText
subcomponent.

For more information about creating a model-driven list, see the "How to Create a
Model-Driven List" section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Adding a Dynamic Column to Your ADF Table Component

7-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

Support for Dependent List of Values
When multiple ModelDrivenColumnComponent list subcomponents are exposed in
an ADF Table component, then for each list the Oracle ADF Desktop Integration
module determines whether it depends on another model-driven list. It verifies that
the bind variable specified for a list references an attribute bound to another list.

If the list depends on another model-driven list, the subcomponent's DependsOnList
value is set automatically at runtime.

As server-side list binding dependencies are determined only for lists in the same tree
node, the following tree node list bindings are not supported:

■ A binding that depends on a list binding in a different tree or tree node

■ A binding that depends on a list binding in the page definition file

7.14 Adding a Dynamic Column to Your ADF Table Component
You can add dynamic columns to an ADF Table component so that the ADF Table
component expands or contracts at runtime depending on the available attributes
returned by the view object. The DynamicColumn property of the Columns group in
the TableColumn array controls this behavior. To make a column dynamic, set the
DynamicColumn property to True. A dynamic column in the TableColumn array is
a column that is bound to a tree binding or a tree node binding whose attribute names
are not known at design time. A dynamic column can expand to more than a single
worksheet column at runtime.

The ADF Table component's dynamic column supports the following subcomponent
types:

■ InputText

■ OutputText

■ ModelDrivenColumnComponent

Support for Model-Driven List of Values
You can also configure a dynamic column to support the List of Values subcomponent
where the subcomponent type is determined from model metadata at runtime. At
design time, specify the subcomponent type as ModelDrivenColumnComponent for
the UpdateComponent or InsertComponent properties. At runtime, during
dynamic column expansion, the model-driven runtime component is determined prior
to caching the list of values. The remote servlet allows the client to retrieve Model
metadata, allowing the client to choose the desired column subcomponent type. For
more information about ModelDrivenColumnComponent, see Section 7.13, "Adding
a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component".

7.14.1 How to Configure a Dynamic Column
You configure a dynamic column by specifying an EL expression with the following
format for the Value property of the component specified by the ADF Table
component column’s InsertComponent property as a subcomponent:

#{bindings.TreeID.[TreeNodeID].AttributeNamePrefix*.inputValue}

Note: Oracle ADF Desktop Integration does not support the
subcomponent type TreeNodeList in a dynamic column.

Adding a Dynamic Column to Your ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-23

or:

#{bindings.TreeID.AttributeNamePrefix*.inputValue}

where:

■ TreeID is the ID of the tree binding used by the ADF Table component

■ TreeNodeID is an optional value that specifies the tree node binding ID. If you
omit this value, all matching attributes from the tree binding display regardless of
which tree node binding the attribute belongs to.

■ AttributeNamePrefix identifies a subset of attributes that exist within the tree
binding’s underlying iterator. If you do not specify a value for
AttributeNamePrefix, all attributes for the tree binding or tree binding node
are returned. Always use the * character.

The following example returns all attributes that begin with the name "period" in the
model.EmpView node of the EmpTree binding:

#{bindings.EmpTree.[model.EmpView].period*.inputValue}

7.14.2 What Happens at Runtime When Data Is Downloaded or Uploaded
When the ADF Table component's Download or DownloadForInsert action is
invoked, the ADF Table component automatically updates the dynamic columns so
that they contain an up-to-date set of matching attributes. For each invocation of
Download, the ADF Desktop Integration framework requires that all the rows must
have the same set of attributes for the dynamic column. It may generate errors if the
set of attributes changes from row to row during Download.

If a dynamic column supports both Insert and Update operations, you should
specify the same EL expression for the Value properties of the dynamic column’s
InsertComponent and UpdateComponent subcomponents. At runtime, the ADF
Table component expands to include a dynamic column that displays the value of the
attribute binding returned by the EL expression.

When the ADF Table component’s Upload action is invoked, the workbook prompts
the end user to determine if the end user wants to continue to upload data when the
previously downloaded attributes no longer exist in the tree binding.

Support for View Objects with Declarative SQL Mode
To support view objects that are configured with declarative SQL mode and
customized at runtime, the Oracle ADF Desktop Integration module ignores all
attributes with the selected property set to False. On the server side, the
JUCtrlHierNodeBinding object determines the attribute list and passes it to the
integrated Excel workbook on request.

Note: While adding a dynamic column, ensure that tree node
attribute names are not specified in the page definition file. At
runtime, the tree node object returns all attribute names from the
underlying iterator. If there are attribute names specified in the page
definition file, the tree node object limits the list of available attribute
names based on that list.

Adding a Dynamic Column to Your ADF Table Component

7-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

7.14.3 How to Specify Header Labels for Dynamic Columns
Use the following syntax to write EL expressions for the HeaderLabel property of a
dynamic column:

#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.label}

or:

#{bindings.TreeID.hints.AttributeNamePrefix*.label}

Specify the same tree binding ID, tree node binding ID, and attribute name prefix
values in the HeaderLabel property of the dynamic column as the values you specify
for the Value properties of the dynamic column’s InsertComponent and
UpdateComponent if the dynamic column supports Insert and Update operations.

If you want the mandatory columns, where the end user must enter a value, to be
marked with a character or a string, you must configure the HeaderLabel property.
Use the following syntax to write EL expression to add a character or string to all
mandatory columns:

=IF(#{bindings.TreeID.[TreeNodeID].hints.*.mandatory}, "<prefix_
for_mandatory_cols>", "") &
"#{bindings.TreeID.[TreeNodeID].hints.*.label}"

For example, the following EL expression adds an asterisk (*) character to the
mandatory columns label:

=IF(#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.mandator
y}, "* ", "") &
"#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.label}"

7.14.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type
You can specify different styles for each data type according to the data type of the
column. Use the following syntax to write EL expressions for the CellStyleName
property of a dynamic column:

=IF("#{bindings.TreeID.[TreeNodeID].hints.*.dataType}"="<data_
type>", <custom_style_expression1>, <custom_style_expression2>)

In the following example, the MyDateStyle style is applied to all date columns, and
MyDefaultStyle is applied to other data type columns:

=IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataTyp
e}"="date", "MyDateStyle", "MyDefaultStyle")

The following example shows another scenario where the MyDateStyle style is applied
to all date data type columns, MyNumberStyle is applied to all number data type
columns, and MyDefaultStyle is applied to other data type columns:

=IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataTyp
e}"="date", "MyDateStyle",

Note: The ADF Table component ignores the value of a column’s
Visible property when you configure a column to be dynamic. For
more information about ADF Table component column properties, see
Table A–10.

Creating an ADF Read-Only Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-25

IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataType
}"="number", "MyNumberStyle", "MyDefaultStyle"))

For more information about EL expressions, see Appendix B, "Oracle ADF Desktop
Integration EL Expressions".

7.15 Creating an ADF Read-Only Table Component
At runtime, the ADF Read-only Table component renders a table across a continuous
range of cells that displays data from the tree binding that the ADF Read-only Table
component references. Use this component to display data that you do not want the
end user to edit.

This component supports a number of properties, such as RowLimit, that determine
how many rows the component downloads when it invokes its Download action. It
also includes a group of properties (Columns) that determine what columns from the
tree binding appear at runtime in the Excel worksheet. The TreeID property specifies
the tree binding that the component references. More information about these
properties and others that the ADF Read-only Table component supports can be found
in Section A.10, "ADF Read-only Table Component Properties and Actions".

Figure 7–11 shows the columns that an ADF Read-only Table component which
references the ProductList tree binding in the ExcelReadOnlyPageDef.xml page
definition file of the Master Price List module renders at runtime.

Figure 7–11 Columns in an ADF Read-only Table Component at Runtime

Figure 7–12 shows the corresponding view of the same ADF Read-only Table
component at design time with the property inspector in the foreground.

Figure 7–12 ADF Read-only Table Component at Design Time

Limiting the Number of Rows Your Table-Type Component Downloads

7-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

7.15.1 How to Insert an ADF Read-only Table Component
You use the Oracle ADF Desktop Integration Designer to insert an ADF Read-only
Table component into a worksheet.

To insert an ADF Read-only Table component:
1. Select the cell in the Excel worksheet where you want to anchor the component.

2. In the bindings palette, select the binding that you want to use to create the ADF
Read-only Table component, and then click Insert Binding.

3. In the dialog box that appears, select ADF Read-only Table.

4. Configure properties in the property inspector that appears to determine the
columns to appear and the actions the component invokes at runtime.

5. Click OK.

7.15.2 How to Manually Add a Column to the ADF Read-only Table Component
You can manually add additional columns to an ADF Read-only Table component or
re-add columns that you previously removed.

To manually add a column to the ADF Read-only Table component:
1. Select the cell in the worksheet that hosts the ADF Read-only Table component

and click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar to display the Edit Component: ADF Read-only Table dialog box.

2. Click the ellipsis button (...) beside the input field for Columns to invoke the
ReadOnlyColumn Collection Editor.

3. Click Add to add a new column to the ADF Read-only Table component.

4. Set values for the properties of the new column.

For information about the properties of an ADF Read-only Table component
column, see Table A–13.

5. Click OK.

7.16 Limiting the Number of Rows Your Table-Type Component
Downloads

You can configure the number of rows that an ADF Table or ADF Read-only Table
component downloads by setting values for the component’s RowLimit group of
properties. You can also display a warning message, if desired, that alerts the end user

Note: You can also insert an ADF Read-only Table component by
using the components palette. Select ADF Read-only Table and click
Insert Component. If you use the components palette to create the
component, you have to add each column that you want to appear in
the component at runtime.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector.

Limiting the Number of Rows Your Table-Type Component Downloads

Working with Oracle ADF Desktop Integration Table-type Components 7-27

when the number of rows available to download exceeds the number of rows specified
for download.

7.16.1 How to Limit the Number of Rows a Component Downloads
Specify the number of rows that you want the component to download when it
invokes its Download action as a value for the RowLimit.MaxRows property.
Optionally, write an EL expression for the RowLimit.WarningMessage property so
that the end user receives a message if the number of rows available to download
exceeds the number specified by RowLimit.MaxRows.

To limit the number of rows a table-type component downloads:
1. Select the cell in the Excel worksheet that references the table-type component and

click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar.

For more information, see Section 8.2, "Using Action Sets".

2. Configure properties for the RowLimit group of properties as described in the
following table. For more information about these properties, see Section A.1,
"Frequently Used Properties in the Oracle ADF Desktop Integration Module".

3. Click OK.

Figure 7–13 shows the Edit Component dialog in the EditPriceList-DT.xlsx
workbook where the row limit of an ADF Table component is configured.

Set this property to... This value...

RowLimit.Enabled Set to True to limit the number of rows downloaded to the
value specified by RowLimit.MaxRows.

RowLimit.MaxRows Specify an EL expression that evaluates to the maximum
number of rows to download.

RowLimit.WarningMessage Write an EL expression for this property if you want to
generate a message to display to the end user if the number of
rows available to download exceeds the number specified by
RowLimit.MaxRows.

The default value also generates a message:

#{_ADFDIres['ROWLIMIT_WARNINGS_MESSAGE_1']}

If the value for this property is null, the Download action
downloads the number of rows specified by
RowLimit.MaxRows without displaying a message to the
end user.

Clearing the Values of Cached Attributes in an ADF Table Component

7-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 7–13 Limiting Number of Rows of an ADF Table Component

7.16.2 What Happens at Runtime When You Limit the Number of Rows a Component
Downloads

When invoked, the Table-type component’s Download action downloads the number
of rows that you specified as the value for RowLimit.MaxRows from the Fusion web
application. A message dialog similar to the one in Figure 7–14 appears if you specify
an EL expression for RowLimit.MaxRows or do not modify its default value:

#{_ADFDIres['ROWLIMIT_WARNINGS_MESSAGE_1']}

Figure 7–14 Row Limit Exceeded Warning Message

7.17 Clearing the Values of Cached Attributes in an ADF Table
Component

The RowData group of properties described in Table A–9 allow you to specify data to
cache in the ADF Table component. How you use this functionality is described in the
following section and chapter:

■ Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

■ Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions
and in Disconnected Mode"

The ADF Table component exposes an action (ClearCachedRowAttributes) that,
when invoked, clears the values of cached attributes for the current row of the ADF
Table component.

Tracking Changes in an ADF Table Component

Working with Oracle ADF Desktop Integration Table-type Components 7-29

7.17.1 How to Clear the Values of Cached Attributes in an ADF Table Component
Configure a DoubleClickActionSet that includes an action to invoke the ADF
Table component’s ClearCachedRowAttributes action.

To clear the values of cached attributes in an ADF Table component:
1. Open the Action Collection Editor for the Oracle ADF component that is going to

invoke the DoubleClickActionSet at runtime.

For more information about invoking action sets, see Chapter 8.2, "Using Action
Sets".

2. Add an action to the DoubleClickActionSet that invokes the ADF Table
component’s ClearCachedRowAttributes action.

3. Click OK.

7.17.2 What Happens at Runtime When the ADF Table Component Clears Cached
Values

The action set invokes the ADF Table component’s ClearCachedRowAttributes
action. This action clears the cached values specified by the
RowData.CachedAttributes property for the current row of the ADF Table
component.

7.18 Tracking Changes in an ADF Table Component
End users can create or modify data in the cells of an integrated Excel workbook that
hosts an ADF Table component.

If a column is updatable and not read-only, change tracking is activated. End users can
make the following changes to activate change tracking:

■ Edit cell values

■ Insert or delete cell values

■ Paste values to cells in the ADF Table component column that they copied
elsewhere

A character that resembles an upward pointing arrow appears in a row of the _ADF_
ChangedColumn column if an end user makes a change to data in a corresponding
row. Figure 7–15 shows an example.

Figure 7–15 Changed Column in an ADF Table Component

This character appears if the end user makes a change to data hosted by a component
where the component’s ReadOnly property value is False. The ADF Input Text and
TreeNodeList subcomponents both have a ReadOnly property. You can write an EL
expression or a static string for this ReadOnly property that evaluates to True or
False. If you write a static string or an EL expression that evaluates to True, no
character appears in the _ADF_ChangedColumn column.

If you write an EL expression for this ReadOnly property, the Oracle ADF Desktop
Integration module evaluates it differently to other EL expressions during change
tracking. This is because it is not desirable to invoke a connection to the Fusion web

Tracking Changes in an ADF Table Component

7-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

application if the end user makes changes to data in an ADF Table component while
working in disconnected mode. Instead, the Oracle ADF Desktop Integration module
substitutes an empty string value for any part of an EL expression that requires a
connection to the Fusion web application. This behavior also applies to the ADF Table
component column’s CellStyleName property.

For example, an end user in disconnected mode makes a change to a data value hosted
by the ADF Input Text component in an ADF Table component column. During
change tracking, the Oracle ADF Desktop Integration module substitutes an empty
string value in the parts of the EL expression for the ADF Input Text component’s
ReadOnly property and the ADF Table component column’s CellStyleName
property that require a connection to the Fusion web application. For this reason, write
EL expression for these properties that evaluate as you intend if an empty string value
is substituted for a part of the expression that requires a connection to the Fusion web
application to retrieve a runtime value.

The ADF Output Text component does not have a ReadOnly property. Changes that
you make to a value hosted by this component, or the ADF Input Text and
TreeNodeList subcomponents, do not result in a change to the _ADF_ChangedColumn
column.

Note: During change tracking, cell styles are applied when an end
user inserts new worksheet rows.

8

Adding Interactivity to Your Integrated Excel Workbook 8-1

8 Adding Interactivity to Your Integrated Excel
Workbook

This chapter describes how to add interactivity options to your integrated Excel
workbook.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Adding Interactivity to an Integrated Excel
Workbook"

■ Section 8.2, "Using Action Sets"

■ Section 8.3, "Creating Menu Items"

■ Section 8.4, "Displaying Web Pages from a Fusion Web Application"

■ Section 8.5, "Inserting Values in an ADF Table Component from a Web Page Pick
Dialog"

■ Section 8.6, "Creating ADF Databound Search Forms in an Integrated Excel
Workbook"

■ Section 8.7, "Adding a Form to an Integrated Excel Workbook"

■ Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"

■ Section 8.9, "Configuring a Cell to Display a Dynamically Generated Hyperlink"

■ Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook"

■ Section 8.11, "Using Macros in an Integrated Excel Workbook"

8.1 Introduction to Adding Interactivity to an Integrated Excel Workbook
Adding interactivity to an integrated Excel workbook permits end users to execute
action sets that invoke Oracle ADF functionality in the workbook. It also provides
status messages, alert messages, and error handling in the integrated Excel workbook
while these action sets execute. In addition to end-user gestures (double-click, click,
select) on the Oracle ADF Desktop Integration components that invoke action sets, you
can configure workbook and worksheet menu items that end users use at runtime to
invoke action sets.

The action sets that end users invoke can make use of functionality defined in the
Excel workbook and in pages of the Fusion web application with which you integrate
the Excel workbook. For example, the EditPriceList-DT.xlsx workbook in the
Master Price List module renders an ADF Button component that, at runtime, invokes
a page from the Fusion web application. The invoked page allows end users to specify

Using Action Sets

8-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

additional search criteria to what can be specified in the workbook’s search form
which is rendered using ADF Button, ADF Input Text, and ADF Label components.

In addition to action sets, you can configure Excel functionality, such as macros and
Excel formulas, to manage the data that you want to download from or upload to your
Fusion web application.

8.2 Using Action Sets
An action set is an ordered list of one or more of the following actions that execute in a
specified order:

■ ADFmAction

■ ComponentAction

■ WorksheetMethod

■ Confirmation

■ Dialog

Invoking Action Sets
An action set can be invoked by an end-user’s gesture (for example, clicking an ADF
Button) or an Excel worksheet event. Where an end-user gesture invokes an action set,
the name of the action set property in the ADF component’s property inspector is
prefaced by the name of the gesture required. The following list describes the property
names that the Oracle ADF Desktop Integration module displays in property
inspectors and what user gesture can invoke an action set:

■ ClickActionSet for an ADF Button component, as an end user clicks the button
to invoke the associated action set

■ DoubleClickActionSet for an ADF InputText or ADF Output Text component,
as an end user double-clicks these components to invoke the associated action set

■ SelectActionSet for a worksheet menu item, as an end user selects a menu
item to invoke the associated action set

■ ActionSet for a worksheet event, as no explicit end-user gesture is required to
invoke the action set

You invoke the Action Collection Editor from an ADF component, worksheet menu
item, or worksheet event to define or configure an action set. In addition to defining
the actions that an action set invokes, you can configure the action set’s Alert
properties to provide feedback on the result of invocation of an action set. You
configure the Status properties for an action set to display a status message to end
users while an action set executes the actions you define. For information about
opening the Action Collection Editor, see Section 5.10, "Using the Collection Editors".

The Master Price List module provides many examples of action sets in use. One
example is the ADF Button component labeled Upload Data at runtime in the
EditPriceList-DT.xlsx workbook. An action set has been configured for this
ADF Button component that invokes the ADF Table component’s Upload action
illustrated by Figure 8–1 which shows the Action Collection Editor in design mode.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-3

Figure 8–1 Action Set for Upload Data Button in the EditPriceList-DT.xlsx Workbook

Execution Sequence for an Action Set
The Oracle ADF Desktop Integration module invokes the actions in an action set in the
order that you specify in the Members list view.

8.2.1 How to Invoke an ADFm Action in an Action Set
You can invoke one or more ADFm actions in an action set. An ADFm action is also
known as an action binding in the JDeveloper project where you develop your Fusion
web application. Page definition files define what action bindings are available to
invoke in a worksheet that you integrate with your Fusion web application. For more
information about page definition files and action bindings in an integrated Excel
workbook, see Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook".

You use the Action Collection Editor to specify an ADFm action to invoke.

To invoke an ADFm action in an action set:
1. Open the Action Collection Editor and invoke the dropdown list from the Add

button illustrated here.

2. Select ADFmAction and configure its properties as described in the following list:

■ ActionID

Tip: Write a description in the Annotation field for each action that
you add to the Action Collection Editor. The description you write
appears in the Members list view and, depending on how you write
it, may be more meaningful than the default entry that the Oracle ADF
Desktop Integration module generates.

Using Action Sets

8-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Click the ellipsis button (...) beside the input field for ActionID to invoke the
Binding ID picker and select the ADFm action that the action set invokes at
runtime.

■ Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

3. Click OK.

8.2.2 How to Invoke Component Actions in an Action Set
The ADF Table and the ADF Read-only Table components in the Oracle ADF Desktop
Integration module expose actions that can be used to manage the transfer of data
between Excel worksheets that you integrate with a Fusion web application. The ADF
Read-only Table component exposes one component action, Download, while the
ADF Table component exposes a number of other actions. More information about the
actions for both components can be found in Appendix A, "Oracle ADF Desktop
Integration Component Properties and Actions".

You configure action sets to invoke one or more component actions by referencing the
component action in the array of actions. For example, Figure 8–2 shows the Choose
Component Method dialog box where the actions exposed by the ADF Table and ADF
Read-only Table components present in a worksheet can be invoked by a
SelectActionSet action set.

Figure 8–2 Choose Component Method Dialog Box

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-5

To invoke a component action from an action set:
1. Open the Action Collection Editor and invoke the dropdown list from the Add

button illustrated here.

2. Select ComponentAction and configure its properties as described in the
following list:

■ ComponentID

Click the ellipsis button (...) beside the input field for ComponentID to invoke
the Choose Component Method dialog box and select the component action
that the action set invokes at runtime. This populates the ComponentID and
Method input fields.

■ Action

The component’s action that the action set invokes at runtime.

■ Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

3. Click OK.

8.2.3 What You May Need to Know About an Action Set Invoking a Component Action
Note the following pieces of information about the behavior of action sets in
integrated Excel workbooks.

Verifying an Action Set Invokes the Correct Component Action
When creating an action set, make sure that you invoke the component action from the
correct instance of a component when a worksheet includes more than one instance of
an ADF Read-only Table or ADF Table component. Figure 8–3 shows the Choose
Component Action dialog box displaying two instances of the ADF Read-only Table
component. Use the value of the ComponentID property described in Table A–1 to
correctly identify the instance of a component on which you want to invoke a
component action.

Note: An Excel worksheet must include an ADF Table or ADF
Read-only Table component before one or more of these components’
actions can be invoked by an action set.

Using Action Sets

8-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 8–3 Choose Component Method Dialog Box

Invoking Action Sets in a Disconnected Workbook
End users can use integrated Excel workbooks while disconnected from a Fusion web
application, as described in Chapter 15, "Using an Integrated Excel Workbook Across
Multiple Web Sessions and in Disconnected Mode". Some component actions, such as
the Download action of the ADF Table component, require a connection to the Fusion
web application to complete successfully. If an end user invokes an action set that
includes such a component action, the integrated Excel workbook attempts to connect
to the Fusion web application and, if necessary, invokes the authentication process
described in Section 11.2, "Authenticating the Excel Workbook User".

8.2.4 How to Invoke an Action Set from a Worksheet Event
The Oracle ADF Desktop Integration module provides a number of worksheet events
that, when triggered, can invoke an action set. The following worksheet events can
invoke an action set:

■ Startup

■ Shutdown

Do not invoke a Dialog action from this event if the Dialog action’s Target
property is set to TaskPane.

■ Activate

■ Deactivate

You add an element to the array of events (WorksheetEvent[] Array) referenced
by the Events worksheet property. You specify an event and the action set that it
invokes in the element that you add. For more information about the Events
worksheet property and the worksheet events that can invoke an action set, see
Table A–19. See Table A–14 for more information about action sets.

Use the WorkSheetEvent Collection Editor to specify an action set to be invoked by a
worksheet event.

To invoke an action set from a worksheet event:
1. In the Oracle ADF Desktop Integration Designer, click Worksheet Properties to

display the Edit Worksheet Properties dialog box.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-7

2. Click the ellipsis button (...) beside the input field for the Events property to
display the WorksheetEvent Collection Editor.

3. Click Add to add a new element that specifies an event and a corresponding
action set that the event invokes.

Figure 8–4 shows an example from the EditPriceList-DT.xlsx file in the
Master Price List module where the worksheet event, Startup, invokes an action
set that invokes the ADF Table component’s Download action.

Figure 8–4 Worksheet Startup Event Invokes an Action Set

4. Click OK.

8.2.5 How to Display a Status Message While an Action Set Executes
You can display a status message to end users while an action set executes by
specifying values for the Status properties in an action set.

Some of the default values for properties in the ActionSet.Status group are EL
expressions that resolve to strings defined in the reserved resource bundle at runtime.
You can replace these default values with EL expressions that refer to your custom
resource bundles. For more information, see Section 10.2, "Using Resource Bundles in
an Integrated Excel Workbook".

You use the Action Collection Editor to configure values for the ActionSet.Status
properties.

To display a status message:
1. Open the Action Collection Editor.

2. Set values for the properties in the ActionSet.Status group of properties as
described in the following table.

Using Action Sets

8-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 8–5 shows the values configured for the ActionSet.Status group of
properties of the Search ADF Button component in the
EditPriceList-DT.xlsx workbook of the Master Price List module that is
labeled Search at runtime.

Figure 8–5 Status Message Properties in an Action Set

For more information about the ActionSet.Status group of properties, see the
entry for Status in Table A–14.

3. Click OK.

8.2.6 What Happens at Runtime When an Action Set Displays a Status Message
Once an action set is invoked, a status message appears if the ActionSet.Status
properties are configured to display a status message. Figure 8–6 shows the status
message that appears at runtime when the action set configured for the Search button
in the EditPriceList-DT.xlsx workbook executes.

For this property... Enter or select this value...

Enabled True to display a status message. True is the default value.

Message An EL expression or string that resolves to the status message to display
at runtime. For example, the Search button in the Master Price List
module’s EditPriceList-DT.xlsx file has the following value
configured for the Message property:

Searching and downloading...

Title An EL expression or string that resolves to the title of the status message
to display at runtime. For example, the Search button in the Master Price
List module’s EditPriceList-DT.xlsx file has the following value
configured for the Title property:

Query Products

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-9

Figure 8–6 Runtime View of Status Message

8.2.7 How to Provide an Alert After the Invocation of an Action Set
You can display an alert message to end users that notifies them when an action set
operation completes successfully or fails. For example, you can display a message
when all actions in an action set succeed or when there was at least one failure. The
ActionSet.Alert group of properties configures this behavior.

Many of the default values for properties in the ActionSet.Alert group are EL
expressions that resolve to strings defined in the reserved resource bundle at runtime.
You can replace these default values with EL expressions that refer to your custom
resource bundles. For more information, see Section 10.2, "Using Resource Bundles in
an Integrated Excel Workbook".

You use the Action Collection Editor to configure values for the ActionSet.Alert
group of properties.

To add an alert to an action set:
1. Open the Action Collection Editor.

2. Set values for the properties in the ActionSet.Alert group of properties as
described in the following table.

Note: An alert message does not appear if an end user cancels the
execution of an action set. For example, you configure an alert
message to appear after an action set that invokes a web page in a
popup dialog completes execution. At runtime, the end user cancels
execution of the action set by closing the popup dialog using the close
button of the Excel web browser control that hosts the popup dialog.
In this scenario, no alert message appears. For more information about
displaying web pages, see Section 8.4, "Displaying Web Pages from a
Fusion Web Application".

For this property... Enter or select this value...

Enabled Select True from the dropdown list to display an alert message once the
action set completes. The default value is False.

Using Action Sets

8-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 8–7 shows the values configured for an ADF Button component’s
ActionSet.Alert group of properties in the EditPriceList-DT.xlsx
workbook of the Master Price List module. This ADF Button component is labeled
Upload to Server at runtime.

Figure 8–7 Alert Message Properties in an Action Set

FailureMessage Specify an EL expression or string that evaluates to a message to appear
in the dialog box if errors occur during execution of the action set. For
example, the Upload to Server button in the Master Price List module’s
EditPriceList-DT.xlsx workbook has the following value
configured for the FailureMessage property:

#{components.TAB442758137.errors}

The Upload to Server button invokes an action set that, in turn, invokes
the ADF Table component’s Upload action. The EL expression specified
for FailureMessage retrieves error messages if the Upload action
encounters errors. For more information about error handling, see
Section 12.4, "Error Reporting in an Integrated Excel Workbook".

OKButtonLabel Specify an EL expression that evaluates to a message to appear in the
OK button of the dialog box. The default EL expression is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

SuccessMessage Specify an EL expression that evaluates to a message to appear in the
dialog box if no errors occur during the execution of the action set. For
example, the Save Changes button in the Master Price List module’s
EditPriceList-DT.xlsx workbook has the following value
configured for the SuccessMessage property:

Changes saved successfully

Title Specify an EL expression that evaluates to a message to appear in the
title area of the dialog box. For example, the Save Changes button in the
Master Price List module's EditPriceList-DT.xlsx workbook has
the following value configured for the Title property:

 #{res['excel.saveButton.label']}

For this property... Enter or select this value...

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-11

3. Click OK.

8.2.8 What Happens at Runtime When an Action Set Provides an Alert
Figure 8–8 shows the alert message that appears at runtime when the action set
invoked by the ADF Button component labeled Upload to Server successfully
completes execution.

Figure 8–8 Runtime View of an Alert Message

8.2.9 How to Configure Error Handling for an Action Set
You specify values for an action set’s ActionOptions properties to determine what
an action set does if one of the following events occurs:

■ An action in the action set fails

■ All actions in the action set complete successfully

For information about how to invoke these editors, or about an ADF component’s
property inspector, see Chapter 5, "Getting Started with the Development Tools". More
information about action set properties can be found in Table A.11.

To configure error handling for an action set:
1. Open the appropriate editor or property inspector and configure values for the

action set’s ActionOptions properties as described in the following table.

2. Click OK.

Set this property... To...

AbortOnFailure True (default value) so that the action set does not any execute any
further actions if the current action fails. When set to False, the action
set executes all actions regardless of the success or failure of previous
actions.

FailureActionID Specify an ADFm action to invoke if an action set does not complete
successfully. For example, you could specify an ADFm action that rolls
back changes made during the unsuccessful invocation of the action set.

SuccessActionID Specify an ADFm action to invoke if an action set completes
successfully. For example, you could specify an action binding that
executes a commit action. A value for this property is optional and you
can specify a final action, such as an action binding that executes a
commit action, in the action set itself.

Using Action Sets

8-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

8.2.10 How to Invoke a Confirmation Action in an Action Set
The Confirmation action presents the end user with a simple message dialog that
displays the title and prompt message specified in the Confirmation action properties.

The execution of the action set pauses until the end user clicks one of the two buttons
provided. If the user clicks OK, the action sets proceed with the remaining actions in
the Action Set. If the user clicks Cancel, the action set is aborted at that point and the
remaining actions are not invoked. As there is no error or success, the
FailureActionID or SuccessActionID action is not invoked.

To invoke a Confirmation action from a component
1. Open the Action Collection Editor and click the down arrow in the Add button to

open a dropdown list, as illustrated here.

2. Select Confirmation and configure its Data properties as described in the
following list:

■ CancelButtonLabel

Specify an EL expression or string that evaluates to a message to appear in the
Cancel button of the dialog box. The default EL expression is:

#{_ADFDIres['DIALOGS_CANCEL_BUTTON_LABEL']}

■ OKButtonLabel

Specify an EL expression or string that evaluates to a message to appear in the
OK button of the dialog box. The default EL expression is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

■ Prompt

Specify an EL expression or string that evaluates to a message to appear as the
prompt of the dialog box. The default EL expression is:

#{_ADFDIres['DIALOGS_ACTION_CONFIRM_PROMPT']}

■ Title

Specify an EL expression or string that evaluates to a title of the confirmation
dialog to display at runtime. The default EL expression is:

#{_ADFDIres['DIALOGS_ACTION_TITLE']}

3. Optionally, enter a comment in the Annotation property about the purpose of
the action that you are configuring. The value you set for this property has no
functional impact.

4. Click OK.

Figure 8–9 shows the Action Collection Editor with default attribute values for a
Delete button.

Creating Menu Items

Adding Interactivity to Your Integrated Excel Workbook 8-13

Figure 8–9 Confirmation Action Attributes

8.2.11 What Happens at Runtime When an Action Set Provides a Confirmation
Once the action set is invoked, the user is prompted with a confirmation dialog box. If
the user clicks OK, the next action operation is performed; and if the user clicks
Cancel, the Action Set execution terminates without an error.

Figure 8–10 shows a default Confirmation dialog box with OK and Cancel buttons.

Figure 8–10 Confirmation Dialog

8.3 Creating Menu Items
You can create a menu with items that invoke Oracle ADF functionality in your
integrated Excel workbook. Setting the ToolbarMenu.Enabled workbook property
to True makes this menu appear. The ToolbarMenu.Title property determines the
title of the menu that the end user sees at runtime. At runtime, end users must click
Excel’s Add-Ins tab to view any menu that you configure using the ToolbarMenu
properties. Any menu that you configure appears in the Custom Toolbar section of the
Add-Ins tab illustrated by Figure 8–11.

Note: If the user cancels a Confirmation action, the
FailureActionID binding will not run.

Creating Menu Items

8-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 8–11 Runtime View of Toolbar Menu in Excel’s Add-Ins Tab

Two groups of items can appear in the menu at runtime: items that invoke commands
on the workbook and items that invoke commands on the current worksheet. You
configure the WorkbookMenuItems[] array in the properties of the workbook so that
the menu contains items allowing an end user to invoke workbook actions such as
Login and Logout. You configure the WorksheetMenuItem[] array in the
properties of the worksheet so that the menu contains items allowing a user to invoke
an action set.

A menu separator appears between the workbook menu items and the worksheet
menu items. If a worksheet has no items defined for the menu, no menu separator
appears. Worksheet menu items appear only if the worksheet is in focus.

Figure 8–12 shows a menu at runtime where the workbook actions appear first,
followed by a menu separator, and finally the worksheet menu items that invoke
SelectActionSet action sets.

Figure 8–12 Runtime Toolbar Menu

8.3.1 How to Configure a Workbook Menu Item
To define a workbook menu item, you configure a number of workbook properties. By
default, menu items for all workbook actions are defined in the workbook toolbar. The
following procedure shows how to create or remove an item in the menu by using the
workbook action, Login, as an example.

To define a workbook menu item:
1. Click Workbook Properties in the Oracle ADF Desktop Integration Designer.

2. Click ToolbarMenu and then click the ellipsis button (...) beside the
WorkbookMenuItem[] array to display the WorkbookMenuItem Collection
Editor illustrated in Figure 8–13.

Creating Menu Items

Adding Interactivity to Your Integrated Excel Workbook 8-15

Figure 8–13 WorkbookMenuItem Collection Editor

3. Click Add and specify values for the properties of the workbook menu item as
follows:

– Method

Specify the workbook action that you want the menu item to invoke.

– Label

Enter a value in the input field that appears as the label at runtime.
Alternatively, invoke the expression builder by clicking the ellipsis button (...)
and write an EL expression that resolves to a string value in a resource bundle.
Note that the runtime value that appears in the label cannot exceed 255
characters. A runtime value that exceeds 255 characters is truncated so that
only 255 characters appear.

For more information about using resource bundles, see Section 10.2, "Using
Resource Bundles in an Integrated Excel Workbook".

For more information about labels, see Section 9.4, "Using Labels in an
Integrated Excel Workbook".

4. Click OK.

8.3.2 How to Configure a Worksheet Menu Item
To define a worksheet menu item, you configure properties for the worksheet using
the property inspector. By default, no menu items are defined for the toolbar in the
worksheet properties. You add members to the array that is referenced by the
MenuItems property in the properties of the worksheet.

Tip: Use the arrow controls to determine the order in which menu
items appear at runtime.

WARNING: Set the ToolbarMenu.Enabled workbook property to
TRUE to display menu items. If ToolbarMenu.Enabled is set to
FALSE, no menu items appear. For more information about
workbook properties, see Table A–18.

Displaying Web Pages from a Fusion Web Application

8-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

To define a worksheet menu item:
1. Click Worksheet Properties in the Oracle ADF Desktop Integration Designer.

2. Click the ellipsis button (...) beside the input field for the MenuItems property to
invoke the WorksheetMenuItem Collection Editor illustrated in Figure 8–14.

Figure 8–14 WorksheetMenuItem Collection Editor

3. Click Add to add a new menu item in the Members list of the collection editor.

4. Configure the properties of SelectActionSet to specify the type of action(s)
that the menu item invokes.

5. Click OK.

8.4 Displaying Web Pages from a Fusion Web Application
You configure a Dialog action in an action set to display pages from the Fusion web
application with which you integrate your Excel workbook. These pages provide
additional functionality for your integrated Excel workbook. Examples of additional
functionality that you can provide include search dialogs and display pick dialogs that
interact with your Fusion web application. You can also configure upload options.

The Dialog action in an action set can be configured to display in one of the following
two types of dialog:

■ Popup dialog

■ Document Actions Task Pane

The value for the Dialog.Target property (Popup or TaskPane) of the
component’s action set determines where a web page is rendered.

The value for the Dialog.Page property specifies the web page to display when the
action is invoked. Valid values include a URL relative to the value of the WebAppRoot
property or an absolute URL. For example, the EditPriceList-DT.xlsx workbook

Displaying Web Pages from a Fusion Web Application

Adding Interactivity to Your Integrated Excel Workbook 8-17

in the Master Price List module specifies the following relative URL as a value for the
page to invoke when a user clicks the Advanced Search button at runtime:

/faces/secured/excelAdvSearch.jspx

Absolute URLs such as the following are also valid:

http://www.oracle.com/technology/products/middleware/index.html

8.4.1 How to Display a Web Page in a Popup Dialog
You can configure a Dialog action in an action set to invoke a web page from your
Fusion web application in a modal popup dialog hosted by Excel’s web browser
control. This feature provides end users with functionality that allows them to, for
example, input values displayed by a page from the Fusion web application into the
integrated Excel workbook.

The web page that the action set invokes must contain a reserved HTML Document
Object Model (DOM) element (for example, a span element) that has a case-sensitive
ID attribute set to ADFdi_CloseWindow. Example 8–1 shows how you can
automatically set the value of the span element in the excelAdvSearch.jspx page
of the Master Price List module using the rendered property of the f:verbatim tag.

Example 8–1 Use of HTML Document Object Model Span Element

<f:verbatim rendered="#{requestScope.searchAction eq 'search'}">
Continue
</f:verbatim>
<f:verbatim rendered="#{requestScope.searchAction eq 'cancel'}">
Abort
</f:verbatim>

Figure 8–15 shows the excelAdvSearch.jspx page hosted by the
EditPriceList-DT.xlsx workbook’s browser control.

Figure 8–15 Advanced Search Popup Dialog

In scenarios where you cannot use the rendered property of the f:verbatim tag as
outlined in Example 8–1, you may need to:

1. Create a backing bean that exposes the Dialog action’s result value as a property

2. Use an action listener to invoke the backing bean, and an EL expression in the
span element to set the value ADFdi_CloseWindow to the bean property value.

