Oracle® GoldenGate for Java
Administration Guide
Version 3.0

October 2009

ORACLE

Administration Guide, version 3.0

Copyright © 1995, 2009 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Chapter 1 INtrodUCtiONo e 3
Oracle GoldenGate Transactional Data Management................cccovvieeeiiiinnnnn... 3

INTEgratioN OPtiONS. ...ttt ettt et ettt e e e 3

Oracle GOldenGate fOr JAVA ... et 4

Configuration OPtioNS.oviiiie ettt e 4

Oracle GoldenGate DoOCUMENTATIONuuuuu e 5

Chapter 2 Installing Java and Oracle GoldenGate Softwareooiian, 7
INStAlliNg Java e 7

JAVA ON WINAOWS ...t e 7

Java on Linux/UNIX ..o e 8

Installing Oracle GoldenGate Softwarecooiiiiiiiiii e 8

Preparethe databasecooiiiiiiiii 9

Prepare thetables. 9

Primary capture on the database serveroo i 9

Secondary data pump on database server (optional)oooiiaa. 10

Chapter 3 Installing Oracle GoldenGateforJavacooiiiiiiiiiiiiii s 13
Installing the Shared (Dynamically Linked) Library.............cooooiiiiiiiiiiiiiiin 13

Unzip into the Oracle GoldenGate directory............c.ccovviieieiiiiiiineeennnnnns 13

Configure the JRE (in the user exit propertiesfile)ccooiiiiiiiiiiiii.. 14

Configure a Data Pump to Runthe UserExit..............coooiiiiiiiiiiiiiin ot 15

Installing the Java Applicationooiiiiiiii e 16

Configurethe JavaHandlers ... 16

Chapter 4 Runningthe UserExit............ ... i 19
Starting the AppPlicationt e 19

Restarting the Application at the Beginningofa Trail...................oiiiii, 19

Chapter 5 ConfiguringEventHandlers 21
Specifying Event Handlers. ... 21

IMS HANAIET. . . . e 22

File Handler ..o o 23

CUSTOM HANAIEKS ... 24

Formatting the OUTPULt eees 24

REPOItING e e 24

Oracle® GoldenGate for Java Administration Guide 1

Chapter 6 PrOPeItIES o 25

User EXit Properties . ..ottt et e e e e 25
LOgQiNg ProPertiesttt ettt 25
(€T =T Tl o] o] o T<] o A [=-3 26
JVM BOOT OPtIONS ...ttt e 26
Statistics and rePOrtingooviiii 27

Java Application Propertiesooiiiiiiiiii e 28
Propertiesforallhandlers ... 28
Properties for formatted outpuUt.........coooiiiiiiii 29
Properties for CSV and fixed-formatoutputooiiiaLL L. 30
File WHter Properties.ottt e e 31
JMS handler Propertiest e 32
Standard JMS Settings eit e 33
GENEIAl PrOPEITIES . ..\ttt ettt et et 34

Chapter7 Developing Custom Filters, FormattersandHandlers 35

FIeriNg EVENTS ...t e e 35

CUStOM FOrMaAtting oot e 35
Coding a Custom FormatterinJava.........c.oooiiiiiiiieiiiiiiiii i 35
Using a Velocity Templateoovimiiiii e 37

Coding a Custom HandlerinJava.............c.couiiiiiiiiiiiiiiiiiiiiieeieeeaan 38

AdditioNal RESOUICESttt 40

Chapter 8 Troubleshooting i 43

Error Handlingooooiiii 43

(20T o o] o T3 o T F3-Y U = 44

Oracle® GoldenGate for Java Administration Guide 2

Introduction
Oracle GoldenGate Transactional Data Management

CHAPTER 1
Introduction

This guide covers:

e Installing, configuring and running the Oracle GoldenGate for Java
e Using the prebuilt JMS and file handlers
e Developing custom filters, formatters or event handlers

Oracle GoldenGate Transactional Data Management

The core Oracle GoldenGate product is a Transactional Data Management (TDM) platform
that:

e Captures transactional changes from a source database by reading the database
transaction log

e Sends and queues these changes on local or remote disk, as a set of database-
independent binary ‘trail’ files

Optionally transforms the source data

Applies the transactions in the trail to a target system: a database, JMS provider or
other messaging system or custom application.

Oracle GoldenGate performs this capture/transform/apply in near real-time across
heterogeneous databases and operating systems.

Integration Options

The transactional changes may be applied to targets other than a relational database: for
example, ETL tools (DataStage, Ab Initio, Informatica), messaging systems (JMS), or
custom APIs. There are a variety of options for integration with Oracle GoldenGate:

e Flat file integration: predominantly for ETL, proprietary or legacy applications, Oracle
GoldenGate for Flat File can write micro batches to disk to be consumed by tools that
expect batch/file input. The data is formatted to the specifications of the target
application; for example: delimiter separated values, length delimited values, binary,
etc. Near real-time feeds to these systems are accomplished by decreasing the time
window for batch file rollover to minutes or even seconds.

® Messaging systems: transactions or operations can be published as messages (e.g. in
XML) to JMS. The JMS provider is configurable; examples include: ActiveMQ, JBoss
Messaging, TIBCO, WebLogic JMS, WebSphere MQ and others.

e Java API: custom event handlers can be written in Java to process the transaction,
operation and metadata changes captured by Oracle GoldenGate on the source system.
These custom Java handlers can apply these changes to a third-party Java API
exposed by the target system.

Oracle® GoldenGate for Java Administration Guide 3

Introduction
Oracle GoldenGate for Java

Oracle GoldenGate for Java

{ Source Database Server Y

atabase

Primary
Extract

Pump
Extract

Manager

Through the Oracle GoldenGate Java API, transactional data captured by Oracle
GoldenGate can be delivered to targets other than a relational database, such as JMS

(Java Message Service), writing files to disk or integrating with a custom application's
Java API.

Oracle GoldenGate for Java provides the ability to execute code written in Java from the
Oracle GoldenGate Extract process. Using Oracle GoldenGate for Java requires two
components:

e A dynamically linked or shared library, implemented in C/C++, integrating as a user
exit with the Oracle GoldenGate Extract process through a C APIL.

o A set of Java libraries (jars), which comprise the Oracle GoldenGate Java API. This

Java framework communicates with the user exit through the Java Native Interface
(JNTI).

4 Data Integration Server 1

Extract => Java User Exit => Java Framework => JMS Handler

(shared library) (JVM+Java application)

& JMS Provider
(queue or topic)

h 4

JMS Consumers &

Manager

Figure 1

Configuration using the JMS Handler

Configuration Options

The dynamically linked library is configurable using a simple properties file. The Java
framework is loaded by this user exit and is also initialized by a properties file. Application
behavior can be customized by:

e [Editing the property files; for example to:

O Set host names, port numbers, output file names, JMS connection settings;

Oracle® GoldenGate for Java Administration Guide 4

Introduction
Oracle GoldenGate Documentation

o Add/remove targets (such as JMS or files) by listing any number of active handlers
to which the transactions should be sent;

O Turn on/off debug-level logging, etc.
o Identify which message format should be used.
o Customizing the format of messages sent to JMS or files. Message formats can be
custom tailored by:
O Setting properties for the pre-existing formatters (for fixed-length or field-
delimited message formats);
o Customizing message templates, using the Velocity template macro language;
O (Optional) Writing custom Java code.
e (Optional) Custom Java code can be written to provide custom handling of transactions
and operations, do filtering, or implementing custom message formats.

There are existing implementations (handlers) for sending messages via JMS and for
writing out files to disk. There are several predefined message formats for sending the
messages (e.g. XML or field-delimited); or custom formats can be implemented using
templates. Each handler has documentation that describes its configuration properties; for
example, a filename can be specified for a file writer, and a JMS queue name can be
specified for the JMS handler. Some properties apply to more than one handler; for
example, the same message format can be used for JMS and files.

Oracle GoldenGate Documentation

For information on installing and configuring the core Oracle GoldenGate software, see the
Oracle GoldenGate documentation:

o Oracle GoldenGate Installation and Setup Guides: One for each database supported by
GoldenGate.

e Oracle GoldenGate Administration Guide: Introduces Oracle GoldenGate components
and explains how to plan for, configure, and implement Oracle GoldenGate.

o Oracle GoldenGate Reference Guide: Provides detailed information about Oracle
GoldenGate parameters, commands, and functions.

e Oracle GoldenGate Troubleshooting and Performance Tuning Guide: Provides
suggestions for improving the performance of Oracle GoldenGate in different
situations, and provides solutions to common problems.

These manuals are available for download from http://support.goldengate.com (support
login ID and password required).

The Oracle GoldenGate website (http://www.goldengate.com) has white papers, web
seminars and user conference information. The support site's Knowledge Base is an online
resource containing the latest information on bug fixes and configuration notes.

Oracle® GoldenGate for Java Administration Guide 5

Installing Java and Oracle GoldenGate Software
Installing Java

CHAPTER 2
Installing Java and Oracle GoldenGate Software

Before running Oracle GoldenGate for Java, you must install
1. Java (JDK or JRE) version 1.5 or later
2. Oracle GoldenGate version 10.0.0.4 or later

Installing Java

Java 5 or Java 6 (also known as Java 1.5 and Java 1.6) or later are required. Either the
Java Runtime Environment (JRE) or the full Java Development Kit (which includes the
JRE) may be used.

e To download Java for Windows, Solaris or Linux, download either:
o The JRE: http://www.java.com/en/download/manual.jsp or
o The Java SDK http://java.sun.com/javase/downloads/index.jsp
e For other platforms, see the OS vendor's support website.
NOTE The Oracle GoldenGate for Java framework has been compiled for Java 5
compatibility, and will therefore work under both Java 5 and Java 6 (or later).

However, the dynamically linked library is specific to the version of Java being
used.

To configure your Java environment for Oracle GoldenGate for Java:

e The PATH environmental variable should be configured to find your Java Runtime and

® The shared (dynamically linked) Java virtual machine (JVM) library must also be
found.

