
1

Oracle® Fusion Middleware
Capacity Planning Guide for Oracle WebLogic Portal

10g Release 3 (10.3.2)

E14228-01

February 2010

This guide includes the following sections:

■ Section 1, "Introduction"

■ Section 2, "Capacity Planning Factors to Consider"

■ Section 3, "Performance Results"

■ Section 4, "Other Resources"

■ Section 5, "Documentation Accessibility"

1 Introduction

Oracle WebLogic Portal is the leading Java portal for the delivery of a personalized
web experience with rich, Web 2.0 interactions. Thousands of solutions for business
have been delivered with the WebLogic Portal for companies large and small. The
WebLogic Portal sets the standard for the delivery of enterprise-class portal solutions
and is designed to meet the scalability and performance requirements for some of the
most demanding deployments. WebLogic Portal solutions range from departmental
applications to some of the largest corporate deployments in existence. Deployment
architectures may include few, independent servers or sophisticated cluster
configurations with state replication – WebLogic Portal is designed with the flexibility
to serve the solution demands. The architecture and physical deployment of any given
implementation depends on numerous factors which this document will cover. The
process of evaluating the hardware and software configuration needed for a given
deployment is called capacity planning.

This document covers the steps involved with capacity planning for the current
version of WebLogic Portal and will serve as a baseline set of measurements so that
more accurate estimates can be made for capacity planning by our customers.

Capacity planning is not an exact science. Every application deployment and user is
unique and testing cannot anticipate all the interactions that may result. This
document is a guide for developing capacity planning numbers not a prescription or
recommendation for any specific deployment. While designing your solution and
testing the configuration, careful consideration must be given to business expectations,
periodic fluctuations in demand, and application constraints – few deployments are
identical. Customers need to plan carefully, test methodically, and incorporate

Note: The capacity planning benchmark data presented in this guide
was verified against WebLogic Portal 10.2. Subsequent testing has
confirmed the accuracy of the data for WLP 10.3.2.

2

conservative principles such as deploying with extra capacity – not a bare minimum.
Before deploying any application into a production environment the application
should be put through a rigorous performance testing cycle. For more information on
performance testing see "Approaches to Performance Testing" at
http://www.oracle.com/technology/pub/articles/dev2arch/2005/09/p
erformance_testing.html on the Oracle Technology Network web site.

2 Capacity Planning Factors to Consider
Numerous factors must be weighed to estimate the demands of any given WebLogic
Portal deployment. The hardware capacity required to support your application
depends on the specifics of the application, server hardware, network infrastructure,
and portal configuration. You should consider how each of these factors applies to
your implementation.

Table 1–1 provides a checklist for capacity planning. The following sections discuss
each item in the checklist. Understanding these factors and considering the
requirements of your application will aid you in generating server hardware
requirements for your configuration.

Note: Any and all recommendations provided in this guide should
be adequately verified before a given system is moved into
production. As stated above, the data published in this document is
meant to represent the specific configuration that was tested. There
are a number of factors that come into play when determining how
much capacity a system can support and thus there is no substitute for
adequately testing a prototype to obtain your own capacity planning
numbers. If you do not have a group experienced in physical
architecture, capacity planning, performance testing, and disaster
recovery planning you should strongly consider getting assistance.

Table 1 Capacity Planning Factors and Information Reference

Capacity Planning Questions For Information, See:

Have you performance tested your
application?

Section 2.1, "Performance Testing Suggestions"

Does the hardware meet the
configuration requirements?

Section 2.2, "Hardware Configuration and Performance
Requirements"

Is WebLogic Portal configured for
clustering?

Section 2.3, "Clustered Configurations"

Is the simulated workload adequate? Section 2.4, "Simulated Workload"

How many users need to run
simultaneously?

Section 2.5, "Concurrent Sessions"

Is WebLogic Portal well-tuned? Section 2.6, "Tuning WebLogic Server"

How well-designed is the user
application?

Section 2.7, "Application Design"

Do clients use SSL to connect to
WebLogic Portal?

Section 2.8, "SSL Connections and Performance"

What is running on the machine in
additional to WebLogic Portal?

Section 2.9, "WebLogic Server Process Load"

Is the database a limiting factor? Section 2.10, "Database Server Capacity"

3

2.1 Performance Testing Suggestions
Capacity planning is the last step in the performance testing process. Before an
application is ready to be sized for a production deployment it should go through an
iterative performance testing process to ensure that bottlenecks are addressed and that
response behaviors meet requirements.

Running benchmarks against the application will set a baseline set of measurements so
that as features are added and removed from the application the impact of those
changes can be objectively measured.

Profiling the application during development will help flush out performance
problems or performance hotspots that could turn into major issues down the road.
Catching these kinds of problems early will significantly reduce the overhead in trying
to fix them later.

Production monitoring systems are frequently useful additions to production
deployments and QA testing to help identify and quantify specific problem areas.
Anything that will be included in the production deployment, such as a monitoring
tool, load balancer, or intrusion detection software, should be replicated in the testing
environment if possible. Many testing configurations include synthetic network traffic
generators to make testing as accurate as possible.

2.1.1 Recommendation
Read Approaches to Performance Testing at
http://www.oracle.com/technology/pub/articles/dev2arch/2005/09/p
erformance_testing.html on the Oracle Technology Network web site.

2.2 Hardware Configuration and Performance Requirements
The operating systems and hardware configurations that Oracle supports for the
current version of WebLogic Portal are documented in "Oracle Fusion Middleware
Supported System Configurations."

When performance characteristics for any given application deployed in WebLogic
Portal are not met the first question that should asked in this situation is if the
hardware is sufficient. This is the single most important factor when determining how
well the system will scale. During Oracle's internal performance testing, WebLogic
Portal was CPU bound, so the performance of the system will depend on how fast
each CPU is and how many total CPUs there are.

Oracle's internal performance testing indicated a direct relationship between the
performance of the system and the overall clock-speed of the CPU(s). By adding more
CPUs, or faster CPUs the capacity of the system will typically increase. Additionally,
by clustering machines WebLogic Portal will gain additional scalability due to the
addition of CPUs to the overall application deployment. Newer processor technology
is also a big factor in determining how a system will perform. For instance, in the
results section there is a series of data from tests conducted with different CPU
architectures and substantial differences can result.