Note: The Dialog.Page property does not accept EL expressions

Displaying Web Pages from a Fusion Web Application

8-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Whichever approach you take, the Oracle ADF Desktop Integration module monitors
the value of ADFdi_CloseWindow to determine when to close the popup dialog. If
ADFdi_CloseWindow references:

■ An empty string or is not present, the popup dialog remains open.

■ "Continue", the popup dialog closes and the action set invokes its next action.

The following example shows ADFdi_CloseWindow assigned a value of
"Continue":

var closeWindowSpan = document.getElementById("ADFdi_
CloseWindow");

closeWindowSpan.innerHTML = "Continue";

■ Some other string value, the popup dialog remains open.

You set the Target property for a Dialog action to Popup to display a web page
from the Fusion web application in a modal popup dialog hosted by Excel’s web
browser control. Displaying a web page in a modal popup dialog differs from
displaying a web page in Excel’s Document Actions, as the Dialog action that the
action set invokes cannot continue execution until it receives user input. While the
popup dialog is open, the end user cannot interact with any other part of the
integrated Excel workbook, as the popup dialog retains focus.

End users can navigate between multiple web pages from the Fusion web application
within the browser control until they or the Oracle ADF Desktop Integration module
close the browser control.

To immediately synchronize the changes that an end user makes to a data control
through a popup dialog, specify the next action in the action set after the Dialog
action to download all modified bindings to the worksheet (use the DownSync
worksheet action) or ADF Table component (use the Download action). This scenario
assumes that you specify "Continue" as the value for ADFdi_CloseWindow.

8.4.2 How to Display a Web Page in Excel’s Document Actions
You set the Dialog.Target property for an action to TaskPane to display a web
page specified by the Dialog.Page property in Excel's Document Actions. In contrast
to displaying a web page in a popup dialog, displaying a web page in Excel’s
Document Actions allows an action set to continue executing actions while the web
page displays. End users can access and interact with other parts of the integrated
Excel workbook while the web page displays.

Note the following if you set the Target property of a Dialog action to TaskPane:

■ The Oracle ADF Desktop Integration module ignores the value of ADFdi_
CloseWindow (and other elements).

■ You cannot configure the worksheet Shutdown event to invoke the Dialog
action.

Note: If you configure the web page that appears in the popup
dialog so that an end user can download an integrated Excel
workbook, the Oracle ADF functionality in the integrated Excel
workbook is disabled when the end user opens the workbook after
download.

Displaying Web Pages from a Fusion Web Application

Adding Interactivity to Your Integrated Excel Workbook 8-19

8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web
Application

You can keep the data an integrated Excel workbook contains synchronized with a
Fusion web application by specifying additional actions in the action set that invokes
the Dialog action. You can make sure that the Fusion web application page and the
integrated Excel worksheet both use the same data control frame by setting the
ShareFrame property of the Dialog action.

The ADF Desktop Integration web browser control, which renders web pages invoked
from integrated Excel workbooks, does not support web pages built with the ADF
Faces dialog framework. It is recommended that you do not create web pages using
the ADF Faces dialog framework. If you have created pages using the ADF Faces
dialog framework, then do not specify links that open web pages in a new browser
window.

Keeping an Integrated Excel Workbook and a Fusion Web Application
Synchronized
To make sure that data in the integrated Excel workbook and the Fusion web
application remains synchronized while end users use pages from the Fusion web
application, configure the action set that invokes the Dialog action to:

■ Send changes from the integrated Excel workbook to the Fusion web application
before invoking the Dialog action.

Invoke the RowUpSync worksheet action to synchronize changes from the current
row in the ADF Table component.

■ Send changes from the Fusion web application to the integrated Excel workbook
after invoking the Dialog action.

Invoke the RowDownSync worksheet action to send changes from the Fusion web
application to the current row in the ADF Table component.

For DoubleClickActionSet, you must ensure that the server-side model is in the
same state after executing the action set as it was before executing the action set. In
most cases, it is sufficient to roll back any and all uncommitted changes at the end of
each DoubleClickActionSet, as there are no pending uncommitted changes when
the action set execution begins.

For more information about synchronizing data between an integrated Excel
workbook and a Fusion web application, see Chapter 15, "Using an Integrated Excel
Workbook Across Multiple Web Sessions and in Disconnected Mode". For information
about worksheet actions and ADF Table component actions, see Chapter A, "Oracle
ADF Desktop Integration Component Properties and Actions".

Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion
Web Application Pages
Fusion web applications and integrated Excel workbooks both use data control frames
to manage the transactions and state of view objects and, by extension, the bindings
exposed in a page definition file. When you invoke a Fusion web application’s page
from an integrated Excel worksheet, you can make sure that the page and the
integrated Excel worksheet both use the same data control frame by setting the
ShareFrame property of the Dialog action that invokes the page to True.

The Page property in the Dialog action specifies the page that the Dialog action
invokes. If the Dialog action invokes an absolute URL or a page that is not part of
your Fusion web application, the Oracle ADF Desktop Integration module ignores the
value of ShareFrame if ShareFrame is set to True.

Inserting Values in an ADF Table Component from a Web Page Pick Dialog

8-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Set ShareFrame to False in the following scenarios:

■ The Dialog.Page property in the action set references an absolute URL or a page
that is not part of your Fusion web application.

■ The Dialog.Page property in the action set references a page that is part of your
Fusion web application, but that does not need to share information with the
integrated Excel worksheet. For example, a page that displays online help
information.

For more information about data control frames in a Fusion web application, see the
"Sharing Data Control Instances" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Configuring a Fusion Web Application for Oracle ADF Desktop Integration Frame
Sharing
When you add the ADF Desktop Integration Technology scope to your Fusion web
application, the application is automatically configured to support Oracle ADF
Desktop Integration frame sharing. Frame sharing allows each worksheet of an
integrated Excel workbook to use a dedicated DataControl frame. Web pages
displayed in dialogs invoked from each worksheet can then share the same
DataControl frame as the integrated Excel worksheet.

To verify that your Fusion web application is configured to support frame
sharing:
1. Open your Fusion web application project in JDeveloper.

2. In the Application Navigator, expand the Application Resources panel.

3. Open the adf-config.xml file available in Descriptors > ADF META-INF
folder.

4. Click the Source tab to open the source editor.

5. Confirm that the following adf-desktopintegration-servlet-config
element is present in the file before the </adf-config> tag:

<adf-desktopintegration-servlet-config
xmlns="http://xmlns.oracle.com/adf/desktopintegration/servlet/config">
 <controller-state-manager-class>
 oracle.adf.desktopintegration.controller.impl.ADFcControllerStateManager
 </controller-state-manager-class>
</adf-desktopintegration-servlet-config>

6. Save the adf-config.xml file and close JDeveloper.

8.5 Inserting Values in an ADF Table Component from a Web Page Pick
Dialog

You can configure the DoubleClickActionSet of an ADF Table component’s
column to invoke a Fusion web application page that renders a pick dialog where an
end user selects a value to insert in the ADF Table component column.

This functionality is useful when you want to constrain the values that end users can
enter in an ADF Table component. For example, you may want a runtime ADF Table
component column to be read-only in the Excel worksheet so that end users cannot
manually modify values to prevent them from introducing errors. Invoking a pick
dialog rendered by a Fusion web application page allows the end user to change
values in the ADF Table component without entering incorrect data.

Inserting Values in an ADF Table Component from a Web Page Pick Dialog

Adding Interactivity to Your Integrated Excel Workbook 8-21

In addition to configuring the DoubleClickActionSet, you configure the ADF
Table component’s RowData.CachedAttributes property to reference attribute
binding values if you want:

■ End users to modify values in the Fusion web application’s page that you do not
want to appear in the ADF Table component of the integrated Excel workbook

■ An ADF Table component’s column to be read-only in the integrated Excel
workbook

■ Cache data in an ADF Table component over one or more user sessions that is not
visible to end users but is modified by a pick dialog

For example, an ADF Table component displays a list of product names to end
users. A pick dialog is invoked that refreshes the list of product names in the ADF
Table component and, as part of the process, sets the value of product IDs. In this
scenario, you specify the attribute binding value for the product ID in the ADF
Table component’s RowData.CachedAttributes property. After the action set
executes, the ADF Table component displays the refreshed list of product names in
the rows of the Excel worksheet and references the associated product IDs in its
RowData.CachedAttributes property.

For information about populating values in the pick dialog, see the "Creating
Databound Selection Lists and Shuttles" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

To invoke a pick dialog from an ADF Table component:
1. Select the cell in the Excel worksheet that anchors the ADF Table component and

click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar to display the property inspector.

2. Configure the ADF Table component’s RowData.CachedAttributes property
to reference attribute binding values.

3. Click the ellipsis button (...) beside the input field for Columns to display the
TableColumn Collection Editor.

4. In the Members list select the column from which an end user will invoke the pick
dialog at runtime.

5. Configure the DoubleClickActionSet of the UpdateComponent property as
described in the following table.

Add this action... To...

ADFmAction (Optional) Invoke the CreateInsert action binding if the end user
invokes the DoubleClickActionSet from a newly created row in the
Excel worksheet’s ADF Table component. In this scenario, the ADF Table
component’s RowUpSync action (invoked in the next action) fails if the
Fusion web application does not contain a placeholder row.

Component Invoke the ADF Table component’s RowUpSync action to synchronize
any pending changes in the current row of the ADF Table component to
the Fusion web application.

Dialog Configure the Dialog action to invoke the pick dialog page from the
Fusion web application. Set the Dialog action’s ShareFrame property
to True. For more information, see Section 8.4, "Displaying Web Pages
from a Fusion Web Application".

Creating ADF Databound Search Forms in an Integrated Excel Workbook

8-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

6. Click OK.

8.6 Creating ADF Databound Search Forms in an Integrated Excel
Workbook

You can create forms in your integrated Excel workbooks using ADF Input Text and
ADF Button components. End users can use the forms you create to insert data or
query for information. This section uses the latter example to demonstrate how you
create forms.

End users can enter a search term in the ADF Input Text component and retrieve
matching results by clicking an ADF Button component. If you want to present a more
sophisticated user interface to end users for a search operation, you can invoke search
forms from your Fusion web application. Results from these search operations can be
downloaded to the ADF Table or ADF Read-only Table components in your integrated
Excel workbook.

Figure 8–16 shows a design time view of the Oracle ADF components that the
EditPriceList-DT.xlsx workbook in the Master Price List module uses to
configure search options where:

1. ADF Label component is used in a simple search form

2. ADF Input Text component is used in a simple search form

3. ADF Button component is used in a simple search form

4. ADF Button component is used to invoke an advanced search form

Figure 8–16 Oracle ADF Components Used for Search in the EditPriceList-DT.xlsx Workbook

8.6.1 How to Create a Simple Search Form in an Integrated Excel Workbook
You insert an ADF Input Text component and configure it so that an end user can enter
a search term. Insert an ADF Button component and configure its action set to:

1. Take the value the end user enters in the ADF Input Text component.

2. Query for the value.

Component Invoke the ADF Table component’s RowDownSync action to synchronize
data from the row in the ADF Table component's iterator in the Fusion
web application that corresponds to the current ADF Table component
row in the worksheet.

Note: The Oracle ADF Desktop Integration module does not support
usage of the FindMode attribute in page definition files. For more
information about the FindMode attribute, see the
"pageNamePageDef.xml" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Add this action... To...

Creating ADF Databound Search Forms in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-23

3. Download the results to an ADF Table or ADF Read-only Table component in the
integrated Excel workbook.

To create a simple search form in an integrated Excel workbook:
1. Insert an ADF Input Text component in the Excel worksheet cell where you want

the end user to enter the search criteria.

2. Configure the ADF Input Text component so that it assigns the search term, that a
user enters, to an attribute binding.

Figure 8–17 shows an example from the EditPriceList-DT.xlsx workbook in
the Master Price List module where an ADF Input Text component assigns the
user-entered value to the searchTerm attribute binding. The searchTerm,
which is a part of variable iterator, is then passed as a NamedData argument to the
executeSimpleProductQuery method.

Figure 8–17 ADF Input Text Component for a Simple Search Form

3. Optionally, apply a style to the ADF Input Text component to indicate to end users
that they can enter a search term in the cell.

4. Optionally, create an ADF Label component in an adjoining cell to indicate to end
users that they can enter a search term in the ADF Input Text component you
created in Step 1.

5. Create an ADF Button component in the Excel worksheet.

6. Set the Label property of the ADF Button component so that it displays a string
at runtime to indicate to end users that they can start a search operation by
clicking the button.

7. Open the Action Collection Editor to configure the array of actions
(Action[]Array) in the ClickActionSet properties of the ADF Button
component. The following table describes the actions to invoke in sequence.

Add this action... To...

Worksheet Invoke the UpSync worksheet action to copy the value entered in the cell
that hosts an ADF Input Text or ADF Desktop Integration List of Values
component to the Fusion web application. For more information about
worksheet actions, see Section A.13, "Worksheet Actions and Properties".

Creating ADF Databound Search Forms in an Integrated Excel Workbook

8-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

8. Click OK.

Figure 8–18 shows an example from the EditPriceList-DT.xlsx workbook in
the Master Price List module where an ADF Button component invokes the
executeSimpleProductQuery action binding using the search term an end
user entered in the ADF Input Text component.

Figure 8–18 ADF Button Component for Simple Search Form

8.6.2 How to Create an Advanced Search Form in an Integrated Excel Workbook
You use the ADF Button component to invoke a page from the Fusion web application
that displays a search form to the end user. Configure the action set for the ADF
Button component to invoke the Download action for the ADF Table or ADF
Read-only Table component so that the search results from the search operation are
downloaded to the integrated Excel workbook.

For information about creating a search form in a Fusion web application, see the
"Creating ADF Databound Search Forms" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

ADFmAction Invoke an ADFm action that is bound to the attribute binding you
specified in Step 2. The ADFm action queries for the end user’s search
term value referenced by the attribute binding.

The corresponding example in the EditPriceList-DT.xlsx
workbook is the executeSimpleProductQuery action binding, which
is bound to the searchTerm attribute binding.

Worksheet Invoke the DownSync worksheet action to synchronize any pending
changes from the Fusion web application to the ADF Input Text, ADF
Output Text, and ADF Desktop Integration List of Values components in
the worksheet. For more information about worksheet actions, see
Section A.13, "Worksheet Actions and Properties".

Component Invoke a Download action from the ADF Table or ADF Read-only Table
components to download the results that the ADFm action retrieved.

Add this action... To...

Creating ADF Databound Search Forms in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-25

To invoke an advanced search form in an integrated Excel workbook:
1. Create an ADF Button component in the Excel worksheet.

2. Set the Label property of the ADF Button component so that it displays a string
at runtime to indicate to end users that they can start a search operation by
clicking the button.

3. Use the Action Collection Editor to configure the array of actions
(Action[]Array) in the ClickActionSet properties of the ADF Button
component. Table 8–1 describes the actions to invoke in sequence.

4. Click OK.

Figure 8–19 shows an example from the EditPriceList-DT.xlsx workbook in
the Master Price List module where an ADF Button component invokes the
Execute action binding to retrieve the values specified by the end user in the
Master Price List’s module Search page (excelAdvSearch.jspx). The ADF
Table component’s Download action downloads the returned values to the
integrated Excel workbook.

Figure 8–19 ADF Button Component for an Advanced Search Form

Table 8–1 Actions to Invoke an Advanced Search Form

Add this action... To...

Dialog Display the page from your Fusion web application that
contains the search form. For more information about displaying
pages from a Fusion web application, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application".

ADFmAction Invoke an ADFm action to query for the values that the end user
entered in the search form.

Component Invoke a Download action from the ADF Table or ADF
Read-only Table components to download the results that the
ADFm action retrieved.

Adding a Form to an Integrated Excel Workbook

8-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

8.7 Adding a Form to an Integrated Excel Workbook
The Oracle ADF Desktop Integration components described in Chapter 6, "Working
with Oracle ADF Desktop Integration Form-type Components" can be used to create
forms in your integrated Excel workbook. These components can be useful when you
want to provide end users with functionality that allows them to view and edit
individual fields rather than use the functionality provided by the table-type
components to download rows of data from the Fusion web application. Use one or
more of the following components to create a form:

■ ADF Button

Use this component to provide end users with a button that can invoke a
ClickActionSet. Figure 8–20 shows an ADF Button labeled Search that invokes
a search operation using the search term entered by the end user in the ADF Input
Text component.

■ ADF Input Text

Use this component to provide end users with a read/write field where the
current value of a binding appears. This component can also be used to input a
value, as in the example illustrated in Figure 8–20, where users enter a search term
in the ADF Input Text component.

■ ADF Output Text

Use this component to provide end users with a read-only field where the current
value of a binding appears.

■ ADF Desktop Integration List of Values

Use this component to provide end users with a dropdown menu from which a
user can select a value from a list binding.

■ ADF Label

Use this component to provide end users with instructions or other information on
how to use the form you create. For example, the Master Price List module's
EditPriceList-DT.xlsx workbook uses ADF Label components to display an
instruction to end users and the number of matches for a search term. Figure 8–20
shows the runtime values of these components. The text Search For: is a label
instructing end uses to enter the search string, and 8 records found label
displays the number of records found matching the search string.

Figure 8–20 Runtime View of a Form in an Integrated Excel Workbook

You use the Oracle ADF Desktop Integration Designer to insert the components you
require into a worksheet.

To create a form in an integrated Excel workbook:
1. Decide which ADF form components you require for the finalized form and insert

them in the Excel worksheet.

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-27

For more information about these components, see Chapter 6, "Working with
Oracle ADF Desktop Integration Form-type Components".

2. Configure the layout and appearance of the components you insert.

For more information about configuring the appearance of components, see
Chapter 9, "Configuring the Appearance of an Integrated Excel Workbook".

3. Test your form.

For more information about testing an integrated Excel workbook, see Chapter 13,
"Testing Your Integrated Excel Workbook".

8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook
The Oracle ADF Desktop Integration module provides the following components that
you use to create lists of values in an integrated Excel workbook:

■ ADF Desktop Integration List of Values

You configure properties for this component when you want to create a list of
values in the Excel worksheet.

■ TreeNodeList subcomponent

You configure properties for this component when you want to create a list of
values in an ADF Table component column.

Using these two components, you can create a dependent list of values in your
integrated Excel workbook. A dependent list of values is a list of values component
(referred to as a child list of values) whose values are determined by another list of
values component (referred to as a parent list of values).

The server-side list bindings must be defined such that when the selected item of the
parent list of values is changed, the available child list of values items are updated
properly. Figure 8–21 shows an example with two illustrations from the
AdvEditPriceList-DT.xlsx file of Master Price List module, where the
Sub-Category column (child list of values) changes when the value in the Category
column (parent list of values) changes.

Figure 8–21 List of Values and Dependent List of Values in Master Price List Module

Table 8–2 describes the dependent list of values implementations you can create using
the previously listed components and the requirements to achieve each
implementation.

Some of the implementations described in Table 8–2 require model-driven lists. For
information about creating a model-driven list, see the "How to Create a

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Model-Driven List" section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Note the following points if you plan to create a dependent list of values:

■ When the cell value referenced by DependsOnList or DependsOnListID is
changed, the Oracle ADF Desktop Integration module overrides any previous
changes to the child component list of values without warning the end user.

■ The dependent list of values will not work unless the list specified in the
DependsOnList (or DependsOnListID) property is referenced by a component
in the Excel worksheet.

■ If a circular dependency is defined (List A depends on List B, and List B depends
on List A), the first dependency (List A depends on List B) triggers the expected
behavior. The Oracle ADF Desktop Integration module considers other
dependencies to be misconfigurations.

■ You can create a chain of dependencies as follows:

– List A depends on List B

– List B depends on List C

In this scenario, a change to List C (parent list of values) updates both Lists A
(grand child list of values) and B (child list of values). If you create a similar
scenario, you must ensure that the grand child list of values contains two bind

Table 8–2 Dependent List of Values Configuration Options

Configuration Requirements

Render both the parent and child list of
values in the Excel worksheet using
ADF Desktop Integration List of Values
components.

Both instances of the ADF Desktop Integration List of Values
component must reference a list binding. One or both of the list
bindings that you reference can be model-driven lists.

Both list bindings can reference model-driven lists only if the
underlying iterator has at least one row of data. At runtime, if the
underlying iterator has zero rows of data and an end user selects a
value from the parent list of values (list binding referenced by the ADF
Desktop Integration List of Values component’s DependsOnListID
property), the child list of values (list binding referenced by the ADF
Desktop Integration List of Values component’s ListID property) does
not get filtered based on the value the end user selects.

To work around this scenario, choose one of the following options:

■ Make sure that the underlying iterator has at least one row of data

■ Use an alternative list binding configuration where you expose
more than one iterator and all necessary iterators get refreshed

For more information, see Section 8.8.1, "How to Create a Dependent
List of Values in an Excel Worksheet".

Render both the parent and child list of
values in ADF Table component
columns using TreeNodeList
subcomponents.

Both the parent and child list of values (TreeNodeList subcomponents)
must reference tree binding attributes associated with model-driven
lists.

For more information, see Section 8.8.3, "How to Create a Dependent
List of Values in an ADF Table Component’s Columns".

Render the parent list of values in an
ADF Desktop Integration List of Values
component and the child list of values in
an ADF Table component column using
the TreeNodeList subcomponent.

The child list of values (TreeNodeList subcomponent) must reference a
tree binding attribute associated with a model-driven list. The parent
list of values (ADF Desktop Integration List of Values component) must
reference a list binding.

For more information, see Section 8.8.5, "Creating a Dependent List of
Values in an Excel Worksheet and an ADF Table Component Column".

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-29

variables, one referring to the child list of values and the other referring to the
parent list of values.

■ Caching in a dependent list of values is discussed in Section 15.4, "Caching Lists of
Values for Use in Disconnected Mode".

■ The Oracle ADF Desktop Integration module caches the values that appear in a
dependent list of values. Hence, the dependent list item values for a given parent
list selection must remain constant across all rows of an ADF Table component.

8.8.1 How to Create a Dependent List of Values in an Excel Worksheet
Use two instances of the ADF Desktop Integration List of Values component to create a
dependent list of values in an Excel worksheet.

Specify the list binding referenced by the parent ADF Desktop Integration List of
Values component as a value for the child ADF Desktop Integration List of Values
component’s ListOfValues.DependsOnListID property.

For more information about ADF Desktop Integration List of Values, see Section A.5,
"ADF Desktop Integration List of Values Component Properties".

To create a dependent list of values in an Excel worksheet:
1. If not already present, add the required list bindings to your page definition file.

For more information about adding bindings to page definition files, see
Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook".

2. Insert two ADF Desktop Integration List of Values components into your
integrated Excel workbook, as described in Section 6.6, "Inserting an ADF Desktop
Integration List of Values Component".

3. Display the property inspector for the ADF Desktop Integration List of Values
component that is to serve as the parent in the dependent list of values and set the
value of the ListOfValues.ListID property to the list binding that is the
parent.

4. Display the property inspector for the ADF Desktop Integration List of Values
component that is to serve as the child in the dependent list of values and set its
values as follows:

■ ListOfValues.ListID

Specify the list binding that is the child in the dependent list of values.

■ ListOfValues.DependsOnListID

Select the list binding that you specified for the ADF Desktop Integration List
of Values component that serves as a parent in Step 3.

Figure 8–22 shows the property inspector for the child ADF Desktop
Integration List of Values where the CountryId list binding is specified as the
parent list of values and StateId list is the dependent list of values.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 8–22 Design Time Dependent List of Values in an Excel Worksheet

5. Click OK.

8.8.2 What Happens at Runtime When a Dependent List of Values Renders in an Excel
Worksheet

At runtime, the Oracle ADF Desktop Integration module renders both instances of the
ADF Desktop Integration List of Values component. When an end user selects a value
from the parent list of values, the selected value determines the list of values in the
child list.

Figure 8–23 shows an example where StateID, a dependent list value, displays only
the states from the selected CountryId list value.

Figure 8–23 Runtime Dependent List of Values in an Excel Worksheet

8.8.3 How to Create a Dependent List of Values in an ADF Table Component’s Columns
Use instances of the TreeNodeList subcomponent to render both lists of values in a
dependent list of values in ADF Table component columns at runtime.

Specify a tree binding attribute as a value for the parent TreeNodeList subcomponent’s
List property. You also specify a tree binding attribute as a value for the child
TreeNodeList subcomponent’s List property and the same tree binding attribute

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-31

referenced by the parent TreeNodeList subcomponent as a value for its
DependsOnList property.

Make sure that both tree binding attributes are associated with model-driven lists
before you add the tree binding to your page definition file. For information about
creating a model-driven list, see the "How to Create a Model-Driven List" section of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework. For information about adding a tree binding to your page definition file,
see Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook".

For information about the TreeNodeList subcomponent, see Section A.6,
"TreeNodeList Subcomponent Properties".

To create a dependent list of values in an ADF Table component:
1. If not already present, insert an ADF Table component into your integrated Excel

workbook.

For more information, see Section 7.3, "Inserting an ADF Table Component into an
Excel Worksheet".

2. Display the property inspector for the ADF Table component and invoke the
TableColumn Collection Editor by clicking the ellipsis button (...) beside the input
field for TableColumn[] Array.

3. If not already created, click Add to add a new column to serve as the parent list of
values. For more information about creating a list of values, see Section 7.12,
"Creating a List of Values in an ADF Table Component Column".

4. Add a new column to the ADF Table component to serve as the child list of values
in the runtime-dependent list of values. For more information about creating a list
of values, see Section 7.12, "Creating a List of Values in an ADF Table Component
Column".

5. Specify the tree binding attribute of the parent list of values as a value for the
DependsOnList property.

Figure 8–24 shows the property inspector for a child ADF Desktop Integration
Tree Node component, where the ParentCategoryId tree binding attribute is
specified as the parent list of values.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-32 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 8–24 Design Time Dependent List of Values in an ADF Table Component's
Columns

6. Click OK.

8.8.4 What Happens at Runtime When a Dependent List of Values Renders in an ADF
Table Component’s Columns

At runtime, the ADF Table component renders both instances of the TreeNodeList
subcomponent in the columns that you configured to display these instances. When an
end user selects a value from the parent list of values, the selected value determines
the list of values in the child list.

Figure 8–25 shows an example where the value that an end user selects in the
Category column list of values results in the corresponding values for sub-category
appearing in the Sub-Category column list of values.

Figure 8–25 Runtime Dependent List of Values in an ADF Table Component’s Columns

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-33

8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table
Component Column

Use an instance of the ADF Desktop Integration List of Values component and an
instance of the TreeNodeList subcomponent to create a dependent list of values where
you render the parent and the child list of values.

■ Parent list of values in the Excel worksheet

An instance of the ADF Desktop Integration List of Values component renders the
parent list of values in the Excel worksheet.

■ Child list of values in an ADF Table component column

An instance of the TreeNodeList subcomponent renders the child list of values in
the ADF Table component column.

Specify a list binding as a value for the parent ADF Desktop Integration List of Values
component’s ListID property. You specify a tree binding attribute as a value for the
child TreeNodeList subcomponent’s List property, and the same list binding
referenced by the parent ADF Desktop Integration List of Values component as a value
for its DependsOnList property.

Make sure that the tree binding attribute is associated with a model-driven list before
you add the tree binding to your page definition file. For information about creating a
model-driven list, see the "How to Create a Model-Driven List" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework. For information about adding a list and tree binding to your page
definition file, see Section 4.3, "Working with Page Definition Files for an Integrated
Excel Workbook".

For more information about the ADF Desktop Integration List of Values component,
see Section A.5, "ADF Desktop Integration List of Values Component Properties". For
information about the TreeNodeList subcomponent, see Section A.6, "TreeNodeList
Subcomponent Properties".

To create a dependent list of values in an Excel worksheet and an ADF Table
component column:
1. Insert an ADF Desktop Integration List of Values component into your integrated

Excel workbook, as described in Section 6.6, "Inserting an ADF Desktop
Integration List of Values Component".

2. Display the property inspector for the ADF Desktop Integration List of Values
component and set the value of the ListID property to the list binding that is to
serve as the parent list of values in the dependent list of values.

3. Click OK.

4. Display the property inspector for the ADF Table component and invoke the
TableColumn Collection Editor by clicking the ellipsis button (...) beside the input
field for TableColumn[] Array.

5. Click Add to add a new column to the ADF Table component to serve as the child
list of values in the runtime-dependent list of values.

Note: If the child list and the parent list are bound to columns in the
same ADF Table component, the child list items are changed for the
current row only, when the end user changes the parent list selection.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-34 Desktop Integration Developer's Guide for Oracle Application Development Framework

6. Choose the appropriate option for the newly created column:

■ Click the ellipsis button (...) beside the input field for InsertComponent if you
want to configure the runtime list of values for insert operations.

■ Click the ellipsis button (...) beside the input field for UpdateComponent if
you want to configure the runtime list of values for update and download
operations.

In both options, the Select subcomponent to create dialog appears.

7. Select TreeNodeList and click OK.

8. Expand the property that you selected in Step 6 and configure values as follows:

■ Select the same list binding that you specified as a value for the ADF Desktop
Integration List of Values component’s ListID property in Step 2 as a value
for the DependsOnList property.

■ Select a tree binding attribute associated with a model-driven list for the List
property.

■ Configure the ReadOnly property as desired.

9. Click OK.

Figure 8–26 shows the property inspector for a child ADF Desktop Integration
Tree Node component where the countryList list binding is specified as the
parent list of values.

Figure 8–26 Design Time Dependent List of Values in an Excel Worksheet and an ADF
Table Component's Column

Configuring a Cell to Display a Dynamically Generated Hyperlink

Adding Interactivity to Your Integrated Excel Workbook 8-35

8.8.6 What Happens at Runtime When a Dependent List of Values Renders in an Excel
Worksheet and an ADF Table Component Column

At runtime, the ADF List of Values component renders the parent list of values and the
ADF Table component renders the child list of values in the column that you
configured to display the TreeNodeList subcomponent. When an end user selects a
value from the parent list of values, the selected value determines the list of values in
the child list.

Figure 8–27 shows an example where the value that an end user selects in the
CountryId list of values determines the list of values that appears in the StateId
column of the ADF Table component.

Figure 8–27 Runtime-Dependent List of Values in an Excel Worksheet and an ADF Table
Component's Column

8.9 Configuring a Cell to Display a Dynamically Generated Hyperlink
If you use the Excel HYPERLINK function in an EL expression, you must enclose the
HYPERLINK function within an Excel T function if you want an Oracle ADF
component, such as an ADF Output Text component, to display a hyperlink at
runtime. You enclose the HYPERLINK function because the Oracle ADF Desktop
Integration module interprets Excel formula. To work around this, you wrap the T
function around the HYERLINK function so that the value of the HYPERLINK function
is evaluated by the T function. The resulting value is inserted into the Excel cell that
the ADF component references.

8.9.1 How to Configure a Cell to Display a Dynamically Generated Hyperlink
You write an EL expression that uses the Excel T function to evaluate the output of the
Excel HYERLINK function. The following task illustrates how you configure an ADF
Output Text component to display a hyperlink that, when clicked, invokes a search
operation on the Oracle OTN Discussion Forum for Developer Tools using the value of
the ProductName binding as the search term.

To configure a cell to display a dynamically generated hyperlink:
1. Insert an ADF Output Text component into the Excel worksheet.

Note: When the parent list is bound to a cell in the worksheet and
the child list is bound to an ADF Table Component column, the child
list items are updated for all rows in the table when the end user
changes the parent list selection.

Configuring a Cell to Display a Dynamically Generated Hyperlink

8-36 Desktop Integration Developer's Guide for Oracle Application Development Framework

2. Write an EL expression for the Value property of the ADF Output Text
component.

The EL expression that you write invokes the Excel HYPERLINK function and uses
the Excel T function to evaluate the output. In our example, we entered the
following EL expression for the Value property:

=T("=HYPERLINK(""http://forums.oracle.com/forums/search.jspa?objID=c19&q=#{bind
ings.ProductName}"", ""#{bindings.ProductName}"")")

3. Click OK.

8.9.2 What Happens at Runtime When a Cell Displays Dynamically Generated Hyperlink
The Oracle ADF Desktop Integration module evaluates the EL expression that you
write at runtime. In the following example, the Oracle ADF Desktop Integration
module:

■ Retrieves the value of the ProductName binding

■ Inserts the value of the ProductName binding into a URL

■ Inserts the result into a hyerlinked cell that a user can click to invoke a search

Figure 8–28 shows the runtime view of the example configured in Section 8.9.1, "How
to Configure a Cell to Display a Dynamically Generated Hyperlink", where Zune
30GB is the retrieved value of the ProductName binding. When an end user clicks the
cell that hosts the ADF Output Text component, he or she invokes a search operation
for Zune 30GB on the Oracle OTN Discussion Forum for Developer Tools.

Figure 8–28 ADF Output Text Component Configured to Display a Hyperlink

Note: Excel requires that you write double quotes (for example,
""#{bindings.ProductName}"") in the EL expression so that it
can evaluate the expression correctly.

Using Calculated Cells in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-37

8.10 Using Calculated Cells in an Integrated Excel Workbook
You can write Excel formulas that perform calculations on values in an integrated
Excel workbook. Before you write an Excel formula that calculates values in an
integrated Excel workbook, note the following points:

■ Formulas can be entered in cells that reference Oracle ADF bindings and cells that
do not reference Oracle ADF bindings

■ End users of an integrated Excel workbook can enter formulas at runtime

■ You (author of an integrated Excel workbook) can enter formulas at design time

■ During invocation, the ADF Table component actions Upload and RowUpSync
send the results of a formula calculation to the Fusion web application and not the
formula itself

■ Excel recalculates formulas in cells that reference Oracle ADF bindings when these
cells are modified by:

– Invocation of the ADF Table component RowDownSync and Download
actions

– Rendering of Oracle ADF components

■ The ADF Table and ADF Read-only Table components insert or remove rows as
they expand or contract to accommodate data downloaded from the Fusion web
application. Formulas are replicated according to Excel’s own rules.

■ You can enter formulas above or below a cell that references an ADF Table or ADF
Read-only Table component. A formula that you enter below one of these
components maintains its position relative to the component as the component
expands or contracts to accommodate the number of rows displayed.

For more information about Excel functions, see the Function reference section in
Excel’s online help documentation.

8.10.1 How to Create a Column That Displays Values Generated by an Excel Formula
You insert a column that displays values calculated by an Excel formula directly into a
worksheet using the menu options on Excel’s Ribbon. You cannot add a column that
displays calculated values using the collection editor that manages columns for an
ADF Table or ADF Read-only Table component.

To create a column that displays values generated by an Excel formula:
1. In design mode in the Excel worksheet, select the cell in which you want the

column that displays the values generated by the Excel formula to appear at
runtime.

For example, the H13 cell of EditPriceList-DT.xlsx contains a formula:

=G13-F13

Cell G13 is the design time reference for the ADF Table component column labeled
List Price at runtime, and F13 is the design time cell reference for the ADF Table
component column labeled Cost Price at runtime.

The H12 cell marks the header for the formula. It contains an ADF Label
component with its Label property set to the following EL expression:

#{res['excel.difference.label']}

Using Calculated Cells in an Integrated Excel Workbook

8-38 Desktop Integration Developer's Guide for Oracle Application Development Framework

The EL expression retrieves the value of the excel.difference.label string
key at runtime.

Figure 8–29 shows the design time view of the manually inserted column, with the
Excel formula appearing in the formula bar, and the ADF Label component that
retrieves the string key value from the resource bundle at runtime.

Figure 8–29 Design Time View of Column That Displays Values Generated by an Excel
Formula

2. Save your changes using Excel’s Save button.

8.10.2 What Happens at Runtime When a Column Displays Values Generated by an
Excel Formula

At runtime, Excel replicates and adjusts its formula as the ADF Table and ADF
Read-only components expand or contract so that the correct value appears in each
row of a manually inserted column. Figure 8–30 shows an extract of the runtime view
of the example that appears in Figure 8–29 where Excel adjusted the formula so that it
evaluates each corresponding row.

Figure 8–30 Runtime View of Column That Displays Values Generated by an Excel
Formula

8.10.3 How to Calculate the Sum of a Table-Type Component Column
The following task illustrates how you use the Excel functions SUM and OFFSET to
calculate the total of the column labeled Difference in the EditPriceList-DT.xlsx
of the Master Price List module at runtime. You use the OFFSET function in an Excel
formula that you write where you want to reference a range of cells that expands or
contracts based on the number of rows that an ADF Table or ADF Read-only Table
component downloads. The SUM function calculates the total in a range of Excel cells.

To calculate the sum of a column in an ADF Table component:
1. In design mode in the Excel worksheet, select the cell in which you will write the

Excel formula. In EditPriceList-DT.xlsx, this is the cell with the reference,
H14.

2. Write the Excel formula that performs a calculation on a range of cells at runtime.
For example:

Using Macros in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-39

=SUM(OFFSET(G12,1,0):OFFSET(G13,-1,0))

where SUM calculates the total of values in the range of cells currently referenced
by G12 and G13.

Figure 8–31 shows the design time view of the Excel formula in the integrated
Excel workbook.

Figure 8–31 Design Time View of Excel Formula in an Integrated Excel Workbook

3. Save your changes and switch to runtime mode to test that the Excel formula you
entered evaluates correctly.

8.10.4 What Happens at Runtime When Excel Calculates the Sum of a Table-Type
Component Column

Figure 8–32 shows the runtime view in the integrated Excel workbook when the Excel
formula shown in Figure 8–31 is evaluated. The Excel formula calculates the total of
the values in the range of cells that you specified in design mode. The cell references
that appear in Excel’s formula bar at runtime (H12 and H59) differ from those that
appear in the formula bar at design time (G12 and G13) because the ADF Table
component has moved and expanded to include the rows of data that it downloads.

Figure 8–32 Runtime View of Excel Formula in an Integrated Excel Workbook

8.11 Using Macros in an Integrated Excel Workbook
You can define and execute macros based on Excel events in an integrated Excel
workbook.

Note the following points:

■ Macros triggered by an Excel event do not get triggered if the Excel event is
invoked by the Oracle ADF Desktop Integration module.

■ Oracle ADF Desktop Integration module code invoked by an Excel event is
executed when the Excel event is triggered by a macro.

