ORACLE

Oracle® Database
Performance Tuning Guide

11gRelease 2 (11.2)
E16638-05

April 2011

Oracle Database Performance Tuning Guide, 11g Release 2 (11.2)
E16638-05

Copyright © 2000, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Immanuel Chan, Lance Ashdown

Contributors: Aditya Agrawal, Hermann Baer, Vladimir Barriere, Mehul Bastawala, Eric Belden, Pete
Belknap, Supiti Buranawatanachoke, Sunil Chakkappen, Maria Colgan, Benoit Dageville, Dinesh Das, Karl
Dias, Kurt Engeleiter, Marcus Fallen, Mike Feng, Leonidas Galanis, Ray Glasstone, Prabhaker Gongloor,
Kiran Goyal, Cecilia Grant, Connie Dialeris Green, Shivani Gupta, Karl Haas, Bill Hodak, Andrew
Holdsworth, Hakan Jacobsson, Shantanu Joshi, Ameet Kini, Sergey Koltakov, Vivekanada Kolla, Paul Lane,
Sue K. Lee, Herve Lejeune, Ilya Listvinsky, Bryn Llewellyn, George Lumpkin, Mughees Minhas, Gary Ngai,
Mark Ramacher, Yair Sarig, Uri Shaft, Vishwanath Sreeraman, Vinay Srihari, Randy Urbano, Amir Valiani,
Venkateshwaran Venkataramani, Yujun Wang, Graham Wood, Khaled Yagoub, Mohamed Zait, Mohamed
Ziauddin

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PIEIACE ...t XV
AUAIEIICE ...ttt ettt ettt e et e s te et e s beesaesaaesseebsesbesssesseeseesteeseebeeabesseensesrsenbesreensenreans XV
Documentation AcCesSIDIlity ..o XV
Related DOCUIMENTEScceiviiiiiiiiieieieieteiete ettt se st e b et et et eseeseesassassessessessassessassessessassassasessessenses XVi
CONVENTIONS ..vvieitieiieiieesieeteesteeteesteessteesseessteeseesssesssaesssasssessssaassaassseasseesseessseesssesssessseenseessseesssessseessesans XVi

What's New in Oracle Database Performance Tuning Guide?cconneronnrenne. XVii
Oracle Database 11¢ Release 2 (11.2.0.2) New Features in Oracle Database Performance............ XVi
Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Database Performance........... XViii

Part1 Performance Tuning

1 Performance Tuning Overview

Introduction to Performance TUNINgGc.ccccccoiiiiiiiiiiiiiiic s 11
Performance PIAnmingccccceecerriiiiriinieereeeeeeses et 1-1
INStANCe TUNING ..voviviiiieiiicicicict s 1-1
SOQL TUNINE ..ttt es et s s 1-4

Introduction to Performance Tuning Features and Toolscccccoceviviniiiiiniiiiciiiine, 1-4
Automatic Performance Tuning Features ..., 1-5
Additional Oracle Database TOOIS..........ccccccuvririririiiiiinirr e 1-6

Part Il Performance Planning

2 Designing and Developing for Performance

Oracle MethodOIOYccciiiiiiiiiiiiiiiiiiic e 2-1
Understanding Investment Options.............ccccooviiniiiiiiiiii 2-1
Understanding Scalability ... 2-2
What is SCalability?cccouviiiiiiiiiiiiii e 2-2
System SCalability........ccooiiiiiiiiiieie 2-3
Factors Preventing Scalability ..o 2-4
SYSEEIM ATCRILECEUTEceeeiiieiciiiiciccecc ettt 2-5
Hardware and Software COMPONENLSccuoiiueiiiiiiiieiecec e 2-5
Configuring the Right System Architecture for Your Requirements.............ccccccevirininiiinininnnee. 2-7
Application Design PrincCiples..........coooioiiioiiiiiiiieee e 2-9

Simplicity In Application Design..........ccccoiiiiiiiiiiiiii s 2-10

Data MOAELNGoouiiiiiiii e 2-10
Table and INdeX DESIZN.......ccccuiuiuiiiiiiiiiiieicceceeee e 2-10
USING VIEWS ..ottt bbb 2-12
SQL Execution Efficiency ... 2-13
Implementing the APPLCAtIONcccccuiuiiiiiiiiiiiiiccceeeece e 2-14
Trends in Application Development.............cooiviiiiiiiiiicicicce 2-16
Workload Testing, Modeling, and Implementationcccocccovvnninnnn 2-16
SIZING DIAta ..o s 2-17
Estimating Workloads ..o 2-17
Application MOAElNGccccvuiiiiiiiiiiiiiiiiii s 2-18
Testing, Debugging, and Validating a Design............ccccceveiiiiiiiiiiiiiiiccccs 2-18
Deploying New Applications ..o 2-19
ROIOUE Srate@Iesc.cueuiviiiiiiiiiiiiiiiiiir s 2-19
Performance CheckIList..........ccoiiiiiiiiiiiiiii s 2-20

3 Performance Improvement Methods

The Oracle Performance Improvement Method ..o 3-1
Steps in The Oracle Performance Improvement Method............cccoeiiiiiiniiiiiiiiiiiiiins 3-2
A Sample Decision Process for Performance Conceptual Modeling.............ccccooeiniiriiinnnnnn. 3-3
Top Ten Mistakes Found in Oracle SYStEmSc.cccccucueueuriiiiiiinirererrrrrrrer e 3-4
Emergency Performance Methods ... 3-6
Steps in the Emergency Performance Method..........ccccceiiiiiiiiiininii, 3-6

Part Il Optimizing Instance Performance

4 Configuring a Database for Performance

Performance Considerations for Initial Instance Configuration................ccccoooeiiiinniinnn 4-1
Initialization Parameters ... 4-1
Configuring Undo SPace.........cccueieiiiiiiiiiii 4-3
Sizing Redo LOg FIlEsccccoiiiiiiiiiiiiiiiirc e 4-3
Creating Subsequent Tablespaces.............ccoviiiiniiiiiininii s 4-4

Creating and Maintaining Tables for Optimal Performance.............cccccooeviiiiiiinninneennnn, 4-5
Table COMPTESSIONoviiiiiiiiiciic s 4-5
Reclaiming Unused SPaCE..........cccuiiiiiiiiiiiiiiiiiiiic e 4-6
INAeXiNg Datacooouiueieiiiicice 4-7

Performance Considerations for Shared Servers ..o 4-7
Identifying Contention Using the Dispatcher-Specific VIeWsccccooiiviiiiiiniiinnnn, 4-8
Identifying Contention for Shared Servers...........cccooiioiiiiiiiicc e 4-9

5 Automatic Performance Statistics

Overview of Data Gathering..............cccooiiiiiiiiii s 5-1
Database STAtISTICSc.c.erirveuereuiirieieieirereie ettt ettt 5-2
Operating System StatiStiCs ..o 5-4
Interpreting Statistics........coveueiiiiieice 5-7

Overview of the Automatic Workload Repository ..., 5-8

SNAPSNOLS ..ot 5-9

BaSELINEScooviiiiiiiiiii s 5-9
Adaptive TRIEShOLASc.cciuiiiiiiiicecce e ees 5-10
Space CONSUMPHIONcvoviviiiiiiiiicciccc s 5-12
Managing the Automatic Workload Repositoryccccovvviiiiiiininiicic, 5-12
Managing SNapshots.........ccciiiiiiiiii s 5-13
Managing Baselinesccocueuiiurieiiiiiici i 5-14
Managing Baseline Templates...........ccccccceiiiiiiiiiiiiiiiiiiis 5-17
Transporting Automatic Workload Repository Data ..., 5-19
Using Automatic Workload Repository VIEWScccoiiiieiiiniciiicceec e 5-21
Generating Automatic Workload Repository Reportscooceueieiiiiiiiniiieieiiccccce, 5-22
Generating Automatic Workload Repository Compare Periods Reportsccccccvvevernnee. 5-28
Generating Active Session History Reportsooeueiiiiiiiiicecc 5-34
Using Active Session History Reports ... 5-38

6 Automatic Performance Diagnhostics

Overview of the Automatic Database Diagnostic Monitorccccocooiiiiiiiiiniininn, 6-1
ADDM ANALYSIS ...ttt 6-2
Using ADDM with Oracle Real Application CIUSters ..., 6-3
ADDM Analysis ReSULLScccccuiiiiiiiiiiiiiiiiiiciccc s 6-4
Reviewing ADDM Analysis Results: EXample........ccccooovviiiiiiinnnnnrnre e 6-5

Setting Up ADDM ...ttt 6-5

Diagnosing Database Performance Problems with ADDMcccccoovviniinnnnninnine, 6-6
Running ADDM in Database Modeccooiuiiiniiiininiiiins 6-7
Running ADDM in Instance Mode..........ccoruiiiiiiiiiiieccc e 6-7
Running ADDM in Partial Mode..........cccccoviiiiiiiiininiiiiiiiiiecns 6-8
Displaying an ADDM RepPOTIt......ccccooviiiiiiiiiiiiiiiieiciiiciice e 6-8

Views with ADDM INformationcccoovviiiiiniii s 6-9

7 Configuring and Using Memory

Understanding Memory Allocation ISSUESccccociviiiiiniiiiiiiiiiices 7-1
Oracle Memory Cachesccccciiiiiiiiiiiiiic e 7-2
Automatic Memory Management ..o 7-2
Automatic Shared Memory Managementccccueiiiieieiiiiiiieiiiicce s 7-2
Dynamically Changing Cache SizZes.........cccccovvviiiiiininnininiiiinic e 7-3
Application CoNSIAerations........c.ccccueueieuiueurieiriiicieieieieeeeeeeeeeeeeer e 7-5
Operating System Memory USe..........ccuoiiuiiiiiriiecei i 7-5
Iteration During Configuration............c.ccociiiiiiiiiiiiiceeeeeee e 7-6

Configuring and Using the Buffer Cache................cccccccooiniiii, 7-6
Using the Buffer Cache Effectively ... 7-7
Sizing the BUffer Cachec.ccociiiiiiiiiccc e 7-7
Interpreting and Using the Buffer Cache Advisory Statisticscccoovvvivinniiiniiinnnnn, 7-10
Considering Multiple Buffer POOLS...........c.cooriiiiiii 7-11
Buffer Pool Data in VEDB_CACHE_ADVICE ...ttt eeeeeeeeevee s 7-13
Buffer Pool Hit RatiOS.......cccoiviiiiiiiiiiiiiiiii s e 7-13
Determining Which Segments Have Many Buffers in the Pool...........c.ccoooiiiin, 7-13

vi

KEEP POOL....ccittiieiiieitetetetrtetrte ettt ettt sttt ae 7-15

RECYCLE POOL ...ttt 7-15
Configuring and Using the Shared Pool and Large Poolccoeiiinniiiniiin 7-16
Shared Pool CONCEPLS.........ccviuiiiiiiiiiiiiiicc s 7-17
Using the Shared Pool EffectiVely ... 7-19
Sizing the Shared POOL.........ccccoiiiiiiiiceeee e 7-22
Interpreting Shared Pool Statisticsccoeeioiiuriiiiiii 7-27
Using the Large POOL ... 7-28
Using CURSOR_SPACE_FOR_TIME........cccccocoiinniiiiiiiiicnsssscnnnes 7-31
Caching SeSSION CUISOTScviuiueieieiiici ittt et 7-31
Configuring the Reserved POOL...........cccccciiiiiiiiiniiiiiiiiiic s 7-33
Keeping Large Objects to Prevent AgINgccccoveeiiiiiiiiiiiiccs 7-35
Sharing Cursors for Existing Applications............cocccueueiiiicieiiiiciceccce 7-36
Maintaining CoNNECHIONS...........cciviiiiiiiiiii s 7-38
Configuring and Using the Redo Log Buffer................cccocooiiiniiiniiccc 7-38
Sizing the Log Buffer ... 7-39
Log Buffer StatistiCs ... 7-39
PGA Memory Managementcccooooviiiiiiiiiciiieecec et 7-39
Configuring Automatic PGA MeMOIYccooeuiiiiiieiiiiieiece e 7-41
Configuring OLAP_PAGE_POOL_SIZEcccccecoiiiiiiiiiiriiiiiccceeceeessieeeeees 7-53
Managing the Server and Client Result Caches.............cccccooviiiiiiiiiiii 7-53
Managing the Server Result Cache...........cccccoviiiviiiiiiiiiiiniiiiiiis 7-54
Managing the Client Result Cache ... 7-57
Specifying Queries for Result Cachingccoooiiiiiii e, 7-59
Requirements for the Result Cache ..o 7-62
Accessing Result Cache INformation.............ccccceiiiiiiiiiiiniieecceeeeeeee s 7-63

I/O Configuration and Design

ADOUL T/O .o 8-1
I/O Configuration ..o 8-2
Lay Out the Files Using Operating System or Hardware Striping..........ccccocooeeeiiiiciiininnnen. 8-2
Manually Distributing I/ Occccciiiiiiiiiiiiiiiiirrrnre e 8-5
When to Separate FIles ... 8-5
Three Sample Configurations...........coceueieiiiieiiiicicie e 8-7
Oracle Managed FIESccccciiiiiiiiiiiccccc e 8-8
Choosing Data BlOCK SiZeccccoiiiiiiiiiiiiiiiiiiii s 8-9
I/O Calibration Inside the Database..............ccocoiiiiiiiiiiii e 8-10
Prerequisites for I/O CalibIation...........ccccceiiiiiiiiiiiiiiiiicciiecieeeee s 8-10
Running I/O CalibIationcccocececuiuccieiieieieeieieeieeteieieeieieteeeie e seseseees 8-11
I/O Calibration with the Oracle Orion Calibration Tool...............ccocooeiiiiiiiiiiiins 8-12
Introduction to the Oracle Orion Calibration Toolcccccoviciiiiiiiiiiccceeeeee 8-12
Getting Started With Orion ... 8-14
Orion INPut FIleSoouiiiiei 8-15
Orion Parameters ... s 8-15
Orion OUtPUL FIleS ... s 8-19
Orion TroubleShOOtNgcccccoiiiiiiiiiiiiii s 8-23

10

Managing Operating System Resources

Understanding Operating System Performance Issues..............cccccoevvnnniiinnnnninnne, 9-1
Using Operating System Caches............ccoiiiiiiiiiiicicccceceee e enenes 9-2
MemOTY USAZE......ceviiiiiiieiieiiiite s 9-3
Using Operating System Resource Managers............cocoeueueueueirieiiiiiiicicicicieciceeee e 9-3

Resolving Operating System ISSUESccoiiiiiiiiiiiiiiiiii s 9-4
Performance Hints on UNIX-Based Systems...........cccoooueueiiiciiiiiicicc e 9-5
Performance Hints on Windows SyStemscccccvvvviiiiiiiiniiiiiccccs 9-5
Performance Hints on HP OpenVIMS SYStEMSc.ccovueurivirirerirerirrrrrrerreseresee e 9-5

Understanding CPU ..o 9-5

ResolvVINg CPU ISSUES.........ccoiiiiiiiiiiiiiiii e 9-7
Finding and Tuning CPU UtiliZation...........cccooeiiiiiiiiiiiiiiiiiccc e, 9-7
Managing CPU Resources Using Oracle Database Resource Managerc.cccococeueieinnnen. 9-9
Managing CPU Resources Using Instance Cagingcccceoeueveueieieieieieeiceeiecceeeeee 9-10

Instance Tuning Using Performance Views

Instance TUNIng StePs..........cooiiiiiiiiiii s 10-1
Define the ProDIem ... 10-2
Examine the Host SyStem ..o 10-3
Examine the Oracle Database StatiStics ..o 10-6
Implement and Measure Change............ccovvvrrerrrninrirrrrre s 10-11

Interpreting Oracle Database Statisticsccoooiiiiiiiiiiii 10-11
EXamine LOoad ... 10-11
Using Wait Event Statistics to Drill Down to Bottlenecks............ccccooiiiiiiinniinnnn 10-12
Table of Wait Events and Potential Causes...........cccocovvviviviininininiiiiiccne 10-14
Additional STAtISTICScvvveveueuiiirictci e 10-15

Wait Events Statistics............cocooviiiiiiiiii 10-17
buffer bUSY Waits.......c.oocuoii 10-19
db file scattered read. ... 10-21
db file sequential read ... 10-23
direct path read and direct path read temp ..o 10-24
direct path write and direct path Write temp........ccooeioiiviiiiiiiciccccecceeeccceeee 10-25
enquete (ENq:) WISccoviviiiiiiiiiiiccc 10-26
events in wait class Other ... 10-28
free bUffer WaitS........ccocvviiiiiiiiii s 10-28
Idle Wait EVENLSc.cuoiiiiiiiciiciciicccc s 10-30
LAECH @VEIES ... 10-31
log file paralle]l WITEEc.ciiiiuiiicceccceee e 10-36
library cache Pin ... s 10-36
library cache 10CK........ccciiiiiiiiiii 10-36
1O DULFET SPACE.......eeiiiiiiicciccete ettt 10-36
10g file SWILCHoviee s 10-36
LOG fIl€ SYIIC ..ot 10-37
FADINS IPC FOPLY . cvvivivitiiicictcicte s 10-37
SQLXINEE EVEINESeeiiiieieciecieeteete ettt ettt e s v e eae e ae s e e st e srsesbeessesseessenseeseessesreseseensenees 10-38

Real-Time SQL MONItOIing. ...t 10-39

Vii

SQL Plan MONGTOTIIIEc.ovieeieiiiiicieiiciie it 10-40

Parallel Execution MONItOTINGcoviiiiiiiiiiicieicic e 10-40
Generating the SQL MONItOr REPOTItc.ceueuriiiiiiiriririiicirrerr e 10-40
Enabling and Disabling SQL MONItOTINGcccceviiiueiiiiiiieeiicicie e 10-43
Tuning Instance Recovery Performance: Fast-Start Fault Recoverycccooooviiiinnnne. 10-43
About Instance RECOVETY ..o 10-43
Configuring the Duration of Cache Recovery: FAST_START _MTTR_TARGET 10-44
Tuning FAST_START_MTTR_TARGET and Using MTTR AdViSOrcccccoeviiiniiiinnnnnes 10-47

Part IV Optimizing SQL Statements

11

12

viii

The Query Optimizer

Overview of the Query Optimizer ... 11-1
Optimizer OPerations.. ... s 11-1
Components of the Query Optimizer ... 11-3
Bind Variable PeeKingcccccocviiiiiiiiiiiiiiiiiiiiiic s 11-8

Overview of Optimizer Access Pathsccoioiniiniiiniiiineeeeeeeeee e 11-13
Full Table SCANSc.coviviiiiiiiiiiiicicic s 11-13
ROWIA SCANS ..ottt 11-15
INAEX SCANS ..ottt 11-15
CIUSTET ACCESS ...ttt 11-21
HASI ACCESS ... 11-21
Sample Table SCANSccoiiiiiiiiciicc s 11-21
How the Query Optimizer Chooses an Access Path.............cccoooiii 11-21

OVEIVIEW Of JOIMS ..cueviiiiiiiiiriiere ettt ettt et ebe e st eene 11-22
How the Query Optimizer Executes Join Statementsc.cccoooreiiiiiiiiiiic 11-22
How the Query Optimizer Chooses Execution Plans for Joins..........ccccceeveieiiiiiricicicnnen. 11-23
Nested LOOP JOINScuoviiiiiiiiiiiiiiciiccrrr s 11-23
HASI JOINS ..ttt st b e s bt s bt et ettt be b e et et entene 11-26
SOt METEZE JOINS ...ttt 11-27
CaTrtESIAN JOINS .uvevvereieieeieieeeeieetesteetesteete e eteseesseseessessaessenseassesseassessesssessesssessesssensesssensennsenns 11-28
OULET JOIMIS ..ttt ettt h bbbt s b e be st e et et et eat et e bt eaeebesbesaeneensentene 11-28

Reading and Understanding Execution Plans...............cccocociiiiiiiiis 11-32
Overview of EXPLAIN PLAN......ccccoviiiiiiii s e 11-32
Steps in the Execution Plan...........co 11-34

Controlling Optimizer Behavior ... 11-34
Enabling Query Optimizer Featurescccovviiiiniiiiiniiiiiiiccccccnes 11-36
Choosing an Optimizer GOal..........ccoiiriiiiiiciic e 11-36

Using EXPLAIN PLAN

Understanding EXPLAIN PLAN ... 12-1
How Execution Plans Can Change.............coooiiiiiiiiiiiceci 12-2
Minimizing TRIOW-AWAYccccciiiiiiiiiiiiii s 12-2
Looking Beyond Execution PIansccccccociiiiiiiiiiiicecceececceeeeeeeeeeeeeeeeee s 12-3
EXPLAIN PLAN ReSTIICHONSvcuieiiictciiiietctcct s 12-4

The PLAN_TABLE Output Tablecccocoiiiiiiiiiiiccccceeeeeeee e 12-4

13

Running EXPLAIN PLAN ... 12-5

Identifying Statements for EXPLAIN PLANccccooiiiiiiiics 12-5
Specifying Different Tables for EXPLAIN PLANcccocoiiiiiiiiieceeeeeeeeeeeeeeeeees 12-5
Displaying PLAN_TABLE OUtput.........cccccocoviiiiiiiiiiiiiiiiicccc s 12-5
Customizing PLAN_TABLE OUtPUL.......ccccoiiiiiiiiiiiicccc s 12-6
Reading EXPLAIN PLAN Output.......ccccocciiiiiiiiiiii s 12-7
Viewing Parallel Execution with EXPLAIN PLAN..........ccccccoviiiiniiccs 12-8
Viewing Parallel Queries with EXPLAIN PLANccccooiiiiiiiiiccccs 12-9
Viewing Bitmap Indexes with EXPLAIN PLANccccccooininiiiiiices 12-9
Viewing Result Cache with EXPLAIN PLAN........cccooiiiiiiiices 12-10
Viewing Partitioned Objects with EXPLAIN PLANccccooiiniiiinniinnccccccae 12-11
Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN.................... 12-11
Examples of Pruning Information with Composite Partitioned Objects..........ccccceurueee.. 12-12
Examples of Partial Partition-Wise JOINScccccoiiiiiiiiiiiiiiicccccccccccccne 12-14
Examples of Full Partition-wise JOINSccooeviviiiiiiiiiiiccns 12-15
Examples of INLIST ITERATOR and EXPLAIN PLANccccccoviiiiiiiiiiicccnes 12-16
Example of Domain Indexes and EXPLAIN PLANccccccovinniininiiiciiccccccenes 12-17
PLAN_TABLE COIUMIScooviiiiiiiiiiiiiiiir s sssnis 12-17
Managing Optimizer Statistics
Overview of Optimizer StatiStics. ..o 13-1
Managing Automatic Optimizer Statistics Collection..............cccccovvviiiiiniiiniiii, 13-2
Enabling and Disabling Automatic Optimizer Statistics Collectioncccccceevvviiriniinnnen. 13-2
Considerations When Gathering StatistiCs...........cocoeuiieeeeiieieeeeeeecceeeeceeeeeeeeeeeees 13-3
Gathering Statistics Manually ... 13-5
Gathering Statistics with DBMS_STATS Procedures.............cccocvvivivniiiiininnniniiiniininnnes 13-5
Setting Preferences for Manual Statistics Gathering............ccccccovecieiiiincccnincccccecenenes 13-13
When to Gather StatistiCs........cccooviiiiiiii 13-14
Comparing Statistics with DBMS_STATS Functions............coceeieiicinioiiciccieecceecce, 13-15
System Statistics ..o 13-15
Workload StatiStiCsccoviiiiiiiiiiii s 13-16
Noworkload StatistiCs.........cocviiiiiiiiiiiiiicc e 13-17
Managing Statistics..........cccocooiiiiiiiiiii s 13-18
Pending StatistiCsccoeueiicieiiiicie e 13-18
Restoring Previous Versions of StatiStics ... 13-19
Exporting and Importing Statistics..........ccoeieieieiiieiiic 13-20
Restoring Statistics Versus Importing or Exporting Statistics..........cccoevieiiiiiiiiiiiinnnn, 13-21
Locking Statistics for a Table 0r SChema.........ccccevuviriiiiiiirnrr e 13-21
Setting StatiStiCS.....oviueueieiiecee e s 13-21
Handling Missing StatistiCsccccoeiuiiiiiiiniiiiiiiiiiiiii s 13-22
Estimating Statistics with Dynamic Sampling...........cccccoviiini, 13-22
Purpose of Dynamic Sampling...........ccceueiiiiieiiiiiicicee s 13-22
Dynamic Sampling CONCEPLSccccuiviiiiiiiiiiiiiiiiiiiiii e 13-23
Setting Dynamic Sampling Levels..........ccccociviiiiniiiiiiiiiccnes 13-24
Viewing Statistics ..o 13-26
Statistics on Tables, Indexes and COIUMMNS..........cooveeiieivieeeiiee et eere e ene e 13-26
Viewing HiStOZTaMSovoviuiuiiieicicieetc et 13-27

14

15

16

Using Indexes and Clusters

Understanding Index Performance.............ccccooviviniiiiiiiniiiiiss 14-1
Tuning the Logical SErUCTUTe ..o s 14-1
Index Tuning using the SQLAccess AdViSOT ..o, 14-2
Choosing Columns and Expressions t0 IndeX ..o, 14-3
Choosing Composite INAEXES..........ccoiuiiiniiiiiiiiiiii s 14-3
Writing Statements That Use IndeXes...........cooruiiiiiiiiiiiiiic 14-4
Writing Statements That Avoid Using IndeXes.............cooooiiiiiiiieiiiiiiiceccc, 14-5
Re-creating INAeXES.........ccciiiiiiiiiiiiiiiii s 14-5
Compacting INA@XEScccurieiiiicicie e 14-6
Using Nonunique Indexes to Enforce Uniquenessc.coooeoeueieiicnininicceeecceeccen, 14-6
Using Enabled Novalidated Constraints...........ccceeiiieiiniiiciniecceeeeeeeeeeees 14-6

Using Function-based Indexes for Performance..............ccccocovvviinininiinnni, 14-7

Using Partitioned Indexes for Performance.................ccccooviiiiininiiiinniniicncccs 14-8

Using Index-Organized Tables for Performance..............ccccccociiiniiiiniiiniiiccces 14-8

Using Bitmap Indexes for Performance.............cccccoooviiiniiiinniiiiis 14-9

Using Bitmap Join Indexes for Performancecccocooiiiniiniiinnniniicncces 14-9

Using Domain Indexes for Performance ... 14-10

Using Table Clusters for Performance ..o 14-10

Using Hash Clusters for Performance.............cccccoooiviiiiiiiiiiiiiiccccccccccceeennes 14-11

Using SQL Plan Management

Overview of SQL Plan Baselinescccocooieiiiiriiiiiiieieieieecetet ettt sttt et sbe b e 15-1
Purpose of SQL Plan Baselines.........cccccoicuiiiiiiiiiiiiecceceieceeeeee e 15-1
Architecture of SQL Plan Baselinesccceouiieeriiieeriiriieiecieieeeeee et eveste e sve e saeeenas 15-2

Managing SQL Plan Baselines ..o 15-3
Capturing SQL Plan Baselines..........ccccccceuiiiiimiiiiieieicieieieieeeeteeeieeeeeeseneieeeeeeeseseeeeseeseeseseeeees 15-3
Selecting SQL Plan Baselines............coieuiiiiiiiieiiicie 15-5
Evolving SQL Plan Baselines...........ccccciiiiiiiiiiiiiiiiiice s 15-6

Using SQL Plan Baselines with SQL Tuning AdVisor.............cccooiiiniiniiice, 15-7

Using Fixed SQL Plan Baselinescccococoviiiiiiiiiniiiiiiiccs 15-8

Displaying SQL Plan Baselines...........cccccooooiiiiiiiiiiiniiiniincececreeeneee et 15-8

SQL Management Baseccccooiviiiiiiiiiiii 15-10
Disk SPace USAZEccuevvieiieiiiiicieie ittt e 15-10
PUIGING POLICY ..ottt 15-10
SQL Management Base Configuration Parameters............cccoocvviviniiiiiininiininnn, 15-11

Importing and Exporting SQL Plan Baselines..............ccccooiiiiiins 15-11

Migrating Stored Outlines to SQL Plan Baselinesccccccoiiiiiinniinniiins 15-12
Overview of Stored Outline Migration............cooeeueiiirieiiiiicee s 15-12
Preparing for Stored Outline Migrationcccoeioerieiiiiiieiiccec e 15-17
Migrating Outlines to Utilize SQL Plan Management Featurescccocoevvennnnnccnnee 15-18
Migrating Outlines to Preserve Stored Outline Behavior ..., 15-19
Performing Follow-Up Tasks After Stored Outline Migrationcccccccevvvvinnnnnninnes 15-20

SQL Tuning Overview
Introduction t0 SQL TUNINGccoiiiiiiiiiiiii s 16-1

17

G0als fOr TUNINGcoiiiiiiiiic et 16-1

Reduce the Workload ... 16-2
Balance the Workload.........ccviiiiiiiii e 16-2
Parallelize the Workload..........ccccceiiiiiiiiiiiiiiiiiiiiiicc s 16-2
Identifying High-Load SOQL............cccooiiiiiiic e 16-2
Identifying Resource-Intensive SQL ... 16-2
Gathering Data on the SQL Identifiedcccooiiiiiiii 16-4
Automatic SQL Tuning Features ..o 16-5
ADDM...iiiiiiiii s 16-5
SQL TUNING AdVISOTviiiiiiiiiiiciete s 16-5
SQL TUNINE SELS ..ottt 16-5
SOL ACCESS AQVISOT....uicieiieeieiietesieeteseetesteetesseetesseestesseessesseessesseessesseessesssessesseessesseessesssessensees 16-5
Developing Efficient SQL Statementscccccoeviiiiiiiiiiiiii 16-5
Verifying Optimizer StatistiCscocovvviiiiiiiiiiiiiiiiiiic s 16-6
Reviewing the EXecution Plan............iiiis 16-6
Restructuring the SQL Statements..............c.oooiiiiiiiic 16-7
Controlling the Access Path and Join Order with Hintscccooeviiiiiiiii, 16-9
Restructuring the INdeXes ... 16-12
Modifying or Disabling Triggers and Constraints...........c.coooceeieioicicieiiccceecceeee, 16-12
Restructuring the Data ..o 16-12
Maintaining Execution Plans Over Time.........c.cccooiiiiiiiiiiiccc 16-13
Visiting Data as Few Times as Possibleccccocviiiiiiiiii 16-13
Building SQL Test Cases.........cccoiiiiiiriiiriiieieieieeteereeeteree ettt sttt 16-14
Creating @ Test Case........occueiiicieice s 16-15
Automatic SQL Tuning
Overview of the Automatic Tuning Optimizer ..., 17-1
Statistics ANALYSIS......ccueiiiiiieiiiiciee e 17-2
SQL PrOfilINg ... 17-2
ACCeSS Path ANALYSIS ... 17-2
SQL Structure ANALYSISccoiiueiiiiicie e 17-3
Alternative Plan ANalySsis ..o 17-3
Managing the Automatic SQL Tuning AdvViSor ... 17-5
How Automatic SQL Tuning WOrKS........c.coooiiiiiiiiiiic 17-5
Enabling and Disabling Automatic SQL Tuning.........ccccccevvvivivininvniiinircirrrcceeeees 17-6
Configuring Automatic SQL TUNING.......ccccovviiiiiiiiiiiiiii s 17-7
Viewing Automatic SQL Tuning Reports............ooouiuiiiiiiiiiiiccc 17-8
Tuning Reactively with SQL Tuning AdViSor ..., 17-9
INPUE SOUICES ...t 17-9
TUNING OPtIONS. ..ottt 17-10
AdVISOT OULPUL ..ot 17-10
Running SQL Tuning AdViSOrccciiiiiiiiiiiic 17-11
Managing SOL Tuning Setscccooiiiiiiiiii s 17-15
Creating a SQL TUNING Setcccoiiiviiiiiiiiiiiicii s 17-17
Loading a SQL TUNING Set.......ccoeiiiiiiiiiiici s 17-17
Displaying the Contents of a SQL Tuning Setcccoeueiiiriiiiiiiciec e 17-17
Modifying a SQL TUNING Set......c.cceeururiiiiiriiiiiiicirreceerrreerr s 17-18

xi

18

19

20

Xii

Transporting a SQL Tuning Set.........ccoooiiirioiiii 17-18

Dropping a SQL TUNINgG Setccoveiiiiiiiiiiiiii s 17-19
Additional Operations on SQL Tuning Sets............cocvoiriiiniiiniiiiiicccccereccrceeeenenes 17-19
Managing SQL Profiles............ccocooiiiiiiiiiiiiiiii e 17-20
OVerview Of SQL PrOfIlEScuevuieiiiiieiiieeteseeet ettt ettt be s be s e sreesaesreenns 17-20
Accepting a SQL Profilec.ccoveiiiiiiriiicerrer e 17-24
Altering @ SQL Profilec.ooooiiiiiiii s 17-25
Dropping a SQL Profile........cccccoiiiiiiiiiiiiiiiiiiiiiin s 17-26
Transporting @ SQL Profile.........cccccceiiiiiiniiiiieeccereeerere s 17-26
SOL TUNING VIEWSooviiiiiiiiiiiietcc ettt bene e 17-27

SQL Access Advisor

Overview 0f SQL AcCeSS AdVISOT.......ccoceeviiiiiiieieieeeeeet ettt ettt ae e eae e sse s e e s e ssesesssessennes 18-1
Overview of Using SQL Access AdVISOTcccccoviiiiiiiiiiiiininiiiiiiinns 18-3
Using SOL Access AdVISOT ... 18-5
Steps for Using SQL ACCeSS AAVISOT......ccueuiiurieiiiiicieie et 18-5
Privileges Needed to Use SQL Access AdVISOTcceueuerieiiiicicieieiceieie e 18-6
Setting Up Tasks and Templates..........ccccocuiiiimiiiiiiicieccceeeeeeeeeeseeeeeeeeeeeeeeeeseeeeseeees 18-6
SQL Access AdvisOr WOTKIOAScc.ecvevuiiiiiiiiieiieteieeeee ettt ste st et eaaesre e sveennas 18-8
Working with Recommendations............ccccciiiiiiiiiiiiiiis 18-9
Performing a QUIicCk TUNE......cccceeuiiiiiiiiiiiiircrrr e 18-21
Managing TasKS........ccceueuiiueieiiicie e 18-22
Using SQL Access Advisor CONStANtScccccuiviiiiiiiiiiiiiiiiiiiicces 18-23
Examples of Using SQL Access AAVISOTccovuimiiiiiiiiiiiiiiiiiiiisssscesssssesssesns 18-23
Tuning Materialized Views for Fast Refresh and Query Rewriteccooooviiin 18-28
DBMS_ADVISOR. TUNE_MVIEW Procedure..........ccccouviiiniiiniiiiiiiiiiciicecesscennes 18-28

Using Optimizer Hints

Overview of Optimizer Hints ..o 19-1
TYPES Of HINES ..ot 19-1
HiInts by CateZOrycucveviiiicieiececi e 19-2

SPecifying HINES ..o 19-8
Specifying a Full Set Of HINtSc.ccooiiiiiiiiiiiccecceceeee s 19-8
Specifying a Query Block in @ Hint ..o 19-8
Specifying Global Table HInts.........ccccoiiiiiiiiiiiiiicccccccccccccceccee e 19-10
Specifying Complex Index HINtSc.ccoceiiiiiiiiniirrre e 19-11

Using Hints With VIEWS ... 19-12
Hints and CompleX VIEWSccouviiiiiiiiiiieteccc e 19-13
Hints and Mergeable VIEWScccccoviiiiiiiiiiiiiiiicc s 19-13
Hints and Nonmergeable VIEWS..........ccoooiiiiiiiii 19-14

Using Plan Stability

Using Plan Stability to Preserve Execution Plans.............cccccccooiiiinies 20-1
Using Hints with Plan Stability ... 20-2
STOTING OULLNES. ...ttt 20-3
Enabling Plan Stability ... 20-3

Using Supplied Packages to Manage Stored Outlinesoooeueieiiiiiiiiiiniiie, 20-3

Creating OULHNESooviii e 20-4
Using Stored OULHNEScoiiuimiiiiiieiciceeeeecte ettt eees 20-5
Viewing Outline Data........coccueiiiiiiiiiic 20-6
Moving Outline Tables..........cccccciiiiiiiiiiiiiiiiii s 20-6
Using Plan Stability with Query Optimizer Upgrades.............cccoeiiinniiinniiiiiie, 20-8
Moving from RBO to the Query Optimizercooooueiiiiiiiiiiiicc e, 20-8
Moving to a New Oracle Release under the Query Optimizerccccooooreiiiicniniciccnnnnn. 20-9
21 Using Application Tracing Tools
End to End Application Tracing ... 21-1
Enabling and Disabling Statistic Gathering for End to End Tracing.........cccccccecvvevvvrrnncnne. 21-2
Viewing Gathered Statistics for End to End Application Tracing.........c.c.cocoeeveivicieiiinnenennn. 21-3
Enabling and Disabling for End-to-End Tracing...........ccccceieiiiiiinniiiiiiiiiine, 21-4
Viewing Enabled Traces for End to End Tracing ..o 21-6
Using the trcsess ULItY ..o 21-6
SYNLAX O tTCSESS ...ttt s 21-7
Sample OUEPUL Of tICSESScueuuiuiuiiiiiiiieiiieieiceceiete ettt seeees 21-7
Understanding SQL Trace and TKPROFcccccccoooviiiiiiiiiis 21-8
Understanding the SQL Trace Facilityccooiiiiiiiiiiiiiiiiiccce 21-8
Understanding TKPROF ... s 21-9
Using the SQL Trace Facility and TKPROFc.ccccccooiiiiiiiiiiiis 21-9
Step 1: Setting Initialization Parameters for Trace File Managementcccccccvuvirininnnne. 21-9
Step 2: Enabling the SQL Trace Facility ..o 21-11
Step 3: Formatting Trace Files with TKPROFcccccoooiiiiiiiic 21-12
Step 4: Interpreting TKPROF Output.......cccovviiiiiiiiiiiiiiiiiiccccccnes 21-15
Step 5: Storing SQL Trace Facility Statisticscooeeueiiiicieiiiicc e, 21-20
Avoiding Pitfalls in TKPROF Interpretation.............ccccccooiiiniiniiiiiccccnes 21-22
Avoiding the Argument TIapcccocvvviriiiiniiiiii e 21-22
Avoiding the Read Consistency Trapccococoeueviiirieieiicieiccc 21-22
Avoiding the Schema Trap ... 21-23
Avoiding the Time TTap ... 21-24
Sample TKPROF OUtpUL.......ccccocoviiiiiiiiiiiiiiiiicc e 21-24
Sample TKPROF Header.........cccccoooiiiiiiiiiiiiiiiiiiiiiiissnes 21-24
Sample TKPROF BOAYcccooouviiiiiiiiiiiiiiici s 21-25
Sample TKPROF SUMMATYcooviuriiiiiicieieicieieeieie st 21-27
Glossary
Index

Xiii

Xiv

Audience

Preface

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Database Performance Tuning Guide is intended for database administrators
(DBAs) who are responsible for the operation, maintenance, and performance of
Oracle Database. This guide describes how to use Oracle Database performance tools
in the command-line interface to optimize database performance and tune SQL
statements. This guide also describes performance best practices for creating an initial
database and includes performance-related reference information.

See Also: Oracle Database 2 Day + Performance Tuning Guide to learn
how to use Oracle Enterprise Manager to tune database performance

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at ht t p: / / www. or acl e. conf accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

XV

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit ht t p: / / www. or acl e. conf support/cont act. ht m or visit
http://ww. oracl e. com’ accessi bi | i ty/support. htnl if you are hearing
impaired.

Related Documents

Before reading this guide, you should be familiar with the following manuals:
» Oracle Database Concepts

s Oracle Database 2 Day DBA

s Oracle Database Advanced Application Developer's Guide

s Oracle Database Administrator's Guide

To learn how to use Oracle Enterprise Manager to tune the performance of Oracle
Database, see Oracle Database 2 Day + Performance Tuning Guide.

To learn how to tune data warehouse environments, see Oracle Database Data
Warehousing Guide.

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option during an Oracle Database
installation. To learn how to install and use these schemas, see Oracle Database Sample
Schemas.

To learn about Oracle Database error messages, see Oracle Database Error Messages.
Oracle Database error message documentation is only available in HTML. If you are
accessing the error message documentation on the Oracle Documentation CD, you can
browse the error messages by range. After you find the specific range, use your
browser's find feature to locate the specific message. When connected to the Internet,
you can search for a specific error message using the error message search feature of
the Oracle online documentation.

Conventions

XVi

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New In Oracle Database Performance

Tuning Guide?

This section describes new performance tuning features of Oracle Database 11g
Release 2 (11.2) and provides pointers to additional information. The features and
enhancements described in this section comprise the overall effort to optimize
database performance.

For a summary of all new features for Oracle Database 11g Release 2 (11.2), see Oracle
Database New Features Guide.

Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

Resource Manager enhancements for parallel statement queuing

You can use Resource Manager to control the order of statements in a parallel
statement queue. For example, you can ensure that high-priority statements spend
less time in the queue. Also, you can use a directive to prevent one consumer
group from monopolizing all of the parallel servers, and to specify the maximum
time in seconds that a parallel statement can wait to be launched.

For more information, see "Managing CPU Resources Using Oracle Database
Resource Manager" on page 9-9 and Oracle Database VLDB and Partitioning Guide.

Resource Manager enhancements for CPU utilization limit

You can use Resource Manager to limit the CPU consumption of a consumer
group. This feature restricts the CPU consumption of low-priority sessions and can
help provide more consistent performance for the workload in a consumer group.

For more information, see "Managing CPU Resources Using Oracle Database
Resource Manager" on page 9-9.

New package for Automatic SQL Tuning

The DBMS_AUTO_SQLTUNE package is the new interface for managing the
Automatic SQL Tuning task. Unlike the SQL Tuning Advisor package
DBMS_SQLTUNE, which requires ADVI SOR privileges, DBM5_AUTO_SQLTUNE
requires the DBA role.

For more information, see "Configuring Automatic SQL Tuning" on page 17-7.

Oracle Orion I/0O Calibration Tool Documentation

XVii

Oracle Orion is a tool for predicting the performance of an Oracle database
without having to install Oracle or create a database. Unlike other I/O calibration
tools, Oracle Orion is expressly designed for simulating Oracle database 1/0O
workloads using the same 1/O software stack as Oracle. Orion can also simulate
the effect of striping performed by Oracle Automatic Storage Management.

For more information, see "I/O Calibration with the Oracle Orion Calibration
Tool" on page 8-12.

Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

XViii

New Automatic Workload Repository (AWR) views

AWR supports several new historical views, including
DBA_HI ST_DB_CACHE_ADVI CE and DBA_HI ST_| OSTAT_DETAI L.

For more information, see "Using Automatic Workload Repository Views" on
page 5-21.

New Automatic Workload Repository reports

New AWR reports and AWR Compare Periods reports have been added for Oracle
Real Application Clusters (Oracle RAC).

For more information, see "Generating Automatic Workload Repository Reports"
on page 5-22 and "Generating Automatic Workload Repository Compare Periods
Reports" on page 5-28.

Table annotation support for the client result cache

The client result cache supports table annotations.

For more information, see "Using Result Cache Table Annotations" on page 7-61.
Enhancement to the RESULT _CACHE annotation for PL/SQL functions

In Oracle Database 11g Release 1 (11.1), PL/SQL functions that performed queries
referencing annotated tables required the RELI ES_ONclause. This clause has been
deprecated and is no longer required.

Hints specifying parallelism at the statement level

The scope of the parallel hints has been extended to include the statement level.
For more information, see "Hints for Parallel Execution" on page 19-5.
In-Memory Parallel Execution

When using parallel query, you can configure the database to use the database
buffer cache instead of performing direct reads into the PGA for a SQL statement.
This configuration may be appropriate when database servers have a large
amount of memory. Also, an Oracle Real Applications Cluster (Oracle RAC)
database can aggregate the size of the buffer cache of all nodes, thereby caching
larger objects and caching more queries.

For more information, see "Using the Buffer Cache Effectively" on page 7-7.
Hints for online application upgrades

The online application upgrade hints suggest how to handle conflicting | NSERT
and UPDATE operations when performing an online application upgrade using

edition-based redefinition. For more information, see "Hints for Online
Application Upgrade" on page 19-4.

SQL Tuning Advisor enhancements

This release includes the following enhancements to SQL Tuning Advisor:

While tuning a SQL statement, SQL Tuning Advisor searches real-time and
historical performance data for alternative execution plans for the statement. If
plans other than the original plan exist, then SQL Tuning Advisor reports an
alternative plan finding. See "Alternative Plan Analysis" on page 17-3.

You can transport a SQL tuning set to any database created in Oracle Database
10g (Release 2) or later. This technique is useful when using SQL Performance
Analyzer to tune regressions on a test database. See "Transporting a SQL
Tuning Set" on page 17-18.

Sometimes SQL Tuning Advisor may recommend accepting a profile that uses
the Automatic Degree of Parallelism (Auto DOP) feature. A parallel query
profile is only recommended when the original plan is serial and when
parallel execution can significantly reduce the elapsed time for a long-running
query. See "SQL Profile Recommendations" on page 17-21.

Migrating stored outlines to SQL plan baselines

Oracle Database enables you to safely migrate from stored outlines to SQL plan
baselines. After the migration, you can maintain the same plan stability you had
using stored outlines while being able to utilize the more advanced features
provided by the SQL Plan Management framework. For more information, see
"Migrating Stored Outlines to SQL Plan Baselines" on page 15-12.

Xix

XX

Part |

Performance Tuning

Part I provides an introduction and overview of performance tuning.
The chapter in this part is:

» Chapter 1, "Performance Tuning Overview"

1

Performance Tuning Overview

This chapter provides an introduction to performance tuning and contains the
following sections:

Introduction to Performance Tuning

Introduction to Performance Tuning Features and Tools

Introduction to Performance Tuning

This guide provides information about tuning Oracle Database for performance.
Topics discussed in this guide include:

Performance Planning
Instance Tuning
SQL Tuning

See Also: Oracle Database 2 Day + Performance Tuning Guide to learn
how to use Oracle Enterprise Manager to tune database performance

Performance Planning

You should complete Part 1I, "Performance Planning" before proceeding to other parts
of this guide. Based on years of designing and performance experience, Oracle has
designed a performance methodology. This part describes activities that can
dramatically improve system performance and contains the following topics:

Instance Tuning

Understanding Investment Options
Understanding Scalability

System Architecture

Application Design Principles

Workload Testing, Modeling, and Implementation
Deploying New Applications

Part III, "Optimizing Instance Performance" discusses the factors involved in the
tuning and optimizing of an Oracle database instance.

When considering instance tuning, take care in the initial design of the database to
avoid bottlenecks that could lead to performance problems. In addition, you must
consider:

Performance Tuning Overview 1-1

Introduction to Performance Tuning

s Allocating memory to database structures
s Determining I/O requirements of different parts of the database
s Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you must monitor the
database as it is running to check for performance-related problems.

Performance Principles

Performance tuning requires a different, although related, method to the initial
configuration of a system. Configuring a system involves allocating resources in an
ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the
appropriate changes to reduce or eliminate the effect of that bottleneck. Usually,
tuning is performed reactively, either while the system is in preproduction or after it is
live.

Baselines

The most effective way to tune is to have an established performance baseline that you
can use for comparison if a performance issue arises. Most database administrators
(DBAs) know their system well and can easily identify peak usage periods. For
example, the peak periods could be between 10.00am and 12.00pm and also between
1.30pm and 3.00pm. This could include a batch window of 12.00am midnight to 6am.

It is important to identify these peak periods at the site and install a monitoring tool
that gathers performance data for those high-load times. Optimally, data gathering
should be configured from when the application is in its initial trial phase during the
QA cycle. Otherwise, this should be configured when the system is first in production.

Ideally, baseline data gathered should include the following:

= Application statistics (transaction volumes, response time)
= Database statistics

= Operating system statistics

s Disk I/O statistics

= Network statistics

In the Automatic Workload Repository, baselines are identified by a range of snapshots
that are preserved for future comparisons. See "Overview of the Automatic Workload
Repository” on page 5-8.

The Symptoms and the Problems

A common pitfall in performance tuning is to mistake the symptoms of a problem for
the actual problem itself. It is important to recognize that many performance statistics
indicate the symptoms, and that identifying the symptom is not sufficient data to
implement a remedy. For example:

= Slow physical I/O

Generally, this is caused by poorly-configured disks. However, it could also be
caused by a significant amount of unnecessary physical I/O on those disks issued
by poorly-tuned SQL.

s Latch contention

1-2 Oracle Database Performance Tuning Guide

Introduction to Performance Tuning

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch
contention usually is resolved through application changes.

s Excessive CPU usage

Excessive CPU usage usually means that there is little idle CPU on the system.
This could be caused by an inadequately-sized system, by untuned SQL
statements, or by inefficient application programs.

When to Tune
There are two distinct types of tuning:

»s Proactive Monitoring

s Bottleneck Elimination

Proactive Monitoring Proactive monitoring usually occurs on a regularly scheduled
interval, where several performance statistics are examined to identify whether the
system behavior and resource usage has changed. Proactive monitoring can also be
considered as proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless the
monitoring exposes a serious problem that is developing. In some situations,
experienced performance engineers can identify potential problems through statistics
alone, although accompanying performance degradation is usual.

Experimenting with or tweaking a system when there is no apparent performance
degradation as a proactive action can be a dangerous activity, resulting in unnecessary
performance drops. Tweaking a system should be considered reactive tuning, and the
steps for reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource
consumption is examined to see changes in the way the application is being used, and
the way the application is using the database and host resources.

Bottleneck Elimination Tuning usually implies fixing a performance problem. However,
tuning should be part of the life cycle of an application—through the analysis, design,
coding, production, and maintenance stages. Often, the tuning phase is left until the
database is in production. At this time, tuning becomes a reactive process, where the
most important bottleneck is identified and fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the
elapsed time for an operation to complete. Either way, the goal is to improve the
effective use of a particular resource. In general, performance problems are caused by
the overuse of a particular resource. The overused resource is the bottleneck in the
system. There are several distinct phases in identifying the bottleneck and the
potential fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by
making changes in the following places:

s Changes in the application, or the way the application is used
s Changes in Oracle
s Changes in the host hardware configuration

Often, the most effective way of resolving a bottleneck is to change the application.

Performance Tuning Overview 1-3

Introduction to Performance Tuning Features and Tools

SQL Tuning

Part IV, "Optimizing SQL Statements" of this guide discusses the process of tuning and
optimizing SQL statements.

Many application programmers consider SQL a messaging language, because queries
are issued and data is returned. However, client tools often generate inefficient SQL
statements. Therefore, a good understanding of the database SQL processing engine is
necessary for writing optimal SQL. This is especially true for high transaction
processing systems.

Typically, SQL statements issued by OLTP applications operate on relatively few rows
at a time. If an index can point to the exact rows that are required, then Oracle
Database can construct an accurate plan to access those rows efficiently through the
shortest possible path. In decision support system (DSS) environments, selectivity is
less important, because they often access most of a table's rows. In such situations, full
table scans are common, and indexes are not even used. This book is primarily
focussed on OLTP-type applications. For detailed information on DSS and mixed
environments, see the Oracle Database Data Warehousing Guide.

Query Optimizer and Execution Plans

When a SQL statement is executed on an Oracle database, the query optimizer
determines the most efficient execution plan after considering many factors related to
the objects referenced and the conditions specified in the query. This determination is
an important step in the processing of any SQL statement and can greatly affect
execution time.

During the evaluation process, the query optimizer reviews statistics gathered on the
system to determine the best data access path and other considerations. You can
override the execution plan of the query optimizer with hints inserted in SQL
statement.

Introduction to Performance Tuning Features and Tools

Effective data collection and analysis is essential for identifying and correcting
performance problems. Oracle Database provides several tools that allow a
performance engineer to gather information regarding database performance. In
addition to gathering data, Oracle Database provides tools to monitor performance,
diagnose problems, and tune applications.

The Oracle Database gathering and monitoring features are mainly automatic,
managed by Oracle background processes. To enable automatic statistics collection
and automatic performance features, the STATI STI CS_LEVEL initialization
parameter must be set to TYPI CAL or ALL. You can administer and display the output
of the gathering and tuning tools with Oracle Enterprise Manager, or with APIs and
views. For ease of use and to take advantage of its numerous automated monitoring
and diagnostic tools, Oracle Enterprise Manager Database Control is recommended.

1-4 Oracle Database Performance Tuning Guide

Introduction to Performance Tuning Features and Tools

See Also:

» Oracle Database 2 Day DBA to learn how to use Oracle
Enterprise Manager to manage Oracle Database

» Oracle Database 2 Day + Performance Tuning Guide to learn how
to use Oracle Enterprise Manager to tune database performance

» Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_ADVI SOR, DBM5S_SQLTUNE,
DBVM5_AUTO_SQLTUNE, and DBM5_WORKLOAD_REPCSI TORY
packages

» Oracle Database Reference for information about the
STATI STI CS_LEVEL initialization parameter

Automatic Performance Tuning Features

The Oracle Database automatic performance tuning features include:

= Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. See
"Overview of the Automatic Workload Repository" on page 5-8.

= Automatic Database Diagnostic Monitor (ADDM) analyzes the information
collected by the AWR for possible performance problems with the Oracle
database. See "Overview of the Automatic Database Diagnostic Monitor" on
page 6-1.

= SQL Tuning Advisor allows a quick and efficient technique for optimizing SQL
statements without modifying any statements. See "Tuning Reactively with SQL
Tuning Advisor" on page 17-9.

s SQLAccess Advisor provides advice on materialized views, indexes, and
materialized view logs. See "Automatic SQL Tuning Features" on page 16-5 and
"Overview of SQL Access Advisor" on page 18-1 for information about SQLAccess
Advisor.

» End to End Application tracing identifies excessive workloads on the system by
specific user, service, or application component. See "End to End Application
Tracing" on page 21-1.

» Server-generated alerts automatically provide notifications when impending
problems are detected. See Oracle Database Administrator’s Guide to learn how to
monitor the operation of the database with server-generated alerts.

» Additional advisors that can be launched from Oracle Enterprise Manager, such as
memory advisors to optimize memory for an instance. The memory advisors are
commonly used when automatic memory management is not set up for the
database. Other advisors are used to optimize mean time to recovery (MTTR),
shrinking of segments, and undo tablespace settings. To learn about the advisors
available with Oracle Enterprise Manager, see Oracle Database 2 Day + Performance
Tuning Guide.

s The Database Performance page in Oracle Enterprise Manager displays host,
instance service time, and throughput information for real time monitoring and
diagnosis. The page can be set to refresh automatically in selected intervals or
manually. To learn about the Database Performance page, see Oracle Database 2
Day + Performance Tuning Guide.

Performance Tuning Overview 1-5

Introduction to Performance Tuning Features and Tools

Additional Oracle Database Tools

This section describes additional Oracle Database tools that you can use for
determining performance problems.

V$ Performance Views

The V$ views are the performance information sources used by all Oracle Database
performance tuning tools. The V$ views are based on memory structures initialized at
instance startup. The memory structures, and the views that represent them, are
automatically maintained by Oracle Database t the life of the instance. See Chapter 10,
"Instance Tuning Using Performance Views" for information diagnosing tuning
problems using the V$ performance views.