Is there enough network bandwidth? Section 2.11, "Network Load"

What JVM is used and with what
parameters?

Section 2.12, "Selecting Your JVM"

Table 1 (Cont.) Capacity Planning Factors and Information Reference

Capacity Planning Questions For Information, See:

4

2.2.1 Recommendation
Get the fastest CPUs possible and grow the size of the cluster as needed.

2.3 Clustered Configurations
Is the WebLogic Portal Server deployment configured to support clusters? Clusters can
provide session protection and fail over via state replication when configured, in
addition to horizontal load distribution. Customers who choose to implement clusters
should see negligible degradation unless their application stores large amounts of data
in the session and that session is replicated across the cluster.

If you are using a web server to forward requests to a WebLogic Server cluster,
sometimes the bottleneck can be the web server. This can happen when using the
supplied HttpClusterServlet and a proxy server, or one of the supported plug-ins. If
the response time does not improve after adding servers to the cluster and the web
server machine shows a high CPU utilization, consider clustering the web server or
running the web server on more powerful hardware. The web server should be largely
I/O bound (including disk utilization and network utilization) rather than CPU
bound.

2.3.1 Recommendation
Based on capacity tests with tuned applications, WebLogic Portal is typically
CPU-bound. When deciding how much hardware to buy for a production
environment, the speed of the processor(s) should be the top priority.

In most cases, WebLogic Server clusters scale best when deployed with one WebLogic
Server instance for every two CPUs. However, as with all capacity planning, you
should test the actual deployment with your target portal applications to determine
the optimal number and distribution of server instances.

2.4 Simulated Workload
When trying to determine the performance requirements of your system you will need
to take into account the expected workload on the application. For example, a typical
banking application experiences heavy traffic (a high number of concurrent sessions)
during the "peak hours" of 9 AM and 5 PM. So when doing capacity estimates it is best
to test with workloads that will closely mimic the anticipated workload. Additionally,
some testing groups will include actual end user testing cycles to identify usage
patterns.

Several workload factors can influence the overall performance of the system and
depending on how these factors are tested, very different results will be produced. The
first is the anticipated "think-time" for users of each application. Think-time is defined
as the pause between requests by a user who is active on the system. For example, if a
user clicks to see their bank account balance, they may not click again for 30 seconds,
thus the think-time is 30 seconds. This think-time should be averaged across all users
(because "expert" users will have shorter think-times and "novice" users will have
much longer times). Think times will vary from application to application and system
testing should reflect this. Decreasing the think-time will When testing the system the
rate at which users are added to the system can also have a dramatic impact on the
performance characteristics of the system. For example, if all of the users are added to
the system at once, a "wave" effect will occur where the response times may be high
during the initial requests then improve dramatically as users continue to navigate
through the system. Adding users in a staggered fashion will prevent this from
happening and provide more consistent performance from the system. Some

5

randomization of the think-time will make the test more "real-world" and usually
helps decrease the "wavy" behavior producing more consistent and accurate results.

2.4.1 Recommendation
When testing the system to determine capacity requirements, make sure that the
workload of the simulated users accurately reflects what the system would experience
in the production environment. Again, this is best accomplished through actual end
user timings and modeling test from usage patterns. Pay close attention to excessive
simulated workload that may produce inaccurate results.

2.5 Concurrent Sessions
Determine the maximum number of concurrent user sessions for your WebLogic
Portal. To handle more users, you will need to have adequate CPU capacity and RAM
for scalability. For most supported configurations 1GB of RAM is the minimum
configuration and 2GB is recommended in production for each WebLogic Portal
instance.

Next, research the maximum number of clients that will make requests at the same
time and how frequently each client will be making a request. This can be done by
using some fraction of the total number of users or better still, by measuring an
existing system if one already exists. The number of user interactions per second with
WebLogic Portal represents the total number of interactions that should be handled
per second by a given Portal deployment.

The maximum number of transactions in a given period should also be considered to
ensure spikes in demand can be handled. If the demand is close to the maximum
capacity for the system, then additional hardware should be added to increase the
overall system performance and capacity. For capacity information about concurrent
users see Section 3.6, "Portal Framework Concurrent User Results".

2.6 Tuning WebLogic Server
WebLogic Server should be tuned using the available tuning guide.

2.6.1 Recommendation
For more information about tuning Server, see

■ Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

■ "Top Tuning Recommendations for WebLogic Server " in Oracle Fusion Middleware
Performance and Tuning for Oracle WebLogic Server

2.7 Application Design
A well tested and deployed architecture can easily be crippled by poorly built or
non-optimized user applications. The best course is to assume that each application
developed for WebLogic Portal will add overhead and will thus not perform as well as
benchmark applications. As a precaution, you should take into account these features
of the application and add additional capacity to your system.

The size of the portal deployment (calculated by adding up the number of distinct
books, pages, and portlets) may have a significant impact on the performance and
capacity of the system. As the portal size increases, the control tree grows along with it
and very large ones can have a noticeable performance impact.

6

The use of multi-level menus negates many of the benefits of the Portal Control Tree
Optimizations because the tree must be navigated in order to build the menu
structure. This is fine with smaller portals, but for larger portals this will have a
significant impact on the performance and scalability of the system and will thus
require more hardware resources in the deployment.

2.7.1 Recommendation
Breaking large portals into several smaller Desktops is recommended to optimize the
performance of the system. Additionally, profiling with either a "heavy-weight"
profiler or a run-time "light-weight" profiler is strongly recommended to find
non-optimized areas of code in your application. The use of multi-level menus is
discouraged for large portals.

For more information about designing portals, see "Designing Portals for Optimal
Performance" in Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

2.8 SSL Connections and Performance
Secure Sockets Layer (SSL) is a standard for secure Internet communications.
WebLogic Server security services support X.509 digital certificates and access control
lists (ACLs) to authenticate participants and manage access to network services. For
example, SSL can protect JSP pages listing employee salaries, blocking access to
confidential information.

