ORACLE

Oracle® Fusion Middleware

Federated Portals Guide for Oracle WebLogic Portal
10g Release 3 (10.3.2)

E14235-02

February 2010

Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal, 10g Release 3 (10.3.2)
E14235-02

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: William Witman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PPEIACE ...ttt Xix
AUAIEIICE ...ttt ettt ettt et e e te et e e teessesaaesseessesbeessesbeessesbeessesseessesssensesrsenbesreensenreans Xix
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e Xix
Related DOCUIMENTESccveviirieiiieieieietetetet et ee et estestess et e ste st e saesseseesaesaasassessessessessessessessassessnsessensenses XX
CONVENTIONS ..vtieivieiieiieesteeiteeste et esteessteesteessteeseesstesssaeassaesseesssaesseenssessseesseesssesnseesssessseenssesssessssesssenssesans XX

Partl Architecture

1 Introduction
1.1 Support for WSRP 2.0 ..ot 1-1
1.2 Federation in the Portal Life Cycle.......cccooiiiiiiiiiiiiiiiccccceeeeceas 1-2
1.2.1 ATCRITECHUT .ottt ettt ettt a e st eseeseeseeseesesbessessessessesseseesenns 1-2
1.2.2 DeVEIOPIENt ..ottt 1-2
1.2.3 STAGINE ..t 1-3
1.2.4 PTOAUCHON 1.vvevievieiieeeiietieieee ettt ettt ettt e s s e st eseeseeseesess e sessassessessessessasensenns 1-3
1.3 Getting Started..........oooouii e 1-3
1.3.1 PrerequiSitesoooiiiiiiiiiiiiccc s 1-3
1.3.2 Related GUIAESooveeieiieiiciisiiicieeitet ettt ettt seetestesae b e besessessesseseeseesansenns 1-3
1.3.3 UsINg this GUIAEc.cuviiieiiiiicic s 1-4

2 What are Federated Portals?

2.1 OVEIVIEW ..tiiiieciieeite et e et e et ertte e te e bt e sabeesteessteesseasssesasaasssaesseesssaanseesseanseeasseesseesssessseessenssennseeans 2-1
2.2 Basic TermMINOLOZYcccccvuiiiiiiiiiiiiiiiciiiic s 2-2
2.3 Traditional Portals: Before Federationcccceceveerieeieiinieieceee et 2-2
2.4 Federated Portals: A New Paradig@mccccoouoiiiiiiiiiiiicc s 2-3
2.5 Advantages of Federation ... 2-4
2.5.1 OVEIVIEW .ttt ettt ettt et et este et e te et e s s e est e seessesseesaesseessessaessassaessanssassenssansesssansenses 2-4
252 Reducing the Cost of Portal Deployment.............ccooooiiiiiiiiiiiieiiicecc 2-4
2.5.3 Plug and Play SOAcccooiiiiiiicccc e 2-5
2.54 Increasing the Flexibility of Release Schedules............cccoooiiiiiiiiiinii, 2-5
255 Reducing the Cost of Testing Your Portal...........ccccoooiiiiiiiiiic, 2-5
2.5.6 Decreasing Dependencies Among Software Components.............ccococevevrecrereincnnnnnn. 2-5
2.5.7 Promoting Reuse of Portal Components.............occueeiiiiiiiiiiciciicc 2-5
2.5.8 INteroperability ... 2-5

3 Federated Portal Architecture

3.1 Key Actors in a Federated Portal..........cccoooiiiii e 3-1
3.2 Federating Books and Pages............ccooiiiiiiiininiiiiiii s 3-2
3.3 WHhat is WSRP?ooiiiiicict e 3-2
3.4 Understanding Producers and CONSUMETS...........ccceueiiiiiieieiiceieicicee e 3-3
3.4.1 OVEIVIEW ..ttt 3-3
3.4.2 WebLogic Portal ProdUCETSc.coeieiiiiiciicci s 3-4
3.4.2.1 Simple PrOAUCETS.......cuviieiiiece s 3-5
3.4.22 COMPLEX PIOAUCETS ... 3-6
3.4.2.3 Summary of Complex and Simple Producers............c.cccoevvviiiiiiiiiiiiiiceninnn, 3-6
3.4.3 WebLogic Portal CONSUMETS............c.oiiuiieiiiiieiicci e 3-7
3.4.4 Cookie Handling........cccccueiriiiiiiiiiiiiccreiceeceeeeee e 3-8
3.5 Life Cycle of a Remote Portlet ..o 3-8
3.5.1 Rendering a Remote Portlet ..o 3-9
3.5.11 Initial Steps on the CONSUMET.........c.ccceueuiiiiiiiiriiiciereereee s 3-10
3.5.1.2 Initial Steps on the Producer ... 3-11
3.5.1.3 Final Steps on the CONSUMETc..c.ooiiiiiiiie e 3-12
3.5.2 Interacting With a Remote Portlet.............coooiiiiiiiiiiiiiiccccceceeeceeeeeees 3-12
3.5.2.1 Initial Steps on the CONSUMET..........ccoviviiiiiiiiiiiiciiccs 3-13
3.5.2.2 Initial Steps on the Producer.............cooiiiiii 3-13
3.5.2.3 Final ConSUMET SEPSc.cueveuimiiiuiiiiimiieieieicieieieieereeiete et eaenees 3-14
3.5.3 Rendering Versus INteraction ... 3-14
3.5.4 Interportlet Communication with Events ... 3-15
3.5.5 Retrieving Render Dependencies...........cccccucucucuciciiuiieieiciiieicneieiceeeieeeeeneneeenenenenenes 3-16
3.6 Summary of Federated Portal Architecture ... 3-16
3.7 For More Technical Details.........cccccooiiiiiiiiiiiiiiiiiiiis 3-18

Part Il Development

4 Creating Remote Portlets, Pages, and Books

4.1 INEFOAUCHION ... 4-1
4.2 What Types of Portlets Can Be Remote? ... 4-1
4.3 Creating a Remote Portlet ... 4-2
4.3.1 OVEIVIBW ...ttt 4-2
43.2 Setting Up the EXamplec.ccoiiiiiiiiiiiiiccceecceeeeeeee e 4-3
4.3.3 Locating and Consuming a Portlet............ooooiiiii 4-4
4.3.4 Viewing the Portlet.......cooiiiiiiiiiiice 4-8
4.3.5 SUIMIMATY ..t 4-10
4.4 Creating Remote Pages and BoOKS.............cooiiiiii 4-10
4.41 Basic Procedure..........ccccuiiiiiiiiiiiiiiiiiicc s 4-11

5 Configuring Remote Portlets

5.1 Applying a Look and Feel to a Remote Portlet............ccoooooiiiiiiiiiic 5-1
5.2 Modifying Modes and States in a Remote Portlet............cccococeiiiiiiciiiiiiceccceeenes 5-2
5.2.1 What are Modes and States? ... 5-2
5.2.2 Modes and States in Remote Portlets............cccccceiiiiiiiiiiiiiiiccccccceeae 5-2

5.2.3 Changing Modes and States in Remote Portlets ...
5.3 Handling Errors in Remote Portlets...........cooooiie
5.3.1 Configuring an Error Page in Oracle Enterprise Pack for Eclipse.........c.cccccevuvvrunennnee.
5.3.2 Configuring an Error Page in the .portlet File.........c.cccoooiiiiii,
5.4 Setting Preferences on a Remote Portlet.............oooooiie
5.4.1 What is a Portlet Preference? ...
5.4.2 Portlet Preferences and Remote Portlets ...,
5.4.21 Viewing and Modifying Preferences............ccccooiiiiiiiiiiiiciiccccc
5422 Working with Preferences Programaticallyccccooioiiiiiiiiiiiicicnenns
5.4.2.3 Additional Usage Notes and Restrictions............coccueviiiirieiiiiciiiiiicccc
5.4.3 Managing Portlet Instances through Registration. ..o,
5.5 Using Backing Files with Remote POTtIEtsccoovoiiiiiiiiiciicicccccccceceneeieenes
5.6 Setting a Timeout Value on a Remote Portlet............oooiiii,
5.6.1 OVEIVIEW ...ttt
5.6.2 Setting Default Timeout Values.........ccccociviiiiiiiiiiicecceeeeeeeeeneeenenenenes
5.6.3 Setting Timeouts for Individual Remote Portletsccccccoooriiiiiiii
5.7 Modifying WSRP Markup and MeSSagesccocueueiiiiieieiniiecicieisicie s
5.8 Remote Portlet PrOPerties.........ooiiiiiiiiiiiccccieeiceeeeee e nenees
5.8.1 Proxy Portlet Properties. ...
5.8.2 Other Portlet Properties............coocouoiiiieiiiiiieecccc e

6 Offering Books, Pages, and Portlets to Consumers

6.1 INErOAUCHON ..o
6.2 Offering Portlets on @ PrOAUCETccccociuiiiiiiriiiciiiirccreece e
6.3 Offering Books and Pages on a Producerc.ccuoiiiieiiiiiciciicccces
6.3.1 Setting Up the Exampleccoouoioiiiii
6.3.2 Creating a Remoteable Page (0r BOOK)c.ccccciiuiiiiiiiiiiiiccccccccccecceeeeas
6.3.3 SUMIMNATY ..ottt
6.4 Rules for Creating Remoteable Books and Pages...........cccccouoiiiieiiiniciiiicccce

7 Interportlet Communication with Remote Portlets

71 INEFOAUCHION .ttt
7.2 Firing and Handling a Minimize EVent...........c.cccccccccoiiiiiiiiiiiiicccceeceeeeeeeeenas
7.21 Setting Up Your ENvVironmentcoceuoviiiiioiiiiicicecceec e
722 Creating the Portlets on the Producer ...
7.2.2.1 Create the JSP Files and Portlets........cccocveieiririninenesierieeeieieeeeeee e ssessessessennens
7.2.2.2 Create the Backing Filecooooiiiiiiiii e,
7223 Attach the Backing File ...
7224 Add the Event Handler to bPortletc.ccccoeiiiiiiiiicicccececreeeceae
7.2.2.5 Test the APPLicationcccceviiiiiiiiiiiiiii s
7226 SUIMIMATY ..vcviiicc s
7.2.3 Creating the Consumer POTIEtScccceiiiiiiiiiiiicceccecceeee s
7.2.31 Setting Up the EXeTICISeccoviiuriiiiiii
7.2.32 Creating the Remote Portlet.........ccccccooviiiiiiiiiiiiiinc
7.2.3.3 SUMMATY oo
7.2.4 Testing the Application..........cccceieiiiiiiiniiiiiii s

5-6

7.2.41
7.24.2
7.3
7.4
7.41
7.4.2
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7

Build the Portalccoiviiiiiiiiiiiciicic s 7-16

Test the Portal..........cccoviiiiiiiiiiis 7-17

Inside the Remote Portlet File ..o 7-17
Data Transfer with Custom EVents ... 7-18
Retrieving the Event on the Producer............ccoooi 7-18
Firing the Event in the CONSUMETc.ccccccuiiiiiiiiiiiiiiiicecececceeeeeeeeeeeee s 7-21
Event Payloads Over WSRPcccoiiiiiicc s 7-21
OVEIVIEW ..ttt 7-22
How WLP Packages Event Payloads in XML Format.........cccccocevvvvnnnnnnncncncnnee 7-22
How WLP Converts an Event Payload to a Java Objectcccccovorriiiiiiiiciiine 7-22
Using Shared Parameters...........cococuouiiriiiiiiiicicci s 7-23
Adding EVent ALIASES.......c.ccccueuiiiiiiiiiiiiicicieeeeceee s 7-23

8 Configuring a WebLogic Server Producer

8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.5

INETOAUCHION 1. s 8-1
Using WSRP in a Basic WebLogic Server Domain............ccooeueieiiineiniinceecciees 8-2
Create a WebLogic Server DOMainc.occeieiiiicieieiiceccecc e 8-2
Extend the WebLogic Server Domain.........c.ccccccuiuiiiieiiciceeeeeeecieeieeeeneeeeeeas 8-3
Configuring a Web Project ... 8-6
Create @ Web Project ... 8-6
Testing the Producer Configurationcccccccceiiiiiieiieeceecceeeeeeee e 8-7
Create a Server on the Producer ..., 8-7
Test for a Producer WSDL........ccccccoviiiininiiiii s 8-8
Create a Portlet in the Producer Web Application ... 8-8
Consuming a Producer Portlet ..o 8-8
SUMIMATY 1.ttt 8-9
Disabling @ WSRP PrOAUCETc.ccccuiuiuiiiiiiiiiiiciicieieieiccieieieeee et 8-9

9 The Interceptor Framework

vi

9.1
9.2
9.3
9.4
9.5
9.5.1
9.5.2
9.5.3
9.54
9.6
9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.8
9.8.1

INETOAUCHON 1.ttt ettt ettt esa e b e e esaeseeseesassesbesbessessensesaasenseasens 9-1
USE CASES..ueuvereeeiereeiestietesteetesteestesseestesseessesseessessaassasseessasssassaasaasseaseassessaessesssessesssesansenssensennes 9-2
BaSiC STEPS ..o s 9-3
Designing INterCePLOrS......cviiviiiiiiiiriiici s 9-3
Interceptor INterfaces...........covviiiiiiiiieiiiiiicc 9-4
ConteXt ODJECEScucuiiiiiiiiiicicicc s 9-4
INEEITACES .uvevtenieiieieeeeeteee ettt ettt ettt e b e ettt b s b esb et s e st e st esaeseese et e bessessensesseneeseaseesenns 9-5
INterface MEtROASccvieieiiiceeeceee ettt beess e seenaesraennas 9-6
Interceptor Method Return Values ... 9-7
Configuring INTETCEPLOTSc.cueuiuiiiiiiiiiieieiiiciceeee e 9-8
Order of Method EXECULIONc..oouiiiiiieiiriiciesieciee ettt sre e sae e e s ssenes 9-9
OVBIVIEW ...ttt eiteetteete et e e te e teesteebeestbe e st e esbe e seeasbaessaasssaanssessseansaassseassaesssaesseessseansennseeans 9-9
Basic Order Of Execution in @ GIOUPc.ccceuemeueuiiimimimcieieicicieeceeeieeeieeneeienenenenenennes 9-9
How Return Status Affects Execution Order.........c.ccoevieiiiininininininenieneneececneee 9-10
Instance Creation and REUSE........ccooeciiieiiiieeeeceeeee ettt sve e 9-11
Example Chainsc.cccciiiiiiiiiiiicieeee e 9-11
Implementing an Error-Handling Interceptor.........c.oooeieiiiiiiiiiic 9-13
Modifying an Error MeSSageccccovueueiiiiiiiiiciiiiiiiiiciiciciciccseeeesenees 9-13

10

11

12

9.8.2 Including an Exror JSP Page........cccouoireieiiiicieiecici e 9-14

Federating User Profiles

10,1 INErOdUCHON ..o 10-1
10.1.1 What are User Profiles?...........ccocovviiiiiiiiiiiiiiinnecs 10-1
10.1.2 User Profiles in Federated Portals..........ccccccooiiiiiiiiiniiiiiiccccnes 10-1
10.1.3 Platform for Privacy Preferences (P3P) ... 10-2
10.2 When to Use this Feature...........cccooiiiiiiiiiiiiiis 10-3
10.3 Configuring the PrOAUCET ... 10-3
10.3.1 Configuring Java Portlets ... 10-3
10.3.1.1 Configuring the Deployment Descriptor (portlet.xml).........ccccocevviiiiviinnnnnn. 10-3
10.3.1.2 Retrieving User Information in a Java Portlet............ccocoeiiiviinnnnnnrnnes 10-4
10.3.1.3 Creating Default User Property Sets..........cccooeeviiiiniiiiiiiiiicce, 10-4
10.3.1.4 Mapping User Properties ... 10-5
10.3.2 Configuring Non-Java Portlets ... 10-5
10.3.2.1 Configuring the Deployment Descriptor Filec.cocoooeiiiiiiiiiiiii, 10-5
10.3.2.2 Handling User Property EXtensions...........ccccoeouoiirieieiiiciciiicccecc e 10-7
10.3.2.3 Mapping User Information on the Consumer............cccccceeueuiueneeiienncccnnenes 10-8
10.4 Configuring the CONSUMETcocooviiiiiiii e 10-8
10.4.1 Using a Mapping File ... 10-8
10.4.2 Using @ Mapping Class ...t seeeseeeseseeeaeeees 10-9
10.4.2.1 Writing the Mapping Classccocueviiiieiiiiicic e 10-10
10.4.2.2 Configuring the Mapping Class........ccccooiriieiiiriciecicccc e 10-11
10.4.3 Mapping CONSLANEScovvviviiiiiiiiiiii s 10-11
10.5 P3P EXAMPIES .ottt 10-12
10.5.1 Example: portlet.xml file with P3P Attributes...........cccooruiiiiiiiiiiiie 10-12
10.5.2 Example: Retrieving P3P User Information in a Java Portlet............ccccccevvrnnenne. 10-13
10.5.3 Example: Retrieving User Information in Other Portletsccccceviiviiiininnnn. 10-13
Consumer Entitlement

11,1 INErOdUCHON ..o s 11-1
11.2 Configuring @ PrOAUCETccoiiiiiiiiiiiiiccccc s 11-2
11.2.1 Creating an Application Property Set...........ccccovviiiininiiiniiiicce, 11-2
11.2.2 Editing the Producer Configuration File...........ccccooiiiiiiiiiiiiie 11-3
11.2.3 Defining Consumer Entitlements............ccccccceeiiiiiiiiiiiiiiiiiiicccccecceees 11-4
11.3 Registering a CONSUIMETcccouviiiiiiiiiiiiiii e 11-6
11.4 Modifying Registration Properties..........cccoooevoiiirioiicniiiicec 11-7
Transferring Custom Data

12.1 What is Custom Data Transfer? ... 12-1
12.2 Custom Data Transfer INterfacescccoccvveeueirinnieiinniieitrneeceneeeee e 12-2
12.3 Performing Custom Data Transfer ... 12-3
12.3.1 Custom Data Transfer with a Complex Producercccccovvviviiniiininininnnnn, 12-3
12.3.1.1 Example OVEIVIEWccccuiuiiiiiiiiiiieiiiiici s 12-3
12.3.1.2 Setting Up the EXxamplecccccoiiiiiiiiiiiccececececceeeeeeeeeeeeenennes 12-3
12.3.1.3 Creating the Producer JSP and Portlet ... 12-4

vii

13

14

viii

12.3.1.4 Federating zipTest.portlet to the Consumer..........c.cccccoeveviniciiniiiiinc 12-6

12.3.1.5 Creating a Backing Fileccoooiiiiiii e 12-11
12.3.1.6 Testing the Consumer Applicationcccceuvueeeieicirinviniirrrcrcre e 12-14
12.3.2 Custom Data Transfer in a Simple Producer ..o 12-17
12.4 Transferring XML Data.......ccccoioiiiiiiiiiec e 12-17
12.5 Deploying Your Own Interface Implementationsc.cceeeecuiiiicciiinccccneeenees 12-18
12.5.1 General GUIdELINEeSccoeveiiiiiiiiiiiiii 12-18
12.5.2 Implementation RUles............c.oooiiiiiiii 12-18

WSRP Interoperability With WebCenter Framework
13.1 Consuming WLP Portlets in WebCenter Framework and Oracle Portal Applications. 13-1

13.1.1 Understanding the Cause of User Authentication Errorsccccoecvciccccccnnen 13-2
13.1.2 Preventing User Authentication EITOrs.........ccooviuiiiiiiiiciiiiice 13-3
13.2 Consuming WebCenter Framework Portlets in WebLogic Portal...........c.ccccoceveininae. 13-3
13.2.1 Avoiding Cookie COLLSIONSc.c.cueueuemeueuiiricieieieieieieicieeeee et 13-4
13.2.2 Configuring Portlets That Use ADF Faces Rich Client Components........................ 13-5
13.2.2.1 Using iframe_unwrappedcocouoiriiiiiciecec 13-5
13.2.2.2 Disabling html-amp-entity in WEB-INF/wlp-framework-common-config.xml
.. 13-5
13.2.2.3 Using CSS Styling (Optional)c.ooeeieiiiiiei 13-6
13.2.2.4 Setting a Fixed Height on the Portlet's Contents (Optional)c.ccceeevrvruence. 13-6
13.3 Configuring SECUTILYcooiueiiiiiiieieice e 13-7
13.4 Interoperation of Navigational Parametersc.cccoooeueiiiiiiiiniiiciiiccce 13-7
13.4.1 Configuring the WLP Producerc.cccccciiiiiiiiiiiiicieceecceeeeeeneeevene s 13-7
13.4.2 Configuring the WebCenter Producer.............cooeueieiiiiiiiiicccce 13-8
13.4.3 Consuming the WLP Portlets in WebCenterc.oooioiiiie 13-9
13.4.4 Consuming a WebCenter Portlet that requires Shared Navigational Parameters
With an Initial Value ... 13-9
13.5 Special Considerationsccoceuoiieieiiiiiie e 13-10
13.5.1 Interportlet Communication Considerationscccccccceeeueicicnvncnnnnnerreenes 13-10
13.5.2 Consuming Oracle ADF Faces Rich Client Component Portlets.............ccccoennene 13-12

Other Topics and Best Practices

14.1 Decouple Rendering from Interactionccccooeeueieiioiiiiiiiciccc 14-2
14.2 Avoid Interportlet Dependencies.............ccoiiiiiiiiiiiiiiiiiceeceee s 14-2
14.3 Avoid Portal Layout Dependencies ... 14-3
14.4 Avoid Coupling by URL.......ccooiiiiiii e 14-3
14.5 Avoid Accessing Request Parameters in Rendering Code..........cccccoooiiiiiiiiiiccnnnen. 14-4
14.6 Avoid MOVING PrOAUCETSc.coiimiiiiiiiiiicccccceeeeee e 14-4
14.7 WebLogic Server Producers ... 14-5
14.8 Security for Remote Portlets..........ccooiiiiiiiiiiiiiccs 14-6
14,9 Error Handling ...t 14-6
14.91 On the PrOAUCETcooviiiiiiicc s 14-6
14.9.2 O the CONSUMET ...ttt 14-6
14.9.3 INEEICEPLOTS ...t 14-6
14.10 Portlet Programming Guidelines and Best Practices.........ccccocooirieiiiiiiiiniiic 14-7
14.11 Designing for Performancecccoooiviiiiiiiiiiiiiiicceceeeeeeeee s 14-7

14.111 Performance Guidelines fOr PrOAUCETSc..ovvvuveieeieiieeieceeeee e 14-7

14.11.11 Reorder Authentication Providers..........ccccoviiiiiiiiniiiic, 14-7
14.11.1.2 Enable Attachment SUPPOTt........cccciiiiiiiiiiiccce s 14-8
14.11.1.3 Other Techniques..........cccoueviiiiiiiiiiiic s 14-8
14.11.2 Performance Guidelines for CONSUMETSccccoeuvvviiiiiniiiiiiiiiiis 14-8
14.12 Using Local PrOXY MOde........ccoiiiiiiiiiiiiicccccceeece e 14-8
14121 Why Use Local Proxy Mode?............coioiiiiiicc s 14-9
14.12.2 Deployment Configurationcccooireioiiiniciecce e 14-9
14.12.3 How Local Proxy Mode WOTKScccoviiiiiiinrr e 14-10
14.12.4 When to Use and NOt USecceiuiiiiiiiiiiiiiiiic s 14-10
14.13 Monitoring and LOGZING.........cccuirieiiiiiirieieiecie e 14-11
14.13.1 Using the MOnItor SEIVIEt ..o 14-11
14.13.2 Creating Custom LOZScoeueiiiriciiicie e 14-12
14.14 Managing Delivery of Headers and Cookies to the Browser...........cccccccoevriiiiirnnne. 14-13
14.14 1 Best Practice for Setting Cookies and Headers............cccccoevviiinnviinnnninnenes 14-13
14.14.2 Configuring Client Attribute Preferences on the Producer.........c.c.cccooooeiiininao. 14-14
14.14.3 Handling Cookies that Contain the Producer’s Domain...........ccccoovoiiiiiiinienne. 14-14
14.14.4 URL/Path Rewriting of the Cookie Pathc.ccoeviiinnininiiniiicccee, 14-14
14.14.5 Using Secure COOKIeS ...t 14-14
14.14.6 Managing Security Between Consumer and Producerccccooorriiiiniicnne. 14-14
14.15 Configuring Session COOKIEScoririririririniniiiieccccc e 14-15
14.15.1 Using Different Cookie Names............cccceveiiiiiiiiiicicic 14-15
14.15.2 Using a System Property ... 14-15
14.15.3 BlocKiNg COOKIES......c.cuviiiiiiiciciieee s 14-16
14.16 User Sessions on CWEB Applicationscccoevviiiiiiiiiiiiicccccccceccnes 14-16
14.17 Using Multiple Views with Remote Portletsccocooiiii 14-16
14.18 Handling User Identity Changesc.cccoovrrrnininnniiiiicccccccccccceeceeeenenene 14-17
14.19 Storing Registration Properties ... 14-17
14.191 Why Store Registration Properties?ocooeoiiiiioiineeicceeccc 14-17
14.19.2 Using the Administration CONsole..........cociiiiriniiiiiiiiiicccececeee s 14-18
14.19.3 Using Oracle Enterprise Pack for EClipsecccccocviiiiiiiiiiiii 14-19
14.20 Editing the WSRP WSDL Template File.........ccccoooiiiiiiiiiiiiiiiicicccccce, 14-20
14.21 Configuring a Custom JAX-RPC Handlerccooiiiiiiiiiiiiicicccecccenenens 14-20
14.211 Configuring a Handler on the Consumercooevoiiiiiiiiiec 14-20
14.21.2 Configuring a Handler on the Producercccccoevvivnniininniincnncne 14-21

Part lll Staging

15 Establishing WSRP Security with SAML

15.1 SAML Security Between WebLogic Portal Domains...........cccccoeeueiciiiiicinciiiccniinicne, 15-1
15.1.1 OVEIVIBW ...eeetieieeieeieteete ettt e st et e st et e saeeste s e e te s st ensenseensenseensesseansesseensesseansessesssensannsensenns 15-2
15.1.2 Setting Up the SAML Configuration Example........ccccccoooiiiiiiiiiic 15-2
15.1.3 Configuring the CONSUMETcccciiuiiiiiiiiiiiii s 15-3
15.1.3.1 Generate a Key ... 15-3
15.1.3.2 EXpOrt the Keyc.covvviiiiiiiiiiiiccccc s 15-4
15.1.3.3 Modify the Consumer's Security Realm...........ccccccccciiiiniiiiiiniiiiicce 15-5

16

17

15.1.4 Configuring the Producer ... 15-10

15.1.41 Import the Certificate ..o 15-10
15.1.4.2 Configure the Asserting Party Properties..........ccccccovvvvvvnvnrnnnnnnnccnes 15-12
15.1.5 Testing the Configuration ..o 15-14
15.2 SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions.................... 15-15
15.2.1 SAML Security Between 9.2 or Later Version Consumers and 8.1x Producers 15-16
15.2.1.1 Configuring the CONSUMETccoviiiiiiiiiiiec e 15-16
15.2.1.1.1 Generate a Key ..., 15-17
15.2.1.2 Change the Consumer's Nameccccccouvueriririniiinrnnrenreee s 15-17
15.2.1.3 Modify the Consumer's Security Realm...........ccoooomiiiiiiiiiiiiie, 15-18
15.2.14 Configure the WebLogic Portal 8.1x Producer...........ccccooooiiiiiiiiciciiiiccn, 15-21
15.2.1.41 Import the Certificate..........coceiiiiiieiiiecceeeeeeeee s 15-21
15.2.1.4.2 Test the Configuration...........coovieieiiiciii e 15-21
15.2.1.5 SUMMATY ..ottt 15-22
15.2.2 SAML Security Between 8.1x Consumers and 9.2 or Later Version Producers 15-22
15.2.2.1 Configure the 8.1x CONSUMETcccvoiiviieiiicieie e 15-22
152211 Generate a Key ... 15-22
156.2.2.2 Configure the 9.2 or Later Version Producercccccoovvviiininiinciciccenes 15-24
15.2.2.3 Testing the Configurationccceuvueiieiieiiicic e 15-27
15.3 Using SAML Security with a Name Mappercccccouoiiiiiiiiiiiicccc 15-28
15.3.1 Writing a Name Mapper Classccoorrniiiriniiiieccceeeeecc s 15-28
15.3.1.1 Implementing SAMLCredentialNameMapper on the Consumer 15-28
156.3.1.2 Implementing SAMLIdentity AssertionNameMapper on the Producer 15-30
15.3.2 Deploying the Mapper Classes.........cccocvvviriiiiirirrinirrreseseee s 15-31
15.3.3 Configuring the Mapper Classes...........ccooirueieiiiinieiiiiiciee e 15-31
15.3.3.1 Adding a Mapper Class to the Producer............coooiiiiiiiiice, 15-31
15.3.3.2 Adding a Mapper Class to the CONSUMETccccceuvuvivirrirninrrnccrecnes 15-32
15.4 Allowing Virtual USerIScccoviviviiiiiiininiiiiiiii s 15-34

Configuring User Name Token Security

16.1 Configuring the CONSUMETcccoiiiiiiiiiiiiiiii s 16-1
16.2 Configuring the Producer..........cccccociiiiiiiiiiiiiiiiicc s 16-5
16.2.1 SUIMIMATY .. 16-7

Configuring WSRP Security Between WLP and WebCenter Framework

171 INErOAUCHON ..o s 17-1
17.2 SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal
PrOAUCET ...ovviiiiic s 17-2
17.2.1 Configuring the CONSUMETcccccciiuiiiiiiiiiiiiiiccc s 17-2
17.2.1.1 Generate a Key Pair........ccocoiiiiiiiiiii 17-2
17.21.2 Export the Public Key Certificatecocooueviiiiiiiiiiiicie, 17-3
17.2.2 Configuring the Producercccccciiiiiiiiiiiiiiiiiiccs 17-3
17.2.2.1 Import the Public Key Certificate Into The Producer Domain's Trust Key Store
.. 17-3
17.2.2.2 Modify the WSDL Templates in the Producer Web-App.......cccccovvvvvinnccnnes 17-4
17.2.2.3 Modify the Web Services Policy Configuration in the Producer Web-App ... 17-5
17.2.2.4 Add a New Asserting Party to the SAML Identity Asserter............cccccoovunenee. 17-5

18

17.2.2.5 Register the WebLogic Portal Producer with the WebCenter Consumer 17-6

17.2.2.6 Test the Configuration ... 17-7
17.3 SAML Security Between a WebLogic Portal Consumer and a WebCenter
Framework PrOdUCETccccviiiiiiiiiiiiiiiccccc s 17-8
17.3.1 Register the WebCenter Framework Producer with the WebLogic Portal
CONSUINIET ..ottt 17-8
17.3.2 Add an Authentication Mechanism To Your Portalcccccceeviiiiinnnnnnn 17-8
17.3.3 Configuring the WebLogic Portal Consumer-..............ccoooieiiiinieiiinicceccee 17-8
17.3.3.1 Generate a Key Pair........ccocoiiiiiiiiiiis 17-8
17.3.3.2 Export the Public Key Certificateccooueviiieioiiiiiiiice, 17-9
17.3.3.3 Import the Public Key Certificate Into The Consumer Domain's Trust Key
SEOTE oot 17-9
17.3.3.4 Add a New Policy to the Consumer Web-Appcccccovvvvvinninnnnne 17-10
17.3.3.5 Update the Producer's Security Policy on the Consumer...........c.ccccoooeueieinnce. 17-10
17.3.3.6 Modify the Consumer's SAMLCredentialMapperccccoevervnnninnnencneee 17-11
17.3.3.7 Configure the Consumer's PKI Credential Mapping Provider 17-12
17.3.3.8 Create a New PKI Credential Mapping to the Consumercccceueeeeei. 17-12
17.3.4 Configuring the WebCenter Framework Producerc.cccocoevvvnnninnnnncne. 17-13
17.4 (Optional) Additional Configuration for a WebLogic Portal Consumer....................... 17-13
17.4.1 Register the WebLogic Portal producer with the WebLogic Portal Consumer..... 17-13
17.4.2 Update the Producer's Security Policy on the Consumercccccoeveeiicccnnne. 17-13
17.4.3 Create a New PKI Credential Mapping to the Consumer-............cccoceevvvinininincnnns 17-14
Adding Remote Resources to the Library
18,1 INErOdUCHION ..o 18-1
18.2 Adding a Producer ... e 18-2
18.3 Adding a Remote Portlet to the Portal Librarycccccccoeieiiiiiiiiccrcccceene 18-6
18.4 Adding a Remote Page to the Portal Library.........cccooooiiiiiii 18-9
18.5 Adding a Remote Book to the Portal Libraryccccocooiiiiiiii 18-11

Part IV Production

19

Managing Federated Portals

19.1 Modifying the Consumer Security Configurationccoceveveviiininniniiniinciciiccnn, 19-1
19.1.1 Changing the Web Applicationccccceueiiciiiiiiiiiiiiicceeceecceeeeeeeeeeeeeeees 19-1
19.1.2 Modifying Global Credentialsccoooiiiiiiiiiiiiei 19-1
19.1.3 Modifying Producer Credentials............ccccccoeuiuiiiiiiiiiiiiiniiiiiiiicccccneccees 19-2
19.2 Modifying Producer Registration Properties..........c.cocovoeiriiiniciiniccciiccceceeenenens 19-3

xi

List of Examples

Xii

5-1
5-2
5-3
7-1
7-2
7-3

N
N

|
A OON=2 O

—'-COCOCOCIOCOCOCO\I

Remote Portlet XML File.........ocoooiiiiiiiiiiiiiiiiiii s 5-5
Setting Portlet Preferences in an Action Method ... 5-8
Connection Timeout ElemMents............coociiiiiiiiiiic s 5-10
New JSP Code for bPOTtIetjspccovvvviiiiiiiiiiiiiiiiiiiiciicccs 7-5
Backing File Code for listening java.........cococcueieiiicieieiiicicecc e 7-7
Excerpt from the bPrime.portlet Fileccoooiiii 7-17
Sample Java Portlet Classcoceiiiiiiciice 7-18
Sample Event-Firing Code.........coooiiimiiiiiiic s 7-21
Sample Configuration File...........ccoooiiiiii s 9-9
Example Interceptor Chain Definition...........ccooooiiiiiiiiiii 9-10
ErrorMessageCUuStOMIZETcoueviveiiieiiieiieicie s 9-14
DisplayErrorPage Class ..ottt 9-15
Configuring a WSRP Resource Proxy in web.xmlccccooiiiiiii 9-16
Configuring a Clipper Portlet Resource Proxy in web.xml............ccoooiiiiiiiinns, 9-17
Overriding Base interceptor Methods...........cccooii 9-17
Specifying User Properties in portlet.xml File............ccoooiiiiii 10-3
Retrieving User Information in a Java Portlet ... 10-4
User Attribute Specified in portlet.xmlcccoooiiii 10-4
Default Property Set Applied to All Portlets ... 10-4
Default Property Set Applied to Specific Portletsccoooiiiiiiii 10-5
User AHDULE ..o 10-5
Sample wsrp-producer-config. Xml Filec.cocoooiiiiiiiiiiic 10-5
Retrieving Values in a Portlet...........oooiic 10-7
Retrieving User Profile EXteNSIONS.........cccoiiiiriiiiiiiccc s 10-7
Example wsrp-user-property-config. xml File.........ccccoooiiiiiiiiic 10-8
Example Mapper CIasscooiruioiiieieiecc s 10-10
Mapping User Properties to Constant Valuescccccooreiiiiiciiiccecc 10-11
Specifying User Properties in portlet.xml File.............cccoooiiii 10-12
Retrieving User Information in a Java Portlet ... 10-13
Retrieving P3P Values in a non-Java Portlet..........c.cooo 10-13
Registration EIEMentc.cooiiiiiiiiii 11-4
ISSHIICt K@YWOId ..o 11-4
Code to Get State from the Requestcooriiiiiiiii 12-4
Adding an Instance of SimpleStateHolder...........ccoooouiiiiiiii 12-13
XmlIPayload EXamplecccoviriviiiiiiiiiiiiiiiiiiciinnnc s 12-17
Example oracle-portlet.xml File ..o 13-7
Backing File onInit() Method...........cccccoiiiiiiiiiiiiiiccs 13-10
Element Added to .portlet File.........cccooiiiiiiiiiiiiiiiiicccces 13-10
Interceptor to Force Reload of a Parent Frame...........c.cccooveiiiiiniicccc 13-11
<service-config> Element Configured for Securityc.cccocoereviiiiiniiiie, 14-6
Enabling Attachment SUPPOTtccccciiiiiiiiiiiiiiic s 14-8
Setting <enable-local-proxy> to "true".........cccoviiiiiiiiiiiii 14-9
Blocking Cookies t0 the BrOWSETccocviviiiiiiiiniiiiiinii e 14-16
Registration Property INformation ..o 14-19
Event Handler Configurationcccccovuviiiviiininiiininininiiinicnncssec s 14-20
Example SAMLCredentialNameMapper Implementation..........c.cccoeeeeeieiiicereinicnnnnn. 15-29
Example SAMLIdentityAssertionNameMapper Implementationccccceevuvirinncnes 15-30
Replacement wsp:Policy Element...........ccccccuiiiiiiiiiiiiiiiiiiiiciciccceeccees 17-4
Replacement weblogic-webservices-policy.Xmlcccoooiiriniiiniicece 17-5

List of Figures

2-1
2-2
2-3
3-1
3-2
3-3
34

7-10

Federated Portals Consume Remote Portlets from a Producercccoevveeveveeveiieeeennenns 2-2
Non-Federated Portal MaiNteNancecccceeeveiieiiesiiecieeeeseeeeere e eeesreesaeseesesseesesseesenns 2-3
Federated Portal MainNtenanceccceceeeeviieieiieieiecieieeeesre ettt et ereesaeeaesae s evesseeseens 2-3
Components of a Federated Portalcccooooiiiii 3-1
Web Services Between Producer and CONSUMETcceeeevieeeeriieeenieereerieseeiesteeresreenens 3-4
Simple and Complex PrOdUCETSc.cociiiiiiiiiic s 3-7
Getting the Service Description for a Producerc.oooooioiiiiii 3-8
Rendering a Remote Portlet..........ccooiiiii 3-10
Remote Portlet Interaction Life Cycleoooiiiiiiiiiiicc 3-13
Event Handling Phase...........cooriii 3-16
WSRP Sequence DIiagramccoccueiiieieiiiiiinieiici s 3-17
Remote Portlet in @ CONSUIMNETccviovieiiiiieiiieciere ettt et ste e ste e saeera e be s s esseesaessessnenns 4-3
Project Explorer After Prerequisite Tasks are Completedcccoooiiiiiiiinn 4-3
Select Portlet Type Dialogcoooruiiiiiieieiii e 4-4
Entering the WSDL ...t e 4-5
Producer DIEtailS......eooueieiieeiiicie ettt ettt et e it ete e teeeaeeeteeereereenteeens 4-6
Registering the Producer ... 4-6
Registration INformation.............coeoii e 4-7
Select a Portlet 0N the ProOAUCETcc.ovveiiiiiiicieeeeeeeeeete ettt 4-7
The Proxy Portlet Detailsoooeiiiiiiiii e 4-8
REMOLE POTEIOE ...ttt ettt et e e e eteeeaeeeveeeaseeseesteeeaneensesenseenseenseeens 4-8
Remote Portlet Placed in POrtalccooieiiiiieieiicieecieeeeete ettt ve et ne e 4-9
Federated POrtal ...ttt et ettt et e aeeare e 4-10
Creating a New Remote Page ... 4-11
Creating a Remote Page File..........ccoooiiiiiii 4-12
Producer DetailS......oooueiiiieiieeeeceeece ettt ettt ettt et et ettt e ere e eareenras 4-13
Registering the Producer ... 4-13
Select a Page on the Producer ..o 4-14
The Remote Page Details Dialog.........ccoeueiiiiciiiiiiiiieecc s 4-15
Portlet with Modes and STAteScceeceiieiiiiiieiiiececeese ettt reeane s 5-2
Click in the Header of the POrtlet.........ccoieiioiieiiiececeeeeeeeeteete ettt 5-4
Header Properties VIEWc.cciiueiiiiiiici i 5-4
Selecting the Proxy Content Nodecooiiiiii e 5-5
Entering the Error Filename..........c.cocoooiiiiiii s 5-5
Creating a Portlet Preference in the WebLogic Portal Administration Console................ 5-7
Setting Timeout Properties. ... 5-11
Portlet Properties VIEW ... 6-2
Package Explorer After Prerequisite Tasks are Completed............cccoooeevniiiiiininnennne. 6-3
New Page Dialog.........cccoiiiiiiiiiiiiii e 6-4
ANEW Page FIle ..o 6-5
Page File Displayed in the Editor ... 6-5
Offer As Remote PrOPerty ... 6-6
Sample CONfIGUIAtIONc.ccuiuiuiiiiiiiiiiiic e 6-6
Sample CONfIGUIAtIONcccoiuiiiiiiiiiiiiiii e 6-7
Package Explorer After Prerequisite Tasks are Completed...........ccccovvvinninnnnnnnnnnee. 7-3
Select POTIet TYPE ..c.cvcviiiiiiiiiiciciiic s 7-4
POTTIEt DIELAILS ...c.veeeevieeeeeeeeeetee ettt ettt e e et e et e eeae e et e e eteeere e e bt e ereeeeeeeteeenaeenreeans 7-4
JSP File Showing Edited Body TeXtcccccovuviiiiiniiiiniiiiiiiiiiiiccccccccccne 7-5
Updated JSP SOUICEcccuiiiiiiiiiiiiiiciiiiic e 7-6
New Backing File Package.........ccccccevuviniiiiiiiiiniiiiiiiiiiin e 7-7
Listening java with Updated Backing File Code..........cccccooninimiiiiiicce 7-8
Click to Display All Portlet Properties..........ccocovvviviiiinininniiininiiiiniiinnssnsssceseene 7-8
Attaching the Backing File in the Properties VIEWccccooiiiiiiiiiiiiiiiiiieens 7-9
Event Handlers LinK ...ttt ettt eeaeeeveeenteeeaeeeeeeseeenneennesens 7-9

xiii

Xiv

7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28

Portlet Event Handlers Dialog BOX ..o 7-10

Event Handler Dialog Box Expanded ..o 7-10
AddIng Portlet_T......ooiiiiiiiiii s 7-11
Event Drop-down LiSt ... 7-11
Adding the Backing File Method............ccoooiiiiiiii 7-11
Portal Layout with Portlets Addedcooiiiiiiiii 7-12
ipcLocal Portal in BrOWSET.........ccciiiiiiiiiiiiicicc s 7-13
ipcLocal Portal with aPortlet Minimizedcccoooviiiiniiiiiiii 7-13
Find Producer DIalogccouiiiieiiiiiicieiici it 7-14
Select Portlet From List Dialog BOX......cccouiiiieiiiiii 7-15
Changing the Portlet Title..........cooouiiiiii 7-15
Consumer Portal Layout ... 7-16
Consumer Portal in @ BIOWSETccccouviiiiiiiiiiiiiiiicicc s 7-17
Consumer Portal in Browser After Minimize Event.........c.cccccoivvviiniiniiiins 7-17
Example configurationcouoiiiieiiiiiicicc s 7-18
Java Portlet in the Editor........coooiiiiiiiiieee ettt 7-20
Portlet Event Handlers Dialogcoovuiueiiiiiciiiiicic s 7-21
Provide List of QName Alias(es) Dialogcccccocviiviiiiiniiiiiiics 7-24
WebLogic Server Producer ... 8-1
Select DOMAIN SOUICEcciiiiiiiiiiiiicicc e 8-3
Extend @ DOMAaiN.......ccoviiiiiiiiiiiiiiiie s 8-4
Select a Domain DIireCtorycocouiiiiiiiiieiiccic e 8-4
Select EXtENSION SOUICE........cciviiiiiiiiiiiiciic s 8-5
Selecting the Templatecooiiiiiiiii e 8-5
Select Project FACEtSccccviiiiiiiiiiiiiicicccc 8-7
Sample WSDL FIlecoviiiiiiiiiiiiiicccc s 8-8
Interceptors Run in Consumer Applicationsc.ccoeeeieiinieieieiiieiiiiiceees 9-2
Handling a Request Context Object ..., 9-5
Handling a Response Context ObJectcccocvuiviiiiiiiiiiiiiiiiiicecees 9-5
Handling an Error or Fault ... 9-5
Default Method Order in Interceptor Chains...........cooviiiiiiiiiiiicccces 9-10
prelnvoke() Chain with ABORT_CHAIN Return Value ..., 9-12
preInvoke() Chaino 9-12
onFault() Chain with RETRY Return Value.........ccccoeiiiiiiininiiieeeeeeeeesesene 9-13
onlOFailure() Chain with HANDLED Return Value........c..ccooeieneiininiininncncncnenne 9-13
Producer Requests User Information from Consumer...........cccccocevveviiinniinnnnnnninnn 10-2
Producer Returns Personalized Content ... 10-2
Application-Defined Property Sets ..o 11-3
Role EXpressions Tab...........ccccciiiiiiiiicc s 11-5
Setting Registration Properties ... 11-5
Entitling Capabilities to Resource Dialog..........cccoeeueieiiiiiieiiiiic 11-6
Register DHalogccovurueiiieiciei s 11-7
Package Explorer After Prerequisite Tasks are Completed...........ccoooovuviviiiniiiiiinnnns 12-4
New JSP Source for ZIpTeStspcccovviimiiiiiiiiniiiiiii s 12-5
Portlet Details with zipTest.jsp Included ... 12-5
INEW JSP POTEIEE ..ttt ettt bbb sttt et et be b b 12-6
Click the Start Button to Start the Server..........cccooiiiiii 12-6
New Portlet Dialogooririiiii 12-7
Select Portlet Type Dialogccooeueiiiiiiiieiiici s 12-7
The WSDL URL. ..ot 12-8
Producer Retrieved ... 12-9
The Register DIalogcocovieieiiiiiiiiiicicie s 12-9
Select Portlet from List Dialog BOXcccvuueiieiiiiciiiiiiinecc s 12-10
Proxy Portlet Details Dialog BOXccooourueiiiiiiiiiii e 12-10
New Remote Portlet zipPrime.portlet in the EAitorccoooiiiiiis 12-11

12-14
12-15
12-16
12-17
12-18
12-19
12-20
131
13-2
141
14-2
14-3
14-4
14-5
14-6
14-7
151
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14
15-15
15-16
15-17
15-18
15-19
15-20
15-21
15-22
15-23
15-24
15-25
15-26
15-27
15-28
15-29
15-30
15-31
15-32
15-33
15-34
15-35
15-36
15-37
15-38
15-39

backing FOIAETocuiiiiii e 12-12

New Java Class Dialog ..o s 12-12
CustomDataBacking.java in the EAItor..........ccocooiiiics 12-13
Adding a Backing Filecouiiiiiiiiii s 12-14
zipTest.portal in the EItor.........cocoiiiiiiiiii 12-15
zipTest.portlet Added to zipTest.portalcccoeveiiiiiiniiiiiiie 12-16
zipTest.portal Successfully Rendered ..o 12-17
Consuming WLP Portlets in WebCenter Framework Applications...........c.cccocevvvniinne 13-2
Consuming WLP Portlets in WebCenter Framework Applications...........c.cccocovvnniinne 13-4
Interportlet Dependencies ... 14-2
Local Versus Remote Proxy Flow Diagramscccccovviviiiiiniininniins 14-10
Message Monitor FUNCHONSccooviveieiiiiiii s 14-11
Monitor Appearing in @ BrOWSeT ... 14-12
Message CONENTc.cuiiiiiice s 14-12
Store Registration Properties Optionccceeieiiieiiiiiniiiiiiis 14-18
Storing Registration Properties............ccccoviviiiiniiiiicci 14-19
Basic USE CASEc.cueviueviiiieiiicicieicec s 15-2
Consumer Portal Before User LOGINccccceiiiiiiiiiiiiiiniiiiiicccceeees 15-3
Generating @ Key ..o s 15-4
Exporting the Certificate ... 15-5
WebLogic Server Administration Console Login Dialogc.ccccceeeieiiiiiiiiiiinieiennnn, 15-5
Selecting Security ReAIMScccoouiviiiiiiiiiiiiiiiicc s 15-6
Selecting a Security Realm........c.cccoouviiiiiiiiiiiiiiiiiiiiiic s 15-6
Selecting the Credential Mapping Tabcccoiiiiiii 15-7
Selecting the SAMLCredentialMapperccccooviiiiiiininiiinini s 15-7
Selecting the Provider Specific Tab ..., 15-7
LocKing the CONSOLeccuiuiiiiiiiiiiiiiiie s 15-8
ISSUET URI....oouiiiiciect ettt 15-8
Additional Provider Fields ... 15-8
Activating Changes...........ccviiiiiii s 15-9
Login Results in an Error in the Producer Portlet.............cccooviiiiiiiiiiii, 15-9
EITOT MESSAZEvoviiietiiietetct ettt 15-10
Selecting the Identity ASSErter ... 15-11
Selecting the Certificates Tabc.coiriiii 15-11
Creating a New Certificate ... 15-11
Entering Certificate Properties.........c..cooiiiiiiioiiiici s 15-12
Creating a New Asserting Partyccooooiiiiii 15-12
Asserting Party Properties.........oo i 15-13
Selecting the New Asserting Party ... 15-13
Asserting Party Values.........c.ooiiiiiicii s 15-14
SUCCESSTUL T@ST ...ttt 15-15
Compatibility Use Casescccovuiiiiiiiiiiiiiiiiiicicicni s 15-15
Compatibility Use Case.........cccevviuiiiiiiiiiiiiiiiiiiicic s 15-16
Consumer Portal Before User LOGinccccceevviiiiiiiiiiiiiiiiiiiiiiies 15-16
Generating @ Key ..o 15-17
LOGIN BITOT c.iiiitiite et 15-18
Selecting Security Realmscccccovviiiiiiiiiiiiiiiiiiicc 15-19
Select PKIL......cooiiiiiiiiiiiiii s 15-19
List of PKI Credential Mappingsc.ccccovviiviiiiiiiiiiisssceenssinns 15-20
User Name is NUIL ...c.coooviiiiiiiiii s 15-21
Successful CONfigUIrationc.ooevieiiiciiciiee s 15-22
Compatibility Use Case........cceueiirueiiiiiiicieiec s 15-22
WebLogic Administration Portal Sign In Page..........cccceuiiiiieiiiiciciccce 15-23
Selecting WSRP Consumer Security Service........ooouiricieiniienieieiicicieeci e 15-24
Entering Security Service Parametersocoeeveiiiiciiiiiiciciecc e 15-24

XV

XVi

15-40
1541
1542
1543
1544
1545
15-46
1547
1548
1549
15-50
15-51
15-52
15-53
161
162
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
18-1
18-2
18-3
184
18-5
18-6
18—7
18-8
18-9
18-10
18-11
18-12
18-13
18-14
18-15
18-16
18-17
18-18
18-19
18-20
18-21
18-22
18-23
18-24
19-1

Selecting Security RealmSccocuiiiiiiiiiiii 15-25

SELECE PKIL...o ottt et e e et e e teeveeseveebaesaesebeessseeareessesassenseeesaeseeees 15-25
Creating a New PKI Credential Mappingc.cccoovruriiiiiiicieiiiicicccccec s 15-26
Entering PKI Credential Mappings Parameters............ccccooooiririeiiiiiciiicicicci 15-27
New Certificate Added to the Producer...........oouieieeiiiiiieciecreececeeee et 15-27
SUCCESSTUL TOST ..ottt ettt et tee et et e et e e s teeease e beeeaseebeesaseesseseeens 15-28
Selecting the Identity ASSerter ... 15-31
Selecting the New Asserting Party ..o 15-32
Entering the Name Mapper Class ... 15-32
Selecting the Credential Mapping Tabccccooiiiiiii 15-32
Selecting the SAMLCredentialMappercccoovvieiiiininiiiniiiiics 15-33
Select the Relying Party ... 15-33
Entering the Name Mapper Class ... 15-34
AL VITHUAL USEIS. . cuviitieeiieeiie ettt ettt ettt ettt eae e eveeeaeeetaesaaeeass e seeeaseenseesaseenssenseeens 15-34
Selecting Security RealmS ..o 16-2
Default Credential Mappings Dialog.........cccoceueiiuiuiiiiniiiciiciniceci i 16-2
Finding the Markup Port ... 16-3
Specify User MappPingcccoeveveiiieiiiiieiiieiiicicicicieiee et 16-4
Default Credential Mappings.........cccoveviviiinininiiiiiiiessssssssnes 16-4
Completed DIalog......ccooiviiiiiiiiiiiiiiciiciicic s 16-5
Selecting Security ReAIMScccoiviviiiiiiiiiiiiiiiiic s 16-6
Select the Defatult AUtNENTICATOTcccviiiiiieeeeeeee et et e e ears 16-6
Enable Password Digests..........coocuiiiiiiiieiiii s 16-7
Create @ NEW USET ...c.veieiiiieiceecieeeee ettt ettt er e et e e s te e s beeebeeseaeeabaesteesabeeesseeareeessenaseenses 16-7
Create a New User Dialogccoiuiiiiiiiiiiiiiiiiiiicc s 16-8
Selecting Remote Producers ... 18-3
SeleCt Add PrOAUCET ...ccuvieiii ettt et ettt et eab e ebe e s tae e ve e aaeeavaeeaneenres 18-3
Selecting @ PrOAUCETccevvviiiiiiiiiiiiciiiciecccc s 18-3
View Producer's Portlets CheckbDOXcc.ioiiiiiiiiieiieiiiieieceeeeee ettt et e 18-4
ViIieW Producer's POTTIetS.....occuiiiiiiieeciiecee ettt ettt et eveeeveeeaaeebeeeaneeaveees 18-4
Enter Prodicer NAIMEcc.oooviieiiciieeeeetee ettt tee v etveere e teeeaveetesseveeesaesaneesaenaneenres 18-5
Enter Registration Properties (Sample) ..o 18-5
SUMMAry DIalogcooviviiiiiiiiiiiiiiic s 18-6
Selecting @ PrOAUCETouoviieiciici s 18-7
Selected POrtlets Tabttt ettt ettt e te e eae e e be e raeeaneears 18-7
Add Portlet BUTONocviiiiicieceeee ettt ettt ettt eteeeane e beeeaaeeaneenrs 18-7
Selecting Portlets to Add...........cooiiiiiiiiiii s 18-8
Remote Portlets Added to the Librarycccocevveiiiiiiiiiic 18-8
Table Displays Added Portlets ..o 18-8
Selecting @ PrOAUCETcceveviiiiiiiiiiiiciiiccccccc s 18-9
Selected Pages Tab ... 18-10
Add Page BUttOon.........ccuoveiiiiiiiiiiiic 18-10
The Add Page Dialogcccccoveiiiiiiininiiiiiii s 18-10
Remote Page Added to Library ... 18-11
Selecting @ PrOAUCETc.cuoviieieiiiic s 18-12
Selected BOOKS Tab......oooiiiiiieieee ettt et et et eeare e te e s reeebeesbeeeraenane e 18-12
Add BOOK BULTON ..ottt ettt ettt etae e ve e s veebeesveeraenane e 18-12
The Add Book DIalog.......ccvviiiiiiiiiiiiiiiiiiicic s 18-13
Remote Book Added to LibIary ..o 18-13
Modify Producer Registration Dialog...........cccoeveviiiiiiiiniiiiiiiiiicccc 19-3

xvii

List of Tables

xviii

1-1
3-1
3-2
3-3
4-1

—L—LQOQOQOQIO(O(OQO\I
NOObhWN ==

Optional WSRP 2.0 Features Supported by WLP........cccccccovviiniiiiii 1-2
Required and Optional WSRP Operations.............ccceeeveiiiiiiiiiiiiiiiiiiececes 3-4
Comparison of Producer FEatures...........ccoooviiiiiiiiiiiiiicccc s 3-7
Render Versus Interaction for Remote Portlets...........cccoooiiiiiniii 3-15
Prerequisite Tasks ... s 4-3
Default Behavior of States in Remote Portlets...........cccccooiiiiiiiiiiiiiiiiicice 5-3
Default Behavior of Modes in Remote Portlets ... 5-3
Order of Backing File Method Execution in a Producercccccocevveiiniininninnnn 5-9
Proxy Portlet Properties...........ccoiiieiiiiicieic 5-11
List of Oracle Tools for Creating and Consuming Remote Resources..........c.ccccoeuruerinnnes 6-2
Prerequisite Tasks ... s 6-3
Prerequisite Tasks ... s 7-2
Interceptor INterfaces.........oiiiiiiiiiiiiiiiiiicc s 9-5
Interceptor Methods ..o 9-6
Return Values for preINvoKe()cooociviiiiiiiiiiniiiiiiiiicciicnce e 9-7
Return Values for postINVOKe()........ccceiviviiiiiiiiniiiiiiiiiciicccc e 9-7
Return Values for ONFault().......coerererieieirrieeeeeeeee st 9-7
Return Values for ONIOFailure()coeeerererienienieieieeeeeestesie ettt 9-8
Interceptor Method Return Values............cccoovviviiiiiiiiiiiiiiiin, 9-11
Constant Delimiters ... 10-11
1SStriCt KeYWOId ..o oo 11-4
Prerequisite Tasks ... 12-3
Evolution of Local Proxy Architecture for WebLogic Portal............ccccocoviiiinnininnnen. 14-10
Keytool OPLIONScovviiiiiiiiiicicicicic s 15-4
Asserting Party ValUes..........cooiiiiiiiiiii 15-13

Audience

Preface

A federated portal is a portal that includes remotely distributed resources, including
remote portlets, books, and pages. These remote resources are collected and brought
together at runtime to a portal application called a consumer, which presents the
federated portal to end users.

This guide describes how to plan, develop, assemble, and maintain federated
WebLogic Portals.

This document is intended for portal and portlet developers, and portal
administrators.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit

Xix

http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

For more information, see the following documents in the WebLogic Portal
documentation set:

» Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal
» Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Conventions

XX

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part |

Architecture

In the WebLogic Portal development life cycle, architecture represents the starting
point for the subsequent phases of development, staging, and production.

This part of the Federated Portal Guide presents an architectural overview of
federated portals. The chapters in this part focus on the logical components of
federated portals, how these components interact, and the technologies that make
federation possible. By understanding the architecture of federated portals, and
specifically federated portals developed on Oracle WebLogic platforms, developers
can more effectively plan their specific implementations of remote features such as
remote portlets.

For a detailed description of the architecture phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part I contains the following chapters:

» Chapter 1, "Introduction”

» Chapter 2, "What are Federated Portals?"
» Chapter 3, "Federated Portal Architecture”

1

Introduction

Federated portals represent an exciting new paradigm for the development,
management, testing, and deployment of portal applications. This new,
Service-Oriented Architecture (SOA) based paradigm offers immediate and significant
savings in time and resources to organizations that develop and manage portals using
Oracle WebLogic Portal.

This guide describes how to plan, develop, assemble, and maintain federated
WebLogic Portals. As the following section explains, the tasks described in this guide
are organized to reflect the stages of the portal life cycle: architecture, development,
staging, and production.

This chapter includes these sections:

= Section 1.1, "Support for WSRP 2.0"

» Section 1.2, "Federation in the Portal Life Cycle"
» Section 1.3, "Getting Started"

1.1 Support for WSRP 2.0

WLP supports the WSRP 2.0 OASIS standard and fully supports all of the required
WSRP 2.0 features. OASIS, the Organization for the Advancement of Structured
Information Standards, is responsible for creating the WSRP standard. To read more
about WSRP 2.0, including the full technical specification, go to:
http://www.oasis-open.org/committees/wsrp. This standards compliance
ensures interoperability between producers and consumers across all platforms that
support WSRP 2.0.

Note: All of the feature extensions, such as render dependencies and
event handling, that WLP supported in its WSRP 1.0 implementation
are still fully supported with the WSRP 2.0 implementation. In cases
where the previously implemented feature extensions are supported
by WSRP 2.0, those features have been re-implemented to comply to
the WSRP 2.0 standard. Events are one such feature.

WLP also supports several optional WSRP 2.0 features, listed in Table 1-1.

Introduction 1-1

Federation in the Portal Life Cycle

Table 1-1 Optional WSRP 2.0 Features Supported by WLP

Optional WSRP 2.0 Feature For Detailed Information

Events

See Chapter 7, "Interportlet Communication with Remote Portlets."

Full shared parameter distribution ~ See "Using Shared Parameters" in the Oracle Fusion Middleware Portlet

on the consumer

Development Guide for Oracle WebLogic Portal.

Client attributes (cookie and header See Section 14.14, "Managing Delivery of Headers and Cookies to the

configuration) Browser."

Portlet-served resources on the See "Using Container Runtime Options" in the Oracle Fusion Middleware

producer (for JSR286 portlets only) Portlet Development Guide for Oracle WebLogic Portal.

Importing and Exporting remote The WLP propagation tool supports the importing and exporting of remote

portlets portlets. For details on propagation, see the Oracle Fusion Middleware
Production Operations Guide for Oracle WebLogic Portal.

Registration properties See Section 14.19, "Storing Registration Properties."

The wsrp-extra:doctype This extension carries the doctype URI as its value. For more information, see

extension the section "Well Known Extensions" in the WSRP 2.0 Specification.

1.2 Federation in the Portal Life Cycle

Like a standard portal, the creation and management of a federated portal flows
through a portal life cycle.

The portal life cycle contains four phases:
s Section 1.2.1, "Architecture"

= Section 1.2.2, "Development"

= Section 1.2.3, "Staging"

s Section 1.2.4, "Production”

The tasks in this guide are organized according to the portal life cycle, which implies
best practices and sequences for creating and updating federated portals. For more
information about the portal life cycle, see the Oracle Fusion Middleware Overview for
Oracle WebLogic Portal.

1.2.1 Architecture

The architecture part of this guide discusses the basic components of a federated
portal. A federated architecture promises to streamline and improve the way in which
your portal resources, such as portlets, are developed, deployed, and maintained. By
understanding the technology that lies behind federated portals, you can more
effectively plan for the development of your own federated portal applications.

1.2.2 Development

The development phase of a federated portal focuses primarily on developing portlets,
pages, and books that will be offered as remote portlets, pages, and books to
consumers. Developers need to be aware of the techniques and best practices for
developing remote portlets, pages, and books in a WebLogic Portal environment.

In the development stage, careful attention to best practices is crucial. Wherever
possible, this guide makes those best practices clear.

1-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Getting Started

1.2.3 Staging

As for all portal development, Oracle recommends that you deploy your portal to a
staging environment, where it can be assembled and tested before going live. In the
staging environment, you use the WebLogic Portal Administration Portal to assemble
and configure federated portals. The Administration Portal lets you search for and
consume remote portlets, books, and pages. In the staging environment, you also test
your federated portal before propagating it to a live production system.

1.2.4 Production

A production portal is live and available to end users. A portal in production can be
modified by administrators using the Administration Portal. For instance, an
administrator might add additional remote portlets to a portal or otherwise change the
contents of a portal.

1.3 Getting Started

This section describes the basic prerequisites to using this guide, lists guides
containing related information and topics, and briefly explains how to use this guide.

This section includes the following topics:
= Section 1.3.1, "Prerequisites"

s Section 1.3.2, "Related Guides"

= Section 1.3.3, "Using this Guide"

1.3.1 Prerequisites

This guide does not assume that you are familiar with federation or its related
standards and technologies, such as WSRP. Whenever possible, this guide provides
sufficient background information or refers to appropriate documents and
specifications.

Tip: See Section 3.7, "For More Technical Details" for a list of
specifications and white papers related to WSRP and related
technology. This material provides an excellent background for
developers who plan to design and create federated portals.

In general, this guide assumes that you are familiar with the basic operation of the
tools used to create WebLogic portals and desktops, particularly Oracle Enterprise
Pack for Eclipse (OEPE) and the Administration Portal. The following section,
Section 1.3.2, "Related Guides", lists other guides that you may want to refer to before
attempting to develop federated portals.

1.3.2 Related Guides

This guide covers topics that are specific to developing and assembling federated
portals. In general, this guide assumes that you are familiar with the basic concepts
and tools required for both portal and portlet development. If you are planning to
create federated portals, we recommend that you review the following guides:

s Oracle Fusion Middleware Overview for Oracle WebLogic Portal
» Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal
» Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Introduction 1-3

Getting Started

Whenever possible, this guide includes cross references to material in these other
guides.