See Also: Oracle Database Reference to learn more about dynamic
performance views

Note: Oracle recommends using the Automatic Workload
Repository to gather performance data. These tools have been
designed to capture all of the data needed for performance analysis.

1-6 Oracle Database Performance Tuning Guide

Part I

Performance Planning

Part II describes ways to improve Oracle Database performance by starting with
sound application design and using statistics to monitor application performance. It
explains the Oracle Performance Improvement Method and emergency performance
techniques for dealing with performance problems.

The chapters in this part include:
» Chapter 2, "Designing and Developing for Performance"

» Chapter 3, "Performance Improvement Methods"

2

Designing and Developing for Performance

Optimal system performance begins with design and continues throughout the life of
your system. Carefully consider performance issues during the initial design phase so
that you can tune your system more easily during production.

This chapter contains the following sections:

s Oracle Methodology

s Understanding Investment Options

s Understanding Scalability

= System Architecture

= Application Design Principles

= Workload Testing, Modeling, and Implementation
= Deploying New Applications

Oracle Methodology

System performance has become increasingly important as computer systems get
larger and more complex as the Internet plays a bigger role in business applications. To
accommodate this, Oracle has produced a performance methodology based on years
of designing and performance experience. This methodology explains clear and simple
activities that can dramatically improve system performance.

Performance strategies vary in their effectiveness, and systems with different
purposes—such as operational systems and decision support systems—require
different performance skills. This book examines the considerations that any database
designer, administrator, or performance expert should focus their efforts on.

System performance is designed and built into a system. It does not just happen.
Performance problems are usually the result of contention for, or exhaustion of, some
system resource. When a system resource is exhausted, the system cannot scale to
higher levels of performance. This new performance methodology is based on careful
planning and design of the database, to prevent system resources from becoming
exhausted and causing down-time. By eliminating resource conflicts, systems can be
made scalable to the levels required by the business.

Understanding Investment Options

With the availability of relatively inexpensive, high-powered processors, memory, and
disk drives, there is a temptation to buy more system resources to improve
performance. In many situations, new CPUs, memory, or more disk drives can indeed

Designing and Developing for Performance 2-1

Understanding Scalability

provide an immediate performance improvement. However, any performance
increases achieved by adding hardware should be considered a short-term relief to an
immediate problem. If the demand and load rates on the application continue to grow,
then the chance of the same problem occurring soon is likely.

In other situations, additional hardware does not improve the system's performance at
all. Poorly designed systems perform poorly no matter how much extra hardware is
allocated. Before purchasing additional hardware, ensure that serialization or single
threading is not occurring within the application. Long-term, it is generally more
valuable to increase the efficiency of your application in terms of the number of
physical resources used for each business transaction.

Understanding Scalability

The word scalability is used in many contexts in development environments. The
following section provides an explanation of scalability that is aimed at application
designers and performance specialists.

This section covers the following topics:
= What is Scalability?
= System Scalability

= Factors Preventing Scalability

What is Scalability?

Scalability is a system's ability to process more workload, with a proportional increase
in system resource usage. In other words, in a scalable system, if you double the
workload, then the system uses twice as many system resources. This sounds obvious,
but due to conflicts within the system, the resource usage might exceed twice the
original workload.

Examples of poor scalability due to resource conflicts include the following:

= Applications requiring significant concurrency management as user populations
increase

s Increased locking activities

= Increased data consistency workload

= Increased operating system workload

» Transactions requiring increases in data access as data volumes increase

s Poor SQL and index design resulting in a higher number of logical I/Os for the
same number of rows returned

= Reduced availability, because database objects take longer to maintain

An application is said to be unscalable if it exhausts a system resource to the point
where no more throughput is possible when its workload is increased. Such
applications result in fixed throughputs and poor response times.

Examples of resource exhaustion include the following;:
» Hardware exhaustion
s Table scans in high-volume transactions causing inevitable disk I/O shortages

= Excessive network requests, resulting in network and scheduling bottlenecks

2-2 Oracle Database Performance Tuning Guide

Understanding Scalability

= Memory allocation causing paging and swapping
= Excessive process and thread allocation causing operating system thrashing

This means that application designers must create a design that uses the same
resources, regardless of user populations and data volumes, and does not put loads on
the system resources beyond their limits.

System Scalability

Applications that are accessible through the Internet have more complex performance
and availability requirements. Some applications are designed and written only for
Internet use, but even typical back-office applications—such as a general ledger
application—might require some or all data to be available online.

Characteristics of Internet age applications include the following:
= Availability 24 hours a day, 365 days a year

s Unpredictable and imprecise number of concurrent users

= Difficulty in capacity planning

= Availability for any type of query

= Multitier architectures

= Stateless middleware

= Rapid development timescale

= Minimal time for testing

Figure 2-1 illustrates the classic workload growth curve, with demand growing at an
increasing rate. Applications must scale with the increase of workload and also when
additional hardware is added to support increasing demand. Design errors can cause
the implementation to reach its maximum, regardless of additional hardware resources
or re-design efforts.

Figure 2-1 Workload Growth Curve

e
©
9
-
S
=
e
0
=
5
o
)
o

Applications are challenged by very short development timeframes with limited time
for testing and evaluation. However, bad design typically means that you must later

Designing and Developing for Performance 2-3

Understanding Scalability

rearchitect and reimplement the system. If you deploy an application with known
architectural and implementation limitations on the Internet, and if the workload
exceeds the anticipated demand, then failure is a real possibility. From a business
perspective, poor performance can mean a loss of customers. If Web users do not get a
response in seven seconds, then the user's attention could be lost forever.

In many cases, the cost of re-designing a system with the associated downtime costs in
migrating to new implementations exceeds the costs of properly building the original
system. The moral of the story is simple: design and implement with scalability in
mind from the start.

Factors Preventing Scalability

When building applications, designers and architects should aim for as close to perfect
scalability as possible. This is sometimes called linear scalability, where system
throughput is directly proportional to the number of CPUs.

In real life, linear scalability is impossible for reasons beyond a designer's control.
However, making the application design and implementation as scalable as possible
should ensure that current and future performance objectives can be achieved through
expansion of hardware components and the evolution of CPU technology.

Factors that may prevent linear scalability include:
s Poor application design, implementation, and configuration
The application has the biggest impact on scalability. For example:
= Poor schema design can cause expensive SQL that do not scale.
= Poor transaction design can cause locking and serialization problems.

= Poor connection management can cause poor response times and unreliable
systems.

However, the design is not the only problem. The physical implementation of the
application can be the weak link. For example:

= Systems can move to production environments with bad I/O strategies.

s The production environment could use different execution plans than those
generated in testing.

= Memory-intensive applications that allocate a large amount of memory
without much thought for freeing the memory at run time can cause excessive
memory usage.

s Inefficient memory usage and memory leaks put a high stress on the operating
virtual memory subsystem. This impacts performance and availability.

= Incorrect sizing of hardware components

Bad capacity planning of all hardware components is becoming less of a problem
as relative hardware prices decrease. However, too much capacity can mask
scalability problems as the workload is increased on a system.

» Limitations of software components

All software components have scalability and resource usage limitations. This
applies to application servers, database servers, and operating systems.
Application design should not place demands on the software beyond what it can
handle.

» Limitations of Hardware Components

2-4 Oracle Database Performance Tuning Guide

System Architecture

Hardware is not perfectly scalable. Most multiprocessor computers can get close to
linear scaling with a finite number of CPUs, but after a certain point each
additional CPU can increase performance overall, but not proportionately. There
might come a time when an additional CPU offers no increase in performance, or
even degrades performance. This behavior is very closely linked to the workload
and the operating system setup.

Note: These factors are based on Oracle Server Performance
group's experience of tuning unscalable systems.

System Architecture
There are two main parts to a system's architecture:
s Hardware and Software Components

» Configuring the Right System Architecture for Your Requirements

Hardware and Software Components

This section discusses:
» Hardware Components

= Software Components

Hardware Components

Today's designers and architects are responsible for sizing and capacity planning of
hardware at each tier in a multitier environment. It is the architect's responsibility to
achieve a balanced design. This is analogous to a bridge designer who must consider
all the various payload and structural requirements for the bridge. A bridge is only as
strong as its weakest component. As a result, a bridge is designed in balance, such that
all components reach their design limits simultaneously.

The main hardware components include:
= CPU

= Memory

s I/O Subsystem

s Network

CPU There can be one or more CPUs, and they can vary in processing power from
simple CPUs found in hand-held devices to high-powered server CPUs. Sizing of
other hardware components is usually a multiple of the CPUs on the system. See
Chapter 9, "Managing Operating System Resources".

Memory Database and application servers require considerable amounts of memory to
cache data and avoid time-consuming disk access. See Chapter 7, "Configuring and
Using Memory".

I/O Subsystem The I/O subsystem can vary between the hard disk on a client PC and
high performance disk arrays. Disk arrays can perform thousands of I/Os each second
and provide availability through redundancy in terms of multiple I/O paths and hot
pluggable mirrored disks. See Chapter 8, "I/O Configuration and Design".

Designing and Developing for Performance 2-5

System Architecture

Network All computers in a system are connected to a network, from a modem line to a
high speed internal LAN. The primary concerns with network specifications are
bandwidth (volume) and latency (speed).

Software Components

The same way computers have common hardware components, applications have
common functional components. By dividing software development into functional
components, it is possible to better comprehend the application design and
architecture. Some components of the system are performed by existing software
bought to accelerate application implementation, or to avoid re-development of
common components.

The difference between software components and hardware components is that while
hardware components only perform one task, a piece of software can perform the roles
of various software components. For example, a disk drive only stores and retrieves
data, but a client program can manage the user interface and perform business logic.

Most applications involve the following components:

= Managing the User Interface

= Implementing Business Logic

= Managing User Requests and Resource Allocation

= Managing Data and Transactions

Managing the User Interface This component is the most visible to application users, and
includes the following functions:

= Displaying the screen to the user

s Collecting user data and transferring it to business logic

= Validating data entry

= Navigating through levels or states of the application

Implementing Business Logic This component implements core business rules that are
central to the application function. Errors made in this component can be very costly
to repair. This component is implemented by a mixture of declarative and procedural

approaches. An example of a declarative activity is defining unique and foreign keys.
An example of procedure-based logic is implementing a discounting strategy.

Common functions of this component include:

= Moving a data model to a relational table structure

= Defining constraints in the relational table structure

s Coding procedural logic to implement business rules

Managing User Requests and Resource Allocation This component is implemented in all

pieces of software. However, there are some requests and resources that can be
influenced by the application design and some that cannot.

In a multiuser application, most resource allocation by user requests are handled by
the database server or the operating system. However, in a large application where the
number of users and their usage pattern is unknown or growing rapidly, the system
architect must be proactive to ensure that no single software component becomes
overloaded and unstable.

Common functions of this component include:

2-6 Oracle Database Performance Tuning Guide

System Architecture

= Connection management with the database

s Executing SQL efficiently (cursors and SQL sharing)

= Managing client state information

= Balancing the load of user requests across hardware resources

= Setting operational targets for hardware and software components

= Persistent queuing for asynchronous execution of tasks

Managing Data and Transactions This component is largely the responsibility of the
database server and the operating system.

Common functions of this component include:

= Providing concurrent access to data using locks and transactional semantics
s Providing optimized access to the data using indexes and memory cache

= Ensuring that data changes are logged in the event of a hardware failure

= Enforcing any rules defined for the data

Configuring the Right System Architecture for Your Requirements

Configuring the initial system architecture is a largely iterative process. System
architects must satisfy the system requirements within budget and schedule
constraints. If the system requires interactive users transacting business-making
decisions based on the contents of a database, then user requirements drive the
architecture. If there are few interactive users on the system, then the architecture is
process-driven.

Examples of interactive user applications:

= Accounting and bookkeeping applications
s Order entry systems

= Email servers

s Web-based retail applications

s Trading systems

Examples of process-driven applications:

= Utility billing systems

s Fraud detection systems

s Direct mail

In many ways, process-driven applications are easier to design than multiuser
applications because the user interface element is eliminated. However, because the
objectives are process-oriented, system architects not accustomed to dealing with large
data volumes and different success factors can become confused. Process-driven
applications draw from the skills sets used in both user-based applications and data
warehousing. Therefore, this book focuses on evolving system architectures for
interactive users.

Designing and Developing for Performance 2-7

System Architecture

Note: Generating a system architecture is not a deterministic
process. It requires careful consideration of business requirements,
technology choices, existing infrastructure and systems, and actual
physical resources, such as budget and manpower.

The following questions should stimulate thought on system architecture, though they
are not a definitive guide to system architecture. These questions demonstrate how
business requirements can influence the architecture, ease of implementation, and
overall performance and availability of a system. For example:

= How many users must the system support?
Most applications fall into one of the following categories:
- Very few users on a lightly-used or exclusive computer

For this type of application, there is usually one user. The focus of the
application design is to make the single user as productive as possible by
providing good response time, yet make the application require minimal
administration. Users of these applications rarely interfere with each other and
have minimal resource conflicts.

- A medium to large number of users in a corporation using shared applications

For this type of application, the users are limited by the number of employees
in the corporation actually transacting business through the system. Therefore,
the number of users is predictable. However, delivering a reliable service is
crucial to the business. The users must share a resource, so design efforts must
address response time under heavy system load, escalation of resource for
each session usage, and room for future growth.

- Aninfinite user population distributed on the Internet

For this type of application, extra engineering effort is required to ensure that
no system component exceeds its design limits. This creates a bottleneck that
halts or destabilizes the system. These applications require complex load
balancing, stateless application servers, and efficient database connection
management. In addition, use statistics and governors to ensure that the user
receives feedback if the database cannot satisfy their requests because of
system overload.

s What will be the user interaction method?

The choices of user interface range from a simple Web browser to a custom client
program.

s Where are the users located?

The distance between users influences how the application is engineered to cope
with network latencies. The location also affects which times of the day are busy,
when it is impossible to perform batch or system maintenance functions.

= Whatis the network speed?

Network speed affects the amount of data and the conversational nature of the
user interface with the application and database servers. A highly conversational
user interface can communicate with back-end servers on every key stroke or field
level validation. A less conversational interface works on a screen-sent and a
screen-received model. On a slow network, it is impossible to achieve high data
entry speeds with a highly conversational user interface.

2-8 Oracle Database Performance Tuning Guide

Application Design Principles

How much data will the user access, and how much of that data is largely read
only?

The amount of data queried online influences all aspects of the design, from table
and index design to the presentation layers. Design efforts must ensure that user
response time is not a function of the size of the database. If the application is
largely read only, then replication and data distribution to local caches in the
application servers become a viable option. This also reduces workload on the core
transactional server.

What is the user response time requirement?

Consideration of the user type is important. If the user is an executive who
requires accurate information to make split second decisions, then user response
time cannot be compromised. Other types of users, such as users performing data
entry activities, might not need such a high level of performance.

Do users expect 24 hour service?

This is mandatory for today's Internet applications where trade is conducted 24
hours a day. However, corporate systems that run in a single time zone might be
able to tolerate after-hours downtime. You can use this after-hours downtime to
run batch processes or to perform system administration. In this case, it might be
more economic not to run a fully-available system.

Must all changes be made in real time?

It is important to determine whether transactions must be executed within the
user response time, or if they can be queued for asynchronous execution.

The following are secondary questions, which can also influence the design, but really
have more impact on budget and ease of implementation. For example:

How big will the database be?

This influences the sizing of the database server. On servers with a very large
database, it might be necessary to have a bigger computer than dictated by the
workload. This is because the administration overhead with large databases is
largely a function of the database size. As tables and indexes grow, it takes
proportionately more CPUs to allow table reorganizations and index builds to
complete in an acceptable time limit.

What is the required throughput of business transactions?
What are the availability requirements?
Do skills exist to build and administer this application?

What compromises are forced by budget constraints?

Application Design Principles

This section describes the following design decisions that are involved in building
applications:

Simplicity In Application Design
Data Modeling

Table and Index Design

Using Views

SQL Execution Efficiency

Designing and Developing for Performance 2-9

Application Design Principles

s Implementing the Application

s Trends in Application Development

Simplicity In Application Design
Applications are no different than any other designed and engineered product.
Well-designed structures, computers, and tools are usually reliable, easy to use and
maintain, and simple in concept. In the most general terms, if the design looks correct,
then it probably is. This principle should always be kept in mind when building
applications.

Consider the following design issues:

= If the table design is so complicated that nobody can fully understand it, then the
table is probably poorly designed.

= If SQL statements are so long and involved that it would be impossible for any
optimizer to effectively optimize it in real time, then there is probably a bad
statement, underlying transaction, or table design.

» If there are indexes on a table and the same columns are repeatedly indexed, then
there is probably a poor index design.

s If queries are submitted without suitable qualification for rapid response for
online users, then there is probably a poor user interface or transaction design.

= If the calls to the database are abstracted away from the application logic by many
layers of software, then there is probably a bad software development method.

Data Modeling

Data modeling is important to successful relational application design. You must
perform this modeling in a way that quickly represents the business practices. Heated
debates may occur about the correct data model. The important thing is to apply
greatest modeling efforts to those entities affected by the most frequent business
transactions. In the modeling phase, there is a great temptation to spend too much
time modeling the non-core data elements, which results in increased development
lead times. Use of modeling tools can then rapidly generate schema definitions and
can be useful when a fast prototype is required.

Table and Index Design

Table design is largely a compromise between flexibility and performance of core
transactions. To keep the database flexible and able to accommodate unforeseen
workloads, the table design should be very similar to the data model, and it should be
normalized to at least 3rd normal form. However, certain core transactions required by
users can require selective denormalization for performance purposes.

Examples of this technique include storing tables pre-joined, the addition of derived
columns, and aggregate values. Oracle Database provides numerous options for
storage of aggregates and pre-joined data by clustering and materialized view
functions. These features allow a simpler table design to be adopted initially.

Again, focus and resources should be spent on the business critical tables, so that
optimal performance can be achieved. For non-critical tables, shortcuts in design can
be adopted to enable a more rapid application development. However, if prototyping
and testing a non-core table becomes a performance problem, then remedial design
effort should be applied immediately.

2-10 Oracle Database Performance Tuning Guide

Application Design Principles

Index design is also a largely iterative process, based on the SQL generated by
application designers. However, it is possible to make a sensible start by building
indexes that enforce primary key constraints and indexes on known access patterns,
such as a person's name. As the application evolves, and as you perform testing on
realistic amounts of data, you may need to improve the performance of specific
queries by building a better index. Consider the following list of indexing design ideas
when building a new index:

= Appending Columns to an Index or Using Index-Organized Tables
= Using a Different Index Type

= Finding the Cost of an Index

= Serializing within Indexes

s Ordering Columns in an Index

Appending Columns to an Index or Using Index-Organized Tables

One of the easiest ways to speed up a query is to reduce the number of logical I/Os by
eliminating a table access from the execution plan. This can be done by appending to
the index all columns referenced by the query. These columns are the select list
columns, and any required join or sort columns. This technique is particularly useful
in speeding up online applications response times when time-consuming I/Os are
reduced. This is best applied when testing the application with properly sized data for
the first time.

The most aggressive form of this technique is to build an index-organized table (IOT).
However, you must be careful that the increased leaf size of an IOT does not
undermine the efforts to reduce I/0.

Using a Different Index Type

There are several index types available, and each index has benefits for certain
situations. The following list gives performance ideas associated with each index type.

B-Tree Indexes These indexes are the standard index type, and they are excellent for
primary key and highly-selective indexes. Used as concatenated indexes, the database
can use B-tree indexes to retrieve data sorted by the index columns.

Bitmap Indexes These indexes are suitable for low cardinality data. Through
compression techniques, they can generate a large number of rowids with minimal
I/0O. Combining bitmap indexes on non-selective columns allows efficient AND and OR
operations with a great number of rowids with minimal I/O. Bitmap indexes are
particularly efficient in queries with COUNT(), because the query can be satisfied within
the index.

Function-based Indexes These indexes allow access through a B-tree on a value derived
from a function on the base data. Function-based indexes have some limitations with

regards to the use of nulls, and they require that you have the query optimizer
enabled.

Function-based indexes are particularly useful when querying on composite columns
to produce a derived result or to overcome limitations in the way data is stored in the
database. An example is querying for line items in an order exceeding a certain value
derived from (sales price - discount) x quantity, where these were columns in the table.
Another example is to apply the UPPER function to the data to allow case-insensitive
searches.

Designing and Developing for Performance 2-11

Application Design Principles

Using Views

Partitioned Indexes Partitioning a global index allows partition pruning to take place
within an index access, which results in reduced I/Os. By definition of good range or
list partitioning, fast index scans of the correct index partitions can result in very fast
query times.

Reverse Key Indexes These indexes are designed to eliminate index hot spots on insert
applications. These indexes are excellent for insert performance, but they are limited
because the database cannot use them for index range scans.

Finding the Cost of an Index

Building and maintaining an index structure can be expensive, and it can consume
resources such as disk space, CPU, and I/O capacity. Designers must ensure that the
benefits of any index outweigh the negatives of index maintenance.

Use this simple estimation guide for the cost of index maintenance: each index
maintained by an | NSERT, DELETE, or UPDATE of the indexed keys requires about
three times as much resource as the actual DML operation on the table. Thus, if you
I NSERT into a table with three indexes, then the insertion is approximately 10 times
slower than an | NSERT into a table with no indexes. For DML, and particularly for

| NSERT-heavy applications, the index design should be seriously reviewed, which
might require a compromise between the query and | NSERT performance.

See Also: Oracle Database Administrator’s Guide to learn how to
monitor index usage

Serializing within Indexes

Use of sequences, or timestamps, to generate key values that are indexed themselves
can lead to database hotspot problems, which affect response time and throughput.
This is usually the result of a monotonically growing key that results in a
right-growing index. To avoid this problem, try to generate keys that insert over the
full range of the index. This results in a well-balanced index that is more scalable and
space efficient. You can achieve this by using a reverse key index or using a cycling
sequence to prefix and sequence values.

Ordering Columns in an Index

Designers should be flexible in defining any rules for index building. Depending on
your circumstances, use one of the following two ways to order the keys in an index:

s Order columns with most selectivity first. This method is the most commonly used
because it provides the fastest access with minimal I/O to the actual rowids
required. This technique is used mainly for primary keys and for very selective
range scans.

s Order columns to reduce I/O by clustering or sorting data. In large range scans,
1/0Os can usually be reduced by ordering the columns in the least selective order,
or in a manner that sorts the data in the way it should be retrieved. See Chapter 14,
"Using Indexes and Clusters".

Views can speed up and simplify application design. A simple view definition can
mask data model complexity from the programmers whose priorities are to retrieve,
display, collect, and store data.

However, while views provide clean programming interfaces, they can cause
sub-optimal, resource-intensive queries. The worst type of view use is when a view

2-12 Oracle Database Performance Tuning Guide

Application Design Principles

references other views, and when they are joined in queries. In many cases, developers
can satisfy the query directly from the table without using a view. Usually, because of
their inherent properties, views make it difficult for the optimizer to generate the
optimal execution plan.

SQL Execution Efficiency

In the design and architecture phase of any system development, care should be taken
to ensure that the application developers understand SQL execution efficiency. To
achieve this goal, the development environment must support the following
characteristics:

Good database connection management

Connecting to the database is an expensive operation that is highly unscalable.
Therefore, the number of concurrent connections to the database should be
minimized as much as possible. A simple system, where a user connects at
application initialization, is ideal. However, in a Web-based or multitiered
application, where application servers are used to multiplex database connections
to users, this can be difficult. With these types of applications, design efforts
should ensure that database connections are pooled and are not reestablished for
each user request.

Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing
activity on the system. Parsing is the process of interpreting a SQL statement and
creating an execution plan for it. This process has many phases, including syntax
checking, security checking, execution plan generation, and loading shared
structures into the shared pool. There are two types of parse operations:

- Hard parsing

A SQL statement is submitted for the first time, and no match is found in the
shared pool. Hard parses are the most resource-intensive and unscalable,
because they perform all the operations involved in a parse.

- Soft parsing

A SQL statement is submitted for the first time, and a match is found in the
shared pool. The match can be the result of previous execution by another
user. The SQL statement is shared, which is good for performance. However,
soft parses are not ideal, because they still require syntax and security
checking, which consume system resources.

Because parsing should be minimized as much as possible, application developers
should design their applications to parse SQL statements once and execute them
many times. This is done through cursors. Experienced SQL programmers should
be familiar with the concept of opening and re-executing cursors.

Application developers must also ensure that SQL statements are shared within
the shared pool. To achieve this goal, use bind variables to represent the parts of
the query that change from execution to execution. If this is not done, then the SQL
statement is likely to be parsed once and never re-used by other users. To ensure
that SQL is shared, use bind variables and do not use string literals with SQL
statements. For example:

Statement with string literals:

SELECT * FROM enpl oyees
WHERE | ast_nane LIKE 'KING ;

Designing and Developing for Performance 2-13

Application Design Principles

Statement with bind variables:

SELECT * FROM enpl oyees
VWHERE | ast _nane LIKE :1;

The following example shows the results of some tests on a simple OLTP

application:

Test #Users Supported
No Parsing all statenents 270

Soft Parsing all statements 150

Hard Parsing all statenents 60

Re- Connecting for each Transaction 30

These tests were performed on a four-CPU computer. The differences increase as
the number of CPUs on the system increase. See Chapter 16, "SQL Tuning
Overview" for information about optimizing SQL statements.

Implementing the Application

The choice of development environment and programming language is largely a
function of the skills available in the development team and architectural decisions
made when specifying the application. There are, however, some simple performance
management rules that can lead to scalable, high-performance applications.

1. Choose a development environment suitable for software components, and do not
let it limit your design for performance decisions. If it does, then you probably
chose the wrong language or environment.

s User interface

The programming model can vary between HTML generation and calling the
windowing system directly. The development method should focus on
response time of the user interface code. If HTML or Java is being sent over a
network, then try to minimize network volume and interactions.

= Business logic

Interpreted languages, such as Java and PL/SQL, are ideal to encode business
logic. They are fully portable, which makes upgrading logic relatively easy.
Both languages are syntactically rich to allow code that is easy to read and
interpret. If business logic requires complex mathematical functions, then a
compiled binary language might be needed. The business logic code can be on
the client computer, the application server, and the database server. However,
the application server is the most common location for business logic.

» User requests and resource allocation

Most of this is not affected by the programming language, but tools and fourth
generation languages that mask database connection and cursor management
might use inefficient mechanisms. When evaluating these tools and
environments, check their database connection model and their use of cursors
and bind variables.

» Data management and transactions
Most of this is not affected by the programming language.

2. When implementing a software component, implement its function and not the
functionality associated with other components. Implementing another

2-14 Oracle Database Performance Tuning Guide

Application Design Principles

component's functionality results in sub-optimal designs and implementations.
This applies to all components.

Do not leave gaps in functionality or have software components under-researched
in design, implementation, or testing. In many cases, gaps are not discovered until
the application is rolled out or tested at realistic volumes. This is usually a sign of
poor architecture or initial system specification. Data archival and purge modules
are most frequently neglected during initial system design, build, and
implementation.

When implementing procedural logic, implement in a procedural language, such
as C, Java, or PL/SQL. When implementing data access (queries) or data changes
(DML), use SQL. This rule is specific to the business logic modules of code where
procedural code is mixed with data access (nonprocedural SQL) code. There is
great temptation to put procedural logic into the SQL access. This tends to result in
poor SQL that is resource-intensive. SQL statements with DECODE case statements
are very often candidates for optimization, as are statements with a large amount
of OR predicates or set operators, such as UNI ONand M NUS.

Cache frequently accessed, rarely changing data that is expensive to retrieve on a
repeated basis. However, make this cache mechanism easy to use, and ensure that
it is indeed cheaper than accessing the data in the original method. This is
applicable to all modules where frequently used data values should be cached or
stored locally, rather than be repeatedly retrieved from a remote or expensive data
store.

The most common examples of candidates for local caching include the following:

= Today's date. SELECT SYSDATE FROMDUAL can account for over 60% of the
workload on a database.

] The current user name.

= Repeated application variables and constants, such as tax rates, discounting
rates, or location information.

s Caching data locally can be further extended into building a local data cache
into the application server middle tiers. This helps take load off the central
database servers. However, care should be taken when constructing local
caches so that they do not become so complex that they cease to give a
performance gain.

= Local sequence generation.

The design implications of using a cache should be considered. For example, if a
user is connected at midnight and the date is cached, then the user's date value
becomes invalid.

Optimize the interfaces between components, and ensure that all components are
used in the most scalable configuration. This rule requires minimal explanation
and applies to all modules and their interfaces.

Use foreign key references. Enforcing referential integrity through an application is
expensive. You can maintain a foreign key reference by selecting the column value
of the child from the parent and ensuring that it exists. The foreign key constraint
enforcement supplied by Oracle—which does not use SQL—is fast, easy to
declare, and does not create network traffic.

Consider setting up action and module names in the application to use with End
to End Application Tracing. This allows greater flexibility in tracing workload
problems. See "End to End Application Tracing" on page 21-1.

Designing and Developing for Performance 2-15

Workload Testing, Modeling, and Implementation

Trends in Application Development

The two biggest challenges in application development today are the increased use of
Java to replace compiled C or C++ applications, and increased use of object-oriented
techniques, influencing the schema design.

Java provides better portability of code and availability to programmers. However,
there are several performance implications associated with Java. Because Java is an
interpreted language, it is slower at executing similar logic than compiled languages,
such as C. As a result, resource usage of client computers increases. This requires more
powerful CPUs to be applied in the client or middle-tier computers and greater care
from programmers to produce efficient code.

Because Java is an object-oriented language, it encourages insulation of data access
into classes not performing the business logic. As a result, programmers might invoke
methods without knowledge of the efficiency of the data access method being used.
This tends to result in minimal database access and uses the simplest and crudest
interfaces to the database.

With this type of software design, queries do not always include all the WHERE
predicates to be efficient, and row filtering is performed in the Java program. This is
very inefficient. In addition, for DML operations—and especially for | NSERTs—single
I NSERTS are performed, making use of the array interface impossible. In some cases,
this is made more inefficient by procedure calls. More resources are used moving the
data to and from the database than in the actual database calls.

In general, it is best to place data access calls next to the business logic to achieve the
best overall transaction design.

The acceptance of object-orientation at a programming level has led to the creation of
object-oriented databases within the Oracle Server. This has manifested itself in many
ways, from storing object structures within BLOBs and only using the database
effectively as an indexed card file to the use of the Oracle Database object-relational
features.

If you adopt an object-oriented approach to schema design, then ensure that you do
not lose the flexibility of the relational storage model. In many cases, the
object-oriented approach to schema design ends up in a heavily denormalized data
structure that requires considerable maintenance and REF pointers associated with
objects. Often, these designs represent a step backward to the hierarchical and network
database designs that were replaced with the relational storage method.

In summary;, if you are storing your data in your database for the long-term, and if you
anticipate a degree of ad hoc queries or application development on the same schema,
then the relational storage method probably gives the best performance and flexibility.

Workload Testing, Modeling, and Implementation

This section describes workload estimation, modeling, implementation, and testing.
This section covers the following topics:

s Sizing Data

» Estimating Workloads

= Application Modeling

» Testing, Debugging, and Validating a Design

2-16 Oracle Database Performance Tuning Guide

Workload Testing, Modeling, and Implementation

Sizing Data

You could experience errors in your sizing estimates when dealing with variable
length data if you work with a poor sample set. As data volumes grow, your key
lengths could grow considerably, altering your assumptions for column sizes.

When the system becomes operational, it becomes more difficult to predict database
growth, especially for indexes. Tables grow over time, and indexes are subject to the
individual behavior of the application in terms of key generation, insertion pattern,
and deletion of rows. The worst case is where you insert using an ascending key, and
then delete most rows from the left-hand side but not all the rows. This leaves gaps
and wasted space. If you have index use like this, then ensure that you know how to
use the online index rebuild facility.

DBAs should monitor space allocation for each object and look for objects that may
grow out of control. A good understanding of the application can highlight objects that
may grow rapidly or unpredictably. This is a crucial part of both performance and
availability planning for any system. When implementing the production database,
the design should attempt to ensure that minimal space management takes place when
interactive users are using the application. This applies for all data, temp, and rollback
segments.

Estimating Workloads

Considering the number of variables involved, estimation of workloads for capacity
planning and testing purposes is extremely difficult. However, designers must specify
computers with CPUs, memory, and disk drives, and eventually roll out an
application. There are several techniques used for sizing, and each technique has
merit. When sizing, it is best to use the following two methods to validate your
decision-making process and provide supporting documentation:

= Extrapolating From a Similar System

= Benchmarking

Extrapolating From a Similar System

This is an entirely empirical approach where an existing system of similar
characteristics and known performance is used as a basis system. The specification of
this system is then modified by the sizing specialist according to the known
differences. This approach has merit in that it correlates with an existing system, but it
provides little assistance when dealing with the differences.

This approach is used in nearly all large engineering disciplines when preparing the
cost of an engineering project, such as a large building, a ship, a bridge, or an oil rig. If
the reference system is an order of magnitude different in size from the anticipated
system, then some components may have exceeded their design limits.

Benchmarking

The benchmarking process is both resource and time consuming, and it might not
produce the correct results. By simulating an application in early development or
prototype form, there is a danger of measuring something that has no resemblance to
the actual production system. This sounds strange, but over the many years of
benchmarking customer applications with the database development organization,
Oracle has yet to see reliable correlation between the benchmark application and the
actual production system. This is mainly due to the number of application
inefficiencies introduced in the development process.

Designing and Developing for Performance 2-17

Workload Testing, Modeling, and Implementation

However, benchmarks have been used successfully to size systems to an acceptable
level of accuracy. In particular, benchmarks are very good at determining the actual
I/0O requirements and testing recovery processes when a system is fully loaded.

Benchmarks by their nature stress all system components to their limits. As the
benchmark stresses all components, be prepared to see all errors in application design
and implementation manifest themselves while benchmarking. Benchmarks also test
database, operating system, and hardware components. Because most benchmarks are
performed in a rush, expect setbacks and problems when a system component fails.
Benchmarking is a stressful activity, and it takes considerable experience to get the
most out of a benchmarking exercise.

Application Modeling

Modeling the application can range from complex mathematical modeling exercises to
the classic simple calculations performed on the back of an envelope. Both methods
have merit, with one attempting to be very precise and the other making gross
estimates. The downside of both methods is that they do not allow for implementation
errors and inefficiencies.

The estimation and sizing process is an imprecise science. However, by investigating
the process, some intelligent estimates can be made. The whole estimation process
makes no allowances for application inefficiencies introduced by poor SQL, index
design, or cursor management. A sizing engineer should build in margin for
application inefficiencies. A performance engineer should discover the inefficiencies
and make the estimates look realistic. The Oracle performance method describes how
to discover the application inefficiencies.

Testing, Debugging, and Validating a Design
The testing process mainly consists of functional and stability testing. At some point in

the process, performance testing is performed.

The following list describes some simple rules for performance testing an application.
If correctly documented, then this list provides important information for the
production application and the capacity planning process after the application has
gone live.

= Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning
Adpvisor for design validation

m Test with realistic data volumes and distributions

All testing must be done with fully populated tables. The test database should
contain data representative of the production system in terms of data volume and
cardinality between tables. All the production indexes should be built and the
schema statistics should be populated correctly.

= Use the correct optimizer mode

Perform all testing with the optimizer mode that you plan to use in production.
All Oracle Database research and development effort is focused on the query
optimizer. Therefore, the use of the query optimizer is recommended.

s Test a single user performance

Test a single user on an idle or lightly-used database for acceptable performance. If
a single user cannot achieve acceptable performance under ideal conditions, then
multiple users cannot achieve acceptable performance under real conditions.

s Obtain and document plans for all SQL statements

2-18 Oracle Database Performance Tuning Guide

Deploying New Applications

Obtain an execution plan for each SQL statement. Use this process to verify that
the optimizer is obtaining an optimal execution plan, and that the relative cost of
the SQL statement is understood in terms of CPU time and physical I/Os. This
process assists in identifying the heavy use transactions that require the most
tuning and performance work in the future.

= Attempt multiuser testing

This process is difficult to perform accurately, because user workload and profiles
might not be fully quantified. However, transactions performing DML statements
should be tested to ensure that there are no locking conflicts or serialization
problems.

s Test with the correct hardware configuration

Test with a configuration as close to the production system as possible. Using a
realistic system is particularly important for network latencies, I/O subsystem
bandwidth, and processor type and speed. Failing to use this approach may result
in an incorrect analysis of potential performance problems.

= Measure steady state performance

When benchmarking, it is important to measure the performance under steady
state conditions. Each benchmark run should have a ramp-up phase, where users
are connected to the application and gradually start performing work on the
application. This process allows for frequently cached data to be initialized into
the cache and single execution operations—such as parsing—to be completed
before the steady state condition. Likewise, at the end of a benchmark run, there
should be a ramp-down period, where resources are freed from the system and
users cease work and disconnect.

Deploying New Applications

This section describes the following design decisions involved in deploying
applications:

= Rollout Strategies

» Performance Checklist

Rollout Strategies

When new applications are rolled out, two strategies are commonly adopted:
» Big Bang approach - all users migrate to the new system at once
» Trickle approach - users slowly migrate from existing systems to the new one

Both approaches have merits and disadvantages. The Big Bang approach relies on
reliable testing of the application at the required scale, but has the advantage of
minimal data conversion and synchronization with the old system, because it is simply
switched off. The Trickle approach allows debugging of scalability issues as the
workload increases, but might mean that data must be migrated to and from legacy
systems as the transition takes place.

It is difficult to recommend one approach over the other, because each method has
associated risks that could lead to system outages as the transition takes place.
Certainly, the Trickle approach allows profiling of real users as they are introduced to
the new application, and allows the system to be reconfigured while only affecting the
migrated users. This approach affects the work of the early adopters, but limits the

Designing and Developing for Performance 2-19

Deploying New Applications

load on support services. This means that unscheduled outages only affect a small
percentage of the user population.

The decision on how to roll out a new application is specific to each business. Any
adopted approach has its own unique pressures and stresses. The more testing and
knowledge that you derive from the testing process, the more you realize what is best
for the rollout.

Performance Checklist

To assist in the rollout, build a list of tasks that increase the chance of optimal
performance in production and enable rapid debugging of the application. Do the
following:

1.

When you create the control file for the production database, allow for growth by
setting MAXI NSTANCES, MAXDATAFI LES, MAXLOGFI LES, MAXLOGVEMBERS, and
MAXLOGHI STORY to values higher than what you anticipate for the rollout. This
technique results in more disk space usage and larger control files, but saves time
later should these need extension in an emergency.

Set block size to the value used to develop the application. Export the schema
statistics from the development or test environment to the production database if
the testing was done on representative data volumes and the current SQL
execution plans are correct.

Set the minimal number of initialization parameters. Ideally, most other
parameters should be left at default. If there is more tuning to perform, then this
appears when the system is under load. See Chapter 4, "Configuring a Database
for Performance"” for information about parameter settings in an initial instance
configuration.

Be prepared to manage block contention by setting storage options of database
objects. Tables and indexes that experience high | NSERT /UPDATE/DELETE rates
should be created with automatic segment space management. To avoid
contention of rollback segments, use automatic undo management. See Chapter 4,
"Configuring a Database for Performance" for information about undo and
temporary segments.

All SQL statements should be verified to be optimal and their resource usage
understood.

Validate that middleware and programs that connect to the database are efficient
in their connection management and do not logon or logoff repeatedly.

Validate that the SQL statements use cursors efficiently. The database should parse
each SQL statement once and then execute it multiple times. The most common
reason this does not happen is because bind variables are not used properly and
WHERE clause predicates are sent as string literals. If you use precompilers to
develop the application, then make sure to reset the parameters
MAXOPENCURSCORS, HOLD_CURSCR, and RELEASE _CURSOR from the default
values before precompiling the application.

Validate that all schema objects have been correctly migrated from the
development environment to the production database. This includes tables,
indexes, sequences, triggers, packages, procedures, functions, Java objects,
synonyms, grants, and views. Ensure that any modifications made in testing are
made to the production system.

2-20 Oracle Database Performance Tuning Guide

Deploying New Applications

10.

As soon as the system is rolled out, establish a baseline set of statistics from the
database and operating system. This first set of statistics validates or corrects any
assumptions made in the design and rollout process.

Start anticipating the first bottleneck (which is inevitable) and follow the Oracle
performance method to make performance improvement. For more information,
see Chapter 3, "Performance Improvement Methods".

Designing and Developing for Performance 2-21

Deploying New Applications

2-22 Oracle Database Performance Tuning Guide

3

Performance Improvement Methods

This chapter discusses Oracle Database improvement methods and contains the
following sections:

s The Oracle Performance Improvement Method

= Emergency Performance Methods

The Oracle Performance Improvement Method

Oracle performance methodology helps you to identify performance problems in an
Oracle database. This involves identifying bottlenecks and fixing them. It is
recommended that changes be made to a system only after you have confirmed that
there is a bottleneck.

Performance improvement, by its nature, is iterative. For this reason, removing the
first bottleneck might not lead to performance improvement immediately, because
another bottleneck might be revealed. Also, in some cases, if serialization points move
to a more inefficient sharing mechanism, then performance could degrade. With
experience, and by following a rigorous method of bottleneck elimination, applications
can be debugged and made scalable.

Performance problems generally result from either a lack of throughput, unacceptable
user/job response time, or both. The problem might be localized between application
modules, or it might be for the entire system.

Before looking at any database or operating system statistics, it is crucial to get
feedback from the most important components of the system: the users of the system
and the people ultimately paying for the application. Typical user feedback includes
statements like the following:

s "The online performance is so bad that it prevents my staff from doing their jobs."
s "The billing run takes too long."

= "When I experience high amounts of Web traffic, the response time becomes
unacceptable, and I am losing customers."

s "l am currently performing 5000 trades a day, and the system is maxed out. Next
month, we roll out to all our users, and the number of trades is expected to
quadruple.”

From candid feedback, it is easy to set critical success factors for any performance
work. Determining the performance targets and the performance engineer's exit
criteria make managing the performance process much simpler and more successful at
all levels. These critical success factors are better defined in terms of real business
goals rather than system statistics.

Performance Improvement Methods 3-1

The Oracle Performance Improvement Method

Some real business goals for these typical user statements might be:
s "The billing run must process 1,000,000 accounts in a three-hour window."

= "Atapeak period on a Web site, the response time must not exceed five seconds
for a page refresh."

s "The system must be able to process 25,000 trades in an eight-hour window."

The ultimate measure of success is the user's perception of system performance. The
performance engineer's role is to eliminate any bottlenecks that degrade performance.
These bottlenecks could be caused by inefficient use of limited shared resources or by
abuse of shared resources, causing serialization. Because all shared resources are
limited, the goal of a performance engineer is to maximize the number of business
operations with efficient use of shared resources. At a very high level, the entire
database server can be seen as a shared resource. Conversely, at a low level, a single
CPU or disk can be seen as shared resources.

You can apply the Oracle performance improvement method until performance goals
are met or deemed impossible. This process is highly iterative. Inevitably, some
investigations may have little or no impact on database performance. Time and
experience are necessary to develop the skills to accurately and quickly pinpoint
critical bottlenecks. However, prior experience can sometimes work against the
experienced engineer who neglects to use the data and statistics available. This type of
behavior encourages database tuning by myth and folklore. This is a very risky,
expensive, and unlikely to succeed method of database tuning.

The Automatic Database Diagnostic Monitor (ADDM) implements parts of the
performance improvement method and analyzes statistics to provide automatic
diagnosis of major performance issues. Using ADDM can significantly shorten the
time required to improve the performance of a system. See Chapter 6, "Automatic
Performance Diagnostics" for a description of ADDM.

Systems are so different and complex that hard and fast rules for performance analysis
are impossible. In essence, the Oracle performance improvement method defines a
way of working, but not a definitive set of rules. With bottleneck detection, the only
rule is that there are no rules! The best performance engineers use the data provided
and think laterally to determine performance problems.

Steps in The Oracle Performance Improvement Method

1. Perform the following initial standard checks:

a. Get candid feedback from users. Determine the performance project's scope
and subsequent performance goals, and performance goals for the future. This
process is key in future capacity planning.

b. Get a full set of operating system, database, and application statistics from the
system when the performance is both good and bad. If these are not available,
then get whatever is available. Missing statistics are analogous to missing
evidence at a crime scene: They make detectives work harder and it is more
time-consuming.

c. Sanity-check the operating systems of all computers involved with user
performance. By sanity-checking the operating system, you look for hardware
or operating system resources that are fully utilized. List any over-used
resources as symptoms for analysis later. In addition, check that all hardware
shows no errors or diagnostics.

2. Check for the top ten most common mistakes with Oracle Database, and
determine if any of these are likely to be the problem. List these as symptoms for

3-2 Oracle Database Performance Tuning Guide

The Oracle Performance Improvement Method

later analysis. These are included because they represent the most likely problems.
ADDM automatically detects and reports nine of these top ten issues. See

Chapter 6, "Automatic Performance Diagnostics" and "Top Ten Mistakes Found in
Oracle Systems" on page 3-4.

3. Build a conceptual model of what is happening on the system using the symptoms
as clues to understand what caused the performance problems. See "A Sample
Decision Process for Performance Conceptual Modeling" on page 3-3.

4. Propose a series of remedy actions and the anticipated behavior to the system,
then apply them in the order that can benefit the application the most. ADDM
produces recommendations each with an expected benefit. A golden rule in
performance work is that you only change one thing at a time and then measure
the differences. Unfortunately, system downtime requirements might prohibit
such a rigorous investigation method. If multiple changes are applied at the same
time, then try to ensure that they are isolated so that the effects of each change can
be independently validated.

5. Validate that the changes made have had the desired effect, and see if the user's
perception of performance has improved. Otherwise, look for more bottlenecks,
and continue refining the conceptual model until your understanding of the
application becomes more accurate.

6. Repeat the last three steps until performance goals are met or become impossible
due to other constraints.

This method identifies the biggest bottleneck and uses an objective approach to
performance improvement. The focus is on making large performance improvements
by increasing application efficiency and eliminating resource shortages and
bottlenecks. In this process, it is anticipated that minimal (less than 10%) performance
gains are made from instance tuning, and large gains (100% +) are made from isolating
application inefficiencies.

A Sample Decision Process for Performance Conceptual Modeling

Conceptual modeling is almost deterministic. However, as you gain experience in
performance tuning, you begin to appreciate that no real rules exist. A flexible
heads-up approach is required to interpret statistics and make good decisions.

For a quick and easy approach to performance tuning, use ADDM. ADDM
automatically monitors your Oracle system and provides recommendations for
solving performance problems should problems occur. For example, suppose a DBA
receives a call from a user complaining that the system is slow. The DBA simply
examines the latest ADDM report to see which of the recommendations should be
implemented to solve the problem. See Chapter 6, "Automatic Performance
Diagnostics" for information about the features that help monitor and diagnose Oracle
databases.

The following steps illustrate how a performance engineer might look for bottlenecks
without using automatic diagnostic features. These steps are only intended as a
guideline for the manual process. With experience, performance engineers add to the
steps involved. This analysis assumes that statistics for both the operating system and
the database have been gathered.

1. Is the response time/batch run time acceptable for a single user on an empty or
lightly loaded computer?

If it is not acceptable, then the application is probably not coded or designed
optimally, and it will never be acceptable in a multiple user situation when system
resources are shared. In this case, get application internal statistics, and get SQL

Performance Improvement Methods 3-3

The Oracle Performance Improvement Method

Trace and SQL plan information. Work with developers to investigate problems in
data, index, transaction SQL design, and potential deferral of work to batch and
background processing.

Is all the CPU being utilized?

If the kernel utilization is over 40%, then investigate the operating system for
network transfers, paging, swapping, or process thrashing. Continue to check CPU
utilization in user space to verify if there are any non-database jobs consuming
CPU on the system limiting the amount of shared CPU resources, such as backups,
file transforms, print queues, and so on. After determining that the database is
using most of the CPU, investigate the top SQL by CPU utilization. These
statements form the basis of all future analysis. Check the SQL and the
transactions submitting the SQL for optimal execution. Oracle Database provides
CPU statistics in V$SQ. and V$SQLSTATS.

See Also: Oracle Database Reference for more information on
V$SQL and V$SQLSTATS

If the application is optimal and no inefficiencies exist in the SQL execution, then
consider rescheduling some work to off-peak hours or using a bigger computer.

At this point, the system performance is unsatisfactory, yet the CPU resources are
not fully utilized.

In this case, you have serialization and unscalable behavior within the server. Get
the WAI T_EVENTS statistics from the server, and determine the biggest
serialization point. If there are no serialization points, then the problem is most
likely outside the database, and this should be the focus of investigation.
Elimination of WAl T_EVENTS involves modifying application SQL and tuning
database parameters. This process is very iterative and requires the ability to drill
down on the WAI T_EVENTS systematically to eliminate serialization points.

Top Ten Mistakes Found in Oracle Systems

This section lists the most common mistakes found in Oracle databases. By following
the Oracle performance improvement methodology, you should be able to avoid these
mistakes altogether. If you find these mistakes in your system, then re-engineer the
application where the performance effort is worthwhile. See "Automatic Performance
Tuning Features" on page 1-5 for information about the features that help diagnose
and tune Oracle databases. See Chapter 10, "Instance Tuning Using Performance
Views" for a discussion on how wait event data reveals symptoms of problems that
can be impacting performance.

1.

Bad connection management

The application connects and disconnects for each database interaction. This
problem is common with stateless middleware in application servers. It has over
two orders of magnitude impact on performance, and is totally unscalable.

Bad use of cursors and the shared pool

Not using cursors results in repeated parses. If bind variables are not used, then
there is hard parsing of all SQL statements. This has an order of magnitude impact
in performance, and it is totally unscalable. Use cursors with bind variables that
open the cursor and execute it many times. Be suspicious of applications
generating dynamic SQL.

Bad SQL

3-4 Oracle Database Performance Tuning Guide

The Oracle Performance Improvement Method

Bad SQL is SQL that uses more resources than appropriate for the application
requirement. This can be a decision support systems (DSS) query that runs for
more than 24 hours, or a query from an online application that takes more than a
minute. You should investigate SQL that consumes significant system resources
for potential improvement. ADDM identifies high load SQL. SQL Tuning Advisor
can provide recommendations for improvement. See Chapter 6, "Automatic
Performance Diagnostics" and Chapter 17, "Automatic SQL Tuning".

Use of nonstandard initialization parameters

These might have been implemented based on poor advice or incorrect
assumptions. Most databases provide acceptable performance using only the set of
basic parameters. In particular, parameters associated with SPI N_COUNT on
latches and undocumented optimizer features can cause a great deal of problems
that can require considerable investigation.

Likewise, optimizer parameters set in the initialization parameter file can override
proven optimal execution plans. For these reasons, schemas, schema statistics, and
optimizer settings should be managed as a group to ensure consistency of
performance.

See Also:

» Oracle Database Administrator’s Guide for information about
initialization parameters and database creation

s Oracle Database Reference for details on initialization parameters

s '"Performance Considerations for Initial Instance Configuration"
on page 4-1 for information about parameters and settings in an
initial instance configuration

Getting database I/O wrong

Many sites lay out their databases poorly over the available disks. Other sites
specify the number of disks incorrectly, because they configure disks by disk space
and not I/O bandwidth. See Chapter 8, "I/O Configuration and Design".

Online redo log setup problems

Many sites run with too few online redo log files and files that are too small. Small
redo log files cause system checkpoints to continuously put a high load on the
buffer cache and I/O system. If too few redo log files exist, then the archive cannot
keep up, and the database must wait for the archiver to catch up. See Chapter 4,
"Configuring a Database for Performance” for information about sizing redo log
files for performance.

Serialization of data blocks in the buffer cache due to lack of free lists, free list
groups, transaction slots (I NI TRANS), or shortage of rollback segments.

This is particularly common on | NSERT-heavy applications, in applications that
have raised the block size above 8K, or in applications with large numbers of
active users and few rollback segments. Use automatic segment-space
management (ASSM) and automatic undo management to solve this problem.

Long full table scans

Long full table scans for high-volume or interactive online operations could
indicate poor transaction design, missing indexes, or poor SQL optimization. Long
table scans, by nature, are I/O intensive and unscalable.

High amounts of recursive (SYS) SQL

Performance Improvement Methods 3-5

Emergency Performance Methods

Large amounts of recursive SQL executed by SYS could indicate space
management activities, such as extent allocations, taking place. This is unscalable
and impacts user response time. Use locally managed tablespaces to reduce
recursive SQL due to extent allocation. Recursive SQL executed under another
user ID is probably SQL and PL/SQL, and this is not a problem.

10. Deployment and migration errors

In many cases, an application uses too many resources because the schema owning
the tables has not been successfully migrated from the development environment
or from an older implementation. Examples of this are missing indexes or incorrect
statistics. These errors can lead to sub-optimal execution plans and poor
interactive user performance. When migrating applications of known
performance, export the schema statistics to maintain plan stability using the
DBM5_STATS package.

Although these errors are not directly detected by ADDM, ADDM highlights the
resulting high load SQL.

Emergency Performance Methods

This section provides techniques for dealing with performance emergencies. You
presumably have a methodology for establishing and improving application
performance. However, in an emergency situation, a component of the system has
changed to transform it from a reliable, predictable system to one that is unpredictable
and not satisfying user requests.

In this case, the performance engineer must rapidly determine what has changed and
take appropriate actions to resume normal service as quickly as possible. In many
cases, it is necessary to take immediate action, and a rigorous performance
improvement project is unrealistic.

After addressing the immediate performance problem, the performance engineer must
collect sufficient debugging information either to get better clarity on the performance
problem or to at least ensure that it does not happen again.

The method for debugging emergency performance problems is the same as the
method described in the performance improvement method earlier in this book.
However, shortcuts are taken in various stages because of the timely nature of the
problem. Keeping detailed notes and records of facts found as the debugging process
progresses is essential for later analysis and justification of any remedial actions. This
is analogous to a doctor keeping good patient notes for future reference.

Steps in the Emergency Performance Method

The Emergency Performance Method is as follows:

1. Survey the performance problem and collect the symptoms of the performance
problem. This process should include the following:

s User feedback on how the system is underperforming. Is the problem
throughput or response time?

= Ask the question, "What has changed since we last had good performance?"
This answer can give clues to the problem. However, getting unbiased
answers in an escalated situation can be difficult. Try to locate some reference
points, such as collected statistics or log files, that were taken before and after
the problem.

Oracle Database Performance Tuning Guide

Emergency Performance Methods

= Use automatic tuning features to diagnose and monitor the problem. See
"Automatic Performance Tuning Features" on page 1-5 for information about
the features that help diagnose and tune Oracle systems. In addition, you can
use Oracle Enterprise Manager performance features to identify top SQL and
sessions.

Sanity-check the hardware utilization of all components of the application system.
Check where the highest CPU utilization is, and check the disk, memory usage,
and network performance on all the system components. This quick process
identifies which tier is causing the problem. If the problem is in the application,
then shift analysis to application debugging. Otherwise, move on to database
server analysis.