SSL involves intensive computing operations. When supporting the cryptography
operations in the SSL protocol, WebLogic Server cannot handle as many simultaneous
connections.

You should note the number of SSL connections required out of the total number of
clients required. Typically, for every SSL connection that the server can handle, it can
handle three non-SSL connections. SSL reduces the capacity of the server by about
33-50% depending upon the strength of encryption used in the SSL connections. Also,
the amount of overhead SSL imposes is related to how many client interactions have
SSL enabled.

2.8.1 Recommendation
Implement SSL using hardware accelerators or disable SSL if it is not required by the
application.

2.9 WebLogic Server Process Load
What is running on the machine in addition to a WebLogic Portal? The machine where
a WebLogic Portal is running may be processing much more than presentation and
business logic. For example, it could be running a web server or maintaining a remote
information feed, such as a stock information feed from a quote service; however, this
configuration is not recommended.

Consider how much of your machine's processing power is consumed by processes
unrelated to WebLogic Portal. In the case in which the WebLogic Portal (or the
machine on which it resides) is doing substantial additional work, you need to
determine how much processing power will be drained by other processes.

Oracle recommends that the average CPU utilization on the WebLogic Portal server
when executing benchmark tests be in the range of 85 to 95% as a cumulative statistic
for that machine. For example, if the machine has multiple processors then the average

7

for both processors should be between the above percentages. This allows the machine
to operate at near peak capacity, but also allows for other system processes to run and
not drive the CPU to 100%. During production additional CPU overhead should be
given to the system to accommodate spikes in traffic so that SLAs around response
times are maintained. A good rule of thumb for production should target no higher
than 70% CPU utilization to ensure extra capacity is available for unanticipated events.

Additionally, if any third party applications, services, or processes are deployed in
addition to WebLogic Portal, Oracle recommends deploying those applications,
services, or processes on separate hardware machines.

When dealing with a clustered WebLogic Portal deployment a load balancing solution
must be considered. With load balancing in a cluster, the user sessions across the nodes
should be about even. If the distribution is not even then that points to a problem with
either the WebLogic Portal configuration or the load balancer configuration.

2.9.1 Recommendation
If a cluster of servers is required to meet the capacity demands of the system then a
load balancer should be implemented to distribute load across the machines.

All third party applications and services should be off-loaded onto separate hardware.

2.10 Database Server Capacity
Is the database a bottleneck? Are there additional user storage requirements? Many
installations find that their database server runs out of capacity much sooner that the
WebLogic Portal does. You must plan for a database that is sufficiently robust to
handle the application. Typically, a good application will require a database that is
three to four times more powerful than the application server hardware. It is good
practice to use a separate machine for your database server.

Generally, you can tell if your database is the bottleneck if you are unable to maintain a
high CPU utilization for WebLogic Portal CPU. This is a good indication that your
WebLogic Portal is spending much of its time idle and waiting for the database to
return.

Some database vendors are beginning to provide capacity planning information for
application servers. Frequently this is a response to the 3-tier model for applications.
An application might require user storage for operations that do not interact with a
database. For example, in a secure system, disk and memory are required to store
security information for each user. You should calculate the size required to store one
user's information, and multiply by the maximum number of expected users.

There are additional ways to prevent the database from being the bottleneck in the
system and one of those ways is by implementing caching at the database layer.
WebLogic Portal uses many different caches to avoid hitting the database. If during
performance testing the database is determined to be a bottleneck then it might be
useful to tune the WebLogic Portal caches to take some of the load off the database.

2.10.1 Recommendation
See the "Performance Considerations" in Oracle Fusion Middleware Database
Administration Guide for Oracle WebLogic Portal and "Sizing Considerations" in Oracle
Fusion Middleware Database Administration Guide for Oracle WebLogic Portal for sizing
and other performance related considerations.

Review the Oracle Fusion Middleware Cache Management Guide for Oracle WebLogic Portal
for more information about database caches.

8

2.11 Network Load
Is the bandwidth sufficient? Network performance is affected when the supply of
resources is unable to keep up with the demand. WebLogic Server requires a large
enough bandwidth to handle all of the connections from clients it is required to
handle. If you are handling only HTTP clients, expect a similar bandwidth
requirement to a web server serving static pages.

In a cluster, by default, in-memory replication of session information shares the same
network as the HTTP clients. An alternative to the standard network topology would
be to change the physical network with a different channel for internal cluster
communication and a second channel for external traffic. See "Configuring Network
Resources" in Oracle Fusion Middleware Configuring Server Environments for Oracle
WebLogic Server. Although the WebLogic Portal framework does not create large
amounts of session data it is possible for a custom application to add significant
overhead in this area. Additionally, a high load of concurrent users with frequent
requests will also lead to network saturation. Consider whether your application and
business needs require the replication of session information. Finally, the combination
of lots of concurrent users and frequent requests to the server should be estimated to
determine if the network can handle the anticipated load.

To determine if you have enough bandwidth in a given deployment, you should look
at the network tools provided by your network operating system vendor. There are
plenty of free and commercial tools available including build-in applications for
Windows and Solaris to help measure this. Additionally, most hardware load
balancing solutions provide network statistics. If only one load balancer is used, it too
may become a bottleneck on the system if the load is very high.

2.11.1 Recommendation
Oracle recommends running a gigabit LAN and implementing one or more server
load balancers to optimize network traffic.

2.12 Selecting Your JVM
What JVM will be used? What parameters will be used? How much heap is required to
get the best performance out of the application? Different applications may perform
better on one JVM or another. WebLogic Portal supports Oracle's JRockit and Sun's
HotSpot JVMs. In general, Oracle's JRockit JVM performed better during "Benchmark"
tests on Intel processors with Linux as the OS, however HotSpot performed slightly
better as the cluster size increased during "Concurrent User" tests.

The JVM parameters can have a dramatic impact on the performance of the system.
Please see the Oracle JRockit Command-Line Reference for a list of all of the parameters
and where they may be used.