On Windows, these environmental variables should be set as system variables; on
Linux/UNIX, they should be set globally or for the user running the Oracle GoldenGate
process(es). Examples of setting these environmental variables for Windows and
UNIX/Linux are listed below.

NOTE There may be two versions of the JVM installed when installing Java; one in
JAVA_HOME/.../client, and another in JAVA_HOME!/.../server. For improved
performance, use the server version, if it is available. On Windows, it may be that
only the client JVM is there if only the JRE was installed (and not the JDK).

Java on Windows

After Java has been installed, configure the PATH to find the (1) JRE and (2) the JVM DLL
Gvm.dll):

set JAVA HOME=C:\Program Files\Java\jdkl1.6.0
set PATH=%JAVA_HOME%\bin;%PATH%
set PATH=%JAVA_HOME%\jre\bin\server ;%PATH%

Oracle® GoldenGate for Java Administration Guide 7

Installing Java and Oracle GoldenGate Software
Installing Oracle GoldenGate Software

Verify the environment settings by opening a command prompt and running: java version:

C:\> java -version
jJava version "1.6.0_05" Java(TM) SE Runtime Environment (build 1.6.0_05-b13)

In the example above, the directory %¥JAVA_HOME%\ j re\bin\server should contain the file jvm.dl1

Java on Linux/UNIX

Configure the environment to find (1) the JRE in the PATH, and (2) the JVM shared
library, using the appropriate environmental variable for your system. For example, on
Linux (and Solaris, etc.), set LD_LIBRARY_PATH to include the directory containing the
JVM shared library as follows (for sh/ksh/bash):

export JAVA HOME=/opt/jdkl.6
export PATH=${JAVA_ HOME}/bin:${PATH}
export LD_LIBRARY_PATH=${JAVA HOME}/jre/lib/i386/server:${LD_LIBRARY_PATH}

Verify the environment settings by opening a command prompt and running java version:

$ java -version
java version "1.6.0_06"
Java(TM) SE Runtime Environment (build 1.6.0_06-b02)

In the example above, the directory $JAVA_HOME/jre/lib/i386/server should contain the file
libjvm.so. The actual directory containing the JVM library depends on the OS and if the
32bit or 64bit JVM is being used.

Installing Oracle GoldenGate Software

Install Oracle GoldenGate software following the instructions in the appropriate Oracle
GoldenGate Installation and Setup Guide. The Oracle GoldenGate components may optionally
be installed on a separate host from the source database system.

e Extract the zip file (Windows) or tar.gz file(Linux/UNIX) into a directory on your
source database system.

NOTE There cannot be spaces in the path.

e Create the required subdirectories by starting GGSCI and running:
GGSCI1> CREATE SUBDIRS
e Create a Manager parameter file, specifying a port to listen on, for example:
GGSCI> EDIT PARAM MGR
PORT 7801
e Start Manager from GGSCI:
GGSCI>START MGR

The following outlines the standard steps required to configure Oracle GoldenGate to
capture changes from a source database, write these deltas to a trail file on disk, and use
a data pump to read in this trail file. This is just one possible configuration; for details and
other configuration options, see the Oracle GoldenGate documentation. In these PDF
guides you will find complete instructions and explanations, including important operating
system and database-specific considerations. Once Oracle GoldenGate is installed and

Oracle® GoldenGate for Java Administration Guide 8

Installing Java and Oracle GoldenGate Software
Installing Oracle GoldenGate Software

Java is available, then Oracle GoldenGate for Java can be implemented. Oracle
GoldenGate for Java runs as a user exit in the data pump process, reading a local trail file.

Prepare the database

The database must be configured to write the necessary data to the transaction log for
Extract to capture. This i1s a database-specific process; see the Oracle GoldenGate Installation
and Setup Guide for each database. This typically only has to be done once and only once for
the entire database instance.

As an example, for Oracle, the system must be altered to enable supplemental logging:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
SQL> ALTER SYSTEM SWITCH LOGFILE;

Prepare the tables

For every table that is to be captured by Oracle GoldenGate, at least the primary keys or
a unique index must be logged to the transaction log. Optionally, other data may be also
logged, such as full updates (not just the changed columns).

To force the primary keys to be logged for all tables in a particular schema (for example, a
schema called GGS), run the following in GGSCI (for systems other than Oracle, provide
an ODBC data source name):

GGSCI> DBLOGIN USERID myuser, PASSWORD mypassword
GGSCI> ADD TRANDATA GGS.*
GGSCI> INFO TRANDATA GGS.*

If the tables are dropped and re-added, "trandata" will have to be enabled once again. For
syntax details and options for "trandata" related commands, use the GGSCI built-in help
command:

GGSCI> HELP ADD TRANDATA

Primary capture on the database server

Use GGSCI to set up a primary Extract on the database server. A primary Extract captures
transactions from the database transaction log for the specified tables (as defined in the
parameter file for the Extract process). To add the Extract via GGSCI:

GGSCI> ADD EXTRACT capture, TRANLOG, BEGIN NOW
GGSCI> ADD EXTTRAIL ./dirdat/aa, EXTRACT capture, MEGABYTES 20

The parameter file for the Extract would look something like the following for Oracle:

EXTRACT capture

USERID mydblogin, PASSWORD mydbpass
—-- SOURCEDEFS mydefs.def

EXTTRAIL ./dirdat/aa

EOFDELAY 2

-- GETUPDATEBEFORES

-- NOCOMPRESSUPDATES

TABLE GGS.*;

Oracle® GoldenGate for Java Administration Guide 9

Installing Java and Oracle GoldenGate Software
Installing Oracle GoldenGate Software

NOTE For databases other than Oracle, the login information would include an ODBC
data source name, e.g. SOURCEDB mydsn, USERID myuser, PASSWORD
mypass)

If there changes in the database that are not captured by this primary Extract, then these
changes will not be available to the Java application further down the line. For example,
by default, the before values (the values before the update happens) are not captured, and
only compressed updates and compressed deletes are captured (only the changed columns
for updates, and only the primary key columns for delete operations). In the example
parameter file above, un-comment the two parameters to include before images and
uncompressed updates.

NOTE To capture uncompressed updates (NOCOMPRESSUPDATES), the database will
have to be configured to log these additional columns to the transaction log. An
alternative to forced logging is to fetch (query) the values from the database. See
the Oracle GoldenGate Reference Guide for detalils.

Secondary data pump on database server (optional)

In addition to the primary Extract running on the database host, you may optionally set
up a secondary data pump to send the data to a remote system.

GGSCI1 > ADD EXTRACT mypump, EXTTRAILSOURCE ./dirdat/aa
GGSCI1 > ADD RMTTRAIL ./dirdat/bb, EXTRACT mypump, MEGABYTES 20

The parameter file for a data pump Extract is usually quite trivial, unless additional
processing is included such as filtering, transformations, or running user exit logic. A
simple data pump is often configured for PASSTHRU mode to disable filtering,
transformations and user exit logic:

EXTRACT mypump

USERID mydblogin, PASSWORD mydbpass
—- SOURCEDEFS mydefs.def

RMTHOST mytargethost, MGRPORT 7802
RMTTRAIL ./dirdat/bb

PASSTHRU

TABLE GGS.*;

A data pump on the database server is an optional, but typical (and suggested)
configuration. If a data pump is not used, then the primary Extract would not use a local
trail (EXTTRAIL), but rather send the changes to a remote trail on a remote host
(RMTHOST / RMTTRAIL).

Although a user exit always runs in a data pump, the user exit may run either on the
database server or on a remote host. The following are factors to consider when choosing
whether to run a user exit in a data pump on the database host or a separate host:

e What is the load added to the system by the user exit?

If the load is significant, you may want to move this processing to an intermediate host,
to not impact the performance of the database.

e What is the reliability of the network between the source database server and the
target systems?

Oracle® GoldenGate for Java Administration Guide 10

Installing Java and Oracle GoldenGate Software
Installing Oracle GoldenGate Software

If the network is not reliable, you may want to have the primary Extract write to a local
trail, and use a data pump to process this trail. The primary Extract should not fall
behind in processing due to extended network outages.

e Can additional software be installed on the database host?
If Java is not installed or an older version can not easily be updated, then Oracle
GoldenGate for Java may have to run on a separate host.

See the Oracle GoldenGate Administration Guide for additional considerations in choosing your
architecture.

Oracle® GoldenGate for Java Administration Guide 1

Installing Oracle GoldenGate for Java
Installing the Shared (Dynamically Linked) Library

CHAPTER 3
Installing Oracle GoldenGate for Java

Oracle GoldenGate for Java includes two components:

1. A shared library (implemented in C/C++) dynamically linked into the Extract process
as a user exit at runtime. This loads the JVM into memory.

2. A set of Java jars for the Java API, including:

o Existing modules, configurable via property files (e.g. for JMS integration) and
O The Java API for Oracle GoldenGate, for implementing custom logic in Java.

Installing the Shared (Dynamically Linked) Library

After Oracle GoldenGate and a JVM are installed, Oracle GoldenGate for Java can be
installed and used. Oracle GoldenGate for Java is available for Windows, Linux and UNIX;
but as this component is a platform-dependent C library, it must be built specifically for
your operating system, hardware architecture, Oracle GoldenGate version and Java
runtime version.

Please check to see if a build of Oracle GoldenGate for Java is available for your OS, version
of Oracle GoldenGate, and version of Java

Unzip into the Oracle GoldenGate directory

Oracle GoldenGate for Java is distributed as a zip file containing the platform-dependent
user exit library (JavaUserExit.so or JavaUserExit.dll) and a associated properties file.
The Java jars (platform independent) are also distributed as a zip file.

NOTE The platform-independent Java jars and the platform-dependent user exit shared
library may have been distributed as a single zip, or distributed separately. When
updating the jars or the user exit, they can be updated separately, as long as the
versions are compatible.

Simply extract these zip files into Oracle GoldenGate's installation directory, as shown
below. The installation location of the User Exit shared library and the related Java jar
files is configurable; the following example configuration is a suggested layout.