Determine if the database server is constrained on CPU or if it is spending time
waiting on wait events. If the database server is CPU-constrained, then investigate
the following:

= Sessions that are consuming large amounts of CPU at the operating system
level and database; check V$SESS_TI ME_MODEL for database CPU usage

= Sessions or statements that perform many buffer gets at the database level;
check V$SESSTAT and V$SQLSTATS

= Execution plan changes causing sub-optimal SQL execution; these can be
difficult to locate

= Incorrect setting of initialization parameters
= Algorithmic issues caused by code changes or upgrades of all components

If the database sessions are waiting on events, then follow the wait events listed in
V$SESSI ON_WAI T to determine what is causing serialization. The

V$ACTI VE_SESSI ON_HI STORY view contains a sampled history of session
activity which you can use to perform diagnosis even after an incident has ended
and the system has returned to normal operation. In cases of massive contention
for the library cache, it might not be possible to logon or submit SQL to the
database. In this case, use historical data to determine why there is suddenly
contention on this latch. If most waits are for I/O, then examine

VSACTI VE_SESSI ON_HI STORY to determine the SQL being run by the sessions
that are performing all of the inputs and outputs. See Chapter 10, "Instance Tuning
Using Performance Views" for a discussion on wait events.

Apply emergency action to stabilize the system. This could involve actions that
take parts of the application off-line or restrict the workload that can be applied to
the system. It could also involve a system restart or the termination of job in
process. These naturally have service level implications.

Validate that the system is stable. Having made changes and restrictions to the
system, validate that the system is now stable, and collect a reference set of
statistics for the database. Now follow the rigorous performance method described
earlier in this book to bring back all functionality and users to the system. This
process may require significant application re-engineering before it is complete.

Performance Improvement Methods 3-7

Emergency Performance Methods

3-8 Oracle Database Performance Tuning Guide

Part Il

Optimizing Instance Performance

Part III describes how to tune various elements of your database system to optimize
performance of an Oracle database instance.

The chapters in this part are:

» Chapter 4, "Configuring a Database for Performance"
» Chapter 5, "Automatic Performance Statistics"

» Chapter 6, "Automatic Performance Diagnostics"

» Chapter 7, "Configuring and Using Memory"

s Chapter 8, "I/O Configuration and Design"

s Chapter 9, "Managing Operating System Resources"

s Chapter 10, "Instance Tuning Using Performance Views"

A

Configuring a Database for Performance

This chapter contains an overview of the Oracle methodology for configuring a
database for performance. Although performance modifications can be made to Oracle
Database on an ongoing basis, significant benefits can be gained by proper initial
configuration of the database.

This chapter contains the following sections:
» Performance Considerations for Initial Instance Configuration
s Creating and Maintaining Tables for Optimal Performance

m Performance Considerations for Shared Servers

Performance Considerations for Initial Instance Configuration

This section discusses some initial database instance configuration options that have
important performance impacts.

If you use the Database Configuration Assistant (DBCA) to create a database, then the
supplied seed database includes the necessary basic initialization parameters and
meets the performance recommendations that are discussed in this chapter.

See Also:

m Oracle Database Administrator’s Guide to learn how to create a
database with the Database Configuration Assistant

n Oracle Database Administrator’s Guide to learn how to create a
database with a SQL statement

Initialization Parameters

A running Oracle database instance is configured using initialization parameters,
which are set in the initialization parameter file. These parameters influence the
behavior of the running instance, including influencing performance. In general, a
very simple initialization file with few relevant settings covers most situations, and the
initialization file should not be the first place you expect to do performance tuning,
except for the few parameters shown in Table 4-2.

Table 4-1 describes the parameters necessary in a minimal initialization file. Although
these parameters are necessary, they have no performance impact.

Configuring a Database for Performance 4-1

Performance Considerations for Initial Instance Configuration

Table 4-1 Necessary Initialization Parameters Without Performance Impact

Parameter Description

DB_NAME Name of the database. This should match the ORACLE_SI D
environment variable.

DB_DOVAI N Location of the database in Internet dot notation.

OPEN_CURSORS Limit on the maximum number of cursors (active SQL

statements) for each session. The setting is
application-dependent; 500 is recommended.

CONTRCL_FI LES Set to contain at least two files on different disk drives to
prevent failures from control file loss.

DB_FI LES Set to the maximum number of files that can assigned to the
database.

See Also: Oracle Database Administrator’s Guide to learn more
about these initialization parameters

Table 4-2 includes the most important parameters to set with performance
implications:

Table 4-2 Important Initialization Parameters With Performance Impact

Parameter Description

COVPATI BLE Specifies the release with which the Oracle database must
maintain compatibility. It lets you take advantage of the
maintenance improvements of a new release immediately in your
production systems without testing the new functionality in your
environment. If your application was designed for a specific
release of Oracle Database, and you are actually installing a later
release, then you might want to set this parameter to the version
of the previous release.

DB_BLOCK_SI ZE Sets the size of the Oracle database blocks stored in the database
files and cached in the SGA. The range of values depends on the
operating system, but it is typically 8192 for transaction
processing systems and higher values for database warehouse
systems.

SGA_TARGET Specifies the total size of all SGA components. If SGA_TARGET is
specified, then the buffer cache (DB_CACHE_SI ZE), Java pool
(JAVA_PQOOL_SI ZE), large pool (LARGE_POCL_SI ZE), and
shared pool (SHARED_POQL_SI ZE) memory pools are
automatically sized. See "Automatic Shared Memory
Management" on page 7-2.

PGA AGCGREGATE_TARGET Specifies the target aggregate PGA memory available to all server
processes attached to the instance. See "PGA Memory
Management" on page 7-39.

PROCESSES Sets the maximum number of processes that can be started by that
instance. This is the most important primary parameter to set,
because many other parameter values are deduced from this.

SESSI ONS This is set by default from the value of processes. However, if you
are using the shared server, then the deduced value is likely to be
insufficient.

UNDO_MANAGEMENT Specifies the undo space management mode used by the
database. The default is AUTO. If unspecified, the database uses
AUTQO

UNDO_TABLESPACE Specifies the undo tablespace to be used when an instance starts.

4-2 Oracle Database Performance Tuning Guide

Performance Considerations for Initial Instance Configuration

See Also:
s Chapter 7, "Configuring and Using Memory"

» Oracle Database Reference for information about initialization
parameters

» Oracle Streams Concepts and Administration for information
about the STREAMS_POCL_SI ZE initialization parameter

Configuring Undo Space

The database uses undo space to store data used for read consistency, recovery, and
rollback statements. This data exists in one or more undo tablespaces. If you use the
Database Configuration Assistant (DBCA) to create a database, then the undo
tablespace is created automatically. To manually create an undo tablespace, add the
UNDO TABLESPACE clause to the CREATE DATABASE statement.

To automate the management of undo data, Oracle Database uses automatic undo
management, which transparently creates and manages undo segments.To enable
automatic undo management, set the UNDO_MANAGEMENT initialization parameter to
AUTO (the default setting). If unspecified, then the UNDO_NMANAGEMENT initialization
parameter uses the AUTOsetting. Oracle strongly recommends using automatic undo
management because it significantly simplifies database management and eliminates
the need for any manual tuning of undo (rollback) segments. Manual undo
management using rollback segments is supported for backward compatibility.

The VSUNDOSTAT view contains statistics for monitoring and tuning undo space.
Using this view, you can better estimate the amount of undo space required for the
current workload. Oracle Database also uses this information to help tune undo usage.
The V$ROLLSTAT view contains information about the behavior of the undo segments
in the undo tablespace.

See Also:

s Oracle Database 2 Day DBA and Oracle Enterprise Manager
online help to learn about the Undo Management Advisor

s Oracle Database Administrator’s Guide for information about
managing undo space using automatic undo management

» Oracle Database Reference to learn about the VSROLLSTAT and
VSUNDOSTAT views

Sizing Redo Log Files

The size of the redo log files can influence performance, because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally, larger
redo log files provide better performance. Undersized log files increase checkpoint
activity and reduce performance.

Although the size of the redo log files does not affect LGWR performance, it can affect
DBWR and checkpoint behavior. Checkpoint frequency is affected by several factors,
including log file size and the setting of the FAST_START_MITR_TARCET initialization
parameter. If the FAST_START_MITR_TARGET parameter is set to limit the instance
recovery time, Oracle Database automatically tries to checkpoint as frequently as
necessary. Under this condition, the size of the log files should be large enough to
avoid additional checkpointing due to under sized log files. The optimal size can be
obtained by querying the OPTI MAL_LOGFI LE_SI ZE column from the

Configuring a Database for Performance 4-3

Performance Considerations for Initial Instance Configuration

V$1 NSTANCE_RECOVERY view. You can also obtain sizing advice on the Redo Log
Groups page of Oracle Enterprise Manager.

It may not always be possible to provide a specific size recommendation for redo log
files, but redo log files in the range of 100 MB to a few gigabytes are considered
reasonable. Size online redo log files according to the amount of redo your system
generates. A rough guide is to switch log files at most once every 20 minutes.

See Also: Oracle Database Administrator’s Guide for information
about managing the online redo log

Creating Subsequent Tablespaces

If you use the Database Configuration Assistant (DBCA) to create a database, then the
seed database automatically includes the necessary tablespaces. If you choose not to
use DBCA, then you must create extra tablespaces after creating the database.

All databases should have several tablespaces in addition to the SYSTEMand SYSAUX
tablespaces. These additional tablespaces include:

= A temporary tablespace, which is used for operations such as sorting

= Anundo tablespace to contain information for read consistency, recovery, and
undo statements

= Atleast one tablespace for application use (in most cases, applications require
several tablespaces)

For extremely large tablespaces with many data files, you can run multiple ALTER
TABLESPACE . . . ADD DATAFI LE statements in parallel. During tablespace creation,
the data files that make up the tablespace are initialized with special empty block
images. Temporary files are not initialized.

Oracle Database does this to ensure that it can write all data files in their entirety, but
this can obviously be a lengthy process if done serially. Therefore, run multiple
CREATE TABLESPACE statements concurrently to speed up tablespace creation. For
permanent tables, the choice between local and global extent management on
tablespace creation can greatly affect performance. For any permanent tablespace that
has moderate to large insert, modify, or delete operations compared to reads, choose
local extent management.

Creating Permanent Tablespaces - Automatic Segment-Space Management

For permanent tablespaces, Oracle recommends using automatic segment-space
management. Such tablespaces, often referred to as bitmap tablespaces, are locally
managed tablespaces with bitmap segment space management.

See Also:

» Oracle Database Concepts for a discussion of free space
management

s Oracle Database Administrator’s Guide for more information on
creating and using automatic segment-space management for
tablespaces

Creating Temporary Tablespaces

Properly configuring the temporary tablespace helps optimize disk sort performance.
Temporary tablespaces can be dictionary-managed or locally managed. Oracle

4-4 Oracle Database Performance Tuning Guide

Creating and Maintaining Tables for Optimal Performance

recommends the use of locally managed temporary tablespaces with a UNIl FORMextent
size of 1 MB.

You should monitor temporary tablespace activity to check how many extents the
database allocates for the temporary segment. If an application extensively uses
temporary tables, as in a situation when many users are concurrently using temporary
tables, then the extent size could be set smaller, such as 256K, because every usage
requires at least one extent. The EXTENT MANAGEMENT LOCAL clause is optional for
temporary tablespaces because all temporary tablespaces are created with locally
managed extents of a uniform size. The default for SI ZEis 1M

See Also:

» Oracle Database Administrator’s Guide for more information on
managing temporary tablespaces

s Oracle Database Concepts for more information on temporary
tablespaces

» Oracle Database SQL Language Reference for more information on
using the CREATE and ALTER TABLESPACE statements with
the TEMPCORARY clause

Creating and Maintaining Tables for Optimal Performance

When installing applications, an initial step is to create all necessary tables and
indexes. When you create a segment, such as a table, the database allocates space for
the data. If subsequent database operations cause the data volume to increase and
exceed the space allocated, then Oracle Database extends the segment.

When creating tables and indexes, note the following:
= Specify automatic segment-space management for tablespaces

In this way Oracle Database automatically manages segment space for best
performance.

= Set storage options carefully

Applications should carefully set storage options for the intended use of the table
or index. This includes setting the value for PCTFREE. Note that using automatic
segment-space management eliminates the necessity of specifying PCTUSED.

Note: Use of free lists is not recommended. To use automatic
segment-space management, create locally managed tablespaces,
with the segment space management clause set to AUTQ

Table Compression

You can store heap-organized tables in a compressed format that is transparent for any
kind of application. Compressed data in a database block is self-contained, which
means that all information needed to re-create the uncompressed data in a block is
available within the block. A block is also compressed in the buffer cache. Table
compression not only reduces the disk storage but also the memory usage, specifically
the buffer cache requirements. Performance improvements are accomplished by
reducing the amount of necessary I/O operations for accessing a table and by
increasing the probability of buffer cache hits.

Configuring a Database for Performance 4-5

Creating and Maintaining Tables for Optimal Performance

Oracle Database has an advanced compression option that enables you to boost the
performance of any type of application workload—including data warehousing and
OLTP applications—while reducing the disk storage that is required by the database.
You can use the advanced compression feature for all types of data, including
structured data, unstructured data, backup data, and network data.

Estimating the Compression factor

Table compression works by eliminating column value repetitions within individual
blocks. Duplicate values in all the rows and columns in a block are stored once at the
beginning of the block, in what is called a symbol table for that block. All occurrences
of such values are replaced with a short reference to the symbol table. The
compression is higher in blocks that have more repeated values.

Before compressing large tables you should estimate the expected compression factor.
The compression factor is defined as the number of blocks necessary to store the
information in an uncompressed form divided by the number of blocks necessary for a
compressed storage. The compression factor can be estimated by sampling a small
number of representative data blocks of the table to be compressed and comparing the
average number of records for each block for the uncompressed and compressed case.
Experience shows that approximately 1000 data blocks provides a very accurate
estimation of the compression factor. Note that the more blocks you are sampling, the
more accurate the result become.

Tuning to Achieve a Better Compression Ratio

Oracle Database achieves a good compression factor in many cases with no special
tuning. As a DBA or application developer, you can try to tune the compression factor
by reorganizing the records when the compression takes place. Tuning can improve
the compression factor slightly in some cases and substantially in other cases.

To improve the compression factor you must increase the likelihood of value
repetitions within a data block. The achievable compression factor depends on the
cardinality of a specific column or column pairs (representing the likelihood of column
value repetitions) and on the average row length of those columns. Table compression
not only compresses duplicate values of a single column but tries to use multi-column
value pairs whenever possible. Without a detailed understanding of the data
distribution it is very difficult to predict the most optimal order.

See Also: Oracle Database Data Warehousing Guide for information
about table compression and partitions

Reclaiming Unused Space

Over time, it is common for segment space to become fragmented or for a segment to
acquire a lot of free space as the result of update and delete operations. The resulting
sparsely populated objects can suffer performance degradation during queries and
DML operations.

Oracle Database provides a Segment Advisor that provides advice on whether an
object has space available for reclamation based on the level of space fragmentation
within an object.

See Also: Oracle Database Administrator’s Guide and Oracle
Database 2 Day DBA to learn about the Segment Advisor

If an object does have space available for reclamation, then you can compact and
shrink segments or deallocate unused space at the end of a segment.

4-6 Oracle Database Performance Tuning Guide

Performance Considerations for Shared Servers

Indexing Data

See Also:

n Oracle Database Administrator’s Guide for a discussion of
reclaiming unused space

» Oracle Database SQL Language Reference for details about SQL
statements used to shrink segments or deallocate unused space

The most efficient time to create indexes is after data has been loaded. In this way,
space management becomes simpler, and no index maintenance takes place for each
row inserted. SQL*Loader automatically uses this technique, but if you are using other
methods to do initial data load, then you may need to create indexes manually
manually. Additionally, you can perform index creation in parallel using the
PARALLEL clause of the CREATE | NDEX statement. However, SQL*Loader is not able
to parallelize index creation, so you must manually create indexes in parallel after
loading data.

See Also: Oracle Database Utilities for information about
SQL*Loader

Specifying Memory for Sorting Data
During index creation on tables that contain data, the data must be sorted. This sorting
is done in the fastest possible way; if all available memory is used for sorting. Oracle

recommends that you enable automatic sizing of SQL working areas by setting the
PGA_AGCGREGATE_TARCET initialization parameter.

See Also:

= "PGA Memory Management" on page 7-39 for information
about PGA memory management

» Oracle Database Reference for information about the
PGA_AGCGREGATE_TARGET initialization parameter

Performance Considerations for Shared Servers

Using shared servers reduces the number of processes and the amount of memory
consumed on the database host. Shared servers are beneficial for databases where
there are many OLTP users performing intermittent transactions.

Using shared servers rather than dedicated servers is also generally better for systems
that have a high connection rate to the database. With shared servers, when a connect
request is received, a dispatcher is available to handle concurrent connection requests.
With dedicated servers, however, a connection-specific dedicated server is sequentially
initialized for each connection request.

Performance of certain database features can improve when a shared server
architecture is used, and performance of certain database features can degrade slightly
when a shared server architecture is used. For example, a session can be prevented
from migrating to another shared server while parallel execution is active.

A session can remain nonmigratable even after a request from the client has been
processed, because not all the user information has been stored in the UGA. If a server
were to process the request from the client, then the part of the user state that was not
stored in the UGA would be inaccessible. To avoid this situation, individual shared
servers often need to remain bound to a user session.

Configuring a Database for Performance 4-7

Performance Considerations for Shared Servers

See Also:

s Oracle Database Administrator’s Guide to learn how to manage
shared servers

n Oracle Database Net Services Administrator’s Guide to learn how
to configure dispatchers for shared servers

When using some features, you may need to configure more shared servers, because
some servers might be bound to sessions for an excessive amount of time.

This section discusses how to reduce contention for processes used by Oracle Database
architecture:

s Identifying Contention Using the Dispatcher-Specific Views

s Identifying Contention for Shared Servers

Identifying Contention Using the Dispatcher-Specific Views

The following views provide dispatcher performance statistics:
= V$DI SPATCHER: general information about dispatcher processes
= V$DI SPATCHER_RATE: dispatcher processing statistics

The V$DI SPATCHER _RATE view contains current, average, and maximum dispatcher
statistics for several categories. Statistics with the prefix CUR _ are statistics for the
current sample. Statistics with the prefix AVG _ are the average values for the statistics
after the collection period began. Statistics with the prefix MAX_ are the maximum
values for these categories after statistics collection began.

To assess dispatcher performance, query the V6Dl SPATCHER _RATE view and compare
the current values with the maximums. If your present system throughput provides
adequate response time and current values from this view are near the average and
less than the maximum, then you likely have an optimally tuned shared server
environment.

If the current and average rates are significantly less than the maximums, then
consider reducing the number of dispatchers. Conversely, if current and average rates
are close to the maximums, then you might need to add more dispatchers. A general
rule is to examine V$DI SPATCHER _RATE statistics during both light and heavy system
use periods. After identifying your shared server load patterns, adjust your
parameters accordingly.

If necessary, you can also mimic processing loads by running system stress tests and
periodically polling V$DI SPATCHER _RATE statistics. Proper interpretation of these
statistics varies from platform to platform. Different types of applications also can
cause significant variations on the statistical values recorded in
V$DI SPATCHER _RATE.

See Also:

» Oracle Database Reference for detailed information about the
V$Dl SPATCHER and V$DI SPATCHER _RATE views

Reducing Contention for Dispatcher Processes
To reduce contention, consider the following:

» Adding dispatcher processes

4-8 Oracle Database Performance Tuning Guide

Performance Considerations for Shared Servers

The total number of dispatcher processes is limited by the value of the
initialization parameter MAX_DI SPATCHERS. You might need to increase this
value before adding dispatcher processes.

= Enabling connection pooling

When system load increases and dispatcher throughput is maximized, it is not
necessarily a good idea to immediately add more dispatchers. Instead, consider
configuring the dispatcher to support more users with connection pooling.

= Enabling Session Multiplexing

Multiplexing is used by a connection manager process to establish and maintain
network sessions from multiple users to individual dispatchers. For example,
several user processes can connect to one dispatcher by way of a single connection
from a connection manager process. Session multiplexing is beneficial because it
maximizes use of the dispatcher process connections. Multiplexing is also useful
for multiplexing database link sessions between dispatchers.

See Also:

s Oracle Database Administrator's Guide to learn how to configure
dispatcher processes

» Oracle Database Net Services Administrator’s Guide to learn how
to configure connection pooling

» Oracle Database Reference to learn about the DI SPATCHERS and
MAX_DI SPATCHERS initialization parameters

Identifying Contention for Shared Servers

Steadily increasing wait times in the requests queue indicate contention for shared
servers. To examine wait time data, use the dynamic performance view VSQUEUE. This
view contains statistics showing request queue activity for shared servers. By default,
this view is available only to the user SYS and to other users with SELECT ANY TABLE
system privilege, such as SYSTEM Table 4-3 lists the columns showing the wait times
for requests and the number of requests in the queue.

Table 4-3 Wait Time and Request Columns in VSQUEUE

Column Description

VWAI T Displays the total waiting time, in hundredths of a second, for
all requests that have ever been in the queue

TOTALQ Displays the total number of requests that have ever been in
the queue

Monitor these statistics occasionally while your application is running by issuing the
following SQL statement:

SELECT DECODE(TOTALQ 0, ' No Requests',
WAI T/ TOTALQ || ' HUNDREDTHS OF SECONDS') "AVERAGE WAI T TI ME PER REQUESTS'
FROM V$QUEUE

WHERE TYPE = ' COVMON ;

This query returns the results of a calculation that show the following;:

AVERAGE WAI T TI ME PER REQUEST

. 090909 HUNDREDTHS COF SECONDS

Configuring a Database for Performance 4-9

Performance Considerations for Shared Servers

From the result, you can tell that a request waits an average of 0.09 hundredths of a
second in the queue before processing.

You can also determine how many shared servers are currently running by issuing the
following query:

SELECT COUNT(*) "Shared Server Processes”
FROM V$SHARED SERVER
WHERE STATUS != "QUI T ;

The result of this query could look like the following;:

Shared Server Processes

If you detect resource contention with shared servers, then first ensure that this is not a
memory contention issue by examining the shared pool and the large pool. If
performance remains poor, then you might want to create more resources to reduce
shared server process contention. You can do this by modifying the optional server
process initialization parameters:

= MAX_DI SPATCHERS

= MAX_SHARED SERVERS
= DI SPATCHERS

= SHARED SERVERS

See Also: Oracle Database Administrator’s Guide to learn how to set
the shared server process initialization parameters

4-10 Oracle Database Performance Tuning Guide

D

Automatic Performance Statistics

This chapter discusses the gathering of performance statistics. This chapter contains
the following topics:

s Overview of Data Gathering
s Overview of the Automatic Workload Repository

= Managing the Automatic Workload Repository

Overview of Data Gathering

To effectively diagnose performance problems, statistics must be available. Oracle
Database generates many types of cumulative statistics for the system, sessions, and
individual SQL statements. Oracle Database also tracks cumulative statistics on
segments and services. When analyzing a performance problem in any of these scopes,
you typically look at the change in statistics (delta value) over the period you are
interested in. Specifically, you look at the difference between the cumulative value of a
statistic at the start of the period and the cumulative value at the end.

Cumulative values for statistics are generally available through dynamic performance
views, such as the VESESSTAT and VESYSSTAT views. Note that the cumulative
values in dynamic views are reset when the database instance is shutdown. The
Automatic Workload Repository (AWR) automatically persists the cumulative and
delta values for most of the statistics at all levels except the session level. This process
is repeated on a regular time period and the result is called an AWR snapshot. The
delta values captured by the snapshot represent the changes for each statistic over the
time period. See "Overview of the Automatic Workload Repository" on page 5-8.

A metric is another type of statistic collected by Oracle Database. A metric is defined
as the rate of change in some cumulative statistic. That rate can be measured against a
variety of units, including time, transactions, or database calls. For example, the
number database calls per second is a metric. Metric values are exposed in some V$
views, where the values are the average over a fairly small time interval, typically 60
seconds. A history of recent metric values is available through V$ views, and some
data is also persisted by AWR snapshots.

A third type of statistical data collected by Oracle is sampled data. The active session
history (ASH) sampler performs the sampling. ASH samples the current state of all
active sessions. The database collects this data into memory, where you can access it
with a V$ view. AWR snapshot processing also writes it to persistent storage. See
"Active Session History" on page 5-3.

A powerful tool for diagnosing performance problems is the use of statistical
baselines. A statistical baseline is collection of statistic rates usually taken over time
period where the system is performing well at peak load. Comparing statistics

Automatic Performance Statistics 5-1

Overview of Data Gathering

captured during a period of bad performance to a baseline helps discover specific
statistics that have increased significantly and could be the cause of the problem.

AWR supports the capture of baseline data by enabling you to specify and preserve a
pair or range of AWR snapshots as a baseline. Carefully consider the time period you
choose as a baseline; the baseline should be a good representation of the peak load on
the system. In the future, you can compare these baselines with snapshots captured
during periods of poor performance.

Oracle Enterprise Manager is the recommended tool for viewing both real time data in
the dynamic performance views and historical data from the AWR history tables.
Enterprise Manager can also be used to capture operating system and network
statistical data that can be correlated with AWR data. For more information, see Oracle
Database 2 Day + Performance Tuning Guide.

This section covers the following topics:
= Database Statistics
s Operating System Statistics

= Interpreting Statistics

Database Statistics

Database statistics provide information on the type of load on the database and the
internal and external resources used by the database. This section describes some of
the more important statistics.

Wait Events

Wait events are statistics that are incremented by a server process or thread to indicate
that it had to wait for an event to complete before being able to continue processing.
Wait event data reveals various symptoms of problems that might be impacting
performance, such as latch contention, buffer contention, and I/O contention.

To enable easier high-level analysis of the wait events, events are grouped into classes.
The classes include: Administrative, Application, Cluster, Commit, Concurrency,
Configuration, Idle, Network, Other, Scheduler, System I/O, and User 1/O.

The wait classes are based on a common solution that usually applies to fixing a
problem with the wait event. For example, exclusive TX locks are generally an
application level issue and HW locks are generally a configuration issue.

The following list includes common examples of the waits in some of the classes:
= Application: locks waits caused by row level locking or explicit lock commands
s Commit: waits for redo log write confirmation after a commit

= Idle: wait events that signify the session is inactive, such as SQL* Net nessage
fromclient

s Network: waits for data to be sent over the network
s User I/O: wait for blocks to be read off a disk

Wait event statistics for an instance include statistics for both background and
foreground processes. Because you would typically focus your effort in tuning
foreground activities, overall instance activity is broken down into foreground and
background statistics in the relevant V$ views to facilitate tuning.

The VESYSTEM _EVENT view shows wait event statistics for the foreground activities
of an instance and the wait event statistics for the instance. The

5-2 Oracle Database Performance Tuning Guide

Overview of Data Gathering

VSSYSTEM WAI T_CLASS view shows these foreground and wait event instance
statistics after aggregating to wait classes. VESESSI ON_EVENT and
V$SYSTEM WAl T_CLASS show wait event and wait class statistics at the session level.

See Also: Oracle Database Reference for more information about
Oracle wait events

Time Model Statistics

When tuning an Oracle database, each component has its own set of statistics. To look
at the system as a whole, it is necessary to have a common scale for comparisons. For
this reason, most Oracle Database advisories and reports describe statistics in terms of
time. In addition, the V$SESS_TI ME_MODEL and V$SYS_TI ME_MODEL views provide
time model statistics. Using the common time instrumentation helps to identify
quantitative effects on the database operations.

The most important of the time model statistics is DB t i me. This statistics represents
the total time spent in database calls and is an indicator of the total instance workload.
It is calculated by aggregating the CPU and wait times of all sessions not waiting on
idle wait events (non-idle user sessions).

DBt i me is measured cumulatively from the time of instance startup. Because DBt i e
it is calculated by combining the times from all non-idle user sessions, it is possible
that the DBt i me can exceed the actual time elapsed after the instance started. For
example, an instance that has been running for 30 minutes could have four active user
sessions whose cumulative DB t i e is approximately 120 minutes.

The objective for tuning an Oracle system could be stated as reducing the time that
users spend in performing some action on the database, or simply reducing DBt i ne.
Other time model statistics provide quantitative effects (in time) on specific actions,
such as logon operations and hard and soft parses.

See Also: Oracle Database Reference to learn about the
V$SESS_TI ME_MODEL and V$SYS_TI ME_MODEL views

Active Session History

The V$ACTI VE_SESSI ON_HI STORY view provides sampled session activity in the
instance. Active sessions are sampled every second and are stored in a circular buffer
in SGA. Any session that is connected to the database and is waiting for an event that
does not belong to the Idle wait class is considered as an active session. This includes
any session that was on the CPU at the time of sampling.

Each session sample is a set of rows and the V$ACTI VE_SESSI ON_HI STORY view
returns one row for each active session per sample, returning the latest session sample
rows first. Because the active session samples are stored in a circular buffer in SGA, the
greater the system activity, the smaller the number of seconds of session activity that
can be stored in the circular buffer. This means that the duration for which a session
sample appears in the V$ view, or the number of seconds of session activity that is
displayed in the V$ view, is completely dependent on the database activity.

As part of the AWR snapshots, the content of VSACTI VE_SESSI ON_HI STORY is also
flushed to disk. Because the content of this V$ view can get quite large during heavy
system activity, only a portion of the session samples is written to disk.

By capturing only active sessions, a manageable set of data is represented with the size
being directly related to the work being performed rather than the number of sessions
allowed on the system. Using ASH enables you to examine and perform detailed
analysis on both current data in the VSACTI VE_SESSI ON_Hl STORY view and
historical data in the DBA _HI ST_ACTI VE_SESS Hl STORY view, often avoiding the

Automatic Performance Statistics 5-3

Overview of Data Gathering

need to replay the workload to gather additional performance tracing information.
ASH also contains execution plan information for each captured SQL statement. You
can use this information to identify which part of SQL execution contributed most to
the SQL elapsed time. The data present in ASH can be rolled up on various
dimensions that it captures, including the following:

s SQL identifier of SQL statement

= SQL plan identifier and hash value of the SQL plan used to execute the SQL
statement

s SQL execution plan information

= Object number, file number, and block number
= Wait event identifier and parameters

= Session identifier and session serial number

s Module and action name

» Client identifier of the session

= Service hash identifier

s Consumer group identifier

You can gather ASH information over a specified duration into a report. For more
information, see "Generating Active Session History Reports" on page 5-34.

Active session history sampling is also available for Active Data Guard physical
standby instances and Oracle Automatic Storage Management (Oracle ASM) instances.
On these instances, the current session activity is collected and displayed in the
V$ACTI VE_SESSI ON_HI STORY view, but not written to disk.

See Also:

» Oracle Database Reference for more information about the
V$ACTI VE_SESSI ON_HI STORY view

» Oracle Database High Availability Overview for more information
about using ASH in an Active Data Guard physical standby
environment

System and Session Statistics

A large number of cumulative database statistics are available on a system and session
level through the VESYSSTAT and V$SESSTAT views.

See Also: Oracle Database Reference to learn about the VESYSSTAT
and V$SESSTAT views

Operating System Statistics

Operating system statistics provide information on the usage and performance of the
main hardware components of the system, and the performance of the operating
system itself. This information is crucial for detecting potential resource exhaustion,
such as CPU cycles and physical memory, and for detecting bad performance of
peripherals, such as disk drives.

Operating system statistics are an indication of how the hardware and operating
system are working. Many system analysts react to a hardware resource shortage by
installing more hardware. This is a reactionary response to a series of symptoms
shown in the operating system statistics. It is best to consider operating system

5-4 Oracle Database Performance Tuning Guide

Overview of Data Gathering

statistics as a diagnostic tool, similar to the way doctors use body temperature, pulse
rate, and patient pain when making a diagnosis. To help identify bottlenecks, gather
operating system statistics for all servers in the system under performance analysis.

Operating system statistics include the following:
s CPU Statistics

= Virtual Memory Statistics

s Disk I/O Statistics

= Network Statistics

See Also: "Operating System Data Gathering Tools" on page 5-6 for
information about tools for gathering operating statistics

CPU Statistics

CPU utilization is the most important operating system statistic in the tuning process.
Get CPU utilization for the entire system and for each individual CPU on
multi-processor environments. Utilization for each CPU can detect single-threading
and scalability issues.

Most operating systems report CPU usage as time spent in user space or mode and
time spent in kernel space or mode. These additional statistics allow better analysis of
what is actually being executed on the CPU.

On a system running Oracle Database, where only one application is typically
running, the system runs database activity in user space. Activities required to service
database requests (such as scheduling, synchronization, I/O, memory management,
and process/thread creation and tear down) run in kernel mode. In a system where
CPU is fully utilized, a healthy Oracle database runs between 65% and 95% in user
space.

The V$OSSTAT view captures machine-level information in the database, making it
easier for you to determine if hardware-level resource issues exist. The

V$SYSMETRI C_HI STORY view shows a one-hour history of the Host CPU Utilization
metric, a representation of percentage of CPU usage at each one-minute interval. The
V$SYS_TI ME_MODEL view supplies statistics on the CPU usage by the Oracle
database. Using both sets of statistics enable you to determine whether the Oracle
database or other system activity is the cause of the CPU problems.

Virtual Memory Statistics

Virtual memory statistics should mainly be used as a check to validate that there is
very little paging or swapping activity on the system. System performance degrades
rapidly and unpredictably when paging or swapping occurs.

Individual process memory statistics can detect memory leaks due to a programming
failure to deallocate memory taken from the process heap. These statistics are
necessary to validate that memory usage does not increase after the system has
reached a steady state after startup. This problem is particularly acute on shared server
applications on middle tier computers where session state may persist across user
interactions, and on completion state information that is not fully deallocated.

Disk I/O Statistics

Because the database resides on a set of disks, the performance of the I/O subsystem is
very important to the performance of the database. Most operating systems provide
extensive statistics on disk performance. The most important disk statistics are the

Automatic Performance Statistics 5-5

Overview of Data Gathering

current response time and the length of the disk queues. These statistics show if the
disk is performing optimally or if the disk is being overworked.

Measure the normal performance of the I/O system; typical values for a single block
read range from 5 to 20 milliseconds, depending on the hardware used. If the
hardware shows response times much higher than the normal performance value, then
it is performing badly or is overworked. This is your bottleneck. If disk queues start to
exceed two, then the disk is a potential bottleneck of the system.

Oracle Database also maintains a consistent set of I/O statistics for the I/O calls it
issues. These statistics are captured for both single and multi block read and write
operations in the following dimensions:

= Consumer group

When Oracle Database Resource Manager is enabled, the

V$| OSTAT_CONSUMER_GROUP view captures 1/O statistics for all consumer
groups that are part of the currently enabled resource plan. The database samples
cumulative statistics every hour and stores them as historical statistics in the AWR.

s Database file

I/0 statistics of database files that are or have been accessed are captured in the
V$| OSTAT_FI LE view.

s Database function

I/0 statistics for database functions (such as the LGWR and DBWR) are captured
in the V$I OSTAT_FUNCTI ON view.

See Also: "Identifying I/O Problems Using V$ Views" on page 10-4
to learn how to use views in Oracle Database to identify I/O problems

Network Statistics

You can use network statistics in much the same way as disk statistics to determine if a
network or network interface is overloaded or not performing optimally. In today's
networked applications, network latency can be a large portion of the actual user
response time. For this reason, these statistics are a crucial debugging tool.

Oracle Database maintains a set of network I/O statistics in the VSl OSTAT _NETWORK

view.

See Also: "Identifying Network Issues" on page 10-6 to learn how to
use the V$I OSTAT_NETWORK view to identify network issues

Operating System Data Gathering Tools

Table 5-1 shows the various tools for gathering operating statistics on UNIX. For
Windows, use the Performance Monitor tool.

Table 5-1 UNIX Tools for Operating Statistics

Component UNIX Tool

CPU sar, vistat, mpstat, iostat
Memory sar, vistat

Disk sar, iostat

Network netstat

5-6 Oracle Database Performance Tuning Guide

Overview of Data Gathering

Interpreting Statistics

When initially examining performance data, you can formulate potential theories by
examining your statistics. One way to ensure that your interpretation of the statistics is
correct is to perform cross-checks with other data. This establishes whether a statistic
or event is really of interest. Also, because foreground activities are tunable, it is better
to first analyze the statistics from foreground activities before analyzing the statistics
from background activities.

Some pitfalls are discussed in the following sections:
= Hitratios

When tuning, it is common to compute a ratio that helps determine whether there
is a problem. Such ratios include the buffer cache hit ratio, the soft-parse ratio, and
the latch hit ratio. Do not use these ratios as definitive identifiers of whether a
performance bottleneck exists. Rather, use them as indicators. To identify whether
a bottleneck exists, examine other related evidence. See "Calculating the Buffer
Cache Hit Ratio" on page 7-9.

s Wait events with timed statistics

Setting TI MED_STATI STI CSto t r ue at the instance level directs the database to
gather wait time for events, in addition to available wait counts. This data is useful
for comparing the total wait time for an event to the total elapsed time between
the data collections. For example, if the wait event accounts for only 30 seconds
out of a 2-hour period, then little is to be gained by investigating this event,
although it may be the highest ranked wait event when ordered by time waited.
However, if the event accounts for 30 minutes of a 45-minute period, then the
event is worth investigating. See "Wait Events" on page 5-2.

Note: Timed statistics are automatically collected for the database
if the initialization parameter STATI STl CS_LEVEL is set to

TYPI CAL or ALL. If STATI STI CS_LEVEL is set to BASI C, then you
must set TI MED_STATI STI CS to TRUE to enable collection of
timed statistics. Note that setting STATI STI CS_LEVEL to BASI C
disables many automatic features and is not recommended.

If you explicitly set DB_CACHE_ADVI CE, TI MED_STATI STI CS, or
TI MED_OS_STATI STI CS, either in the initialization parameter file
or by using ALTER_SYSTEMor ALTER SESSI ON, then the explicitly
set value overrides the value derived from STATI STI CS_LEVEL.

» Comparing Oracle Database statistics with other factors

When looking at statistics, it is important to consider other factors that influence
whether the statistic is of value. Such factors include the user load and the
hardware capability. Even an event that had a wait of 30 minutes in a 45-minute
period might not be indicative of a problem if you discover that there were 2000
users on the system, and the host hardware was a 64-node computer.

= Wait events without timed statistics

If TI MED_STATI STI CSis false, then the amount of time waited for an event is not
available. Therefore, it is only possible to order wait events by the number of times
each event was waited for. Although the events with the largest number of waits
might indicate the potential bottleneck, they might not be the main bottleneck.
This can happen when an event is waited for a large number of times, but the total
time waited for that event is small. The converse is also true: an event with fewer

Automatic Performance Statistics 5-7

Overview of the Automatic Workload Repository

waits might be a problem if the wait time is a significant proportion of the total
wait time. Without having the wait times to use for comparison, it is difficult to
determine whether a wait event is really of interest.

Idle wait events

Oracle Database uses some wait events to indicate if the Oracle server process is
idle. Typically, these events are of no value when investigating performance
problems, and they should be ignored when examining the wait events. See "Idle
Wait Events" on page 10-30.

Computed statistics

When interpreting computed statistics (such as rates, statistics normalized over
transactions, or ratios), it is important to cross-verify the computed statistic with
the actual statistic counts. This confirms whether the derived rates are really of
interest: small statistic counts usually can discount an unusual ratio. For example,
on initial examination, a soft-parse ratio of 50% generally indicates a potential
tuning area. If, however, there was only one hard parse and one soft parse during
the data collection interval, then the soft-parse ratio would be 50%, even though
the statistic counts show this is not an area of concern. In this case, the ratio is not
of interest due to the low raw statistic counts.

See Also:

» "Setting the Level of Statistics Collection" on page 10-7 to learn
about the STATI STI CS_LEVEL settings

» Oracle Database Reference for information about the
STATI STI CS_LEVEL initialization parameter

Overview of the Automatic Workload Repository

The Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. This data is
both in memory and stored in the database. The gathered data can be displayed in
both reports and views.

The statistics collected and processed by AWR include:

Object statistics that determine both access and usage statistics of database
segments

Time model statistics based on time usage for activities, displayed in the
V$SYS Tl ME_MODEL and V$SESS Tl ME_MODEL views

Some of the system and session statistics collected in the V$SYSSTAT and
V$SESSTAT views

SQL statements that are producing the highest load on the system, based on
criteria such as elapsed time and CPU time

ASH statistics, representing the history of recent sessions activity

Gathering database statistics using the AWR is enabled by default and is controlled by
the STATI STI CS_LEVEL initialization parameter. The STATI STl CS_LEVEL
parameter should be set to the TYPI CAL or ALL to enable statistics gathering by the
AWR. The default setting is TYPI CAL. Setting STATI STI CS_LEVEL to BASI Cdisables
many Oracle Database features, including the AWR, and is not recommended. If
STATI STI CS_LEVEL is set to BASI C, you can still manually capture AWR statistics
using the DBMS_WORKLCQAD_REPCSI TCORY package. However, because in-memory
collection of many system statistics—such as segments statistics and memory advisor

5-8 Oracle Database Performance Tuning Guide

Overview of the Automatic Workload Repository

Snapshots

Baselines

information—will be disabled, the statistics captured in these snapshots may not be
complete. For information about the STATI STI CS_LEVEL initialization parameter, see
Oracle Database Reference.

Snapshots are sets of historical data for specific time periods that are used for
performance comparisons by ADDM. By default, Oracle Database automatically
generates snapshots of the performance data once every hour and retains the statistics
in the workload repository for 8 days. You can also manually create snapshots, but this
is usually not necessary. The data in the snapshot interval is then analyzed by the
Automatic Database Diagnostic Monitor (ADDM). For information about ADDM, see
"Overview of the Automatic Database Diagnostic Monitor" on page 6-1.

AWR compares the difference between snapshots to determine which SQL statements
to capture based on the effect on the system load. This reduces the number of SQL
statements that must be captured over time.

For information about managing snapshots, see "Managing Snapshots" on page 5-13.

A baseline contains performance data from a specific time period that is preserved for
comparison with other similar workload periods when performance problems occur.
The snapshots contained in a baseline are excluded from the automatic AWR purging
process and are retained indefinitely.

There are several types of available baselines in Oracle Database:
= Fixed Baselines
= Moving Window Baseline

= Baseline Templates

Fixed Baselines

A fixed baseline corresponds to a fixed, contiguous time period in the past that you
specify. Before creating a fixed baseline, carefully consider the time period you choose
as a baseline, because the baseline should represent the system operating at an optimal
level. In the future, you can compare the baseline with other baselines or snapshots
captured during periods of poor performance to analyze performance degradation
over time.

See Also: "Managing Baselines" on page 5-14 for information about
managing fixed baselines

Moving Window Baseline

A moving window baseline corresponds to all AWR data that exists within the AWR
retention period. This is useful when using adaptive thresholds because the database
can use AWR data in the entire AWR retention period to compute metric threshold
values.

Oracle Database automatically maintains a system-defined moving window baseline.
The default window size for the system-defined moving window baseline is the
current AWR retention period, which by default is 8 days. If you are planning to use
adaptive thresholds, consider using a larger moving window—such as 30 days—to
accurately compute threshold values. You can resize the moving window baseline by
changing the number of days in the moving window to a value that is equal to or less

Automatic Performance Statistics 5-9

Overview of the Automatic Workload Repository

than the number of days in the AWR retention period. Therefore, to increase the size of
a moving window, you must first increase the AWR retention period accordingly.

See Also: "Modifying the Window Size of the Default Moving
Window Baseline" on page 5-17 for information about resizing the
moving window baseline

Baseline Templates

You can also create baselines for a contiguous time period in the future using baseline
templates. There are two types of baseline templates: single and repeating.

You can use a single baseline template to create a baseline for a single contiguous time
period in the future. This technique is useful if you know beforehand of a time period
that you intend to capture in the future. For example, you may want to capture the
AWR data during a system test that is scheduled for the upcoming weekend. In this
case, you can create a single baseline template to automatically capture the time period
when the test occurs.

You can use a repeating baseline template to create and drop baselines based on a
repeating time schedule. This is useful if you want Oracle Database to automatically
capture a contiguous time period on an ongoing basis. For example, you may want to
capture the AWR data during every Monday morning for a month. In this case, you
can create a repeating baseline template to automatically create baselines on a
repeating schedule for every Monday, and automatically remove older baselines after
a specified expiration interval, such as one month.

See Also: "Managing Baseline Templates" on page 5-17 for
information about managing baseline templates

Adaptive Thresholds

Adaptive thresholds enable you to monitor and detect performance issues while
minimizing administrative overhead. Adaptive thresholds can automatically set
warning and critical alert thresholds for some system metrics using statistics derived
from metric values captured in the moving window baseline. The statistics for these
thresholds are recomputed weekly and might result in new thresholds as system
performance evolves over time. In addition to recalculating thresholds weekly,
adaptive thresholds might compute different thresholds values for different times of
the day or week based on periodic workload patterns.

For example, many databases support an online transaction processing (OLTP)
workload during the day and batch processing at night. The performance metric for
response time per transaction can be useful for detecting degradation in OLTP
performance during the day. However, a useful OLTP threshold value is almost
certainly too low for batch workloads, where long-running transactions might be
common. As a result, threshold values appropriate to OLTP might trigger frequent
false performance alerts during batch processing. Adaptive thresholds can detect such
a workload pattern and automatically set different threshold values for the daytime
and nighttime.

Note: In Oracle Database 11¢ Release 2 (11.2), Oracle Database
automatically determines the appropriate time groupings for a
database. However, before Oracle Database 11g Release 2 (11.2), time
groupings were specified manually by the database administrator.

There are two types of adaptive thresholds:

5-10 Oracle Database Performance Tuning Guide

Overview of the Automatic Workload Repository

s Percentage of maximum: The threshold value is computed as a percentage
multiple of the maximum value observed for the data in the moving window
baseline.

= Significance level: The threshold value is set to a statistical percentile that
represents how unusual it is to observe values above the threshold value based the
data in the moving window baseline. Specify one of the following percentiles:

- High (.95): Only 5 in 100 observations are expected to exceed this value.
- Very High (.99): Only 1 in 100 observations are expected to exceed this value.
— Severe (.999): Only 1 in 1,000 observations are expected to exceed this value.

- Extreme (.9999): Only 1 in 10,000 observations are expected to exceed this
value.

Note: When you specify Severe (.999) or Extreme (.9999), Oracle
Database performs an internal calculation to set the threshold value.
In some cases, Oracle Database cannot establish the threshold value at
these levels using the data in the baseline, and the significance level
threshold is not set.

If you are not receiving alerts as expected, and you specified a Severe
(.999) or Extreme (.9999) significance level threshold, then you can try
setting the significance level threshold to a lower value, such as Very
High (.99) or High (.95). Alternatively, you can set a percentage of
maximum threshold instead of a significance level threshold. If you
change the threshold and find that you are receiving too many alerts,
then you can try increasing the number of occurrences to cause an
alert.

Percentage of maximum thresholds are most useful when a system is sized for peak
workloads, and you want to be alerted when the current workload volume is
approaching or exceeding previous high values. Metrics that have an unknown but
definite limiting value are good candidates for these settings. For example, the redo
generated per second metric is typically a good candidate for a percentage of
maximum threshold.

Significance level thresholds are most useful for metrics that should exhibit statistically
stable behavior when the system is operating normally, but might vary over a wide
range when the system is performing poorly. For example, the response time per
transaction metric should be stable for a well-tuned OLTP system, but may fluctuate
widely when performance issues arise. Significance level thresholds are meant to
generate alerts when conditions produce both unusual metric values and unusual
system performance.

Note: The primary interface for managing baseline metrics is Oracle
Enterprise Manager. To create an adaptive threshold for a baseline
metric, use Oracle Enterprise Manager, as described in Oracle Database
2 Day + Performance Tuning Guide.

See Also: "Moving Window Baseline" on page 5-9

Automatic Performance Statistics 5-11

Managing the Automatic Workload Repository

Space Consumption

The space consumed by the AWR is determined by several factors:
= Number of active sessions in the system at any given time
= Snapshot interval

The snapshot interval determines the frequency at which snapshots are captured.
A smaller snapshot interval increases the frequency, which increases the volume of
data collected by the AWR.

» Historical data retention period

The retention period determines how long this data is retained before being
purged. A longer retention period increases the space consumed by the AWR.

By default, snapshots are captured once every hour and are retained in the database
for 8 days. With these default settings, a typical system with an average of 10
concurrent active sessions can require approximately 200 to 300 MB of space for its
AWR data. It is possible to change the default values for both snapshot interval and
retention period. See "Modifying Snapshot Settings" on page 5-14 to learn how to
modify AWR settings.

The AWR space consumption can be reduced by the increasing the snapshot interval
and reducing the retention period. When reducing the retention period, note that
several Oracle Database self-managing features depend on AWR data for proper
functioning. Not having enough data can affect the validity and accuracy of these
components and features, including:

= Automatic Database Diagnostic Monitor
= SQL Tuning Advisor

= Undo Advisor

= Segment Advisor

If possible, Oracle recommends that you set the AWR retention period large enough to
capture at least one complete workload cycle. If your system experiences weekly
workload cycles, such as OLTP workload during weekdays and batch jobs during the
weekend, you do not need to change the default AWR retention period of 8 days.
However if your system is subjected to a monthly peak load during month end book
closing, you may have to set the retention period to one month.

Under exceptional circumstances, you can turn off automatic snapshot collection by
setting the snapshot interval to 0. Under this condition, the automatic collection of the
workload and statistical data is stopped and much of the Oracle Database
self-management functionality is not operational. In addition, you cannot manually
create snapshots. For this reason, Oracle strongly recommends that you do not turn off
automatic snapshot collection.

Managing the Automatic Workload Repository
This section describes how to manage the AWR and contains the following topics:
= Managing Snapshots
= Managing Baselines
= Managing Baseline Templates

» Transporting Automatic Workload Repository Data

5-12 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

s Using Automatic Workload Repository Views

s Generating Automatic Workload Repository Reports

s Generating Automatic Workload Repository Compare Periods Reports
= Generating Active Session History Reports

s Using Active Session History Reports

See Also: "Overview of the Automatic Workload Repository" on
page 5-8 for a description of the AWR

Managing Snapshots

By default, Oracle Database generates snapshots once every hour, and retains the
statistics in the workload repository for 8 days. When necessary, you can use
DBMS_WORKLOAD_REPQOSI TORY procedures to manually create, drop, and modify the
snapshots. To invoke these procedures, a user must be granted the DBA role.

The primary interface for managing snapshots is Oracle Enterprise Manager.
Whenever possible, you should manage snapshots using Oracle Enterprise Manager,
as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise
Manager is unavailable, you can manage snapshots using the
DBM5_WORKLOAD_REPCSI TORY package, as described in the following sections:

» Creating Snapshots
= Dropping Snapshots
= Modifying Snapshot Settings

See Also:
= "Snapshots" on page 5-9 for more information about snapshots

» Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_WORKLOAD_REPCSI TCORY package

Creating Snapshots

You can manually create snapshots with the CREATE_SNAPSHOT procedure to capture
statistics at times different than those of the automatically generated snapshots. For
example:

BEG N

DBVS_WORKLOAD_REPOSI TCRY. CREATE_SNAPSHOT () ;
END;
/

In this example, a snapshot for the instance is created immediately with the flush level
specified to the default flush level of TYPI CAL. You can view this snapshot in the
DBA_HI ST_SNAPSHOT view.

Dropping Snapshots

You can drop a range of snapshots using the DROP_SNAPSHOT_RANGE procedure. To
view a list of the snapshot IDs along with database IDs, check the

DBA_HI ST_SNAPSHOT view. For example, you can drop the following range of
snapshots:

BEG N
DBVS_WORKLOAD_REPOSI TORY. DROP_SNAPSHOT_RANGE (| ow_snap_id => 22,

Automatic Performance Statistics 5-13

Managing the Automatic Workload Repository

high_snap_id => 32, dbid => 3310949047);
END;
/

In the example, the range of snapshot IDs to drop is specified from 22 to 32. The
optional database identifier is 3310949047. If you do not specify a value for dbi d,
the local database identifier is used as the default value.

Active Session History data (ASH) that belongs to the time period specified by the
snapshot range is also purged when the DROP_SNAPSHOT_ RANGE procedure is called.

Modifying Snapshot Settings

You can adjust the interval, retention, and captured Top SQL of snapshot generation
for a specified database ID, but note that this can affect the precision of the Oracle
Database diagnostic tools.

The | NTERVAL setting affects how often the database automatically generates
snapshots. The RETENTI ON setting affects how long the database stores snapshots in
the workload repository. The TOPNSQL setting affects the number of Top SQL to flush
for each SQL criteria (Elapsed Time, CPU Time, Parse Calls, sharable Memory, and
Version Count). The value for this setting is not affected by the statistics/flush level
and will override the system default behavior for the AWR SQL collection. It is
possible to set the value for this setting to MAXI MUMto capture the complete set of SQL
in the shared SQL area, though by doing so (or by setting the value to a very high
number) may lead to possible space and performance issues because there will more
data to collect and store. To adjust the settings, use the

MODI FY_SNAPSHOT_SETTI NGS procedure. For example:

BEG N
DBVE_WORKLOAD REPOSI TORY. MODI FY_SNAPSHOT_SETTI NGS(retention => 43200,
interval => 30, topnsql => 100, dbid => 3310949047);
END;
/

In this example, the retention period is specified as 43200 minutes (30 days), the
interval between each snapshot is specified as 30 minutes, and the number of Top SQL
to flush for each SQL criteria as 100. If NULL is specified, the existing value is
preserved. The optional database identifier is 3310949047. If you do not specify a
value for dbi d, the local database identifier is used as the default value. You can check
the current settings for your database instance with the DBA_HI ST_WR_CONTRCL
view.

Managing Baselines

This section describes how to manage baselines. The primary interface for managing
baselines is Oracle Enterprise Manager. Whenever possible, you should manage
baselines using Oracle Enterprise Manager, as described in Oracle Database 2 Day +
Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can
manage baselines using the DBM5_WORKLOAD_REPGSI TORY package, as described in
the following sections:

» Creating a Baseline

= Dropping a Baseline

= Renaming a Baseline

= Displaying Baseline Metrics

= Modifying the Window Size of the Default Moving Window Baseline

5-14 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

See Also:
= "Baselines" on page 5-9 for more information about baselines

» Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_WORKLOAD_REPCSI TCRY package

Creating a Baseline
This section describes how to create a baseline using an existing range of snapshots.

To create a baseline:

1.

Review the existing snapshots in the DBA_HI ST_SNAPSHOT view to determine the
range of snapshots to use.

Use the CREATE_BASELI NE procedure to create a baseline using the desired range
of snapshots:

BEG N
DBVS_WORKLOAD REPCSI TORY. CREATE _BASELI NE (start_snap_id => 270,
end_snap_id => 280, baseline_nane => 'peak baseline',
dbi d => 3310949047, expiration => 30);
END;
/

In this example, 270 is the start snapshot sequence number and 280 is the end
snapshot sequence. The name of baseline is peak basel i ne. The optional
database identifier is 3310949047. If you do not specify a value for dbi d, then
the local database identifier is used as the default value. The optional

expi rat i on parameter is set to 30, so the baseline will expire and be dropped
automatically after 30 days. If you do not specify a value for expi r at i on, the
baseline will never expire.

The system automatically assign a unique baseline ID to the new baseline when the
baseline is created. The baseline ID and database identifier are displayed in the
DBA_HI ST_BASELI NE view.