The size of the heap will also impact the performance of the system. Larger
applications may need larger heap sizes. Additionally, a high number of concurrent
users will require a larger heap size to prevent the system from running out of
memory.

2.12.1 Recommendation
In all cases with JRockit it is recommended that -Xgc:parallel be used and with
HotSpot -XX:MaxPermSize with a minimum of 128m be used. Depending on your
application the memory requirements may be quite high. In all cases a set of
benchmark tests should be run with the different settings to determine what is best for
your application.

9

3 Performance Results
There are two types of performance test results in the following sections; one test to
assess throughput and another to determine the maximum number of concurrent
users supported by the system. The differences between these tests are numerous and
thus comparing a data-point from one type of test to another is not recommended.

The first set of data is referred to as "Benchmark Results." This set of tests were run to
determine a baseline for the throughput of system measured in pages returned per
second. The goal of these tests is to determine the maximum throughput of the system
in various configurations where the portal size, portlet type, and JVM are varied.

The second set of data is referred to as "Concurrent User Results" because it is more
closely related to the sort of tests run in production-like systems. The goal of this type
of test is to determine the maximum number of concurrent users (actively clicking
through the Portal) for a given response time (often referred to as a Service Level
Agreement.)

Each test is driven by a LoadRunner script that allows each user to log-in once and
then click through the pages (for all but the Very Small portal, there were 50
page/book clicks) and then repeat at the first page when the last page is reached. The
very small portal has 8 pages, so there were 8 clicks. This continues until the test
duration is complete.

3.1 Test Applications
The following sections discuss the applications used in the performance testing. The
applications include:

■ Section 3.1.1, "Portal Framework Application"

■ Section 3.1.2, "WSRP Application"

■ Section 3.1.3, "Content Management Application"

3.1.1 Portal Framework Application
The portal framework test application is deployed to the cluster as an EAR that
contains .portal and .portlet files. Form-based authentication is used for each
Portal so that a user is registered. The portals themselves vary in size and portlet type.
Each portal tested includes portlets of only one type, including JSP, page flow, and
JSR168. The portlets used are considered simple portlets such as "Hello World"-type
portlets. Tree optimization is enabled for all of the portals. Entitlements and user
customizations are disabled. Session replication using the flag "replicated_if_clustered"
is configured for all tests. Because all of the users are required to log-in and then did
not log-out, a session was maintained for each user for the duration of the test.

The portal sizes vary with the following parameters shown in Table 2:

Table 2 Tested WebLogic Portal Sizes

Portal Size Number of Books Number of Pages Number of Portlets

Very Small 1 8 64

Small 5 50 500

Very Large 40 400 4000

10

With the exception of the Very Small portal (which has 8 portlets per page) each portal
has 10 portlets per page.

3.1.2 WSRP Application
The WSRP test application is deployed to federated clusters as an EAR that contains
.portal and .portlet files. Form-based authentication is used for each Portal so
that a user is registered. Each portal has one book containing eight pages; each page
has from 1 to 4 remote portlets. Multiple instances of the same remote portlet are used
for each page (i.e., page 1, portlet 1 shares the same remote portlet definition as
portlets 2, 3, and 4 on that same page). Each remote portlet accesses a portal Producer
located on a remote machine on the same network subnet. The portlets located on
pages 1 and 5 are configured to point at the same Producer. The same pattern of
configuration was applied for portlets on pages 2 and 6, 3 and 7, and 4 and 8.
Graphically this is represented in Figure 1.

Figure 1 WSRP Cluster Configuration

All portlets are page flow portlets. The remote portals are designed to provide
approximately 40KB of HTML content to the consumer portlets. Tree optimization is
enabled for all portals, while entitlements and user customizations are disabled.
Session replication using the flag "replicated_if_clustered" is turned on for all tests.
Because all of the users are required to log-in and then do not log-out, a session is
maintained for each user for the duration of the test. The WSRP SSO feature using the
WSRP SAML identity asserter is not used to propagate user identity between the
Consumer and Producer.

The tests application varies over various portlet sizes and features as follows:

■ Eight, 16, or 32 total portlets on eight portal pages

■ Caching on and off

When caching is enabled, the cache TTL is set to a time period longer than the
duration of the test.

The F5 Networks Big-IP load balancer is used to balance load on the consumer cluster
only. The producers are not clustered or load balanced in any way.

11

3.1.3 Content Management Application
The content management test application is deployed to a cluster as an EAR that
contains JSP files which hit the content APIs directly. These JSPs are designed to test
the performance of node creation, node access, paginating over nodes in a result set,
the security overhead of reading a node, and the concurrent reading and writing of
nodes in a WLP content repository. There are 2 types of node content that are used,
simple and complex. Simple content is comprised of five string properties and one
binary property. Complex content has two string, two calendar, one boolean, one long,
one binary and one nested properties. The nested property is itself made up of three
string, two long and two calendar properties. Repository management is disabled as
are repository events. The repository is not read only and search is disabled. These
tests vary over features as follows:

■ Number of users creating nodes

■ Number of users reading nodes

■ Binary (0 or 10KB) size added to the content

■ Number of total nodes in the repository

■ Simple and Complex node types

■ Reading the node by node Id or node name

■ Number of results in a paginated list

■ Number of entitled nodes in the database

■ Administrator/Non-admin user

In general the nodes are created one level below the repository root. The exception to
this is the nested node in the complex type, this is created as a grandchild of the root.

3.2 HP Linux Hardware and Server Configurations
The HP Linux tests varied over several different cluster configurations in which there
were two or four physical machines in a cluster. Each physical machine had Portal
running in a single JVM. In order to keep hardware acquisition cost a constant from
previous releases, the current performance tests were run on upgraded hardware. The
upgraded hardware was purchased at the same price point as the previous hardware.
See section Section 3.4, "Comparing Current Results Against Previous Releases" for
details on comparing current performance numbers with previous releases.