Using Macros in an Integrated Excel Workbook

8-40 Desktop Integration Developer's Guide for Oracle Application Development Framework

9

Configuring the Appearance of an Integrated Excel Workbook 9-1

9 Configuring the Appearance of an Integrated
Excel Workbook

This chapter describes how you configure the appearance of an integrated Excel
workbook using styles that the Oracle ADF Desktop Integration module defined and
that you define in Excel. The chapter also discusses how you can use EL expressions to
dynamically apply styles to Oracle ADF components in a workbook at runtime.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Configuring the Appearance of an Integrated Excel
Workbook"

■ Section 9.2, "Working with Styles"

■ Section 9.3, "Applying Styles Dynamically Using EL Expressions"

■ Section 9.4, "Using Labels in an Integrated Excel Workbook"

■ Section 9.5, "Using Styles to Make Integrated Excel Workbooks Usable"

■ Section 9.6, "Branding Your Integrated Excel Workbook"

■ Section 9.7, "Changing an Integrated Excel Workbook at Runtime"

9.1 Introduction to Configuring the Appearance of an Integrated Excel
Workbook

You can configure the appearance of an integrated Excel workbook using both Excel
functionality and Oracle ADF functionality. Configuring the appearance of a
workbook may make the workbook more usable for end users. For example, applying
a particular style to cells that render ADF Output Text components at runtime may
indicate to end users that the cell is read-only. You may also want to configure the
appearance of an integrated Excel workbook so that it aligns with your company’s
style sheet or the color scheme of the Fusion web application that the Excel workbook
integrates with.

The Oracle ADF Desktop Integration module provides a number of predefined Excel
styles to apply to the Oracle ADF Desktop Integration components you configure in a
workbook. You may want to define additional styles to meet the needs of your desktop
integration project. If you do, familiarize yourself with the formats in an Excel
workbook that render differently depending on the locale, region, and language.

Once you have decided what styles to apply to the Oracle ADF Desktop Integration
components at runtime, you write EL expressions to associate a style with a
component. The Oracle ADF Desktop Integration component properties that include
StyleName in their name take an EL expression as a value. The ADF Label component

Working with Styles

9-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

and the Label property of other ADF components also support EL expressions. These
EL expressions can retrieve the values of string keys defined in resource bundles or the
values of attribute control hints defined in your Fusion web application.

Finally, in addition to styles that allow you to configure the appearance of an
integrated Excel workbook, the Oracle ADF Desktop Integration module provides a
collection of properties (BrandingItems) that enable you to brand your integrated
Excel workbook with application name, application version details, and copyright
information.

9.2 Working with Styles
The Oracle ADF Desktop Integration module provides a mechanism to apply
Excel-defined styles to some of the Oracle ADF components at runtime. The Oracle
ADF components that support the application of styles have properties with StyleName
in their name. For example, the column properties of the ADF Table and ADF
Read-only Table components both support the properties HeaderStyleName and
CellStyleName that determine styles to apply at runtime.

Predefined Styles in the Oracle ADF Desktop Integration Module
Many properties have default values that are drawn from a predefined list of Oracle
ADF Desktop Integration module styles. For example, the HeaderStyleName
property’s default value is _ADFDI_HeaderStyle, one of the predefined styles in the
Oracle ADF Desktop Integration module. The Oracle ADF Desktop Integration
module automatically adds these predefined styles to a converted Excel workbook at
design time.

The following is the list of predefined styles:

■ _ADFDI_FormBottomStyle

■ _ADFDI_FormDoubleClickCellStyle

■ _ADFDI_FormTopStyle

■ _ADFDI_HeaderStyle

■ _ADFDI_InputTextStyle

■ _ADFDI_LabelStyle

■ _ADFDI_OutputTextStyle

■ _ADFDI_ReadOnlyTableStyle

■ _ADFDI_TableCellROStyle

■ _ADFDI_TableCellStyle

■ _ADFDI_TableChangedColumnStyle

■ _ADFDI_TableDoubleClickCellStyle

■ _ADFDI_TableFlagColumnStyle

■ _ADFDI_TriangleHeaderStyle

You can merge these styles and other styles that you define yourself from an
integrated Excel workbook into another Excel workbook that you intend to integrate
with a Fusion web application. You may need to create additional styles for use in
your Excel workbook. For example, to add a date-specific formatting, you can
duplicate _ADFDI_TableCellStyle, call it MyTableCellDateStyle, and add
your date-specific formatting.

Working with Styles

Configuring the Appearance of an Integrated Excel Workbook 9-3

For more information about creating new styles and merging styles into a workbook,
see Excel’s documentation.

Excel’s Date Formats and Microsoft Windows’ Regional and Language Options
A number of formats in the Date category of Number styles that Excel can apply to
cells change if a user changes the locale of the local machine using the Regional and
Language Options dialog box that is accessible from the Microsoft Windows Control
Panel. The * character precedes these formats in the Type list. Figure 9–1 shows an
example of a Date type that formats dates in a cell using French (France) conventions.

Figure 9–1 Date Formats in Excel

If an end user changes the regional options of a machine to use English (United
States), as illustrated in Figure 9–2, the cells that are formatted with the style in
Figure 9–1 use the English (United States) conventions.

Note: In a cell formatted with a text style, if you wish to enter a
numerical or date value and want Excel to retain the format of data
while uploading, add an apostrophe symbol (’) before entering the
value. The apostrophe symbol acts as an escape character and is not
displayed with the value.

Working with Styles

9-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 9–2 Regional and Language Options in Excel

9.2.1 How to Apply a Style to an Oracle ADF Component
To apply a style to an Oracle ADF component, use the property inspector to set values
for properties with StyleName in their name.

To apply a style:
1. In the integrated Excel workbook, select the cell that references the Oracle ADF

component you want to modify and then click the property inspector button in the
Oracle ADF Desktop Integration Designer toolbar.

For example, select a cell that references an ADF Table component.

2. Click Columns and then the value for the column in the array of columns where
you want to modify the format of cells at runtime.

3. Select the CellStyleName property and click the ellipsis button (...) to display the
Edit Expression dialog box.

4. Expand the Styles node and select the style that you want to apply to cells in the
column at runtime.

For example, apply a currency-based style (Currency[0] style) to the Cost Price
databound column of Currency type. Applying the Currency[0] style rather
than a general style to a databound column of Currency type results in runtime
data (price values) appearing as values rounded off to zero decimal places rather
than a regular value (with two decimal places).

5. Click Insert Into Expression to insert Currency[0] into the Expression field.

Figure 9–3 shows the Edit Expression dialog box.

Applying Styles Dynamically Using EL Expressions

Configuring the Appearance of an Integrated Excel Workbook 9-5

Figure 9–3 Edit Expression Dialog Box Applying a Style

6. Click OK.

9.2.2 What Happens at Runtime When a Style Is Applied to an Oracle ADF Component
The EL expression that you entered as a value for the property with StyleName in its
name is evaluated at runtime. If it corresponds to one of the predefined styles or one
that you defined, the style is applied to the Oracle ADF component that you set the
property for.

If a cell that references an Oracle ADF component has a style applied to it that differs
from the style defined in the properties of the Oracle ADF component, the Oracle ADF
component overwrites the existing style at runtime and applies the style defined by its
properties.

For example, Figure 9–4 shows the runtime values of the Cost Price column after the
Currency[0] style is applied, overriding the default TableCellCurrency style.

Figure 9–4 Runtime Values After Applying Another Style

9.3 Applying Styles Dynamically Using EL Expressions
Oracle ADF component properties that include StyleName in their name can take an EL
expression as a value. The EL expressions that you write can resolve to a named Excel
style at runtime that is applied to the Oracle ADF component. The EL expressions that
you write are Excel formulas that may include Oracle ADF data binding expressions.

Applying Styles Dynamically Using EL Expressions

9-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

The Oracle ADF Desktop Integration module does not evaluate or apply results when
a user navigates between cells or during upload.

The following examples show different contexts where you can use EL expressions to
determine the behavior and appearance of Oracle ADF components at runtime.
Example 9–1 applies a style dynamically during download. If the status value for
binding is Closed, apply a read-only style (MyReadOnlyStyle). Otherwise apply
another style (MyReadWriteStyle).

Example 9–1 Applying a Style Dynamically During Download

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Example 9–2 uses a mixture of Excel formulas and ADF binding expressions to handle
errors and type conversion.

Example 9–2 EL Expressions to Handle Errors and Type Conversion

=IF(ISERROR(VALUE("#{bindings.DealSize}")), "BlackStyle",
IF(VALUE("#{bindings.DealSize}") > 300, "RedStyle", "BlackStyle"))

9.3.1 What Happens at Runtime When an EL Expression Is Evaluated
When evaluating EL expressions at runtime, the Oracle ADF Desktop Integration
module determines the value that the EL expression references. It then replaces the EL
expression in the Excel formula with the value. In Example 9–1, the Oracle ADF
Desktop Integration module first determines that value of the EL expression,
#{bindings.Status}, in the following Excel formula:

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

It then replaces the EL expression with the runtime value, as in the following example,
where the expression evaluated to Closed:

=IF("Closed" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Excel evaluates the formula and, in this example, applies the MyReadOnlyStyle
style.

9.3.2 How to Write an EL Expression That Applies a Style at Runtime
You write EL expressions for the Oracle ADF component properties that support EL
expressions in the Edit Expression dialog box that is accessible from the Oracle ADF
component’s property inspector. Figure 9–5 displays an Edit Expression dialog box
launched from the property inspector window of an ADF Button component.

Applying Styles Dynamically Using EL Expressions

Configuring the Appearance of an Integrated Excel Workbook 9-7

Figure 9–5 Edit Expression Dialog Box

To write an EL expression that applies a style at runtime:
1. Select a cell in the Excel worksheet that references the Oracle ADF component for

which you want to write an EL expression.

2. Click the property inspector button in the Oracle ADF Desktop Integration
Designer toolbar to display the property inspector.

3. Select the property in the property inspector with which you want to associate an
EL expression and click the ellipsis button (...) to display the Edit Expression
dialog box.

The Edit Expression dialog box, as illustrated in Figure 9–5, displays a hierarchical
list of the Oracle ADF components, bindings, styles, resources, and Excel functions
that you can reference in EL expressions. For more information about the syntax of
EL expressions that you enter in this dialog box, see Appendix B, "Oracle ADF
Desktop Integration EL Expressions".

9.3.3 What You May Need to Know About EL Expressions That Apply Styles
Note the following points when writing EL expressions that apply styles at runtime.

How the Oracle ADF Desktop Integration Module Applies Styles
EL expressions that evaluate to styles are applied when:

■ An ADF Table component invokes its Download or DownloadForInsert actions

Note: The Edit Expression dialog box appears only if the Oracle ADF
component that you selected in Step 1 supports EL expressions.
Depending on the context, the ellipsis button (...) can launch other
editors such as the Action Collection Editor.

Using Labels in an Integrated Excel Workbook

9-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ Rows are inserted into an ADF Table component

■ A worksheet invokes its DownSync action

EL expressions that evaluate to styles are not applied when:

■ An ADF Table component invokes its RowDownSync action

■ An end user edits the format properties of a cell

Note also that an EL expression that evaluates to a style is not reevaluated when
an end user edits a cell’s value.

■ The runtime value of an EL expression does not match a style defined in the end
user’s integrated Excel workbook

In this scenario the style formats of the targeted cells do not change. Instead, they
retain their existing style formats. If you configured client-side logging, the Oracle
ADF Desktop Integration module generates an entry in the log file when an EL
expression evaluates to a style that is not defined in the end user’s integrated Excel
workbook. For more information about client-side logging, see Section C.3,
"Generating Log Files for an Integrated Excel Workbook".

9.3.4 How to Add a Hyperlink in an Integrated Excel Workbook
Use the following syntax when writing an EL expression that invokes the HYPERLINK
Excel function:

=T("=HYPERLINK(""link_location"",""friendly_name"")")

For example, the following EL expression uses HYPERLINK function to navigate to
http://www.oracle.com when end user clicks the component.

=T("=HYPERLINK(""http://www.oracle.com"",
""#{bindings.ProductId.inputValue}"")")

If you write an EL expression using the HYPERLINK function, it is recommended that
you select the Locked checkbox in the Protection tab of the Format Cells dialog box for
the custom style that you apply to prevent error messages appearing.

For more information about the HYPERLINK Excel function, see Section 8.9,
"Configuring a Cell to Display a Dynamically Generated Hyperlink" and Microsoft
Excel’s documentation. For more information about the use of EL expressions in an
integrated Excel workbook, see Appendix B, "Oracle ADF Desktop Integration EL
Expressions".

9.4 Using Labels in an Integrated Excel Workbook
Use labels to provide end users with information about how they use the functionality
in an integrated Excel workbook. You can write EL expressions that retrieve the value
of string keys defined in a resource bundle or that retrieve the values of attribute
control hints. An integrated Excel workbook evaluates the value of a Label property
only when the workbook is initialized.

Retrieving the Values of String Keys from a Resource Bundle
Figure 9–6 shows a portion of the design time view of the EditPriceList-DT.xlsx
workbook in the Master Price List module. It shows examples of ADF Label
components and ADF Button components that have EL expressions specified for their
Label properties.

Using Labels in an Integrated Excel Workbook

Configuring the Appearance of an Integrated Excel Workbook 9-9

Figure 9–6 Design Time View of an ADF Label Component and an ADF Button
Component with Label Property

At runtime, these EL expressions resolve to string keys defined in the res resource
bundle that is registered with the Master Price List module. Figure 9–7 shows the
corresponding runtime view of the ADF Label component and ADF Button
component illustrated in design mode in Figure 9–6.

Figure 9–7 Runtime View of an ADF Label Component and an ADF Button Component
with Label Property

For information about referencing string keys from a resource bundle, see Section 10.2,
"Using Resource Bundles in an Integrated Excel Workbook".

Retrieving the Values of Attribute Control Hints
In addition to string keys from resource bundles, the ADF Label component and the
Label property of other ADF components can reference attribute control hints that
you define for entity objects and view objects in your JDeveloper project. Figure 9–8
shows the expression builder for the Product Name column in the
EditPriceList-DT.xlsx workbook’s ADF Table component. The expression
builder contains an EL expression for the HeaderLabel property of the
ProductName column that retrieves the value (Product Name) defined for an
attribute control hint at runtime.

Using Styles to Make Integrated Excel Workbooks Usable

9-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 9–8 EL Expression That Retrieves the Value of an Attribute Control Hint for a
Label Property

Attribute control hints can be configured for both view objects and entity objects.
Information about how to add an attribute control hint to an entity object can be found
in the "Defining Attribute Control Hints for Entity Objects" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Information about how to add an attribute control hint to a view object can be found in
the "Defining Attribute Control Hints for View Objects" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

How an Integrated Excel Workbook Evaluates a Label Property
An integrated Excel workbook evaluates the Label properties of ADF components
when the workbook is initialized after you or an end user open the workbook for the
first time. The integrated Excel workbook saves the retrieved values for the Label
properties when the workbook itself is saved to a directory on the machine.

The retrieved values for the Label properties do not get refreshed during invocation
of actions such as the worksheet’s DownSync action or the ADF Table component’s
Download action. You indirectly refresh the retrieved values of the Label properties
if you invoke the workbook actions ClearAllData or EditOptions described in
Table A–17.

9.5 Using Styles to Make Integrated Excel Workbooks Usable
It is good practice to provide end users of integrated Excel workbooks with
information that helps them understand how to use the ADF components that you
provide to integrate with a Fusion web application. You can do this by:

■ Providing end users with instructions on how to use Oracle ADF components such
as ADF Button and ADF Input Text components.

The ADF Label component and the Label property of other ADF components is
useful for this task, as you can write labels that instruct an end user on how to use
the component.

■ Apply styles that indicate if an ADF component is read-only or read-write.

Using Styles to Make Integrated Excel Workbooks Usable

Configuring the Appearance of an Integrated Excel Workbook 9-11

Using ADF Label Components to Make an Integrated Excel Workbook Usable
You can use ADF Label components to provide end users of an integrated Excel
workbook information about how to use other ADF components in the workbook. For
example, many forms, by convention, use an * to indicate to end users that they must
enter a value in an input field. Figure 9–9 shows three ADF Input Text components
with ADF Label components in adjoining cells. Each ADF Label component references
an EL expression that retrieves the value of a string key from a resource bundle at
runtime. Each string key includes the * character to indicate to end users that they
must supply a value.

Figure 9–9 ADF Label Components Providing End-User Instruction

For information about using resource bundles, see Section 10.2, "Using Resource
Bundles in an Integrated Excel Workbook".

About the Read-Only Property in an Integrated Excel Workbook
Note the following points about the read-only property in an integrated Excel
workbook:

■ The ADF Output Text and ADF Label components do not have read-only
properties. However, both components have implied read-only behavior. In
addition, end users can enter values in the cells that host ADF Output Text
components and temporarily change the values that appear in these cells. The
Oracle ADF Desktop Integration module ignores these changes when uploading
from the worksheet and overwrites them when it downloads data from the Fusion
web application.

■ The ADF Input Text component, ADF Desktop Integration List of Values
component, and TreeNodeList subcomponent each have a read-only property
(ReadOnly).

■ Excel’s Protect Sheet and Lock Cell features are not compatible with Oracle ADF
Desktop Integration.

To prevent end-user confusion, apply styles to components, such as the ADF Output
Text component, that indicate to end users whether a component is read-only or can be
edited. By default, the ADF Output Text component uses the predefined style, _
ADFDI_OutputTextStyle. You can define your own styles and apply them to
components as described in this chapter.

Note: If you specify an Excel formula in the Value property of an
ADF Input Text component, the component behaves as if its
ReadOnly property were True. The component ignores the actual
value of the ReadOnly property.

Branding Your Integrated Excel Workbook

9-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

For more information about the properties that Oracle ADF Desktop Integration
module components support, see Appendix A, "Oracle ADF Desktop Integration
Component Properties and Actions".

9.6 Branding Your Integrated Excel Workbook
The Oracle ADF Desktop Integration module provides a number of features that you
can configure to brand your integrated Excel workbook with information such as
application name, version information, and copyright information. You can use the
workbook BrandingItems group of properties to associate this information with an
integrated Excel workbook. You must configure a toolbar menu as described in
Section 8.3, "Creating Menu Items" so that an end user can view this branding
information by clicking a menu item that invokes the ViewAboutDialog workbook
action at runtime. For more information about workbook actions, see Table A–17.

You can also define string keys in a resource bundle to define information, such as
titles, in one location that can then be used in multiple locations in an integrated Excel
workbook at runtime when EL expressions retrieve the values of these string keys. For
information about defining string keys, see Section 10.2, "Using Resource Bundles in
an Integrated Excel Workbook".

9.6.1 How to Brand an Integrated Excel Workbook
You define values for the workbook BrandingItems group of properties.

To brand an integrated Excel workbook:
1. In the Oracle ADF Desktop Integration Designer, click Workbook Properties to

display the Edit Workbook Properties dialog box.

2. Click the ellipsis button (...) beside the input field for BrandingItems to invoke the
NameValuePair Collection Editor.

3. Click Add and specify values for the new element as follows:

■ Name

Specify the name of the branding item that you want to define.

■ Value

Specify a literal string or click the ellipsis button (...) to invoke the expression
builder and write an EL expression that retrieves a value at runtime.

Figure 9–10 shows the design time view of branding items in the Master Price List
module.

Note: BrandingItems is a workbook property, so you cannot
specify an EL expression to retrieve a value associated with a specific
worksheet or to retrieve a binding from a specific page definition file.

Changing an Integrated Excel Workbook at Runtime

Configuring the Appearance of an Integrated Excel Workbook 9-13

Figure 9–10 Design Time View of Branding Items in the Master Price List Module

4. Click OK.

9.6.2 What Happens at Runtime to the Branding Items in an Integrated Excel Workbook
At runtime, the name/value pairs that you define for the BrandingItems group of
properties appear in a dialog box that the end user invokes from the About menu item
of the Oracle ADF toolbar that you configure to appear as described in Section 8.3,
"Creating Menu Items". Figure 9–11 shows the runtime view of branding items in the
Master Price List module’s EditPriceList-DT.xlsx workbook.

Figure 9–11 Runtime View of Branding Items in the Master Price List Module

9.7 Changing an Integrated Excel Workbook at Runtime
Once you publish and deploy a finalized integrated Excel workbook, as described in
Chapter 14, "Deploying Your Integrated Excel Workbook", end users can make the
following changes to a workbook at runtime:

■ Delete a column from an ADF Table or ADF Read-only Table component

Changing an Integrated Excel Workbook at Runtime

9-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ Drag and drop cells to move ADF components other than an ADF Button
component

■ Insert new rows into an ADF Table component

■ Change the order of columns in an ADF Table or ADF Read-only Table component

■ Insert non-integrated columns between the columns of an ADF Table or ADF
Read-only Table component

However, some changes to a workbook at runtime can corrupt the integration and are
not supported. For example, you must not delete or move the first column of the ADF
Table or ADF Read-only Table component at runtime. For more information about
what changes are not allowed at runtime, see Section I.3, "Limitations of Integrated
Excel Workbook at Runtime".

10

Internationalizing Your Integrated Excel Workbook 10-1

10 Internationalizing Your Integrated Excel
Workbook

This chapter describes internationalization issues to consider when developing an
integrated Excel workbook.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Internationalizing Your Integrated Excel Workbook"

■ Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook"

■ Section 10.3, "Localization in Oracle ADF Desktop Integration"

10.1 Introduction to Internationalizing Your Integrated Excel Workbook
The Oracle ADF Desktop Integration module provides a number of features that allow
you to deliver integrated Excel workbooks as part of an internationalized Fusion web
application. One of the principal features is the use of resource bundles to manage the
localization of user-visible strings that appear in Oracle ADF components at design
time. It also uses resource bundles to manage the user-visible strings that appear in
these components at runtime. The use of resource bundles is described in more detail
later in this chapter.

Note the following points about internationalization and localization in an integrated
Excel workbook:

■ Internationalized Data

The Oracle ADF Desktop Integration module supports both single- and
double-byte character sets. It marshals data transmitted between an Excel
worksheet and a Fusion web application into XML payloads. These XML payloads
use UTF-8 encoding with dates, times, and numbers in canonical formats.

■ Locale

The locale of the machine where the Excel workbook is used determines the
format for dates, times, and numbers. These settings (formats and the locale of the
machine) may differ from the settings used by the Fusion web application. The
Oracle ADF Desktop Integration module does not attempt to synchronize these
settings, but does make sure that data retains its integrity. The Oracle ADF
Desktop Integration module does not provide a mechanism for end users to
change the language or display settings of the Oracle ADF components in an
integrated Excel workbook at runtime.

Using Resource Bundles in an Integrated Excel Workbook

10-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

When configuring or applying styles to ADF components in an integrated Excel
workbook, configure or choose styles that are locale-sensitive. For more
information, see Section 9.2, "Working with Styles".

For information about internationalizing Fusion web applications, see the
"Internationalizing and Localizing Pages" chapter in the Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

10.2 Using Resource Bundles in an Integrated Excel Workbook
The Oracle ADF Desktop Integration module uses resource bundles to manage
user-visible strings that appear in the ADF components of an integrated Excel
workbook at design time and runtime. JDeveloper stores resource bundles in the
Oracle ADF Desktop Integration project.

You can register up to twenty resource bundles containing string values you define
with an integrated Excel workbook. A resource bundle must not exceed 1 MB in size. If
you attempt to register:

■ More than twenty resource bundles

■ A resource bundle that exceeds 1 MB in size

the Oracle ADF Desktop Integration module writes a warning to the client-side log file
and stops registration of additional resource bundles or resource bundle data after the
1 MB limit is reached. For example, if resource bundle A measures 2 MB and resource
bundle B measures 1 MB, the Oracle ADF Desktop Integration module registers the
first megabyte of data in resource bundle A and all of the data in resource bundle B.
For information about client-side logging, see Section C.3.2, "About Client-Side
Logging".

The Resources workbook property specifies what resource bundles an integrated
Excel workbook can use. This property specifies an array of resource bundles
(ResourceBundle[] Array) in the integrated Excel workbook. Each element in the
array has a property that uniquely identifies a resource bundle (Alias) and a property
that identifies the path to the resource bundle in the JDeveloper desktop integration
project (Class). For example, EditPriceList-DT.xlsx in the Master Price List
module references the res resource bundle that has the following value for the Class
property:

oracle.fodemo.masterpricelist.resources.UIStrings

More information about the Resources workbook property can be found in
Section A.12, "Workbook Actions and Properties".

By default, the Oracle ADF Desktop Integration module provides a reserved resource
bundle that supplies string key values used by many component properties at runtime.
When you convert an Excel workbook to integrate it with a Fusion web application,
the reserved resource bundle is registered by default with the workbook. The Oracle
ADF Desktop Integration module uses the value _ADFDIres to uniquely identify this
resource bundle. Many EL expressions reference string values in this resource bundle.
For example, the following EL expression is the default value of the Label property
for the Login menu item in WorkbookMenuItems:

 #{_ADFDIres['TOOLBAR_MENU_CMD_LOGIN']}

where _ADFDIres identifies the reserved resource bundle and TOOLBAR_MENU_CMD_
LOGIN is the key that identifies the string (Login...) in the resource bundle to use at
runtime for the Login menu item.

Using Resource Bundles in an Integrated Excel Workbook

Internationalizing Your Integrated Excel Workbook 10-3

If you register another resource bundle, you can replace default string key values
assigned from the _ADFDIres resource bundle to many of the ADF component
properties.

10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
You register a resource bundle by adding an element to the ResourceBundle[]
Array using the ResourceBundle Collection Editor.

To register a resource bundle:
1. In the Excel workbook, click Workbook Properties in the Oracle ADF Desktop

Integration Designer to display the Edit Workbook Properties dialog box.

2. Click the ellipsis button (...) beside the input field for Resources to display the
ResourceBundle Collection Editor shown in Figure 10–1.

Figure 10–1 ResourceBundle Collection Editor

3. Specify values for the resource bundle and then click OK.

For information about the values to specify for a resource bundle, see the entry for
Resources in Table A–18.

10.2.2 How to Replace String Key Values from the Reserved Resource Bundle
You can replace a string key from the reserved resource bundle by specifying a string
key from a resource bundle that you registered with the integrated Excel workbook.

To replace a string key value from the reserved resource bundle:
1. Click Workbook Properties in the Oracle ADF Desktop Integration Designer.

2. Click Toolbar Menu and click the ellipsis button (...) beside the input field for
WorkbookMenuItem[] Array.

Using Resource Bundles in an Integrated Excel Workbook

10-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

3. Click the ellipsis button (...) beside the input field for the Label property to
display the expression builder.

4. Write an EL expression to retrieve the string key value you want to display at
runtime.

Figure 10–2 shows an example where the EL expression references a string key
(key_Login) defined in a resource bundle (res). This EL expression replaces the
default EL expression that references a string key in the _ADFDIres resource
bundle.

Figure 10–2 Expression Builder Replacing a Key String Value

5. Click OK.

10.2.3 How to Override the Reserved Resource Bundle
The reserved resource bundle contains a number of user-visible runtime strings that
you cannot replace by configuring the properties of the Oracle ADF Desktop
Integration module components. Examples include the strings that appear in the
default upload dialog box illustrated in Figure 7–5.

To replace these user-visible runtime strings, you create a resource bundle in your
Fusion web application that contains the string keys from the reserved resource
bundle that the Oracle ADF Desktop Integration module supports for override.
Appendix F, "String Keys in the Reserved Resource Bundle" lists these string keys. You
define values for the string keys listed in Appendix F that you want to override in the
resource bundle you create.

To override the reserved resource bundle:
1. Create a resource bundle in your Fusion web application.

For information about creating a resource bundle, see the "Defining Locales and
Resource Bundles" section in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

Using Resource Bundles in an Integrated Excel Workbook

Internationalizing Your Integrated Excel Workbook 10-5

2. Define the string key values you want to appear at runtime in the resource bundle
for the string keys listed in Appendix F, "String Keys in the Reserved Resource
Bundle".

3. Set _ADFDIres as the value of the Alias property when you register the resource
bundle you created in Step 1.

For information about how to register a resource bundle, see Section 10.2.1, "How
to Register a Resource Bundle in an Integrated Excel Workbook".

Table F–1 describes the string keys in the reserved resource bundle that the Oracle
ADF Desktop Integration module supports for override. Supply an alternative value to
the value listed in the English value column for each string key in the reserved
resource bundle that you want to override.

10.2.4 What Happens at Runtime When You Override the Reserved Resource Bundle
The Oracle ADF Desktop Integration module retrieves the values of string keys listed
in Table F–1 that you defined in the resource bundle you created. It retrieves the
values of other string keys that you did not define in the resource bundle you created
from the reserved resource bundle.

10.2.5 What You May Need to Know About Resource Bundles
See the following sections for additional information about resource bundles in an
integrated Excel workbook.

Resource Bundle Types
The Oracle ADF Desktop Integration module supports use of the following types of
resource bundle:

■ Properties bundle (.properties)

■ List resource bundle (.rts)

■ Xliff resource bundle (.xlf)

For more information about resource bundles, see the "Manually Defining Locales and
Resource Bundles" section in the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

Caching of Resource Bundles in an Integrated Excel Workbook
The Oracle ADF Desktop Integration module caches the values of string keys from the
resource bundles that an integrated Excel workbook retrieves when it first connects to
the Fusion web application. If you change a string key value in a resource bundle after
an integrated Excel workbook has cached the previous value, the modified value does
not appear in the workbook unless the ClearAllData workbook action is invoked
and the end user closes and reopens the workbook so that it retrieves the modified
value from the Fusion web application. For more information about the
ClearAllData workbook action, see Table A–17.

EL Expression Syntax for Resource Bundles
The Oracle ADF Desktop Integration module requires that you enclose the string key
name in EL expressions using the [] characters, as in the following example:

 #{res['StringKey']}

The Oracle ADF Desktop Integration module does not support the following syntax:

Localization in Oracle ADF Desktop Integration

10-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

 #{res.StringKey}

10.3 Localization in Oracle ADF Desktop Integration
The Oracle ADF Desktop Integration module integrates several diverse sets of
technologies. Each of these technologies provides various options for controlling the
choice of natural human language when localization occurs.

When an end user interacts with an integrated Excel workbook, various elements are
involved. Each of these elements has its own set of supported languages and resource
translations. In such a scenario, the translation of language is the responsibility of the
respective publisher.

Table 10–1 presents a summary of elements involved and their role in translation:

Figure 10–3 illustrates how various elements involved in a Fusion web application
play their role in translation.

Table 10–1 Summary of Localization

Area subject to
localization Determination of language to use

Microsoft operating system Operating system language settings. You can choose the
language through Regional Settings on Control Panel.

Microsoft Office Microsoft Office language settings

Web pages displayed in
ADF Desktop Integration
Dialog actions

Usually controlled by Microsoft Internet Explorer’s Language
Preferences.

ADF Desktop Integration
client resources

Microsoft Office language settings

ADF Desktop Integration
server resources

Microsoft Internet Explorer language preferences

ADF Desktop Integration
custom resource bundles

Microsoft Internet Explorer language preferences

Localization in Oracle ADF Desktop Integration

Internationalizing Your Integrated Excel Workbook 10-7

Figure 10–3 Localization in ADF Desktop Integration

For more information about localization in ADF Desktop Integration, see "Oracle ADF
11g Desktop Integration Localization Whitepaper" on OTN at:

http://www.oracle.com/technology/products/jdev/11/collateral/adf
di_localization.pdf

Localization in Oracle ADF Desktop Integration

10-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

11

Securing Your Integrated Excel Workbook 11-1

11 Securing Your Integrated Excel Workbook

This chapter provides information on how to secure your integrated Excel workbook
with a Fusion web application by providing authentication and authorization
capabilities. It also describes a number of issues that you should be aware of so that
you can secure your Excel workbook and its data.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Securing Your Integrated Excel Workbook"

■ Section 11.2, "Authenticating the Excel Workbook User"

■ Section 11.3, "Checking the Integrity of an Integrated Excel Workbook’s Metadata"

■ Section 11.4, "What You May Need to Know About Securing an Integrated Excel
Workbook"

11.1 Introduction to Securing Your Integrated Excel Workbook
Configure Oracle ADF Security for the Fusion web application before you test or
deploy an integrated Excel workbook. An integrated Excel workbook must use a
cookie-based web session ID to determine if the client (Excel workbook) has
established a valid session with the server that hosts the Fusion web application. After
you configure security for the Fusion web application in JDeveloper, you configure a
number of properties, such as ProtectedWebPage, in the Excel workbook so that the
Excel workbook user can be authenticated by the server hosting the Fusion web
application.

For information about Oracle ADF Security, see the "Enabling ADF Security in a
Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

11.2 Authenticating the Excel Workbook User
An integration of an Excel workbook with a Fusion web application requires an
authenticated cookie-based web session ID from the server that hosts the Fusion web
application. Oracle ADF Security determines the mechanism used to authenticate
the user.

If a user opens an Excel workbook without a valid authenticated cookie-based web
session ID, a login mechanism to authenticate the end user is invoked when one of the
following events occur:

■ Invocation of the workbook Login action

Authenticating the Excel Workbook User

11-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ Invocation of a server request that requires a valid cookie-based web session ID
before the request can be served

11.2.1 How a Fusion Web Application Determines If an Excel Workbook Has a Web
Session ID

The server that hosts the Fusion web application determines whether the client has
an authenticated cookie-based web session ID by locating and validating the web
session ID in the request header from the client. If the client already has a valid
cookie-based web session ID, all subsequent requests sent to the server hosting the
Fusion web application include the web session ID attached to the request header. If
the cookie-based web session ID is expired, the server responds with the login
mechanism specified by the Fusion web application. If the client does not have a
cookie-based web session ID, the client sends a request to the server for the page
referenced by the ProtectedWebPage workbook property. The server responds with
the login mechanism. In both instances (cookie-based web session ID expired and no
cookie-based web session ID), the login mechanism to authenticate the user appears in
the browser control hosted by the Excel workbook.

The value of ProtectedWebPage is a URL that references a protected web page. You
specify a value for ProtectedWebPage when you want to run the integrated Excel
workbook in test mode. For information about how to specify a value for
ProtectedWebPage, see Section 4.4.2, "How to Open an Excel Workbook for the First
Time".

11.2.2 What Happens at Runtime When the Login Mechanism Is Invoked
After the login mechanism is invoked, a modal dialog box appears that contains a web
browser control. This web browser control displays whatever login mechanism the
Fusion web application uses. For example, if the Fusion web application uses
HTTP Basic Authentication, the web browser control displays the simple dialog box
shown in Figure 11–1.

Figure 11–1 Dialog Box That Appears When a Fusion Web Application Uses Basic
Authentication

Checking the Integrity of an Integrated Excel Workbook’s Metadata

Securing Your Integrated Excel Workbook 11-3

The user enters user credentials and, assuming these are valid, a cookie-based web
session ID is created and assigned to the client (the web browser control hosted by the
Excel workbook).

11.2.3 What Happens at Runtime When the Logout Mechanism Is Invoked
After the logout mechanism is invoked, a dialog box appears informing that user has
been logged out of the current session. The user is automatically logged out when the
worksheet or workbook is closed, or Clear All Data option is selected from the menu.

Figure 11–2 Dialog Box That Appears When a User Logs Out

After logging out, the user must log in again to upload or download data.

If two or more workbooks are open (in Test or Runtime mode) with same credentials,
closing one workbook does not initiate the logout mechanism. The user continues to
stay logged in and may continue to work on remaining open workbooks, and can open
the closed workbook without being asked for credentials again. The user is logged out
when all workbooks, requiring same credentials, are closed.

11.3 Checking the Integrity of an Integrated Excel Workbook’s Metadata
The Oracle ADF Desktop Integration module provides a mechanism to check that the
metadata it uses to integrate an Excel workbook with a Fusion web application is not
tampered with after you publish the Excel workbook for end users. It generates a hash
code value and inserts the value into the Oracle ADF Desktop Integration module
client registry file (adfdi-client-registry.xml) that it also creates when you
publish the integrated Excel workbook as described in Section 14.4, "Publishing Your
Integrated Excel Workbook". The Oracle ADF Desktop Integration module stores the
adfdi-client-registry.xml file in the WEB-INF directory of the Fusion web
application.

If you republish the integrated Excel workbook, the Oracle ADF Desktop Integration
module generates a new hash code value and replaces the value in the
adfdi-client-registry.xml file. The Oracle ADF Desktop Integration module
creates the adfdi-client-registry.xml file if it does not exist.

The ApplicationHomeFolder and WebPagesFolder workbook properties allow
the integrated Excel workbook to identify the location of the Fusion web
application’s WEB-INF directory. You must set valid values for these properties before
you can publish the integrated Excel workbook and the Oracle ADF Desktop
Integration module can generate a hash code value.

The Oracle ADF Desktop Integration module generates the hash code value using
most of the elements in the metadata for the workbook and the value of the
WorkbookID workbook property. The WorkbookID workbook property is read-only
and uniquely identifies the integrated Excel workbook. You must reset the
WorkbookID workbook property if you create a new integrated Excel workbook by
copying an existing integrated Excel workbook. The Oracle ADF Desktop Integration

Checking the Integrity of an Integrated Excel Workbook’s Metadata

11-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

module excludes the WebAppRoot property from the hash code calculation since its
value is expected to change at runtime.

For more information about the workbook properties discussed here, see Table A–18.

11.3.1 How to Reset the Workbook ID
The value of the WorkbookID workbook property is unique to each workbook and
cannot be modified by you. You can, however, reset the WorkbookID workbook
property. You must do this when you create a new integrated Excel workbook by
copying an existing integrated Excel workbook.

To reset a workbook ID:
1. Click Tools > Reset WorkbookID in the Oracle ADF Desktop Integration

Designer toolbar.

2. Click Yes to confirm that you want to reset the WorkbookID workbook property
in the dialog box that appears.

3. Click OK.

11.3.2 How to Disable the Metadata Tamper-Check in the Fusion Web Application
By default, the Oracle ADF Desktop Integration module checks that the metadata it
uses to integrate an Excel workbook with a Fusion web application is not tampered
with after you publish the Excel workbook for end users. You can disable the metadata
tamper-check by configuring a parameter in the deployment descriptor file (web.xml)
of the Fusion web application, although this is not recommended.

To disable the metadata tamper-check in the Fusion web application:
1. Stop your Fusion web application.

2. Open the web.xml file of your Fusion web application.

3. Add an initialization parameter to the adfdiRemote servlet to disable the
metadata tamper-check, as described in the following table.

4. Save the web.xml file.

The web.xml file of your Fusion web application has the following entries:

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>...</servlet-class>
 <init-param>
 <param-name>TamperingCheck.Enabled</param-name>
 <param-value>False</param-value>
 </init-param>
</servlet>

5. Rebuild and restart your Fusion web application.

Property Value

Name Enter the name of the initialization parameter as follows:

TamperingCheck.Enabled

Value Set the value of TamperingCheck.Enabled to False.

Checking the Integrity of an Integrated Excel Workbook’s Metadata

Securing Your Integrated Excel Workbook 11-5

For more information about the web.xml file, see Appendix E, "Desktop Integration
Settings in the Web Application Deployment Descriptor".

11.3.3 How to Allow Missing Entries in the Oracle ADF Desktop Integration Client
Registry

You can configure the metadata tamper-check so that a missing entry for the
WorkbookID workbook property is allowed in the adfdi-client-registry.xml
file. To do this, you configure a parameter in the deployment descriptor file (web.xml)
of the Fusion web application, although this is not recommended.