Dropping a Baseline

This section describes how to drop an existing baseline. Periodically, you may want to
drop a baseline that is no longer used to conserve disk space. The snapshots associated
with a baseline are retained indefinitely until you explicitly drop the baseline or the
baseline has expired.

To drop a baseline:

1.

Review the existing baselines in the DBA_HI ST_BASELI NE view to determine the
baseline to drop.

Use the DROP_BASELI NE procedure to drop the desired baseline:

BEG N
DBVS_WORKLOAD REPCSI TORY. DROP_BASELI NE (basel i ne_name => ' peak baseline',
cascade => FALSE, dbid => 3310949047);
END;
/

In the example, the name of baseline is peak basel i ne. The cascade parameter
is set to FALSE, which specifies that only the baseline is dropped. Setting this
parameter to TRUE specifies that the drop operation will also remove the
snapshots associated with the baseline. The optional dbi d parameter specifies the

Automatic Performance Statistics 5-15

Managing the Automatic Workload Repository

database identifier, which in this example is 3310949047. If you do not specify a
value for dbi d, then the local database identifier is used as the default value.

Renaming a Baseline
This section describes how to rename a baseline.

To rename a baseline:

1.

Review the existing baselines in the DBA_HI ST_BASELI NE view to determine the
baseline to rename.

Use the RENAME_BASEL | NE procedure to rename the desired baseline:

BEG N
DBVS_WORKLQAD REPCS| TORY. RENAMVE_BASELI NE (
ol d_basel i ne_nane => 'peak baseline',
new_basel i ne_name => ' peak nondays',
dbid => 3310949047);
END;
/

In this example, the name of the baseline is renamed from peak basel i ne, as
specified by the ol d_basel i ne_namne parameter, to peak nondays, as specified
by the new_basel i ne_name parameter. The optional dbi d parameter specifies
the database identifier, which in this example is 3310949047. If you do not
specify a value for dbi d, then the local DBID is the default value.

Displaying Baseline Metrics

This section describes how to display metric threshold settings during the time period
captured in a baseline. When used with adaptive thresholds, a baseline contains AWR
data that the database can use to compute metric threshold values. The
SELECT_BASELI NE_METRI CS function enables you to display the summary statistics
for metric values in a baseline period.

To display metric information in a baseline:

1.

Review the existing baselines in the DBA_HI ST_BASELI NE view to determine the
baseline for which you want to display metric information.

Use the SELECT_BASELI NE_METRI CS function to display the metric information
for the desired baseline:

BEG N
DBVS_WORKLOAD REPOSI TORY. SELECT_BASELI NE_METRI CS (
basel i ne_nane => 'peak baseline',
dbid => 3310949047,
instance_num=>"1");
END;
/

In this example, the name of baseline is peak basel i ne. The optional dbi d
parameter specifies the database identifier, which in this example is 3310949047.
If you do not specify a value for dbi d, then the local database identifier is used as
the default value. The optional i nst ance_numparameter specifies the instance
number, which in this example is 1. If you do not specify a value for

i nst ance_num then the local instance is used as the default value.

5-16 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Modifying the Window Size of the Default Moving Window Baseline

This section describes how to modify the window size of the default moving window
baseline. For information about the default moving window baseline, see "Moving
Window Baseline" on page 5-9.

To resize the default moving window baseline, use the
MODI FY_BASELI NE_W NDOW Sl ZE procedure:

BEG N
DBMS_WORKLOAD REPOSI TORY. MODI FY_BASELI NE_W NDOW SI ZE (
wi ndow_si ze => 30,
dbi d => 3310949047);
END;
/

The wi ndow_si ze parameter is used to specify the new window size, in number of
days, for the default moving window size. In this example, the wi ndow_si ze
parameter is set to 30. The window size must be set to a value that is equal to or less
than the value of the AWR retention setting. To set a window size that is greater than
the current AWR retention period, you must first increase the value of the r et ent i on
parameter, as described in "Modifying Snapshot Settings" on page 5-14.

In this example, the optional dbi d parameter specifies the database identifier is
3310949047. If you do not specify a value for dbi d, then the local database identifier
is used as the default value.

Managing Baseline Templates

This section describes how to manage baseline templates. You can automatically create
baselines to capture specified time periods in the future using baseline templates. For
information about baseline templates, see "Baseline Templates" on page 5-10.

The primary interface for managing baseline templates is Oracle Enterprise Manager.
Whenever possible, you should manage baseline templates using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can manage baseline templates using the
DBM5_WORKLOAD_REPCSI TORY package, as described in the following sections:

s Creating a Single Baseline Template
s Creating a Repeating Baseline Template

= Dropping a Baseline Template

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information on the DBVS_WORKLOAD REPOSI TORY
package

Creating a Single Baseline Template

This section describes how to create a single baseline template. You can use a single
baseline template to create a baseline during a single, fixed time interval in the future.
For example, you can create a single baseline template to generate a baseline that is
captured on April 2, 2009 from 5:00 p.m. to 8:00 p.m.

To create a single baseline template, use the CREATE_BASELI NE_TEMPLATE
procedure:

BEG N
DBVS_WORKLQAD_REPCS| TCRY. CREATE_BASELI NE_TEMPLATE (
start_tinme => '2009-04-02 17:00: 00 PST',

Automatic Performance Statistics 5-17

Managing the Automatic Workload Repository

end_time =>'2009-04-02 20:00: 00 PST',
basel i ne_name => ' basel i ne_090402',
tenpl ate_name => 'tenpl ate_090402', expiration => 30,
dbid => 3310949047);
END;
/

The st art _t i me parameter specifies the start time for the baseline to be created. The
end_t i me parameter specifies the end time for the baseline to be created. The

basel i ne_nane parameter specifies the name of the baseline to be created. The

t enpl at e_namne parameter specifies the name of the baseline template. The optional
expi r at i on parameter specifies the expiration, in number of days, for the baseline. If
unspecified, then the baseline never expires. The optional dbi d parameter specifies
the database identifier. If unspecified, then the local database identifier is used as the
default value.

In this example, a baseline template named t enpl at e_090402 is created that will
generate a baseline named basel i ne_090402 for the time period from 5:00 p.m. to
8:00 p.m. on April 2, 2009 on the database with a database ID of 3310949047. The
baseline will expire after 30 days.

Creating a Repeating Baseline Template

This section describes how to create a repeating baseline template. A repeating
baseline template can be used to automatically create baselines that repeat during a
particular time interval over a specific period in the future. For example, you can
create a repeating baseline template to generate a baseline that repeats every Monday
from 5:00 p.m. to 8:00 p.m. for the year 2009.

To create a repeating baseline template, use the CREATE_BASEL| NE_TEMPLATE
procedure:

BEG N
DBVS_WORKLCOAD_REPCSI TORY. CREATE _BASELI NE_TEMPLATE (

day_of week => 'nonday', hour_in_day => 17,
duration => 3, expiration => 30,
start_tinme => '2009-04-02 17:00: 00 PST',
end_time =>'2009-12-31 20:00: 00 PST",
basel i ne_nane_prefix => 'baseline_2009_nondays_',
tenpl ate_name => 'tenpl ate_2009_nondays',
dbid => 3310949047);

END,

/

The day_of _week parameter specifies the day of the week on which the baseline will
repeat. The hour _i n_day parameter specifies the hour in the day when the baseline
will start. The dur at i on parameter specifies the duration, in number of hours, that
the baseline will last. The expi r at i on parameter specifies the number of days to
retain each created baseline. If set to NULL, then the baselines never expires. The
start_ti me parameter specifies the start time for the baseline to be created. The
end_t i me parameter specifies the end time for the baseline to be created. The

basel i ne_name_pr ef i x parameter specifies the name of the baseline prefix that
will be appended to the data information when the baseline is created. The

t enpl at e_name parameter specifies the name of the baseline template. The optional
dbi d parameter specifies the database identifier. If unspecified, then the local database
identifier is used as the default value.

In this example, a baseline template named t enpl at e_2009_nondays is created that
will generate a baseline on every Monday from 5:00 p.m. to 8:00 p.m. beginning on

5-18 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

April 2, 2009 at 5:00 p.m. and ending on December 31, 2009 at 8:00 p.m. on the
database with a database ID of 3310949047. Each of the baselines will be created
with a baseline name with the prefix basel i ne_2009_nondays_ and will expire
after 30 days.

Dropping a Baseline Template

This section describes how to drop an existing baseline template. Periodically, you
may want to remove baselines templates that are no longer used to conserve disk
space.

To drop a baseline template:

1. Review the existing baselines in the DBA_HI ST_BASEL| NE_TEMPLATE view to
determine the baseline template you want to drop.

2. Use the DROP_BASELI NE_TEMPLATE procedure to drop the desired baseline
template:

BEG N
DBVS_WORKLQOAD REPCSI TORY. DROP_BASELI NE_TEMPLATE (
tenpl ate_name => 'tenpl ate_2009_nondays',
dbid => 3310949047);
END,
/

The t enpl at e_namne parameter specifies the name of the baseline template that
will be dropped. In the example, the name of baseline template that will be
dropped is t enpl at e_2009_nondays. The optional dbi d parameter specifies
the database identifier, which in this example is 3310949047. If you do not
specify a value for dbi d, then the local database identifier is used as the default
value.

Transporting Automatic Workload Repository Data

Oracle Database enables you to transport AWR data between systems. This is useful in
cases where you want to use a separate system to perform analysis of the AWR data.
To transport AWR data, you must first extract the AWR snapshot data from the
database on the source system, then load the data into the database on the target
system, as described in the following sections:

» Extracting AWR Data
= Loading AWR Data

Extracting AWR Data

The awr ext r. sql script extracts the AWR data for a range of snapshots from the
database into a Data Pump export file. After it is created, you can transport this dump
file to another database where you can load the extracted data. To run the

aw extr. sql script, you must be connected to the database as the SYS user.

To extract AWR data:
1. At the SQL prompt, enter:
@ORACLE_HOWE/ r dbns/ admi n/ awr ext r. sql

A list of the databases in the AWR schema is displayed.
2. Specify the database from which the AWR data will be extracted:

Automatic Performance Statistics 5-19

Managing the Automatic Workload Repository

Enter value for db_id: 1377863381
In this example, the database with the database identifier of 1377863381 is
selected.

3. Specify the number of days for which you want to list snapshot IDs.
Enter value for numdays: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Define the range of snapshots for which AWR data will be extracted by specifying
a beginning and ending snapshot ID:

Enter value for begin_snap: 30
Enter value for end_snap: 40

In this example, the snapshot with a snapshot ID of 30 is selected as the beginning
snapshot, and the snapshot with a snapshot ID of 40 is selected as the ending
snapshot.

5. Alist of directory objects is displayed.

Specify the directory object pointing to the directory where the export dump file
will be stored:

Enter value for directory_name: DATA PUW_DI R

In this example, the directory object DATA_PUMP_DI Ris selected.

6. Specify the prefix for name of the export dump file (the . dnp suffix will be
automatically appended):

Enter value for file_name: awdata_30_40

In this example, an export dump file named awr dat a_30_40 will be created in
the directory corresponding to the directory object you specified:

Dunp file set for SYS. SYS EXPORT_TABLE 01 is:
C: \ ORACLE\ PRODUCT\ 11. 1. 0. 5\ DB_1\ RDBMS\ LOG\ AWRDATA 30_40. DWP
Job "SYS'."SYS EXPORT_TABLE 01" successfully conpleted at 08:58:20

Depending on the amount of AWR data that must be extracted, the AWR extract
operation may take a while to complete. After the dump file is created, you can
use Data Pump to transport the file to another system.

See Also: Oracle Database Utilities for information about using Data
Pump

Loading AWR Data

After the export dump file is transported to the target system, you can load the
extracted AWR data using the awr | oad. sql script. The awr | oad. sqgl script will
first create a staging schema where the snapshot data is transferred from the Data
Pump file into the database. The data is then transferred from the staging schema into
the appropriate AWR tables. To run the awr | oad. sqgl script, you must be connected
to the database as the SYS user.

To load AWR data:
1. At the SQL prompt, enter:
@ORACLE_HOVE/ r dbrs/ admi n/ awr | oad. sql

5-20 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

A list of directory objects is displayed.

Specify the directory object pointing to the directory where the export dump file is
located:

Enter value for directory_name: DATA PUW_DI R

In this example, the directory object DATA_PUMP_DI Ris selected.

Specify the prefix for name of the export dump file (the . dnp suffix will be
automatically appended):

Enter value for file_name: awdata 30 _40

In this example, the export dump file named awr dat a_30_40 is selected.
Specify the name of the staging schema where the AWR data will be loaded:
Enter value for schema_nanme: AWR_STAGE

In this example, a staging schema named AVR_STAGE will be created where the
AWR data will be loaded.

Specify the default tablespace for the staging schema:

Enter value for default_tabl espace: SYSAUX

In this example, the SYSAUX tablespace is selected.
Specify the temporary tablespace for the staging schema:

Enter value for tenporary_tabl espace: TEMP

In this example, the TEMP tablespace is selected.

A staging schema named AWR_STAGE will be created where the AWR data will be
loaded. After the AWR data is loaded into the AWR_STAGE schema, the data will
be transferred into the AWR tables in the SYS schema:

Processi ng obj ect type TABLE_EXPORT/ TABLE/ CONSTRAI NT/ CONSTRAI NT
Conpl eted 113 CONSTRAI NT objects in 11 seconds
Processi ng obj ect type TABLE_EXPORT/ TABLE/ CONSTRAI NT/ REF_CONSTRAI NT
Conpl eted 1 REF_CONSTRAINT objects in 1 seconds
Job "SYS'."SYS | MPORT_FULL 03" successfully conpleted at 09:29:30

. Dropping AVR_STAGE user
End of AWR Load

Depending on the amount of AWR data that must be loaded, the AWR load
operation may take a while to complete. After the AWR data is loaded, the staging
schema will be dropped automatically.

Using Automatic Workload Repository Views

Typically, you would view the AWR data through Oracle Enterprise Manager or AWR
reports. However, you can also view the statistics using the following views:

V$ACTI VE_SESSI ON_HI STORY

This view displays active database session activity, sampled once every second.
See "Active Session History" on page 5-3.

V$ metric views provide metric data to track the performance of the system

Automatic Performance Statistics 5-21

Managing the Automatic Workload Repository

The metric views are organized into various groups, such as event, event class,
system, session, service, file, and tablespace metrics. These groups are identified in
the VEMETRI CGROUP view.

s DBA HI ST views

The DBA_HI ST views displays historical data stored in the database. This group of
views includes:

DBA_HI ST_ACTI VE_SESS_HI STORY displays the history of the contents of
the in-memory active session history for recent system activity

DBA_HI ST_BASELI NE displays information about the baselines captured on
the system, such as the time range of each baseline and the baseline type

DBA_HI ST_BASELI NE_DETAI LS displays details about a specific baseline

DBA_HI ST_BASELI NE_TEMPLATE displays information about the baseline
templates used by the system to generate baselines

DBA_HI ST_DATABASE_| NSTANCE displays information about the database
environment

DBA_HI ST_DB_CACHE_ADVI CE displays historical predictions of the number
of physical reads for the cache size corresponding to each row

DBA_HI ST_DI SPATCHER displays historical information for each dispatcher
process at the time of the snapshot

DBA_HI ST_DYN_RENMASTER_STATS displays statistical information about the
dynamic remastering process

DBA_HI ST_I OSTAT_DETAI L displays historical I/O statistics aggregated by
file type and function

DBA_HI ST_SHARED_SERVER_SUMVARY displays historical information for
shared servers, such as shared server activity, common queues and dispatcher
queues

DBA_HI ST_SNAPSHOT displays information on snapshots in the system
DBA_HI ST_SQL_PLANdisplays the SQL execution plans
DBA HI ST_WR_CONTRCL displays the settings for controlling AWR

See Also: Oracle Database Reference for information about dynamic
and static data dictionary views

Generating Automatic Workload Repository Reports

An AWR report shows data captured between two snapshots (or two points in time).
The AWR reports are divided into multiple sections. The HTML report includes links
that can be used to navigate quickly between sections. The content of the report
contains the workload profile of the system for the selected range of snapshots.

The primary interface for generating AWR reports is Oracle Enterprise Manager.
Whenever possible, you should generate AWR reports using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can generate AWR reports by running SQL
scripts, as described in the following sections:

s Generating an AWR Report
= Generating an Oracle RAC AWR Report

5-22 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Generating an AWR Report on a Specific Database Instance

Generating an Oracle RAC AWR Report on Specific Database Instances
Generating an AWR Report for a SQL Statement

Generating an AWR Report for a SQL Statement on a Specific Database Instance

To run these scripts, you must be granted the DBA role.

Note: If you run a report on a database that does not have any
workload activity during the specified range of snapshots,
calculated percentages for some report statistics can be less than 0
or greater than 100. This result simply means that there is no
meaningful value for the statistic.

Generating an AWR Report

The awr r pt . sgl SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs.

To generate an AWR report:

1.

At the SQL prompt, enter:
@ ORACLE_HOWE/ r dbrs/ admi n/ awr r pt . sql

Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

Specify the number of days for which you want to list snapshot IDs.

Enter value for numdays: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

Specify a beginning and ending snapshot ID for the workload repository report:
Enter value for begin_snap: 150

Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awrrpt_1 150 160

In this example, the default name is accepted and an AWR report named
aw rpt_1_150_160 is generated.

Generating an Oracle RAC AWR Report

The awr gr pt . sql SQL script generates an HTML or text report that displays
statistics for a range of snapshot IDs using the current database identifier and all
available database instances in an Oracle Real Application Clusters (Oracle RAC)
environment.

Automatic Performance Statistics 5-23

Managing the Automatic Workload Repository

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR report in an Oracle RAC environment:
1. At the SQL prompt, enter:
@ORACLE_HOVE/ r dbrrs/ admi n/ awr gr pt . sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: htm

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.
Enter value for numdays: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last day are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:
Enter value for begin_snap: 150

Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

5. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awrpt_rac_150_160. htm

In this example, the default name is accepted and an AWR report named
aw rpt _rac_150_160. ht m is generated.

Generating an AWR Report on a Specific Database Instance

Theaw rpti.sql SQL script generates an HTML or text report that displays
statistics for a range of snapshot IDs using a specific database and instance. This script
enables you to specify a database identifier and instance for which the AWR report
will be generated.

To generate an AWR report on a specific database instance:
1. At the SQL prompt, enter:
@ORACLE_HOVE/ r dbrs/ admi n/ awr rpti . sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.
A list of available database identifiers and instance numbers are displayed:

Instances in this Wrkload Repository schema

5-24 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

DB Id I nst Num DB Nane I nstance Host
3309173529 1 MAIN mai n exanpl690
3309173529 1 TINT251 tint251 sanp251

3. Enter the values for the database identifier (dbi d) and instance number
(inst _num:

Enter value for dbid: 3309173529
Usi ng 3309173529 for database Id
Enter value for inst_ num 1

4. Specify the number of days for which you want to list snapshot IDs.

Enter value for numdays: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

6. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awrpt_1 150 160

In this example, the default name is accepted and an AWR report named
aw rpt _1_150_160 is generated on the database instance with a database ID
value of 3309173529.

Generating an Oracle RAC AWR Report on Specific Database Instances

The aw gr pti . sql SQL script generates an HTML or text report that displays
statistics for a range of snapshot IDs using specific databases and instances running in
an Oracle RAC environment. This script enables you to specify database identifiers
and a comma-delimited list of database instances for which the AWR report will be
generated.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR report on a specific database instance in an Oracle RAC
environment:

1. At the SQL prompt, enter:
@ORACLE_HOWE/ r dbrs/ admi n/ awr grpti . sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: htn

In this example, an HTML report is chosen.

Automatic Performance Statistics 5-25

Managing the Automatic Workload Repository

A list of available database identifiers and instance numbers are displayed:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane | nst ance Host
3309173529 1 MAIN mai n exanpl690
3309173529 1 TINT251 tint251 sanp251
3309173529 2 TINT251 tint252 sanp252

3. Enter the value for the database identifier (dbi d) :

Enter value for dbid: 3309173529
Usi ng 3309173529 for database Id

4. Enter the value for the instance numbers (i hst ance_nunbers_or _al |) of the
Oracle RAC instances you want to include in the report:

Enter value for instance_nunbers_or_all: 1,2

5. Specify the number of days for which you want to list snapshot IDs.
Enter value for numdays: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

6. Specify a beginning and ending snapshot ID for the workload repository report:
Enter value for begin_snap: 150

Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

7. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awrpt_rac_150 160. htm

In this example, the default name is accepted and an AWR report named
aw rpt _rac_150_160. ht m is generated on the database instance with a
database ID value of 3309173529.

Generating an AWR Report for a SQL Statement

The awr sqr pt . sql SQL script generates an HTML or text report that displays
statistics of a particular SQL statement for a range of snapshot IDs. Run this report to
inspect or debug the performance of a SQL statement.

To generate an AWR report for a particular SQL statement:
1. At the SQL prompt, enter:
@ORACLE_HOVE/ r dbns/ adni n/ awr sqr pt . sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: htm

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.

5-26 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Enter value for numdays: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

In this example, the snapshot with a snapshot ID of 146 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the
ending snapshot.

Specify the SQL ID of a particular SQL statement to display statistics:
Enter value for sql _id: 2b064ybzkwf 1y

In this example, the SQL statement with a SQL ID of 2b064ybzkwf 1y is selected.
Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awrpt_1 146 147.htm

In this example, the default name is accepted and an AWR report named
aw rpt_1_146_147 is generated.

Generating an AWR Report for a SQL Statement on a Specific Database Instance

The awr sqr pi . sql SQL script generates an HTML or text report that displays
statistics of a particular SQL statement for a range of snapshot IDs using a specific
database and instance.This script enables you to specify a database identifier and
instance for which the AWR report will be generated. Run this report to inspect or
debug the performance of a SQL statement on a specific database and instance.

To generate an AWR report for a particular SQL statement on a specified database
instance:

1.

At the SQL prompt, enter:
@ORACLE_HOVE/ r dbns/ adni n/ awr sqr pi . sql

Specify whether you want an HTML or a text report:

Enter value for report_type: htm

In this example, an HTML report is chosen.
A list of available database identifiers and instance numbers are displayed:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane | nst ance Host
3309173529 1 MAIN mai n exanmpl1690
3309173529 1 TINT251 tint251 sanp251

Enter the values for the database identifier (dbi d) and instance number
(inst_num:

Enter value for dbid: 3309173529
Usi ng 3309173529 for database Id
Enter value for inst_num 1

Automatic Performance Statistics 5-27

Managing the Automatic Workload Repository

Using 1 for instance nunber

4. Specify the number of days for which you want to list snapshot IDs.

Enter value for numdays: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

In this example, the snapshot with a snapshot ID of 146 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the
ending snapshot.

6. Specify the SQL ID of a particular SQL statement to display statistics:
Enter value for sql _id: 2b064ybzkwf 1y

In this example, the SQL statement with a SQL ID of 2b064ybzkwf 1y is selected.
7. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report name awrpt_1_146_147. htm

In this example, the default name is accepted and an AWR report named
aw rpt_1_146_147 is generated on the database instance with a database ID
value of 3309173529.

Generating Automatic Workload Repository Compare Periods Reports

While an AWR report shows AWR data between two snapshots (or two points in
time), the AWR Compare Periods report shows the difference between two periods (or
two AWR reports, which equates to four snapshots). Using the AWR Compare Periods
report helps you to identify detailed performance attributes and configuration settings
that differ between two time periods.

For example, if the application workload is known to be stable between 10:00 p.m. and
midnight every night, but the performance on a particular Thursday was poor
between 10:00 p.m. and 11:00 p.m., generating an AWR Compare Periods report for
Thursday from 10:00 p.m. to 11:00 p.m. and Wednesday from 10:00 p.m. to 11:00 p.m.
should identify configuration settings, workload profile, and statistics that were
different in these time periods. Based on the differences, you can more easily diagnose
the cause of the performance degradation. The two time periods selected for the AWR
Compare Periods Report can be of different durations because the report normalizes
the statistics by the amount of time spent on the database for each time period, and
presents statistical data ordered by the largest difference between the periods.

The AWR Compare Periods reports are divided into multiple sections. The HTML
report includes links that can be used to navigate quickly between sections. The
content of the report contains the workload profile of the system for the selected range
of snapshots.

The primary interface for generating AWR Compare Periods reports is Oracle
Enterprise Manager. Whenever possible, you should generate AWR Compare Periods
reports using Oracle Enterprise Manager, as described in Oracle Database 2 Day +
Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can

5-28 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

generate AWR Compare Periods reports by running SQL scripts, as described in the
following sections:

Generating an AWR Compare Periods Report
Generating an Oracle RAC AWR Compare Periods Report
Generating an AWR Compare Periods Report on a Specific Database Instance

Generating an Oracle RAC AWR Compare Periods Report on Specific Database
Instances

To run these scripts, you must be granted the DBA role.

Generating an AWR Compare Periods Report

The awr ddr pt . sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods.

To generate an AWR Compare Periods report:

1.

At the SQL prompt, enter:
@ORACLE_HOWE/ r dbrs/ admi n/ awr ddr pt . sql

Specify whether you want an HTML or a text report:

Enter value for report_type: htm

In this example, an HTML report is chosen.

Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for numdays: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102

Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for numdays2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

Specify a beginning and ending snapshot ID for the second time period:
Enter value for begin_snap2: 126

Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

Automatic Performance Statistics 5-29

Managing the Automatic Workload Repository

7. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awdiff_1 102_1 126.txt

In this example, the default name is accepted and an AWR report named
awdi ff_1_102_126 is generated.

Generating an Oracle RAC AWR Compare Periods Report

The awr gdr pt . sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods using the current database identifier and all available database instances in an
Oracle RAC environment.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR Compare Periods report in an Oracle RAC environment:
1. At the SQL prompt, enter:
@ ORACLE_HOWE/ r dbrs/ admi n/ awr gdr pt . sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: htm

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for numdays: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.
4. Specify a beginning and ending snapshot ID for the first time period:
Enter value for begin_snap: 102

Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

5. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for numdays2: 1
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

6. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

5-30 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awracdi ff_1st_1 2nd_1.htm

In this example, the default name is accepted and an AWR report named
awrac_1st_1 2nd_1. htm is generated.

Generating an AWR Compare Periods Report on a Specific Database Instance

The aw ddr pi . sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods on a specific database and instance. This script enables you to specify a
database identifier and instance for which the AWR Compare Periods report will be
generated.

To generate an AWR Compare Periods report on a specified database instance:

1.

At the SQL prompt, enter:
@ ORACLE_HOVE/ r dbns/ adni n/ awr ddr pi . sql

Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.
A list of available database identifiers and instance numbers are displayed:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane | nst ance Host
3309173529 1 MAIN mai n exanmpl690
3309173529 1 TINT251 tint251 sanp251

Enter the values for the database identifier (dbi d) and instance number
(i nst _num for the first time period:

Enter value for dbid: 3309173529

Usi ng 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num 1

Using 1 for Instance Number for the first pair of snapshots

Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for numdays: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

Automatic Performance Statistics 5-31

Managing the Automatic Workload Repository

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

6. Enter the values for the database identifier (dbi d) and instance number
(i nst _num for the second time period:

Enter value for dbid2: 3309173529

Usi ng 3309173529 for Database Id for the second pair of snapshots
Enter value for inst_nunR: 1

Using 1 for Instance Number for the second pair of snapshots

7. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for numdays2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

8. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awdiff_1 102_1 126.txt

In this example, the default name is accepted and an AWR report named
aw di ff_1_102_126 is generated on the database instance with a database ID
value of 3309173529.

Generating an Oracle RAC AWR Compare Periods Report on Specific Database
Instances

The awr gdr pi . sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods using specific databases and instances in an Oracle RAC environment. This
script enables you to specify database identifiers and a comma-delimited list of
database instances for which the AWR Compare Periods report will be generated.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR Compare Periods report on a specified database instance in an
Oracle RAC environment:

1. At the SQL prompt, enter:
@ORACLE_HOWE/ r dbns/ admi n/ awr gdr pi . sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: htn

5-32 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

In this example, an HTML report is chosen.
3. Alist of available database identifiers and instance numbers are displayed:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane | nst ance Host
3309173529 1 MAIN mai n exanmpl690
3309173529 1 TINT251 tint251 sanp251
3309173529 2 TINT251 tint252 sanp252
3309173529 3 TINT251 tint253 sanp253
3309173529 4 TINT251 tint254 sanp254

Enter the values for the database identifier (dbi d) and instance number
(instance_nunbers_or_al |') for the first time period:

Enter value for dbid: 3309173529

Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num 1,2

Using instances 1 for the first pair of snapshots

4. Specify the number of days for which you want to list snapshot IDs in the first
time period.
Enter value for numdays: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

6. A list of available database identifiers and instance numbers are displayed:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane I nstance Host
3309173529 1 MAIN mai n exanmpl690
3309173529 1 TINT251 tint251 sanp251
3309173529 2 TINT251 tint252 sanp252
3309173529 3 TINT251 tint253 sanp253
3309173529 4 TINT251 tint254 sanp254

| NSTNUML
1,2

Enter the values for the database identifier (dbi d2) and instance numbers
(i nst ance_numrber s_or _al | 2) for the second time period:

Enter value for dbid2: 3309173529
Usi ng 3309173529 for Database Id for the second pair of snapshots
Enter value for instance_nunbers_or_all2: 3,4

Automatic Performance Statistics 5-33

Managing the Automatic Workload Repository

7. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for numdays2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

8. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane awracdi ff_1st_1 2nd_1.htn

In this example, the default name is accepted and an AWR report named
awrac_1st_1_2nd_1. htm is generated.

Generating Active Session History Reports
Use Active Session History (ASH) reports to perform analysis of:

» Transient performance problems that typically last for a few minutes

= Scoped or targeted performance analysis by various dimensions or their
combinations, such as time, session, module, action, or SQL_| D

Transient performance problems are short-lived and do not appear in the Automatic
Database Diagnostics Monitor (ADDM) analysis. ADDM tries to report the most
significant performance problems during an analysis period in terms of their impact
on DB time. If a particular problem lasts for a very short duration, then its severity
might be averaged out or minimized by other performance problems in the analysis
period. Therefore, the problem may not appear in the ADDM findings. Whether a
performance problem is captured by ADDM depends on its duration compared to the
interval between the AWR snapshots.

If a performance problem lasts for a significant portion of the time between snapshots,
it will be captured by ADDM. For example, if the snapshot interval is set to one hour, a
performance problem that lasts for 30 minutes should not be considered as a transient
performance problem because its duration represents a significant portion of the
snapshot interval and will likely be captured by ADDM.

However, a performance problem that lasts for only 2 minutes could be a transient
performance problem because its duration represents a small portion of the snapshot
interval and will likely not show up in the ADDM findings. For example, if the user
notifies you that the system was slow between 10:00 p.m. and 10:10 p.m., but the
ADDM analysis for the time period between 10:00 p.m. and 11:00 p.m. does not show a
performance problem, a transient performance problem probably occurred that lasted
for only a few minutes of the 10-minute interval reported by the user.

The ASH reports are divided into multiple sections. The HTML report includes links
that can be used to navigate quickly between sections. The content of the report
contains ASH information used to identify blocker and waiter identities and their

5-34 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

associated transaction identifiers and SQL for a specified duration. For more
information on ASH, see "Active Session History" on page 5-3.

The primary interface for generating ASH reports is Oracle Enterprise Manager.
Whenever possible, you should generate ASH reports using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can generate ASH reports by running SQL
scripts, as described in the following sections:

= Generating an ASH Report
= Generating an ASH Report on a Specific Database Instance

= Generating an Oracle RAC ASH Report

Generating an ASH Report

The ashr pt . sql SQL script generates an HTML or text report that displays ASH
information for a specified duration.

To generate an ASH report:
1. At the SQL prompt, enter:
@ ORACLE_HOWE/ r dbns/ admi n/ ashr pt . sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.
3. Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

4. Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.
5. Enter a report name, or accept the default report name:
Enter value for report_nane:

Using the report nane ashrpt_1 0310 _0131.txt

In this example, the default name is accepted and an ASH report named
ashrpt _1_0310_0131 is generated. The report will gather ASH information
beginning from 10 minutes before the current time and ending at the current time.

Generating an ASH Report on a Specific Database Instance

The ashrpti . sql SQL script generates an HTML or text report that displays ASH
information for a specified duration for a specified database and instance. This script
enables you to specify a database and instance before setting the time frame to collect
ASH information.

To generate an ASH report on a specified database instance:
1. At the SQL prompt, enter:
@ORACLE_HOVE/ r dbns/ adni n/ ashr pti . sql

Automatic Performance Statistics 5-35

Managing the Automatic Workload Repository

2.

Specify whether you want an HTML or a text report:

Enter value for report_type: htm

In this example, an HTML report is chosen.
A list of available database IDs and instance numbers are displayed:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane I nstance Host
3309173529 1 MAIN mai n exanpl690
3309173529 1 TINT251 tint251 sanmp251

Enter the values for the database identifier (dbi d) and instance number
(inst_num:

Enter value for dbid: 3309173529
Usi ng 3309173529 for database id
Enter value for inst_num 1

This step is applicable only if you are generating an ASH report on an Active Data
Guard physical standby instance. If this is not the case, you may skip this step.

To generate an ASH report on a physical standby instance, the standby database
must be opened read-only. The ASH data on disk represents activity on the
primary database and the ASH data in memory represents activity on the standby
database.

Specify whether to generate the report using data sampled from the primary or
standby database:

You are running ASH report on a Standby database.

To generate the report over data sanpled on the Prinary database, enter 'P'.
Defaults to 'S - data sanpled in the Standby database.

Enter value for stdbyflag:

Using Primary (P) or Standby (S): S

In this example, the default value of Standby (S) is selected.

Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.

Specify the slot width in seconds that will be used in the Activity Over Time
section of the report:

Enter value for slot_w dth:
In this example, the default value is accepted. For more information about the

Activity Over Time section and how to specify the slot width, see "Activity Over
Time" on page 5-42.

5-36 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Follow the instructions as explained in the subsequent prompts and enter values
for the following report targets:

m target _session_id

m target _sqgl _id

m target _wait_class

s target_service_hash

s target _nodul e_nane

s target_action_nane

m target client_id

s target _plsqgl _entry

Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane ashrpt_1 0310_0131. txt

In this example, the default name is accepted and an ASH report named
ashrpt_1_0310_0131 is generated. The report will gather ASH information on
the database instance with a database ID value of 3309173529 beginning from 10
minutes before the current time and ending at the current time.

Generating an Oracle RAC ASH Report

The ashrpti . sql SQL script generates an HTML or text report that displays ASH
information for a specified duration for specified databases and instances in an Oracle
RAC environment. Only ASH data that is written to disk will be used to generate the
report. This report will only use ASH samples from the last 10 minutes that are found
in the DBA_HI ST_ACTI VE_SESS_HI STORY table.

To generate an ASH report in an Oracle RAC environment:

1.

At the SQL prompt, enter:
@ORACLE_HOVE/ r dbns/ adni n/ ashr pti . sql

Specify whether you want an HTML or a text report:

Enter value for report_type: htn

In this example, an HTML report is chosen.
A list of available database IDs and instance numbers are displayed:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane | nst ance Host
3309173529 1 MAIN mai n exanmpl690
3309173529 1 TINT251 tint251 sanp251
3309173529 2 TINT251 tint252 sanp252
3309173529 3 TINT251 tint253 sanp253
3309173529 4 TINT251 tint254 sanp254

Enter the values for the database identifier (dbi d) and instance number
(inst _num :

Enter value for dbid: 3309173529
Usi ng dat abase id: 3309173529

Automatic Performance Statistics 5-37

Managing the Automatic Workload Repository

Enter instance nunmbers. Enter 'ALL' for all instances in an Oacle
RAC cluster or explicitly specify list of instances (e.g., 1,2,3).
Defaults to current instance.
Enter value for inst_num ALL
Using instance nunber(s): ALL

4. Specify the begin time in minutes before the system date:

Enter value for begin_tinme: -1:10

In this example, 1 hour and 10 minutes before the current time is selected.

5. Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time:

Enter value for duration: 10

In this example, the duration is set to 10 minutes.

6. Specify the slot width in seconds that will be used in the Activity Over Time
section of the report:

Enter value for slot_width:

In this example, the default value is accepted. For more information about the
Activity Over Time section and how to specify the slot width, see "Activity Over
Time" on page 5-42.

7. Follow the instructions as explained in the subsequent prompts and enter values
for the following report targets:

m target _session_id
m target _sqgl _id
m target _wait_class
s target_service_hash
s target _nodul e_nane
s target_action_nane
m target client_id
s target _plsqgl _entry
8. Enter a report name, or accept the default report name:

Enter value for report_nane:
Using the report nane ashrpt_rac_0310_0131. txt

In this example, the default name is accepted and an ASH report named

ashrpt _rac_0310_0131 is generated. The report will gather ASH information
on all instances belonging to the database with a database ID value of
3309173529 beginning from 10 minutes before the current time and ending at the
current time.

Using Active Session History Reports

After generating an ASH report, you can review the contents to identify transient
performance problems.

The contents of the ASH report are divided into the following sections:

5-38 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

= Top Events
s Load Profile
= TopSQL
= Top PL/SQL
s TopJava
n Top Sessions
= Top Objects/Files/Latches
= Activity Over Time
See Also: Oracle Real Application Clusters Administration and

Deployment Guide for information about sections in the ASH report
that are specific to Oracle Real Application Clusters (Oracle RAC)

Top Events

The Top Events section describes the top wait events of the sampled session activity
categorized by user, background, and priority. Use the information in this section to
identify the wait events that may be the cause of the transient performance problem.

The Top Events section contains the following subsections:
s Top User Events

This subsection lists the top wait events from user processes that accounted for the
highest percentages of sampled session activity.

» Top Background Events

This subsection lists the top wait events from backgrounds that accounted for the
highest percentages of sampled session activity.

= Top Event P1/P2/P3

This subsection lists the wait event parameter values of the top wait events that
accounted for the highest percentages of sampled session activity, ordered by the
percentage of total wait time (% Event). For each wait event, values in the P1
Value, P2 Value, P3 Value column correspond to wait event parameters displayed
in the Parameter 1, Parameter 2, and Parameter 3 columns.

Load Profile

The Load Profile section describes the load analyzed in the sampled session activity.
Use the information in this section to identify the service, client, or SQL command
type that may be the cause of the transient performance problem.

The Load Profile section contains the following subsections:
s Top Service/Module

This subsection lists the services and modules that accounted for the highest
percentages of sampled session activity.

= Top Client IDs

This subsection lists the clients that accounted for the highest percentages of
sampled session activity based on their client ID, which is the application-specific
identifier of the database session.

s Top SQL Command Types

Automatic Performance Statistics 5-39

Managing the Automatic Workload Repository

This subsection lists the SQL command types, such as SELECT or UPDATE, that
accounted for the highest percentages of sampled session activity.

= Top Phases of Execution

This subsection lists the phases of execution, such as SQL, PL/SQL, and Java
compilation and execution, that accounted for the highest percentages of sampled
session activity.

Top SQL

The Top SQL section describes the top SQL statements of the sampled session activity.
Use this information to identify high-load SQL statements that may be the cause of the
transient performance problem.

The Top SQL section contains the following subsections:
s Top SQL with Top Events

s Top SQL with Top Row Sources

s Top SQL Using Literals

s Top Parsing Module/Action

s Complete List of SQL Text

Top SQL with Top Events The Top SQL with Top Events subsection lists the SQL
statements that accounted for the highest percentages of sampled session activity and
the top wait events that were encountered by these SQL statements. The Sampled # of
Executions column shows how many distinct executions of a particular SQL statement
were sampled.

Top SQL with Top Row Sources The Top SQL with Top Row Sources subsection lists the
SQL statements that accounted for the highest percentages of sampled session activity
and their detailed execution plan information. You can use this information to identify
which part of the SQL execution contributed significantly to the SQL elapsed time.

Top SQL Using Literals The Top SQL Using Literals subsection lists the SQL statements
using literals that accounted for the highest percentages of sampled session activity.
You should review the statements listed in this report to determine whether the literals
can be replaced with bind variables.

Top Parsing Module/Action The Top Parsing Module/Action subsection lists the module
and action that accounted for the highest percentages of sampled session activity while
parsing the SQL statement.

Complete List of SQL Text The Complete List of SQL Text subsection displays the entire
text of the Top SQL statements shown in this section.

Top PL/SQL

The Top PL/SQL section lists the PL/SQL procedures that accounted for the highest
percentages of sampled session activity. The PL/SQL Entry Subprogram column lists
the application's top-level entry point into PL/SQL. The PL/SQL Current Subprogram
column lists the PL/SQL subprogram being executed at the point of sampling. If the
value of this column is SQL, then the % Current column shows the percentage of time
spent executing SQL for this subprogram.

5-40 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Top Java
The Top Java section describes the top Java programs in the sampled session activity.

Top Sessions

The Top Sessions section describes the sessions that were waiting for a particular wait
event. Use this information to identify the sessions that accounted for the highest
percentages of sampled session activity, which may be the cause of the transient
performance problem.

The Top Sessions section contains the following subsections:
s Top Sessions
= Top Blocking Sessions

s Top Sessions Running PQs

Top Sessions The Top Session subsection lists the sessions that were waiting for a
particular wait event that accounted for the highest percentages of sampled session
activity.

Top Blocking Sessions The Top Blocking Sessions subsection lists the blocking sessions
that accounted for the highest percentages of sampled session activity.

Top Sessions Running PQs The Top Sessions Running PQs subsection lists the sessions
running parallel queries (PQs) that were waiting for a particular wait event, which
accounted for the highest percentages of sampled session activity.

Top Objects/Files/Latches

The Top Objects/Files/Latches section provides additional information about the most
commonly-used database resources and contains the following subsections:

= Top DB Objects
= Top DB Files
= Top Latches

Top DB Objects The Top DB Objects subsection lists the database objects (such as tables
and indexes) that accounted for the highest percentages of sampled session activity.

Top DB Files The Top DB Files subsection lists the database files that accounted for the
highest percentages of sampled session activity.

Top Latches The Top Latches subsection lists the latches that accounted for the highest
percentages of sampled session activity.

Latches are simple, low-level serialization mechanisms to protect shared data
structures in the System Global Area (SGA). For example, latches protect the list of
users currently accessing the database and the data structures describing the blocks in
the buffer cache. A server or background process acquires a latch for a very short time
while manipulating or looking at one of these structures. The implementation of
latches is operating system-dependent, particularly regarding whether and how long a
process waits for a latch.

Automatic Performance Statistics 5-41

Managing the Automatic Workload Repository

Activity Over Time

The Activity Over Time section is one of the most informative sections of the ASH
report. This section is particularly useful for longer time periods because it provides
in-depth details about activities and workload profiles during the analysis period. The
Activity Over Time section is divided into 10 time slots. The size of each time slot
varies based on the duration of the analysis period. The first and last slots are usually
odd-sized. All inner slots are equally sized and can be compared to each other. For
example, if the analysis period lasts for 10 minutes, then all time slots will 1 minute
each. However, if the analysis period lasts for 9 minutes and 30 seconds, then the outer
slots may be 15 seconds each and the inner slots will be 1 minute each.

Each of the time slots contains information regarding that particular time slot, as
described in Table 5-2.

Table 5-2 Activity Over Time

Column Description

Slot Time (Duration) Duration of the slot

Slot Count Number of sampled sessions in the slot

Event Top three wait events in the slot

Event Count Number of ASH samples waiting for the wait event

% Event Percentage of ASH samples waiting for wait events in the entire

analysis period

When comparing the inner slots, perform a skew analysis by identifying spikes in the
Event Count and Slot Count columns. A spike in the Event Count column indicates an
increase in the number of sampled sessions waiting for a particular event. A spike in
the Slot Count column indicates an increase in active sessions, because ASH data is
sampled from active sessions only and a relative increase in database workload.
Typically, when the number of active session samples and the number of sessions
associated with a wait event increases, the slot may be the cause of the transient
performance problem.

To generate the ASH report with a user-defined slot size, run the ashr pti . sql script,
as described in "Generating an ASH Report on a Specific Database Instance” on
page 5-35.

5-42 Oracle Database Performance Tuning Guide

S

Automatic Performance Diagnostics

This chapter describes Oracle Database automatic features for performance diagnosing
and tuning.

This chapter contains the following topics:

s Overview of the Automatic Database Diagnostic Monitor
s Setting Up ADDM

» Diagnosing Database Performance Problems with ADDM
s Views with ADDM Information

See Also: Oracle Database 2 Day + Performance Tuning Guide for
information about using Oracle Enterprise Manager to diagnose and
tune the database with the Automatic Database Diagnostic Monitor

Overview of the Automatic Database Diagnostic Monitor

When problems occur with a system, it is important to perform accurate and timely
diagnosis of the problem before making any changes to a system. Oftentimes, a
database administrator (DBA) simply looks at the symptoms and immediately starts
changing the system to fix those symptoms. However, an accurate diagnosis of the
actual problem in the initial stage significantly increases the probability of success in
resolving the problem.

With Oracle Database, the statistical data needed for accurate diagnosis of a problem is
stored in the Automatic Workload Repository (AWR). The Automatic Database
Diagnostic Monitor (ADDM):

= Analyzes the AWR data on a regular basis

= Diagnoses the root causes of performance problems

= Provides recommendations for correcting any problems
= Identifies non-problem areas of the system

Because AWR is a repository of historical performance data, ADDM can analyze
performance issues after the event, often saving time and resources in reproducing a
problem. For information about the AWR, see "Overview of the Automatic Workload
Repository" on page 5-8.

In most cases, ADDM output should be the first place that a DBA looks when notified
of a performance problem. ADDM provides the following benefits:

= Automatic performance diagnostic report every hour by default

Automatic Performance Diagnostics 6-1

Overview of the Automatic Database Diagnostic Monitor

= Problem diagnosis based on decades of tuning expertise

s Time-based quantification of problem impacts and recommendation benefits
s Identification of root cause, not symptoms

= Recommendations for treating the root causes of problems

» Identification of non-problem areas of the system

= Minimal overhead to the system during the diagnostic process

It is important to realize that tuning is an iterative process, and fixing one problem can
cause the bottleneck to shift to another part of the system. Even with the benefit of
ADDM analysis, it can take multiple tuning cycles to reach acceptable system
performance. ADDM benefits apply beyond production systems; on development and
test systems, ADDM can provide an early warning of performance issues.

This section contains the following topics:

= ADDM Analysis

s Using ADDM with Oracle Real Application Clusters
= ADDM Analysis Results

= Reviewing ADDM Analysis Results: Example

ADDM Analysis

An ADDM analysis can be performed on a pair of AWR snapshots and a set of
instances from the same database. The pair of AWR snapshots define the time period
for analysis, and the set of instances define the target for analysis.

If you are using Oracle Real Application Clusters (Oracle RAC), ADDM has three
analysis modes:

s Database

In Database mode, ADDM analyzes all instances of the database.
= Instance

In Instance mode, ADDM analyzes a particular instance of the database.
= DPartial

In Partial mode, ADDM analyzes a subset of all database instances.

If you are not using Oracle RAC, ADDM can only function in Instance mode because
there is only one instance of the database.

An ADDM analysis is performed each time an AWR snapshot is taken and the results
are saved in the database. The time period analyzed by ADDM is defined by the last
two snapshots (the last hour by default). ADDM will always analyze the specified
instance in Instance mode. For non-Oracle RAC or single instance environments, the
analysis performed in the Instance mode is the same as a database-wide analysis. If
you are using Oracle RAC, ADDM will also analyze the entire database in Database
mode, as described in "Using ADDM with Oracle Real Application Clusters" on

page 6-3. After an ADDM completes its analysis, you can view the results using Oracle
Enterprise Manager, or by viewing a report in a SQL*Plus session.

ADDM analysis is performed top down, first identifying symptoms, and then refining
them to reach the root causes of performance problems. The goal of the analysis is to
reduce a single throughput metric called DBt i me. DBt i ne is the cumulative time
spent by the database in processing user requests. It includes wait time and CPU time

6-2 Oracle Database Performance Tuning Guide

Overview of the Automatic Database Diagnostic Monitor

of all non-idle user sessions. DBt i e is displayed in the V$SESS_TI ME_MODEL and
V$SYS_TI ME_MODEL views.
See Also:

» Oracle Database Reference for information about the
V$SESS_TI ME_MODEL and V$SYS_TI ME_MODEL views

= "Time Model Statistics" on page 5-3 for a discussion of time
model statistics and DBt i ne

» Oracle Database Concepts for information about server processes
By reducing DBt i e, the database is able to support more user requests using the
same resources, which increases throughput. The problems reported by ADDM are

sorted by the amount of DBt i me they are responsible for. System areas that are not
responsible for a significant portion of DBt i me are reported as non-problem areas.

The types of problems that ADDM considers include the following;:

s CPU bottlenecks - Is the system CPU bound by Oracle Database or some other
application?

s Undersized Memory Structures - Are the Oracle Database memory structures,
such as the SGA, PGA, and buffer cache, adequately sized?

s 1/O capacity issues - Is the I/O subsystem performing as expected?

= High load SQL statements - Are there any SQL statements which are consuming
excessive system resources?

s High load PL/SQL execution and compilation, and high-load Java usage

= Oracle RAC specific issues - What are the global cache hot blocks and objects; are
there any interconnect latency issues?

= Sub-optimal use of Oracle Database by the application - Are there problems with
poor connection management, excessive parsing, or application level lock
contention?

= Database configuration issues - Is there evidence of incorrect sizing of log files,
archiving issues, excessive checkpoints, or sub-optimal parameter settings?

s Concurrency issues - Are there buffer busy problems?

= Hot objects and top SQL for various problem areas

Note: This is not a comprehensive list of all problem types that
ADDM considers in its analysis.

ADDM also documents the non-problem areas of the system. For example, wait event
classes that are not significantly impacting the performance of the system are
identified and removed from the tuning consideration at an early stage, saving time
and effort that would be spent on items that do not impact overall system
performance.

Using ADDM with Oracle Real Application Clusters

If you are using Oracle RAC, you can run ADDM in Database analysis mode to
analyze the throughput performance of all instances of the database. In Database
mode, ADDM considers DB time as the sum of the database time for all database

Automatic Performance Diagnostics 6-3

Overview of the Automatic Database Diagnostic Monitor

instances. Using the Database analysis mode enables you to view all findings that are
significant to the entire database in a single report, instead of reviewing a separate
report for each instance.

The Database mode report includes findings about database resources (such as I/O
and interconnect). The report also aggregates findings from the various instances if
they are significant to the entire database. For example, if the CPU load on a single
instance is high enough to affect the entire database, the finding will appear in the
Database mode analysis, which will point to the particular instance responsible for the
problem.

See Also: Oracle Database 2 Day + Real Application Clusters Guide for
information about using ADDM with Oracle RAC

ADDM Analysis Results

In addition to problem diagnostics, ADDM recommends possible solutions. ADDM
analysis results are represented as a set of findings. See Example 6-1 on page 6-5 for an
example of ADDM analysis result. Each ADDM finding can belong to one of the
following types:

= Problem findings describe the root cause of a database performance problem.

= Symptom findings contain information that often lead to one or more problem
findings.

= Information findings are used for reporting information that are relevant to
understanding the performance of the database, but do not constitute a
performance problem (such as non-problem areas of the database and the activity
of automatic database maintenance).

= Warning findings contain information about problems that may affect the

completeness or accuracy of the ADDM analysis (such as missing data in the
AWR).

Each problem finding is quantified by an impact that is an estimate of the portion of
DBt i me caused by the finding's performance issue. A problem finding can be
associated with a list of recommendations for reducing the impact of the performance
problem. The types of recommendations include:

s Hardware changes: adding CPUs or changing the I/O subsystem configuration
= Database configuration: changing initialization parameter settings

= Schema changes: hash partitioning a table or index, or using automatic
segment-space management (ASSM)

= Application changes: using the cache option for sequences or using bind
variables

= Using other advisors: running SQL Tuning Advisor on high-load SQL or running
the Segment Advisor on hot objects

A list of recommendations can contain various alternatives for solving the same
problem; you do not have to apply all the recommendations to solve a specific
problem. Each recommendation has a benefit which is an estimate of the portion of DB
t i me that can be saved if the recommendation is implemented. Recommendations are
composed of actions and rationales. You must apply all the actions of a
recommendation to gain the estimated benefit. The rationales are used for explaining
why the set of actions were recommended and to provide additional information to
implement the suggested recommendation.

6-4 Oracle Database Performance Tuning Guide

Setting Up ADDM

Reviewing ADDM Analysis Results: Example
Consider the following section of an ADDM report in Example 6-1.

Example 6-1 Example ADDM Report
FINDI NG 1: 31%i npact (7798 seconds)

SQL statements were not shared due to the usage of literals. This resulted in
addi tional hard parses which were consuning significant database tine.

RECOVMVENDATI ON 1: Application Analysis, 31%benefit (7798 seconds)

ACTION: Investigate application |ogic for possible use of bind variables
instead of literals. Alternatively, you may set the parameter
“cursor_sharing" to "force".

RATI ONALE: SQL statenents with PLAN HASH VALUE 3106087033 were found to be
using literals. Look in V$SQL for exanples of such SQ statements.

In Example 6-1, the finding points to a particular root cause, the usage of literals in
SQL statements, which is estimated to have an impact of about 31% of total DBt i ne in
the analysis period.

The finding has a recommendation associated with it, composed of one action and one
rationale. The action specifies a solution to the problem found and is estimated to have
a maximum benefit of up to 31% DBt i me in the analysis period. Note that the benefit
is given as a portion of the total DBt i me and not as a portion of the finding's impact.
The rationale provides additional information on tracking potential SQL statements
that were using literals and causing this performance issue. Using the specified plan
hash value of SQL statements that could be a problem, a DBA could quickly examine a
few sample statements.

When a specific problem has multiple causes, the ADDM may report multiple problem
and symptom findings. In this case, the impacts of these multiple findings can contain
the same portion of DBt i me. Because the performance issues of findings can overlap,
the sum of the impacts of the findings can exceed 100% of DBt i me. For example, if a
system performs many reads, then ADDM might report a SQL statement responsible
for 50% of DBt i me due to I/O activity as one finding, and an undersized buffer cache
responsible for 75% of DBt i me as another finding.

When multiple recommendations are associated with a problem finding, the
recommendations may contain alternatives for solving the problem. In this case, the
sum of the recommendations' benefits may be higher than the finding's impact.

When appropriate, an ADDM action may have multiple solutions for you to choose
from. In the example, the most effective solution is to use bind variables. However, it is
often difficult to modify the application. Changing the value of the CURSOR_SHARI NG
initialization parameter is much easier to implement and can provide significant
improvement.

Setting Up ADDM

Automatic database diagnostic monitoring is enabled by default and is controlled by
the CONTROL_ MANAGEMENT_PACK_ACCESS and the STATI STI CS_LEVEL
initialization parameters.

The CONTROL_ MANAGEMENT_PACK_ACCESS parameter should be set to DI AGNOSTI C
or DI AGNOSTI C+TUNI NGto enable automatic database diagnostic monitoring. The
default setting is DI AGNOSTI C+TUNI NG Setting
CONTROL_MANAGEMENT _PACK _ACCESS to NONE disables ADDM.