■ Administration and Managed Servers: HP ProLiant DL360 G5 – Dual 2.66 GHz
Xeon, 4 GB RAM, 15K RPM SCSI Disks, HyperThreading enabled, RedHat
Enterprise Linux AS 5.0, Gigabit NIC

■ Database Server: HP ProLiant DL380 G4 – Dual 3.4 GHz Xeon, 4 GB RAM,15K
RPM SCSI Disks, HyperThreading enabled, Red Hat Enterprise Linux AS 4
Update 4, Oracle 10R2, Gigabit NIC

■ Load Balancer: F5 Networks Big-IP 3400

■ LoadRunner Controller: HP ProLiant DL360 G4 – Dual 3.6 GHz Xeon, 3.5 GB
RAM, 15K RPM SCSI Disks, HyperThreading enabled, Windows 2003 Server
Enterprise Edition SP1, LoadRunner 7.8, Gigabit NIC

■ Oracle JRockit JVM with -Xms2048m -Xmx2048m -Xgc:parallel setting.

■ Sun HotSpot JVM with -server -Xms2048m -Xmx2048m
-XX:MaxPermSize=128m setting.

12

3.3 Sun Solaris Hardware and Server Configurations
The Sun Solaris tests used four and eight CPU configurations in which there were one
and two physical machines. Each machine had two running managed servers, which
translates into two portals and two JVMs on each physical machine, for a total of two
and four managed servers in the cluster. Each server has four CPUs and the data is
presented in the table by CPU count.

■ Administration Server: Sun Fire v240, 2 x 1.02GHz, 4GB RAM, 10K RPM SCSI
Disks, Sun Solaris 10

■ Managed Servers: Sun Fire v440, 4 x 1.02GHz, 8GB RAM, 10K RPM SCSI Disks,
Sun Solaris 10, Gigabit NIC

■ Database Server: HP ProLiant DL380 G4 – Dual 3.4 GHz Xeon, 4 GB RAM, 15K
PRM SCSI Disks, HyperThreading enabled, Windows 2003 Server Enterprise
Edition SP1, Oracle 9.2.0.6, Gigabit NIC

■ Load Balancer: F5 Networks Big-IP 1500

■ LoadRunner Controller: HP ProLiant DL320 G3 – 3.6 GHz Pentium 4, 2 GB RAM,
15K RPM SCSI Disk, HyperThreading enabled, Windows 2003 Server Enterprise
Edition SP1, LoadRunner 7.8, Gigabit NIC

■ JVM: Hotspot with -server -Xms2048m -Xmx2048m
-XX:MaxPermSize=128m setting.

3.4 Comparing Current Results Against Previous Releases
Due to hardware upgrades in this release, when compared against WLP 10.0, you can
expect to see anywhere from even to 4x performance increases on tests performed on
HP Linux. This is accounted for by the increase from dual-core, 2 chip G4's to
quad-core, 2 chip G5's, as well as an improved front-side bus. The configurations (JSP,
JSR168) that are CPU intensive see the most benefit from this hardware upgrade. Page
Flows, which are constrained by the physical memory on the machine, see less
benefits.

3.5 Portal Framework Benchmark Results
"Benchmark" tests are designed to show the maximum throughput of the system
under different conditions. We varied over the type of portlets in the portal and the
size of the portal as well as the JVM. For each configuration the goal is to saturate the
server to achieve maximum throughput. The WebLogic Portal servers reached
between 85 and 95 percent CPU utilization which is the optimal range for maximum
throughput.

To achieve maximum throughput, zero seconds of "think-time" was used, which is to
say that the time between a response from the server and the subsequent request was
zero seconds. With this type of workload it is very easy to saturate the server and
achieve maximum throughput in a short period of time with relatively few users.

For the Benchmark tests a ratio of 10 virtual users (VUsers in LoadRunner) were used
per CPU. The Benchmarks were run on two hardware configurations, HP Linux and
Sun Solaris. Since all of the Linux machines tested were configured with two CPUs, for
each node in the WebLogic Portal cluster, 20 virtual users were used per machine. The
Sun Solaris machines tested had 4 CPUs and thus 40 virtual users were used per
machine. These users were "ramped-up" (added to the system) over 25 minutes

13

followed by a steady-state (where no additional users were added but the existing
users continued to access the system) that lasted an additional 10 minutes.

This section includes results from the following configurations:

■ Section 3.2, "HP Linux Hardware and Server Configurations"

■ Section 3.3, "Sun Solaris Hardware and Server Configurations"

3.5.1 HP Linux Results
The servers were set to auto-tune which has been a new feature since WebLogic Server
9.0. The JDBC connection pools were set to start at five connections with the ability to
grow to 25. These tests were run with zero seconds of think time so that the servers
would become saturated quickly. The results are summarized in Table 3:

3.5.2 Sun Solaris Results
The servers were set to auto-tune which has been a new feature since WebLogic Server
9.0. The JDBC connection pools were set to start at five connections with the ability to

Note: The baseline numbers produced by the Benchmarks used in
this study should not be used to compare WebLogic Portal with other
portals or hardware running similar Benchmarks. The Benchmark
methodology and tuning used in this study are unique.

Table 3 Linux Benchmarks - Throughput in Pages Per Second

Portal Type Portal Size JVM 4 CPUs 8 CPUs

JSP Very Small Jrockit 1097 1589

JSP Very Small Hotspot 1182 1742

JSP Small Jrockit 636 1224

JSP Small Hotspot 880 1284

JSP Very Large Jrockit 773 1123

JSP Very Large Hotspot 856 1258

JSR 168 Very Small Jrockit 1069 2331

JSR 168 Very Small Hotspot 1645 2510

JSR 168 Small Jrockit 919 1589

JSR 168 Small Hotspot 1066 1424

JSR 168 Very Large Jrockit 741 1228

JSR 168 Very Large Hotspot 841 1323

Page Flow Very Small Jrockit 1004 1097

Page Flow Very Small Hotspot 952 1262

Page Flow Small Jrockit 399 833

Page Flow Small Hotspot 455 865

Page Flow Very Large Jrockit 373 690

Page Flow Very Large Hotspot 436 751

14

grow to 25. These tests were run with zero seconds of think time so that the servers
would become saturated quickly. The results are summarized in Table 4:

3.6 Portal Framework Concurrent User Results
This set of performance test results are also known as "Capacity Planning" results
because they are best suited for determining what the overall capacity of the system is
by measuring how many concurrent users can run on a given set of hardware. These
tests are designed to mimic real-world user loads and thus show a more accurate
representation of the system than the standard "Benchmark" tests.