1.3.3 Using this Guide

If you are new to federation we recommend that you begin with the chapters in Part I
Architecture. These chapters provide a detailed overview of federated portals, and
describe the technological components that make up federation.

Part I Development includes the topics that are of primary interest to developers
creating portal components with Oracle Enterprise Pack for Eclipse. This part includes
chapters on creating remote portlets, establishing interportlet communication with
remote portlets, working with producers, using custom events, and other topics.

Part III Staging and Part IV Production are targeted typically toward users who use the
Administration Portal to assemble and manage federated portals and establish
security.

1-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

2

What are Federated Portals?

This chapter presents a brief introduction to federated portals and discusses the
advantages of federated portals and the kinds of problems that federation solves. This
chapter includes the following sections:

s Section 2.1, "Overview"

= Section 2.2, "Basic Terminology"

m Section 2.3, "Traditional Portals: Before Federation"
» Section 2.4, "Federated Portals: A New Paradigm"

= Section 2.5, "Advantages of Federation"

2.1 Overview

A federated portal is a portal that includes remotely distributed resources, including
remote portlets, books, and pages. These remote resources are collected and brought
together at runtime to a portal application called a consumer, which presents the
federated portal to end users. Unlike a non-federated, entirely local portal, in most
cases, the individual remote parts of a federated portal can be maintained, updated,
and released independently without redeploying the consumer portal in which they
are surfaced.

Federated portals are:
s Distributed — Portlets are deployed on remote systems across the enterprise.

s Decoupled - The portal and its portlets do not depend upon one another. In most
cases, remote portlets can be maintained and deployed separately from the
federated portal.

= Collaborative — Remote portlets can communicate and share data.

s Plug-and-Play - You can easily locate and use remote portlets. Programming is
usually not required to consume remote portlets.

= Standards based — WebLogic Portal federated portals are built upon open
standards, such as WSRP, SOAP, WSDL, SAML, and WS-Security. WLP supports
all of the required features of the WSRP 2.0 standard.

Figure 21 illustrates the basic parts of a federated portal: producers and consumers. A
producer is a portal web application that offers remote portlets to other portal web
applications, called consumers. Both producers and consumers implement a web
services layer that enable them to communicate. This web services layer allows
producers to offer portlets to consumers on remote systems. Consumers bring these
remote, distributed portlets together at runtime. The remote portlets themselves can be

What are Federated Portals? 2-1

Basic Terminology

developed and maintained by different groups of people. If one remote portlet on a
producer is changed, other portlets within a consumer that consumes the updated
portlet are not typically affected. Furthermore, the look and feel of a remote portlet can
be made to be consistent with the federated portal in which is resides. To end users of
federated portals, the remote portlets are indistinguishable from local ones.

Figure 2—1 Federated Portals Consume Remote Portlets from a Producer

Producer

Consumer A ConsumerB ConsumerC

Tip: A federated portal reflects a true Service Oriented Architecture
(SOA). An SOA strategy organizes discrete functions contained in
enterprise applications into interoperable, standards-based services
that can be combined and reused quickly to meet business needs. As
you will see, this definition of SOA describes well the essence of a
federated portal.

2.2 Basic Terminology

Throughout this guide, the term remote portlet refers to a portlet that is deployed in a
consumer application and that references a portlet deployed in a producer application.
Another term for a remote portlet is a proxy portlet. The term proxy portlet appears in
some WebLogic Portal configuration files. Please note that remote portlet and proxy
portlet are synonymous. In a federated environment, a producer hosts functioning
portlets, while consumer applications host proxy portlets.

2.3 Traditional Portals: Before Federation

Before federation, all of a portal's portlets were deployed within the same web
application. This model works well for a portal's initial deployment, but as the portal
grows the maintenance effort grows proportionally, as illustrated in Figure 2-2.

2-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Federated Portals: A New Paradigm

Figure 2-2 Non-Federated Portal Maintenance

Maintenance Effort

Size of the portal

Typical portal maintenance includes bug fixes, enhancements, adding new portlets,
testing, and propagating the portal from a development to a staging to a production
environment. Larger portals simply contain more parts, more code, which must be
bound within the same portal application, and which require the coordination of
developers, quality assurance engineers, administrators, and others with each update.
For many organizations, the cost of such maintenance is significant and can include
portal downtime. Federation simplifies portal maintenance.

2.4 Federated Portals: A New Paradigm

With a federated portal architecture, separate development teams, perhaps in separate
business units, operating in different geographical locations, can focus on and develop
their respective portlets. These development teams can update, test, and release their
portlets independently from one another. You do not need to redeploy a federated
portal every time a portlet deployed in a producer changes. When a remote portlet is
updated in a producer, all of the consumers of that portlet receive the change
immediately and automatically. As illustrated in Figure 2-3, the most significant
benefit of a federated portal architecture is that the maintenance effort for a portal is
greatly reduced compared to a non-federated portal.

Figure 2-3 Federated Portal Maintenance

A

Maintenance Effort

Size of the portal

What are Federated Portals? 2-3

Advantages of Federation

The next section further discusses the advantages of using a federated portal
architecture.

2.5 Advantages of Federation

As explained in the previous section, federation offers significant benefits in portal
deployment and maintenance. This section looks more closely at these and other
benefits, and includes these topics:

s Section 2.5.1, "Overview"

= Section 2.5.2, "Reducing the Cost of Portal Deployment"

m Section 2.5.3, "Plug and Play SOA"

= Section 2.5.4, "Increasing the Flexibility of Release Schedules"

= Section 2.5.5, "Reducing the Cost of Testing Your Portal"

= Section 2.5.6, "Decreasing Dependencies Among Software Components"
= Section 2.5.7, "Promoting Reuse of Portal Components"

= Section 2.5.8, "Interoperability”

2.5.1 Overview

Federation represents more than just a new WebLogic Portal feature. Federation
represents a new paradigm for developers and administrators of portal web
applications, particularly moderate to large-scale portal web applications. Central to
this new paradigm are standards, such as Web Services for Remote Portlets (WSRP),
that allow portlets to be decoupled from portals. For more information on WSRP, see
Section 3.3, "What is WSRP?".

Rather than bundling all of a portal's portlets into a single application, you can deploy
portlets in separate web applications running on remote systems while the federated
portal consumes them using WSRP. Because the federated portal is decoupled from its
portlets, you do not need to redeploy the portal every time a portlet changes. For most
WebLogic Portal projects, this decoupling represents an immediate and significant
savings in time and money.

2.5.2 Reducing the Cost of Portal Deployment

Perhaps the most significant benefit of portal federation is this: Federated portals do not
have to be redeployed when their remote portlets are updated.

In a standard portal, all portlets are part of a monolithic enterprise application. If you
want to change a portlet, even make a trivial change, the entire enterprise application
must be redeployed. Likewise, adding new portlets requires redeployment. Usually,
portal redeployment, particularly of large-scale enterprise portals, involves expensive
testing and potential downtime.

In a federated portal, remote portlets are not part of a single enterprise application.
Remote portlets are deployed in separate web applications, typically, on remote
systems called producers. The federated portal consumes these portlets using standard
Web Services for Remote Portlet (WSRP) and Web Services Description Language
(WSDL). When you change a portlet, such as by adding or removing a feature or fixing
a bug, the remote portlets that reference it automatically reflect the change. You do not
have to redeploy your enterprise portal application.

2-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Advantages of Federation

2.5.3 Plug and Play SOA

A federated portal is a true example of a plug and play Service Oriented Architecture.
In most cases, a portal administrator can locate a remote portlet and incorporate it into
a portal without enlisting the help of a developer.

2.5.4 Increasing the Flexibility of Release Schedules

Because the portlets and other services in federated portals are distributed, multiple
teams can work on and deploy new features independently of one another. Before
federation, different teams had to synchronize their deployment schedules and their
software configurations, such as service pack releases and software library versions.
With federation, independent teams can focus on producing the best possible software
solutions without such tight coupling. Through the mechanism of web services,
developers of federated portals simply consume the software resources produced by
these independent development teams.

2.5.5 Reducing the Cost of Testing Your Portal

Portal administrators can incorporate new remote portlets into a portal by locating a
producer and picking the desired portlets. From the administrator's standpoint, these
remote portlets are fully tested and ready for use. No coding, testing, or complex
configuration is required by the developers or administrators of the consumer portal.

2.5.6 Decreasing Dependencies Among Software Components

If a portlet relies on specific software libraries, a strong dependency exists that must be
managed. Changes to either the portlet or the library version can create
incompatibilities with existing code. Because remote portlets are developed, tested,
deployed, and run on remote systems, a federated portal that uses remote portlets is
isolated from such dependencies.

2.5.7 Promoting Reuse of Portal Components

A portlet that is exposed through a producer can be reused by any number of
consumers with minimal work and no additional coding. As mentioned previously,
with federation, this reuse can be accomplished without the overhead of integration,
deployment, configuration, and testing that would be required otherwise.

2.5.8 Interoperability

Because federated portals are loosely coupled and standards based, it is possible for a
WebLogic Portal to consume portlets from third-party vendors. Likewise, it is possible
for third-party portals to consume portlets hosted in WebLogic Portal. WLP fully
supports the WSRP 2.0 standard.

What are Federated Portals? 2-5

Advantages of Federation

2-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

3

Federated Portal Architecture

This chapter describes the key actors and logical parts of a federated portal and
discusses how they interact. The information in this chapter informs many of the best
practices recommended for developers of federated portals. It is helpful to review this
chapter before reading Chapter 14, "Other Topics and Best Practices." In addition, this
chapter discusses a key standard technology upon which federation relies: Web
Services for Remote Portlets (WSRP).

This chapter includes these topics:

m Section 3.1, "Key Actors in a Federated Portal"

s Section 3.3, "What is WSRP?"

= Section 3.4, "Understanding Producers and Consumers"
» Section 3.5, "Life Cycle of a Remote Portlet"

= Section 3.5.4, "Interportlet Communication with Events"
» Section 3.6, "Summary of Federated Portal Architecture"

s Section 3.7, "For More Technical Details"

3.1 Key Actors in a Federated Portal

The key actors in a federated portal are producers, consumers, and end users, as
illustrated in Figure 3-1.

Figure 3—-1 Components of a Federated Portal

Producers Consumer End Users

]

1

|]

| !
..I r
il 4 |
i L i

I |

—

— SOAP/ HTTP

HTTP

A consumer is a web application that collects remote portlets and offers them in a
unified portal to end users who use a browser to view and interact with the portal. In

Federated Portal Architecture 3-1

Federating Books and Pages

addition to federating portlets, WebLogic Portal lets you federate books and pages. See
Section 3.2, "Federating Books and Pages" for more information.

Typically, a consumer does not include the business logic, data, or user interface parts
of a portlet: it simply collects user interface markup delivered from producers and
presents that user interface to users.

Tip: Although most business logic processing occurs in producer
applications, you can write consumer-side classes called interceptors
that let you programmatically examine the content of a WSRP
message and take specific action based on that content. Interceptors
are discussed in Chapter 9, "The Interceptor Framework."

Consumers are administration-centric. This means that administrators, rather than
developers, typically focus their time on consumers. Administrators locate and
consume remote portlets, manage users, set up entitlements, and so on.

A producer is also a web application, typically running on a remote system from the
consumer. The producer acts as a container for portlets that are offered to consumer
portals. The producer is where the user interface, data, and business logic for remote
portlets reside. While a consumer is administration centric, a producer is application
centric. This means that developers write the actual portlet code and deploy those
resources on producers.

Tip: All WebLogic Portal applications are, by default, both
consumers and producers. This means that every WebLogic Portal
application is capable of hosting remote portlets and consuming them.

For more information on producers and consumers, see Section 3.4, "Understanding
Producers and Consumers".

3.2 Federating Books and Pages

WebLogic Portal has extended the WSRP protocol to include the ability to federate
books and pages. This feature is useful if you have large numbers of portlets that you
want to federate. You can group the portlets in books and pages in the producer
application, and consume them as a group, rather than one at a time. For more
information, see Chapter 4, "Creating Remote Portlets, Pages, and Books" and
Chapter 18, "Adding Remote Resources to the Library."

3.3 What is WSRP?

Web Services for Remote Portlets (WSRP) is a web services protocol for aggregating
content and interactive web applications from remote sources. WSRP is a key standard
that underlies federated portals. Essentially, WSRP allows remote, distributed portlets
to be brought together at runtime into a unified portal page.

Web Services for Remote Portlets provide both application and presentation logic. This
is different from standard web services, or data-oriented web services, which contain
business logic but lack presentation logic and thus require that every client implement
that logic on its own.

While the data-oriented approach works well in many implementations, it is not well
suited for dynamically integrating business applications. For example, to integrate an
order status web service into a commerce portal, you would need to write code to
display the results of the status services into the portal. Using WSRP, with the
presentation logic included in the web service, you can achieve the aggregation of

3-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Understanding Producers and Consumers

applications and services dynamically. You no longer need to develop the presentation
logic in order to do the integration; you can simply request the order status service to
show up as a portlet inside the commerce portal at a predetermined location.

Tip: WLP fully supports the WSRP 2.0 OASIS standard. OASIS, the
Organization for the Advancement of Structured Information
Standards, is responsible for creating the WSRP standard. To read
more about WSRP 2.0, including the full technical specification, go to:
http://www.oasis-open.org/committees/wsrp.

One way to understand WSRP is to compare it with another web protocol, HTTP. The
most familiar use of HTTP is viewing and interacting with remote web applications
using a browser. Using HTTD, browsers communicate with remote HTTP servers to
post data (for example, by submitting forms) and to retrieve markup (typically,
HTML). WSRP is a similar protocol between server and client applications. In WSRP
terminology, the server is called a producer. It hosts services, typically portlets, that
clients, or consumers, communicate with.

Like a browser in the HTTP analogy, the consumer retrieves markup and submits user
interactions to the producer. The producer hosts actual portlets while the consumer
contains proxies for those portlets. Consumers use WSRP to collect and present
markup from the remote portlets to end users who interact with that markup. To an
end user, a remote or proxy portlet is indistinguishable from a local portlet.

WSRP consumers are more sophisticated than browsers, however. Unlike browsers,
consumers can:

» Offer features like personalization, customization, and security
= Handle markup fragments rather than entire HTML documents

s Combine markup from different producers into a single page and apply consistent
consumer-specific layouts and styles to that page

In summary, the WSRP protocol defines a set of web services that WSRP producers
implement. Consumers view and interact with these web services; they retrieve user
interface fragments from the producer, display the fragments, and allow users to
interact with them. The WSRP protocol allows consumers to act as clients for
applications hosted by producers.

3.4 Understanding Producers and Consumers

This section focuses on the producer and consumer implementations for WebLogic
Portal. This section includes these topics:

s Section 3.4.1, "Overview"
= Section 3.4.2, "WebLogic Portal Producers"

= Section 3.4.3, "WebLogic Portal Consumers"

3.4.1 Overview

A producer is a container web application that hosts portlets. Through proxy portlets
(called "remote portlets" in WLP), consumers collect and present portlets hosted on
producers to users. All application code (backing files, Java classes, controls, EJBs, and
so on) resides on the producer. Consumers only receive fragments of markup from
producers which are collected and presented to users.

Federated Portal Architecture 3-3

Understanding Producers and Consumers

Figure 3-2 illustrates the components of a federated portal. Note that the WebLogic
Portal WSRP implementation allows the addition of typical WebLogic Portal services,
such as personalization, customization, and user management. This means that remote
portlets are given the same look and feel and the same levels of portal security as local
portlets.

Figure 3-2 Web Services Between Producer and Consumer

Praducer = ?_ﬁ.?.? ——p» Consumer {———= HTTP ———> End User

‘ bodar

= — O

Aen . ﬁ
Personalization,

Code + Data + Ul Customization,

Security,
Management etc.

Tip: Every WebLogic Portal contains both producer and consumer
implementations. That is, all WebLogic Portals can function as
producers and consumers. For an in-depth technical explanation of
the WebLogic Portal producer and consumer implementations, refer
to the technical white paper, Inside WSRP at
http://www.oracle.com/technology/pub/articles/dev2ar
ch/2005/03/inside_wsrp.html.

3.4.2 WebLogic Portal Producers

WebLogic Portal supports two kinds of producers: simple and complex. Before
describing these two kinds of producers, it is helpful to understand the parts of the
WSRP protocol and which operations must be implemented in a producer (required
operations) and which are optional.

Table 3-3 lists the set of required and optional operations defined by the WSRP
protocol. Note that the minimum requirement for a WSRP-compliant producer is to
implement the required service description and markup operations. As you will see,
WebLogic Portal simple and complex producers differ in the kinds of operations they
support.

Table 3—1 Required and Optional WSRP Operations

WSRP Protocol Operations Implemented Methods
Required for WSRP Service description operations getServiceDescription()
Markup operations initCookie()
getMarkup()

performBlockingInteraction()

3-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Understanding Producers and Consumers

Table 3—-1 (Cont.) Required and Optional WSRP Operations

WSRP Protocol Operations Implemented Methods
Optional for WSRP Registration register()
Portlet Management modifyRegistration()
deregister()

getPortletPropertyDescription()
setPortletProperties()
getPortletProperties()

clonePortlet()
destroyPortlets()
Extensions Event Handling handleEvents()
(Add new operations to Render Dependencies getRenderDependencies()

the WSRP protocol.)

3.4.2.1 Simple Producers

A simple producer supports only some basic features of the WSRP protocol. These
basic features do not require the producer to be deployed in a full WebLogic Portal
domain. You can, for example, deploy a simple producer in a basic WebLogic Server
domain.

Tip: For detailed information on configuring a simple producer in a
WebLogic Server domain, see Chapter 8.

A simple producer:

s Does not depend upon WebLogic Portal features — A simple producer cannot
take advantage of WebLogic Features features such as user management and
personalization.

= Does not depend on WebLogic Portal APIs — Again, a simple producer cannot
rely on any WebLogic Portal dependencies.

= Does not require registration — Registration allows a producer to associate
portlets and any portlet customization data with the consumer that is interacting
with it. The producer can also use the registration to tailor the scope of the portlets
offered to specific consumers.

= Does not support event handling — You cannot use the event handling API with a
simple producer.

Despite these limitations, you might want to use a simple producer for the following
reasons:

= To WSRP-enable non-portal projects, such as WebLogic Server projects
» To offer portlets without actually installing WebLogic Portal

The section Section 8.2, "Using WSRP in a Basic WebLogic Server Domain" describes
how to configure a (non-portal) WebLogic Server environment as a WSRP producer so
that you can expose portlets based on Struts or Java Page Flows. The exposed portlets
can then be consumed as remote portlets running in a regular WebLogic Portal
Domain.

Federated Portal Architecture 3-5

Understanding Producers and Consumers

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations” in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

3.4.2.2 Complex Producers

A complex producer supports the complete WSRP 1.0 protocol plus some extensions
for interportlet communication, portlet look and feel, and other features. A complex
producer also lets you take advantage of other WebLogic Portal features, such as
personalization, customization, and user management security features. By contrast,
simple producers cannot take advantage of these WebLogic Portal features.

By default, all WebLogic Portal applications are complex producers. Portlets that are
exposed in a complex producer can use the APIs and features that are available in any
WebLogic Portal application.

Tip: In some cases, it is inappropriate to use API calls in portlets
deployed on a producer. This is because a producer does not have
access to portal artifacts, such as books and pages, in that are
deployed in consumer applications. See Chapter 14 for information on
best programming practices for portlet development in producers.

Typically, a complex producer:

= Requires registration — Registration allows a producer to associate portlets and
any portlet customization data with the consumer that is interacting with it. By
deploying consumer entitlements, the producer can also use the registration to
tailor the scope of the portlets offered to specific consumers. For detailed
information on consumer entitlements, see Chapter 11, "Consumer Entitlement."
By default, registration is enabled; however, you can disable registration by setting
the <registration required> element in the
/WEB-INF/wsrp-producer-config.xml file to false.

= Supports a management interface — By default, the WebLogic Portal management
interface is enabled; however, you can disable the management interface by
setting the <portlet-management required> elementto false in the file
/WEB-INF/wsrp-producer-config.xml.

= Supports interportlet communication — Extensions that support event handling
allow remote portlets to communicate with one another.

= Supports portlet render dependencies — WebLogic Portal allows you to specify
certain dependencies associated with individual portlets, such as Cascading Style
Sheets (CSS files) and script files, such as JavaScript (JS) files.

3.4.2.3 Summary of Complex and Simple Producers

A complex producer includes the required WSRP interfaces, optional interfaces, and
some extended interfaces. A simple producer implements the required interfaces. A
complex producer requires WebLogic Portal, but a simple producer can be deployed
in a basic WebLogic Server domain. Figure 3-3 illustrates these relationships.

3-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Understanding Producers and Consumers

Figure 3-3 Simple and Complex Producers

Optional &
Complex Producer Eux;;r;ded
Interfaces
Simple
WebLogic Portal Pro:i)ucer
Required
WSRP
Interfaces
WebLogic Server

Table 3-3 compares the capabilities of standard and complex producers.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Table 3-2 Comparison of Producer Features

Feature Complex Producer Simple Producer
Java portlets Yes No

Page flow portlets Yes Yes

Registration Required Not Supported
Support for URL rewriting (producer and consumer) Yes Yes

Support for portal administration Yes No

Support for JSP portlets Yes No

Support for backing files Yes No

Support for JSF portlets Yes Yes

Support for Struts portlets Yes Yes

3.4.3 WebLogic Portal Consumers

As previously noted, all WebLogic portals are, by default, able to consume portlets
hosted on producers. The WebLogic Portal consumer implementation is closely
integrated into the WebLogic Portal framework.

To consume a remote portlet hosted on a producer, a consumer must ask a producer
for information about the portlets it offers. The consumer first contacts a producer

using the producer's WSDL URL. This initial contact verifies the availability of the

producer and its services. Next, the consumer asks the producer for a description of
the portlets it offers. The producer responds to the consumer with a SOAP message
that describes the portlets and associated metadata that are offered by the producer.
This communication is illustrated in Figure 3—4.

Federated Portal Architecture 3-7

Life Cycle of a Remote Portlet

Figure 3-4 Getting the Service Description for a Producer

Consumer Establish Contact with WSDL Producer

v

v

Ask for Service Description

]
1
3
- Metadata and Offered Portlets

"
|

After a consumer receives a producer's metadata, the metadata is added to the
consumer enabling you to create remote portlets. A remote portlet is a proxy to a
portlet hosted on a producer. When a remote portlet is added to a portal or desktop,
the WebLogic Portal framework uses the WSRP protocol to present the portlet to
portal users. To users, remote portlets look and feel just like local portlets; users are
not aware that a given portlet is hosted remotely. Furthermore, remote portlets inherit
the particular styles, layouts, and themes from the portal in which they reside. To the
user, this integration is seamless.

Tip: Asnoted previously, WebLogic Portal lets you create
consumer-side classes called interceptors. Interceptors let you
programmatically examine the content of a WSRP message and take
specific action based on that content. Interceptors are discussed in
Chapter 9, "The Interceptor Framework."

3.4.4 Cookie Handling
WebLogic Portal consumers handle cookies by following the prescriptions of RFC2109:

1.

A Set-Cookie response header whose NAME is the same as a previous cookie,
and whose Domain and Path attribute values exactly (string) match those of the
previous cookie, will replace the old cookie with the new one.

If the Set-Cookie has a value for Max-2Age of zero, the (old and new) cookie is
discarded.

Otherwise cookies accumulate until they expire (resources permitting), at which
time they are discarded.

Cookies are sent based on the specified request-host (including request-URI) and
should be sent until they expire.

In WSRP, cookies are specific to the portletHandle and the end user on whose
behalf the consumer is invoking the producer and may only be resupplied for this
specific pair (the portletHandle is relaxed to one from a group for cookies
returned from initCookie () when
ServiceDescription.requiresInitCookie=perGroup.)

3.5 Life Cycle of a Remote Portlet

A remote portlet goes through a well defined life cycle. The steps of this life cycle that
are executed depend on which of the following scenarios is requested:

The portlet is simply being rendered (or re-rendered).
A user is interacting with the portlet (submitting a form, for instance).
An event is fired.

The portlet has render dependencies

3-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Life Cycle of a Remote Portlet

It is important to realize that these life cycle phases are decoupled from one another.
As explained later in this section, this decoupling has implications for developers
writing portlets hosted on producers. For example, you cannot expect a portal to
receive the same HTTP response or request for the render phase as it receives for an
interaction.

This section does not address the ways in which interceptors can influence the remote
portlet life cycle. Interceptors are consumer-side classes that intercept WSRP messages
and allow you to programatically take specific actions based on the content of those
messages. Interceptors are discussed in Chapter 9.

Tip: The information in this section informs many of the best
practices for developers discussed in Chapter 14, "Other Topics and
Best Practices.” It is particularly important for developers creating
portlets in a producer to understand the life cycle of a remote portlet.
By understanding this life cycle, you will avoid making unwarranted
assumptions and avoid common mistakes.

This section includes the following topics:

= Section 3.5.1, "Rendering a Remote Portlet"

Rendering occurs independently of user interaction in a remote portlet. The render
phase does not allow a remote portlet's state to change. It happens, for instance,
when a portal page is refreshed.

= Section 3.5.2, "Interacting With a Remote Portlet"

The interaction phase occurs when a user interacts with a remote portlet, for
example, by submitting a form or clicking a link.

= Section 3.5.3, "Rendering Versus Interaction"
This section summarizes the differences between rendering and interaction.
= Section 3.5.4, "Interportlet Communication with Events"

A third life cycle for remote portlets occurs when events are fired. Events provide
the best mechanism for interportlet communication between remote portlets.

= Section 3.5.5, "Retrieving Render Dependencies"

A fourth life cycle for remote portlets occurs a portlet deployed on a producer
includes render dependencies.

Tip: This section provides an overview of the remote portlet life
cycle phases. For an in-depth technical review of this subject, refer to
the white paper, Inside WSRP at
http://www.oracle.com/technology/pub/articles/dev2ar
ch/2005/03/inside_wsrp.html.

3.5.1 Rendering a Remote Portlet

A well defined series of steps occurs whenever a remote portlet is rendered in a
consumer portal. Anytime a portlet needs to be re-rendered in exactly the same state
(for example, if the user simply refreshes a page), the rendering phase is executed. If a
user directly interacts with a remote portlet, then a different phase, called the
interaction phase is triggered. The interaction phase is discussed in the next section.

With a typical (non-federated) web application, when you send a request to a JSP, for
instance, you receive back the markup for the requested page. In a federated portal,
the user is viewing a page that consists of markup fragments received from portlets

Federated Portal Architecture 3-9

Life Cycle of a Remote Portlet

hosted on producers (or, possibly a mix of local portlets and portlets deployed on
producers). The consumer's job is to contact the producers, retrieve their markup, and
render it in a unified portal page.

In Figure 3-5 a portlet exists on a producer, and a proxy for that portlet (a remote
portlet) has been created in a consumer portal. The sequence of steps needed to render
the portlet in the consumer are listed, and discussed in the following sections.

Figure 3-5 Rendering a Remote Portlet
Consumer Side

Render 1, Find producer

metadata

2. Collect portlet state
Collect cookies

Create SOAP message

‘.___

Proxy Portlet

1. Collect cookies
2. Collect session ID
Rewrite markup

(optional)
4. Write markup to
response

‘.__-

Producer Side
1. Set up servlet request and
response
2. Establish the session
3. Establish portlet state
4. Enable portal APl support
(optional)
5. Enable a URL rewriter
v
Generate
a markup
fragment
1. Collect markup
2. Collect session ID (if newly

created)

3.5.1.1 Initial Steps on the Consumer

To render a remote portlet, a consumer must first compose a SOAP message to send to
the producer. These initial steps include:

1. Find producer metadata.

The consumer's first job is to find the metadata for a producer. When a developer
or administrator creates a remote portlet, metadata about each producer is
received and stored internally by WebLogic Portal (on the consumer).

2. Collect the portlet state. The state consists of a view state and a navigational state:

» View state — This includes the mode (view mode or edit mode) and the state

(minimized or maximized).

= Navigational state — For example, if a user has already filled in a form and
submitted it, the navigational state reflects the fact that the user has moved
from page one to page two of the portlet. Knowledge of this state allows
remote portlets to be re-rendered correctly any number of times.

3. Collect all cookies.

Just as a browser acts as a client to a web server, a consumer acts as a client to a
producer. For example, a browser maintains cookies that keep track of sessions on
the server. In the same way, a consumer maintains cookies that keep track of the

3-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Life Cycle of a Remote Portlet

producer sessions for each user of the portal. For each user interacting with a
consumer, the consumer maintains one session with each producer.

Create a SOAP message.

All of the information gathered by the consumer must be formed into a SOAP
message and sent to the producer.

3.5.1.2 Initial Steps on the Producer

After the producer receives the SOAP message from the consumer, the producer must
take the following steps to render the requested portlet and return the portlet's
markup to the consumer.

1.
2.
3.

Set up servlet request and response objects.
Establish a session.
Establish the portlet state.

In steps 1, 2, and 3, the producer creates an HITP environment for the portlet.
Because the producer receives a SOAP request, and not an HTTP request, the
producer must take the information in the SOAP request and recreate the
appropriate HTTP environment for the portlet, including such things as the servlet
request and response objects, the session, and the portlet state.

Enable portal API support (optional).

The producer must decide whether or not to offer complex features. WebLogic
Portal has implemented WSRP extensions and optional interfaces. These
extensions and options allow WebLogic Portal producers to offer features such as
user management, entitlements, portlet preferences, and event handling. In some
cases, you may want to deploy a producer portal without these extra capabilities;
therefore, the producer must determine whether or not to enable them. For more
information on simple versus complex producers, see Section 3.4, "Understanding
Producers and Consumers".

Create a URL rewriter.

In a traditional web application, URLs in, for instance, JSP pages, always point to
the web server hosting the JSP page. In a federated portlet, URLs must always
point back to the consumer, not to the producer. This is because the producer
might, in fact, be inaccessible to the user clients. The producer may be located
behind a firewall, for instance. To properly manage URLSs, the producer contains
URL rewriters that know how to create URLs that are consumer oriented.

Tip: If you are developing portlets in a producer, always be sure to
use WebLogic Portal APIs and tags to create URLs. These APIs and
tags know how to generate URLs so that they function properly in a
federated environment. For more information, see Section 14.4, "Avoid
Coupling by URL".

Generate markup for the portlet.

At this stage, the producer renders the portlet. The producer may have created a
new session for the portlet or added new cookies. The producer collects all this
information and generates a response to the consumer.

Collect markup and the session ID (if one was created), and send this data back to
the consumer.

Federated Portal Architecture 3-11

Life Cycle of a Remote Portlet

3.5.1.3 Final Steps on the Consumer

The consumer receives from the producer markup fragments from the producer. The
consumer must take these fragments and compose them into a portal page that can be
displayed to the user. To do this, the consumer takes these final steps:

1. Collect cookies sent from the producer.
2. Collect the session ID for each portlet.
3. Rewrite markup (optional).

4. Write markup to the response.

This cycle repeats each time the portlet is rendered, as long as caching is not enabled
on the consumer.

3.5.2 Interacting With a Remote Portlet

Just as with the rendering life cycle described in the previous section, interaction with
a remote portlet follows a well-defined series of steps. Interaction occurs, for example,
when a user submits a form through a JSF portlet. Typically, a JSP on the producer
performs some background action, such as executing business logic, and prepares a
response.

As you will see, the steps taken for remote portlet interaction are similar to those taken
for simple rendering. The differences are highlighted in Figure 3-6 and described in
this section.

Tip: It is crucial to understand that the rendering and interaction
phases of the remote portlet life cycle are decoupled. This decoupling
has important consequences on how you develop portlets in a
producer. You cannot expect a portal to receive the same HTTP
response or request for the render phase as it receives after an
interaction. For more information on this and other practical advice,
see Chapter 14, "Other Topics and Best Practices."

3-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Life Cycle of a Remote Portlet

Figure 3-6 Remote Portlet Interaction Life Cycle
Consumer Side

1. Find producer
metadata

2. Collect portlet state
Collect cookies

Render

<.__-
'S

Producer Side
Set up serviet request and
response

Establish the session
Establish portlet state

Collect request Enable portal APl support
parameters (optional)
- 5. Create SOAP message Enable a URL rewriter
QD | - = = = = e e - - ——— -
T ¢ Invoke portlet action
o D Eran gt Process
>\ '\,‘e—h\cﬂ b E——
5 ——faw W= request
- Collect cookies :
& Collect session ID
Save portlet state
: changes
; 1. Collect changes to portlet state

2. Collect session ID (if newly
created)

3.5.2.1 Initial Steps on the Consumer

When a user interacts with a remote portlet, the consumer must first compose a SOAP
message to send to the producer. These initial steps include the following. Steps
highlighted in bold differ from the render phase described previously.

1. Find producer metadata.

2. Collect the portlet state.

3. Collect all cookies.

4. Collect request parameters.

Because the user is interacting with the portlet, the request parameters must be
collected and returned to the producer.

5. Create a SOAP message.

All of the information gathered by the consumer must be formed into a SOAP
message and sent to the producer.

3.5.2.2 Initial Steps on the Producer

After the producer receives the SOAP message from the consumer, the producer must
take the following steps to invoke the portlets action, generate markup for the
requested portlet, and return the portlet's markup to the consumer. Steps highlighted
in bold differ from the render phase described previously.

1. Receive the SOAP request from the consumer.

2. Create an HTTP environment for the portlet.

3. Decide whether or not to offer extended features.
4

Create a URL rewriter.

Federated Portal Architecture 3-13

Life Cycle of a Remote Portlet

5. Invoke the portlet's action.

In this step, the actions submitted by the consumer must be replayed on the
producer. The producer is not directly aware of where the request for this action
comes from. After the business logic is executed, a page must be prepared that
displays the results of the logic. For instance, if the user submitted a login form,
after a successful login, the portlet must return another page that tells the user that
the login was successful.

6. Collect changes to the portlet state.

After the request is processed, the producer must collect changes to the portlet's
state. This state is returned to the consumer in the form of a markup fragment that
can be collected and displayed for the end user.

7. Collect the session ID, if a new session was created.
8. Sends the markup back to the consumer.

These steps are the same as for the render phase described previously.

3.5.2.3 Final Consumer Steps
Steps highlighted in bold differ from the render phase described previously.

1. Collect cookies.
2. Collect the session ID for each portlet.
3. Save portlet state changes.
Portlet state information is maintained on the consumer.
4. Rewrite markup (optional)
5. Write markup to the response.

This cycle repeats each time the portlet is rendered, as long as caching is not enabled
on the consumer.

3.5.3 Rendering Versus Interaction

Both the rendering and interaction phases are available to any remote portlet. The
render phase is required in cases where the user does not directly interact with a
portlet, but the portlet needs to be refreshed anyway. For instance, if a user interacts
with one portlet on a page, she doesn't want the other portlets on the page to change
or disappear.

Because the render phase is not always driven by a user's interaction, it is idempotent
(the producer returns the same portlet state that the consumer submits). This makes
sense, because if you simply refresh a page, you do not want to regenerate data from a
database. Likewise, in the render phase, mode and state changes are not allowed.

Tip: Separate rendering and interaction phases are not unique to
remote portlets; local portlets incorporate a rendering and interaction
phase as well.

Table 3-3 summarizes the characteristics of these two phases. These two phases are
decoupled so that a portlet's state can only change if you interact with it. If, for
instance, you submit a form from Portlet A, and then interact with Portlet B in the
same portal page, you do not want the state or view of Portlet A to change when it is
refreshed. A portlet's state must only change if you interact with it directly. The

3-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Life Cycle of a Remote Portlet

interaction phase is always driven by user interaction, while the render phase can
happen any number of times and is driven arbitrarily.

Table 3-3 Render Versus Interaction for Remote Portlets

Render Phase Interaction Phase

Focus on presentation (view) Focus on business logic (controller)
May be replayed several times Driven by user interaction
Idempotent Non-idempotent

= No state/mode changes = Can ask for mode/state changes
= No changes to portlet preferences = Can change portlet preferences
= Cannot redirect the user Can redirect users

Generates markup Optionally generates markup.

3.5.4 Interportlet Communication with Events

To facilitate interportlet communication with events, WebLogic Portal extended the
WSRP protocol to add a third phase in the remote portlet life cycle. This extension
allows a portlet to fire an event during its interaction phase. You can register events
with remote portlets; however, when a proxy portlet receives an event, it cannot
process it locally because it is a proxy. The remote portlet must send the event to the
producer for processing. The portlet on the producer then fires the event and the
producer handles it as appropriate.

Note: The WebLogic Portal IPC framework is location independent.
This means that the framework is not concerned with where an event
originated. Portlets in consumers and producers can both listen for
and fire events.

Federated Portal Architecture 3-15

Summary of Federated Portal Architecture

Figure 3—7 Event Handling Phase

Event(s)

47

Consumer Side Producer Side

1. Set up servlet request and
response

Event 2. Establish the session

3. Establish portlet state
Enable portal APl support
(optional)

5. Enable a URL rewriter

Populate event chain
@
T ¢ Invoke event handler(s)
o | " T~ 7—~7 T —
o SOAP D
>
X | - —-- Handle
nE.’ event(s)

Collect cookies
Collect session ID

Save portlet state
changes

Fire events

Collect changes to portlet state
7. Collect events.

This phase is similar to the interaction phase. The primary difference is that in the
interaction phase, the portlet gets the user interaction data and in response it changes
the navigational state of the portlet. The portlet can also fire events.

In the event processing phase, the portlet does not receive a user interaction; rather, it
always gets an event fired by another component. In response to the event, the
producer can change the state of the portlet and can generate more events, which are
stored in an event chain. If it generates events, then the cycle repeats.

3.5.5 Retrieving Render Dependencies

WebLogic Portal allows you to specify certain dependencies associated with
individual portlets. Dependencies typically include Cascading Style Sheets (CSS files)
and script files, such as JavaScript (JS) files. Portlet dependencies are configured in an
XML file that is referenced in a . portlet file. The dependencies file explicitly lists the
CSS and script files upon which the portlet depends.

WebLogic Portal has extended the WSRP protocol to allow remote portlets to retrieve
render dependencies from producers.

3.6 Summary of Federated Portal Architecture

In summary, WebLogic Portal applications can act as consumers and/or producers.
WebLogic Portals are configured to handle:

s Communication with multiple producers

» Federation from producers running WebLogic Server or other non-WebLogic
Portal applications.

3-16 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Summary of Federated Portal Architecture

= Aggregation of remote portlets

= Addition of personalization, customization, security management, look and feel,
and other typical WebLogic Portal features to remote portlets

» Displaying remote portlets to end users as rendered HTML content

Figure 3-8 shows a sequence diagram depicting the flow of actions between end users,
consumers, and producers. This diagram highlights the notion that a consumer acts as
an intermediary between a producer and an end user.

Figure 3-8 WSRP Sequence Diagram

End User Consumer Producer

1. The Consumer discovers
a Producer

2. The Consumer and Producer
relati hip is established

3. The Consumer learns all the
capabilities of a Producer

4. The Consumer
creates a proxy
portlet

5. The end-user accesses a
Consumer

6.The Consumer aggregates
pages, often with portlets,
for users

7. The end-user sends a page
request to a Consumer

8. The Producer responds
with portlet markup and/or
some portlet state

9. The Consumer aggregates the
portlet markup in a portal page and

sends it to the end-user's browser

Federated Portal Architecture 3-17

For More Technical Details

3.7 For More Technical Details

If you are interested in learning more about the technical details of the WebLogic
Portal implementation of WSRP, you can refer to the following:

s Inside WSRP at
http://www.oracle.com/technology/pub/articles/dev2arch/2005/0
3/inside_wsrp.html

This Oracle white paper discusses in detail the messaging that occurs between
consumers and producers and highlights best practices for developers writing
portlets that will be hosted on producers.

m WSRP v.1.0 Primer at http://www.oasis-open.org/committees/wsrp.

The purpose of this document is to provide a tutorial-oriented explanation of the
main concepts of the WSRP 1.0 specification. This document is maintained by
OASIS, the Organization for the Advancement of Structured Information
Standards. OASIS is responsible for creating the WSRP standard.

n Web Services for Remote Portlets Specification Version 1.0 at
http://www.oasis-open.org/committees/wsrp.

This is the official specification for WSRP version 1.0. This document was also
created by and is maintained by OASIS.

3-18 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Part li

Development

Some of the tasks described in this chapter require you to use Oracle Enterprise Pack
for Eclipse features to create remote portlets, implement interportlet communication,
and create interceptors. Some features, such as interceptors, require Java coding
expertise. Other features, such as user profile mapping, require you to edit
configuration files.

For a detailed description of the development phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part II contains the following chapters:

Chapter 4, "Creating Remote Portlets, Pages, and Books"
Chapter 5, "Configuring Remote Portlets"

Chapter 6, "Offering Books, Pages, and Portlets to Consumers"
Chapter 7, "Interportlet Communication with Remote Portlets"
Chapter 8, "Configuring a WebLogic Server Producer”
Chapter 9, "The Interceptor Framework"

Chapter 10, "Federating User Profiles"

Chapter 11, "Consumer Entitlement"

Chapter 12, "Transferring Custom Data"

Chapter 13, "WSRP Interoperability With WebCenter Framework"
Chapter 14, "Other Topics and Best Practices”

4

Creating Remote Portlets, Pages, and Books

This chapter focuses on how to use Oracle Enterprise Pack for Eclipse to create and
configure remote portlets, pages, and books. This chapter includes the following
sections:

s Section 4.1, "Introduction”
» Section 4.2, "What Types of Portlets Can Be Remote?"
» Section 4.3, "Creating a Remote Portlet"

= Section 4.4, "Creating Remote Pages and Books"

4.1 Introduction

Before getting started, we recommend that you review the following chapters in the
architecture part of this guide:

» Chapter 2, "What are Federated Portals?"
» Chapter 3, "Federated Portal Architecture”

.These chapters explain basic concepts such as producers, consumers, and remote
portlets, pages, and books. This chapter assumes you familiar with these concepts.

4.2 What Types of Portlets Can Be Remote?

WebLogic Portal applications can consume the following types of portlets:
= JSP (JavaServer Pages) portlets

= JSF (JavaServer Faces) portlets

= Java portlets (supported only for complex producers)

= Page flow portlets

= Struts portlets

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations” in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Creating Remote Portlets, Pages, and Books 4-1

Creating a Remote Portlet

To be consumable, a portlet must be deployed to a web application that is running in a
WSRP-compliant producer. The consumer application must also be capable of
contacting the producer using the producer's WSDL URL.

4.3 Creating a Remote Portlet

This section presents a step-by-step example showing you how to create a remote
(proxy) portlet in a consumer application using Oracle Enterprise Pack for Eclipse.
This section includes the following topics:

s Section 4.3.1, "Overview"

= Section 4.3.2, "Setting Up the Example"

m Section 4.3.3, "Locating and Consuming a Portlet"
= Section 4.3.4, "Viewing the Portlet"

s Section 4.3.5, "Summary"

4.3.1 Overview

For this example, you will consume a portlet deployed in a producer application. The
producer application in this example is a Portal Web application deployed to a
WebLogic Portal Domain.

Tip: For information on working with a producer that is running in a
WebLogic Server domain (as opposed to a WebLogic Portal Domain),
see Chapter 8, "Configuring a WebLogic Server Producer.”

The basic procedure for creating remote portlets is fairly simple: Oracle Enterprise
Pack for Eclipse provides a convenient wizard for this purpose. No programming is
required. The basic steps always include:

1. Locating a producer.
2. Selecting a remote portlet on the producer.
3. Consuming the portlet.

Figure 4-1 illustrates the basic parts of a federated portal, where the consumer
includes a remote portlet. A remote portlet is a proxy for a portlet that is deployed in a
producer application.

Tip: To an end user, the features of the remote portlet are
indistinguishable from the actual portlet deployed on the producer. It
is possible, however, to customize many of the properties of a proxy
portlet, as explained in Chapter 5, "Configuring Remote Portlets."

4-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Creating a Remote Portlet

Figure 4-1 Remote Portlet in a Consumer

Consumer

WebLogic
Portal
Domain

Remote B

WSRP

Producer

WebLogic
Portal
Domain

Local

Portlet |«
|

4.3.2 Setting Up the Example

If you want to try the example discussed in this section, you need to run Oracle
Enterprise Pack for Eclipse and perform the prerequisite tasks outlined in this section.

v

Portlet

To set up the example environment, perform the prerequisite tasks outlined in
Table 4-1. If you are not familiar with the specific procedures for these tasks, they are
described in detail in Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

Table 4-1 Prerequisite Tasks

Task

Recommended Name

Create a WebLogic Portal domain.

consumerPortalDomain

Create a Portal EAR Project. portalEarProject
Create an Oracle WebLogic Server v10.x. N/A

Associate the EAR project with the server. N/A

Create a Portal Web Project and add it to the EAR. consumerProject

Create a portal.

consumer .portal

Figure 4-2 shows the Project Explorer after the prerequisite tasks have been
completed.

Figure 4-2 Project Explorer After Prerequisite Tasks are Completed

r- Project Explorer X

-’y

+ |§] Deployvment Descriptar: consumerProject
'8 Weblogic Deployment Descriptor

T

T
T

Package Explarer | Mavigator | Mergg

=-&= consumetProject

7 Java Resources
L= build
= WwebContent

-l META-INF
-l WEB-INF

Portal file

[cons
=] index.is

- porkalE arProjeck

FE a ™ ~

NP R S

Creating Remote Portlets, Pages, and Books 4-3

Creating a Remote Portlet

4.3.3 Locating and Consuming a Portlet

1. Be sure you have set up the example environment as explained previously in
Section 4.3.2, "Setting Up the Example".

2. Open the consumerProject folder in the Project Explorer, right-click on the
WebContent folder, and select New > Portlet.

Tip: If you do not see the Portlet feature on the New menu, be sure
to open the Portal perspective using Window > Open Perspective >
Portal.

3. Inthe New Portlet dialog, enter remoteExample.portlet in the File name
field, and click Finish. The Select Portlet Type dialog appears.

4. In the Select Portlet Type dialog, select Remote Portlet, as shown in Figure 4-3,
and click Next. The Portlet Wizard — Producer dialog box appears.

Figure 4-3 Select Portlet Type Dialog

Ml Portlet Wizard - Select Portlet Type El
Steps: Select Portlet Type
L Select Portlet Type Select the bype of portlet ywou want to include in your portal,
A

() J5P{HTML Partlet

() Java Portlet

() Java Server Faces {J5F) Partlet
() Browser (URL) Portet

() Web Clipper Partlet

Qﬁemote Partlet

|Create a proxy portlet for a portlet offered by a WSRP Producer. |

[[] Show &l Partlet Types

Create a proxy portlet for a portlet offered by a WSRP Producer,

5. In the Portlet Wizard — Producer dialog, select Find Producer and, in the field
provided, enter a WSDL URL. For example:

http://wsrp.bea.com/portal/producer?wsdl

Just remember that the pattern for the URL is as follows:
http://host:port/webAppName/producer?wsdl

where host is the host and port are the hostname and port number of the server
on which the producer is deployed, and webAppName is the name of the web
application in which the producer's portlets are deployed.

Tip: If the producer was previously added to the consumer, it will

appear in the Select Producer list, and you can simply choose Select
Producer and select the producer from the list.

4-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Creating a Remote Portlet

Tip: WSDL stands for Web Services Description Language and is
used to describe the services offered by a producer. For more
information, see Chapter 3, "Federated Portal Architecture.”

Figure 4-4 Entering the WSDL

M Portlet Wizard - Producer,

X

Steps: .
“ Find Producer

1. Select Portlet Type

2. Producer Enter the WSDL associated with the producer of remote
3. Select Portlet From List portlets,

4. Proxy Portlet Details
|http i/ jwsrp.bea,comfportal/producer?wsdl Retrieve

© Select Producer

| =

Producer Details

Mo producer selected

Previous | | Cancel

6. After entering the WSDL URL, click Retrieve.

Checkpoint: At this point, the consumer uses the WSDL to locate the producer
and learn about its available portlets. The Producer Details section of the wizard
panel now displays information about the producer, including the number of
portlets that are available to the consumer, as shown in Figure 4-5.

7. Click Register in the Producer Details section of the wizard panel, as shown in
Figure 4-5. The Register dialog appears.

Tip: During registration, the producer stores information about the
consumer and returns a handle to the consumer. Registration is an
optional feature described in the WSRP specification. A WebLogic
Portal complex producer implements this option and, therefore,
requires consumers to register before discovering and interacting with
portlets offered by the producer. See Section 3.4.2.2, "Complex
Producers" for more information.

Creating Remote Portlets, Pages, and Books 4-5

Creating a Remote Portlet

Figure 4-5 Producer Details

I Portlet Wizard - Producer rz|
St H :
— & Find Producer
1. Select Portlet Type
2. Producer Enter the WSDL associated with the producer of remote
3. Select Portlet From List portlets.

4, Proxy Portlet Details

|http i/ jwsrp.bea,com|portal/producer?wsdl Retrieve

« Select Producer

| =
Producer Details
Requires Init Cookie : perGroup
Requires Registration @ Erue
MNumber of available portlets : 4
Registration Handle : Mot registered Register
Previous | | | Cancel |

8. In the Register dialog, enter beaProducer in the Producer Handle field, as shown
in Figure 4-6. This handle identifies the producer on the consumer. This dialog
also lets you choose to store registration properties on the consumer and (if
available) edit the registration properties Registration properties are values that
are passed from the consumer to the producer when the producer is registered.
These values can be used to allow producers to control which portlets are offered
to specific consumers. For detailed information storing registration properties, see
Chapter 14, "Other Topics and Best Practices."

Figure 4-6 Registering the Producer

X

Register,

Producer Handle: | beaProducer |

Vendor (optional): | |

Description (optional):

Extended Registration Properties:

Mo extended properties ko edit

Store registration properties in local registry

9. Click Register. You are returned to the Producer dialog.

Checkpoint: At this point the WSDL data from the producer has been retrieved
and is displayed in the Producer Details panel of the dialog, as shown in
Figure 4-7. Note that four portlets on the producer are available to the consumer.

4-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Creating a Remote Portlet

Figure 4-7 Registration Information

M Porilet Wizard - Produger

Steps : :
— ¢ Find Producer
1, Select Portlet Type
2. Producer
3, Select Portlet From Lisk
4, Prowy Portlet Details

Enter the WSDL associated with the producer of remote
portlets,

\http:n‘wsw p.bea.com/portaliproducer?wsdl

Relrizve

~ Select Producer
| [

Producer Dektails

Requires Init Cookie ¢ perGroup

Requires Registration © trus
Number of available portlets : 4

Registration Handle : 26151

Previous ‘ et

Cancel

- Registration
Information

10. Click Next to proceed.

11. In the Select Portlet from List dialog, select one of the remote portlets from the list
of portlets on the producer, as shown in Figure 4-8. You can pick any one of them.

Figure 4-8 Select a Portlet on the Producer

Ml Portlet Wizard - Select Portlet From List

Steps:

Select Portlet From List

. Select Portlet Type

X

. Producer

|BEn: Double Byte |po|'t|et_9

BEA: Download WebLogic Portal 8.1

1
2
3. Select Portlet From List
4, Proxy Portlet Details

Portlet Details

Title BEA: Racing!
Shart: Title BEA: Racing!
Display Name BEA: Racing!

Portlet Handle portlet_g

Previous | Mext |

Cancel |

12. Click Next. The Proxy Portlet Details dialog appears. The title of the portlet you
selected appears in the Portlet Title field, as shown in Figure 4-9. You can change

this title if you want to.

Creating Remote Portlets, Pages, and Books 4-7

Creating a Remote Portlet

Note:

If the producer does not require registration, the Producer's

Handle field will appear editable and initialized. In this case, you
must enter an arbitrary value for the producer handle before the

Create button will be enabled.

Figure 4-9 The Proxy Portlet Details

M Porilet Wizard - Proxy Portlet Details @

Steps :

1. Seleck Portlet Type

2. Producer

3, Select Portlet From List
4. Proxy Portlet Details

Portlet Title

Producer's Handle

Portlet Handle

Templates Stored In Session

Previous

Proxy Portlet Details

Does URL Template Processing |t|'ue

|BEA: Racing!

|beaP|‘oducer

|portlet_8

|t|'ue

| Create | Cancel

13. Click Create.

The new remote portlet shows up in the Project Explorer in the WebContent

folder, as shown in Figure 4-10.

Figure 4-10 Remote Portlet

Package Explorer | Mavigatar | Merg

e =

=& consumerProject

'Ex Deployment Descriptor: consumerProject
[WeblLogic Deployment Descripkar
28 Java Resources
== build
== WebContenk

= META-INF

= WEE-INF

[07] consumer, portal

index.jsp

Portlet File

remoteExample portlet
= portalEarProject
it B ot Boems B -

Mu*'\i!\\ﬂ“**

TR e e

4.3.4 Viewing the Portlet

To view the portlet, you need to add it to the consumer portal, as explained in this

section.

1. Ifitis not already open, open the consumerProject/ WebContent folder.

2. Double-click the file consumerPortal.portal in WebContent folder. The portal
editor appears in Oracle Enterprise Pack for Eclipse.

4-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Creating a Remote Portlet

3. Drag the remoteExample.portlet file from the Project Explorer to the portal.
The result is shown in Figure 4-11.

Figure 4-11 Remote Portlet Placed in Portal

consumer porkal X =0

Mew Portal Desktop

Header

Book: Main Page Book:

["] Page 1
Page: Page 1

remoteExample

| Footer |

4. To test the portal, right-click the portal filename, remoteExample.portlet, in the
Project Explorer, and select Run As > Run On Server. The New Server — Define a
Server dialog appears.

5. In the Run On Server — Define a New Server dialog, be sure the Oracle WebLogic
Server v10.x is selected, and click Finish.

6. The portal containing the remote portlet appears in a browser, as shown in
Figure 4-12.

Creating Remote Portlets, Pages, and Books 4-9

Creating Remote Pages and Books

Figure 4-12 Federated Portal

= Workshop Test Browser

- =+ @ < ||http:,l’,l’localhost:?DDI,l’consumer,l’consumer.portal

Page 1

BEA: Racing!

Click the link below to start a series of BEA racing
pictures.

start

Pictures are a courtesy of Skip Sauls.

4.3.5 Summary

In this section you added a remote portlet to a WebLogic Portal consumer application.
The consumed portlet is a proxy for a portlet that is deployed in a remote producer
application. In addition to the basic setup steps, this example demonstrated the
following tasks:

= Discovering the producer using its WSDL URL
= Registering the producer

= Selecting a portlet from the producer

= Adding the remote portlet to a consumer portal

= Running a consumer portal

4.4 Creating Remote Pages and Books

The primary advantage of remote books and pages is that they act as containers for
other remote resources. For example, a producer can offer a remote book that contains
several remoteable pages, each of which contain multiple remoteable portlets. When
you consume that book, the remoteable pages and portlets it contains are consumed as
well—no additional steps are required.

Tip: The term remoteable refers to a book, page, or portlet that is
deployed in a producer application and that is offered as remote to
consumers. Application developers decide whether or not books,
pages, and portlets they create are offered as remote.

For detailed information on creating remoteable pages and books in a producer
application, see Chapter 6, "Offering Books, Pages, and Portlets to Consumers." If a
remote book or page does not appear as you expect it to, see Section 6.4, "Rules for
Creating Remoteable Books and Pages".

4-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Creating Remote Pages and Books

Remember that changes you make to a remote book or page are not reflected back to
the producer; therefore, after a remote book or page is modified on the consumer, it
can become inconsistent with the original book, page, or portlet in the producer
application.

You can add remote books and pages to your portal as you would any other book or
page.

4.4.1 Basic Procedure

The procedure for creating a remote page or book is similar to the procedure for
creating a remote portlet.

Tip: This example explains how to create a remote page. The
procedure for creating a remote book is similar.

1. Select File > New > Other.

2. In the New dialog, select Remote Page (or Remote Book), as shown in
Figure 4-13, and click Next.

Figure 4-13 Creating a New Remote Page

Select a wizard p—

Create a new Portal {(Remote) Page |

‘Wizards:

| bype filker bext

{Gb Portal EAR Project -
@ Paortal Web Project

Partlet

E'é Propagation Session

ﬂ Remate Book

2 Rule 5
3 shel
&} User Segment
(= Commerce .

[5how &l wizards,

3. Inthe New Remote Page dialog, select a folder in which to place the resulting
.page file, and give the file a name, as shown in Figure 4-14, and click Next.

Creating Remote Portlets, Pages, and Books 4-11

Creating Remote Pages and Books

Figure 4-14 Creating a Remote Page File

W New Remote Page le

New Remote Page
A remote page is an aggregation of inlined portlets andfor embedded
books, The remote page is defined by a WSRP producer,

Enter or select the parent folder:

my'Web/WebContent

(=51
£ % myEar
= g myieh
(= .apt_src
(= .settings
(= build
& src
==
(= METLRINF
(= WEB-INF

File name: | myRemotePage

4. In the Page Producer dialog, select Find Producer and, in the field provided, enter

the WSDL URL of the producer, as shown in Figure 4-15:
The pattern for the WSDL URL is as follows:

http://host:port/webAppName/producer?wsdl

where host and port are the hostname and port number of the server on which
the producer is deployed, and webAppName is the name of the web application in

which the producer's remoteable pages and books are deployed.

Tip: If the producer was previously added to the consumer, it will
appear in the Select Producer list, and you can simply choose Select
Producer and select the producer from the list.

5. After entering the WSDL URL, click Retrieve.

Checkpoint: At this point, the consumer uses the WSDL URL to locate the
producer and learn about its available remoteable pages. The Producer Details
section of the wizard panel now displays information about the producer,

including the number of pages that are available to the consumer, as shown in
Figure 4-15.

6. Click Register in the Producer Details section of the wizard panel, as shown in
Figure 4-15. The Register dialog appears.

4-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Creating Remote Pages and Books

Figure 4-15 Producer Details

W Mew Remote Page
Page Producer ﬂ 1

Specify a WSRP producer of the remote pages either by providing the url of a
W3DL or choosing a producer From the project WSRP registry,

® Find Producer

Enter the WSDL associated with the producer of remote book or page.

| http: filocalhost: 7001 fryWebjproducer fyesd| | [Retrieve]

O select Producer

Producer Details

Requires Init Cookie : perGroup
Requires Registration @ true
Mumber of available pages : 1

Registration Handle : Mot registered

Tip: During registration, the producer stores information about the
consumer and returns a handle to the consumer. Registration is an
optional feature described in the WSRP specification. A WebLogic
Portal complex producer implements this option and, therefore,
requires consumers to register before discovering and interacting with
books and pages offered by the producer. See Section 3.4.2.2,
"Complex Producers" for more information.

7. In the Register dialog, enter a handle name in the Producer Handle field, as shown
in Figure 4-6. This handle identifies the producer on the consumer.

Figure 4-16 Registering the Producer

Register

X

Producer Handle: | beaProducer |

Vendor (optional): | |

Description {optional):

Extended Registration Properties:

Mo extended properties to edit

Store registration properties in local registry

8. Click Register. You are returned to the New Remote Page-Page Producer dialog.

Creating Remote Portlets, Pages, and Books 4-13

Creating Remote Pages and Books

Checkpoint: At this point the WSDL data from the producer has been retrieved
and is displayed in the Producer Details panel of the dialog.

9. Click Next to proceed.

10. In the Select Page from List dialog, select one of the remote pages from the list of
pages offered by the producer, as shown in Figure 4-8, and click Next.

Figure 4-17 Select a Page on the Producer

Mew Remote Page

Select Page from List ﬂ 1
Select a page from the list of pages offered by the producer, | |

Handle Title
G pageZ_page Page 1

B3
|

11. The Remote Page Details dialog appears. The title of the page you selected appears
in the Page Title field, as shown in Figure 4-9. You can change this title if you want

to.

Note: If the producer does not require registration, the Producer's
Handle field will appear editable and uninitialized. In this case, you
must enter an arbitrary value for the producer handle before the
Finish button will be enabled.

4-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Creating Remote Pages and Books

Figure 4-18 The Remote Page Details Dialog

Remote Page Details

Wiew/Change details about the selected WSRP producer and | |

page.

Page Title : | Page 1

Producer's Handle : | beaProducer

Page Handle : | pagez_page

@ Mext = Finish H Cancel

12. Click Finish.

The new remote page shows up in the Project Explorer in the folder you selected.
The page appears as a .page file, for example,

/WebContent /myRemotePage . page. You can now add the remote page to your
portal. Any remoteable portlets on the page will show up in the remote page as
inlined portlets. For more information on remoteable portlets, pages, and books as
remote, see Chapter 6, "Offering Books, Pages, and Portlets to Consumers." For
information on inlined portlets, see the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

Creating Remote Portlets, Pages, and Books 4-15

Creating Remote Pages and Books

4-16 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

O

Configuring Remote Portlets

This chapter discusses ways you can modify and configure remote portlets within
Oracle Enterprise Pack for Eclipse.

This chapter includes the following sections:

= Section 5.1, "Applying a Look and Feel to a Remote Portlet"

= Section 5.2, "Modifying Modes and States in a Remote Portlet"
= Section 5.3, "Handling Errors in Remote Portlets"

= Section 5.4, "Setting Preferences on a Remote Portlet"

» Section 5.5, "Using Backing Files with Remote Portlets"

» Section 5.6, "Setting a Timeout Value on a Remote Portlet"

= Section 5.7, "Modifying WSRP Markup and Messages"

= Section 5.8, "Remote Portlet Properties"

5.1 Applying a Look and Feel to a Remote Portlet

The look and feel of a portlet determines the appearance of a portlet on the portal
desktop. A remote portlet's look and feel is not linked to a producer, giving you the
option of modifying the portlet's appearance on the consumer. This capability allows
you to match the appearance of the consumer portal in which the proxy portlet
resides.

Specific procedures for applying a look and feel to a portlet are documented
elsewhere. Please refer to the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal for detailed information on these topics:

s Creating Look and Feels

» Look and Feel Architecture

» The Portal User Interface Framework

= How Look and Feel Determines Rendering
» Style Sheet Class Reference

s Creating Skins and Skin Themes

s Creating Skeletons and Skeleton Themes

Configuring Remote Portlets 5-1

Modifying Modes and States in a Remote Portlet

5.2 Modifying Modes and States in a Remote Portlet

This section explains how to modify a remote portlet's modes and states and includes
these topics:

s Section 5.2.1, "What are Modes and States?"
m Section 5.2.2, "Modes and States in Remote Portlets"

= Section 5.2.3, "Changing Modes and States in Remote Portlets"

5.2.1 What are Modes and States?

A portlet's title bar can contain up to six buttons. These buttons provide convenient
functions called modes and states.

Figure 5-1 shows an example portlet with all of the modes and states enabled.

Figure 5-1 Portlet with Modes and States

Minimize Edit Float Delete Maximize Help

}\ T iy

Modes and StatesZ]EE|[EE[?]

This portlet includes all of the
mades and states.

PV V. W

The modes include:

» Edit - Activates a custom file that lets you modify the portlet's content.
= Help - Activates a help file.

The states include:

= Minimize — Minimizes the portlet.

= Maximize — Maximizes the portlet.

s Delete — Removes the portlet from the portal.

= Float - Displays the portlet in a separate window.

For more detailed information on modes and states, how they work, and how to add
and configure them in portlets, refer to the Portlet User Guide.

5.2.2 Modes and States in Remote Portlets

Table 54 describes how states are transferred by default from a portlet deployed on a
producer to its remote proxy in a consumer application. The table also indicates
whether or not the state is editable in the remote portlet.

5-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Modifying Modes and States in a Remote Portlet

Table 5-1 Default Behavior of States in Remote Portlets

State of Producer Portlet Default State of Proxy Portlet Is the Proxy Portlets's State Editable?
Delete = true Delete = true No
Delete = false Delete = false No
Maximize = true Maximize = true No
Maximize = false Maximize = false No
Minimize = true Minimize = true No
Minimize = false Minimize = false No
Float = true Float = true No
Float = false Float = false No

Table 54 describe how modes are transferred by default from a portlet deployed on a
producer to its remote proxy in a consumer application. The table also indicates
whether or not the mode is editable in the remote portlet. For instance, if the Help
mode is set in the portlet deployed on the producer, it is also set in the remote proxy;
however, you cannot remove it from the remote proxy. On the other hand, if Help is
not set in the portlet deployed on the producer, you are free to add it to the remote
portlet.