Automatic Performance Diagnostics 6-5

Diagnosing Database Performance Problems with ADDM

The STATI STI CS_LEVEL parameter should be set to the TYPI CAL or ALL to enable
automatic database diagnostic monitoring. The default setting is TYPI CAL. Setting
STATI STI CS_LEVEL to BASI Cdisables many Oracle Database features, including
ADDM, and is strongly discouraged.

See Also: Oracle Database Reference for information about the
CONTROL_ MANAGEMENT_PACK_ACCESS and STATI STI CS_LEVEL
initialization parameters

ADDM analysis of I/O performance partially depends on a single argument,

DBI O_EXPECTED, that describes the expected performance of the I/O subsystem. The
value of DBI O_EXPECTEDis the average time it takes to read a single database block
in microseconds. Oracle Database uses the default value of 10 milliseconds, which is
an appropriate value for most modern hard drives. If your hardware is significantly
different, such as very old hardware or very fast RAM disks, consider using a different
value.

To determine the correct setting for DBl O_EXPECTED parameter:

1. Measure the average read time of a single database block read for your hardware.
Note that this measurement is for random I/O, which includes seek time if you
use standard hard drives. Typical values for hard drives are between 5000 and
20000 microseconds.

2. Set the value one time for all subsequent ADDM executions. For example, if the
measured value if 8000 microseconds, you should execute the following command
as SYS user:

EXECUTE DBMS_ADVI SOR SET DEFAULT TASK_PARAMETER(
* ADDM , ' DBl O EXPECTED , 8000);

Diagnosing Database Performance Problems with ADDM

To diagnose database performance problems, first review the ADDM analysis results
that are automatically created each time an AWR snapshot is taken. If a different
analysis is required (such as a longer analysis period, using a different

DBI O_EXPECTED setting, or changing the analysis mode), you can run ADDM
manually as described in this section.

ADDM can analyze any two AWR snapshots (on the same database), as long as both
snapshots are still stored in the AWR (have not been purged). ADDM can only analyze
instances that are started before the beginning snapshot and remain running until the
ending snapshot. Additionally, ADDM will not analyze instances that experience
significant errors when generating the AWR snapshots. In such cases, ADDM will
analyze the largest subset of instances that did not experience these problems.

The primary interface for diagnostic monitoring is Oracle Enterprise Manager.
Whenever possible, you should run ADDM using Oracle Enterprise Manager, as
described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise
Manager is unavailable, you can run ADDM using the DBMS_ADDMpackage. In order
to run the DBMS_ADDMAPIs, the user must be granted the ADVI SOR privilege.

This section contains the following topics:
= Running ADDM in Database Mode

= Running ADDM in Instance Mode

= Running ADDM in Partial Mode

= Displaying an ADDM Report

6-6 Oracle Database Performance Tuning Guide

Diagnosing Database Performance Problems with ADDM

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBM5_ADDMpackage

Running ADDM in Database Mode

For Oracle RAC configurations, you can run ADDM in Database mode to analyze all
instances of the databases. For single-instance configurations, you can still run ADDM
in Database mode; ADDM will simply behave as if running in Instance mode.

To run ADDM in Database mode, use the DBM5S_ADDMANALYZE DB procedure:

BEG N
DBNVS_ADDM ANALYZE DB (
task_nane IN QUT VARCHARZ,
begi n_snapshot IN NUMBER,
end_snapshot IN NUMBER,
db_i d I'N NUMBER : = NULL);
END;

/

The t ask_nare parameter specifies the name of the analysis task that will be created.
The begi n_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The db_i d parameter specifies
the database identifier of the database that will be analyzed. If unspecified, this
parameter defaults to the database identifier of the database to which you are
currently connected.

The following example creates an ADDM task in database analysis mode, and
executes it to diagnose the performance of the entire database during the time period
defined by snapshots 137 and 145:

VAR tnane VARCHAR2(30);
BEG N
tnane := 'ADDM for 7PMto 9PM ;
DBVS_ADDM ANALYZE DB(:tname, 137, 145);
END;
/

Running ADDM in Instance Mode

To analyze a particular instance of the database, you can run ADDM in Instance mode.
To run ADDM in Instance mode, use the DBM5_ADDMANALYZE_| NST procedure:

BEG N
DBVS_ADDM ANALYZE | NST (
task_nane I N OUT VARCHAR?,
begi n_snapshot IN NUMBER,
end_snapshot IN NUMBER,
i nst ance_nunber IN NUMBER : = NULL,
db_id IN NUMBER : = NULL);
END;

/

The t ask_nare parameter specifies the name of the analysis task that will be created.
The begi n_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The i nst ance_nunber
parameter specifies the instance number of the instance that will be analyzed. If

Automatic Performance Diagnostics 6-7

Diagnosing Database Performance Problems with ADDM

unspecified, this parameter defaults to the instance number of the instance to which
you are currently connected. The db_i d parameter specifies the database identifier of
the database that will be analyzed. If unspecified, this parameter defaults to the
database identifier of the database to which you are currently connected.

The following example creates an ADDM task in instance analysis mode, and executes
it to diagnose the performance of instance number 1 during the time period defined by
snapshots 137 and 145:

VAR tnane VARCHAR2(30);
BEG N
‘tnane := 'ny ADDMfor 7PMto 9PM;
DBVS_ADDM ANALYZE | NST(:tnane, 137, 145, 1);
END;
/

Running ADDM in Partial Mode

To analyze a subset of all database instances, you can run ADDM in Partial mode. To
run ADDM in Partial mode, use the DBMS_ADDMANALYZE_PARTI AL procedure:

BEG N
DBVS_ADDM ANALYZE_PARTI AL (
t ask_nane IN QUT VARCHARZ,
i nst ance_nunbers IN VARCHAR2,
begi n_snapshot IN NUMBER,
end_snapshot IN NUMBER,
db_id IN NUMBER : = NULL);
END,

/

The t ask_name parameter specifies the name of the analysis task that will be created.
The i nst ance_nunber s parameter specifies a comma-delimited list of instance
numbers of instances that will be analyzed. The begi n_snapshot parameter
specifies the snapshot number of the beginning snapshot in the analysis period. The
end_snapshot parameter specifies the snapshot number of the ending snapshot in
the analysis period. The db_i d parameter specifies the database identifier of the
database that will be analyzed. If unspecified, this parameter defaults to the database
identifier of the database to which you are currently connected.

The following example creates an ADDM task in partial analysis mode, and executes it
to diagnose the performance of instance numbers 1, 2, and 4, during the time period
defined by snapshots 137 and 145:

VAR tnane VARCHAR2(30);
BEG N
‘tnane :='ny ADDMfor 7PMto 9PM;
DBVS_ADDM ANALYZE PARTIAL(:tname, '1,2,4', 137, 145);
END;
/

Displaying an ADDM Report

To display a text report of an executed ADDM task, use the DBM5_ADDMGET_REPORT
function:

DBVS_ADDM GET_REPORT (
task_nane I'N VARCHAR2
RETURN CLOB);

6-8 Oracle Database Performance Tuning Guide

Views with ADDM Information

The following example displays a text report of the ADDM task specified by its task
name using the t nane variable:

SET LONG 1000000 PAGESI ZE 0;
SELECT DBMS_ADDM GET_REPORT(: t name) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80. For
information about reviewing the ADDM analysis results in an ADDM report, see
"ADDM Analysis Results" on page 6-4.

Views with ADDM Information

Typically, you should view output and information from ADDM using Oracle
Enterprise Manager or ADDM reports.

However, you can display ADDM information through the DBA_ADVI SOR views. This
group of views includes:

= DBA_ADVI SOR_FI NDI NGS

This view displays all the findings discovered by all advisors. Each finding is
displayed with an associated finding ID, name, and type. For tasks with multiple
executions, the name of each task execution associated with each finding is also
listed.

= DBA_ADDM FI NDI NGS

This view contains a subset of the findings displayed in the related

DBA_ADVI SOR_FI NDI NGS view. This view only displays the ADDM findings
discovered by all advisors. Each ADDM finding is displayed with an associated
finding ID, name, and type.

= DBA_ADVI SOR_FI NDI NG_NAMES
List of all finding names registered with the advisor framework.
= DBA_ADVI SOR_RECOMVENDATI ONS

This view displays the results of completed diagnostic tasks with
recommendations for the problems identified in each execution. The
recommendations should be reviewed in the order of the RANK column, as this
relays the magnitude of the problem for the recommendation. The BENEFI T
column displays the benefit to the system you can expect after the
recommendation is performed. For tasks with multiple executions, the name of
each task execution associated with each advisor task is also listed.

= DBA_ADVI SOR_TASKS

This view provides basic information about existing tasks, such as the task ID, task
name, and when the task was created. For tasks with multiple executions, the
name and type of the last or current execution associated with each advisor task is
also listed.

See Also: Oracle Database Reference for information about static data
dictionary views

Automatic Performance Diagnostics 6-9

Views with ADDM Information

6-10 Oracle Database Performance Tuning Guide

v

Configuring and Using Memory

This chapter explains how to allocate memory to Oracle Database memory caches, and
how to use those caches. Proper sizing and effective use of the Oracle Database
memory caches greatly improves database performance. Oracle recommends using
automatic memory management to manage the memory on your system. However,
you can choose to manually adjust the memory pools on your system, as described in
this chapter.

This chapter contains the following sections:

= Understanding Memory Allocation Issues

= Configuring and Using the Buffer Cache

s Configuring and Using the Shared Pool and Large Pool
» Configuring and Using the Redo Log Buffer

= PGA Memory Management

= Managing the Server and Client Result Caches

See Also: Oracle Database Concepts for information about the
memory architecture of an Oracle database

Understanding Memory Allocation Issues

Oracle Database stores information in memory caches and on disk. Memory access is
much faster than disk access. Disk access (physical I/O) take a significant amount of
time, compared with memory access, typically in the order of 10 milliseconds. Physical
I/0 also increases the CPU resources required, because of the path length in device
drivers and operating system event schedulers. For this reason, it is more efficient for
data requests of frequently accessed objects to be perform by memory, rather than also
requiring disk access.

A performance goal is to reduce the physical I/O overhead as much as possible, either
by making it more likely that the required data is in memory, or by making the process
of retrieving the required data more efficient.

This section contains the following topics:

s Oracle Memory Caches

= Automatic Memory Management

= Automatic Shared Memory Management
= Dynamically Changing Cache Sizes

= Application Considerations

Configuring and Using Memory 7-1

Understanding Memory Allocation Issues

s Operating System Memory Use

= Iteration During Configuration

Oracle Memory Caches

The main Oracle Database memory caches that affect performance are:
= Shared pool

= Large pool

= Java pool

= Buffer cache

» Streams pool size

= Log buffer

= Process-private memory, such as memory used for sorting and hash joins

Automatic Memory Management

Oracle strongly recommends the use of automatic memory management to manage
the memory on your system. Automatic memory management enables Oracle
Database to automatically manage and tune the instance memory. Automatic memory
management can be configured using a target memory size initialization parameter
(MEMORY_TARGET) and a maximum memory size initialization parameter
(MEMORY_MAX_TARGET). The database tunes to the target memory size, redistributing
memory as needed between the system global area (SGA) and the instance program
global area (instance PGA). Before setting any memory pool sizes, consider using the
automatic memory management feature of Oracle Database. If you must configure
memory allocations, consider using the Memory Advisor for managing memory.

See Also:

m Oracle Database Administrator’s Guide for information about
using automatic memory management

» Oracle Database 2 Day DBA for information about using the
Memory Advisor

Automatic Shared Memory Management

Automatic Shared Memory Management simplifies the configuration of the SGA. To
use Automatic Shared Memory Management, set the SGA_TARGET initialization
parameter to a nonzero value and set the STATI STI CS_LEVEL initialization
parameter to TYPI CAL or ALL. Set the value of the SGA_TARGET parameter to the
amount of memory that you intend to dedicate for the SGA. In response to the
workload on the system, the automatic SGA management distributes the memory
appropriately for the following memory pools:

= Database buffer cache (default pool)
= Shared pool

= Large pool

= Java pool

= Streams pool

7-2 Oracle Database Performance Tuning Guide

Understanding Memory Allocation Issues

If these automatically tuned memory pools had been set to nonzero values, those
values are used as minimum levels by Automatic Shared Memory Management. You
would set minimum values if an application component needs a minimum amount of
memory to function properly.

SGA_TARGET is a dynamic parameter that can be changed by accessing the SGA Size
Advisor from the Memory Parameters SGA page in Oracle Enterprise Manager, or by
querying the VESGA_TARGET_ADVI CE view and using the ALTER SYSTEMcommand.
SGA_TARGET can be set less than or equal to the value of SGA_MAX_SI ZE initialization
parameter. Changes in the value of SGA_TARGET automatically resize the
automatically tuned memory pools.

See Also:

» Oracle Database Concepts for information about the System
Global Area (SGA)

s Oracle Database Administrator’s Guide for information about
managing the System Global Area (SGA)

If you dynamically disable SGA_TARGET by setting its value to 0 at instance startup,
Automatic Shared Memory Management will be disabled and the current auto-tuned
sizes will be used for each memory pool. If necessary, you can manually resize each
memory pool using the DB_CACHE_SI ZE, SHARED_POQOL_SI ZE, LARGE_POOL_SI ZE,
JAVA POOL_SI ZE, and STREAMS_POOL_SI ZE initialization parameters. See
"Dynamically Changing Cache Sizes" on page 7-3.

The following pools are manually sized components and are not affected by
Automatic Shared Memory Management:

= Log buffer
s Other buffer caches (such as KEEP, RECYCLE, and other nondefault block size)
s Fixed SGA and other internal allocations

To manually size these memory pools, you must set the DB_KEEP_CACHE_SI ZE,
DB_RECYCLE_CACHE_SI ZE, DB_nK_CACHE_SI ZE, and LOG_BUFFERinitialization
parameters. The memory allocated to these pools is deducted from the total available
for SGA_TARGET when Automatic Shared Memory Management computes the values
of the automatically tuned memory pools.

See Also:

s Oracle Database Administrator’s Guide for information about
managing initialization parameters

» Oracle Streams Replication Administrator’s Guide for information
about the STREAM5_POOL_S| ZE initialization parameter

» Oracle Database Java Developer’s Guide for information about
Java memory usage

Dynamically Changing Cache Sizes

If the system is not using Automatic Memory Management or Automatic Shared
Memory Management, you can choose to dynamically reconfigure the sizes of the
shared pool, the large pool, the buffer cache, and the process-private memory. The
following sections contain details on sizing of caches:

= Configuring and Using the Buffer Cache

Configuring and Using Memory 7-3

Understanding Memory Allocation Issues

s Configuring and Using the Shared Pool and Large Pool
s Configuring and Using the Redo Log Buffer

The size of these memory caches is configurable using initialization configuration
parameters, such as DB_CACHE_SI ZE, JAVA _POCOL_SI ZE, LARGE_POOL_SI ZE,

LOG _BUFFER, and SHARED _POOL_SI ZE. The values for these parameters are also
dynamically configurable using the ALTER SYSTEMstatement except for the log buffer
pool and process-private memory, which are static after startup.

Memory for the shared pool, large pool, java pool, and buffer cache is allocated in
units of granules. The granule size is 4MB if the SGA size is less than 1GB. If the SGA
size is greater than 1GB, the granule size changes to 16MB. The granule size is
calculated and fixed when the instance starts up. The size does not change during the
lifetime of the instance.

The granule size that is currently being used for SGA can be viewed in the view
V$SGA_DYNAM C_COVPONENTS. The same granule size is used for all dynamic
components in the SGA.

You can expand the total SGA size to a value equal to the SGA_MAX_SI ZE parameter.
If the SGA_MAX_SI ZE is not set, you can decrease the size of one cache and reallocate
that memory to another cache if necessary. SGA_MAX_SI ZE defaults to the aggregate
setting of all the components.

Note: SGA_MAX_SI ZE cannot be dynamically resized.

The maximum amount of memory usable by the instance is determined at instance
startup by the initialization parameter SGA_MAX_SI ZE. You can specify
SGA_MAX_SI ZE to be larger than the sum of all of the memory components, such as
buffer cache and shared pool. Otherwise, SGA_MAX_SI ZE defaults to the actual size
used by those components. Setting SGA_MAX_SI ZE larger than the sum of memory
used by all of the components lets you dynamically increase a cache size without
needing to decrease the size of another cache.

See Also: Your operating system's documentation for information
about managing dynamic SGA

Viewing Information About Dynamic Resize Operations
The following views provide information about dynamic resize operations:

= V$MEMORY_CURRENT_RESI ZE_OPS displays information about memory resize
operations (both automatic and manual) which are currently in progress.

= VSMEMORY_DYNAM C_COVPONENTS displays information about the current sizes
of all dynamically tuned memory components, including the total sizes of the SGA
and instance PGA.

= VSMEMORY_RESI ZE_OPS displays information about the last 800 completed
memory resize operations (both automatic and manual). This does not include
in-progress operations.

= VSMEMORY_TARGET_ADVI CE displays tuning advice for the MEMORY_TARGET
initialization parameter.

= V$SGA CURRENT_RESI ZE_OPS displays information about SGA resize
operations that are currently in progress. An operation can be a grow or a shrink
of a dynamic SGA component.

7-4 Oracle Database Performance Tuning Guide

Understanding Memory Allocation Issues

= V$SGA RESI ZE_OPS displays information about the last 800 completed SGA
resize operations. This does not include any operations currently in progress.

= V$SGA _DYNAM C_COMPONENTS displays information about the dynamic
components in SGA. This view summarizes information based on all completed
SGA resize operations that occurred after startup.

= V$SGA DYNAM C_FREE_MEMORY displays information about the amount of SGA
memory available for future dynamic SGA resize operations.

See Also:

s Oracle Database Concepts for more information about dynamic
SGA

» Oracle Database Reference for detailed column information for
these views

Application Considerations

When configuring memory, size the cache appropriately for the application's needs.
Conversely, tuning the application's use of the caches can greatly reduce resource
requirements. Efficient use of Oracle Database memory caches also reduces the load on
related resources such as the latches, the CPU, and the I/O system.

For best performance, you should consider the following:

» The cache should be optimally designed to use the operating system and database
resources most efficiently.

= Memory allocations to Oracle Database memory structures should best reflect the
needs of the application.

Making changes or additions to an existing application might require resizing Oracle
Database memory structures to meet the needs of your modified application.

If your application uses Java, you should investigate whether you need to modify the
default configuration for the Java pool. See the Oracle Database Java Developer’s Guide
for information about Java memory usage.

Operating System Memory Use
For most operating systems, it is important to consider the following:
= Reduce Paging
» Fit the SGA into Main Memory
= Allow Adequate Memory to Individual Users

Reduce Paging

Paging occurs when an operating system transfers memory-resident pages to disk
solely to allow new pages to be loaded into memory. Many operating systems page to
accommodate large amounts of information that do not fit into real memory. On most
operating systems, paging reduces performance.

Use operating system utilities to examine the operating system, to identify whether
there is a lot of paging on your system. If so, then the total system memory may not be
large enough to hold everything for which you have allocated memory. Either increase
the total memory on your system, or decrease the amount of memory allocated.

Configuring and Using Memory 7-5

Configuring and Using the Buffer Cache

Fit the SGA into Main Memory

Because the purpose of the SGA is to store data in memory for fast access, the SGA
should be within main memory. If pages of the SGA are swapped to disk, then the data
is no longer quickly accessible. On most operating systems, the disadvantage of
paging significantly outweighs the advantage of a large SGA.

Note: You can use the LOCK_SGA parameter to lock the SGA into
physical memory and prevent it from being paged out. The
database does not use the MEMORY_TARGET and
MEMORY_VAX_TARGCET parameters when the LOCK_SGA parameter
is enabled.

To see how much memory is allocated to the SGA and each of its internal structures,
enter the following SQL*Plus statement:

SHOW SGA

The output of this statement will look similar to the following:

Total System G obal Area 840205000 bytes

Fi xed Size 279240 bytes
Variabl e Size 520093696 byt es
Dat abase Buffers 318767104 bytes
Redo Buffers 1064960 bytes

Allow Adequate Memory to Individual Users

When sizing the SGA, ensure that you allow enough memory for the individual server
processes and any other programs running on the system.

See Also: Your operating system hardware and software
documentation, and the Oracle documentation specific to your
operating system, for more information on tuning operating system
memory usage

Iteration During Configuration

Configuring memory allocation involves distributing available memory to Oracle
Database memory structures, depending on the needs of the application. The
distribution of memory to Oracle Database structures can affect the amount of physical
I/0O necessary for Oracle Database t operate. Having a good first initial memory
configuration also provides an indication of whether the I/O system is effectively
configured.

It might be necessary to repeat the steps of memory allocation after the initial pass
through the process. Subsequent passes let you make adjustments in earlier steps,
based on changes in later steps. For example, decreasing the size of the buffer cache
lets you increase the size of another memory structure, such as the shared pool.

Configuring and Using the Buffer Cache

For many types of operations, Oracle Database uses the buffer cache to store blocks
read from disk. Oracle Database bypasses the buffer cache for particular operations,
such as sorting and parallel reads. For operations that use the buffer cache, this section
explains the following;:

= Using the Buffer Cache Effectively

7-6 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

= Sizing the Buffer Cache
s Interpreting and Using the Buffer Cache Advisory Statistics
s Considering Multiple Buffer Pools

Using the Buffer Cache Effectively

To use the buffer cache effectively, tune SQL statements for the application to avoid
unnecessary resource consumption. To meet this goal, verify that frequently executed
SQL statements and SQL statements that perform many buffer gets have been tuned.

When using parallel query, you can configure the database to use the database buffer
cache instead of performing direct reads into the PGA. This configuration may be
appropriate when the database servers have a large amount of memory.

See Also:
s Chapter 16, "SQL Tuning Overview"

s Oracle Database VLDB and Partitioning Guide to learn more using
parallel execution

Sizing the Buffer Cache

When configuring a new instance, it is impossible to know the correct size for the
buffer cache. Typically, a database administrator makes a first estimate for the cache
size, then runs a representative workload on the instance and examines the relevant
statistics to see whether the cache is under or over configured.

Buffer Cache Advisory Statistics

You can use several statistics to examine buffer cache activity, including the following:
= V$DB_CACHE_ADVI CE

m Buffer cache hit ratio

Using VS$DB_CACHE_ADVICE

This view is populated when the DB_CACHE_ADVI CE initialization parameter is set to
ON. This view shows the simulated miss rates for a range of potential buffer cache
sizes.

Each cache size simulated has its own row in this view, with the predicted physical
170 activity that would take place for that size. The DB_CACHE_ADVI CE parameter is
dynamic, so the advisory can be enabled and disabled dynamically to allow you to
collect advisory data for a specific workload.

There is some overhead associated with this advisory. When the advisory is enabled,
there is a small increase in CPU usage, because additional bookkeeping is required.

Oracle Database uses DBA-based sampling to gather cache advisory statistics.
Sampling substantially reduces both CPU and memory overhead associated with
bookkeeping. Sampling is not used for a buffer pool if the number of buffers in that
buffer pool is small to begin with.

To use V$DB_CACHE_ADVI CE, the parameter DB_CACHE_ADVI CE should be set to ON,
and a representative workload should be running on the instance. Allow the workload
to stabilize before querying the V$DB_CACHE_ADVI CE view.

The following SQL statement returns the predicted 1/O requirement for the default
buffer pool for various cache sizes:

Configuring and Using Memory 7-7

Configuring and Using the Buffer Cache

COLUWN si ze for_estimte FORMAT 999, 999, 999, 999 headi ng ' Cache Size (MB)'
COLUWN buffers _for_estimate FORMAT 999, 999, 999 heading 'Buffers’

COLUW estd_physi cal _read_factor FORMAT 999.90 heading ' Estd Phys| Read Factor'
COLUWN est d_physi cal _reads FORMAT 999, 999, 999 headi ng ' Estd Phys| Reads'

SELECT size for_estimte, buffers_for_estimte, estd_physical read_factor,
est d_physi cal _reads
FROV V$DB_CACHE_ADVI CE
VHERE nane ' DEFAULT'
AND bl ock_si ze (SELECT val ue FROM V$PARAMETER WHERE nanme =
"db_bl ock_si ze")
AND advi ce_stat us

"ON

The following output shows that if the cache was 212 MB, rather than the current size
of 304 MB, the estimated number of physical reads would increase by a factor of 1.74
or 74%. This means it would not be advisable to decrease the cache size to 212MB.

However, increasing the cache size to 334MB would potentially decrease reads by a
factor of .93 or 7%. If an additional 30MB memory is available on the host computer
and the SGA_MAX_SI ZE setting allows the increment, it would be advisable to
increase the default buffer cache pool size to 334MB.

Estd Phys Estd Phys

Cache Size (MB) Buf fers Read Fact or Reads
30 3,802 18.70 192,317,943 10% of Current Size
60 7,604 12.83 131, 949, 536
91 11, 406 7.38 75,865, 861
121 15, 208 4,97 51,111, 658
152 19, 010 3.64 37,460, 786
182 22,812 2.50 25,668,196
212 26,614 1.74 17,850, 847
243 30, 416 1.33 13,720, 149
273 34,218 1.13 11,583,180
304 38,020 1.00 10, 282, 475 Current Size
334 41, 822 .93 9, 515, 878
364 45,624 .87 8,909, 026
395 49, 426 .83 8, 495, 039
424 53, 228 .79 8,116, 496
456 57,030 .76 7,824,764
486 60, 832 .74 7,563, 180
517 64, 634 .71 7,311,729
547 68, 436 .69 7,104, 280
577 72,238 . 67 6, 895, 122
608 76, 040 .66 6, 739, 731 200% of Current Size

This view assists in cache sizing by providing information that predicts the number of
physical reads for each potential cache size. The data also includes a physical read
factor, which is a factor by which the current number of physical reads is estimated to
change if the buffer cache is resized to a given value.

Note: With Oracle Database, physical reads do not necessarily
indicate disk reads; physical reads may well be satisfied from the
file system cache.

The relationship between successfully finding a block in the cache and the size of the
cache is not always a smooth distribution. When sizing the buffer pool, avoid the use
of additional buffers that contribute little or nothing to the cache hit ratio. In the

7-8 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

example illustrated in Figure 7-1 on page 7-9, only narrow bands of increments to the
cache size may be worthy of consideration.

Figure 7-1 Physical I/O and Buffer Cache Size

Phys 1/0 Ratio

Buffers

Actual ._..__..____

INTUILIVE —

Examining Figure 7-1 leads to the following observations:

s The benefit from increasing buffers from point A to point B is considerably higher
than from point B to point C.

s The decrease in the physical I/O between points A and B and points B and C is
not smooth, as indicated by the dotted line in the graph.

Calculating the Buffer Cache Hit Ratio

The buffer cache hit ratio calculates how often a requested block has been found in the
buffer cache without requiring disk access. This ratio is computed using data selected
from the dynamic performance view V3SYSSTAT. You can use the buffer cache hit
ratio to verify the physical I/O as predicted by V$DB_CACHE ADVI CE.

The statistics in Table 7-1 are used to calculate the hit ratio.

Table 7-1 Statistics for Calculating the Hit Ratio

Statistic Description

consi stent gets fromcache Number of times a consistent read was requested for a
block from the buffer cache.

db bl ock gets from cache Number of times a CURRENT block was requested from
the buffer cache.

physi cal reads cache Total number of data blocks read from disk into buffer
cache.

Example 7-1 has been simplified by using values selected directly from the
VSSYSSTAT table, rather than over an interval. It is best to calculate the delta of these
statistics over an interval while your application is running, then use them to
determine the hit ratio.

Configuring and Using Memory 7-9

Configuring and Using the Buffer Cache

See Also: Chapter 6, "Automatic Performance Diagnostics" for
more information on collecting statistics over an interval

Example 7-1 Calculating the Buffer Cache Hit Ratio

SELECT NAME, VALUE

FROM V$SYSSTAT
WHERE NAME IN (' db block gets fromcache', 'consistent gets fromcache', 'physical
reads cache');

Using the values in the output of the query, calculate the hit ratio for the buffer cache
with the following formula:

1 - (('physical reads cache') / ('consistent gets fromcache' + 'db block gets
from cache')

See Also: Oracle Database Reference for information about the
VSSYSSTAT view

Interpreting and Using the Buffer Cache Advisory Statistics

There are many factors to examine before considering whether to increase or decrease
the buffer cache size. For example, you should examine V$DB_CACHE_ADVI CE data
and the buffer cache hit ratio.

A low cache hit ratio does not imply that increasing the size of the cache would be
beneficial for performance. A good cache hit ratio could wrongly indicate that the
cache is adequately sized for the workload.

To interpret the buffer cache hit ratio, you should consider the following:

= Repeated scanning of the same large table or index can artificially inflate a poor
cache hit ratio. Examine frequently executed SQL statements with a large number
of buffer gets, to ensure that the execution plan for such SQL statements is
optimal. If possible, avoid repeated scanning of frequently accessed data by
performing all of the processing in a single pass or by optimizing the SQL
statement.

» If possible, avoid requerying the same data, by caching frequently accessed data in
the client program or middle tier.

= Database blocks accessed during a long full table scan are put on the tail end of the
least recently used LRU list and not on the head of the list. Therefore, the blocks
are aged out faster than blocks read when performing indexed lookups or small
table scans. When interpreting the buffer cache data, poor hit ratios when valid
large full table scans are occurring should also be considered.

Note: Short table scans are scans performed on tables under a
certain size threshold. The definition of a small table is the
maximum of 2% of the buffer cache and 20, whichever is bigger.

= In any large database running OLTP applications in any given unit of time, most
rows are accessed either one or zero times. On this basis, there might be little
purpose in keeping the block in memory for very long following its use.

= A common mistake is to continue increasing the buffer cache size. Such increases
have no effect if you are doing full table scans or operations that do not use the
buffer cache.

7-10 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

Increasing Memory Allocated to the Buffer Cache

As a general rule, investigate increasing the size of the cache if the cache hit ratio is
low and your application has been tuned to avoid performing full table scans.

To increase cache size, first set the DB_ CACHE_ADVI CE initialization parameter to ON,
and let the cache statistics stabilize. Examine the advisory data in the
V$DB_CACHE_ADVI CE view to determine the next increment required to significantly
decrease the amount of physical I/O performed. If it is possible to allocate the required
extra memory to the buffer cache without causing the host operating system to page,
then allocate this memory. To increase the amount of memory allocated to the buffer
cache, increase the value of the DB_CACHE_SI ZE initialization parameter.

If required, resize the buffer pools dynamically, rather than shutting down the instance
to perform this change.

Note: When the cache is resized significantly (greater than 20%),
the old cache advisory value is discarded and the cache advisory is
set to the new size. Otherwise, the old cache advisory value is
adjusted to the new size by the interpolation of existing values.

The DB_CACHE_SI ZE parameter specifies the size of the default cache for the
database's standard block size. To create and use tablespaces with block sizes different
than the database's standard block sizes (such as to support transportable tablespaces),
you must configure a separate cache for each block size used. You can use the
DB_nK_CACHE_SI ZE parameter to configure the nonstandard block size needed
(where nis 2, 4, 8, 16 or 32 and n is not the standard block size).

Note: The process of choosing a cache size is the same, regardless
of whether the cache is the default standard block size cache, the
KEEP or RECYCLE cache, or a nonstandard block size cache.

See Also: Oracle Database Reference and Oracle Database
Administrator’s Guide for more information on using the
DB_nK_CACHE_SI ZE parameters

Reducing Memory Allocated to the Buffer Cache

If the cache hit ratio is high, then the cache is probably large enough to hold the most
frequently accessed data. Check V$DB_CACHE_ADVI CE data to see whether decreasing
the cache size significantly causes the number of physical I/Os to increase. If not, and
if you require memory for another memory structure, then you might be able to reduce
the cache size and still maintain good performance. To make the buffer cache smaller,
reduce the size of the cache by changing the value for the parameter DB_CACHE_SI ZE.

Considering Multiple Buffer Pools

A single default buffer pool is generally adequate for most systems. However, users
with detailed knowledge of an application's buffer pool might benefit from
configuring multiple buffer pools.

With segments that have atypical access patterns, store blocks from those segments in
two different buffer pools: the KEEP pool and the RECYCLE pool. A segment's access
pattern may be atypical if it is constantly accessed (that is, hot) or infrequently
accessed (for example, a large segment accessed by a batch job only once a day).

Configuring and Using Memory 7-11

Configuring and Using the Buffer Cache

Multiple buffer pools let you address these differences. You can use a KEEP buffer pool
to maintain frequently accessed segments in the buffer cache, and a RECYCLE buffer
pool to prevent objects from consuming unnecessary space in the cache. When an
object is associated with a cache, all blocks from that object are placed in that cache.
Oracle Database maintains a DEFAULT buffer pool for objects that have not been
assigned to a specific buffer pool. The default buffer pool is of size DB_CACHE_SI ZE.
Each buffer pool uses the same Least Recently Used (LRU) replacement policy (for
example, if the KEEP pool is not large enough to store all of the segments allocated to
it, then the oldest blocks age out of the cache).

By allocating objects to appropriate buffer pools, you can:
= Reduce or eliminate I/Os

= Isolate or limit an object to a separate cache

Random Access to Large Segments

A problem can occur with an LRU aging method when a very large segment is
accessed with a large or unbounded index range scan. Here, very large means large
compared to the size of the cache. Any single segment that accounts for a substantial
portion (more than 10%) of nonsequential physical reads can be considered very large.
Random reads to a large segment can cause buffers that contain data for other
segments to be aged out of the cache. The large segment ends up consuming a large
percentage of the cache, but it does not benefit from the cache.

Very frequently accessed segments are not affected by large segment reads because
their buffers are warmed frequently enough that they do not age out of the cache.
However, the problem affects warm segments that are not accessed frequently enough
to survive the buffer aging caused by the large segment reads. There are three options
for solving this problem:

1. If the object accessed is an index, find out whether the index is selective. If not,
tune the SQL statement to use a more selective index.

2. If the SQL statement is tuned, you can move the large segment into a separate
RECYCLE cache so that it does not affect the other segments. The RECYCLE cache
should be smaller than the DEFAULT buffer pool, and it should reuse buffers more
quickly than the DEFAULT buffer pool.

3. Alternatively, you can move the small warm segments into a separate KEEP cache
that is not used at all for large segments. The KEEP cache can be sized to minimize
misses in the cache. You can make the response times for specific queries more
predictable by putting the segments accessed by the queries in the KEEP cache to
ensure that they do not age out.

Oracle Real Application Clusters Instances

You can create multiple buffer pools for each database instance. The same set of buffer
pools need not be defined for each instance of the database. Among instances, the
buffer pools can be different sizes or not defined at all. Tune each instance according to
the application requirements for that instance.

Using Multiple Buffer Pools

To define a default buffer pool for an object, use the BUFFER_POOL keyword of the
STORAGE clause. This clause is valid for CREATE and ALTER TABLE, CLUSTER, and
| NDEX SQL statements. After a buffer pool has been specified, all subsequent blocks
read for the object are placed in that pool.

7-12 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

If a buffer pool is defined for a partitioned table or index, then each partition of the
object inherits the buffer pool from the table or index definition, unless you override it
with a specific buffer pool.

When the buffer pool of an object is changed using the ALTER statement, all buffers
currently containing blocks of the altered segment remain in the buffer pool they were
in before the ALTER statement. Newly loaded blocks and any blocks that have aged
out and are reloaded go into the new buffer pool.

See Also: Oracle Database SQL Language Reference for information
about specifying BUFFER_POOL in the STORAGE clause

Buffer Pool Data in V$DB_CACHE_ADVICE

You can use V$DB_CACHE_ADVI CE to size all pools configured on a database instance.
Make the initial cache size estimate, run the representative workload, then simply
query the V$DB_CACHE_ADVI CE view for the pool you want to use.

For example, to query data from the KEEP pool:

SELECT Sl ZE_FOR_ESTI MATE, BUFFERS_FOR_ESTI MATE, ESTD PHYSI CAL_READ FACTOR,
ESTD_PHYSI CAL_READS
FROM V$DB_CACHE_ADVI CE
WHERE NAME = ' KEEP
AND BLOCK_SI ZE = (SELECT VALUE FROM V$PARAMETER WHERE NAME =
"db_bl ock_si ze")
AND ADVI CE_STATUS = ' ON ;

Buffer Pool Hit Ratios

The data in VSSYSSTAT reflects the logical and physical reads for all buffer pools
within one set of statistics. To determine the hit ratio for the buffer pools individually,
query the V$BUFFER_POCL_STATI STI CS view. This view maintains statistics for
each pool on the number of logical reads and writes.

The buffer pool hit ratio can be determined using the following formula:

1 - (physical _reads/(db_bl ock_gets + consistent_gets))

The ratio can be calculated with the following query:

SELECT NAME, PHYS| CAL_READS, DB BLOCK GETS, CONSI STENT GETS,
1 - (PHYSI CAL_READS / (DB BLOCK_GETS + CONSI STENT_GETS)) "Hit Ratio"
FROM V$BUFFER_POCL_STATI STI CS;

See Also: Oracle Database Reference for information about the
V$BUFFER_POOL_STATI STI CS view

Determining Which Segments Have Many Buffers in the Pool

The V$BH view shows the data object ID of all blocks that currently reside in the SGA.
To determine which segments have many buffers in the pool, you can use one of the
two methods described in this section. You can either look at the buffer cache usage

pattern for all segments (Method 1) or examine the usage pattern of a specific segment,
(Method 2).

Configuring and Using Memory 7-13

Configuring and Using the Buffer Cache

Method 1

The following query counts the number of blocks for all segments that reside in the
buffer cache at that point in time. Depending on buffer cache size, this might require a
lot of sort space.

COLUWMN OBJECT_NAME FORMAT A40
COLUWN NUMBER_OF_BLOCKS FORMAT 999, 999, 999, 999

SELECT 0. OBJECT NAME, COUNT(*) NUVBER OF BLOCKS
FROM DBA_OBJECTS 0, V$BH bh
WHERE 0. DATA OBJECT ID = bh. OBJD
AND 0. OMKER I="'SYS
GROUP BY 0. BJECT NAME
ORDER BY COUNT(*);

OBJECT NANE NUVBER OF BLOCKS
QA PREF_UNI Q KEY 1
SYS_(002651 1
DS PERSON 78
OM EXT_HEADER 701
OM SHELL 1,765
OM HEADER 5, 826
OM | NSTANCE 12, 644
Method 2

Use the following steps to determine the percentage of the cache used by an individual
object at a given point in time:
1. Find the Oracle Database internal object number of the segment by entering the

following query:

SELECT DATA OBJECT I D, OBJECT TYPE
FROM DBA_ OBJECTS
VWHERE OBJECT_NAME = UPPER(' segment _nane');

Because two objects can have the same name (if they are different types of objects),
use the OBJECT_TYPE column to identify the object of interest.
2. Find the number of buffers in the buffer cache for SEGVENT_NANME:

SELECT COUNT(*) BUFFERS
FROM V$BH
WHERE OBJD = dat a_obj ect _i d_val ue;
where dat a_obj ect _i d_val ue is from step 1.

3. Find the number of buffers in the instance:

SELECT NAME, BLOCK_SI ZE, SUM BUFFERS)
FROM V$BUFFER_POOL
CGROUP BY NAME, BLOCK SIZE
HAVI NG SUM BUFFERS) O0;

4. Calculate the ratio of buffers to total buffers to obtain the percentage of the cache
currently used by SEGVENT_NAME:

% cache used by segment _nane = [buffers(Step2)/total buffers(Step3)]

7-14 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

KEEP Pool

Note: This technique works only for a single segment. You must
run the query for each partition for a partitioned object.

If there are certain segments in your application that are referenced frequently, then
store the blocks from those segments in a separate cache called the KEEP buffer pool.
Memory is allocated to the KEEP buffer pool by setting the parameter
DB_KEEP_CACHE_SI ZE to the required size. The memory for the KEEP pool is not a
subset of the default pool. Typical segments that can be kept are small reference tables
that are used frequently. Application developers and DBAs can determine which
tables are candidates.

You can check the number of blocks from candidate tables by querying V$BH, as
described in "Determining Which Segments Have Many Buffers in the Pool" on
page 7-13.

Note: The NOCACHE clause has no effect on a table in the KEEP
cache.

The goal of the KEEP buffer pool is to retain objects in memory, thus avoiding I/O
operations. The size of the KEEP buffer pool, therefore, depends on the objects to be
kept in the buffer cache. You can compute an approximate size for the KEEP buffer
pool by adding the blocks used by all objects assigned to this pool. If you gather
statistics on the segments, you can query DBA_TABLES. BLOCKS and

DBA TABLES.EMPTY_BLOCKS to determine the number of blocks used.

Calculate the hit ratio by taking two snapshots of system performance at different
times, using the previous query. Subtract the more recent values for physi cal reads,
bl ock gets,and consi st ent get s from the older values, and use the results to
compute the hit ratio.

A buffer pool hit ratio of 100% might not be optimal. Often, you can decrease the size
of your KEEP buffer pool and still maintain a sufficiently high hit ratio. Allocate blocks
removed from the KEEP buffer pool to other buffer pools.

Note: If an object grows in size, then it might no longer fit in the
KEEP buffer pool. You will begin to lose blocks out of the cache.

Each object kept in memory results in a trade-off. It is beneficial to keep
frequently-accessed blocks in the cache, but retaining infrequently-used blocks results
in less space for other, more active blocks.

RECYCLE Pool

It is possible to configure a RECYCLE buffer pool for blocks belonging to those
segments that you do not want to remain in memory. The RECYCLE pool is good for
segments that are scanned rarely or are not referenced frequently. If an application
accesses the blocks of a very large object in a random fashion, then there is little chance
of reusing a block stored in the buffer pool before it is aged out. This is true regardless
of the size of the buffer pool (given the constraint of the amount of available physical
memory). Consequently, the object's blocks need not be cached; those cache buffers can
be allocated to other objects.

Configuring and Using Memory 7-15

Configuring and Using the Shared Pool and Large Pool

Memory is allocated to the RECYCLE buffer pool by setting the parameter
DB_RECYCLE_CACHE_SI ZE to the required size. This memory for the RECYCLE buffer
pool is not a subset of the default pool.

Do not discard blocks from memory too quickly. If the buffer pool is too small, then
blocks can age out of the cache before the transaction or SQL statement has completed
execution. For example, an application might select a value from a table, use the value
to process some data, and then update the record. If the block is removed from the
cache after the SELECT statement, then it must be read from disk again to perform the
update. The block should be retained for the duration of the user transaction.

Configuring and Using the Shared Pool and Large Pool

Oracle Database uses the shared pool to cache many different types of data. Cached
data includes the textual and executable forms of PL/SQL blocks and SQL statements,
dictionary cache data, result cache data, and other data.

Proper use and sizing of the shared pool can reduce resource consumption in at least
four ways:

» Parse overhead is avoided if the SQL statement is in the shared pool. This saves
CPU resources on the host and elapsed time for the end user.

= Latching resource usage is significantly reduced, which results in greater
scalability.

= Shared pool memory requirements are reduced, because all applications use the
same pool of SQL statements and dictionary resources.

s I/Oresources are saved, because dictionary elements that are in the shared pool
do not require disk access.

This section covers the following:

= Shared Pool Concepts

= Using the Shared Pool Effectively

= Sizing the Shared Pool

» Interpreting Shared Pool Statistics

= Using the Large Pool

s Using CURSOR_SPACE_FOR_TIME

= Caching Session Cursors

= Configuring the Reserved Pool

s Keeping Large Objects to Prevent Aging
s Sharing Cursors for Existing Applications

= Maintaining Connections

Note: The server result cache is an optional cache of query and
function results within the shared pool. Information related to result
caching is consolidated in "Managing the Server and Client Result
Caches" on page 7-53.

7-16 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Shared Pool Concepts

The main components of the shared pool are the library cache, the dictionary cache,
and, depending on your configuration, the server result cache. The library cache stores
the executable (parsed or compiled) form of recently referenced SQL and PL/SQL
code. The dictionary cache stores data referenced from the data dictionary. The server
result cache stores the results of queries and PL/SQL function results.

Many of the caches in the shared pool automatically increase or decrease in size, as
needed, including the library cache and the dictionary cache. Old entries are aged out
to accommodate new entries when the shared pool does not have free space.

A cache miss on the data dictionary cache or library cache is more expensive than a
miss on the buffer cache. For this reason, the shared pool should be sized to ensure
that frequently used data is cached.

Several features make large memory allocations in the shared pool: for example, the
shared server, parallel query, or Recovery Manager. Oracle recommends segregating
the SGA memory used by these features by configuring a distinct memory area, called
the large pool.

Allocation of memory from the shared pool is performed in chunks. This chunking
enables large objects (over 5 KB) to be loaded into the cache without requiring a single
contiguous area. In this way, the database reduces the possibility of running out of
enough contiguous memory due to fragmentation.

Infrequently, Java, PL/SQL, or SQL cursors may make allocations out of the shared
pool that are larger than 5 KB. To allow these allocations to occur most efficiently,
Oracle Database segregates a small amount of the shared pool. This memory is used if
the shared pool does not have enough space. The segregated area of the shared pool is
called the reserved pool.

See Also:

= "Configuring the Reserved Pool" on page 7-33 for more
information on the reserved area of the shared pool

= "Using the Large Pool" on page 7-28 for more information on
configuring the large pool

Dictionary Cache Concepts

Information stored in the data dictionary cache includes usernames, segment
information, profile data, tablespace information, and sequence numbers. The
dictionary cache also stores descriptive information, or metadata, about schema
objects. Oracle Database uses this metadata when parsing SQL cursors or during the
compilation of PL/SQL programs.

Library Cache Concepts

The library cache holds executable forms of SQL cursors, PL/SQL programs, and Java
classes. This section focuses on tuning as it relates to cursors, PL/SQL programs, and
Java classes. These are collectively referred to as application code.

When application code is run, Oracle Database attempts to reuse existing code if it has
been executed previously and can be shared. If the parsed representation of the
statement does exist in the library cache and it can be shared, then the database reuses
the existing code. This is known as a soft parse, or a library cache hit. If Oracle
Database cannot use existing code, then the database must build a new executable
version of the application code. This is known as a hard parse, or a library cache miss.

Configuring and Using Memory 7-17

Configuring and Using the Shared Pool and Large Pool

See "SQL Sharing Criteria" on page 7-18 for details on when a SQL and PL/SQL
statements can be shared.

Library cache misses can occur on either the parse step or the execute step when
processing a SQL statement. When an application makes a parse call for a SQL
statement, if the parsed representation of the statement does not exist in the library
cache, then Oracle Database parses the statement and stores the parsed form in the
shared pool. This is a hard parse. You might be able to reduce library cache misses on
parse calls by ensuring that all sharable SQL statements are in the shared pool
whenever possible.

If an application makes an execute call for a SQL statement, and if the executable
portion of the previously built SQL statement has been aged out (that is, deallocated)
from the library cache to make room for another statement, then Oracle Database
implicitly reparses the statement, creating a new shared SQL area for it, and executes
it. This also results in a hard parse. Usually, you can reduce library cache misses on
execution calls by allocating more memory to the library cache.

In order to perform a hard parse, Oracle Database uses more resources than during a
soft parse. Resources used for a soft parse include CPU and library cache latch gets.
Resources required for a hard parse include additional CPU, library cache latch gets,
and shared pool latch gets. See "SQL Execution Efficiency” on page 2-13 for a
discussion of hard and soft parsing.

SQL Sharing Criteria

Oracle Database automatically determines whether a SQL statement or PL/SQL block
being issued is identical to another statement currently in the shared pool.

Oracle Database performs the following steps to compare the text of the SQL statement
to existing SQL statements in the shared pool:

1. The text of the statement is hashed. If there is no matching hash value, then the
SQL statement does not currently exist in the shared pool, and a hard parse is
performed.

2. If there is a matching hash value for an existing SQL statement in the shared pool,
then Oracle Database compares the text of the matched statement to the text of the
statement hashed to see if they are identical. The text of the SQL statements or
PL/SQL blocks must be identical, character for character, including spaces, case,
and comments. For example, the following statements cannot use the same shared
SQL area:

SELECT * FROM enpl oyees;
SELECT * FROM Enpl oyees;
SELECT * FROM enpl oyees;

Usually, SQL statements that differ only in literals cannot use the same shared SQL
area. For example, the following statements do not resolve to the same SQL area:

121,
247,

SELECT count (1) FROM enpl oyees WHERE nanager _i d
SELECT count (1) FROM enpl oyees WHERE nanager _i d

The only exception to this rule is when the parameter CURSOR_SHARI NGhas been
set to SI M LAR or FORCE. Similar statements can share SQL areas when the
CURSOR_SHARI NGis set to SI M LAR or FORCE. The costs and benefits involved in
using CURSOR_SHARI NGare explained in "When to Set CURSOR_SHARING to a
Nondefault Value" on page 7-37.

7-18 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

See Also: Oracle Database Reference for more information on the
CURSOR_SHARI NGinitialization parameter

3. The objects referenced in the issued statement are compared to the referenced
objects of all existing statements in the shared pool to ensure that they are
identical.

References to schema objects in the SQL statements or PL/SQL blocks must
resolve to the same object in the same schema. For example, if two users each issue
the following SQL statement and they each have their own enpl oyees table, then
this statement is not considered identical, because the statement references
different tables for each user:

SELECT * FROM enpl oyees;

4. Bind variables in the SQL statements must match in name, data type, and length.

For example, the following statements cannot use the same shared SQL area,
because the bind variable names differ:

SELECT * FROM enpl oyees WHERE department _id
SELECT * FROM enpl oyees WHERE department _id

:departnent _id;
dept _i d;

Many Oracle products, such as Oracle Forms and the precompilers, convert the
SQL before passing statements to the database. Characters are uniformly changed
to uppercase, white space is compressed, and bind variables are renamed so that a
consistent set of SQL statements is produced.

5. The session's environment must be identical. For example, SQL statements must
be optimized using the same optimization goal.

Using the Shared Pool Effectively

An important purpose of the shared pool is to cache the executable versions of SQL
and PL/SQL statements. This allows multiple executions of the same SQL or PL/SQL
code to be performed without the resources required for a hard parse, which results in
significant reductions in CPU, memory, and latch usage.

The shared pool is also able to support unshared SQL in data warehousing
applications, which execute low-concurrency, high-resource SQL statements. In this
situation, using unshared SQL with literal values is recommended. Using literal values
rather than bind variables allows the optimizer to make good column selectivity
estimates, thus providing an optimal data access plan.

In an OLTP system, there are several ways to ensure efficient use of the shared pool
and related resources. Discuss the following items with application developers and
agree on strategies to ensure that the shared pool is used effectively:

= Shared Cursors

= Single-User Logon and Qualified Table Reference
s Useof PL/SQL

= Avoid Performing DDL

» Cache Sequence Numbers

» Cursor Access and Management

Efficient use of the shared pool in high-concurrency OLTP systems significantly
reduces the probability of parse-related application scalability issues.

Configuring and Using Memory 7-19

Configuring and Using the Shared Pool and Large Pool

See Also: Oracle Database Data Warehousing Guide

Shared Cursors

Reuse of shared SQL for multiple users running the same application, avoids hard
parsing. Soft parses provide a significant reduction in the use of resources such as the
shared pool and library cache latches. To share cursors, do the following;:

= Use bind variables rather than literals in SQL statements whenever possible. For
example, the following two statements cannot use the same shared area because
they do not match character for character:

SELECT enpl oyee_i d FROM enpl oyees WHERE departnent _id
SELECT enpl oyee_i d FROM enpl oyees WHERE department _id

10;
20;

By replacing the literals with a bind variable, only one SQL statement would
result, which could be executed twice:

SELECT enpl oyee_i d FROM enpl oyees WHERE department _id = :dept_id;

Note: For existing applications where rewriting the code to use
bind variables is impractical, you can use the CURSOR_SHARI NG
initialization parameter to avoid some of the hard parse overhead.
See "Sharing Cursors for Existing Applications" on page 7-36.

= Avoid application designs that result in large numbers of users issuing dynamic,
unshared SQL statements. Typically, the majority of data required by most users
can be satisfied using preset queries. Use dynamic SQL where such functionality is
required.

» Ensure that users of the application do not change the optimization approach and
goal for their individual sessions.

= Establish the following policies for application developers:

- Standardize naming conventions for bind variables and spacing conventions
for SQL statements and PL/SQL blocks.

— Consider using stored procedures whenever possible. Multiple users issuing
the same stored procedure use the same shared PL/SQL area automatically.
Because stored procedures are stored in a parsed form, their use reduces
run-time parsing.

s For SQL statements which are identical but are not being shared, you can query

V$SQL_SHARED CURSCR to determine why the cursors are not shared. This
would include optimizer settings and bind variable mismatches.

Single-User Logon and Qualified Table Reference

Large OLTP systems where users log in to the database as their own user ID can
benefit from explicitly qualifying the segment owner, rather than using public
synonyms. This significantly reduces the number of entries in the dictionary cache. For
example:

SELECT enpl oyee_i d FROM hr. enpl oyees WHERE departrment _id = :dept_id;
An alternative to qualifying table names is to connect to the database through a single
user ID, rather than individual user IDs. User-level validation can take place locally on

the middle tier. Reducing the number of distinct userIDs also reduces the load on the
dictionary cache.

7-20 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Use of PL/SQL

Using stored PL/SQL packages can overcome many of the scalability issues for
systems with thousands of users, each with individual user sign-on and public
synonyms. This is because a package is executed as the owner, rather than the caller,
which reduces the dictionary cache load considerably.

Note: Oracle encourages the use of definer's rights packages to
overcome scalability issues. The benefits of reduced dictionary
cache load are not as obvious with invoker's rights packages.

Avoid Performing DDL

Avoid performing DDL operations on high-usage segments during peak hours.
Performing DDL on such segments often results in the dependent SQL being
invalidated and hence reparsed on a later execution.

Cache Sequence Numbers

Allocating sufficient cache space for frequently updated sequence numbers
significantly reduces the frequency of dictionary cache locks, which improves
scalability. The CACHE keyword on the CREATE SEQUENCE or ALTER SEQUENCE
statement lets you configure the number of cached entries for each sequence.

See Also: Oracle Database SQL Language Reference for details on
the CREATE SEQUENCE and ALTER SEQUENCE statements

Cursor Access and Management

Depending on the application tool that you are using, you can control how frequently
your application performs parse calls.

The frequency with which your application either closes cursors or reuses existing
cursors for new SQL statements affects the amount of memory used by a session and
often the amount of parsing performed by that session.

An application that closes cursors or reuses cursors (for a different SQL statement),
does not need as much session memory as an application that keeps cursors open.
Conversely, that same application may need to perform more parse calls, using extra
CPU and Oracle Database resources.

Cursors associated with SQL statements that are not executed frequently can be closed
or reused for other statements, because the likelihood of reexecuting (and reparsing)
that statement is low.

Extra parse calls are required when a cursor containing a SQL statement that will be
reexecuted is closed or reused for another statement. Had the cursor remained open, it
could have been reused without the overhead of issuing a parse call.

The ways in which you control cursor management depends on your application
development tool. The following sections introduce the methods used for some Oracle
Database t.

See Also:

= The tool-specific documentation for more information about
each tool

» Oracle Database Concepts for more information on cursors
shared SQL

Configuring and Using Memory 7-21

Configuring and Using the Shared Pool and Large Pool

Reducing Parse Calls with OCI When using Oracle Call Interface (OCI), do not close and
reopen cursors that you will be reexecuting. Instead, leave the cursors open, and
change the literal values in the bind variables before execution.