To allow missing entries in the metadata of the Fusion web application:
1. Stop your Fusion web application.

2. Open the web.xml file of your Fusion web application.

3. Add an initialization parameter to the adfdiRemote servlet to allow missing
entries in the metadata as described in the following table.

4. Save the web.xml file.

The web.xml file of your Fusion web application has the following entries:

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>...</servlet-class>
 <init-param>
 <param-name>TamperingCheck.AllowMissingEntries</param-name>
 <param-value>True</param-value>
 </init-param>
</servlet>

5. Rebuild and restart your Fusion web application.

For more information about the web.xml file, see Appendix E, "Desktop Integration
Settings in the Web Application Deployment Descriptor".

11.3.4 What Happens When the Metadata Tamper-Check is Performed
At runtime, the integrated Excel workbook regenerates the metadata hash code and
provides it to the Fusion web application with the first server request. If the Fusion
web application is unable to get a match on this hash code, it returns an error to the
integrated Excel workbook. On receiving an error from the tamper check process, the
integrated Excel workbook reports this failure to the end user and closes the
integration framework.

Property Value

Name Enter the name of the initialization parameter as follows:

TamperingCheck.AllowMissingEntries

Value Set the value of TamperingCheck.AllowMissingEntries to True.

What You May Need to Know About Securing an Integrated Excel Workbook

11-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

11.4 What You May Need to Know About Securing an Integrated Excel
Workbook

Note the following points about securing an integrated Excel workbook with a Fusion
web application:

■ Data security

If you save an Excel workbook containing data downloaded from a Fusion web
application to a location, such as a network directory, where other users can access
the Excel workbook, the data stored in the Excel workbook is accessible to other
users.

■ Security and protection in Microsoft Excel

Certain security and protection features that Microsoft Excel provides do not work
for workbooks or worksheets that are integrated with a Fusion web application.
For example, you cannot use the worksheet protection feature for a worksheet that
you integrate with a Fusion web application. You can, however, use Excel’s
functionality to set a password on an integrated Excel workbook to prevent
unauthorized users from opening or modifying it. For more information about
Excel security features, see Excel’s documentation.

■ Integrated Excel workbooks can be configured to cache data, as described in
Section 15.3, "Restore Server Data Context Between Sessions". Make sure that you
do not cache sensitive data in the integrated Excel workbook.

■ If the Fusion web application is running on the https protocol and you have not
installed the security certificate on the client, the integrated Excel workbook gives
an error on login and the connection is not established. To establish a connection,
you must install the security certificate.

12

Adding Validation to an Integrated Excel Workbook 12-1

12 Adding Validation to an Integrated Excel
Workbook

This chapter describes how to provide validation for your integrated Excel workbook

This chapter includes the following sections:

■ Section 12.1, "Introduction to Adding Validation to an Integrated Excel Workbook"

■ Section 12.2, "Providing Server-Side Validation for an Integrated Excel Workbook"

■ Section 12.3, "Providing Client-Side Validation for an Integrated Excel Workbook"

■ Section 12.4, "Error Reporting in an Integrated Excel Workbook"

■ Section 12.5, "Providing a Row-by-Row Status on an ADF Table Component"

■ Section 12.6, "Adding Detail to Error Messages in an Integrated Excel Workbook"

■ Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

12.1 Introduction to Adding Validation to an Integrated Excel Workbook
You configure server-side and client-side validation for the Fusion web application
and the integrated Excel workbook to make use of the validation options offered by
the Oracle ADF Model Layer and Microsoft Excel. In addition to these validation
options, you can make use of components in the Oracle ADF Desktop Integration
module to return error messages from the Fusion web application, to provide status on
the results of component actions, and to manage errors that may occur when data
changes in an integrated Excel workbook conflict with data hosted by the Fusion web
application.

12.2 Providing Server-Side Validation for an Integrated Excel Workbook
The Oracle ADF Desktop Integration module makes use of the validation rules that the
Oracle ADF Model Layer sets for a binding’s attributes. This means that data a user
enters or edits in one of the Oracle ADF Desktop Integration components, such as the
ADF Table component, can be validated against set rules and conditions in the Fusion
web application. For general information about defining validation rules in Oracle
ADF, see the "Defining Validation and Business Rules Declaratively" chapter in the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

For information about adding ADF Model layer validation, see the "Adding ADF
Model Layer Validation" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Providing Client-Side Validation for an Integrated Excel Workbook

12-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

12.3 Providing Client-Side Validation for an Integrated Excel Workbook
The Oracle ADF Desktop Integration module does not provide client-side validation.
However, you can use Excel’s data validation features to control the type of data or the
values that end users enter into a cell. These features allow you to restrict data entry to
a certain range of dates, limit choices by using a list, or make sure that only positive
whole numbers are entered in a cell. For example, you could configure the Product
Number column in the EditPriceList-DT.xlsx workbook so that users can enter
only whole numbers in the cells of this column.

If you apply custom validation to columns within an ADF Table component, the
validation is propagated when the ADF Table component’s columns are populated at
runtime. Note, however, that the Oracle ADF Desktop Integration module overwrites
at runtime any custom validation applied to columns that reference the
TreeNodeList subcomponent at design time. This is because the Oracle ADF
Desktop Integration module applies its own list-constraint validation, which is
invoked at runtime.

For more information about data validation in Excel, see Excel’s documentation.

12.4 Error Reporting in an Integrated Excel Workbook
The server that hosts the Fusion web application you integrate your Excel workbook
with can return error messages to end users that provide feedback on the results of
operations. The error messages returned can be one of a number of types: validation
failures, conflict errors, deleted records, and so on.

Error Reporting Using EL Expressions
To return error message summaries to end users, you set an EL expression for the
Value property of an ADF Output Text component. At runtime, the ADF Output Text
component displays the error message summary to the end user if an error occurs.

The type of EL expression that you set for the Value property of the ADF Output Text
component depends on whether you want to return error message summaries
generated by action sets invoked on a worksheet, or by actions invoked by other
components such as the ADF Table and ADF Read-only Table components. The
following EL expression displays error message summaries which are returned during
the invocation of an action set on a worksheet:

#{worksheet.errors}

At runtime, the previous error message summary is cleared (if one existed) when the
action set starts the invocation. If no errors occur during invocation, error message
remains blank. If an error occurs, the ADF Output Text component displays the error
message summary.

Note:

■ Excel displays error messages when a validation fails; these error
messages cannot be localized.

■ ADF Desktop Integration does not support server-side validation
warnings. Validation warnings, set for rules defined in the Fusion
web application, are not displayed by the integrated Excel
workbook.

Error Reporting in an Integrated Excel Workbook

Adding Validation to an Integrated Excel Workbook 12-3

An alternative approach to returning error message summaries generated by action
sets invoked on a worksheet is to set #{worksheet.errors} as the value for an
action set’s Alert.FailureMessage property. This approach displays the generated
error message summary in a dialog box.

Components such as the ADF Table and ADF Read-only Table components that have
actions which interact with the Fusion web application can also return error message
summaries. Set the following EL expression for the Value property of the ADF
Output Text component or for an action set’s Alert.FailureMessage property:

#{components.componentID.errors}

where componentID refers to the ID of the component (ADF Table or ADF Read-only
Table component) that invokes the action.

The EditPriceList-DT.xlsx file in the Master Price List module of the Fusion
Order Demo application demonstrates how to return error message summaries
generated by action sets invoked on a worksheet and by the actions of an ADF Table
component. Figure 12–1 shows these EL expressions in design mode.

Figure 12–1 EL Expressions to Return Error Messages in an ADF Output Text
Component

Error Reporting Using Component Actions
The Oracle ADF Desktop Integration module provides actions that display error
details generated by an ADF Table component or an integrated Excel worksheet.

The action set in which you invoke one of these actions must include only one action.
In general, action sets clear error labels and message lists when invoked. An action set
that invokes one of the following actions returns error labels and message lists to the
end user:

■ Worksheet’s DisplayWorksheetErrors action

To display a worksheet’s error messages, configure the action set of a component
on the worksheet or the worksheet menu item to invoke this action. For example,
Figure 12–2 shows the Action Collection Editor dialog configuring the
DisplayWorksheetErrors action as a DoubleClickActionSet item for an
ADF Output Text component on the worksheet.

Error Reporting in an Integrated Excel Workbook

12-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 12–2 DisplayWorksheetErrors Action

At runtime, double-clicking the ADF OutputText component invokes the
DisplayWorksheetErrors action as shown here:

For more information about the Worksheet’s DisplayWorksheetErrors action,
see Section A.13, "Worksheet Actions and Properties".

■ ADF Table component’s DisplayRowErrors action

To display row-level failures that occur in an ADF Table component, invoke this
action. Row-level failures occur when end user invokes the following actions:

– Upload

– DeleteFlaggedRows

– DoubleClickActionSet invoked from an ADF Table component column

For more information about using this action, see Section 12.5, "Providing a
Row-by-Row Status on an ADF Table Component".

■ ADF Table component’s DisplayTableErrors action

To display table-level failures that occur in an ADF Table component, invoke this
action. It is not intended that an ADF Table component column’s
DoubleClickActionSet invoke this action. Instead add this action to an action

Providing a Row-by-Row Status on an ADF Table Component

Adding Validation to an Integrated Excel Workbook 12-5

set that returns error messages to end users when failures occur during invocation
of the action binding specified by an ADF Table component’s
BatchOptions.CommitBatchActionID property.

For more information about ADF Table component actions, see Section A.9, "ADF
Table Component Properties and Actions".

12.5 Providing a Row-by-Row Status on an ADF Table Component
The ADF Table component provides a mechanism to indicate to end users whether
rows from the ADF Table component have been processed successfully or not after
invocation of following ADF Table component actions:

■ DeleteFlaggedRows

■ Upload

■ DoubleClickActionSet invoked from an ADF Table component’s column

The ADF Table component populates the _ADF_StatusColumn column with the
status for each row following the invocation of the ADF Table component action. For
example, it populates the _ADF_StatusColumn column with the upload status for
each row following the invocation of the ADF Table component’s Upload action.

Figure 12–3 shows a number of rows in an ADF Table component where values in
rows have been changed, as indicated by the upward pointing arrows in the Changed
column. In the CostPrice column, two string values have been entered where a
number value is expected.

Figure 12–3 ADF Table Component with Changed Rows Prior to Upload

Figure 12–4 shows the same rows in the ADF Table component after invocation of the
ADF Table component’s Upload action. The ADF Table component populates the _
ADF_StatusColumn column (labeled Status in this example at runtime) with the a
message indicating whether the row updated successfully or not.

Figure 12–4 ADF Table Component with Changed Rows After Upload

By default, the _ADF_StatusColumn column’s DoubleClickActionSet is
configured to invoke the ADF Table component’s DisplayRowErrors action. When
end users double-click a row in this column at runtime, the ADF Table component
invokes the DisplayRowErrors action. This action displays a dialog box with a list
of errors for that row if errors exist. If no errors exist, the dialog box displays a
message to indicate that no errors occurred. Figure 12–5 shows the dialog box that
appears if an end user double-clicks the cell in Figure 12–4 that displays Update
failed in the Status column.

Adding Detail to Error Messages in an Integrated Excel Workbook

12-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 12–5 Dialog Displaying Row Error Message

For more information about the _ADF_StatusColumn column, see Section 7.11,
"Special Columns in the ADF Table Component".

12.6 Adding Detail to Error Messages in an Integrated Excel Workbook
You can configure your Fusion web application to report errors using a custom error
handler if you want to provide more detail to the error messages displayed to end
users in an integrated Excel workbook.

To implement this functionality, the custom error handler must override the
getDetailedDisplayMessage method to return a DCErrorMessage object. At
runtime, the Oracle ADF Desktop Integration module detects the custom error handler
and invokes the getHtmlText method on the DCErrorMessage object. The Oracle
ADF Desktop Integration module includes the HTML returned by the getHtmlText
method in the error message list as detail.

For more information about creating a custom error handler, see the "Customizing
Error Handling" section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

12.7 Handling Data Conflicts When Uploading Data from a Workbook
If one of your end users (John) makes changes to a row of data that he downloaded
from a Fusion web application to an Excel workbook and another end user (Jane) in a
different session modifies the same row in the Fusion web application after John
downloads the row, John may encounter an error when he attempts to upload the
modified row, as his changes conflict with those that Jane made. Depending on the
configuration of your Fusion web application, John may receive
RowInconsistentException type error messages. For information about how to
configure your Fusion web application, see the "How to Protect Against Losing
Simultaneously Updated Data" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

To resolve this conflict in the integrated Excel workbook, John needs to download the
most recent version of data from the Fusion web application. However, invoking the
ADF Table component’s Download action causes the component to refresh all data
that the component hosts in the Excel workbook. This may overwrite other changes
that John made that do not generate conflict error messages. To resolve this scenario,
you can expose the ADF Table component’s DownloadFlaggedRows action. When
invoked, this action downloads data only for the rows that the end user flags for
download. Using this action, John can resolve the conflict issues and upload his
modified data.

Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and
in Disconnected Mode" provides information about using an integrated Excel

Handling Data Conflicts When Uploading Data from a Workbook

Adding Validation to an Integrated Excel Workbook 12-7

workbook across multiple sessions. For information about flagging rows, see
Section 7.10.2, "Row Flagging in an ADF Table Component". For information about
invoking component actions, see Section 8.2.2, "How to Invoke Component Actions in
an Action Set". For more information about the components that the ADF Table
component supports, see Section A.9, "ADF Table Component Properties and
Actions".

12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
You specify a row-specific attribute of the tree binding for the
RowData.ChangeIndicatorAttribute property so as to determine whether a row
has been modified by another user since the row was last downloaded by the ADF
Table component.

To configure a workbook to handle data conflicts:
1. Select the cell in the Excel worksheet that references the ADF Table component and

click the property inspector button in the Oracle ADF Desktop Integration
Designer to display the Edit Component: ADF Table dialog box.

2. For the RowData.ChangeIndicatorAttribute property, specify the
row-specific attribute of the tree binding that you use to determine whether a row
has been modified by another user since the row was last downloaded by the ADF
Table component in your integrated Excel workbook.

3. Click OK.

12.7.2 What Happens at Runtime When You Configure a Workbook to Handle Data
Conflicts

The ADF Table component caches the original value of the row-specific attribute of the
tree binding that you specified as a value for
RowData.ChangeIndicatorAttribute when it invokes the RowDownSync action.
When the ADF Table component invokes the RowUpSync action, it checks if the value
of the binding hosted by the Fusion web application and the original value cached by
the ADF Table component differ. If they differ, it indicates data conflict, as changes
have been made to the value of the binding hosted by the Fusion web application since
the ADF Table component downloaded the value of the binding.

Handling Data Conflicts When Uploading Data from a Workbook

12-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

13

Testing Your Integrated Excel Workbook 13-1

13 Testing Your Integrated Excel Workbook

This chapter describes features in the Oracle ADF Desktop Integration module that
help you test your integrated Excel workbook as you configure it. It includes the
following sections:

■ Section 13.1, "Introduction to Testing Your Integrated Excel Workbook"

■ Section 13.2, "Testing Your Fusion Web Application"

■ Section 13.3, "Testing Your Integrated Excel Workbook"

13.1 Introduction to Testing Your Integrated Excel Workbook
Testing an integrated Excel workbook before you publish it and deploy it to your end
users enables you to verify that the functionality you configure behaves as you intend.
Before you test your integrated Excel workbook, test the Fusion web application with
which you integrate the Excel workbook. Once your Fusion web application functions
as you intend, use the test mode provided by the Oracle ADF Desktop Integration
mode to test the functionality in your integrated Excel workbook.

13.2 Testing Your Fusion Web Application
Test the Fusion web application that you integrate your Excel workbook with before
you start testing the integrated Excel workbook. For information about testing a
Fusion web application, see the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework. Verify that the Fusion web application you
want to integrate an Excel workbook with supports the Oracle ADF Desktop
Integration module by carrying out the procedure described in Section C.1, "Verifying
That Your Fusion Web Application Supports Desktop Integration".

If you make changes to the Fusion web application to resolve problems identified by
testing the application, you need to:

■ Rebuild the JDeveloper project where you develop the Fusion web application

■ Rerun the Fusion web application

■ Reload the page definition files that you associate with the integrated Excel
workbook

This makes sure the changes in the Fusion web application are available to the
integrated Excel workbook. For information about how to reload a page definition file,
see Section 4.3.3, "Reloading a Page Definition File in an Excel Workbook".

Testing Your Integrated Excel Workbook

13-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

13.3 Testing Your Integrated Excel Workbook
As you configure your Excel workbook to integrate with a Fusion web application,
you can switch to test mode from design mode to test the functionality that you add to
the workbook. You use the Oracle ADF Desktop Integration Designer toolbar to switch
to test mode from design mode and from design mode to test mode.

Test mode allows you to test the functionality of your integrated Excel workbook as
you configure it incrementally. It also allows you to view the integrated Excel
workbook from an end user’s perspective, as test mode corresponds to what end users
see when they view and execute the published integrated Excel workbook. The
difference between an integrated Excel workbook in test mode and a published
integrated Excel workbook is that the Oracle ADF Desktop Integration Designer is not
available to users of the published integrated Excel workbook.

For more information about test mode and design mode, see Section 5.1, "Introduction
to the Development Tools".

The Oracle ADF Desktop Integration module can generate log files that capture
information based on events triggered by an integrated Excel workbook. For more
information about these log files, see Appendix C, "Troubleshooting an Integrated
Excel Workbook".

To run an integrated Excel workbook in test mode:
■ In the integrated Excel workbook that you want to test, click the Run button on the

Oracle ADF Desktop Integration Designer toolbar.

The integrated Excel workbook switches to test mode from design mode.

To stop test mode and return the integrated Excel workbook to design mode:
■ In the integrated Excel workbook that you are testing, click the Stop button on the

Oracle ADF Desktop Integration Designer toolbar.

The integrated Excel workbook switches to design mode from test mode.

Note: When an end user tries to close the integrated Excel workbook,
Microsoft Excel prompts a message to save the workbook even if the
end user has not modified it after opening it. This is an expected
behavior because the Oracle ADF Desktop Integration module
modifies an integrated Excel workbook each time an end user opens
it.

14

Deploying Your Integrated Excel Workbook 14-1

14 Deploying Your Integrated Excel Workbook

This chapter describes how to deploy a workbook that you have integrated with a
Fusion web application to your end users once you have finalized the integration.

This chapter includes the following sections:

■ Section 14.1, "Introduction to Deploying Your Integrated Excel Workbook"

■ Section 14.2, "Making the Oracle ADF Desktop Integration Client Framework
Available to End Users"

■ Section 14.3, "Configuring Security Settings for Excel"

■ Section 14.4, "Publishing Your Integrated Excel Workbook"

■ Section 14.5, "Deploying a Published Workbook with Your Fusion Web
Application"

■ Section 14.6, "Passing Parameter Values from a Fusion Web Application Page to a
Workbook"

14.1 Introduction to Deploying Your Integrated Excel Workbook
Once you finish development of your integrated Excel workbook, you make the final
integrated Excel workbook available to end users by deploying the resulting Fusion
web application to an application server. Before you deploy a finalized Excel
workbook that integrates with the Fusion web application, you must publish it as
described in Section 14.4, "Publishing Your Integrated Excel Workbook". Once you
have published the Excel workbook, you can deploy it using one of the methods
outlined in the "Deploying Fusion Web Applications" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

The end users that you deploy an integrated Excel workbook to must do the following:

■ Set up the Oracle ADF Desktop Integration client framework on their machines.

Make the Oracle ADF Desktop Integration client framework available to end users
from, for example, a directory on your network. For more information, see
Section 14.2, "Making the Oracle ADF Desktop Integration Client Framework
Available to End Users".

■ Configure the security settings for their Excel application.

Making the Oracle ADF Desktop Integration Client Framework Available to End Users

14-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

14.2 Making the Oracle ADF Desktop Integration Client Framework
Available to End Users

End users who want to use the functionality that you configure in an integrated Excel
workbook must install the Oracle ADF Desktop Integration client framework. Store
the tool (setup.exe) that installs the Oracle ADF Desktop Integration client
framework at a location where end users can download it. For example, you can make
the setup.exe tool available from a shared network location such as the following:

 \\myFileServer\adfdi-deploy

Maintaining one shared network location makes it easier to manage the version of the
Oracle ADF Desktop Integration client framework that end users install on their
machines.

For information about using the setup.exe tool, see Section 3.5, "Setting Up the
Oracle ADF Desktop Integration Client Framework".

For more information about Microsoft ClickOnce installer, see the following:

http://msdn.microsoft.com/en-us/library/71baz9ah.aspx

14.3 Configuring Security Settings for Excel
End users who want to use integrated Excel workbooks must have their Excel
application configured to allow it to run integrated Excel workbooks as described in
Section 3.4, "Allowing Excel to Run an Integrated Excel Workbook". They also need to
add the host name of the Fusion web application to the Excel application’s list of
trusted locations.

To add the host name of a Fusion web application to Excel’s list of trusted
locations:
1. Open Excel.

2. Click the Microsoft Office button and then click Excel Options.

3. Click the Trust Center tab and then click Trust Center Settings.

4. Click the Trusted Locations tab.

5. Select the Allow Trusted Locations on my network (not recommended) checkbox.

6. Click Add new location and enter the host name of the Fusion web application in
the Path field of the dialog box that appears.

For example, you enter something similar to the following for the Master Price List
module of the Fusion Order Demo application:

http://hostname:7101/FODMasterPriceList

7. Select the Subfolders of this location are also trusted checkbox.

8. Click OK.

14.4 Publishing Your Integrated Excel Workbook
Once you finalize configuring the Excel workbook with Oracle ADF functionality, you
need to publish it. Publishing a workbook makes it available to the end users for
whom you configured the integrated Excel workbook.

Deploying a Published Workbook with Your Fusion Web Application

Deploying Your Integrated Excel Workbook 14-3

14.4.1 How to Publish an Integrated Excel Workbook
You publish a workbook by clicking a button on the Oracle ADF Desktop Designer
toolbar and specifying values in the dialog boxes that appear.

To publish a workbook:
1. Before you start publishing an integrated Excel workbook, ensure that the

ApplicationHomeFolder and WebPagesFolder properties in the Edit
Workbook Properties dialog box are correct. If these properties are not set, the
Oracle ADF Desktop Integration module prompts you to set them when you
publish the integrated Excel workbook.

For more information, see Section 4.4.2, "How to Open an Excel Workbook for the
First Time".

2. In the Oracle ADF Desktop Designer toolbar, click the Publish Workbook button.

3. Specify the directory and file name for the published workbook in the Publish
Workbook dialog box that appears. The directory and file name that you specify
for the published workbook must be different from the directory and file name for
the design time workbook.

4. Click Save to save changes.

14.4.2 What Happens When You Publish an Integrated Excel Workbook
When you click the Publish button in design mode, the Oracle ADF Desktop
Integration module triggers the following actions:

■ Prompts you to save any pending changes in the workbook

If you decline to save pending changes, the publication process is canceled. If you
accept to save pending changes, the publication process proceeds.

■ Removes binding expressions that are visible in the worksheet while the
workbook is in design mode

■ Changes the workbook mode to runtime mode

■ Removes the Oracle ADF Desktop Integration Designer toolbar and the Oracle
ADF Desktop Integration Designer from Excel's Document Actions

■ Creates the published workbook with the file name you specified in the directory
that you specified

■ Updates the client registry. For more information, see Section 11.3, "Checking the
Integrity of an Integrated Excel Workbook’s Metadata".

14.5 Deploying a Published Workbook with Your Fusion Web Application
Add the integrated Excel workbook to the JDeveloper project for your Fusion web
application if it is not already packaged with the other files that make up your
JDeveloper project. This makes sure that the Excel workbooks you integrate with your
Fusion web application get deployed when you deploy your finalized Fusion web
application. For example, the Master Price List module stores the Excel workbooks
that it integrates at the following location:

FOD_HOME\MasterPriceList\ViewController\public_html\excel

where FOD_HOME is the installation directory for the Fusion Order Demo application.

Deploying a Published Workbook with Your Fusion Web Application

14-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Once you decide on a location to store your integrated Excel workbooks, you can
configure web pages in your Fusion web application allowing end users to access the
integrated Excel workbooks. For example, Figure 14–1 shows Internet Explorer’s File
Download dialog box, which was invoked by clicking the Excel > Edit Using Live
Spreadsheet menu options on the PriceListSummary.jspx page displayed by the
Master Price List module.

Figure 14–1 Invoking an Integrated Excel Workbook from a Fusion Web Application

To enable the functionality illustrated in Figure 14–1, the HTTP filter parameters for
your Fusion web application must be configured to recognize Excel workbooks.
JDeveloper automatically configures these parameters for you when you add Oracle
ADF Desktop Integration to the technology scope of your Fusion web application, as
explained in Section 4.2, "Adding Oracle ADF Desktop Integration to a Fusion Web
Application". If you need to manually configure the HTTP filter parameters, see
Appendix E, "Desktop Integration Settings in the Web Application Deployment
Descriptor".

Once you have configured the HTTP filter for your Fusion web application, you
configure the web pages that the Fusion web application displays to end users to allow
them to invoke Excel workbooks. A basic method of invoking an Excel workbook that
you have integrated with a Fusion web application is to provide a hyperlink that
invokes the workbook. For example, you could write the following HTML in a web
page:

Open the Master Price List
in Excel

where excel is a subdirectory of the directory specified by the WebPagesFolder
workbook property and EditPriceList.xlsx is the Excel workbook that the end
user invokes.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 14-5

You can provide functionality that allows end users to invoke Excel workbooks from
buttons, lists and command menus. The following list provides some examples:

■ Button

Display a button on the web page that, when clicked, invokes the integrated Excel
workbook.

■ Selection list

Use the ADF Faces selectOneChoice component in conjunction with a button
to invoke an integrated Excel workbook.

■ Menu

Use the ADF Faces commandMenuItem and fileDownloadActionListener
components.

The Edit Using Live Spreadsheet menu illustrated in Figure 14–1 uses the
commandMenuItem and fileDownloadActionListener components. The
PriceListSummary.jspx page displays this menu. The following entries
appear in the PriceListSummary.jspx page of the Master Price List module
with values configured for the commandMenuItem and
fileDownloadActionListerner components:

<af:commandMenuItem textAndAccessKey="#{res['pls.productList.menu.lse.label']}"
shortDesc="[Download a spreadsheet version of the pricelist application]"
immediate="true"
id="editDownLoadMenu">

<af:fileDownloadActionListener contentType="application/xls"
filename="EditPriceList.xlsx"
method="#{priceListSummaryBacking.downloadEditable}"/>

</af:commandMenuItem>

For more information about creating web pages for a Fusion web application, see the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

14.6 Passing Parameter Values from a Fusion Web Application Page to a
Workbook

You can configure a page in your Fusion web application to pass parameter values to
an integrated Excel workbook when an end user downloads the workbook from the
page. For example, if an end user attempts to download a workbook from a page that
displays a list of products, the list of products that appears in the workbook will
correspond to the list of products displayed in the page when the end user invoked the
download. Subsequent changes that the end user makes to data in one location (the
worksheet or the Fusion web application’s page) do not affect data in the other
location.

Note: If you write the following HTML code to download the
integrated Excel workbook, without first forward slash (/) in the path:

Open the Master
Price List in Excel

Internet Explorer displays a customization error when the end user
downloads the integrated Excel workbook.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

To configure this functionality, you must:

■ Verify that the HTTP filter is configured to allow end users to download integrated
Excel workbooks from the Fusion web application. By default, JDeveloper
configures the HTTP filter with appropriate values when you add Oracle ADF
Desktop Integration to the technology scope of your Oracle ADF Desktop
Integration project. To verify the parameter values of the HTTP filter, see
Section E.2, "Configuring the ADF Desktop Integration Excel Download Filter".

■ Configure the page in your Fusion web application from which the end user
downloads the integrated Excel workbook so that it passes its parameters through
URL arguments to the integrated Excel workbook when the end user downloads
it.

■ Configure the page definition file associated with the worksheet in the integrated
Excel workbook so that the worksheet is initialized with the parameters from the
page in the Fusion web application from which the end user downloads the
workbook.

■ Configure workbook and worksheet properties in the integrated Excel workbook
that end users will download so that the workbook contains the parameters from
the page in the Fusion web application from which the end invokes download.

14.6.1 How to Configure the Fusion Web Application’s Page to Pass Parameters
You insert an <af:goLink> tag and specify property values for it that reference the
integrated Excel workbook the end user downloads and the values to download. You
also specify the commands on the page that, when invoked, require the Fusion web
application to refresh the values referenced by the <af:goLink> tag and its property
values.

To configure the page in the Fusion web application:
1. In JDeveloper, insert the af:goLink tag into the page from which the end user

downloads the integrated Excel workbook.

2. In the Structure window, right-click the af:goLink node and choose Go to
Properties.

3. Expand the Common section and set values for the properties described in the
following table.

Property Value

Text Write the text that appears to end users at runtime.

For example, write text such as the following to appear at runtime:

Download to Excel

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 14-7

4. Optionally, expand the Behavior section and specify component IDs for the
partialTriggers property that, when invoked, update the values of the
af:goLink tag and its Destination property.

For example, if you have navigation buttons with the IDs NextButton,
PreviousButton, FirstButton, and LastButton, specify them as follows:

:NextButton :PreviousButton :FirstButton :LastButton

5. Save the page.

The following example shows the entries that JDeveloper generates in a JSF page
using the examples in this procedure:

<af:goLink text="Download to Excel"
destination="/excel/workbook.xlsx?productName=#{bindings.productName.attributeV
alue}"
partialTriggers=":NextButton :PreviousButton :FirstButton :LastButton"/>

14.6.2 How to Configure the Page Definition File for the Worksheet to Receive
Parameters

You configure the page definition file associated with the worksheet in the integrated
Excel workbook as follows:

■ Add one or more parameter elements that initialize the worksheet with the
values specified by the workbook Parameters property that you configure in
Section 14.6.3, "How to Configure Properties in the Integrated Excel Workbook to
Receive Parameters".

The following example shows a parameter element in a page definition file that is
associated with a worksheet in an integrated Excel workbook:

<parameters>
 <parameter id="ProductNameParam" />
</parameters>

Destination Invoke the expression builder to write an EL expression that specifies the
integrated Excel workbook and the values to download as a URL argument:

For example, write an EL expression such as the following:

"/excel/workbook.xlsx?productName=#{bindings.productName.
attributeValue}"

Note that the runtime URL-encoded value of the EL expression to the right of
? must be less than 2048 bytes. If the runtime value exceeds 2048 bytes, the
integrated Excel workbook downloads the URL arguments in the first 2048
bytes. Subsequent URL arguments do not get downloaded to the integrated
Excel workbook. Instead, the Fusion web application writes log entries for
these URL arguments identifying them as having not been downloaded.

For example, the runtime URL-encoded value of
productName=#{bindings.productName.attributeValue} must be
less than 2048 bytes.

Also note that if the URL contains more than 256 characters, an exception is
raised when the end user downloads and opens the integrated Excel
workbook without saving it. To resolve this problem, you must limit your
URL length to 256 characters, or instruct the end user to save the workbook
before opening it.

Property Value

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ Add an invokeAction and a method action binding so that the page definition
file associated with the worksheet initializes correctly.

The following example shows the initializeProductTable invokeAction
invoking the filterByProductName method action binding. The
invokeAction is refreshed only when a value for ProductNameParam is
supplied.

<executables>
 <invokeAction Binds="filterByProductName" id="initializeProductTable"
 Refresh="deferred"
 RefreshCondition="${bindings.ProductNameParam != null}"/>
...
</executables>

The method action binding invokes a view object method
(filterByProductName). The view object method takes a single String
argument (ProductNameArg) that references the value of ProductNameParam.

<bindings>
 <methodAction id="filterByProductName" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="filterByProductName"
 IsViewObjectMethod="true" DataControl="AppModuleDataControl"
 InstanceName="AppModuleDataControl.ProductVO1">
 <NamedData NDName="ProductNameArg" NDValue="${bindings.ProductNameParam}"
 NDType="java.lang.String"/>
 </methodAction>
. . .
</bindings>

For more information about configuring a page definition file, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel Workbook".

14.6.3 How to Configure Properties in the Integrated Excel Workbook to Receive
Parameters

You configure the workbook Parameters property and the worksheet Parameters
property so that the integrated Excel workbook that the end user downloads from the
Fusion web application receives parameter values included in the query string of the
workbook download URL.

To configure the workbook Parameters property:
1. Click Workbook Properties in the Oracle ADF Desktop Integration Designer.

2. Click the ellipsis button (...) beside the input field for Parameters to invoke the
WorkbookParameter Collection Editor.

3. Click Add to add a new workbook initialization parameter and configure its
properties as follows:

■ (Optional) In the Annotation field, enter a description of the workbook
initialization parameter.

■ In the Parameter field, specify the name of the URL argument that you
configured for the af:goLink tag’s Destination property as described in
Section 14.6.1, "How to Configure the Fusion Web Application’s Page to Pass
Parameters".

4. Repeat Step 3 as necessary to add other workbook initialization parameters.

5. Click OK.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 14-9

For more information about the workbook Parameters property, see Table A–18.

To configure the worksheet Parameters property:
1. Click Worksheet Properties in the Oracle ADF Desktop Integration Designer.

2. Click the ellipsis button (...) beside the input field for Parameters to invoke the
WorksheetParameter Collection Editor.

3. Click Add to add a new worksheet parameter and configure it as in Figure 14–2:

■ (Optional) In the Annotation field, enter a description of the worksheet
parameter.

■ In the Parameter field, specify a parameter element that you added to the page
definition file associated with the worksheet, as described in Section 14.6.2,
"How to Configure the Page Definition File for the Worksheet to Receive
Parameters".

■ In the Value field, write an EL expression that references the value of the
Parameter property you specified for the workbook initialization parameter
(workbook Parameters array). Use the following syntax when writing the
EL expression:

#{workbook.params.productName}

where productName references the value of the Parameter property you
specified for the workbook initialization parameter.

Figure 14–2 Worksheet Parameters

4. Repeat Step 3 as necessary to add other workbook initialization parameters.

5. Click OK.

For more information about the worksheet Parameters property, see Table A–19.

By default, the workbook parameters are not sent every time the workbook connects to
the server to request metadata, the end user logs out, or the session expires. If
required, you can configure the workbook to send the initialization parameters by
configuring the SendParameters property.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

To configure the worksheet SendParameters property:
1. Click Worksheet Properties in the Oracle ADF Desktop Integration Designer.

2. In the property inspector, set the value of SendParameters as shown in the
following table and Figure 14–2:

3. Click OK.

14.6.4 What Happens at Runtime When a Fusion Web Application Page Passes
Parameters to an Integrated Excel Workbook

When the end user downloads the integrated Excel workbook from the Fusion web
application, the af:goLink tag is evaluated and the current product name is captured
and included on the URL. The adfdiExcelDownload filter embeds the names and
values of all the parameters from the URL into the downloaded integrated Excel
workbook.

After downloading the workbook, when the end user opens it for the first time, the
active worksheet of the integrated Excel workbook is initialized. The initialization
process includes fetching metadata from the web application. As part of retrieving the
worksheet metadata, the stored workbook parameters (if any) are sent to the ADF
Desktop Integration remote servlet and are available for application logic such as
<invokeAction> executables. Specifically, the parameters are set into
BindingContainer DCParameters before the binding container is refreshed. The
action set in the worksheet Startup event is also executed during initialization. After
initialization, the initialization status for each worksheet is recorded when the
integrated Excel workbook is saved to disk.

After the integrated Excel workbook has been saved, closed, and reopened , the
first-time initialization is skipped for any worksheets that were previously initialized.
If workbook parameters were captured when the integrated Excel workbook was first
downloaded, and those parameters are required to set up server context, then the
Worksheet.ServerContext.SendParameters property should be set to True.
When the SendParameters property is True, workbook parameters will be sent
when the workbook first connects to the server to request metadata or data, each time
the workbook is opened.

To reset the initialization state for all worksheets in the workbook, invoke the
ClearAllData action. For more information about the ClearAllData action, see
Table A–17.

Set this property to... This value...

SendParameters True to send workbook parameters when the workbook connects
to the server in order to request metadata or data, each time it is
opened. False is the default value.

For more information, see Section 15.3, "Restore Server Data
Context Between Sessions".

15

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-1

15 Using an Integrated Excel Workbook Across
Multiple Web Sessions and in Disconnected

Mode

This chapter describes the functionality that your end users can use when they are not
connected to a Fusion web application. It also describes how to restore server data
context when an end user connects to a Fusion web application through an integrated
Excel workbook after having previously been disconnected from the application.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Disconnected Workbooks"

■ Section 15.2, "Deferring Login for an Integrated Excel Workbook"

■ Section 15.3, "Restore Server Data Context Between Sessions"

■ Section 15.4, "Caching Lists of Values for Use in Disconnected Mode"

15.1 Introduction to Disconnected Workbooks
End users can open an integrated Excel workbook and log on to a Fusion web
application from the workbook menu that you configure. The Fusion web application
assigns a session to the user. Once a connection to the Fusion web application is
established and a valid session assigned, end users can download data from the
Fusion web application to the workbook. They can then log off from the Fusion web
application using the workbook menu or otherwise disconnect from the Fusion web
application by, for example, disconnecting from the network that hosts the Fusion web
application.

How the Fusion web application terminates the session assigned to the user depends
on how the user disconnects from the Fusion web application. If the user logs off from
the Fusion web application using a workbook menu, the Fusion web application
terminates the session immediately. If the user disconnects from the Fusion web
application by some other means (for example, closing the workbook), the Fusion web
application terminates the session assigned to the user after session timeout expires.

Functionality Available to End Users in an Integrated Excel Workbook When
Disconnected from a Fusion Web Application
When end users are disconnected from the Fusion web application, they can perform
the following actions:

■ Modify data downloaded from the Fusion web application

Deferring Login for an Integrated Excel Workbook

15-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ Insert new data into the appropriate ADF Table component contained in the
workbook

■ Save changes to data and close and reopen the workbook without having to
upload data to the Fusion web application

■ Track and update changes in the ADF Table component

Caching of Static Information in an Integrated Excel Workbook
Certain types of relatively static data are cached in the integrated Excel workbook to
allow end users to use the workbook while disconnected from the Fusion web
application. The following table describes the types of data that an integrated Excel
workbook caches. It also describes when the integrated Excel workbook refreshes the
data.

15.2 Deferring Login for an Integrated Excel Workbook
You can configure an integrated Excel workbook so that an end user can open it and
use it without having to log on immediately to the Fusion web application. To do this,
you configure the workbook so that no action is invoked which requires a session.
Actions that require a session can be grouped into explicit and implicit actions. Explicit
actions are those that require a user to click a button or a menu item before it can be
invoked. Implicit actions are those configured to be invoked by worksheet events, such
as Startup and Activate, or other events that require a server connection (for
example, the retrieval of a resource bundle). Once an action that requires a session to
proceed is invoked, the end user is prompted to log on to the Fusion web application.