Oracle® GoldenGate for Java Administration Guide 13

Table 1

Installing Oracle GoldenGate for Java
Installing the Shared (Dynamically Linked) Library

Sample installation directory structure: Oracle GoldenGate, the User Exit and the Java jars

Directory

{gg_install_dir}
| -ggsci .exe
|-mgr.exe

| -extract.exe

| -defgen_exe

|-[dirdat]

| |aa000000

| |aa000001

| - - -
|-[dirdef]

| |-mysrcdefs.def
|-[dirprm]

| 1-Javaue.prm

| -JavaUserExit.dll
| -cuserexit.properties

|-Lavaue]
|-ggue.jar
| -[resources]
| -[configl
|
|-[classes]
I-[1ib]
- - -

Explanation

Oracle GoldenGate installation directory, containing all Oracle
GoldenGate executables. For example: C:/ggs (Windows) or
/home/user/ggs (UNIX).

Use the GGSCI command line interface to start Extract (as normal)
and Extract will in turn start the Java application.

The Extract running the user exit is configured as a data pump,
consuming trail data (produced by the primary Extract) in the dirdat
directory.

The metadata (column names, data types) for the trail data can come
from a sourcedefs file (e.g. mysrcdefs.def, generated by DEFGEN) or
from the database.

The Extract parameter (javaue.prm) file specifies the User Exit
library to load.

The user exit shared library: JavaUserExit.dll (Windows) or
JavaUserExit.so (UNIX/Linux). cuserexit.properties is a sample
user exit properties file.

Installation directory for Java jars (as specified in the user exit
properties);

¢ ggue.jar — main Java application jar, defines classpath and
dependencies

+ resources directory — (in classpath) contains all ggue.jar
dependencies:

resources/classes/* — (in classpath) properties and resources

resources/lib/* jar — application jars required by ggue.jar

Configure the JRE (in the user exit propertiesfile)

Modify the user exit properties file to point to the location of the Oracle GoldenGate for
Java main jar (ggue.jar) and set any additional JVM runtime boot options as required
(these are passed directly to the JVM at startup):

Javawriter._bootoptions=-Djava.class.path=javaue/ggue.jar
-Dlog4j -configuration=1og4j.properties -Xmx512m

Note the following options in particular:

e java.class.path can include any custom jars in addition to the core application
(ggue.jar). The current directory (.) is included by default in the classpath. You can
reference files relative to the Oracle GoldenGate install directory, to allow storing Java
property files, Velocity templates and other classpath resources in the dirprm
directory. It is also possible to append to the classpath in the Java application

properties file.

Oracle® GoldenGate for Java Administration Guide 14

Installing Oracle GoldenGate for Java
Installing the Shared (Dynamically Linked) Library

e The log4j.configuration option specifies a log4j properties file, found in the classpath.
There are preconfigured default log4j settings for basic logging (log4j.properties),
debug logging (debug-log4j.properties), and detailed trace-level logging (trace-
log4j.properties), found in the resources/classes directory.

Once the user exit properties file is correctly configured for your system, it usually remains
unchanged. See “User Exit Properties” on page 25 for additional configuration options.

Configure a Data Pump to Run the User Exit

The user exit Extract is configured as a data pump. The data pump consumes a local trail
(for example./dirdat/aa) and sends the data to the user exit. The user exit is responsible for
processing all the data.

ADD EXTRACT javaue, EXTTRAILSOURCE ./dirdat/aa
The process names and trail names used above can be replaced with any valid name:

process names must be 8 characters or less, trail names must to be two characters. In the
user exit Extract parameter file (javaue.prm) specify the location of the user exit library:

Table 2 User Exit Extract Parameters

Parameter Explanation

EXTRACT javaue All Extract parameter files start with the Extract name

SOURCEDEFS ./dirdef/tcust.def The Extract process requires metadata describing the trail
data. This can come from a database or a sourcedefs file.
This metadata defines the column names and data types in
the trail being read (./dirdat/aa).

SETENV (GGS_USEREXIT_CONF = (Optional) An absolute or relative path (relative to the

"dirprm/cuserexit.properties’™) Extract executable) to the properties file for the C user exit
library. The default value is javawriter.properties in the
same directory as Extract.

Oracle® GoldenGate for Java Administration Guide 15

Installing Oracle GoldenGate for Java
Installing the Java Application

Table 2 User Exit Extract Parameters

Parameter Explanation
SETENV (GGS_JAVAUSEREXIT_CONF = (Optional) The Java properties file, as a classpath resource.
"/dirprm/javaue.properties') The classpath is defined in the C User Exit properties file.

This example places the properties file in the dirpm
directory, assuming the Oracle GoldenGate installation
directory is in the classpath.

CUSEREXIT The CUSEREXIT parameter includes the following:

JC S;Z;E? \:_EI}V&6_USGFEXIt-d| ! ¢ The location of the user exit library. For UNIX, the

PASSTHRU library would be suffixed .so

INCLUDEUPDATEBEFORES ¢ The callback function name - must be uppercase
CUSEREXIT.
PASSTHRU - avoids the need for a dummy target trail.
INCLUDEUPDATEBEFORES - needed for transaction
integrity.

TABLE schema.*; The tables to pass to the User Exit; tables not included will

be skipped. No filtering may be done in the user exit Extract;
otherwise transaction markers will be missed. You can filter
in the primary Extract, or use another, upstream data
pump, or filter data directly in the Java application.

The two environment properties show above are optional, but useful. For example, these
allow you to place all your properties files in the dirprm directory instead of the default
locations.:

e SETENV (GGS_USEREXIT_CONF = "dirprm/cuserexit.properties")

This changes the default configuration file used for the User Exit shared library. The
value given is either an absolute path, or a path relative to Extract (or Replicat). The
default file used is javawriter.properties, located in the same directory as Extract. The
example above uses a relative path to put this property file in the dirprm directory.

e SETENV (GGS_JAVAUSEREXIT CONF = "/dirprm/javaue.properties")

This changes the default properties file used for the Oracle GoldenGate for Java
framework.The value given is a path to a file found in the classpath.

Installing the Java Application

If the Java jars were not included in the same zip file as the user exit shared library, then
extract the Java application into the Oracle GoldenGate installation directory, as shown
above. There is no default location for the Java application; its installation location is
defined by the by setting the java.class.path property in the user exit properties file:

Javawriter._bootoptions=-Djava.class.path=javaue/ggue.jar

Configure the Java Handlers

The Oracle GoldenGate Java API has a property file used to configure active event

Oracle® GoldenGate for Java Administration Guide 16

Installing Oracle GoldenGate for Java
Installing the Java Application

handlers. To test the configuration, you may use the built-in file handler or the logger,
stderr or stdout handlers (typically used for testing and debugging only). Here are some

example properties, followed by explanations of the properties (comment lines start with
#):

the list of active handlers

gg-handlerlist=myhandler

set properties on "myhandler®

gg-handler._myhandler _type=Ffile
gg-handler._myhandler.format=com/goldengate/atg/datasource/tx2xml .vm
gg-handler._myhandler.file=output_xml

This property file declares the following:

e Asingle event handler is active, called myhandler. Multiple handlers may be specified,
separated by commas. For example: gg.handlerlist=myhandler, yourhandler

e Configuration of the handlers. For example, to set the myhandler property “color” to
“blue”: gg.handler.myhandler.color=blue

NOTE See the documentation for each type of handler (e.g. the JIMS handler or the File
writer handler) for the list of valid properties that may be set.

@ The format of the output is defined by the Velocity template tx2xml.vm. In this case,
this file is included inside the application jar file. You may also specify your own
custom template to define the message format; just specify the path to your template
relative to the Java classpath (this is discussed later).

This property file is actually a complete example that will write captured transactions to
the output file output.xml. Other handler types can be specified using the key words:
jms_text (or jms), jms_map, stdout, stderr, logger (logs to log4j), singlefile (a file that
does not roll), and others. Custom handlers can be implemented, in which case the type
would be the fully qualified name of the Java class for the handler.

Oracle® GoldenGate for Java Administration Guide 17

Running the User Exit
Starting the Application

CHAPTER 4
Running the User Exit

This section assumes that the primary Extract has already generated a trail to be
consumed by the user exit Extract.

Starting the Application

To run the user exit and execute the Java application, you only need an existing trail file
and its corresponding sourcedef file. For the examples that follow, a simple
tcustmer/tcustord trail is used (matching the demo SQL provided with the Oracle
GoldenGate software download), along with a sourcedef file defining the data types used in
the trail.

NOTE The user exit does not require access to a database in order to run. But the Extract
process does require metadata describing the trail data. Either the Extract must
login to a database for metadata, or a sourcedef file can be provided. In either
case, the Extract cannot be in PASSTHRU mode when using a user exit.

To run the user exit, simply start the Extract process from GGSCI:

GGSCI> START EXTRACT javaue

GGSCI> INFO EXTRACT javaue

EXTRACT JAVAUE Last Started 2008-03-25 18:41 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)

Log Read Checkpoint File ./dirdat/bb000000

2007-09-24 12:52:58.000000 RBA 2702

If the Extract process is running and the file handler is being used (as in the example
above), then you should see the output file output.xml in the Oracle GoldenGate
installation directory (the same directory as the Extract executable).

If the process does not start or abends, see “Error Handling” on page 43:

Restarting the Application at the Beginning of a Trail

There are two checkpoints for an Extract running the user exit: the user exit checkpoint
and the Extract checkpoint. Before rerunning the Extract, you must reset both
checkpoints:

1. Delete the user exit checkpoint file.

The sample properties file has goldengate.userexit.chkptprefix=JAVAUE_in the
user exit properties file.

Windows: cmd> del JAVAUE_ javawriter.chkpt
UNIX: $ rm JAVAUE_ javawriter.chkpt

Oracle® GoldenGate for Java Administration Guide 19

Running the User Exit
Restarting the Application at the Beginning of a Trail

NOTE Do not modify checkpoints or delete the user exit checkpoint file on a production
system.