Avoid reusing statement handles for new SQL statements when the existing SQL
statement will be reexecuted in the future.

Reducing Parse Calls with the Oracle Precompilers When using the Oracle precompilers,
you can control when cursors are closed by setting precompiler clauses. In Oracle
mode, the clauses are as follows:

= HOLD CURSOR = YES
» RELEASE _CURSOR = NO
s MAXOPENCURSORS = desired_val ue

Oracle Database recommends that you not use ANSI mode, in which the values of
HOLD_CURSCOR and RELEASE_CURSOR are switched.

The precompiler clauses can be specified on the precompiler command line or within
the precompiler program. With these clauses, you can employ different strategies for
managing cursors during execution of the program.

See Also: Your language's precompiler manual for more
information on these clauses

Reducing Parse Calls with SQLJ Prepare the statement, then reexecute the statement with
the new values for the bind variables. The cursor stays open for the duration of the
session.

Reducing Parse Calls with JDBC Avoid closing cursors if they will be reexecuted, because
the new literal values can be bound to the cursor for reexecution. Alternatively, JDBC
provides a SQL statement cache within the JDBC client using the

set St nt CacheSi ze() method. Using this method, JDBC creates a SQL statement
cache that is local to the JDBC program.

See Also: Oracle Database JDBC Developer’s Guide for more
information on using the JDBC SQL statement cache

Reducing Parse Calls with Oracle Forms With Oracle Forms, it is possible to control some
aspects of cursor management. You can exercise this control either at the trigger level,
at the form level, or at run time.

Sizing the Shared Pool

When configuring a brand new instance, it is impossible to know the correct size to
make the shared pool cache. Typically, a DBA makes a first estimate for the cache size,
then runs a representative workload on the instance, and examines the relevant
statistics to see whether the cache is under-configured or over-configured.

For most OLTP applications, shared pool size is an important factor in application
performance. Shared pool size is less important for applications that issue a very
limited number of discrete SQL statements, such as decision support systems (DSS).

If the shared pool is too small, then extra resources are used to manage the limited
amount of available space. This consumes CPU and latching resources, and causes
contention. Optimally, the shared pool should be just large enough to cache frequently
accessed objects. Having a significant amount of free memory in the shared pool is a

7-22 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

waste of memory. When examining the statistics after the database has been running, a
DBA should check that none of these mistakes are in the workload.

Shared Pool: Library Cache Statistics

When sizing the shared pool, the goal is to ensure that SQL statements that will be
executed multiple times are cached in the library cache, without allocating too much
memory.

The statistic that shows the amount of reloading (that is, reparsing) of a previously
cached SQL statement that was aged out of the cache is the RELOADS column in the
V$LI BRARYCACHE view. In an application that reuses SQL effectively, on a system
with an optimal shared pool size, the RELOADS statistic will have a value near zero.

The | NVALI DATI ONS column in V$LI BRARYCACHE view shows the number of times
library cache data was invalidated and had to be reparsed. | NVALI DATI ONS should
be near zero. This means SQL statements that could have been shared were
invalidated by some operation (for example, a DDL). This statistic should be near zero
on OLTP systems during peak loads.

Another key statistic is the amount of free memory in the shared pool at peak times.
The amount of free memory can be queried from V3SGASTAT, looking at the free
memory for the shared pool. Optimally, free memory should be as low as possible,
without causing any reloads on the system.

Lastly, a broad indicator of library cache health is the library cache hit ratio. This value
should be considered along with the other statistics discussed in this section and other
data, such as the rate of hard parsing and whether there is any shared pool or library
cache latch contention.

These statistics are discussed in more detail in the following section.

VSLIBRARYCACHE

You can monitor statistics reflecting library cache activity by examining the dynamic
performance view V$LI BRARYCACHE. These statistics reflect all library cache activity
after the most recent instance startup.

Each row in this view contains statistics for one type of item kept in the library cache.
The item described by each row is identified by the value of the NAVESPACE column.
Rows with the following NAMESPACE values reflect library cache activity for SQL
statements and PL/SQL blocks:

= SQL AREA
= TABLE/ PROCEDURE
= BODY

» TRIGGER

Rows with other NAMESPACE values reflect library cache activity for object definitions
that Oracle Database uses for dependency maintenance.

See Also: Oracle Database Reference for information about the
dynamic performance V$LI BRARYCACHE view

To examine each namespace individually, use the following query:

SELECT NAMESPACE, PINS, PINH TS, RELOADS, | NVALI DATI ONS
FROM V$LI BRARYCACHE
CRDER BY NAMESPACE;

Configuring and Using Memory 7-23

Configuring and Using the Shared Pool and Large Pool

The output of this query could look like the following;:

NAMESPACE PI NS PINH TS RELCADS | NVALI DATI ONS
BODY 8870 8819 0 0
CLUSTER 393 380 0 0
| NDEX 29 0 0 0
OBJECT 0 0 0 0
Pl PE 55265 55263 0 0
SQL AREA 21536413 21520516 11204 2
TABLE/ PROCEDURE 10775684 10774401 0 0
TRI GGER 1852 1844 0 0

To calculate the library cache hit ratio, use the following formula:

Library Cache Ht Ratio = sun(pinhits) / sun{pins)

Using the library cache hit ratio formula, the cache hit ratio is the following:

SUM PI NHI TS) / SUM PI NS)

. 999466248

Note: These queries return data from instance startup, rather than
statistics gathered during an interval; interval statistics can better
identify the problem.

See Also: Chapter 6, "Automatic Performance Diagnostics" to
learn how to gather information over an interval

Examining the returned data leads to the following observations:
s Forthe SQL AREA namespace, there were 21,536,413 executions.

= 11,204 of the executions resulted in a library cache miss, requiring Oracle Database
t implicitly reparse a statement or block or reload an object definition because it
aged out of the library cache (that is, a RELOAD).

= SQL statements were invalidated two times, again causing library cache misses.

= The hit percentage is about 99.94%. This means that only .06% of executions
resulted in reparsing.

The amount of free memory in the shared pool is reported in V$SGASTAT. Report the
current value from this view using the following query:

SELECT * FROM V$SGASTAT
VWHERE NAME = 'free nenory'
AND POOL = 'shared pool ' ;

The output will be similar to the following:

POCL NAVE BYTES

shared pool free nmenory 4928280
If free memory is always available in the shared pool, then increasing the size of the

pool offers little or no benefit. However, just because the shared pool is full does not
necessarily mean there is a problem. It may be indicative of a well-configured system.

7-24 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Shared Pool Advisory Statistics

The amount of memory available for the library cache can drastically affect the parse
rate of an Oracle database instance. The shared pool advisory statistics provide a
database administrator with information about library cache memory, allowing a DBA
to predict how changes in the size of the shared pool can affect aging out of objects in
the shared pool.

The shared pool advisory statistics track the library cache's use of shared pool memory
and predict how the library cache will behave in shared pools of different sizes. Two
fixed views provide the information to determine how much memory the library cache
is using, how much is currently pinned, how much is on the shared pool's LRU list,
and how much time might be lost or gained by changing the size of the shared pool.

The following views of the shared pool advisory statistics are available. These views
display any data when shared pool advisory is on. These statistics reset when the
advisory is turned off.

VS$SHARED_POOL_ADVICE This view displays information about estimated parse time
in the shared pool for different pool sizes. The sizes range from 10% of the current
shared pool size or the amount of pinned library cache memory, whichever is higher,
to 200% of the current shared pool size, in equal intervals. The value of the interval
depends on the current size of the shared pool.

VSLIBRARY_CACHE_MEMORY This view displays information about memory allocated
to library cache memory objects in different namespaces. A memory object is an
internal grouping of memory for efficient management. A library cache object may
consist of one or more memory objects.

V$JAVA_POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY These views contain Java
pool advisory statistics that track information about library cache memory used for
Java and predict how changes in the size of the Java pool can affect the parse rate.

V$JAVA POOL_ADVI CE displays information about estimated parse time in the Java
pool for different pool sizes. The sizes range from 10% of the current Java pool size or
the amount of pinned Java library cache memory, whichever is higher, to 200% of the
current Java pool size, in equal intervals. The value of the interval depends on the
current size of the Java pool.

See Also: Oracle Database Reference for information about the
dynamic performance V$SHARED POOL_ADVI CE,

VS$LI BRARY_CACHE_MEMORY, V$JAVA _POOL_ADVI CE, and
V$JAVA_LI BRARY_CACHE MEMORY view

Shared Pool: Dictionary Cache Statistics

Typically, if the shared pool is adequately sized for the library cache, it will also be
adequate for the dictionary cache data.

Misses on the data dictionary cache are to be expected in some cases. On instance
startup, the data dictionary cache contains no data. Therefore, any SQL statement
issued is likely to result in cache misses. As more data is read into the cache, the
likelihood of cache misses decreases. Eventually, the database reaches a steady state, in
which the most frequently used dictionary data is in the cache. At this point, very few
cache misses occur.

Each row in the VSROANCACHE view contains statistics for a single type of data
dictionary item. These statistics reflect all data dictionary activity since the most recent

Configuring and Using Memory 7-25

Configuring and Using the Shared Pool and Large Pool

instance startup. The columns in the V$ROWCACHE view that reflect the use and
effectiveness of the data dictionary cache are listed in Table 7-2.

Table 7-2 VSROWCACHE Columns

Column Description

PARAVETER Identifies a particular data dictionary item. For each row, the
value in this column is the item prefixed by dc_. For example, in
the row that contains statistics for file descriptions, this column
has the value dc_fi |l es.

GETS Shows the total number of requests for information about the
corresponding item. For example, in the row that contains
statistics for file descriptions, this column has the total number
of requests for file description data.

GETM SSES Shows the number of data requests which were not satisfied by
the cache, requiring an I/0.

MODI FI CATI ONS Shows the number of times data in the dictionary cache was
updated.

Use the following query to monitor the statistics in the VEROWCACHE view over a
period while your application is running. The derived column PCT_SUCC_GETS can
be considered the item-specific hit ratio:

colum paraneter format a2l
colum pct _succ_gets format 999.9
col utm updates format 999, 999, 999

SELECT par anmet er
, sun{gets)
, sun{getm sses)
, 100*sum(gets - getm sses) / sun{gets) pct_succ_gets
, sunm(nodi fications) updat es

FROM V$ROWCACHE
WHERE gets 0
CGROUP BY paraneter;

The output of this query will be similar to the following;:

PARAVETER SUM GETS) SUM GETM SSES) PCT_SUCC GETS UPDATES
dc_dat abase_| i nks 81 1 98.8 0
dc_free_extents 44876 20301 54.8 40, 453
dc_gl obal _oi ds 42 9 78.6 0
dc_hi stogram defs 9419 651 93.1 0
dc_object _ids 29854 239 99.2 52
dc_objects 33600 590 98.2 53
dc_profiles 19001 1 100.0 0
dc_rol | back_segnents 47244 16 100.0 19
dc_segnents 100467 19042 81.0 40, 272
dc_sequence_grants 119 16 86. 6 0
dc_sequences 26973 16 99.9 26, 811
dc_synonyns 6617 168 97.5 0
dc_t abl espace_quot as 120 7 94.2 51
dc_t abl espaces 581248 10 100.0 0
dc_used_extents 51418 20249 60. 6 42,811
dc_user _grants 76082 18 100.0 0
dc_user nanes 216860 12 100.0 0
dc_users 376895 22 100.0 0

7-26 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Examining the data returned by the sample query leads to these observations:

s There are large numbers of misses and updates for used extents, free extents, and
segments. This implies that the instance had a significant amount of dynamic
space extension.

= Based on the percentage of successful gets, and comparing that statistic with the
actual number of gets, the shared pool is large enough to store dictionary cache
data adequately.

It is also possible to calculate an overall dictionary cache hit ratio using the following
formula; however, summing up the data over all the caches will lose the finer
granularity of data:

SELECT (SUM GETS - GETM SSES - FIXED)) / SUM GETS) "ROW CACHE' FROM V$ROACACHE;

Interpreting Shared Pool Statistics

Shared pool statistics indicate adjustments that can be made. The following sections
describe some of your choices.

Increasing Memory Allocation

Increasing the amount of memory for the shared pool increases the amount of memory
available to the library cache, the dictionary cache, and the result cache (see "Managing
Server Result Cache Memory with Initialization Parameters" on page 7-56).

Allocating Additional Memory for the Library Cache To ensure that shared SQL areas remain
in the cache after their SQL statements are parsed, increase the amount of memory
available to the library cache until the V$LI BRARYCACHE.REL OADS value is near zero.
To increase the amount of memory available to the library cache, increase the value of
the initialization parameter SHARED POOL_S| ZE. The maximum value for this
parameter depends on your operating system. This measure reduces implicit reparsing
of SQL statements and PL/SQL blocks on execution.

Allocating Additional Memory to the Data Dictionary Cache Examine cache activity by
monitoring the GETS and GETM SSES columns. For frequently accessed dictionary
caches, the ratio of total GETM SSES to total GETS should be less than 10% or 15%,
depending on the application.

Consider increasing the amount of memory available to the cache if all of the
following are true:

= Your application is using the shared pool effectively. See "Using the Shared Pool
Effectively" on page 7-19.

= Your system has reached a steady state, any of the item-specific hit ratios are low,
and there are a large numbers of gets for the caches with low hit ratios.

Increase the amount of memory available to the data dictionary cache by increasing
the value of the initialization parameter SHARED POCL_SI ZE.

Reducing Memory Allocation

If your RELQOADS are near zero, and if you have a small amount of free memory in the
shared pool, then the shared pool is probably large enough to hold the most frequently
accessed data.

If you always have significant amounts of memory free in the shared pool, and if you
would like to allocate this memory elsewhere, then you might be able to reduce the
shared pool size and still maintain good performance.

Configuring and Using Memory 7-27

Configuring and Using the Shared Pool and Large Pool

To make the shared pool smaller, reduce the size of the cache by changing the value for
the parameter SHARED POOL_SI ZE.

Using the Large Pool

Unlike the shared pool, the large pool does not have an LRU list. Oracle Database does
not attempt to age objects out of the large pool.

You should consider configuring a large pool if your instance uses any of the
following:

= Parallel query

Parallel query uses shared pool memory to cache parallel execution message
buffers.

See Also:

» Oracle Database VLDB and Partitioning Guide to learn how to
perform parallel execution

» Oracle Database Data Warehousing Guide for more information on
sizing the large pool with parallel query

= Recovery Manager

Recovery Manager uses the shared pool to cache 1/O buffers during backup and
restore operations. For I/O server processes and backup and restore operations,
Oracle Database allocates buffers that are a few hundred kilobytes in size.

See Also: Oracle Database Backup and Recovery User’s Guide for
more information on sizing the large pool when using Recovery
Manager

s Shared server

In a shared server architecture, the session memory for each client process is
included in the shared pool.

Tuning the Large Pool and Shared Pool for the Shared Server Architecture

As Oracle Database allocates shared pool memory for shared server session memory,
the amount of shared pool memory available for the library cache and dictionary cache
decreases. If you allocate this session memory from a different pool, then Oracle
Database can use the shared pool primarily for caching shared SQL and not incur the
performance overhead from shrinking the shared SQL cache.

Oracle Database recommends using the large pool to allocate the shared server-related
User Global Area (UGA), rather that using the shared pool. This is because Oracle
Database uses the shared pool to allocate System Global Area (SGA) memory for other
purposes, such as shared SQL and PL/SQL procedures. Using the large pool instead of
the shared pool decreases fragmentation of the shared pool.

To store shared server-related UGA in the large pool, specify a value for the
initialization parameter LARGE_POOL_SI ZE. To see which pool (shared pool or large
pool) the memory for an object resides in, check the column POCL in V$SGASTAT. The
large pool is not configured by default; its minimum value is 300K. If you do not
configure the large pool, then Oracle Database uses the shared pool for shared server
user session memory.

7-28 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Configure the size of the large pool based on the number of simultaneously active
sessions. Each application requires a different amount of memory for session
information, and your configuration of the large pool or SGA should reflect the
memory requirement. For example, assuming that the shared server requires 200K to
300K to store session information for each active session. If you anticipate 100 active
sessions simultaneously, then configure the large pool to be 30M, or increase the
shared pool accordingly if the large pool is not configured.

Note: If a shared server architecture is used, then Oracle Database
allocates some fixed amount of memory (about 10K) for each
configured session from the shared pool, even if you have
configured the large pool. The Cl RCUI TS initialization parameter
specifies the maximum number of concurrent shared server
connections that the database allows.

See Also:

» Oracle Database Concepts for more information about the large
pool

» Oracle Database Reference for complete information about
initialization parameters

Determining an Effective Setting for Shared Server UGA Storage The exact amount of UGA
that Oracle Database uses depends on each application. To determine an effective
setting for the large or shared pools, observe UGA use for a typical user and multiply
this amount by the estimated number of user sessions.

Even though use of shared memory increases with shared servers, the total amount of
memory use decreases. This is because there are fewer processes; therefore, Oracle
Database uses less PGA memory with shared servers when compared to dedicated
server environments.

Note: For best performance with sorts using shared servers, set
SORT_AREA_SI ZE and SORT_AREA_RETAI NED_SI ZE to the same
value. This keeps the sort result in the large pool instead of having
it written to disk.

Checking System Statistics in the VSSESSTAT View Oracle Database collects statistics on
total memory used by a session and stores them in the dynamic performance view
V$SESSTAT. Table 7-3 lists these statistics.

Table 7-3 V$SESSTAT Statistics Reflecting Memory

Statistic Description

session UGA menory The value of this statistic is the amount of memory in
bytes allocated to the session.

Sessi on UGA nenory max The value of this statistic is the maximum amount of
memory in bytes ever allocated to the session.

To find the value, query V$STATNAME. If you are using a shared server, you can use
the following query to decide how much larger to make the shared pool. Issue the
following queries while your application is running:

Configuring and Using Memory 7-29

Configuring and Using the Shared Pool and Large Pool

SELECT SUMVALUE) || ' BYTES' "TOTAL MEMORY FOR ALL SESSI ONS'
FROM V$SESSTAT, V$STATNAME
VWHERE NAME = 'session uga nenory'
AND V$SESSTAT. STATI STI CG# = V$STATNAME. STATI STI C#;

SELECT SUMVALUE) || ' BYTES "TOTAL MAX MEM FCR ALL SESSI ONS'
FROM V$SESSTAT, V$STATNAME
WHERE NAME = 'session uga menory mnax'
AND V$SESSTAT. STATI STI C# = V$STATNAME. STATI STI C#;

These queries also select from the dynamic performance view V3STATNAME to obtain
internal identifiers for sessi on nenory and max session nenory. The
results of these queries could look like the following:

TOTAL MEMORY FOR ALL SESSI ONS

157125 BYTES

TOTAL MAX MEM FCR ALL SESSI ONS

417381 BYTES

The result of the first query indicates that the memory currently allocated to all
sessions is 157,125 bytes. This value is the total memory with a location that depends
on how the sessions are connected to Oracle. If the sessions are connected to dedicated
server processes, then this memory is part of the memories of the user processes. If the
sessions are connected to shared server processes, then this memory is part of the
shared pool.

The result of the second query indicates that the sum of the maximum size of the

memory for all sessions is 417,381 bytes. The second result is greater than the first
because some sessions have deallocated memory since allocating their maximum
amounts.

If you use a shared server architecture, you can use the result of either of these queries
to determine how much larger to make the shared pool. The first value is likely to be a
better estimate than the second unless nearly all sessions are likely to reach their
maximum allocations at the same time.

Limiting Memory Use for Each User Session by Setting PRIVATE_SGA You can set the

PRI VATE_SGA resource limit to restrict the memory used by each client session from
the SGA. PRI VATE_SGA defines the number of bytes of memory used from the SGA

by a session. However, this parameter is used rarely, because most DBAs do not limit
SGA consumption on a user-by-user basis.

See Also: Oracle Database SQL Language Reference, ALTER
RESOURCE COST statement, for more information about setting the
PRI VATE_SGA resource limit

Reducing Memory Use with Three-Tier Connections If you have a high number of connected
users, then you can reduce memory usage by implementing three-tier connections.
This by-product of using a transaction process (TP) monitor is feasible only with pure
transactional models because locks and uncommitted DMLs cannot be held between
calls. A shared server environment offers the following advantages:

s Itis much less restrictive of the application design than a TP monitor.

= It dramatically reduces operating system process count and context switches by
enabling users to share a pool of servers.

7-30 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

= It substantially reduces overall memory usage, even though more SGA is used in
shared server mode.

Using CURSOR_SPACE_FOR_TIME

If you have no library cache misses, then you might be able to accelerate execution
calls by setting the value of the initialization parameter CURSOR_SPACE_FCOR_TI ME to
t r ue. This parameter specifies whether a cursor can be deallocated from the library
cache to make room for a new SQL statement. CURSOR_SPACE_FOR_TI ME has the
following values meanings:

s If CURSOR_SPACE_FOR Tl MEis set to f al se (the default), then a cursor can be
deallocated from the library cache regardless of whether application cursors
associated with its SQL statement are open. In this case, Oracle Database must
verify that the cursor containing the SQL statement is in the library cache.

s If CURSOR_SPACE_FOR Tl MEissettot rue, then a cursor can be deallocated
only when all application cursors associated with its statement are closed. In this
case, Oracle Database need not verify that a cursor is in the cache because it cannot
be deallocated while an application cursor associated with it is open.

Setting the value of the parameter to t r ue saves Oracle Database a small amount of
time and can slightly improve the performance of execution calls. This value also
prevents the deallocation of cursors until associated application cursors are closed.

Do not set the value of CURSOR_SPACE_FOR_TI MEto t r ue if you have found library
cache misses on execution calls. Such library cache misses indicate that the shared pool
is not large enough to hold the shared SQL areas of all concurrently open cursors. If
the value is t r ue, and if the shared pool has no space for a new SQL statement, then
the statement cannot be parsed, and Oracle Database returns an error saying that there
is no more shared memory. If the value is f al se, and if there is no space for a new
statement, then Oracle Database deallocates an existing cursor. Although deallocating
a cursor could result in a library cache miss later (only if the cursor is reexecuted), it is
preferable to an error halting your application because a SQL statement cannot be
parsed.

Do not set the value of CURSOR_SPACE_FOR Tl MEto true if the amount of
memory available to each user for private SQL areas is scarce. This value also prevents
the deallocation of private SQL areas associated with open cursors. If the private SQL
areas for all concurrently open cursors fills your available memory so that there is no
space for a new SQL statement, then the statement cannot be parsed. Oracle Database
returns an error indicating that there is not enough memory.

Caching Session Cursors

The session cursor cache contains closed session cursors for SQL and PL/SQL,
including recursive SQL.

This cache can be useful for applications that use Oracle Forms because switching
from one form to another closes all session cursors associated with the first form. If an
application repeatedly issues parse calls on the same set of SQL statements, then
reopening session cursors can degrade performance. By reusing cursors, the database
can reduce parse times, leading to faster overall execution times.

How the Session Cursor Cache Works

A session cursor represents an instantiation of a shared child cursor, which is stored
in the shared pool, for a specific session. Each session cursor stores a reference to a
child cursor that it has instantiated.

Configuring and Using Memory 7-31

Configuring and Using the Shared Pool and Large Pool

Oracle Database checks the library cache to determine whether more than three parse
requests have been issued on a given statement. If a cursor has been closed three times,
then Oracle Database assumes that the session cursor associated with the statement
should be cached and moves the cursor into the session cursor cache.

Subsequent requests to parse a SQL statement by the same session search an array for
pointers to the shared cursor. If the pointer is found, then the database dereferences
the pointer to determine whether the shared cursor exists. To reuse a cursor from the
cache, the cache manager checks whether the cached states of the cursor match the
current session and system environment.

Note: Reuse of a cached cursor still registers as a parse, even though
it is not a hard parse.

An LRU algorithm removes entries in the session cursor cache to make room for new
entries when needed. The cache also uses an internal time-based algorithm to evict
cursors that have been idle for an certain amount of time.

Enabling the Session Cursor Cache
The following initialization parameters are relevant to the cursor cache:

= SESSI ON_CACHED_CURSORS

This parameter sets the maximum number of cached closed cursors for each
session. The default setting is 50. You can use this parameter to prevent a session
from opening an excessive number of cursors, thereby filling the library cache or
forcing excessive hard parses.

= OPEN_CURSORS

This parameter specifies the maximum number of cursors a session can have open
simultaneously. For example, if OPEN_CURSORS is set to 1000, then each session
can have up to 1000 cursors open at one time.

SESSI ON_CACHED_CURSORS and OPEN_CURSORS parameters are independent. For
example, you can set SESSI ON_CACHED CURSCRS higher than OPEN_CURSORS
because session cursors are not cached in an open state.

To enable caching of session cursors:
1. Determine the maximum number of session cursors to keep in the cache.
2. Do one of the following:

= To enable caching statically, set the initialization parameter
SESSI ON_CACHED_CURSORS to the number determined in the previous step.

= To enable caching dynamically, execute the following statement:

ALTER SESSI ON SET SESSI ON_CACHED CURSCRS = val ue;

Tuning the Session Cursor Cache

You can query V$SYSSTAT to determine whether the session cursor cache is
sufficiently large for the database instance.

To tune the session cursor cache:
1. Determine how many cursors are currently cached in a particular session.

For example, enter the following query for session 35:

7-32 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Sys@BS1> SELECT a.val ue curr_cached, p.value max_cached,
2 s.username, s.sid, s.serial#
3 FROM v$sesstat a, v$statnane b, v$session s, v$paraneter2 p
4 WHERE a.statistic# = b.statistic# and s.sid=a.sid and a.sid=&sid
5 AND p. nane=' sessi on_cached_cursors'
6 AND b.nane = 'session cursor cache count';
Enter value for sid: 35
old 4. WHERE a.statistic#
new 4: WHERE a.statistic#

b.statistic# and s.sid=a.sid and a.sid=&sid
b.statistic# and s.sid=a.sid and a.sid=35

CURR_CACHED MAX_CACHED USERNAME SID SERI AL#

The preceding result shows that the number of cursors currently cached for
session 35 is close to the maximum.

2. Find the percentage of parse calls that found a cursor in the session cursor cache.
For example, enter the following query for session 35:

SQL> SELECT cach. val ue cache_hits, prs.value all_parses,

2 round((cach. val ue/ prs. val ue)*100,2) as "% found in cache"
FROM v$sesstat cach, v$sesstat prs, v$statname nnil, v$statnanme nnP
WHERE cach.statistic# = nml. statistic#

AND nml. nane = 'session cursor cache hits'
AND prs.statistic#=nnR.statistic#
AND nn2. nane= ' parse count (total)’

8 AND cach. sid= &sid and prs.sid= cach.sid;
Enter value for sid: 35
old 8 AND cach. sid= &sid and prs.sid= cach.sid
new 8: AND cach. sid= 35 and prs.sid= cach.sid

~NOo Ol b~ Ww

CACHE HI TS ALL_PARSES % found in cache

The preceding result shows that the number of hits in the session cursor cache for
session 35 is low compared to the total number of parses.

3. Consider increasing SESSI ON_CURSOR_CACHE when the following statements are
true:

s The session cursor cache count is close to the maximum.
s The percentage of session cursor cache hits is low relative to the total parses.
s The application repeatedly makes parse calls for the same queries.

In this example, setting SESSI ON_CURSOR_CACHE to 100 may help boost
performance.

Configuring the Reserved Pool

Although Oracle Database breaks down very large requests for memory into smaller
chunks, on some systems there might still be a requirement to find a contiguous chunk
(for example, over 5 KB) of memory. (The default minimum reserved pool allocation is
4,400 bytes.)

If there is not enough free space in the shared pool, then Oracle Database must search
for and free enough memory to satisfy this request. This operation could conceivably

Configuring and Using Memory 7-33

Configuring and Using the Shared Pool and Large Pool

hold the latch resource for detectable periods of time, causing minor disruption to
other concurrent attempts at memory allocation.

Thus, Oracle Database internally reserves a small memory area in the shared pool that
the database can use if the shared pool does not have enough space. This reserved pool
makes allocation of large chunks more efficient.

By default, Oracle Database configures a small reserved pool. The database can use
this memory for operations such as PL/SQL and trigger compilation or for temporary
space while loading Java objects. After the memory allocated from the reserved pool is
freed, it returns to the reserved pool.

You probably will not need to change the default amount of space Oracle Database
reserves. However, if necessary, the reserved pool size can be changed by setting the
SHARED POOL_RESERVED_SI ZE initialization parameter. This parameter sets aside
space in the shared pool for unusually large allocations.

For large allocations, Oracle Database attempts to allocate space in the shared pool in
the following order:

1. From the unreserved part of the shared pool.

2. From the reserved pool. If there is not enough space in the unreserved part of the
shared pool, then Oracle Database checks whether the reserved pool has enough
space.

3. From memory. If there is not enough space in the unreserved and reserved parts of
the shared pool, then Oracle Database attempts to free enough memory for the
allocation. It then retries the unreserved and reserved parts of the shared pool.

Using SHARED_POOL_RESERVED_SIZE

The default value for SHARED POOL_RESERVED SI ZE is 5% of the
SHARED_POOL_SI ZE. This means that, by default, the reserved list is configured.

If you set SHARED _POOL_RESERVED_SI ZE to more than half of

SHARED_POOL_SI ZE, then Oracle Database signals an error. Oracle Database does not
let you reserve too much memory for the reserved pool. The amount of operating
system memory, however, might constrain the size of the shared pool. In general, set
SHARED_POOL_RESERVED_SI ZE to 10% of SHARED POOL_SI ZE. For most systems,
this value is sufficient if you have tuned the shared pool. If you increase this value,
then the database takes memory from the shared pool. (This reduces the amount of
unreserved shared pool memory available for smaller allocations.)

Statistics from the VSSHARED_POOL_ RESERVED view help you tune these parameters.
On a system with ample free memory to increase the size of the SGA, the goal is to
have the value of REQUEST_M SSES equal zero. If the system is constrained for
operating system memory, then the goal is to not have REQUEST_FAI LURES or at least
prevent this value from increasing.

If you cannot achieve these target values, then increase the value for
SHARED POOL_RESERVED Sl ZE. Also, increase the value for SHARED POOL_SI ZE
by the same amount, because the reserved list is taken from the shared pool.

See Also: Oracle Database Reference for details on setting the
LARGE_PQOOL_SI ZE parameter

When SHARED_POOL_RESERVED_SIZE Is Too Small

The reserved pool is too small when the value for REQUEST_FAI LURES is more than
zero and increasing. To resolve this, increase the value for the

7-34 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

SHARED_POOL_RESERVED_SI ZE and SHARED_POOL_SI ZE accordingly. The settings
you select for these parameters depend on your system's SGA size constraints.

Increasing the value of SHARED POOL_RESERVED_SI ZE increases the amount of
memory available on the reserved list without having an effect on users who do not
allocate memory from the reserved list.

When SHARED_POOL_RESERVED_SIZE Is Too Large

Too much memory might have been allocated to the reserved list if:
= REQUEST_M SSES s zero or not increasing

= FREE_MEMORY is greater than or equal to 50% of
SHARED_POOL_RESERVED_SI ZE minimum

If either of these conditions is true, then decrease the value for
SHARED POOL_RESERVED SI ZE.

When SHARED_POOL_SIZE is Too Small

The V$SHARED POOL_RESERVED fixed view can also indicate when the value for
SHARED POOL_SI ZE is too small. This can be the case if REQUEST_FAI LURES is
greater than zero and increasing.

If you have enabled the reserved list, then decrease the value for
SHARED_POOL_RESERVED _SI ZE. If you have not enabled the reserved list, then you
could increase SHARED POOL_SI ZE.

Keeping Large Objects to Prevent Aging

After an entry has been loaded into the shared pool, it cannot be moved. Sometimes,
as entries are loaded and aged, the free memory can become fragmented.

Use the PL/SQL package DBMS_SHARED_PQOCL to manage the shared pool. Shared
SQL and PL/SQL areas age out of the shared pool according to a least recently used
LRU algorithm, similar to database buffers. To improve performance and prevent
reparsing, you might want to prevent large SQL or PL/SQL areas from aging out of
the shared pool.

The DBM5_SHARED_POQOL package lets you keep objects in shared memory, so that
they do not age out with the normal LRU mechanism. By using the
DBM5_SHARED POOL package and by loading the SQL and PL/SQL areas before
memory fragmentation occurs, the objects can be kept in memory. This ensures that
memory is available, and it prevents the sudden, inexplicable slowdowns in user
response time that occur when SQL and PL/SQL areas are accessed after aging out.

The DBM5S_SHARED_PQOCOL package is useful for the following:

s When loading large PL/SQL objects, such as the STANDARD and DI UTI L
packages. When large PL/SQL objects are loaded, user response time may be
affected if smaller objects that must age out of the shared pool to make room. In
some cases, there might be insufficient memory to load the large objects.

» Frequently executed triggers. You might want to keep compiled triggers on
frequently used tables in the shared pool.

= DBMS_SHARED_POOL supports sequences. Sequence numbers are lost when a
sequence ages out of the shared pool. DBM5_SHARED_POOL keeps sequences in the
shared pool, thus preventing the loss of sequence numbers.

Configuring and Using Memory 7-35

Configuring and Using the Shared Pool and Large Pool

To use the DBM5_SHARED_POOL package to pin a SQL or PL/SQL area, complete the
following steps:

1. Decide which packages or cursors to pin in memory.
2. Start up the database.
3. Make the call to DBMS_SHARED_PQOCL .KEEP to pin your objects.

This procedure ensures that your system does not run out of shared memory
before the kept objects are loaded. By pinning the objects early in the life of the
instance, you prevent memory fragmentation that could result from pinning a
large portion of memory in the middle of the shared pool.

See Also: Oracle Database PL/SQL Packages and Types Reference for
specific information on using DBM5_SHARED PQOQL procedures

Sharing Cursors for Existing Applications

In the context of SQL parsing, an identical statement is a statement whose text is
identical to another, character for character, including spaces, case, and comments. A
similar statement is identical except for the values of some literals.

The parse phase compares the statement text with statements in the shared pool to
determine whether the statement can be shared. If the initialization parameter
CURSOR_SHARI NG=EXACT (default), and if a statement in the pool is not identical,
then the database does not share the SQL area. Each statement has its own parent
cursor and its own execution plan based on the literal in the statement.

How Similar Statements Can Share SQL Areas

When SQL statements use literals rather than bind variables, a nondefault setting for
CURSOR_SHARI NGenables the database to replace literals with system-generated bind
variables. Using this technique, the database can sometimes reduce the number of
parent cursors in the shared SQL area.

When CURSOR_SHARI NGis set to a nondefault value, the database performs the
following steps during the parse:

1. Searches for an identical statement in the shared pool

If an identical statement is found, then the database skips to Step 3. Otherwise, the
database proceeds to the next step.

2. Searches for a similar statement in the shared pool

If a similar statement is not found, then the database performs a hard parse. If a
similar statement is found, then the database proceeds to the next step.

3. Proceeds through the remaining steps of the parse phase to ensure that the
execution plan of the existing statement is applicable to the new statement

If the plan is not applicable, then the database performs a hard parse. If the plan is
applicable, then the database proceeds to the next step.

4. Shares the SQL area of the statement

See Also: "SQL Sharing Criteria" on page 7-18 for more details on
the various checks performed

7-36 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

When to Set CURSOR_SHARING to a Nondefault Value

The best practice is to write sharable SQL and use the default of EXACT for
CURSOR_SHARI NG However, for applications with many similar statements, setting
CURSOR_SHARI NG can significantly improve cursor sharing, resulting in reduced
memory usage, faster parses, and reduced latch contention. Consider this approach
when statements in the shared pool differ only in the values of literals, and when
response time is poor because of a very high number of library cache misses.

Setting CURSOR_SHARI NGto FORCE or SI M LAR has the following drawbacks:

» The database must perform extra work during the soft parse to find a similar
statement in the shared pool.

» There is an increase in the maximum lengths (as returned by DESCRI BE) of any
selected expressions that contain literals in a SELECT statement. However, the
actual length of the data returned does not change.

= Star transformation is not supported.

» If stored outlines were generated with CURSOR_SHARI NGset to EXACT, then the
database does not use stored outlines generated with literals. To avoid this
problem, generate outlines with CURSOR_SHARI NGset to FORCE or SI M LARand
use the CREATE_STORED_ OUTLI NES parameter.

When deciding whether to set CURSOR_SHARI NGto FORCE or SI M LAR, consider the
performance implications of each setting. When CURSOR_SHARI NGis set to FORCE,
the database uses one parent cursor and one child cursor for each distinct SQL
statement. The database uses the same plan for each execution of the same statement.
When set to SI M LAR, database behavior depends on the presence of histograms:

» Histogram absent for column with system-generated bind value

Only one parent cursor and one child cursor exists for each distinct SQL statement.
In this case, all executions of a SQL statement use the same plan.

= Histogram present for column with system-generated bind value

If the same SQL statement is executed multiple times, each execution has its own
child cursor. In this case, the database peeks at bind variable values and create a
new child cursor for each distinct value. Thus, each statement execution uses a
plan based on the specific literals in the statement.

For example, consider the following statement:

SELECT * FROM hr. enpl oyees WHERE enpl oyee_id = 101

If FORCE is used, or if SI M LARis used when no histogram exists, then the database
optimizes this statement as if it contained a bind variable and uses bind peeking to
estimate cardinality. Statements that differ only in the bind variable share the same
execution plan. If S| M LARis used, and if a histogram does exist, then the database
does not treat the statement as if a bind variable were used. The same query for a
different employee may not use the same plan.

If you set CURSOR_SHARI NG then Oracle recommends the FORCE setting unless you
are in a DSS environment. FORCE limits the growth of child cursors that can occur
when the setting is S| M LAR. Also, function-based indexes may not work when using
SI M LARbecause the database converts index parameters to bind variables. For
example, if the index is SUBSTR(i d, 1, 3), then the database converts it to
SUBSTR("1 D", : SYS_B_0, : SYS_B_1) =:i d, rendering the index invalid.

Configuring and Using Memory 7-37

Configuring and Using the Redo Log Buffer

See Also:
= "Adaptive Cursor Sharing" on page 11-9
= "Enabling Query Optimizer Features" on page 11-36

» Oracle Database Reference to learn about the CURSOR_SHARI NG
initialization parameter

Maintaining Connections

Large OLTP applications with middle tiers should maintain connections, rather than
connecting and disconnecting for each database request. Maintaining persistent
connections saves CPU resources and database resources, such as latches.

See Also: "Operating System Statistics" on page 5-4 for a
description of important operating system statistics

Configuring and Using the Redo Log Buffer

Server processes making changes to data blocks in the buffer cache generate redo data
into the log buffer. LGWR begins writing to copy entries from the redo log buffer to
the online redo log if any of the following are true:

s The log buffer becomes one third full
= LGWRis posted by a server process performing a COVM T or ROLLBACK
= DBWR posts LGWR to do so

When LGWR writes redo entries from the redo log buffer to a redo log file or disk,
user processes can then copy new entries over the entries in memory that have been
written to disk. LGWR usually writes fast enough to ensure that space is available in
the buffer for new entries, even when access to the redo log is heavy.

A larger buffer makes it more likely that there is space for new entries, and also gives
LGWR the opportunity to efficiently write out redo records (too small a log buffer on a
system with large updates means that LGWR is continuously flushing redo to disk so
that the log buffer remains 2/3 empty).

On computers with fast processors and relatively slow disks, the processors might be
filling the rest of the buffer in the time it takes the redo log writer to move a portion of
the buffer to disk. A larger log buffer can temporarily mask the effect of slower disks
in this situation. Alternatively, you can do one of the following;:

= Improve the checkpointing or archiving process

= Improve the performance of log writer (perhaps by moving all online logs to fast
raw devices)

Good usage of the redo log buffer is a simple matter of:

= Batching commit operations for batch jobs, so that log writer is able to write redo
log entries efficiently

= Using NOLOGAE NGoperations when you are loading large quantities of data

The size of the redo log buffer is determined by the initialization parameter
LOG_BUFFER. You cannot modify the log buffer size after instance startup.

7-38 Oracle Database Performance Tuning Guide

PGA Memory Management

Figure 7-2 Redo Log Buffer

Being filled by
DML users
Being written to
disk by LGWR
Sizing the Log Buffer

Applications that insert, modify, or delete large volumes of data usually need to
change the default log buffer size. The log buffer is small compared with the total SGA
size, and a modestly sized log buffer can significantly enhance throughput on systems
that perform many updates.

A reasonable first estimate for such systems is to the default value, which is:

MAX(0.5M (128K * nunber of cpus))

On most systems, sizing the log buffer larger than 1M does not provide any
performance benefit. Increasing the log buffer size does not have any negative
implications on performance or recoverability. It merely uses extra memory.

Log Buffer Statistics

The statistic REDOBUFFER ALLOCATI ON RETRI ES reflects the number of times a user
process waits for space in the redo log buffer. This statistic can be queried through the
dynamic performance view V$SYSSTAT.

Use the following query to monitor these statistics over a period while your
application is running:
SELECT NAME, VALUE

FROM V$SYSSTAT
VWHERE NAME = 'redo buffer allocation retries';

The value of redo buffer allocation retries should benear zero over an
interval. If this value increments consistently, then processes have had to wait for
space in the redo log buffer. The wait can be caused by the log buffer being too small
or by checkpointing. Increase the size of the redo log buffer, if necessary, by changing
the value of the initialization parameter LOG_BUFFER. The value of this parameter is
expressed in bytes. Alternatively, improve the checkpointing or archiving process.

Another data source is to check whether the | og buf f er space wait event is not a
significant factor in the wait time for the instance; if not, the log buffer size is most
likely adequate.

PGA Memory Management

The Program Global Area (PGA) is a private memory region containing data and
control information for a server process. Access to it is exclusive to the server process

Configuring and Using Memory 7-39

PGA Memory Management

and is read and written only by the Oracle Database code acting on behalf of it. An
example of such information is the run-time area of a cursor. Each time a cursor is
executed, a new run-time area is created for that cursor in the PGA memory region of
the server process executing that cursor.

Note: Part of the run-time area can be located in the SGA when
using shared servers.

For complex queries (for example, decision support queries), a big portion of the
run-time area is dedicated to work areas allocated by memory intensive operators,
such as the following:

= Sort-based operators, such as ORDER BY, GROUP BY, ROLLUP, and window
functions

= Hash-join

= Bitmap merge

= Bitmap create

= Write buffers used by bulk load operations

A sort operator uses a work area (the sort area) to perform the in-memory sort of a set
of rows. Similarly, a hash-join operator uses a work area (the hash area) to build a hash
table from its left input.

The size of a work area can be controlled and tuned. Generally, bigger work areas can
significantly improve the performance of a particular operator at the cost of higher
memory consumption. Ideally, the size of a work area is big enough that it can
accommodate the input data and auxiliary memory structures allocated by its
associated SQL operator. This is known as the optimal size of a work area. When the
size of the work area is smaller than optimal, the response time increases, because an
extra pass is performed over part of the input data. This is known as the one-pass size
of the work area. Under the one-pass threshold, when the size of a work area is far too
small compared to the input data size, multiple passes over the input data are needed.
This could dramatically increase the response time of the operator. This is known as
the multi-pass size of the work area. For example, a serial sort operation that must sort
10 GB of data needs a little more than 10 GB to run optimal and at least 40 MB to run
one-pass. If this sort gets less that 40 MB, then it must perform several passes over the
input data.

The goal is to have most work areas running with an optimal size (for example, more
than 90% or even 100% for pure OLTP systems), while a smaller fraction of them run
with a one-pass size (for example, less than 10%). Multi-pass execution should be
avoided. Even for DSS systems running large sorts and hash-joins, the memory
requirement for the one-pass executions is relatively small. A system configured with a
reasonable amount of PGA memory should not need to perform multiple passes over
the input data.

Automatic PGA memory management simplifies and improves the way PGA memory
is allocated. By default, PGA memory management is enabled. In this mode, Oracle
Database dynamically adjusts the size of the portion of the PGA memory dedicated to
work areas, based on 20% of the SGA memory size. The minimum value is 10MB.

7-40 Oracle Database Performance Tuning Guide

PGA Memory Management

Note: For backward compatibility, automatic PGA memory
management can be disabled by setting the value of the
PGA_AGCGREGATE_TARCET initialization parameter to 0. When
automatic PGA memory management is disabled, the maximum
size of a work area can be sized with the associated _ AREA_SI ZE
parameter, such as the SORT_AREA_S| ZE initialization parameter.

See Also: For information about the PGA_AGGREGATE _TARGET,
SORT_AREA S| ZE, HASH_AREA_SI ZE, Bl TMAP_VMERGE_AREA S| ZE
and CREATE_BI TMAP_AREA_SI ZE initialization parameters, see
Oracle Database Reference.

Configuring Automatic PGA Memory

When running under the automatic PGA memory management mode, sizing of work
areas for all sessions becomes automatic and the * _AREA_SI ZE parameters are
ignored by all sessions running in that mode. At any given time, the total amount of
PGA memory available to active work areas in the instance is automatically derived
from the PGA_AGGREGATE_TARGET initialization parameter. This amount is set to the
value of PGA_AGGREGATE_TARCET minus the amount of PGA memory allocated by
other components of the system (for example, PGA memory allocated by sessions).
The resulting PGA memory is then assigned to individual active work areas, based on
their specific memory requirements.

Under automatic PGA memory management mode, the main goal of Oracle Database
is to honor the PGA_AGGREGATE_TARGET limit set by the DBA, by controlling
dynamically the amount of PGA memory allotted to SQL work areas. At the same
time, Oracle Database t to maximize the performance of all the memory-intensive SQL
operations, by maximizing the number of work areas that are using an optimal
amount of PGA memory (cache memory). The rest of the work areas are executed in
one-pass mode, unless the PGA memory limit set by the DBA with the parameter
PGA_AGGREGATE_TARCET is so low that multi-pass execution is required to reduce
even more the consumption of PGA memory and honor the PGA target limit.

When configuring a brand new instance, it is hard to know precisely the appropriate
setting for PGA_AGGREGATE_TARGET. You can determine this setting in three stages:

1. Make a first estimate for PGA_AGGREGATE_TARGET. By default, Oracle Database
uses 20% of the SGA size. However, this initial setting may be too low for a large
DSS system.

2. Run a representative workload on the instance and monitor performance, using
PGA statistics collected by Oracle Database, to see whether the maximum PGA
size is under-configured or over-configured.

3. Tune PGA_AGGREGATE_TARGET, using Oracle PGA advice statistics.

See Also: Oracle Database Reference for information about the
PGA_AGCREGATE_TARCET initialization parameter

The following sections explain this in detail:
s Setting PGA_AGGREGATE_TARGET Initially
= Monitoring the Performance of the Automatic PGA Memory Management

s Tuning PGA_AGGREGATE_TARGET

Configuring and Using Memory 7-41

PGA Memory Management

Setting PGA_AGGREGATE_TARGET Initially

The value of the PGA_AGGREGATE_TARGET initialization parameter (for example
100000 KB, 2500 MB, or 50 GB) should be set based on the total amount of memory
available for the Oracle database instance. This value can then be tuned and
dynamically modified at the instance level. Example 7-2 illustrates a typical situation.

Example 7-2 Initial Setting of PGA_AGGREGATE_TARGET

Assume that an Oracle database instance is configured to run on a system with 4 GB of
physical memory. Part of that memory should be left for the operating system and
other non-Oracle applications running on the same hardware system. You might
decide to dedicate only 80% (3.2 GB) of the available memory to the Oracle database
instance.

You must then divide the resulting memory between the SGA and the PGA.

s For OLTP systems, the PGA memory typically accounts for a small fraction of the
total memory available (for example, 20%), leaving 80% for the SGA.

» For DSS systems running large, memory-intensive queries, PGA memory can
typically use up to 70% of that total (up to 2.2 GB in this example).

Good initial values for the parameter PGA_AGGREGATE_TARGET might be:
s For OLTP: PGA_AGGREGATE_TARCET = (t ot al _rmem* 80%) * 20%
s For DSS: PGA_AGGREGATE_TARCET = (t ot al _mem* 80%) * 50%

where t ot al _nmemis the total amount of physical memory available on the
system.

In this example, with a value of t ot al _memequal to 4 GB, you can initially set
PGA_AGCREGATE_TARCET to 1600 MB for a DSS system and to 655 MB for an OLTP
system.

Monitoring the Performance of the Automatic PGA Memory Management

Before starting the tuning process, you need to know how to monitor and interpret the
key statistics collected by Oracle Database to help in assessing the performance of the
automatic PGA memory management component. Several dynamic performance
views are available for this purpose:

= V$PGASTAT

= V$PROCESS

= V$PROCESS_MEMORY

= V$SQL_WORKAREA_HISTOGRAM

= V$SQL_WORKAREA_ACTIVE

= V$SQL_WORKAREA

VSPGASTAT This view gives instance-level statistics on the PGA memory usage and the
automatic PGA memory manager. For example:

SELECT * FROM V$PGASTAT;

The output of this query might look like the following:
NAME VALUE UNI'T

aggregate PGA target paraneter 41156608 bytes

7-42 Oracle Database Performance Tuning Guide

PGA Memory Management

aggregate PGA auto target 21823488 bytes
gl obal memory bound 2057216 bytes
total PGA inuse 16899072 bytes
total PGA allocated 35014656 bytes
maxi mum PGA al | ocat ed 136795136 bytes
total freeable PGA nenory 524288 bytes
PGA nenory freed back to OS 1713242112 bytes
total PGA used for auto workareas 0 bytes
maxi mum PGA used for auto workareas 2383872 bytes
total PGA used for manual workareas 0 bytes
maxi mum PGA used for manual workareas 8470528 hytes
over allocation count 291

byt es processed 2124600320 bytes
extra bytes read/witten 39949312 bytes
cache hit percentage 98. 15 percent

The main statistics displayed in VEPGASTAT are as follows:

aggregate PGA target paraneter: This is the current value of the
initialization parameter PGA_AGGREGATE_TARGCET. The default value is 20% of
the SGA size. If you set this parameter to 0, automatic management of the PGA
memory is disabled.

aggregate PGA auto target: This gives the amount of PGA memory Oracle
Database can use for work areas running in automatic mode. This amount is
dynamically derived from the value of the parameter PGA_AGGREGATE_TARGET
and the current work area workload. Hence, it is continuously adjusted by Oracle.
If this value is small compared to the value of PGA_AGGREGATE_TARCET, then a
lot of PGA memory is used by other components of the system (for example,
PL/SQL or Java memory) and little is left for sort work areas. You must ensure
that enough PGA memory is left for work areas running in automatic mode.

gl obal nmenory bound: This gives the maximum size of a work area executed
in AUTOmode. This value is continuously adjusted by Oracle Database to reflect
the current state of the work area workload. The global memory bound generally
decreases when the number of active work areas is increasing in the system. As a
rule of thumb, the value of the global bound should not decrease to less than one
megabyte. If it does, then the value of PGA_AGGREGATE_TARGET should probably
be increased.

total PGA al | ocat ed: This gives the current amount of PGA memory
allocated by the instance. Oracle Database t to keep this number less than the
value of PGA_AGGREGATE_TARGET. However, it is possible for the PGA allocated
to exceed that value by a small percentage and for a short period, when the work
area workload is increasing very rapidly or when the initialization parameter
PGA AGGREGATE_TARCET is set to a too small value.

total freeable PGA nenory: This indicates how much allocated PGA
memory which can be freed.

total PGA used for auto workareas: This indicates how much PGA
memory is currently consumed by work areas running under automatic memory
management mode. This number can be used to determine how much memory is
consumed by other consumers of the PGA memory (for example, PL/SQL or
Java):

PGA other = total PGA allocated - total PGA used for auto workareas

over allocation count:This statistic is cumulative from instance startup.
Over-allocating PGA memory can happen if the value of

Configuring and Using Memory 7-43

PGA Memory Management

PGA_AGGREGATE_TARCET is too small to accommodate the PGA ot her
component in the previous equation plus the minimum memory required to
execute the work area workload. When this happens, Oracle Database cannot
honor the initialization parameter PGA AGGREGATE_TARGCET, and extra PGA
memory must be allocated. If over-allocation occurs, you should increase the value
of PGA_AGGREGATE_TARGET using the information provided by the advice view
V$PGA_TARGET_ADVI CE.

= total bytes processed: This is the number of bytes processed by
memory-intensive SQL operators since instance startup. For example, the number
of byte processed is the input size for a sort operation. This number is used to
compute the cache hi t per cent age metric.

= extra bytes read/ witten: When a work area cannot run optimally, one or
more extra passes is performed over the input data. ext r a byt es
read/ written represents the number of bytes processed during these extra
passes since instance startup. This number is also used to compute the cache hi t
per cent age. Ideally, it should be small compared to t ot al byt es
processed.

= cache hit percentage: This metric is computed by Oracle Database to reflect
the performance of the PGA memory component. It is cumulative from instance
startup. A value of 100% means that all work areas executed by the system since
instance startup have used an optimal amount of PGA memory. This is, of course,
ideal but rarely happens except maybe for pure OLTP systems. In reality, some
work areas run one-pass or even multi-pass, depending on the overall size of the
PGA memory. When a work area cannot run optimally, one or more extra passes is
performed over the input data. This reduces the cache hi t per cent age in
proportion to the size of the input data and the number of extra passes performed.
Example 7-3 shows how cache hi t per cent age is affected by extra passes.

Example 7-3 Calculating Cache Hit Percentage

Consider a simple example: Four sort operations have been executed, three were small
(1 MB of input data) and one was bigger (100 MB of input data). The total number of
bytes processed (BP) by the four operations is 103 MB. If one of the small sorts runs
one-pass, an extra pass over 1 MB of input data is performed. This 1 MB value is the
number of ext ra byt es read/ wri tten, or EBP. The cache hit percent age is
calculated by the following formula:

BP x 100 / (BP + EBP)

The cache hit per cent age in this case is 99.03%, almost 100%. This value reflects
the fact that only one of the small sorts had to perform an extra pass while all other
sorts were able to run optimally. Hence, the cache hi t per cent age is almost 100%,
because this extra pass over 1 MB represents a tiny overhead. However, if the big sort
is the one to run one-pass, then EBP is 100 MB instead of 1 MB, and the cache hi t
per cent age falls to 50.73%, because the extra pass has a much bigger impact.