This type of data... Is cached when... And refreshed when...

Page definition metadata that
is not runtime specific such as
control binding types, IDs,
and labels.

An integrated Excel
worksheet bound to a page
definition file is activated and
no cache of the page definition
file’s metadata exists.

The page definition metadata
is not refreshed unless you
download a new copy of the
integrated Excel workbook or
invoke the workbook actions
ClearAllData and
EditOptions described in
Table A–17.

ADF Desktop Integration List
of Values component list items

The ADF Desktop Integration
List of Values component first
downloads the list items from
the Fusion web application.

The values of the list items
hosted by the Fusion web
application differ from those
cached by the integrated Excel
workbook. The cached list
items are refreshed only once
per workbook session and
only if a workbook session
exists.

Invoking the workbook
actions ClearAllData and
EditOptions described in
Table A–17 also clears cached
list items.

Resource bundle strings The integrated Excel
workbook is first initialized. A
workbook is initialized when
it is opened for the first time
after conversion, or after
ClearAllData is invoked.

The cache of resource bundle
strings is not refreshed unless
you download a new copy of
the integrated Excel workbook
or invoke the workbook
actions ClearAllData and
EditOptions described in
Table A–17.

Restore Server Data Context Between Sessions

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-3

15.3 Restore Server Data Context Between Sessions
You need to configure the page definition file so that the correct view object state is
restored if the Fusion web application assigns an end user a new session after one of
the following events occurs:

■ An end user makes changes to data in a workbook, saves and closes the
workbook, reopens the workbook at a later time, and attempts to upload the
changes he or she made before saving and closing the workbook.

■ The time between invocation of an ADF Table component’s Download and
Upload actions (or some other ADF Table component action that contacts the
Fusion web application) exceeds the session timeout value specified for a Fusion
web application session.

Both the scenarios described in the previous list involve two sessions. The first session
is assigned when the end user opens an integrated Excel workbook and logs on to the
Fusion web application. The Fusion web application terminates this session when the
end user logs off from the Fusion web application or when the session expires. The
Fusion web application assigns a second session when the end user reopens the
integrated Excel workbook or invokes an action that interacts with the Fusion web
application.

In addition to configuring the page definition file, configure the functionality in an
integrated Excel workbook so that pending changes are not lost if an end user logs off
from the Fusion web application or a session expires before changes are committed
to the Fusion web application. For example, you configure the worksheet Startup
event to invoke a CreateInsert action binding and a worksheet DownSync action.
You also configure an ADF Button component labeled Save to invoke the worksheet
UpSync action and the Commit action binding. If the end user’s session ends, there
will not be a record to save to if the end user clicks the Save button after the Fusion
web application assigns a new session. To prevent this scenario occurring, it is better to
invoke the CreateInsert action binding from the ADF Button component labeled
Save.

Another example is the behavior of the ADF Table component’s
DownloadForInsert action. If you create a custom method in the Fusion web
application that creates temporary records to support the invocation by the ADF Table
component of the DownloadForInsert action, make sure to remove these temporary
records after successful invocation of the DownloadForInsert action. For more
information about the use of the DownloadForInsert action, see Section 7.7,
"Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component".

15.3.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
You specify the attribute bindings that you want to cache in an integrated Excel
workbook between sessions as values for the worksheet’s ServerContext group of
properties. This group of properties also allows you to specify the action binding that
uses the attribute binding data to restore server-side context when a Fusion web
application assigns a new session to the integrated Excel workbook.

Before you can specify values for the ServerContext group of properties, the page
definition file that is associated with the worksheet must expose the attribute bindings
and action bindings for which you want to restore server context. For information
about adding attribute bindings and action bindings to a page definition file, see
Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook".
For information about the ServerContext group of properties, see the entry for
ServerContext in Table A–19.

Caching Lists of Values for Use in Disconnected Mode

15-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

To configure an integrated Excel workbook to restore server data context:
1. In the integrated Excel workbook, click Worksheet Properties.

2. In the property inspector that appears, configure values for the ServerContext
group of properties as described by the following table.

If your integrated Excel workbook uses parameters and you have deployed it by
downloading it from your Fusion web application, see Section 14.6.3, "How to
Configure Properties in the Integrated Excel Workbook to Receive Parameters"".

3. Click OK.

15.3.2 What Happens at Runtime When an Integrated Excel Workbook Restores Server
Data Context

During the session that is assigned the initial session (for example, session ID 1),
the worksheet caches data using the ServerContext group of properties. In a later
session with a different session ID (for example, session ID 2), where the ADF
Table component’s Upload action is invoked, the data cached in the ServerContext
group of properties is sent to the Fusion web application.

15.4 Caching Lists of Values for Use in Disconnected Mode
The Oracle ADF Desktop Integration module caches the values referenced by the ADF
Desktop Integration List of Values and the TreeNodeList subcomponents that you use
to create lists of values and dependent lists of values so that these components do not

For this property... Enter or select this value...

CacheDataContexts Add an element to the collection of CacheDataContexts.
Configure the element you add as follows:

■ RestoreDataContextActionID

Specify the action binding (for example, the Execute action
binding) that connects to the Fusion web application to restore
the data specified by CachedServerContexts.

■ CachedServerContexts

An array that identifies the attribute binding values to cache and
set before the action binding specified by
RestoreDataContextActionID is invoked. Each element in
the array (CachedServerContext) supports the
CachedAttributeID and RestoredAttributeID properties.

For more information about the CacheDataContexts property and
its subproperties, see Section A–19, " Worksheet Properties".

IDAttributeID Specify the attribute binding that uniquely identifies the row
displayed in the current worksheet. At runtime, the value that this
property references is used to determine if the server data context has
been correctly restored.

For more information about this property and its subproperties, see
Section A–19, " Worksheet Properties"

Note: For integrated Excel workbooks that use Parameters and
<invokeAction> executables, you may not need to configure
RestoreDataContextActionID and CachedServerContexts,
provided that Parameters and <invokeAction> can restore server
data context when a new session is created.

Caching Lists of Values for Use in Disconnected Mode

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-5

send a request to the Fusion web application when an end user selects a value at
runtime. For more information about using these components to create lists of values,
see the following sections:

■ Section 6.6, "Inserting an ADF Desktop Integration List of Values Component"

■ Section 7.12, "Creating a List of Values in an ADF Table Component Column"

■ Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"

The Oracle ADF Desktop Integration module caches up to two hundred and fifty
values for each component. If a component references a list of values with more than
two hundred and fifty values, the Oracle ADF Desktop Integration module caches the
first two hundred and fifty values and writes a warning message to the client-side log
file for subsequent values. Consider configuring your integrated Excel workbook to
invoke a pick dialog from a page in your Fusion web application where a list of values
references more than two hundred and fifty values. For more information about
client-side log files, see Section C.3, "Generating Log Files for an Integrated Excel
Workbook". For more information about invoking a pick dialog from a Fusion web
application page, see Section 8.4, "Displaying Web Pages from a Fusion Web
Application" and Section 8.5, "Inserting Values in an ADF Table Component from a
Web Page Pick Dialog".

Cached list of values in an integrated Excel workbook get refreshed once per
workbook session. This refresh occurs after the user reestablishes a web session with
the Fusion web application and if the values referenced by the Fusion web application
have changed since the integrated Excel workbook last cached the list of values.

The upload of a selected value from a list of values causes the upload to fail if the
selected value no longer exists in the Fusion web application. This may occur if, for
example, one end user deletes the value in the Fusion web application while another
end user modifies the selected value in the cached list of values of an integrated Excel
workbook and attempts to upload the modified value to the Fusion web application.
For more information about handling data conflict, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook".

Caching Lists of Values for Use in Disconnected Mode

15-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

A

Oracle ADF Desktop Integration Component Properties and Actions A-1

AOracle ADF Desktop Integration Component
Properties and Actions

This appendix lists and describes the properties of the Oracle ADF Desktop
Integration module’s components. It also describes the actions that certain components
in this module expose.

This appendix includes the following sections:

■ Section A.1, "Frequently Used Properties in the Oracle ADF Desktop Integration
Module"

■ Section A.2, "ADF Input Text Component Properties"

■ Section A.3, "ADF Output Text Component Properties"

■ Section A.4, "ADF Label Component Properties"

■ Section A.5, "ADF Desktop Integration List of Values Component Properties"

■ Section A.6, "TreeNodeList Subcomponent Properties"

■ Section A.7, "ModelDrivenColumnComponent Subcomponent Properties"

■ Section A.8, "ADF Button Component Properties"

■ Section A.9, "ADF Table Component Properties and Actions"

■ Section A.10, "ADF Read-only Table Component Properties and Actions"

■ Section A.11, "Action Set Properties"

■ Section A.12, "Workbook Actions and Properties"

■ Section A.13, "Worksheet Actions and Properties"

A.1 Frequently Used Properties in the Oracle ADF Desktop Integration
Module

Table A–1 lists alphabetically properties in the Oracle ADF Desktop Integration
module that many components reference.

Frequently Used Properties in the Oracle ADF Desktop Integration Module

A-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Table A–1 Frequently Used Properties in the Oracle ADF Desktop Integration Module

Name Type EL Description

ActionSet N For information about action sets, see Section A.11, "Action
Set Properties".

Annotation String N Use this field to enter a comment about the component’s
use in the worksheet. Comments you enter have no effect
on the behavior of the workbook. They are the equivalent
of code comments.

ComponentID String N The Oracle ADF Desktop Integration module generates this
string to uniquely identify each instance of an ADF
component in an integrated Excel workbook.

Label String Y Specify an EL expression that is evaluated at runtime. For
information about EL expressions in the Oracle ADF
Desktop Integration module, see Appendix B, "Oracle ADF
Desktop Integration EL Expressions". For information
about using labels, see Section 9.4, "Using Labels in an
Integrated Excel Workbook".

Position N This property defines the upper-left corner of the Oracle
ADF component in the integrated Excel workbook.

ReadOnly Boolean Y Set this property to TRUE so that the Oracle ADF Desktop
Integration module ignores changes a user makes to a cell
that references a component which uses this property. This
property is independent of Excel’s workbook and
worksheet protection functionality. Setting ReadOnly to
TRUE does not prevent a user from modifying a cell. When
TRUE, the behavior for cells that reference Oracle ADF
components is as follows:

■ The Oracle ADF Desktop Integration module
overwrites changes without warning when a
worksheet is refreshed

■ No changes are sent to the Fusion web application
when the integrated Excel workbook is synchronized
with the Fusion web application

To avoid end user confusion, apply styles to the cells where
you set ReadOnly to TRUE that provide a visual clue to
users that they cannot modify the cell’s contents. For
information about applying styles, see Section 9.2,
"Working with Styles".

RowLimit This group of properties allows you configure the number
of rows that the ADF Table component or ADF Read-only
Table component download and display.

For more information, see Section 7.16, "Limiting the
Number of Rows Your Table-Type Component
Downloads".

RowLimit.Enabled Boolean N Set to TRUE to limit the number of rows downloaded to the
value specified by RowLimit.MaxRows. TRUE is the
default value.

A value for this property is required.

RowLimit.MaxRows Integer Y Specify an EL expression that evaluates to the maximum
number of rows to download. The component evaluates the
EL expression when it invokes its Download action. The
default value is 500. If MaxRows is not a positive integer,
the component attempts to download as many rows as
possible. An invalid expression such as "ABC" is interpreted
as -1 (negative integer). As a result, the component
attempts to download as many rows as possible.

Note that setting the value of MaxRows to 0 results in a
message where the user is asked if they want to download
the first 0 rows. To avoid this, set MaxRows to a positive
integer other than 0.

ADF Input Text Component Properties

Oracle ADF Desktop Integration Component Properties and Actions A-3

A.2 ADF Input Text Component Properties
Table A–2 lists alphabetically the properties of the ADF Input Text component.

RowLimit.WarningMessage String Y Write an EL expression to generate a message to display to
the end user if the number of rows available to download
exceeds the number specified by RowLimit.MaxRows. The
component evaluates this EL expression each time it
invokes its Download action. The maximum number of
rows (ExcelMaxRows) that a version 2007 Excel worksheet
can contain is approximately 1 million.

The default value for RowLimit.WarningMessage is:

#{_ADFDIres['ROWLIMIT_WARNINGS_MESSAGE_1']}

You can specify a string key from a custom resource bundle
to use instead of the default value. Write a value similar to
the following for a string key in your resource bundle if
you want the warning message to let the end user know
how many rows he or she can download:

Too many rows available. Do you want to
download the first {0} rows?

where {0} is a placeholder that references the value of
RowLimit.MaxRows at runtime.

Write an EL expression similar to the following for
RowLimit.WarningMessage:

#{res[‘stringkey’]}

where res refers to the custom resource bundle and
stringkey refers to the string key that you defined in the
custom resource bundle. For more information about
resource bundles, see Section 10.2, "Using Resource
Bundles in an Integrated Excel Workbook".

If the value for this property is null, the Download action
downloads the number of rows specified by
RowLimit.MaxRows without displaying a message to the
end user.

StyleName String Y Specifies the style in the current Excel workbook to apply
when the Oracle ADF component is rendered. For more
information, see Section 9.2, "Working with Styles".

Value Varies Y This property references an EL expression that is evaluated
after the invocation of the ADF Table component’s
RowDownSync action or a worksheet’s DownSync action.
The resulting value is typically the primary value seen in
the selected component.

Table A–2 ADF Input Text Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

InputText.DoubleClickActionSet Specifies the action set invoked when a user double-clicks the cell. For information
about action sets, see Section A.11, "Action Set Properties".

InputText.ReadOnly For information about this property, see Table A–1.

InputText.Value For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

Table A–1 (Cont.) Frequently Used Properties in the Oracle ADF Desktop Integration Module

Name Type EL Description

ADF Output Text Component Properties

A-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

A.3 ADF Output Text Component Properties
Table A–3 lists alphabetically the properties of the ADF Output Text component.

A.4 ADF Label Component Properties
The ADF Label component displays a static string value at runtime. The Oracle ADF
Desktop Integration module generates the value when the EL expression that the
Label property references is evaluated. For information about using labels, see
Section 9.4, "Using Labels in an Integrated Excel Workbook".

Table A–4 lists alphabetically the properties that the ADF Label component references.

A.5 ADF Desktop Integration List of Values Component Properties
Table A–5 lists the properties of the ADF Desktop Integration List of Values
component. For information about creating an ADF Desktop Integration List of Values
component, see Section 6.6, "Inserting an ADF Desktop Integration List of Values
Component".

Table A–3 ADF Output Text Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

OutputText.DoubleClickActionSet Specifies the action set invoked when a user double-clicks the cell. For information
about action sets, see Section A.11, "Action Set Properties".

OutputText.Value For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

Table A–4 ADF Label Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

Label For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

Table A–5 ADF Desktop Integration List of Values Component Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

ListOfValues.DependsOnListID List binding N Select the list binding whose value at runtime determines the choices
available in the dependent list of values at runtime.

The list binding that you select can be a model-driven list.

For more information about dependent list of values, see Section 8.8,
"Creating Dependent Lists of Values in an Integrated Excel
Workbook".

ListOfValues.ListID List binding N Select the list binding that defines the values available in the list of
values. The list binding that you select can be a model-driven list.

ModelDrivenColumnComponent Subcomponent Properties

Oracle ADF Desktop Integration Component Properties and Actions A-5

A.6 TreeNodeList Subcomponent Properties
The TreeNodeList is an ADF Table subcomponent that renders dropdown menus in
columns of the ADF Table component at runtime. It provides the same functionality to
end users as the ADF Desktop Integration List of Values component.

The TreeNodeList subcomponent does not appear in the components palette of the
Oracle ADF Desktop Integration Designer. Instead, you configure properties for this
subcomponent when you specify TreeNodeList as the subcomponent to invoke for
the ADF Table component’s UpdateComponent or InsertComponent table column
properties described in Section A.9.2, "ADF Table Component Column Properties".

Table A–6 describes the properties that you configure for the TreeNodeList
subcomponent.

A.7 ModelDrivenColumnComponent Subcomponent Properties
The ModelDrivenColumnComponent subcomponent, like TreeNodeList
subcomponent, does not appear in the components palette of the Oracle ADF Desktop
Integration Designer. Instead, you configure properties for this subcomponent when
you specify ModelDrivenColumnComponent as the subcomponent to invoke for the
ADF Table component’s UpdateComponent or InsertComponent table column
properties described in Section A.9.2, "ADF Table Component Column Properties".

Table A–7 describes the properties that you configure for the
ModelDrivenColumnComponent subcomponent.

ListOfValues.ReadOnly Boolean N For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

Table A–6 TreeNodeList Subcomponent Properties

Name Type EL Description

DependsOnList Tree
binding
attribute or
List binding

Y Specify the tree binding attribute or list binding that serves as the parent list
of values in a dependent list of values.

Note that the tree binding attribute you specify must be associated with a
model-driven list.

For more information about dependent list of values, see Section 8.8,
"Creating Dependent Lists of Values in an Integrated Excel Workbook".

List Tree
binding
attribute

Y Specify the tree binding attribute associated with a model-driven list that
defines the values available in the runtime dropdown menu to appear in
the ADF Table component’s column.

ReadOnly Boolean Y For information about this property, see Table A–1.

Table A–7 ModelDrivenColumnComponent Subcomponent Properties

Name Type EL Description

DoubleClickActionSet Specifies the action set invoked when a user double-clicks the
cell. For information about action sets, see Section A.11, "Action
Set Properties".

ReadOnly Boolean Y For information about this property, see Table A–1.

Value Varies Y For information about this property, see Table A–1.

Table A–5 (Cont.) ADF Desktop Integration List of Values Component Properties

Name Type EL Description

ADF Button Component Properties

A-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

A.8 ADF Button Component Properties
Table A–8 lists alphabetically the properties of the ADF Button component.

A.9 ADF Table Component Properties and Actions
The ADF Table component uses the properties and component actions listed here.

A.9.1 ADF Table Component Properties
Table A–9 lists alphabetically the properties the ADF Table component uses.

Table A–8 ADF Button Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ClickActionSet Specify the action set to invoke when a user clicks the button. For information about action sets, see
Section A.11, "Action Set Properties".

ComponentID For information about this property, see Table A–1.

Label For information about this property, see Table A–1.

LowerRightCorner This property is an Excel cell reference. Used in conjunction with Position, it specifies the area that the
button occupies on the Excel worksheet.

Position For information about this property, see Table A–1.

Table A–9 ADF Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

BatchOptions This group of properties allows you to configure batch
options for the ADF Table component. For more
information about how you use these properties, see
Section 7.10, "Batch Processing in an ADF Table
Component".

BatchOptions.BatchSize Integer N Specifies how many rows to process before an ADF Table
component action (Upload or DeleteFlaggedRows)
invokes CommitBatchActionID. Any value other than
a positive integer results in all rows being processed in a
single batch. The default value is 100 rows.

A value for this property is required.

BatchOptions.CommitBatchActionID Action
binding

N Specifies the action binding to invoke when the number
of rows specified by BatchSize have been processed.
The action binding is expected to be a commit-type
action.

BatchOptions.LimitBatchSize Boolean N Set this property to TRUE to process rows in batches
where each batch contains the number of rows specified
by BatchSize. If set to FALSE, all rows are processed in
a single batch.

BatchOptions.StartBatchActionID Action
binding

N Specify an action binding to invoke at the beginning of
each batch. For example, this property might be used for
an operation like "start transaction", if required by a
particular database.

A value for this property is optional.

Columns An array of columns. For information about the
properties that each column in the array supports, see
Section A.9.2, "ADF Table Component Column
Properties".

ComponentID For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

ADF Table Component Properties and Actions

Oracle ADF Desktop Integration Component Properties and Actions A-7

RowActions This group of properties allows you specify which
actions are enabled and can be invoked.

RowActions.DeleteRowActionID Action
binding

N Specify an action binding to invoke for each row flagged
for deletion.

A value for this property is optional.

RowActions.DeleteRowEnabled Boolean N Set to TRUE to allow a user to delete existing rows.
FALSE is the default value.

A value for this property is required.

RowActions.FailureActionID Action
binding

N Specify an action binding to invoke if failures occur
during the processing of rows.

A value for this property is optional.

RowActions.InsertAfterRowActionID Action
binding

N Specify an action binding to invoke for each row inserted
using the ADF Table component Upload action. The
action binding is invoked after the attributes are set. Use
of this property is suitable with a custom action where a
variable iterator is employed along with the main
iterator.

A value for this property is optional.

RowActions.InsertBeforeRowActionID Action
binding

N Specify an action binding to invoke for each row inserted
using the Upload component action. The action binding
specified is invoked before the attributes are set.

A value for this property is optional.

RowActions.InsertRowEnabled Boolean N Set to TRUE to allow the end user insert new rows in the
ADF Table component. FALSE is the default value.

If you set this property to TRUE, you must specify values
for one or both of the following properties:

■ RowActions.InsertAfterRowActionID

■ RowActions.InsertBeforeRowActionID

Which property (InsertAfterRowActionID or
InsertBeforeRowActionID) you specify a value for
depends on how your Fusion web application creates
new rows. Typically, a Fusion web application uses the
CreateInsert action binding to create and insert a new
row. In this scenario, you specify the CreateInsert
action binding as the value for
InsertBeforeRowActionID.

For more information about inserting rows in an ADF
Table component, see Section 7.5, "Configuring an ADF
Table Component to Insert Data".

RowActions.UpdateRowActionID Action
binding

N Specify an action binding to invoke for each row
updated.

A value for this property is optional.

RowActions.UpdateRowEnabled Boolean N Set to TRUE to allow a user update an existing row. TRUE
is the default value.

A value for this property is required.

RowData Set values for the CachedAttributes property when
you want to cache data in an integrated Excel workbook
across a number of sessions with the Fusion web
application.

Set a value for the ChangeIndicatorAttributeID
property to determine if a row has been modified by
another user since you downloaded it from the Fusion
web application.

Table A–9 (Cont.) ADF Table Component Properties

Name Type EL Description

ADF Table Component Properties and Actions

A-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

RowData.CachedAttributes Array N Specify values for the properties in this array to
determine the attributes for which data is cached. Each
CachedTreeAttribute element in this array supports
the following properties:

■ Value

Select the tree binding attribute for which data is to
be cached.

■ Annotation

For more information about this property, see
Table A–1.

Do not configure a component (for example, an ADF
Table component’s column or an ADF Input Text
component) so an end user can view or edit an attribute
binding that you have also specified for an element in the
RowData.CachedAttributes array. The
RowData.CachedAttributes array caches the values
retrieved by the worksheet DownSync action. The
worksheet UpSync action sends the values cached by the
RowData.CachedAttributes array to the Fusion web
application. This may override edits an end user makes
to an attribute binding exposed through a component in
the worksheet.

For information about using the
RowData.CachedAttributes array to cache data in
an ADF Table component, see Section 8.5, "Inserting
Values in an ADF Table Component from a Web Page
Pick Dialog".

RowData.ChangeIndicatorAttributeID Binding N Specify the row-specific attribute of the tree binding used
to determine if a row has been modified by another user
since the row was last downloaded by to your integrated
Excel workbook.

For more information, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook".

RowLimit For information about this group of properties, see
Table A–1.

TreeID Binding N Specify a tree binding from the current worksheet’s page
definition file. You must specify a value for this property
so that row downloads and uploads function properly.
For more information about the page definition
requirements for an integrated Excel workbook, see
Table 4–1.

UniqueAttribute Attribute
binding

Y Write an EL expression to specify an attribute of the tree
binding that you specified as the value for TreeID. The
value of this attribute is cached in the integrated Excel
workbook during invocation of the ADF Table
component’s Download action. The Oracle ADF Desktop
Integration module uses this value to make sure that the
tree binding’s iterator is positioned correctly before
setting or getting data from the current row.

A value for this property is optional if the:

■ ADF Table component is configured to be
insert-only (RowActions.InsertRowEnabled is
set to True and
RowActions.UpdateRowEnabled is set False)

■ Underlying tree binding exposes a rowKey (in
which case the rowKey is used for positioning)

A value is required if the tree binding’s iterator does not
expose a rowKey.

Table A–9 (Cont.) ADF Table Component Properties

Name Type EL Description

ADF Table Component Properties and Actions

Oracle ADF Desktop Integration Component Properties and Actions A-9

A.9.2 ADF Table Component Column Properties
Table A–10 describes the properties that a column in the TableColumn array can use.

Table A–10 ADF Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

CellStyleName String Y Write an EL expression that resolves to an Excel style name that
is applied to each cell in the column.

DynamicColumn Boolean N Set to True to make a column dynamic. False is the default
value. For more information about dynamic columns, see
Section 7.14, "Adding a Dynamic Column to Your ADF Table
Component".

HeaderLabel String Y Write an EL expression that, when evaluated at runtime,
displays a label in the column header.

HeaderStyleName String Y Write an EL expression that resolves to an Excel style name that
is applied to each cell in the column header.

ID String N Assign a name to the column to identify it and its purpose. The
value that you assign for this property has no functional
impact. However, you must specify a value and the value that
you specify must be unique within the list of columns. It serves
to help you keep track of columns in the ADF Table component.
The following IDs are reserved to the three default columns in
the ADF Table component:

■ _ADF_ChangedColumn

■ _ADF_FlagColumn

■ _ADF_StatusColumn

For more information about these columns, see Section 7.11,
"Special Columns in the ADF Table Component".

InsertComponent ADF
component

N Specifies the properties of the component that represents the
binding for insert operations. This component can be one of the
following:

■ InputText component

For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties".

■ OutputText component

For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties".

■ TreeNodeList component

For information about the properties that this component
supports, see Section A.6, "TreeNodeList Subcomponent
Properties".

■ ModelDrivenColumnComponent

For information about the properties that this component
supports, see Section A.7,
"ModelDrivenColumnComponent Subcomponent
Properties".

When InsertUsesUpdate is set to True, the ADF Table
component ignores the value of the InsertComponent
property.

ADF Table Component Properties and Actions

A-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

A.9.3 ADF Table Component Actions
Table A–11 describes the component actions available for use with the ADF Table
component.

InsertUsesUpdate Boolean N Set to True if insert and update operations use the same
component type. When True, the ADF Table component
ignores the values of the InsertComponent property and
reads the value of the UpdateComponent property.

The default value is True.

UpdateComponent ADF
component

N Specifies the properties of the component that represents the
binding for update and download operations. This component
can be one of the following:

■ InputText component

For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties".

■ OutputText component

For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties".

■ TreeNodeList component

For information about the properties that this component
supports, see Section A.6, "TreeNodeList Subcomponent
Properties".

■ ModelDrivenColumnComponent

For information about the properties that this component
supports, see Section A.7,
"ModelDrivenColumnComponent Subcomponent
Properties".

Visible Boolean Y Write an EL expression that resolves to True or False. If
True, the column appears in the ADF Table component. If
False, the column does not appear. True is the default value.

If you make a column dynamic, the ADF Table component
ignores the value of the Visible property. For more
information about dynamic columns, see Section 7.14, "Adding
a Dynamic Column to Your ADF Table Component".

Table A–11 ADF Table Component Actions

Component Action Description

ClearCachedRowAttributes Clears the values of cached attributes for the current row of
the ADF Table component. Only a
DoubleClickActionSet in an ADF Table component’s
column should invoke this action.

DeleteFlaggedRows Invokes a specified action on each of a set of flagged rows in
the ADF Table component and then removes these rows
from the ADF Table component.

For more information, see Section 7.9, "Configuring an ADF
Table Component to Delete Rows in the Fusion Web
Application".

Table A–10 (Cont.) ADF Table Component Column Properties

Name Type EL Description

ADF Table Component Properties and Actions

Oracle ADF Desktop Integration Component Properties and Actions A-11

DisplayRowErrors Displays error details for the current row in the ADF Table
component if error details are available. This action should
only be invoked from a column’s action set in an ADF Table
component. By default, the _ADF_StatusColumn
described in Table 7.11 is configured with an action set that
invokes this action.

DisplayTableErrors Displays a detailed list of errors in a message dialog box for
the ADF Table component if any errors are available. Do not
invoke this action from a column’s action set in an ADF
Table component. Instead configure an action set for an
ADF Button, ADF Output Text component, or worksheet
menu item to invoke this action.

Download Download the rows corresponding to the current state of
TreeID. For information about TreeID, see Section A.9.1,
"ADF Table Component Properties".

DownloadFlaggedRows This action downloads the rows corresponding to the
current set of items available within TreeID. For
information about TreeID, see Table A–9. Section 12.7,
"Handling Data Conflicts When Uploading Data from a
Workbook" describes a scenario where you could expose
this action to allow end users resolve data conflict between
the Excel workbook and the Fusion web application.

DownloadForInsert Invoke this action to download rows to the ADF Table
component from the Fusion web application and treat each
row as a pending insert.

Do not specify Download and DownloadForInsert as
actions within the same action set. The last of these actions
that the action set invokes determines what data appears in
the ADF Table component.

Specify the MarkAllRowsChanged component action as
the next component action to invoke in an action set where
you want all rows that the DownloadForInsert action
downloads to be marked as changed.

The DownloadForInsert action is ignored if it is invoked
from an action set while the ADF Table component’s
RowActions.InsertRowEnabled property is set to
False. Set RowActions.InsertRowEnabled to True to
correctly invoke the DownloadForInsert action.

For more information, see Section 7.7, "Configuring a
Worksheet to Download Pre-Insert Data to an ADF Table
Component" and Section 15.3, "Restore Server Data Context
Between Sessions".

FlagAllRows Sets the flag property (_ADF_FlagColumn) to TRUE.

Invoke this action to set a flag character in all rows of the _
ADF_FlagColumn column. The flag character has the
following properties:

Character Code 25BA, Unicode(hex)

It appears in most fonts as a right-facing triangle.

For more information about the _ADF_FlagColumn
column, see Section 7.10.2, "Row Flagging in an ADF Table
Component" and Section 7.11, "Special Columns in the ADF
Table Component".

Table A–11 (Cont.) ADF Table Component Actions

Component Action Description

ADF Table Component Properties and Actions

A-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Initialize This action performs the following actions:

■ Removes all rows of data from the ADF Table
component

■ Clears the values of cached attributes from rows in the
ADF Table component

■ Creates placeholder rows

■ Recalculates how many dynamic columns to render in
the ADF Table component

■ Redraws column headers

If the ADF Table component contains pending changes that
have not been saved in the integrated Excel workbook, a
dialog box appears to the end user that allows cancellation
of invocation of this action.

MarkAllRowsChanged After an action set invokes a DownloadForInsert
component action, specify the MarkAllRowsChanged
component action as the component action to invoke if you
want all rows downloaded by the DownloadForInsert
component action marked as changed in the _ADF_
StatusColumn column.

MarkAllRowsUnchanged Specify this component action to clear all flags from the _
ADF_StatusColumn column.

RowDownSync Synchronizes data from the row in the ADF Table
component’s iterator in the Fusion web application that
corresponds to the current worksheet row to the worksheet.
As this action acts upon the current worksheet row, only a
DoubleClickActionSet associated with a column in the
ADF Table component should invoke this action.

The ADF Table component does not evaluate or apply the
value of a column’s Visible property when invoking
RowDownSync. The ADF Table component evaluates and
applies the value of a column’s CellStyleName property
when invoking RowDownSync. For more information about
column properties, see Section A.9.2, "ADF Table
Component Column Properties".

RowUpSync Synchronizes any pending changes in the current worksheet
row that the ADF Table component references to the Fusion
web application. RowUpSync acts upon the current
worksheet row so only a DoubleClickActionSet
associated with a column in the ADF Table component
should invoke this action. The DoubleClickActionSet
that invokes RowUpSync also changes the position of the
ADF Table component’s iterator on the Fusion web
application to the current worksheet row (assuming it exists
in the Fusion web application).

UnflagAllRows Removes flags from cells in the _ADF_StatusColumn
column.

For more information about the _ADF_StatusColumn, see
Section 7.10.2, "Row Flagging in an ADF Table Component"
and Section 7.11, "Special Columns in the ADF Table
Component".

Upload Uploads pending changes to the Fusion web application.

For more information, see Section 7.8, "Configuring an
Oracle ADF Component to Upload Changes from an ADF
Table Component".

Table A–11 (Cont.) ADF Table Component Actions

Component Action Description

Action Set Properties

Oracle ADF Desktop Integration Component Properties and Actions A-13

A.10 ADF Read-only Table Component Properties and Actions
The ADF Read-only Table component exposes one action, Download. This action
downloads the current rows in the table identified by the ADF Read-only Table
property, TreeID. Table A–12 describes TreeID and the other properties that the
ADF Read-only Table component supports.

Table A–13 lists alphabetically the properties that a column in the ReadOnlyColumn
array can use.

A.11 Action Set Properties
Table A–14 lists alphabetically the properties that you can configure for an action set.

Table A–12 ADF Read-only Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

Columns Array N References an array of read-only columns. For information about the properties that a
column in this array can support, see Table A–13.

ComponentID For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

RowLimit For information about this group of properties, see Table A–1.

TreeID Tree
binding

N References a tree binding ID from the page definition file associated with the current
worksheet if the ADF Read-only Table component was created by inserting a tree binding
into the worksheet.

Table A–13 ADF Read-only Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

CellStyleName String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column.

HeaderLabel String Y Write an EL expression that resolves to a label for the column header.

HeaderStyleName String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column header.

ID String N Assign a name to the column to identify it and its purpose. The value
that you assign for this property has no functional impact. However,
you must specify a value and the value that you specify must be
unique within the list of columns. It serves to help you keep track of
columns in the ADF Read-only Table component.

OutputText ADF
Component

For information about the properties that this component supports, see
Section A.3, "ADF Output Text Component Properties".

Table A–14 Action Set Properties

Name Type EL Description

ActionOptions This group of properties specifies options for invoking local and remote
actions.

ActionOptions.AbortOnFailure Boolean N When set to TRUE, the remaining actions in the array are not invoked if
an action fails. If FALSE, all actions are invoked regardless of the
success or failure of previous actions. The default value is TRUE.

ActionOptions.FailureActionID Action
binding

N Specify the action binding to invoke if an action set does not complete
successfully. For example, you could specify an action binding that rolls
back changes made during the unsuccessful invocation of the action set.

Action Set Properties

A-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

ActionOptions.SuccessActionID Action
binding

N Specify an action binding to invoke if an action set completes
successfully. For example, you could specify an action binding that
executes a commit action. A value for this property is optional.

Actions Array N Specifies an ordered array of actions. An action can be one of the
following:

■ ADFmAction

Invokes an action binding or method action binding in the
underlying page definition file. The ADFmAction.ActionID
property identifies the action binding or method action binding to
invoke. For information about page definition files, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel
Workbook".

■ ComponentAction

Invokes an action that a component on the worksheet exposes.
ComponentAction.ComponentID identifies the component that
exposes the action while ComponentAction.Method identifies
the action to invoke.

The ADF Table and ADF Read-only Table components are the only
components in the Oracle ADF Desktop Integration module that
expose actions. For information about these actions, see
Section A.9, "ADF Table Component Properties and Actions" and
Section A.10, "ADF Read-only Table Component Properties and
Actions". For information about invoking component actions, see
Section 8.2.2, "How to Invoke Component Actions in an Action
Set".

■ WorksheetMethod

Invokes a worksheet action. For information about worksheet
actions, see Section A.13, "Worksheet Actions and Properties".

■ Confirmation

Invokes a confirmation dialog box. For more information about the
properties that this action uses, see Section A.11.1, "Confirmation
Action Properties".

■ Dialog

Invokes a web page in a popup dialog or Excel’s Document
Actions. For more information, see Section 8.4, "Displaying Web
Pages from a Fusion Web Application".

Alert This group of properties determines if and how an alert-style dialog box
appears to the user to indicate that the requested action is complete. The
dialog box that appears contains one button that allows the user to
acknowledge the message and dismiss the dialog box. For information
about how to display an alert message, see Section 8.2.7, "How to
Provide an Alert After the Invocation of an Action Set".

Many properties in this group make use of EL expressions to retrieve
string values from resource bundles. For more information about using
EL expressions, see Section 10.2, "Using Resource Bundles in an
Integrated Excel Workbook".

Alert.Enabled Boolean N Set to TRUE to display an alert message to end users that notifies them
when an action set operation completes successfully or includes one or
more failures.

For more information, see Section 8.2.7, "How to Provide an Alert After
the Invocation of an Action Set".

Alert.FailureMessage String Y Specify an EL expression that evaluates to a message to appear in the
dialog box if errors occur during execution of the action set. The default
EL expression is:

#{_ADFDIres['DIALOGS_ACTION_ALERT_FAILURE_PROMPT']}

Alert.OKButtonLabel String Y Specify an EL expression that evaluates to a message to appear in the
OK button of the dialog box. The default EL expression is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

Table A–14 (Cont.) Action Set Properties

Name Type EL Description

Action Set Properties

Oracle ADF Desktop Integration Component Properties and Actions A-15

A.11.1 Confirmation Action Properties
Table A–15 lists alphabetically the properties that the Confirmation action in the
array of Actions of an action set supports. For information about the other properties
the array of Actions and action sets use, see Table A–14.

Alert.SuccessMessage String Y Specify an EL expression that evaluates to a message to appear in the
dialog box if no errors occur during the execution of the action set. The
default EL expression is:

#{_ADFDIres['DIALOGS_ACTION_ALERT_SUCCESS_PROMPT']}

Alert.Title String Y Specify an EL expression that evaluates to a message to appear in the
title area of the dialog box. The default EL expression is:

#{_ADFDIres['DIALOGS_ACTION_TITLE']}

Annotation For information about Annotation, see Table A–1.

Status This group of properties determines if and how a status message
appears during the execution of an action set. For information about
how to display a status message, see Section 8.2.5, "How to Display a
Status Message While an Action Set Executes".

Many properties in this group make use of EL expressions that
reference string keys defined in resource bundles. For more
information, see Section 10.2, "Using Resource Bundles in an Integrated
Excel Workbook".

Status.Enabled Boolean N If TRUE (default), a status window appears during the execution of the
action set. If FALSE, no status window appears.

Status.Message String Y Specify an EL expression to evaluate and display in the status window
while the action set executes. The default value is:

#{_ADFDIres['STATUS_MESSAGE_PROMPT']}

Status.Title String Y Specify an EL expression to evaluate and display in the title area of the
status window while the action set executes. The default value is:

#{_ADFDIres['DIALOGS_ACTION_TITLE']}

Table A–15 Confirmation Action Properties

Name Type EL Description

Annotation For information about Annotation, see Table A–1.