2. Reset the Extract to the beginning of the trail data:
GGSCI> ALTER EXTRACT JAVAUE, EXTSEQNO O, EXTRBA O

3. Restart the Extract:

GGSCI> START JAVAUE
GGSCI> INFO JAVAUE
EXTRACT JAVAUE Last Started 2008-03-25 18:41 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/ps000000
2007-09-24 12:52:58.000000 RBA 2702
It may take a couple seconds for the Extract process status to report itself as running.
Check the report file to see if it abended or is still in the process of starting:

GGSCI> VIEW REPORT JAVAUE

Oracle® GoldenGate for Java Administration Guide 20

Configuring Event Handlers
Specifying Event Handlers

CHAPTER 5
Configuring Event Handlers

Specifying Event Handlers

Processing transaction, operation and metadata events in Java works as follows:

e The Oracle GoldenGate Extract reads local trail data and passes the transactions, operations and
database metadata to the user exit. Metadata can come from either a source definitions file or
by querying the database.

Events are fired by the Java framework, optionally filtered by custom Event Filters.

Handlers (event listeners) process these events, and process the transactions, operations and
metadata. Custom formatters may be applied for certain types of targets.

There are several existing handlers:

e Sending messages to a JMS provider using either a MapMessage, or using a
TextMessage with customizable formatters

Simple handlers for logging to log4j and to stdout/stderr.
A filewriter handler, for writing to a single file, or a rolling file.

NOTE The filewriter handler is particularly useful as development utility, since the filewriter
can take the exact same formatter as the JIMS TextMessage handler. Using the
filewriter provides a simple way to test and tune the formatters for IMS without
actually sending the messages to JMS.

Event handlers can be configured using the main Java property file or they may optionally
read in their own properties directly from yet another property file (depending on the
handler implementation). Handler properties are set using the following syntax:

gg-handler_{id}.someproperty=somevalue

This will cause the property someproperty to be set to the value somevalue for the handler
instance identified in the property file by {id}. This {id} is used only in the property file to
define active handlers and set their properties; it is user-defined, and has no meaning
outside of the property file.

Implementation note (for Java developers): Following the above example: when the
handler is instantiated, the method void setSomeProperty(String value) will be called on
the handler instance, passing in the String value somevalue. A JavaBean PropertyEditor
may also be defined for the handler, in which case the String can be automatically
converted to the appropriate type for the setter method. For example, in the Java

Oracle® GoldenGate for Java Administration Guide 21

Configuring Event Handlers
JMS Handler

application properties file, we may have the following (comment lines start with #):

the list of active handlers: only two are active
gg-handlerlist=one, two

set properties on "one
gg-handler.one.type=Ffile
gg-handler.one.format=com.mycompany .MyFormatter
gg-handler.one.file=output.xml

properties for handler "two*

gg-handler.two.type=jms_text
gg-handler.two.format=com.mycompany .MyFormatter
gg-handler.two.properties=/dirprm/jboss._properties

set properties for handler "foo"; this handler is ignored
gg-handler.foo.type=com.mycompany.MyHandler
gg-handler.foo.someproperty=somevalue

The type identifies the handler class; the other properties depend on the type of handler
created. If a separate properties file is used to initialize the handler (such as the JMS
handlers), the properties file is found in the classpath. For example, if properties file is at:
{og_install_dir}/dirprm/foo.properties, then specify in the properties file as follows:
gg-handler.{id}.properties=/dirprm/foo.properties.

JMS Handler

The main Java property file ggue - properties identifies active handlers. The JMS handler may
optionally use a separate property file for JMS-specific configuration. This allows more
than one JMS handler to be configured to run at the same time.

There are examples included for several JMS providers (JBoss, TIBCO, Solace, ActiveMQ,
WebLogic). For a specific JMS provider, you can choose the appropriate properties files as
a starting point for your environment. Each JMS provider has slightly different settings,
and your environment will have unique settings as well.

The installation directory for the Java jars (jJavaue) contains the core application jars
(ggue.jar) and its dependencies in resources/lib/*_jar. The resources directory contains
all dependencies and configuration, and is in the classpath:.

If the JMS client jars already exist somewhere on the system, they can be referenced
directly and added to the classpath without copying them.

The following properties are typically set for a JMS handler (which is a JMS producer,
publishing messages to a JMS queue or topic). The example illustrates using JBoss
messaging..

Table 3 JMS Property Settings

Property Description

gg.jmshandler.persistent=false If the messages are to be persistent, the
JMS provider must be configured to log the
message to stable storage as part of the
client's send operation.

Oracle® GoldenGate for Java Administration Guide 22

Table 3 JMS Property Settings

Configuring Event Handlers
File Handler

Property

gg.jmshandler.queueortopic=queue

gg.jmshandler.destination=queue/A

gg.jmshandler.user=myusername

gg.jmshandler.password=mypassword
gg.jmshandler.connectionfactory=ConnectionFactory

java.naming.provider.url=localhost:1099
java.naming.factory.url.pkgs=
jboss.naming:org.jnp.interfaces

java.naming.factory.initial=
org.jnp.interfaces.NamingContextFactory

Description

Can be set to queue or topic.

The destination name for the queue or
topic is configurable in the JMS provider;
this needs to be provided by the JMS
administrator.

If authentication is required by the JMS
provider.

JNDI connection factory name to lookup.

Standard JNDI properties for
InitialContext (each property set on a
single line, without wrapping). The key
property is the host and port of the JNDI.

Here is the main properties file, specifying the additional JMS property file:

one JMS handler active, using Velocity template formatting

gg-handlerlist=myjms
gg-handler.myjms.type=jms_text

gg-handler.myjms.format=/templates/sample2xml .vm
gg-handler._myjms.properties=/dirprm/jboss.properties
gg-handler._myjms.classpath=/usr/jboss/client/*, /path/to/my/app.-jar

There are two types of JIMS handlers which may be specified:

e jms_text—sends text messages to a topic or queue. The messages may be formatted using Velocity
templates or by writing a formatter in Java. The same formatters can be used for a
jms_text message as for writing to files. (jms is a synonym for jms_text.)

e jms_map — sends a IMS MapMessage to a topic or queue. The IMSType of the message is set to
the name of the table. The body of the message consists of the following metadata,
followed by column name and column value pairs:

O GG_ID - position of the record, uniquely identifies this operation
5> GG_OPTYPE - type of SQL (insert/update/delete),

0 GG_TABLE - table name on which the operation occurred

5> GG_TIMESTAMP — timestamp of the operation

File Handler

Using the file handler is quite simple; it is often used to verify the message format when
the actual target is JMS, and the message format is being developed using custom Java or

Oracle® GoldenGate for Java Administration Guide

Configuring Event Handlers
Custom Handlers

Velocity templates. Here is a property file using a file handler:

one file handler active, using velocity template formatting
gg-handlerlist=myfile

gg-handler._myfile._type=Ffile
gg-handler._myfile_rollover._size=5M
gg-handler._myfile._format=/dirprm/sample2xml_vm
gg-handler._myfile_file=output.xml

This example uses a single handler (though, a JMS handler and the file handler could be
used at the same time), writing to a file called output.xml, using a velocity template called
sample2xml.vm. The template is found via the classpath.

Custom Handlers

For information on coding a custom handler, see “Coding a Custom Handler in Java” on
page 38.

Formatting the Output

As previously described, the existing JMS and file output handlers can be configured
through the properties file. Each handler has its own specific properties that can be set: for
example, the output file can be set for the file handler, and the JMS destination can be set
for the JMS handler. Both of these handlers may also specify a custom formatter. The same
formatter may be used for both handlers. As an alternative to writing Java code for custom
formatting, a Velocity template may be specified. For further information, see “Custom
Formatting” on page 35.

Reporting

Summary statistics about the throughput and amount of data processed are generated
when the Extract process stops. Additionally, statistics can be written periodically after a
specified amount of time or after a specified number of records have been processed. If both
time and number of records are specified, then the report is generated for whichever event
happens first. These statistical summaries are written to the Oracle GoldenGate report file
and the user exit log files.

Oracle® GoldenGate for Java Administration Guide 24

Properties
User Exit Properties

CHAPTER 6
Properties

The following section defines the options available for configuration of the two property
files for Oracle GoldenGate for Java:

e User exit properties
e Java application properties

Both should be placed in <Oracle GoldenGate installation directory>/dirprm. and
environmental variables set:

SETENV (GGS_USEREXIT_CONF = "dirprm/cuserexit.properties’)
SETENV (GGS_JAVAUSEREXIT_CONF = "/dirprm/javaue._properties’™)

User Exit Properties

All properties in the property file are of the form: fully_qual ified.name=value

The value may be a single string, integer, or boolean, or could be comma delimited strings.
Comments can be entered in to the properties file with the # prefix at the beginning of the
line. For example:

This is a property comment
some.property=value

Properties themselves can also be commented out (useful for testing various
configurations). However you cannot place a comment at the end of a line; either the whole
line is a comment or it is a property.

Logging properties

Logging is standard to many Oracle GoldenGate user exits solutions and is controlled by
the following properties.

goldengate.log. logname

Takes any valid string as the prefix to the log file name. The log file produced has the
current date appended to it, formatted as yyyymmdd, suffixed by the extension . log. For
example, the following produces a filename such as: javawriter_20071230. log

log file prefix
goldengate.log. logname=javawriter
The log file will roll over each day, independent of the process restarting.

goldengate.log. level
Set the overall log level for all modules. The log levels are defined as follows:

ERROR - Only write messages if errors occur

WARN — Write error and warning messages

Oracle® GoldenGate for Java Administration Guide 25

Properties
User Exit Properties

INFO — Write error, warning and informational messages
DEBUG — Write all messages, including debug ones.