VSPROCESS This view has one row for each Oracle process connected to the instance.
The columns PGA_USED MEM PGA ALLOC MEM PGA FREEABLE MEMand
PGA_NMAX_MEMcan be used to monitor the PGA memory usage of these processes. For
example:

SELECT PROGRAM PGA USED MEM PGA ALLOC MEM PGA FREEABLE MEM PGA MAX_MEM
FROM V$PROCESS;

The output of this query might look like the following:

7-44 Oracle Database Performance Tuning Guide

PGA Memory Management

PSEUDO

oracl e@xanpl690
oracl e@xanpl690
oracl e@xanpl1690
oracl e@xanpl1690
oracl e@xanpl1690
oracl e@xanpl1690
oracl e@xanpl690
oracl e@xanpl690
oracl e@xanpl690
oracl e@xanpl1690
oracl e@xanpl1690
oracl e@xanpl1690
oracl e@xanpl690
oracl e@xanpl690
oracl e@xanpl690

PGA USED MEM PGA ALLOC MEM PGA FREEABLE MEM PGA MAX_MEM

0 0 0 0
(PMON) 314540 685860 0 685860
(MVAN) 313992 685860 0 685860
(DBWD) 696720 1063112 0 1063112
(LOAR) 10835108 22967940 0 22967940
(CKPT) 352716 710376 0 710376
(SMON) 541508 948004 0 1603364
(RECO 323688 685860 0 816932
(q001) 233508 585128 0 585128
(QWQ) 314332 685860 0 685860
(MVON) 885756 1996548 393216 1996548
(MVN) 315068 685860 0 685860
(g000) 330872 716200 65536 716200
(TNS V1-V3) 635768 928024 0 1255704
(QIQ) 533476 1013540 0 1144612
(TNS V1-V3) 430648 812108 0 812108

VSPROCESS_MEMORY This view displays dynamic PGA memory usage by named
component categories for each Oracle process. This view will contain up to six rows
for each Oracle process, one row for:

s Each named component category: Java, PL/SQL, OLAP, and SQL.

s Freeable: memory that has been allocated to the process by the operating system,
but not to a specific category.

s Other: memory that has been allocated to a category, but not to one of the named
categories.

You can use the columns CATEGORY, ALLOCATED, USED, and MAX_ALLOCATED to
dynamically monitor the PGA memory usage of Oracle processes for each of the six
categories.

See Also: Oracle Database Reference for more information on the
V$PROCESS_MEMORY view.

V$SQL_WORKAREA_HISTOGRAM This view shows the number of work areas executed
with optimal memory size, one-pass memory size, and multi-pass memory size since
instance startup. Statistics in this view are subdivided into buckets that are defined by
the optimal memory requirement of the work area. Each bucket is identified by a
range of optimal memory requirements specified by the values of the columns

LOW OPTI MAL_SI ZE and Hl GH_COPTI MAL_SI ZE.

Example 7-3 and Example 7—4 show two ways of using
V$SQL_WORKAREA HI STOGRAM

Example 7-4 Querying V$SQL_WORKAREA_HISTOGRAM: Non-empty Buckets

Consider a sort operation that requires 3 MB of memory to run optimally (cached).
Statistics about the work area used by this sort are placed in the bucket defined by
LOW OPTI MAL_SI ZE = 2097152 (2 MB)and H GH_OPTI MAL_SI ZE = 4194303
(4 MB minus 1 byte), because 3 MB falls within that range of optimal sizes. Statistics
are segmented by work area size, because the performance impact of running a work
area in optimal, one-pass or multi-pass mode depends mainly on the size of that work
area.

The following query shows statistics for all non-empty buckets. Empty buckets are
removed with the predicate WHERE TOTAL_EXECUTI ON! = 0.

Configuring and Using Memory 7-45

PGA Memory Management

SELECT LOW OPTI MAL_SI ZE/ 1024 | ow Kb,
(H GH_OPTI MAL_SI ZE+1)/ 1024 hi gh_kb,
OPTI MAL_EXECUTI ONS, ONEPASS_EXECUTI ONS, MULTI PASSES_EXECUTI ONS
FROM V$SQL_WORKAREA H STOGRAM
WHERE TOTAL_EXECUTI ONS ! = 0;

The result of the query might look like the following:
LON KB H GH_KB OPTI MAL_EXECUTI ONS ONEPASS_EXECUTI ONS MULTI PASSES_EXECUTI ONS

8 16 156255 0 0

16 32 150 0 0

32 64 89 0 0

64 128 13 0 0

128 256 60 0 0
256 512 8 0 0
512 1024 657 0 0
1024 2048 551 16 0
2048 4096 538 26 0
4096 8192 243 28 0
8192 16384 137 35 0
16384 32768 45 107 0
32768 65536 0 153 0
65536 131072 0 73 0
131072 262144 0 44 0
262144 524288 0 22 0

The query result shows that, in the 1024 KB to 2048 KB bucket, 551 work areas used an
optimal amount of memory, while 16 ran in one-pass mode and none ran in multi-pass
mode. It also shows that all work areas under 1 MB were able to run in optimal mode.

Example 7-5 Querying V$SQL_WORKAREA_HISTOGRAM: Percent Optimal

You can also use V$SQL_WORKAREA HI STOGRAMto find the percentage of times work
areas were executed in optimal, one-pass, or multi-pass mode since startup. This query
only considers work areas of a certain size, with an optimal memory requirement of at
least 64 KB.

SELECT optimal _count, round(optimal _count*100/total, 2) optimal _perc,
onepass_count, round(onepass_count*100/total, 2) onepass_perc,
mul tipass_count, round(multipass_count*100/total, 2) nultipass_perc
FROM
(SELECT decode(sun{total _executions), 0, 1, sun{total _executions)) total,
sum(OPTI MAL_EXECUTI ONS) opti mal _count,
sum ONEPASS_EXECUTI ONS) onepass_count ,
sum(MULTI PASSES_EXECUTI ONS) nul ti pass_count
FROM v$sql _wor kar ea_hi st ogram
VWHERE | ow_opti mal _size 64*1024);

The output of this query might look like the following:
CPTI MAL_COUNT OPTI MAL_PERC ONEPASS_COUNT ONEPASS_PERC MJLTI PASS_COUNT MULTI PASS_PERC

This result shows that 81.63% of these work areas have been able to run using an
optimal amount of memory. The rest (18.37%) ran one-pass. None of them ran
multi-pass. Such behavior is preferable, for the following reasons:

7-46 Oracle Database Performance Tuning Guide

PGA Memory Management

= Multi-pass mode can severely degrade performance. A high number of multi-pass
work areas has an exponentially adverse effect on the response time of its
associated SQL operator.

= Running one-pass does not require a large amount of memory; only 22 MB is
required to sort 1 GB of data in one-pass mode.

VSSQL_WORKAREA_ACTIVE You can use this view to display the work areas that are
active (or executing) in the instance. Small active sorts (under 64 KB) are excluded
from the view. Use this view to precisely monitor the size of all active work areas and
to determine if these active work areas spill to a temporary segment. Example 7-6
shows a typical query of this view:

Example 7-6 Querying V$SQL_WORKAREA_ACTIVE

SELECT to_nunber (decode(SI D, 65535, NULL, SID)) sid,
operation_type OPERATI ON,
trunc(EXPECTED_SI ZE/ 1024) ESI ZE,
trunc(ACTUAL_MEM USEDY 1024) MEM
trunc(MAX_MEM USEDY 1024) "NMAX MEM',
NUVBER_PASSES PASS,
trunc(TEMPSEG S| ZE/ 1024) TSI ZE

FROM V$SQL_WORKAREA_ACTI VE

ORDER BY 1, 2;
The output of this query mght |ook Iike the follow ng:
SID OPERATI ON ESI ZE MEM MAX MEM PASS TSI ZE
8 GROUP BY (SORT) 315 280 904 0
8 HASH JO N 2995 2377 2430 1 20000
9 GROUP BY (SORT) 34300 22688 22688 0
11 HASH JO N 18044 54482 54482 0
12 HASH JO N 18044 11406 21406 1 120000

This output shows that session 12 (column S| D) is running a hash-join having its work
area running in one-pass mode (PASS column). This work area is currently using 11406
KB of memory (MEMcolumn) and has used, in the past, up to 21406 KB of PGA
memory (MAX MEMcolumn). It has also spilled to a temporary segment of size 120000
KB. Finally, the column ESI ZE indicates the maximum amount of memory that the
PGA memory manager expects this hash-join to use. This maximum is dynamically
computed by the PGA memory manager according to workload.

When a work area is deallocated—that is, when the execution of its associated SQL
operator is complete—the work area is automatically removed from the
V$SQL_WORKAREA_ACTI VE view.

V$SQL_WORKAREA Oracle Database maintains cumulative work area statistics for each
loaded cursor whose execution plan uses one or more work areas. Every time a work
area is deallocated, the V$SQL_WORKAREA table is updated with execution statistics for
that work area.

V$SQL_WORKAREA can be joined with V8SQL to relate a work area to a cursor. It can
even be joined to V$SQL_PLAN to precisely determine which operator in the plan uses
a work area.

Example 7-7 shows three typical queries on the V$SQL_WORKAREA dynamic view:

Example 7-7 Querying V$SQL_WORKAREA
The following query finds the top 10 work areas requiring most cache memory:

Configuring and Using Memory 7-47

PGA Memory Management

SELECT *

FROM (SELECT workarea_address, operation_type, policy, estimted_optimal_size
FROM V$SQL_WORKAREA
ORDER BY estinmat ed_optimal _si ze)

VWHERE ROMNUM <= 10;

The following query finds the cursors with one or more work areas that have been
executed in one or even multiple passes:

col sql _text format A80 wap

SELECT sqgl _text, sunm(ONEPASS_EXECUTI ONS) onepass_cnt,
sum(MULTI PASSES_EXECUTI ONS) npass_cnt

FROM V$SQL s, V$SQL_WORKAREA wa

VHERE s. address = wa. address

GROUP BY sql _text

HAVI NG sun{ ONEPASS_EXECUTI ONS+MULTI PASSES_EXECUTI ONS) >0;

Using the hash value and address of a particular cursor, the following query displays
the cursor execution plan, including information about the associated work areas.

col "Q1M format all
col name format a20
SELECT operation, options, object_name name, trunc(bytes/1024/1024) "input(M)",
trunc(last_menory_used/ 1024) | ast_nmem
trunc(estimted_optinal _size/1024) optimal _nmem
trunc(estimted_onepass_sizel/ 1024) onepass_nem
decode(opti mal _executions, null, null,
opti mal _executions||'/']||onepass_executions||"/"]|]|
mul ti passes_executions) "Q 1/ M
FROM V$SQL_PLAN p, V$SQ_WORKAREA w
VHERE p. addr ess=w. addr ess(+)
AND p. hash_val ue=w. hash_val ue(+)
AND p. i d=w. operation_id(+)
AND p. addr ess=' 88BB460C
AND p. hash_val ue=3738161960;

OPERATION ~ OPTIONS NAME i nput (MB) LAST MEM OPTI MAL_ME ONEPASS ME Q' 1/ M
SELECT STATE

HASH GROUP BY 4582 8 16 16 16/0/0
HASH JON SEM 4582 5976 5194 2187 16/0/0
TABLE ACCESS FULL ORDERS 51

TABLE ACCESS FUL LI NEI TEM 1000

You can get the address and hash value from the V$SQL view by specifying a pattern
in the query. For example:

SELECT address, hash_val ue
FROM V3SQL
VWHERE sql _text LIKE '%wy_pattern%:;

Tuning PGA_AGGREGATE_TARGET

To help you tune the initialization parameter PGA_AGGREGATE_TARGET, Oracle
Database provides the V6PGA TARGET_ADVI CE and

V$PGA_TARGET_ADVI CE_HI STOGRAMviews. By examining these views, you no
longer need to use an empirical approach to tune the value of
PGA_AGCGREGATE_TARCET. Instead, you can use these views to determine how key
PGA statistics will be impacted if you change the value of PGA_AGGREGATE_TARGET.

7-48 Oracle Database Performance Tuning Guide

PGA Memory Management

In both views, values of PGA_ AGGREGATE_TARGET used for the prediction are derived
from fractions and multiples of the current value of that parameter, to assess possible
higher and lower values. Values used for the prediction range from 10 MB to a
maximum of 256 GB.

Oracle Database generates PGA advice performance views by recording the workload
history and then simulating this history for different values of
PGA_AGGREGATE_TARGCET. The simulation process happens in the background and
continuously updates the workload history to produce the simulation result. You can
view the result at any time by querying VEPGA_TARGET_ADVI CE or
V$PGA_TARGET_ADVI CE_HI STOGRAM

To enable automatic generation of PGA advice performance views, make sure the
following parameters are set:

s PGA_AGGREGATE_TARGCET, to enable automatic PGA memory management (see
"Setting PGA_AGGREGATE_TARGET Initially" on page 7-42).

m STATI STI CS_LEVEL. Set this to TYPI CAL (the default) or ALL; setting this
parameter to BASI Cturns off generation of PGA performance advice views.

The content of these PGA advice performance views is reset at instance startup or
when PGA_AGGREGATE_TARGET is altered.

Note: Simulation cannot include all factors of real execution, so
derived statistics may not exactly match up with real performance
statistics. Always monitor the system after changing
PGA_AGCREGATE_TARCET to verify that the new performance is
what you expect.

VSPGA_TARGET_ADVICE This view predicts how the statistics cache hi t per cent age
and over al | ocati on count in VSPGASTAT will be impacted if you change the
value of the initialization parameter PGA_AGGREGATE_TARGET. Example 7-8 shows a
typical query of this view.

Example 7-8 Querying V$PGA_TARGET_ADVICE

SELECT round(PGA_TARGET_FOR_ESTI MATE/ 1024/ 1024) target _nb,
ESTD_PGA CACHE HI T_PERCENTAGE cache_hit _perc,
ESTD_OVERALLOC_COUNT

FROM V$PGA TARGET_ADVI CE;

The output of this query might look like the following:
TARGET_MB CACHE_H T_PERC ESTD OVERALLOC COUNT

63 23 367
125 24 30
250 30 3
375 39 0
500 58 0
600 59 0
700 59 0
800 60 0
900 60 0

1000 61 0
1500 67 0
2000 76 0
3000 83 0

Configuring and Using Memory 7-49

PGA Memory Management

Cache
Hit
Percentage

85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.00

4000 85 0

The result of the this query can be plotted as shown in Figure 7-3:

Figure 7-3 Graphical Representation of V$PGA_TARGET_ADVICE

Optimal Value
//
/)/
/ Current setting
0 500MB 1GB 1.5GB 2GB 2.5GB 3GB 3.5GB 4GB

PGA_AGGREGATE_TARGET

The curve shows how the PGA cache hi t per cent age improves as the value of
PGA_AGCREGATE_TARCET increases. The shaded zone in the graph is the over

al | ocat i on zone, where the value of the column ESTD OVERALLOCATI ON_COUNT
is nonzero. It indicates that PGA_AGGREGATE_TARCET is too small to even meet the
minimum PGA memory needs. If PGA_AGCREGATE_TARCET is set within the over
al | ocat i on zone, the memory manager will over-allocate memory and actual PGA
memory consumed will be more than the limit you set. It is therefore meaningless to
set a value of PGA_ AGCREGATE_TARCET in that zone. In this particular example
PGA_AGGREGATE_TARGET should be set to at least 375 MB.

7-50 Oracle Database Performance Tuning Guide

PGA Memory Management

Note: Although the theoretical maximum for the PGA cache hi t
per cent age is 100%, there is a practical limit on the maximum
size of a work area, which may prevent this theoretical maximum
from being reached, even if you further increase
PGA_AGCGREGATE_TARCET. This should happen only in large DSS
systems where the optimal memory requirement is large and might
cause the value of the cache hi t per cent age to taper off at a
lower percentage, like 90%.

Beyond the over al | ocat i on zone, the value of the PGA cache hi t per cent age
increases rapidly. This is due to an increase in the number of work areas which run
optimally or one-pass and a decrease in the number of multi-pass executions. At some
point, around 500 MB in this example, an inflection in the curve corresponds to the
point where most (probably all) work areas can run optimally or at least one-pass.
After this inflection, the cache hi t per cent age keeps increasing, though at a lower
pace, up to the point where it starts to taper off and shows only slight improvement
with increase in PGA_AGGREGATE_TARGCET. In Figure 7-3, this happens when
PGA_AGGREGATE_TARGCET reaches 3 GB. At that point, the cache hi t per cent age
is 83% and only improves marginally (by 2%) with one extra gigabyte of PGA memory.
In this example, 3 GB is probably the optimal value for PGA_AGGREGATE_TARGET.

Ideally, PGA_AGCGREGATE_TARCET should be set at the optimal value, or at least to the
maximum value possible in the region beyond the over al | ocat i on zone. As a rule
of thumb, the PGA cache hi t per cent age should be higher than 60%, because at
60% the system is almost processing double the number of bytes it actually needs to
process in an ideal situation. Using this particular example, it makes sense to set
PGA_AGGREGATE_TARCET to at least 500 MB and as close as possible to 3 GB. But the
right setting for the parameter PGA_AGGREGATE_TARGET depends on how much
memory can be dedicated to the PGA component. Generally, adding PGA memory
requires reducing memory for some SGA components, like the shared pool or buffer
cache, because the overall memory dedicated to the instance is often bound by the
amount of physical memory available on the system. Thus, any decisions to increase
PGA memory must be taken in the larger context of the available memory in the
system and the performance of the various SGA components (which you monitor with
shared pool advisory and buffer cache advisory statistics). If you cannot take memory
from the SGA, consider adding physical memory to the computer.

See Also: "Shared Pool Advisory Statistics" on page 7-25 and
"Sizing the Buffer Cache" on page 7-7

How to Tune PGA_AGGREGATE_TARGET You can use the following steps as a tuning
guideline in tuning PGA_AGGREGATE_TARCET:

1. Set PGA_AGGREGATE_TARGET so there is no memory over-allocation; avoid
setting it in the over-allocation zone. In Example 7-8, PGA_AGGREGATE_TARGET
should be set to at least 375 MB.

2. After eliminating over-allocations, aim at maximizing the PGA cache hi t
per cent age, based on your response-time requirement and memory constraints.
In Example 7-8, assume you have a limit X on memory you can allocate to PGA.

» If this limit X is beyond the optimal value, then you would set
PGA_AGGREGATE_TARGCET to the optimal value. After this point, the
incremental benefit with higher memory allocation to
PGA_AGGREGATE_TARGCET is very small. In Example 7-8, if you have 10 GB to

Configuring and Using Memory 7-51

PGA Memory Management

dedicate to PGA, set PGA_AGGREGATE_TARCET to 3 GB, the optimal value.
The remaining 7 GB is dedicated to the SGA.

s If the limit X is less than the optimal value, then you would set
PGA_AGGREGATE_TARGET to X. In Example 7-8, if you have only 2 GB to
dedicate to PGA, set PGA_AGGREGATE_TARCET to 2 GB and accept a cache
hi t per cent age of 75%.

Finally, like most statistics collected by Oracle Database that are cumulative since
instance startup, you can take a snapshot of the view at the beginning and at the end
of a time interval. You can then derive the predicted statistics for that time interval as
follows:

estd_overal loc_count = (difference in estd_overalloc_count between the two snapshots)

(difference in bytes_processed between the two snapshots)
estd_pga_cache_hit_percentage = ----------mmmmmmm o
(difference in bytes_processed + extra_bytes_rw between the two snapshots)

VSPGA_TARGET_ADVICE_HISTOGRAM This view predicts how the statistics displayed by
the performance view V$SQL_WORKAREA HI STOGRAMwill be impacted if you change
the value of the initialization parameter PGA_AGGREGATE_TARCET. You can use the
dynamic view V$PGA_TARGET_ADVI CE_HI STOGRAMto view detailed information on
the predicted number of optimal, one-pass and multi-pass work area executions for
the set of PGA_AGGREGATE_TARCET values you use for the prediction.

The V$PGA_TARGET_ADVI CE_HI STOGRAMview is identical to the
V$SQL_WORKAREA HI STOGRAMview, with two additional columns to represent the
PGA_AGCGREGATE_TARGCET values used for the prediction. Therefore, any query
executed against the V$SQL_WORKAREA HI STOGRAMview can be used on this view,
with an additional predicate to select the desired value of PGA_AGGREGATE_TARGET.

Example 7-9 Querying V$PGA_TARGET_ADVICE_HISTOGRAM

The following query displays the predicted content of V$SQL_WORKAREA Hl STOGRAM
for a value of the initialization parameter PGA_AGGREGATE_TARGET set to twice its
current value.

SELECT LOW OPTI MAL_SI ZE/ 1024 | ow_kb, (H GH_OPTI MAL_SI ZE+1)/ 1024 hi gh_kb,
estd_optimal _executions estd_opt_cnt,
estd_onepass_executions estd_onepass_cnt,
estd_nul ti passes_executions estd_npass_cnt
FROM v$pga_t ar get _advi ce_hi st ogram
VWHERE pga_target factor = 2
AND estd_total _executions !'=0
ORDER BY 1;

The output of this query might look like the following.
LONKB HGH KB ESTD OPTIMAL_CNT ESTD ONEPASS ONT ESTD MPASS CNT

8 16 156107 0 0

16 32 148 0 0
32 64 89 0 0
64 128 13 0 0
128 256 58 0 0
256 512 10 0 0
512 1024 653 0 0
1024 2048 530 0 0
2048 4096 509 0 0

7-52 Oracle Database Performance Tuning Guide

Managing the Server and Client Result Caches

4096 8192 227 0 0
8192 16384 176 0 0
16384 32768 133 16 0
32768 65536 66 103 0
65536 131072 15 47 0
131072 262144 0 48 0
262144 524288 0 23 0

The output shows that increasing PGA_AGGREGATE_TARGET by a factor of 2 will
allow all work areas under 16 MB to execute in optimal mode.

See Also: Oracle Database Reference

V$SYSSTAT and VSSESSTAT

Statistics in the VESYSSTAT and V$SESSTAT views show the total number of work
areas executed with optimal memory size, one-pass memory size, and multi-pass
memory size. These statistics are cumulative since the instance or the session was
started.

The following query gives the total number and the percentage of times work areas
were executed in these three modes since the instance was started:

SELECT nane profile, cnt, decode(total, 0, 0, round(cnt*100/total)) percentage
FROM (SELECT name, val ue cnt, (sum{value) over ()) total
FROM V$SYSSTAT
WHERE name |ike 'workarea exec%);

The output of this query might look like the following:

PROFI LE CNT PERCENTAGE
wor karea executions - optimal 5395 95
wor karea executions - onepass 284 5
wor karea executions - nultipass 0 0

Configuring OLAP_PAGE_POOL_SIZE

The OLAP_PAGE_POOL_SI ZE initialization parameter specifies (in bytes) the
maximum size of the paging cache to be allocated to an OLAP session.

For performance reasons, it is usually preferable to configure a small OLAP paging
cache and set a larger default buffer pool with DB_CACHE_SI ZE. An OLAP paging
cache of 4 MB is fairly typical, with 2 MB used for systems with limited memory.

See Also: Oracle OLAP User’s Guide

Managing the Server and Client Result Caches

A result cache is an area of memory, either in the SGA or client application memory,
that stores the result of a database query or query block for reuse. The cached rows are
shared across statements and sessions unless they become stale.

This section contains the following topics:

= Managing the Server Result Cache

= Managing the Client Result Cache

= Managing Memory for the Server Result Cache
= Specifying Queries for Result Caching

Configuring and Using Memory 7-53

Managing the Server and Client Result Caches

s Requirements for the Result Cache

» Accessing Result Cache Information

Managing the Server Result Cache

The server result cache is a memory pool within the shared pool. This pool contains a
SQL query result cache, which stores results of SQL queries, and a PL/SQL function
result cache, which stores values returned by PL/SQL functions.

OLAP applications can benefit significantly from the use of the server result cache. The
benefits highly depend on the application. Good candidates for caching are queries
that access a high number of rows but return a small number, as in a data warehouse.
For example, you can use advanced query rewrite with equivalences to create
materialized views that materialize queries in the result cache instead of using tables.

See Also:

s Oracle Database Concepts for a conceptual overview of the server
result cache

» Oracle Database PL/SQL Language Reference to learn how to use the
PL/SQL function result cache

» Oracle Database Data Warehousing Guide for examples of how to use
the result cache and advance query rewrite with equivalences

How the Server Result Cache Works

When a query executes, the database looks in the cache memory to determine whether
the result exists in the cache. If the result exists, then the database retrieves the result
from memory instead of executing the query. If the result is not cached, then the
database executes the query, returns the result as output, and stores the result in the
result cache.

When users execute queries and functions repeatedly, the database retrieves rows from
the cache, decreasing response time. Cached results become invalid when data in
dependent database objects is modified.

Example 7-10 queries hr . enpl oyees and uses the RESULT_CACHE hint to retrieve
rows from the server result cache. Example 7-10 includes a portion of the execution
plan, which shows that in step 1 the results are retrieved directly from the cache. The
value in the Nanme column is the cache ID of the result.

Example 7-10 Using the RESULT_CACHE Hint in a Query

SELECT /*+ RESULT_CACHE */ departnent_id, AVG salary)
FROM hr. enpl oyees
CGROUP BY department _id;

| 1d | Operation | Name | Rows
| 0| SELECT STATEMENT | | 11
| 1| RESULT CACHE | 8f pzaO4gt wsfr6n595aulbyj 4y |

| 2] HASH GROUP BY | | 11
| 3] TABLE ACCESS FULL| EMPLOYEES | 107

7-54 Oracle Database Performance Tuning Guide

Managing the Server and Client Result Caches

As shown in Example 7-11, after the query is executed you can obtain detailed
statistics about the cached result by querying VSRESULT_CACHE_OBJECTS, where the
cache ID obtained from the explain plan is equal to the CACHE_| Dvalue.

Example 7-11 Querying Statistics for Cached Results
SELECT ID, TYPE, CREATI ON_TI MESTAMP, BLOCK_COUNT, COLUMN_COUNT,

PI'N_COUNT, ROW COUNT

FROM V$RESULT_CACHE_OBJECTS
WHERE CACHE I D = ' 8f pza04gt wsfr 6n595aulbyj 4y" ;

I D TYPE CREATI ON_ BLOCK_COUNT CCOLUMN_COUNT PI'N_COUNT ROW COUNT

2 Resul't 06- MAR- 09 1 2 0 12

Example 7-12 uses the RESULT_CACHE hint within a W TH clause view. The example
shows a portion of the execution plan. In step 3, the RESULT CACHE Operation
indicates that the sunmar y view results are retrieved directly from the cache.

Example 7-12 Using the RESULT_CACHE Hint in a WITH Clause View

W TH summary AS

(SELECT /*+ RESULT_CACHE */ departnent _id, avg(salary) avg_sal
FROM hr. enpl oyees
GROUP BY department _id)

SELECT d.*, avg_sal

FROM hr.departments d, summary s
WHERE d. departnent_id = s.departnent _id,;

| Id | Operation | Nane | Rows | Bytes | Cost (%CPU)| Tine |
| 0| SELECT STATEMENT | | 11| 517 | 7 (29)| 00:00:01 |
[* 1| HASHJAN | | 11| 517 | 7 (29)| 00:00:01 |
2	VEW		11] 286	4 (25)] 00:00:01		
3] RESULT CACHE	8nknvkh64ct nz94asnuf 2t yb8r					
4 HASH GROUP BY		11	77	4 (25)	00:00:01	
5	TABLE ACCESS FULL	EMPLOYEES	107	749	3 (0)	00:00:01
6] TABLE ACCESS FULL	DEPARTMENTS	27	567	2 (0)	00:00:01	

Server Result Cache Initialization Parameters
The following database initialization parameters control the server result cache:

RESULT_CACHE_MAX_SI ZE

This parameter sets the memory allocated to the server result cache. The server
result cache is enabled unless you set this parameter to 0, in which case the cache
is disabled.

RESULT_CACHE_MAX_RESULT

This parameter sets the maximum amount of server result cache memory that can
be used for a single result. The default is 5%, but you can specify any percentage
value between 1 and 100. You can set this parameter at the system or session
level.

Configuring and Using Memory 7-55

Managing the Server and Client Result Caches

s RESULT_CACHE_REMOTE_EXPI RATI ON

This parameter specifies the expiration time for a result in the server result cache
that depends on remote database objects. The default value is O minutes, which
implies that results using remote objects should not be cached.

Note: When you use a non zero value for this parameter, DML on
the remote database does not invalidate the server result cache.

See Also: Oracle Database Reference for details about the server
result cache initialization parameters

Managing Memory for the Server Result Cache

You can manage memory for the server result cache by setting database initialization
parameters and by using the DBM5_RESULT_CACHE package.

Managing Server Result Cache Memory with Initialization Parameters By default, on database
startup, Oracle Database allocates memory to the server result cache in the shared
pool. The memory size allocated depends on the memory size of the shared pool and
the memory management system. The database uses the following algorithm:

s When using the MEMORY_TARCET initialization parameter to specify the memory
allocation, Oracle Database allocates 0.25% of MEMORY_TARGET to the result cache.

= When you set the size of the shared pool using the SGA_TARGCET initialization
parameter, Oracle Database allocates 0.50% of SGA_TARGET to the result cache.

= If you specify the size of the shared pool using the SHARED POOL_S| ZE
initialization parameter, then Oracle Database allocates 1% of the shared pool size
to the result cache.

The size of the server result cache grows until reaching the maximum size. Query
results larger than the available space in the cache are not cached. The database
employs an LRU algorithm to age out cached results, but does not otherwise
automatically release memory from the server result cache. You can use the
DBM5_RESULT_CACHE. FLUSH procedure to purge memory.

You can change the memory allocated to the result cache by setting the
RESULT_CACHE_MAX_SI ZE initialization parameter. In an Oracle RAC environment,
the result cache itself is specific to each instance and can be sized differently on each
instance. However, invalidations work across instances. To disable the server result
cache in a cluster, you must explicitly set this parameter to O for each instance startup.

Note: Oracle Database will not allocate more than 75% of the shared
pool to the server result cache.

Managing Server Result Cache Memory with DBMS_RESULT_CACHE The
DBMS_RESULT_CACHE package provides statistics, information, and operators that
enable you to manage memory allocation for the server result cache. You can use the
DBMS_RESULT_CACHE package to perform operations such as bypassing the cache,
retrieving statistics on the cache memory usage, flushing the cache, and so on.

For example, use the following SQL procedure to view the memory allocation statistics
for the result cache:

SQLSET SERVERQUTPUT ON

7-56 Oracle Database Performance Tuning Guide

Managing the Server and Client Result Caches

EXECUTE DBM5_RESULT_CACHE. MEMCRY_REPORT

The output of this command will be similar to the following:

Result Cache Memory Report
[Paramet er s]
Bl ock Size = 1024 bytes
Maxi mum Cache Size = 950272 bytes (928 bl ocks)
Maxi mum Result Size = 47104 bytes (46 bl ocks)
[Menory]
Total Menory = 46340 bytes [0.048% of the Shared Pool]
Fi xed Memory = 10696 bytes [0.011% of the Shared Pool]
. State bject Pool = 2852 bytes [0.003% of the Shared Pool]
. Cache Menory = 32792 bytes (32 bl ocks) [0.034% of the Shared Pool]
....... Unused Menory = 30 bl ocks
....... Used Menory = 2 bl ocks
........... Dependenci es = 1 bl ocks
........... Results = 1 bl ocks
............... SQ = 1 bl ocks

PL/ SQL procedure successful Iy conpl eted.

To remove all existing results and clear the result cache memory, use the command:

EXECUTE DBM5S_RESULT_CACHE. FLUSH

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information on the DBM5_RESULT_CACHE package

Managing the Client Result Cache

The Oracle Call Interface (OCI) client result cache is a memory area inside a client
process that caches SQL query result sets for OCI applications. This client cache exists
for each client process and is shared by all sessions inside the process. Oracle Database
recommends client result caching for queries of read-only or read-mostly tables.

Note: The client result cache is distinct from the server result cache,
which resides in the SGA. When client result caching is enabled, the
query result set can be cached on the client, server, or both. Client
caching can be enabled even if the server result cache is disabled.

OClI drivers such as OCCI, the JDBC OCI driver, and ODP.NET support client result
caching. Performance benefits of the client result cache include:

s Reduced query response time

When queries are executed repeatedly, the application retrieves results directly
from the client cache memory, resulting in faster query response time.

s More efficient use of database resources

The reduction in server round trips can result in huge performance savings for
server resources, for example, server CPU and I/O. These resources are freed for
other tasks, thereby making the server more scalable.

= Reduced memory cost

The cache uses client memory that may be cheaper than server memory.

Configuring and Using Memory 7-57

Managing the Server and Client Result Caches

How the Client Result Cache Works

The client result cache stores the results of the outermost query, which are the columns
defined by the OCI application. Subqueries and query blocks are not cached.

Figure 7—4 shows a client process with a database login session. This client process has
one client result cache shared among multiple application sessions running in the
client process. If the first application session runs a query, then it retrieves rows from
the database and caches them in the client result cache. If other application sessions
run the same query, then they also retrieve rows from the client result cache.

Figure 7-4 Client Result Cache

Client Server

Client Process
Client Result Cache

SELECT department_id <

FROM departments Result
o Set
Application

Keeps
Session Consistent
T T ST S Ss s | 10,20,30,40,.. | Database
Application
Session A

SELECT department_id <
FROM departments B

The client result cache transparently keeps the result set consistent with session state
or database changes that affect it. When a transaction changes the data or metadata of
database objects used to build the cached result, the database sends an invalidation to
the OCI client on its next round trip to the server.

See Also: Oracle Call Interface Programmer’s Guide for details about
the client result cache

Client Result Cache Initialization Parameters

Table 7—4 lists the database initialization parameters that enable or influence the
behavior of the client result cache.

Table 7-4 Client Result Cache Initialization Parameters

Initialization Parameter Description

CLI ENT_RESULT_CACHE_SI ZE | Sets the maximum size of the client result cache for each
client process. To enable the client result cache, set the size
to 32768 bytes or greater. A lesser value, including the
default of 0, disables the client result cache.

Note: If the CLI ENT_RESULT_CACHE_SI ZE setting
disables the client cache, then a client node cannot enable
it. If the CLI ENT_RESULT_CACHE_SI ZE setting enables
the client cache, however, then a client node can override
the setting. For example, a client node can disable client
result caching or increase the size of its cache.

7-58 Oracle Database Performance Tuning Guide

Managing the Server and Client Result Caches

Table 7-4 (Cont.) Client Result Cache Initialization Parameters

Initialization Parameter Description

CLI ENT_RESULT_CACHE _LAG | Specifies the amount of lag time for the client result cache.

If the OCI application performs no database calls for a
period, then the client cache lag setting forces the next
statement execution call to check for validations.

If the OCI application accesses the database infrequently,
then setting this parameter to a low value results in more
round trips from the OCI client to the database to keep the
client result cache synchronized with the database. The
client cache lag is specified in milliseconds, with a default
value of 3000 (3 seconds).

COVPATI BLE

Specifies the release with which Oracle Database must
maintain compatibility. For the client result cache to be
enabled, this parameter mustbe set to 11. 0. 0. 0 or higher.
For client caching on views, this parameter must be set to
11.2.0. 0. 0 or higher.

For the client result cache, an optional client configuration file overrides cache
parameters set in the server parameter file. Note that you can only set the client result
cache lag with a database initialization parameter.

See Also:

Oracle Database Reference for details about the client result cache
initialization parameters

Oracle Call Interface Programmer’s Guide for parameters that you
can set in a client configuration file

Specifying Queries for Result Caching

If the server or client result cache is enabled, then Oracle Database gives you control
over which queries are eligible to be cached.

About the Result Cache Mode

The result cache mode is a database setting that determines which queries are eligible
to store result sets in the client and server result caches. Oracle Database recommends
that applications cache results for queries of read-only or read-mostly database objects.

The RESULT_CACHE MODE initialization parameter determines the result cache
behavior. Table 7-5 describes the possible values for this initialization parameter.

Table 7-5 Values for the RESULT_CACHE_MODE Initialization Parameter

Value Default | Description

MANUAL | Yes Query results can only be stored in the result cache by using a query hint
or table annotation. This is the recommended value.

FORCE | No All results are stored in the result cache. If a query result is not in the

cache, then the database executes the query and stores the result in the
cache. Subsequent executions of the same statement, including the result
cache hint, retrieve data from the cache.

Sessions uses these results if possible. To exclude query results from the
cache, you must use the/ *+ NO _RESULT_CACHE */ query hint.

Note: FORCE mode is not recommended because the database and clients
attempt to cache all queries, which can create significant performance
and latching overhead.

Configuring and Using Memory 7-59

Managing the Server and Client Result Caches

You can set the RESULT_CACHE_MCODE initialization parameter for the instance (ALTER
SYSTEM), session (ALTER SESSI ON), or in the server parameter file.

If a query is eligible for caching, then the application checks the result cache to
determine whether the query result set exists in the cache. If it exists, then the result is
retrieved directly from the result cache. Otherwise, the database executes the query
and returns the result as output and stores it in the result cache.

See Also: Oracle Database Reference to learn about the
RESULT_CACHE_MODE initialization parameter

Using SQL Result Cache Hints

You can use result cache hints at the application level to control caching behavior. The
SQL result cache hints take precedence over the result cache mode and result cache
table annotations.

When the result cache mode is MANUAL, the / *+ RESULT_CACHE */ hint instructs
the database to cache the results of a query block and to use the cached results in
future executions. Example 7-13 instructs the database to cache rows for a query of the
sal es table.

Example 7-13 RESULT_CACHE Hint

SELECT /*+ RESULT_CACHE */ prod_id, SUM amount_sol d)
FROM sal es

CGROUP BY prod_id

ORDER BY prod_i d;

The/*+ NO _RESULT_CACHE */ hint instructs the database not to cache the results in
either the server or client result caches. Example 7-14 instructs the database not to
cache rows for a query of the sal es table.

Example 7-14 NO_RESULT_CACHE Hint

SELECT /*+ NO_RESULT_CACHE */ prod_id, SUMamount_sol d)
FROM sal es

GROUP BY prod_id

ORDER BY prod_i d;

RESULT_CACHE Hint in Query Blocks: Example The RESULT_CACHE hint applies only to
the query block in which the hint is specified. If the hint is specified only in a view,
then only these results are cached. Note the following characteristics of view caching:

s The view must be a standard view (a view created with the CREATE ... VIEW
statement), an inline view specified in the FROMclause of a SELECT statement, or
an inline view created with the W TH clause.

s The result of a view query with a correlated column, which is a reference to an
outer query block, cannot be cached.

= Query results are stored in the server result cache, not the client result cache.

= A caching view is not merged into its outer (or referring) query block. Adding the
RESULT_CACHE hint to inline views disables optimizations between the outer
query and inline view to maximize reusability of the cached result.

Example 7-15 queries the inline view vi ewl. The SELECT from vi ewl is the outer
block, whereas the SELECT from enpl oyees is the inner block. Because the
RESULT_CACHE hint is specified only in the inner block, the results of the outer query
are not cached. The results of the inner query are stored in the server result cache.

7-60 Oracle Database Performance Tuning Guide

Managing the Server and Client Result Caches

Example 7-15 RESULT_CACHE Hint Specified in Inline View

SELECT *

FROM (SELECT /*+ RESULT_CACHE */ departnent _id, manager_id, count(*) count
FROM hr. enpl oyees
GROUP BY department _id, manager_id) viewl

WHERE department _id = 30;

Assume that the same session runs the statement in Example 7-16. This statement
queries vi ew2. Because the RESULT_CACHE hint is specified only in the query block in
the W TH clause, the results of the enpl oyees query are eligible to be cached. Because
Example 7-15 cached these results, the SELECT statement in the W TH clause in
Example 7-16 can retrieve the cached rows.

Example 7-16 RESULT_CACHE Hint Specified in WITH View

WTH view2 AS

(SELECT /*+ RESULT_CACHE */ department _id, manager _id, count(*) count
FROM hr . enpl oyees
CGROUP BY departnent _id, manager_id)

SELECT *

FROM view2

VWHERE count BETWEEN 1 and 5;

See Also: Oracle Database SQL Language Reference to learn about
the RESULT_CACHE and NO_RESULT_ CACHE hints

Using Result Cache Table Annotations

You can use table annotations to control result caching. Table annotations are in effect
only for the whole query, not for query segments. The primary benefit of these
annotations is avoiding the necessity of adding result cache hints to queries at the
application level.

A table annotation has a lower precedence than a SQL hint. Thus, you can override
table and session settings by using hints at the query level. Permitted values for the
RESULT_CACHE table annotation are as follows:

= DEFAULT

If at least one table in a query is set to DEFAULT, then result caching is not enabled
at the table level for this query, unless the RESULT_CACHE_MCDE initialization
parameter is set to FORCE or the RESULT_CACHE hint is specified. This is the
default value.

= FORCE

If all the tables of a query are marked as FORCE, then the query result is
considered for caching. The table annotation FORCE takes precedence over the
RESULT_CACHE_MCODE parameter value of MANUAL set at the session level.

Example 7-17 shows the creation of the sal es table with a table annotation that
disables result caching. The example also shows a query of sal es, whose results are
not considered for caching because of the table annotation.

Example 7-17 DEFAULT Table Annotation
CREATE TABLE sales (...) RESULT_CACHE (MODE DEFAULT);

SELECT prod_id, SUMamount_sol d)

FROM sal es
GROUP BY prod_id

Configuring and Using Memory 7-61

Managing the Server and Client Result Caches

ORDER BY prod_i d;

Assume that later you decide to force result caching for the sal es table as shown in
Example 7-18. This example includes two queries of sal es. The first query, which is
frequently used and returns few rows, is eligible for caching because of the table
annotation. The second query, which is a one-time query that returns many rows, uses
a hint to prevent result caching.

Example 7-18 FORCE Table Annotation
ALTER TABLE sal es RESULT_CACHE (MODE FORCE);
SELECT prod_id, SUMamount_sol d)

FROM sal es

GROUP BY prod_id
HAVING prod_i d=136;

SELECT /*+ NO RESULT CACHE */ *
FROM sal es
ORDER BY tine_id DESC

See Also: Oracle Database SQL Language Reference for CREATE
TABLE syntax and semantics

Requirements for the Result Cache

If you enable the result cache, then this setting does not guarantee that a specific result
set will be included in the client or server cache.

Read Consistency Requirements for the Result Cache

For a snapshot to be reusable, it must have read consistency. One of the following
statements must be true for a result set to be eligible to be cached:

» The read-consistent snapshot used to build the result must retrieve the most
current committed state of the data.

s The query points to an explicit point in time using flashback query.

If the current session has an active transaction referencing objects in a query, then the
results from this query are not eligible for caching.

Additional Requirements for the Result Cache
You cannot cache results when the following objects or functions are in a query:

s Temporary tables and tables in the SYS or SYSTEMschemas
= Sequence CURRVAL and NEXTVAL pseudo columns

= SQL functions CURRENT_DATE, CURRENT_TI MESTAMP, LOCAL_TI MESTAMP,
USERENV/ SYS_CONTEXT (with non-constant variables), SYS_GUI D, SYSDATE,
and SYS_TI MESTAMP

The client result cache has additional limitations for result caching. Refer to Oracle Call
Interface Programmer’s Guide for details.

Query Parameter Requirements for the Result Cache

Cache results can be reused when they are parameterized with variable values when
queries are equivalent and the parameter values are the same. Different values or bind

7-62 Oracle Database Performance Tuning Guide

Managing the Server and Client Result Caches

variable names may cause cache misses. Results are parameterized if any of the
following constructs are used in the query:

s Bind variables

s The SQL functions DBTI MEZONE, SESSI ONTI MEZONE, USERENV/ SYS_CONTEXT
(with constant variables), Ul D, and USER

s NLS parameters

Accessing Result Cache Information

You can query database views and tables to obtain information about the server and
client result caches. Table 7-6 describes the most useful views and tables. The
description column specifies the result cache to which they are applicable.

Table 7-6 Views and Tables Related to the Server and Client Result Caches

View/Table

Description

V$RESULT_CACHE_STATI STI CS

Lists various server result cache settings and memory
usage statistics.

V$RESULT_CACHE_MEMORY

Lists all the memory blocks in the server result cache and
their corresponding statistics.

V$RESULT_CACHE_OBJECTS

Lists all the objects whose results are in the server result
cache along with their attributes.

V$RESULT_CACHE_DEPENDENCY

Lists the dependency details between the results in the
server cache and dependencies among these results.

CLI ENT_RESULT_CACHE_STATS$

Stores cache settings and memory usage statistics for the
client result caches obtained from the OCI client
processes. This statistics table has entries for each client
process that is using result caching. After the client
processes terminate, the database removes their entries
from this table. The client table lists information similar
to VBRESULT_CACHE_STATI STI CS.

See Also: Oracle Database Reference for details about
CLI ENT_RESULT_CACHE_STATS$

DBA_TABLES, USER _TABLES,
ALL_TABLES

Includes a RESULT_CACHE column that shows the result
cache mode annotation for the table. If the table has not
been annotated, then this column shows DEFAULT. This
column applies to both server and client result caching.

The following sample query monitors the server result cache statistics (sample output

included):

COLUWN NAME FORMAT A20
SELECT NAME, VALUE

FROM V$RESULT_CACHE_STATI STI CS;

NAVE VALUE
Bl ock Size (Bytes) 1024
Bl ock Count Maxi mum 3136
Bl ock Count Current 32
Result Size Maximum (Bl ocks) 156
Create Count Success 2
Create Count Failure 0
Fi nd Count 0
I nval i dation Count 0

Configuring and Using Memory 7-63

Managing the Server and Client Result Caches

Del ete Count Invalid 0
Del ete Count Valid 0

The following sample query monitors the client result cache statistics (sample output
included):

SELECT STAT_ID, SUBSTR(NAME, 1,20), VALUE, CACHE ID
FROM CLI ENT_RESULT CACHE STATS$
ORDER BY CACHE ID, STAT ID;

STAT_ID NAME OF STATI STI CS VALUE CACHE ID
1 Bl ock Size 256 124
2 Bl ock Count Max 256 124
3 Bl ock Count Current 128 124
4 Hash Bucket Count 1024 124
5 Create Count Success 10 124
6 Create Count Failure 0 124
7 Fi nd Count 12 124
8 I nval i dation Count 8 124
9 Del ete Count Invalid 0 124

10 Del ete Count Valid 0 124

The CLI ENT_RESULT_CACHE_STATSS$ table has statistics entries for each active client
process performing client result caching. Every client process has a unique cache ID.
To find the client connection information (for example, process IDs) for the sessions
performing client caching, do the following:

= Obtain the session IDs from GV$SESSI ON_CONNECT_| NFOfor the
CLI ENT_REQ Dthat exists in CLI ENT_RESULT_CACHE STATSS$ (the column
name is CACHE_| D)

= Query the relevant columns from GV$SESSI ON_CONNECT _| NFOand
GV$SESSI ON

For both client and server result cache statistics, a database that makes good use of
result caching should show relatively low values for Cr eat e Count Fai | ure and
Del ete Count Val i d, while showing relatively high values for Fi nd Count .

See Also: Oracle Database Reference for details about these views

7-64 Oracle Database Performance Tuning Guide

8

About I/0

/O Configuration and Design

The I/0O subsystem is a vital component of an Oracle database. This chapter introduces
fundamental I/O concepts, discusses the I/O requirements of different parts of the
database, and provides sample configurations for I/O subsystem design.

This chapter includes the following topics:

= Aboutl/O

s I/O Configuration

= [/O Calibration Inside the Database

s I/0O Calibration with the Oracle Orion Calibration Tool

Every Oracle Database reads or write data on disk, the database generates disk I/O.
The performance of many software applications is inherently limited by disk I/O.
Applications that spend the majority of CPU time waiting for I/O activity to complete
are said to be I/O-bound.

Oracle Database is designed so that if an application is well written, its performance
should not be limited by I/O. Tuning I/O can enhance the performance of the
application if the I/O system is operating at or near capacity and is not able to service
the I/O requests within an acceptable time. However, tuning I/O cannot help
performance if the application is not I/ O-bound (for example, when CPU is the
limiting factor).

Consider the following database requirements when designing an 1/0O system:
= Storage, such as minimum disk capacity

= Availability, such as continuous (24 x 7) or business hours only

s Performance, such as I/O throughput and application response times

Many I/O designs plan for storage and availability requirements with the assumption
that performance will not be an issue. This is not always the case. Optimally, the
number of disks and controllers to be configured should be determined by I/O
throughput and redundancy requirements. The size of disks can then be determined
by the storage requirements.

When developing an I/O design plan, consider using Oracle Automatic Storage
Management (Oracle ASM). Oracle ASM is an integrated, high-performance database
file system and disk manager that is based on the principle that the database should
manage storage instead of requiring an administrator to do it.

1/0 Configuration and Design 8-1

I/0O Configuration

Oracle recommends that you use Oracle ASM for your database file storage, instead of
raw devices or the operating system file system. Oracle ASM provides the following
key benefits:

= Striping
= Mirroring
= Online storage reconfiguration and dynamic rebalancing

= Managed file creation and deletion

See Also: Oracle Automatic Storage Management Administrator’s Guide
for additional information about Oracle ASM

I/0 Configuration

This section describes the basic information to be gathered and decisions to be made
when defining a system's I/O configuration. You want to keep the configuration as
simple as possible, while maintaining the required availability, recoverability, and
performance. The more complex a configuration becomes, the more difficult it is to
administer, maintain, and tune.

This section contains the following topics:

s Lay Out the Files Using Operating System or Hardware Striping
= Manually Distributing 1/0

= When to Separate Files

s Three Sample Configurations

= Oracle Managed Files

s Choosing Data Block Size

Lay Out the Files Using Operating System or Hardware Striping

If your operating system has LVM software or hardware-based striping, then it is
possible to distribute I/O using these tools. Decisions to be made when using an
LVM or hardware striping include stripe depth and stripe width.

» Stripe depth is the size of the stripe, sometimes called stripe unit.

s Stripe width is the product of the stripe depth and the number of drives in the
striped set.

Choose these values wisely so that the system is capable of sustaining the required
throughput. For an Oracle database, reasonable stripe depths range from 256 KB to 1
MB. Different types of applications benefit from different stripe depths. The optimal
stripe depth and stripe width depend on the following;:

s Requested I/O Size
s Concurrency of I/O Requests
= Alignment of Physical Stripe Boundaries with Block Size Boundaries

= Manageability of the Proposed System
Requested I/0 Size

Table 8-1 lists the Oracle Database and operating system parameters that you can use
to set I/O size:

8-2 Oracle Database Performance Tuning Guide

I/0 Configuration

Table 8-1 Oracle Database and Operating System Operational Parameters

Parameter Description

DB_BLOCK_SI ZE The size of single-block I/O requests. This parameter is also
used in combination with multiblock parameters to determine
multiblock I/O request size.

OS block size Determines I/O size for redo log and archive log operations.
Maximum OS I/0O size Places an upper bound on the size of a single I/O request.

DB_FI LE_MULTI BLOCK_R The maximum I/O size for full table scans is computed by

EAD_COUNT multiplying this parameter with DB_BLOCK_SI ZE. (the upper
value is subject to operating system limits). If this value is not
set explicitly (or is set to 0), the default value corresponds to
the maximum I/O size that can be efficiently performed and is
platform-dependent.

SORT_AREA_SI ZE Determines I/O sizes and concurrency for sort operations.
HASH_AREA_SI ZE Determines the I/O size for hash operations.

In addition to I/O size, the degree of concurrency also helps in determining the ideal
stripe depth. Consider the following when choosing stripe width and stripe depth:

= On low-concurrency (sequential) systems, ensure that no single I/O visits the
same disk twice. For example, assume that the stripe width is four disks, and the
stripe depth is 32K. If a single 1MB I/O request (for example, for a full table scan)
is issued by an Oracle server process, then each disk in the stripe must perform
eight I/Os to return the requested data. To avoid this situation, the size of the
average I/0O should be smaller than the stripe width multiplied by the stripe
depth. If this is not the case, then a single I/O request made by Oracle Database to
the operating system results in multiple physical I/O requests to the same disk.

= On high-concurrency (random) systems, ensure that no single I/O request is
broken up into multiple physical I/O calls. Failing to do this multiplies the
number of physical I/O requests performed in your system, which in turn can
severely degrade the I/O response times.

Concurrency of 1/0 Requests

In a system with a high degree of concurrent small I/O requests, such as in a
traditional OLTP environment, it is beneficial to keep the stripe depth large. Using
stripe depths larger than the I/O size is called coarse grain striping. In
high-concurrency systems, the stripe depth can be as follows, where n > 1:

n * DB_BLOCK SIZE

Coarse grain striping allows a disk in the array to service several I/O requests. In this
way, a large number of concurrent I/O requests can be serviced by a set of striped
disks with minimal I/O setup costs. Coarse grain striping strives to maximize overall
I/0 throughput. Multiblock reads, as in full table scans, will benefit when stripe
depths are large and can be serviced from one drive. Parallel query in a data
warehouse environment is also a candidate for coarse grain striping because many
individual processes each issue separate 1/Os. If coarse grain striping is used in
systems that do not have high concurrent requests, then hot spots could result.

In a system with a few large I/O requests, such as in a traditional DSS environment or
a low-concurrency OLTP system, then it is beneficial to keep the stripe depth small.
This is called fine grain striping. In such systems, the stripe depth is as follows, where

1/0 Configuration and Design 8-3

I/0O Configuration

n is smaller than the multiblock read parameters, such as
DB_FI LE MJULTI BLOCK _READ COUNT:

n * DB_BLOCK SIZE

Fine grain striping allows a single I/O request to be serviced by multiple disks. Fine
grain striping strives to maximize performance for individual I/O requests or
response time.

Alignment of Physical Stripe Boundaries with Block Size Boundaries

On some Oracle Database ports, a database block boundary may not align with the
stripe. If your stripe depth is the same size as the database block, then a single I/O
issued by Oracle Database may result in two physical I/O operations.

This is not optimal in an OLTP environment. To ensure a higher probability of one
logical I/O resulting in no more than one physical I/O, the minimum stripe depth
should be at least twice the Oracle block size. Table 8-2 shows recommended
minimum stripe depth for random access and for sequential reads.

Table 8-2 Minimum Stripe Depth

Disk Access Minimum Stripe Depth

Random reads and writes The minimum stripe depth is twice the Oracle block size.

Sequential reads The minimum stripe depth is twice the value of
DB_FI LE_MJLTI BLOCK_READ_COUNT, multiplied by the
Oracle block size.

See Also: The specific documentation for your platform

Manageability of the Proposed System

With an LVM, the simplest configuration to manage is one with a single striped
volume over all available disks. In this case, the stripe width encompasses all available
disks. All database files reside within that volume, effectively distributing the load
evenly. This single-volume layout provides adequate performance in most situations.

A single-volume configuration is viable only when used in conjunction with RAID
technology that allows easy recoverability, such as RAID 1. Otherwise, losing a single
disk means losing all files concurrently and, hence, performing a full database restore
and recovery.

In addition to performance, there is a manageability concern: the design of the system
must allow disks to be added simply, to allow for database growth. The challenge is to
do so while keeping the load balanced evenly.

For example, an initial configuration can involve the creation of a single striped
volume over 64 disks, each disk being 16 GB. This is total disk space of 1 terabyte (TB)
for the primary data. Sometime after the system is operational, an additional 80 GB
(that is, five disks) must be added to account for future database growth.

The options for making this space available to the database include creating a second
volume that includes the five new disks. However, an I/O bottleneck might develop, if
these new disks are unable to sustain the I/O throughput required for the files placed
on them.

Another option is to increase the size of the original volume. LVMs are becoming
sophisticated enough to allow dynamic reconfiguration of the stripe width, which

8-4 Oracle Database Performance Tuning Guide

I/0 Configuration

allows disks to be added while the system is online. This begins to make the placement
of all files on a single striped volume feasible in a production environment.

If your LVM cannot support dynamically adding disks to the stripe, then it is likely
that you need to choose a smaller, more manageable stripe width. Then, when new
disks are added, the system can grow by a stripe width.

In the preceding example, eight disks might be a more manageable stripe width. This
is only feasible if eight disks are capable of sustaining the required number of I/Os
each second. Thus, when extra disk space is required, another eight-disk stripe can be
added, keeping the I/O balanced across the volumes.

