

Oracle® Enterprise Single Sign-on
Logon Manager

Best Practices: Template Configuration and Diagnostics

for Web Applications

Release 11.1.1.2.0

E20408-01

December 2010

 2

Oracle Enterprise Single Sign-on Logon Manager Best Practices: Template Configuration and Diagnostics for Web Applications

Release 11.1.1.2.0

E20408-01

Copyright © 2010, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under

a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other

intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the

extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation,

please report them to us in writing. This document is not warranted to be error-free.

Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the

United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.

Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal

Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth

in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,

Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous

applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to

ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages

caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names

may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not

responsible for the availability of, or any content provided on, third-party Web sites.

You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party,

the relationship is directly between you and the third party. Oracle is not responsible for:

(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,

including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not

responsible for any loss or damage of any sort that you may incur from dealing with any third party.

 3

Table of Contents

Introduction .. 6

About This Guide ... 6

Prerequisites ... 6

Terms and Abbreviations .. 6

3BAccessing ESSO-LM Documentation ... 6

Contacting Oracle Support .. 6

Part 1: Understanding Web Form Detection and Response .. 7

Overview of a Sign-On Event .. 8

Understanding Web Form Detection .. 9

Supported Form Types .. 10

Understanding URL Detection .. 10

Understanding URL Matching Precision ... 12

Obtaining the URL of a Page, Element, or Pop-Up ... 13

Understanding Field Detection ... 14

Understanding HTML Elements .. 16

Understanding the Frame Element ... 16

Understanding the Form Element .. 17

Understanding the Input Elements Supported by ESSO-LM ... 18

Recommended Page Inspection Tools .. 19

DOM Inspector for Mozilla Firefox.. 19

Firebug for Mozilla Firefox .. 20

Understanding Detection Matching ... 21

Detection Matching vs. Offset Matching .. 21

Matching Against Text on the Page .. 22

Matching Against HTML Code in the Page’s Source ... 22

Matching Against Names and Values of Element Attributes .. 23

Constructing Complex Rule Chains Using Logic Operators ... 24

Using Wildcards to Configure Detection Criteria .. 25

Using Regular Expressions to Configure Detection Criteria .. 26

Understanding Form Response ... 27

 4

Part 2: Configuring and Testing Forms ... 29

Determining the Optimal Configuration for a Form ... 30

Determining the Optimal Configuration for a Logon Form .. 30

Target fields and controls appear in the Web Form Wizard? ... 32

Non-unique or dynamic field names? ... 32

Dynamic page or element URL? .. 32

“Submit” control is an image? .. 32

Other fields on the page besides target fields? .. 32

Determining the Optimal Configuration for a Password Change Form .. 33

Logon and password change forms on the same screen? .. 35

Action required to initiate password change? .. 35

Target fields and controls appear in the Web Form Wizard? ... 35

Application requires confirmation of new password? .. 35

Application displays a password change success and/or failure dialogs? 35

Non-unique or dynamic field names? ... 36

Dynamic page or element URL? .. 36

“Submit” control is an image? .. 36

Other fields on the page besides target fields? .. 36

Configuring a Form .. 37

Basic Configuration ... 37

Manually Configuring a Field or Control ... 42

Configuring URL Detection Criteria ... 44

Configuring Additional Field Detection Criteria .. 46

Testing the Configuration of a Form ... 48

Testing the Configuration of a Logon Form .. 48

Agent detects form? ... 49

Agent injects credentials? ... 49

Logon loop occurring on logout? .. 49

Testing the Configuration of a Password Change Form .. 50

Agent detects the form? ... 51

Agent injects and submits credentials? .. 51

New password satisfies application’s password policy? ... 51

Agent responds to password change form as if it were a logon? ... 51

Publishing a Template to the Repository .. 52

 5

Publishing a Template with ESSO-LM Versions Prior to 11.1.1.2.0 .. 52

Publishing a Template with ESSO-LM Version 11.1.1.2.0 and Above ... 55

Part 3: Troubleshooting Detection and Response Issues ... 59

Troubleshooting Web Form Detection ... 60

“Logon Using ESSO-LM” tray icon option results in successful detection? 61

Page completed loading? .. 61

Is the appropriate helper object running? .. 61

Removing all detection and offset matching rules results in successful detection? 61

Truncating URL definition to host.domain form results in successful detection? 61

Troubleshooting Credential Injection and Submission ... 62

Agent detects the form? ... 63

Agent injects credentials but does not submit them? .. 63

Fields populated erratically? ... 63

Troubleshooting Detection Matching ... 64

Removing all matching rules restores form detection? .. 65

Troubleshooting a Logon Loop ... 66

Post-logout form URL from standard logon form URL? .. 67

Post-logout form different from standard logon form? ... 67

Configuring the “Logon Loop Grace Period” option resolves logon loop? 67

Troubleshooting Java Application Issues .. 68

Installed JRE is a supported brand and version? .. 68

Using Oracle JInitiator or another JRE not made by Sun or IBM? .. 68

JHO loaded? .. 69

Verifying and Repairing the Installation of the Java Helper Object (JHO) .. 70

Verifying the JHO Installation in a JRE .. 70

Repairing a Damaged JHO Installation .. 71

Restricting the Java Helper Object (JHO) to Specific Java Runtime Environments (JREs) 72

JHO Inclusion Rules ... 73

JHO Exclusion Rules... 74

Allowed Java Runtime Environment (JRE) Versions .. 75

Customizing the Event Response Behavior of the Java Helper Object (JHO) 76

Event Response Configuration Settings .. 76

Recommended JHO Event Response Configuration Defaults ... 77

 6

Introduction

About This Guide

This guide describes best practices and recommended procedures for creating and configuring Web

application templates. Topics covered include configuring and testing logon and password change forms,

as well as diagnosing and resolving most common Web application response issues.

Prerequisites

Readers of this guide must have a working knowledge of the HyperText Markup Language (HTML), Web

page structure, and be comfortable reading and deconstructing HTML and CSS code. Readers should

also be familiar with deploying and configuring the ESSO-LM Agent and using the ESSO-LM

Administrative Console. (Detailed information about each function described in this guide is available in

the ESSO-LM Administrative Console help.)

Terms and Abbreviations

The following table describes the terms and abbreviations used throughout this guide:

Term or Acronym Description

ESSO-LM Oracle Enterprise Single Sign-On Logon Manager

Agent ESSO-LM client-side software

Console ESSO-LM Administrative Console

3BAccessing ESSO-LM Documentation

We continually strive to keep ESSO-LM documentation accurate and up to date. For the latest version of

this and other ESSO-LM documents, visit http://download.oracle.com/docs/cd/E15624_01/index.htm.

Contacting Oracle Support

To contact Oracle Support, visit the Oracle Support site at http://support.oracle.com.

http://download.oracle.com/docs/cd/E15624_01/index.htm

 7

Part 1: Understanding Web Form
Detection and Response

This part explains the concepts necessary to understand how and why you should configure application

templates to solve specific sign-on scenarios, as explained later in this guide. This part covers the

following topics:

 Overview of a Sign-On Event

 Understanding Web Form Detection

 Understanding Form Response

 8

Overview of a Sign-On Event

ESSO-LM can be configured to detect and respond to a wide range of sign-on events, such as logon,

password change, and variations of thereof; support is provided for a diverse range of forms, fields,

controls, and event flows.

In order to recognize Web forms, ESSO-LM monitors the running Web browser(s) and detects whenever

a Web page has completed loading in the browser.

For each completely loaded page, ESSO-LM does the following:

1. Detects the target Web page and form. Whenever a new URL is accessed through the browser

being monitored, ESSO-LM:

a. Examines the page URL and compares it to the URLs stored in all available Web application

templates.

b. Loads the first template that matches the detected URL.

c. Examines the page’s Document Object Model (DOM) and identifies each field and control

configured in the form definition.

d. (Optional) Examines the page’s source code and performs any additional matching

configured in the form definition.

2. Agent responds to the form and completes the logon. When detection is complete and a

positive match is found, the Agent follows the configuration stored in the template to determine

how to interact with the fields and controls in the form. Typically, the Agent does the following:

a. Retrieves the associated credentials from the user’s store (if they exist) and injects them

into the appropriate fields. (If the credentials don’t exist, the Agent prompts the user to

store them.)

b. Performs the actions necessary to submit the credentials to the application for processing.

c. (Optional) Detects any follow-up forms, such as password change success or failure

messages, and performs the required action.

 9

Understanding Web Form Detection

In order to communicate with the installed Web browser(s), ESSO-LM uses helper objects that hook into

the browser(s) and provide ESSO-LM with a means of querying the browser for data, such as the page

URL, DOM, and HTML source, as well as inject credentials into the target fields and submit them upon

successful detection.

The helper objects run as the following background processes:

 For Microsoft Internet Explorer: SSOBHO.EXE

 For Mozilla Firefox: SSOMOZHO.EXE

Whenever the Web browser completes loading a page, the respective helper object notifies ESSO-LM of

this event and a 500ms grace period timer starts. During this grace period, one of the following happens:

 If the current page is not refreshed or another page does not begin loading, ESSO-LM begins

detection.

 If the current page is refreshed, or if another page begins loading, ESSO-LM restarts the timer

and waits until the page has finished loading before beginning detection.

Note: If the page is refreshed or another page starts loading after detection has begun,

ESSO-LM aborts detection and waits for the page to finish loading, then starts the 500ms

grace period timer and waits for it to elapse as described above.

Usually, the browser’s status bar, located at the bottom of the browser window, indicates the page has

completed loading by displaying an appropriate message, such as “Done” or “Finished.”

Once detection begins, ESSO-LM examines the following characteristics of the page for comparison

against available templates:

 URL

 Target fields and controls

 (Optional) Any additional matching criteria, such as text, HTML code, and element attributes,

which have been configured in the template for the target form.

Note: An application template is a set of configuration options that instruct the ESSO-LM Agent

how to detect and respond to Web application forms in order to successfully complete

the logon.

