

Oracle® Insurance Policy
Administration

Coherence

version 9
January 2010

Version 9 OIPA Coherence 2 of 15
 Revised: 01/05/10

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use,
copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or
by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in
any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure
the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in
dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related notices. For information on
third party notices and the software and related documentation in connection with which they need to be included, please contact the
attorney from the Development and Strategic Initiatives Legal Group that supports the development team for the Oracle offering.
Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a
customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or
functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your
access to and use of this confidential material is subject to the terms and conditions of your Oracle Software License and Service
Agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part
of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Version 9 OIPA Coherence 3 of 15
 Revised: 01/05/10

Table of Contents

Overview .. 4
Locating Configurable Coherence Files .. 5
Caching .. 6

CacheProvider and ICacheHelper Interfaces ... 6
CacheProcessor Abstract Class .. 7
Accessing Cache .. 7
CoherenceCacheProviderUtl and CacheUtl ... 8
Three CoherenceCacheHelper Classes ... 8
Coherence Configuration for Caching ... 9

Cycle Messaging .. 11
CycleMessageType and CycleMessage ... 11
MessageDispatcher Invocable .. 11
CycleGroupDcl and Cycle Cache Region .. 12
Initialization ... 12
Coherence Configuration for Cycle Invocation ... 12

Application Profiling ... 13
ProfilingEventCacheBll and ProfilingEventCacheEntryKey ... 13
ProfilingEventCacheHelper ... 14
Coherence Configuration for Profiling Event Cache ... 14
External Profiling Application ... 14

Coherence Cluster Configuration .. 15

Version 9 OIPA Coherence 4 of 15
 Revised: 01/05/10

OVERVIEW
Oracle Coherence provides Oracle Insurance Policy Administration (OIPA) with replicated and distributed
(partitioned) data management and caching services on top of a reliable, highly scalable peer-to-peer clustering
protocol. Coherence has no single points of failure; it automatically and transparently fails over and
redistributes its clustered data management services when a server becomes inoperative or is disconnected from
the network. When a new server is added, or when a failed server is restarted, it automatically joins the cluster
and Coherence fails back services to it, transparently redistributing the cluster load. Coherence includes
network-level fault tolerance features and transparent soft re-start capability to enable servers to self-heal.

There are three different scenarios where OIPA employs Oracle Coherence. They are as follows:

1. Caching

2. Cycle Messaging

3. Application Profiling

Version 9 OIPA Coherence 5 of 15
 Revised: 01/05/10

LOCATING CONFIGURABLE COHERENCE FILES
To locate the coherence configuration files for caching and application profiling, open the properties file in the
OIPA deployable for eDelivery. For caching in cycle, you will find the files in each one of the cycle sub
folders. The two coherence configuration files are called coherence-cach-config.xml and coherenece-
config.xml. These files will be explained later in the document.

OIPA deployable folder structure

properties folder contents

OIPA deployable folder structure

Each cycle zip folder has its own set of coherence files

Version 9 OIPA Coherence 6 of 15
 Revised: 01/05/10

CACHING
OIPA caches static configuration data and other data that rarely change. There are three cache regions in the
system, each for a different module. Every cache region is configured separately, so they can each be
configured differently. By implementing this model, the integration of new applications is simplified and only
one new region must be added. The core and shared functionality regions will remain the same.

The three cache regions are:

1. region CORE for INSURANCE.SHARED module

2. region SRE for INSURANCE.SRE module

3. region PAS for INSURANCE.PAS module

CORE
(load resources, language, common base classes and

utitlties)

SRE
(Shared rules engine that executes rules)

PAS
(Specific policy

administration rules)

NBU
(Specific new business
and underwriting rules)

The following figure demonstrates how caching works in the system:

Figure 1 – Cache Diagram

CACHEPROVIDER AND ICACHEHELPER INTERFACES
CacheProvider interface defines all methods any caching provider must implement in order to manage cached
objects in OIPA. Coherence is one of the caching providers employed by OIPA.