Note: The smaller the stripe width becomes, the more likely it is
that you will need to spend time distributing the files on the
volumes, and the closer the procedure becomes to manually
distributing I/0.

Manually Distributing I/O

If your system does not have an LVM or hardware striping, then I/O must be
manually balanced across the available disks by distributing the files according to each
file's I/O requirements. In order to make decisions on file placement, you should be
familiar with the I/O requirements of the database files and the capabilities of the I/O
system. If you are not familiar with this data and do not have a representative
workload to analyze, you can make a first guess and then tune the layout as the usage
becomes known.

To stripe disks manually, you need to relate a file's storage requirements to its I/O
requirements.

1. Evaluate database disk-storage requirements by checking the size of the files and
the disks.

2. Identify the expected I/O throughput for each file. Determine which files have the
highest I/O rate and which do not have many I/Os. Lay out the files on all the
available disks so as to even out the I/O rate.

One popular approach to manual I/O distribution suggests separating a frequently
used table from its index. This is not correct. During the course of a transaction, the
index is read first, and then the table is read. Because these 1/Os occur sequentially, the
table and index can be stored on the same disk without contention. It is not sufficient
to separate a data file simply because the data file contains indexes or table data. The
decision to segregate a file should be made only when the I/O rate for that file affects
database performance.

When to Separate Files

Regardless of whether you use operating system striping or manual I/O distribution,
if the I/O system or I/O layout is not able to support the I/O rate required, then you
need to separate files with high I/O rates from the remaining files. You can identify
such files either at the planning stage or after the system is live.

The decision to segregate files should only be driven by I/O rates, recoverability
concerns, or manageability issues. (For example, if your LVM does not support
dynamic reconfiguration of stripe width, then you might need to create smaller stripe
widths to be able to add # disks at a time to create a new stripe of identical
configuration.)

I/0 Configuration and Design 8-5

I/0O Configuration

Before segregating files, verify that the bottleneck is truly an I/O issue. The data
produced from investigating the bottleneck identifies which files have the highest I/O
rates.

The following sections describe how to segregate the following file types:
n Tables, Indexes, and TEMP Tablespaces

= Redo Log Files

s Archived Redo Logs

See Also: "lIdentifying High-Load SQL" on page 16-2

Tables, Indexes, and TEMP Tablespaces

If the files with high I/O are data files belonging to tablespaces that contain tables and
indexes, then identify whether the I/O for those files can be reduced by tuning SQL or
application code.

If the files with high-I/O are data files that belong to the TEMP tablespace, then
investigate whether to tune the SQL statements performing disk sorts to avoid this
activity, or to tune the sorting.

After the application has been tuned to avoid unnecessary 1/0, if the I/O layout is still
not able to sustain the required throughput, then consider segregating the high-1/O
files.

See Also: "Identifying High-Load SQL" on page 16-2

Redo Log Files

If the high-I/O files are redo log files, then consider splitting the redo log files from the
other files. Possible configurations can include the following;:

= Placing all redo logs on one disk without any other files. Also consider availability;
members of the same group should be on different physical disks and controllers
for recoverability purposes.

= Placing each redo log group on a separate disk that does not store any other files.

= Striping the redo log files across several disks, using an operating system striping
tool. (Manual striping is not possible in this situation.)

= Avoiding the use of RAID 5 for redo logs.

Redo log files are written sequentially by the Log Writer (LGWR) process. This
operation can be made faster if there is no concurrent activity on the same disk.
Dedicating a separate disk to redo log files usually ensures that LGWR runs smoothly
with no further tuning necessary. If your system supports asynchronous I/O but this
feature is not currently configured, then test to see if using this feature is beneficial.
Performance bottlenecks related to LGWR are rare.

Archived Redo Logs

If the archiver is slow, then it might be prudent to prevent I/O contention between the
archiver process and LGWR by ensuring that archiver reads and LGWR writes are
separated. This is achieved by placing logs on alternating drives.

For example, suppose a system has four redo log groups, each group with two
members. To create separate-disk access, the eight log files should be labeled 1a, 1b, 2a,
2b, 3a, 3b, 4a, and 4b. This requires at least four disks, plus one disk for archived files.

8-6 Oracle Database Performance Tuning Guide

I/0 Configuration

Figure 8-1 illustrates how redo members should be distributed across disks to
minimize contention.

Figure 8-1 Distributing Redo Members Across Disks

arch arch
> dest
la 2a 1b 2b
3a 4a 3b 4b
Igwr

In this example, LGWR switches out of log group 1 (member 1a and 1b) and writes to
log group 2 (2a and 2b). Concurrently, the archiver process reads from group 1 and
writes to its archive destination. Note how the redo log files are isolated from
contention.

Note: Mirroring redo log files, or maintaining multiple copies of
each redo log file on separate disks, does not slow LGWR
considerably. LGWR writes to each disk in parallel and waits until
each part of the parallel write is complete. Thus, a parallel write
does not take longer than the longest possible single-disk write.

Because redo logs are written serially, drives dedicated to redo log activity generally
require limited head movement. This significantly accelerates log writing.

Three Sample Configurations

This section contains three high-level examples of configuring I/O systems. These
examples include sample calculations that define the disk topology, stripe depths, and
SO on:

= Stripe Everything Across Every Disk
= Move Archive Logs to Different Disks
= Move Redo Logs to Separate Disks

Stripe Everything Across Every Disk

The simplest approach to I/O configuration is to build one giant volume, striped
across all available disks. To account for recoverability, the volume is mirrored (RAID
1). The striping unit for each disk should be larger than the maximum I/O size for the
frequent I/O operations. This provides adequate performance for most cases.

Move Archive Logs to Different Disks

If archived redo log files are striped on the same set of disks as other files, then any
1/0 requests on those disks could suffer when the database is archiving the redo logs.
Moving archived redo log files to separate disks provides the following benefits:

1/0 Configuration and Design 8-7

I/0O Configuration

s The archive can be performed at very high rate (using sequential 1/O).

= Nothing else is affected by the degraded response time on the archive destination
disks.

The number of disks for archive logs is determined by the rate of archive log
generation and the amount of archive storage required.

Move Redo Logs to Separate Disks

In high-update OLTP systems, the redo logs are write-intensive. Moving the redo log
files to disks that are separate from other disks and from archived redo log files has the
following benefits:

= Writing redo logs is performed at the highest possible rate. Hence, transaction
processing performance is at its best.

s Writing of the redo logs is not impaired with any other I/O.

The number of disks for redo logs is mostly determined by the redo log size, which is
generally small compared to current technology disk sizes. Typically, a configuration
with two disks (possibly mirrored to four disks for fault tolerance) is adequate. In
particular, by having the redo log files alternating on two disks, writing redo log
information to one file does not interfere with reading a completed redo log for
archiving.

Oracle Managed Files

When file systems can contain all Oracle Database data, database administration is
simplified by using Oracle Managed Files. Oracle Database internally uses standard
file system interfaces to create and delete files as needed for tablespaces, temp files,
online logs, and control files. Administrators only specify the file system directory to
be used for a particular type of file. You can specify one default location for data files
and up to five multiplexed locations for the control and online redo log files.

Oracle Database ensures that a unique file is created and then deleted when it is no
longer needed. This reduces corruption caused by administrators specifying the wrong
file, reduces wasted disk space consumed by obsolete files, and simplifies creation of
test and development databases. It also makes development of portable third-party
tools easier, because it eliminates the need to put operating system-specific file names
in SQL scripts.

New files can be created as Oracle Managed Files, while old ones are administered in
the old way. Thus, a database can have a mixture of Oracle Managed Files and
user-managed files.

Note: Oracle Managed Files cannot be used with raw devices.

Several points should be considered when tuning Oracle Managed Files:

= Because Oracle Managed Files require the use of a file system, DBAs give up
control over how the data is laid out. Therefore, it is important to correctly
configure the file system.

s Build the file system for Oracle Managed Files on top of an LVM that supports
striping. For load balancing and improved throughput, stripe the disks in the file
system.

8-8 Oracle Database Performance Tuning Guide

I/0 Configuration

s Oracle Managed Files work best if used on an LVM that supports dynamically
extensible logical volumes. Otherwise, configure the logical volumes as large as
possible.

s Oracle Managed Files work best if the file system provides large extensible files.

See Also: Oracle Database Administrator’s Guide for detailed
information on using Oracle Managed Files

Choosing Data Block Size

A block size of 8 KB is optimal for most systems. However, OLTP systems occasionally
use smaller block sizes and DSS systems occasionally use larger block sizes. This
section discusses considerations when choosing database block size for optimal
performance and contains the following topics:

= Reads
m Writes

= Block Size Advantages and Disadvantages

Note: The use of multiple block sizes in a single database instance
is not encouraged because of manageability issues.

Reads

Regardless of the size of the data, the goal is to minimize the number of reads required
to retrieve the desired data.

» If the rows are small and access is predominantly random, then choose a smaller
block size.

» If the rows are small and access is predominantly sequential, then choose a larger
block size.

» If the rows are small and access is both random and sequential, then it might be
effective to choose a larger block size.

» If the rows are large, such as rows containing large object (LOB) data, then choose
a larger block size.

Writes

For high-concurrency OLTP systems, consider appropriate values for | NI TRANS,
MAXTRANS, and FREELI STS when using a larger block size. These parameters affect
the degree of update concurrency allowed within a block. However, you do not need
to specify the value for FREELI STS when using automatic segment-space
management.

If you are uncertain about which block size to choose, then try a database block size of
8 KB for most systems that process a large number of transactions. This represents a
good compromise and is usually effective. Only systems processing LOB data need
more than 8 KB.

See Also: The Oracle Database installation documentation

specific to your operating system for information about the
minimum and maximum block size on your platform

1/0 Configuration and Design 8-9

I/O Calibration Inside the Database

Block Size Advantages and Disadvantages
Table 8-3 lists the advantages and disadvantages of different block sizes.

Table 8-3 Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages
Smaller Good for small rows with lots of random Has relatively large space overhead due to metadata
access. (that is, block header).

Reduces block contention. Not recommended for large rows. There might only
be a few rows stored for each block, or worse, row
chaining if a single row does not fit into a block,

Larger Has lower overhead, so there is more Wastes space in the buffer cache, if you are doing

room to store data.

Permits reading several rows into the
buffer cache with a single I/O
(depending on row size and block size).

Good for sequential access or very large
rows (such as LOB data).

random access to small rows and have a large block
size. For example, with an 8 KB block size and 50
byte row size, you waste 7,950 bytes in the buffer
cache when doing random access.

Not good for index blocks used in an OLTP
environment, because they increase block contention
on the index leaf blocks.

I/0 Calibration Inside the Database

The I/O calibration feature of Oracle Database enables you to assess the performance
of the storage subsystem, and determine whether I/O performance problems are
caused by the database or the storage subsystem. Unlike other external I/O calibration
tools that issue I/Os sequentially, the I/O calibration feature of Oracle Database issues
I/0Os randomly using Oracle data files to access the storage media, producing results
that more closely match the actual performance of the database.

The section describes how to use the I/O calibration feature of Oracle Database and

contains the following topics:

» Prerequisites for I/O Calibration

= Running I/O Calibration

Oracle Database also provides Orion, an I/O calibration tool. Orion is a tool for
predicting the performance of an Oracle database without having to install Oracle or
create a database. Unlike other I/O calibration tools, Oracle Orion is expressly
designed for simulating Oracle database 1/O workloads using the same I/O software
stack as Oracle. Orion can also simulate the effect of striping performed by Oracle
Automatic Storage Management. For more information, see "I/O Calibration with the
Oracle Orion Calibration Tool" on page 8-12.

Prerequisites for I/O Calibration

Before running I/0 calibration, ensure that the following requirements are met:

s The user must be granted the SYSDBA privilege

s tinmed_statistics mustbesetto TRUE

= Asynchronous I/O must be enabled

When using file systems, asynchronous I/O can be enabled by setting the
FI LESYSTEM O_OPTI ONS initialization parameter to SETALL.

8-10 Oracle Database Performance Tuning Guide

I/O Calibration Inside the Database

= Ensure that asynchronous I/0O is enabled for data files by running the following
query:
COL NAME FORMAT A50
SELECT NAVE, ASYNCH | O FROM VSDATAFI LE F, V$I CSTAT_FI LE |

WHERE F. FI LE#=I|. FI LE_NO
AND FI LETYPE_NAVE=' Data File';

Additionally, only one calibration can be performed on a database instance at a time.

Running I/0 Calibration

The I/0 calibration feature of Oracle Database is accessed using the
DBM5_RESOURCE_MANAGER.CALI BRATE_| Oprocedure. This procedure issues an I/O
intensive read-only workload, made up of one megabyte of random of I/Os, to the
database files to determine the maximum IOPS (I/O requests per second) and MBPS
(megabytes of I/O per second) that can be sustained by the storage subsystem.

The I/0O calibration occurs in two steps:

s In the first step of I/O calibration with the
DBM5_RESOURCE_MANAGER.CALI BRATE_| Oprocedure, the procedure issues
random database-block-sized reads, by default, 8 KB, to all data files from all
database instances. This step provides the maximum IOPS, in the output
parameter max_i ops, that the database can sustain. The value max_i ops is an
important metric for OLTP databases. The output parameter act ual _| at ency
provides the average latency for this workload. When you need a specific target
latency, you can specify the target latency with the input parameter max_| at ency
(specifies the maximum tolerable latency in milliseconds for database-block-sized
IO requests).

s The second step of calibration using the
DBM5_RESOURCE_MANAGER.CALI BRATE_| Oprocedure issues random, 1 MB
reads to all data files from all database instances. The second step yields the
output parameter max_nbps, which specifies the maximum MBPS of I/O that the
database can sustain. This step provides an important metric for data warehouses.

The calibration runs more efficiently if the user provides the num physi cal _di sks
input parameter, which specifies the approximate number of physical disks in the
database storage system.

Due to the overhead from running the I/O workload, 1/O calibration should only be
performed when the database is idle, or during off-peak hours, to minimize the impact
of the I/O workload on the normal database workload.

To run I/O calibration and assess the I/O capability of the storage subsystem used by
Oracle Database, use the DBM5_RESOURCE_MANAGER CALI BRATE_I Oprocedure:

SET SERVEROUTPUT ON

DECLARE
[at | NTEGER
i ops | NTECER;
mbps | NTEGER;
BEG N

- DBMS_RESOURCE_MANAGER CALI BRATE_| O (<DI SKS>, <MAX_LATENCY>, iops, nbps, lat);
DBMVS_RESOURCE_MANAGER. CALI BRATE | O (2, 10, iops, nbps, lat);

DBVS_QUTPUT. PUT_LINE ('max_iops ="' || iops);

DBVS_QUTPUT. PUT_LINE ('latency ="' || lat);

dbms_out put . put _line(' max_nbps =" || nbps);
end,

I/0 Configuration and Design 8-11

I/O Calibration with the Oracle Orion Calibration Tool

/

When running the DBM5_RESOURCE_MANAGER CALI| BRATE_| Oprocedure, consider
the following:

Only run one calibration at a time on databases that use the same storage
subsystem. If you simultaneously run the calibration across separate databases
that use the same storage subsystem, the calibration will fail.

Quiesce the database to minimize I/O on the instance.

For Oracle Real Application Clusters (Oracle RAC) configurations, ensure that all
instances are opened to calibrate the storage subsystem across nodes.

For an Oracle Real Application Clusters (Oracle RAC) database, the workload is
simultaneously generated from all instances.

The num _physi cal _di sks input parameter is optional. By setting the
num physi cal _di sks parameter to the approximate number of physical disks
in the database's storage system, the calibration can be faster and more accurate.

In some cases, asynchronous I/0O is permitted for data files, but the I/O subsystem
for submitting asynchronous I/O may be maximized, and I/O calibration cannot
continue. In such cases, refer to the port-specific documentation for information
about checking the maximum limit for asynchronous I/O on the system.

At any time during the I/O calibration process, you can query the calibration status in
the V$I O_CALI BRATI ON_STATUS view. After I/O calibration is successfully
completed, you can view the results in the DBA RSRC_| O _CAL| BRATE table.

See Also:

» Oracle Database PL/SQL Packages and Types Reference for more
information about running the
DBVM5_RESOURCE _MANAGER.CALI BRATE_I Oprocedure

» Oracle Database Reference for information about the
V$!1 O_CALI BRATI ON_STATUS view and
DBA_RSRC_| O _CALI BRATE table

I/0 Calibration with the Oracle Orion Calibration Tool

This section describes the Oracle Orion Calibration Tool and includes the following
sections:

Introduction to the Oracle Orion Calibration Tool
Getting Started with Orion

Orion Input Files

Orion Parameters

Orion Output Files

Orion Troubleshooting

Introduction to the Oracle Orion Calibration Tool

Oracle Orion is a tool for predicting the performance of an Oracle database without
having to install Oracle or create a database. Unlike other I/O calibration tools, Oracle

8-12 Oracle Database Performance Tuning Guide

1/0 Calibration with the Oracle Orion Calibration Tool

Table 84 Orion

Orion is expressly designed for simulating Oracle database I/O workloads using the
same I/O software stack as Oracle. Orion can also simulate the effect of striping
performed by Oracle Automatic Storage Management.

Table 84 lists the types of I/O workloads that Orion supports.

For each type of workload shown in Table 84, Orion can run tests using different I/O
loads to measure performance metrics such as MBPS, IOPS, and I/O latency. Load is
expressed in terms of the number of outstanding asynchronous I/Os. Internally, for
each such load level, the Orion software keeps issuing I/O requests as fast as they
complete to maintain the I/O load at that level. For random workloads, using either
large or small sized I/Os, the load level is the number of outstanding 1/Os. For large
sequential workloads, the load level is a combination of the number of sequential
streams and the number of outstanding I/Os per stream. Testing a given workload at a
range of load levels can help you understand how performance is affected by load.

Note the following when you use Orion:

= Run Orion when the storage is idle (or pretty close to idle). Orion calibrates the
performance of the storage based on the I/O load it generates; Orion is not able to
properly assess the performance if non-Orion I/O workloads run simultaneously.

= If a database has been created on the storage, the storage can alternatively be
calibrated using the PL./SQL routine
dbrs_resource_nmanager.calibrate_io().

I/O Workload Support

Workload

Description

Small Random I/O

Large Sequential I/O

Large Random I/O

Mixed Workloads

OLTP applications typically generate random reads and writes whose size is equivalent to
the database block size, typically 8 KB. Such applications typically care about the
throughput in I/Os Per Second (IOPS) and about the average latency (I/O turn-around
time) per request. These parameters translate to the transaction rate and transaction
turn-around time at the application layer.

Orion simulates a random I/O workload with a given percentage of reads compared to
writes, a given I/O size, and a given number of outstanding I/Os. In this Orion workload
simulation, the I/Os are distributed across all disks.

Data warehousing applications, data loads, backups, and restores generate sequential read
and write streams composed of multiple outstanding 1 MB I/Os. Such applications are
processing large amounts of data, such as a whole table or a whole database and they
typically care about the overall data throughput in MegaBytes Per Second (MBPS).

Orion can simulate a given number of sequential read or write streams of a given I/O size
with a given number of outstanding I/Os. Orion can optionally simulate Oracle Automatic
Storage Management striping when testing sequential streams.

A sequential stream typically accesses the disks concurrently with other database traffic.
With striping, a sequential stream is spread across many disks. Consequently, at the disk
level, multiple sequential streams are seen as random 1 MB I/Os.

Orion can simulate two simultaneous workloads: Small Random I/O and either Large
Sequential I/O or Large Random I/O. This workload type enables you to simulate, for
example, an OLTP workload of 8 KB random reads and writes with a backup workload of
four sequential read streams of 1 MB 1/Os.

Each Orion data point is a test for a specific mix of small and large I/O loads sustained
for a duration. An Orion test consists of multiple data point tests. These data point
tests can be represented as a two-dimensional matrix. Each column in the matrix
represents data point tests with the same small I/O load, but varying large I/O loads.
Each row represents data point tests with the same large I/O load, but varying small
I/0 loads. An Orion test can be for a single point, a single row, a single column, or for
the whole matrix.

1/0 Configuration and Design 8-13

I/O Calibration with the Oracle Orion Calibration Tool

Orion Test Targets

You can use Orion to test any disk-based character device that supports asynchronous
I/0. Orion has been tested on the following types of targets:

= DAS (direct-attached) storage: You can use Orion to test the performance of one or
more local disks, volumes, or files on the local host.

= SAN (storage-area network) storage: Orion can be run on any host that has all or
parts of the SAN storage mapped as character devices. The devices can correspond
to striped or un-striped volumes exported by the storage array(s), or individual
disks, or one or more whole arrays.

s NAS (network-attached storage): You can use Orion to test the performance on
data files on NAS storage. In general, the performance results on NAS storage are
dependent on the I/O patterns with which the data files have been created and
updated. Therefore, you should initialize the data files appropriately before
running Orion.

Orion for Oracle Administrators

Oracle administrators can use Orion to evaluate and compare different storage arrays,
based on the expected workloads. Oracle administrators can also use Orion to
determine the optimal number of network connections, storage arrays, storage array
controllers, and disks for the expected peak workloads.

Getting Started with Orion
To get started using Orion, do the following:

1. Select a test name to use with the Orion —t est nane parameter. This parameter
specifies a unique identifier for your Orion run. For example, use the test name
"mytest”. For more information, see "Orion Parameters" on page 8-15.

2. Create an Orion input file, based on the test name. For example, create a file
named rmyt est . | un. In the input file list the raw volumes or files to test. Add one
volume name per line. Do not put comments or anything else in the . | un file.

For example, an Orion input file could contain the following;:

/dev/ raw rawl
[dev/ raw raw2
[dev/ raw raw3
[dev/raw rawd
[dev/ raw r awb
[dev/ raw r awe
[dev/ raw raw?
/ dev/ raw raw8

For more information, see "Orion Input Files" on page 8-15.

3. Verify that the all volumes specified in the input file, for example mytest.lun, are
accessible using the command dd or another equivalent file viewing utility. For
example, for a typical sanity-check try the following on a Linux system:

$ dd if=/dev/raw rawl of =/dev/null bs=32k count=1024

Depending on your platform, the file viewing utility you use and its interface may
be different.

4. Verify that your platform has the necessary libraries installed to do asynchronous
I/Os. The Orion test is completely dependent on asynchronous I/O. On Linux

8-14 Oracle Database Performance Tuning Guide

1/0 Calibration with the Oracle Orion Calibration Tool

and Solaris, the library | i bai 0 must be in the standard | i b directories or
accessible through the shell environment's library path variable (usually

LD_LI BRARY_PATHor LI BPATH, depending on your shell). Windows has built-in
asynchronous 1/0 libraries, so this issue does not apply.

5. As a first test with Orion, use —r un with either the ol t p or dss option. If the
database is primarily OLTP, then use —r un ol t p. If the database is primarily for
data warehousing or analytics, then use —r un dss.

For example, use the following command to run an OLTP-like workload using the
default input file name, ori on. | un:

$./orion -run oltp

The I/0 load levels generated by Orion take into account the number of disk
spindles being tested (or specified with the —-num di sks parameter). Keep in
mind that the number of spindles may or may not be related to the number of
volumes specified in the input file, depending on how these volumes are mapped.

6. The section, "Orion Output Files" on page 8-19 provides sample results showing
the Orion output files. Using the sample file mytest_summary.txt is a good starting
point for verifying the input parameters and analyzing the output. The sample
files mytest_*.csv contain comma-delimited values for several I/O performance
measures. For more information, see "Orion Output Files" on page 8-19.

Orion Input Files

When you specify the Orion —t est nane <testname> parameter, this sets the test name
prefix for the Orion input and output filenames. The default value for the —t est nane
option is "orion".

The Orion input file, <testname>.l un should contain a carriage-return-separated list of
LUNSs.

Orion Parameters

Use the Orion command parameters to specify the I/O workload type and to specify
other Orion options.

Orion Required Parameter

The —r un parameter is required with the Orion command. Table 8-5 describes the
—r un parameter.

1/0 Configuration and Design 8-15

I/O Calibration with the Oracle Orion Calibration Tool

Table 8-5 Required Orion Parameter

Option

Description

Default

—r un level

Specifies the test run level to be level. This option provides the run level and allows complex
commands to be specified at the advanced level. If not set as —r un advanced, then setting any
other parameter, besides —cache_si ze or —ver bose, results in an error.

Except advanced, all of the —r un level settings use a pre-specified set of parameters.

The level must be one of:

oltp
Tests with random small (8K) I/Os at increasing loads to determine the maximum IOPS.
This parameter corresponds to the following Orion invocation:

% ./orion -run advanced \

-numlarge 0 -size_small 8 -type rand \
-simlate concat -wite 0 -duration 60 \
-matrix row

dss
Tests with random large (IM) I/Os at increasing loads to determine the maximum throughput.

This parameter corresponds to the following Orion invocation:

% ./orion -run advanced \

-numsnall 0 -size large 1024 -type rand \
-sinulate concat -wite O -duration 60 \
-matrix colum

simple
Generates the Small Random I/O and the Large Random I/O workloads for a range of load

levels. In this option, small and large I/Os are tested in isolation. The only optional parameters
that can be specified at this run level are —cache_si ze and —ver bose.

This parameter corresponds to the following Orion invocation:
% ./orion -run advanced \
-size_small 8 -size_large 1024 -type rand \

-simlate concat -wite 0 -duration 60 \
-matrix basic

normal

Same as si npl e, but also generates combinations of the small random I/0O and large random
1/0 workloads for a range of loads. The only optional parameters that can be specified at this
run level are —cache_si ze and —ver bose.

This parameter corresponds to the following Orion invocation:

% ./orion -run advanced \

-size_small 8 -size_large 1024 -type rand \
-sinulate concat -wite O -duration 60 \
-matrix detailed

advanced

Tests the workload you specify with optional parameters. Any of the optional parameters can
be specified at this run level.

nor mal

8-16 Oracle Database Performance Tuning Guide

1/0 Calibration with the Oracle Orion Calibration Tool

Orion Optional Parameters

Table 8-6 Optional Orion Parameters

Option Description Default

—cache_si ze num Size of the storage array's read or write cache (in MB). For Large Default Value:
Sequential I/O workloads, Orion warms the cache by doing random If not specified, warming
large I/Os before each data point. Orion uses the cache size to occurs for a default amount
determine the duration for this cache warming operation. If set to 0, do of time (two minutes). That
not perform cache warming. is, issue two minutes of
Unless this option is set to 0, Orion issues several unmeasured, random ~ unmeasured random I/Os
1/0Os before each large sequential data point. These I/Os fill up the before each data point.

storage array's cache, if any, with random data so that I/Os from one
data point do not result in cache hits for the next data point. Read tests
are preceded with junk reads and write tests are preceded with junk
writes. If specified, this 'cache warming' is performed until num MBs of
I/0 have been read or written.

—duration Set the duration to test each data point in seconds to the value Default Value: 60
num_seconds num_seconds.
—hel p Prints Orion help information. All other options are ignored with help
set.
—mat rix type Type of mixed workloads to test over a range of loads. An Orion test Default Value: basi ¢

consists of multiple data point tests. The data point tests can be
represented as a two-dimensional matrix.

Each column in the matrix represents data point tests with the same
small I/O load, but varying large I/O loads. Each row represents data
point tests with the same large I/0O load, but varying small I/O loads.
An Orion test can be for a single point, a single row, a single column, or
the whole matrix, depending on the matrix type:

= basic: No mixed workload. The Small Random and Large
Random /Sequential workloads are tested separately. Test small
1/0Os only, then large I/Os only.

= detailed: Small Random and Large Random/Sequential workloads
are tested in combination. Test entire matrix.

= point: A single data point with S outstanding Small Random I/Os
and L outstanding Large Random I/Os or sequential streams. S is
set by the —num smal | parameter. L is set by the —num | ar ge
parameter. Test with —num snmal | small I/Os, —num | ar ge large
1/0Os.

= col: Large Random/Sequential workloads only. Test a varying large
1/0 load with —num snal | small I/Os.

. row: Small Random workloads only. Test a varying small I/O load
with —num | ar ge large I/Os.

= max: Same as detailed, but only tests the workload at the
maximum load, specified by the —num snmal | and —num | ar ge
parameters. Test varying loads up to the —num smal | and
—num_| ar ge limits.

-num_di sks value Specify the number of physical disks used by the test. Used to generate a Default Value: the number of
range for the load. Specifies the number of disks (physical spindles). LUNSs in <testname>.lun.
This number value is used to gauge the range of loads that Orion should
test at. Increasing this parameter results in Orion using heavier I/O
loads.

—num_| ar ge value Controls the large I/O load. Default Value: no default

Note, this option only applies when —mat r i x is specified as: r ow,
poi nt, or max.

When the —t ype option is set to r and, the parameter argument value
specifies the number of outstanding large I/Os.

When the —t ype option is set to se(, the parameter argument value
specifies the number of sequential I/O streams.

1/0 Configuration and Design 8-17

I/O Calibration with the Oracle Orion Calibration Tool

Table 8-6 (Cont.) Optional Orion Parameters

Option

Description

Default

—num smal 1

-num st ream Onum

—si mul at e type

—si ze_| ar ge num

—si ze_smal | num

—t est nane tname

—-type[rand | seq]

—ver bose

—Wr i t € num_write

Specify the maximum number of outstanding I/Os for the Small
Random I/0 workload.

Note: this only applies when —mat r i x is specified as col , poi nt, or
max.

Specify the number of concurrent I/Os per stream as numi.

Note: this parameter is only used if —t ype is seq.

Data layout to simulate for Large Sequential I/O workload. Orion tests
on a virtual LUN formed by combining specified LUNs in one of these
ways. The type is one:

= concat: A virtual volume is simulated by serially chaining the
specified LUNs. A sequential test over this virtual volume will go
from some point to the end of each one LUN, followed by the
beginning to end of the next LUN, and so on.

= raid0: A virtual volume is simulated by striping across the
specified LUNs. Each sequential stream issues I/Os across all
LUNSs using raid0 striping. The stripe depth is 1M by default, to
match the Oracle Automatic Storage Management stripe depth,
and can be changed with the —st ri pe parameter.

The offsets for I/Os are determined as follows:
For Small Random and Large Random workloads:

. The LUNSs are concatenated into a single virtual LUN (VLUN) and
random offsets are chosen within the VLUN.

For Large Sequential workloads:

= With striping (—si nul at e r ai d0). The LUN’s are used to create a
single striped VLUN. With no concurrent Small Random workload,
the sequential streams start at fixed offsets within the striped
VLUN. For n streams, stream i start at offset VLUNsize * (i + 1) / (n
+ 1), unless n is 1, in which case the single stream start at offset 0.
With a concurrent Small Random workload, streams start at
random offsets within the striped VLUN.

= Without striping (—si mul at @ CONCAT). The LUNs are
concatenated into a single VLUN. The streams start at random
offsets within the single VLUN.

This parameter is typically only used if —t ype is seq.

Specify the num, size of the I/Os (in KB) for the Large Random or
Sequential I/O workload.

Specify the num, size of the I/Os (in KB) for the Small Random I/O
workload.
Specify the tname identifier for the test run. When specified, the input

file containing the LUN disk or file names must be named <tname>.lun.
The output files are named with the prefix <tname>_.

Type of the Large I/O workload.
= rand: Randomly distributed large I/Os.

= seq: Sequential streams of large I/Os.
Prints status and tracing information to standard output.

Specify the percentage of 1/Os that are writes to num_write; the rest
being reads.

This parameter applies to both the Large and Small I/O workloads. For
Large Sequential I/Os, each stream is either read-only or write-only; the
parameter specifies the percentage of streams that are write-only. The
data written to disk is garbage and unrelated to any existing data on the
disk.

Caution: write tests obliterate all data on the specified LUNS.

Default Value: no default

Default Value: 4

Default Value: concat

Default Value: 1024

Default Value: 8

Default Value: ori on

Default Value: r and

Default Value: option not set

Default Value: 0

8-18 Oracle Database Performance Tuning Guide

1/0 Calibration with the Oracle Orion Calibration Tool

Caution: Write tests obliterate all data on the specified LUNS.

Orion Command Line Samples

The
1.

following provides sample Orion commands for different types of I/O workloads:
To evaluate storage for an OLTP database:

-run oltp

To evaluate storage for a data warehouse:

-run dss

For a basic set of data:

-run normal

To understand your storage performance with read-only, small and large random
1/0 workload:

$ orion -run sinple

To understand your storage performance with a mixed small and large random
1/0 workload:

$ orion -run nornal

To generate combinations of 32KB and 1MB reads to random locations:

$ orion -run advanced -size_small 32\

-size_large 1024 -type rand -matrix detailed

To generate multiple sequential 1 MB write streams, simulating 1 MB RAID-0

stripes:

$ orion -run advanced -simulate raid0 \
-stripe 1024 -wite 100 -type seq -matrix col -numsnall 0

To generate combinations of 32 KB and 1 MB reads to random locations:

-run advanced -size_small 32 -size large 1024 -type rand -matrix detailed

To generate multiple sequential 1 MB write streams, simulating RAIDO striping:

-run advanced -simulate raid0 -wite 100 -type seq -matrix col -numsmall 0

Orion Output Files

The

output files for a test run are prefixed by <testname>_<date> where date is

yyyymmdd_hhmm.

Table 8-7 lists the Orion output files.

Table 8—7 Orion Gen

erated Output Files

Output File

Description

<testname>_<date>_hist.csv

Histogram of I/O latencies.

<testname>_<date>_iops.csv Performance results of small I/Os in IOPS.

<testname>_<date>_lat.csv

Latency of small I/Os in microseconds.

1/0 Configuration and Design 8-19

I/O Calibration with the Oracle Orion Calibration Tool

Table 8-7 (Cont.) Orion Generated Output Files

Output File Description

<testname>_<date>_mbps.csv Performance results of large I/Os in MBPS.

<testname>_<date>_summary.txt Summary of the input parameters, along with the minimum small I/O latency (in secs),
the maximum MBPS, and the maximum IOPS observed.

<testname>_<date>_trace.txt Extended, unprocessed output.

Caution: If you are performing write tests, be prepared to lose any
data stored on the LUNSs.

Orion Sample Output Files

Orion creates several output files as specified in Table 8-7. For the sample "mytest"
shown in the section, "Getting Started with Orion" on page 8-14, the output files are:

mytest_summary.txt: This file contains:

= Input parameters

s Maximum throughput observed for the Large Random/Sequential workload
» Maximum I/O rate observed for the Small Random workload

= Minimum latency observed for the Small Random workload

mytest_mbps.csv: comma-delimited value file containing the data transfer rate
(MBPS) results for the Large Random/Sequential workload. In the general case,
this and all other CSV files contains a two-dimensional table. Each row in the table
corresponds to a large I/O load level and each column corresponds to a specific
small I/O load level. Thus, the column headings are the number of outstanding
small I/Os and the row headings are the number of outstanding large I/Os (for
random large I/O tests) or the number of sequential streams (for sequential large
I/0 tests).

Example 8-1 shows the first few data points of the Orion MBPS output CSV file
for "mytest". The simple mytest command-line does not test combinations of large
and small I/Os. Hence, the MBPS file has just one column corresponding to 0
outstanding small I/Os. In Example 8-1, at a load level of 8 outstanding large
reads and no small I/Os, the report data indicates a throughput of 103.06 MBPS.

Example 8-1 Mytest Sample Data Points

Large/ Smal |, 0

1
2
4
6
8
1

0,

19.18
37.59
65. 53
87.03
103. 06
109. 67

Figure 8-2 shows a sample data transfer rate measured at different large I/O load

levels. This chart can be generated by loading mytest_mbps.csv into a spreadsheet
and graphing the data points. Orion does not directly generate such graphs. The

8-20 Oracle Database Performance Tuning Guide

1/0 Calibration with the Oracle Orion Calibration Tool

x-axis corresponds to the number of outstanding large reads and the y-axis
corresponds to the throughput observed.

The graph shown in Figure 8-2 shows typical storage system behavior. As the
number of outstanding I/O requests is increased, the throughput increases.
However, at a certain point the throughput level stabilizes, indicating the storage
system's maximum throughput value.

Figure 8-2 Sample I/O Load Levels

Large MBPS

1 19.8
2 3750 160
4 6553 140 .
6 87.03 0 /v/*_
8 103.06
10 109.67 100 —
12 1177 a0 P
14 127.06 pa
16 130.55 B0
20 138.42 40
24 w21 Vi
28 1445 0
0 '
0 5 10 15 20 25 n

mytest_iops.csv: Comma-delimited value file containing the I/O throughput (in
IOPS) results for the Small Random workload. Like in the MBPS file, the column
headings are the number of outstanding small I/Os and the row headings are the
number of outstanding large I/Os, when testing large random, or the number of
sequential streams (for large sequential).

In the general case, a CSV file contains a two-dimensional table. However, for a
simple test where you are not testing combinations of large and small I/Os the
results file has just one row. Hence, the IOPS results file just has one row with 0
large I/Os. As shown in Example 8-2, an example data point with 12 outstanding
small reads and no large I/Os provides a sample throughput of 951 IOPS.

Example 8-2 Sample Data Points with 12 Small Reads and No Large Reads
Large/ Smal |, 1, 2, 3, 6, 9, 12 .

0,

105, 208, 309, 569, 782, 951 .

The graph shown in Figure 8-3, generated by loading mytest_iops.csv into Excel
and charting the data, illustrates the IOPS throughput seen at different small I/O
load levels.

Figure 8-3 shows typical storage system behavior. As the number of outstanding
I/0 requests is increased, the throughput increases. However, at a certain point,
the throughput level stabilizes, indicating the storage system reaches a maximum
throughput value. At higher throughput levels, the latency for the I/O requests
also increase significantly. Therefore, it is important to view this data with the
latency data provided in the generated latency results in mytest_lat.csv.

1/0 Configuration and Design 8-21

I/O Calibration with the Oracle Orion Calibration Tool

Figure 8-3 1/O Throughput at Different Small I/O Load Levels

Smal IOPS
1 15
S o 2500
3 3m
6 569 2000 -+
) o /
12 951 1800
18 189 /
24 139
e 1000
% 1638
8 1815 500
60 1941 /
68 213 0 . . .
0 20 0 €0 a0

= mytest_lat.csv: Comma-delimited value file containing the latency results for the
Small Random workload. As with the MBPS and IOPS files, the column headings
are the number of outstanding small I/Os and the row headings are the number of
outstanding large I/Os (when testing large random I/Os) or the number of
sequential streams.

In the general case, a CSV file contains a two-dimensional table. However, for a
simple test where you are not testing combinations of large and small I/Os the
results file has just one row. Hence, the IOPS results file just has one row with 0
large I/Os. In the example shown in Example 8-3, at a sustained load level of 12
outstanding small reads and no large I/Os, the generated results show an I/O
turn-around latency of 22.25 milliseconds.

Example 8-3 Sample CSV file with 12 Small Reads and No Large Reads
Large/Small, 1, 2, 3, 6, 9, 12 .

0, 14.22, 14.69, 15.09, 16.98, 18.91, 21.25 .

The graph in Figure 8-4, generated by loading mytest_lat.csv into Excel and
charting the data, illustrates the small I/O latency at different small I/O load
levels for mytest.

Figure 8-4 1/O Latency at Small I/O Load Levels

1422
14 69 70

1
2
g 15.09 0 .

16.98
3 183 50 /
12 2135 w /
15 2582 o
24 w2 a0
0 48 u 7

36 3904
43 4758 1 -
&0 56.3
69 6215 0 T
u} 20 40 =11] a0

= mytest_trace.txt: Contains the extended, unprocessed test output.

8-22 Oracle Database Performance Tuning Guide

1/0 Calibration with the Oracle Orion Calibration Tool

Note: Orion reports errors that occur during a test on standard
output.

Orion Troubleshooting

1.

If you are getting an I/O error on one or more of the volumes specified in the
<testname>.lun file:

Verify that you can access the volume in the same mode as the test, read or
write, using a file copy program such as dd.

Verify that your host operating system version can do asynchronous I/0.

On Linux and Solaris, the library | i bai 0 must be in the standard lib
directories or accessible through the shell environment's library path variable
(usually LD_LIBRARY_PATH or LIBPATH, depending on your shell).

If you run on NAS storage:

The file system must be properly mounted for Orion to run. Please consult
your Oracle Installation Guide for directions (for example, the section,
Appendix B "Using NAS Devices" in the Database Installation Guide for Linux
x86).

The mytest.lun file should contain one or more paths of existing files. Orion
does not work on directories or mount points. The file has to be large enough
for a meaningful test. The size of this file should represent the eventual
expected size of your datafiles (say, after a few years of use).

You may see poor performance doing asynchronous I/O over NFS on Linux
(including 2.6 kernels).

If you are doing read tests and the reads are hitting untouched blocks of the
file that were not initialized or previously written, some smart NAS systems
may "fake" the read by returning zeroed-out blocks. When this occurs, you see
unexpectedly good performance.

The workaround is to write all blocks, using a tool such as dd, before
performing the read test.

If you run Orion on Windows: Testing on raw partitions requires temporarily
mapping the partitions to drive letters and specifying these drive letters in the
test.lun file.

If you run Orion 32-bit Linux/x86 binary on an x86_64 system: Please copy a
32-bit libaio.so file from a 32-bit computer running the same Linux version.

If you are testing with a lot of disks (num_di sks greater than around 30):

You should use the -duration option (see the optional parameters section for
more details) to specify a long duration (like 120 seconds or more) for each
data point. Since Orion tries to keep all the spindles running at a particular
load level, each data point requires a ramp-up time, which implies a longer
duration for the test.

You may get the following error message, instructing you to increase the
duration value:

Specify a longer -duration val ue.

1/0 Configuration and Design 8-23

I/O Calibration with the Oracle Orion Calibration Tool

A duration of 2x the number of spindles seems to be a good rule of thumb.
Depending on your disk technology, your platform may need more or less
time.

6. If you get an error about libraries being used by Orion:

Linux/Solaris: See I/O error troubleshooting.

NT-Only: Do not move/remove the Oracle libraries included in the
distribution. These must be in the same directory as orion.exe.

7. If you are seeing performance numbers that are "unbelievably good":

You may have a large read or write cache, or read and write cache somewhere
between the Orion program and the disk spindles. Typically, the storage array
controller has the biggest effect. Find out the size of this cache and use the
-cache_size advanced option to specify it to Orion (see the optional parameters
section for more details).

The total size of your volumes may be really small compared to one or more
caches along the way. Try to turn off the cache. This is needed if the other
volumes sharing your storage show significant I/O activity in a production
environment (and end up using large parts of the shared cache).

8. If Orion is reporting a long estimated run time:

The run time increases when - num_di sks is high. Orion internally uses a
linear formula to determine how long it takes to saturate the given number of
disks.

The - cache_si ze parameter affects the run time, even when it is not
specified. Orion does cache warming for two minutes per data point by
default. If you have turned off the cache, specify - cache_si ze 0.

The run time increases when a long -duration value is specified, as expected.

8-24 Oracle Database Performance Tuning Guide

9

Managing Operating System Resources

This chapter explains how to tune the operating system for optimal performance of
Oracle Database.

This chapter contains the following sections:

s Understanding Operating System Performance Issues
= Resolving Operating System Issues

s Understanding CPU

= Resolving CPU Issues

See Also:

= "Operating System Statistics”" on page 5-4 for a discussion of the
importance of operating system statistics

= Your operating system documentation

= Your Oracle Database platform-specific documentation, which
contains tuning information specific to your platform

Understanding Operating System Performance Issues

Operating system performance issues commonly involve process management,
memory management, and scheduling. If you have tuned the Oracle database instance
and still need to improve performance, verify your work or try to reduce system time.
Ensure that there is enough I/O bandwidth, CPU power, and swap space. Do not
expect, however, that further tuning of the operating system will have a significant
effect on application performance. Changes in the Oracle Database configuration or in
the application are likely to result in a more significant difference in operating system
efficiency than simply tuning the operating system.

For example, if an application experiences excessive buffer busy waits, then the
number of system calls increases. If you reduce the buffer busy waits by tuning the
application, then the number of system calls decreases.

This section covers the following topics related to operating system performance
issues:

= Using Operating System Caches
s Memory Usage

= Using Operating System Resource Managers

Managing Operating System Resources 9-1

Understanding Operating System Performance Issues

Using Operating System Caches

Operating systems and device controllers provide data caches that do not directly
conflict with Oracle Database cache management. Nonetheless, these structures can
consume resources while offering little or no performance benefit. This situation is
most noticeable when database files are stored in a Linux or UNIX file system. By
default, all database I/O goes through the file system cache.

On some Linux and UNIX systems, direct I/O is available to the filestore. This
arrangement allows the database files to be accessed within the file system, bypassing
the file system cache. Direct I/O saves CPU resources and allows the file system cache
to be dedicated to non-database activity, such as program texts and spool files.

Note: This problem does not occur on Windows. All file requests by
the database bypass the caches in the file system.

Although the operating system cache is often redundant because the Oracle Database
buffer cache buffers blocks, in some cases the database does not use the database
buffer cache. In these cases, using direct I/O or raw devices may yield worse
performance than using operating system buffering. Examples include:

= Reads or writes to the TEMP tablespace
= Data stored in NOCACHE LOBs

» Parallel Query slaves reading data

Note: In some cases the database can cache parallel query data in the
database buffer cache instead of performing direct reads from disk
into the PGA. This configuration may be appropriate when the
database servers have a large amount of memory. See Oracle Database
VLDB and Partitioning Guide to learn more using parallel execution.

You may want to cache but not all files at the operating system level.

Asynchronous I/0

With synchronous I/0O, when an I/O request is submitted to the operating system, the
writing process blocks until the write is confirmed as complete. It can then continue
processing. With asynchronous 1/0, processing continues while the I/O request is
submitted and processed. Use asynchronous I/O when possible to avoid bottlenecks.

Some platforms support asynchronous I/O by default, others need special
configuration, and some only support asynchronous I/O for certain underlying file

system types.

FILESYSTEMIO_OPTIONS Initialization Parameter

You can use the FI LESYSTEM O_OPTI ONS initialization parameter to enable or
disable asynchronous I/O or direct I/O on file system files. This parameter is
platform-specific and has a default value that is best for a particular platform.

FI LESYTEM O_OPTI ONS can be set to one of the following values:

= ASYNCH: enable asynchronous I/O on file system files, which has no timing
requirement for transmission.

9-2 Oracle Database Performance Tuning Guide

Understanding Operating System Performance Issues

= DI RECTI O enable direct I/O on file system files, which bypasses the buffer
cache.

s SETALL: enable both asynchronous and direct I/O on file system files.
= NONE: disable both asynchronous and direct I/O on file system files.

See Also: Your platform-specific documentation for more details

Memory Usage

Memory usage is affected by both buffer cache limits and initialization parameters.

Buffer Cache Limits

The UNIX buffer cache consumes operating system memory resources. Although in
some versions of UNIX, the UNIX buffer cache may be allocated a set amount of
memory, it is common today for more sophisticated memory management
mechanisms to be used. Typically, these will allow free memory pages to be used to
cache I/0O. In such systems, it is common for operating system reporting tools to show
that there is no free memory, which is not generally a problem. If processes require
more memory, the memory caching 1/O data is usually released to allow the process
memory to be allocated.

Parameters Affecting Memory Usage

The memory required by any one Oracle Database session depends on many factors.
Typically the major contributing factors are:

= Number of open cursors
= Memory used by PL/SQL, such as PL/SQL tables
s SORT_AREA S| ZE initialization parameter

In Oracle Database, the PGAAGGREGATE_TARGET initialization parameter gives
greater control over a session's memory usage.

Using Operating System Resource Managers

Some platforms provide operating system resource managers. These are designed to
reduce the impact of peak load use patterns by prioritizing access to system resources.
They usually implement administrative policies that govern which resources users can
access and how much of those resources each user is permitted to consume.

Operating system resource managers are different from domains or other similar
facilities. Domains provide one or more completely separated environments within
one system. Disk, CPU, memory, and all other resources are dedicated to each domain
and cannot be accessed from any other domain. Other similar facilities completely
separate just a portion of system resources into different areas, usually separate CPU
or memory areas. Like domains, the separate resource areas are dedicated only to the
processing assigned to that area; processes cannot migrate across boundaries. Unlike
domains, all other resources (usually disk) are accessed by all partitions on a system.

Oracle Database runs within domains, and within these other less complete
partitioning constructs, as long as the allocation of partitioned memory (RAM)
resources is fixed, not dynamic.

Operating system resource managers prioritize resource allocation within a global
pool of resources, usually a domain or an entire system. Processes are assigned to
groups, which are in turn assigned resources anywhere within the resource pool.

Managing Operating System Resources 9-3

Resolving Operating System Issues

Note: Oracle Database is not supported for use with any UNIX
operating system resource manager's memory management and
allocation facility. Oracle Database Resource Manager, which
provides resource allocation capabilities within an Oracle database
instance, cannot be used with any operating system resource
manager.

Note: If you have multiple instances on a node, and you want to
distribute resources among them, then each instance should be
assigned to a dedicated operating-system resource manager group
or managed entity. To run multiple instances in the managed entity,
use instance caging to manage how the CPU resources within the
managed entity should be distributed among the instances. When
Oracle Database Resource Manager is managing CPU resources, it
expects a fixed amount of CPU resources for the instance. Without
instance caging, it expects the available CPU resources to be equal
to the number of CPUs in the managed entity. With instance caging,
it expects the available CPU resources to be equal to the value of
the CPU_CQUNT initialization parameter. If there are less CPU
resources than expected, then Oracle Database Resource Manager is
not as effective at enforcing the resource allocations in the resource
plan.

See Also:

= For a complete list of operating system resource management
and resource allocation and deallocation features that work
with Oracle Database and Oracle Database Resource Manager,
see your systems vendor and your Oracle representative.
Oracle does not certify these system features for compatibility
with specific release levels.

s Oracle Database Administrator’s Guide for information about
Oracle Database Resource Manager.

» Oracle Database Administrator’s Guide for information about
instance caging.

Resolving Operating System Issues

This section provides hints for tuning various systems by explaining the following
topics:

s Performance Hints on UNIX-Based Systems
s Performance Hints on Windows Systems
s Performance Hints on HP OpenVMS Systems

Familiarize yourself with platform-specific issues so that you know what performance
options the operating system provides.

See Also: Your Oracle platform-specific documentation and your
operating system vendor's documentation

9-4 Oracle Database Performance Tuning Guide

Understanding CPU

Performance Hints on UNIX-Based Systems

On UNIX systems, try to establish a good ratio between the amount of time the
operating system spends fulfilling system calls and doing process scheduling and the
amount of time the application runs. The goal should be to run most of the time in
application mode, also called user mode, rather than system mode.

The ratio of time spent in each mode is only a symptom of the underlying problem,
which might involve the following:

= Paging or swapping
= Executing too many operating system calls
= Running too many processes

If such conditions exist, then there is less time available for the application to run. The
more time you can release from the operating system side, the more transactions an
application can perform.

Performance Hints on Windows Systems

On Windows systems, as with UNIX-based systems, establish an appropriate ratio
between time in application mode and time in system mode. You can easily monitor
many factors with the Windows administrative performance tool: CPU, network, I/O,
and memory are all displayed on the same graph to assist you in avoiding bottlenecks
in any of these areas.

Performance Hints on HP OpenVMS Systems

Consider the paging parameters on a mainframe, and remember that Oracle Database
can exploit a very large working set.

Free memory in HP OpenVMS environments is actually memory that is not mapped to
any operating system process. On a busy system, free memory likely contains a page
belonging to one or more currently active process. When that access occurs, a sof t
page fault takes place, and the page is included in the working set for the process.
If the process cannot expand its working set, then one of the pages currently mapped
by the process must be moved to the free set.

Any number of processes might have pages of shared memory within their working
sets. The sum of the sizes of the working sets can thus markedly exceed the available
memory. When the Oracle server is running, the SGA, the Oracle Database kernel
code, and the Oracle Forms run-time executable are normally all sharable and account
for perhaps 80% or 90% of the pages accessed.

Understanding CPU

To address CPU problems, first establish appropriate expectations for the amount of
CPU resources your system should be using. Then, determine whether sufficient CPU
resources are available and recognize when your system is consuming too many
resources. Begin by determining the amount of CPU resources the Oracle database
instance utilizes with your system in the following three cases:

= System is idle, when little Oracle Database and non-Oracle activity exists
= System at average workloads

= System at peak workloads

Managing Operating System Resources 9-5

Understanding CPU

You can capture various workload snapshots using the Automatic Workload
Repository, Statspack, or the UTLBSTAT /UTLESTAT utility. Operating system
utilities—such as vnst at , sar,and i ost at on UNIX and the administrative
performance monitoring tool on Windows—can be used along with the VEOSSTAT or
V$SYSMETRI C_HI STORY view during the same time interval as Automatic Workload
Repository, Statspack, or UTLBSTAT /UTLESTAT to provide a complimentary view of
the overall statistics.

See Also:
= "Overview of the Automatic Workload Repository" on page 5-8

s Chapter 6, "Automatic Performance Diagnostics" for more
information on Oracle Database tools

Workload is an important factor when evaluating your system's level of CPU
utilization. During peak workload hours, 90% CPU utilization with 10% idle and
waiting time can be acceptable. Even 30% utilization at a time of low workload can be
understandable. However, if your system shows high utilization at normal workload,
then there is no room for a peak workload. For example, Figure 9-1 illustrates
workload over time for an application having peak periods at 10:00 AM and 2:00 PM.

Figure 9-1 Average Workload and Peak Workload

Functional Demand

8:00 10:00 12:00 14:00 16:00

Average Workload
Peak Workload

This example application has 100 users working 8 hours a day. Each user entering one
transaction every 5 minutes translates into 9,600 transactions daily. Over an 8-hour
period, the system must support 1,200 transactions an hour, which is an average of 20
transactions a minute. If the demand rate were constant, then you could build a
system to meet this average workload.

However, usage patterns are not constant and in this context, 20 transactions a minute
can be understood as merely a minimum requirement. If the peak rate you need to
achieve is 120 transactions a minute, then you must configure a system that can
support this peak workload.

For this example, assume that at peak workload, Oracle Database uses 90% of the CPU
resource. For a period of average workload, then, Oracle Database uses no more than
about 15% of the available CPU resource, as illustrated in the following equation:

9-6 Oracle Database Performance Tuning Guide

Resolving CPU Issues

20 tpm/ 120 tpm* 90% = 15% of avail able CPU resource
where t pmis transactions a minute.

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem
exists: the system cannot achieve 120 transactions a minute using 90% of the CPU.
However, if you tuned this system so that it achieves 20 tpm using only 15% of the
CPU, then, assuming linear scalability, the system might achieve 120 transactions a
minute using 90% of the CPU resources.

As users are added to an application, the workload can rise to what had previously
been peak levels. No further CPU capacity is then available for the new peak rate,
which is actually higher than the previous.

Resolving CPU Issues
You can resolve CPU capacity issues by:

s Detecting and solving CPU problems from excessive consumption, as described in
"Finding and Tuning CPU Utilization" on page 9-7.

= Reducing the impact of peak load use patterns by prioritizing CPU resource
allocation using Oracle Database Resource Manager, as described in "Managing
CPU Resources Using Oracle Database Resource Manager" on page 9-9.

= Using instance caging to limit the number of CPUs that a database instance can
use simultaneously when running multiple datab