Keep in mind that in situations listed below you will have to configure your application as a Windows

application instead of as a Web application:

 You are using Internet Explorer and the target form is implemented as an ActiveX control

 You are using Mozilla Firefox and the target form is displayed using the browser’s built-in

authentication dialog

See the guide Template Configuration and Diagnostics for Windows Applications for more information.

 10

Supported Form Types

As of the release date of this document, ESSO-LM supports the following types of forms in Web

applications:

 Logon

 Password change

 Password change success (a message confirming successful password change)

 Password change failure (a message indicating the new password was rejected)

A single template can contain definitions for the multiple forms that the Web application can display.

For most applications, you need to only define the forms to which you want ESSO-LM to respond.

Note: Defining a form comprises providing unique identification criteria, specifying the action to

take when the form is detected, and the specific way in which the action (e.g., injecting

credentials) should be performed.

ESSO-LM can automatically populate the appropriate fields in a form with credentials retrieved from

 the user’s credential store, as well as operate the form’s controls to submit the credentials to the

application for processing. Configuration options that instruct the Agent how to interact with the form’s

fields and controls are stored in the template.

Understanding URL Detection

The first criterion ESSO-LM considers during Web form detection is the Web address, or URL of the

target page. This is usually the address you see in the browser’s address bar after the page has finished

loading, though in certain scenarios you might find that the actual URL you really want to specify in your

form definition is the URL of an element of a page, such as the container or form element (these terms

are explained in the next section) that actually contains the logon fields and controls.

A page URL is structured as follows:

http://apphost01.website.com/webapp01/apphome.html

Depending on the way the Web application has been deployed, the URL can be static or partially

dynamic. For example, a simple Web application might be deployed on a single Web server that has a

static host name and exists as a single HTML page, as in the example shown above. In such case, you can

configure the form definition to match against such a URL and enjoy a working template.

Many enterprise Web applications, on the other hand, are deployed on multiple servers that are

load-balanced or clustered, and the individual instance URLs are masked behind a single entry URL.

Protocol

identifier

Host (server)

name

Domain name Parent

directory

Host (server) URL Path relative to server root

Target page

Server root

 11

For example, while the URL used to access the Web application might simply be

http://webapp.website.com/webapp01/apphome.html

the actual URLs to the individual load-balanced instances might be

http://apphost01.website.com/webapp01/apphome.html

http://apphost02.website.com/webapp01/apphome.html

http://apphost03.website.com/webapp01/apphome.html

Most enterprise Web applications employ active scripting technologies, such as JavaScript or PHP,

to pass data back and forth between the browser and the Web server and/or database. Such

applications will employ one or more dynamic parameters, or variables, such as unique session IDs,

in the page URL.

For example:

http://webapp.website.com/apphome.html?s=bd4cecd0d934870

Some applications stack URL variables by separating them with a variable delimiter symbol, usually an

ampersand (&):

…apphome.html?s=bd4cecd0d934870&view=full&sidebar=off

In most enterprise Web application scenarios, you will find the combination of dynamic host names

and dynamic parameters, and will need to account for both in order to successfully configure your form

definition. ESSO-LM allows for matching against dynamic URLs via regular expressions, as well as a global

Agent setting that determines the URL matching precision used by ESSO-LM for all Web applications.

Dynamic host name

Dynamic parameter

(session-dependent)

Variable

input indicator

Variable

delimiters

 12

Understanding URL Matching Precision

URL matching precision determines how many segments of the host URL, counting from right to left,

within a page URL are considered during detection.

For example, at the default precision level of 2, if the host name URL is application URL is

http://webapp.website.com/apphome.php

then both the above host URL as well as the URLs of the individually-hosted instances of the application

shown below will be positive matches for the template:

http://apphost01.website.com/apphome.php

http://apphost02.website.com/apphome.php

This is equivalent to masking the last segment of the host URL either via a wildcard:

http://*.website.com/apphome.php

 or via regular expression:

http://.*\.website\.com/apphome\.php

Note: Certain URLs might include Top Level Domains (TLD) that consist of two segments (e.g.,

.co.uk for England, .co.au for Australia, and so on) instead of the typical single-segment

TLD (e.g., .com, .net, and so on). In such cases, you must consider the extra segment in the

host URL when configuring URL matching precision and/or Web application templates.

If you increase URL matching precision to 3, then ESSO-LM will match against three consecutive

segments of the host URL – in our example, it will match the entire host name exactly as it appears:

http://webapp.website.com/apphome.php

Variations in the server name will thus not be permitted and anything other than the exact host URL

configured in the template will be rejected by ESSO-LM during detection. In our example, the URLs of

the individual instances of the Web application shown above would not constitute positive matches.

Host (server)

name

Domain name

Host (server) URL

Host (server)

name

Domain name

 13

Follow these guidelines when determining the optimal URL matching precision for your environment:

 If the URL matching precision is set too low, ESSO-LM may mistake one intranet application for

another and respond with incorrect credentials.

 If URL matching precision is set too high, an application served through a distributed

infrastructure with unique host names may be erroneously recognized as separate applications

due to the varying host URL.

 Typically, set URL matching precision to 5 (the maximum value). This will ensure that ESSO-LM

only responds when the URL of the application requesting logon exactly matches the URL stored

in the template. The auto-recognize feature will have limited functionality.

 If you want to get the maximum benefit from ESSO-LM’s auto-recognize feature for Web

applications, leave URL matching precision at its default value of 2. However, response to

intranet applications might be impaired.

ESSO-LM allows you to set the URL matching precision level globally via the Administrative Console.

The option is located under Global Agent Settings End-User Experience Response Web Apps.

For more information on configuring the Agent and publishing your changes to end-user machines, see

the Best Practices guide Configuring the ESSO-LM Agent.

Obtaining the URL of a Page, Element, or Pop-Up

In certain situations, the URL of a page or element within a page might not be readily obtainable, but is

necessary to complete the form definition in the template. For example, you might need to obtain the

URL for:

 An embedded form that loads from a different URL than the URL of the Web page

 A logon processing script that passes data back and forth between the browser and the Web

server and/or database

 An image, or an embedded multimedia object

 A pop-up

In such cases, do one or more of the following to obtain the desired URL:

 Hit F11 to display the browser’s address bar, if it is not visible

 Right-click within the object or form and select Properties; the Properties dialog might reveal

the object’s URL

 Examine the HTML source code of the page after it has completed loading and find the object in

question

 Use a third-party tool, such as HTTPWatch or URL Getter to obtain the URL of the element,

especially if the URL is partially dynamic. In some cases, viewing the source code of the page

might be enough to obtain the complete URL of the object in question.

 14

Understanding Field Detection

Once ESSO-LM has positively matched the detected URL to a template, it examines the page’s Document

Object Model (DOM) in order to detect the fields configured in the form definition.

For each field and control, the Agent looks at the name or ordinal of:

 The parent frame element

 The parent form element

 The target field element

In order for a field to be successfully identified, all three values must match the values configured in

the form definition in the template. The figure and corresponding code example below illustrate the

structure of a simple Web page containing a logon form.

Note: The vast majority of today’s Web pages no longer use frames to sub-divide their content.

For detection purposes, ESSO-LM treats the <html> container as the master frame in the

page, identifying it with the ordinal value of 0. In most cases, you will never have to

change that value.

Frame (0)

e

<form>

element (0)

<input> elements
(type text) (0,1)

<input> element
(type submit) (2)

 15

<!DOCTYPE html>

<html>

 <head>

 <title> Enterprise Web Application </title>

 </head>

 <body style="border: 2pt solid red; width: 490px; padding: 20px;

 margin: 20px;">

 <div id="page-header" style="font: 12pt Tahoma;

 padding-bottom: 10px">

 Enterprise Web Application

 </div>

 <form action="/script/logon_form.html" method="POST" name="logon">

 <div id="logon_form" style="font: 11pt Tahoma; border: solid 2pt

 green; width: 220px; padding: 20px; margin-top: 20px;

 margin-left: 107px">

 <p style="padding-bottom: 20px; text-align: center;">

 Welcome - log on below.</p>

 <p>User name: <input type="text" name="username" id="user"

 size="18" style="border: 2pt solid blue;"></p>

 <p>Password: <input type="password"

 name="password" id="pass" size="18" style="border: 2pt

 solid blue;"></p>

 <p><input type="submit" id="submit_btn" name="submit"

 value="Log On" style="margin-left: 75px; margin-top:

 15px;"></p>

 </div>

 </form>

 </body>

 </html>

Note the hierarchical, nested structure of the code which corresponds to the parent-child relationship

of the elements of the rendered page.

Note: Each pair of opening and closing tags in the above example is an element - a piece of code

that constitutes a functional entity within the page, for example a frame, a form, or a field.

When you configure a form definition in a template manually, you can identify the frame, form, and field

elements to ESSO-LM by:

 Value of the element’s name attribute, or, if not specified,

 Ordinal, an index number assigned by ESSO-LM to elements of each supported type according to

the order in which they appear in the page’s DOM.

<form>

element
named
logon

(ordinal: 0)

“username”

input element (0)
(type text)

“password”

input element (1)
(type text)

“submit” input
element (2)

(type submit)

<html>

container

acting as

master

frame

element

with no

name

(ordinal: 0)

 16

Understanding HTML Elements

As mentioned in the previous section, an element in HTML is a piece of code that constitutes a

functional entity within the page, for example a frame, a form, or a field. An element can be a

single line of code - a single tag such as <input>, or consist of an opening and closing tag, such as

<div>…</div> and everything in between those tags.

For example, a typical <input> element looks as follows:

<input type="text" name="username" id="user" size="18"

 style="border: 2pt solid blue;">

Note the code after the element declaration (<input) – these are the element’s attributes. Each

attribute has a name and value in the form:

attribute_name="attribute_value"

The straight double-quotes (inch-marks) are required for the attribute value to be recognized.