Table 5-2 Default Behavior of Modes in Remote Portlets

Mode of Producer Portlet Default Mode of Proxy Portlet Is the Proxy Portlets's Mode Editable?
Help = true Help = true No
Help = false Help = false Yes
Edit = true Edit = true No
Edit = false Edit = false Yes

Note: Both the help and the edit mode each reference a file that
provides appropriate content for those actions. For example, the help
mode references a help file. For these modes to work in a proxy
portlet, the files they reference must exist on the consumer in the same
relative location as they exist on the producer system.

5.2.3 Changing Modes and States in Remote Portlets

All of the modes and states that are available in local portlets are available in their
remote proxies. Note, however, that when you create a remote portlet, it is not
possible to edit (add or remove) all of the modes and states in the remote portlet. In
addition, the Float state is always turned off in a remote portlet by default; however,
you are free to add it to the remote portlet in the consumer application if you wish.

The procedure for changing the default mode and state settings in a remote portlet is
the same as with a local portlet.

1. Double-click the portlet file in the Package Explorer view to open it in the editor.

2. Click in the header portion of the portlet in the editor, as shown in Figure 5-2. This
opens the Portlet Titlebar properties in the Properties view, as shown in Figure 5-3

Configuring Remote Portlets 5-3

Handling Errors in Remote Portlets

Figure 5-2 Click in the Header of the Portlet

BEA: Racing! ——— Click here to Open
the Mode and State
Property Editor

Portlet Modes #

3. Click on the Portlet Titlebar values to change them.

Figure 5-3 Header Properties View

outline | £ Properties 52 E‘

Property | Value

=| Portlet Titlebar 4
Can Delete false L
Can Float false *
Can Maximize false ‘:‘
Can Minirize: false a
Edit Path ;
Help Path
Icon Path {

—| Presentation Properties 4
Presentation Class }
Presentation ID -
Presentation Style ;.
Properties £
Skeleton LRI %

b - - - . > 4 -~ » r - ot

5.3 Handling Errors in Remote Portlets

Under some circumstances, a remote portlet may be unable to access its producer. In
this case, the consumer throws an exception. This section explains how to handle this
exception by displaying an error page.

There are two ways to configure an error page for a remote portlet to be displayed if
the remote portlet is unable to connect to its producer. You can configure the page in
Oracle Enterprise Pack for Eclipse or in the remote portlet's XML file.

Tip: For finer control of error handling, consider using interceptors.
The interceptor framework is described in Chapter 9, "The Interceptor
Framework."

This section includes these topics:

= Section 5.3.1, "Configuring an Error Page in Oracle Enterprise Pack for Eclipse"

= Section 5.3.2, "Configuring an Error Page in the .portlet File"

5.3.1 Configuring an Error Page in Oracle Enterprise Pack for Eclipse

To configure an error page for a remote portlet using Oracle Enterprise Pack for
Eclipse:

1. In Oracle Enterprise Pack for Eclipse, display the Outline view for the remote
portlet. To do this, select Window > Show View > Other. In the Show View
dialog, select Basic > Outline.

5-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Handling Errors in Remote Portlets

2. In the Outline View, click Proxy Content, as shown in Figure 5-4.

Figure 5-4 Selecting the Proxy Content Node

Properties laz % | B =

== Prowy Portlet
+ Titlebar
Pro:

e bt i b £

3. Click the Properties tab to display the Properties view for the Proxy Content. This
view contains one property, Error URI, as shown in Figure 5-5.

Figure 5-5 Entering the Error Filename

Outline ExEEBEYTH
Property Value 3

= Proxy Conkent

4
Error URI ,'Brrors,l’nDCDnnection.jsp o -ﬂ
.
-

4. In the Error URI field, enter (or browse to) the name of the error file you want to
associate with the portlet. The portlet displays this page in the event of an error.

The Error URI specifies a file path that is relative to the project in which the
remote portlet is located.

5.3.2 Configuring an Error Page in the .portlet File

You can also configure an Error URI in a remote portlet's . portlet file. To do this,
open the .portlet file and add the following element, where the value of the
errorUri attribute is the name of the error file to be displayed:

<netuix:proxyPortletContent errorUri="errorFileName.jsp"/>

The errorURI attribute specifies a file path that is relative to the project in which the
remote portlet is located.

Example 5-1 shows the complete XML file for a remote portlet, with an example
<netuix:proxyPortletContent> element highlighted in bold.

Example 5-1 Remote Portlet XML File

<?xml version="1.0" encoding="UTF-8"?>
<portal:root
xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0
portal-support-1_0_0.xsd">

<netuix:proxyPortlet
cacheExpires="300" definitionLabel="portlet_5_1" description=""
doesUrlTemplateProcessing="true" forkRender="false"
forkable="false" groupId="Consumer" portletHandle="portlet_ 5"

Configuring Remote Portlets 5-5

Setting Preferences on a Remote Portlet

producerHandle="consumerProducer" renderCacheable="true"

templatesStoredInSession="true" title="Remote Preferences">

<netuix:titlebar><netuix:maximize/><netuix:minimize/></netuix:titlebar>

<netuix:proxyPortletContent errorUri="error.jsp"/>
</netuix:proxyPortlet>

</portal:root>

5.4 Setting Preferences on a Remote Portlet

Portlet preferences function in remote portlets in much the same way as they do in
local portlets. Just as with local portlets, remote portlets can take advantage of portlet
preferences to allow users to customize the presentation of the portlet.

This section discusses the use of portlet preferences in remote portlets and includes
these topics:

s Section 5.4.1, "What is a Portlet Preference?"
s Section 5.4.2, "Portlet Preferences and Remote Portlets"

= Section 5.4.3, "Managing Portlet Instances through Registration”

Note: This section assumes that you are familiar with the concept of
a portlet preference and how to create and configure portlet
preferences. If you are unfamiliar with portlet preferences, see the
Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic
Portal.

5.4.1 What is a Portlet Preference?

Portlet preferences allow portlets to modify, store, and access pre-defined String
values. When these preference values are retrieved by a portlet, they typically affect
the way the portlet is displayed for a given user. For example, a stock portfolio portlet
might allow users to specify which stocks they want to view. Through a user interface,
users select or enter which stocks they want to view in the portlet. The list of stocks is
then passed to the server and stored in the database for that particular user. As long as
a portlet preference is modifiable, and an interface is provided for editing preferences,
every user of a portlet can configure his or her own personal view of the portlet.

A clearly defined API exists for setting and retrieving preferences. Developers can
create preferences in Oracle Enterprise Pack for Eclipse, and administrators can create
and edit preferences using the WebLogic Portal Administration Console.

5.4.2 Portlet Preferences and Remote Portlets

5-6

In a federated configuration, the producer stores and manages portlet preferences.
When you view or modify the preferences in a remote portlet (on a consumer), the
consumer must fetch the preferences from the producer, and modifications must be
sent back to the producer where they are stored.

Note: Portlet preferences are included in the WebLogic Portal
implementation of WSRP producers. Other WSRP producer
implementations may not support portlet preferences.

Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Setting Preferences on a Remote Portlet

5.4.2.1 Viewing and Modifying Preferences

You can view and modify the portlet preferences for a remote portlet using the
WebLogic Portal Administration Console. The Administration Console uses the Portlet
Management interface of WSRP to retrieve preferences from the producer and modify
them.

Note: It is not possible to create or modify portlet preferences in a
remote portlet using Oracle Enterprise Pack for Eclipse.

Figure 5-6 shows the interface for creating a portlet preference in the WebLogic Portal
Administration Console. A similar interface exists for editing a preference. For
instance, you can change the default value for a preference, or make it read-only.

Figure 5-6 Creating a Portlet Preference in the WebLogic Portal Administration Console

bPrime I
| Detils | Portlet Preferences Erilemerts | Delegated Admin
Add Portlet Preference :
~ Portle +
Mame: |5

Showy S i Items{
Description: |Shoe size i
Name s Multi-valued? Edit |
Walle(si 10 4

Caolor Is Modifiable? True E

; [Is Multi-valued?

o R YUY i

Tip: Changes you make to a portlet preference in the Administration
Console are scoped either at the Library level or the instance level. If
you modify a portlet preference in the Library, all subsequent
instances of that portlet will include the change. If you modify an
instance (in the Portals folder) only that instance is affected. In other
words, if the same portlet is used in several desktops, a new instance
of the portlet is generated for each use. When you modify an instance
of a portlet, only that instance is modified. Note that the first time a
user updates a portlet preference, a new instance of the portlet is
created, and the updated preferences are associated with the new
instance. The WSRP registration interface provides a way for
producers to keep track of new portlet instances created for remote
portlets. See Section 5.4.3, "Managing Portlet Instances through
Registration" for more information.

5.4.2.2 Working with Preferences Programatically

Portlets can also create, retrieve, and modify preferences programatically by obtaining
a javax.portlet.PortletPreferences object. For instance, a page flow portlet
can retrieve an instance of this object from the PortletBackingContext object in an
action method. For example, the page flow action method shown in Example 5-2
retrieves from a FormData object a preference set by a user, sets the preferences in a
PortletPreferences object, and stores the preferences in the database using the
store () method.

Configuring Remote Portlets 5-7

Setting Preferences on a Remote Portlet

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Example 5-2 Setting Portlet Preferences in an Action Method
/ * %

* @jpf:action

* @jpf:forward name="success" path="index.jsp"

*/

protected Forward setColor (ColorForm form) ({

//-- Retrieve a preferences object from the context.
PortletBackingContext context =
PortletBackingContext.getPortletBackingContext (getRequest());
PortletPreferences prefs = context.getPreferences (getRequest());

//-- Set the user's preference.
try {
prefs.setValue("color", (String)form.getColor()I[0]);
} catch (ReadOnlyException e) {
e.printStackTrace() ;

}

//-- Store the user's preference.

try {
prefs.store();

} catch (ValidatorException io) {
io.printStackTrace() ;

} catch (IOException ioe) {
ioe.printStackTrace() ;

}

return new Forward("success");

}

As noted previously, for a remote portlet, preferences are hosted and managed on the
producer. No preference information is ever stored on the consumer.

5.4.2.3 Additional Usage Notes and Restrictions

This section lists additional information about using portlet preferences in remote
portlets.

= You cannot add portlet preferences to remote portlets consumed from a simple
producer or from producers that have portal management disabled in the
wsrp-producer-config.xml file.

» Portlets are not allowed to make persistent state changes during rendering. The
store () method in javax.portlet.PortletPreferences throws an
IllegalStateException if a portlet calls the store () method during the
render phase of a portlet (that is, during the execution of the getMarkup
operation).

» Portlets, whether remote or not, cannot be customized in any way, including the
modification of portlet preferences, in either of these two cases: (a) the portlet is in
a file-based portal (that is, rendered from a . portal file or (b) the user accessing
the portlet is anonymous (not authenticated). Consumer portlets communicate this

5-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using Backing Files with Remote Portlets

to the producer by sending a value of readOnly for the portletStateChange
element in the performBlockingInteraction request.

= If the instance of a remote portlet is shared among several users, WebLogic Portal
consumer sends a value of cloneBeforeWrite for the portletStateChange
element. This value indicates to the producer that it must clone the portlet before
making changes to preferences. If a portlet does indeed modify preferences, the
producer returns a new portletHandle to the consumer. This new
portletHandle replaces the original portletHandle.

= On subsequent requests, the consumer sends a value of readwrite indicating
that the producer can allow portlets to modify preferences.

5.4.3 Managing Portlet Instances through Registration

As discussed previously, whenever a user customizes a portlet by modifying portlet
preferences, a new instance of the portlet is created. In the case of a remote portlet, the
new instance is created on the producer, and the handle for that instance is returned to
the consumer. Of course, as the number of users increases, the number of unique
portlet instances can grow large in the producer space. If the consumer decides not to
use the producer anymore, the producer needs to have a way of learning this and
subsequently removing the portlet instances that are no longer needed. Portlet
registration accomplishes this goal.

WebLogic Portal producers support registration by default for complex producers. If
registration is enabled, consumers must register with a producer before accessing any
of the producer's portlets. Once registered, the producer returns a
registrationHandle to the consumer. The consumer must supply this handle on
all future requests until the consumer is deregistered. When a consumer deregisters a
portlet, the producer removes all of the portlet instances that were created for that
consumer.

5.5 Using Backing Files with Remote Portlets

Backing files let you programatically add functionality to a portlet by implementing
(or extending) a Java class, which enables preprocessing (for example, authentication)
prior to rendering the portal controls. You can attach a backing file to a portlet using
the Backing File property in the Properties View in Oracle Enterprise Pack for Eclipse.

Backing files let you implement business logic at certain points of a portlet's lifecycle.
In a local portlet, backing file methods are called in the following order:

m init()

s handlePostbackData ()

m preRender ()

s dispose()

A producer, however, executes backing file methods in an order that reflects the type

of consumer request, as shown in Table 5-4.

Table 5-3 Order of Backing File Method Execution in a Producer

Consumer Request Order of Backing File Methods Called on the Producer
getMarkup () init (), preRender (), dispose()
performBlockingAction () init (), handlePostbackData (), dispose()
handleEvents () init (), any event handler method, dispose ()

Configuring Remote Portlets 5-9

Setting a Timeout Value on a Remote Portlet

For detailed information about backing files, see the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal. For an example that uses backing files
with remote portlets, see Chapter 12, "Transferring Custom Data." See also Section 3.5,
"Life Cycle of a Remote Portlet".

5.6 Setting a Timeout Value on a Remote Portlet

Occasionally, a producer is slow to respond to a request from a remote portlet. In this
case, the portal application in which the remote portlet is located remains
unresponsive until the remote portlet's response is received. This section explains how
to set timeout values for remote portlets.

This section includes these topics:
s Section 5.6.1, "Overview"
= Section 5.6.2, "Setting Default Timeout Values"

= Section 5.6.3, "Setting Timeouts for Individual Remote Portlets"

5.6.1 Overview

WebLogic Portal provides two timeout settings for remote portlets:

= Connection Establishment Timeout — The amount of time a remote portlet will
wait for a connection response from a producer.

= Connection Timeout — The amount of time the remote portlet will wait for a
response from a producer to which it is already connected.

You can set a default timeout limit for all remote portlets and a timeout limit for an
individual remote portlet. The timeout set on an individual portlet takes precedence
over the default.

The remote portlet connection timeout only works when a consumer is continually
connected to a producer. The timeout is effective only for cases where the producer is
slow to respond to a consumer, not for cases where the producer is physically
unavailable (the connection is broken), or where a new connection is made. In these
cases, the operating system's TCP timeout takes effect.

5.6.2 Setting Default Timeout Values

To set default timeout values for all remote portlets in a web application, edit one or
both of the elements shown in Example 5-3. These elements appear in the
configuration file wsrp-producer-registry.xml located in the WEB-INF directory
of each portal web application.

Example 5-3 Connection Timeout Elements

<connection-establishment-timeout-msecs>-1</connection-establishment-timeout-msecs>
<connection-timeout-msecs>120000</connection-timeout-msecs>

Note: Timeout values are in milliseconds.

5.6.3 Setting Timeouts for Individual Remote Portlets

To set a connection establishment and /or a connection timeout for an individual
remote portlet, open the Properties view for the portlet in Oracle Enterprise Pack for

5-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Remote Portlet Properties

Eclipse and set values for the Connection Establishment Timeout and Connection
Timeout properties, as shown in Figure 5-7. The timeout values are in milliseconds.

Figure 5-7 Setting Timeout Properties

mnnnotations | R B~

Property Yalue [4

+ Backable Properties :

+ General Portlet Properties

+ Presentation Properties 3

= Proxy Portlet Properties
Connection Establishment Timeout _
Connection Timeout 10000 h
Group ID mywebProj F,
Invoke Render Dependencies false ‘|'
Portlet Handle index_1)
Producer Handle myProducer
Required User Properties Mode none o
Required User Property Mames 1
Templates Stored in Session true k.
URL Template Processing true (‘
User Context Stored In Session true -~

Y S 3 > FrN SR——— 7 = -

5.7 Modifying WSRP Markup and Messages

The Interceptor Framework is a consumer-side framework that lets you
programatically intercept and modify markup and user interaction-related WSRP
messages sent to and received from producers. The framework exposes a set of
interfaces that you can implement. These interfaces let you examine the content of a
WSRP message and take specific action based on that content. For example, if a
producer sends a registration error back to the consumer, an interceptor can detect
that error and display an informative message to the user or, perhaps, automatically
return the information required to complete the registration.

For more information on creating interceptors, see Chapter 9, "The Interceptor
Framework."

5.8 Remote Portlet Properties

This section lists and describes the set of Proxy Portlet Properties and other portlet
properties that of interest to federated portal developers. This section includes these
topics:

= Section 5.8.1, "Proxy Portlet Properties"
= Section 5.8.2, "Other Portlet Properties"

5.8.1 Proxy Portlet Properties

Table 54 lists the Proxy Portlet Properties. These properties appear in the Properties
list for remote (proxy) portlets.

Table 5-4 Proxy Portlet Properties

Property Value

Connection Optional. The number of milliseconds after which this portlet will
Establishment Timeout time out when establishing an initial connection with its producer.

Connection Timeout Optional. The number of milliseconds after which this portlet will
time out when communicating with its producer. If not specified
here, the default value contained in the file
WEB-INF/wsrp-producer-registry.xml is used.

Configuring Remote Portlets 5-11

Remote Portlet Properties

Table 5-4 (Cont.) Proxy Portlet Properties

Property

Value

Group ID

Read-only (assigned by the producer). If the producer associates this
portlet within a group, the producer-assigned string appears here.
Portlets with the same group ID from the same producer can share
sessions.

Invoke Render
Dependencies

Read-only (assigned by the producer). This boolean property allows
the consumer to obtain render dependencies from the producer
during the pre-render life cycle of a proxy portlet.

When a portlet on a producer has a 1afDependenciesUri value,
the producer exposes the invokeRenderDependencies boolean
in the portlet description.

The value defaults to false if the attribute is not included in the
.portlet file. The value is read-only, and is initialized from the
producer whenever a proxy portlet is generated from the portlet
wizard.

Portlet Handle

Read-only (assigned by the producer). The producer's unique
identifier for the portlet that this proxy references.

Producer Handle

Required. The producer's unique identifier.

Required User Property
Mode

Optional. Possible values are none, all, or specified. If the value
is specified, then you must enter a list of property names in the
field Required User Properties Names field.

Required User Property
Names

Optional. Use this field if you entered a value of specified in the
Required User Properties Mode field; enter a comma-delimited list
of property names.

Templates Stored in
Session

Read-only (assigned by the producer). Indicates whether the
producer stores URL templates in the user's session on the producer
side. This boolean is meaningful only when URL Template
Processing boolean is set to true.

URL Template Read-only (assigned by the producer). Indicates whether the

Processing producer uses URL templates to create URLs. If true, the consumer
supplies URL templates. If false, the producer rewrites URLs using
special rewrite tokens.

User Context Stored In Read-only (assigned by the producer). This boolean value defaults

Session to false if the attribute is not included in the .portlet file.

This value is initialized from the producer whenever a proxy portlet
is generated from the portlet wizard.

5.8.2 Other Portlet Properties

Remote portlets also include properties that are common to other types of portlets. For
a complete list and descriptions of all portlet properties, see "Portlet Properties" in the
Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

5-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

6

Offering Books, Pages, and Portlets to
Consumers

WebLogic Portal producer applications can offer books, pages, and portlets to
consumers. This chapter explains the procedures and best practices involved in
making books, pages, and portlets remoteable.

Tip: In this chapter, we use the term remoteable to refer to a book,
page, or portlet that is deployed in a producer application. To be
remoteable, the Offer As Remote property of the book, page, or portlet
must be set to true, as explained in later in this chapter.

This chapter includes these sections:

s Section 6.1, "Introduction”

= Section 6.2, "Offering Portlets on a Producer"

= Section 6.3, "Offering Books and Pages on a Producer”

= Section 6.4, "Rules for Creating Remoteable Books and Pages"

6.1 Introduction

A complex producer can offer remoteable books, pages, and portlets. When a page or
book is offered as remote from a complex producer application, the nested contents of
the page or book are, by default, also offered as remote. This means that you can
group multiple portlets in a page, for example, and a WebLogic Portal consumer can
then consume both the page and its portlets in one operation.

Tip: Portlets deployed in a simple application can also be
remoteable; however, only complex producers can offer remoteable
books and pages. See Chapter 8, "Configuring a WebLogic Server
Producer" for more information on creating remoteable portlets in a
WebLogic Server application. For information on simple and complex
producers, see Section 3.4, "Understanding Producers and
Consumers".

Table 6-5 summarizes which Oracle tools you can use to create and consume remote
books, pages, and portlets. Although you can consume remote portlets using Oracle
Enterprise Pack for Eclipse, you cannot consume remote books and pages. Oracle
Enterprise Pack for Eclipse does not provide a feature for locating and consuming
remote books and pages. If you want to incorporate remote books and pages into a

Offering Books, Pages, and Portlets to Consumers 6-1

Offering Portlets on a Producer

WebLogic Portal consumer application, you must use the WebLogic Portal
Administration Console, see Chapter 18, "Adding Remote Resources to the Library."

Table 6—1 List of Oracle Tools for Creating and Consuming Remote Resources

Oracle Enterprise Pack

Feature for Eclipse Administration Console
Create remoteable books and pages Yes No
Create remoteable portlets Yes No
Consume remote portlets Yes Yes
Consume remote books and pages No Yes

6.2 Offering Portlets on a Producer

By default, all portlets deployed in a WebLogic Portal producer application are
available to consumers as remote portlets. You can, however, specify which portlets
are actually available to consumers by setting the Offer As Remote property in the
Properties view for the portlet, as shown in Figure 6-6.

If you want a portlet to be available to consumers, set Offer As Remote to true (the
default). If you want to hide a portlet from consumers, set Offer As Remote to false.

Figure 6—1 Portlet Properties View

Property

+

Presentation Froperties

mﬁmnotatio ns 1= :{=:b B B
Property | Walue | :
+| Backable Properties I
+ Content
+| General Portlet Properties J
+ Jsp Content 4
= Partlet Properties 4

Content Presentatbion Class {
Conkent Presentation Style)

OFfer A2 Remaote ~— Offer As Remote
+ Partlet Tidebar b
f

L]
]

For detailed information on creating portlets and setting properties, see the Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

6.3 Offering Books and Pages on a Producer

If you want to create books and pages that are accessible to remote consumer
applications, you must use Oracle Enterprise Pack for Eclipse.

To make a remoteable book or page in Oracle Enterprise Pack for Eclipse, as the
following procedures explain, you must create the book or page as a standalone
.book or .page file. In Oracle Enterprise Pack for Eclipse, you can do this by
selecting New > File > Other > WebLogic Portal > Book (or Page).

Tip: For more information on creating and working with pages and
books, see the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal.

6-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Offering Books and Pages on a Producer

This section includes these topics:
= Section 6.3.1, "Setting Up the Example"
= Section 6.3.2, "Creating a Remoteable Page (or Book)"

= Section 6.3.3, "Summary"

6.3.1 Setting Up the Example

If you want to try the example discussed in this section, you need to run Oracle
Enterprise Pack for Eclipse and perform the prerequisite tasks outlined in this section.

To set up the example environment, perform the prerequisite tasks outlined in
Table 6-5. If you are not familiar with the specific procedures for these tasks, they are
described in detail in the Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

Table 6-2 Prerequisite Tasks

Task Recommended Name
Create a WebLogic Portal domain. producerPortalDomain
Create a Portal EAR Project. producerEAR

Create an Oracle WebLogic Server v10.x. N/A

Associate the EAR project with the server. N/A

Create a Portal Web Project and add it to the EAR. producerWebProject

Figure 6-2 shows the Package Explorer after the prerequisite tasks have been
completed.

Figure 6-2 Package Explorer After Prerequisite Tasks are Completed

=5 I
= <'==={> = v
¥4 producerEAR
+ b‘J producerWebProject ;
?
Ly
4
i N - ,-"'2

6.3.2 Creating a Remoteable Page (or Book)

Tip: The procedure for creating a remoteable book is almost identical

to the procedure for creating a page. Rather than reproduce both

procedures here, we explain how to create a remoteable page and,

where appropriate, highlight any differences between the two

procedures.
To create a page in a producer application that is accessible to consumer applications:
1. Start Oracle Enterprise Pack for Eclipse.
2. Create a Portal Web Project, as explained in the previous section.

3. Select File > New > Other.

Offering Books, Pages, and Portlets to Consumers 6-3

Offering Books and Pages on a Producer

4. Inthe New — Select a wizard dialog, open the WebLogic Portal folder, select Page,
and click Next.

Tip: To create a remoteable book, select Book instead of Page.

5. In the New Page dialog, select a parent folder for the new page and enter a name
for the page, as shown in Figure 6-3. In this example, the parent folder is
WebContent, and the filename is myPage . page.

Figure 6—-3 New Page Dialog

New Page O

A page is an aggregation of portlets andjor books within a portal,

Enter or select the parent Folder:

| producerebProjecttebContent

(=53
= Igd producerwebProject -~
== .apt_src
= .settings
+-[7= build

& e v

File name: | myPage.page

Advanced =

< Back | Cancel

6. Click Finish.

Checkpoint: The file myPage . page is added to the Portal Web Project in the
folder you specified, as shown in Figure 6-4.

6-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Offering Books and Pages on a Producer

Figure 6—4 A New Page File

2 Pe.n.ck.age Explorer 2 “2 -

==

q

=i, Web App Libraries
=, Library Moduls [pl3n-datasync-apg
= Library Module [beshive-netui-resm
(&= build
== WebCankent
+-[= booksfndPages
+-[= META-INF
+- = WEB-INF
aPage-1.page

indesx. jsp
myBoak-1.boak
myBoak-3.boak
ryPortal,partal
portal-2.portal
portlet-1.jsp
=] portlet-1.portlet
portlet-2.jsp
ﬂ porthet -2, porklet
rivBook-2, boak
myPage. page

P e

PE— S5 T IR

Page File

In addition, the page opens in the editor, as shown in Figure 6-5.

Figure 6-5 Page File Displayed in the Editor

@2 book-1.book.
Page: Page 1

@ Mew Portal Deskhop

E myPage.page X

T Vo e e T T R R R e s R T

Click on the border of the page to display the page's Properties view. If the

Properties view is not currently available, select Window > Show View >

Properties.

Note that, by default, the Offer As Remote property is set to true for this . page

file, as shown in Figure 6-6. This property setting means that this page, and any
books, pages, and portlets you add to it (according to the rules discussed in
Section 6.4, "Rules for Creating Remoteable Books and Pages") will be visible to
consumers if their respective Offer As Remote properties are also set to true.

Offering Books, Pages, and Portlets to Consumers 6-5

Rules for Creating Remoteable Books and Pages

Figure 6—6 Offer As Remote Property

frnotations | Properties 23

Praperty | value
= &dministration Properties
Diefinibion 10
Markup Mame page
—| Backable Properties
Backing File
Diefimition Label page
Hidden false
Cffer Az Remote true Offer As Remote
Packed falze Pro p erty
Public access true

Rollover Image:
Selected Image
Thems Mo Thems
Title Page 1
Unselecked Image
=| Page Properties
Layouk Type Twwa Column Layauk
= Presentation Properties
Presentation Class
Presentation ID
Presentakion Skyle
Properties
Skeleton URI

PR E T | el _on i e it

‘*"\,.—“'-‘""'\ LR WU W '\\L. Bt B

]

6.3.3 Summary

You can treat the page shown in Figure 6-5 like any other page. You can add books
and portlets to it and you can drag and drop the page into a portal. If you create a
remote book, you can add pages to it, and those pages can in turn contain portlets and
other books.

6.4 Rules for Creating Remoteable Books and Pages

6-6

The key points to remember with respect to making a page (or book) accessible to
remote consumers are:

= If you have a book or page that is offered as remote, but none of the book's or
page's contents (other books, pages, and portlets) are offered as remote, the book
or page will not be visible to consumers. To be visible, a book or page must be
offered as remote and must contain at least one other entity that is offered as
remote.

For example, Figure 6-7 shows a sample configuration. In this configuration,
consumers can locate Book_1. To a consumer, Book_1 contains one page, Page_
2. Because Page_1 is not offered as remote, it will not be visible to consumers, nor
will any of its contents.

Figure 6—7 Sample Configuration

Book 1 (offered as remote = true)

Page 1 (offered as remote = false)

Portlet 1 (offered as remote = true)

Page 2 (offered as remote = true)

Portlet 2 (offered as remote = true)

Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Rules for Creating Remoteable Books and Pages

Figure 6-8 shows another sample configuration. In this case, Book_1 is offered as
remote; however, it is not visible to consumers. This is because none of its contents are
offered as remote. Page_1 is not offered as remote explicitly and Page_2 is not
offered as remote because it is empty (even though its property is set to true).

Figure 6—8 Sample Configuration

Book 1 (offered as remote = true)

Page 1 (offered as remote = false)

Portlet 1 (offered as remote = true)

Page 2 (offered as remote = true)

= Remoteable books and pages must be created as standalone .book and .page
files as explained previously in Section 6.3.2, "Creating a Remoteable Page (or
Book)".

= Changes to remoteable pages and books made on the producer cannot be
propagated to consumers of those pages and books. This means that if you change
a remoteable page or book in a producer application, and that page or book has
already been consumed by consumer applications, the changes will not show up
in the consumers.

s Portal look and feel elements that are used in . page and .book files must be
replicated on the consumer. This means that look and feel files, such as . layout,
. theme, and supporting JSP files that are used in a remoteable book or page must
exist on both the producer and the consumer.

= A backing file placed on a remoteable .book or . page file in a producer
application has no effect when the book or page is consumed.

Offering Books, Pages, and Portlets to Consumers 6-7

Rules for Creating Remoteable Books and Pages

6-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

7

Interportlet Communication with Remote
Portlets

WebLogic Portal supports interportlet communication (IPC) between producers and
consumers. For example, a remote portlet deployed in a producer application can
handle a minimize event fired by a local portlet in a consumer. This chapter presents a
detailed example explaining how to use interportlet communication with remote
portlets.

This chapter includes these sections:

s Section 7.1, "Introduction”

= Section 7.2, "Firing and Handling a Minimize Event"
m Section 7.3, "Inside the Remote Portlet File"

m Section 7.4, "Data Transfer with Custom Events"

= Section 7.5, "Event Payloads Over WSRP"

m Section 7.6, "Using Shared Parameters"

= Section 7.7, "Adding Event Aliases"

7.1 Introduction

WebLogic Portal provides an extension to the WSRP protocol that allows remote
portlets to fire events during the interaction phase of their lifecycle. For detailed
information on the WebLogic Portal IPC architecture for federated portlets, see
Section 3.5.4, "Interportlet Communication with Events".

Communication between portlets deployed in consumer and producer applications is
bi-directional. Events fired by local portlets can be handled by portlets deployed in a
producer, and vice versa.

The example in this chapter demonstrates one way to implement event handling in a
federated portal. In this example, the event handler is added to the portlet on the
producer. When a local portlet on the consumer fires an event, the remote portlet on
the producer receives the event and handles it (changes the text displayed in the
portlet).

Interportlet Communication with Remote Portlets 7-1

Firing and Handling a Minimize Event

Note: Whenever you implement event handling in a federated
environment, remember that you must add event handlers to portlets
in the producer application before you create proxy portlets in
consumers. If you change a producer portlet's metadata, such as by
adding an event handler, consumers are not notified of that change.
The correct procedure is to add the event handler to the portlet on the
producer before you create the remote portlet on the consumer.

For additional information on IPC in WebLogic Portal, see the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal.

7.2 Firing and Handling a Minimize Event

This section presents a detailed example demonstrating how to use event handling in
a remote portlet. In this example, a remote portlet on the consumer fires an
onMinimize event. The onMinimize event is fired when a portlet is minimized. When
the event is fired from a local portlet in a consumer, the event is handled on the
producer. The onMinimize event is one of several standard events supported by the
WebLogic Portal framework. For a complete list of standard events, see the Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

In this example, when the user minimizes the remote portlet on the consumer, the
producer handles the event and changes some text in the portlet.

Tip: Remote portlets can also handle custom events. For detailed
information on using custom events with remote portlets, see
Section 7.4, "Data Transfer with Custom Events".

This example includes these steps:

1. Section 7.2.1, "Setting Up Your Environment"

2, Section 7.2.2, "Creating the Portlets on the Producer”

3. Section 7.2.3, "Creating the Consumer Portlets"

4, Section 7.2.4, "Testing the Application"

7.2.1 Setting Up Your Environment

If you want to try the example discussed in this section, you need to run Oracle
Enterprise Pack for Eclipse and perform the prerequisite tasks and set up the example
environment.

To set up the example environment, perform the prerequisite tasks outlined in

Table 7-1. If you are not familiar with the specific procedures for these tasks, they are
described in detail in the WebLogic Portal tutorial Oracle Fusion Middleware Tutorials for
Oracle WebLogic Portal.

Table 7-1 Prerequisite Tasks

Task Recommended Name
1. Create a WebLogic Portal domain. ipcWsrpDomain

2. Create a Portal EAR Project. ipclisrpPortalEAR

3. Create an Oracle WebLogic Server v10.x. N/A

7-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Firing and Handling a Minimize Event

Table 7-1 (Cont.) Prerequisite Tasks

Task Recommended Name
3. Associate the EAR project with the server. N/A

4. Create a Portal Web Project consumerieb

5. Create a second Portal Web Project producerieb

Figure 7-1 shows the Package Explorer after the prerequisite tasks have been
completed.

Figure 7-1 Package Explorer After Prerequisite Tasks are Completed

-

+- =k ipoWsrpPortalEAR -

+ b‘J produceriveb J
.

- o Wmt e - -

7.2.2 Creating the Portlets on the Producer

In this task, you create two JSP files on the producer-side, along with the JSP portlets
that surface these files. You also create a backing file that contains the instructions
necessary to complete the communication between two portlets and add an event
handler to one of the portlets. Once you have created the portlets and attached the
backing file, you will test the application in your browser.

7.2.2.1 Create the JSP Files and Portlets
To create the JSP files that the portlets deployed on the producer will surface:

1. Be sure you have set up the example environment as explained previously in
Section 7.2.1, "Setting Up Your Environment".

2. In the Project View, right-click the WebContent folder and select New > Portlet.

3. Inthe New Portlet dialog, enter the name aPortlet.portlet for the new
portlet, and click Next.

4, In the Select Portlet Type wizard page, select JSP/HTML Portlet, and click Next.
(See Figure 7-2.)

Interportlet Communication with Remote Portlets 7-3

Firing and Handling a Minimize Event

Figure 7-2 Select Portlet Type

X

M Portlet Wizard - Select Portlet Type

S Select Portlet Type
1. Select Portlet Type Select the bype of portlet you want ko include in your portal,
& (3 ISPHTML Portlet
O Ja% Portlet

() Java Server Faces (J5F) Portlet
() Browser (LURL) Portlet

() Web Clipper Portlet

() Remate Partlet

() ADF Portlet

[] shaw all Portlet Types

Create a portlet which points ko a JSP/HTML File For its content.

5. In the Portlet Details wizard page, select the Minimizable and Maximizable
states, and click Create. (See Figure 7-3.)

Figure 7-3 Portlet Details

M Portlet Wizard - Portlet Details

Steps : Portlet Details

1, Select Portlet Type
2. Portlet Details
3, Assign Supporting Files

Flease Fill in the general details For the portlet.

4, Generate Files 2y |Ap0rtlet |
Content Path ¢ |,|’a|30rtlet,|'aPortIet.jsp | E”' Browse. ..
Error Page Path | | E"' Erowse. ..
Has TitleBar
Skate Available Modes :

[] Floatable

[] Deletable

[< Previous] [Mext =] [Create l [Cancel

6. Locate the aPortlet. jsp file. By default, it will be in the
WebContent/aportlet folder. Double-click the file to open it in the editor.

7. Replace the default text in the file with the text "Minimize Me!" as shown in
Figure 7-4.

7-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Firing and Handling a Minimize Event

Figure 7-4 JSP File Showing Edited Body Text

B &3 o=

<% page language="jara" contentType="Ttext /html charset=UTF-8"%>
Hinimize Me!

8. Save the file as aPortlet. jsp

9. In the same directory, make a copy of aPortlet. jsp, and call the copy
bPortlet.jsp.

10. Open bPortlet. jsp in the editor and copy the code from Example 7-1 into the
JSP, replacing everything from <netui :html> through </netui:html>. This
code simply displays text placed in the request by a backing file, which you will
create and attach to the portlet in a subsequent step.

Example 7-1 New JSP Code for bPortlet.jsp

<netui:html>
<% String event = (String)request.getAttribute("minimizeEvent") ;%>
<head>
<title>
Web Application Page
</title>
</head>
<body>
<p>
Listening for portlet A minimize event:<%=event%>
</p>
</body>
</netui:html>

Figure 7-5 shows the completed JSP source file in the editor.

Interportlet Communication with Remote Portlets 7-5

Firing and Handling a Minimize Event

Figure 7-5 Updated JSP Source

aPortlet jsp 22 = BEEEETIERENS 4

i
0

<%ftaglib uri="http://beehive.apache.
<%ftaglib uri="http://beehive.apache.
<%ftaglib uri="http://beehive.apache.

<netui:html>
<% Btring ewvent = [(String)regquest.

<%[@ page language="java™ contentType="text/html;charset=UTF-5"%>

org/netui/cags-html-1.0" prefixX="nety
org/netui/cags-databinding-1.0" prefi
org/netui/tags-template-1.0" prefix="

getittribute ("minimizeEvent™) 5>

<head:>
<titlex
Wekh Application Page
</titlex
</ head:>
<hody>
<p>
Listening for portlet A4 minimize ewvent:<i=events:
</ pr
</body>
<fnetui:htmlﬂ

;"\MJ“'\vHA‘_ N 4 Bty Wy ﬂ.'-‘,‘;_‘ il

1
J

1

1
k

L
J
.

11. Save the file.

12. Following the same steps you used previously, generate a portlet from the
bPortlet.jsp file.

Checkpoint: At this point the you have created the following files in the
producerWeb/WebContent folder:

m aPortlet.jsp
m aPortlet.portlet
m bPortlet.jsp

m DbPortlet.portlet.

7.2.2.2 Create the Backing File

In this example, we use a backing file attached to the portlet in the producer to handle
the onMinimize event fired on the consumer.

Tip: For detailed information on backing files, refer to the Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

To create the backing file:

1. In producerWeb, expand the Java Resources node, right-click the src folder, and
select New > Package from the menu. The Create New Folder dialog box appears.

2. Create a source folder called backing.

The backing folder appears under producerWeb/Java Resources/src,as
shown in Figure 7-6.

7-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Firing and Handling a Minimize Event

Figure 7-6 New Backing File Package

[% Packag |5 Mavigat |[(Project &2 (9 Merged | — O
= <'==={> =
* :7J consumerieb
+ 53 ipcWsrpPortalEar
= :7J producerweb
+-'28 Deployment Descriptor: producerweh
* @ faces-config
(= Referenced Types
= _‘;9 Java Resources
= (2 sre
=
+- B} Libraries
] '_; Merged Project Content
+ Iﬁj Portal Library
+-B, JavaScript Suppart
#- (= build
#-= WebContent

3. Right-click the backing package and select New > Class. The New Java Class
dialog appears.

4. In the Name field, enter Listening and click Finish. The new Java class appears
in the editor.

5. Delete the default contents of Listening. java, and copy the code from
Example 7-2 into Listening. java.

6. Save Listening.java.

Example 7-2 Backing File Code for listening.java

package backing;
import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.netuix.events.Event;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class Listening extends AbstractJspBacking
{
static final long serialVersionUID=1L;
private static boolean minimizeEventHandled = false;
public void handlePortalEvent (HttpServletRequest request,
HttpServletResponse response, Event event)

{
minimizeEventHandled = true;
}
public boolean preRender (HttpServletRequest request, HttpServletResponse
response)
{
if (minimizeEventHandled) {
request.setAttribute ("minimizeEvent", "minimize event handled");
telse(
request.setAttribute ("minimizeEvent",null);
}
// reset
minimizeEventHandled = false;
return true;
}

The source should now look like that shown in Figure 7-7.

Interportlet Communication with Remote Portlets 7-7

Firing and Handling a Minimize Event

Figure 7-7 Listening.java with Updated Backing File Code

[=] zipPrime. partlet [J] customDataBacking. .. |Z| aPortlet.jsp |=| bPortlet.jsp 1] x [

i
bl

package bhacking;

>
Y

import com.bea.netuix.servlets.controls.content. backing. dbstractJspBacking:
import com.bea.netuix.events.Event;

import javax.servlet.http.HttpServletRegquest;

import javax.servlet.http.Hotp3ervletResponse;

public class Listening extends AbstractJspBacking

{

static final long serizlVersionUID=1L;
private static boolean minimizeEventHandled = false;
public void handlePortalEvent (HttpS3ervletRegquest request,
HttpServletREesponse response, Event ewvent)
{
minimizeEventHandled = true;
}
public boolean preRender (HotpS3ervletRegquest reguest, HttpServletResponse
response)
{
if (minimizeEventHzandled) {
regquest.setittribute ("minimizeEvent™, "minimize ewvent handled™):
relse
request.sethittribute ("minimizeEvent”, null) ;

R I W S TV N W ey Y

1
:
|

4
¥
1
>
r
L
y
L]
Y
y
L]
N

7.2.2.3 Attach the Backing File

Now you will attach the backing file created in the previous section to
bPortlet.portlet.

1. In the Package Explorer, double-click bPortlet.portlet to open it.

2. Click on the portlet in the editor to display the portlet's properties. To be sure you
see all the properties, click on the border of the portlet, as shown in Figure 7-8.

Figure 7-8 Click to Display All Portlet Properties

¥

[myePortal. portal @ Mew Portal Deskiop [ED bPortlat partlet 52 i —§

3 Click here to
bPortiet =] : display all
<0 Ewent Handlers! No event handlers 4 properties

r

+

r

'

.|
Portlek Modes ;

L.

Portlet Preferences {
- o L. R b e S N N - IK

Tip: If the Properties view is not visible in your perspective, select
Window > Show View > Properties. If you want to learn more about
editing portlet properties, see the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

3. In the Properties view, type backing.Listening into the Backable Properties >
Portlet Backing File field, as shown in Figure 7-9 and press Return.

Tip: You might need to expand the value column to enter text in the
Portlet Backing File field.

7-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Firing and Handling a Minimize Event

Figure 7-9 Attaching the Backing File in the Properties View

1 Properties &3 1= :=:€> B~ =0
Property Walue ~
= Backable Properties

Partlet Backing File backing. Listening
Singleton Backing Inskance. false

= Caontent
Content Path [bpartlet/bPartlet. jsp

Error Page Path
= eneral Portlet Properties

Async Content Rendering none

Cache Expires {seconds) &0

Cache Render Dependencies true

Client Classifications Mo Classifications

Default Minimized false

Definition Label bPortlet

Description

Event Handlers Mo event handlers

Forkable false v
< >

4. Save the file.

7.2.2.4 Add the Event Handler to bPortlet

You now add the event handler to bPortlet .portlet. The handler will be
configured to listen for an event fired by another portlet and execute an action in
response to that event. To add the event handler:

1. Be sure the file bPortlet.portlet is open. If it is not, double-click it in the Package
Explorer.

2. Click on the portlet in the editor to display the portlet's properties, as shown
previously in Figure 7-8.

3. In the portlet editor, click the Event Handlers link, as shown in Figure 7-10. The
Event Handlers dialog appears.
Figure 7-10 Event Handlers Link

[0] P ortal, portal () Mew Portal Deskkop bPortlet, portlet 52 *

bPortlet El @

19_; Event Handlers: No event handlers

I

Nt s A 244, e

Click here to
display all
properties

Portlet Modes

Portlet Preferences

b ik s i P TR L o

"
n

Interportlet Communication with Remote Portlets 7-9

Firing and Handling a Minimize Event

Figure 7-11 Portlet Event Handlers Dialog Box

I Portlet Event Handlers @

WLP-Handied Events:

Select an item in the list,

B Add Handler. |

4. Click Add Handler and select Handle Portal Event from the drop-down menu.

The Portlet Event Handlers dialog box expands to allow entry of more details, as
shown in Figure 7-12.

Figure 7-12 Event Handler Dialog Box Expanded

M Portlet Event Handlers E]

WLP-Handled Events: Handle Partal Event
= Handle Partal Event
= T Event Label: |handIeP0rtaIEvent1 |
I Description: | |

Cnly IF Displayed
X

[] From Self Instance Cnly

Listen To (wildcard): |Se|ected Partlets w

Listen To {portlets):

Portlet:| |[Add H]

Event: |0nReFresh v |

5. Accept the defaults for all fields except Portlet.

6. In the Portlet field, click the ellipses button (...). The Please Choose a File dialog
box appears.

7. Select aPortlet.portlet and click OK.

The dialog box closes and aPortlet_1 appears in the Listen to list and the Portlet
field, as shown in Figure 7-13. The label aPortlet_1 is the definition label of the
portlet to which the event handler will listen.

Tip: The definition label is a unique identifier for the portlet. A
default value is entered automatically, but you can change the value.
Each portlet must have a unique value. See the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal for
more information.

7-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Firing and Handling a Minimize Event

Figure 7-13 Adding portlet 1

Listen To (wildcard): |Selected Portlets j *

Listen To (portlets): {

aPortlet_1_1 - aPortlet .r

Portlet: Add oo ;
pr= —y — r e —

~ = re— =

8. Click the Event drop-down menu to open the list of portal events that the handler
can listen for and select onMinimize, as shown in Figure 7-14.

Figure 7-14 Event Drop-down List

Listen To (portlets):

aPortlet_1_1 - aPortlet

Portlet: Add oo

bnReFresh|

Event:
onMinimize
oK Cancel onMaximize
ontormal
_ JonDelete
onHelp
onEdit
L 2=

9. Click Add Action... to open the action drop-down menu and select Invoke
BackingFile Method.

10. Open the Method drop-down menu and enter handlePortalEvent, as shown
in Figure 7-15. This method is defined in the backing file that is attached to
bPortlet. The source code for the backing file was shown previously in
Example 7-2.

Figure 7-15 Adding the Backing File Method

I Portlet Event Handlers E]

WLP-Handled Events: Inwoke BackingFile Method

[Handle Portal Event 1
i Invoke BackingFile Method Method: handisPortalEvent| &

88 Add Handler. ..

11. Click OK.

The event handler is added. Note that the Value field of the Event Handlers
property now indicates 1 Event Handler.

Interportlet Communication with Remote Portlets 7-11

Firing and Handling a Minimize Event

Note: WebLogic Portal attempts to validate the settings of the Event
Handlers dialog. You will receive an error message if any problems
are detected. For detailed information on the WebLogic Portal
validation framework, see the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Checkpoint: You added a backing file and an event handler to bPortlet. The event
handler is configured to invoke the handlePortalEvent() method in the backing file
when the portlet receives an onMinimize event fired by aPortlet. In the next task,
you test the application to make sure that the portlets function properly in a local
environment. Then, you will create a remote portlet in a consumer application to
test the interportlet communication in a federated portal environment.

7.2.2.5 Test the Application

Create a portal in the producer application called ipcLocal .portal:

1. In the Package Explorer, right-click producerWeb/WebContent and select New >
Portal. The New Portal dialog appears.

2. In the File name field, enter ipcLocal.portal and click Finish. The portal is
created and appears in the editor.

3. Dragboth aPortlet.portlet and bPortlet.portlet from the Package
Explorer onto the portal layout, as shown in Figure 7-16.

Figure 7-16 Portal Layout with Portlets Added

5

E *bPortlet, portlet 23 E aPortlet. portlet *ichocaI.portaI Py 3
Mew Portal Desktop

0
0
-

Header

Book: Main Page Book:

["] Page 1
Page: Page 1

aPortlet bPortlet

At e i AR e S e A

4
N
A
13
»
L d
1
b
1 g
[=]
@
>
|
N
N

4. Save the portal.

5. Run the portal. To do this, right-click ipcLocal.portal in the Package Explorer and
select Run As > Run on Server.

6. In the Run On Server — Define a New Server dialog, click Finish.

The portal renders in the default browser, as shown in Figure 7-17.

7-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Firing and Handling a Minimize Event

Figure 7-18

Figure 7-17 ipcLocal Portal in Browser

@ bPortlet.portlet &3 | @ aPortlet. portlet | ipcLocal. portal ! = 0O
O} Q:><h Ihttp:,l’,l’localhost:?DDI,l’producerWeb,l’ichocaI.portal LI =

%

Page 1 J

aPortlet E[E| |brortlet =] il {

Minimize Me!l! Listening for portlet A& minimize event:null :

¥

7. Minimize aPortlet.

Note the content change in bPortlet.

ipcLocal Portal with aPortlet Minimized

aPartlet, jsp

|% bParklet, por et ' New Portal Deskiop X = E}

fofem] = Q&b Ihttp:,l',l'loc-alhosl::?DDlll'producerWeb,l'ichoc.al.portal?_anb:true&_w;I = 1

Page 1
|aPortlet H|E]| |bPortlet =
Listening for portlet & minimize ewant:minimize Portlet text
event handled has changed

7.2.2.6 Summary

You created a portal containing two local portlets. You configured the portlet called
bPortlet to respond to an onMinimize event fired from the portlet called aPortlet. The
onMinimize event is a standard event that all WebLogic Portal portlets can fire. When
bPortlet receives an onMinimize event, a backing file method is called that modifies
the text displayed by the portlet.

In the following steps, you will create a federated portal that uses interportlet
communication.

7.2.3 Creating the Consumer Portlets

In this section, you create two portlets in the consumer application, one a JSP portlet
and the other a remote portlet. The remote portlet consumes the portlet you created
previously on the producer, bPortlet.portlet.

7.2.3.1 Setting Up the Exercise

Before you continue with this exercise:

1. In the Package Explorer, copy aPortlet.jsp from the producerWeb/WebContent
folder and paste it into the consumerWeb/WebContent folder. For convenience,

we reuse this portlet from the producer application. Its function in the consumer
portal is simply to provide a portlet that you can minimize.

Interportlet Communication with Remote Portlets 7-13

Firing and Handling a Minimize Event

2.
3.

Right-click consumerWeb/WebContent/aPortlet.jsp and select Generate Portlet.

In the Portlet Details dialog, select Minimizable, Maximizable, and click Create.
The new portlet layout appears in the editor.

7.2.3.2 Creating the Remote Portlet

To create the remote portlet:

1.

Open the consumerWeb folder in the Package Explorer, right-click on the
WebContent folder, and select New > Portlet.

In the New Portlet dialog, enter bPrime.portlet in the File name field, and
click Finish.

In the Select Portlet Type dialog of the Portlet Wizard, pick Remote Portlet, and
click Next.

In the Producer dialog, select Find Producer.

Enter the producer's WSDL URL in the text field, as shown in Figure 7-19. The
WSDL URL for this example is:

http://host:port/producerWeb/producer?wsdl
for example:

http://localhost:7001/produceriWeb/producer?wsdl

Tip: WSDL stands for Web Services Description Language and is
used to describe the services offered by a producer. For more
information, see Chapter 3, "Federated Portal Architecture.”

Click Retrieve.

After a few seconds, the dialog box refreshes, showing the Producer Details, as
shown in Figure 7-19.

Figure 7-19 Find Producer Dialog

M Portlet Wizard - Producer

£

Sleps:

¢ Find Producer

1. Select Portlet Type
2. Producer
3. Select Portlet From Lisk

WSDL URL
Enter the WSDL associzted with the preduce: of L
remote portlets.

|h:tp:,|',|’ocall'ost:?001,l’produ:erWeb,l’pl'oducel'?wsdl Retricve
¢ Select Producer
Irodirer Netails
Recuires Inil Covkic : perGroup
Reyuires ReyisL alior © Lue
Producer
humber of available portlel: @ 2 Details

Registration Fandle : Mot registered Registe*
Previniis | Nexk | |

Carcel |

7-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Firing and Handling a Minimize Event

9.

10.

Click Register.

In the Register dialog, enter a name for the producer in the Producer Handle field,
and click Register. You are returned to the Producer dialog.

In the Producer dialog, click Next. The Select Portlet from List dialog appears.
In the Select Portlet from List dialog, select bPortlet, as shown in Figure 7-20.

Figure 7-20 Select Portlet From List Dialog Box

!_Portlet Wizard - Select Portlet From List
Steps: Select Portlet From List
1. Select Portlet Type
2, Producer

3. Select Portlet From List ket bPaortlet_1
4, Proxy Portlet Details

~Portlet Details

Title bPortlet
Short Title bPortlet
Display Name bPortlet

Portlet Handle bPortlet_1

Previous | Mext | | Cancel |

. Click Next. The Proxy Portlet Details dialog box appears.
. Click Create.

The remote portlet appears as bPrime.portlet in the
consumerWeb /WebContent folder in the Package Explorer.

. Change the portlet's title to bPrime. To do this, edit the Title field in the portlet's

Properties view, as shown in Figure 7-21.

Figure 7-21 Changing the Portlet Title

(TR | [

Tropeorky Yaluz

Cache Fender Depen false

Client C assif cations

Lol gl i rinnioesn] [l
Definiticn Label bPortet_1_1

Faotkable false
Fank Pre-Rerder false
Fatl Pre Riorder Time

Fark Render false

Faork Render Timeout

Fatl Timcout

Oriznkation defalt
Packed false
Rendar Cacheable falfe

SRl

f

E::ETTtI«I:Dnndlcrs < event hendler J
{

Titls Title field
Bl Presen:ation Prooerties g
v-h-h.p-d_.’ —————r

14.

Save the portlet.

Interportlet Communication with Remote Portlets 7-15

Firing and Handling a Minimize Event

Tip: In the Properties view for bPortlet (in the
producerWeb/WebContent folder) be sure the Render Cacheable
property is set to false.

7.2.3.3 Summary

With the completion of the two consumer portlets, you have now created all of the
necessary components to demonstrate interportlet communications between a remote
and a local portlet. In the next step, you will add the consumer portlets to a consumer
portal and raise an event on one portlet that will cause a reaction on the other.

7.2.4 Testing the Application

In this step, you test the consumer application to verify that minimizing aPortlet will
change the content of bPrime (the remote portlet). You create a portal and add the two
portlets created in Section 7.2.3, "Creating the Consumer Portlets". You then build the
application and view the portal in a browser.

7.2.4.1 Build the Portal

Create a portal in the consumer application called ipcConsumer.portal:

1. In the Package Explorer, right-click consumerWeb/WebContent and select New
> Portal. The New Portal dialog appears.

2. In the File name field, enter ipcConsumer .portal and click Finish. The portal is
created and appears in the editor.

3. Dragboth aPortlet.portlet and bPrime.portlet from the
consumerWeb/WebContent folder onto the portal layout. The result is shown in
Figure 7-22.

Figure 7-22 Consumer Portal Layout

X =] bPrime. partlet
Mew Portal Desktop

i
|
-

Header

Book: Main Page Book:

["] Page 1
Page: Page 1

aPortlet bPrime

T L, N WPV (T SHUTT WIE PR W U WPUSE WEE WPAPR

| Footer
" —— e r — e

4. Save the portal.

7-16 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Inside the Remote Portlet File

7.2.4.2 Test the Portal

From a user's perspective, the consumer portal works exactly as if all portlets were
local. The user is not aware that bPrime is a remote portlet hosted in a producer
application. To test the consumer portlet, minimize aPortlet. The remote portlet,
bPrime, responds changing the text it displays.

1. Run the portal. To do this, right-click ipcConsumer .portal in the Package
Explorer and select Run As > Run on Server.

2. In the Run On Server — Define a New Server dialog, click Finish. A browser opens
displaying the ipcConsumer portal, as shown in Figure 7-23.

Figure 7-23 Consumer Portal in a Browser

BT ipatonsumer.portal = NN IR N T e

&

m Ligkenimng. java] =0

= q';:“ |ﬂttp:l',l'localhost:7001,l'consumchcb,l’ichonsumcr.portal?_nfpb—lrl.j [

Page 1

Minim ze Ma! |

aFortlet ET‘ bPrime ==

}
Listerning for portlet & minirrize event:null }

Minimize button

3. InaPortlet, click the Minimize button. The portlet aPortlet minimizes and the
contents of bPortlet change, as shown in Figure 7-24.

Figure 7-24 Consumer Portal in Browser After Minimize Event

0
-

ipcConsumner aorkd 22 RLANTEERTE NSRS E] Listeming.java

cmsumarWeb,l'WebCortent,l’chmsun‘er.pcrtaIL
— on

Il O 0 mech:b,l'ichonsumcr.portal?_anb-trLj b=

| Page 1
APnrtlet EHE| |hPrime ==

Listening fcr portlet A minimize evznt:minmize | ————————— Portlet text
avent Fanded j has changed

4‘&.,_\45_1._“4

7.3 Inside the Remote Portlet File

Example 7-3 shows an excerpt from the XML content of a . portlet file for the
remote portlet described previously in this chapter, bPrime.portlet. Note that the
element dispatchToRemotePortlet is added as part of the handleEvent
definition. This element indicates that the consumer must dispatch the event to the
producer.

Example 7-3 Excerpt from the bPrime.portlet File

<netuix:handleEvent event="onMinimize" eventLabel="handlePortalEventl"
fromSelfInstanceOnly="false" onlyIfDisplayed="true"

Interportlet Communication with Remote Portlets 7-17

Data Transfer with Custom Events

sourceDefinitionLabels="aPortlet_1"> <netuix:dispatchToRemotePortlet/>
</netuix:handleEvent>

7.4 Data Transfer with Custom Events

Custom events are the recommended method for passing data between portlets
deployed in consumer applications and portlets in remote producer applications. This
section outlines a possible technique for passing data from a consumer to a producer
using custom events. For more information on custom events, see "Custom Event
Handling" in the Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic
Portal.

Tip: You can use custom events to pass data between any portlets,
whether the portlets are local or on remote producers. For more
information on event payloads that can be used with WSRP, see
Section 7.5, "Event Payloads Over WSRP."

Figure 7-25 illustrates the configuration of the example discussed in this section.

Figure 7-25 Example configuration

Consumer Producer

P2 < = P2

WSRP/IPC Custom

Event
Handler

P1

Y

Fires custom
aevent

s P1- A portlet on the consumer. This portlet gathers data in a form. When the user
submits this form, the portlet creates a payload object containing the data and fires
a custom event with the payload.

= P2- A portlet on the producer. This portlet is configured to listen for the custom
event fired by P1. When the event is received, the portlet unpacks the payload and
displays it.

= P2'- A remote portlet on the consumer (a proxy for P2).

7.4.1 Retrieving the Event on the Producer

This section illustrates how a portlet on the producer can be configured to handle a
custom event containing a payload. In this case, the portlet is a Java portlet associated
with the class shown in Example 7—4. See also Section 7.5, "Event Payloads Over
WSRP."

Example 7-4 Sample Java Portlet Class

import java.io.IOException;

import javax.portlet.PortletException;
import javax.portlet.GenericPortlet;
import javax.portlet.RenderResponse;
import javax.portlet.RenderRequest;
import javax.portlet.EventResponse;

7-18 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Data Transfer with Custom Events

import javax.portlet.EventRequest;
import javax.portlet.Event;
import javax.portlet.ProcessEvent;

public class JavaPortlet extends GenericPortlet

{

@ProcessEvent (gname="{urn:com:oracle:wlp:netuix:event:custom}messageCustomEvent")
public void getMessage (EventRequest request, EventResponse response)
throws PortletException, IOException

Event event = request.getEvent();

// Get the event's payload
String message = (String)event.getValue();
response.setRenderParameter ("messagel", message);

public void doView (RenderRequest request, RenderResponse response)
throws PortletException, IOException

String message = request.getParameter ("messagel");

if (message == null) message = "";

response.setContentType ("text/html") ;
response.getWriter () .write("<p>Message From Consumer: " +
message + "</p>");

The getMessage() method receives the event object containing the payload sent from
the consumer to the producer. In the following steps, you will configure the
portlet.xml file to mark the portlet as processing this event. Note that in this case
the custom event is fired by a portlet deployed to the consumer application.

To configure the event handler in the producer portlet:

1. In Oracle Enterprise Pack for Eclipse, create a Java portlet using the class shown in
Example 7-4.

2. In the Package Explorer, double-click the Java portlet file to open the portlet in the
editor, as shown in Figure 7-26.

Interportlet Communication with Remote Portlets 7-19

Data Transfer with Custom Events

Figure 7-26 Java Portlet in the Editor

Producer Portlet java.lavaportiet =]
General
Marne javaportlet
Descripkion
Class java. JavaPortlet

Cache Expiration Duration (scope)

,_g_r Event Handlers: Mo event handlers

Supported Mime Types

ket fhkmnl
States: minimized, maximized
Modes: view

Partlet Deployment Descriptor Files

{ Click Link to Wigw)

Standard: IWEB-INF/portlet . <ml
‘iehlogic: IWEB-TNF fweeblogic-portlet, xml
Partlet Modes

Partlet Freferences
Partlet Init-Farams

Partlet Filkers

[@ @ @ &

Partlet Public Render Params

3. Click the No event handlers link in the Java portlet editor to open the Event
Handler dialog box.

Tip: The Portlet Event Handlers dialog box lets you create and
configure event handlers for a portlet. An event handler listens for an
event and takes a specified action when the event is received.

4. In the Portlet Event Handlers dialog, click Add Processing Event...

5. In the Define or Choose a Portlet Event Definition dialog, enter
{urn:com:oracle:wlp:netuix:event:custom}messageCustomEvent in

the QName or NCName field and click OK.
6. Click OK on the Portlet Event Handlers dialog.

Tip: For detailed information on the Event Namespace and Alias
fields, see "About QNames and Aliases" in the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal.

Figure 7-27 shows the completed dialog.

7-20 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Event Payloads Over WSRP

Figure 7-27 Portlet Event Handlers Dialog

M Portlet Event Handlers @

Java Portlet Events | Wil P-Handled Events Shared Event

Event Type: Define/Edit {Jsr286) portlet shared event properties. Asterisk
(*31 denotes a required field,

Eo evedurnicom:iaracle:wlp:netu nt:customtmessageCustomEventntDef _1 -

* Ohame or NCName: |eve{urn:c0m:oracle:wl| [Edit...]
Description:
Bliases: Edit...
Walue Type: | [Browse. ..]

’ Add Processing Evert. ..

The Java portlet is now configured to handle an event called messageCustomEvent
with the default custom event namespace of
urn:com:oracle:wlp:netuix:event:custom. When this event is received, the
portlet container will invoke the getMessage() method in the Java portlet class. This
event handler provides a mechanism for interportlet communication whether the
portlets are running locally or on a remote producer.

7.4.2 Firing the Event in the Consumer

A consumer portlet can be configured to fire a custom event, which is then handled on
the producer. Example 7-5 illustrates code that could be used in a local portlet on the
consumer to fire a custom event and attach a payload to that event.

Example 7-5 Sample Event-Firing Code

PortletBackingContext context =
PortletBackingContext.getPortletBackingContext (getRequest());

context.fireCustomEvent ("messageCustomEvent", form.getMessage());
return new Forward("success");

Refer to Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal for more
information on the fireCustomEvent () method. For more information on portlet
development and event handling, see the Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

7.5 Event Payloads Over WSRP

This section discusses how WebLogic Portal handles event payloads sent over WSRP,
and explains the rules WLP uses to package and convert event payloads. With
knowledge of these rules, you can write portlets to send and/or receive events over
WSRP from any other portlet, even if the portlet is on a third-party WSRP producer.

Interportlet Communication with Remote Portlets 7-21

Event Payloads Over WSRP

Tip: For additional detailed information on how event payloads are
handled over WSRP, review the Javadoc for the class
com.bea.wsrp.model. markup .IEventContext.

7.5.1 Overview

Events can be sent from any portlet on the consumer or producer to any other portlet
on the consumer or to any producer. The consumer is responsible for receiving events
and distributing them to the appropriate portlets.

When events are sent over WSRP, the event payload object must be sent in XML form
to be WSRP-compliant, but the WSRP 2.0 specification does not dictate a particular
scheme for encoding event payloads to ensure interoperability. It is therefore possible
that an event could be received from a portlet on a third-party WSRP producer, and
that WebLogic Portal would not know how to convert the event's payload to a Java
object. For this reason, Oracle WebLogic Portal avoids converting event payloads to
Java objects whenever possible. This allows a Oracle WebLogic Portal consumer to
distribute events between portlets on third-party producers even though the consumer
cannot understand the event payload.