Based on feedback from our customers the most common SLAs are 2 second and 5
second response times. Our goal was to determine how many users WebLogic Portal
could support across various configurations with those SLAs. If your given SLA is
higher, then the number of supported users will also be higher, although estimating
that number would be difficult to do without actually running additional tests.

For Capacity Planning tests the think-time is also meant to mimic real-world
production systems being accessed by so-called "expert users." This should be
considered a very high workload for the system and in many other configurations the
request times by the end users will not be "expert" like. The think-time for these tests
was randomized at 5 seconds +/- 25% (between 3.75 and 6.25 seconds.) Whereas a
non-export like system might state that the think-time is closer to 30 seconds averaged
across all users. The think-time for the system has a dramatic impact on the overall
capacity of the Portal. A higher think-time will allow many more users on the system.
You can see in the "Benchmark" configuration there was only 10 users per CPU
required to saturate the system, but with think-time it could take hundreds if not
thousands of users per CPU to have the same impact.

The workload for Capacity Planning tests is vastly different than that of the above
"Benchmark" tests. Because the number of users required to meet the minimum SLAs
is much higher (due to think-time) the duration of the tests must be extended. The
number of users for each configuration was ramped-up over the course of one hour
and for each configuration a different number of users was added at a constant rate
every 30 seconds. We chose one hour because the system responded better and thus
supported more users than with shorter ramp-up schedules. A high number of users
was added to the system until they were all running at roughly the one hour mark.

This test established how many concurrent users the test portal could support with a
given response time. Goal response times of two seconds and five seconds were used.

Table 4 Solaris Benchmarks - Throughput in Pages Per Second

Portal Type Portal Size 4 CPUs 8 CPUs

JSP Very Small 167 323

JSP Small 125 245

JSP Very Large 107 215

JSR 168 Very Small 114 230

JSR 168 Small 84 169

JSR 168 Very Large 77 152

Page Flow Very Small 112 214

Page Flow Small 56 106

Page Flow Very Large 54 101

15

The number of concurrent users listed in the table represent the maximum number of
running concurrent users under 2 or 5 seconds. This test used the HP Linux
configuration, see Section 3.2, "HP Linux Hardware and Server Configurations". Each
server has two CPUs and the data is presented in the table by CPU count.

This section reports the following results shown in Table 5 and Table 6:

Table 5 Concurrent User Results - Number of Users Per Service Level Agreement (2
seconds)

Portal Type Portal Size JVM 4 CPUs 8 CPUs

JSP Very Small Jrockit 10474 17906

JSP Very Small Hotspot 7080 14959

JSP Small Jrockit 6249 11576

JSP Small Hotspot 4440 8040

JSP Very Large Jrockit 5474 10240

JSP Very Large Hotspot 3700 8519

JSR168 Very Small Jrockit 8001 15811

JSR168 Very Small Hotspot 6124 14110

JSR168 Small Jrockit 5032 10393

JSR168 Small Hotspot 3058 9160

JSR168 Very Large Jrockit 4939 9441

JSR168 Very Large Hotspot 3080 8155

Page Flow Very Small Jrockit 3220 4707

Page Flow Very Small Hotspot 1918 4296

Page Flow Small Jrockit 765 1128

Page Flow Small Hotspot 532 1420

Page Flow Very Large Jrockit 692 1455

Page Flow Very Large Hotspot 452 1400

Table 6 Concurrent User Results - Number of Users Per Service Level Agreement (5
seconds)

Portal Type Portal Size JVM 4 CPUs 8 CPUs

JSP Very Small Jrockit 12869 23048

JSP Very Small Hotspot 9600 25230

JSP Small Jrockit 7299 14145

JSP Small Hotspot 7530 13160

JSP Very Large Jrockit 6493 12691

JSP Very Large Hotspot 5149 13555

JSR168 Very Small Jrockit 10647 20847

JSR168 Very Small Hotspot 9064 20163

JSR168 Small Jrockit 6072 12716

16

3.6.1 NOTE RE: PageFlow Portlet Results
PageFlow portlets can have additional memory requirements which may affect
performance. This is documented in more detail in "Tuning for PageFlow Portlets" in
Oracle Fusion Middleware Performance Tuning Guide for Oracle WebLogic Portal and in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal. The
numbers in this section are subject to these limitations.

3.7 WSRP Benchmark Results
WSRP Benchmark tests are designed to show the maximum throughput of a federated
system under different conditions. The number of portlets in the portal, caching, as
well as the JVM are all varied over during these tests.

For each configuration the goal is to saturate the infrastructure to achieve maximum
throughput. The WebLogic Portal servers reach between 85 and 95 percent CPU
utilization which is the optimal range for maximum throughput. The number of
producers is fixed for these tests at two. As additional managed servers are added to
the consumer cluster, the producers are not able to keep in step, and eventually
become the system bottleneck. The CPUs of the producer clusters increase beyond the
optimal range and affect the overall performance of the consumer cluster. In the case
of these tests, the optimal configuration is two producer machines to three managed
servers in the consumer cluster.

To achieve maximum throughput, zero seconds of "think-time" is used, which is to say
that the time between a response from the server and the subsequent request is zero
seconds. With this type of workload it is very easy to saturate the server and achieve
maximum throughput in a short period of time with relatively few users. For these
tests a ratio of 50 virtual users (VUsers in LoadRunner) are used per CPU to produce
maximum load.

These users are "ramped-up" (added to the system) over 40 minutes followed by a
steady-state (where no additional users were added but the existing users continued to
access the system) that lasts an additional 20 minutes.