Understanding the Frame Element

A frame is a legacy container that allows the sectioning of a Web page by defining a frameset and

specifying the size of each frame and the HTML document that it will display. The vast majority of Web

sites today no longer employ this technique and use logical containers defined in the XHTML standard,

such as <div> and <table> in tandem with CSS formatting to achieve sectioning. Therefore, in most

scenarios, you will notice that ESSO-LM treats the <html> container as the master (and only) frame in

the page, identifying it as frame 0.

When configuring your fields and detection matching rules, you will not have to change the frame

identifier, unless your Web application is a legacy application and specifically requires this - for example,

it uses a logon form that exists as a standalone HTML document and is displayed in a frame in the parent

Web page. You can identify such a page by examining its DOM or source and looking for the frameset

definition, denoted by the <frameset> tag. An example of a frameset definition looks as follows:

<FRAMESET cols="20%, 20%, 60%">

 <FRAME src="frame1.html">

 <FRAME src="frame2.html">

 <FRAME src="frame3.html">

</FRAMESET>

A frame can be identified by the <frame> tag:

<FRAME src="contents_of_frame3.html">

 17

Understanding the Form Element

A <form> element defines an HTML form, which is a logical entity containing one or more input fields

(described in the next section).

A <form> element definition references a script or another resource that accepts and processes the

values entered into those fields and submitted through the browser. For example:

<form action="/script/logon_form.html" method="POST"

 name="logon">

In our example, the logon_form.html page handles the user authentication; when the user

submits the form, the logon_form.html receives the values entered into the form’s input fields and

executes the appropriate authentication logic.

 18

Understanding the Input Elements Supported by ESSO-LM

Typically, an HTML form field is defined as an input element of a specific class, denoted by the tag

and type attribute used to define the element. When configuring a form definition, ESSO-LM

recognizes the following element types:

ESSO-LM Field Type Input Element Types Accepted by the ESSO-LM Field Type

 User name/ID

 Password

 Third Field

 Fourth Field

 Text – a text field identified by the <input> tag of

type="text". Text entered into this field is unmasked.

 Password – a text field identified by the <input> tag of
type="password". Text entered into this field is
masked.

 Select-one – a list field identified by the <select> tag
that permits the selection of a single list item as its value.

 Select-multiple – a list field identified by the

<select multiple … > tag that permits the
selection of one or more list items as its value.

 Submit

 Submit – a button control identified by the <input> tag of
type="submit". Executes the code specified in the

action attribute of the <form> tag (usually, calls an
HTML document or script that contains the application’s
logon logic.)

 Button - a button control identified by the <input> tag of
type="button". Functionally identical to the submit

type <input> element, except allows a greater degree
of styling.

 Image –a hyperlinked image identified by the <input> tag
of type="image" that executes the referenced link
when clicked.

 Anchor – the most common manifestation of a text
hyperlink (by default, appears as blue underlined text
in a page). Identified by the tag.

 19

Recommended Page Inspection Tools

When provisioning Web applications, Oracle highly recommends obtaining a page inspection tool that

will display the page’s DOM (and optionally, source code) in an easily navigable and searchable manner,

allowing for much easier and faster understanding of the page’s structure.

DOM Inspector for Mozilla Firefox

An example of such a tool is the DOM Inspector add-on for Mozilla Firefox. The DOM of our example

page would appear in DOM Inspector as follows:

The hierarchical structure of the page is displayed in a navigable tree in the left pane and clicking an

element highlights it in the browser window and displays the element attributes and their values in the

right pane, making it easy to identify and understand target page elements without sifting through the

page’s source code. This tool is especially useful for large, complex pages.

The DOM Inspector is available from the Mozilla Firefox Add-Ons site at http://addons.mozilla.org.

http://addons.mozilla.org/

 20

Firebug for Mozilla Firefox

A more advanced and flexible tool similar to DOM Inspector is the Firebug add-on for Mozilla Firefox.

Firebug sports all of the features of DOM inspector and adds full source code display in the DOM tree

including visual highlighting of each code element on mouse-over. Users can also modify the code and

see the changes in the browser window. While Firebug is aimed mainly at Web developers, it can prove

itself invaluable during analysis of complex Web pages.

 Firebug is available from the Mozilla Firefox Add-Ons site at http://addons.mozilla.org.

http://addons.mozilla.org/

 21

Understanding Detection Matching

If the URL and the elements discussed above are not enough to uniquely identify a logon form within a

page, you may specify additional detection criteria to further narrow down the detection scope via

matching. The term “matching” refers to the comparison of the values of certain parameters, such as

element names or attribute values, to the values stored in the application’s template.

For example, if a Web application is down for maintenance, attempting logon may result in the logon

form being redisplayed with an error message indicating the reason of the logon failure. To prevent

ESSO-LM from repeatedly attempting logon in such a scenario, you would define two logon forms in the

template and use text matching in one of the definitions to match against the error message text and

instruct ESSO-LM to ignore the logon form displaying the error.

Note: This section explains the principles behind the matching mechanism necessary to successfully

configure matching for a Web application. For actual instructions in configuring matching via

the Console, see Configuring Additional Field Detection Criteria.

ESSO-LM allows you to match against:

 Text displayed on the page

 HTML code within the page’s source code

 Names and values of attributes of page elements

To illustrate the above matching types, we will use the example from pp. 15-16. The example displays

a header, “Enterprise Web Application,” which is implemented as a <div> container to allow for easy

inline-styling of that specific piece of text:

<div id="page-header" style="font: 12pt Tahoma; padding-bottom: 10px">

 Enterprise Web Application

</div>

Detection Matching vs. Offset Matching

ESSO-LM offers two kinds of matching, detection, and offset. In almost all scenarios, you will always use

detection matching, and never offset matching. The latter is useful for legacy pages using framesets in

which frames are not identified by a name attribute. In such case, ESSO-LM will assign ordinals to the

frames in the order the frames appear in the page’s DOM. To match on elements within a specific frame

in such a frameset, you would specify its ordinal as the value for the Offset Start parameter in the

Matching tab of the form definition dialog.

 22

Matching Against Text on the Page

The most commonly used matching mode, you can match against the header text itself, regardless of its

formatting. For example, to match against “Enterprise Web Application” by configuring the matching

rule as follows:

 Tag: div

 Criteria: Text

 Value: Enterprise Web Application

 Match whole value: Yes

 Use regular expression: No

In this configuration, the following will be matched:

<div id="page-header" style="font: 12pt Tahoma; padding-bottom: 10px">

 Enterprise Web Application

</div>

Matching Against HTML Code in the Page’s Source

The HTML matching mode allows you to match against any piece of code within the page’s source code.

Most common use of this mode is to match against rendered text including its markup, but can also be

used for matching a specific piece of code that is unique to the page.

Note: Due to the nature of the HTML specification, ESSO-LM cannot match on a tag.

For example, to match against “Enterprise Web Application” but not “Enterprise Web Application”, you

would set up your matching rule as follows:

 Tag: div

 Criteria: HTML

 Value: Enterprise Web Application>

 Match whole value: Yes

 Use regular expression: No

This configuration would result with the following match:

<div id="page-header" style="font: 12pt Tahoma; padding-bottom: 10px">

 Enterprise Web Application

</div>

Note: The Match Whole Value option forces ESSO-LM to match against the complete string

entered in the Value field, and is enabled by default. To allow for partial matches on the

page, (e.g., Enterprise), disable this option.

 23

To match against the entire opening tag of the above <div> container, you would specify it as the

criterion value and specifying its parent element as the tag:

 Tag: body

 Criteria: HTML

 Value: <div id="page-header"…

 Match whole value: Yes

 Use regular expression: No

This would result in the following match:

<div id="page-header" style="font: 12pt Tahoma; padding-bottom: 10px">

 Enterprise Web Application

</div>

Matching Against Names and Values of Element Attributes

You can also match against a specific attribute or its value within an element. For example, you can

match against the value of the id attribute of the <div> element:

 Tag: div

 Criteria: Attribute

 Attribute name: id

 Value: page-header

 Match whole value: Yes

 Use regular expression: No

This would result in the following match:

<div id="page-header" style="font: 12pt Tahoma; padding-bottom: 10px">

 Enterprise Web Application

</div>

Leaving the Value field blank would, however, result in a match on the attribute name:

<div id="page-header" style="font: 12pt Tahoma; padding-bottom: 10px">

 Enterprise Web Application

</div>

 24

Constructing Complex Rule Chains Using Logic Operators

ESSO-LM allows you to chain individual matching rules using Boolean logic operators to create complex

rule chains that only result in a positive match in a very specific set of circumstances.

For example, you may want to create a match rule chain for a password change form that displays a

success message when the password has successfully been changed, while still displaying the password

change fields and controls. In such case you would want ESSO-LM to ignore the form once the success

message is displayed so that ESSO-LM does not enter a password change loop, while retaining proper

response to the standard password change form.

To accomplish this, you would create the following rules:

 A NOT match rule for the success message text, which will cause ESSO-LM to ignore the form,

and

 An AND match rule for any text on the form that will result in a positive match and cause

ESSO-LM to respond when the success message is not present.

Based on our example, you would configure the above rules as follows:

Rule 1

 Tag: html

 Criteria: Text

 Value: Logon error

 Match whole value: Yes

 Use regular expression: No

 Operation: NOT

Rule 2

 Tag: html

 Criteria: Text

 Value: Enterprise Web Application

 Match whole value: Yes

 Use regular expression: No

 Operation: AND

Note: When defining a NOT match rule, you must always follow it with an AND rule that will

result in a positive match. Otherwise, ESSO-LM will not respond to the form.

 25

Other common matching rule chaining examples are shown below. To get a positive match on:

 Rule 1 AND Rule 2 – configure both rules with the AND operator, in that order.

 Rule 1 OR Rule 2 – configure Rule 1 with the AND operator and Rule 2 with the OR operator, in

that order.

 Rule 1 AND Rule 2 but NOT Rule 3 – same as above. Place the NOT rule first in the chain,

followed by the two AND rules.

 Rule 1 OR Rule 2 but NOT Rule 3 – configure Rule 1 as an AND rule, Rule 2 as an OR rule, and

Rule 3 as a NOT rule, then place the NOT rule first in the chain, followed by the AND rule and the

OR rule.