When event payload conversion into or from a WSRP SOAP message is necessary,
WebLogic Portal follows the guidelines discussed in this section. Two special Java
objects are used for WSRP event payloads in these cases:

= com.bea.wsrp.ext.holders. NamedStringArray — This class represents the optional
NamedStringArray schema type defined in the WSRP 2.0 specification for event
payloads, and represents an ordered list of name/value pairs of simple strings.

= com.bea.wsrp.ext.holders.XmlPayload — This class represents arbitrary XML for an
event's payload.

7.5.2 How WLP Packages Event Payloads in XML Format

When packaging an event payload into a WSRP SOAP message, WebLogic Portal uses
the following logic to convert the event payload to XML. This scenario occurs, for
example, when an event is sent by a portlet on the consumer and needs to be delivered
to a portlet on a producer, or when a portlet on a WLP producer sends an event.

1. If the event's payload is an instance of the
com.bea.wsrp.ext.holders.NamedStringArray class, the event payload is encoded
in a WSRP 2.0 NamedStringArray schema type.

2. Otherwise, if the event's payload is an instance of
com.bea.wsrp.ext.holders.XmlPayload, the event payload is encoded as the XML
represented by the object.

3. Otherwise, if the event's payload is a Java object with a Java Architecture for XML
Binding (JAXB) binding, JAXB serialization will be used to encode the payload as
XML.

4. Otherwise, the event's payload is serialized using Java serialization, base-64
encoded, and put in a WLP-specific XML event schema type.

7.5.3 How WLP Converts an Event Payload to a Java Object

When converting an event payload from a WSRP SOAP message to a Java object,
WebLogic Portal uses the following logic. This scenario occurs, for example, when an
event is sent by a producer portlet and delivered to a portlet on the consumer, or when
an event is received by a portlet on a WLP producer.

7-22 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Adding Event Aliases

1. If the event's payload in the SOAP message is encoded in a WSRP 2.0
NamedStringArray schema type, it is converted into a
com.bea.wsrp.ext.holders.NamedStringArray object.

2. Otherwise, if the event's payload in the SOAP message is encoded in the
WLP-specific serialized Java object schema, the object is deserialized. Note that
this requires the appropriate Java class that is being deserialized to be in the class
path.

3. Otherwise, JAXB deserialization is attempted on the XML representation of the
event's payload.

4, If JAXB deserialization fails, an object of type
com.bea.wsrp.ext.holders.XmlPayload is created to hold the raw XML
representation of the event payload.

7.6 Using Shared Parameters

Shared parameters allow portlets (including remote portlets) to share simple String
values with other portlets during all phases of the portlet lifecycle. For detailed
information, see "Using Shared Parameters" in the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

7.7 Adding Event Aliases

If a remote portlet handles a custom event, you have the opportunity to create aliases
for the event in the remote portlet. Aliases provide a mechanism for renaming events
as they are delivered to individual portlets, allowing communication between portlets
that may not have been designed to communicate with each other. For detailed
information on aliases, see "About QNames and Aliases" in the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal.

To add alias(es) to an event in a remote portlet:

1. Bring up the Portlet Event Handlers dialog. One way to do this is in the Properties
view, click the Event Handlers button. Another way is to click the Event Handlers
link in the portlet editor. If no event handlers exist for the portlet, this link is called
No event handlers.

2. In the WLP-Handled Events column of the dialog select Handle Custom Event.

3. In the right side of the dialog, click Edit next to the Aliases field. The Provide List
of QName Alias(es) dialog appears, as shown in Figure 7-28.

Interportlet Communication with Remote Portlets 7-23

Adding Event Aliases

Figure 7-28 Provide List of QName Alias(es) Dialog

£ Provide List of QName Alias{es)

Provide a list of zero aor more Qhlame Alias{es) containing a namespase LRI
and localpart,

{http:) faracle, camfryparams Falias 1 Mew, ..

Edit...

Femove

L Ok J [Cancel

4. Add one or more aliases to the list. The new button brings up a dialog that helps
you to construct the alias properly. For detailed information on constructing alias
names, see "About QNames and Aliases" in the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

5. Click OK to complete the task.

7-24 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

8

Configuring a WebLogic Server Producer

By default, WebLogic Portal projects deployed to a WebLogic Portal domain are
configured to function as WSRP producers. If you want to use a Basic WebLogic
Server or WebLogic Express domain as a producer, some configuration is required.
This chapter explains how to configure a Basic WebLogic Server or WebLogic Express
domain as a WSRP producer. Portlets deployed to the server can then be used by
consumer applications.

This chapter includes the following topics:

s Section 8.1, "Introduction”

» Section 8.2, "Using WSRP in a Basic WebLogic Server Domain"
= Section 8.3, "Configuring a Web Project"

» Section 8.4, "Testing the Producer Configuration"

= Section 8.5, "Disabling a WSRP Producer"

8.1 Introduction

This chapter explains how to configure a basic WebLogic Server domain as a WSRP
producer. The example in this section assumes that you have a functioning Struts
module deployed in a WebLogic Server domain. The goal of this procedure is to create
a portlet in a producer that can be consumed remotely.

By following this procedure, you can expose a Struts application as a remote portlet
that a WebLogic Portal application can consume, as illustrated in Figure 8-1.

Figure 8—1 WebLogic Server Producer

Consumer Producer
WebLogic WebLogic
Portal Server
Domain Domain
| |

Remote WSRP Struts
| Portlet JL< ™ Pportlet
L —

To configure a WebLogic Server domain to be a WSRP producer involves two steps:

» Create a basic WebLogic Server domain.

Configuring a WebLogic Server Producer 8-1

Using WSRP in a Basic WebLogic Server Domain

Extend the domain to include the producer components.

Create or reconfigure a web project to include appropriate WebLogic Portal facets
that are required for the project to host remoteable components, such as Struts
applications.

8.2 Using WSRP in a Basic WebLogic Server Domain

This section explains how to configure a WebLogic Server domain as a producer. You
might do this if you want to make portlets available to consumers, but do not want to
install the full WebLogic Portal product on your server.

Tip: A producer created in this way is a simple producer. A simple
producer is a producer that offers core WSRP services without
requiring a full WebLogic Portal installation. In this configuration,
some advanced features, such as registration and interportlet
communication, are not supported. For more information on simple
and complex producers, see Section 3.4, "Understanding Producers
and Consumers".

The basic steps you need to perform to enable a WebLogic Server domain to be a
WSRP producer are:

Section 8.2.1, "Create a WebLogic Server Domain"

In this step, you use the Oracle WebLogic Configuration Wizard to create a
WebLogic Server domain with the appropriate elements.

Section 8.2.2, "Extend the WebLogic Server Domain"

In this step, you use the Oracle WebLogic Configuration wizard to extend the
WebLogic Server domain using an extension template. The extension template
adds WSRP producer components to the domain.

8.2.1 Create a WebLogic Server Domain

This section explains how to create a new WebLogic Server domain using the Oracle
WebLogic Configuration Wizard. You can then extend the domain to include WSRP
producer components.

1.

Start the Oracle WebLogic Configuration Wizard. To do this, execute the
config.cmd (or config.sh) command in <WEBLOGIC_HOME>/common/bin.

In the Welcome dialog, select Create a new WebLogic domain, and click Next.

In the Select Domain Source dialog, select WebLogic Server (the default) and
Oracle Enterprise Pack for Eclipse, and leave the other checkboxes unselected, as
shown in Figure 8-2.

8-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using WSRP in a Basic WebLogic Server Domain

Figure 8-2 Select Domain Source

0 S

Select Domain Source

ORACLE’

® Generate a domain configured automatically to support the following products:

[Workshop Far Weblogic 10,3 - 10.3.0.0 [workshop_10.3]

[Weblogic Advanced Web Services Extension - 10.3.2.0 [wiserver_10.3]
Weblogic Parkal - 10.3.2.0

[] weblogic Partal Collaboration Repository - 10.3.2.0 [wiportal_10.3]

O Base this domain on an existing template

4. Complete the rest of the configuration wizard steps to create the WebLogic Server
domain. For detailed information on the configuration wizard, refer to Oracle
Fusion Middleware Creating Domains Using the Configuration Wizard. See also the
Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

8.2.2 Extend the WebLogic Server Domain

This section explains how to extend your WebLogic Server domain to include the
components of a simple producer.

You extend the domain using an extension template. An extension template defines
applications and services that can be used to extend an existing domain. The extension
template you will use in this example is called wsrp-simple-producer.jar.

1. Start the Oracle WebLogic Configuration Wizard. To do this, execute the
config.cmd (or config.sh) command in <WEBLOGIC_HOME>/common/bin.

2. In the Welcome dialog of the configuration wizard, select Extend an existing
WebLogic domain, as shown in Figure 8-3, and click Next.

Configuring a WebLogic Server Producer 8-3

Using WSRP in a Basic WebLogic Server Domain

Figure 8-3 Extend a Domain

Welcome

Choose between creating and extending a domain, Based on vour selection,
the Configuration Wizard guides you through the steps ta generate a new or extend an existing domain.

O Create a new WebLogic domain

Create a Weblogic domain in your projects directory,

(%Extend an existing WebLogic domain

Extend an existing WeblLogic domain.

e T P Sl PV W L, T v Bt

Lse this option to add applications and services, or to override existing database access (JDEC)
messaging (IMS) settings, You can also incarparate additional functionality in your domain, for ex
inciuding Aqualogic Service Bus,

gy,

3. In the Select a WebLogic Domain Directory dialog, navigate to the WebLogic
Server domain that you want to extend, select it, as shown in Figure 84, and click
Next.

Figure 8—4 Select a Domain Directory

Select a WebLogic Domain Directory
Select the WebLogic domain to which you want ko add zpplications andfor services.

Select a Weblogic domain directory:
= ﬂﬁ' Deskkop
= 7§ My Computer
\g 314 Floppy (a:)
e SYSTEM (C:)
[=] “e DATA (D)
() BankingApp
B 5 bea
) jdki50_04
) jrockiten_150_04
= logs
[=l |[5) user_projects
= 5 domains

wils-domain
) utils

() weblogics2
workshop92
‘I:I T e

P T L R PR W T ¥ o Ry PRI

. Ay B > PR Y S ©

4. In the Select Extension Source dialog, select Extend my domain using an existing
extension template, as shown in Figure 8-5, and click Next.

8-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using WSRP in a Basic WebLogic Server Domain

Figure 8-5 Select Extension Source

O Extend my domain automatically to support the following added BEA products:

® Extend my domain using an existing extension template

Template location: | Diibealwiserver_10.0%commonitemplates)applications| || Browse |

T P SR N N T RO T TR e

Exit Prewiow: w
e PP L-CL | I

5. Click Browse.

6. In the Select a Template dialog, select the following JAR file, as shown in
Figure 8-6:

<WLPORTAL_HOME>/common/templates/applications/wsrp-simple-producer.jar

Figure 8-6 Selecting the Template

Look In: |E| applications | - |

[medrec.jar

D pl3n.jar
D weblogic-beshive. jar

D wip.jar

[wip_groupspace. jar
D wls_cony.jar

D wis_default,jar

D wls_examples, jar

D wsrp-simple-producer . jar

Mame: | wsrp-simple-producer . jar |

Tvpe: |Jar files | - |

1. Click OK when you have selected the file.

2. In the configuration wizard, click Next and complete the wizard steps as
appropriate. When you reach the last dialog, click Extend.

Checkpoint: At this point, you have extended the WebLogic Server domain so
that it can function as a simple WSRP producer. Next, you need to configure your
web projects.

Configuring a WebLogic Server Producer 8-5

Configuring a Web Project

8.3 Configuring a Web Project

After you have a WebLogic Server domain that is configured to function as a WSRP
producer, you also need to enable any web projects that you deploy to function as a
WSRP producer in the domain. After you configure a web project to function as a
WSRP producer, portlets you deploy in that project will be available to consumers.

8.3.1 Create a Web Project

You
this

need to create a web project that is enabled with WSRP producer components. In
example, we demonstrate how to enable a Dynamic Web Project. This type of

project does not contain any WebLogic Portal components or WSRP producer
components by default.

1.
2.
3.

Open Oracle Enterprise Pack for Eclipse.
Select File > New > Other.

In the New — Select a wizard dialog, open the Web folder and select Dynamic
Web Project. The Dynamic Web Project dialog appears.

Enter a name for the project and click Next. The Select Project Facets dialog
appears.

In the Configuration section of the dialog, click Modify. The Project Facets dialog
appears.

In the Project Facets dialog, expand the WebLogic Portal node, and select only the
following facets, as shown in Figure 8-7:

= Portal Framework Struts
= WSRP Producer
= WebLogic Integrated Commons Logging

Note: Depending on the version of Portal Framework Struts you
select, you may need to select other facets. The Project Facets dialog
enforces these additional requirements and displays a list of any
missing facets. For more information, see "Apache Beehive and
Apache Struts Supported Configurations" in the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

8-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Testing the Producer Configuration

Figure 8-7 Select Project Facets

Project Facet Version Details | Runtimes

B BB

[E]4& Apache xMLBeans

Fl I |=| Portal Framework Struts 10.3.2_1.3
|£] Axis2 Web Services

4| |=] Beshive Contrals 1.0.2 Provides support for running struts applications in th
(1= Beehive NetU 1.0.2 Oracle WeblLogic Portal framework.

[#]&@ Dynamic Web Module 2.5 - Requires all of the following facets:

[=l Facelet 1.0

DI seve 6o - | Gemers

@ Java Annatation Processing Suppart 50 £2p Weblogic Web App Extensions 10.3.2 or newe
[4 Java Persistence 1.0 Requires one of the following facets:

[I JavaScript Toolkit 1.0

[P —— e . || Portal Framework 10.3.2 or newer

D —'J Spl.'ing ' 2'5 - |E| WSRP Producer 10.3.2 or newer

[#]%s Struts 1.3 -

[] 5 webDodlet (XDoclet) 1.2.3 -

4| [weblLogic Contral Extensions 10.2

Neblogic Integrated Commons Logging 1.0

\eblogic Portal
=] JAX-RS Framework 10.3.2
|=| Portal Customizations Framewark 10.3.2
= Portal Dynamic Visitor Tools 10.3.2
= Portal Framewaork 10.3.2
Portal Framework J5F 10.3.2_1.2
Portal Framework Struts 10.3.2_1.3 -
Portal Web Application Services 10.3.2
= WSRP Producer 10.3.2
WebLogic Portal (Optional)
[5 webLogic Portal Callaboration
[5 weblLogic Partal Samples
1 blogic SCA 1.0
[¥] £ Weblogic Web App Extensions 10.3.2 -
[G& webLogic web Service Clients 2.1
[weblogic Web Services 2.1

7. Click Finish.

Checkpoint: You have created a web project in which you can create portlets that
will be visible to consumers.

8.4 Testing the Producer Configuration

To test the producer configuration, you can do the following;:

Section 8.4.1, "Create a Server on the Producer”
Section 8.4.2, "Test for a Producer WSDL"
Section 8.4.3, "Create a Portlet in the Producer Web Application”

Section 8.4.4, "Consuming a Producer Portlet"

8.4.1 Create a Server on the Producer

If you have not done so, create a WebLogic Server in which to run the application on
the producer:

1.

2
3.
4

Start Oracle Enterprise Pack for Eclipse.
Select File > New > Other.
In the Select dialog, open the Server folder and select Server.

Follow the wizard prompts to create the server. Use the WebLogic Server domain
that you configured to function as a WSRP producer and add the WSRP-producer
enabled web project to the server.

Configuring a WebLogic Server Producer 8-7

Testing the Producer Configuration

5. Start the server.

Tip: For more information on creating a server using Oracle
Enterprise Pack for Eclipse, see Oracle Fusion Middleware Tutorials for
Oracle WebLogic Portal.

8.4.2 Test for a Producer WSDL

The first test to perform is to check that the producer web application returns a WSDL
description when you enter the WSDL URL in a browser.

1. Start WebLogic Server.
2. Enter the WSDL URL for the web project in a browser. For example:
http://localhost:7001/myWebProj/producer?wsdl

If the server and web application are configured properly, the WSDL file appears
in the browser. Part of a sample WSDL file is shown in Figure 8-8.

Figure 8-8 Sample WSDL File

- <wsdl: definitions targetNamespace="urn oasisnamestcwsrpv Lwsdl'>
<wsdl:import namespace="urn oasiznamestowsrp vl bind”
location="http /fwww. casis-cpen org/committe esfwsrpispecificationsiversion liwstp_v1_bindings wsdl"/>
<wsdl:import namespace="urnbeawsrpeztvlbind" location="wlp_wsrp_v1_bindings wsdl'f=
- <wsdl:service name="W3EP Zerwce">
- =wsdl: port name="W3EFEBaseService" himli.ng="um:WS;{P_vl_Markup_Bmding_S OAP"=
<soap:address location="http /flocathost 700 WstrutsHedo/producer"f=
<fwsdl:port>
- =wsdl: port name="W3EPServiceDescriptionService”
binding="urnW3EP _v1_ServiceDescription_Bmnding 3OAT">
<soap:address location="http:locathost 700 strutsHello/pro ducer">
<fwsdl:port>
- <wsdl:port name="WLP_W3EP_ Ezt Service" binding="urn 1" WLP_W3IEP_v1_Markup_Ext Binding SOLP"=
<soap:address location="http:locathost 700 strutsHello/pro ducer">
<fwsdl:port>
<fwsdl: service>
<fwsdl: definitions>

Checkpoint: If the WSDL file appears in the browser, then the server is
functioning as a producer. You can now create portlets in the web application that
can be consumed as remote portlets in consumer applications.

8.4.3 Create a Portlet in the Producer Web Application

You can use Oracle Enterprise Pack for Eclipse to create portlets in the web application
on the producer.

For information on creating portlets, see the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

8.4.4 Consuming a Producer Portlet

Another test you can perform is to try to consume a portlet deployed in the producer
from a WebLogic Portal application.

1. On another machine, create a WebLogic Portal Domain. You can use the WebLogic
Configuration Wizard to do this. If you cannot use another machine, be sure the
server's listen port does not conflict with the port used by the producer server.

8-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Disabling a WSRP Producer

2. Use Oracle Enterprise Pack for Eclipse to create a Portal Application and associate
the application with the new WebLogic Portal Domain. If necessary, you can
obtain a free developer's version of Oracle Enterprise Pack for Eclipse by visiting
the Oracle web site.

3. Create a new Portal Web Project to the application. This application is the
consumer application.

4. Create a portal in the consumer application.
5. Start the server that hosts the consumer.

6. Create a remote portlet in the Portal Web Project you just created. Point the WSDL
to the web application on the producer. For example:

http://producerHost : producerPort/myWebApp/producer ?WSDL

Where producerHost : producerPort is the IP address and port number of the
machine hosting the producer, and myWebApp is the name of the context directory
for the web application that contains the producer portlet(s) that you wish to
surface. See Chapter 4, "Creating Remote Portlets, Pages, and Books" for more
information.

7. On the consumer, add the remote portlet to the portal and open the portal. The
portlet you created on the producer appears in the portal.

8.45 Summary

In this section you tested a configuration where a remote portlet in a consumer
references a portlet that is deployed to a producer running in a basic WebLogic Server
domain.

8.5 Disabling a WSRP Producer

To disable a WSRP producer, open the WEB-INF /wsrp-producer-config.xml file
and set the <service-config> element’s enabled attribute to false. For example:

<?xml version="1.0" encoding="UTF-8"?>

<wsrp-producer-config
xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/9.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<description>

This configuration file disables the WSRP producer.
</description>
<service-config enabled="false">

Configuring a WebLogic Server Producer 8-9

Disabling a WSRP Producer

8-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

9

The Interceptor Framework

The Interceptor Framework is a consumer-side framework that lets you
programmatically intercept and modify markup and user interaction-related WSRP
messages sent to and received from producers. This framework exposes a set of
interfaces that you can implement. These interfaces let you examine the content of a
WSRP message and take specific action based on that content. For example, if a
producer sends a registration error back to the consumer, an interceptor can detect
that error and display an informative message to the user or, perhaps, automatically
return the information required to complete the registration.

This chapter includes the following topics:

s Section 9.1, "Introduction”

m Section 9.2, "Use Cases"

= Section 9.3, "Basic Steps"

= Section 9.4, "Designing Interceptors"

= Section 9.5, "Interceptor Interfaces"

= Section 9.6, "Configuring Interceptors"

s Section 9.7, "Order of Method Execution"

= Section 9.8, "Implementing an Error-Handling Interceptor”

= Section 9.9, "Using Resource Proxy Interceptors"”

9.1 Introduction

As Figure 9-1 illustrates, interceptors are implemented in the consumer. They intercept
and allow processing of incoming and outgoing WSRP messages passed between the
consumer and one or more producers. Interceptors are associated with specific
consumer web applications (web application scoped). You can also group together
several interceptors to accommodate more complex use cases.

The Interceptor Framework 9-1

Use Cases

Figure 9-1 Interceptors Run in Consumer Applications

Consumer

Proxy Portlets

m

The interceptor framework defines five public interceptor interfaces. To work with
interceptors, you implement one or more of these interfaces and register your
implementation classes in a configuration file called
wsrp-consumer-handler-config.xml. This configuration file is web
application-scoped, and resides in the consumer web application's WEB-INF directory.
See Section 9.6, "Configuring Interceptors” for more information on the configuration
file.

To work with interceptors effectively, you must be familiar with basic WSRP
operations, such as getMarkup and performBlockingInteraction. You need to
understand the purpose of these operations and how they fit into the life cycle of
proxy portlets. See Section 9.4, "Designing Interceptors".

The rest of this chapter explains how to use these interfaces and includes detailed
examples and use cases.

9.2 Use Cases

If you are a consumer-side developer, you can use the Interceptor Framework for
many different purposes. Some of the most common use cases for interceptors include:

» Handling Errors — You can use interceptors to handle errors returned from a
producer. For instance, if a specific producer is not registered, you can trap the
registration error and handle it as you wish. You may display an informative
message to the user, or you may choose to automatically register the producer. An
interceptor can also catch an I/O exception, which can occur if the producer is
unavailable. In this case, you might choose to handle the error by displaying an
informative message for the user, prevent future requests to the producer, or chose
to redirect to another producer.

= Caching Markup - You can implement an interceptor to cache markup returned
from a producer. This feature allows you to use any external caching system you
choose. In addition, by caching markup on the consumer, you can, in some
circumstances, reduce round-trip communication between the consumer and
producer.

= Validating Data — You can use interceptors to filter user submitted data. If you
detect the user's data is invalid, you can display an informational message, or you
can prevent the data from being sent to the producer.

= Replacing Markup — An interceptor can filter, replace, modify markup data sent
from the producer. An interceptor can also modify the navigational state of a
remote portlet. For information on navigational state, see Section 3.5, "Life Cycle of
a Remote Portlet".

9-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Designing Interceptors

s Modifying HTTP Headers — Interceptors can add or remove some kinds of HTTP
headers, and can also inspect response headers. Refer to Oracle Fusion Middleware
Java API Reference for Oracle WebLogic Portal for details on which kinds of HTTP
headers can be modified by Interceptors.

9.3 Basic Steps

This section lists the basic steps involved in creating an interceptor. More detailed
information on each step is available in the other sections of this chapter. The basic
steps include:

s Determine the purpose of your interceptors. When you know the work you want
to accomplish with interceptors, you can then decide which of the interfaces to
implement. For more information, see Section 9.4, "Designing Interceptors".

= Configure the interceptors. After you know the names of your interceptor classes,
you need to specify the interceptor classes in a configuration file. See Section 9.6,
"Configuring Interceptors" for detailed information.

= Implement the interceptor interface(s). The interceptor interfaces are discussed in
Section 9.5, "Interceptor Interfaces". For more detailed information on the
interceptor interfaces, you can refer to Oracle Fusion Middleware Java API Reference
for Oracle WebLogic Portal.

n Test the interceptors.

9.4 Designing Interceptors

When designing interceptors, you must first decide what kind of work you want to
perform. Depending on the task, you can implement one or more of the interfaces.
Each interface is designed to handle a particular type of WSRP operation. For instance,
if you are interested in intercepting form data before it is sent to a producer, you might
choose to implement the IBlockingInteractionInterceptor. If you are handling
registration faults, then you might implement all of the interfaces.

Interceptors are designed to handle the following types of WSRP operations. These
operations are wrapped in SOAP messages that are passed between consumers and
producers using WSRP:

m initCookieand initCookieResponse
m getMarkup and getMarkupResponse

s performBlockingInteraction and
performBlockingInteractionResponse

s handleEvents and handleEventsResponse
s getRenderDependencies and setRenderDependencies

To use interceptors effectively, you need to be familiar with the purpose of these
operations and how they relate to the life cycle of a proxy portlet. For instance,
performBlockingInteraction requests are sent when a user submits form data in
a portlet.

Tip: Ifyou are interested in learning more about WSRP and the preceding
types of WSRP operations, see Inside WSRP at
http://www.oracle.com/technology/pub/articles/dev2ar
ch/2005/03/inside_wsrp.html. For a more general overview,
see Chapter 3, "Federated Portal Architecture.”

The Interceptor Framework 9-3

Interceptor Interfaces

When designing interceptors, also think about the number of interceptors you need to
accomplish your work. You can associate more than one interceptor with a producer
by creating a group of interceptors. A group is subject to specific rules that govern the
order in which methods are executed. For more information see Section 9.7, "Order of
Method Execution".

Tip: Because every request might not have the same data available, it
is important to add proper null-condition checks and take appropriate
action if data is missing.

9.5 Interceptor Interfaces

This section describes the five public interceptor interfaces, their methods, method
return values, and the context objects that are accessible to the interface methods. This
section includes these topics:

= Section 9.5.1, "Context Objects"
m Section 9.5.2, "Interfaces"
s Section 9.5.3, "Interface Methods"

= Section 9.5.4, "Interceptor Method Return Values"

9.5.1 Context Objects

The interceptor methods receive context objects that you can use to get and set values
in the intercepted SOAP messages. The context object created for each type of
interceptor varies depending on the WSRP operation it represents. For instance, the
initCookie context object does not contain the same information as the context
object for the handleEvents operation. For detailed information on these objects,
refer to Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal for the
interceptor interfaces. This section describes the flow in which request and response
context objects are created and used by interceptors.

Before a message is sent to a producer, or after it is received, the interceptor
framework creates an appropriate context object that is passed to the interceptor
methods. This object wraps certain elements related to the message. Using methods of
the context object, the interceptor can retrieve and set these elements. For example,
when a user clicks a link in a remote portlet, the interceptor framework creates a
request context object which it then passes to the preInvoke () method of the
interceptors. After passing through the interceptors and possibly being modified, the
request object is used to construct a message that is sent to the producer. Likewise, the
interceptor framework constructs a response context object from an incoming message
and passes the object the appropriate interceptor methods.

As illustrated in Figure 9-2, a request context is passed from the proxy portlet to the
preInvoke () methods of registered interceptors. The request context contains
information related to the portlet. After processing by one or more interceptors, the
interceptor framework creates a message. This message includes any modifications
made by the preInvoke () method.

9-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Interceptor Interfaces

Figure 9-2 Handling a Request Context Object

Request (Interceptor(s) Request
to Producer
» >

Proxy Context
Portlet »

prelnvoke()

Similarly, as shown in Figure 9-3, the response context object created from an
incoming message is passed to the postInvoke () method of the interceptors that are
associated with the producer that generated the response.

Figure 9-3 Handling a Response Context Object

/nterceptor(s) \ Response

Response from Producer
postinvoke) || cContext

F 3

Proxy |
Portlet

Finally, as shown in Figure 9—4, the response context object created from an incoming
error or fault message is passed to either the onFault () or onIOFailure () method.
Note that in the case of an onIOFailure, a response SOAP message might not be
generated.

Figure 9—-4 Handling an Error or Fault

Interceptor(s) Faults or Errors

Proxy Response from Producer
Portlet onFault() Context

&

onlOFailure()

9.5.2 Interfaces

The five public interceptor interfaces are summarized in Table 9-2. These interfaces are
in the com.bea.wsrp.consumer. interceptor package. See Oracle Fusion
Middleware Java API Reference for Oracle WebLogic Portal for information on these
interfaces.

Table 9—1 Interceptor Interfaces

Interface Description

IGetMarkuplInterceptor Allows you to intercept and modify a message that is
being sent in a getMarkup message or received in a
getMarkupResponse.

IInitCookielnterceptor Allows you to intercept the initCookie request. This

request is made the first time a consumer displays a
proxy portlet for a given user. The request allows the
producer to initialize cookies and return them to the
consumer.

The Interceptor Framework 9-5

Interceptor Interfaces

Table 9-1 (Cont.) Interceptor Interfaces

Interface Description

IBlockingInteractionInterceptor Allows you to intercept and modify a
performBlockingInteraction message.

IHandleEventsInterceptor Allows you to intercept a handleEvents request or

response.

IGetRenderDependenciesInterceptor ~Allows you to intercept a getRenderDependencies

request or response. Render dependencies include
cascading stylesheet (CSS) files and scripts, such as
JavaScript files, upon which the proper rendering of the
portlet depend. For more information on render
dependencies, see the section "Portlet Appearance and
Features" in the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

IGetResourcelnterceptor

Allows the consumer to intercept a getResource
operation and handle getting a resource, such as an
image, PDF, or form. This feature allows a you to
customize the way resources are retrieved.

IResourceServletInterceptor Allows you to intercept requests and responses to the

resource proxy servlet. The preInvoke and postInvoke
parameters (see Section 9.5.3, "Interface Methods") are
configured in the web.xml as a servlet init-param
named resource-servlet-interceptors, defined
using a pipe (1) separated list of classes. The classes
must implement com.bea.wsrp.consumer.
resource.IResourceServletInterceptor.

For more information, see Section 9.9, "Using Resource
Proxy Interceptors.”

9.5.3 Interface Methods

Each interceptor interface includes the same four methods. Table 9-2 summarizes the
interceptor methods and when each method is called. Possible return values for each
method are discussed in Section 9.5.4, "Interceptor Method Return Values".

Tip: The following table is a general summary only, and does not
include method parameters or return values. The specific method
signatures depend on the interface in which the method is used. Refer
to the Oracle Fusion Middleware Java API Reference for Oracle WebLogic
Portal for a detailed description of each method and its parameters.

Table 9-2 Interceptor Methods

Method

Description

prelnvoke ()

This method is called before creating a SOAP message to send to the
producer. For example, this method is called after a user clicks on a
link in a proxy portlet. One use of this method is to intercept a user's
input data to verify that it is complete.

postInvoke ()

This method is called after a producer has processed its request and
sent a response back to the consumer. This method can be used to
intercept and filter the markup returned by the producer.

onFault ()

This method is called when the producer returns a fault. This method
can be used to examine the error and display an informational
message or take another appropriate action.

9-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Interceptor Interfaces

Table 9-2 (Cont.) Interceptor Methods

Method Description

onIOFailure() This method is called when the there is an IOException while sending
or receiving a message. This method can be used to display an
informational message or take another appropriate action.

9.5.4 Interceptor Method Return Values

The following tables list the possible return values for each of the four interceptor
methods:

s Table 9-2, " Interceptor Methods"
n Table 9-2, " Interceptor Methods"
s Table 9-2, " Interceptor Methods"
n Table 9-2, " Interceptor Methods"
For more information on return values, see Section 9.7.3, "How Return Status Affects

Execution Order".

Table 9-3 Return Values for prelnvoke()

Return Value Description
Status.PreInvoke.CONTINUE_CHAIN Indicates normal execution.
Status.PreInvoke.ABORT_CHAIN Skips calling preInvoke () methods of the

subsequent interceptors, but sends the
message to the producer.

Status.PreInvoke.SKIP_REQUEST ABORT_CHAIN Skips calling preInvoke () methods of the
subsequent interceptors and skips sending
the request message to the producer.

Table 9-4 Return Values for postinvoke()

Return Value Description

Status.PostInvoke.CONTINUE_CHAIN Indicates normal execution.

Status.PostInvoke.ABORT_CHAIN Skips calling postInvoke () methods of the
subsequent interceptors.

Table 9-5 Return Values for onFault()

Return Value Description

Status.OnFault.CONTINUE_CHAIN Indicates normal execution. The consumer will handle the
fault if rest of the interceptors also return CONTINUE_
CHAIN status.

Status.OnFault.ABORT_CHAIN Skips calling onFault () methods of the subsequent
interceptors. The consumer will handle the fault.

Status.OnFault.RETRY Re-sends the message that caused the fault. The
onFault () methods of the subsequent interceptors are
not called.

Status.OnFault.HANDLED Skips calling onFault () methods of the subsequent

interceptors and assumes that fault has been consumed by
the interceptor. The interceptor is responsible for
providing all response data.

The Interceptor Framework 9-7

Configuring Interceptors

Table 9-6 Return Values for OnlOFailure()

Return Value Description

Status.OnIOFailure.CONTINUE_CHAIN Indicates normal execution. The consumer will handle
the IO failure if the rest of the interceptors also return
CONTINUE_CHAIN status.

Status.OnIOFailure.ABORT_CHAIN Skips calling onIOFailure () methods of the
subsequent interceptors. The consumer will handle
the fault.

Status.OnIOFailure.RETRY Re-sends the message that caused the IO failure. The

onIOFailure () methods of the subsequent
interceptors are not called.

Status.OnIOFailure.HANDLED Skips calling onIOFailure () methods of the
subsequent interceptors and assumes that the IO
failure is consumed by the interceptor. The
interceptor is responsible for providing all response
data.

9.6 Configuring Interceptors

The interceptors are configured in wsrp-consumer-handler-config.xml, a web
application scoped configuration file. This configuration file requires two entries:
interceptor and interceptor-group. Both of these entries must be present in
the configuration file.

Tip: You'll find the wsrp-consumer-handler-config.xml file
in the Eclipse Project Explorer view under Merged Project
Content/WEB-INF. To edit this file, right-click it and select Copy to
Project. Then, open the file in the editor.

The <interceptor> element specifies the fully qualified interceptor class name and
provides an arbitrary, unique name. The interceptor class must also be in the web
application's class path or another accessible class path, such as a system-defined class
path. Each interceptor specified by an <interceptor> element must be referenced in
a group, therefore, you must configure at least one <interceptor-group>.

The <interceptor> element includes the following elements.
= name — A unique name within the scope of a web application.

» producer-handle — (Optional) If you specify the handle for a registered
producer, the intereceptor(s) in the group will only be called on messages received
from or sent to that producer. If you do not specify a producer handle, then the
interceptor(s) in the group will be called for all producers associated with the
consumer.

s interceptor-name — The name(s) of the interceptors you want to include in the
group. Use the name(s) specified in the interceptor element(s).

The <interceptor-group> element includes the following elements.
= name — A unique name within the scope of a web application.

» producer-handle — (Optional) If you specify the handle for a registered
producer, the intereceptor(s) in the group will only be called on messages received
from or sent to that producer. If you do not specify a producer handle, then the
interceptor(s) in the group will be called for all producers associated with the
consumer.

9-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Order of Method Execution

s interceptor-name - The name(s) of the interceptors you want to include in the
group. Use the name(s) specified in the interceptor element(s).

For more information on groups, and the order in which methods in groups are called,
see Section 9.7, "Order of Method Execution".

Example 9-1 shows a simple configuration, including two interceptors and one group.

Example 9-1 Sample Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsrp-consumer-handler-config ...>
<interceptor>
<name>AutoRegisteringInterceptor</name>
<class-name>myInterceptors.AutoRegistrationInterceptor</class-name>
</interceptor>

<interceptor>
<name>ErrorMessageCustomizer</name>
<class-name>myInterceptors.ErrorMessageCustomizer</class-name>

</interceptor>

<interceptor-group>
<name>Group_1l</name>
<producer-handle>MyProducer</producer-handle>
<interceptor-name>AutoRegistrationInterceptor</interceptor-name>
<interceptor-name>ErrorMessageCustomizer</interceptor-name>

</interceptor-group>

</wsrp-consumer-handler-config>

9.7 Order of Method Execution

This section discusses the factors that affect the order of method execution in
interceptors and groups of interceptors.

s Section 9.7.1, "Overview"

= Section 9.7.2, "Basic Order Of Execution in a Group"

m Section 9.7.3, "How Return Status Affects Execution Order”
s Section 9.7 .4, "Instance Creation and Reuse"

= Section 9.7.5, "Example Chains"

9.7.1 Overview

An interceptor group is a collection of interceptors whose methods are called in a
well-defined order. A group can be associated with a specific producer or not
associated with any producer. If associated with a single producer, then the
interceptors in the group will be called only when requests and responses occur
between the consumer and that specific producer. If no producer is associated with a
group, then the group's interceptors are called when communication occurs between
the consumer and all producers associated with it. For detailed information on
configuring a group, see Section 9.6, "Configuring Interceptors".

9.7.2 Basic Order Of Execution in a Group

This section describes the order in which interceptor methods are called if all methods
return a status value of CONTINUE_CHAIN.

The Interceptor Framework 9-9

Order of Method Execution

Recall that all interceptors contain four methods: preInvoke (), postInvoke (),
onFault (), and onIOFailure (). In an interceptor chain, all of the preInvoke ()
methods are executed, then the postInvoke () methods, the onFault () methods,
and finally the onIOFailure () methods.

Figure 9-5 illustrates the order in which methods in an interceptor chain are called for
the following chain definition:

Example 9-2 Example Interceptor Chain Definition

<interceptor-chain>
<name>Chain-A</name>
<producer-handle>myProducer</producer-handle>
<interceptor-name>Interceptor2</interceptor-name>
<interceptor-name>Interceptor3</interceptor-name>
<interceptor-name>Interceptor3</interceptor-name>
<interceptor-name>Interceptord</interceptor-name>

</interceptor-chain>

The illustration assumes that all methods return the CONTINUE_CHAIN status. Note
that all of the preInvoke () methods are called first in the order in which the
interceptors appear in the chain configuration, then the postInvoke () methods are
called in the reverse order. After all the postInvoke () methods are called, the
onFault () methods are called in the order shown in Figure 9-5. Finally, the
onIOFailure () methods are called in the order shown in Figure 9-5. If onFault ()
or onIOFailure () are called, then postInvoke () is not called.

Figure 9-5 Default Method Order in Interceptor Chains

Chain A
1 2 3 4
Interceptor 1 : preInvoke ()} * postInvoke () : onFault{) : onIoFalure()
1 I 1 1
Interceptor 2 1| preInvoke() : postInvoke ()| onFault () I lonIoFalure ()
1 1 1
Interceptor 3 : preInvoke () : postInvoke () : onFault () : onIoFalure ()
1
Interceptord; preInvoke () | | postInvoke () ; onFault () ; onIoFalure ()

Tip: Be aware that you can define interceptors in the configuration
file that are associated with specific producers or not associated with
any specific producer. An unassociated interceptor does not have a
<producer-handle> element defined with it. Unassociated interceptors
are always called first for all producer transactions, before the
interceptors that are associated with a specific producer are called.
Unassociated interceptors are called in the order in which they appear
in the configuration file. See Section 9.6, "Configuring Interceptors" for
more information.

9.7.3 How Return Status Affects Execution Order

The return status of interceptor methods also affects the order in which interceptor
methods are executed. It's helpful to think of chains of interceptor methods. It's easier
to understand the way interceptor chains work if you think of four separate chains: a
prelInvoke () chain, a postInvoke () chain, an onFault () chain, and an

9-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Order of Method Execution

onIOFailure () chain. If you think of chains this way, it's easier to understand the
effect of return status on the execution of the chain.

Table 9-2 summarizes the possible return values for interceptor methods and how they
affect the order of execution in a chain.

Table 9-7 Interceptor Method Return Values

Return Value Description

CONTINUE_CHAIN If all methods return a CONTINUE_CHAIN status, interceptors in
a chain are executed in order.

ABORT_CHAIN Skips calling methods of the subsequent interceptors in the
chain, but sends the message on to the producer. A use case for
ABORT_CHAIN is when you trap a registration error. If the
interceptor is able to fix the error, it can then be re-submitted to
the producer.

SKIP_REQUEST_ABORT_CHAIN Skips calling methods of the subsequent interceptors in the chain
and skips sending the request message to the producer. A use
case for SKIP_REQUEST_ABORT_CHAIN is when the interceptor
performs caching. If markup exists in the cache, there may be no
reason to perform further processing and return a message to
the producer.

HANDLED Skips calling the fault-handling methods of the subsequent
interceptors in the chain and assumes that fault has been
consumed by the interceptor. The interceptor is responsible for
providing markup data inputstream, in the absence of it will
result in rendering "no markup found error" error message in
the portlet.

RETRY Re-sends the message that caused the fault. The fault-handling
methods of the subsequent interceptors in the chain are not
called. Only one retry is permitted per message.

Note: If ABORT_CHAIN or SKIP_REQUEST_ABORT_CHAIN is
returned from prelnvoke(), all of the interceptors will still be called, in
reverse order, during the postInvoke() phase.

9.7.4 Instance Creation and Reuse

A new instance of an interceptor implementation class is created for every message
before calling preInvoke (). This same instance is reused to call postInvoke (),
onFault (), and onIOFailure (). This allows you to set and use instance variables
within the scope of a request. For a given instance, all methods are called once;
however, preInvoke () and postInvoke () can be called one more time if the
RETRY status is returned by either onFault () or onIOFailure (). Only one retry is
permitted per message.

9.7.5 Example Chains

This section includes several examples that illustrate the flow of method execution in
an interceptor chain. Refer to Table 9-2 for details on interceptor return values referred
to in these examples.

Figure 9-6 illustrates the flow in an interceptor chain when the preInvoke () method
is called on the chain. When a status of ABORT_CHAIN returned, a message is
immediately returned to the producer. The preInvoke () methods of subsequent
interceptors in the chain are not called.

The Interceptor Framework 9-11

Order of Method Execution

Figure 9-6 prelnvoke() Chain with ABORT_CHAIN Return Value
Consumer

prelnvoke() Producer

Interceptor 1 CONTINUE CHAIN

Interceptor 2 CONTINUE CHAIN

Interceptor 3

ARCRT CHATHN

1
1
1
1
1
1
Interceptor 4 ; (Not Called)

T

Figure 9-7 illustrates another example of the flow in an interceptor chain when the
prelInvoke () method is called on the chain. When a status of SKIP_REQUEST
ABORT_CHAIN is returned, no message is sent to the producer. The preInvoke ()
methods of subsequent interceptors in the chain are not called.

Figure 9-7 prelnvoke() Chain
Consumer

prelnvoke() Producer

Interceptor 1 CONTINUE_CHATIN

T

Interceptor 2 CONTINUE CHAIN

Interceptor 3 SKIP REQUEST ABORT CHAIN

1
1
1
1
1
1
Interceptor 4 ; (Not Called)

Figure 9-8 illustrates the flow in an interceptor chain when the onFault () method is
called on the chain. When a status of RETRY is returned, the same message that caused
the failure, with possible modifications inserted by the interceptor, is returned to the
producer. The onFault () methods of subsequent interceptors in the chain are not
called. Only one retry is permitted. If the same fault is returned, the interceptor
framework assumes that the error is handled by the interceptor, and a status of
HANDLED is returned.

9-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Implementing an Error-Handling Interceptor

Figure 9-8 onFault() Chain with RETRY Return Value
Consumer

onFauit() Producer

Interceptor 1 CONTINUE CHAIN

Interceptor 2 CONTINUE CHAIN

Interceptor 3 RETRY

v

T

(Not Called)

‘._______-

Interceptor 4

Figure 9-9 illustrates the flow in an interceptor chain when the onIOFailure ()
method is called on the chain. In this case, the no message is returned to the producer,
and the framework assumes that fault has been consumed by the interceptor. The
onIOFailure () methods of subsequent interceptors in the chain are not called. Only
one retry is permitted. The second retry is not honored, and the fault or exception is
passed to a proxy portlet. If the same fault is returned, the interceptor framework
assumes that the error is handled by the interceptor, and a status of HANDLED is
returned.

Figure 9-9 onlOFailure() Chain with HANDLED Return Value
Consumer

onlOFailure() Producer

Interceptor 1 CONTINUE_CHATIN

CONTINUE CHATN
HANDLED X

(Not Called)

Interceptor 2

Interceptor 3

Interceptor 4

‘._______-

T

9.8 Implementing an Error-Handling Interceptor

This section illustrates two simple interceptor implementations. The first implements
the onFault () method and modifies the error message that is returned to the
producer. The second implements onFault () and redirects portlet to display an error

page.
This section includes these sections:

= Section 9.8.1, "Modifying an Error Message"
= Section 9.8.2, "Including an Error JSP Page"

9.8.1 Modifying an Error Message

You can use interceptors to retrieve and modify exceptions thrown from the producer.
In Example 9-3, the onFault () method retrieves a Throwable from the response. You

The Interceptor Framework 9-13

Implementing an Error-Handling Interceptor

can design an onFault () method to examine the exception and take any appropriate
action. In this case, the error message is retrieved, modified, and written back to the
IGetMarkupResponseContext object. The return status HANDLED has the following
effects:

s If the interceptor is part of a chain, it skips calling subsequent onFault ()
methods in the chain.

= Returns markup data to the producer. This markup is then displayed in the
portlet. If you do not return markup data to the producer, the portlet displays the
message "No Markup Found Error."

Example 9-3 ErrorMessageCustomizer

import com.bea.wsrp.consumer.interceptor.IGetMarkupInterceptor;
import com.bea.wsrp.model.markup.IGetMarkupRequestContext;
import com.bea.wsrp.model.markup.IGetMarkupResponseContext;
import com.bea.wsrp.consumer.interceptor.Status;

import weblogic.xml.util.StringInputStream;

public class ErrorMessageCustomizer implements IGetMarkupInterceptor
{
public Status.PrelInvoke preInvoke (IGetMarkupRequestContext requestContext)

{
return Status.PreInvoke.CONTINUE CHAIN;

public Status.PostInvoke postInvoke (IGetMarkupRequestContext requestContext,
IGetMarkupResponseContext responseContext)

return Status.PostInvoke.CONTINUE_CHAIN;

public Status.OnFault onFault (IGetMarkupRequestContext requestContext,
IGetMarkupResponseContext responseContext,
Throwable t)

String message = "This Message is Customized by ErrorMessageCustomizer\n";
message = message + t.getMessage();
StringInputStream stringInputStream = new StringInputStream(message);

responseContext.setMarkupData (stringInputStrean) ;

return Status.OnFault.HANDLED;

public Status.OnIOFailure onIOFailure (IGetMarkupRequestContext requestContext,
IGetMarkupResponseContext responseContext, Throwable t)

return Status.OnIOFailure.CONTINUE_CHAIN;

9.8.2 Including an Error JSP Page

In this example, the onFault () method is implemented to include an error JSP page
in the portlet.

9-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Implementing an Error-Handling Interceptor

Example 9-4 DisplayErrorPage Class

import com.bea.wsrp.consumer.interceptor.IGetMarkupInterceptor;
import com.bea.wsrp.model.markup.IGetMarkupRequestContext;
import com.bea.wsrp.model.markup.IGetMarkupResponseContext;
import com.bea.wsrp.consumer.interceptor.Status;

import weblogic.xml.util.StringInputStream;

import myClasses.MyError;

public class DisplayErrorPage implements IGetMarkupInterceptor

{
public Status.PrelInvoke preInvoke (IGetMarkupRequestContext requestContext)

{
return Status.PrelInvoke.CONTINUE_CHAIN;

public Status.PostInvoke postInvoke (IGetMarkupRequestContext
requestContext, IGetMarkupResponseContext responseContext)

return Status.PostInvoke.CONTINUE_CHAIN;

public Status.OnFault onFault (IGetMarkupRequestContext requestContext,
IGetMarkupResponseContext responseContext,
Throwable t)

{
try
{
if (t instanceof MyError) ({
responseContext.render (requestContext.getHttpServletRequest (),
requestContext.getHttpServletResponse(),
"/redirectTarget/myTarget.jsp");
} else {
responseContext.render (requestContext.getHttpServletRequest (),
requestContext.getHttpServletResponse(),
"/redirectTarget/defaultTarget.jsp");
}
}
catch (ServletException e)
{
e.printStackTrace() ;
}
catch (IOException e)
{
e.printStackTrace() ;
}
return Status.OnFault.HANDLED;
}

public Status.OnIOFailure onIOFailure (IGetMarkupRequestContext
requestContext, IGetMarkupResponseContext
responseContext, Throwable t)

return Status.OnIOFailure.CONTINUE_CHAIN;

The Interceptor Framework 9-15

Using Resource Proxy Interceptors

9.9 Using Resource Proxy Interceptors

This section explains how to use the WSRPResourceServletInterceptor and
ClipperResourceServletInterceptor.

9.9.1 What is the ResourceProxyServlet

WLP employs a ResourceProxyServlet to proxy resource requests from the consumer
portal to the producer. This servlet makes it possible for a consumer to request
resources, like images, from a producer (which may be behind a firewall and
otherwise unavailable to the consumer). The producer maps resource requests (URLs)
to the ResourceProxyServlet on the consumer. When a browser tries to resolve a
resource, it makes the request to ResourceProxyServlet on the consumer, which then
requests the resource from the producer. By default, ResourceProxyServlet is added to
a WLP application’s web . xm1 file.

9.9.2 The IResourceServletinterceptor

The IResourceServletInterceptor intercepts requests and responses from the
ResourceProxyServlet. This interceptor can be used for:

= Setting up a 2-way SSL

s Setting up an HTTP or SOCKS proxy

» Modifying the target URL

= Adding or removing headers (on both requests and responses)
= Rewriting markup

The IResourceServletInterceptor is used by both WSRP (for proxied and served
resources) and the WLP Web Clipper Portlet. Default implementations are provided
with WLP for both of these cases.

9.9.3 Configuring the Resource Proxy Interceptors

IResourceServletInterceptor follows the same programming model as the other WSRP
interceptors described in this chapter. Like the other interceptors,
IResourceServletInterceptor includes prelnvoke() and postlnvoke() methods. The
major difference is that resource proxy interceptors are configured as a servlet
init-paramin the web.xml file. This servlet init-param is called
resource-servlet-interceptors.

Unlike the other interceptors, the prelnvoke and postInvoke parameters are
configured in the web application’s web . xm1 file. To configure these parameters, use a
servlet init-paramnamed resource-servlet-interceptors. Add the
parameter values using a pipe (|) to separate the list of interceptor classes. The classes
must implement com.bea.wsrp.consumer.
resource.IResourceServletInterceptor.

Example 9-5 illustrates a resource-servlet-interceptor parameter for a WSRP resource
proxy. Example 9-6 illustrates a resource-servlet-interceptor parameter for a Web
Clipper Portlet resource proxy.

Example 9-5 Configuring a WSRP Resource Proxy in web.xml

<servlet>

<servlet-name>com.bea.wsrp.consumer.resource.ResourceProxyServlet</servlet-name>
<servlet-class>com.bea.wsrp.consumer.resource.ResourceProxyServlet</servlet-class>

9-16 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using Resource Proxy Interceptors

<init-param>
<param-name>resource-servlet-interceptors</param-name>
<param—value>com.bea.wsrp.consumer.resource.WsrpResourceServletInterceptor|
com.bea.wsrp.ga.TestInterceptor</param-value>
</init-param>
</servlet>

Example 9-6 Configuring a Clipper Portlet Resource Proxy in web.xml

<servlet>

<gservlet-name>com.bea.netuix.clipper.ClipperResourceProxyServlet</servlet-name>

<gservlet-class>com.bea.netuix.clipper.ClipperResourceProxyServlet</servlet-class>

<init-param>
<param-name>resource-servlet-interceptors</param-name>
<param—value>com.bea.netuix.clipper.ClipperResourceServletInterceptor|

com.bea.netuix.clipper.ga.TestInterceptor</param-value>
</init-param>
</servlet>

9.9.4 Default Interceptors

If not otherwise configured, both WSRP and Web Clipper Portlets use a default
interceptor. The defaults perform most of the basic functions required by the resource
proxy servlet.

Caution: Oracle does not recommend that the default resource proxy
interceptors be replaced. Instead, add additional interceptors before or
after the default interceptor. See Example 9-5 and Example 9-6. You
can also extend (subclass) the interceptor.

Some functions performed by the default interceptors include:
» Setting up the request and response contexts:
1. Parsing the URL
2. Transferring headers
3. Rewriting the response markup
s Performing security checks
» Adding the appropriate cookies.

Because the default interceptors perform these functions, Oracle recommends that
custom interceptors operating on the request (prelnvoke) be placed after the base
interceptor, and interceptors operating on the response should be placed before the
base interceptor. If using the approach of extending the base interceptor, call the
super method on any overridden method, as shown in Example 9-7.

Example 9-7 Overriding Base interceptor Methods

public class MyInterceptor extends WsrpResourceServletInterceptor {
@Ooverride
protected PrelInvoke preInvoke (IResourceServletRequestContext requestContext) throws IOException

PreInvoke superPrelInvoke = super.prelnvoke (requestContext);
if (superPreInvoke == PreInvoke.CONTINUE_CHAIN) ({

The Interceptor Framework 9-17

Using Resource Proxy Interceptors

final HttpURLConnection connection = requestContext.getURLConnection;
connection.addRequestProperty ("X-MY-SECURITY-TOKEN", generateSecurityToken());

return superPrelnvoke;

9.9.5 More Information

For more information, refer to the Javadoc for WsrpResourceServletInterceptor and
ClipperResourceServletInterceptor.

9-18 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

10

Federating User Profiles

WebLogic Portal enables user profile information to be passed from consumers to
producers. This feature allows many of the Personalization features available in
WebLogic Portal to function in a federated portal. This chapter explains how to work
with user profile information in a federated portal. Before a federated portal can use
user profile information, some configuration is required in both the consumer and
producer applications.

This chapter includes the following topics:
s Section 10.1, "Introduction”
= Section 10.3, "Configuring the Producer"

= Section 10.4, "Configuring the Consumer"

10.1 Introduction

This section summarizes the purpose of user profile propagation and how WebLogic
Portal propagates user profile data in a federated environment.

10.1.1 What are User Profiles?

A user profile is a collection of property sets that contain user-specific information.
WebLogic Portal provides many features that rely on user profiles. For example, the
WebLogic Portal Personalization features rely on user profiles to deliver customized
content to specific types of users.

For example, you could create a property set in Oracle Enterprise Pack for Eclipse
called human resources that contains properties such as gender, hire date, and e-mail
address. This information can be used to personalize the user's experience in your
portal. When users log into a portal, the portal can access the property values and
target them with personalized content, e-mails, pre-populated forms, and discounts
based on the Personalization rules you set up.

See the Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic
Portal for more information on personalization. For detailed information on creating
user profiles, see Oracle Fusion Middleware Interaction Management Guide for Oracle
WebLogic Portal.

10.1.2 User Profiles in Federated Portals

For a WebLogic Portal producer to return personalized content to a consumer, user
information must be conveyed from the consumer to the producer. The basic
requirements for using user profile information in a federated portal include:

Federating User Profiles 10-1

Introduction

= On the producer, declare the user properties to request from the consumer. The
best practice is to request only those properties that are required by the portlets
that are deployed on the producer. See Section 10.3, "Configuring the Producer" for
more information.

= On the consumer, provide a mapping file, if necessary, that maps the requested
user properties with equivalent properties that exist on the consumer. The
consumer uses the WebLogic Portal Personalization (P13N) API to retrieve the
requested user properties on the consumer. See Section 10.4, "Configuring the
Consumer” for more information.

Tip: Once retrieved, the list of the properties required for a specific
portlet is stored in the consumer database for future access.

As shown in Figure 10-1, after a consumer first contacts a producer, the producer
responds with a list of the portlets it offers and with a request for the user information
that each portlet requires.

Figure 10-1 Producer Requests User Information from Consumer

Consumer
| Ask for Service Description

L

385 List of offered portlets and
SaaEril request for user information

i
I §

If a portlet requires user information, the consumer will attempt to supply that
information as part of the getMarkupRequest () to the producer before the portlet
can be rendered, as illustrated in Figure 10-2. WebLogic Portal uses the P13N API,
typically in conjunction with a mapping file, to retrieve the requested user properties
on the consumer.

Figure 10-2 Producer Returns Personalized Content

Consumer

| Call getMarkupRequest() with
HHHERHAR| required user information

.5 e] Personalized content

A

i
I §

10.1.3 Platform for Privacy Preferences (P3P)

The WSRP protocol specifies a standard format for storing and exchanging user
information. This format, called Platform for Privacy Preferences (P3P), is an internet
standard. You can configure WebLogic Portal applications to accept user information
presented in this format as well as in the WebLogic Portal user profile format.

See Section 10.5, "P3P Examples" for more information. The P3P specification is
available on the W3C web site, http: //www.w3 .org/TR/P3P.

10-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Producer

10.2 When to Use this Feature

Use this feature if the user properties defined on the producer and consumer do not
match. When exactly the same user properties exist on the consumer and producer,
you do not need to use this feature.

Tip: In a production environment, the best practice is to specify a
property set and property name for each user property you want to
propagate. Retrieving all properties is inefficient when only a small
subset of properties is needed.

10.3 Configuring the Producer

To use user profile information in a federated portal, you need to declare on the
producer which user properties are required by the portlets deployed on the producer.
The declared properties are marshalled in a response to the consumer and returned to
the consumer application, which must then return the requested user property values
when registering the producer.

The procedures for configuring portlets deployed in a producer to use user profile
information differs depending on whether you are configuring Java portlets or
non-Java portlets.

This section includes the following topics:
= Section 10.3.1, "Configuring Java Portlets"
= Section 10.3.2, "Configuring Non-Java Portlets"

10.3.1 Configuring Java Portlets

The Java Portlet Specification specifies how Java portlets access user attributes such as
the name, e-mail address, phone number, and other attributes of the user. This section
explains how to specify user attributes for Java portlets deployed in a producer
application, and how Java portlets retrieve user information.

Tip: For detailed information on how user information is accessed by
Java portlets, refer to the User Information section of the Java Portlet
Specification.

10.3.1.1 Configuring the Deployment Descriptor (portlet.xml)

The Java Portlet Specification defines the <user-attribute> element for specifying
user attributes required by a deployed Java portlet. Figure 10-1 shows an excerpt of a
portlet.xml file with user properties specified. The <name> elements specify user
attribute names.

Example 10-1 Specifying User Properties in portlet.xml File
<portlet-app>

<user-attribute>
<name>Employee/Language</name>

</user-attribute>

<user-attribute>
<name>Employee/Role</name>

</user-attribute>

</portlet-app>

Federating User Profiles 10-3

Configuring the Producer

See also Section 10.3.1.3, "Creating Default User Property Sets".

10.3.1.2 Retrieving User Information in a Java Portlet

The Java Portlet Specification also specifies how Java portlets retrieve user information
from the portal environment in which they are deployed. The portlet can retrieve a
Map object that contains the user attributes of the user who initiated the request. You
can retrieve this Map object from the request using the PortletRequest .USER_
INFO constant.

The example code in Example 10-2 shows how a Map of user information is retrieved
from the request in a JSP associated with a Java portlet. User property values are
retrieved from the Map using the user property names as keys.

Example 10-2 Retrieving User Information in a Java Portlet

Map<String, Object> props;
PortletRequest portletRequest = (PortletRequest)
request.getAttribute("javax.portlet.request");
if (portletRequest != null) {
props = (Map<String, Object>)
portletRequest.getAttribute (PortletRequest.USER_INFO) ;

} else {
props = null ;
}
if (props == null) {%>

<p>Empty Profile</p>
<%} else {%>
<p><%= props.get ("Employee/Language") %></p>
<p><%= props.get ("Employee/Role") %$></p>
<%}%>

10.3.1.3 Creating Default User Property Sets

Example 10-3 shows a sample user attribute specified in a portlet.xml file. This
section explains how you can streamline the <user-attribute> property by
creating default user property sets. For example, by creating a default user property
called "Employee," the name attribute in Example 10-3 could be shortened to
<name>Language</name>.

Example 10-3 User Attribute Specified in portlet.xml

<user-attribute>
<name>Employee/Language</name>
</user-attribute>

To create a default user property set, first create a weblogic-portlet.xml file in
the WEB-INF directory of your portal web application. You can then use the
<user-property-set> attribute to configure default user property sets.

Example 104 shows how to create a default user property set called "Employee" for
all portlets in the web application:

Example 10-4 Default Property Set Applied to All Portlets

<portal-container>

10-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Producer

<user-property-set>Employee</user-property-set>
</portal-container>

Example 10-5 shows how to create a default user property set for a specific portlet:

Example 10-5 Default Property Set Applied to Specific Portlets
<portlet>

<name>portletName</name>
<user-property-set>Employee</user-property-set>

</portlet>
With the default user property set "Employee" specified in weblogic-portlet.xml,

you can then code the <user-attribute> value shown Example 10-3 as follows in
the portlet.xml file.

Example 10-6 User Attribute

<user-attribute>
<name>Language</name>
</user-attribute>

For more information on the weblogic-portlet.xml file, see "Building Portlets" in
the Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

10.3.1.4 Mapping User Properties

If the user properties on the consumer and producer do not match, you can create a
mapping file on the consumer. A mapping file allows the consumer to retrieve user
properties that map to the properties requested by the producer. For detailed
information on mapping user properties, see Section 10.4, "Configuring the
Consumer".

10.3.2 Configuring Non-Java Portlets

This section explains how to specify user attributes for non-Java portlets deployed in a
producer application.

10.3.2.1 Configuring the Deployment Descriptor File

For non-Java portlets, you specify required user properties in the descriptor file
wsrp-producer-config.xml. This file is located in the WEB-INF directory of your
producer web application. Example 10-7 shows a sample
wsrp-producer-config.xml file. The <requiredUserProperties> element
specifies the required user properties for portlets deployed in the producer web
application (shown in bold type). In the example, the value A11 specifies that
consumer must supply all available user profile information to the producer. Other
possible values are discussed in this section.

Example 10-7 Sample wsrp-producer-config.xml File

<?xml version="1.0" encoding="UTF-8"?>

<wsrp-producer-config
xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/9.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:uddi="urn:uddi-org:api_v2"

xsi:schemalocation="http://www.bea.com/servers/weblogic/wsrp-producer-config/9.0

Federating User Profiles 10-5

Configuring the Producer

wsrp-producer-config.xsd">
<description></description>
<service-config>
<registration required="true" secure="false"/>
<service-description secure="false" supports-method-get="true"/>
<markup secure="false" rewrite-urls="true" transport="string"/>
<portlet-management required="true" secure="false"/>
</service-config>
<supported-locales>
<locale>en</locale>
<locale>en-US</locale>
</supported-locales>
<requiredUserProperties properties="All">
</requiredUserProperties>
</wsrp-producer-config>

The <requiredUserProperties> element contains one attribute, called

properties, which takes one of these three values:

= All - Instructs the consumer to send all user profile information. For example:
<requiredUserProperties properties="All">

= None - Instructs the consumer to send no user profile information. For example:
<requiredUserProperties properties="None">

= Specified - Instructs the consumer to send only specified user profile
information. Use the <specifiedProperties> sub-element to list the user
information required by the portlet. For example:

<requiredUserProperties properties="specified">
<description>These are required properties</description>
<specifiedProperty name="Employee/name" />
<specifiedProperty name="Employee/gender" />
<specifiedProperty name="Employee/number" />
</requiredUserProperties>
The value given for the name property can take one of these forms:

s propertySet/propertyName — The name of a property set defined on the
producer and the name of a property in that property set. For example:

<requiredUserProperties properties="specified">
<specifiedProperty name="Employee/gender"/>
</requiredUserProperties>

= propertySet/* - The name of a property set defined on the producer and an
asterisk (*), which specifies that all properties in that property set are required. For
example:

<netuix:requiredUserProperties properties="specified">
<specifiedProperty name="Employee/*"/>
</requiredUserProperties>

= p3pName — Specify P3P user properties. For example:

<requiredUserProperties properties="specified">

10-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Producer

<specifiedProperty name="name/given"/>
<specifiedProperty name="gender"/>
</requiredUserProperties>

If no user information is specified in wsrp-producer-config.xml, the behavior is
the same as if a value of None were specified in <requiredUserProperties>.

Retrieving User Information in a Portlet

The code excerpt in Example 10-8 shows how user properties are retrieved in a
portlet's JSP file using the P13N tag <profile:getProperty>.