There are a myriad of configuration parameters on various JVMs. Each of these can
have a specific effect on the overall performance of an application. For JRockit JVM
and Sun's HotSpot JVM we run with the following JVM parameters:

■ JRockit: -Xms2048m -Xmx2048m -Xgc:parallel

JSR168 Small Hotspot 5040 13040

JSR168 Very Large Jrockit 5959 11610

JSR168 Very Large Hotspot 4860 11515

Page Flow Very Small Jrockit 3360 5142

Page Flow Very Small Hotspot 2938 6048

Page Flow Small Jrockit 859 1262

Page Flow Small Hotspot 556 1622

Page Flow Very Large Jrockit 747 1718

Page Flow Very Large Hotspot 512 1630

Table 6 (Cont.) Concurrent User Results - Number of Users Per Service Level
Agreement (5 seconds)

Portal Type Portal Size JVM 4 CPUs 8 CPUs

17

■ HotSpot: -Xms2048m -Xmx2048m -XX:MaxPermSize=128m

For information on performance tuning WSRP application see "Tuning for WSRP" in
the Oracle Fusion Middleware Performance Tuning Guide for Oracle WebLogic Portal.

Test results are summarized in Table 7:

This data is represented graphically in Figure 2. The measured throughput data is
represented by the vertical bars, one for each unique configuration. Across the X-axis,
the data is partitioned according to the configuration that was run, The lowest set of
numbers (8, 16, 32) corresponds to the left-most block "PORTAL_SIZE" - this is the
number of portlets in the test configuration. The middle variable in the configuration
is related to whether of not caching is on. This corresponds to the second column on
the chart "CACHE". The upper variable on the graph corresponds to the "JAVA_
VENDOR" column on the chart, and is set to either Oracle (Jrockit), or Sun (Hotspot).
The data is further divided into 2 bars representing a "CLUSTER_SIZE" of either 2
Node (4 CPU) or 3 Node (6 CPU). At the very bottom of the graph the raw numbers
are given for each configuration.

Table 7 WSRP - Throughput in Pages Per Second

Number of
Portlets Caching JVM 4 CPUs 6 CPUs

8 OFF Jrockit 820 1229

8 OFF Hotspot 752 1201

8 ON Jrockit 836 1217

8 ON Hotspot 810 1189

16 OFF Jrockit 326 640

16 OFF Hotspot 364 621

16 ON Jrockit 454 597

16 ON Hotspot 411 610

32 OFF Jrockit 240 304

32 OFF Hotspot 250 346

32 ON Jrockit 215 271

32 ON Hotspot 252 341

18

Figure 2 Graphical View of WSRP Benchmark Data

3.8 Content Management Benchmark Results
Content Management Benchmark tests are designed to show the effects that different
types of load have on the Content Management API and infrastructure. These are
"Benchmark" style tests that seek to load the system up to maximum capacity and test
under various configurations. Where as other test results in this document use a
throughput calculation to determine performance statistics, the content tests use
response time as a measure. The response time is the amount of time that it takes for a
single request from the client to be processed by the server and the response handed
back to the client. Other tests use rendered HTML as part of the performance measure.
Since the content tests are primarily for driving native APIs (rather than rendering
HTML) the measure isn't on how much HTML can be rendered, but rather, how fast
the API responds.

Content Management Benchmark tests run on a single machine in a standalone,
non-clustered configuration. While the database schema for content can be located in
any location, for these tests, the content schema was colocated with the WebLogic
Portal schema.

These tests do not follow the LoadRunner ramp-up/duration model that the rest of the
tests in this document follow. Instead, these tests have all users running concurrently
from the start of the test, and they repeat API requests for a fixed number of iterations.
These iterations roughly correspond to the number of nodes in the database. The
duration of a test is controlled by periodically flushing all the caches when all content
from the database has been viewed once, and then repeating the cycle. In all cases,
zero "think time" seconds is used between requests. This creates the maximum amount
of load on the server in the shortest period of time.

All Content tests were run with the JRockit JVM.

For information on improving Content Management performance, see "Tuning for
Content Management" in the Oracle Fusion Middleware Performance Tuning Guide for
Oracle WebLogic Portal.

19

3.8.1 Content Creation Results
These tests measure the response time required to create a node within the content
management system, via the content API. These tests include numbers for importing
binary data into a binary property. This binary data is located in a file inside the
webapp. The first time it is requested, it is loaded into a binary object in memory and
then read out of memory for each successive request.

Two different types of content were used, simple and complex. These are defined in
the section: Section 3.1.3, "Content Management Application". Test results are
summarized in Table 8:

3.8.2 Content Read Results
These tests are designed to measure how much time it takes to retrieve a random node
from the content repository. Each test uses one of the following methods to retrieve
random nodes from the content repository:

■ By node "ID" (calling INodeManager.getNodeByUUID(ContentContext, ID).

■ By node "PATH" (calling INodeManager.getNode(ContentContext, String).

Each node is retrieved only once to make sure that caching is defeated.

Two different types of content were used, simple and complex. These are defined in
the section: Section 3.1.3, "Content Management Application".

Test results are summarized in Table 9:

Table 8 Content Creation Results: Average Response Time (Milliseconds)

Nodes Users Binary Size (KB)

Simple: Average
Response Time
(Milliseconds)

Complex:
Average
Response Time
(Milliseconds)

10000 1 0 13 43

10000 1 10 42 108

10000 10 0 44 381

10000 10 10 254 766

100000 1 0 13 52

100000 1 10 48 119

100000 10 0 74 629

100000 10 10 346 987

Table 9 Content Read Results: Average Response Time (Milliseconds)

Users Read Method

Simple: Average
Response Time
(Milliseconds)

Complex: Average
Response Time
(Milliseconds)

10 ID 5 5

10 PATH 121 116

100 ID 25 26

100 PATH 1179 1180

20

3.8.3 Content Pagination Results
These tests are used to determine how different pagination methods affect
performance. The tests vary over different levels of concurrency and pagination batch
size (the number of content nodes returned per page). These tests replicate how a "real
world" application might read data from the repository and then display it with
pagination. These tests compare the following pagination methods available in the
Content API:

■ IPagedList (referred to as "LIST").

■ ICMPagedResult (referred to as "RESULT").

Two different types of content were used, simple and complex. These are defined in
the section: Section 3.1.3, "Content Management Application".