ICacheHelper interface defines all methods required by caching access in the system, including getting and
setting value for a caching key and method checking if the cache contains a given caching key or not.

Version 9 OIPA Coherence 7 of 15
 Revised: 01/05/10

Using CacheProvider and ICacheHelper interfaces allows OIPA to change actual caching technology that is
used for caching without impacting any client code.

CACHEPROCESSOR ABSTRACT CLASS
The abstract class, CacheProcessor, retrieves the object for the caching key from the ICacheHelper in every
CacheProcessor instance. An abstract method populateObject() is declared for every CacheProcessor subclass to
implement what value object to be put into the cache associated with the caching key. An updateCache()
method is also available for use when cached value object needs to be updated for the caching key, such as
when the system date is advanced from cycle processing, a new value is updated in the cache.

The following is the pseudo-code of the retrieveObject() provided by CacheProcessor.

IF cacheHelper contains cacheKey THEN
get cache value of cacheKey from cacheHelper

ELSE

invoke populateObject() to get cache value
put cache value into cacheHelper associated with cacheKey

ACCESSING CACHE
Wherever a piece of data as cache candidate is requested, one anonymous inner class that extends
CacheProcessor is defined and instantiated to determine how the value object is created when it is not yet in the
cache. The value returned from CacheProcessor retrieveObject() method will be used by client code. It could be
either found from the cache region for that module with the caching key, or newly created and put into the
cache region associated with the caching key. This is transparent so the difference is not visible to the client
code.

The following is example code of caching companyDcl for every companyGuid.

String key = "CompanyDcl[CompanyGUID=\"" + companyGuid + "\"]";
CacheProcessor cacheProcessor = new CacheProcessor(cacheHelper, key) {

 @Override
 protected Object populateObject() {

 CompanyDcl companyDcl = findByPrimaryKey(CompanyDcl.class, companyGuid);
 return companyDcl;
 }
};
return cacheProcessor.retrieveObject();

Version 9 OIPA Coherence 8 of 15
 Revised: 01/05/10

COHERENCECACHEPROVIDERUTL AND CACHEUTL
The utility class CoherenceCacheProviderUtl implements the CacheProvider interface. It enforces convention
for interacting with Coherence. Every CoherenceCacheProviderUtl instance gets a cache region for a given
name from the Coherence CacheFactory, which creates a clustered NamedCache instance when necessary. The
CoherenceCacheProviderUtl object delegates all caching accesses to its Coherence NamedCache object.

Figure 2 – Coherence CacheProviderUtl

Every instance of utility class CacheUtl wraps a CacheProvider object. CacheUtl also maintains a class level
map of mappings from cache region name and cache provider type to a CacheUtl instance. This guarantees only
one CacheProvider per cache region per cache provider type.

THREE COHERENCECACHEHELPER CLASSES
CoherenceCacheHelper classes are ICacheHelper implementations that use Coherence for caching. There are
three CoherenceCacheHelper classes in packages. They are as follows:

1. com.adminserver.dal.helper

2. com.adminserver.sre.helper

3. com.adminserver.pas.dal.helper

Each class corresponds to cache region CORE, SRE, and PAS respectively.

Figure 3 – CoherenceCacheHelper

These three CoherenceCacheHelper classes have mostly identical code, except that each declares its own unique
cache region name (i.e., “CORE”, “SRE”, “PAS”, and each register at Spring with a different bean name).

Every CoherenceCacheHelper has its own unique CacheUtl instance, which is mapped from the cache region
name for the Coherence cache provider type.

Version 9 OIPA Coherence 9 of 15
 Revised: 01/05/10

COHERENCE CONFIGURATION FOR CACHING
There are three cache mappings defined in the Coherence caching scheme mapping configuration for the cache
name that are “CORE”, “SRE”, “PAS”. The mapped schemes can be different or the same. In the example
below you can see each region name identified and an associated scheme map. You may reference the Oracle
Coherence documentation on Oracles Technology network for a full listing of available configuration
parameters.