Example 10-8 Retrieving Values in a Portlet

A
oo -

if (request.getUserPrincipal() != null) {
%>
<profile:getProfile profileKey="<%= request.getUserPrincipal () .getName () %>"
/>
<%
} else { %>
<profile:getProfile profileKey="anonymous" groupOnly="true" />

A
oe

00
\%

<tr>
<td>Name</td>
<td id="wsrp_date"><profile:getProperty propertySet=
"Employee" propertyName="name"/></td>
</tr>
<tr>
<td>Gender</td>
<td id="wsrp_int_code"><profile:getProperty propertySet=
"Employee" propertyName="gender"/></td>
</tr>
<tr>

10.3.2.2 Handling User Property Extensions

If a WebLogic Portal or non-WebLogic Portal consumer sends extended P3P user
profile information, the portlet can retrieve the extensions as a List object obtained
from the <profile:getProperty> tag. Example 10-9 shows example code that
extracts a List containing telephone extensions. In this case, the property
homeInfo/postal/extensions isan extended WSRP user property.

Example 10-9 Retrieving User Profile Extensions

<profile:getProperty propertySet="<%= UserProperty.P3P_PROPERTY_SET NAME %>"
propertyName="homeInfo/postal/extensions" id="postalExtsObj"/>
<%
List<Element> teleExts = (List<Element>) postalExtsObj;
if (teleExts != null) {
for (int 1 = 0 ; 1 < teleExts.size() ; i++) {
String extStr = teleExts.get(i)

%>

Federating User Profiles 10-7

Configuring the Consumer

<tr> <td>Postal Extension[<%= 1 %>]</td>
<td colspan="2"
id="postal_extensions[<%=1%>]"><%= extStr %></td> </tr>

10.3.2.3 Mapping User Information on the Consumer

Consumers may map the user properties requested by producers to properties that
exist on the consumer. For detailed information on mapping user properties, see
Section 10.4, "Configuring the Consumer".

10.4 Configuring the Consumer

In many cases, the user property set and property names that exist on a producer do
not match those on the consumer. Therefore, WebLogic Portal allows you to map these
names appropriately. This section explains how to map property set and property
names using a configuration file or programatically with a mapping class.

This section includes these topics:

= Section 10.4.1, "Using a Mapping File"

m Section 10.4.2, "Using a Mapping Class"
ms Section 10.4.3, "Mapping Constants"

10.4.1 Using a Mapping File

Specify user profile mappings in the wsrp-user-property-config.xml file. This
file is located in the WEB-INF directory of the consumer web application.

As shown in Example 10-10, the element <wsrp-user-property-map-bean> is the
top-level element that can appear in this configuration file. The elements that can fall
under <wsrp-user-property-map-bean> are shown in bold type and include:

= <user-property-map> — Creates a producer to consumer mapping that applies
to all producers registered with the consumer.

= <producer-user-property-map> — Creates a mapping tied to a specific
producer, indicated with the <producer-handle> element.

= <mapper-class-name> — Lets you supply a class that performs mappings
programatically. You must specify the fully qualified class name of the mapping
class. For more information on creating a mapping class, see Section 10.4.2, "Using
a Mapping Class".

As shown in Example 10-10, the <producer-user-property-map> element can be
used to create producer-specific mappings directly or with a mapping class.

Example 10-10 Example wsrp-user-property-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<wWsrp-user-property-map-bean xmlns="http://www.bea.com/ns/portal/90/wsrp-user-property-config">

<!-- Maps ldap/name -> Employee/name for all registered producers -->
<user-property-map>
<producer-property-name>Employee/name</producer-property-name>
<consumer-property>ldap/name</consumer-property>
</user-property-map>

10-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Consumer

<!-- Specifies a mapper class to apply to all registered producers -->
<mapper-class-name>myClasses.MyUserPropertyMapperl</mapper-class-name>

<1-- User Property Map for specific producer -->
<producer-user-property-map>

<producer-handle>complexProducer</producer-handle>
<user-property-map>
<producer-property-name>Employee/number</producer-property-name>
<consumer-property>"xxxxxx"</consumer-property>
</user-property-map>
</producer-user-property-map>

<!-- Specifies a mapper class for specific producer -->
<producer-user-property-map>
<producer-handle>complexProducer2</producer-handle>
<mapper-class-name>myClasses.MyUserPropertyMapper2</mapper-class-name>
</producer-user-property-map>
</wsrp-user-property-map-bean>

The <producer-property-name> sub-element of <user-property-map>
specifies the propertySet/propertyName pair of the requested producer property,
and the <consumer-property> sub-element specifies the equivalent pair that exists
on the consumer.

The <producer-property-name> and <consumer-property> pairs can take the
following forms:

propertySetName/propertyName — The name of a property set and the name
of a property in that property set. For example:

<producer-property-name>propertySetName-A/propertyName-A</producer-property-nam
e>
<consumer-property>propertySetName-B/propertyName-B</consumer-property>

propertySetName/* — The asterisk (*) specifies that all properties in that
property set are mapped. This pattern assumes that the same property names
exists in the mapped property sets on the consumer and the producer.

For example, the following lines map all properties in propertySetName-A on
the producer to propertySetName-B on the consumer.

<producer-property-name>propertySetName-A/*</producer-property-name>
<consumer-property>propertySetName-B/*</consumer-property>

propertyValue— Maps a property name from the producer to a constant value.
For example, the following lines map the property called propertyName-A from
the producer to an arbitrary string constant. In addition to strings, you can specify
other types of constants. For more information, see Section 10.4.3, "Mapping
Constants".

<producer-property-name>propertySetName-A/propertyName-A
</producer-property-name>
<consumer-property>"aStringValue"</consumer-property>

10.4.2 Using a Mapping Class

In addition to using a mapping file to map requested producer properties to consumer
properties, you can create a mapping class to programmatically map and set user
property values on the consumer. To use a mapping class, you need to do the
following:

Federating User Profiles 10-9

Configuring the Consumer

= Write the mapping class.

s Configure the mapping class in the wsrp-user-properties-config.xml file.

10.4.2.1 Writing the Mapping Class

To create a mapping class:

1. Extend the com.bea.wsrp.consumer.userproperty.DefaultUserPropertyMapper
class in Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal.

2. Override the getProducerProperties method to implement the mapping

functions that you want to create. For detailed information on this method, refer to

the Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal. The

mapper class example in Example 10-11 sets the gender property for a user based

on the user's name.

Note: Extending DefaultUserPropertyMapper and overriding
getProducerProperties is the simplest and best practice, although it is
not required. You can also extend its abstract base class if you want to.

3. Configure the mapper class in the wsrp-user-property-config.xml file. To
do this, add lines to wsrp-user-property-config.xml that follow the pattern

shown in Example 10-11, where producerHandle is the unique name that

identifies the producer on the consumer, and myClasses.MyMapperClass is the

full class name of the mapper class.

Example 10-11 Example Mapper Class

package com.bea.portlet.ga.wsrp.userprops;

import java.util.Arrays;
import java.util.Collection;
import java.util.HashSet;
import java.util.Map;

import java.util.Set;

import com.bea.pl3n.property.EntityPropertyCache;

import com.bea.wsrp.consumer.userproperty.DefaultUserPropertyMapper;
import com.bea.wsrp.consumer.userproperty.RequiredUserProperties;
import com.bea.wsrp.consumer.userproperty.UserProperty;

public class TestUserPropertyMapper extends DefaultUserPropertyMapper {
private final static Set<String> MALE_NAMES = new HashSet<String>() ;
private final static Set<String> FEMALE_NAMES = new HashSet<String>() ;

static {
final String[] maleNames = {"Nate", "Nathan", "Eric", "Subbu", "Scott"};
MALE_NAMES.addAll (Arrays.asList (maleNames)) ;
final String[] femaleNames = {"Mandy", "Geeta","Jenn", "Jen","Jenny"} ;
FEMALE_NAMES.addAll (Arrays.asList (maleNames)) ;

* Map set the user's gender if user.name.given is set

* @param requiredProperties the properties requested by the producer
* @param map A map where the key is the producer's name and

* the value is the consumer's name

* @param profile the User's profile on the consumer

10-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Consumer

* @return the properties mapped to the producer
*/
public Collection<UserProperty> getProducerProperties (
RequiredUserProperties requiredProperties,
Map<String, String> map,
EntityPropertyCache profile) ({

final Collection<UserProperty> properties =
super.getProducerProperties (requiredProperties, map, profile) ;
if (requiredProperties.isPropertyRequired("HR", "gender")) {
final String givenName = (String) getProperty (profile, "HR", "name.given")
if (MALE_NAMES.contains(givenName)) {
addUserProperty (properties, "HR", "gender", "M")
} else if (FEMALE_NAMES.contains (givenName)) {
addUserProperty (properties, "HR", "gender", "F")

}

return properties ;

10.4.2.2 Configuring the Mapping Class

You need to declare mapping classes in the wsrp-user-properties-config.xml
file. To do this, use the <mapper-class-name> element. This element takes a fully
qualified class name as its property, as shown in the following example:

<mapper-class-name>myClasses.MyMapperClass</mapper-class-name>

You can place this element directly under the <wsrp-user-property-map-bean>
element or the <producer-user-property-map> element. For detailed
information on the configuration file, see Section 10.4.1, "Using a Mapping File".

10.4.3 Mapping Constants

In addition to mapping user properties to user properties, you can map user
properties to constant values. You can map to constants in the configuration file or in a
mapper class. Example 10-12 shows part of a
wsrp-user-properties-config.xml file where a property called long is
mapped to a constant of type long, which is enclosed in /L delimiters.

Example 10-12 Mapping User Properties to Constant Values

<user-property-map>
<producer-property-name>map/long</producer-property-name>
<consumer-property>/L42/L</consumer-property>
</user-property-map>

Table 10-1 includes the full set of constant delimiters.

Table 10-1 Constant Delimiters

Type Delimiter Example
String " "Hello World"
Boolean /B /Btrue/B

Federating User Profiles 10-11

P3P Examples

Table 10-1 (Cont.) Constant Delimiters

Type Delimiter Example

Long /L /L42/L

Double /D /D3.14159/D

Date /T /T1975-09-27T14:38:11-07:00/T

If you create a mapping class, you can specify constants using the delimiters shown in
Table 10-1 or use the constants defined in the

com.bea.wsrp.consumer .userproperty.UserProperty interface. For details
on this interface, refer to the Oracle Fusion Middleware Java API Reference for Oracle
WebLogic Portal.

10.5 P3P Examples

This section recasts some of the examples given previously in this chapter to show
how to use P3P attributes instead of WebLogic Portal user attributes. This section
includes the following examples:

This section includes these examples:
= Section 10.5.1, "Example: portlet.xml file with P3P Attributes"
= Section 10.5.2, "Example: Retrieving P3P User Information in a Java Portlet"

= Section 10.5.3, "Example: Retrieving User Information in Other Portlets"

10.5.1 Example: portlet.xml file with P3P Attributes

The portlet.xml file is a standard deployment descriptor for Java portlets.
Example 10-13 shows a portlet.xml file that includes P3P attributes. For more
information on this file, see Section 10.3.1, "Configuring Java Portlets".

P3P attribute names always begin with the prefix user, and by convention, a dot (.)
separator is used to separate elements of a name (for example: user .name.given).
For a complete set of names used by Java portlets, refer to the Java Portlet
Specification.

Example 10-13 Specifying User Properties in portlet.xml File
<portlet-app>

<user-attribute>
<description>User Given Name</description>
<name>user.name.given</name>
</user-attribute>
<user-attribute>
<description>User Last Name</description>
<name>user.name.family</name>
</user-attribute>
<user-attribute>
<description>User eMail</description>
<name>user.home-info.online.email</name>
</user-attribute>
<user-attribute>
<description>Company Organization</description>
<name>user.business-info.postal.organization</name>
</user-attribute>

10-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

P3P Examples

</portlet-app>

10.5.2 Example: Retrieving P3P User Information in a Java Portlet

The example code in Example 10-14 shows how a Map of user information is retrieved
from the request in a JSP associated with a Java portlet. Note that standard P3P user
property names, such as user .bdate, are used in the file.

Example 10-14 Retrieving User Information in a Java Portlet

Map<String, Object> props;
PortletRequest portletRequest = (PortletRequest)
request.getAttribute ("javax.portlet.request");
if (portletRequest != null) {
props = (Map<String, Object>)
portletRequest.getAttribute (PortletRequest.USER_INFO)
} else {
props = null ;

i

if (props == null) {%>
<p>Empty Profile</p>
<%} else {%>
<p><%= props.get ("user.bdate") %></p>
<p><%= props.get ("user.business-info.telecom.telephone.intcode") %></p>
<%}%>

10.5.3 Example: Retrieving User Information in Other Portlets

The code excerpt in Example 10-15 shows how P3P properties are retrieved in a
portlet's JSP file using the P13N tag <profile:getProperty>. WebLogic Portal
recognizes the constant

com.bea.wsrp.consumer .userproperty.UserProperty.P3P_PROPERTY_
SET_NAME to be the set of standard P3P user properties.

Example 10-15 Retrieving P3P Values in a non-Java Portlet

<%@ page import = "com.bea.wsrp.consumer.userproperty.UserProperty" %>

A
oo -

if (request.getUserPrincipal() != null) {
%>
<profile:getProfile profileKey="<%= request.getUserPrincipal ().getName() %>"
/>
<%
} else { %>
<profile:getProfile profileKey="anonymous" groupOnly="true" />

A
oe

00
v

<tr>
<td>Date</td>
<td id="wsrp_date"><profile:getProperty propertySet=

Federating User Profiles 10-13

P3P Examples

"<%= UserProperty.P3P_PROPERTY SET NAME %>" propertyName="bdate"/></td>

</tr>

<tr>
<td>Int Code</td>
<td id="wsrp_int_code"><profile:getProperty propertySet=
"<%= UserProperty.P3P_PROPERTY_SET NAME %>" propertyName=

"businessInfo/telecom/telephone/intcode" /></td>
</tr>

10-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

11

Consumer Entitlement

Consumer entitlement allows producers to decide which portlets to offer to consumers
based on registration properties.

This chapter includes these topics:

s Section 11.1, "Introduction"

= Section 11.2, "Configuring a Producer"
= Section 11.3, "Registering a Consumer"

= Section 11.4, "Modifying Registration Properties"

11.1 Introduction

WSRP allows consumers to pass information to producers during registration.
Through the User Management features of WebLogic Portal, you can create roles
based on this registration information. The roles, in turn, can be used to entitle specific
portlets for specific consumers. This feature allows producers to control which portlets
are offered to specific consumers.

To entitle consumers based on registration properties:

1. Define one or more application-defined property sets using Oracle Enterprise Pack
for Eclipse. See Section 11.2.1, "Creating an Application Property Set".

2. Modify the wsrp-producer-config.xml configuration file for each portal web
application on the producer. See Section 11.2.2, "Editing the Producer
Configuration File".

3. Define user entitlements based on the application-defined property set(s). See
Section 11.2.3, "Defining Consumer Entitlements".

No configuration is required by consumers. All of the configuration takes place on the
producer. Once the producer is properly configured, required registration information
is sent to the consumer in response to a service description request. The consumer
simply prompts the user to enter the registration information requested by the
producer through either the WebLogic Portal Administration Console or Oracle
Enterprise Pack for Eclipse.

A typical use case for consumer entitlements is to provide one consumer access to a set
of portlets and another consumer access to another set of portlets. For example,
suppose your company has several partners. The administrator of the producer could
create a registration property with a set of unique values. The administrator could
then give each partner their own unique registration property value. When partners
register the producer, they are required to enter their value as a registration property,
which entitles them to receive a specific set of portlets.

Consumer Entitlement 11-1

Configuring a Producer

11.2 Configuring a Producer

This section explains how to configure a producer to entitle consumers based on
registration properties.

Tip: You can only define consumer entitlements in a complex
producer. For information on complex producers, see Section 3.4,
"Understanding Producers and Consumers".

The basic steps include:
= Section 11.2.1, "Creating an Application Property Set"
= Section 11.2.2, "Editing the Producer Configuration File"

= Section 11.2.3, "Defining Consumer Entitlements"

11.2.1 Creating an Application Property Set

The first step in creating entitlements for consumers based on registration properties is
to create one or more Application-Defined Property Sets using Oracle Enterprise Pack
for Eclipse. These property sets are used to specify the values a consumer must supply
to a producer at registration time.

Tip: Application-Defined Property Sets must be created in a
datasync project. To start the datasync creation wizard in Oracle
Enterprise Pack for Eclipse, select File > New > Other > WebLogic
Portal > Datasync. For detailed information on creating
Application-Defined Property Sets, see the Oracle Fusion Middleware
Interaction Management Guide for Oracle WebLogic Portal.

For example, if you create a property set containing a set of identification keywords.
When the producer receives the registration information from the consumer, it can
evaluate the keyword it receives and, based on a visitor entitlement, return a specific
set of portlets. If the user registers with a different keyword, a different set of portlets
could be returned.

The property sets you create appear in Oracle Enterprise Pack for Eclipse in the
datasync project's src/propset folder. Figure 11-1 shows a sample propset folder
containing two property sets.

11-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring a Producer

Figure 11-1 Application-Defined Property Sets

o &

+ ?&Jv collabweb
=122 data
= & sHC
= campaigns
= catalog
#[= contentselectors
#[= discounts
= events
= placeholders
= propset
#- = reguest
+-[= segments
= session
+- (= userprofiles
== wsrpregistr ationproperties
== wstp
reqe.propsat
reql.propsek
= %’ ryCollabEar
+ GET Deployment Desc‘r'iptor: meyCollabE.
e P i B e \

Application-Defined
Property Sets

A e A ey ey e o Wy o S

11.2.2 Editing the Producer Configuration File

After you create property sets containing consumer registration properties and
optional default values, you need to make the producer aware of these property sets.
To do this, you must edit the configuration file wsrp-producer-config.xml. Only
the property sets listed in this configuration file are sent to consumers for registration.
This configuration file includes a <registration> element. This element includes
the <property-uri> element, which specifies paths to each of the property sets you
defined for that producer.

By default, a producer includes a path /wsrpregistrationproperties. You can
either put . propset files in that directory or create other directories as needed and
list them in the <property-uri> element.

Tip: By default, the wsrp-producer-config.xml file is stored in a J2EE
Shared Library. To edit the file, you must first copy it from the J2EE
Shared Library to your workspace. To do this, switch to the Merged
Projects view in Oracle Enterprise Pack for Eclipse. In the WEB-INF
directory of the producer web application, right-click the
wsrp-producer-config.xml file (it appears in an italic font) and select
Copy to Project. The configuration file is then copied from the J2EE
Shared Library to your file system, where you can edit it. Any local
changes you make to the file take precedence over the J2EE Shared
Library version.

Example 11-1 shows a sample <registration> elementin a
wsrp-producer-config.xml file. A directory called
/wsrpregistrationproperties is created and configured by default in the
wsrp-producer-config.xml file. Any property sets placed in this directory are
automatically sent to the consumer as registration properties. In addition, all property
sets in the /wsrp directory will be sent to the consumer as registration properties. The
paths specified in the <property-uri> element are relative to the META-INF/data
directory of each producer web application. Note that the directory name /wsrp is an
example only; you can create property sets under any directory name you choose. If
you do not provide specific property sets using <property-uri> elements,

Consumer Entitlement 11-3

Configuring a Producer

WebLogic Portal imports all Application-Defined Property Sets for registration
properties.

Example 11-1 Registration Element

<service-config>
<registration required="true" secure="false">
<property-uri>/wsrpregistrationproperties</property-uri>
<property-uri>/wsrp</property-uri>
</registration>
<service-description secure="false" supports-method-get="true"/>
<markup secure="false" rewrite-urls="true" transport="string"/>
<portlet-management required="true" secure="false"/>
</service-config>

The isStrict keyword is a <registration> keyword that causes registration to
fail in a specific case, as specified in Table 11-3.

Table 11-1 isStrict Keyword

Value of isStrict Explanation

isStrict = true Causes registration to fail if both of these are true:

= aconsumer provides a property value for a registration property that
has a restricted set of values defined and

= the provided value(s) do not fall within the restricted set of values.

isStrict = false (Default) If the consumer sends a value that lies outside of the set of
values associated with a registration property set, the user can register,
but the registration value(s) are not saved. In this case, entitled portlets
that require these values will not be offered to the consumer.

The isStrict keyword is part of the <registration> element. The isStrict
keyword is show in bold type in Example 11-2.

Example 11-2 isStrict Keyword
<service-config>
<registration required="true" secure="false" isStrict="true">
<property-uri>/wsrpregistrationproperties</property-uri>
<property-uri>/wsrp</property-uri>
</registration>
</service-config>

11.2.3 Defining Consumer Entitlements

After you have created property sets for consumer registration and added them to the
wsrp-producer-config.xml file, you can create visitor entitlements based on the
property sets.

In the WebLogic Portal Administration Console, you can define Role Expressions for
consumer registration. Figure 11-2 shows the Role Expressions tab selected for a
Visitor Role called rolel.

11-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring a Producer

Figure 11-2 Role Expressions Tab

Home = Users, Groups, & Roles = Visitor Entitlements 3
£

Browse Roles from: =“=l rolel R

Update
portalveh Details | Users InRole | Groups InRole | - Role Expression | Delegated Admin | Entitled Resources i
=i Visitor Roles 1)
L

[Hrale1 })

. - - e 1 PR, s et o e o - » F e - Ly ;

The role expressions are used to dynamically determine whether or not a consumer

belongs to a visitor entitlement role. Individual portlets can then be offered based on
membership in that role.

To create a visitor entitlement in the Administration Console:

1. Create a visitor role.

2. Define one or more consumer registration expressions in the role.

3. Entitle specific portlets based on the role.

For example, you can define a role with the following Role Expression: If the property
pl equals red, blue, or green, then consumer is considered to be a role member. The
producer then returns all portlets that are entitled for that role to the consumer.
Figure 11-3 shows the Add Conditions dialog in the WebLogic Portal Administration
Console. This dialog is used to define Role Expressions. When creating entitlements
for consumer registration, select The Consumer's registration has these values from
the Type of condition drop-down menu.

Figure 11-3 Setting Registration Properties

‘:;I;' Add Condition

Type of condition: | The Consumer's registration has these values %

Property Property Value(s) Delete
Set i
regl pl ALL % | of the following conditions must be true:
is equal to ~ red ¥
is equal to ~ blue F
is equalto ~ green |

| Eg:.-’-\dd Another Value |
R = =

Detailed information on setting up visitor entitlements is beyond the scope of this

guide. See the Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal for
information on this topic.

\nm-\‘,-*“ﬁ_u'%'i\ Ny ﬁ‘ Ay

'y

To entitle a portlet with a consumer registration role:

1. In the Administration Console, select the portlet you want to entitle.

2. Select the Entitlements tab.

Consumer Entitlement 11-5

Registering a Consumer

3. C(lick Add Role.
4. Use the Add Role dialog to select the role to add to the portlet, and click Save.
5. Complete the Entitle Capabilities to Resource dialog (Figure 11-4) to assign

capabilities to the role and click Save.

Figure 11-4 Entitling Capabilities to Resource Dialog

| = . 4
Entitle Capabilities to Resource 3
E
Capabilities i
VYiew |Edit |Remove |Minimize |Maximize | Offered ,

Role a a a a a a 3
YisitorRole ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ P
1

F
+

» - - - » r P > . f

11.3 Registering a Consumer

When you register a consumer with a producer that has been configured to request
registration properties, the producer asks the consumer to provide values for those
properties. In Oracle Enterprise Pack for Eclipse, the set of extended registration
properties and optional default values are added to the Register dialog, which appears
when you attempt to create a remote portlet. On each subsequent request by the
consumet, the producer retrieves these registration properties and uses them to make
entitlement decisions.

Figure 11-5 shows the registration dialog for a producer that requires registration
properties. In this example, two properties are requested: regl and reg2. The property
values entered by the user are sent to the producer. The producer retrieves the values
and stores them. On subsequent requests, the producer compares the stored
registration values to the registration values it requires. If the registration values are
accepted, the producer uses them to determine to which role the consumer belongs.
Once the consumer's role is established, the producer returns only entitled portlets to
the consumer.

11-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Modifying Registration Properties

Figure 11-5 Register Dialog

Producer Handle: |n‘|vP|'oduce|'

Vendor (optional): |

Description (optional):

Extended Registration Properties:

| Property Label | Property Value Hint
regl/MNew Property
reg2/New Property

Partner Registration property set
Silver Reaqistration properties

Tip: When you register a producer, the consumer sends a
getServiceDescription request to the producer. The producer's
response includes the <registration> element. This element includes a
list of the types of registration properties the producer requires. The
consumer then populates the registration dialog with the appropriate
fields. The user fills out these fields and submits them with the
registration request. For information on getServiceDescription and
other WSRP operations, see Chapter 3, "Federated Portal
Architecture.”

11.4 Modifying Registration Properties

Using the WebLogic Portal Administration Console, you can modify the registration
properties for a producer that has already been registered with a consumer. When the
consumer re-registers the producer, some portlets that were previously in use might
not be available or some additional portlets might be available to the consumer. For
detailed information on modifying the registration properties for a producer using the
Administration Console, see Section 19.2, "Modifying Producer Registration
Properties".

Consumer Entitlement 11-7

Modifying Registration Properties

11-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

12

Transferring Custom Data

WebLogic Portal supports a relatively simple technique for passing custom data
between consumers and producers. A set of interfaces is provided that let you attach
arbitrary data to request and response objects. This chapter explains how to use these
interfaces to achieve custom data transfer and includes detailed examples.

This chapter includes the following topics:

s Section 12.1, "What is Custom Data Transfer?"

s Section 12.2, "Custom Data Transfer Interfaces"

= Section 12.3, "Performing Custom Data Transfer"
= Section 12.4, "Transferring XML Data"

= Section 12.5, "Deploying Your Own Interface Implementations"

12.1 What is Custom Data Transfer?

Custom data transfer allows portlet developers to exchange arbitrary data between
producers and consumers. The primary use cases for custom data transfer are:

= To send and receive data that WebLogic Portal does not usually send or receive.

= To send and receive data that the WSRP protocol does not allow.

Note: Itis recommend that you use this technique only after trying
other techniques for data transfer. The preferred technique for
transferring data between producers and consumers is to use custom
events. For more information, see Section 7.4, "Data Transfer with
Custom Events".

Some example use cases for custom data transfer include:

= You are a portal developer building a portal with a set of location-sensitive
portlets deployed on one or more producers. You would like to supply a zip code
to each of these portlets in a request so that each portlet can use this zip code to
generate location-aware markup.

= You want to send arbitrary data such as theme or style information or user profile
data to portlets.

Custom data transfer allows you to easily resolve these situations and many others
like them. The technique for using custom data transfer is straightforward, and
involves these primary tasks:

Transferring Custom Data 12-1

Custom Data Transfer Interfaces

1. Create one or more "holder" classes that implement the interfaces listed in the
following section, "Section 12.2, "Custom Data Transfer Interfaces"." A serializable
default implementation of the interfaces, called SimpleStateHolder is provided

with WebLogic Portal.

2. Place a serializable holder object in a request or response object, as appropriate.
For example, in a consumer application, you can set a holder object as a request
parameter and retrieve it in the producer application. See Section 12.3.1, "Custom
Data Transfer with a Complex Producer" for a detailed example of this technique.

Both simple producers and complex producers can take advantage of this feature.

12.2 Custom Data Transfer Interfaces

The following interfaces enable the transfer of data between producers and consumers.
To perform custom data transfer, implementations of these interfaces must be
deployed on both the consumer and producer.

Section 12.3, "Performing Custom Data Transfer" includes a detailed example
demonstrating how to use these interfaces. For more information on these interfaces,
refer to their Oracle Fusion Middleware Java API Reference for Oracle WebLogic
Portaldescriptions.

Note: These interfaces are not supported for events and render
dependencies requests.

= com.bea.wsrp.ext.holders.InteractionRequestState

Allows the consumer to send some arbitrary data to the producer when an
interaction (such as a form submission) occurs.

= com.bea.wsrp.ext.holders.InteractionResponseState

Allows the producer to return some arbitrary data to the consumer after an
interaction occurs.

= com.bea.wsrp.ext.holders.MarkupRequestState

Allows the consumer to send some arbitrary data to the producer when a portlet is
being refreshed.

= com.bea.wsrp.ext.holders.MarkupResponseState

Allows the producer to return some arbitrary data to the producer after portlet is
rendered.

= com.bea.wsrp.ext.holders.XmlPayload

Transfers XML data between consumers and producers. You can place an instance
of this class directly in request and response objects. For more information, see
Section 12.4, "Transferring XML Data".

Tip: If you do not want to create your own implementations of these
interfaces, the serializable
com.bea.wsrp.ext.holders.SimpleStateHolder class provides a default
implementation. The examples in this chapter use SimpleStateHolder
to pass custom data.

12-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Performing Custom Data Transfer

12.3 Performing Custom Data Transfer

This section presents examples that illustrate how to use custom data transfer between
consumers and producers. Both examples use the serializable
com.bea.wsrp.ext.holders.SimpleStateHolder class, which implements the five
interfaces listed previously in Section 12.2, "Custom Data Transfer Interfaces". This
class provides a default implementation of the above interfaces that lets you exchange
simple name-value pairs of data.

The examples include:
= Section 12.3.1, "Custom Data Transfer with a Complex Producer”

This example demonstrates custom data transfer between a consumer and a
complex producer.

= Section 12.3.2, "Custom Data Transfer in a Simple Producer”

This example demonstrates custom data transfer between a consumer and a
simple producer.

12.3.1 Custom Data Transfer with a Complex Producer

This example explains how to transfer data from a consumer to a complex producer.
For information on complex producers, see Section 3.4.2, "WebLogic Portal Producers".

12.3.1.1 Example Overview

In this example, a backing file in the consumer application packages arbitrary data in a
com.bea.wsrp.ext.holders.SimpleStateHolder object. This object is attached to a request
using the setAttribute() method. The producer retrieves the data from the request and
places it in a JSP page. The modified page is then displayed by the consumer
application.

The example consists of these steps:

1. Section 12.3.1.2, "Setting Up the Example"

2. Section 12.3.1.3, "Creating the Producer JSP and Portlet"

3. Section 12.3.1.4, "Federating zipTest.portlet to the Consumer"
4. Section 12.3.1.5, "Creating a Backing File"
5

Section 12.3.1.6, "Testing the Consumer Application"

12.3.1.2 Setting Up the Example

If you want to try the example discussed in this chapter, you need to run Oracle
Enterprise Pack for Eclipse and perform the prerequisite tasks listed in Table 12-1. For
detailed information on performing these basic setup tasks, see "Setting Up Your
Portal Development Environment" in Oracle Fusion Middleware Tutorials for Oracle
WebLogic Portal.

Table 12-1 Prerequisite Tasks

Task Recommended Name
Create a Portal domain. wsrpPortalDomain
Create a Portal EAR Project. wsrpPortalEAR

Create an Oracle WebLogic Server v10.x. N/A

Associate the EAR project with the server. N/A

Transferring Custom Data 12-3

Performing Custom Data Transfer

Table 12-1 (Cont.) Prerequisite Tasks

Task Recommended Name

Create a Portal Web Project and add it to the EAR. consumerProject

Create a second Portal Web Project and add it to the producerProject
EAR.

Figure 12-1 shows the Package Explorer after the prerequisite tasks have been
completed.

Figure 12-1 Package Explorer After Prerequisite Tasks are Completed

Sl Sqn e : Package Explorer Mavigatar | Merged F‘h

B consumerProject
E producerProject
% wsrpPorkalEAR

" e o T o

Y .'...‘-" I . F f‘-..

We also assume that you know how to view and edit portlet properties in the
Properties view. For information, see the Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

12.3.1.3 Creating the Producer JSP and Portlet

With the example environment in place, create a JSP file on the producer and a portlet
to surface that file. Code placed in the JSP file retrieves a SimpleStateHolder object
from the request, retrieves its data payload, and displays the data.

1. Be sure you have set up the example environment as explained previously in
Section 12.3.1.2, "Setting Up the Example".

2. Right-click producerProject/WebContent in the Package Explorer and select New
> JSP. The New JavaServer Page dialog appears.

3. Inthe dialog, enter zipTest . jsp in the File name field, and click Finish.

4. Replace the entire contents of the JSP source file with the code in Example 12-1.

Example 12-1 Code to Get State from the Request

<%@ page import ="com.bea.wsrp.ext.holders.SimpleStateHolder,
com.bea.wsrp.ext.holders.MarkupRequestState"%>

A
oe

SimpleStateHolder state = (SimpleStateHolder)
request.getAttribute (MarkupRequestState.KEY) ;
String zip = (String) state.getParameter ("zipCode");
%>
<%=z1ip%>

Figure 12-2 shows the editor with the new source code.

12-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Performing Custom Data Transfer

Figure 12-2 New JSP Source for zipTest.jsp

*zipTest.jsp X = E'F'
<zl page impDEt =”cam.hea.wsrp.ext.hnlders.Slj.mpleStateHDlder, #
com.bea.wsrp.ext,holders, MarkupFRequestitate™s > i

< 3
SimpleStatelHolder state = [(Simpledtateldolder) 4_
request.getitcribute (MarkupRequesti3tcacte . EKET) ; r
Ftring =ip = (3tring) =state.getParsneter ("zipCode™) L

. 3
<E=Elipss J
4

k|

-

et LW e e B e Ly B e L_,;_,--l’

5. Save the file.

Tip: Later in this example, you will add a backing file to the proxy
portlet in the consumer web application. This backing file creates the
SimpleStateHolder object, adds some data to it, and puts the object
into the request that is sent from the consumer to the producer. For
more information on SimpleStateHolder, refer to its description in
Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal.

6. In the Package Explorer view, open the producerProject/WebContent folder.
Right-click zipTest.jsp in the WebContent folder and select Generate Portlet.

The Portlet Details dialog box appears. Note that zipTest . jsp already appears
in the Content Path field, as shown in Figure 12-3.

Figure 12-3 Portlet Details with zipTest.jsp Included

M Portlet Wizand - Portlet Details E|
e Portlet Details
1. Select Portlet Type Flease fill in the general details For the portlet.
2. Portlet Details
3. Assign Supporting Files ma_ N
4, Generate Files iz |let85t |
Content Path : |,|’zi|3Test.jsp | @ Browse...]
Etror Page Path | | E’, Browse...]
Has TitleBar
State : Avvailable Modes :
[Floatable
[] Deletable
< Previous] [Mext =

Transferring Custom Data 12-5

Performing Custom Data Transfer

7. In the State checkbox, select Minimizable and Maximizable, then click Next and
then click Create.

The portlet zipTest .portlet appears in the Package Explorer, as shown in
Figure 12-4.

Figure 12-4 New JSP Portlet

B EAR Libraries
= build
[z (= WebCaontenk
= META-IMF
[WEB-INF
index. jsp
zipTest.jsp
sipTest.portlet Portlet
] % wsrpPorkalEsR,

12.3.1.4 Federating zipTest.portlet to the Consumer

Next, create a remote portlet in the consumer application to surface in
zipTest.portlet from the producer:

1. Be sure that WebLogic Server is running. If not, select the Servers tab. Make sure
the Oracle WebLogic Server v10.x is selected, and click the Start button, as shown
in Figure 12-5.

Figure 12-5 Click the Start Button to Start the Server

Start Button

4k servers 52 . [21 Problems | ¥ Tasks | 47 Search| @ Javadoc | & Consale }o 0 B = O

SEryer State Status

B 2 Orade WeblLogic Server 10,3 .ati‘u; Stopped Republish

2. In the Package Explorer, open the consumerProject folder.

3. Right-click the WebContent folder, and select New > Portlet.

Tip: The Portlet selection only appears on the New menu if you are
using the Portal perspective. Switch to the Portal perspective if Portlet
does not appear on the menu.

The New Portlet dialog box appears, as shown in Figure 12-6.

12-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Performing Custom Data Transfer

Figure 12-6 New Portlet Dialog

W New Portiet

olEd]

New Portlet

Enter ar select the parent “alder:

| consumerHro)ectvwebi_ontent |
=
= E:‘,Jr cansuncrrajoct ™ :}_ Parent folder
= .apt_src
[= .settings
= buld
= src
= webContent
LﬁJr produccrProjock
= wsrpPortalEAR

File name: | ZipPrirne porklet

@ | Finish H Cancel l

4. In the New Portlet dialog, select WebContent as the parent folder, enter
zipPrime.portlet in the File name field, and click Next.

The Select Portlet Type dialog box appears as shown in Figure 12-7.

Figure 12-7 Select Portlet Type Dialog

Ml Portlet Wizard - Select Portlet Type

X

S Select Portlet Type
1. select Portlet Type Select the bype of portlet you want to include in your portal,
A () I5P/HTML Partlet
() Java Portlet

() Java Server Faces (J5F) Portlet
() Browser (URL) Portlet
() Web Clipper Portlet

Remote Portlet
DF Portlet
Creake a proxy portlet for a portlet offered by a WSRP Producer, |

[] shaw &ll Portlet Types

Create a proxy portlet For a portlet offered by a WSRP Producer,

Transferring Custom Data 12-7

Performing Custom Data Transfer

5. Select Remote Portlet and click Next. The Portlet Wizard — Producer dialog box
appears.

6. In the Portlet Wizard — Producer dialog, select Find Producer and, in the field
provided, enter the following WSDL URL, as shown in Figure 12-8:

http://localhost:7001/producerProject/producer?wsdl

Tip: Of course, the host name localhost is only appropriate if the
producer is running on the same server as the consumer. We
co-located the consumer and producer to simplify the presentation of
this example. Typically, producers and consumers do not run in the
same server.

Figure 12-8 The WSDL URL

St H i
s & Find Producer
1. Select Portlet Type
2. Producer Enter the WSDL associated with the producer
3. Select Portlet From List of remate portlets.,

4, Proxy Portlet Details

|http i/ /localhost: 7001 /producerProject/producer ?wsdl Retrieve

« Select Producer
| =

Producer Details

Mo producer selected

Previous | | Cancel

7. After entering the WSDL URL, click Retrieve.

Tip: WSDL stands for Web Services Description Language and is
used to describe the services offered by a producer. For more
information, see Section 3.4.3, "WebLogic Portal Consumers".

After a few moments, the Portlet Wizard — Producer dialog box refreshes, and
registration information appears in the Producer Details panel, as shown in
Figure 12-9.

Tip: Registration is an optional feature described in the WSRP
specification. A WebLogic Portal complex producer implements this
option and, therefore, requires consumers to register before
discovering and interacting with portlets offered by the producer. See
Section 3.4.2.2, "Complex Producers" for more information.

12-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Performing Custom Data Transfer

Figure 12-9 Producer Retrieved

M Portlet Wizard - Producer,

St H i
eps & Find Producer
1. Select Portlet Type
2. Producer Enter the WSDL associated with the producer of
3. Select Portlet From List remote portlets.
4, Proxy Portlet Details

Ihttp:I,flocalhost:?001Iproducel'Pro]’ect,fproducer?wsdl Retrieve |

« Select Producer
| =l

Producer Details

Requires Init Cookie : perGroup
Requires Registration : Erue

Number of available portlets : 2

Registration Handle : Mot registered Register |

Previous | Iext | reate | Cancel |

8. Click Register. The Register dialog appears.

9. In the Register dialog, enter myProducer in the Producer Handle field, as shown
in Figure 12-10, and click Register. The handle is stored on the consumer and is
used to identify the producer.

Figure 12-10 The Register Dialog

Register M

Producer Handle: |mvP|'oduce|'

Vendor (optional): |

Description (optional):

Extended Registration Properties:

Mo extended properties to edit

10. In the Portlet Wizard — Producer dialog, click Next. The Select Portlet from List
dialog box appears.

11. From the portlet list, select zipTest, as shown in Figure 12-11.

Transferring Custom Data 12-9

Performing Custom Data Transfer

Figure 12-11 Select Portlet from List Dialog Box

B Portlet Wizard - Select Portlet From List

Steps: Select Portlet From List
1., Select 2ortlet Type
2. Producer | Name | Handle
3. Select Portlet From List UserPicker Portlet userpicker_1
1. Proscy Portlet Details —— Selected
portlet

Zortlet Details

litle: zIp | est
Short Title zipTest
Display Neme zipTest

Porllel Hawlle sipTesl_1

Previous | hext | | Cancel |

12. Click Next. The Proxy Portlet Details dialog box appears, as shown in
Figure 12-12.

Figure 12-12 Proxy Portlet Details Dialog Box

B Portlet Wizard - Proxy Portlet Details E]

Steps: Proxy Portlet Details

1. Select Portlet Type

2. Producer

3. Select Portlet From List
4. Proxy Portlet Details

Portlet Title |zipTest
Producer's Handle |mvP|'oduce|‘
Portlet Handle |zipTest_1

Does URL Template Processing |t|'ue

Templates Stored In Session |t|'ue

Previous | Create | Cancel

13. Click Create.

The new portlet appears in the Editor, as shown in Figure 12-13.

12-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Performing Custom Data Transfer

Figure 12-13 New Remote Portlet zipPrime.portlet in the Editor

|Z] zipTest.jsp Ei x =

ZipTest

Portlet Modes

e

"\-\".m.,,,h;u‘\.at L WP vy Ny, Bk h‘r# oot il (]

- & T =~ kel et R e i F e ot M.

12.3.1.5 Creating a Backing File

In this step, you will create a backing file called CustombDataBacking. java in the
consumer application. Then, you will attach the backing file to the remote portlet you
created previously, zipPrime.portlet.

Tip: A backing file is a Java class that adds functionality to a portlet.
For information on backing files, see the Oracle Fusion Middleware
Portlet Development Guide for Oracle WebLogic Portal.

1. In the Package Explorer tree, open the consumerProject folder, expand the Java
Resources node, and right-click the src folder, and create a new Source Folder
called backing.

The src/backing folder appears in the Package Explorer, as shown in
Figure 12-14.

Tip: Alternatively, instead of a folder, you can create a Java package.

Transferring Custom Data 12-11

Performing Custom Data Transfer

Figure 12-14 backing Folder

I

e W R L TR P ErE

[Proje 52 [% Pack | T3 Mavig | [Merg
==

=] fjj- consurnerProject
" Deployment Descripkor: consumerProject
@ faces-config
[= Referenced Types
= 3—9 Java Resources
[gre
Edbacking |
B Libraries
ITJ Merged Project Conkent
ﬁfﬁ] Paortal Library
B lavascripk Support
= build

ot = AL Copgant e st

.

2. Right-click the backing folder and select New > Class. The New Java Class dialog
appears, as shown in Figure 12-15.

Figure 12-15 New Java Class Dialog

7 New Java Class

Jawa Class

Create anew Java dlass,

Source Folder: | consumer/src Browse...

[|
Package: | bac<ng Brovse..
[

[Enclosing type: |

Mame: |Cu§:0mEataBacking Class name
Moditiers: &+ public " d=tault e -
™ sbstract | Final r

Superclass;: |java.|ang.0bj:ct Browsc., .

Inkofaccs: odd...

wehicy method stubs would you ke to create?
™ poblic skatic wiid rmaind Steirgl] Ags)
I Constructors from superclzss
¥ Inherited abstract me:hods
Do you want tc add comments as configured in the properties of the current arojeck?
I zenerate comments

< Back Finish Cancel
| | |

3. In the Name field, enter CustomDataBacking and click Finish. The new Java
source file appears in the editor.

4. Replace the entire contents of the Java source file with the code in Example 12-2.

12-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Performing Custom Data Transfer

Example 12-2 Adding an Instance of SimpleStateHolder
package backing;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import com.bea.netuix.servlets.controls.content.backing.AbstractdJspBacking;
import com.bea.wsrp.ext.holders.MarkupRequestState;

import com.bea.wsrp.ext.holders.SimpleStateHolder;

public class CustomDataBacking extends AbstractJspBacking
{
private static final long serialVersionUID = 1L;
public boolean preRender (HttpServletRequest request,
HttpServletResponse response)

SimpleStateHolder state = new SimpleStateHolder();
state.addParameter ("zipCode", "80501");

request.setAttribute (MarkupRequestState.KEY, state);
return true;

5. Save the file. The completed backing file is shown in Figure 12-16.

Figure 12-16 CustomDataBacking.java in the Editor

Sk H a
ps & Find Producer
1, Select Portlet Type
2. Producer Enter the WSDL associated with
3. Select Portlet From List the producer of remote portlets,

4, Proxy Portlet Details

|'Ilocalhost:?00 1/Producer/producer?WsDL Retrieve

« Select Producer
|]

Producer Details

Mo producer selected

Previous | | | Cancel

Tip: The backing file implements the
Abstract]spBacking.preRender() method. This method is called before
the request is sent to the producer. The implementation attaches a
SimpleStateHolder object containing custom data to the request. This
object will be retrieved on the producer where the data is extracted
and displayed in the remote portlet.

6. Double-click zipPrime.portlet to display it in the editor.

7. Add the backing file to zipPrime.portlet. To do this, enter the full classname
of the backing file in the Backing File field in the Properties view:

backing.CustombDataBacking

Transferring Custom Data 12-13

Performing Custom Data Transfer

Figure 12-17 shows the class name after it has been added.

Figure 12-17 Adding a Backing File

’

Property | Yalue |

=1 Backable Properties

Portlet Backing File backing. CustombataBacking
+ General Portlet Properties
+| Presentation Properties
+ Prowy Portlet Properties

R YLV E L W

}
t
|
5
)
%
1

12.3.1.6 Testing the Consumer Application

With the consumer application components in place, you can now test the
configuration. If the test is successful, the zip code 80501, provided by the backing file,
will appear in the remote portlet when it is rendered.

To test the application:

1. In the Package Explorer, right-click consumerProject/WebContent and select New
> Portal. The New Portal dialog appears.

2. In the File name field, enter zipTest .portal and click Finish.

The portal is created and appears in the editor, as shown in Figure 12-18.

12-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Performing Custom Data Transfer

Figure 12-18 zipTest.portal in the Editor

zipTesk, jsp m CustombataBacking, java zipTest.portal &3 E zipTesk, portlet : = ;

MNew Portal Desktop -

E

Header z

F

Bool: Main Page Bool f

[Page 1 ,’

Page: Page 1 J‘

-

4

-

1

| Footer t
b e e s et ol o e e A RE s e WAL e

3. Drag the remote portlet zipPrime.portlet from Package Explorer view into the
portal. (You can place it in either the left or right column; in Figure 12-19, it is in
the right-hand column).

Transferring Custom Data 12-15

Performing Custom Data Transfer

Figure 12-19 zipTest.portlet Added to zipTest.portal

_m CuskarmDataBacking. .. E zipTest. partlet *zipTest.pDrtaI il i
Mew Portal Desktop Fy
Header i
+
Bool: Main Page Bool % !
[Page 1 *
Page: Page 1 ;
I
4
A
+
.
4
zipTest |
¢
B
'
4
Fooker _f
F——_— A . aee T ~— r-' w R e

4. Save the portal.

5. Run the portal. To do this, right-click zipTest.portal in the Package Explorer and
select Run As > Run on Server.

6. In the Run On Server — Define a New Server dialog, click Finish.

The portal appears in the Oracle Enterprise Pack for Eclipse browser. The custom
data sent from the consumer displays in the portlet, as shown in Figure 12-20.

12-16 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Transferring XML Data

Figure 12-20 zipTest.portal Successfully Rendered

E ZipPrime. pork et

E ‘Welcome zipTcst.portal ' hawy Porkal Deskiop X

Page 1

q§<’ | Ftep:flocahost: JUUL fconsumerkrojedfzip lest, portal

zipTest
20501

(i[5

4
- Custom data
3

12.3.2 Custom Data Transfer in a Simple Producer

The previous section, Section 12.3.1, "Custom Data Transfer with a Complex
Producer", explains how to transfer data between a WebLogic Portal consumer
application and a complex producer running in a WebLogic Portal domain. You can
also transfer data between a WebLogic Portal consumer and a simple producer
running in a WebLogic Server domain.

Tip: For a detailed discussion of complex and simple producers, see
Section 3.4.2, "WebLogic Portal Producers".

To use custom data transfer with a simple producer:

1. Properly configure a simple producer running in a WebLogic Server domain. The
procedure for doing this is explained in Chapter 8, "Configuring a WebLogic
Server Producer."

2. Use the Custom Data Transfer interfaces listed in Section 12.2, "Custom Data
Transfer Interfaces" to set and retrieve data in request and response objects. Follow
the same basic procedure described for complex producers in Section 12.3.1,
"Custom Data Transfer with a Complex Producer".

12.4 Transferring XML Data

Use an implementation of the com.bea.wsrp.ext.holders.XmlPayload interface to
transfer XML data (objects of type Element) between consumers and producers. You
can place an instance of this class directly in request and response objects. For more
information on the XmlPayload interface, refer to its description in Oracle Fusion
Middleware Java API Reference for Oracle WebLogic Portal.

Example 12-3 shows sample code that uses XmlPayload.

Example 12-3 XmlPayload Example

//-- Create an Element object to send.
Element xml = ...

XmlPayload payload = new XmlPayload(xml);
httpRequest.setAttribute (MarkupRequestState.KEY, payload);

Transferring Custom Data 12-17

Deploying Your Own Interface Implementations

12.5 Deploying Your Own Interface Implementations

This section discusses guidelines for implementing the custom data transfer interfaces
listed in Section 12.2, "Custom Data Transfer Interfaces".

Section 12.5.1, "General Guidelines"

Section 12.5.2, "Implementation Rules"

12.5.1 General Guidelines

The implementation must be serializable.

The same class version of the implementation must be deployed on both the
producer and consumer. If the versions are different, the implementations must
make sure to have the same serialVersionUID for all versions.

Sending large amounts of data may have performance implications.

Tip: The com.bea.wsrp.ext.holders.SimpleStateHolder class provides
a default implementation of the four data transfer interfaces. This class
lets you exchange simple name-value pairs of data. For detailed
information on the methods of this class, refer to its description in
Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal.

12.5.2 Implementation Rules

Whether a consumer or producer can send custom data depends on the type of
request. These rules apply:

Consumers can always send InteractionRequestState. There are no
exceptions.

Producers can always return InteractionResponseState. There are no
exceptions.

Consumers can send MarkupRequestState only when there is a need to refresh
the portlet. For example, if caching is enabled on the remote portlet, consumer
may not always send a request to the producer to generate markup.

Consumers cannot return MarkupResponseState if any the following options
are enabled:

- Returning markup as an attachment
- Local proxy

In both the cases, the producer invokes the portlet (typically JSPs) after
creating the SOAP response, which is too late to update the SOAP response.

12-18 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

13

WSRP Interoperability With WebCenter
Framework

This chapter discusses techniques and best practices for achieving WSRP
interoperability between WebLogic Portal and WebCenter Framework.

This chapter includes the following sections:

= Section 13.1, "Consuming WLP Portlets in WebCenter Framework and Oracle
Portal Applications"

= Section 13.2, "Consuming WebCenter Framework Portlets in WebLogic Portal"
= Section 13.3, "Configuring Security"
= Section 13.4, "Interoperation of Navigational Parameters"

m Section 13.5, "Special Considerations"

13.1 Consuming WLP Portlets in WebCenter Framework and Oracle
Portal Applications

This section describes the recommended technique for consuming WLP portlets in
WebCenter Framework and Oracle Portal applications. In this scenario, WebLogic

Portal is the producer and WebCenter Framework/Oracle Portal is the consumer, as
illustrated in Figure 13-1.

Because of an incompatibility between the way WLP and WebCenter
Framework/Oracle Portal implement certain WSRP operations, user authentication
errors can occur. This section describes the nature of this incompatibility and the
procedure for avoiding these errors.

This section includes these topics:
= Section 13.1.1, "Understanding the Cause of User Authentication Errors"

= Section 13.1.2, "Preventing User Authentication Errors"

WSRP Interoperability With WebCenter Framework 13-1

Consuming WLP Portlets in WebCenter Framework and Oracle Portal Applications

Figure 13-1 Consuming WLP Portlets in WebCenter Framework Applications

WebLogic Portal Producer

WebCenter and/or Oracle Portal Consumers

13.1.1 Understanding the Cause of User Authentication Errors

An incompatibility exists between the way WebLogic Portal and WebCenter
Framework/Oracle Portal implement the WSRP operations clonePortlet,
destroyPortlets, importPortlets, and exportPortlets. Because of this incompatibility,
you might encounter user authentication errors when trying to consume portlets from
a WebLogic Portal producer in WebCenter Framework or Oracle Portal applications.

Note: For detailed information on the clonePortlet, destroyPortlets,
importPortlets, and exportPortlets operations, refer to the Oasis
Standard document Web Services for Remote Portlets Specification v2.0 at
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-
01.html.

Specifically, JDeveloper makes unauthenticated operation calls at various points in the
development lifecycle:

= clonePortlet is called when dragging a portlet from a registered WebLogic Portal
producer onto a JSF page or ADF task flow.

» destroyPortlets is called when deleting a portlet from a JSF page or ADF task flow.

= exportPortlets is called when exporting an application containing a WebLogic
Portal remote portlet to an EAR, for deployment onto a production server.

= importPortlets is called when deploying a previously-exported EAR onto a
production server.

The compatibility problem arises because the WebLogic Portal producer requires that
a user be authenticated when the clonePortlet, destroyPortlets, importPortlets, or

13-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Consuming WebCenter Framework Portlets in WebLogic Portal

exportPortlets operations are invoked, while the WebCenter Framework/Oracle Portal
producer does not require user authentication for these methods.

13.1.2 Preventing User Authentication Errors

To prevent user authentication errors when consuming WebLogic Portal portlets in a
WebCenter Framework or Oracle Portal application, do the following:

1.

4,

In the WebLogic Portal producer application, create a new user to function as a
surrogate for the WSRP operations listed in the previous section. This user should
be in the Portal System Administrators group.

Copy the file WEB-INF/wsrp-producer-config.xml to your workspace and
open it for editing. The procedure for copying files to your workspace is described
in "Copying J2EE Library Files Into a Project” in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Add the following security element attribute to the
wsrp-producer-config.xml file. This element must be the last element in the
<wsrp-producer-config> element (place it just above the closing
</wsrp-producer-config> line):

<security anonymousCloneDestroyUser="username"/>

where username is the name of the user that you created.

Save your changes, and republish your web project.

With this configuration, the WebLogic Portal producer server automatically
authenticates the specified user when unauthenticated operation calls to the four
WSRP operations (described in the previous section) are received. This automatic
authentication only occurs for these four operations.

13.2 Consuming WebCenter Framework Portlets in WebLogic Portal

This section discusses techniques and best practices for consuming WebCenter
Framework portlets in a WebLogic Portal application. In this scenario, WebLogic
Portal is the consumer and WebCenter or Oracle Portal is the producer, as illustrated in
Figure 13-2. Topics in this section include:

Section 13.2.1, "Avoiding Cookie Collisions"
Section 13.2.2, "Configuring Portlets That Use ADF Faces Rich Client Components"

WSRP Interoperability With WebCenter Framework 13-3

Consuming WebCenter Framework Portlets in WebLogic Portal

Figure 13-2 Consuming WLP Portlets in WebCenter Framework Applications

Oracle WebCenter Framework Producer

WebLogic Portal Consumers

13.2.1 Avoiding Cookie Collisions

A WebCenter Framework producer and a WebLogic Portal consumer have the same
cookie-name and path information configured by default. Some resource requests
from the consumer to the producer will cause the producer's cookie name and value to
be set on the client (the browser). When this occurs, it has the effect of overriding the
value set by the consumer. This situation puts the client-consumer-producer
interactions into this cycle:

1. Consumer server sets the cookie value on the client (browser).

2, Client (browser) sends the consumer's cookie value to the producer.

3. The producer doesn't recognize the value, and sends the client a new cookie value.
4. The client sends the producer's cookie value to the consumer.
5

The consumer doesn't recognize the value, and sends the client a new cookie value
and so on.

Because session state is usually persisted based on the cookie value, this constant
change in cookie values causes session state to be lost on both the producer and
consumer.

Fortunately, there are several easy ways to correct this situation. These techniques
include using different cookie names, using a system property, and blocking cookies.
For details, see Section 14.15, "Configuring Session Cookies" in Chapter 14, "Other
Topics and Best Practices."

13-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Consuming WebCenter Framework Portlets in WebLogic Portal

13.2.2 Configuring Portlets That Use ADF Faces Rich Client Components

To consume portlets that use Oracle ADF Faces Rich Client Components in a WLP
consumer, you must perform the following configuration tasks on the WLP consumer.
The steps include:

s Section 13.2.2.1, "Using iframe_unwrapped"

= Section 13.2.2.2, "Disabling html-amp-entity in
WEB-INF/wlp-framework-common-config.xml"

= Section 13.2.2.3, "Using CSS Styling (Optional)"
= Section 13.2.2.4, "Setting a Fixed Height on the Portlet's Contents (Optional)"

For information on Oracle ADF Faces Rich Client Components, see
http://www.oracle.com/technology/products/adf/adffaces/index.htm
1.

13.2.2.1 Using iframe_unwrapped

ADF Faces Rich Client portlets contain base-level HTML tags (like HTML, HEAD,
BODY, and BASE) that WebLogic Portal already provides in a rendered portal page.
Having such tags appear multiple times in HTML can result in the misbehavior of
JavaScript on the page, among other things. To avoid these problems, render the
contents of these portlets inside an IFRAME element.

To render an ADF Faces Rich Client portlet in an IFRAME, the portlet property Async
Content Rendering must be set to iframe_unwrapped. The iframe_unwrapped setting
renders the body of the remote portlet, "unwrapped" from any HTML artifacts that the
WebLogic Portal framework would provide (for instance, skeleton artifacts such as
HTML, HEAD, BODY, and other tags). For more information on the Async Content
Rendering property, see "Asynchronous Portlet Rendering" in the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal. For information on
skeletons, see "What is a Skeleton" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

13.2.2.2 Disabling html-amp-entity in WEB-INF/wlp-framework-common-config.xml

Certain ADF Faces Rich Client components make use of JavaScript to handle the
display of images, such as changing a button image when it is rolled-over. An example
of such a case might look like this, as served by the producer:

<script type="text/javascript'>

var hoverIcon = 'wsrp_
rewrite?wsrp-urlType=resource&wsrp-url=http%3A%2F%2Fhost.com%3A8899%2Fproducer
%$2Fadf%2Fwebcenter$2Fattributegroup_
ovr.png&wsrp-requiresRewrite=false&wsrp-extensions=oracle%3Astateless-reso
urce%3Dtrue/wsrp_rewrite';

</script>

The WebLogic Portal consumer is responsible for converting the information between
the wsrp_rewrite? and /wsrp_rewrite tokens into a valid URL for that resource.
When a URL like this one is a value for markup attributes, any ampersand characters
within it should be encoded as &, according to markup validation rules.
However, when the URL is to be used inside of non-markup content, such as
JavaScript and CSS, it should explicitly not be encoded as & ; . Doing so causes the
request to the server to send parameter names like amp; _nfpb instead of _nfpb,
which typically results in an unintended or unexpected response from the server. For

WSRP Interoperability With WebCenter Framework 13-5

Consuming WebCenter Framework Portlets in WebLogic Portal

information on markup validation rules, see
http://www.htmlhelp.com/tools/validator/problems.html#amp.

The WebLogic Portal URL framework performs ampersand entity encoding on all
URLs in the text/* markup type by default. For interoperability with ADF Faces Rich
Client portlets produced by the WebCenter Framework, this default setting should be
changed. To do so:

1. Copy WEB-INF/wlp-framework-common-config.xml into your project, and
open it for editing.

2. Change the value of the html -amp-entity element to false.

3. Save your changes, and republish your web project.

13.2.2.3 Using CSS Styling (Optional)

The WebCenter Framework WSRP consumer sends a custom WSRP extension to the
WebCenter Framework producer, which tells the producer what ADF Faces skin is
currently applied on the consumer. The WebCenter Framework producer uses this
information to return a matching CSS stylesheet for the portlet being requested. The
WebLogic Portal consumer does not currently support this custom WebCenter
Framework WSRP extension, and so every portlet returned from a WebCenter
Framework producer will be styled with the "portlet” version of the default skin (for
example, blafplus-rich.portlet). If you would like to style a portlet consumed
in WebLogic Portal based on a specific ADF Faces skin, follow these steps:

1. On the WebCenter Framework producer, open the WEB-INF/portlet.xml file
for editing.

2. Find the <portlet> element for the portlet to which to apply the skin.

3. Add the following <init-param> element, underneath the <portlet-class>
element:

<init-param>
<name>org.apache.myfaces.trinidad.skin.id</name>
<value>blafplus-rich.desktop</value>
</init-param>

where blafplus-rich.desktop is the ID of the specific skin to be applied to this
portlet, when a consumer does not use the Oracle-specific WSRP extension to specify a
skin.

4. Redeploy your portlet producer application.

13.2.2.4 Setting a Fixed Height on the Portlet's Contents (Optional)

The WebLogic Portal framework attempts to resize a portlet's IFRAME to match the
height of the rendered contents within it. However, certain ADF Faces Rich Client
components also attempt to resize themselves according to the size of the surrounding
window or frame. This leads to a scenario where the initial size of the contents of the
IFRAME are based on the initial size of the IFRAME itself, before any client-side
dynamic resizing has occurred.

In these cases, you may prefer to set a fixed height for the contents of your portlet. To
do so:

1. In WebLogic Workshop, right-click your . portlet file and select Open With >
XML Editor.

13-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Interoperation of Navigational Parameters

2. Onthe <netuix:proxyPortlet> element, add the presentationStyle
attribute, with a value similar tomin-height: nnnpx;, where nnn is the
desired pixel height of your portlet's body. For example:

<netuix:proxyPortletContent presentationStyle="min-height: 600px;"/>

3. Save your changes, and republish your web project.

13.3 Configuring Security

For information on configuring security between WebLogic Portal and WebCenter
Framework, see Chapter 13, "WSRP Interoperability With WebCenter Framework."
That chapter describes one technique for establishing a secure communications
channel for WSRP transactions between WLP and WebCenter Framework.

13.4 Interoperation of Navigational Parameters

The WebCenter JSR 168 implementation provides the user the ability to specify
navigational parameters for JSR 168 portlets in the oracle-portlet.xml file. The
WebLogic Portal JSR 286 implementation also supports navigational parameters. This
section shows by example how to configure interoperability of navigational
parameters through WSRP.

The sample tasks described in this section are:

= Section 13.4.1, "Configuring the WLP Producer"

s Section 13.4.2, "Configuring the WebCenter Producer”

= Section 13.4.3, "Consuming the WLP Portlets in WebCenter"

» Section 13.4.4, "Consuming a WebCenter Portlet that requires Shared Navigational
Parameters With an Initial Value"

13.4.1 Configuring the WLP Producer

Assume that you have a WLP web application containing JSR 286 portlets. To
configure the application to use navigational parameters with WebCenter JSR 186
portlets, you need to add an oracle-portlet.xml file to your web application’s
WEB-INF folder. Example 13-1 shows a sample oracle-portlet.xml file. Note that the
file refers to two portlets, ParameterForm and ReadOnlyParameterForm. It is assumed
that these to portlets are Java portlets that were created previously in the web
application. The <navigation-parameters> elements configure the parameters
that will be shared.

Example 13—1 Example oracle-portlet.xml File

<?xml version="1.0" encoding="ISO0-8859-1"?>
<portlet-app-extension

xmlns="http://xmlns.oracle.com/portlet/oracle-portlet-app"

version="1.0" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<portlet-extension>
<portlet-name>ParameterForm</portlet-name>
<navigation-parameters>

<name>parameterl</name>

<type>xsd:string</type>

<label xml:lang="en">First parameter</label>

<hint xml:lang="en">First parameter set by portlet</hint>
</navigation-parameters>

WSRP Interoperability With WebCenter Framework 13-7

Interoperation of Navigational Parameters

<navigation-parameters>

<name>parameter2</name>

<type>xsd:string</type>

<label xml:lang="en">Second parameter</label>

<hint xml:lang="en">Second parameter set by portlet</hint>
</navigation-parameters>
<navigation-parameters>

<name>parameter3</name>

<type>xsd:string</type>

<label xml:lang="en">Third parameter</label>

<hint xml:lang="en">Third parameter set by portlet</hint>
</navigation-parameters>
<portlet-id>l</portlet-id>
<allow-export>true</allow-export>
<allow-import>true</allow-import>
<minimum-wsrp-version>2</minimum-wsrp-version>

</portlet-extension>

<portlet-extension>
<portlet-name>ReadOnlyParameterForm</portlet-name>
<navigation-parameters>

<name>parameterl</name>

<type>xsd:string</type>

<label xml:lang="en">First parameter</label>

<hint xml:lang="en">First parameter set by portlet</hint>
</navigation-parameters>
<navigation-parameters>

<name>parameter2</name>

<type>xsd:string</type>

<label xml:lang="en">Second parameter</label>

<hint xml:lang="en">Second parameter set by portlet</hint>
</navigation-parameters>
<navigation-parameters>

<name>parameter3</name>

<type>xsd:string</type>

<label xml:lang="en">Third parameter</label>

<hint xml:lang="en">Third parameter set by portlet</hint>
</navigation-parameters>
<portlet-id>2</portlet-id>
<allow-export>true</allow-export>
<allow-import>true</allow-import>
<minimum-wsrp-version>2</minimum-wsrp-version>

</portlet-extension>
</portlet-app-extension>

13.4.2 Configuring the WebCenter Producer

To configure a WebCenter application to use the navigational parameters configured
in the WLP application through WSRP, follow these basic steps:

1. Create a Portlet Producer Application in JDev.
2. Create Java portlets in the web application.

3. Add the same oracle-portlet.xml file that you added to the WLP application
to the application’s WEB-INF folder.

4. Start the WebCenter producer web application.

13-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Interoperation of Navigational Parameters

13.4.3 Consuming the WLP Portlets in WebCenter

This section explains how to consume the Java portlets offered by both the WLP and
WebCenter producers configured in the previous two sections. The key point about
this example is that WLP and WebCenter Java portlets are able to share navigational
parameters over WSRP.