Using Wildcards to Configure Detection Criteria

Wildcards, such as ? (single character) and * (any combination of characters, excluding space), are the

most commonly used methods of accounting for dynamic detection criteria. Use the Wildcard option

when configuring a criterion in a form definition and follow the guidelines below:

 Je???e will match both Jeanne and Jessie. It will not, however, match Jeanine, because

neither the length of the string nor character order match.

 Je*e will match against all words that begin with Je and end with e; all three examples above

are matches in this case.

 webapp*.company.com will match against all URLs that contain a host name that starts

with webapp. This technique is useful for matching against the URLs of applications that are

load-balanced and masked via a common URL and load from a different physical host each time

they are accessed, causing the URL to vary.

 26

Using Regular Expressions to Configure Detection Criteria

You can also use regular expressions supported by the Microsoft .NET Framework to formulate the text

pattern that ESSO-LM should recognize as a match for the criteria discussed earlier in this guide. (Use

the Regular expression option when configuring a criterion in a form definition.) For your reference, the

most commonly used operators and meta-characters are listed below:

Expression Description

[]

Indicates a character class that matches any character inside the brackets.

Example: [abc] matches "a," "b," and "c."

()

Indicates a character grouping operator.

Example: (\d+,)*\d+ matches a list of numbers separated by commas,
such as "1" or "1,23,456".

{ } Indicates a match class.

|

Separates two expressions, exactly one of which matches.

Example: T|the matches "The" or "the".

. Matches any single character.

^

If ^ occurs at the start of a character class, it negates the character class.
A negated character class matches any character except those inside the brackets.

Example: [^abc] matches all characters except "a", "b", and "c".

If ^ is at the beginning of the regular expression, it matches the beginning of the
input.

Example: ^[abc]will only match input that begins with "a," "b," or "c".

$

At the end of a regular expression, $ matches the end of the input.

Example: [0-9]$ matches a digit at the end of the input.

-

In a character class, a hyphen indicates a range of characters.

Example: [0-9] matches any of the digits "0" through "9."

! Negates the expression that follows.

?

Indicates that the preceding expression is optional: it matches once or not at all.

Example: [0-9][0-9]? matches "2" and "12".

Grg

 27

Understanding Form Response

Expression Description

+

Indicates that the preceding expression matches one or more times.

Example: [0-9]+ matches "1," "13," "666," and so on.

*
Indicates that the preceding expression matches zero or more times.

??,+?,*?

“Non-greedy” versions of ?, +, and *. These match as little as possible, unlike the greedy
versions that match as much as possible.

Example: Given the input <abc><def>, <.*?> matches <abc>
while <.*> matches <abc><def>.

\

Escape character that forces the next character to be insterpreted literally.

Example: [0-9]+ matches one or more digits, but [0-9]\+ matches a digit followed by
a plus character).

If \ is followed by a number n, it matches the nth match group (starting from 0).

Example: <{.*?}>.*?</\0> matches <head>Contents</head>.

The \ is also used for abbreviations, the most common of which are shown below:

Abbreviation Description

\a Any alphanumeric character. Substitutes for: a-z, A-Z, 0-9

\b White (blank) space. Substitutes for : \\t

\c Any alphabetic character. Substitutes for: a-z, A-Z

 Any decimal digit. Substitutes for: 0-9

\d \h Any hexadecimal digit. Substitutes for: 0-9, a-f, A-F

\n New line. Substitutes for: \r|\r?\n

\q

A quoted string.

Substitutes for: \"[^\"]*\"|\'[^\']*\'

\z An integer. Substitutes for: 0-9+

 28

Once ESSO-LM has successfully identified the Web form and its input fields, it uses the appropriate

helper object to programmatically inject the appropriate credentials into the form fields and engage the

submit control. Each helper object utilizes the respective browser’s API to accomplish the above tasks.

 29

Part 2: Configuring and Testing Forms

This part describes the recommended best-practice procedures for configuring and testing Windows

application forms. It covers the following topics:

 Determining the Optimal Configuration for a Form

 Configuring a Form

 Testing the Configuration of a Form

 Publishing a Template to the Repository

 30

Determining the Optimal Configuration for a Form

When configuring a form, use the information in this section to determine its optimal configuration

based on the requirements and features of the target application.

Determining the Optimal Configuration for a Logon Form

Non-unique or dynamic

field names?

Fields and controls

visible in the Web Form

Wizard?

Logon form in pop-up

window?

Dynamic page or

element URL?

Use wildcards or

regular expressions

to match against

a dynamic URL.

See topic:

Understanding

URL Detection

No No

No

Use ordinals instead of field

names to uniquely identify

fields in the Web Form

Wizard.

Yes

Yes

No

Enable “Show

Anchor Tags” option.

Missing controls

now visible?

Obtain the URL of the

pop-up window and enter it

into the Web Form Wizard.

See topic:

Obtaining the URL of a

Page, Element, or Pop-Up

Yes

No

Yes Yes

 31

Logon form is a Flash

applet?
Contact Oracle Support.

“Submit” control is an

image?

If the image URL is dynamic,

the Agent may respond

intermittently. Use regular

expressions to

accommodate the non-static

portion of the URL.

Yes

Template complete;

proceed to testing.

Other fields on page

aside from target fields?

Use matching to limit

response to target fields.

See topic:

Configuring Additional

Field Detection Criteria

Yes

No

Yes

No

No

 32

Target fields and controls appear in the Web Form Wizard?

In most situations, the Web Form Wizard successfully detects and displays the credential fields and

controls present in the target form. If some or all fields or controls are missing, do one of the following:

 If no fields or controls are visible in the Form Wizard, the logon form has a separate URL or is in

a pop-up. Obtain this URL as described in Obtaining the URL of a Page, Element, or Pop-Up and

supply it to the wizard instead of the page’s main URL.

 If the submit controls are not recognized, enable the “Show Anchor Tags” option to reveal

controls implemented as anchor (i.e., <A HREF=) tags.

 If fields are still not visible, see Contacting Oracle Support to obtain further assistance.

Non-unique or dynamic field names?

If the names of the target field elements are non-unique or dynamic, use ordinals instead of element

names to identify the fields to ESSO-LM. Examine the page’s DOM and/or source code to determine

whether this is the case. For more information, see Understanding Field Detection.

Dynamic page or element URL?

If the URL of the page or form element is dynamic, you will need to use wildcards or regular expressions

to limit Agent response to the desired URL or range of URLs. For more information, see Understanding

URL Detection.

“Submit” control is an image?

If the “submit” control is an image whose URL is dynamic (i.e., the image is hosted in a distributed

environment and the host name portion of its URL is not static), you must use wildcards or regular

expressions to specify the desired range of URLs as valid for the control; otherwise, ESSO-LM will stop

detecting the control as soon as the control URL deviates from the original static value used for

configuring the template. For more information, see Understanding URL Detection.

Other fields on the page besides target fields?

If there are other input fields and controls on the page aside from the target fields, use matching to limit

Agent response to the desired fields. For more information, see Configuring Additional Field Detection

Criteria.

 33

Determining the Optimal Configuration for a Password Change Form

Logon and PWC forms

on same screen?

Action required to

initiate password

change?

Target fields and

controls appear in the

Web Form Wizard?

Application prompts

for confirmation of new

password?

Define both forms in the template;

Agent will prompt the user to choose

the desired action.

Instruct users to manually perform

the required action.

Yes

No

No

Yes

No

No

Yes

No

Define a second logon form in the

template and configure it to respond

to the password confirmation form.

Logon form in a pop-up

window?

Obtain the URL of the

pop-up window and

enter it into the Web Form Wizard.

See topic:

Obtaining the URL of a Form,

Element, or Pop-Up

Enable

“Show anchor tags”

option. Fields and

controls visible?

Yes

No

Yes

Yes

 34

Non-unique or

dynamic target input

field names?

Yes
Use ordinals instead of field

names to respond to this form.

Dynamic page or

element URL?

Truncate the dynamic sections of the

URL from the URL definition so that

only the static portion remains.

(Agent will automatically wildcard the

beginning and the end of the URL.)

Yes

No

No

Application

displays a password

change success/failure

message?

Yes

Define a password change success

and/or a password change failure form

in the template.

No

No

If the image URL is dynamic,

the Agent may respond intermittently.

Use regular expressions to

accommodate the non-static

portion of the URL

See topic:

Understanding URL Detection

Yes

Template complete;

proceed to testing.

Other fields on page

aside from target fields?

Use matching to limit response to

target fields.

See topic:

Configuring Additional

Field Detection Criteria

Yes

No

“Submit” control is an

image?

 35

Logon and password change forms on the same screen?
Some applications might present password change forms that also contain logon-related fields or

controls, such as a user name field or a Change Password button, which invokes the application’s

password change (PWC) form. If the Auto Submit feature is enabled and the Agent responds to such

application, the user is logged in automatically without being given the option to change the password.

In order to allow the user to select the desired course of action, define the logon and password change

forms in the template. The Agent will prompt the user for the desired course of action (logon or

password change) when it responds to an application with consolidated logon and password change

forms.

Note: You also have the option to configure a grace period for the “action chooser”

feature, during which the Agent will automatically assume that logon is the preferred

action and log the user on without prompting to choose the desired action. This

option, named Action Chooser Grace Period, is available in the Miscellaneous tab in

the application template.

Action required to initiate password change?

If the form requires an action to initiate password change, such as selecting a checkbox, due to the

nature of Web applications, ESSO-LM may not be able to complete that action programmatically; Oracle

recommends instructing users to perform the required action manually, then allowing ESSO-LM to

complete the password change.

Target fields and controls appear in the Web Form Wizard?

In most situations, the Web Form Wizard successfully detects and displays the credential fields and

controls present in the target form. If some or all fields or controls are missing, do one of the following:

 If no fields or controls are visible in the Form Wizard, the logon form has a separate URL or is in

a pop-up. Obtain this URL as described in Obtaining the URL of a Page, Element, or Pop-Up and

supply it to the wizard instead of the page’s main URL.