The default logging level is INFO. The messages in this case will be produced on startup,
shutdown and periodically during operation, but would not impeded performance. If the
level is switch to DEBUG, large volumes of messages may occur which could impact
performance. For example, the following sets the global logging level to INFO:

global logging level
goldengate.log.level=INFO

goldengate.log.{tostdout,tofile}

Boolean properties that determine if logged messages are written to stdout, and/or to a
specified log file. Most Oracle GoldenGate processes run as background processes, so
stdout is generally not a useful option. For example:

output params, to stdout and/or to file
goldengate.log.tostdout=false
goldengate.log.tofile=true

goldengate.log.modules, goldengate.log.level._{module}

This is typically for advanced debugging only; the log level of individual source modules
that comprise the user exit can be specified individually. It is possible to increase the
logging level to DEBUG on a per module basis to help troubleshoot issues. The default
levels should not be changed unless prompted to do so by a support engineer.

Generic properties
The following properties apply to all “writer” user exits and are not specific to the user exit.

goldengate.userexit.writers
String value specifying name of writer. This is always javawriter and should not be
modified. For example:

goldengate.userexit.writers=javawriter

All other properties in the file should be prefixed by the writer name, javawriter.

goldengate.userexit.chkptprefix
String value for the prefix to be added to the checkpoint file name. For example:

goldengate.userexit.chkptprefix=javaue_
Should the Extract process have to be repositioned back in the trail (for example, to the beginning of the
trail), then this checkpoint file will have to be deleted.

JVM boot options

The following options determine now the Java Runtime Environment will be configured.
In particular, this is where the maximum memory the JVM will use can be specified; if you
see Java out-of-memory errors, edit these settings.

Javawriter_bootoptions

Specify the classpath and boot options that will be applied when the user exit starts up the
JVM. The path needs colon (;) separators for UNIX/Linux and semicolons (;) for Windows.
This is where to specify various options for the JVM, such as heap size and classpath; for
example:

Oracle® GoldenGate for Java Administration Guide 26

Properties
User Exit Properties

-Xms: initial java heap size
-Xmx: maximum java heap size

-Djava.class.path: classpath specifying location of at least the main application jar,
ggue.jar. Other jars, such as JMS provider jars, may also be specified here as well,
alternatively, these may be specified in the Java application properties file.

-verbose:jni: run in verbose mode (for JNI)
For example (all on a single line):

Javawriter_bootoptions= -Djava.class.path=_/javaue/ggue.jar
-Dlog4j -configuration=my-log4j.properties -Xmx512m

The log4j.configuration property could be a fully qualified URI to a log4j properties file; by
default this file is searched for in the classpath. You may use your own log4j configuration,
or one of the pre-configured log4j settings: log4j.properties (default level of logging),
debug_log4j.properties (debug logging) or trace_log4j.properties (very verbose logging).

Statistics and reporting

The use of the user exit causes Extract to assume that the records handled by the exit are
ignored. This causes the standard Oracle GoldenGate reporting to be incomplete. Oracle
GoldenGate for Java adds its own reporting to handle this issue.

Statistics can be reported every t seconds or every n records - or if both are specified,
whichever criteria is met first.

There are two sets of statistics recorded: those maintained by the User Exit shared library
(on the C side) and those obtained from the Java libraries. The reports received from the
Java side are formatted and returned by the individual handlers.

The User Exit statistics include the total number of operations, transactions and
corresponding rates.

Javawriter.stats.display
Boolean (true/false) value which, if true, will output statistics to the Oracle GoldenGate
report file and to the user exit log files. For example:

jJavawriter.stats.display=true

Javawriter.stats._full

Boolean (true/false) value which, if true, will output Java side statistics in addition to the
C side statistics. Java side statistics are more detailed but also involve some additional
overhead. Therefore if stats are reported quite often and a less detailed summary suffices,
it is recommended to set the stats.full property to false. For example:

Javawriter._stats.full=true

Javawriter._stats.{time, numrecs}

The default is to report statistics every hour or every 10000 records (which ever occurs
first). A time interval can be specified in seconds, after which statistics will be reported.
Also, the number of records may also be specified, after which the statistics will be
reported. For example, to report ever 10 minutes or every 1000 records, specify:

Javawriter_stats.time=600
Javawriter_stats.numrecs=1000

Oracle® GoldenGate for Java Administration Guide 27

Properties
Java Application Properties

The Java application statistics are handler-dependent:

e For the all handlers, there is at least the total elapsed time, processing time, number of operations,
transactions;

e For the JMS handler, there is additionally the total number of bytes received and sent.

e The report can be customized using a template.

Java Application Properties

The following defines the properties which may be set in the Java application property file.

Properties for all handlers
The following properties apply to all handlers.

gg-handlerlist
The handler list is a comma-separated list of active handlers. These values are used in the
rest of the property file to configure the individual handlers. For example:

gg-handlerlist=namel, name2

gg-handler._.namel.propertyA=valuel
gg-handler._namel.propertyB=value2
gg-handler._namel.propertyC=value3
gg-handler._name2.propertyA=valuel
gg-handler._name2.propertyB=value2
gg-handler._name2._propertyC=value3

Using the handlerlist property, you may include completely configured handlers in the
property file and just disable them by removing them from the handlerlist.

gg-handler.{name}.type
The type of handler is either a predefined value for built-in handlers, or a fully qualified
Java class name. The syntax is:

gg-handler.{name}.type={jms | jms_map | singlefile | rolling | stdout | stderr
| log | com.foo.MyHandler}

All but the last are pre-defined handlers:
jms: sends transactions/operations/metadata as formatted messages to a JMS provider
jms_map: sends JMS map messages
singlefile: writes to a single file on disk, but does not roll the file

rolling: writes transactions/operations/metadata to a file on disk, rolling the file over
after a certain size or after a certain amount of time

stdout, stderr, log: write to stdout, stderr, and log4j outputs, respectively. stdout and
stderr accept a formatter; log4j just prints a summary of the transaction/operation

custom Java class: any class extending the Oracle GoldenGate for Java
AbstractHandler class may handle transaction/operation/metadata events.

Oracle® GoldenGate for Java Administration Guide 28

Properties
Java Application Properties

Properties for formatted output

The following properties apply to all handlers capable of producing formatted output; this
includes:

The jms_text handler (but not the jms_map handler)

The singlefile and rolling handlers, for writing formatted output to files

The stdout and stderr handlers, for generating output directly to the console.

gg-handler.{name}.format

Specifies the format used to transform operations and transactions into messages sent to
JMS or to a file. The format is specified uniquely for each handler. The value may be:
Velocity template

Java class name (fully qualified - the class specified must be a type of formatter)
csv for delimited values (such as comma-separated values; the delimiter is customizable)
fixed for fixed-length fields

Built-in formatter, such as:

xml —demo XML format (this format may change in future releases)

xml2 — internal XML format (this format may change in future releases)
For example, to specify a custom Java class:

gg-handlerlist=abc
gg-handler.abc.format=com.mycompany .MyFormat

Or, for a Velocity template:

gg-handlerlist=xyz
gg-handler.xyz.format=path/to/sample.vm

If using templates, the file is found relative to some directory or jar that is in the classpath.
By default, the Oracle GoldenGate install directory is in the classpath, so the above
template could be placed in {gg_install_dir}/dirprm.

The default format is to use the built-in XML formatter.

gg-handler._.{name}.includeTables

Specifies a list of tables to include by this handler. If the schema (or owner) of the table is
specified, then only that schema matches the table name; otherwise, the table name
matches any schema. A list of tables may be specified, commaseparated.

For example, to have the handler only process tables foo.customer and bar.orders:
gg-handler._myhandler.includeTables=foo.customer, bar.orders

NOTE In order to selectively process operations on a table-by-table basis, the handler
must be processing in operation mode. If the handler is processing in transaction
mode, then when a single transaction contains several operations spanning
several tables, if any table matches the “include” list of tables, the transaction will
be included.

gg-handler.{name}.excludeTables

Specifies a list of tables to exclude by this handler. If the schema (or owner) of the table is
specified, then only that schema matches the table name; otherwise, the table name
matches any schema. A list of tables may be specified, comma-separated. For example, to

Oracle® GoldenGate for Java Administration Guide 29

Properties
Java Application Properties

have the handler process all operations on all tables except tabledt _modifydate in all
schemas:

gg-handler._myhandler_excludeTables=dt_modifydate

gg-handler.<name>.mode

gg-handler _<name>._format.mode

Specify whether to output one operation per message (op) or one transaction per message
(tx). The default is op. Use format.mode when you have a custom formatter.

Properties for CSV and fixed-format output

If the handler is set to use either CSV or fixed-formatted output, the following properties
may also be set. Many of the same properties apply for both formats; there is however no
unique prefix to the property settings. If there is more than one handler requiring unique
settings, these properties can be set in a separate properties file. For example, if there are
two JMS handlers, each using CSV or fixed-format:

gg-handler.my_jms_handlerl.type=jms_text
gg-handler.my_jms_handlerl. format=csv
gg-handler.my_jms_handlerl.properties=/dirprm/my-csv.properties

gg-handler.my_jms_handler2.type=jms_text
gg-handler.my_jms_handler2. format=Ffixed
gg-handler.my_jms_handler2.properties=/dirprm/my-fixed.properties

delim
Delimiter to use between fields (set to no value in order to have no delimiter used). For
example: delim=,

quote
If column values should be quoted, identify the quote character here. For example: quote='

metacols
These metacolumn values appear at the beginning of the record, before any column data.
Specify any of the following, in the order they should appear:

position: unique position indicator of records in a trail

opcode: I, U, or D for insert/update/delete records (see: insertChar, updateChar,
deleteChar)

e txind: transaction indicator — e.g. 0=begin, 1=middle, 2=end (3=whole tx) (see
beginTxChar, middleTxChar, endTxChar, wholeTxChar)

opcount: position of a record in a transaction, starting from 0
schema: schema/owner of the table for the record

tableonly: just table (no schema/owner)

table: full name of table, schame.table
timestamp: commit timestamp of record
For example: metacols=opcode, table, txind, position

missingColumnChar, presentColumnChar, nullColumnChar
Special column prefix for columns values that are:

Oracle® GoldenGate for Java Administration Guide 30

Properties
Java Application Properties

present: column value exists in the trail and is non-NULL
missing: column value not in trail; it is unknown if it has a value or is NULL. It was
not captured from the source database transaction log.