1.
2.
3.

10.
11.

12.
13.
14.

15.
16.

Create a new WebCenter application in JDev. This application is the consumer.
Create a new JSF . jspx page in the Web Content folder.
Create a new WSRP Producer under Application Resources/Connections.

Register the WebCenter Producer created in the previous section, Section 13.4.2,
"Configuring the WebCenter Producer."

Create another new WSRP Producer.

Register the WLP Producer created in the previous section, Section 13.4.1,
"Configuring the WLP Producer."

Add the ParameterForm portlet from the WebCenter Producer to the . jspx page.
(What does this mean, consume it over WSRP?)

Add the ReadOnlyParameterForm portlet from the WLP producer to the . jspx
page.

Right-click the . jspx page and click on Go to Page Definition.

Open the Source tab of PageDef . xml.

Copy the values of the parameter pagevVariable from the ParameterForm
portlet entry to the values of the parameter pagevariables for the
ReadOnlyParameterForm portlet (make sure to match param 1 to param 1, param
2 to param?2 and param3 to param3).

Make note of the name of the ParameterForm portlet.
In the . jspx page in the JDev editor, click the ReadOnlyParameterForm portlet.

In the Property Inspector for the portlet, enter the name of the ParameterForm
portlet that you noted previously in the Partial Triggers field.

Run the . jspx page.

Enter values in the parameter fields of the ParameterForm portlet and click OK.
The values are reflected in the ReadOnlyParameterForm portlet.

This example illustrated how to configure Java portlets in WebCenter and WLP to
communicate through navigational parameters across WSRP. Other possible scenarios
include consuming both portlets from the WebCenter producer, consuming both
portlets from the WLP producer, or consuming the ParameterForm portlet from WLP
and the ReadOnlyParameterForm portlet from WebCenter.

13.4.4 Consuming a WebCenter Portlet that requires Shared Navigational Parameters
With an Initial Value

1.
2

In Workshop for WebLogic, register a WebCenter producer application.

In Workshop, create a remote portlet consuming a portlet in the WebCenter
producer.

WSRP Interoperability With WebCenter Framework 13-9

Special Considerations

3. Create a backing file for the portlet with an onInit method. In this method, set
paramn to the shared parameter name and default_param_value to the initial
value you would like to set.

4. Openthe .portlet file with the XML editor and add the following as the last
attribute of netuix:proxyPortlet.

backingFile="com.bea.wsrp.qga.SetSharedParamsBacking"

5. Add this element after the netuix:proxyPortlet element, where shared_param_
name is the name of the shared navigational parameter that the WebCenter portlet
requires.

Example 13-2 Backing File oninit() Method

public void onInit (HttpServletRequest request, HttpServletResponse response, Event event) {

PortletBackingContext portletBackingContext =

PortletBackingContext.getPortletBackingContext (request) ;

String foo = portletBackingContext.getSharedParameterValue ("param");

if (foo == null || foo.length() == 0) {
portletBackingContext.setSharedParameterValue ("param", "default_param_value");

}

Example 13-3 Element Added to .portlet File

<netuix:handlePortalEvent event="onInit" eventLabel="handlePortalEventl"
fromSelfInstanceOnly="false" onlyIfDisplayed="true">
<netuix:invokeBackingFileMethod method="onInit"/>
</netuix:handlePortalEvent>
<netuix:sharedParameter paramId="shared_param_name" gname="shared_param name"/>

13.5 Special Considerations

This section describes additional issues to consider with respect to WLP and
WebCenter Framework interoperability.

13.5.1 Interportlet Communication Considerations

WebCenter Framework 11gR1 does not currently support WSRP event distribution.
Additionally, portlets using WebLogic Portal's IFRAME feature are unable to respond
to public NavigationalContext changes. Therefore, if you want to share data between
portlets across WebCenter Framework and WebLogic Portal containers, consider
setting attributes in the HttpSession. For further information on this topic, see the
WebLogic Server Session topic "Using Sessions and Session Persistence" in Oracle
Fusion Middleware Developing Web Applications, Servlets, and |SPs for Oracle WebLogic
Server. For information on event distribution and the NavigationalContext type, refer
to the Oasis Standard document Web Services for Remote Portlets Specification v2.0 at
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-o0s-01.html.

Note: Be aware that when you use HttpSession to share data, you
create a dependency between portlets, which is not generally
considered to be a best practice. See Section 14.2, "Avoid Interportlet
Dependencies."

13-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Special Considerations

Even when using HttpSession attributes to share data across portlets, those inside of
IFRAMEs will be isolated from the notification of the change. A reload of the entire
portal page is required, so that all of the portlets residing in IFRAMEs can update their
contents with the new HttpSession attribute information. To facilitate this
programatically, consider using a WSRP interceptor. In the interceptor shown in
Example 13-4, the responses from POST requests to a WebCenter Framework
producer are being changed to force the browser's outermost window to reload itself.
See also Chapter 9, "The Interceptor Framework."

Example 13-4 Interceptor to Force Reload of a Parent Frame

package com.oracle.wlp.wsrp;

import java.io.ByteArrayInputStream;
import java.io.UnsupportedEncodingException;

import com.bea.wsrp.consumer.interceptor.IGetMarkupInterceptor;
import com.bea.wsrp.consumer.interceptor.Status;

import com.bea.wsrp.consumer.interceptor.Status.OnFault;

import com.bea.wsrp.consumer.interceptor.Status.OnIOFailure;
import com.bea.wsrp.consumer.interceptor.Status.PostInvoke;
import com.bea.wsrp.consumer.interceptor.Status.Prelnvoke;
import com.bea.wsrp.model.markup.IGetMarkupRequestContext;
import com.bea.wsrp.model.markup.IGetMarkupResponseContext;

public class ReloadInterceptor implements IGetMarkupInterceptor {
// A very simple piece of HTML markup that, via JavaScript, will cause
// the parent frame to reload. Tested in IE7 and FF3.
private static final String RELOAD_MARKUP =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"
\"http://www.w3.0org/TR/html4/loose.dtd\"><html><head><script
type=\"text/javascript\">window.parent.location.reload(true);</script></head><body></body></html>";

@override
public PostInvoke postInvoke (IGetMarkupRequestContext request, IGetMarkupResponseContext
response) {
// Do something here to determine if you'd like to reload the parent frame.
// In this example, we're forcing a reload of the parent frame if this request
// was of type "POST".
if (request.getRequestVerb().equalsIgnoreCase ("POST")) {
try {
// Completely replace the response markup with our simple "reload" HTML markup.
response.setMarkupData (new ByteArrayInputStream(RELOAD_MARKUP.getBytes ("UTF-8")));

// Bbort the interceptor chain, as we don't want any other interceptors
// to undo what we've just done. This is ok, as a subsequent GET request
// will soon follow, as the parent frame is reloaded.
return Status.PostInvoke.ABORT CHAIN;

} catch (UnsupportedEncodingException e) {
// Ignore, as in this case the encoding will always be valid.

}

return Status.PostInvoke.CONTINUE_CHAIN;

@override
public PreInvoke prelInvoke (IGetMarkupRequestContext request) {
return Status.PreInvoke.CONTINUE_ CHAIN;

WSRP Interoperability With WebCenter Framework 13-11

Special Considerations

@override
public OnFault onFault (IGetMarkupRequestContext request, IGetMarkupResponseContext response,
Throwable t) {
return Status.OnFault.CONTINUE_CHAIN;
}

@override
public OnIOFailure onIOFailure(IGetMarkupRequestContext request, IGetMarkupResponseContext
response, Throwable t) {
return Status.OnIOFailure.CONTINUE_CHAIN;
}

13.5.2 Consuming Oracle ADF Faces Rich Client Component Portlets

If you want to consume Oracle ADF Faces Rich Client Component Portlets in WLP,
you must use WebLogic Workshop. The WebLogic Portal Administration Console
does not currently support the portlet configuration required for consuming Oracle
ADF Faces Rich Client Component portlets.

For information on Oracle ADF Faces Rich Client Components, see
http://www.oracle.com/technology/products/adf/adffaces/index.htm
1. For information on using the WLP Administration Console, see the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

13-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

14

Other Topics and Best Practices

This chapter focuses on best practices for developing portlets in a producer. By
following the practices described in this chapter, you will help to ensure that remote
portlets created in consumers function properly. We recommend that you review
Chapter 3, "Federated Portal Architecture" before using this chapter.

This chapter the following sections:

= Section 14.1, "Decouple Rendering from Interaction”

= Section 14.2, "Avoid Interportlet Dependencies"

» Section 14.3, "Avoid Portal Layout Dependencies"

= Section 14.4, "Avoid Coupling by URL"

» Section 14.5, "Avoid Accessing Request Parameters in Rendering Code"
= Section 14.6, "Avoid Moving Producers"

= Section 14.7, "WebLogic Server Producers"

» Section 14.8, "Security for Remote Portlets"

= Section 14.9, "Error Handling"

= Section 14.10, "Portlet Programming Guidelines and Best Practices"
= Section 14.11, "Designing for Performance"

» Section 14.12, "Using Local Proxy Mode"

= Section 14.13, "Monitoring and Logging"

= Section 14.14, "Managing Delivery of Headers and Cookies to the Browser"
» Section 14.15, "Configuring Session Cookies"

= Section 14.16, "User Sessions on CWEB Applications"

= Section 14.17, "Using Multiple Views with Remote Portlets"

= Section 14.18, "Handling User Identity Changes"

= Section 14.19, "Storing Registration Properties"

» Section 14.20, "Editing the WSRP WSDL Template File"

= Section 14.21, "Configuring a Custom JAX-RPC Handler"

Other Topics and Best Practices 14-1

Decouple Rendering from Interaction

14.1 Decouple Rendering from Interaction

As explained in Section 3.5, "Life Cycle of a Remote Portlet", the rendering and
interaction phases of a remote portlet's life cycle are decoupled. As a result, you cannot
expect a portlet to receive the same HTTP response or request for the render phase as
it receives for an interaction.

A portlet that is being rendered must not expect to receive form data in the request
object. This is because the request may have been submitted some time ago and is
being rendered now, and you may not have the same data.

If you want to maintain data between requests, you need to store that data locally,
typically in the session. For instance, if you are processing and order ID, you can store
that ID locally.

If you are using page flows, data is automatically passed forward. However, if you are
using backing files with a remote portlet, you need to make sure that data is stored in
the session, because you won't get back the same request object.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

To avoid problems, keep the following points in mind:

= Portlets will not get the same servlet request for the interaction and render phases,
even after the first rendering after an interaction.

= Decouple rendering from interaction processing. A portlet should be able to
render itself as many times as necessary without depending on the user's
interaction directly. Store interaction changes for future rendering. Note that
WebLogic Portal stores state automatically for page flows.

s Use JSP tags with render parameters.

s Use HTTP session for backing files.

14.2 Avoid Interportlet Dependencies

Rather than create explicit dependencies between portlets, use events to communicate
between portlets. For example, suppose that on a portal page, there is a portlet for
collecting orders and a portlet for displaying the status of all orders. When an order is
taken, data is stored in the database, and the data is then displayed in the order status
portlet, as shown in Figure 14-1.

Figure 14-1 Interportlet Dependencies

Portal Page
Collect Order
Portlet Portlet
Portlet Order Status
Portlet

14-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Avoid Coupling by URL

In this scenario, a strong dependency is created between the collect order and the
order status portlets. The Collect Order portlet needs to somehow communicate some
information (the order ID) to the Order Status portlet. Storing the ID in the session or
other common state between the portlets creates a strong dependency between the
Collect Order and Order Status portlets. Depending on the implementation of the
portlets, if one of them is changed or replaced, the changes will necessarily affect the
other portlet.

To avoid this dependency, use events to communicate between portlets. In this
example, if an event is used to communicate order information to the order status
portlet, the order status portlet does not have to care about where the order came
from. The order status portlet just handles an event, retrieving, for example, an order
ID from the event's payload.

For more information on how event handling occurs in WebLogic federated portals,
see Section 3.5.4, "Interportlet Communication with Events".

= Use events to communicate between remote portlets.
= Use event names for dependencies.

= Avoid using sourceDefinitionLabels on events.

14.3 Avoid Portal Layout Dependencies

Some portals are built with inherent portal layout dependencies. For example, a login
portlet might be designed to function differently if it is on a human resources page
versus a finance page. In other words, when an interaction takes place, the portlet tries
to find out what page it is on before taking action. This practice closely couples the
portlet to the Portal Framework elements, such as pages, books, or desktops on the
consumer.

This scenario does not work in a federated portal, because the producer does not know
what page layouts exist on the consumer. Avoid this scenario when possible. If it is
required, deploy those portlets locally on the consumer, or use shared components
where possible and create alternative layouts that are offered through separate
portlets.

14.4 Avoid Coupling by URL

If you embed URLSs in your portlets, such as in links, you may find that your portlets
work as expected when they are running locally. However, when you move those
portals to a federated environment, the links no longer work. For example, in the
following code fragment, a developer is invoking the action of a page flow portlet on
the same portal using string manipulation.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

In a federated portal, this sort of construction will not work. Typically, this sort of
programming arises because of reverse engineering, where a developer looks at and
copies how links are created.

String url = "http://mydomain.com/portal/portal.portal?";
url = url + "myportlet_actionOverride=login";

Other Topics and Best Practices 14-3

Avoid Accessing Request Parameters in Rendering Code

url = url + "...";

Likewise, the following resource URL will not work in a federated portal because it
includes an explicitly specified link to a document. Because the document doesn't exist
on the consumer, the consumer doesn't know what to do with it:

Download

Common URL problems found in federated portals include the following. These
problems stem from the fact that remote portlets do not follow the same URL structure
as portlets in a local environment.

» Creating links to page flow actions, images or files through string manipulation.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

s Directly adding parameters to URL strings.
= Getting a page flow action name from the outer request.

It is important that you let the WebLogic Portal Framework create URLs for you using
the proper set of JSP tag libraries and utility classes. Use the following tags and classes:

= netui tags

= page flow tags

s struts tags

= render tags

= GenericURL class

All of these tags go through the WebLogic Portal URL rewriters and will work
properly in a federated environment.

It is important to realize that there are inherent differences between remote portlets
and local portlets. Developers must not expect that all correctly functioning local
portlets will function properly as remote portlets, although in many cases they do.

14.5 Avoid Accessing Request Parameters in Rendering Code

When you deploy a local portlet, the portlet can access the request parameters from
the portal's request and the request attributes set by other portlets on the same page. If
you implement a portlet to depend on such request parameters and attributes, the
portlet will not function correctly in a WSRP environment. In a WSRP environment,
remote portlets are running on remote systems; the HTTP request received by a
remote portlet on a producer is not the same as the one that is received by the
consumer portal.

14.6 Avoid Moving Producers

When you add producers and create remote portlets, the producer registry
(WEB-INF/wsrp-producer-registry.xml) and the portal framework database
tables contain specific information about the producer, such as its WSDL address and

14-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

WebLogic Server Producers

the addresses of ports described in the WSDL. If you move the producer from one
environment to another, this data becomes invalid. In this case, consumers whose
proxy portlets reference the producer's portlets will no longer be able to find them.

If you must move a producer from one environment to another (such as a staging to a
production environment) WebLogic Portal supports two mechanisms for achieving
this.

The first mechanism, shared registration, is only recommended for WebLogic Portal
producers older than version 10.0. With shared registration, the staging and
production environments share the same producer registration handle. This model has
a number of serious drawbacks. Only use this model when the producer is a version of
WebLogic Portal prior to 10.0. For more information on shared registration and
propagating WSRP producers in this case, see the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal.

The second mechanism is recommended for producers, such as WebLogic Portal
versions 10.0 and higher, that support WSRP 2.0 exportPortlet and importPortlet
operations. When producers are propagated using these operations, producer
registration handles do not need to be shared. The propagation tool in WebLogic
Portal versions 10.0 and higher handles these operations automatically. See the Oracle
Fusion Middleware Production Operations Guide for Oracle WebLogic Portal for details.

You can also update the database entries for a producer programmatically. The
following class provides methods to get and update producer information:

com.bea.wsrp.consumer .management .producer . ProducerManager

Refer to the Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal for
information on this class.

14.7 WebLogic Server Producers

In some cases, you may want to expose portlets with WSRP from a producer
environment that does not include any WebLogic Portal components. For example,
you may be running a Struts Web application in a Basic WebLogic Server Domain, or a
Java Page Flow application in a Basic Oracle Enterprise Pack for Eclipse Domain. In
either case, WebLogic Portal is not part of the server configuration. For detailed
information on using a non-portal server domain to host remote portlets, see

Chapter 8, "Configuring a WebLogic Server Producer."

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations” in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

If you are using a Portal Web application as your producer, all the portal artifacts are
available in the web application; however, for any WSRP producer that is not a Portal
Web application, you cannot use portal features such as property sets. If you need to
access portal features in your producer, use a Portal Web application.

Other Topics and Best Practices 14-5

Security for Remote Portlets

14.8 Security for Remote Portlets

Securing WSRP messages ensures their confidentiality between just the interested
parties. When a portlet's messaging is secure, only parties authorized to handle the
contents of that portlet's messages can see those messages. To secure WSRP messages:

= Use SSL on any port through which the Producer will be offered.

= Configure the Producer to offer secure portlets by specifying true for all secure
attributes in the <service-config> element of the Producer project's
WEB-INF/wsrp-producer-config.xml file, as shown in Example 14-1.

Example 14-1 <service-config> Element Configured for Security

<service-config>
<registration required="true" secure="true"/>
<service-description secure="true"/>
<markup secure="true" rewrite-urls="true" transport="string"/>
<portlet-management required="true" secure="true"/>
</service-config>

If you make any changes to wsrp-producer-config.xml, you will need to
redeploy or restart the server before the changes become active.

For detailed information on configuring single sign-on security for federated portals,
see:

s Chapter 15, "Establishing WSRP Security with SAML" — Discusses how to
configure SAML security between WebLogic Portal domains. This chapter also
covers cross version compatibility: security between WebLogic Portal 9.2 and 8.1x
domains.

s Chapter 16, "Configuring User Name Token Security" — User Name Token, or
UNT, is an alternative to SAML and provides the same basic single sign-on
capability as SAML provides.

14.9 Error Handling

This section gives an overview of error handling techniques for federated portals.

14.9.1 On the Producer

To prevent stack traces from appearing, handle errors on the producer side and
provide a suitable business message.

14.9.2 On the Consumer

In Oracle Enterprise Pack for Eclipse, with a remote portlet open:
1. Click the portlet in the editor to display the Properties view.
2. Enter a path for the error page (JSP or HTML page).

14.9.3 Interceptors

You can use interceptors to handle errors returned from a producer. For instance, if a
specific producer is not registered, you can trap the registration error and handle it as
you wish. For detailed information on using interceptors, see Chapter 9, "The
Interceptor Framework."

14-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Designing for Performance

14.10 Portlet Programming Guidelines and Best Practices

This section discusses guidelines and best practices for developing remote portlets.

Requests and Sessions

If two or more remote portlets share session data, host them on the same
producer. You cannot assume that session information will be shared by portlets
hosted on different systems.

Look and Feel

— Let portlets use standard style attributes and specify those attributes on the
portal skins. For information on look and feel, see the Oracle Fusion Middleware
Portlet Development Guide for Oracle WebLogic Portal.

Backing Files

- You can use backing files on the consumer side (remote-portlet) to take some
action based on session / request objects or property sets. For information on
backing files, see the Oracle Fusion Middleware Portlet Development Guide for
Oracle WebLogic Portal.

Caching WSRP Portlets
— Producer - Use <wl : cache> or pl3nCache wherever possible.

— Consumer (remote-portlet) — Use the RenderCacheable attribute if you
want to cache the remote portlet's rendered HTML. However, this is a session
scoped cache and is not configurable.

For more information on caching, see the "Portlet Caching" section of the Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

14.11 Designing for Performance

To ensure optimal performance of your producers and consumers, we recommend the
following performance tuning guidelines on the producer and the consumer.

14.11.1 Performance Guidelines for Producers

This section lists several ways to improve the performance of producer applications.

14.11.1.1 Reorder Authentication Providers

One way to improve performance on the producer is to make sure the SAML
Authentication Provider is deployed in front of other authentication providers. To
reorder the providers:

1.
2.

[d

N o a &

Log in to the WebLogic Server Administration Console.
Select Security Realms in the Domain Structure tree.

In the Realms table, select the active security realm used by the producer
application.

In the Settings page, select the Providers tab.
In the Change center, click Lock & Edit.
Below the Authentication Providers table, click Reorder.

In the list of providers, use the arrow buttons to move SAMLAuthenticator to the
top of the list, and click OK.

Other Topics and Best Practices 14-7

Using Local Proxy Mode

8. In the Change center, click Activate Changes.

14.11.1.2 Enable Attachment Support

Enable attachment support by adding <markup transport="attachment"/> to
WEB-INF/wsrp-producer-config.xml, as shown in Example 14-2.

Example 14-2 Enabling Attachment Support

<?xml version="1.0" encoding="UTF-8"?>
wsrp-producer-config
xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/8.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/servers/weblogic/wsrp-producer-config/8.0
wsrp-producer-cnfig.xsd">
<service-config>
<registration required="false" secure="true"/>
<service-description secure="true"/>
<markup secure="true" rewrite-urls="true" transport="attachment"/>
<portlet-management required="false" secure="true"/>
</service-config>

14.11.1.3 Other Techniques
» Let the producer create correct URLs by using consumer-supplied URL templates.
This is the default practice.

= Use caching. For more information on caching, see the section "Portlet Caching" in
the Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

= Enable multi-threaded (forked) rendering. For more information, see the section
"Portlet Forking" in the Oracle Fusion Middleware Portlet Development Guide for
Oracle WebLogic Portal.

14.11.2 Performance Guidelines for Consumers

» Accept the default behavior to enable caching for remote portlets.
= Enable forked rendering for remote portlets.

= Set connection timeout. See Section 5.6, "Setting a Timeout Value on a Remote
Portlet" for detailed information on setting timeouts.

= Disable logging by undeploying MessageMonitor servlet from
WEB-INF/web.xml.

14.12 Using Local Proxy Mode

Local proxy support allows co-located producer and consumer web applications to
short-circuit network I/O and "SOAP over HTTP" overhead. When you enable this
feature, the consumer tries to determine if the producer is deployed on the same
server and, if it discovers that the producer is so deployed, it uses a local proxy to send
requests to the producer. If the producer is not deployed on the same server, the
consumer uses the default remote proxy. Remote producers can still be invoked as
usual even when the local proxy support is enabled.

This section describes how to implement local proxy support. It includes information
on the following subjects:

= Section 14.12.1, "Why Use Local Proxy Mode?"

14-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using Local Proxy Mode

14.12.1

= Section 14.12.2, "Deployment Configuration"
= Section 14.12.3, "How Local Proxy Mode Works"
s Section 14.12.4, "When to Use and Not Use"

Why Use Local Proxy Mode?

Local proxy mode provides a number of advantages over the default remote proxy
when you are working with co-located consumers and producers. Among the most
significant advantages of local proxy mode are:

= Avoids local network I/0.

= Avoids serialization and deserialization of SOAP.

= Invokes remote portlets using the same execute thread.

= Writes portlet markup directly to the response without intermediate buffers.
= Enables large file uploads without causing OutOfMemoryErrors.

Additionally, by enabling local proxies, customers can take advantage of the
decoupling benefits of WSRP without incurring its performance overhead.

14.12.2 Deployment Configuration

To take advantage of local proxy support:

1. Deploy the producer and consumer web applications on the same server. These
applications could be in the same enterprise application or across different
enterprise applications.

2. Enable local proxy support by setting <enable-local-proxy> to true in
WEB-INF/wsrp-producer-registry.xml in the consumer web application, as
shown in Example 14-3:

Example 14-3 Setting <enable-local-proxy> to "true"

<wsrp-producer-registry
xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-registry/8.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/servers/weblogic/wsrp-producer-
registry/8.0 wsrp-producer-registry.xsd">
<!-- Upload limit (in bytes) -->
<upload-read-1imit>1048576</upload-read-limit>

<!-- Timeout (in milli seconds) -->
<connection-timeout-secs>120000</connection-timeout-secs>
<!-- Enable local proxy -->

<enable-local-proxy>true</enable-local-proxy>
</wsrp-producer-registry>

You can also enable local proxy support by setting a system property
com.bea.wsrp.proxy.LocalProxy.enabled = true.If this system property is
set to true, it will override the <enable-local-proxy> setting in
WEB-INF/wsrp-producer-registry.xml.

Local proxy support is disabled by default in web application templates.

Other Topics and Best Practices 14-9

Using Local Proxy Mode

14.12.3 How Local Proxy Mode Works

Figure 14-2 compares the layers of operations involved when local proxy support is
enabled (top flow diagram) and when it is not (bottom flow diagram). In the local
proxy case, there is no network or SOAP related overhead and the servlet APl is used
for communication.

Figure 14-2 Local Versus Remote Proxy Flow Diagrams

Proxy Portlet POJOs I——h[Interceptors]—r[Local Proxy]~——,
I
I
I

Tttty Servlet Request Dispatcher Include - ------

{ Portlet Container]
Proxy Portlet PCOUOs I——h{ Interceptors]—r[SOAP Proxy]~——-|
:
|

e POJO to XML + HTTP + XML to POJO ------

Producer

Note: Itis a recommended practice to enable local proxy mode when
you deploy JSR-168 portlets using the JSR-168 Import Utility. As far as
performance and complexity are concerned, there is no difference
between the way JSR-168 portlets and WSRP local proxy interoperate
in WebLogic Portal versus other vendors. For more information on the
import utility, see the section "Deploying JSR-168 Portlets in a WAR
File" in the Oracle Fusion Middleware Production Operations Guide for
Oracle WebLogic Portal.

Paortlet Container]

Table 14-1 summarizes the evolution of the WebLogic Portal local proxy architecture.

Table 14-1 Evolution of Local Proxy Architecture for WebLogic Portal

Version Local Proxy Architecture

WLP 8.1x Exchange XmlBeans between consumer and producer.

WLP 9.2 Convert POJOs into XmlBeans while sending data from the consumer to the
producer.

WLP 10.0 Exchange POJOs between the consumer and the producer.

14.12.4 When to Use and Not Use

As powerful a tool as local proxy support is, you should only use it when it will
benefit your application. The most common reasons for using local proxy support are:

= When portlets are deployed in self-contained web applications on the same server.
The local proxy support provides isolated portlet deployment. In this mode, each

14-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Monitoring and Logging

portlet web application can be deployed as a WSRP producer. Portlets can
therefore be loaded by separate class loaders and have their own servlet context
and session. Portlet web applications can be deployed /undeployed without
affecting the portal web application.

= When you don't need advanced monitoring software between the producer and
consumer.

On the other hand, you should not use local proxy support when interoperating with
non-Oracle producers and consumers.

14.13 Monitoring and Logging

You can monitor activity between producers and consumers by using the message
monitor servlet installed with Oracle Enterprise Pack for Eclipse. You can also create
custom logs to display specific information about WSRP sessions. These features can
help you debug problems with remote portlets.

This section contains information on these subjects:
= Section 14.13.1, "Using the Monitor Servlet"
ms Section 14.13.2, "Creating Custom Logs"

14.13.1 Using the Monitor Servlet

To monitor the response and request headers, as well as the action SOAP messages
that are passed between producers and consumers:

1. Ensure that the producer and consumer applications whose communication you
want to monitor are running.

2. Open a new browser and enter the following URL:

host :port/webProject_name/monitor

Where:

» host:port is the host and port you want to monitor. This can be the host and
port of either the producer or consumer server.

s webProject_name is the web project you want to monitor.
For example:

http://localhost:7001/wsrpMonitorTest/monitor

The monitor appears in the browser. Click Enable to start monitoring. Click
Refresh to see the latest transactions. Click Clear to remove all messages from the
browser window.

Figure 14-3 Message Monitor Functions

| Refresh | Clear | Enable ;
ks
-

e P T SR S W SR e

Tip: The monitor does not display new transactions until you click
Refresh.

Other Topics and Best Practices 14-11

Monitoring and Logging

Each time the remote portlet communicates with the producer, a request and
response message headers appear on the monitor screen, as shown in Figure 14-4.

Figure 14-4 Monitor Appearing in a Browser

== Request (Mon Jan 08 16:44:44 MST 2007) from/to: http://localhost:7001/portalWeb/producer/wsrp-wlp-ext-1 .l].-"markupz

SOAPAction "urncbearwsrpextvl:getMarkup”
User-Agent YWeblLogic Portal, ‘:
Content-Type text/xml; charset=UTF-8 1
Cookie JEESESIONID=wz OF FWWNNEP s TZg3phdkOnTjxnZh Qs Qz4C7 jnLvk3vmdRohldy 11623228752, Path=/ -
Accept-Charset UTF-8, UTF-8;0=0.8 ’
Accept textfuml, applicationfxml, multipart/related, =/
Message Show 3
<
<< Response (Mon Jan 08 16:44:44 MST 2007) from/to: http://localhost:7001/portalWeb/producer/wsrp-wlp-ext-1 .lJ.-"markup'
Date Man, 08 Jan 2007 23:44:44 GMT x
#-Powered-By Serletf2.5 JSP2.1; Servletf2 5 JSP2.1; Servleti2 5 JSPR21 L
Content-Type textfuml; charset=UTF-8 +
Transfer-Encoding chunked {
Message Show ;
== Request (Mon Jan 08 16:50:29 MST 2007) from/to: http:/localhost:7001/portalWeb/producer/wsrp-wlp-ext-1 .l].-"markup(
ESOAFLAQUDD. furn'.hea:ysrp:_axt:ﬂ:gtMar_lwp", b o .- (

By clicking Show, you can display the content of the request or the response, as
shown in Figure 14-5. Click Hide to close the message content.

Figure 14-5 Message Content

== Request (Mon Jan 08 16:44:44 MST 2007) from/to: http://localhost:7001/portalWeb/producer/wsrp-wlp-ext-1.0/markup

SOAPAction "urncbearwsrpextvl:getMarkup”

User-Agent YWeblLogic Portal,

Content-Type text/xml; charset=UTF-8

Cookie JEESESIONID=wz OF FWWNNEP s TZg3phdkOnTjxnZh Qs Qz4C7 jnLvk3vmdRohldy 11623228752, Path=/
Accept-Charset UTF-8, UTF-8;0=0.8

Accept textfuml, applicationfxml, multipart/related, =/

Message Hide

<?xml wersion="1.0" encoding="UTF-5"72>

<env:Envelope xmlns:env="http://schemas. mlsoap.org/soap/envelope/ ">
<Header xmlns="http://schemas.xmlsoap.ory/soap/envelopes/ "/ />
<env:Body:>

<vl:igetMarkup xmlns:vi="urn:oasis:names:tciwsrp:vl:itypes™s>
<vl:registrationContext:>
<vl:registrationHandle>4001</v1l:registrationHandle>

</vliregistrationContexts

M A A A gk Ay e e A

.Y
b
)

— o S R R N N USRS . LA o Y SR

~.

14.13.2 Creating Custom Logs

To create custom logs, we recommend that you use the Interceptor Framework
described in Chapter 9, "The Interceptor Framework."

You can also create custom logs that display particular information about a WSRP
session by using Logger and Handler objects instantiated by WebLogic Server. You
can use these objects to create your own message handlers and subscribe them to
loggers. For example, if you want the remote portlet to listen for the messages that the
producer generates, you can create a handler and subscribe it to a logger in the
producer. For detailed information on using Logger and Handler objects, see "Filtering

14-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Managing Delivery of Headers and Cookies to the Browser

WebLogic Server Log Messages" in Oracle Fusion Middleware Configuring Log Files and
Filtering Log Messages for Oracle WebLogic Server.

14.14 Managing Delivery of Headers and Cookies to the Browser

The WSRP 2.0 clientAttributes feature permits the producer to send cookies and
headers to the client (browser) application. Before WSRP 2.0, cookies were retained
and managed by the consumer and returned to the producer. The browser never
received cookies directly. This limitation made it difficult to share cookies between
different producers in the same domain. In addition, before WSRP 2.0, the consumer
removed header information from the response before forwarding the response to the
browser. This limitation restricted the use of certain browser operations, such as using
the content-disposition header to allow the browser to display the "Save As"
dialog box before opening a file when the resource was clicked inside the producer
portlet.

14.14.1 Best Practice for Setting Cookies and Headers

The best practice for setting cookies and headers that you want to send to the client
(browser) is to set them in the portlet’s pre-render code. This practice is the best way to
ensure that the cookie or header will reach the browser. For example, if you are using
a portlet backing file, set the cookies or headers in the preRender() method. For
information on backing files, see "Backing Files" in the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

Although not a best practice, if you want to set cookies or headers in the portlet’s
render code, you can set an option on the consumer to prevent the consumer from
flushing responses until the buffer fills. While this can allow cookies and headers to
reach the browser, more server resources are required to cache the entire response
during rendering. If you want to use this feature, set the
<avoid-response-commit> element to true in
WEB-INF/wlp-framework-common-config.xml. See also "Avoiding Comitting
Responses" in the Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal.

This setting avoids committing the response until all the portlets have rendered or
until the buffer fills. This behavior differs from the WLP default behavior, which is to
stream responses without caching them.

Tip: If the buffer fills and thereby begins to render before all the
portlets' render() methods are called, the last portlet headers and
cookies will be lost. That is why it is best practice to set headers and
cookies in the preRender() method.

WLP always sends cookies and response headers from the consumer to the browser.
However, as mandated by the WSRP 2.0 specification, anything represented elsewhere
in the specification, such as content-type, content-length,
transfer-encoding, and user-agent, are not sent. In addition, some headers that
are not useful to transmit are not sent, like accept-ranges, age, and
proxy-authenticate. The same is true for request headers from the client. To
override this default behavior, the best option is to write an interceptor. For
information on interceptors, see Chapter 9, "The Interceptor Framework."

Other Topics and Best Practices 14-13

Managing Delivery of Headers and Cookies to the Browser

14.14.2 Configuring Client Attribute Preferences on the Producer

WLP provides two producer-side settings that you can use to control the way client
attributes (headers and cookies) are handled. Both of these settings can be configured
in the WEB-INF /wsrp-producer-config.xml file on the producer.

s isPreferClientCookies —Sets whether or not the producer will use the cookie
sent from the client (browser) or from the consumer in the event of a name
collision. True = prefer from client (browser). False = prefer from consumer.
(Default: false)

s headerMode - Sets where headers and cookies are sent. Possible settings are
Consumer, Client, or Both. The default is Both. The Client setting specifies
that headers and cookies set by the portlet will be directed to go to the client.
(browser). The Both setting specifies that headers and cookies set by the portlet
will be directed to go to the client and the consumer. If you do not want headers to
be sent to the client (browser), set this attribute to Consumer.

Tip: You can also set the header mode in Java portlets using a
Container Runtime option:
com.oracle.portlet.wsrpHeaderMode. For information on
container runtime options, see "Using Container Runtime Options" in
the Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal.

14.14.3 Handling Cookies that Contain the Producer’s Domain

If the browser receives a cookie with a domain attribute value that is different than the
domain it connected to, the browser will reject the cookie. By default, WLP forwards
all cookies from the producer to the browser without interfering in any way, except for
the handling of the JSESSIONID cookie for security reasons (see Section 14.14.6,
"Managing Security Between Consumer and Producer"). If you want to manipulate a
cookie before it is sent from the consumer to the browser, you can do so by writing an
interceptor. For details, see Chapter 9, "The Interceptor Framework."

14.14.4 URL/Path Rewriting of the Cookie Path

WSRP 2.0 does not define, and WLP does not support, the notion of rewriting URLs
inside of cookies or headers.

14.14.5 Using Secure Cookies

If you use secure cookies, be sure that you are using a secure transport protocol (for
example, HTTPS) between the consumer and the client (browser).

14.14.6 Managing Security Between Consumer and Producer

In most cases, the connection between browsers and consumers lies outside the
network’s DMZ. Likewise, the consumer to producer connections generally lie behind
the network’s DMZ. If you want to avoid the network overhead of using HTTPS
behind the DMZ, you can use an insecure protocol (like HTTP) for the consumer to
producer connection.

14-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring Session Cookies

Caution: If you use an insecure connection between consumer and
producer, the SOAP messages between the consumer and producer
can contain cookies that are destined for the browser. If you intend
these cookies to be secure, then it is recommended that you use a
secure channel between consumer and producer. For more
information, see Section 14.8, "Security for Remote Portlets."

For more information, see Section 14.8, "Security for Remote Portlets."

For security reasons, the JSESSIONID cookie from the producer is not sent to the
browser. In addition, if a cookie is set as isSecure, the cookie is sent to the browser
only if the communication between client and consumer is secure. Note that it is
possible to receive a secure cookie on the browser even though the producer and
consumer communication may be on an insecure protocol. This scenario allows a
consumer and producer that are both behind a company firewall in the same domain
to communicate and still issue secure cookies to the client (browser).

14.15 Configuring Session Cookies

This section describes techniques for preventing the loss of the consumer session when
resource requests are made to a remote portlet. These techniques include:

= Section 14.15.1, "Using Different Cookie Names"
= Section 14.15.2, "Using a System Property"
= Section 14.15.3, "Blocking Cookies"

14.15.1 Using Different Cookie Names

If you have a remote portlet that contains images, WebLogic Portal sends cookies and
other headers from the producer to the browser when an image resource is requested.
Note that when resource requests are made to a portlet in a producer, it is possible for
the user's browser to drop or lose the consumer session. This situation occurs when
the producer and consumer are configured to include only the default path ("/") in the
session cookies, which causes the browser to replace the Set-Cookie header set by
the consumer with the Set-Cookie header set by the producer.

To prevent this potential loss of the consumer session, open weblogic.xml, and
configure your web applications to include the domain name and web application
path for session cookies. This technique prevents the cookie names from overlapping.
See "session-descriptor” in Oracle Fusion Middleware Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server for details on how to set the domain name
and path.

14.15.2 Using a System Property

In most cases, using different cookie names solves the problem of lost consumer
sessions following resource requests. In some cases, however, this solution does not
work. One such use case is when single sign-on is used with the producer and
consumer running in the same domain. In this case, identical cookie names are
required. For cases where using different cookie names does not work, set the
following system property:

wlp.resource.proxy.servlet.block.response.headers=true

Other Topics and Best Practices 14-15

User Sessions on CWEB Applications

By enabling this system property, WebLogic Portal prevents a Set -Cookie header
from being sent back to the user's browser. This property prevents the consumer's
cookie from being overwritten by the producer's cookie on the browser when a
resource is returned. Using this technique, you can keep the cookie names the same for
both the producer and consumer applications, which is required for single sign-on.

14.15.3 Blocking Cookies

To block cookies to the browser, set <resource-cookies> to block-all in
WEB-INF/wsrp-producer-registry.xml in the consumer web application, as
shown in Example 14—4. When this element is set to block-all, the resource proxy
servlet does not transfer any cookies from the producer resource to the browser.
Cookies are not blocked by default. The default setting is block-none.

Example 14-4 Blocking Cookies to the Browser

<wsrp-producer-registry

xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-registry/8.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="http://www.bea.com/servers/weblogic/wsrp-producer-
registry/8.0 wsrp-producer-registry.xsd">

<!-- Upload limit (in bytes) -->

<upload-read-1imit>1048576</upload-read-limit>

<!-- Timeout (in milli seconds) -->

<connection-timeout-secs>120000</connection-timeout-secs>

<!-- Enable local proxy -->

<enable-local-proxy>true</enable-local-proxy>

<!-- Block cookies to the browser -->

<resource-cookies>block-all</resource-cookies>

</wsrp-producer-registry>

14.16 User Sessions on CWEB Applications

User sessions on CWEB applications might be lost if session cookies between
producers and consumers overlap. To prevent this, open weblogic.xml, configure
your web applications to include the domain name and web application path for
session cookies. See "session-descriptor” in Oracle Fusion Middleware Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server for details on how to set the
domain name and path.

14.17 Using Multiple Views with Remote Portlets

Whenever multiple views of a remote portlet are created, links in the portlets can be
inconsistent and not work properly. Typically, multiple views occur when a remote
portlet uses the popup mechanism in a page flow, or when a user floats a remote
portlet using the portlet Float button.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

14-16 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Storing Registration Properties

If a WebLogic Portal producer is set up to use consumer-supplied URL templates, the
producer caches those templates in a session created on the producer. However, when
multiple views of a portlet are created either through the page flow popup
mechanism, or through a Float button, the cached templates may not be valid for the
current view.

You can correct the inconsistent links using one of these methods:

= Disabling the caching of templates for your remote portlets. To do this, in the
.portlet file for each remote portlet that is affected, change the value of the
templatesStoredInSession elementto false.

s Configure the producer to require consumer rewriting. To do this, set the
rewrite-urls element to FALSE in the wsrp-producer-config.xml file.

14.18 Handling User Identity Changes

If the user's identity changes while a request generated from the portal is in progress,
remote portlets can behave inconsistently. Typically, this occurs when the portal
desktop includes a portlet or other mechanism for logging in and logging out a user. If
the user identity changes, any user-specific data loaded by the portal can become
invalid. In the case of remote portlets, such data includes their persistent state. When
user identity changes, the consumer portal can send incorrect persistent state data to
producers.

To avoid this problem, be sure to always use a browser redirect call immediately after
a login or logout. The browser redirect ensures that data loaded by the portal is valid
for the request.

14.19 Storing Registration Properties

This section discusses the Store Registration Properties feature and why enabling it is
generally recommended.

When you register a producer either using Oracle Enterprise Pack for Eclipse or the
WebLogic Portal Administration Console, you have the option of storing registration
property sets on the consumer. Registration properties are values that are passed from
the consumer to the producer when the producer is registered. These values can be
used to allow producers to control which portlets are offered to specific consumers.

Tip: For detailed information on consumer entitlement and creating
registration property sets, see Chapter 11, "Consumer Entitlement."

This section explains why storing registration properties is the recommended
procedure for storing registration properties using both Oracle Enterprise Pack for
Eclipse and the Administration Console. This section includes these topics:

= Section 14.19.1, "Why Store Registration Properties?"
= Section 14.19.2, "Using the Administration Console"
= Section 14.19.3, "Using Oracle Enterprise Pack for Eclipse"

14.19.1 Why Store Registration Properties?

It is recommended that you choose to store registration properties when you register a
producer. This option provides these advantages:

Other Topics and Best Practices 14-17

Storing Registration Properties

= If the producer is unable to provide registration properties, they are still available
to your portal application. The producer may be unable to provide registration
properties if:

The producer is not a WebLogic Portal 10.2 or later version. The WSRP
extension for providing registration properties from the producer does not
work with WebLogic Portal 10.0 or older versions or with third-party
producers.

The producer is configured not to offer support for the WSRP registration
property extension. Typically, the a producer is configured in this way to
prevent sending registration property values back from the producer as a
security measure. In this case, you might consider it to be acceptable to store
the registration property values on the consumer and retain the benefits of
registration property storage.

The producer is temporarily unavailable.

s If you choose to modify the registration properties for a producer, the Modify
Registration Properties dialog box will always be filled in with the currently used
registration properties. The procedure for modifying registration properties is
described in Section 19.2, "Modifying Producer Registration Properties".

14.19.2 Using the Administration Console

The Store Registration Properties check box is provided in the Enter Producer
Properties dialog of the Add Producer Wizard, as shown in Figure 14—6. (The complete
procedure for registering producers is discussed in detail in Chapter 18, "Adding

Remote

Resources to the Library.")

Figure 14-6 Store Registration Properties Option

% Add Producer

1, Select Producer to Add

Enter Producer Properties, and click Next.

Producer Mame (Handle):™ |praducerdemo

2. Wiew Producer's vendor: |BEA Systems
Portlets

3. Enter producer

Description: [Demo producer

properties LURL: htip:/flocalhost: 7001 myweb
producer Pwsdl
4. Register Registration: This producer requires registration,

Store Reqgistration Properties

3. Summary

* Required information

\’x‘ﬁ“\.x\,-ﬁ T Y W O, Waerere O

o o i Tt g bt P

You can change the value of the Store Registration Properties check box in the
WebLogic Portal Administration Console. Go to the Summary tab of the producer and
click Producer Properties to bring up the Update Producer Url dialog. This dialog lets
you change the setting.

14-18 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Storing Registration Properties

14.19.3 Using Oracle Enterprise Pack for Eclipse

The Store registration properties in local registry check box is provided in the
Register dialog of the Remote Portlet Wizard, as shown in Figure 14-7.

Tip: You can also store registration properties for remote books and
pages. See Chapter 4, "Creating Remote Portlets, Pages, and Books" for
detailed information in the wizard used for creating remote portlets,
pages, and books.

Figure 14-7 Storing Registration Properties

Register
Producer Handle: | aProducer
Vendor (optional): | BEA Producer

Description (optional): | Example registration

Extended Registration Properties:

Property Label

Property Value

Allows the user to pick products... Electronics

Lets the user choose OK or Can... 88

Hink
Allows the user to pick product...
Lets the user choose OK or Ca...

Store registration properties in local registry

X

When Store registration properties in local registry is checked, the
wsrp-producer-registry.xml file is updated with the stored registration
information. A sample is shown in Example 14-5. To provide flexibility, this option is
always selected by default even if there are no properties defined. If the checkbox is
selected during registration you can add registration properties later.

You can only edit the registration properties using the IDE dialog when initially
registering or re-registering a producer. To change the properties after the producer is
registered, you need to edit the XML file directly using an XML editor.

Example 14-5 Registration Property Information

<registration-properties>
<stringProperty name="{urn:bea:wlp:prop:reg:propset-1}Selection">
<value>0K</value>
</stringProperty>
<stringProperty name="{urn:bea:wlp:prop:reg:propset-1}Choices">
<value>Electronics</value>
</stringProperty>
</registration-properties>
<store-registration-properties>true</store-registration-properties>

Other Topics and Best Practices 14-19

Editing the WSRP WSDL Template File

14.20 Editing the WSRP WSDL Template File

You can customize the producer-generated WSDL. For example, you might want the
WSDL to point to a proxy server other than the default one. To customize the default
WSDL, you can edit the WEB-INF/beehive-url-template-config.xml file. The
easiest way to edit this file is to copy it to your workspace in Oracle Enterprise Pack
for Eclipse. To do this, locate the file in the Merged Projects view in Oracle Enterprise
Pack for Eclipse. Right-click the file and select Copy to Workspace. The template file
uses URL templates. See Javadoc for the GenericURL class for information on
configuring URL templates.

14.21 Configuring a Custom JAX-RPC Handler

This section explains how to configure custom JAX-RPC handlers on the WSRP
consumer or producer. Custom handlers can be used to intercept and process the
outbound SOAP requests and inbound SOAP responses. For example, handlers can
inspect the incoming and outgoing messages, change the messages before they make it
to the end point, log information, and so on. This section only explains how to
configure and register a handler, not how to write a handler class.

Tip: The handler class must implement the
javax.xml.rpc.handler.Handler interface or extend
javax.xml.rpc.handler.GenericHandler.

This section includes these topics:

= Section 14.21.1, "Configuring a Handler on the Consumer"

= Section 14.21.2, "Configuring a Handler on the Producer"

14.21.1 Configuring a Handler on the Consumer

14-20

Edit the file WEB- INF/wsrp-consumer-handler-config.xml to add a custom
handler the consumer. The easiest way to edit this file is to copy it to your workspace
in Oracle Enterprise Pack for Eclipse. To do this, locate the file in the Merged Projects
view in Oracle Enterprise Pack for Eclipse. Right-click the file and select Copy to
Workspace.

Example 14-6 shows an example configuration file:

Example 14-6 Event Handler Configuration

<wsrp-consumer-handler-config
xmlns="http://www.bea.com/ns/portal/90/wsrp-consumer-handler-config">
<description>Description goes here</description>

<soap-handler>
<name>ProducerHandlesFilter</name>
<description>Producer Handles Filter test handler</description>
<!-- List of producer handles to deploy to, if none are specified ALL
producers will have this handler -->

<producer-handle>NoOpProducerl</producer-handle>

<handler-class>com.bea.wsrp.ga.consumer.handlers.ProducerHandlesFilter
</handler-class>

<!-- If true, the handler will run before the SAML token is added. -->

Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring a Custom JAX-RPC Handler

<pre-security>true</pre-security>

<!-- init parameters if needed -->

<init-parameter>
<name>paraml</name>
<value>valuel</value>

</init-parameter>

<init-parameter>
<name>param2</name>
<value>value2</value>

</init-parameter>

<!-- Specify which ports to add the handler to. -->

<port-name
xmlns:wsrp="urn:oasis:names:tc:wsrp:vl:wsdl">wsrp:WSRPServiceDescriptionService
</port-name>

<port-name
xmlns:wsrp="urn:oasis:names:tc:wsrp:vl:wsdl">wsrp:WSRPBaseService</port-name>

<port-name
xmlns:wsrp="urn:oasis:names:tc:wsrp:vl:wsdl">wsrp:WSRPRegistrationService
</port-name>

<port-name
xmlns:wsrp="urn:oasis:names:tc:wsrp:vl:wsdl">wsrp:WSRPPortletManagementService
</port-name>

<port-name
xmlns:wsrp="urn:oasis:names:tc:wsrp:vl:wsdl">wsrp:WLP_WSRP_Ext_Service
</port-name>

<soap-role>someRoleHere</soap-role>
</soap-handler>

14.21.2 Configuring a Handler on the Producer

On the producer edit the file WEB-INF/webservices.xml as defined by the
JAX-RPC specification.

Other Topics and Best Practices 14-21

Configuring a Custom JAX-RPC Handler

14-22 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Part lli

Staging

In the staging phase of the portal life cycle, you use the WebLogic Portal
Administration Console to create portal desktops, manage users and groups, and
perform other administration tasks. You can add producers and consume portlets,
books, and pages that are deployed in producers. In a staging environment, you build
and test all of your portal’s components before moving the portal to production.

If you are developing federated portals, you perform most of the security
configuration in the staging environment using the WebLogic Portal Administration
Console and WebLogic Server Administration Console.

For a detailed description of the staging phase of the portal life cycle, see the Oracle
Fusion Middleware Overview for Oracle WebLogic Portal.

Part I1I contains the following chapters:
» Chapter 15, "Establishing WSRP Security with SAML"
» Chapter 16, "Configuring User Name Token Security"

» Chapter 17, "Configuring WSRP Security Between WLP and WebCenter
Framework"

» Chapter 18, "Adding Remote Resources to the Library"

15

Establishing WSRP Security with SAML

This chapter discusses how to configure the security realms of WebLogic Portal
producers and consumers running in different domains. In the first part of this
chapter, we explain the configuration that is required when both the producer and
consumer are running in WebLogic Portal version 9.2 or later domains. In the second
part of this chapter, the case of mixed domains is discussed, where the producer and
consumer can be running in either WebLogic Portal 8.1x or 9.2 or later domains.

This chapter includes the following sections:
= Section 15.1, "SAML Security Between WebLogic Portal Domains"

» Section 15.2, "SAML Security Between WebLogic Portal 8.1x and 9.2 or Later
Versions"

= Section 15.3, "Using SAML Security with a Name Mapper"
= Section 15.4, "Allowing Virtual Users"

15.1 SAML Security Between WebLogic Portal Domains

This section explains the procedure for configuring WSRP security using custom
SAML tokens when the producer and consumer are running in different WebLogic
Portal version 9.2 or later domains. Use the procedure described in this section to
configure security on production systems where custom SAML tokens are required.

Note: By default, with no previous configuration, WebLogic Portal
9.2 and later domains share a common key. This allows you to quickly
create, for demonstration or testing purposes, federated portals that
require user authentication without undergoing the configuration
procedure described in this section.

Caution: It is recommended that you do not use the default key
described in the previous note in a production environment. Using
this default setting allows any consumer to connect to your producer.

This section includes these topics:
s Section 15.1.1, "Overview"
= Section 15.1.2, "Setting Up the SAML Configuration Example"

= Section 15.1.3, "Configuring the Consumer"

Establishing WSRP Security with SAML 15-1

SAML Security Between WebLogic Portal Domains

= Section 15.1.4, "Configuring the Producer"
= Section 15.1.5, "Testing the Configuration”

15.1.1 Overview

In a typical scenario, consumer and producer applications are running in separate
WebLogic Portal 9.2 or later domains, as shown in Figure 15-1.

Figure 15-1 Basic Use Case

Domain A Domain B
WSRP —
....... h 1
Consumer Producer

By default, WebLogic Portal specifies SAML as the default security token type for
WSRP. If you are running in a demonstration or development environment, no further
configuration is required. However, for a production environment it is recommended
that you perform the SAML configuration described in this section.

15.1.2 Setting Up the SAML Configuration Example

This section describes an example federated portal application where the producer
and consumer are running in different WebLogic Portal 9.2 or later domains. This
example provides a basis for discussing how to configure SAML security between
these domains.

The portal shown in Figure 15-2 includes a local portlet on the left and a remote
(proxy) portlet on the right. The local portlet is a login portlet. When a user logs in
successfully, the producer portlet displays the user's name. As you will see, however,
unless SAML security is properly configured, an error results when a user logs in to
the portal.

15-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal Domains

Figure 15-2 Consumer Portal Before User Login

& comsumer portal # pew Porkal Deskiop X |agin. jsp i T q

& | htkp: fflacalhost: 700 1] consumerPrajfconsumer, portal?logout=Logaut +
o7 P i p g =l

Page 1

A

Login EE| |username ==

—3—— Proxy Portlet
MName: Username = null

|weh|ogic |

Password:

Current Userld: null

Local Portlet

A Aty g ey Y sy g

As you can see in Figure 15-2, the proxy portlet renders without error before a user

logs in. It isn't until a user attempts to log in that a SAML message is sent, resulting in
an error.

Checkpoint: This section described an example federated portal where the consumer
and producer are running in separate WebLogic Portal domains. In the following
sections, we explain how to configure the consumer and producer so that the SAML
token sent from the consumer is accepted by the producer.

15.1.3 Configuring the Consumer

To correct the error shown in the previous section, you need to configure both the
consumer and the producer. This section discusses the consumer configuration.

15.1.3.1 Generate a Key

This section explains how to generate a key on the consumer using the keytool utility,
a Java utility distributed by Sun Microsystems that manages private keys and

certificates. For detailed information on keytool, refer to the Sun Microsystems
website.

Tip: Anytime you generate a new key, you must copy the keystore to
the entire cluster.

Note: By default, the consumer has a keystore that the server uses
for its SSL key. The default keystore is called Demoldentity.jks. If you
are using a different keystore, then modify the one that you are
currently using.

1. On the consumer, open a command window and CD to the <WEBLOGIC_
HOME>/server/1ib directory.

Establishing WSRP Security with SAML 15-3

SAML Security Between WebLogic Portal Domains

2. Run the keytool command to generate a new key, as shown in Figure 15-3. For
example, the following command generates a key called testalias.

keytool

-genkey -keypass testkeypass -keystore

DemoIdentity.jks -storepass DemoIdentityKeyStorePassPhrase
-keyalg rsa -alias testalias

The options used in the example keytool command include the following:

Table 15-1 Keytool Options

Command

Parameter Description

keytool A Java tool used to generate a key.

-genkey Instructs the keytool to generate a key.

-keypass Specifies the password to be used with the new key.

-keystore Specifies the name of the keystore. A keystore stores keys and certificates.
The default keystore, DemoIdentity. jks, is implemented as a file that
protects private keys with a password.

-storepass Specifies the password for the keystore.

-keyalg Specifies the encryption algorithm for the keystore. You must use rsa for
the key algorithm. If you use another algorithm, you will receive an error
when the consumer sends a SAML message.

-alias Specifies a name for the generated key.

Figure 15-3 Generating a Key

WINDOWSAsystem3 2\cmd. exe

“heasweblogic?2sserverslib>
D:vheaswehlogic?2 \serverslih>
D:vheaswehlogic?2 \serverslih>
D:vheaswehlogic?2 \serverslih>
D:vheaswehlogic?2 \serverslih>
D:vheaswehlogic?2 \serverslih>
D:vhea~weblogic?2 \serverslibh>
D:vbheaweblogic?2 serverslib>keytool —genkey —-keypass testkeypass —keystore Demo
Identity.jks —storepass DemoldentityKeyStorePassPhrase —kevalg rsa —alias testal

iaskey

What is your first and last name?
[Unknown 1:

Mhat is the

[Unknown 1:

Mhat is the

[Unknown 1:

Mhat is the

[Unknown 1:

Mhat is the

[Unknown 1:

Mhat is the

[Unknown 1:
Is[CN;Unknoun, OU=Unknown, O=Unknown, L=Unknown,. ST=Unknown. C=Unknown correct?
nol: yes

D:“heasweblogic?2\serverslibh>

name of your organizational unit?
name of your organization?
name of your City or Localitwy?

name of your State or Province?

two—letter country code for this unit?

15.1.3.2 Export the Key

Export the key from the consumer server. In the same command window that you
used to generate the key, in the same directory, run the keytool command with the
-export option, as shown in Figure 15-4. For example, the following command
generates a key file called testalias.der.

keytool -export -keypass testkeypass -keystore DemoIdentity.jks -storepass
DemoIdentityKeyStorePassPhrase -alias testalias -file testalias.der

15-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal Domains

Figure 15-4 Exporting the Certificate

AWINDOWSisystem3 2vemd. exe

D:vhea‘weblogic?2zserver~lib>

D:>heaweblogic?2zserver~lib’>

D:>heaweblogic?2sserver~lib>keytool —genkey —keypass testkeypass —keystore Demo
Identity.jks —storepass DemoldentityKeyStorePassPhrase —keyalg rsa —alias testal
iaskey

Illhat iz your first and last name?

name of your organizational unit?
name of your organization?

Illhat iz the name of your City or Locality?
[Unknown1:

lhat iz the name of your State or Province?
[u ownl:
iz the two—letter country code for this unit?
[Unknown1:
Is[CN;Unknoun, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct?
nol: vyes

D:>heaweblogic?2%zserver~lib>keytool —export —keypa testkeypass —keystore Demo
Identit s —storepass DemoldentityHeyStorePassPhrase —alias testaliaskey —file

er
Certificate stored in file <{testalias.der>

D:vheasweblogic?2sserverslib>

15.1.3.3 Modify the Consumer's Security Realm

This section explains the procedure for configuring the consumer to use the key that
you generated.

Tip: A security realm is a container for the mechanisms-including
users, groups, security roles, security policies, and security
providers—that are used to protect WebLogic resources. You can have
multiple security realms in a WebLogic Server domain, but only one
can be set as the default (active) realm. The default is called myrealm.

1. Log in to the WebLogic Server Administration Console on the consumer. To do
this, open a browser and enter the following URL:
http://serverIP:port/console

where serverIPis the IP address of the server on which the consumer
application is running, and port is the server's port number. For example:

http://localhost:7001/console

Figure 15-5 WebLogic Server Administration Console Login Dialog

Log in to work with the WebLogic Server domain

Username: Meblogic |
Password: f“““““““"‘“* |

2. In the Administration Console, select Security Realms in the Domain Structure
tree, as shown in Figure 15-6.

Establishing WSRP Security with SAML 15-5

SAML Security Between WebLogic Portal Domains

Figure 15-6 Selecting Security Realms

-
Change Center |Welcome, weblog
Yiew changes and restarts Home ;
Click the Lock & Edit button o Domain ’
modify, add or delete items in
this domain, r i
Informatic
| Lock & Edit Jr?
B CDnﬁguJ
» Recent {
Domain Structure
4+
base_damain f
Erviranment

Deployments {

Security Rea ﬁs
Interoperabi

-Diagnostics |Security Realms, Level 1, 4 of 6|

)

B Domai
How do I... & ’?
)

Bllaz on ChanomCentar yaes |

Domain C

- [L

3. Select a security realm. The default security realm is called myrealm, as shown in
Figure 15-7.

Figure 15-7 Selecting a Security Realm

|Welcume, weblogic Connected to: portal-2-28 i Hame Log Out Prefi
Home > Summary of Security Realms nY

*

Summary of Security Realms -

& gecurity realm is & container for the mechanisms--including users, groups, security role‘s,'
security praviders--that are used to protect Weblogic resources. You can have multiple seé®
\VeblLogic Server domain, but only one can be set as the default (active) realm. -

This Security Realms page lists each security realm that has been configured in this WebL{

Click the name of the realm to explore and configure that realm.

B Customize this table

Realms

Click the £ock & £dit button in the Change Center to activate all the buttons on this pa

L et bt A o A A

Showing 1 -
Name <% Default Realm
myrealm'\ frue
Showing 1 -
ey Sy e -t-".__.,_,-_,. .

4. Select the Providers tab and then the Credential Mapping tab, as shown in
Figure 15-8.

15-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal Domains

Figure 15-8 Selecting the Credential Mapping Tab

q L4
Settings for myrealm p
Configuration Users and Groups Roles and Policies Credential Mappings | Providers | Migration -
£

Authentication = Authorization | Adjudication | Role Mapping | Auditing | Credential Mapping Certiﬁcation@
P

pu __—%.--- R

et PR T B - —h e e e -

5. Select SAMLCredentialMapper, as shown in Figure 15-9.

Tip: The SAML Credential Mapper provider acts as a producer of
SAML security assertions, allowing WebLogic Server to act as a source
site for using SAML for single sign-on.

Figure 15-9 Selecting the SAMLCredentialMapper

Credential Mapping Providers ¥
Click the {ock & £dft button in the Change Center to activate all the buttons on this page. L
Showing]]
. [4
Name Description p
DefaultCredentialMapper | Weblogic Credential Mapping Provider {

k.

Wweblogic SAML Credential Mapping Provider, Supports Security Asser

SAMLCredentiaMapper Language v1.1.

PR N~

I
PKICredentiaIl\f1appé?§ PKI Credential Mapping Provider

— Sho}n\fing f

"‘v..|_‘/“ e e o —— A it aeonee B
6. Select Provider Specific, as shown in Figure 15-10.

Figure 15-10 Selecting the Provider Specific Tab

A

Settings for SAMLCredentialMapper P
»

Configuration | Management Migration -
»

Common Provider Specific I
This page displays common configuration information for this SAML Credential Mapping Versio}

A

4
& Name: SAMLCredentialMapper The name of ﬂﬂisj
Credential Mappind

More Info...

7. In the Change Center window, select Lock and Edit, as shown in Figure 15-11.

This function blocks other users from making Administration Console changes
and enables you to edit the SAMLCredentialMapper settings.

Establishing WSRP Security with SAML 15-7

SAML Security Between WebLogic Portal Domains

Figure 15-11 Locking the Console

Change Center |\M

Yiew changes and restarts

Click the Lock & Edit button to
madify, add or delete items in
this dormain.

%

Domain Structure

T PP WP VRV PR

pog='-2-28 | b

8. Edit the Issuer URI, as shown in Figure 15-12. This unique URI tells the producer
the origin of the SAML message and allows the producer to match the consumer
with the key. Typically, the consumer's URL is used in this string to guarantee that
it is unique. For example:

http://www.bea.com/demoConsumer

Figure 15-12 Issuer URI

Default Time To Live A time factor you can use o allow the Credential Mapper to compensg

Offset: clock differences between the source and destination sites. The value
positive or negative integer representing seconds. More Info... j
P
Issuer URI: The Issuer URI (name) of this SAML Authority, More Info... 4
4
-
s e A ot At b B o A am e mn 4 #7 o pD

9. Enter the Signing Key Alias and Signing Key Pass Phrase, as shown in
Figure 15-13. These are the values you used when you generated the keystore. In
this example they were:

Provider Field Value
Signing Key Alias testalias
Signing Key Pass Phrase testkeypass

Figure 15-13 Additional Provider Fields

Default Time To Live I:I A tima factor you can use o allow the Cradential

Offset: Mapper to compensate for clock differences between
the source and destination sites, The value is a positive
or negative integer representing seconds. Mare Info...