 If the submit controls are not recognized, enable the Show Anchor Tags option to reveal

controls implemented as anchor (i.e., <A HREF=) tags.

 If fields are still not visible, see Contacting Oracle Support to obtain further assistance.

Application requires confirmation of new password?

Some applications prompt the user to confirm the new password when performing a password change.

If the target application displays such a form, define a second logon form in the template and configure

it to respond to the password confirmation form.

Application displays a password change success and/or failure dialogs?

Some application display a message indicating whether password change was a success or a failure.

In such cases, define a password change success or a password change failure form in the application

template.

 36

Non-unique or dynamic field names?

If the names of the target field elements are non-unique or dynamic, use ordinals instead of element

names to identify the fields to ESSO-LM. Examine the page’s DOM and/or source code to determine

whether this is the case. For more information, see Understanding Field Detection.

Dynamic page or element URL?

If the URL of the page or form element is dynamic, you will need to use wildcards or regular expressions

to limit Agent response to the desired URL or range of URLs. For more information, see Understanding

URL Detection.

“Submit” control is an image?

If the “submit” control is an image whose URL is dynamic (i.e., the image is hosted in a distributed

environment and the host name portion of its URL is not static), you must use wildcards or regular

expressions to specify the desired range of URLs as valid for the control; otherwise, ESSO-LM will stop

detecting the control as soon as the control URL deviates from the original static value used for

configuring the template. For more information, see Understanding URL Detection.

Other fields on the page besides target fields?

If there are other input fields and controls on the page aside from the target fields, use matching to limit

response to the desired fields. For more information, see Configuring Additional Field Detection Criteria.

 37

Configuring a Form

The procedures in this section use concepts and terminology explained earlier in this guide. When

performing the procedures in this section, refer to Determining the Optimal Configuration for a Form

to make configuration decisions that best suit the target application.

Basic Configuration

To complete a basic configuration of a form, do the following:

1. Open the ESSO-LM Administrative Console. By default, the shortcut is located

in Start Programs Oracle ESSO-LM Console.

2. In the left-hand tree, select the Applications node and do one of the following:

 If you want to create a new template and define its first form:

i. Click Add in the right-hand pane.

ii. In the New Application dialog, enter a descriptive name for the template

and click Finish. The new template appears in the list of stored templates.

Caution: If two or more application templates are named such that the

name of one of the templates occurs in the beginning of the

name of another template, the Agent will erroneously use the

template with the shortest name to respond to all of the

affected applications. To avoid this behavior, ensure that your

template names do not begin with the same string of text.

 38

 If you want to add a form definition to an existing template, do the following:

i. Expand the Applications node and select the desired template.

The template appears in the right-hand pane.

ii. Click Add at the bottom of the pane.

3. In the Web Form Wizard that appears, configure the fields and controls that you want the Agent

to interact with when responding to the target form:

a. In the “Form Type” screen, select the desired form type and click Next.

 39

b. In the next screen, enter the URL of the target page, form, or element and wait for it to

complete loading in the preview pane.

Note: If you see two or more fields that share the same name, the Agent might

respond to the form erroneously when configuration is complete. In such

cases enable the Use ordinals instead of names option to uniquely identify

the input fields to the Agent via ordinals (consecutive index numbers).

For more information, see Understanding Web Form Detection.

 40

c. In the field list at the bottom of the screen, select and configure the target fields and

controls from among the objects in the list as follows:

Note: If one or more fields or controls are missing from the list, you may have

to configure them manually. In such cases, complete the remainder of the

Wizard as-is, then follow the instructions in Manually Configuring a Field

or Control for each affected input field.

i. Right-click each desired field or control and select its function from the context

menu. The selected field will be highlighted in the page preview.

Caution: While the Detect Fields feature is accurate the majority of the

time, Oracle recommends always configuring fields and

controls manually for guaranteed accuracy.

Note: If a “submit” button (usually labeled OK, Logon, etc.) is not

visible in the list, ESSO-LM will still send a “submit” action to

the application after injecting credentials. This action is

equivalent to the user manually pressing the Enter key.

ii. If the submit control is missing, it might be implemented as an anchor

(i.e., <A HREF=) tag. In such cases, enable the Show anchor tags option to

expose such a control.

iii. When you have configured all of the visible input fields, click OK.

 41

d. The Console displays the properties dialog for the Web form definition you have just

configured. Do one of the following:

 If you have successfully completed all of the target input fields using the Web Form

Wizard and require no further configuration, click OK in the dialog to dismiss it, then

publish your changes to the repository as described in Publishing a Template to the

Repository, if applicable.

 If you were unable to configure one or more target fields using the Web Form Wizard,

continue to step 3 in Manually Configuring a Field or Control.

 If you need to modify existing or specify additional URL detection criteria,

continue to Configuring URL Detection Criteria.

 If you need to configure additional field detection criteria via the Matching tab,

continue to Configuring Additional Field Detection Criteria.

Note: If the contents of the page are dynamic, i.e., change after the page has

completed loading, select the Dynamic Page option to enable active page

polling. This will allow the Agent to monitor the page for changes.

 42

Manually Configuring a Field or Control

If you were unable to configure an input field using the Web Form Wizard, follow the procedure below

to configure it manually:

1. In the Console, expand the Applications node and select the desired template.

2. In the General tab, select the desired form definition and click Edit. The form properties

dialog appears.

 43

3. In the Fields section of the General tab of the form properties dialog, do the following:

a. To configure a new field, click Add; to modify the configuration of an existing field,

select the field in the list and click Edit.

b. In the field properties dialog that appears, do the following:

Note: See Understanding Field Detection to understand the values

you need to specify here.

i. In the Function drop-down list, select the field’s purpose. The available

values are Username/ID, Password, Third Field, and Fourth Field.

ii. In the Frame field, enter the name or ordinal of the field’s parent frame

element.

iii. In the Form field, enter the name or ordinal of the field’s parent form element.

iv. In the Field Name field, enter the name or ordinal of the target input field.

v. In the Field Type drop-down list, select the type of the target input field.

vi. Click OK to save your field definition to the template.

e. Repeat steps i – vi for each additional field you want to configure.

4. Click OK in the form properties dialog to dismiss it.

5. Publish your changes to the repository, as described in Publishing a Template to the Repository,

if applicable.

 44

Configuring URL Detection Criteria

If you need to modify the default URL detection criteria configured by the Web Form Wizard or specify

additional criteria, do the following:

If you were unable to configure an input field using the Web Form Wizard, follow the procedure below

to configure it manually:

1. In the Console, expand the Applications node and select the desired template.

2. In the General tab, select the desired form definition and click Edit. The form properties

dialog appears.

 45

3. In the URL section of the General tab in the form properties dialog, do the following:

a. To configure a new URL definition, click Add; to modify the configuration of an URL

definition, select the definition in the list and click Edit.

b. In the URL definition properties dialog that appears, do the following:

Note: See Understanding URL Detection to understand

the values you need to specify here.

i. Select the desired match type.

ii. Enter the desired match criterion.

iii. Click OK to store your URL definition.

c. Repeat steps i–iii to configure any additional URL definitions.

d. Click OK in the form properties dialog to dismiss it.

4. Publish your changes to the repository, as described in Publishing a Template to the Repository,

if applicable.

 46

Configuring Additional Field Detection Criteria

If you need to configure additional field detection criteria in either standard or offset matching mode,

do the following:

1. In the Console, expand the Applications node and select the desired template.

2. In the General tab, select the desired form definition and click Edit. The form properties

dialog appears.

3. In the dialog, select the Matching tab.

4. Complete the steps below in either the Detection Match or the Form Offset Match sections,

depending on the desired matching type (see Detection Matching vs. Offset Matching for more

information).

Note: When performing offset matching, you must specify the Offset Start value.

a. To configure a new matching rule, click Add; to modify an existing rule, select the rule in

the list and click Edit.

 47

b. In the “Match Criteria” dialog that appears, do the following:

Note: See Understanding Detection Matching to

understand the values you need to specify here.

i. In the Tag field, specify the name of the parent element.

ii. (Optional) If there are multiple instances of the parent element within the page,

determine its ordinal, select the Match tag instance box and enter the ordinal in

the value field.

iii. In the Criteria field, select the desired matching mode.

iv. In the Value field, enter the target criterion value.

v. For most scenarios, leave the Match whole value option enabled; this will cause

ESSO-LM to match strictly against the criterion value. If you disable this option,

ESSO-LM will also consider partial matches against the criterion value as

positive.

vi. If you want to use regular expressions as part of the criterion value, enable the

Use regular expression option.

vii. (Optional) If you are creating a matching rule chain to form a complex matching

rule, select the desired Boolean operator in the Operation field to indicate how

this rule will chain with the preceding rule.

viii. Click OK to save your matching rule.

c. Repeat steps i-viii for each additional matching rule.

d. Click OK in the form properties dialog to dismiss it.

5. Publish your changes to the repository, as described in Publishing a Template to the Repository,

if applicable.

 48

Testing the Configuration of a Form

To test the configuration of a form, do the following:

1. Launch the Agent.

2. Access the target application and invoke the desired form.

3. Use the appropriate flowchart to test the form configuration.

Testing the Configuration of a Logon Form

Agent detects

the form?

Agent injects and

submits credentials?

Logon loop occuring

on logout ?

See topic:

 Troubleshooting

Credential Injection

and Submission

See topic:

Troubleshooting

a Logon Loop

Yes

Yes

No

No

Yes

No

Done!

See topic:

Troubleshooting

Web Form Detection

No

 49

Agent detects form?

Once the Agent has been provided with the template, it will automatically respond to the target form,

unless the automatic response feature has been explicitly disabled. If the Agent fails to respond to the

form, see Troubleshooting Web Form Detection.

Agent injects credentials?

If credentials have been stored for the target application in the user’s store, the Agent will inject them

into the appropriate fields upon successful application detection. The Agent will also automatically

submit the credentials unless the “Auto-Submit” feature has been explicitly disabled. If credential

injection fails, see Troubleshooting Credential Injection and Submission.