e null: column value is set to NULL

The character used to represent these special states can be customized (by default, they are
set to empty string and do not show). For example:

missingColumnChar=M
presentColumnChar=P
nullColumnChar=N

beginTxChar, middleTxChar, endTxChar, wholeTxChar

Header meta chars (see metacols): used to identify a record as the begin, middle, or end of
a transaction. If one operation consists of a complete Tx, then it's a "whole" transaction. For
example:

beginTxChar=B
middleTxChar=M
endTxChar=E
wholeTxChar=W

insertChar, updateChar, deleteChar

Characters to identify insert/update/delete (by default, I/U/D). For example, to use INS,
UPD, and DEL instead of I, U and D for insert, update, and delete operations
(respectively):

insertChar=INS
updateChar=UPD
deleteChar=DEL

endOfLine

Set end-of-line character to:

e Native platform: EOL

e Neutral (UNIX-style \n): CR

e Windows (\r\n): CRLF

For example: endOfLine=CR

Justify

Set fixed fields to left or right-justify. For example: justify=left
includeBefores

Whether before images should be included in the output. There must be before images in
the trail. For example: includeBefores=false

File writer properties

The following properties only apply to handlers that write their output to files: the file
handler and the singlefile handler.

gg-handler._{name}.file
The name of the output file for the given handler. If the handler is a rolling file, this
filename is used to derive the rolled filenames. The default filename is output.xml.

gg-handler.{name}.append

Oracle® GoldenGate for Java Administration Guide 31

Properties
Java Application Properties

Set to true or false to determine if the file should be appended to or overwritten upon
restart.

gg-handler._{name}.rolloverSize

If using the file handler, this is the size of the file before a rollover should be attempted.
The filesize will be at least this size, but will most likely be larger. Operations and
transactions are not broken across files. The size is specified in bytes, but a suffix may be
given to identify MB, or KB. For example:

gg-handler._myfile._rolloverSize=5M

The default rollover size is 10Mb.

JMS handler properties

The following properties apply to the JMS handlers. Some of these values may be defined
in the Java application properties file using the name of the handler. Other properties may
be placed into a separate JMS properties file, which is useful if using more than one JMS
handler at a time. For example:

gg-handler._myjms.type=jms_text
gg-handler.myjms.format=xml
gg-handler.myjms.properties=/dirprm/jboss.properties

Just as with Velocity templates and formatting property files, this additional JMS
properties file is found in the classpath. The above properties file jboss.properties would be
found in {gg_install_dir}/dirprm/jboss.properties, since the Oracle GoldenGate
install directory is included by default in the classpath.

Settings that can be made in the Java application properties file will override the
corresponding value set in the supplemental JMS properties file (jboss.properties in the
example above). In the following example, the destination property is specified in the Java
application properties file. This allows the same default connection information for the two
handlers myjms1 and myjms2, but customizes the target destination queue:

gg-handler.myjmsl.type=jms_text
gg-handler.myjmsl.destination=queue.sampleA
gg-handler.myjmsi.format=/dirprm/sample.vm
gg-handler.myjmsl.properties=/dirprm/tibco-default.properties
gg-handler.myjms2.type=jms_map
gg-handler.myjms2.destination=queue.sampleB
gg-handler.myjms2._properties=/dirprm/tibco-default.properties

The following properties can be specified in the JMS handler itself; see further below for
all other properties that can be specified in the generic JMS properties file.

NOTE The property names that can be used in the Java application properties file are
similar, but not identical to the properties specified in the generic JMS properties
file. In particular, watch out for additional periods (.) in the property names. Also,
not all properties that may be specified in the generic IMSproperty file can be
overridden by the handler specification in the Java application properties file.

The property names are listed here with only brief descriptions (for further details, see
“Standard JMS settings” on page 33):

destination: queue or topic name

Oracle® GoldenGate for Java Administration Guide 32

Properties
Java Application Properties

gueueOrTopic: [queue | topic]

user : username for queue/topic, if required

password: password for queue/topic, if required

persistent: [true | false]

priority: integer

timetolive: milliseconds

connectionUrl: (if usedJndi=false) URL to connect to queue/topic

connectionFactoryClass: (if useJndi=false) class name to instantiate

useJndi: [true | false]

connectionFactory: (if usedJndi=true) connection factory name to look up
To use any of the above settings, specify the handler name as a prefix; for example:

gg-handlerlist=sample,sample2

gg-handler._sample.type=jms_text
gg-handler._sample.format=/dirprm/my_template.vm
gg-handler._.sample._destination=gg.myqueue
gg-handler._.sample.queueortopic=queue
gg-handler._sample.connectionUrl=tcp://host:61616?jms._useAsyncSend=true
gg-handler._.sample._properties=activemg-default.properties
gg-handler._sample2._type=jms_map
gg-handler._sample2._destination=gg.mytopic
gg-handler._sample2._queueortopic=topic
gg-handler._.sample2._connectionUrl=tcp://host2:61616?jms.useAsyncSend=true
gg-handler.sample2_properties=activemg-default_properties

And the corresponding additional JMS properties file (activemg-default.properties) might
contain the following values, some of which provide default values for both handlers
sample and sample2 (timetolive, sessionmode), and others are unused
(destination=ggdemo.queueA, connection URL to localhost, the queueortopic setting):

gg-jmshandler .queueortopic=queue

gg-jmshandler _destination=ggdemo.queueA

gg-jmshandler .sessionmode=dupsok

gg-jmshandler _durabletopic=false

gg-jmshandler._usejndi=false

gg-jmshandler .connectionfactory=ConnectionFactory

gg-jmshandler ._connection.factoryclass=\
org.apache.activemq.ActiveMQConnectionFactory
gg-jmshandler.connection.url=tcp://localhost:61616?7jms.useAsyncSend=true
gg-jmshandler_timetol ive=50000

Standard JMS settings

The following outlines the JMS properties which may be set, and the accepted values.
These apply for both JMS handler types: jms_text (TextMessage) and jms_map
(MapMessage).

JMS Destination: destination — this is the queue or topic to which the message is sent. This must be

Oracle® GoldenGate for Java Administration Guide 33

Properties
Java Application Properties

correctly configured on the JMS server. Typical values may be: queue/A, queue.Test, example.MyTopic,
etc.

JMS User: user — user name required to send messages to the JMS server (optional)
JMS Password: password — password required to send messages to the JMS server (optional)

JMS Queue or Topic: queueortopic=[queue, topic] —whether the handler is sending to a
queue (a single receiver) or a topic (publish / subscribe). This must be correctly configured
in the JMS provider.

queue: a message is removed from the queue once it has been read.
topic: messages are published and may be delivered to multiple subscribers.
JMS Persistent: persistent=[true, false] -if the delivery mode is set to persistent or not.

If the messages are to be persistent, the JMS provider must be configured to log the
message to stable storage as part of the client's send operation.

JMS Priority: priority —JMS defines a 10 level priority value, with O as the lowest and
9 as the highest. Clients should consider 04 as gradients of normal priority and 59 as
gradients of expedited priority. Priority is set to 4, by default.

JMS TimeToL.ive: timetolive — the default length of time in milliseconds from its dispatch
time that a produced message should be retained by the message system. Time to live is
set to zero by default (zero is unlimited).

JMS Connection Factory Name: .connectionfactory — name of the connection factory to lookup via
JNDI

JMS Use JNDI: usejndi=[true, false] — if usejndi is false, then JNDI is not used to configure the
JMS client. .Instead, factories and connections are explicitly constructed.

JMS Url: connection.url — connectionUrl used only when usejndi=false, to explicitly create the
connection.

JMS ConnectionFactoryClass: connection.factoryclass — connectionFactoryClass only used if
usejndi=false. When not relying on JNDI to access a factory, the value of this property is
the Java classname to instantiate, constructing a factory object explicitly.

gg-handlerlist._nop

In addition to the other JMS properties, there is a debug “nop” property that can be globally
set which disables the sending of the JMS messages altogether. This is only used for testing
purposes. The events are still generated and handled and the message is constructed — it
is simply not sent. This can be used to test the performance of the message generation. It
can be set to true or false (the default is false). For example:

gg-handlerlist._nop=true

General properties
The following are general properties that are used for the user exit Java framework.
gg.classpath — additional directories or jars to add to classpath.

gg.report.format — template to use for customizing the report format.

Oracle® GoldenGate for Java Administration Guide 34

Developing Custom Filters, Formatters and Handlers
Filtering Events

CHAPTER 7
Developing Custom Filters, Formatters and

Handlers

You can write Java code to implement an event filter, a custom formatter for a built-in
handler or a custom event handler. You can also specify custom formatting through a
Velocity template.

Filtering Events

By default, all transactions, operations and metadata events are passed to the
DataSourceListener event handlers. In order to filter which events are actually sent to the
handlers (e.g. to only process certain operations on certain tables containing certain
column values), an event filter can be implemented.

Filters are additive: if more than one filter is set for a handler, then all filters must return
true in order for the event to be passed to the handler.

You can configure filters using the Java application properties file:

handler “foo” only receives certain events
gg-handler.one.type=jms
gg-handler.one.format=/dirprm/mytemplate.vm
gg-handler.one.filter=com.mycompany .MyFilter

That is, all you have to do is write the filter, set it on the handler, and then the filter is
active: no additional logic needs to be added to specific handlers.