Signing Key Alias: The alias used to access the keystore for keys used to

sign assertions. Mare Info...

Signing Key Pass EI The credential (password) used to access the keystore

Phrase: for keys used to sign assertions. Mare Info...

Pass Phrase:

L T R P '

AAnefaglsMamge oo Lo o= =] The oemge of tee dova clags thataesng Subiects to,SeMe &

15-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal Domains

Tip: Itis recommended that you set the Default Time To Live to 120
seconds, the Cred Cache Min Viable TTL to 10 seconds, and the
Default Time To Live Offset to 0. Then, select the Management tab
and in the relying party configuration, set the Assertion Time To Live
Offset to the difference between the clock times of the consumer and
producer (consumer time minus producer time).

10. Click Save.

11. In the Change Center window, click Activate Changes, as shown in Figure 15-14.

Figure 15-14 Activating Changes

Change Center

%

Yiew changes and restarts }
3

Pending changes exist. They
must be activated to take effect,

L]
J
| Undo Al Chéﬁges | f"

e W "r

Checkpoint: At this point, the SAML credential mapper provider on the consumer
is configured to use the keystore you generated. If you were to try to log in to the
login portlet, you would receive an error, as shown in Figure 15-15. This is because
the producer does not yet recognize the new key sent from the consumer. In the
next steps, you will configure the producer to accept the key sent from the
consumer.

Figure 15-15 Login Results in an Error in the Producer Portlet

Page 1 +
-\
-
Login E[E| [username *
Mame: [weblogic Error invoking portlet "username" {
Password: "
The source of this errar is: P
Javax.xml.rpc. JAXRPCException: weblogic.x
at weblogic.wsee.security.WssHan
at weblogic.wsee.handler.Handler
Current Userld: WelegiC at weblogic.wsee.handler.HandlerI
at weblogic.wsee.ws,dispatch.cliel
at com.bea.wsrp.proxy.WseeProxy. d
at con.bea.wsrp.proxy.WseeProxy.
at com.hea.wsrp.proxy. TseeProxy. d
e b s adn e L aen . S8 COBIPEO DI BrogProBase, i

Tip: If you scroll the portal to the right, you will see that the error
message says "The SAML token is not valid," as shown in
Figure 15-16.

Establishing WSRP Security with SAML 15-9

SAML Security Between WebLogic Portal Domains

Figure 15-16 Error Message

! Mew Portal Desktop X login. jsp =] remate. partlet = E‘

<
*J’Iocalhost:?DDI,l’consumerProj,l’consumer.portal?username=weblogic8j B “
—a

EE

‘Result@Zb5lée0[=tatus: false][msg The SAML token i= not walid.]

\.ﬁi-”“*—-»»- S S S Tl e e

|
;
f.
g

15.1.4 Configuring the Producer

This section explains how to configure the producer. To do this, you import the
certificate into the SAML asserter, and configure the asserting party properties.

15.1.4.1 Import the Certificate

1. Copy the key file (testailias.der) that you generated on the consumer to the
producer using any method you want, such as FIP or SMB. You can place the file
in any directory on the destination machine.

2. Open the WebLogic Server Administration Console on the producer machine and
log in.

Select Security Realms.

Select a security realm, such as myrealm.
Select the Providers tab.

Select the Authentication tab.

N o g e

Select SAMLIdentityAsserter, as shown in Figure 15-17. An identity asserter
allows WebLogic Server to establish trust by validating a user.

15-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal Domains

Figure 15-17 Selecting the Identity Asserter

Authentication Providers

4

Click the {ock & £dft button in the Change Center to activate all the buttons on this page.

——

Showing 1 -

Name Description

SOLAuthenticator Provider that performs DBMS authentication

WSRPIdentityAsserter |WSRP 8.1 Compatibility, Identity Asserter Provider

DefaultidentityAsserter |Weblogic Identity Assertion provider

A ™ \‘f& -

S IdentityAssaibar Wweblogic SAML Identity Assertion Provider, Supports Security Assertion M.
Language v1.1,

SaMLAUthenticator Wweblogic SAML Authentication Provider,
— e e e PR o

N

RtV

.
)
4
!
4

8. Click the Management tab, and click Certificates, as shown in Figure 15-18.

Figure 15-18 Selecting the Certificates Tab

Settings for SAMLIdentityAsserter

Configuration | Management | Migration
Asserting Parties | Certificates

This page allows you to add, dele%, and edit asserting parties for this SaML Identity Asserter W2,

B Customize this table

PRSP PR R R S e S e

'\.-u\,\ s, T Py L

9. In the Certificates dialog, click New, as shown in Figure 15-19.

Figure 15-19 Creating a New Certificate

PKI Credential Mappings 3

Showing 1- 3 of 3 Previous | Mext I

" | Resource Identifier «:Principal WS @ (HRaE Action | Type "

Name

f

[| type=<remote:= wsrpconsumer__81_COMPAT | User E:?: L 4

i o |

[| type=-<remotes wsrplConsumer User : 3
Pair

(

- Key o

[| type=-<remote:> consumersz2_ 81 _COMPAT | User Pair 4

1

U4

-

Showing 1- 3 of 3 Previous | Mext }

. T e e e i

10. In the Alias field, enter a name for the certificate, as shown in Figure 15-20. It is a
good practice to use the same name you used when you created the certificate. In
this example, the name of the alias is testalias.

11. In the Certificate File Name field, enter the path to the certificate file, as shown in
Figure 15-20.

Establishing WSRP Security with SAML ~ 15-11

SAML Security Between WebLogic Portal Domains

Figure 15-20 Entering Certificate Properties

Trusted Certificate Properties
The following properties will be used to identify vour new Certificate.

What alias name would you like to assign to your new Certificate?

Alias: testalias

A A Beie b, W

Select a certificate file name. Either enter the path name of the certificate file and click Finish, or click Fi
browse to the certificate file, and click Finish.

Certificate File
Name:

g Moy AT

citestalias. ded

Y

\
y
.

S

CaRETY _REEEY _hE™ P S T T o

12. Click Finish. If there are no problems, the following message is displayed:

The certificate has been successfully registered.

15.1.4.2 Configure the Asserting Party Properties
1. On the Management tab, click Asserting Parties.

Tip: The WsrpDefault asserting party is set up for the producer's
default WSRP key. If the consumer and producer applications were
running on the same server, the WSRP key of the consumer would be
accepted by the producer. It is a good practice to delete the
WsrpDefault party for an application that is in production.

2. In the Asserting Parties table, click New, as shown in Figure 15-21.

Figure 15-21 Creating a New Asserting Party

Settings for SAMLIdentityAsserter

Configuration |Management | Migration

Aggerting Parties | Certificates

This page allows you to add, delete, and edit trusted certificates for this SaML Identity Asserter Yersion 2,

B Custormize this table

Trusted Certificates

M Showing 1 - 1 of 1 Previous | Next

O miaséh

I:‘ WErPCORSUIMEertsa

Hlew Showing 1 - 1 of 1 Previous | Next

3. In the Profile dropdown menu, select WSS/Sender Vouches, as shown in
Figure 15-22.

4. In the Description field, enter a name to identify the asserting party, as shown in
Figure 15-22. For example: demoConsumer.

15-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal Domains

Figure 15-22 Asserting Party Properties

New Asserting Party

Please select a SAML profile to be used with your new Asserting Party, You may enter a description if desin

jut

Please select a SAML Profile for the new SAML Asserting Party. 4

¥

4

Profile : W5E/Sender-Youches v J

F

Please provide & description of the new SAML Asserting Party, !
Description : demoConsumer | ,(

{

(074 Cancel P
[o]| F
r.

e > - ot i N " » o V. R —t 4

5. Enable the new asserting party. To do this, click the Partner ID link for the

asserting party. In this example, the link is ap_0002 for the asserting party called

demoConsumer, as shown in Figure 15-23.

Figure 15-23 Selecting the New Asserting Party

Asserting Parties 1
-

W= Showing 1 - 2 0f 2 Previous |I\?
[| Partner ID & SANL Profile Description Enabled ;
[|ap_ooooi WSS /Sender-Youches WsrpDefault frue 3
-
[|ap_noooz WES /Sender-Youches demoConsumer false r
I i

b 4

=0 Showing 1-20f 2 Previous |N§'

e — F= - A p——— o R —F

6. Set the asserting party values, as listed in Table 15-1 and shown in Figure 15-24.

Table 15-2 Asserting Party Values

Parameter Value

Enabled Select the checkbox (true).

Target URL default

Issurer URI Use the same one that you configured on the consumer. In this

example, itis http: //bea.com/demoConsumer

Signature Required

Select the checkbox (true).

Assertion Signing
Certificate Alias

Use the same one that you configured on the consumer. In this
example itis testalias.

Establishing WSRP Security with SAML 15-13

SAML Security Between WebLogic Portal Domains

Figure 15-24 Asserting Party Values

Partner ID: ap_00002 The Asserting Party 1D, More Info...

Profile: WSS/Sender-vouches The SarML profile used with this partner: one of
Browser fartifact, Browser /POST,
WSS/Sender-Youches, or WSS/MHolder-of-Key, Mare
Info...

[Jenabled Specifies whether this Asserting Party can be used to
obtain SaML assertions. Mare Infa...

Description: & short description of this Asserting Party. More

Info...
Target URL: Hefault The target URL of this SAML Asserting Party, Mare
Info...

Assertion Configuration

Issuer URI: The issuer URI of the SAML Authority issuing

assertions for this SAML Asserting Party. Mare Info...

Audience URI: An optional set of SaML Audience URIs, If set, an
incorming assertion must contain at least one of the
specified URIs in order to be considered valid, More

Info...

| |

Name Mapper
Class:

The name mapper class of this SAML Identity
Asserter Yersion 2 Asserting Party, More Info...

[“Isignature Required If frue, assertions must be signed. If false, signature
elements are not required, but will be verified if
present, More Info...

Assertion Signing The alias of the certificate trusted for verifying

Certificate Alias: signatures on assertions from this Asserting Party,
et oA M - A an e e THis LSt beyt i Signaturg Required ig rugeTea o~

PTG W S TR T T L e Ve T W Tl R W TY W W Ty v

7. Click Save.

If there were no problems, the message, Settings updated successfully, appears.

15.1.5 Testing the Configuration

On the consumer, log into the portal application with a valid user name and
password. You will see the user name appear in the proxy portlet. This indicates that
the SAML message was passed from the consumer to the producer, and that the
producer recognized and accepted it.

15-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Figure 15-25 Successful Test

Page 1 E
Login EE]| |username mE|
MName: Username = weblogic (
| | A
Password: ‘3

- i

¢
{

¢
Current Userld: 1
wehlogic ;
{

15.2 SAML Security Between WebLogic Portal 8.1x and 9.2 or Later

Versions

Producer and consumer applications developed with WebLogic Portal 9.2 or later
versions are compatible with producers and consumers developed with WebLogic
Portal 8.1x. That is, a portal developed with WebLogic Portal 9.2 or later versions can
consume portlets deployed in a WebLogic Portal 8.1x domain. Similarly, portlets
exposed in a WebLogic Portal 9.2 or later producer can be consumed by an 8.1x
consumer. These two use cases are summarized in Figure 15-26.

Figure 15-26 Compatibility Use Cases

WSRP
-

TmEREIE]

8.1x Consumer 9.2 Producer

WSRP
-

3 ¥ 8]

9.2 Consumer 8.1x Producer

This section discusses addresses both of these use cases. The following topics are
discussed:

» Section 15.2.1, "SAML Security Between 9.2 or Later Version Consumers and 8.1x
Producers"

m Section 15.2.2, "SAML Security Between 8.1x Consumers and 9.2 or Later Version
Producers"

Establishing WSRP Security with SAML 15-15

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

15.2.1 SAML Security Between 9.2 or Later Version Consumers and 8.1x Producers

This section explains how to achieve SAML-based security compatibility between a
WebLogic Portal 9.2 or later version consumer and an 8.1x producer, as summarized

Figure 15-28 Consumer Portal Before User Login

consumet partal

in Figure 15-27.

Figure 15-27 Compatibility Use Case

9.2 Consumer

Tip: By default, with no configuration changes made to either side,

-

8.1x Producer

WSRP between a 9.2 or later version consumer and 8.1x producer

works. That is, a 9.2 or later version consumer can consume a portlet

from an 8.1x producer with no configuration changes. However, if

you want to use your own key for the 9.2 or later version consumer,

you need to follow the procedure outlined in this section

The portal shown in Figure 15-28 includes a local portlet on the left and a remote
(proxy) portlet on the right. The remote portlet is deployed in an 8.1x producer. The
local portlet is a login portlet. Before SAML security is properly configured, when a

user logs in, the name that is returned is null.

Mew Porkal Deskiop X lagin. jsp =

3

4= = Qé,h Ihttp:Il'll'localhc-st:?l:lﬂ1||'c0nsumerF'rDjll'consumer.portal?logout=LogDutj =% H

Current Userld: null

Page 1 J
Login IE‘ username EHE‘ 47
Marme: Username = null
|Weh|0gic |
Password:

15.2.1.1 Configuring the Consumer

The following sections explain how to configure the consumer with a key that can sign
the SAML assertion sent to the producer. The basic tasks include:

= Generating a key

T R e W e N . T ¥

Proxy Portlet

Local Portlet

15-16 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Changing the consumer's name
ging

Modifying the consumer's security realm

15.2.1.1.1 Generate a Key This section explains how to generate a key on the consumer
using the keytool utility, a Java utility distributed by Sun Microsystems that manages
private keys and certificates. For detailed information on keytool, refer to the Sun
Microsystems web site.

1.

On the consumer, open a command window and CD to the <WEBLOGIC_
HOME>/server/1ib directory.

Run the keytool command to generate a new key, as shown in Figure 15-29. For
example, the following command generates a key called consumer92key.

keytool -genkey -alias consumer92key -keystore
wsrpKeystore.jks -storepass password -keypass consumer92pass

The options used in the example keytool command include the following:

Command parameter Description

keytool A Java tool used to generate a key.

-genkey Instructs the keytool to generate a key.

-alias Specifies a name for the generated key.

-keystore Specifies the name of the keystore. A keystore stores keys and

certificates. The default keystore, wsrpKeystore. jks, is
implemented as a file that protects private keys with a password.

-storepass Specifies the password for the keystore.

-keypass Specifies the password to be used with the new key.

Figure 15-29 Generating a Key

D:suserssprojectssdomai ortalDomain—-2-27>keytool —genkey —alias consumer?2key
—keystore wsrpHeystore.j —storepass password —keypass consumer?2pass

Illhat iz your first and last name?

llhat iz the name of your organizational unit?

llhat iz the name of your organization?

Illhat iz the name of your City or Locality?

lhat iz the name of your State or Province?

What iz the two—letter country code for this unit?

D:suserssprojectssdomainssportalDomain—2-27>

o =1 Y
n2-27,2086 B1:52 PM > user_staged_config

B2-27,2806 B4:18 PM weblogic_eval%l.wal

B2-27,2006 B4:18 PM weblogic_eval.dbn

B2-27,2886 B1:52 PM 87 workshop.properties

B2-24-2006 12:15 AM 2,852 wsrpKeystore.jks

Is CN=Unkno;n, OU=Unknown,. O=Unknown. L=Unknown. ST=Unknown. C=Unknown correct?
[nol: vy

1?7 File<{s> 7,782,893 hytes
13 Dirds> 28.523.20808.512 hytes free

[Unknown1:
[Unknown1:
[Unknown1:
[Unknown1:
[Unknown1:
[Unknown1:

15.2.1.2 Change the Consumer's Name

1.

Copy the wsrp-consumer-security-config.xml from the J2EE Shared
Library to your project. To do this in Oracle Enterprise Pack for Eclipse, open the
Merged Projects view, find the file in the WEB-INF directory of your consumer
web application. Right-click the file and select Copy to Project. For more
information on copying files from J2EE Shared Libraries, see the Oracle Fusion

Establishing WSRP Security with SAML 15-17

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Middleware Production Operations Guide for Oracle WebLogic Portal and the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2. Edit the file wsrp-consumer-security-config.xml in the WEB- INF
directory of your consumer web application. Change the <consumer-name>
element from wsrpConsumer to another arbitrary name. For example, change:

<consumer-name>wsrpConsumer<consumer-name>
to
<consumer-name>consumer9x<consumer -name>

3. Restart the consumer application's server so that the change to the configuration
file takes effect.

Checkpoint: If you try to log in to the remote portlet again, you will receive an
error, as shown in Figure 15-30. This error is caused by the fact that the producer
cannot find the key that was sent from the consumer. The next step is to configure
the security realm for the consumer domain.

Figure 15-30 Login Error

Page 1 4
=
Login EH[E]| |username A
Name: [weblogic Error invoking portlet "username" ,J
Password: f
The source of this error is: p
Javax.xml.rpc. JAXRPCException: weblogic.x
at weblogic.wsee.security.WssHan
at weblogic.wsee.handler.Handler
Current Userld: weblogic at weblogic.wsee.handler.HandlerI
at weblogic.wsee.ws.dispatch.cliel
at com.bea.wsrp.proxy.WseeProxy.d
at com.bea.wsrp.proxy.WseeProxy.
at com.bea.wsrp.proxy.UseeProxy. d
N -~ . - - . at E:'o_m;b':aj.’wgrn;gr_O):v..Pro}n.(}'B?a_se:;)

15.2.1.3 Modify the Consumer's Security Realm

1. Log in to the WebLogic Server Administration Console on the consumer. The URL
for the console is:

http://servername: portnumber/console

where servername is your server's IP name, and portnumber is the server's
port. For example:

http://localhost:7001/console

2. Click the Security Realms link in the Domain Structure window, as shown in
Figure 15-31.

15-18 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Figure 15-31 Selecting Security Realms

Domain Structure

partal-2-28
F-Erwironmant

l‘\\i

iy}
[u}
=
[n]
&
o
=R

Security Real
nteroperabili

- Diagnostics |Security Realms, Level 1, 4 of

How do L... &

Mo help task found

A _ gt . P A

N, T

3. Select myrealm (or the name of the security realm you are using) and then select
the Credential Mappings tab.

4. In the Credential Mappings tab, select PKI, as shown in Figure 15-32.

Tip: PKI, or public key infrastructure, allows the exchange of data
through the use of a public and a private cryptographic key pair that
is obtained and shared through a trusted authority. For more
information, see "Configure Credential Mapping Providers" in Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Online
Help.

Figure 15-32 Select PKI

|Welcume, weblogic Connected to: portalDomain i Home Log Out Preferences Help A

Home = Summary of Security Realms = myrealm > Credential Mappings

Settings for myrealm

Configuration Users and Groups Roles and Policies | Credential Mappings | Providers Migration

Default %g

Credential mappings let you map Weblogic Server users to remote users, The following table lists
the User Password Credential Mappings configured for this realm using Remaote Resources, These
mappings can be used by any Weblogic Server application or service,

NAAS AN A~ e

- b i

. B it P R & . e g . o

5. In the PKI Credential Mappings table, click New to create a new credential.

6. In the Create New Security Credential dialog, click Next without entering any
remote resource attribute information.

Tip: By leaving the remote resource attributes blank, the credential
will be accepted by all producers. If you want to specify a producer,
enter the appropriate information in this dialog.

7. In the Create a New Security Credential Map Entry dialog, enter the following in
the Local User field:
consumerName__81_COMPAT

where consumerName is the consumer name you entered previously in the
wsrp-consumer-security-config.xml file. (Note that the name is followed
by a double underscore.)

For this example, the correct value for Local User is: consumer9x__81_COMPAT.

Establishing WSRP Security with SAML 15-19

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

8. Select the User radio button.

9. In the Keystore Alias field, enter the alias you used for the key that you generated
previously. In this example, the alias is consumer92key.

10. In the Password field, enter the key password you used when you generated the
key. In this example, the password is consumer92pass.

11. Click Finish. Figure 15-33 shows the new principal name added to the PKI
Credential Mappings: consumer92__81_COMPAT.

Figure 15-33 List of PKI Credential Mappings

 Customize this table ;
PKI Credential Mappings y
-

Mew Showing 1 -3 0f 3 Previous |[Mext | 4
" | Resource Identifier «Principal == (O (R Action | Type {
Name 4

[|type=<remote> wsrpconsumer__81 COMPAT | User E:?; f’
1

[| type=<remote> wsrpConsumer User =y

Pair L 4

K {

- e g ey 3

[| type=<remotes onsUmerd User e é
s b

Mew Showing 1 -3 0f 3 Previous |Mext | |
o<

X\

|

J

”'.

l

L

i

{

J4
L
.

12. Export the key from the consumer's keystore. Use the keytool utility to export
the key that you created previously. You will use this key in the next set of steps to
configure the WebLogic Portal 8.1x producer. For example:

keytool -export -alias consumer92key -keystore
wsrpKeystore.jks -storepass password -keypass consumer92pass
-file consumer92.der

Checkpoint: In the previous steps, you associated this consumer, consumer92, to
a key to sign the SAML assertion. If you now try to log in to the remote portlet, the
previously seen error does not appear. This means that the consumer is now
properly associated with a key. However, now after logging in, the user name is
null, as shown in Figure 15-34. This is because this consumer is not yet known to
the producer. The next set of steps demonstrate how to configure the WebLogic
Portal 8.1x producer to accept the WebLogic Portal 9.2 or later version consumer's
key.

Tip: It is interesting to note an important difference between the
behavior of a WebLogic Portal 9.2 or later version producer and a
WebLogic Portal 8.1x producer. If a WebLogic Portal 9.2 or later
version producer cannot verify what the consumer is sending, you
will receive an error. If a WebLogic Portal 8.1x producer cannot verify
what the consumer is sending, the producer ignores this condition
and continues with an anonymous user. In addition, if an 8.1x
consumer sends an unverifiable message to a 9.2 or later version
producer, the producer likewise ignores the condition and continues
with an anonymous user.

15-20 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Figure 15-34 User Name is Null

comsumer portal

hew Porkal Deskhop X Iagin. jsp) i q

1
Page 1

& | htkp: fflacalhost: 700 1] consumerPrajfconsumer, portal?logout=Logaut +
o7 P i p g =l

Login
Name:

A

EE| |username EE —3—— Proxy Portlet

|weh|ogic

Username = null

Password:

Current Userld: null

Local Portlet

LTI v P W T T

s T

15.2.1.4 Configure the WebLogic Portal 8.1x Producer

This section explains how to configure the WebLogic Portal 8.1x producer. To do this,
you import the key into the producer's keystore.
15.2.1.4.1 Import the Certificate To import the certificate, follow this procedure.

1. Copy the previously exported certificate to the system on which the producer
application is deployed, using whichever method is appropriate for your system,
such as FTP or SMB. You can put this file anywhere on the destination machine.

2. Inacommand window, CD to the root directory of the producer's domain. For
example:

<MW_HOME>/weblogic8l/user_projects/domains/portalDomain
3. Import the key using the keytool utility. For example:

keytool -import -keystore wsrpKeystore.jks -file
c:\consumer92.der -storepass password -alias consumer9x
-keypass consumer92pass

Note: The alias argument must match the consumer name you used
when you created the key on the consumer. In this example, that
name is consumer9x.

4. Restart the server in which the producer application is deployed.

15.2.1.4.2 Test the Configuration After the producer server is restarted, you can once
again test the remote portlet in the consumer application. When you log into the

portal, you will see that the remote portlet now recognizes the user as logged in, as
shown in Figure 15-35.

Establishing WSRP Security with SAML 15-21

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Figure 15-35 Successful Configuration

Page 1 :
#*

Login EE]| |username mE| e
MName: Username = weblogic (
| | A
Password: ‘3
- i

¢
{

!
Current Userld: 1
weblogic ;
{

15.2.1.5 Summary

The preceding example demonstrated how to configure SAML security between a

WebLogic Portal 9.2 or later version consumer and a WebLogic Portal 8.1x producer.
In the next example, you will see the reverse: configuring SAML security between a
WebLogic Portal 8.1x consumer and a WebLogic Portal 9.2 or later version producer.

15.2.2 SAML Security Between 8.1x Consumers and 9.2 or Later Version Producers

This section explains how to achieve security compatibility between a WebLogic Portal
8.1x consumer and an 9.2 or later version producer, as summarized in Figure 15-36.

Figure 15-36 Compatibility Use Case

WSRP
-

8.1x Consumer 9.2 Producer

The basic steps include:
= Section 15.2.2.1, "Configure the 8.1x Consumer"

» Section 15.2.2.2, "Configure the 9.2 or Later Version Producer”

15.2.2.1 Configure the 8.1x Consumer

This section explains how to configure the 8.1x consumer. The basic steps include
generating a key and configuring the WSRP Consumer Security Service in the
WebLogic Administration Portal.

15.2.2.1.1 Generate a Key This section explains how to use the keytool utility to
generate a key on the consumer. Keytool, a Java utility distributed by Sun
Microsystems, manages private keys and certificates. For detailed information on
keytool, refer to the Sun Microsystems web site.

15-22 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

1. If you have not already done this, generate a key. To do this, CD to the root
directory of the WebLogic Portal 8.1x consumer application's domain and use the
keytool utility to generate the key. For example:

<MW_HOME>/weblogic8l/user_projects/domains/portal

keytool -genkey -keystore wsrpKeystore.jks -alias
consumer8xkey -storepass password -keypass consumer8xpass

The options used in the example keytool command include the following:

Command

Parameter Description

keytool A Java tool used to generate a key.

-genkey Instructs the keytool to generate a key.

-keystore Specifies the name of the keystore. A keystore stores keys and certificates.
The default keystore, wsrpKeystore. jks, is implemented as a file that
protects private keys with a password.

-alias Specifies a name for the generated key.

-storepass Specifies the password for the keystore.

-keypass Specifies the password to be used with the new key.

2. Log in to the version 8.1x WebLogic Administration Portal on the consumer
application's server. To start the Administration Portal from Oracle Enterprise
Pack for Eclipse, select Portal > Portal Administration. Or, enter the following
URL in a browser:

http://localhost:7001/applicationName/login.jsp

where applicationName is the name of the WebLogic Portal consumer
application.

Figure 15-37 WebLogic Administration Portal Sign In Page

Sign In

weblogic Portal Application: “Producer81x™

P .”'.’ Ad wetlb_lgiglc
[4 . 1 minis on
2 he Portal

Username: welcome to BEA WebLogic Portal 8.1

sk s o o o o ok

Password:

For questions regarding BEA WeblLogic Portal, use the built-in product help
m after logging in, or visit the following BEA sites for additional information:

Online Product Documentation - Learn more about using BEA
weblogic Portal and the BEA WebLogic Platform

BEA Portal Solution Catalog - Get the details on a broad
selection of portlets, third party integrations, and portal solutions
from BEA and third parties that extend BEA weblLogic Portal.

e WP e U W OIS T Y

R . I e , ‘v-'"‘,_-_”.’uo—_,.",' ,_.@ZDD\S_B;AA?»-qzqms,'I

3. In the Administration Portal, select Service Administration.

4. In the Application Configuration Settings tree, select WSRP Consumer Security
Service, as shown in Figure 15-38.

Establishing WSRP Security with SAML 15-23

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Figure 15-38 Selecting WSRP Consumer Security Service

[

=2 Application Configuration Settings

Authentication Hierarchy Service
Authentication Security Provider Service
Ad Service

Behavior Tracking Service

Cache Manager

Campaign Service

WSRP Consurner Security Service
Event Service %
Mail Service

Pavment Service Client

Role Security Provider Service
Scenario Service

Tax Service Client

Addfremove configurable item

N st N e A

- — s g i

In the Configuration Settings dialog, enter a name for the consumer, the Certificate
Alias that you used when you generated the consumer key, and the Certificate
Private Key Password that you used when you generated the key, as shown in
Figure 15-39 and click Update.

Figure 15-39 Entering Security Service Parameters

Configuration Settings for: WSRP Consumer Security Service

a

O T -

Consumer Mame:

Key Store:

Keystore Password:

Retype Keystore Password:

Certificate Alias:

Identity Assertion Token Provider Class:

Certificate Private Key Password:

Retype Certificate Private Key Password:

Adrmin User Mamne,
Adrmin Password,

Retype Admin Password.

consumers 1

werpkeystore.jks

esssene

esssene

consumer3xkey
cormn.bea.wsrp, security . Default
essssssnsnen
essssssnsnen

wihlogic

esssene

Export the key using the keytool utility. To do this, CD to the consumer's domain
root directory, and enter the appropriate keytool command. For example:

keytool -export -alias consumer8xkey -keystore
wsrpKeystore.jks -file consumer8l.der

15.2.2.2 Configure the 9.2 or Later Version Producer

This section explains how to configure the producer. To do this, you must configure
the producer's PKI credential mappings to include the consumer's certificate.

1.

2.

Copy the exported key to the WebLogic Portal 9.2 or later version producer's root
domain directory using an appropriate method, such as FIP or SMB. You can put
this file anywhere on the destination machine.

Use the keytool utility to import the key into the 9.2 or later version producer's
keystore. For example:

15-24 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

keytool -import -keystore wsrpKeystore.jks -file
consumer8l.der -alias consumer8xkey -keypass consumer8xpass

3. Login to the WebLogic Server Administration Console on the producer server.

4. Click the Security Realms link in the Domain Structure window, as shown in
Figure 15-31.

Figure 15-40 Selecting Security Realms

Domain Structure

partal-2-28
F-Erwironmant

,J'\‘\.O

-

iagrostics |Security Realms, Level 1, 4 of

How do L... &

Mo help task found

A - g = el

N, T

5. Select myrealm (or the name of the security realm you are using) and then select
the Credential Mappings tab.

6. In the Credential Mappings tab, select PKI, as shown in Figure 15-32.

Tip: PKI, or public key infrastructure, allows the exchange of data
through the use of a public and a private cryptographic key pair that
is obtained and shared through a trusted authority. For more
information, see "Configure Credential Mapping Providers" in Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Online
Help.

Figure 15-41 Select PKI

|Welcume, weblogic Connected to: portalDomain i Home Log Out Preferences Help A

Home = Summary of Security Realms = myrealm > Credential Mappings

Settings for myrealm

Configuration Users and Groups Roles and Policies | Credential Mappings | Providers Migration

Default %g

Credential mappings let you map Weblogic Server users to remote users, The following table lists
the User Password Credential Mappings configured for this realm using Remaote Resources, These
mappings can be used by any Weblogic Server application or service,

i i s P ¥

R W R N R

. B - - o

7. In the PKI Credential Mappings dialog, click New, as shown in Figure 15-42.

Establishing WSRP Security with SAML 15-25

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Figure 15-42 Creating a New PKI Credential Mapping

PKI Credential Mappings

e T RPN AEPEE

k.

Showing 1 - 30f 3 Previous | Mext ;

" | Resource Identifier «:Principal == (O (R Action | Type *

Name

f

[|type=<remote> wsrpconsumer__81_COMPAT | User E:?; k4

Key (

[| type=<remote> wsrpConsumer User ; 3
Pair

*

Key o+

[|type=<remote> consumerSz2_ 81 _COMPAT | User Pair 4

1

T4

Showing 1 - 30f 3 Previous | Mext

o

» N .}

F—

8. In the Creating the Remote Resource for the Security Credential Mapping dialog,

leave all fields blank and click Next.

Tip: By leaving the fields blank, this indicates that the credential is
recognized for all consumers. If you want to restrict the credential to a
specific consumer, you can fill in the required information.

9. In the Create a New Security Credential Map Entry dialog, enter the following
information:

Select the Certificate radio button (true).

In the Principal Name field, enter consumerName__81_COMPAT, where
consumerName is the name of the consumer. In this example, the name is

consumer8x.

Select the User radio button.

In the Keystore Alias field, enter the alias you used when you imported the
keystore. In this example, it is consumer8xkey.

In the Password field, enter the key password you used when you imported
the keystore. In this example, it is consumer8lpass.

Figure 15-43 shows the completed dialog.

15-26 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Figure 15-43 Entering PKI Credential Mappings Parameters

10.

Would vou like to create a Key Pair or Certificate security credential?

o Key Pair Credential

@ certificate

Specify the principal name for this credential.

*Principal Name: consumerfl_ 81_COkA

Specify whether the Principal Name is & user or a group,
“ user

o Group

Specify the Credential Action

bt 1
Action:

Specify the Keystore Alias

*Keystore Alias: consumerdlkey

Specify the Password (only needed % KeyPair credentials)

+*password: W ‘
. F P et — ﬁ o . - -

\'\4\,'\)‘\\-»\,\.-“‘*'\’\ L T % T W i WP T

‘t.

Click Finish. The PKI Credential Mappings table reappears and shows that the
new certificate has been added, as shown in Figure 15-44.

Figure 15-44 New Certificate Added to the Producer

PKI Credential Mappings *
Mew Showing 1 - 4 of 4 Previous | Mext ;
- ?deg:tl;ggf @ Principal ,E_:ﬁ:e;”r Loy Action | Type :
[| type=<ramote> wsrpconsumer__81_COMPAT | User Key Pair :
[| type=<ramote> wsrpConsumer User Key Pair :
[| type=<ramote> consumerSz2_ 81 _COMPAT | User Key Pair 4
[| type=<ramote> consumer81_ 81 _COMPAT | User ’
£

Mew Showing 1- 4 of 4 Previous |Mext | 4
IS Bl i s . i prs - f

15.2.2.3 Testing the Configuration

To test the configuration, log in to the consumer portal. As shown in Figure 15-45, the
user name weblogic appears in the proxy portlet. This indicates success: the user was
logged in successfully on the producer.

Establishing WSRP Security with SAML 15-27

Using SAML Security with a Name Mapper

Figure 15-45 Successful Test

*
P 1

age *
*

Login EE]| |username mE| e
MName: Username = weblogic (
| | A
Password: ‘3
- i

¢
1

!
Current Userld: 1
weblogic ;

15.3 Using SAML Security with a Name Mapper

A name mapper is a class that maps one user name to another. Use a name mapper
when the producer and consumer have different names for the same user. This section

explains how to write and configure a name mapper class on both the consumer and
the producer.

If you want to use a name mapping class on the producer or the consumer, the basic
steps include:

= Section 15.3.1, "Writing a Name Mapper Class"
= Section 15.3.2, "Deploying the Mapper Classes"
= Section 15.3.3, "Configuring the Mapper Classes"

15.3.1 Writing a Name Mapper Class
WebLogic Portal provides two user name mapping interfaces:
= weblogic.security.providers.saml.SAMLCredentialNameMapper

Implement this interface on the consumer to map a user name on the consumer to
a new name. See Section 15.3.1.1, "Implementing SAMLCredentialNameMapper
on the Consumer" for an example.

= weblogic.security.providers.saml.SAMLIdentity AssertionNameMapper

Implement this interface on the producer to map a user name sent from the
consumer to a user name on the producer. See Section 15.3.1.2, "Implementing
SAMLIdentity AssertionNameMapper on the Producer” for an example.

15.3.1.1 Implementing SAMLCredentialNameMapper on the Consumer

Implement SAMLCredentialNameMapper on the consumer to provide name mapping
on the consumer. Example 15-1 shows an example implementation of
SAMLCredentialNameMapper.

The mapSubject() method gets a Subject (user) and returns a SAMLNameMapperInfo
object. The method provides logic to test the user name and replace it with a new user

15-28 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using SAML Security with a Name Mapper

name. This new user name is then returned in a SAMLNameMapperInfo object, which
is then passed to the producer.

For detailed information on this interface, see the Oracle Fusion Middleware Java API
Reference for Oracle WebLogic Portal.

Example 15-1 Example SAMLCredentialNameMapper Implementation

package com.bea.wsrp.ga.security;

import java.util.Collection;
import java.util.Set;
import javax.security.auth.Subject;

import weblogic.security.SubjectUtils;

import weblogic.security.providers.saml.SAMLCredentialNameMapper;
import weblogic.security.providers.saml.SAMLNameMapperInfo;
import weblogic.security.service.ContextHandler;

import weblogic.security.spi.WLSGroup;

public class CustomSAMLNameMapperImpl implements SAMLCredentialNameMapper {
private String nameQualifier = null;

public CustomSAMLNameMapperImpl (){ }

[xxwFxxkkxxkk GAMLCredentialNameMapper implementation* ks skkxxsix/

public synchronized void setNameQualifier (String nameQualifier)
{
this.nameQualifier = nameQualifier;

}

public SAMLNameMapperInfo mapName (String name, ContextHandler handler)
{
return new SAMLNameMapperInfo(nameQualifier, name, null);

}

public SAMLNameMapperInfo mapSubject (Subject subject, ContextHandler handler)
{

// Provider checks for null Subject...

Set groups = subject.getPrincipals (WLSGroup.class);

String userName = null;

userName = SubjectUtils.getUsername (subject);

if (userName == null || userName.equals("")) {

System.out.println("mapSubject: Username string is null or
empty, returning null");

return null;

}

if (userName.equals("testUser")
{

userName = "testUser_Mapped";

}

// Return mapping information...

return new SAMLNameMapperInfo(nameQualifier, userName, groups);
}

}

Establishing WSRP Security with SAML 15-29

Using SAML Security with a Name Mapper

15.3.1.2 Implementing SAMLIdentityAssertionNameMapper on the Producer

Implement SAMLIdentity AssertionNameMapper on the producer to provide name
mapping. Example 15-2 shows an example implementation of

SAMLIdentity AssertionNameMapper. In this example, if you log in on the consumer
as testUser_Mapped, the name mapper class retrieves that user name on the
producer and logs you in as testUser_Producer.

The mapNamelnfo() method gets a SAMLNameMapperInfo object from the consumer.
This object contains the name with which the user logged in on the consumer. The
method provides logic to test the user name from the consumer and replace it with a
user name on the producer.

For detailed information on this interface, see the Oracle Fusion Middleware Java API
Reference for Oracle WebLogic Portal.

Example 15-2 Example SAMLIdentityAssertionNameMapper Implementation

package com.bea.wsrp.ga.security;

import java.util.Collection;
import java.util.Set;
import javax.security.auth.Subject;

import weblogic.security.SubjectUtils;

import weblogic.security.providers.saml.SAMLIdentityAssertionNameMapper;
import weblogic.security.providers.saml.SAMLNameMapperInfo;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.WLSGroup;

public class CustomSAMLNameMapperImpl implements SAMLIdentityAssertionNameMapper
{

private String nameQualifier = null;

public CustomSAMLNameMapperImpl (){ }

[xFFFFRARAxxx GAMI,TdentityAssertionNameMapper implementation******xxxkxk¥%/

public String getGroupAttrName ()

{
return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAME;

}

public String getGroupAttrNamespace ()

{
return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAMESPACE;

}

public Collection mapGroupInfo (SAMLNameMapperInfo info, ContextHandler handlr)
{

return info.getGroups();

}

public String mapNameInfo (SAMLNameMapperInfo info, ContextHandler handler)
{

String userName = info.getName();
if (userName == null || userName.equals("")) {

System.out.println("mapNameInfo: Username string is null or
empty, returning null");

15-30 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using SAML Security with a Name Mapper

return null;

}

if (userName.equals("testUser_Mapped"))

{
userName = "testUser_Producer";

}

return userName;
}
}

15.3.2 Deploying the Mapper Classes

Whether you are implementing a mapper class on the producer or the consumer, the
class must be in the server's class path. For information on adding classes to the server
class path, refer to the WebLogic Server topic "Adding Startup and Shutdown Classes
to the Classpath" at in the Oracle WebLogic Server Administration Console Help.

15.3.3 Configuring the Mapper Classes

You need to use the WebLogic Server Administration Console add the mapper classes
to the security realm of the producer and/or consumer.

15.3.3.1 Adding a Mapper Class to the Producer

To add a mapper class to the producer:

1. Open the WebLogic Server Administration Console on the producer machine and
log in.

Select Security Realms from the Domain Structure tree.
Select a security realm, such as myrealm.

Select Providers.

o ©Dbd

Select SAMLIdentityAsserter, as shown in Figure 15-46. An identity asserter
allows WebLogic Server to establish trust by validating a user.

Figure 15-46 Selecting the Identity Asserter

Authentication Providers

Click the {ock & £dft button in the Change Center to activate all the buttons on this page. i
Showing 1 —r
Name Description
SOLAuthenticator Provider that performs DBMS authentication

WSRPIdentityAsserter |WSRP 8.1 Compatibility, Identity Asserter Provider

b B \“h -

DefaultidentityAsserter |Weblogic Identity Assertion provider

I

S IdentityAssaibar Wweblogic SAML Identity Assertion Provider. Supports Security Assertion
Language v1.1,

SaMLAUthenticator Wweblogic SAML Authentication Provider,

— e o pr o — & - —— >

S

h
9

6. Click the Management tab.

Establishing WSRP Security with SAML 15-31

Using SAML Security with a Name Mapper

7. In the Asserting Parties table, click the Partner ID link for the asserting party you
want to use. In this example, the link is ap_0002 for the asserting party called
demoConsumer, as shown in Figure 15-47.

Figure 15-47 Selecting the New Asserting Party

Asserting Parties 1
-
W) Showing 1 - 2 of 2 Previous |I\q
[|Partner ID & SAML Profile Description Enabled ;
[|ap_oooo1 WSS Sender-Youches wsrpDefault frue 1
-
[|ap_ooooz WSS Sender-Youches demoConsurer false {
I
g [
W) Showing 1 - 2 of 2 Previous |N?
—— — N A — A P et e Y

8. In the Configuration tab, enter the full class name of the mapper class in the Name
Mapper Class field, as shown in Figure 15-48. For example:

com.bea.wsrp.ga.security.CustomSAMLNameMapperImpl

Figure 15-48 Entering the Name Mapper Class

for this SAML Asserting Party. Mare Info..,

Audience URI: I:I An optional set of SaML Audience URIs. If set, an :
incorming assertion must contain at least one of the -
specified URIs in order to be considered valid, More Infog

*
The name mapper class of this SAML Identity Asserter
S

Name Mapper Class: Eanl NameMapperimp
Yersion 2 Asserting Party, Mare Info...

[“Isignature Required If frue, assertions must be signed. If false, signature
elements are not required, but will be verified if presen
L T Y O e

9. C(Click Save.

15.3.3.2 Adding a Mapper Class to the Consumer

To add a mapper class to the producer:

1. Open the WebLogic Server Administration Console on the consumer machine and
log in.

2. Select Security Realms from the Domain Structure tree.

3. Select a security realm, such as myrealm.

4. Select the Providers and then the Credential Mapping tab.

Figure 15-49 Selecting the Credential Mapping Tab

Settings for myrealm

S

Configuration Users and Groups Roles and Policies Credential Mappings | Providers | Migration

-~

Authentication = Authorization | Adjudication | Role Mapping | Auditing | Credential Mapping | Certification

"

ot o "

e - FUY T - - T P Sy S, FPPRr S

5. Select SAMLCredentialMapper, as shown in Figure 15-50.

15-32 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Using SAML Security with a Name Mapper

Figure 15-50 Selecting the SAMLCredentialMlapper

Credential Mapping Providers

Click the {ock & £dft button in the Change Center to activate all the buttons on this page.

4
P

Showing]1

Name Description

F

DefaultCredentialMapper | Weblogic Credential Mapping Provider

4
{

SAMLCredentiaMapper Language v1.1.

Wweblogic SAML Credential Mapping Provider, Supports Security Assert?

k.

;.

I
PKICredentiaIl\f1appé?§ PKI Credential Mapping Provider

3

- > .U| —— - PR - -

6. Select Management tab.

4

N .Sho}wingf

7. Select the Relying Parties link for the relying party you want to use. For example,
the relying party shown in Figure 15-51 is rp_00001.

Tip: For more information on relying party configuration, see the
WebLogic Server topic, "Configuring a Relying Party" in the Oracle
WebLogic Server Administration Console Online Help.

Figure 15-51 Select the Relying Party

Configuration | Management | Migration ;
Relying Parties = Certificates -
This page allows you to add, delete, and edit relying parties for this SaAML Credential Mapping Provider Version 2. f
-
F
 Customize this table 4
Relying Parties ;
Mew Showing 1 - 1 of 1 Previous | Mext ! 4
s
[| Partner ID & SAML Profile Description Enabled 5
| DDEDl WSS Sender-Youches WsrpDefault frue {
% 5
Mew Showing 1 - 1 of 1 Previous | Mext
- v = N = - U T . T B Y

8. In the Name Mapper Class field, enter the full class name of the mapper class, as

shown in Figure 15-52. For example:

com.bea.wsrp.qa.security.CustomSAMLNameMapperImpl

Establishing WSRP Security with SAML 15-33

Allowing Virtual Users

Figure 15-52 Entering the Name Mapper Class

Assertion Configuration

Audience URI: I:I An optional set of SaML Audience URIs. If set, an
incorming assertion must contain at least one of the
specified URIs in order to be considered valid, More
Infao...

Name Mapper Class: Eap| Nametapperimpl] The name mapper class used for this SAML Relying Party,
More Infa...

Assertion Time To I:I The time to live of assertions for this SaML Relying Party.
Mare Infa...

B VL Ve L e

Live:

Assertion Time To I:I A time factor you can use o allow the Credential Mapper

Live Dffset: to compensate for clock differences between the source
A - A W e et arnd Al - sy g e luseic_ouaskitis Gesogobiva .

9. C(Click Save.

15.4 Allowing Virtual Users

You can configure the producer to automatically create a new user if it does not
recognize the user name sent from the consumer. This feature is useful if you do not
want to manually create a unique user name on the producer for every user who
might log in from a consumer application. You can use this feature as long as the
producer is configured to recognize the consumer's SAML token, as explained
previously in this chapter.

To configure the producer to allow virtual users:
1. Log in to the WebLogic Server Administration Console.

2. Navigate to the SAMLIdentityAsserter Configuration tab. For instructions on
navigating to this tab, see Section 15.3.3.1, "Adding a Mapper Class to the
Producer".

3. Check the Allow Virtual Users checkbox, as shown in Figure 15-53.
4. Click Save.

Figure 15-53 All Virtual Users

i et e

[Iprocess Groups Attribute Indicates whether the SaML Identity Asserter should look
for & SAML AttributeStatement containing group names
when processing an incoming assertion, Default value is
falze. Mare Info...

Indicates whether the SaML Identity Asserter is allowed
to create user/group principals for the user represented
by an incoming assertion. More Info...

] A7
L W R Sy .*_.‘4 L WA ey

15-34 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

16

Configuring User Name Token Security

User Name Token, or UNT, is an alternative to SAML and provides the same basic
single sign-on capability as SAML provides. User Name Token lets you map the local
user on the consumer to a user on the producer. This chapter explains how to
configure User Name Token security for a federated portal.

This chapter includes the following sections:
= Section 16.1, "Configuring the Consumer"

= Section 16.2, "Configuring the Producer"

16.1 Configuring the Consumer

On the consumer, you need to set up credential mappings. Credential mapping is the
process whereby a legacy system's database is used to obtain an appropriate set of
credentials to authenticate users to a target resource. In WebLogic Server, a Credential
Mapping provider is used to provide credential mapping services and bring new types
of credentials into the WebLogic Server environment. For more information on
credential mapping, see the WebLogic Server topic, "Credential Mapping Providers" in
Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.

1. Log in to the WebLogic Server Administration Console on the consumer. The URL
for the console is:

http://servername: portnumber/console

where servername is your server's IP name, and portnumber is the server's
port. For example:

http://localhost:7001/console

2. Click the Security Realms link in the Domain Structure window, as shown in
Figure 16-1.

Configuring User Name Token Security 16-1

Configuring the Consumer

Figure 16-1 Selecting Security Realms

Domain Structure

l‘\\i

SRR

|Security Realms, Level 1, 4 of &

How do L... &

Mo help task found

A _ gt . P A

e PENLE

1. Select myrealm (or the name of the security realm you are using).
2. Select the Credential Mappings tab.

3. Select the Default link to open the Default Credential Mappings dialog, as shown
in Figure 16-2.

Figure 16-2 Default Credential Mappings Dialog

Settings for myrealm ;
E
Configuration Users and Groups Roles and Policies | Credential Mappings | Providers Migration >
Default = PKI b
»

1
Credential mappings let you map Weblogic Server users to remote users, The following table lists the User P
Password Credential Mappings configured for this realm using Remote Resources, These mappings can be used by)
any Wweblogic Server application or service, !
by
b Customize this table }

k
Default Credential Mappings .i
f
Mew Showing 0 - 0of 0 Previous | Mext)y
1 | Resource Identifier & WLS User f\
-
There are no iterms to display }

Mew Showing 0 - 0of 0 Previous | Mext

g’

— » . P i — —y - - - ¥ F r)

4. Click New.

5. Inthe Create a New Security Credential Mapping dialog, shown in Figure 16-6,
complete the fields listed below.

= Protocol — The protocol for the remote resource, such as HTTP or HTTPS.
= Remote Host — The name of the remote resource. For example: myproducer
= Remote Port — The port number of the remote resource. For example: 7001

= Remote Path — The path of the remote resource. You need to enter the markup
path for the producer. Be sure to begin the path with a "/". For example:

/myProducerWebProject/producer/wsrp-1.0/markup
/myProducerWebProject/producer/wsrp-1.0/portletManagement
/myProducerWebProject/producer/wsrp-1.0/registration
/myProducerWebProject/producer/wsrp-wlp-ext-1.0/markup
/myProducerWebProject/producer/wsrp-1.0/serviceDescription

16-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Consumer

To obtain this path, you can enter the WSDL address of the producer in a
browser. For example, if the producer web application is called
myProducerWebApp, the WSDL URL is:

http://producerHost:producerPort/myProducerWebApp/producer?wsdl

where producerHost is the host name of the producer server and
producerPort is the port number of the producer server.

The producer's WSDL definition appears in the browser. Locate the service
description, and copy the markup path, as shown in Figure 16-3.
Figure 16-3 Finding the Markup Port

={s0:Policy=

“wsp: UsingPolicy nl: Required="true"/> :

- <service name="WEPZervice"> f 4
- =port bnding=":2"W3EP_v1 Markup_ Binding SOAT" name="W3ETPBaseZervice"> 3
=s53:address location="htty /Mocatho st 700 LiportalWebProjectpro ducerfwsrp- 1. Wimarkup > *
=fport= :

- <port binding=":2"W3EP_v1_ServiceDescription_Binding S0AP" name="W3SEPServiceDescriptionService"> §
=53:address location="htty Mocatho st 700 LiportalWebProject’pro ducerfwsrp- 1. zerviceDescription = :

=fport=

- =port binding="z4"WLP_W3EP_v1_Markup Ext Binding 3OAT" name="WLP W3IEP Ext Zervice"= f
=s53:address location="htty Mocatho st 700 LiportalWebProjectipro ducerfwsrp-wlp -ext- 1. Ofmarloup"f= ;
=fport= i
<fservice> z
<fdefimtions> 1
w — AN T - P R VSR _,.---'--—-/)

6. Click Next.

7. In the Create a New Security Credential Map Entry dialog, enter the local
(consumer) user name and the user name on the producer to which you want to

map that local name. Also, enter the password for the user name on the producer,
as shown in Figure 16-4.

Note: The local user you enter must exist on the consumer. If the
user does not exist, you need to create it using the User Management
feature of the WebLogic Portal Administration Console.

Tip: The local user name and the user name on the producer can be
the same name or different names.

Configuring User Name Token Security 16-3

Configuring the Consumer

Figure 16-4 Specify User Mapping

Create a New Security Credential Mapping

|

Create a New Security Credential Map Entry

ot s

Credential mappings let you map Weblogic Server users to remote users, Use this page to map a local user |
to & remote usernarme and password to be used to access a remote resource,

* Indicates required fields

Specify a local user

Specify a remote user

Specify a password for the remote user

|

T T T N T TP T T

8. Click Finish. The new mapping appears in the Default Credential Mappings table,
as shown in Figure 16-5.

Figure 16-5 Default Credential Mappings

 Customize this table

Default Credential Mappings ;
Mew Showing 1 - 1 of 1 Previous | Mext j
[| Resource Identifier Ll)
User F

O type=<remote>, protocol=http, remoteHost=rmyproducer, remotePort=7001, visitord }
path=portahiwebProjectiroducer fwsrp-1.0/markup o
<

Mew Showing 1 - 1 of 1 Previous | Mext i

£
S — P e 2 rmw e o e

16-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Producer

Figure 16-6 Completed Dialog

Create a New Security Credential Mapping

%

-+

i | | .
Creating the Remote Resource for the Security Credential Mapping P
Use one or more of the attributes on this page to identify the remote resource for this Credential 1
Mapping. j
Specify the protocal for the remote resource)
Protocol: hittp J

;

Specify the remote host name for the remote resource 1

r

Specify the rermaote port for the remote resource :

o

Remote Port: 7001 o
4

Specify the path for the remate resource <
<

Path: pducerfwsrp-1.0/markup j

L
Specify the method for the remote resource /

F

L
4

i | 7 | 2

. PO -+ - b A s R i T

Checkpoint: You have configured a credential mapping on the consumer. The next
step is to configure the producer to recognize that mapping.

16.2 Configuring the Producer

On the producer, you need to set up authentication.

Tip: The WebLogic Authentication provider allows you to manage
users and groups in one place, the embedded LDAP server. Note that
the Administration Console refers to the WebLogic Authentication
provider as the Default Authenticator. For more information on
authentication, see the WebLogic Server topic, "Configure
Authentication and Identity Assertion Providers" in the Oracle
WebLogic Server Administration Console Online Help.

1. Log in to the WebLogic Server Administration Console on the consumer. The URL
for the console is:

http://servername:portnumber/console

where servername is your server's IP name, and portnumber is the server's
port. For example:

http://localhost:7001/console

2, Click the Security Realms link in the Domain Structure tree, as shown in
Figure 16-1.

Configuring User Name Token Security 16-5

Configuring the Producer

Figure 16-7 Selecting Security Realms

Domain Structure

partal-2-28

-‘l‘\.

-

f

How do L... &

Mo help task found

NGia,, T

A g i » Ll

Select myrealm (or the name of the security realm you are using).
Select the Providers tab.
Select the Authentication tab.

o o & W

Select DefaultAuthenticator, as shown in Figure 16-8.

Tip: If the DefaultAuthenticator selection is not present, you need to
add it and restart the server.

Figure 16-8 Select the DefaultAuthenticator

Authentication Providers ;
Click the {ock & £dft button in the Change Center to activate all the buttons on this page. y
- 3
[|Name Description A
-
I |soLauthenticator Provider that performs DBMS authentication 3
b
[T | WSRPIdentityAsserter WSRP 8.1 Compatibility, Identity Asserter Pravider 3
[T | DefaulidentityAsserter \Wweblogic Identity Assertion provider f
[T | SamLidentityAsserter ‘Wweblogic SAML Identity Assertion Provider. Supports Security Assertion Markup Language v1.1 |
[T | SaMLauthenticator Wweblogic SAML Authentication Provider, f
= | r WeblLogic Authentication Provider {
- 2 - ~ — _— . ,j

7. In the Configuration tab, select Provider Specific.

8. Select the Enable Password Digest checkbox, as shown in Figure 16-9. You must
select this checkbox to enable the WebLogic Authentication Provider to store the
password in a two-way encrypted (reversible) form.

16-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Configuring the Producer

Figure 16-9 Enable Password Digests

Configuration | Performance Migration E
[
Common | Provider Specific 4
Click the {ock & £dft button in the Change Center to modify the settings on this page. a
f
This page allows you to define the general configuration of this Weblogic Authentication provie
+
/
& I” use Retrieved User Name As Principal Specifies whether we shou
Subject. More Info... -
&5 I” Keep Alive Enabled ,;
3
& ngable Password Digests Enables the storage of pass,
digest authentication algors

2-way encrypted form, Th?;

& I” Propagate Cause For Login Exception Specifies whether the provg

LAY it ot e Bl | Ot ok B = —— g P . ,/

9. Select the Users and Groups tab.
10. Select Users.

Note: The existing user name and password will not work.

11. Click New, as shown in Figure 16-10. The Create a New User dialog appears.

Figure 16-10 Create a New User

Configuration | Users and Groups | Roles and Policies Credential Mappings Providers Migration b
Users @ Groups f
-

This page displays information about each user that has been configured in this security realm. }
1

b Customize this table 4
Users p’

)) 4

Showing 1 - 2 0f 2 Previous | Mext -

[[Name s Description Provider I

-«

[| portaladmin Admin for portal dormain SQLAUthenticator -

[| wehlogic This user is the default administrator. SQLAUthenticator /

£

Mew Showing 1 - 2 0f 2 Previous | Mext J

- —& = = - FYRTT o = " — F o o — ./

12. In the Create a New User dialog, complete the Name and Password fields.

13. Select DefaultAuthenticator from the dropdown menu, as shown in Figure 16-11,
and click OK. Note that you must use the DefaultAuthenticator for users on the
producer. The user you create must match the user you mapped to when you

configured the consumer (as explained previously).

Configuring User Name Token Security 16-7

Configuring the Producer

Figure 16-11 Create a New User Dialog

Create a New User

o L]

User Properties
The foll;wing propertes will bz used to identity your nesw Uiser,

Wl wold you like W narme your e User 7

Name:
Hery would you like to describe the new Lser?

Please choose a prevides for the user,

DefaultAuthenticator

Pruviler: | Defautauthenticatcr j .)
is required.

The password iz agsocizted with the logir name for the nesw User,

Lo [N

16.2.1 Summary

The User Name Token security feature lets you set up single sign-on between
consumers and producers. The User Name Token method is an alternative to SAML,
which is the default security for WebLogic Portal consumers and producers.

16-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

17

Configuring WSRP Security Between WLP

and WebCenter Framework

This chapter describes one technique for establishing a secure communications
channel for WSRP transactions between WebLogic Portal and WebCenter Framework.
It includes the following sections:

Section 17.1, "Introduction”

Section 17.2, "SAML Security Between a WebCenter Framework Consumer and a
WebLogic Portal Producer"

Section 17.3, "SAML Security Between a WebLogic Portal Consumer and a
WebCenter Framework Producer”

Section 17.4, "(Optional) Additional Configuration for a WebLogic Portal
Consumer"

17.1 Introduction

For web-based transactions to be secure, the following four components must be
addressed:

Authentication — Verification of the sender's identity.
Integrity — Protection against unauthorized changes.

Message Freshness — Protection against replay attacks in which a message is
captured and resent.

Confidentiality — Protection against unauthorized viewing of the message.

The following configuration steps will enable integrity, authentication, and message
freshness constraints in WSRP transactions between WebCenter Framework and WLP
applications, as follows:

Authentication is handled through the SAML 1.1 protocol, with the sender-vouches
assertion. This means that the user will authenticate through some unspecified
mechanism on the consumer, and the consumer will propagate and "vouch" for
the user's identity to the producer.

Integrity is handled by digitally signing the message's body, BST, and SAML
assertion with the SHA1 algorithm. This signature asserts that these components
of the message have not been modified in transit from the consumer to the
producer.

Message freshness is handled by adding a time constraint condition to the SAML
assertion. This specifies that the SAML assertion is only valid for a limited

Configuring WSRP Security Between WLP and WebCenter Framework 17-1

SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal Producer

window of time. When the SAML assertion is invalidated, the entire message will
be rejected. This time window is configurable on the consumer.

Note: Message confidentiality is not addressed in these steps. If
confidentiality is a concern for your WSRP environment, please
consider enabling SSL between your producer and consumer.

These security settings are but one possible configuration of Web Service security for
WSRP. Many other Web Service security configuration settings can be further adjusted
in both the WebLogic Portal and WebCenter Framework environments, as long as the
settings are enabled and recognized in both environments. For further detailed
information, see Oracle Fusion Middleware Securing WebLogic Web Services for Oracle
WebLogic Server.

17.2 SAML Security Between a WebCenter Framework Consumer and a
WebLogic Portal Producer

This section explains how to configure SAML security for both a WebCenter
Framework consumer and a WLP producer. The tasks described in this section are:

= Section 17.2.1, "Configuring the Consumer”

= Section 17.2.2, "Configuring the Producer"

17.2.1 Configuring the Consumer

This section discusses how to generate a key pair and export the public key certificate
on the consumer.

17.2.1.1 Generate a Key Pair

This section explains how to generate a key on the consumer using the keytool utility,
a Java utility distributed by Sun Microsystems that manages private keys and
certificates. For detailed information on keytool, refer to the Sun Microsystems
website.

1. On the WebCenter Framework consumer, open a command window and change
directory to the <WEBLOGIC_HOME>/server/bin directory.

2. Run the setWLSEnv.cmd/.sh command to set up the required environment
variables.

3. Run the keytool command to generate a new key pair. For example, the following
command generates a key pair, wraps the public key in a certificate, and stores the
certificate and the private key in a keystore named mykeystore. jks, identified
by the alias wckey:

keytool -genkeypair -alias wckey -keypass wckeypass -keyalg rsa -keysize 1024
-keystore mykeystore.jks -storepass mykeystorepass -dname "CN=Oracle Corp,
OU=WLP, O=Oracle, L=Boulder, ST=CO, C=US"

4. Make a note of your new keystore's passphrase, the key pair's alias, and the key

pair's passphrase. This data, as well as the keystore file itself (mykeystore. jks),
will be used when configuring the WebCenter Framework consumer.

17-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal Producer

17.2.1.2 Export the Public Key Certificate

The producer needs the public key certificate (the public half of the "key pair"
generated in the previous step) installed in its trust key store. Follow these steps to
export the public key certificate to a file, which will then be imported into a trusted
key store on the producer.

1.

On the consumer, open a command window and change directory to the
<WEBLOGIC_HOME>/server/bin directory.

Run the setWLSEnv.cmd/ . sh command to set up the required environment
variables.

Run the keytool command to export the previously-created certificate to a file. For
example, the following command creates a certificate file named wckey . der from
the key pair identified by alias wckey:

keytool -exportcert -alias wckey -keypass wckeypass -keystore mykeystore.ijks
-storepass mykeystorepass -file wckey.der

17.2.2 Configuring the Producer

This section explains how to configure the producer. To do this, you import the public
key certificate into the SAML asserter, and configure the asserting party properties.

17.2.2.1 Import the Public Key Certificate Into The Producer Domain's Trust Key
Store

1.

Copy the certificate file created in the previous step to the WebLogic Portal
producer's domain directory (for example, <MW_HOME>/user_
projects/domains/base_domain).

On the producer, open a command window and change directory to the
<WEBLOGIC_HOME>/server/bin directory.

Run the setWLSEnv.cmd/ . sh command to set up the required environment
variables.

Change directory to the root directory for your producer's domain (for example,
<MW_HOME>/user_projects/domains/base_domain)

Run the keytool command to import the previously-created certificate file to the
domain's trust keystore. For example, the following command imports the
certificate identified by alias wckey from the certificate file named wckey.der to
the DemoTrust.jks keystore:

keytool -importcert -keystore DemoTrust.jks -storepass
DemoTrustKeyStorePassPhrase -file wckey.der -alias wckey -keypass wckeypass

If prompted to "Trust this certificate? [no]: ", type yes and press Enter to add the
certificate to the keystore.

If your server is currently running, restart it.

Note: WebLogic Portal is configured with a default identity keystore
(DemoIdentity.jks)and a default trust keystore

(DemoTrust. jks). In addition, WebLogic Portal trusts the CA
certificates in the JDK cacerts file. This default keystore configuration
is appropriate for testing and development purposes. However, these
keystores should not be used in a production environment. For more
information, see the WebLogic Server security documentation.