Logon loop occurring on logout?

Some applications display their logon screen upon logout, which causes the Agent to enter a logon loop

and effectively prevents the user from logging out of the application unless the Agent is shut down.

If this happens, see Troubleshooting a Logon Loop.

 50

Testing the Configuration of a Password Change Form

Agent detects the form?

Agent injects

credentials?

Yes

Yes

No

See topic:

Troubleshooting

Web Form Detection

No

Agent responds to

PWC form as if it were

a logon form?

Yes

No

Check template for

common errors, such

as mistyped element

names, and so on.

New password

satisfies application’s

password policy?

Reconfigure template

to satisfy application’s

password policy.

Yes

No

Done!

See topic:

Troubleshooting

Credential Injection

and Submission

No

 51

Agent detects the form?

Once the Agent has been provided with the template, it will automatically respond to the target form,

unless the automatic response feature has been explicitly disabled. If the Agent fails to respond to the

application, see Troubleshooting Web Form Detection.

Agent injects and submits credentials?

When the Agent detects the password change, it injects credentials into the appropriate fields and

submits them to the application, unless the Auto Submit feature has been explicitly disabled. If

credential injection is erratic or does not occur at all, see Troubleshooting Credential Injection and

Submission.

New password satisfies application’s password policy?

If the new password generated by ESSO-LM does not satisfy the application’s own password policy,

password change will be unsuccessful. If you determine this to be the case, compare the password

generation policy currently deployed to the Agent with the password policy of the target application

and correct any inconsistencies that may cause password change failure.

Agent responds to password change form as if it were a logon?

If the Agent responds to the password change form as if it were a logon form (i.e., Agent injects and

submits the user’s currently stored credentials), check for the following;

 Configuration mistakes in the template, such as incorrect element or form type, erroneous input

field definitions, and so on.

 Check whether the password change form has a dynamic URL and update the template

accordingly if it does.

 If you are using detection matching, check whether you are using the correct matching type and

examine your matching strings for errors.

 52

Publishing a Template to the Repository

Once you have successfully tested your application template, you can distribute it to end-user machines

by publishing it to the selected target container within your repository, either in a directory-style

hierarchy (default), or as a flat configuration file.

 Note: For more information on deploying ESSO-LM with a repository and best practices for

structuring the repository tree, see the ESSO-LM Best Practices guide for your platform.

Publishing a Template with ESSO-LM Versions Prior to 11.1.1.2.0

Note: Before performing this procedure, make sure you are familiar with the structure and

configuration of your repository.

To select and publish the desired templates and other configuration objects to the repository:

1. Launch the ESSO-LM Administrative Console.

2. In the left-hand pane, right-click the Repository node and select Connect To… from the context

menu.

3. Fill in the required connection information and click OK to establish the connection.

The directory tree appears in the right-hand pane.

4. In the tree, navigate to and select the desired target container.

5. Right-click the target container and select Configure SSO Support from the context menu.

 53

6. In the “Configure SSO Support” dialog that appears, click Administrative Console.

7. In the screen that appears, select Advanced mode and click Next.

8. In the screen that appears, specify the objects you want to publish to the selected container.

 To add select objects in a given category, do the following:

i. Click Add.

ii. In the dialog that appears, select the desired objects.

Tip: Use Ctrl-click to select multiple specific objects, or Shift-click to select

the first and last objects in a desired range.

iii. Click OK.

 To add all objects in a category that currently exist in the Console, click Add All in that

category’s section of the dialog.

 To remove an object from a list of objects to be published, click Remove in that category’s

section of the dialog.

When you have made your selections, click Next.

 54

9. In the summary screen, review your choices. If you want to make changes, click Back; otherwise,

click Finish to publish the selected objects to the chosen target container. The published objects

appear under the target container in the right-hand pane of the Console.

 55

Publishing a Template with ESSO-LM Version 11.1.1.2.0 and Above

Note: Before performing this procedure, make sure you are familiar with the structure and

configuration of your repository.

To select and publish the desired templates and other configuration objects to the repository:

1. Launch the ESSO-LM Administrative Console.

2. Right-click the Applications node and select Publish… from the context menu.

The “Publish to Repository” dialog appears.

3. In the Available configuration objects list, navigate to and select the desired objects.

Note: Only categories for which objects have been configured will appear in this list.

For example, if no password generation policies exist, the corresponding category

will not appear in this list.

 56

4. Click >> to move the selected objects to the Selected objects to be published list.

(To remove an object from this list and not publish it, select the object and click <<.)

5. Select the target container to which you want to publish the selected objects by doing one of

the following:

o If you have previously published to the desired container, select it from the Target

Repository drop-down list.

o If you have not previously published to the desired container, or if the target container

path does not appear in the Target Repository drop-down list, you must use the Browse

feature to find and select the target container:

i. Click Browse to browse the directory tree.

Note: If you are not already connected to the directory, the Console will

prompt you to provide the required connection information.

 57

ii. In the “Browse for Repository” dialog that appears, navigate to and select the

target container.

Note: If you want to create a new container, right-click the desired

parent container, select New Container from the context menu,

enter the desired name for the new container, and click OK to

complete the process.

6. (Optional) If your environment calls for storing configuration objects in flat-format, select the

check box Store selected items in configuration files, rather than as individual objects.

Note: Selecting this option will overwrite all items stored in existing configuration files,

if present in the target container.

7. (Optional) If you want to create the first-time use object (FTUList), select the corresponding

check box.

Note: This option only becomes active if you choose to store your configuration objects

in flat format in step 6.

 58

8. Click Publish. The Console publishes the selected objects to the target repository.

Caution: Do not attempt to dismiss the dialog or close the Console until the publishing

process completes. The dialog will disappear automatically when the objects

have been published.

For more information on the publishing process, see the ESSO-LM Administrative Console help.

 59

Part 3: Troubleshooting Detection and
Response Issues

This part describes diagnosis and resolution steps for the most common issues that may cause the Agent

to erratically detect and/or respond to Web forms. It covers the following topics:

 Troubleshooting Web Form Detection

 Troubleshooting Credential Injection and Submission

 Troubleshooting Detection Matching

 Troubleshooting a Logon Loop

 Troubleshooting Java Application Issues

Tip: If the steps in this section do not resolve your issue, you can troubleshoot further by

tracing and logging the activity of ESSO-LM and submitting the logged information to

Oracle Support for analysis. For this purpose, Oracle provides the Trace Controller utility,

available from Oracle Support. For information on how to use the utility, see the How-To

guide Using the Trace Controller Utility.

If the steps in this section do not resolve the issue, see Contacting Oracle Support to obtain further

assistance.

 60

Troubleshooting Web Form Detection

Use the steps below to diagnose erratic form detection.

“Logon Using…” tray

icon option results in

successful detection?

Check the template for

errors, such as erroneous

URL or input field definitions.

Done!

Is the the appropriate

helper object running?

Run the ESSO-LM installer,

check whether the helper

object is installed, install it if

it’s missing.

Truncate URL to

host.domain form.

Issue resolved?

Re-add the truncated URL

segments one by one until

the issue recurs; the last

segment added is the

offending (dynamic)

segment. Use regular

expressions to

accommodate the dynamic

segment in the URL

definition.

See topic:

Understanding URL

Detection

Yes

No

No

No Contact Oracle Support.

Yes

Page completed

loading?

Wait until page completes

loading. Detection will not

begin until page has finished

loading.

No

Yes

Error found and

corrected?
No

Yes

No

Remove all detection

and offset matching

rules. Issue resolved?

Add the removed rules back

one by one until the issue

recurs; the last rule added is

the offending rule.

Reconfigure offending rule.

Yes

Yes

 61

“Logon Using ESSO-LM” tray icon option results in successful detection?

If the Agent does not detect the form, but invoking the Logon Using ESSO-LM option from the Agent’s

system tray icon results in successful detection, check the template for errors such as incorrect or

imprecise URL and input field definitions, matching rules, and so on.

 Page completed loading?

The Agent will not begin detection until the browser indicates that the page has loaded completely.

If the page is loading slowly, you must allow it to load completely before deciding whether detection is

occurring properly. Usually, the browser’s status bar, located at the bottom of the browser window,

indicates the page has completed loading by displaying an appropriate message, such as “Done” or

“Finished.”

Is the appropriate helper object running?

In order to communicate with the installed Web browser(s), the Agent uses helper objects that hook

into the browser(s) and provide ESSO-LM with a means of sending and receiving data to/from the

browser. If the helper objects are not running in the background, ESSO-LM will be unable to

communicate with the browser(s). For more information, see Understanding Web Form Detection.

Removing all detection and offset matching rules results in successful detection?

You might have configured one or more matching rules in a way which prevents successful detection of

the target Web form. Remove all matching rules and re-add them one by one while testing detection

until you identify the offending rule.

Truncating URL definition to host.domain form results in successful detection?

The URL might contain a dynamic segment which is preventing the Agent from detecting the form

consistently. Simplify the URL definition to host.domain form and test the template – if detection is

successful, rebuild your URL definition one segment at a time until the offending segment is identified,

then use regular expressions to accommodate the dynamic segment. For more information, see

Understanding URL Detection.

If the above steps do not resolve the issue, see Contacting Oracle Support to obtain further assistance.

 62

Troubleshooting Credential Injection and Submission

Agent injects

credentials but does

not submit them?

Remove the “submit” field

definition from the template.

Agent will automatically send

the default “submit” action

(the Enter keystroke).

Press Enter.

Credentials submitted?
Yes

Fields populated

erratically?

Yes

Instruct users to

manually submit the

injected credentials.

Agent detects form?

See topic:

Troubleshooting Web

Form Detection

No

No

Non-unique or

dynamic input field

names?

Use ordinals instead of

names to identify input fields.

Yes No

Yes

Contact Oracle Support.

No

Done!

No

Yes

 63

Agent detects the form?