Custom Formatting

You can customize the output format of a built-in handler by:

e Writing a custom formatter in Java or
e Using a Velocity template

Coding a Custom Formatter in Java

The earlier examples shows a JMS handler and a file output handler using the same
formatter (com.mycompany.MyFormatter); following is an example of how this formatter

Oracle® GoldenGate for Java Administration Guide 35

Developing Custom Filters, Formatters and Handlers
Custom Formatting

may be implemented:

package com.mycompany.MyFormatter;

import com.goldengate.atg.datasource.DsOperation;

import com.goldengate.atg.datasource.DsTransaction;

import com.goldengate.atg.datasource.format.DsFormatterAdapter;
import com.goldengate.atg.datasource.meta.ColumnMetaData;
import com.goldengate.atg.datasource.meta.DsMetaData;

import com.goldengate.atg.datasource.meta.TableMetaData;

import java.io.PrintWriter;

public class MyFormatter extends DsFormatterAdapter {
public MyFormatter() { }

@Override

public void formatTx(DsTransaction tx,
DsMetaData meta,
PrintWriter out)

{
out_print('Transaction: ");
out.print('numOps=\"" + tx.getSize() + "\" ");
out_printIn(ts=\"" + tx.getStartTxTimeAsString() + "\""");
for(DsOperation op: tx.getOperations()) {
TableName currTable = op.getTableName();
TableMetaData tMeta = dbMeta.getTableMetaData(currTable);
String opType = op.getOperationType()-toString();
String table = tMeta.getTableName() .getFullName();
out.printIn(opType + ™ on table \'"" + table + "\":");
int colNum = 0;
for(DsColumn col: op.getColumns())
{
ColumnMetaData cMeta = tMeta.getColumnMetaData(colNum++);
out.printin(
cMeta.getColumnName() + " = " + col._getAfterValue());
}
}
@Override

public void formatOp(DsTransaction tx,
DsOperation op,
TableMetaData tMeta,
PrintWriter out)

// not used...

}

The formatter defines methods for either formatting complete transactions (after they are
committed) or individual operations (as they are received, before the commit). If the
formatter is in operation mode, then formatOp(...) is called; otherwise, formatTx(...) is
called at transaction commit.

Oracle® GoldenGate for Java Administration Guide 36

Developing Custom Filters, Formatters and Handlers
Custom Formatting

To compile and use this custom formatter, include the Oracle GoldenGatefor Java jars in
the classpath and place the compiled .class files in {gg_install_dir}/dirprm:

jJavac -d {gg_install_dir}/dirprm
-classpath javaue/ggue.jar MyFormatter.java

The resulting class files would be located in resources/classes (in correct package
structure):

{gg_install_dir}/dirprm/com/mycompany/MyFormatter _class

Alternatively, the custom classes can be put into a jar; in this case, either include the jar
file in the JVM classpath via the user exit properties (using java.class.path in the
javawriter.bootoptions property), or by setting the Java application properties file to
include your custom jar:

set properties on "one
gg-handler.one.type=File
gg-handler.one.format=com.mycompany .MyFormatter
gg-handler.one.file=output.xml
gg-classpath=/path/to/my.jar,/path/to/directory/of/jars/*

Using a Velocity Template

As an alternative to writing Java code for custom formatting, Velocity templates can be a
good alternative to quickly prototyping formatters. For example, the following template
could be specified as the format of a JMS or file handler:

Transaction: numOps="$tx.size" ts="$tx.timestamp”
#foreach($op in $tx)

operation: $op.sqlType, on table "$op.tableName':
#foreach($col in $op)

$op.tableName, $col.meta.columnName = $col.value
#end

#end

If the template were named sample.vm, it could be placed in the classpath, for example:

{gg_install_dir}/dirprm/sample.vm

NOTE If using Velocity templates, the filename must end with the suffix .vm; otherwise the
formatter is presumed to be a Java class.

Update the Java application properties file to use the template:

set properties on "“one
gg-handler.one.type=Ffile
gg-handler.one.format=/dirprm/sample.vm
gg-handler.one.file=output.xml

When modifying templates, there is no need to recompile any Java source; simply save the
template and re-run the Java application. When the application is run, the following
output would be generated (assuming a table named SCHEMA.SOMETABLE, with

Oracle® GoldenGate for Java Administration Guide 37

Developing Custom Filters, Formatters and Handlers
Coding a Custom Handler in Java

columns TESTCOLA and TESTCOLB):

Transaction: numOps="3" ts="2008-12-31 12:34:56.000"
operation: UPDATE, on table "SCHEMA._SOMETABLE':
SCHEMA.SOMETABLE, TESTCOLA = value 123
SCHEMA.SOMETABLE, TESTCOLB = value abc

operation: UPDATE, on table "SCHEMA._SOMETABLE':
SCHEMA.SOMETABLE, TESTCOLA = value 456
SCHEMA.SOMETABLE, TESTCOLB value def

operation: UPDATE, on table "SCHEMA._SOMETABLE':
SCHEMA.SOMETABLE, TESTCOLA = value 789
SCHEMA.SOMETABLE, TESTCOLB value ghi

Coding a Custom Handler in Java

A custom handler can be implemented by extending AbstractHandler:

import com.goldengate.atg.datasource.*;
import static com.goldengate.atg.datasource.GGDataSource.Status;

public class SampleHandler extends AbstractHandler {

@Override

public void init(DsConfiguration conf, DsMetaData metaData) {
super.init(conf, metaData);
// ... do additional config...

}

@0override
public Status operationAdded(DsEvent e, DsTransaction tx, DsOperation

op) { --- }

@Override
public Status transactionCommit(DsEvent e, DsTransaction tx) { ... }

@Override
public Status metaDataChanged(DsEvent e, DsMetaData meta) { }

@0override
public void destroy() { /* ... do cleanup ... */ }

@Override
public String reportStatus() { return *status report..."; }

}

When a transaction is processed from the extract, the order of calls into the handler is as
follows:

1. Initialization:

o First, the handler is constructed;

O Next, all the "setters" are called on the instance with values from the property file;

Oracle® GoldenGate for Java Administration Guide 38

Developing Custom Filters, Formatters and Handlers
Coding a Custom Handler in Java

O Finally, the handler is initialized; the init(...) method is called before any
transactions are received. It is important that the init(...) method call
super.init(....) to properly initialize the base class.

2. Metadata is received: if the user exit is processing an operation on a table not yet seen
during this run, a metadata event is fired, and the metadataChanged(...) method is
called. Typically, there is no need to implement this method. The DsMetaData is
automatically updated with new data source metadata as it is received.

3. A transaction is started: a transaction event is fired, causing the transactionBegin(...)
method on the handler to be invoked (not shown). This is typically not used, since the
transaction has zero operations at this point.

4. Operations are added to the transaction, one after another; this causes the
operationAdded(...) method to be called on the handler for each operation added. The
containing transaction is also passed into the method, along with the data source
metadata (containing all table metadata seen thus far). Note that the transaction has
not yet been committed, and could be aborted before the commit is received.

Each operation contains the column values from the transaction (possibly just the
changed values, if Extract is processing with compressed updates. The column values
may contain both before and after values.

5. The transaction is committed; this causes the transactionCommit(...) method to be
called.

6. Periodically, reportStatus may be called; it is also called at process shutdown.
Typically, this displays the statistics from processing (number of
operations/transactions processed, etc).

Below is a complete example of a simple printer handler, which just prints out very basic
event information for transactions, operations and metadata. Note that the handler also
has a property myoutput for setting the output filename; this can be set in the Java
application properties file as follows:

gg-handlerlist=sample
set properties on “sample”
gg-handler.sample.type=sample.SampleHandler
gg-handler.sample._myoutput=out.txt
To use the custom handler,
1. Compile the class
2. Include the class in the application classpath,
3. Add the handler to the list of active handlers in the Java application properties file.
To compile the handler, include the Oracle GoldenGate for Java jars in the classpath and
place the compiled .class files in {gg_install_dir}/javaue/resources/classes:
jJavac -d {gg_install_dir}/dirprm
-classpath javaue/ggue.jar SampleHandler.java
The resulting class files would be located in resources/classes, in correct package structure,
such as:

{gg_install_dir}/dirprm/sample/SampleHandler.class

Oracle® GoldenGate for Java Administration Guide 39

Developing Custom Filters, Formatters and Handlers
Additional Resources

NOTE For any Java application developement beyond “hello world” examples, either Ant
or Maven would be used to compile, test and package the application. The
examples showing javac are for illustration purposes only.

Alternatively, custom classes can be put into a jar and included in the classpath. Either
include the custom jar file(s) in the JVM classpath via the user exit properties (using
java.class.path in the javawriter.bootoptions property), or by setting the Java application
properties file to include your custom jar:

set properties on "one
gg-handler.one.type=sample.SampleHandler
gg-handler.one.myoutput=out.txt
gg-classpath=/path/to/my.jar,/path/to/directory/of/jars/*

The classpath property can be set on any handler to include additional individual jars, a
directory (which would contain resources or unjarred class files) or a whole directory of
jars. To include a whole directory of jars, use the Java 6 style syntax:

c:/path/to/directory/* (or on Unix: /path/to/directory/*)

Only the wildcard * can be specified; a file pattern cannot be used. This automatically
matches all files in the directory ending with the .jar suffix. To include multiple jars or
multiple directories, you can use the system-specific path separator (on Unix, the colon and
on Windows the semicolon) or you can use platform-independent commas, as shown above.

If the handler requires many properties to be set, just include the property in the
parameter file, and your handler's corresponding "setter" will be called. For example:

gg-handler.one.type=com.mycompany.MyHandler
gg-handler.one._myOutput=out.txt
gg-handler.one._myCustomProperty=12345

The above example would invoke the following methods in the custom handler:

public void setMyOutput(String s) {
// use the string...

} public void setMyCustomProperty(int j) {
// use the int...

}

Any standard Java type may be used, such as int, long, String, boolean, etc. For custom
types, you may create a custom property editor to convert the String to your custom type.

Additional Resources

There is Javadoc available for the Java API. The Javadoc has been intentionally reduced
to a set of core packages, classes and interfaces so as to only distribute the relevant
interfaces and classes useful for customization and extension.

In each package, some classes have been intentionally omitted for clarity. The important
classes are:

e com.goldengate.atg.datasource.DsTransaction: represents a database transaction. A
transaction contains zero or more operations.

Oracle® GoldenGate for Java Administration Guide 40

Developing Custom Filters, Formatters and Handlers
Additional Resources

e com.goldengate.atg.datasource.DsOperation: represents a database operation (insert,
update, delete). An operation contains zero or more column values representing the
data-change event. Columns indexes are offset by zero in the Java API.

e com.goldengate.atg.datasource.DsColumn: represents a column value. A column value

is a composite of a before and an after value. A column value may be 'present' (having

a value or be null) or 'missing' (is not included in the source trail).