CancelButtonLabel String Y An EL expression that is evaluated and displayed in the Cancel button at
runtime. The default value is:

#{_ADFDIres['DIALOGS_CANCEL_BUTTON_LABEL']}

OKButtonLabel String Y An EL expression that is evaluated and displayed in the OK button at
runtime. The default value is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

Prompt String Y An EL expression that is evaluated and displayed in the main area of the
confirmation dialog box at runtime. The default value is:

#{_ADFDIres['DIALOGS_ACTION_CONFIRM_PROMPT']}

Title String Y An EL expression that is evaluated and displayed in the title area of the
confirmation dialog box at runtime. The default value is:

#{_ADFDIres['DIALOGS_ACTION_TITLE']}

Table A–14 (Cont.) Action Set Properties

Name Type EL Description

Workbook Actions and Properties

A-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

A.11.2 Dialog Action Properties
Table A–16 describes the properties that the Dialog action in the array of Actions of
an action set supports. For information about the other properties the array of
Actions and action sets use, see Table A–14.

For information about how to use the properties in Table A–16 to invoke a web page
from a Fusion web application, see Section 8.4, "Displaying Web Pages from a Fusion
Web Application".

A.12 Workbook Actions and Properties
Table A–17 describes the actions that a workbook can invoke. For information about
configuring menu items to invoke these actions, see Section 8.3.1, "How to Configure a
Workbook Menu Item".

Table A–16 Dialog Action Properties

Name Type EL Description

Annotation String N For information about this property, see Table A–1.

Page String N Specify the web page that the action invokes. Relative and absolute URLs are valid
values.

ShareFrame Boolean N Set to True (default) to execute the web page specified by the Dialog.Page
property in the same data control frame as the Excel worksheet. If you specify an
absolute URL, the Oracle ADF Desktop Integration module ignores the value of the
Dialog.ShareFrame property.

Target List N Specifies how the web page the action invokes is rendered. Select:

■ Popup to render the web page in a modal dialog box within an embedded web
browser.

■ TaskPane to render the web page in Excel’s Document Actions.

Title String Y Write an EL expression that resolves to the title of the Dialog at runtime or write a
literal string.

WindowSize Integer N Specify the initial size in pixels of the dialog box that appears to the user. Valid
values range from 0 to 2147483647. Values will be revised upwards or
downwards as appropriate at runtime if the specified values are too large or too
small. The default value for Height is 625 and 600 for Width.

Table A–17 Workbook Actions

Action Description

Login When invoked, this action challenges the end user to provide valid user
credentials. If invoked when a user is already logged in, it invokes the
Logout action to log out the current user and then invokes the Login
action.

Logout When invoked, the Oracle ADF Desktop Integration module sends a
request to the Fusion web application to invalidate the session between
the integrated Excel workbook and the Fusion web application. After
invoking this action, the end user must be authenticated the next time
the Excel workbook accesses the Fusion web application.

Workbook Actions and Properties

Oracle ADF Desktop Integration Component Properties and Actions A-17

ClearAllData When invoked, this action clears all data entered by the user from cells
that reference Oracle ADF bindings. Tables, such as those created by the
ADF Table and ADF Read-only Table components, will be truncated so
that they only display header rows with labels cleared. Values in cells
that reference the Input Text or Output Text components are cleared.
Column headers and labels are cleared as well. References to all resource
bundles that the integrated Excel workbook uses are cleared.
Worksheets that do not contain bindings or reference a page definition
file remain unchanged. A dialog box prompts the end user to confirm
invocation of this action. Once the end user confirms invocation, the
Oracle ADF Desktop Integration module executes the following events
after invocation of the action:

■ Invokes the integrated Excel workbook’s Logout action

■ Terminates the runtime session and clears all data from the
integrated Excel workbook and all caches

■ Reinitializes the integrated Excel workbook and invokes the
workbook’s Login action

Invocation of the ClearAllData action does not change data hosted by
the Fusion web application. One or more of the following actions must
be invoked to change data hosted by the Fusion web application:

■ A worksheet’s UpSync action

This action synchronizes all data referenced by non-table type
components. For more information, see Section A.13, "Worksheet
Actions and Properties".

■ An ADF Table component’s RowUpSync action can be used to
synchronize any pending changes in a row to the Fusion web
application. The ADF Table component’s DeleteFlaggedRows
action can be invoked to delete flagged rows. For more information
about ADF Table component actions, see Section A.9.3, "ADF Table
Component Actions".

EditOptions When invoked, this action launches a dialog box that shows the current
value of the WebAppRoot property and allows the end user to enter a
new value.

If the end user chooses to change the value of WebAppRoot, a
confirmation dialog box appears once he or she clicks OK. Once the
change is confirmed, the following events occur:

■ Workbook ClearAllData action is invoked

■ Workbook Logout action is invoked

■ All data referenced by bindings in the workbook is removed

■ References to WebAppRoot are updated in the Excel workbook's
metadata

■ Workbook Login action is invoked to authenticate the user with the
Fusion web application that is specified as the value for
WebAppRoot

The ClearAllData workbook action clears all resource bundles
referenced by the integrated Excel workbook. After WebAppRoot is
changed, the integrated Excel workbook attempts to retrieve
resource bundles from the Fusion web application as part of the
reinitialization process. This request to the Fusion web application
triggers the authentication process.

ViewAboutDialog When invoked, this action launches a dialog box called About that
displays information defined in the BrandingItems workbook
property and other information such as the versions of supporting
software.

Table A–17 (Cont.) Workbook Actions

Action Description

Workbook Actions and Properties

A-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Table A–18 lists alphabetically the Oracle ADF Desktop Integration properties that an
Excel workbook can use.

Table A–18 Workbook Properties

Name Type EL Description

ApplicationHomeFolder String N Specify the absolute path to the folder that is the root for the
JDeveloper application workspace (.jws) where you developed the
desktop integration project.

For example, the value of this property in a workbook integrated with
the Master Price List module could be something similar to the
following:

JDEV_HOME\jdeveloper\FusionOrderDemo\MasterPriceList

where JDEV_HOME is the folder into which you installed JDeveloper.

The Oracle ADF Desktop Integration module prompts you to specify
a value for this property the first time that you open an integrated
Excel workbook. If you select Cancel in the dialog box that prompts
you for a value, the Oracle ADF Desktop Integration module sets the
value of ApplicationHomeFolder to the directory that contains the
Excel workbook.

For more information, see Section 4.4.2, "How to Open an Excel
Workbook for the First Time".

BrandingItems Array N An array of name-value pairs that resolve to resource bundle
references (for example, #{res['myAppName']}) or a literal string.
Each pair in the array consists of a name and a value. Each name and
value can reference a literal string or an EL expression.

For information about branding your integrated Excel workbook, see
Section 9.6, "Branding Your Integrated Excel Workbook".

Login - - This group of properties sets values that mange the security of the
integrated Excel workbook. These properties include:

■ ProtectedWebPage

Specify the path relative to WebPagesFolder of a protected
web page. This protected web page triggers the authentication
mechanism when a user attempts to log on to the Fusion web
application.

■ WindowSize

Specify the initial size in pixels of the login dialog box that
appears to the user. Valid values range from 0 to 2147483647.
Values will be revised upwards or downwards as appropriate at
runtime if the specified values are too large or too small. The
default value for Height is 625 and 600 for Width.

For more information about securing your Excel workbook, see
Chapter 11, "Securing Your Integrated Excel Workbook".

Parameters Array N An array of workbook initialization parameters that you configure to
pass the parameters from a page in a Fusion web application to an
integrated Excel workbook. You can define multiple workbook
initialization parameters in the Fusion web application’s page. Each
workbook initialization parameter (parameter that references a URL
argument) that you define in a page must be specified in a
Parameter property of this array, otherwise it is ignored.

Each element in the array supports the following properties:

■ Annotation

For more information about this property, see Table A–1.

■ Parameter

You specify the name of the workbook initialization parameter
you defined in the page of the Fusion web application from
which the end user downloads the integrated Excel workbook.

For information about using this property, see Section 14.6, "Passing
Parameter Values from a Fusion Web Application Page to a
Workbook".

Workbook Actions and Properties

Oracle ADF Desktop Integration Component Properties and Actions A-19

Project String N Specify the name of a JDeveloper project in the current JDeveloper
workspace. The Oracle ADF Desktop Integration module attempts to
load the .jpr file that corresponds to the project that you specify. An
error appears if the .jpr file is not available or is not in the expected
format.

When you open an integrated Excel workbook for the first time in
design mode, the Oracle ADF Desktop Integration module searches
for a .jpr file in the parent folder hierarchy. If it finds a .jpr file, it
sets the value of Project to the name of the project that corresponds
to the .jpr file.

The Oracle ADF Desktop Integration module loads the names of the
available projects from the application_name.jws file specified by
ApplicationHomeFolder.

RemoteServletPath String N Specify the path to the Oracle ADF Desktop Integration remote
servlet. This path must be relative to the value specified for
WebAppRoot. Note that the value you specify for
RemoteServletPath must match the value that is specified in the
web application’s deployment descriptor file (web.xml). The default
value for this property is:

/adfdiRemoteServlet

Resources Array N Specifies an array of resource bundles that you want to register with
the workbook. Each element in the array supports the following
properties:

■ Alias

Specify a string value that is unique within
Workbook.Resources. EL expressions use this string to
reference the resource bundle.

■ Annotation

For more information about this property, see Table A–1.

■ Class

Specify a fully qualified class name. The class name that you
specify is expected to be a Java resource bundle class that the
Fusion web application you integrate your workbook with uses.
For example, the EditPriceList-DT.xlsx workbook in the
Master Price List module references the following resource
bundle:

oracle.fodemo.masterpricelist.resources.UIStrings

For more information, see Section 10.2, "Using Resource Bundles in an
Integrated Excel Workbook".

ToolbarMenu - - This group of properties defines if and how a toolbar menu appears in
Excel at runtime. The following entries in this table describe the
properties in the ToolbarMenu group. For more information about
menus, see Section 8.3, "Creating Menu Items".

ToolbarMenu.Annotation String N For information about this property, see Section A.1, "Frequently
Used Properties in the Oracle ADF Desktop Integration Module".

ToolbarMenu.Enabled Boolean N If TRUE, the toolbar menu appears at runtime. The toolbar menu
does not appear if you set Enabled to FALSE. TRUE is the default
value.

ToolbarMenu.Title String Y Specify an EL expression that evaluates to the title that appears for the
toolbar menu in the menu’s title area. Excel imposes a maximum limit
of 255 characters for toolbar titles. Make sure that the runtime value of
the EL expression you specify does not exceed 255 as the Oracle ADF
Desktop Integration module truncates the value so that Excel does not
generate an error message.

Table A–18 (Cont.) Workbook Properties

Name Type EL Description

Worksheet Actions and Properties

A-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

A.13 Worksheet Actions and Properties
An Excel worksheet in an Oracle ADF Desktop Integration can invoke the following
actions:

■ UpSync

Synchronizes any pending changes from the ADF Input Text and ADF Desktop
Integration List of Values components in the worksheet to the Fusion web
application.

■ DownSync

Downloads any changes from the Fusion web application to the ADF Input Text,
ADF Output Text, and ADF Desktop Integration List of Values components in the
worksheet.

■ DisplayWorksheetErrors

Displays a detailed list of errors in a message dialog box for the integrated Excel
worksheet if any errors are available. Invoke this action in an action set that is
invoked by an ADF component (other than the ADF Desktop Integration
Table-type components) or a worksheet menu item.

When you configure an ADF Button component to invoke an action binding or
method action binding, the action set to invoke when a user clicks the ADF Button
component at runtime is populated as follows by default:

1. UpSync

2. Action or method action binding that you specify for the ADF Button component

ToolbarMenu.WorkbookMenuItems Array N Each element in this array corresponds to a workbook menu item at
runtime. Each element in the array uses the following properties:

■ Annotation

For more information about this property, see Table A–1.

■ Label

For more information about this property, see Table A–1.

■ Method

Specify the workbook action that the workbook menu invokes.
For more information about workbook actions, see Table A–17.

WebAppRoot String N A fully qualified URL to the Fusion web application’s root.

Web pages referenced by other workbook properties, such as
ProtectedWebPage, are expected to exist under the URL specified
by WebAppRoot.

WebPagesFolder String N Specify the path to the folder that contains the web pages that you
intend to use with your integrated Excel workbooks. The value that
you specify for the path most be relative to the value of
ApplicationHomeFolder.

WorbookID String N A unique identifier for the integrated Excel workbook. The Oracle
ADF Desktop Integration module generates the unique identifier
when you open the workbook for the first time in design mode.

The value cannot be modified. However, the Oracle ADF Desktop
Integration module can generate a new value if you use the Tools >
Reset WorkbookID menu items in the Oracle ADF Desktop
Integration Designer.

The value of this property is used when the Oracle ADF Desktop
Integration module generates a hash code as described in Section 11.3,
"Checking the Integrity of an Integrated Excel Workbook’s Metadata".

Table A–18 (Cont.) Workbook Properties

Name Type EL Description

Worksheet Actions and Properties

Oracle ADF Desktop Integration Component Properties and Actions A-21

3. DownSync

If the first action that you invoke on a worksheet with an empty form is the UpSync
worksheet action, you may encounter errors. For this reason, make sure that the first
action invoked is the DownSync worksheet action. You can configure the ADF Button
component’s action set or one of the worksheet events (Startup or Activate)
described in Table A–19 to invoke the DownSync worksheet action first.

Table A–19 describes the Oracle ADF Desktop Integration properties that an Excel
worksheet can use.

Table A–19 Worksheet Properties

Name Type EL Description

Annotation String N For information about this property, see Table A–1.

Events Array N Each element in this array specifies an action set to invoke if
the associated worksheet event occurs. For information about
action sets, see Section A.11, "Action Set Properties". For
information about worksheet events, see the entry in this table
for Events.n.Event.

The following entries in this table prefaced by Events.n
describe the properties that an element in this array supports
where n refers to a specific element in the array.

Events.n.ActionSet ActionSet N For more information about the properties of action sets, see
Section A.11, "Action Set Properties".

Events.n.InvokeOnceOnly Boolean N The default value of this property is FALSE.

When set to TRUE, the workbook stores information about
whether the worksheet invoked the action set for this event
and, if so, prevents the worksheet from invoking the action set
a second time. Note that if the workbook is not saved, this
information is lost. This means that the worksheet can invoke
the event again the next time that the workbook opens.

Events.n.Annotation String N For information about the annotation property, see Table A–1.

Events.n.Event List N The worksheet supports the following events that you can
configure to invoke an action set:

■ Startup

Excel starts.

■ Shutdown

Excel workbook closes or Excel application exits.

■ Activate

User navigates to the current worksheet.

■ Deactivate

User navigates away from the current worksheet or
Shutdown event triggered.

Note that the worksheet events complete execution even if the
action sets that it invokes fails.

For more information about worksheet events and action sets,
see Section 8.2.4, "How to Invoke an Action Set from a
Worksheet Event".

Worksheet Actions and Properties

A-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

MenuItems Array N Specify one or more workbook actions that appear as menu
commands at runtime. Each menu command is an element in
the WorksheetMenuItem array. Entries in this array support
the following properties:

■ Annotation

■ Label

■ SelectActionSet

For more information about the Annotation and Label
properties, see Table A–1. For more information about the
SelectActionSet property, see Section A.11, "Action Set
Properties".

PageDefinition String N Specify the page definition file to associate with the worksheet.
For information about page definition files, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel
Workbook".

Parameters Array N An array of worksheet parameters that you configure to pass
the parameters from a workbook Parameters property to a
worksheet in an integrated Excel workbook. Each element in
the array supports the following properties:

■ Annotation

For more information about this property, see Table A–1.

■ Parameter

Specify the ID of a parameter element that you added
to the page definition file associated with the worksheet.

■ Value

Write an EL expression that references the value of the
Parameter property you specified for the workbook
initialization parameter (workbook
Parameters.Parameter property). The workbook
Parameters.Parameter property supplies this value
the first time that the page definition file associated with
this worksheet is initialized.

For information about using this property, see Section 14.6,
"Passing Parameter Values from a Fusion Web Application
Page to a Workbook".

RowData Set values for the CachedAttributes property when you
want to cache data in an integrated Excel workbook across a
number of sessions with the Fusion web application.

Set a value for the ChangeIndicatorAttributeID
property to determine if a row has been modified by another
user since you downloaded it from the Fusion web
application.

Table A–19 (Cont.) Worksheet Properties

Name Type EL Description

Worksheet Actions and Properties

Oracle ADF Desktop Integration Component Properties and Actions A-23

RowData.CachedAttributes Array N Specify values for the properties in this array to determine the
attributes for which data is cached. Each CachedAttribute
element in this array supports the following properties:

■ AttributeID

This property references the attribute binding for which
data is to be cached. Do not specify an attribute binding
for AttributeID and as an editable field in a form (for
example, in an ADF Input Text component) in the same
worksheet.

■ Annotation

For more information about this property, see Table A–1.

Do not configure a component (for example, an ADF Table
component’s column or an ADF Input Text component) so an
end user can view or edit an attribute binding that you have
also specified for an element in the
RowData.CachedAttributes array. The
RowData.CachedAttributes array caches the values
retrieved by the worksheet DownSync action. The worksheet
UpSync action sends the values of the
RowData.CachedAttributes array to the Fusion web
application. This may override edits an end user makes to an
attribute binding exposed through a component in the
worksheet.

RowData.ChangeIndicatorAttributeID Binding N Specify the row-specific attribute of the tree binding used to
determine if a row has been modified by another user since the
row was last downloaded by to your integrated Excel
workbook.

For more information, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook".

ServerContext This group of properties references the attribute bindings that
uniquely identify the row diplayed in the current worksheet so
that you can reestablish server data context across multiple
sessions.

For more information, see Section 15.3, "Restore Server Data
Context Between Sessions".

ServerContext.CacheDataContexts Array N Add elements to the CacheDataContexts array for cases
where there is more than one iterator defined in the binding
container whose server-side context needs to be reestablished.
The CacheDataContexts array supports the following
properties to store the worksheet’s cached data context:

■ RestoreDataContextActionID

References an action binding to invoke.

■ CachedServerContexts

An array that identifies the attribute binding values to
cache and set before the action binding specified by
RestoreDataContextActionID is invoked. Each
element in the CachedServerContext array supports
the CachedAttributeID and RestoredAttributeID
properties. CachedAttributeID identifies the attribute
binding value to cache in the worksheet.
RestoredAttributeID is an optional property for
which you specify a value when the destination attribute
binding value is different from the source attribute
binding value. If you do not specify a value for
RestoredAttributeID, the value of
CachedAttributeID is used as the destination attribute
binding value and its value is set before invoking the
action set.

■ Annotation

For more information about this property, see
Section A.1, "Frequently Used Properties in the Oracle
ADF Desktop Integration Module".

Table A–19 (Cont.) Worksheet Properties

Name Type EL Description

Worksheet Actions and Properties

A-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

ServerContext.IDAttributeID Binding N Specifies an attribute binding that uniquely identifies the row
displayed in the current worksheet. This property is used at
runtime to determine whether the server context has been
reestablished properly for non-table type components in the
worksheet.

ServerContext.SendParameters Boolean N The default value of this property is FALSE.

When set to TRUE, the workbook sends initialization
parameters for this worksheet when re-establishing context
across multiple sessions

Title String Y Specifies an EL expression that resolves to a string and sets the
name of the worksheet. At design time, the EL expression can
be of any length and can include the following special
characters:

[] \ / * ?

At runtime, the evaluated string can display a maximum of 31
characters and ignores the above special characters. If the
length of the evaluated string exceeds 31 characters, the extra
characters are truncated and are not displayed.

Make sure that the EL expressions you write for the Title
property generates unique values for each worksheet at
runtime and contains less than 31 characters. For example, if
an EL expression generates a value for the Title property of
an integrated worksheet that matches the name of a
non-integrated worksheet, an error occurs.

Table A–19 (Cont.) Worksheet Properties

Name Type EL Description

B

Oracle ADF Desktop Integration EL Expressions B-1

BOracle ADF Desktop Integration EL
Expressions

This appendix describes the syntax for EL expressions in the Oracle ADF Desktop
Integration module and provides guidelines for writing EL expressions.

This appendix includes the following sections:

■ Section B.1, "Guidelines for Creating EL Expressions"

■ Section B.2, "EL Syntax for Oracle ADF Desktop Integration Components"

■ Section B.3, "Attribute Control Hints in the Oracle ADF Desktop Integration
Module"

B.1 Guidelines for Creating EL Expressions
The following list describes the characteristics that EL expressions for your integrated
Excel workbook can have and provides recommendations for writing EL expressions:

■ Literal values that evaluate correctly to the type expected for the Oracle ADF
component property. The following list describes some examples:

– Boolean values true and false

– Integer values such as -1, 0, and 100

– String values such as hello world

■ Strings that contain one or more valid EL expression parts. The following list
shows examples of valid syntax:

– #{row.bindings.ProductId.inputValue}

– #{components.TAB416222534.errors}

– #{res['excel.saveButton.label']}

■ A valid Excel formula. An Excel formula string must start with the = character. If
the literal string includes an #{...} expression, the Oracle ADF Desktop
Integration module evaluates this expression first and inserts the resulting value
into the Excel formula string. Excel then evaluates the Excel formula.

Note the following points if you write an EL expression:

– Excel formula elements must not be used inside an #{...} expression.

– EL expressions should not contain references to Excel cells because EL
expressions are managed within ADF metadata. Excel cannot update the ADF
metadata if the referenced cell moves. A workaround is to define a named cell

EL Syntax for Oracle ADF Desktop Integration Components

B-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

reference or range using the Name box in the Excel Formula Bar. You can
reference the named cell reference or named cell range reference from an EL
expression. For information about defining named cell references or ranges,
see Excel’s documentation.

■ EL expressions in a page definition file

For information about the syntax that you use to write EL expressions in a page
definition file, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook".

B.2 EL Syntax for Oracle ADF Desktop Integration Components
Table B–1 lists supported expression properties for the Oracle ADF Desktop
Integration components that support EL expressions.

The EL expressions use the following syntax to reference these properties:

#{components.componentID.property}

where componentID references the ID of the component and property references
the property (for example, rowCount).

Write EL expressions with the following syntax to retrieve:

■ Worksheet errors at runtime

#{worksheet.errors}

For more information about worksheet errors, see Section 12.4, "Error Reporting in
an Integrated Excel Workbook".

■ Workbook initialization parameters

#{workbook.params.parameterName}

where parameterName is the name of the workbook initialization parameter. For
information about using these parameters, see Section 14.6, "Passing Parameter
Values from a Fusion Web Application Page to a Workbook".

■ Resource bundle string key values

#{resourceBundleAlias[‘resourceBundleKey’]}

where resourceBundleAlias is the alias of the resource bundle and
resourceBundleKey is the string key value. For more information about

Table B–1 Expression Properties for Oracle ADF Desktop Integration components

Property
Component
Type Property Type Expected runtime values Value at design time

rowCount Table

ROTable

Int >=0 0

currentRowIndex Table

ROTable

Int >= 0 AND < RowCount (zero based index) -1

currentRowMode Table String "insert"

"update"

"unknown"

errors Table String N/A N/A

readOnly Table.Column Boolean TRUE

FALSE

FALSE

Attribute Control Hints in the Oracle ADF Desktop Integration Module

Oracle ADF Desktop Integration EL Expressions B-3

resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel
Workbook".

Table B–2 describes the supported syntax and properties for Oracle ADF control
bindings. For information about the attribute control hints (controlHint) that the
Oracle ADF Desktop Integration module supports, see Table B–3.

You can use the expression builder described in Section 5.6, "Using the Expression
Builder" to generate some of the EL expressions described in Table B–2. You have to
write some other EL expressions as indicated in Table B–2.

B.3 Attribute Control Hints in the Oracle ADF Desktop Integration Module
The Oracle ADF Desktop Integration module can read the values of the attribute
control hint names described in Table B–3. You write EL expressions that the Oracle
ADF Desktop Integration module uses to retrieve the value of an attribute control hint
from your Fusion web application. Table B–2 describes the EL expression syntax that
retrieves the values of attribute control hints at runtime.

You configure attribute control hints in your Fusion web application. Information
about how to add an attribute control hint to an entity object can be found in the
"Defining Attribute Control Hints for Entity Objects" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Information about how to add an attribute control hint to a view object can be found in

Table B–2 Expression Properties and Syntax for Oracle ADF Control Bindings

Syntax
Component
Type Object Property

Value at
design time

Use the expression builder to generate EL expressions with the following
syntax:

#{bindings.attributeID}
#{bindings.attributeID.label}
#{bindings.attributeID.hints.controlHint}

You can also write the previous EL expressions in addition to the following
EL expression:

#{bindings.attributeID.inputValue}

Attribute Attribute control
hint

""

Use the expression builder to generate EL expressions with the following
syntax:

#{bindings.ListID}
#{bindings.ListID.label}
#{bindings.ListID.hints.controlHint}

List Attribute control
hint

""

Write EL expressions with the following syntax for a column in a
table-type component

#{row.bindings.attributeID.inputValue}

Write an EL expression with the following syntax when adding a dynamic
column to an ADF Table component as described in Section 7.14, "Adding
a Dynamic Column to Your ADF Table Component":

#{bindings.TreeID.[TreeNodeID].AttributeNamePrefix*.inputValue}
#{bindings.TreeID.AttributeNamePrefix*.inputValue}
#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.contro
lHint}
#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.label}

A value for AttributeNamePrefix and [TreeNodeID] is optional
while * is required.

Table.Column inputValue ""

Attribute Control Hints in the Oracle ADF Desktop Integration Module

B-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

the "Defining Attribute Control Hints for View Objects" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

The ADF Desktop Integration attribute control hints are based on information
available in the web application’s Model metadata. The Oracle ADF Desktop
Integration module supports View object or Entity object hint values, but does not
support programmatic overrides of hint values if they are calculated at a row-by-row
level at runtime.

Table B–3 Attribute Control Hints Used by the Oracle ADF Desktop Integration Module

Attribute Control Hint Type Value to configure in the Fusion web application

label String References the value of the label attribute control hint configured for an entity or view
object.

updateable Boolean Returns true if the associated attribute binding is updateable.

readOnly Boolean This attribute control hint is unique to the Oracle ADF Desktop Integration module.
Returns true if the associated attribute binding is not updateable.

To optimize the performance of an integrated Excel workbook when it evaluates Excel
formulas in EL expressions, it is recommended that you write an EL expression with the
following syntax for a component’s ReadOnly property:

#{bindings.attributeID.hints.readOnly}

rather than:

=NOT(#{bindings.attributeID.hints.updateable})

Note that the attribute control hint readOnly property differs to the ReadOnly property
of Oracle ADF Desktop Integration components described in Section A.1, "Frequently
Used Properties in the Oracle ADF Desktop Integration Module".

mandatory Boolean Returns true if a value for the associated attribute binding is required.

dataType String Returns the data type of the attribute control hint. A Fusion web application can support
many data types with complex names. The dataType attribute control hint was
introduced in the Oracle ADF Desktop Integration module to simplify the writing of EL
expressions. It maps the data types that a Fusion web application supports to the values
supported by the Oracle ADF Desktop Integration module listed here:

■ string

■ number

■ date

■ boolean

■ other

C

Troubleshooting an Integrated Excel Workbook C-1

CTroubleshooting an Integrated Excel
Workbook

This appendix provides guidelines on how you can troubleshoot an integrated Excel
workbook when you encounter problems during development. It also describes
possible solutions for a number of problems that you may encounter.

This appendix includes the following sections:

■ Section C.1, "Verifying That Your Fusion Web Application Supports Desktop
Integration"

■ Section C.2, "Verifying End-User Authentication for Integrated Excel Workbooks"

■ Section C.3, "Generating Log Files for an Integrated Excel Workbook"

■ Section C.4, "Exporting Excel Workbook Metadata"

C.1 Verifying That Your Fusion Web Application Supports Desktop
Integration

You can verify that your Fusion web application is running the Oracle ADF
Desktop Integration remote servlet (adfdiRemote) and the version that it runs. This
information can be useful if you encounter errors with an integrated Excel workbook.
For example, you can determine if the Oracle ADF Desktop Integration remote
servlet is executing when troubleshooting an integrated Excel workbook.

To verify that the Oracle ADF Desktop Integration remote servlet is executing:
1. Log on to the Fusion web application.

2. Type the concatenated values of the workbook properties WebAppRoot and
RemoteServletPath into the address bar of your web browser. This
corresponds to a URL similar to the following:

http://hostname:7101/FusionApp/adfdiRemoteServlet

If the Oracle ADF Desktop Integration remote servlet is running, a web page
returns displaying a message similar to the following:

Note: The property inspector does not validate that values you enter
for a property or combinations of properties are valid. Invalid values
may cause runtime errors. To avoid runtime errors, make sure you
specify valid values for properties in the property inspector. For more
information about the property inspector, see Section 5.4, "Using the
Property Inspector".

Verifying End-User Authentication for Integrated Excel Workbooks

C-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Desktop Integration Remote Servlet 11g (11.1.1.48.86) [520]
Response from oracle.adf.desktopintegration.servlet.DIRemoteServlet: OK.

C.2 Verifying End-User Authentication for Integrated Excel Workbooks
If end users of an integrated Excel workbook do not get prompted for user credentials
when they invoke an action that interacts with the Fusion web application, it may
mean that security is not configured correctly for the integrated Excel workbook
and/or the Fusion web application. You can verify that your Fusion web
application authenticates end users and is security-enabled by carrying out the
following procedure.

To verify that a Fusion web application authenticates end users:
■ Type the concatenated values of the workbook properties WebAppRoot and

Login.ProtectedWebPage into the address bar of your web browser. This
corresponds to a URL similar to the following:

http://hostname:7101/FusionApp/faces/secured/SecurePage.jspx

The Fusion web application requests you enter user credentials if it is
security-enabled.

For more information about securing your integrated Excel workbook, see Chapter 11,
"Securing Your Integrated Excel Workbook".

C.3 Generating Log Files for an Integrated Excel Workbook
The Oracle ADF integration module can generate log files that capture information
based on events triggered by the following pieces of software within the Oracle ADF
Desktop Integration module:

■ HTTP filter and the ADF Desktop Integration remote servlet on the web server
(server-side logging)

For more information about server-side logging, see Section C.3.1, "About
Server-Side Logging".

■ Excel workbook which you integrate with your Fusion web application (client-side
logging)

For more information about client-side logging, see Section C.3.2, "About
Client-Side Logging"

C.3.1 About Server-Side Logging
You configure the generation of server-side log files for the Oracle ADF Desktop
Integration module the same way as for other Oracle ADF modules. This involves
setting values that specify the verbosity level and output location in a configuration
file named j2ee-logging.xml. You can also use Oracle Diagnostic Logging
Configuration of JDeveloper to configure the logging levels specified in the
logging.xml file. For more information about using the JDeveloper debugging tools
and ADF Logger, see the "Using the ADF Logger" section in Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Table C–1 describes the package names that you supply as attribute parameters to the
<logger> elements in the j2ee-logging.xml file to configure log file generation in
the Oracle ADF Desktop Integration module.

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-3

Table C–2 describes the types of information that the log file captures and the
corresponding log file entry level.

C.3.2 About Client-Side Logging
The Oracle ADF Desktop Integration module uses adfdi-common object for
client-side logging. By default, no log files are generated. For more information about
adfdi-common object, see Section C.3.2.3, "What You May Need to Know About
adfdi-common Object".

The adfdi-excel-client.dll.config configuration file determines what type of
information the adfdi-common object logs, where it logs it and in what format. For
more information about the creation and configuration of the
adfdi-excel-client.dll.config file, see Section C.3.2.1, "How to Generate Log
Files using a Configuration File". Table C–3 describes the log levels that client-side
logging supports. You enter one of the values in this table in the
adfdi-excel-client.dll.config file.

Users who do not have access to the directory that stores the
adfdi-excel-client.dll.config file can change the location where log files are
output and the logging level by setting values for user environment variables. For
more information, see Section C.3.2.2, "How to Configure Logging Using User
Environment Variables".

Table C–1 Package Names for Log File Configuration

To generate log file entries
for this component... Enter this package name...

All Oracle ADF Desktop
Integration server logic

oracle.adf.desktopintegration

Oracle ADF Desktop
Integration remote servlet

oracle.adf.desktopintegration.servlet

Oracle ADF Desktop
Integration HTTP filter

oracle.adf.desktopintegration.filter

Table C–2 Server-Side Logging Levels

Log level Description

SEVERE (ERROR) Captures all exceptions and errors.

WARNING Captures all non-fatal problem conditions.

INFO or CONFIG Captures life cycle events such as servlet
initialization, and so on.

CONFIG Captures "heartbeat" events that echo status and
execution context for each client-server
interaction.

FINE

FINER

FINEST

These values generate increasing levels of
diagnostic information.

Table C–3 Client-Side Logging Levels

Level Description

Error Captures information about severe errors and exceptions.

Generating Log Files for an Integrated Excel Workbook

C-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

C.3.2.1 How to Generate Log Files using a Configuration File
You create an XML-based configuration file named
adfdi-excel-client.dll.config in the same directory as the
adfdi-excel-client.dll file. The parent element in the
adfdi-excel-client.dll.config file is <configuration>. Table C–4
describes child elements and attributes that this configuration file contains and
describes the attribute values that you supply to write different types of information to
different formats of log file such as .log,.txt, or .xml.

For more information about the TraceSource class and the configuration file that
controls output by instances of this class, see the documentation for the Microsoft
.NET Framework.

To create the configuration file for client-side logging:
1. In the Oracle ADF Desktop Integration Designer, click About Oracle ADF 11g

Desktop Integration.

2. Click the Properties tab and note the value for the directory path that appears in
the Configuration field.

For example, a directory path similar to the following:

C:\Documents and Settings\john\Local
Settings\Apps\2.0\51O97ALD.VNY\OG48YJLC.Q0Y\orac..tion_ca85d24b89a948e6_
000b.0001_61767b25443cf62e\adfdi-excel-client.dll.config

Warning Captures non-fatal conditions.

The Oracle ADF Desktop Integration module reports some
non-fatal conditions to end users. It writes all non-fatal
conditions in the log files.

Information Captures life cycle and control flow events.

Verbose Captures detailed information about the execution flow of the
application.

Table C–4 Child Elements and Attributes in the Configuration File

Element/Attribute Description

<sources> This element is a collection of source elements.

<source name ...
switchValue>

Specify values for the following attributes:

■ name

Set the value of this attribute to adfdi-common.

■ switchValue

The level of logging. Possible values are described in
Table C–3.

Example C–1 demonstrates how you set a logging level of
Verbose using the adfdi-common object.

<source name="adfdi-common" switchValue="Verbose">

<listeners> This element contains <add> elements.

<add> The attribute values for these elements can define the type of
information that is output to log files in addition to the format
and location of the log files.

Table C–3 (Cont.) Client-Side Logging Levels

Level Description

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-5

3. Navigate to the directory that you identified in Step 2.

4. Create an XML-based file named adfdi-excel-client.dll.config in the
directory with a <configuration> parent element.

5. Add additional child elements and attributes as described in Table C–4.

6. Save the file.

Example C–1 shows a sample configuration file that generates two different log
files with different formats (.txt and .xml). These files capture different types of
information such as ThreadId, ProcessId, and DateTime at a Verbose
logging level.

Example C–1 Sample Configuration File

<?xml version="1.0"?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="adfdi-common" switchValue="Verbose">
 <listeners>
 <add type="System.Diagnostics.DelimitedListTraceListener"
 name="adfdi-common-excel.txt"
 initializeData="c:\logs\adfdi-common-excel.txt"
 delimiter="|"
 traceOutputOptions="ThreadId, ProcessId, DateTime"/>
 <add type="System.Diagnostics.XmlWriterTraceListener"
 name="adfdi-common-excel.xml"
 initializeData="c:\logs\adfdi-common-excel.xml"
 traceOutputOptions="None"/>
 </listeners>
 </source>
 </sources>
 </system.diagnostics>
</configuration>

For your reference, a sample adfdi-excel-client.dll.config
configuration file is available in the ADFDI_HOME\bin\excel\samples
directory.

C.3.2.2 How to Configure Logging Using User Environment Variables
You add two user environment variables to configure the logging level and location
for XML log files. Use this option when you cannot access the
adfdi-excel-client.dll.config file to make changes to it.

To add or configure user environment variables on Windows:
1. Click the Windows Start button and then click Settings > Control Panel.

The Control Panel opens.

2. In the Control Panel, select and open System.

Note: The directory that you specify as the location to store the
adfdi-excel-client.dll.config file must exist before you
configure the user environment variables discussed here. The
generated log file will be in XML format.

Exporting Excel Workbook Metadata

C-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

The System Properties dialog box opens.

3. Click the Advanced view tab and then click the Environment Variables button.

The Environment Variables dialog box opens.

4. In the input field User variables for username, click New and add variables as
described in the following table.

5. Click OK.

C.3.2.3 What You May Need to Know About adfdi-common Object
The adfdi-common object is an instance of the TraceSource class from the
System.Diagnostics namespace in the Microsoft .NET Framework. This object is
used to generate log files that capture information about events triggered by the Excel
workbook that you integrate with your Fusion web application.

For more information about TraceSource class, see Microsoft Developer Network.

C.4 Exporting Excel Workbook Metadata
You can export the XML metadata in your Excel workbook to an XML file with a name
and location that you specify. This file may be useful if you have to debug or analyze
an Excel workbook that is integrated with a Fusion web application. It contains child
elements for each worksheet in the workbook, resources such as the relative path to
the remote servlet, and so on.

The following procedure describes how you export XML metadata from an Excel
workbook.

To export XML metadata from an integrated Excel workbook:
1. Click About Oracle ADF 11g Desktop Integration... in the Oracle ADF Desktop

Integration Designer.

The About Oracle ADF 11g Desktop Integration dialog box appears.

2. Click the Properties view tab and then click the Export Metadata button.

A dialog box appears that asks you to specify a file name and location for the file
that stores the exported metadata.

3. Specify a file name, a location, and then click Save.

The integrated Excel workbook exports the metadata to the specified file in the
specified format.

C.5 Common Desktop Integration Problems
This section describes the most common problems and their solutions.

Error message: [ADFDI-00127] A version mismatch was detected for
SyncServletResponse. Version x was found, version y was expected

Enter a variable named... With a value...

adfdi-common-file That defines the directory path and file name for the XML file
that captures logging information.

adfdi-common-level That specifies the level of logging. Table C–3 lists valid values.

Common Desktop Integration Problems

Troubleshooting an Integrated Excel Workbook C-7

Cause: The client version of ADF Desktop Integration does not match the ADF
Desktop Integration version in the web application.

Action: Uninstall client ADF Desktop Integration, and install the web application
specific ADF Desktop Integration version. For more information about installing
ADF Desktop Integration client, see Section 3.5, "Setting Up the Oracle ADF
Desktop Integration Client Framework".

Error message: 404 Error - servlet not found
Cause: The web.xml deployment descriptor settings are not in sync with
Workbook.RemoteServletPath property value.

Action: Open Workbook Properties editor and verify the
Workbook.RemoteServletPath property value.

Error message: Uncaught exception thrown by method called through Reflection.
(Exception from HRESULT: 0x80131604)
Cause: Microsoft .NET Programmability Support is not enabled.