If the Agent does not detect the form at all and does not attempt response, see Understanding Web

Form Detection to identify possible problems in template configuration that might be hampering

detection.

Agent injects credentials but does not submit them?

If the Agent successfully detects the fields and injects the correct credentials, but is unable to

automatically submit them to the application for processing, press Enter to see if the credentials are

submitted, then do one of the following:

 If pressing Enter submits the credentials, remove the “submit” input field definition from the

template. When the “submit” field definition is absent, the Agent will send its default submit

action – the Enter keystroke.

 If pressing Enter does not submit the credentials, instruct the users to submit them manually.

Fields populated erratically?

If the Agent populates the fields erratically, i.e., inserts wrong, truncated, garbled, or blank values, one

or more of the target element names might be non-unique or dynamic. In such case, use ordinals

instead of element names to uniquely identify the elements to ESSO-LM.

If the above steps do not resolve the issue, see Contacting Oracle Support to obtain further assistance.

 64

Troubleshooting Detection Matching

Remove all

matching rules.

Agent detects

form?

Resolve other detection

problems first, then try

configuring matching again.

See topic:

Troubleshooting

Web Form Detection

No

Yes

Remove the offending

rule. Issue persists?

Yes

Done!

No

Broaden the scope

of the offending rule.

Issue persists?

Re-add matching

rules one by one.

Offending rule

identified?

Yes

No

No

Contact

Oracle Support.

Yes

 65

Removing all matching rules restores form detection?

If removing all matching rules from the form definition in the template restores proper form detection,

re-add the rules one by one until the offending rule is identified. Then, either broaden the scope of the

offending rule (for example, specify an HTML container that’s “one-above” in the site’s DOM hierarchy

than the currently specified one), or remove the offending rule completely and see if detection is

restored. If disabling matching completely does not restore detection, the problem lies elsewhere.

See Troubleshooting Web Form Detection to resolve the problem.

If the above steps do not resolve the issue, see Contacting Oracle Support to obtain further assistance.

 66

Troubleshooting a Logon Loop

Some applications display their logon form upon logout, which causes ESSO-LM to recognize the

logon form and automatically log you back on to the application. This creates an endless “logon loop”

preventing you from logging out of the application. To prevent this loop from occurring, the

administrator may choose to enable the logon grace period feature which forbids ESSO-LM from

logging on to an application within set time period since the last logon.

Configure the “Logon

Loop Grace Period” option.

Resolved?

Post-logout form different

from standard logon form?

Yes

No

Contact Oracle

Support.

Done!

Use matching to

distinguish between

the two logon forms.

Resolved?

No

Yes

No

Yes

Yes

No

Application presents logon

form upon logout.

Post-logout form URL

different from standard

logon form URL?

Modify the URL definition so

that the post-logout URL is

no longer a positive match.

Yes

OR

 67

Post-logout form URL from standard logon form URL?

If the URL of the logon form presented upon logout is different from the URL of the standard logon

form, modify the URL definition in the template so that the URL of the post-logon form is no longer a

positive match. See Configuring URL Detection Criteria for instructions.

Post-logout form different from standard logon form?

If the logon form presented upon logout is sufficiently different from the application’s standard logon

form, use matching to uniquely distinguish between the two logon forms. See Configuring Additional

Field Detection Criteria for instructions.

Configuring the “Logon Loop Grace Period” option resolves logon loop?

If the post-logout form cannot be uniquely distinguished from the standard logon form, configure a

grace period that will prevent the Agent from automatically logging on to the same application if the

specified grace period has not fully elapsed.

To configure the logon loop grace period timer, do the following:

1. In the ESSO-LM Administrative Console, open the desired template and select the

Miscellaneous tab.

2. In the Logon Loop Grace Period field, select the desired mode of operation

from the drop-down list:

 Prompt – if the Agent detects the application’s logon form while the grace period is in

effect, the Agent will prompt the user whether to complete the logon or ignore the

application.

 Silent – if the Agent detects the application’s logon form while the grace period is in

effect, the Agent will ignore the application and not log the user on.

 None – deactivates the grace period timer. Agent will respond to the application every

time it detects the application’s logon form.

3. Do one of the following, depending on what you want the Agent to do while the grace period is

in effect:

 If you want the Agent to log the user on each time the launch of the application’s

executable is detected, select the Reset for each process check box.

 If you would like the Agent to ignore the application until the grace period has expired,

leave the Reset for each process check box blank.

4. Save your changes and commit them to your repository, if applicable.

If the above steps do not resolve the issue, see Contacting Oracle Support to obtain further assistance.

 68

Troubleshooting Java Application Issues

Use the steps below to diagnose and resolve issues specific to Java applications.

Using Oracle

JInitiator or another

JRE not from Sun

or IBM?

Installed JRE is a

supported brand and

version?

Install a supported JRE.

See release notes for your

version of ESSO-LM for a list

of supported JREs.

You may have to manually

install the JHO into target

JRE. For instructions, see:

Verifying and Repairing

the Installation of the Java

Helper Object (JHO)

JHO loaded?

No

Yes

No

No

Yes

Done!

Yes

Contact Oracle

Support.

Installed JRE is a supported brand and version?

Refer to the release notes for your version of ESSO-LM for a list of supported JREs. If the installed JRE is

not supported, you must either upgrade ESSO-LM to a release that supports your current JRE, or replace

the current JRE with a version supported by your release of ESSO-LM.

Using Oracle JInitiator or another JRE not made by Sun or IBM?

If you are using Oracle JInitiator or another JRE not made by Sun Microsystems or IBM, you might

need to manually install the JHO into the JRE. For more information, see Verifying and Repairing the

Installation of the Java Helper Object (JHO).

 69

Note: While no issues have been reported when deploying ESSO-LM with non-Sun or non-IBM JREs

other than Oracle JInitiator, Oracle does not support nor warrant the proper functioning of

ESSO-LM with such JREs.

JHO loaded?

In certain situations, a configuration issue might prevent the JHO from loading when the Java application

is launched, even though it has been installed properly. To verify that the JHO is installed and running,

use a process viewer tool, such as Microsoft Spy++ (included with Microsoft Visual Studio) or

SysInternals Process Explorer (http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx)

to verify that the JVM executable has spawned the ssojho.dll child thread.

The example below shows the properties box of the Sun JVM executable javaw.exe in Process

Explorer showing the ssojho.dll child thread running:

If you have completed all of the previous troubleshooting steps and the JHO is not loading for the target

JRE, contact Oracle Support for assistance.

http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

 70

Verifying and Repairing the Installation of the Java Helper Object (JHO)

Note: The instructions below only apply to the Oracle JInitiator and other JREs made by

companies other than Sun Microsystems or IBM. When using Sun and IBM JREs, the

ESSO-LM installer performs the required installation automatically.

ESSO-LM recognizes Java applications through the Java Helper Object (JHO). If the JHO is not installed

correctly, ESSO-LM will not recognize Java applications. Use the steps below to verify that the JHO has

been installed correctly and correct a damaged installation if necessary.

Since multiple Java Runtime Environments (JREs) can coexist on the same machine, the ESSO-LM

installer installs the JHO into the JRE currently set as default (the current JavaHome).

The default JRE directory is specified by the following registry setting:

HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime

 Environment\<JRE_version>\JavaHome

The JRE version is specified in the following registry setting:

HKEY_LOCAL_MACHINE\Software\JavaSoft\Java Runtime Environment

If the user starts a Java application from the default JRE that the JHO has been installed in, ESSO-LM will

recognize that Java application. However, if the application is started from a JRE other than the default

one, ESSO-LM will not recognize the application. Keep in mind that each JRE installs the JVM executables

java.exe and javaw.exe. Copies of these executables are also installed into the

<%SYSTEMROOT%>\SYSTEM32 directory. ESSO-LM will only recognize Java applications if the JVM is

launched from the JRE directory.

Verifying the JHO Installation in a JRE

To check whether the JHO has been installed into a JRE, do the following:

1. Navigate to the lib folder inside the JRE's directory. For example:

C:\Program Files\Java\jre1.6.0_01\lib

2. Open the file accessibility.properties in a text editor and check whether the

following property is present:

assistive_technologies=<other_helpers>,com.passlogix.vgo.ho.jho

If the property is present and the JHO string shown above is part of its value, the JHO has been

installed into this JRE. If the property or file do not exist, stop here; the JHO has not been

installed into this JRE.

 71

3. Check whether the following files are present in the JRE:

 <JRE_dir>\bin\ssojho.dll

 <JRE_dir>\lib\ext\jho.jar

 <JRE_dir>\lib\ext\jaccess.jar

If any of the files are missing, the JHO is not installed correctly.

Repairing a Damaged JHO Installation

To manually install the JHO into a JRE other than the default one, do the following:

1. Make sure the JHO has been correctly installed into the default JRE as described above.

If the JHO is not installed, run the ESSO-LM installer, select the Modify option, and select the

Java feature under Extensions Helper Objects, then follow the installer prompts to complete

the installation.

2. Add the JHO string to the assistive_technologies property in the following file:

<JRE_dir>\lib\accessibility.properties

Note: If the property and/or file does not exist, create them.

3. Copy the JHO files listed in step 3 in the previous section from the default JRE to their respective

locations within the target JRE.

 72

Restricting the Java Helper Object (JHO) to Specific Java Runtime

Environments (JREs)

ESSO-LM provides registry settings that allow you to create inclusion and exclusion rules that ESSO-LM

will use to decide whether to load the JHO for the target application. You can specify, via regular

expressions, the Java Virtual Machine (JVM) executables, JAR files, and command-line parameters that

you want the JHO to consider.

When configuring these settings, keep the following in mind:

 If the value for a given setting is omitted, the specified default is used; if a value is set,

all non-matching values are ignored.

 The JHO processes the inclusion rules first, followed by the exclusion rules.

 The N suffix is a unique numerical identifier that bundles settings belonging to a specific

application. The JHO will process the bundles sequentially in ascending order.

The N suffix is a positive integer starting at 1.