O com.goldengate.atg.datasource.DsColumnComposite is the composite

o com.goldengate.atg.datasource.DsColumnBeforeValue is the column value before
the operation (this is optional, and may not be included in the operation)

O com.goldengate.atg.datasource.DsColumnAfterValue is the value after the
operation

e com.goldengate.atg.datasource.meta.DsMetaData: represents all database metadata
seen,; initially, the object is empty. DsMetaData contains a hash map of zero or more
instances of TableMetaData, using the TableName as a key.

e com.goldengate.atg.datasource.meta.TableMetaData: represents all metadata for a
single table; contains zero or more ColumnMetaData.

e com.goldengate.atg.datasource.meta.ColumnMetaData: contains column names and
data types, as defined in the database and/or in the Oracle GoldenGate sourcedefs file.

See the Javadoc for additional details.

Oracle® GoldenGate for Java Administration Guide 41

Troubleshooting
Error Handling

CHAPTER 8
Troubleshooting

Perform the checks listed in error handling. If you do not succeed, contact Oracle Support.

Error Handling
There are three types of errors that could occur in the operation of Oracle GoldenGate for
Java:

e The Extract process running the user exit does not start or abends

@ The process runs successfully, but the data is incorrect or nonexistent

If the user exit Extract process does not start or abends, check the error messages in order
from the beginning of processing through to the end:

1. Check the Oracle GoldenGate event log for errors, and view the Extract report file:
GGSCI1> VIEW GGSEVT
GGSCI1> VIEW REPORT JAVAUE

2. Look at the last messages reported in the log file for the user exit library; the file name
is the <log file prefix> defined in javawriter.properties and the current date:
shell> more cuserexit_<yyyymmdd>.log
Note: This is only the log file for the JNI (native) shared library, not the Java
application.

3. If the user exit was able to launch the Java runtime, then a log4j log file will be
generated from Java.

The name of the log file is defined in your log4j.properties file pointed to by the user
exit properties. By default, the log file name is ggue-<version>-log4j.log, where
<version> is the version number of the jar file being used. For example:

shel > more ggue-2.2.6-1og4j-log

To set a more detailed level of logging for the Java application, either:

o Edit the current log4j properties file to log at a more verbose level or
O Re-use one of the existing log4j configurations by editing javawriter.properties:

Javawriter_bootoptions=-Djava.class.path=./javaue/ggue.jar

-Dlog4j -configuration=debug-log4j .properties —Xmx512m
These pre-configured log4j property files are found in the classpath, and are installed
in:

./javaue/resources/classes/*l1og4j -properties

Oracle® GoldenGate for Java Administration Guide 43

Troubleshooting
Reporting Issues

4. If one of these log files does not reveal the source of the problem, run the Extract
process directly from the shell (outside of GGSCI) so that stderr and stdout can more
easily be monitored and environmental variables can be verified:

shell> extract paramfile dirprm/javaue.prm
If the process runs successfully, but the data is incorrect or nonexistent, check for errors in
any custom filter, formatter or handler you have written.
To restart the user exit Extract from the beginning of a trail, see page 19.

For further information on troubleshooting the core Oracle GoldenGate software, see the
Oracle GoldenGate Troubleshooting and Performance Tuning Guide.

Reporting Issues

If you have a support account for Oracle GoldenGate, please submit a support ticket by
from the support site (http:/support.goldengate.com). Please include:

Oracle GoldenGate and JavaUser Exit versions

Operating system and Java versions

The version of the Oracle GoldenGate for Java jars can be displayed by:

$ java -jar ggue.jar

The version of the Java Runtime Environment can be displayed by:

$ java -version

e Configuration files:
O Parameter file for the Extract running the user exit
o All properties files used, including any JMS or JNDI properties files
o Velocity templates

e Log files:

In the Oracle GoldenGate install directory, all .log files: the Java log4j log files and the
user exit log file.

Oracle® GoldenGate for Java Administration Guide 44

Index

A

abend 43
ActiveMQ 22
ADD EXTRACT 9

data pump 10
ADD EXTTRAIL 9
ADD RMTTRAIL 10
ADD SUPPLEMENTAL LOG DATA 9
ADD TRANDATA 9
application

restart 19

start 19

boot options
JVM 26

C

checkpoint

user exit 19
comma-separated values 30
configuration options 4
configure

data pump 15

Java handlers 16

JRE 14
configuring

event handlers 21
connection factory 34
CSV format 30
CUSEREXIT 16

cuserexit.properties 14

@ © o 6 6 o o 6 o o 6 o o 6 o 6 6 0 o 6 o o 6 o S 6 0 O 6 0 S 6 0 S 6 0 O 6 0 O 6 0 S 6 0 O 6 0 O 6 0 O 6 0 O 6 0 0 6 0 s 6 0 0 6 0 0 6 e s s 0 s e e o o

Oracle® GoldenGate for Java Administration Guide

custom formatters 21

custom Java code 5

D

data pump 10
ADD EXTRACT 10
configure 15
parameter file 10

database
prepare 9

DEFGEN 14

dirdat directory 14

Djava.class.path 27

dil 4

dynamically linked library 4
installing 13

E

errors 43
ETL tools 3
event filters 21
event handlers 21
configuring 21
Extract
ADD 9
parameter file 9
parameters 15
EXTTRAIL
ADD 9

F
file handler 23

file writer
properties 31

filewriter handler 21

Index

fixed-format 30 Java application
flat file integration 3 installing 16
formatters properties 28
custom 21 Java application properties 28
formatting 24,29 Java code 37

Java Development Kit 7
G Java handlers
configure 16

general properties 34

generic properties 26 Java jars 14

. Java libraries 4
ggue.jar 14

GoldenGate Java Message Service (JMS) 4

documentation 5 Java Native Interface (JNI) 4

installation directory 14 Java Runtime Environment (JRE) 7

Java SDK 7
H Java User Exit
checkpoint 19
handler . .
installing 13
event 21 .
running 19
file 23
e Java User Exit properties 13
filewriter 21 . .
javaversion 8
JMS 22

Java virtual machine (JVM) 7
JAVA_HOME 7

Java, installing 7

properties 28
handlers

configuring 21
java.class.path 14,16

javaue.prm 14
JavaUserExit.dll 13

installation directory structure
GoldenGate 14

JavaUserExit.so 13

javawriter.bootoptions 16
installing 13

JBoss 22
dynamically linked library 13 JDK 7
GoldenGate 8 IMS 4

Java 7 .
L properties 22
Java application 16 .
. standard settings 33
shared library 13 .
jms 23

JMS handler 5,22
properties 32
JMS provider 22

User Exit for Java 13
issues

reporting 44

JMS queue or topic 34

J

jms_map 23
Jars 4,14 jms_text 23
Java API 3,4 INI 4

Oracle® GoldenGate for Java Administration Guide 46

Index

JRE 7 Q
configure 14 queue 34
JVM 7
JVM boot options 26 R
jvmdil 7
reporting 24,27
issues 44
L
restart
LD_LIBRARY_PATH 8 L
application 19
Linux 8 RMTTRAIL
log4j.configuration 15 ADD 10
LOGFILE, SWITCH 9 .
running

logging properties 25 Java User Exit 19
M S

Manager parameter file 8 SETENV 15,16

MapMessage 21 shared library

message format 5

installing 13
Solace 22
0 SOURCEDEFS 15
Oracle GoldenGate for Java 4 standard JMS settings 33
output 24, 29 start
application 19
P statistics 27
parameter file subdirectories
data pump 10 creating 8
primary Extract 9 SWITCH LOGFILE 9
parameters
Extract 15 T
PASSTHRU mode 10 TABLE 16
PATH environmental variable 7 TDM 3
properties 25 TextMessage 21
file writer 31 TIBCO 22
general 34 topic 34
handlers 28 trail 15
Java application 28 TRANDATA, ADD 9
MS 22 Transactional Data Management (TDM) 3
JMS handler 32 A
logging 25 troubleshooting 43
User Exit 25
property file 4 u
UNIX 8

Oracle® GoldenGate for Java Administration Guide 47

Index

unzip 13 w

User Exit WebLogic 22

properties 25

Windows 7
running 19
User Exit for Java X
checkpoint 19
XML 5

\')

Velocity template 5, 29,37

Oracle® GoldenGate for Java Administration Guide 48

	Contents
	Introduction
	Oracle GoldenGate Transactional Data Management
	Integration Options
	Oracle GoldenGate for Java
	Configuration Options

	Oracle GoldenGate Documentation

	Installing Java and Oracle GoldenGate Software
	Installing Java
	Java on Windows
	Java on Linux/UNIX

	Installing Oracle GoldenGate Software
	Prepare the database
	Prepare the tables
	Primary capture on the database server
	Secondary data pump on database server (optional)

	Installing Oracle GoldenGate for Java
	Installing the Shared (Dynamically Linked) Library
	Unzip into the Oracle GoldenGate directory
	Configure the JRE (in the user exit propertiesfile)
	Configure a Data Pump to Run the User Exit

	Installing the Java Application
	Configure the Java Handlers

	Running the User Exit
	Starting the Application
	Restarting the Application at the Beginning of a Trail

	Configuring Event Handlers
	Specifying Event Handlers
	JMS Handler
	File Handler
	Custom Handlers
	Formatting the Output
	Reporting

	Properties
	User Exit Properties
	Logging properties
	Generic properties
	JVM boot options
	Statistics and reporting

	Java Application Properties
	Properties for all handlers
	Properties for formatted output
	Properties for CSV and fixed-format output
	File writer properties
	JMS handler properties
	Standard JMS settings
	General properties

	Developing Custom Filters, Formatters and Handlers
	Filtering Events
	Custom Formatting
	Coding a Custom Formatter in Java
	Using a Velocity Template

	Coding a Custom Handler in Java
	Additional Resources

	Troubleshooting
	Error Handling
	Reporting Issues

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