Action: Enable Microsoft .NET Programmability Support. For more information,
see Section 3.3, "Enabling Microsoft .NET Programmability Support".

Error message: Unable to attach: manifest not found for solution id
'fb43e1d8-0595-4c3f-8926-0de0494c37d3'
Cause: You tried to convert an Excel file without installing Oracle ADF Desktop
Integration client.

Action: Install Oracle ADF Desktop Integration client. For more information, see
Section 3.5, "Setting Up the Oracle ADF Desktop Integration Client Framework".

Common Desktop Integration Problems

C-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

D

Using Workbook Management Tools D-1

D Using Workbook Management Tools

This appendix describes how to use the workbook conversion utility and the
workbook administration tool. You can use these tools to prepare and manage
workbooks that you integrate with a Fusion web application.

This appendix includes the following sections:

■ Section D.1, "Using the Workbook Conversion Utility"

■ Section D.2, "Using the Workbook Administration Tool"

D.1 Using the Workbook Conversion Utility
Use the conversion utility to convert an Excel workbook so that you can start
configuring the workbook with Oracle ADF functionality. Section 4.4, "Preparing
Your Workbook" describes how you run the conversion utility. Note that running
conversion utility does not embed Oracle ADF Desktop Integration in Excel file. It
prepares the Excel file for integration with ADF web application.

The Oracle ADF Desktop Integration module stores the conversion utility
(convert-adfdi-excel-solution.exe) in the following directory:

ADFDI_HOME\bin\excel\convert

where ADFDI_HOME refers to the directory in which you set up the Oracle ADF
Desktop Integration module as described in Section 3.8, "Using the Oracle ADF
Desktop Integration Module on a System with Multiple Instances of JDeveloper".

Table D–1 describes the arguments that the conversion utility supports.

Using the Workbook Conversion Utility

D-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

D.1.1 Configuring JDeveloper To Run Workbook Conversion Utility
You can configure JDeveloper to run the conversion utility and avoid command line
executions.

Table D–1 Workbook Conversion Utility Command-line Arguments

Use this argument... To...

-attach Attach properties to an Excel workbook so that you can configure it to use Oracle ADF functionality.

Example usage:

convert-adfdi-excel-solution.exe MyWorkbook.xlsx -attach

-detach Remove design time, test mode, and runtime Oracle ADF functionality from an integrated Excel
workbook. Use this argument if you want to send an integrated Excel workbook to a user who does not
have the Oracle ADF Desktop Integration client framework installed. This allows the user to open the
integrated Excel workbook without receiving an error message.

Example usage:

convert-adfdi-excel-solution.exe MyWorkbook.xlsx -detach

-mode Use this argument to change the mode of an integrated Excel workbook from its current mode to design
mode, test mode, or runtime mode. Use the -mode argument in conjunction with one of the following
three arguments to change to the desired mode:

■ DT

Changes the workbook to design mode.

■ RT

Changes the workbook to runtime mode.

■ TST

Changes the workbook to test mode.

The following example converts a workbook to design mode:

convert-adfdi-excel-solution.exe MyWorkbook.xlsx -mode DT

Use the -mode argument with caution and be aware that the functionality that it provides is not
equivalent to the functionality provided by the Oracle ADF Desktop Integration Designer toolbar.
For example, if you change to runtime mode (using -mode RT), the clean up steps that occur when you
use the Oracle ADF Desktop Integration Designer toolbar menu button do not occur. Similarly, if
you use it to switch to design mode (-mode DT), placeholder text that was present prior to publication is
not reintroduced.

-root Modify the value of a workbook’s WebAppRoot property. This argument may be useful where you want
to change the WebAppRoot property of multiple workbooks through a command-line script.

Example usage:

convert-adfdi-excel-solution.exe MyWorkbook.xlsx -root
http://myhost:7101/MyApp

The recommended method of changing a workbook’s WebAppRoot property is through the property
inspector for workbook properties in design mode or through the Edit Options dialog box when you
switch a workbook to test mode.

-view Use this argument to determine if a workbook has been converted for integration with Oracle ADF and,
if so, identify the solution ID and customization version.

Example usage:

convert-adfdi-excel-solution.exe MyWorkbook.xlsx -view

-wipe Remove the value of the WebAppRoot workbook property and the mode (design, test, or runtime) from a
workbook that is integrated with Oracle ADF. When used in conjunction with the detach
argument, this argument can be used to return a workbook to a known state.

Example usage:

convert-adfdi-excel-solution.exe MyWorkbook.xlsx -wipe

-help Displays help information about the command-line arguments that the workbook conversion utility
supports.

Using the Workbook Administration Tool

Using Workbook Management Tools D-3

To run workbook conversion utility from JDeveloper
1. Open JDeveloper

2. From the Tools menu, select External Tools.

3. In External Tools dialog box, click New. The Create External Tools wizard appears.

4. In the Type page of wizard, select the Tool Type as External Program.

5. In External Program Options page of wizard, set the field values as following:

■ In Program Executable field, click Browse and select the conversion utility
(convert-adfdi-excel-solution.exe) file. The file is available in the
following directory:

ADFDI_HOME\bin\excel\convert

■ In Arguments field, enter the following as the argument:

"${file.path}" -attach

■ Ensure that directory location in Run Directory is same as Program
Executable field.

6. In the Display page of the wizard, leave the values as default. You may change the
Caption to Conversion Utility.

7. In the Integration page of the wizard, select Navigator Context Menu checkbox.

8. In the Availability page of the wizard, you can configure JDeveloper to run the
tool for Excel workbooks only. Select When Specific File Types are Selected
option and move Excel Workbook from Available Types to Selected Types.

9. Click Finish to close the wizard.

10. The tool appears in the External Tools dialog box. Click OK to close the dialog.

11. In Application Navigator, select the Excel file which you want to convert. With file
selected, from the Tools menu, select Conversion Utility.

D.2 Using the Workbook Administration Tool
Use the workbook administration tool to set values for a number of workbook
properties, such as WebAppRoot, after you publish the finalized integrated Excel
workbook. Use this tool if, for example, the URL of your Fusion web application
changes after you publish the integrated Excel workbook.

You can also use it when you want to change workbook settings but cannot or do not
want to set values for the HTTP filter as described in Section E.2, "Configuring the
ADF Desktop Integration Excel Download Filter".

The workbook administration tool is a Java-based program that can be executed on
operating systems that support the version of Java used by Oracle ADF. It also
requires access to the adf-desktop-integration-admin-tool.jar file which is
located in the following directory:

ADFDI_HOME\lib

where ADFDI_HOME is the folder in which you set up the Oracle ADF Desktop
Integration module as described in Section 3.8, "Using the Oracle ADF Desktop
Integration Module on a System with Multiple Instances of JDeveloper".

Using the Workbook Administration Tool

D-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

The other requirements for components or utilities in the Oracle ADF Desktop
Integration module, as outlined in Chapter 3, "Setting Up Your Development
Environment", do not apply to the workbook administration tool.

To change workbook settings using the workbook administration tool:
■ Open a command window and execute the following command:

java -cp adf-desktop-integration-admin-tool.jar
oracle.adf.desktopintegration.admintool.WorkbookAdminTool <arg(s)>

where <arg(s)> is one or more of the required or optional arguments that are
described in Table D–2.

The following command creates a copy of the workbook (text.xlsx) in runtime
mode (RT) for a Fusion web application (http://hostname:7101/FODADFBC) and
writes it to a directory with a new file name (myresult.xlsx):

java -cp adf-desktop-integration-admin-tool.jar
oracle.adf.desktopintegration.admintool.WorkbookAdminTool -workbook test.xlsx
-mode RT -root http://hostname:7101/FODADFBC -out myresult.xlsx

Table D–2 Command-line Options for the Workbook Administration Tool

Provide a value for
this argument... To...

Is a value for this
argument required?

-workbook Specify the directory path to the workbook to update. Yes

-root Set the value for this property to the fully qualified URL for the web application
that you want to integrate your desktop application with.

No

-mode Change the workbook mode to one of the following:

■ RT

where RT specifies runtime mode.

■ DT

where DT specifies design mode.

■ TST

where TST specifies test mode.

For more information about workbook modes, see Section 5.1, "Introduction to the
Development Tools".

No

-out Specify the directory path and file name for the output file. Yes

-quiet Specify this argument if you do not want to generate verbose output. No

-help Print help information. No

E

Desktop Integration Settings in the Web Application Deployment Descriptor E-1

E Desktop Integration Settings in the Web
Application Deployment Descriptor

This appendix describes the values that you set for the Oracle ADF Desktop
Integration module servlet (adfdiRemote) so that the Fusion web application can use
it. The appendix also describes the values in the deployment descriptor file that
determine the behavior of the HTTP filter that the Oracle ADF Desktop Integration
module provides. Finally, it provides an extract from a deployment descriptor file that
shows these values in use.

This appendix includes the following sections:

■ Section E.1, "Configuring the Oracle ADF Desktop Integration Module Servlet"

■ Section E.2, "Configuring the ADF Desktop Integration Excel Download Filter"

■ Section E.3, "Examples in a Deployment Descriptor File"

E.1 Configuring the Oracle ADF Desktop Integration Module Servlet
A Fusion web application with integrated Excel workbooks must contain entries in its
deployment descriptor file (web.xml) to use the adfdiRemote servlet. The Excel
workbooks that you integrate with a Fusion web application call this servlet to
synchronize data with the Fusion web application. The
adf-desktop-integration.jar file stores the servlet in the following directory:

JDEV_HOME\adfdi\lib

where JDEV_HOME is the folder in which you installed Oracle JDeveloper.

When you add ADF Desktop Integration to the technology scope of your project as
described in Section 4.2, "Adding Oracle ADF Desktop Integration to a Fusion Web
Application", Oracle ADF Desktop Integration automatically configures your
deployment descriptor with the necessary entries to enable the servlet
(DIRemoteServlet) on your Fusion web application. If required, then you can
configure the servlet manually.

Note: Adding Oracle ADF Desktop Integration and ADF Library
Web Application Support to the technology scope of your desktop
integration project automatically generates the entries in the web.xml
file discussed in this appendix. For more information, see Section 4.2,
"Adding Oracle ADF Desktop Integration to a Fusion Web
Application".

Configuring the Oracle ADF Desktop Integration Module Servlet

E-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

To configure the Oracle ADF Desktop Integration servlet:
1. In JDeveloper, locate and open the deployment descriptor file (web.xml) for your

Oracle ADF Desktop Integration project.

Typically, this file is located in the WEB-INF folder of your project.

2. Click the Servlets page, and then click the Create "Servlet" icon to create a new
row entry in the Servlets table.

Enter the values as described in the following table to enable the adfdiRemote
servlet on the Fusion web application.

3. In Servlets page, click Servlet Mappings tab, and then click the Create "Servlet
Mapping" icon to create a new row in the Servlet Mapping table.

Enter the value as described in the following table to add a URL pattern for the
adfdiRemote servlet in the Fusion web application. The value that you enter
must match the value that you specify in the integrated Excel workbook for the
RemoteServletPath workbook property. Note that values are case sensitive.

Figure E–1 displays the Servlets page of web.xml of Master Price List module.

Figure E–1 Servlets Page of Deployment Descriptor

4. Click the Filters page, and verify if a adfBindings filter exists in the Filters table.
If an entry exists, select it and proceed to the next step. If there is no such entry,
then click the Create "Filter" icon to create a new row entry in the Filters table.

For this property... Enter this value...

Name adfdiRemote

Type Servlet Class

Servlet Class/JSP file oracle.adf.desktopintegration.servlet.DIRemoteServlet

For this property... Enter this value...

URL Patterns /adfdiRemoteServlet

Configuring the ADF Desktop Integration Excel Download Filter

Desktop Integration Settings in the Web Application Deployment Descriptor E-3

Enter the values as described in the following table to add the ADF binding filter
to the adfdiRemote servlet.

5. In Filters page, click Filter Mappings tab, and then click the Create "Filter
Mapping" icon to create a new row in the Filter Mapping table.

Enter the values as described in the following table to add the mapping filter to
the adfdiRemote servlet. The filter mapping must match with the Servlet name
in Step 2.

Figure E–2 displays the Filters page of web.xml of Master Price List module.

Figure E–2 Filters Page of Deployment Descriptor

6. Save the deployment descriptor file, and then rebuild your Oracle ADF Desktop
Integration project to apply the changes you made.

E.2 Configuring the ADF Desktop Integration Excel Download Filter
The Oracle ADF Desktop Integration includes a HTTP filter in the
adf-desktop-integration.jar stored in the following directory:

JDEV_HOME\adfdi\lib

where JDEV_HOME is the folder in which you installed Oracle JDeveloper.

You configure an entry in the deployment descriptor file (web.xml) of your Fusion
web application so that the application invokes the HTTP filter to make changes in an
integrated Excel workbook prior to the integrated Excel workbook being downloaded
by an end user from the Fusion web application. These changes make sure that the

For this property... Enter this value...

Name adfBindings

Class oracle.adf.model.servlet.ADFBindingFilter

For this property... Enter this value...

Mapping Type Servlet

Mapping adfdiRemote

Configuring the ADF Desktop Integration Excel Download Filter

E-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

integrated Excel workbook functions correctly when the end user opens it. The HTTP
filter makes the following changes:

■ WebAppRoot

Sets the value for this property to the fully qualified URL for the Fusion web
application from which the end user downloads the integrated Excel workbook.

■ Workbook mode

Changes the integrated Excel workbook mode to runtime mode in case the
workbook was inadvertently left in design mode or test mode.

By default, JDeveloper adds the HTTP filter to your Oracle ADF Desktop Integration
project when you add Oracle ADF Desktop Integration to the technology scope of
your project as described in Section 4.2, "Adding Oracle ADF Desktop Integration to a
Fusion Web Application".

To configure the HTTP filter:
1. In JDeveloper, locate and open the deployment descriptor file (web.xml) for your

Oracle ADF Desktop Integration project.

Typically, this file is located in the WEB-INF folder of your project.

2. Click the Filters page, and verify if a adfBindings filter exists in the Filters table.
If an entry exists, select it and proceed to the next step. If there is no such entry,
then click the Create "Filter" icon to create a new row entry in the Filters table.

Enter the values as described in the following table to create a new filter or
configure them to modify the existing HTTP filter.

3. In the Filters page, click Filter Mappings tab, and then click the Create "Filter
Mapping" icon to create a new row in Filter Mapping table.

Add a filter mapping for integrated Excel workbooks that use the default file
format (.xlsx) by entering values as described in the following table.

Note: If you choose not to use the adfdiExcelDownload filter, you
can instead use the workbook administration tool to set the
WebAppRoot property on your workbooks. For more information, see
Section D.2, "Using the Workbook Administration Tool".

For this property... Enter this value...

Name adfdiExcelDownload

Class oracle.adf.desktopintegration.filter.DIExcelDow
nloadFilter

Display Name (Optional) In General Filter tab, enter a display name for the
filter that appears in JDeveloper.

Description (Optional) In General Filter tab, enter a description of the filter.

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsx

Dispatcher Type No value is required for this property.

Configuring the ADF Desktop Integration Excel Download Filter

Desktop Integration Settings in the Web Application Deployment Descriptor E-5

4. Add another filter mapping for integrated Excel workbooks that use the
macro-enabled workbook format (.xlsm) by entering values as described in the
following table.

Figure E–3 displays the Filters page of web.xml of Master Price List module.

Figure E–3 Filters Page of Deployment Descriptor

5. Click the Application page, expand MIME Mappings section, and click the Create
"MIME mapping" icon.

Add a MIME type for integrated Excel workbooks that use the default file format
(.xlsx) by entering values as described in the following table.

6. Add another MIME type for integrated Excel workbooks that use the
macro-enabled workbook format (.xlsm) by entering values as described in the
following table.

Figure E–4 displays the Application page of web.xml of Master Price List module.

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsm

Dispatcher Type No value is required for this property.

For this property... Enter this value...

Extension *.xlsx

MIME Type application/vnd.openxmlformats-officedocument.spre
adsheetml.sheet

For this property... Enter this value...

Extension *.xlsm

MIME Type application/vnd.ms-excel.sheet.macroEnabled.12

Examples in a Deployment Descriptor File

E-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure E–4 Application Page of Deployment Descriptor

7. Save the deployment descriptor file, and then rebuild your Oracle ADF Desktop
Integration project to apply the changes you made.

E.3 Examples in a Deployment Descriptor File
The following extracts from the web.xml file of a Fusion web application with Oracle
ADF Desktop Integration in its technology scope show the entries that you configure
for a desktop integration project. For more information ordering of filters, see
Section 4.2.2, "What Happens When You Add Desktop Integration to Your JDeveloper
Project".

 <filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>
 oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 </filter>
 <filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>
 oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsx</url-pattern>
 </filter-mapping>

Examples in a Deployment Descriptor File

Desktop Integration Settings in the Web Application Deployment Descriptor E-7

 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsm</url-pattern>
 </filter-mapping>
 <servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>
 oracle.adf.desktopintegration.servlet.DIRemoteServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>adfdiRemote</servlet-name>
 <url-pattern>/adfdiRemoteServlet</url-pattern>
 </servlet-mapping>
 <mime-mapping>
 <extension>xlsx</extension>
 <mime-type>
 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
 </mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>xlsm</extension>
 <mime-type>
 application/vnd.ms-excel.sheet.macroEnabled.12
 </mime-type>
 </mime-mapping>

Examples in a Deployment Descriptor File

E-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

F

String Keys in the Reserved Resource Bundle F-1

F String Keys in the Reserved Resource
Bundle

This appendix describes the string keys in the reserved resource bundle that you can
override.

Table F–1 lists the string keys and their current English values. Create a resource
bundle where you define the string keys in Table F–1 and the values that you want to
appear at runtime. For information about how to override the reserved resource
bundle, see Section 10.2.3, "How to Override the Reserved Resource Bundle".

Table F–1 String Keys and Values in the Reserved Resource Bundle

Area where string key
value appears at
runtime String key

English value in the Oracle ADF
Desktop Integration module’s
reserved resource bundle Comment

Upload Options UPLOAD_OPTIONS_TITLE Upload Options

Upload Options UPLOAD_OPTIONS_PROMPT Specify options to use during the
Upload operation

Upload Options UPLOAD_OPTIONS_CONTINUE_ON_FAIL_
LABEL

On failure, continue to upload
subsequent rows

Upload Options UPLOAD_OPTIONS_DOWNLOAD_AFTER_LABEL Download all rows after successful
upload

Table.Download DOWNLOAD_OVERWRITE_TITLE Download

Table.Download DOWNLOAD_OVERWRITE_PROMPT Do you wish to discard the pending
changes?

Table.Download ROWLIMIT_WARNINGS_TITLE Row Limit Exceeded

Table.Initialize INITIALIZE_OVERWRITE_TITLE Initialize

Table.Initialize INITIALIZE_OVERWRITE_PROMPT Do you wish to discard the pending
changes?

Workbook.ClearAllData CLEARDATA_CONFIRM_TITLE Clear All Data

Workbook.ClearAllData CLEARDATA_CONFIRM_PROMPT This command will log you out of
your current session and clear all the
data from all worksheets in the
workbook. Are you sure?

Workbook.Logout LOGOUT_STATUS_TITLE Logout

Workbook.Logout LOGOUT_STATUS_PROMPT You have been logged out from your
current session.

Table.Upload COMPONENTS_TABLE_DYN_COLS_NOT_AVAIL_
TITLE

Upload

Table.Upload COMPONENTS_TABLE_DYN_COLS_NOT_AVAIL_
PROMPT

One or more dynamic columns is no
longer available, do you wish to
continue?

F-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Table Special Columns COMPONENTS_TABLE_CHANGED_INDICATOR \u25B2 An
upward-fac
ing triangle
in many
fonts.

Table Special Columns COMPONENTS_TABLE_FLAGGED_INDICATOR \u25BA A
right-facing
triangle in
many
fonts.

Table status UPLOAD_STATUS_NO_UPDATES No updates detected

Table status TABLE_UPLOAD_RECORD_NOT_FOUND Record not found

Table status TABLE_UPLOAD_CANNOT_INSERT_MORE_
THAN_ONCE

Cannot insert record more than once

Table status TABLE_COMMIT_FAILED_1 See Error Detail {0} {0} is a
batch
number

Table status TABLE_COMMIT_FAILURE_DETAILS_2 Error Detail {0}:{1} {0} is a
batch
number

{1} is an
error
message

Table status TABLE_UPLOAD_ROW_UPDATE_SUCCESS Row updated successfully

Table status TABLE_UPLOAD_ROW_INSERT_SUCCESS Row inserted successfully

Table status TABLE_UPLOAD_ROW_UPDATE_FAILURE Update failed

Table status TABLE_UPLOAD_ROW_INSERT_FAILURE Insert failed

Table status TABLE_DELETE_ROW_FAILURE Delete failed

Table status MESSAGE_DETAILS_NONE No error details available.

Table status MESSAGE_DETAILS_ROW_TITLE Row Errors

Table status MESSAGE_DETAILS_ROW_PROMPT Errors for this row:

Table status MESSAGE_DETAILS_TABLE_TITLE Table Errors

Table status MESSAGE_DETAILS_TABLE_PROMPT Error details for this table:

Worksheet Errors MESSAGE_DETAILS_HELP_LABEL Click on each error to reveal
additional information.

Appears in
the error
list.

Worksheet Errors MESSAGE_DETAILS_WORKSHEET_TITLE Worksheet Errors

Worksheet Errors MESSAGE_DETAILS_WORKSHEET_PROMPT Error details for this worksheet:

Worksheet Errors MESSAGE_DETAILS_PARSE_FAILURE A problem has occurred while
retrieving the error details. The
information is no longer available.

Worksheet Errors MESSAGE_LABEL_FAILED_1 {0} failed {0} is a
context
label

Worksheet Errors MESSAGE_LABEL_DEFAULT_CONTEXT Action

Workbook.Login LOGIN_WINDOW_TITLE Login

Workbook.Login LOGIN_CONFIRM_CONNECT_2 You are about to connect to the
following
application:\n{0}\nand\n{1}\n\nDo
you want to connect?

{0} and {1}
are the
URLs the
application
uses

Table F–1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string key
value appears at
runtime String key

English value in the Oracle ADF
Desktop Integration module’s
reserved resource bundle Comment

String Keys in the Reserved Resource Bundle F-3

Workbook.EditOptions SETTINGS_EDIT_TITLE Edit Options

Workbook.EditOptions SETTINGS_EDIT_PROMPT Enter a value for Web App Root. For
example:
’http://localhost:1234/MyApp’.

Workbook.EditOptions SETTINGS_CONFIRM_TITLE Web App Root

Workbook.EditOptions SETTINGS_CONFIRM_PROMPT Changing the Web App Root will log
you out of your current session and
clear all the data from all worksheets
in the workbook. Are you sure?

Table F–1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string key
value appears at
runtime String key

English value in the Oracle ADF
Desktop Integration module’s
reserved resource bundle Comment

F-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

G

Java Data Types Supported By Oracle ADF Desktop Integration G-1

GJava Data Types Supported By Oracle ADF
Desktop Integration

This appendix lists the Java data types that an Oracle ADF Desktop Integration project
supports.

Primitive Java Types
■ long

■ int

■ short

■ boolean

■ double

■ float

Object Java Types
■ java.lang.Long

■ java.lang.Integer

■ java.lang.Short

■ java.lang.Boolean

■ java.lang.String

■ oracle.jbo.domain.Date

■ oracle.jbo.domain.Timestamp

■ oracle.jbo.domain.TimestampLTZ

■ oracle.jbo.domain.TimestampTZ

■ java.util.Date

■ java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

■ java.lang.Double

■ java.lang.Float

■ java.math.BigDecimal

■ oracle.jbo.domain.RowID

G-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

■ oracle.jbo.domain.Number

H

Using ADF Desktop Integration Model API H-1

HUsing ADF Desktop Integration Model API

This appendix describes how to use the ADF Desktop Integration Model API library
to enable custom ApplicationModule methods to access attribute values passed
during upload process when there are no actual rows available in a tree node binding.

This appendix includes the following sections:

■ Section H.1, "About Temporary Row Object"

■ Section H.2, "Introduction to ADF Desktop Integration Model API"

■ Section H.3, "ADF Desktop Integration Model API Classes and Methods"

H.1 About Temporary Row Object
Each ADF Table component is bound to a tree binding defined within a page
definition. Each tree control binding has one (or more) tree nodes defined. For
parent-child relationships, the tree binding has two nodes, one for parent table and
another for child table. At runtime, the ADF Table component displays both parent
and child attributes within each worksheet row. On upload, Oracle ADF Desktop
Integration module sets attribute values to both the parent and child nodes.

In certain situations, a particular tree node may not have actual data rows available
during Table.Upload request processing. Two common scenarios where a tree node
may not have data are:

■ The tree node's iterator result set does not have any data rows available. This
could be because of a query returning zero rows.

■ In a parent-child relationship, if the foreign key has not been populated in the
parent table, the link between parent and child tree node may not contain actual
rows.

There may be certain cases when even though there is no actual row available on the
server, but you still want to allow the end user to enter values in the worksheet and
upload them to the server. During upload, the ADF Desktop Integration module
creates a temporary row object and stores the values uploaded from the worksheet
row. Using the ADF Desktop Integration Model API, you can write custom Java code
to access the temporary row object and collect its values.

To call your custom Java code during upload, you must expose your custom Java code
through a pageDef action binding and then configure the ADF Table component's
UpdateRowActionID or InsertAfterRowActionID to point to the pageDef
action binding.

Introduction to ADF Desktop Integration Model API

H-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

H.2 Introduction to ADF Desktop Integration Model API
While uploading data, if a tree node of the ADF Table component contains no actual
rows, the Oracle ADF Desktop Integration module’s remote servlet creates a
temporary row object to store the attribute values. If you want to access the temporary
row object and its attribute values, you must write custom Java code that uses the ADF
Desktop Integration Model API library.

For more information about the classes and methods available in the API, see
Section H.3, "ADF Desktop Integration Model API Classes and Methods".

H.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper
Project

You typically add the ADF Desktop Integration Model API Library to your
application’s Model project. The library is an independent library and not included
with any technology scope. you can add it through Project Properties dialog box.

To add ADF Desktop Integration Model API library to your project:
1. In the Application Navigator, right-click the Model project and choose Project

Properties from the context menu.

2. In the Project Properties dialog, select Libraries and Classpath to view the list of
libraries available.

3. Click Add Library and in the Add Library dialog box, select the ADF Desktop
Integration Model API library.

Figure H–1 Add Library Dialog

4. Click OK. The library name adds to the Classpath Entries list.

5. Click OK to close the Project Properties dialog box.

ADF Desktop Integration Model API Classes and Methods

Using ADF Desktop Integration Model API H-3

H.3 ADF Desktop Integration Model API Classes and Methods
The ADF Desktop Integration Model API library contains one public class that
contains APIs for retrieving temporary row objects.

H.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
The ModelHelper class is a public class that exposes Model APIs. The following
sections describe the methods available in the class.

H.3.1.1 The getAdfdiTempChildRow Method
The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular master row. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax
public static final ViewRowImpl getAdfdiTempChildRow(ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters
■ masterRow – master row object

■ childAccessor – child attribute name

H.3.1.2 The getAdfdiTempRowForView Method
The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular view. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax
public static final ViewRowImpl getAdfdiTempRowForView(ApplicationModuleImpl am,
java.lang.String viewDefName)

Parameters
■ am – application module instance

■ viewDefName – view definition name

H.3.1.3 The getChildViewDef Method
The method is used to lookup polymorphic child view definition if the view link
destination attributes specify one or more child discriminator attributes. The master
row source attributes lookup the correct polymorphic child view definition through
ViewObjectImpl.findViewDefFromDiscrValues API. If no child discriminator
attributes are defined, or the child view is non-polymorphic, the default child
ViewDefImpl object is returned.

ADF Desktop Integration Model API Classes and Methods

H-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet, or returns null if the object is not found.

Method Syntax
public static final ViewDefImpl getChildViewDef(ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters
■ masterRow – master row object

■ childAccessor – child attribute name

I

End User Actions I-1

IEnd User Actions

This appendix describes the infrequent actions your end user would be performing
while using your application and integrated Excel workbook.

The actions described here assume that you have developed a functioning Fusion web
application similar to Master Price List module. However, your application may not
support all actions provided by Master Price List module.

I.1 Importing Data From a Non-Integrated Excel Worksheet
End users who use the ADF Table component in an integrated Excel workbook to
upload large batches of data rows to the Fusion web application can prepare these
rows of data in a non-integrated Excel worksheet. They can then insert the data into
the ADF Table component prior to invoking the ADF Table component’s Upload
action.

To prepare data in a non-integrated Excel workbook:
1. End users arrange the layout of data in a non-integrated Excel worksheet to match

the layout of the ADF Table component in the integrated Excel workbook.

For example, if an ADF Table component contains columns such as Product,
Price, and Description, reproduce this layout in the non-integrated Excel
worksheet.

2. End users use Excel’s functionality to import the rows of data into the
non-integrated Excel worksheet in rows under the columns arranged in Step 1.

3. Row values that will be inserted into ADF Table component columns that use the
TreeNodeList subcomponent must match a choice from the list of values.

To insert data into the ADF Table component from a non-integrated Excel
workbook:
1. In the ADF Table component, end users highlight N existing downloaded rows or

new rows at the end of the ADF Table component where N is the number of rows
to insert.

2. End users right-click and select Insert from Excel’s context menu.

Tip: Copy the column headers from the ADF Table component to the
non-integrated Excel worksheet.

Tip: Copy an ADF Table component row from the integrated Excel
workbook to another worksheet of the same workbook, as the proper
constraints will be defined for such a row and can be reproduced.

Removing Personal Information

I-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

3. In the non-integrated Excel worksheet, end users select the cells that they want to
insert into the rows of the ADF Table component created in Step 2.

4. In Excel’s menu, click Home > Copy.

5. In the ADF Table component, select the upper left corner cell of the rows inserted
in Step 2.

6. In Excel’s menu, click Home > Paste.

7. End users can now invoke the ADF Table component’s Upload action using
whatever functionality you configured for them as described in Section 7.8,
"Configuring an Oracle ADF Component to Upload Changes from an ADF Table
Component".

I.2 Removing Personal Information
If the Fusion web application that you integrate an Excel workbook with uses a
security mechanism, such as single sign-on, personally identifying information may be
stored in cookies on the machine where an end user accesses the integrated Excel
workbook. End users can remove this information using Microsoft Internet Explorer.
End users must log out from and close all integrated Excel workbooks to invalidate all
active cookie-based web session IDs.

For information about removing personal information, see Microsoft Internet
Explorer’s documentation.

I.3 Limitations of Integrated Excel Workbook at Runtime
There are some known limitations on changing ADF Desktop Integration components
at runtime.

■ Moving a column in an ADF Read-only Table component – If an end user moves
a column of an ADF Read-only Table component to be the left-most column of the
table, ADF Desktop Integration generates an exception when the end user tries to
download data.

To resolve the problem, the end user must close and reopen the workbook without
saving changes.

■ Deleting an Integrated Excel Worksheet – If an end user deletes an integrated
Excel worksheet, ADF Desktop Integration generates an exception when the end
user tries to save the integrated Excel workbook.

To resolve the problem, the end user must close and reopen the workbook without
saving changes.

■ Switching modes when Excel filtering is active in an ADF Table component – If
the end user has applied Excel filtering to an ADF Table component at runtime

WARNING: Select the cells in the non-integrated Excel worksheet
and not the rows or columns.

Note: Integrated Excel worksheets that contain an ADF Table
component hide column A.

Limitations of Integrated Excel Workbook at Runtime

End User Actions I-3

and tries to switch to design mode without removing filtering, ADF Desktop
Integration generates an exception.

To resolve the problem, the end user must remove the filter before switching to
design mode.

The following Excel features have no impact and are not supported by Oracle ADF
Desktop Integration module:

■ Excel’s Conditional Formatting of cells at runtime have no impact on the selected
cells or on the integration of workbook.

■ The ADF Button components are disabled when end user zooms in or out on an
integrated Excel worksheet. The ADF Button components are active at 100% zoom
only.

■ Excel’s Protect Sheet feature has no impact on integrated Excel workbook. It is not
equivalent to authentication password which end user provides while logging in.

■ Editing the label text of ADF Button and value of ADF Output Text components is
not supported at runtime.

Limitations of Integrated Excel Workbook at Runtime

I-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Index-1

Index

Symbols
_ADF_ChangedColumn column, 7-18, 7-29
_ADF_FlagColumn column, 7-17, 7-18
_ADF_StatusColumn column, 7-14, 7-18
_ADFDI_FormBottomStyle style, 9-2
_ADFDI_FormDoubleClickCellStyle style, 9-2
_ADFDI_FormTopStyle style, 9-2
_ADFDI_HeaderStyle style, 9-2
_ADFDI_InputTextStyle style, 9-2
_ADFDI_LabelStyle style, 9-2
_ADFDI_OutputTextStyle style, 9-2
_ADFDI_ReadOnlyTableStyle style, 9-2
_ADFDI_TableCellROStyle style, 9-2
_ADFDI_TableCellStyle style, 9-2
_ADFDI_TableChangedColumnStyle style, 9-2
_ADFDI_TableDoubleClickCellStyle

style, 9-2
_ADFDI_TableFlagColumnStyle style, 9-2
_ADFDI_TriangleHeaderStyle style, 9-2
_ADFDIres reserved resource bundle ID, 10-2

A
AbortOnFailure property, 8-11, A-13
action bindings

Commit, 7-4, 7-6
CreateInsert, 7-6
Delete, 7-14

Action Collection Editor, invoking, 8-2
action sets

ADF Table component Download action,
invoking in, 7-9

ADFm action, invoking, 8-3
alert message, displaying, 8-9
ComponentAction action, 8-2
ComponentAction action, invoking in, 8-4
Confirmation action, 8-2
Dialog action, 8-2
disconnected workbook, invoking in, 8-6
error handling, 8-11
invoking, 8-1, 8-2
naming conventions, 8-2
status message, displaying, 8-7
worksheet event, invoking from, 8-6
worksheet menu item, 8-2

WorksheetMethod action, 8-2
ActionOptions properties

error handling, 8-11
listed, A-13

actions
ActionOptions properties, A-13
ADF Read-only Table component, A-13
ADF Table component, A-10
Confirmation action, A-15
Dialog action, A-16
properties, A-13
workbook actions, A-16
worksheet actions, A-20

Actions property, A-14
ActionSet action, 8-2
Activate worksheet event, 8-6
Add-Ins, Excel tab, 8-13
ADF bindings filter, 4-2
ADF Button component

inserting, 6-2
properties, A-6

ADF component
ReadOnly property, 9-11
style, applying, 9-4

ADF Desktop Integration List of Values component
dependent, creating, 8-29
DependsOnListID property, 8-29
overview, 6-7
properties, listed, A-4
TreeNodeList subcomponent, 7-19

ADF Desktop Integration Model API
about, H-1
adding library to JDeveloper project, H-2
classes and methods, H-3

ModelHelper class, H-3
temporary row object, H-1

ADF Desktop Integration Tree Node List component
dependent list of values, 8-30, 8-33

ADF Input Text component
inserting, 6-4
properties, A-3

ADF Label component
inserting, 6-3
properties, A-4
string key, retrieving from resource bundle, 9-8

ADF Library Web Application Support, 4-1

Index-2

ADF Output Text component
inserting, 6-6
properties, A-4

ADF Read-only Table component
adding columns, 7-26
creating, 7-25 to 7-26
Excel formula

calculating sum of a column, 8-38
generating values for a column, 8-37

functionality, 7-2
limiting number of rows downloaded, 7-26
properties, A-13
TreeID property, A-13

ADF Read-only Table component column properties,
listed, A-13

ADF Table component
actions, listed, A-10
batch processing, 7-16 to 7-17
cached attributes, clearing values, 7-28
ClearCachedRowAttributes action, 7-29
column properties, A-9
creatting list of values, 7-20
DeleteFlaggedRows action, 7-18
deleting data, 7-14 to 7-16
Download action, 7-8
DownloadForInsert action, 7-9, 7-10
downloading data, 7-7
dynamic column, 7-11, 7-22 to 7-24
error-reporting, 12-5
Excel formula

calculating sum of a column, 8-38
generating values for a column, 8-37

functionality, 7-2
importing data, I-1
Importing data from a non-integrated

worksheet, I-1
inserting data, 7-6
inserting into Excel workbooks, 7-3
limiting number of rows downloaded, 7-26
ModelDrivenColumnComponent

subcomponent, 7-21
page definition file requirements, 7-2
properties, A-6
status reporting, 12-5
supported operations, 7-2
tracking changes, 7-29
TreeID property, 7-8, A-8
TreeNodeList subcomponent, 7-19
Upload action, 7-11, 7-18
upload fails, 7-13
uploading data, 7-10 to 7-14

ADF Table component actions
error-reporting, 12-4
listed, A-10

ADF Table component column properties,
listed, A-9

adfBindings bindings filter, 4-2
adf-desktop-integration-admin-tool.jar

file, D-3, E-3
adf-desktop-integration.jar file

adding to technology scope, 4-2
location, E-1

ADFdi_AbortUploadOnFailure span
element, 7-13

ADFdi_CloseWindow span element, 7-13, 8-17
ADFdi_DownLoadAfterUpload span

element, 7-14
adfdi-client-registry.xml client registry

file, 11-3, 11-5
adfdi-excel-client.dll.config configuration

file, C-3
adfdiExcelDownload filter, 4-3
adfdiExcelDownload download filter, 4-2
adfdiRemote servlet

adding to web application, 4-2
configuration, E-1 to E-7
HTTP filter, adding, E-3
URL pattern, E-2
verifying that it is enabled, C-1

ADFLibraryFilter filter, 4-3
ADFm action, invoking, 8-3
ADFmAction. See ADFm action
administration tool

command-line options, D-4
Excel workbook, D-3
workbook settings, changing, D-4

alert messages
action set, displaying after execution, 8-9
FailureMessage property, 8-10
SuccessMessage property, 8-10

Alert properties, listed, A-14
Annotation property, A-2
application template, 4-2
ApplicationHomeFolder workbook

property, 4-9, 5-10, A-18
attribute control hints, listed, B-4
AttributeNamePrefix property, 7-23
authentication

authenticating an Excel workbook user, 11-1
verifying end-user, C-2

authorization, 11-1

B
batch processing, 7-16 to 7-17
BatchOptions properties, listed, A-6
BatchOptions property, 7-2, 7-4
BatchOptions.StartBatchActionID

property, 7-15
BatchSize property, 7-16, A-6
bindings

binding ID picker, 5-7
bindings palette, 5-4
supported for Oracle ADF Desktop

Integration, 4-4
bindings palette, described, 5-4
branding information, for an Excel workbook, 9-12
BrandingItems workbook property

defined, A-18
described, 9-12

Index-3

C
CachceDataContexts property, A-23
CachedAttributes property

ADF Table component RowData
properties, 8-21

described for use with an ADF Table
component, A-8

described for use with an Excel worksheet, A-23
usage in an ADF Table component, 8-21

caching
clearing values of cached attributes, 7-28
resource bundles, 10-5
sensitive data, 11-6
static data, 15-2

calculated cells, using Excel formulas, 8-37 to 8-39
CellStyleName property, 7-7, A-9, A-13
ChangeIndicatorAttribute property, 12-7
ChangeIndicatorAttributeID property