 You can determine the application's host JVM executable and launch command using the Trace

Logging utility. The beginning of the Java trace log will indicate the host JVM and the launch

command for the application.

The settings are located at the following path in the Windows Registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Passlogix\Extensions\AccessManager\JHO

The settings are divided into the following categories:

 JHO Inclusion Rules

 JHO Exclusion Rules

 Allowed Java Runtime Environment (JRE) Versions

 73

JHO Inclusion Rules

Use these settings to specify the host JVM executables, application JAR files, and command-line

parameters that will cause the JHO to load for the target application. The values are case-insensitive

regular expressions.

Setting Description
JhoIncludeHostNameN Specifies the application's host JVM executable(s).

For example, if you want the JHO to load when the application
is hosted by a JVM executable named java.exe or
javaw.exe, set the value as follows:

JhoIncludeHostName1=.*javaw?\.exe

No-value default:
All executables are accepted (i.e., JHO will load for any
executable).

JhoIncludeHostCommandLineN Specifies the command used to launch the application.
The command string usually includes the full path and
name of the JVM executable, the JAR file, as well as any
required command-line parameters.

For example, if you want the JHO to only load when the
application's JAR file is named Login.jar (while the rest of
the command is allowed to vary), set the value as follows:

JhoIncludeHostCommandLine1=.*Login\.jar.*

No-value default:
All command strings accepted (i.e., JHO will load for any
command).

 74

JHO Exclusion Rules

Use these settings to specify the host JVM executables, application JAR files, and command-line

parameters that will cause the JHO to ignore the target application. The values are case-insensitive

regular expressions.

Setting Description
JhoExcludeHostNameN Specifies the application's host JVM executable(s).

For example, if you want the JHO to ignore the application
when the host JVM executable is named "java.exe" or
"javaw.exe", set the value as follows:

JhoExcludeHostName1=.*javaw?\.exe

No-value default:
Blank (i.e., nothing will cause the JHO to ignore the application)

JhoExcludeHostCommandLineN Specifies the command used to launch the application.
The command string usually includes the the full path and
name of the JVM executable, the JAR file, and any required
command-line parameters.

For example, if you want the JHO to ignore the application
when its JAR file is named "Login.jar" (but the rest of the
command is non-consequential), set the value as follows:

JhoExcludeHostCommandLine1=.*Login\.jar.*

No-value default:
Blank. (i.e., nothing will cause the JHO to ignore the
application)

 75

Allowed Java Runtime Environment (JRE) Versions

These settings allow you to specify the desired JRE/JDK versions for which the JHO will load; all versions

falling outside of the specified range will be ignored and the JHO will not load.

The values for both settings must follow the format x.y.z, where:

 x is the major revision

 y is the minor revision

 z is denotes the release type (feature, maintenance, or update) and build ID of the installed JRE

(for example, 1.6.0_07)

Setting Description
JhoMinimumJavaVersion Specifies the lowest allowed JRE/JDK version.

Default value:

1.2 (the earliest JRE version supported by the JHO)
JhoMaximumJavaVersion Specifies the highest allowed JRE/JDK version.

Default value:
Blank (i.e., no upper JRE version limit is imposed)

 76

Customizing the Event Response Behavior of the Java Helper Object (JHO)

In order to troubleshoot and optimize ESSO-LM performance when responding to Java applications,

you can modify the settings that govern the Java Helper Object’s response to specific events when a Java

application has been detected.

The settings are located within the following key in the Windows registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Passlogix\Extensions\AccessManager

Event Response Configuration Settings

Setting Description
JhoHierarchyEventProcessing Determines which Java hierarchy events are recognized. Set

the flag as follows:

HIERARCHY_EVENT_CHANGED = 0x1

The above value instructs the JHO to recognize all hierarchy
events.

JhoEventWaitTimeout Determines the event processing timeout for JHO controls (in
milliseconds). The default value of 0 instructs the JHO to wait
indefinitely.

JhoWindowEventProcessing Determines which Java window events are recognized.
This flag is a combination of the following values:

 WINDOW_EVENT_OPENED = 0x1

 WINDOW_EVENT_CLOSED = 0x2

 WINDOW_EVENT_ACTIVATED = 0x4

 WINDOW_EVENT_DEACTIVATED = 0x8

 WINDOW_EVENT_CLOSING = 0x10

 WINDOW_EVENT_ICONIFIED = 0x20

 WINDOW_EVENT_DEICONIFIED = 0x40

By default, all window events are recognized.

 77

Setting Description
JhoComponentEventProcessing Determines which Java component events are recognized.

This flag is a combination of the following values:

 COMPONENT_EVENT_SHOWN = 0x1

 COMPONENT_EVENT_HIDDEN = 0x2

 COMPONENT_EVENT_ADDED = 0x4

 COMPONENT_EVENT_REMOVED = 0x8

By default, all component events are recognized.

JhoInjectType

Determines the injection type used by the JHO to submit data
to the controls. This flag takes one of the following values:

 INJECT_TYPE_DEFAULT = 0

 INJECT_TYPE_METHOD = 1

 INJECT_TYPE_ACCESSIBLE = 2

 INJECT_TYPE_NONACCESSIBLE = 3

 INJECT_TYPE_ROBOT = 4

By default this flag is set to INJECT_TYPE_DEFAULT, in
which case the JHO attempts injection using each of following
methods, in the order shown, until injection is successful:

 INJECT_TYPE_METHOD (if an appropriate set
method had been found for the control)

 INJECT_TYPE_ACCESSIBLE
(if the control supports accessibility)

 INJECT_TYPE_NONACCESSIBLE

 INJECT_TYPE_ROBOT

Note: For combo and list boxes, the JHO always uses
INJECT_TYPE_METHOD.

Recommended JHO Event Response Configuration Defaults

We recommend the following default settings on new installations of ESSO-LM:

 JhoWindowEventProcessing=0x3

 JhoComponentEventProcessing=0xB

 JhoHierarchyEventProcessing=0x0

These values instruct the JHO to recognize the following events:

 WINDOW_EVENT_OPENED (0x1)

 WINDOW_EVENT_CLOSED (0x2)

 COMPONENT_EVENT_SHOWN (0x1)

 COMPONENT_EVENT_HIDDEN (0x2)

 COMPONENT_EVENT_REMOVED (0x8)

	About This Guide
	Prerequisites
	Terms and Abbreviations
	Accessing ESSO-LM Documentation
	Contacting Oracle Support
	Overview of a Sign-On Event
	Understanding Web Form Detection
	Supported Form Types
	Understanding URL Detection
	Understanding URL Matching Precision
	Obtaining the URL of a Page, Element, or Pop-Up

	Understanding Field Detection
	Understanding HTML Elements
	Understanding the Frame Element
	Understanding the Form Element
	Understanding the Input Elements Supported by ESSO-LM

	Recommended Page Inspection Tools
	DOM Inspector for Mozilla Firefox
	Firebug for Mozilla Firefox

	Understanding Detection Matching
	Detection Matching vs. Offset Matching
	Matching Against Text on the Page
	Matching Against HTML Code in the Page’s Source
	Matching Against Names and Values of Element Attributes
	Constructing Complex Rule Chains Using Logic Operators

	Using Wildcards to Configure Detection Criteria
	Using Regular Expressions to Configure Detection Criteria

	Understanding Form Response
	Determining the Optimal Configuration for a Form
	Determining the Optimal Configuration for a Logon Form
	Target fields and controls appear in the Web Form Wizard?
	Non-unique or dynamic field names?
	Dynamic page or element URL?
	“Submit” control is an image?
	Other fields on the page besides target fields?

	Determining the Optimal Configuration for a Password Change Form
	Logon and password change forms on the same screen?
	Action required to initiate password change?
	Target fields and controls appear in the Web Form Wizard?
	Application requires confirmation of new password?
	Application displays a password change success and/or failure dialogs?
	Non-unique or dynamic field names?
	Dynamic page or element URL?
	“Submit” control is an image?
	Other fields on the page besides target fields?

	Configuring a Form
	Basic Configuration
	Manually Configuring a Field or Control
	Configuring URL Detection Criteria
	Configuring Additional Field Detection Criteria

	Testing the Configuration of a Form
	Testing the Configuration of a Logon Form
	Agent detects form?
	Agent injects credentials?
	Logon loop occurring on logout?

	Testing the Configuration of a Password Change Form
	Agent detects the form?
	Agent injects and submits credentials?
	New password satisfies application’s password policy?
	Agent responds to password change form as if it were a logon?

	Publishing a Template to the Repository
	Publishing a Template with ESSO-LM Versions Prior to 11.1.1.2.0
	Publishing a Template with ESSO-LM Version 11.1.1.2.0 and Above

	Troubleshooting Web Form Detection
	“Logon Using ESSO-LM” tray icon option results in successful detection?
	Page completed loading?
	Is the appropriate helper object running?
	Removing all detection and offset matching rules results in successful detection?
	Truncating URL definition to host.domain form results in successful detection?

	Troubleshooting Credential Injection and Submission
	Agent detects the form?
	Agent injects credentials but does not submit them?
	Fields populated erratically?

	Troubleshooting Detection Matching
	Removing all matching rules restores form detection?

	Troubleshooting a Logon Loop
	Post-logout form URL from standard logon form URL?
	Post-logout form different from standard logon form?
	Configuring the “Logon Loop Grace Period” option resolves logon loop?

	Troubleshooting Java Application Issues
	Installed JRE is a supported brand and version?
	Using Oracle JInitiator or another JRE not made by Sun or IBM?
	JHO loaded?
	Verifying and Repairing the Installation of the Java Helper Object (JHO)
	Verifying the JHO Installation in a JRE
	Repairing a Damaged JHO Installation

	Restricting the Java Helper Object (JHO) to Specific Java Runtime Environments (JREs)
	JHO Inclusion Rules
	JHO Exclusion Rules
	Allowed Java Runtime Environment (JRE) Versions

	Customizing the Event Response Behavior of the Java Helper Object (JHO)
	Event Response Configuration Settings
	Recommended JHO Event Response Configuration Defaults