Configuring WSRP Security Between WLP and WebCenter Framework 17-3

SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal Producer

17.2.2.2 Modify the WSDL Templates in the Producer Web-App

1. Copy the files wsrp-wsdl-template.wsdl and
wsrp-wsdl-template-v2.wsdl to your workspace and open them for editing.
The procedure for copying files to your workspace is described in "Copying J2EE
Library Files Into a Project” in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

2. Inboth files, replace the existing <wsp : Policy> element with the following
XML:

Example 17-1 Replacement wsp:Policy Element

<wsp:Policy wsu:Id="ProducerDefaultPolicy"/>
<wsp:Policy wsu:Id="WebCenterPolicy" xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<sp:AsymmetricBinding>
<wsp:Policy>
<sp:InitiatorToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRec
ipient">
<wsp:Policy>
<sp:WssX509V3Tokenl0/>
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">
<wsp:Policy>
<sp:WssX509V3Tokenl0/>
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:RecipientToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basicl28/>
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Lax/>
</wsp:Policy>
</sp:Layout>
<sp:0nlySignEntireHeadersAndBody/>
</wsp:Policy>
</sp:AsymmetricBinding>
<sp:SignedSupportingTokens>
<wsp:Policy>
<sp:SamlToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRec
ipient">
<wsp:Policy>
<sp:WssSamlV11Tokenl0/>
</wsp:Policy>
</sp:SamlToken>

17-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal Producer

</wsp:Policy>
</sp:SignedSupportingTokens>

<sp:Wssl0>

<wsp:Policy>

<sp:MustSupportRefKeyIdentifier/>
<sp:MustSupportRefIssuerSerial/>
</wsp:Policy>

</sp:Wssl0>
</wsp:Policy>

3.

Save your changes to these two files.

17.2.2.3 Modify the Web Services Policy Configuration in the Producer Web-App

1.

Copy the file WEB-INF /weblogic-webservices-policy.xml to your
workspace and open it for editing. The procedure for copying files to your
workspace is described in "Copying J2EE Library Files Into a Project" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Replace the entire contents of the file with the following XML:

Example 17-2 Replacement weblogic-webservices-policy.xml

<?xml version='1.0"' encoding='UTF-8'?>
<webservice-policy-ref xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<!-- Use WebLogic Server Admin Console to add new policies -->
<ref-name>WebCenter Policies for the WSRP Producer</ref-name>

<port-policy>
<port-name>WSRP_v2_Markup_Service</port-name>
<ws-policy>
<uri>#WebCenterPolicy</uri>
<direction>inbound</direction>
</ws-policy>
</port-policy>
<port-policy>
<port-name>WSRPBaseService</port-name>
<ws-policy>
<uri>#WebCenterPolicy</uri>
<direction>inbound</direction>
</ws-policy>
</port-policy>
<port-policy>
<port-name>WLP_WSRP_Ext_Service</port-name>
<ws-policy>
<uri>#WebCenterPolicy</uri>
<direction>inbound</direction>
</ws-policy>
</port-policy>

</webservice-policy-ref>

3.

Save your changes, and republish your web project.

17.2.2.4 Add a New Asserting Party to the SAML Identity Asserter

This section describes the final step in the producer configuration.

Configuring WSRP Security Between WLP and WebCenter Framework 17-5

SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal Producer

Tip: For more information on asserting party and other topics in this
section, see "SAML Framework Concepts" in Oracle Fusion Middleware
Understanding Security for Oracle WebLogic Server.

1. Open the WebLogic Server Administration Console on the producer server and
log in.

Select Security Realms.

Select a security realm, such as myrealm.

Select the Providers tab.

Select the Authentication tab.

@ o » w N

Select SAMLIdentityAsserter. An identity asserter allows WebLogic Server to
establish trust by validating a user.

N

Select the Management tab.

8. Select the Asserting Parties tab

9. In the Asserting Parties table, click New.

10. In the Profile pulldown menu, select WSS/Sender Vouches.

11. In the Description field, enter a name to identify the asserting party, and select
OK. For example: WebCenter SAML token.

12. Enable the new asserting party. To do this, click the Partner ID link for the new
asserting party (for example, ap_0002).

13. Set the asserting party values as follows:

Parameter Value

Enabled true (Select the checkbox)

Target URL default

Issuer URI Set on the consumer (for example, www.oracle.com)

14. Click Save. If there were no problems, the message "Settings updated successfully"
appears.

The WebLogic Portal producer is now configured for SAML interoperability with a
basic WebCenter Framework SAML configuration. The next step is to associate the
WebCenter Framework consumer with the key pair created earlier (see Section 17.2.1.1,
"Generate a Key Pair").

Note: For more detailed information on the following steps, see
"Securing a WSRP Producer with WS-Security" in Oracle Fusion
Middleware Administrator’s Guide for Oracle WebCenter.

17.2.2.5 Register the WebLogic Portal Producer with the WebCenter Consumer

1. Copy the keystore created earlier (see Section 17.2.1.1, "Generate a Key Pair") to
your consumer server's filesystem, and note the path.

2. From Oracle JDeveloper, follow these standard steps for registering a producer
using the Register WSRP Portlet Producer wizard, with the following exceptions:

a. On the Configure Security Attributes page, set the following values:

17-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal Producer

Parameter Value

Token Profile SAML Token with Message Integrity

Configuration Custom

Default User A default username to send when unauthenticated (for example,
fmwadmin)

Issuer Name This needs to match the Issuer URI on the producer (for example,

www.oracle.com). See Section 17.2.2.4, "Add a New Asserting Party to
the SAML Identity Asserter."

b. On the Specify Key Store page, set the following values

Parameter Value

Store Path Path on the consumer server to the JKS file. See Section 17.2.2.5,
"Register the WebLogic Portal Producer with the WebCenter
Consumer."

Store Password The keystore password. See Section 17.3.3.2, "Export the Public Key
Certificate."

Store Type JKS

Signature Key Alias The key alias

Signature Key The key passphrase. See Section 17.3.3.2, "Export the Public Key

Password Certificate."

Encryption Key Alias Leave the field blank. See Section 17.3.3.2, "Export the Public Key

Certificate."
Encryption Key Leave the field blank. See Section 17.3.3.2, "Export the Public Key
Password Certificate."

17.2.2.6 Test the Configuration

The easiest way to test the configuration involves three steps:
1. Create a simple JSP portlet on the producer with the following content:

<%@ page language="java" contentType="text/html;charset=UTF-8" %>
<p>Principal: <%=request.getUserPrincipal () %></p>
<p>Remote User: <%$=request.getRemoteUser () %></p>

This will show the username sent by the consumer when rendered, if the SAML
configuration is working properly.

2. Specify a default authenticated user when you establish your consumer's
connection to the producer. (See Section 17.2.2.5, "Register the WebLogic Portal
Producer with the WebCenter Consumer.") By doing this, the WebCenter
Framework consumer will automatically send that username to the WebLogic
Portal producer, without requiring the creation of a login mechanism on the
consumer-side.

3. Render the remote portlet on the consumer, and verify that the default username
that was specified is rendered in the portlet's body.

Configuring WSRP Security Between WLP and WebCenter Framework 17-7

SAML Security Between a WebLogic Portal Consumer and a WebCenter Framework Producer

17.3 SAML Security Between a WebLogic Portal Consumer and a
WebCenter Framework Producer

This section discusses the producer-side and consumer-side configuration required to
set up SAML security between a WLP consumer and a WebCenter Framework
producer.

The configuration steps include:

= Section 17.3.1, "Register the WebCenter Framework Producer with the WebLogic
Portal Consumer”

s Section 17.3.2, "Add an Authentication Mechanism To Your Portal"
= Section 17.3.3, "Configuring the WebLogic Portal Consumer"

» Section 17.3.4, "Configuring the WebCenter Framework Producer"

17.3.1 Register the WebCenter Framework Producer with the WebLogic Portal

Consumer

Follow the steps in Section 4.3.3, "Locating and Consuming a Portlet" to register your
WebCenter Framework producer with the WebLogic Portal consumer. Make a note of
the Producer Handle that you specify (for example, my_wc_producer), as this will be
used later.

17.3.2 Add an Authentication Mechanism To Your Portal

For information on how to add a programmatic authentication mechanism to your
portal, see "Implementing Authentication Programatically" in Oracle Fusion Middleware
Security Guide for Oracle WebLogic Portal.

17.3.3 Configuring the WebLogic Portal Consumer

This section explains how to generate a key pair and export the public key certificate
on the consumer.

17.3.3.1 Generate a Key Pair

This section explains how to generate a key on the consumer using the keytool utility,
a Java utility distributed by Sun Microsystems that manages private keys and
certificates. For detailed information on keytool, refer to the Sun Microsystems
website.

1. On the WebLogic Portal consumer, open a command window and change
directory to the <WEBLOGIC_HOME>/server/bin directory.

2. Run the setWLSEnv.cmd/ . sh command to set up the required environment
variables.

3. Change directory to the root directory for your consumer's domain (for example,
<MW_HOME>/user_projects/domains/base_domain).

4. Run the keytool command to generate a new key pair and add it to the
DemoIdentity.jks keystore. For example, the following command generates a
key pair, wraps the public key in a certificate, and stores the certificate and the
private key in the DemoIdentity. jks, identified by the alias wckey:

keytool -genkeypair -alias wckey -keypass wckeypass -keyalg rsa -keysize 1024
-keystore DemoIdentity.jks -storepass DemoIdentityKeyStorePassPhrase -dname
"CN=Oracle Corp, OU=WLP, O=Oracle, L=Boulder, ST=CO, C=US"

17-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between a WebLogic Portal Consumer and a WebCenter Framework Producer

5. Make a note of your key pair's alias, and the key pair's passphrase. This data will
be used when configuring the both the WebLogic Portal consumer and the
WebCenter Framework producer.

Note: WebLogic Portal is configured with a default identity keystore
(DemoIdentity.jks)and a default trust keystore

(DemoTrust. jks). In addition, WebLogic Portal trusts the CA
certificates in the JDK cacerts file. This default keystore
configuration is appropriate for testing and development purposes.
However, these keystores should not be used in a production
environment. For more information, see Oracle Fusion Middleware
Understanding Security for Oracle WebLogic Server.

17.3.3.2 Export the Public Key Certificate

The producer needs the public key certificate (the public half of the "key pair"
generated in the previous step) installed in its trust key store. Follow these steps to
export the public key certificate to a file, which will then be imported into a trusted
key store on the producer.

1. On the WebLogic Portal consumer, open a command window and change
directory to the <WEBLOGIC_HOME>/server/bin directory.

2. Run the setWLSEnv.cmd/.sh command to set up the required environment
variables.

3. Change directory to the root directory for your consumer's domain (for example,
<MW_HOME>/user_projects/domains/base_domain).

4. Run the setWLSEnv.cmd/.sh command to set up the required environment
variables.

5. Run the keytool command to export the previously-created certificate to a file. For
example, the following command creates a certificate file named wckey . der from
the key pair identified by alias wckey:

keytool -exportcert -alias wckey -keypass wckeypass -keystore DemoIdentity.jks
-storepass DemoIdentityKeyStorePassPhrase -file wckey.der

17.3.3.3 Import the Public Key Certificate Into The Consumer Domain's Trust Key
Store

To import the certificate, follow this procedure. The procedure uses the keytool utility,
a Java utility distributed by Sun Microsystems that manages private keys and
certificates. For detailed information on keytool, refer to the Sun Microsystems
website.

1. On the WebLogic Portal consumer, open a command window and change
directory to the <WEBLOGIC_HOME>/server/bin directory.

2. Run the setWLSEnv.cmd/ . sh command to set up the required environment
variables.

3. Change directory to the root directory for your consumer's domain (for example,
<MW_HOME>/user_projects/domains/base_domain).

4. Run the keytool command to import the previously-created certificate file to the
domain's trust keystore. For example, the following command imports the

Configuring WSRP Security Between WLP and WebCenter Framework 17-9

SAML Security Between a WebLogic Portal Consumer and a WebCenter Framework Producer

certificate identified by alias wckey from the certificate file named wckey . der to
the DemoTrust . jks keystore:

keytool -importcert -keystore DemoTrust.jks -storepass
DemoTrustKeyStorePassPhrase -file wckey.der -alias wckey -keypass wckeypass

5. If prompted to "Trust this certificate? [no]: ", type yes and press Enter to add the
certificate to the keystore.

6. If your server is currently running, restart it.

17.3.3.4 Add a New Policy to the Consumer Web-App

Add the following policy definition to your WebLogic Portal consumer to configure it
to match the default policy configuration on a WebCenter Framework producer.

1. In your web project, create a directory WEB-INF/classes/policies.
2. In that directory, create a file named wcPolicy.xml, with the following contents:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-u
tility-1.0.xsd"
xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">
<wssp:Identity>
<wssp: SupportedTokens>
<wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/0asis-2004-01-saml-token-prof
ile-1.0#SAMLAssertionID">
<wssp:Claims>
<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
</wssp:Claims>
</wssp: SecurityToken>
</wssp: SupportedTokens>
</wssp:Identity>
<wssp:Integrity>
<wssp:SignatureAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<wssp:CanonicalizationAlgorithm
URI="http://www.w3.0rg/2001/10/xml-exc-cldn#"/>
<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal" />
<wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body () </wssp:Message
Parts>
</wssp:Target>
<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal" />
<wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">wls:SecurityHeader
(Assertion)</wssp:MessageParts>
</wssp:Target>
</wssp:Integrity>
</wsp:Policy>

3. Save your changes to this file.
17.3.3.5 Update the Producer's Security Policy on the Consumer

1. Copy the file WEB-INF/wsrp-consumer-security-config.xml to your
workspace and open it for editing. The procedure for copying files to your

17-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

SAML Security Between a WebLogic Portal Consumer and a WebCenter Framework Producer

workspace is described in "Copying J2EE Library Files Into a Project” in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2, Add anew <producer-security> element with the following contents:

<producer-security>
<!-- The producer's handle -->
<producer-handle>my wc_producer</producer-handle>

<!-- The policy to use when the policy is not included in the WSDL. -->
<policy-name>wcPolicy</policy-name>

<!-- When doing 8.1 compatibility, should the <wsse:security> header

<!-- be removed. -->
<strict-compatibility>false</strict-compatibility>

<!-- Should 8.1 compatibility be done even if a policy is in the WSDL

<!-- (9.0 producer). -->
<compatibility-forced>false</compatibility-forced>

<!-- Should 8.1 compatibility be done even if a policy is NOT in the

WSDL -->

<!-- If both compatibility-forced is true and compatibility-enabled
false -—>

<!-- no compat is sent -->

<compatibility-enabled>false</compatibility-enabled>

<!-- Should WLP specific handlers be deployed. -->
<!-- EXPERT ONLY: Disabling may cause the consumer to act incorrectly.

<!-- Default: true -->
<wlp-handlers-deployed>true</wlp-handlers-deployed>

<!-- Should anonymous users be allowed? -->
<!-- If disabled only logged in users may use this producer. -->
<!-- Default: true -->

<anonymous-users-allowed>true</anonymous-users-allowed>
</producer-security>

3. Populate the value of the <producer-handle> element with the handle you
created in Section 17.2.2.5, "Register the WebLogic Portal Producer with the
WebCenter Consumer", and populate the value of the <policy-name> element
with the filename of the policy created in Section 17.3.3.4, "Add a New Policy to
the Consumer Web-App", without its . xm1 extension (for example, wcPolicy).

4. Save the changes, and republish the application.

17.3.3.6 Modify the Consumer's SAMLCredentialMapper

Follow the instruction in Section 15.2.1.3, "Modify the Consumer's Security Realm" to
configure your WebLogic Portal consumer's SAMLCredentialMapper to use the new
key pair defined earlier. Supply the following values as appropriate:

Parameter Value

Issuer URI This needs to match the Issuer URI on the producer (for example,
www .oracle.com).

Signing Key Alias The key alias. See Section 17.3.3.1, "Generate a Key Pair."

Configuring WSRP Security Between WLP and WebCenter Framework 17-11

SAML Security Between a WebLogic Portal Consumer and a WebCenter Framework Producer

Parameter Value
Signing Key Pass The key passphrase. See Section 17.3.3.1, "Generate a Key Pair."
Phrase

Confirm Signing Key The key passphrase. See Section 17.3.3.1, "Generate a Key Pair."
Pass Phrase

17.3.3.7 Configure the Consumer's PKI Credential Mapping Provider

1. Follow the instructions "Configuring a PKI Credential Mapping Provider" in
Oracle Fusion Middleware Securing Oracle WebLogic Server to configure your
WebLogic Portal consumer's PKICredentialMapper to use the new key pair
defined earlier. Supply the following values as appropriate:

Parameter Value

Keystore Provider Keep the default value.

Keystore Type JKS

Keystore File Name Demoldentity.jks

Keystore Pass Phrase DemoldentityKeyStorePassPhrase

Confirm Keystore Pass Phrase DemoldentityKeyStorePassPhrase
Use Resource Hierarchy Keep the default value.

Use Initiator Group Names Keep the default value.

2. Restart your server.

17.3.3.8 Create a New PKI Credential Mapping to the Consumer

1. Follow the instructions "Create PKI Credential Mappings" in the WebLogic Server
Administration Console Online Help to create a new security credential map on the
consumer for the producer. Supply the following values as appropriate:

Parameter Value

Protocol Leave this field blank.

Remote Host Leave this field blank.

Remote Port Leave this field blank.

Path Leave this field blank.

Method Leave this field blank.

Credential Type Key Pair

Principal Name Enter the value of the <consumer-name> element in
WEB-INF/wsrp-consumer-security-config.xml.

Principal Type User

Credential Action Leave this field blank.

Keystore Alias The key alias. See Section 17.3.3.1, "Generate a Key Pair."

Password The key passphrase. See Section 17.3.3.1, "Generate a Key Pair."

'

Confirm Password The key passphrase. See Section 17.3.3.1, "Generate a Key Pair.’

17-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

(Optional) Additional Configuration for a WebLogic Portal Consumer

17.3.4 Configuring the WebCenter Framework Producer

See the "Securing a WSRP Producer with WS-Security" in the Oracle Fusion Middleware
Administrator’s Guide for Oracle WebCenter for detailed information on securing your
WebCenter Framework producer with SAML. At a minimum, the following steps are
required:

1. Import the public certificate created in Section 17.3.3.2, "Export the Public Key
Certificate" into a keystore on your producer.

2. Add the new keystore to OWSM's keystore service.

3. Assignthe oracle/wssl0_saml_token with message_integrity_
service_policy policy to your web application’s WebServices WSRP markup
ports.

17.4 (Optional) Additional Configuration for a WebLogic Portal Consumer

If you have set up your WebLogic Portal producer's security to interoperate with a
WebCenter Framework consumer (as explained in Section 17.3.4, "Configuring the
WebCenter Framework Producer”), and you wish to consume portlets from that
producer in a WebLogic Portal consumer, then the following steps are required:

1. Section 17.4.1, "Register the WebLogic Portal producer with the WebLogic Portal
Consumer"

2. Section 17.4.2, "Update the Producer's Security Policy on the Consumer"
3. Section 17.4.3, "Create a New PKI Credential Mapping to the Consumer"

17.4.1 Register the WebLogic Portal producer with the WebLogic Portal Consumer

Follow the steps in Section 4.3.3, "Locating and Consuming a Portlet" to register your
WebCenter Framework producer with the WebLogic Portal consumer. Make a note of
the Producer Handle that you specify (for example, my_wc_producer), as this will be
used later.

17.4.2 Update the Producer's Security Policy on the Consumer

1. Copy the file WEB-INF /wsrp-consumer-security-config.xml to your
workspace and open it for editing. The procedure for copying files to your
workspace is described in "Copying J2EE Library Files Into a Project” in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2. Add anew <producer-security> element with the following contents:

<producer-security>
<!-- The producer's handle -->
<producer-handle>my wlp_producer</producer-handle>

<!-- The policy to use when the policy is not included in the WSDL.

<policy-name>wsrp8lcompatPolicy</policy-name>

<!-- When doing 8.1 compatibility, should the <wsse:security>
header -->

<!-- be removed. -->

<strict-compatibility>false</strict-compatibility>

<!-- Should 8.1 compatibility be done even if a policy is in the
WSDL -->

Configuring WSRP Security Between WLP and WebCenter Framework 17-13

(Optional) Additional Configuration for a WebLogic Portal Consumer

<l--

<!l--
the WSDL -->
<l--

false -->
<l--
<com
<!--
<!--
incorrectly. -->
<!l--
<wlp
<!--
<!l--
<l--
<ano
</produc

(9.0 producer). -->
<compatibility-forced>false</compatibility-forced>

Should 8.1 compatibility be done even if a policy is NOT in
If both compatibility-forced is true and compatibility-enabled

no compat is sent -->
patibility-enabled>true</compatibility-enabled>

Should WLP specific handlers be deployed. -->
EXPERT ONLY: Disabling may cause the consumer to act

Default: true -->
-handlers-deployed>false</wlp-handlers-deployed>

Should anonymous users be allowed? -->

If disabled only logged in users may use this producer. -->
Default: true -->
nymous-users-allowed>true</anonymous-users-allowed>
er-security>

3. Populate the value of the <producer-handle> element with the handle that was

created earlier in
WebCenter Cons

Section 17.2.2.5, "Register the WebLogic Portal Producer with the
umer."

4. Save the changes, and republish the application.

17.4.3 Create a New PKI Credential Mapping to the Consumer

This section explains

how to create a new PKI credential mapping to the consumer, if

one is not already present.

1. Follow the instructions "Create PKI Credential Mappings" in the WebLogic Server
Administration Console Online Help to create a new security credential map on the
consumer for the producer. Supply the following values as appropriate:

Parameter Value

Protocol Leave this field blank.
Remote Host Leave this field blank.
Remote Port Leave this field blank.
Path Leave this field blank.
Method Leave this field blank.
Credential Type Key Pair

Principal Name

Principal Type
Credential Action
Keystore Alias
Password

Confirm Password

Enter the value of the <consumer-name> element in
WEB-INF/wsrp-consumer-security-config.xml.

User

Leave this field blank.

The key alias. See Section 17.2.1.1, "Generate a Key Pair."

The key passphrase. See Section 17.2.1.1, "Generate a Key Pair."
The key passphrase. See Section 17.2.1.1, "Generate a Key Pair."

17-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

18

Adding Remote Resources to the Library

The WebLogic Portal Administration Console lets you locate producers and add their
remote resources to the Portal Resources Library. Remote resources can include books,
pages, and portlets. When a remote resource is added to the Library, it becomes
available to you to incorporate into a portal desktop.

Tip: This chapter assumes that you are familiar with the Portal
Resources Library and how to use it to assemble WebLogic Portal
desktops. For detailed information on the Library and on assembling
portals using the Administration Console, see the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal This
chapter also assumes you are familiar with basic federated portal
concepts and terms, such as producer, consumer, and WSDL. For
detailed information on federated portals, see Chapter 2, "What are
Federated Portals?" and Chapter 3, "Federated Portal Architecture.”

This chapter explains how to locate producers and incorporate their remote resources
into the Portal Resources Library. The chapter includes these sections:

s Section 18.1, "Introduction”

= Section 18.2, "Adding a Producer"

» Section 18.3, "Adding a Remote Portlet to the Portal Library"

= Section 18.4, "Adding a Remote Page to the Portal Library"

= Section 18.5, "Adding a Remote Book to the Portal Library"

18.1 Introduction

You can use the WebLogic Portal Administration Console to locate remote producers,
discover the resources they offer, and add them to the Portal Resources Library. After
a remote resource, such as a book, page, or portlet, is added to the Library, you can
add the resource to a desktop just as you would a local book, page, or portlet.

The primary advantage of remote books and pages is that they act as containers for
other remote resources. For example, a producer can offer a remote book that contains
several remoteable pages, each of which contain multiple remoteable portlets. When
you consume that book, the remoteable pages and portlets it contains are consumed as
well, with no additional steps.

Adding Remote Resources to the Library 18-1

Adding a Producer

Tip: The term remoteable refers to a book, page, or portlet that is
deployed in a producer application and that is offered as remote.
Producer application developers decide whether or not books, pages,
and portlets they create are offered as remote. For detailed
information on creating remoteable pages and books in a producer
application, see Chapter 6, "Offering Books, Pages, and Portlets to
Consumers."

After you consume a remote book or page, an administrator can edit it using the
Administration Console. For example, an administrator can add other portlets, books,
or pages to the remote book or page. Remember that such changes are not reflected
back to the producer; therefore, after a remote book or page is modified on the
consumer, it can become inconsistent with the original book, page, or portlet in the
producer application.

To add remote books, pages, and portlets to the Library:

1. Locate and add the producer in which the remote resources are deployed.
2. If necessary, register the producer.

3. Add remote books, pages, and portlets to your Portal Resources Library.

After the remote resources are in the Library, you add them to your portal desktop as
you would any other book, page, or portlet.

18.2 Adding a Producer

To consume remote resources, such as portlets, books, and pages that are deployed in
a producer, you need to first add the producer to your Portal Resources Library. After
you add a WSRP-compliant producer to the Portal Resources Library, you can make
that producer's remoteable resources available for consumption by your portal.

During registration, the producer stores information about the consumer and returns a
handle to the consumer. Registration is an optional feature described in the WSRP
specification. A WebLogic Portal complex producer implements this option and,
therefore, requires consumers to register before discovering and interacting with
portlets offered by the producer. See Section 3.4.2.2, "Complex Producers" for more
information.

Tip: In the WebLogic Portal Administration Console, producer
registrations are scoped to individual consumer web applications.
Because there can be multiple consumer web applications in an
enterprise application, it is possible that a given producer will need to
be registered multiple times within an enterprise application (that is,
registered for each consumer web application in which it is used).

To locate and register a producer using the Administration Console:

1. Expand the Library node in the Portal Resources tree and select Remote
Producers, as shown in Figure 18-1.

18-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Adding a Producer

Figure 18-1 Selecting Remote Producers

Portal Resources for : consumerWebd

Update ‘Webdpp

EE’J Portal Resources
E-f Library
#-liF Portlets
----- i Portlet Categories
-1 Books
g Layouts
- Look & Feels
- Menus
FL [Pages
-5 Remote Producers
FH-L= Shells
E-id] Templates
i Thermes
Bl Portals
B rmyPortal
ECommunities
-] Templates
— [=1 R

\-\avw\.—\—q.—wwtj—&

2. In the Browse Remote Producers window, select Add Producer, as shown in
Figure 18-2. The Add Producer wizard appears.

Figure 18-2 Select Add Producer

Browse Portlet Producers
Showing of 0 ® Previous | MNext @
Name | Yendor Description

Mo producers have been registered,
Add Producer...

- S o

\\M PEPIeS WO W

1
v
'

R A

3. Inthe Add Producer wizard, select a producer. To do this, specify a producer
directly by entering its WSDL URL, and click Search. For example:

http://myhost:7001/producerWebProject/producer?wsdl

4. Select the producer you wish to add from the Producer(s) Found list, as shown in
Figure 18-3.

Figure 18-3 Selecting a Producer

-

1 Producer(s) Found: Producer Details y
Remote Pro%er The producer at: j
http/flocalhost: 7001/ 4

producerywebProject/ :

producer Pwsdl j

L4

1

{

d— G e e n -t — . -~ _,J

5. If you want to view a list of portlets hosted by the producer, select the View
producer's portlets before adding producer checkbox, as shown in Figure 18—4.

Adding Remote Resources to the Library 18-3

Adding a Producer

Figure 18-4 View Producer's Portlets Checkbox

iew producer's available portlets before adding producer _4
F |

|Previ0us| |Eancel
- PR

PRV B T T N e

6. Click Next.

7. If the View Producer Portlets dialog appears, click Next. This dialog, shown in
Figure 18-5, appears only if you selected the View producer's portlets before
adding producer checkbox. This dialog simply lists the portlets hosted by the
selected producer to help you decide if you want to add the producer or not.

Figure 18-5 View Producer’s Portlets

Add Producer

<

To Continue Adding this Producer, click Next. i

1. Select Producer to Add The producer "Remote Praducer” hosts the following partlets: 4
3

) -

2. ¥iew Producer's - it :
Portlets BEA: Download Weblogic Portal 8.1 -
BEA: Racing! :

[EJ BEA: WSRP

3, Enter producer i L
properties = BEA: Double Byte ;

_ 1

4, Register 4
&

5. Summary j
® Previous Page | Mext Page @ ("

P T = e I PR PP S S S S ,/

Py

8. In the Enter Producer Properties dialog (Figure 18-6), enter or select:

= A name for the producer - (Required) This name is used by the consumer to
identify the producer.

= Vendor and description information - (Optional) Use these fields to enter
optional metadata.

= Store Registration Properties — (Optional) If you select this option, the
registration properties that you enter in the Add Producer dialog are stored on
the consumer. It is recommended that you select this option. For detailed
information on this option, see Section 14.19, "Storing Registration Properties".

18-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Adding a Producer

Figure 18-6 Enter Producer Name

% Add Producer

Enter Producer Properties, and click Next.
1, Select Producer to Add

Producer Mame (Handle):™ |producer—dem0 |

2. Wiew Producer's Wendar: |EIEA Systems |
Portlets

Description: [Demo producer

3. Enter producer

properties LURL: htip:/flocalhost: 7001 myweb
producer Pwsdl
4. Register Registration: This producer requires registration,

Store Reqgistration Properties

5. Summary * Required information

\,_M\, T B W g Y & |

AP A e e AW T e aai gt PPV SRS W

LY
]

9. Click Add Producer to go to the Register dialog.

10. In the Register dialog, enter the registration information, if any is required. In the
example shown in Figure 18-6, a property set called "Favorite vegetables" was
defined on the producer. The dialog requires the user to enter value(s) from that
property set. The value(s) entered here are validated on the producer and are used
to determine which resources this consumer is entitled to retrieve. For detailed
information on consumer entitlement, see Chapter 11, "Consumer Entitlement."

Figure 18-7 Enter Registration Properties (Sample)

% Add Producer

Enter Registration Properties, and click Next.
1. Select Producer to Add

Favorite vegetables. |

2. Wiew Producer's
Partlets

3. Enter producer

TAAA A e M A s "t B bl

properties
4. Register
3. Summary
T P L A T [P S S R S N

11. Click Add Producer. The Summary dialog appears, as shown in Figure 18-8.

Adding Remote Resources to the Library 18-5

Adding a Remote Portlet to the Portal Library

Figure 18-8 Summary Dialog

| Add Producer

3}

Click Finish to close this window and continue working. (

4

1. Select Producer to Add You have added a producer using the following information: -
Producer Marme (Handle): myProducer ¢

; | +

2. Wiew Producer's Portlets vendor: (Hone Specified) -
b

Description: {(None Specified) b
3. Enter producer 4
properties URL: htip:/flocalhost: 7001/ f

producerywebProject/

producer Pwsdl 2

4. Reqister {
P
_ }
5. Summary {
£
-~ -~ - - - Y P I T | - e » ’jf’r‘

12. Click Finish.

Checkpoint: Now that you have located and added a producer, you can view and
select portlets, books, and pages to add to the consumer from that producer, as
explained in the following sections.

18.3 Adding a Remote Portlet to the Portal Library

If you have added a producer that contains a remoteable portlet, you can add that
portlet to your Portal Resources Library. After the remote portlet is added to the
Library, you can incorporate the portlet into a page in your portal desktop.

There are two ways to incorporate remote portlets into a portal using the
Administration Console:

Add a remote page that contains one or more remote portlets. For details adding
remote pages, see Section 18.4, "Adding a Remote Page to the Portal Library".

Add a remote portlet directly. This method is described in this section.

To add a remote portlet to your Portal Resources Library directly:

1.
2.

Open the WebLogic Portal Administration Console.

If you haven't done so, locate and add the producer that contains the remote
portlet(s) that you want to add to your portal. The procedure for adding a
producer is explained in Section 18.2, "Adding a Producer".

In the Portal Resources tree, open the Library > Remote Producers folder, and
select the producer that contains the remote portlet that you want to use, as shown
in Figure 18-9.

18-6 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Adding a Remote Portlet to the Portal Library

Figure 18-9 Selecting a Producer

1
Portal Resources for : consumerProjectd

Update ‘Webdpp

EE’J Portal Resources
E-f Library
#-liF Portlets

FHE Layouts

- Look & Feels

- Menus

{LS Pages

B8 Remate Producers
~-EhaProducer

HHC2 Shell

d Temglates g L

{é_j
T SV

4. In the producer window click the Selected Portlets tab, as shown in Figure 18-10.

Figure 18-10 Selected Portlets Tab

aProducer

Summary | Selected ﬁortlets | Selected Pages | Selected Books

Description & Yendor | &

Description: (Mone Specified)
Yendor: (Mone Specified)

NAAL g 24 A

-

- - — st e Y L
5. In the Browse Selected Portlets panel, click Add Portlets, as shown in
Figure 18-11.

Tip: If the producer offers a large number of portlets, use the Search
feature to narrow the selections. For instance, you can search for all
portlets that begin with "a," and only those portlets will show up in
the Browse Selected Portlets table.

Figure 18-11 Add Portlet Button

—Browse Selected Portlets

»
L
Shawing 0 of 0 (@ Previous | Mext @ :
Y 4
Title Description 3
Mo portlets have been added from this producer. ;
EF
f
b = e ”» = 5 P T VR e rer S A Yy . J(

6. Inthe Add Portlets dialog, select the remote portlet(s) that you want to add to the
Library, and click Add to move the selected portlets to the Portlets To Add
column, as shown in Figure 18-12.

Adding Remote Resources to the Library 18-7

Adding a Remote Portlet to the Portal Library

Figure 18-12 Selecting Portlets to Add

| Add Portlets

Available Portlets Portlets To Add

i BEA: Download Weblogic Portal 8.1 [{5 BEA: Download WeblLogic Portal 8.1
i) BEA: Racing! [{5 BEA: Racing!

E BEA: WSRP .} E BEA: WSRP

i BEA: Double Byte [{5 BEA: Double Byte

EE]

L WPV PR 7 4 T € G SR e g e

| =

Remove Selected

P S AT A * O P I Py I P PSR S

'
»

7. After moving the portlet to the Portlets To Add column, click Save. The portlets
you added appears in the Library under the Portlets folder, as shown in
Figure 18-13.

Figure 18-13 Remote Portlets Added to the Library

Resuurces [ur : imyPurlaWebPruject :

Ul pdale Swielp

P
-~ Refres Tre.

J

E-== Portal Resources
EI{ij Library
- =G Portlets
[BEA Browser Portlet
BE&: Coublz Bye

i

BE4: Cownload Weblogc Potal, ——— Remote Portlets
BE&: Racing!
CJ BEA: WSRP ,_5_
‘I jsp portlet
= Partiet Caregories)
s e N e

The added portlets also appear in the Browse Selected Portlets table in the
producer's Selected Portlets tab, as shown in Figure 18-14.

Figure 18-14 Table Displays Added Portlets

—Browse Selected Portlets

T

b

Showing 1-4 of 4 @ Previous | Mext @ Items per page | 10 v ;

Title Description Delete ;
BEA: Double Byte O ¥
BEA: Download WeblLogic Portal 8.1 Fl]
BEA: Racing!] g

BEA: WSRP Fl "

-

%Add Fortlets Delete Portlej

— e R — _ . —_— J— -

18-8 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Adding a Remote Page to the Portal Library

Tip: When you add a remote portlet to the Library, it is placed in the
Portlets folder. This is the same folder where local portlets appear.
WebLogic Portal treats the remote portlet exactly as if it were a local
portlet.

Checkpoint: You can now add the portlet to a page in your desktop. For details on
adding Library resources to a desktop, see the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

18.4 Adding a Remote Page to the Portal Library

If you have added a producer that contains a remoteable page, you can add that page
to your Portal Resources Library. After the remote page is added to the Library, you
can incorporate it into your portal desktop as if it were a local page.

This section explains how to add a remote page to your Portal Resources Library.

Tip: To be remoteable, the page's Offer As Remote property must
have been set to true when it was created and the page must include
some content. A remote page can contain any combination of remote
books and portlets. Books and portlets contained within a remote
page must be offered as remote. By default, books, pages, and portlets
are offered as remote. For more information on creating remoteable
books and pages in a producer application, see Chapter 18, "Adding
Remote Resources to the Library."

1. Open the WebLogic Portal Administration Console.

2. If you haven't done so, locate and add the producer that contains the remote
page(s) that you want to add to your portal. The procedure for adding a producer
is explained in Section 18.2, "Adding a Producer".

3. In the Portal Resources tree, open the Library > Remote Producers folder, and
select the producer that contains the remote page that you want to use, as shown
in Figure 18-15.

Figure 18-15 Selecting a Producer

1
Portal Resources for : consumerProject®

Update ‘Webdpp

B
B

b
b
b

£

o

EE’J Portal Resources
{l Library
1[5 Portlets

H- {5z Layouts

H-{Look & Feels

H- = Menus

[Pages

B8 Remate Producers

B aProducer

- = Shell;
Hild Templates g ——

£l
m
]
a
&
\.u\—_-- T VS W

4. In the producer window;, click the Selected Pages tab, as shown in Figure 18-16.

Adding Remote Resources to the Library 18-9

Adding a Remote Page to the Portal Library

Figure 18-16 Selected Pages Tab

aProducer

Summary | Selected Portlets | Selected Pﬁﬁes | Selected Books

Description & Yendor | &

Description: (Mone Specified)
Yendor: (Mone Specified)

g ey 4y

A W o boa TN s e P

]
]

5. In the Browse Pages section, click Add Page, as shown in Figure 18-17.

Figure 18-17 Add Page Button

aProducer

Summary | Selected Portlets | | Selected Pages | Selected Books

Search aProducer

Page name | starts with + || | | %Search| | @ Clear Search

MNote: search is case sensitive

Browse Pages

Showing l:l of 0 @ Previous | Mext @ Items per page l:l

Title Description | Delete

i~ T W T R T S R S S

Mo Available Pages

£dd Page ‘ Delete Pages

P NN S TR v oy LN S Sy S —

s

6. Inthe Add Page dialog, select the remote page that you want to add to the
Library, and click Add Page. In Figure 18-18, the remote page is called Page 1.

Figure 18-18 The Add Page Dialog

nnnnnnnnnnnnn

| Add Page

Available Page

Fage 1

| ® Previous Page | MextPage @&

Showing of 1

Page Description:

\A“\'/\~*‘-ﬂ“ﬂ“‘~v““~4" ales

b
)
»
»
{
%
\
5
\
)

18-10 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Adding a Remote Book to the Portal Library

Checkpoint: The remote page is added to the Library, as shown in Figure 18-24.
You can now add the page to a desktop. For details on adding Library resources to
a desktop, see the Oracle Fusion Middleware Portal Development Guide for Oracle
WebLogic Portal.

Figure 18-19 Remote Page Added to Library

Home = Poreal > Fortal Managenent f

Portal Resources for : producerWebProject

Update ‘Webépp

e

E-=5 Portal Resources
E-fiILibr ary
-l Partlets
~|iE Portlet Categories
Bl Book:s
i Layouts
- Look: & Feals
0 [Menus
M5 Pages
[j Page -
-3, Partlet Producars
E-= Shells
H-{] "emplates
» B Themes . I

Remote Page

o ¥ WOV WSS W

18.5 Adding a Remote Book to the Portal Library

If you have added a producer that contains a remoteable book, you can add that book
to your Portal Resources Library. After the remote book is added to the Library, you
can incorporate it into your portal desktop as if it were a local book.

Tip: To be remoteable, the book's Offer As Remote property must
have been set to true when it was created, and the book must include
some content. A remote book can contain any combination of remote
pages and portlets. Pages and portlets contained within a remote page
must be offered as remote. By default, books, pages, and portlets are
offered as remote. For more information on creating remoteable books
and pages in a producer application, see Chapter 18, "Adding Remote
Resources to the Library."

This section explains how to add a remote book to your Portal Resources Library.

1.
2

Open the WebLogic Portal Administration Console.

If you haven't done so, locate and add the producer that contains the remote
book(s) that you want to add to your portal. The procedure for adding a producer
is explained in Section 18.2, "Adding a Producer".

In the Portal Resources tree, open the Library > Remote Producers folder, and
select the producer that contains the remote book that you want to use, as shown
in Figure 18-20.

Adding Remote Resources to the Library 18-11

Adding a Remote Book to the Portal Library

Figure 18-20 Selecting a Producer

1
Portal Resources for : consumerProjectd

Update ‘Webdpp

EE’J Portal Resources
E-f Library
#-liF Portlets

FHE Layouts

- Look & Feels

- Menus

h—ﬁ Pages

E-8 Remote Producers
EhaProducer

-2 Shell

B Templates pee

T SV

4. In the producer window, click the Selected Books tab, as shown in Figure 18-21.

Figure 18-21 Selected Books Tab

aProducer

Summary | Selected Portlets | Selected Pages | Selected ﬁooks

Description & Yendor |

Description: (Mone Specified)
Yendor: (Mone Specified)

LY P WP e

e e Pt FIY _EP “ © T F FT s
5. In the Browse Books section, click Add Book, as shown in Figure 18-22.

Figure 18-22 Add Book Button

aProducer

Summary | Selected Portlets | Selected Pages | | Selected Books

Search aProducer

Book narne | starts with % || | | %Search| | %ElearSearch

MNote: search is case sensitive

Browse Books

Showing l:l of 0 @ Previous | Mext @ Items per page l:l

Title Description | Delete

Mo Available Books

m ‘ Delete Books

e i - - - A o™ S PP

T P R TR Y T T T e

6. In the Add Book dialog, select the remote book that you want to add to the
Library, and click Add Book. In Figure 18-23, the remote book is called My
Remote Book.

18-12 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Adding a Remote Book to the Portal Library

Add Book

Figure 18-23 The Add Book Dialog

Available Book

My Rermote Book

® Previous Page | MextPage @&

Showing of 1

Page Description:

EET7 oo

Checkpoint: The remote book is added to the Library, as shown in Figure 18-24.
You can now add the book to a desktop. For details on adding Library resources to
a desktop, see the Oracle Fusion Middleware Portal Development Guide for Oracle

WebLogic Portal.

Hame = Partal = Partal Management

Figure 18-24 Remote Book Added to Library

F

Update'w/ebipp

Portal Resources for : producerwebProje

E-== Portal Resources
=i Library
-{E Portlets
-|[F Portlet Categories
L3 Books
----- i1y Rernotz Book
{§ rmyBoolk:
H{E Layouts
- Look & Feels
G- Er Menus
HF Pages
- Partlet Prochcers

i e 2P | e,

Remote Book

Adding Remote Resources to the Library 18-13

Adding a Remote Book to the Portal Library

18-14 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Part IV

Production

In the production phase of the portal life cycle, your portal is live. In this phase, you
can perform some management functions, such as adding users. In a federated portal,
you can add and remove remote portlets, and perform most of the tasks described in
Part III, Staging. In the production phase, most of your work is done using the
WebLogic Portal Administration Console.

For a detailed description of the production phase of the portal life cycle, see the Oracle
Fusion Middleware Overview for Oracle WebLogic Portal.

Part IV contains the following chapter:

» Chapter 19, "Managing Federated Portals"

19

Managing Federated Portals

This chapter discusses operations you typically perform to a federated portal that is in
production. This chapter includes the following topics:

Section 19.1, "Modifying the Consumer Security Configuration"
Section 19.2, "Modifying Producer Registration Properties"

19.1 Modifying the Consumer Security Configuration

Through the Service Administration panel of the WebLogic Portal Administration
Console, you can modify the following consumer security settings. These settings are
configured in the file WEB-INF /wsrp-consumer-security-config.xml
associated with the consumer web application.

You can perform the following modifications:

Section 19.1.1, "Changing the Web Application"
Section 19.1.2, "Modifying Global Credentials"
Section 19.1.3, "Modifying Producer Credentials"

19.1.1 Changing the Web Application

This section lets you change the consumer web application for the security
configuration you want to modify. To change the web application:

1.

In the Administration Console, select Configuration Settings > Service
Administration.

In the Resource Tree, select WSRP > Consumer Security.

To change the web application, click Change Web Application. The Change Web
Application dialog appears.

To search for a consumer web application, enter the full or partial name of the
application to find in the Search for Webapps field, and click Search. Any web
applications that are currently deployed to the server that match the search criteria
are displayed in the dialog. The search is case sensitive.

Select the web application you want to change to, and click Save.

19.1.2 Modifying Global Credentials

You can edit the user name and password for the security credential that is used for all
producers associated with this consumer. This change modifies the security credential
that is managed by the server.

Managing Federated Portals 19-1

Modifying the Consumer Security Configuration

1. In the Administration Console, select Configuration Settings > Service
Administration.

2, In the Resource Tree, select WSRP > Consumer Security.

3. C(lick Edit in the Global Credentials section. The Edit Credentials for All Producers
dialog appears.

4. Enter the new user name and password.

5. Decide whether to check the Is Consumer Credential checkbox, as explained
below, and click Save.

The Is Consumer Credential checkbox determines how the admin user is logged into
the producer when destroyPortlets is called.

= Unchecked (default behavior in WebLogic Portal 8.1 and later versions)

— The admin user's user name and password are sent to the producer through
basic authentication (unsecure).

— The user name and password must match the admin user on the producer.
s Checked

— The admin user's credentials are sent to the producer securely via SAML or
User Name Token (UNT).

— The user name and password must match the admin user on the consumer.

- Will interoperate with WebLogic Portal 9.2 (SAML or UNT) and 8.1 (SAML
only) producers.

The second (checked) method is the preferred configuration because it is
secure.

19.1.3 Modifying Producer Credentials

You can edit the user name and password credentials associated with a specific
producer.

1. In the Administration Console, select Configuration Settings > Service
Administration.

In the Resource Tree, select WSRP > Consumer Security.
Click the producer handle for the producer whose credentials you want to change.

In the dialog, enter the new user name and password.

o ©Dbd

Decide whether to check the Is Consumer Credential checkbox, as explained
below, and click Save.

The Is Consumer Credential checkbox determines how the admin user is logged into
the producer when destroyPortlets is called.

= Unchecked (default behavior in WebLogic Portal 8.1 and later versions)

— The admin user's user name and password are sent to the producer through
basic authentication (unsecure).

— The user name and password must match the admin user on the producer.
s Checked

— The admin user's credentials are sent to the producer securely via SAML or
User Name Token (UNT).

19-2 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

Modifying Producer Registration Properties

— The user name and password must match the admin user on the consumer.

- Will interoperate with WebLogic Portal 9.2 (SAML or UNT) and 8.1 (SAML
only) producers.

The second (checked) method is the preferred configuration because it is
secure.

19.2 Modifying Producer Registration Properties

Using the WebLogic Portal Administration Console, you can modify the registration
properties for a producer that has already been registered with a consumer. When the
consumer re-registers the producer, some portlets that were previously in use might
not be available or some additional portlets might be available to the consumer.
Registration properties are discussed in Chapter 11, "Consumer Entitlement."

To modify a producer's registration properties, do the following:

1. In the WebLogic Portal Administration Console, select Portal > Portal
Management.

2. In the Portal Resources Library tree, select Remote Producers, and then select the
producer whose properties you want to modify.

3. In the Summary tab, select Registration Details.
4. In the Modify Producer Registration dialog, edit the values you want to change,
and click Modify Registration.

Tip: The Modify Registration dialog will be automatically filled in if
you selected the Store Registration Properties option when you
registered the producer. For more information on this option, see
Section 14.19, "Storing Registration Properties".

Figure 19-1 Modify Producer Registration Dialog

Ij Modify Producer Registration
A sport you like, tennis
& color you like wellow
& color you don't like hlack
Your favorite food hotdogs
Sports you like, hocky, tennis, hasehall
Integer. 98
Float, 98.6
Boolaan. True O Fake O
DateTime, 22-hay-2006 12:00:00 Ak
| Modify Hegistration| | Eancel|

Managing Federated Portals 19-3

Modifying Producer Registration Properties

19-4 Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Architecture
	1 Introduction
	1.1 Support for WSRP 2.0
	1.2 Federation in the Portal Life Cycle
	1.2.1 Architecture
	1.2.2 Development
	1.2.3 Staging
	1.2.4 Production

	1.3 Getting Started
	1.3.1 Prerequisites
	1.3.2 Related Guides
	1.3.3 Using this Guide

	2 What are Federated Portals?
	2.1 Overview
	2.2 Basic Terminology
	2.3 Traditional Portals: Before Federation
	2.4 Federated Portals: A New Paradigm
	2.5 Advantages of Federation
	2.5.1 Overview
	2.5.2 Reducing the Cost of Portal Deployment
	2.5.3 Plug and Play SOA
	2.5.4 Increasing the Flexibility of Release Schedules
	2.5.5 Reducing the Cost of Testing Your Portal
	2.5.6 Decreasing Dependencies Among Software Components
	2.5.7 Promoting Reuse of Portal Components
	2.5.8 Interoperability

	3 Federated Portal Architecture
	3.1 Key Actors in a Federated Portal
	3.2 Federating Books and Pages
	3.3 What is WSRP?
	3.4 Understanding Producers and Consumers
	3.4.1 Overview
	3.4.2 WebLogic Portal Producers
	3.4.2.1 Simple Producers
	3.4.2.2 Complex Producers
	3.4.2.3 Summary of Complex and Simple Producers

	3.4.3 WebLogic Portal Consumers
	3.4.4 Cookie Handling

	3.5 Life Cycle of a Remote Portlet
	3.5.1 Rendering a Remote Portlet
	3.5.1.1 Initial Steps on the Consumer
	3.5.1.2 Initial Steps on the Producer
	3.5.1.3 Final Steps on the Consumer

	3.5.2 Interacting With a Remote Portlet
	3.5.2.1 Initial Steps on the Consumer
	3.5.2.2 Initial Steps on the Producer
	3.5.2.3 Final Consumer Steps

	3.5.3 Rendering Versus Interaction
	3.5.4 Interportlet Communication with Events
	3.5.5 Retrieving Render Dependencies

	3.6 Summary of Federated Portal Architecture
	3.7 For More Technical Details

	Part II Development
	4 Creating Remote Portlets, Pages, and Books
	4.1 Introduction
	4.2 What Types of Portlets Can Be Remote?
	4.3 Creating a Remote Portlet
	4.3.1 Overview
	4.3.2 Setting Up the Example
	4.3.3 Locating and Consuming a Portlet
	4.3.4 Viewing the Portlet
	4.3.5 Summary

	4.4 Creating Remote Pages and Books
	4.4.1 Basic Procedure

	5 Configuring Remote Portlets
	5.1 Applying a Look and Feel to a Remote Portlet
	5.2 Modifying Modes and States in a Remote Portlet
	5.2.1 What are Modes and States?
	5.2.2 Modes and States in Remote Portlets
	5.2.3 Changing Modes and States in Remote Portlets

	5.3 Handling Errors in Remote Portlets
	5.3.1 Configuring an Error Page in Oracle Enterprise Pack for Eclipse
	5.3.2 Configuring an Error Page in the .portlet File

	5.4 Setting Preferences on a Remote Portlet
	5.4.1 What is a Portlet Preference?
	5.4.2 Portlet Preferences and Remote Portlets
	5.4.2.1 Viewing and Modifying Preferences
	5.4.2.2 Working with Preferences Programatically
	5.4.2.3 Additional Usage Notes and Restrictions

	5.4.3 Managing Portlet Instances through Registration

	5.5 Using Backing Files with Remote Portlets
	5.6 Setting a Timeout Value on a Remote Portlet
	5.6.1 Overview
	5.6.2 Setting Default Timeout Values
	5.6.3 Setting Timeouts for Individual Remote Portlets

	5.7 Modifying WSRP Markup and Messages
	5.8 Remote Portlet Properties
	5.8.1 Proxy Portlet Properties
	5.8.2 Other Portlet Properties

	6 Offering Books, Pages, and Portlets to Consumers
	6.1 Introduction
	6.2 Offering Portlets on a Producer
	6.3 Offering Books and Pages on a Producer
	6.3.1 Setting Up the Example
	6.3.2 Creating a Remoteable Page (or Book)
	6.3.3 Summary

	6.4 Rules for Creating Remoteable Books and Pages

	7 Interportlet Communication with Remote Portlets
	7.1 Introduction
	7.2 Firing and Handling a Minimize Event
	7.2.1 Setting Up Your Environment
	7.2.2 Creating the Portlets on the Producer
	7.2.2.1 Create the JSP Files and Portlets
	7.2.2.2 Create the Backing File
	7.2.2.3 Attach the Backing File
	7.2.2.4 Add the Event Handler to bPortlet
	7.2.2.5 Test the Application
	7.2.2.6 Summary

	7.2.3 Creating the Consumer Portlets
	7.2.3.1 Setting Up the Exercise
	7.2.3.2 Creating the Remote Portlet
	7.2.3.3 Summary

	7.2.4 Testing the Application
	7.2.4.1 Build the Portal
	7.2.4.2 Test the Portal

	7.3 Inside the Remote Portlet File
	7.4 Data Transfer with Custom Events
	7.4.1 Retrieving the Event on the Producer
	7.4.2 Firing the Event in the Consumer

	7.5 Event Payloads Over WSRP
	7.5.1 Overview
	7.5.2 How WLP Packages Event Payloads in XML Format
	7.5.3 How WLP Converts an Event Payload to a Java Object

	7.6 Using Shared Parameters
	7.7 Adding Event Aliases

	8 Configuring a WebLogic Server Producer
	8.1 Introduction
	8.2 Using WSRP in a Basic WebLogic Server Domain
	8.2.1 Create a WebLogic Server Domain
	8.2.2 Extend the WebLogic Server Domain

	8.3 Configuring a Web Project
	8.3.1 Create a Web Project

	8.4 Testing the Producer Configuration
	8.4.1 Create a Server on the Producer
	8.4.2 Test for a Producer WSDL
	8.4.3 Create a Portlet in the Producer Web Application
	8.4.4 Consuming a Producer Portlet
	8.4.5 Summary

	8.5 Disabling a WSRP Producer

	9 The Interceptor Framework
	9.1 Introduction
	9.2 Use Cases
	9.3 Basic Steps
	9.4 Designing Interceptors
	9.5 Interceptor Interfaces
	9.5.1 Context Objects
	9.5.2 Interfaces
	9.5.3 Interface Methods
	9.5.4 Interceptor Method Return Values

	9.6 Configuring Interceptors
	9.7 Order of Method Execution
	9.7.1 Overview
	9.7.2 Basic Order Of Execution in a Group
	9.7.3 How Return Status Affects Execution Order
	9.7.4 Instance Creation and Reuse
	9.7.5 Example Chains

	9.8 Implementing an Error-Handling Interceptor
	9.8.1 Modifying an Error Message
	9.8.2 Including an Error JSP Page

	9.9 Using Resource Proxy Interceptors
	9.9.1 What is the ResourceProxyServlet
	9.9.2 The IResourceServletInterceptor
	9.9.3 Configuring the Resource Proxy Interceptors
	9.9.4 Default Interceptors
	9.9.5 More Information

	10 Federating User Profiles
	10.1 Introduction
	10.1.1 What are User Profiles?
	10.1.2 User Profiles in Federated Portals
	10.1.3 Platform for Privacy Preferences (P3P)

	10.2 When to Use this Feature
	10.3 Configuring the Producer
	10.3.1 Configuring Java Portlets
	10.3.1.1 Configuring the Deployment Descriptor (portlet.xml)
	10.3.1.2 Retrieving User Information in a Java Portlet
	10.3.1.3 Creating Default User Property Sets
	10.3.1.4 Mapping User Properties

	10.3.2 Configuring Non-Java Portlets
	10.3.2.1 Configuring the Deployment Descriptor File
	10.3.2.2 Handling User Property Extensions
	10.3.2.3 Mapping User Information on the Consumer

	10.4 Configuring the Consumer
	10.4.1 Using a Mapping File
	10.4.2 Using a Mapping Class
	10.4.2.1 Writing the Mapping Class
	10.4.2.2 Configuring the Mapping Class

	10.4.3 Mapping Constants

	10.5 P3P Examples
	10.5.1 Example: portlet.xml file with P3P Attributes
	10.5.2 Example: Retrieving P3P User Information in a Java Portlet
	10.5.3 Example: Retrieving User Information in Other Portlets

	11 Consumer Entitlement
	11.1 Introduction
	11.2 Configuring a Producer
	11.2.1 Creating an Application Property Set
	11.2.2 Editing the Producer Configuration File
	11.2.3 Defining Consumer Entitlements

	11.3 Registering a Consumer
	11.4 Modifying Registration Properties

	12 Transferring Custom Data
	12.1 What is Custom Data Transfer?
	12.2 Custom Data Transfer Interfaces
	12.3 Performing Custom Data Transfer
	12.3.1 Custom Data Transfer with a Complex Producer
	12.3.1.1 Example Overview
	12.3.1.2 Setting Up the Example
	12.3.1.3 Creating the Producer JSP and Portlet
	12.3.1.4 Federating zipTest.portlet to the Consumer
	12.3.1.5 Creating a Backing File
	12.3.1.6 Testing the Consumer Application

	12.3.2 Custom Data Transfer in a Simple Producer

	12.4 Transferring XML Data
	12.5 Deploying Your Own Interface Implementations
	12.5.1 General Guidelines
	12.5.2 Implementation Rules

	13 WSRP Interoperability With WebCenter Framework
	13.1 Consuming WLP Portlets in WebCenter Framework and Oracle Portal Applications
	13.1.1 Understanding the Cause of User Authentication Errors
	13.1.2 Preventing User Authentication Errors

	13.2 Consuming WebCenter Framework Portlets in WebLogic Portal
	13.2.1 Avoiding Cookie Collisions
	13.2.2 Configuring Portlets That Use ADF Faces Rich Client Components
	13.2.2.1 Using iframe_unwrapped
	13.2.2.2 Disabling html-amp-entity in WEB-INF/wlp-framework-common-config.xml
	13.2.2.3 Using CSS Styling (Optional)
	13.2.2.4 Setting a Fixed Height on the Portlet's Contents (Optional)

	13.3 Configuring Security
	13.4 Interoperation of Navigational Parameters
	13.4.1 Configuring the WLP Producer
	13.4.2 Configuring the WebCenter Producer
	13.4.3 Consuming the WLP Portlets in WebCenter
	13.4.4 Consuming a WebCenter Portlet that requires Shared Navigational Parameters With an Initial Value

	13.5 Special Considerations
	13.5.1 Interportlet Communication Considerations
	13.5.2 Consuming Oracle ADF Faces Rich Client Component Portlets

	14 Other Topics and Best Practices
	14.1 Decouple Rendering from Interaction
	14.2 Avoid Interportlet Dependencies
	14.3 Avoid Portal Layout Dependencies
	14.4 Avoid Coupling by URL
	14.5 Avoid Accessing Request Parameters in Rendering Code
	14.6 Avoid Moving Producers
	14.7 WebLogic Server Producers
	14.8 Security for Remote Portlets
	14.9 Error Handling
	14.9.1 On the Producer
	14.9.2 On the Consumer
	14.9.3 Interceptors

	14.10 Portlet Programming Guidelines and Best Practices
	14.11 Designing for Performance
	14.11.1 Performance Guidelines for Producers
	14.11.1.1 Reorder Authentication Providers
	14.11.1.2 Enable Attachment Support
	14.11.1.3 Other Techniques

	14.11.2 Performance Guidelines for Consumers

	14.12 Using Local Proxy Mode
	14.12.1 Why Use Local Proxy Mode?
	14.12.2 Deployment Configuration
	14.12.3 How Local Proxy Mode Works
	14.12.4 When to Use and Not Use

	14.13 Monitoring and Logging
	14.13.1 Using the Monitor Servlet
	14.13.2 Creating Custom Logs

	14.14 Managing Delivery of Headers and Cookies to the Browser
	14.14.1 Best Practice for Setting Cookies and Headers
	14.14.2 Configuring Client Attribute Preferences on the Producer
	14.14.3 Handling Cookies that Contain the Producer’s Domain
	14.14.4 URL/Path Rewriting of the Cookie Path
	14.14.5 Using Secure Cookies
	14.14.6 Managing Security Between Consumer and Producer

	14.15 Configuring Session Cookies
	14.15.1 Using Different Cookie Names
	14.15.2 Using a System Property
	14.15.3 Blocking Cookies

	14.16 User Sessions on CWEB Applications
	14.17 Using Multiple Views with Remote Portlets
	14.18 Handling User Identity Changes
	14.19 Storing Registration Properties
	14.19.1 Why Store Registration Properties?
	14.19.2 Using the Administration Console
	14.19.3 Using Oracle Enterprise Pack for Eclipse

	14.20 Editing the WSRP WSDL Template File
	14.21 Configuring a Custom JAX-RPC Handler
	14.21.1 Configuring a Handler on the Consumer
	14.21.2 Configuring a Handler on the Producer

	Part III Staging
	15 Establishing WSRP Security with SAML
	15.1 SAML Security Between WebLogic Portal Domains
	15.1.1 Overview
	15.1.2 Setting Up the SAML Configuration Example
	15.1.3 Configuring the Consumer
	15.1.3.1 Generate a Key
	15.1.3.2 Export the Key
	15.1.3.3 Modify the Consumer's Security Realm

	15.1.4 Configuring the Producer
	15.1.4.1 Import the Certificate
	15.1.4.2 Configure the Asserting Party Properties

	15.1.5 Testing the Configuration

	15.2 SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions
	15.2.1 SAML Security Between 9.2 or Later Version Consumers and 8.1x Producers
	15.2.1.1 Configuring the Consumer
	15.2.1.1.1 Generate a Key

	15.2.1.2 Change the Consumer's Name
	15.2.1.3 Modify the Consumer's Security Realm
	15.2.1.4 Configure the WebLogic Portal 8.1x Producer
	15.2.1.4.1 Import the Certificate
	15.2.1.4.2 Test the Configuration

	15.2.1.5 Summary

	15.2.2 SAML Security Between 8.1x Consumers and 9.2 or Later Version Producers
	15.2.2.1 Configure the 8.1x Consumer
	15.2.2.1.1 Generate a Key

	15.2.2.2 Configure the 9.2 or Later Version Producer
	15.2.2.3 Testing the Configuration

	15.3 Using SAML Security with a Name Mapper
	15.3.1 Writing a Name Mapper Class
	15.3.1.1 Implementing SAMLCredentialNameMapper on the Consumer
	15.3.1.2 Implementing SAMLIdentityAssertionNameMapper on the Producer

	15.3.2 Deploying the Mapper Classes
	15.3.3 Configuring the Mapper Classes
	15.3.3.1 Adding a Mapper Class to the Producer
	15.3.3.2 Adding a Mapper Class to the Consumer

	15.4 Allowing Virtual Users

	16 Configuring User Name Token Security
	16.1 Configuring the Consumer
	16.2 Configuring the Producer
	16.2.1 Summary

	17 Configuring WSRP Security Between WLP and WebCenter Framework
	17.1 Introduction
	17.2 SAML Security Between a WebCenter Framework Consumer and a WebLogic Portal Producer
	17.2.1 Configuring the Consumer
	17.2.1.1 Generate a Key Pair
	17.2.1.2 Export the Public Key Certificate

	17.2.2 Configuring the Producer
	17.2.2.1 Import the Public Key Certificate Into The Producer Domain's Trust Key Store
	17.2.2.2 Modify the WSDL Templates in the Producer Web-App
	17.2.2.3 Modify the Web Services Policy Configuration in the Producer Web-App
	17.2.2.4 Add a New Asserting Party to the SAML Identity Asserter
	17.2.2.5 Register the WebLogic Portal Producer with the WebCenter Consumer
	17.2.2.6 Test the Configuration

	17.3 SAML Security Between a WebLogic Portal Consumer and a WebCenter Framework Producer
	17.3.1 Register the WebCenter Framework Producer with the WebLogic Portal Consumer
	17.3.2 Add an Authentication Mechanism To Your Portal
	17.3.3 Configuring the WebLogic Portal Consumer
	17.3.3.1 Generate a Key Pair
	17.3.3.2 Export the Public Key Certificate
	17.3.3.3 Import the Public Key Certificate Into The Consumer Domain's Trust Key Store
	17.3.3.4 Add a New Policy to the Consumer Web-App
	17.3.3.5 Update the Producer's Security Policy on the Consumer
	17.3.3.6 Modify the Consumer's SAMLCredentialMapper
	17.3.3.7 Configure the Consumer's PKI Credential Mapping Provider
	17.3.3.8 Create a New PKI Credential Mapping to the Consumer

	17.3.4 Configuring the WebCenter Framework Producer

	17.4 (Optional) Additional Configuration for a WebLogic Portal Consumer
	17.4.1 Register the WebLogic Portal producer with the WebLogic Portal Consumer
	17.4.2 Update the Producer's Security Policy on the Consumer
	17.4.3 Create a New PKI Credential Mapping to the Consumer

	18 Adding Remote Resources to the Library
	18.1 Introduction
	18.2 Adding a Producer
	18.3 Adding a Remote Portlet to the Portal Library
	18.4 Adding a Remote Page to the Portal Library
	18.5 Adding a Remote Book to the Portal Library

	Part IV Production
	19 Managing Federated Portals
	19.1 Modifying the Consumer Security Configuration
	19.1.1 Changing the Web Application
	19.1.2 Modifying Global Credentials
	19.1.3 Modifying Producer Credentials

	19.2 Modifying Producer Registration Properties