ADF Table component rows, A-8
worksheet rows, A-23

Class property, A-19
ClearAllData workbook action, A-17
ClearCachedRowAttributes action, 7-29, A-10
ClickActionSet action, 8-2
ClickActionSet property, 6-2
client-side logging, C-6
client-side validation, 12-2
columns

ADF Read-only Table component column
properties, A-13

ADF Table component column properties, A-9
calculating sum of a column, 8-38
generating values from Excel formulas, 8-37

Columns property, 7-7, 7-25
commandMenuItem component, downloading Excel

workbook, 14-5
Commit action binding, 7-4, 7-6
CommitBatchActionID property

ADF Table component, 7-4 to 7-7
batch options for an ADF Table component, 7-16
deleting rows from an ADF Table

component, 7-16
described, A-6

component layout and design on a worksheet, 7-2
ComponentAction action, 8-2
ComponentID property, 8-5, A-2
components palette

described, 5-6
inserting an ADF Output Text component, 6-6

configuration files
adfdi-excel-client.dll.config

configuration file, C-3
j2ee-logging.xml configuration file, C-2

Confirmation action, 8-2, A-15
Confirmation action properties, A-15
control hints, attribute, B-3 to B-4
conversion utility

executable, D-1
executing, 4-8
supported arguments, D-1

convert-adfdi-excel-solution.exe file. See
conversion utility

cookies
web session ID, 11-1

CreateInsert action binding, 7-6
currentRowIndex EL expression property, B-2
currentRowMode EL expression property, B-2
custom upload dialog, 7-13

D
data

ADF Table component, deleting, 7-14 to 7-16
ADF Table component, uploading

from, 7-10 to 7-14
data conflict, managing, 12-6
data control frame

ShareFrame property, 8-19
sharing between an Excel workbook and a web

application, 8-19
data security, 11-6
DataBindings.cpx file in a desktop integration

project, 4-6
dataType attribute control hint, B-4
date format, Excel, 9-3
Deactivate worksheet event, 8-6, A-21
Delete action binding, 7-14
DeleteFlaggedRows action, 7-14, 7-18, A-10
DeleteRowActionID property, 7-15, A-7
DeleteRowEnabled property, 7-15, A-7
dependent list of values, creating, 8-27 to 8-28
DependsOnList property, A-5
DependsOnListID property, 8-29, A-4
deployment descriptor file. See web.xml file
deployment of an Excel workbook, 14-1 to 14-5
design time, 5-1
desktop integration

Java data types, supported, G-1 to G-2
desktop integration module. See Oracle ADF Desktop

Integration module
development environment, setting up, 3-1
development tools

described, 5-1
designer, 5-3
toolbar, 5-2

Dialog action
display options, 8-16
Page property, A-16
ShareFrame property, A-16
Target property, 8-16, 8-18, A-16
Title property, A-16
web page, displaying in Excel Document

Actions, 8-18
web page, displaying in popup

dialog, 8-17 to 8-18
web page, invoking, 8-16

Dialog.Target property, 8-16
disconnected workbooks

action sets, invoking, 8-6
from web application, 15-1 to 15-4

Index-4

DisplayRowErrors action, A-11
DisplayTableErrors action, A-11
DisplayWorksheetErrors worksheet action

described, A-20
usage, 12-3

DoubleClickActionSet action, described, 8-2
Download action, ADF Read-only Table

component, A-13
Download action, ADF Table component, A-11
download filter, 4-2
DownloadFlaggedRows action

described, A-11
usage, 12-6

DownloadForInsert action
described, A-11
EL expressions, evaluating, 7-9
usage, 7-9

DownSync worksheet action, 6-4, A-20
dynamic columns

adding to ADF Table components, 7-22 to 7-24
InsertComponent property, 7-23
specifying header labels, 7-24
specifying syles accroding to data type, 7-24
supporting Insert and Update

operations, 7-23
Update operation, 7-23
UpdateComponent property, 7-23

DynamicColumn property, 7-22, A-9

E
EditOptions workbook action, A-17
EL expressions

currentRowIndex EL expression property, B-2
currentRowMode EL expression property, B-2
DownloadForInsert action, 7-9
dynamic columns, 7-22
error-reporting, 12-2
errors EL expression property, B-2
Excel formula, B-1
Expression Builder, 5-8
guidelines for syntax, B-1 to B-4
hyperlinks, generating dynamic, 8-35 to 8-36
literal values, B-1
readOnly EL expression property, B-2
referencing managed beans, 6-8
resource bundle string keys, B-2
rowCount EL expression property, B-2
styles, applying, 9-5
syntax for a desktop integration project, 4-7
syntax for resource bundles, 10-5
workbook initialization parameters, B-2
worksheet errors, B-2
writing, 5-8

Enabled property, A-14, A-15
error handling using action sets, 8-11
error-reporting

adding detail, 12-6
component actions, using, 12-3
EL expression, using, 12-2

in an integrated Excel workbook, 12-2
errors EL expression property, B-2
Event property, A-21
Events properties

Event property, A-21
InvokeOnceOnly property, A-21
listed, A-21

Events worksheet property, 8-6, A-21
Excel date format, 9-3
Excel Document Actions

value to display web pages, 8-16
web pages, displaying, 8-18

Excel formulas
calculated cells, 8-37 to 8-39
creating columns with values generated by, 8-37
EL expressions, B-1
styles, evaluating EL expressions to apply, 9-5

Excel HYPERLINK function, 8-35, 9-8
Excel OFFSET function, 8-38
Excel SUM function, 8-38
Excel T function, 8-35
Excel workbook

adding a worksheet to integrate with a web
application, 4-11

ADF Table components, inserting, 7-3
administration tool, changing settings, D-4
appearance, configuring, 9-1 to 9-14
associating with page definition files, 4-11
branding information, 9-12
conversion utility, D-1, H-1
creating page definition files, 4-5
databound search form, 8-24
deployment, 14-1 to 14-5
downloading data to ADF Table components, 7-7
downloading from web application using

fileDownloadActionListener
component, 14-5

forms, creating, 8-22 to 8-25
HTTP filter parameters, 14-4
metadata, exporting, C-6
MIME mapping, 4-2
opening for the first time, 4-8
preparing for a desktop integration project, 4-7
publication, 14-2 to 14-3
published, changing at runtime, 9-13
reloading a page definition file, 4-6
search form, creating, 8-22
security settings, 3-3, 14-2
storing in a desktop integration project, 4-7
styles, predefined, 9-2
styles, using, 9-1 to 9-14
supported file formats, 3-2
synchronized with web applications, 8-19
test mode, running in, 13-2
testing, 13-1 to 13-2
troubleshooting, C-1 to C-6
trusted locations, adding web application to, 14-2
version information, 9-12
web pages, displaying, 8-16 to 8-18
web pages, invoking, 14-5

Index-5

Expression Builder, invoking, 5-8

F
FailureActionID property, 7-15, 8-11, A-7, A-13
FailureMessage property, 8-10, A-14
file formats

.xlsm file format, 3-2

.xlsx file format, 3-2
fileDownloadActionListener component to

download Excel workbook, 14-5
filters

adfBindings, 4-2
adfdiExcelDownload, 4-2, 4-3
ADFLibraryFilter, 4-3
bindings filter, 4-2
HTTP filter, E-1

FlagAllRows action, A-11
flagged row, 7-14, 7-17
forms

Excel workbook, creating in, 8-22 to 8-25
search form, 8-22 to 8-25
web application, invoking from, 8-24

form-type component, defined, 6-1
formulas, use of Excel, 8-37 to 8-39
Fusion web applications

application template, 4-2
synchronized with an Excel workbook, 8-19

H
hash code value for metadata tamper-check, 11-3
HeaderLabel property, 7-7, A-9, A-13
HeaderStyleName property, 7-7, A-9, A-13
HTTP filter name property, E-3
HTTP filter parameters for an Excel workbook, 14-4
HTTP filters

adfdiRemote servlet, adding, E-3
parameters, configuring, E-3

HYPERLINK Excel function, 8-35, 9-8
hyperlink, configuring components to display

dynamically generated, 8-35 to 8-36

I
ID property, A-9, A-13
IDAttributeID property, A-24
importing data from a non-integrated Excel

worksheet, I-1
Initialize action, A-12
Insert operation, 7-23
InsertAfterRowActionID property, A-7
InsertBeforeRowActionID property, 7-6, A-7
InsertComponent property, 7-23, A-9
InsertRowEnabled property, 7-5, 7-6, A-7
InsertUsesUpdate property, 7-7, A-10
installation

Oracle ADF Desktop Integration module, for
developers, 3-1 to 3-6

Oracle ADF Desktop Integration module, for end
users, 14-2

integrated Excel workbook, defined, 1-2
internationalization, 10-1 to 10-5
Internet Explorer

proxy settings, 3-4
supported version, 3-2

InvokeOnceOnly property, A-21

J
j2ee-logging.xml configuration file, C-2
.JAR files

adf-desktop-integration-admin-tool.ja
r file, D-3, E-3

adf-desktop-integration.jar file, 4-2,
E-1

resourcebundle.jar file, 4-2
wsclient.jar, 4-2

Java data types supported by desktop
integration, G-1 to G-2

JDEV_HOME, 3-2
JDeveloper project, adding desktop integration, 4-2

L
label attribute control hint, B-4
Label property

described, A-2
evaluating, 6-3
retrieving string key value, 9-8
value, updating, 9-10

labels
Label property

retrieving string key values, 9-8
string key from resource bundle, 9-8

layout of components in Excel workbook, 9-1 to 9-14
Limitations of integrated Excel workbook at

runtime, I-2
LimitBatchSize property, 7-17, A-6
list of values

in ADF Table component, 7-19
list of values, creating dependent, 8-27 to 8-28
List property, A-5
ListID property, 6-7, A-4
literal values in EL expressions, B-1
locales

Excel workbook, 10-1
regional and language options, 9-3

localization
described, 10-1 to 10-5
user-visible strings, 10-1

log files
client-side generation, C-4
client-side logging, C-6
generating, C-2
server-side generation, C-2
server-side logging levels, C-3

login
deferring, 15-2
login mechanism, 11-2
types of authentication, 11-2

Index-6

Login workbook action, 11-1, A-16
Login workbook property, A-18
Logout workbook action, A-16

M
macros, use of in an integrated Excel workbook, 8-39
managed beans, configuring ADF components to

display output, 6-8
mandatory attribute control hint, B-4
MarkAllRowsChanged action, A-12
MarkAllRowsUnchanged action, A-12
menu items

creating, 8-13
separator, 8-14
ToolbarMenu property, 8-13
viewing, 8-13
workbook menu item, creating, 8-14 to 8-15
worksheet menu item, creating, 8-15 to 8-16

MenuItems property, A-22
Message property, A-15
metadata

exporting from Excel workbook, C-6
tamper check, 11-3

Method property, 8-5
MIME mapping for an Excel workbook, 4-2
ModelDrivenColumnComponent

creating, 7-21
support for dependent list of values, 7-22

modes
design, 5-1
test, 5-1

O
offline

functionality available, 15-1
working, 15-1 to 15-4

OFFSET Excel function, 8-38
OKButtonLabel property, A-14
Oracle ADF Desktop Integration client framework.

See Oracle ADF Desktop Integration module
Oracle ADF Desktop Integration Designer

displaying bindings, 4-4
reloading page definition files, 4-6
toolbar, 5-2
workbook properties, 4-9
worksheet properties, 4-11

Oracle ADF Desktop Integration module
deploying to end users, 14-2
development environment, setting up, 3-3
installation, developers, 3-1 to 3-6
installation, end users, 14-2
moving installation, 3-5
removing, 3-5

Oracle ADF Desktop Integration module servlet. See
adfdiRemote servlet

Oracle ADF Model Layer for desktop
integration, 12-1

OutputText property, A-13

P
page definition files

associating with an Excel workbook, 4-11
creating for a desktop integration project, 4-5
EL expression syntax, 4-7
Excel workbooks, 4-4
exposing bindings, 5-4
reloading in an Excel workbook, 4-6
requirements for ADF Table components, 7-2
selecting, 5-11

Page property, A-16
PageDefinition property, 5-11, A-22
Parameters workbook property, A-18
Parameters worksheet property, A-22
pick dialogs

ADF Table component, inserting values, 8-20
ADF Table component, invoking from, 8-20
web page, 8-20

popup dialog, invoking, 8-17 to 8-18
Position property, A-2
predefined style, 9-2
Pre-insert data, 7-9
Project workbook property, 4-9, A-19
properties

action set, A-13
ADF Button component, A-6
ADF Desktop Integration List of Values

component, A-4
ADF Input Text component, A-3
ADF Label component, A-4
ADF Output Text component, A-4
ADF Read-only Table component, A-13
ADF Table component, A-6
BatchOptions properties, 7-12
Confirmation action, A-15
Dialog action, A-16
displaying ADF component properties, 5-6
TreeNodeList subcomponent, A-5
WebPagesFolder workbook property, 4-10,

5-10, 11-3
workbook, 5-3

.properties resource bundle type, 10-5
property inspector

displaying, 5-2
overview, 5-6
property values, validating, C-1

protected web pages, 11-2
ProtectedWebPage workbook property, 4-9,

11-1, A-18, C-2
publishing

changing a published Excel workbook at
runtime, 9-13

Excel workbook, 14-2 to 14-3

R
readOnly attribute control hint, B-4
readOnly EL expression property, B-2
ReadOnly property, 9-11, A-2
regional and language options, 9-3

Index-7

RemoteServletPath workbook property, A-19
Removing personal information, I-2
reserved resource bundle

defined, 10-2
overriding, 10-4
string keys, F-1 to F-3

resource bundles
caching, 10-5
EL expression syntax, 10-5
EL expressions, B-2
override the reserved, 10-4
.properties resource bundle type, 10-5
registering, 10-3
reserved resource bundle, 10-2
Resources property, A-19
retrieving string keys for labels, 9-8
.rts resource bundle type, 10-5
string keys in reserved resource

bundle, F-1 to F-3
supported types, 10-5
working with, 10-1 to 10-5
.xlf resource bundle type, 10-5

resourcebundle.jar file, 4-2
Resources workbook property, 10-2, A-19
RowActions properties

ADF Table component, 7-6
deleting rows in ADF Table component, 7-14
listed, A-7
method action control bindings, 7-2

RowActions.FailureActionID property, 7-12
rowCount EL expression property, B-2
RowData properties

CachedAttributes property, 8-21, A-8, A-23
ChangeIndicatorAttributeID

property, A-8, A-23
RowDownSync action, A-12
RowInconsistentExceptions error

messages, 12-6
RowLimit properties

ADF Read-only Table component, 7-25
ADF Table component, 7-5
description, A-2
usage, 7-26

RowLimit property, A-8
RowLimit.Enabled property, 7-27
RowLimit.MaxRows property, 7-27
RowLimit.WarningMessage property, 7-27
RowUpSync action, A-12
.rts resource bundle type, 10-5

S
search forms

creating, 8-22 to 8-25
databound in an Excel workbook, 8-24
Excel workbook, in, 8-22
invoking from a web application, 8-24

security
data security, 11-6
Excel application, configuration settings, 14-2

Excel’s security features, 11-6
securing an Excel workbook, 11-1
trusted locations, 14-2

security settings, 3-3
SelectActionSet action set

usage, 8-2
worksheet menu item, 8-2

separator, menu item, 8-14
server data context, reetablishing between

sessions, 15-3 to 15-4
ServerContext properties

CachceDataContexts property, A-23
IDAttributeID property, A-24

ServerContext property, A-23
server-side logging levels, C-3
server-side validation, 12-1
servlet

adfdiRemote servlet, 4-2, C-1
servlet class property, E-2
servlet name property, E-2

setup.exe file, 3-2
ShareFrame property, 8-19, A-16
Shutdown worksheet event, 8-6, A-21
span elements

ADFdi_AbortUploadOnFailure, 7-13
ADFdi_CloseWindow, 7-13, 8-17
ADFdi_DownLoadAfterUpload, 7-14

StartBatchActionID property, 7-17, A-6
Startup worksheet event, 8-6, A-21
Status action set property, 8-7
status message, displaying during action set

execution, 8-7
Status properties

Enabled, A-15
Message, A-15
Title, A-15

string keys
label, associating with, 9-8
reserved resource bundle, F-1 to F-3

StyleName property, A-3
styles

_ADFDI_FormBottomStyle, 9-2
_ADFDI_FormDoubleClickCellStyle, 9-2
_ADFDI_FormTopStyle, 9-2
_ADFDI_HeaderStyle, 9-2
_ADFDI_LabelStyle, 9-2
_ADFDI_OutputTextStyle, 9-2
_ADFDI_ReadOnlyTableStyle, 9-2
_ADFDI_TableCellROStyle, 9-2
_ADFDI_TableCellStyle, 9-2
_ADFDI_TableChangedColumnStyle, 9-2
_ADFDI_TableDoubleClickCellStyle, 9-2
_ADFDI_TableFlagColumnStyle, 9-2
_ADFDI_TriangleHeaderStyle, 9-2
_AFDI_InputTextStyle, 9-2
applying, 9-4
EL expression, applying using, 9-5
Excel date format, 9-3
Excel workbook, configuring, 9-1 to 9-14
locale sensitive, applying, 10-2

Index-8

Oracle ADF component properties, 9-2
predefined, listed, 9-2
usability, 9-10

SuccessActionID property, 7-16, 8-11, A-14
SuccessMessage property, 8-10, A-15
SUM Excel function, 8-38

T
T Excel function, 8-35
table-type component, defined, 7-2
tamper check

configuring, 11-3
disabling, 11-4
hash code value, 11-3

Target property, 8-18, A-16
Task Pane. See Excel Document Actions
technology scope

ADF Library Web Application Support, 4-1
Oracle ADF Desktop Integration module, 4-1

Temporary Row Object, H-1
testing an integrated Excel workbook, 13-1 to 13-2
third-party software, required, 3-3
Title property, A-15, A-16
ToolbarMenu workbook property, 8-13, A-19
tracking changes in an ADF Table component, 7-29
TreeID property, 7-8, A-8, A-13
TreeNodeID property, 7-23
TreeNodeList subcomponent

overview, A-5
properties, listed, A-5

troubleshooting an Excel workbook, C-1 to C-6
trusted locations, 14-2

U
UnflagAllRows action, A-12
UniqueAttribute property, A-8
Update operation, 7-23
updateable attribute control hint, B-4
UpdateComponent property, 7-7, 7-23, A-10
UpdateRowActionID property, A-7
UpdateRowEnabled property, A-7
upload

creating a custom upload dialog, 7-13
data from an ADF Table component, 7-10 to 7-14
invoking Upload action, 7-11
Upload action, 7-18
upload failure, 7-13

Upload action, A-12
UpSync worksheet action, 6-4, A-20
URL pattern for adfdiRemote servlet, E-2
usability, apply styles for, 9-10

V
validation

client-side validation, 12-2
Oracle ADF Model Layer, 12-1
property values by property inspector, C-1
server-side validation, 12-1

Value property, A-3
version information for an integrated Excel

workbook, 9-12
ViewAboutDialog workbook action, 9-12, A-17
ViewController project, 4-2
Visible property, A-10

W
web applications

deploying Excel workbook with, 14-3
desktop integration, verifying support, C-1
using workbook while disconnected, 15-1 to 15-4

web browser control, 11-2
web pages

display options, popup dialog, 8-16
displaying in Excel Document Actions, 8-18
Excel workbook, invoking, 14-5
Excel workbook, invoking from, 8-16 to 8-18
invoking, 5-9
pick dialog, inserting values from, 8-20
popup dialog, displaying, 8-17 to 8-18
protected, 11-2

web session ID, cookie, 11-1
WebAppRoot workbook property, 4-9, A-20, C-2
WEB-INF directory, location of, 11-3
WebPagesFolder workbook property, 4-10, 5-10,

11-3, A-20
web.xml file

configuration, E-1 to E-7
example entries, E-6
modifying, 4-2

WindowSize workbook property, A-18
workbook actions

listed, A-16
Login workbook action, 11-1

workbook initialization parameters, EL
expressions, B-2

workbook menu items, creating, 8-14 to 8-15
workbook properties

ApplicationHomeFolder, 4-9, 5-10, 11-3
listed, A-18
Project, 4-9
ProtectedWebPage, 4-9, 11-1
reset WorkbookID, 11-3
WebAppRoot, 4-9
WebPagesFolder, 4-10, 5-10, 11-3
WorkbookID, 5-2

WorkbookID workbook property, 5-2, 11-3, A-20
WorkbookMenuItems property, 8-14, A-20
worksheet actions

DownSync, 6-4
listed, A-20
UpSync, 6-4

worksheet error, retrieving using EL
expressions, B-2

worksheet events
action set, 8-2
action set, invoking an, 8-6
Activate, 8-6

Index-9

Deactivate, 8-6
listed, A-21
Shutdown, 8-6
Startup, 8-6

worksheet menu item, creating, 8-15 to 8-16
worksheet properties

editing, 4-11
listed, A-21
PageDefinition property, 5-11

WorksheetMenuItem Array property, 8-14
WorksheetMethod action in action sets, 8-2
wsclient.jar file, 4-2

X
.xlf resource bundle type, 10-5
.xlsm file format, 3-2
.xlsx file format, 3-2

Index-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Oracle ADF Desktop Integration
	1.1 About the Oracle ADF Desktop Integration Module
	1.2 About Oracle ADF Desktop Integration with Microsoft Excel
	1.2.1 Overview of Creating an Integrated Excel Workbook
	1.2.2 The Advantages of Integrating Excel with a Fusion Web Application

	2 Introduction to the Oracle ADF Desktop Integration Sample Application
	2.1 Introduction to the Master Price List Module
	2.2 Setting Up and Executing the Master Price List Module
	2.3 Overview of the Integrated Excel Workbooks in the Master Price List Module
	2.3.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
	2.3.2 Download Rows of Data About Product Pricing
	2.3.3 Simple Search for Products in the Workbooks
	2.3.4 Advanced Search for Products in the Edit Price List Workbook
	2.3.5 Modify Product Pricing Information in the Edit Price List Workbook
	2.3.6 Upload Modified Product Information to the Fusion Web Application

	3 Setting Up Your Development Environment
	3.1 Introduction to Setting Up Your Development Environment
	3.2 Required Oracle ADF Modules and Third-Party Software
	3.3 Enabling Microsoft .NET Programmability Support
	3.4 Allowing Excel to Run an Integrated Excel Workbook
	3.5 Setting Up the Oracle ADF Desktop Integration Client Framework
	3.6 Upgrading the Oracle ADF Desktop Integration Client Framework
	3.7 Removing the Oracle ADF Desktop Integration Client Framework
	3.8 Using the Oracle ADF Desktop Integration Module on a System with Multiple Instances of JDeveloper
	3.8.1 What Happens When an Integrated Workbook is Opened in a New Version of Oracle ADF Desktop Integration Module

	3.9 Localizing the Setup of the Oracle ADF Desktop Integration Client Framework

	4 Preparing Your Integrated Excel Workbook
	4.1 Introduction to Preparing Your Integrated Excel Workbooks
	4.2 Adding Oracle ADF Desktop Integration to a Fusion Web Application
	4.2.1 How to Add Desktop Integration to Your JDeveloper Project
	4.2.2 What Happens When You Add Desktop Integration to Your JDeveloper Project

	4.3 Working with Page Definition Files for an Integrated Excel Workbook
	4.3.1 How to Create a Page Definition File for an Integrated Excel Workbook
	4.3.2 What Happens When You Create a Page Definition File
	4.3.3 Reloading a Page Definition File in an Excel Workbook
	4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel Workbook

	4.4 Preparing Your Workbook
	4.4.1 How to Run the Conversion Utility
	4.4.2 How to Open an Excel Workbook for the First Time
	4.4.3 How to Add Additional Worksheets to an Integrated Excel Workbook

	5 Getting Started with the Development Tools
	5.1 Introduction to the Development Tools
	5.2 Using the Bindings Palette
	5.3 Using the Components Palette
	5.4 Using the Property Inspector
	5.5 Using the Binding ID Picker
	5.6 Using the Expression Builder
	5.7 Using the Web Page Picker
	5.8 Using the File System Folder Picker
	5.9 Using the Page Definition Picker
	5.10 Using the Collection Editors

	6 Working with Oracle ADF Desktop Integration Form-type Components
	6.1 Introduction to Oracle ADF Desktop Integration Form-type Components
	6.2 Inserting an ADF Button Component
	6.3 Inserting an ADF Label Component
	6.4 Inserting an ADF Input Text Component
	6.5 Inserting an ADF Output Text Component
	6.6 Inserting an ADF Desktop Integration List of Values Component
	6.7 Displaying Output from a Managed Bean in an ADF Component
	6.7.1 How to Display Output from a Managed Bean
	6.7.2 What Happens at Runtime When an ADF Component Displays Output from a Managed Bean

	6.8 Displaying Concatenated or Calculated Data in Components
	6.8.1 How to Configure a Component to Display Calculated Data

	7 Working with Oracle ADF Desktop Integration Table-type Components
	7.1 Introduction to Oracle ADF Desktop Integration Table-type Components
	7.2 Page Definition Requirements for an ADF Table Component
	7.3 Inserting an ADF Table Component into an Excel Worksheet
	7.3.1 How to Add a Column in an ADF Table Component

	7.4 Configuring an ADF Table Component to Update Existing Data
	7.4.1 How to Configure an ADF Table Component to Update Data
	7.4.2 What Happens at Runtime When an ADF Table Component Updates Data

	7.5 Configuring an ADF Table Component to Insert Data
	7.5.1 How to Configure an ADF Table Component to Insert Data Using a View Object’s Operations

	7.6 Configuring Oracle ADF Component to Download Data to an ADF Table Component
	7.6.1 How to Configure an Oracle ADF Component to Download Data to an ADF Table Component
	7.6.2 What Happens at Runtime When an ADF Table Component Downloads Data

	7.7 Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component
	7.7.1 How to Configure a Worksheet to Download Pre-Insert Data to an ADF Table Component
	7.7.2 What Happens at Runtime When an ADF Table Component Downloads Pre-Insert Data

	7.8 Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component
	7.8.1 How to Configure an Oracle ADF Component to Upload Data from an ADF Table Component
	7.8.2 What Happens at Runtime When an ADF Table Component Uploads Data
	7.8.3 What Happens at Runtime When an Upload Fails
	7.8.4 How to Create a Custom Upload Dialog
	7.8.5 What Happens at Runtime When a Custom Upload Dialog Appears

	7.9 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application
	7.9.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web Application
	7.9.2 What Happens at Runtime When an ADF Table Component Deletes Rows in a Fusion Web Application

	7.10 Batch Processing in an ADF Table Component
	7.10.1 Configuring Batch Options for an ADF Table Component
	7.10.2 Row Flagging in an ADF Table Component

	7.11 Special Columns in the ADF Table Component
	7.12 Creating a List of Values in an ADF Table Component Column
	7.12.1 How to Create a List of Values in an ADF Table Component Column
	7.12.2 What Happens at Runtime When a Column Renders a List of Values

	7.13 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component
	7.14 Adding a Dynamic Column to Your ADF Table Component
	7.14.1 How to Configure a Dynamic Column
	7.14.2 What Happens at Runtime When Data Is Downloaded or Uploaded
	7.14.3 How to Specify Header Labels for Dynamic Columns
	7.14.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type

	7.15 Creating an ADF Read-Only Table Component
	7.15.1 How to Insert an ADF Read-only Table Component
	7.15.2 How to Manually Add a Column to the ADF Read-only Table Component

	7.16 Limiting the Number of Rows Your Table-Type Component Downloads
	7.16.1 How to Limit the Number of Rows a Component Downloads
	7.16.2 What Happens at Runtime When You Limit the Number of Rows a Component Downloads

	7.17 Clearing the Values of Cached Attributes in an ADF Table Component
	7.17.1 How to Clear the Values of Cached Attributes in an ADF Table Component
	7.17.2 What Happens at Runtime When the ADF Table Component Clears Cached Values

	7.18 Tracking Changes in an ADF Table Component

	8 Adding Interactivity to Your Integrated Excel Workbook
	8.1 Introduction to Adding Interactivity to an Integrated Excel Workbook
	8.2 Using Action Sets
	8.2.1 How to Invoke an ADFm Action in an Action Set
	8.2.2 How to Invoke Component Actions in an Action Set
	8.2.3 What You May Need to Know About an Action Set Invoking a Component Action
	8.2.4 How to Invoke an Action Set from a Worksheet Event
	8.2.5 How to Display a Status Message While an Action Set Executes
	8.2.6 What Happens at Runtime When an Action Set Displays a Status Message
	8.2.7 How to Provide an Alert After the Invocation of an Action Set
	8.2.8 What Happens at Runtime When an Action Set Provides an Alert
	8.2.9 How to Configure Error Handling for an Action Set
	8.2.10 How to Invoke a Confirmation Action in an Action Set
	8.2.11 What Happens at Runtime When an Action Set Provides a Confirmation

	8.3 Creating Menu Items
	8.3.1 How to Configure a Workbook Menu Item
	8.3.2 How to Configure a Worksheet Menu Item

	8.4 Displaying Web Pages from a Fusion Web Application
	8.4.1 How to Display a Web Page in a Popup Dialog
	8.4.2 How to Display a Web Page in Excel’s Document Actions
	8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web Application

	8.5 Inserting Values in an ADF Table Component from a Web Page Pick Dialog
	8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook
	8.6.1 How to Create a Simple Search Form in an Integrated Excel Workbook
	8.6.2 How to Create an Advanced Search Form in an Integrated Excel Workbook

	8.7 Adding a Form to an Integrated Excel Workbook
	8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook
	8.8.1 How to Create a Dependent List of Values in an Excel Worksheet
	8.8.2 What Happens at Runtime When a Dependent List of Values Renders in an Excel Worksheet
	8.8.3 How to Create a Dependent List of Values in an ADF Table Component’s Columns
	8.8.4 What Happens at Runtime When a Dependent List of Values Renders in an ADF Table Component’s Columns
	8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table Component Column
	8.8.6 What Happens at Runtime When a Dependent List of Values Renders in an Excel Worksheet and an ADF Table Component Column

	8.9 Configuring a Cell to Display a Dynamically Generated Hyperlink
	8.9.1 How to Configure a Cell to Display a Dynamically Generated Hyperlink
	8.9.2 What Happens at Runtime When a Cell Displays Dynamically Generated Hyperlink

	8.10 Using Calculated Cells in an Integrated Excel Workbook
	8.10.1 How to Create a Column That Displays Values Generated by an Excel Formula
	8.10.2 What Happens at Runtime When a Column Displays Values Generated by an Excel Formula
	8.10.3 How to Calculate the Sum of a Table-Type Component Column
	8.10.4 What Happens at Runtime When Excel Calculates the Sum of a Table-Type Component Column

	8.11 Using Macros in an Integrated Excel Workbook

	9 Configuring the Appearance of an Integrated Excel Workbook
	9.1 Introduction to Configuring the Appearance of an Integrated Excel Workbook
	9.2 Working with Styles
	9.2.1 How to Apply a Style to an Oracle ADF Component
	9.2.2 What Happens at Runtime When a Style Is Applied to an Oracle ADF Component

	9.3 Applying Styles Dynamically Using EL Expressions
	9.3.1 What Happens at Runtime When an EL Expression Is Evaluated
	9.3.2 How to Write an EL Expression That Applies a Style at Runtime
	9.3.3 What You May Need to Know About EL Expressions That Apply Styles
	9.3.4 How to Add a Hyperlink in an Integrated Excel Workbook

	9.4 Using Labels in an Integrated Excel Workbook
	9.5 Using Styles to Make Integrated Excel Workbooks Usable
	9.6 Branding Your Integrated Excel Workbook
	9.6.1 How to Brand an Integrated Excel Workbook
	9.6.2 What Happens at Runtime to the Branding Items in an Integrated Excel Workbook

	9.7 Changing an Integrated Excel Workbook at Runtime

	10 Internationalizing Your Integrated Excel Workbook
	10.1 Introduction to Internationalizing Your Integrated Excel Workbook
	10.2 Using Resource Bundles in an Integrated Excel Workbook
	10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
	10.2.2 How to Replace String Key Values from the Reserved Resource Bundle
	10.2.3 How to Override the Reserved Resource Bundle
	10.2.4 What Happens at Runtime When You Override the Reserved Resource Bundle
	10.2.5 What You May Need to Know About Resource Bundles

	10.3 Localization in Oracle ADF Desktop Integration

	11 Securing Your Integrated Excel Workbook
	11.1 Introduction to Securing Your Integrated Excel Workbook
	11.2 Authenticating the Excel Workbook User
	11.2.1 How a Fusion Web Application Determines If an Excel Workbook Has a Web Session ID
	11.2.2 What Happens at Runtime When the Login Mechanism Is Invoked
	11.2.3 What Happens at Runtime When the Logout Mechanism Is Invoked

	11.3 Checking the Integrity of an Integrated Excel Workbook’s Metadata
	11.3.1 How to Reset the Workbook ID
	11.3.2 How to Disable the Metadata Tamper-Check in the Fusion Web Application
	11.3.3 How to Allow Missing Entries in the Oracle ADF Desktop Integration Client Registry
	11.3.4 What Happens When the Metadata Tamper-Check is Performed

	11.4 What You May Need to Know About Securing an Integrated Excel Workbook

	12 Adding Validation to an Integrated Excel Workbook
	12.1 Introduction to Adding Validation to an Integrated Excel Workbook
	12.2 Providing Server-Side Validation for an Integrated Excel Workbook
	12.3 Providing Client-Side Validation for an Integrated Excel Workbook
	12.4 Error Reporting in an Integrated Excel Workbook
	12.5 Providing a Row-by-Row Status on an ADF Table Component
	12.6 Adding Detail to Error Messages in an Integrated Excel Workbook
	12.7 Handling Data Conflicts When Uploading Data from a Workbook
	12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
	12.7.2 What Happens at Runtime When You Configure a Workbook to Handle Data Conflicts

	13 Testing Your Integrated Excel Workbook
	13.1 Introduction to Testing Your Integrated Excel Workbook
	13.2 Testing Your Fusion Web Application
	13.3 Testing Your Integrated Excel Workbook

	14 Deploying Your Integrated Excel Workbook
	14.1 Introduction to Deploying Your Integrated Excel Workbook
	14.2 Making the Oracle ADF Desktop Integration Client Framework Available to End Users
	14.3 Configuring Security Settings for Excel
	14.4 Publishing Your Integrated Excel Workbook
	14.4.1 How to Publish an Integrated Excel Workbook
	14.4.2 What Happens When You Publish an Integrated Excel Workbook

	14.5 Deploying a Published Workbook with Your Fusion Web Application
	14.6 Passing Parameter Values from a Fusion Web Application Page to a Workbook
	14.6.1 How to Configure the Fusion Web Application’s Page to Pass Parameters
	14.6.2 How to Configure the Page Definition File for the Worksheet to Receive Parameters
	14.6.3 How to Configure Properties in the Integrated Excel Workbook to Receive Parameters
	14.6.4 What Happens at Runtime When a Fusion Web Application Page Passes Parameters to an Integrated Excel Workbook

	15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode
	15.1 Introduction to Disconnected Workbooks
	15.2 Deferring Login for an Integrated Excel Workbook
	15.3 Restore Server Data Context Between Sessions
	15.3.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
	15.3.2 What Happens at Runtime When an Integrated Excel Workbook Restores Server Data Context

	15.4 Caching Lists of Values for Use in Disconnected Mode

	A Oracle ADF Desktop Integration Component Properties and Actions
	A.1 Frequently Used Properties in the Oracle ADF Desktop Integration Module
	A.2 ADF Input Text Component Properties
	A.3 ADF Output Text Component Properties
	A.4 ADF Label Component Properties
	A.5 ADF Desktop Integration List of Values Component Properties
	A.6 TreeNodeList Subcomponent Properties
	A.7 ModelDrivenColumnComponent Subcomponent Properties
	A.8 ADF Button Component Properties
	A.9 ADF Table Component Properties and Actions
	A.9.1 ADF Table Component Properties
	A.9.2 ADF Table Component Column Properties
	A.9.3 ADF Table Component Actions

	A.10 ADF Read-only Table Component Properties and Actions
	A.11 Action Set Properties
	A.11.1 Confirmation Action Properties
	A.11.2 Dialog Action Properties

	A.12 Workbook Actions and Properties
	A.13 Worksheet Actions and Properties

	B Oracle ADF Desktop Integration EL Expressions
	B.1 Guidelines for Creating EL Expressions
	B.2 EL Syntax for Oracle ADF Desktop Integration Components
	B.3 Attribute Control Hints in the Oracle ADF Desktop Integration Module

	C Troubleshooting an Integrated Excel Workbook
	C.1 Verifying That Your Fusion Web Application Supports Desktop Integration
	C.2 Verifying End-User Authentication for Integrated Excel Workbooks
	C.3 Generating Log Files for an Integrated Excel Workbook
	C.3.1 About Server-Side Logging
	C.3.2 About Client-Side Logging
	C.3.2.1 How to Generate Log Files using a Configuration File
	C.3.2.2 How to Configure Logging Using User Environment Variables
	C.3.2.3 What You May Need to Know About adfdi-common Object

	C.4 Exporting Excel Workbook Metadata
	C.5 Common Desktop Integration Problems

	D Using Workbook Management Tools
	D.1 Using the Workbook Conversion Utility
	D.1.1 Configuring JDeveloper To Run Workbook Conversion Utility

	D.2 Using the Workbook Administration Tool

	E Desktop Integration Settings in the Web Application Deployment Descriptor
	E.1 Configuring the Oracle ADF Desktop Integration Module Servlet
	E.2 Configuring the ADF Desktop Integration Excel Download Filter
	E.3 Examples in a Deployment Descriptor File

	F String Keys in the Reserved Resource Bundle
	G Java Data Types Supported By Oracle ADF Desktop Integration
	H Using ADF Desktop Integration Model API
	H.1 About Temporary Row Object
	H.2 Introduction to ADF Desktop Integration Model API
	H.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

	H.3 ADF Desktop Integration Model API Classes and Methods
	H.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
	H.3.1.1 The getAdfdiTempChildRow Method
	H.3.1.2 The getAdfdiTempRowForView Method
	H.3.1.3 The getChildViewDef Method

	I End User Actions
	I.1 Importing Data From a Non-Integrated Excel Worksheet
	I.2 Removing Personal Information
	I.3 Limitations of Integrated Excel Workbook at Runtime

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