Test results are summarized in Table 10:

3.8.4 Content Security Results
Content Security tests are designed to measure overhead implicit in the security
mechanisms in the Content Management System. These tests are run with a user who
does not have administrator permissions and who views paginated content.
Depending on the test configuration, different overall percentages of content
repository nodes will be visible to the user. This is managed via node entitlement, and
varied over at 50% and 100% node entitlement. The Section 3.8.3, "Content Pagination
Results" demonstrate that increasing the pagination batch size will lessen the average

Table 10 Content Pagination Results: Average Response Time (Milliseconds)

Nodes Users
Pagination
Method

Pagination
Batch Size

Simple:
Average
Response
Time
(Milliseconds
)

Complex:
Average
Response
Time
(Milliseconds
)

1000 1 LIST 10 397 528

1000 1 LIST 100 361 481

1000 1 RESULT 10 197 259

1000 1 RESULT 100 203 267

1000 10 LIST 10 701 889

1000 10 LIST 100 1343 2182

1000 10 RESULT 10 244 310

1000 10 RESULT 100 795 1013

5000 1 LIST 10 1991 266

5000 1 LIST 100 1958 2621

5000 1 RESULT 10 1003 1332

5000 1 RESULT 100 1021 1345

5000 10 LIST 10 4072 7595

5000 10 LIST 100 3350 6111

5000 10 RESULT 10 2064 3585

5000 10 RESULT 100 2750 4570

21

response time slightly. A ten-fold increase in batch size translates to a small reduction
in the average response time. These tests take that into account, and fix the pagination
batch size at 100.

Two different types of content were used, simple and complex. These are defined in
the section: Section 3.1.3, "Content Management Application".

Test results are summarized in Table 11:

3.8.5 Content Concurrent Read/Write Results
Content Concurrent tests measure the impact of multiple users concurrently creating
and reading data from the content repository. These tests are modelled on a realistic
use case of the Content Management System. The tests are run against a repository
that already contains 100,000 nodes. The tests then add an additional 5000 or 10000
nodes while simultaneously reading nodes out of the database. The users that are
performing the read operations do so by calling into the content API method:
INodeManager.getNodeByUUID(ContentContext, ID).

Two different types of content were used, simple and complex. These are defined in
the section: Section 3.1.3, "Content Management Application".

Results are summarized in Table 12 and Table 13:

Table 11 Content Security Results: Average Response Time (Milliseconds)

Nodes % Entitled
Pagination
Method

Simple: Average
Response Time
(Milliseconds)

Complex:
Average
Response Time
(Milliseconds)

1000 50 LIST 304 390

1000 50 RESULT 303 389

1000 100 LIST 395 514

1000 100 RESULT 228 296

5000 50 LIST 2411 3050

5000 50 RESULT 1426 1767

5000 100 LIST 2496 3164

5000 100 RESULT 1311 1657

Table 12 Content Concurrent Read/Write Results: Average Create Response Time
(Milliseconds)

Nodes Create Users Read Users

Simple: Average
Create
Response Time
(Milliseconds)

Complex:
Average Create
Response Time
(Milliseconds)

25000 5 10 122 356

25000 5 15 154 394

50000 10 10 175 507

50000 10 15 203 505

22

4 Other Resources
Remember that WebLogic Portal uses many components from WebLogic Platform. See
the following documentation for more information about tuning WebLogic Portal.

■ "Designing Portals for Optimal Performance" in Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal

■ Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

■ "Capacity Planning" in Oracle Fusion Middleware Performance and Tuning for Oracle
WebLogic Server.

■ JRockit Diagnostics Guide at
http://download.oracle.com/docs/cd/E13188_
01/jrockit/geninfo/diagnos/index.html

■ Oracle Technology Network Web Site

5 Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Table 13 Content Concurrent Read/Write Results: Average Read Response Time
(Milliseconds)

Nodes Create Users Read Users

Simple: Average
Read Response
Time
(Milliseconds)

Complex:
Average Read
Response Time
(Milliseconds)

25000 5 10 37 65

25000 5 15 51 91

50000 10 10 51 87

50000 10 15 64 116

23

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Oracle Fusion Middleware Capacity Planning Guide for Oracle WebLogic Portal, 10g Release 3 (10.3.2)
E14228-01

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications,
then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

24

	1 Introduction
	2 Capacity Planning Factors to Consider
	2.1 Performance Testing Suggestions
	2.1.1 Recommendation

	2.2 Hardware Configuration and Performance Requirements
	2.2.1 Recommendation

	2.3 Clustered Configurations
	2.3.1 Recommendation

	2.4 Simulated Workload
	2.4.1 Recommendation

	2.5 Concurrent Sessions
	2.6 Tuning WebLogic Server
	2.6.1 Recommendation

	2.7 Application Design
	2.7.1 Recommendation

	2.8 SSL Connections and Performance
	2.8.1 Recommendation

	2.9 WebLogic Server Process Load
	2.9.1 Recommendation

	2.10 Database Server Capacity
	2.10.1 Recommendation

	2.11 Network Load
	2.11.1 Recommendation

	2.12 Selecting Your JVM
	2.12.1 Recommendation

	3 Performance Results
	3.1 Test Applications
	3.1.1 Portal Framework Application
	3.1.2 WSRP Application
	3.1.3 Content Management Application

	3.2 HP Linux Hardware and Server Configurations
	3.3 Sun Solaris Hardware and Server Configurations
	3.4 Comparing Current Results Against Previous Releases
	3.5 Portal Framework Benchmark Results
	3.5.1 HP Linux Results
	3.5.2 Sun Solaris Results

	3.6 Portal Framework Concurrent User Results
	3.6.1 NOTE RE: PageFlow Portlet Results

	3.7 WSRP Benchmark Results
	3.8 Content Management Benchmark Results
	3.8.1 Content Creation Results
	3.8.2 Content Read Results
	3.8.3 Content Pagination Results
	3.8.4 Content Security Results
	3.8.5 Content Concurrent Read/Write Results

	4 Other Resources
	5 Documentation Accessibility