Example of Coherence Configuration for Caching in OIPA Version 9
(This file can be found in the properties folder and is named coherence-cache-config.xml)

<cache-config>

<!-- ============================ -->
<!-- Map Caches to the NearScheme -->
<!-- ============================ -->
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>CORE</cache-name>
 <scheme-name>SampleNearScheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>PAS</cache-name>
 <scheme-name>SampleNearScheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>SRE</cache-name>
 <scheme-name>SampleNearScheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>Cycle</cache-name>
 <scheme-name>SampleNearScheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>cacheForAsProfiler</cache-name>
 <scheme-name>SampleLimitedPartitionedScheme</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>

 <!-- ===================== -->
 <!-- Local In-memory Cache -->
 <!-- ===================== -->
 <local-scheme>
 <scheme-name>SampleMemoryScheme</scheme-name>
 </local-scheme>

 <!-- ================================== -->
 <!-- Size limited Local In-memory Cache -->
 <!-- ================================== -->
 <local-scheme>
 <scheme-name>SampleMemoryLimitedScheme</scheme-name>
 <low-units>1000</low-units>
 <high-units>5000</high-units>
 </local-scheme>

 <!-- =========================== -->
 <!-- Distributed In-memory Cache -->
 <!-- =========================== -->

Version 9 OIPA Coherence 10 of 15
 Revised: 01/05/10

 <distributed-scheme>
 <scheme-name>SamplePartitionedScheme</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 </distributed-scheme>

 <!-- =================================== -->
 <!-- Distributed Limited In-memory Cache -->
 <!-- =================================== -->
 <distributed-scheme>
 <scheme-name>SampleLimitedPartitionedScheme</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryLimitedScheme</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 </distributed-scheme>

 <!-- ======================== -->
 <!-- Cache Cluster Definition -->
 <!-- ======================== -->
 <near-scheme>
 <scheme-name>SampleNearScheme</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryLimitedScheme</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <distributed-scheme>
 <scheme-ref>SamplePartitionedScheme</scheme-ref>
 </distributed-scheme>
 </back-scheme>
 </near-scheme>

 <!-- ================ -->
 <!-- Cycle Invocation -->
 <!-- ================ -->
 <invocation-scheme>
 <scheme-name>CycleMessagingService</scheme-name>
 <service-name>InvocationService</service-name>
 <autostart>true</autostart>
 </invocation-scheme>

 </caching-schemes>

</cache-config>

Version 9 OIPA Coherence 11 of 15
 Revised: 01/05/10

CYCLE MESSAGING
OIPA provides a subsystem for batch processing for insurance transactions called Cycle. Cycle is a high
performance distributed subsystem designed to process as many pending transactions as possible in the shortest
amount of time. The cycle subsystem drives processing of transactions through a cycle group, which is
comprised of a set of cycle agents.

Each cycle agent exists in its own JVM process. Cycle agents may be spread across multiple machines. The
cycle agents in the same cycle group communicate with each other in order to coordinate cycle processing by
sending cycle messages to each other.

When configuring a cycle client or agent, the coherence configuration file must be defined at runtime. The
script that is used to start cycle as a service, startup.sh or startup.bat, must be modified to include the correct
absolute path - Example: “JAVA_OPTS –DrootDir=. -
Dtangosol.coherence.override=/opt/oracle/oipa/properties/coherence-config.xml”

Please see the OIPA Cycle documentation found on the Insurance Documentation section of Oracle’s
Technology Network for more information.

OIPA cycle uses both coherence invocation service and coherence cache for cycle group member
communications. Cycle messages are distributed through a coherence invocation service. Cycle group state
information is shared among cycle agents in the same cycle group by using a coherence cache region which is
called “Cycle” in the system. Therefore, it is required that all cycle agents in the same cycle group be
configured in the same coherence cluster.

CYCLEMESSAGETYPE AND CYCLEMESSAGE
Enumeration CycleMessageType defines the type of cycle messages in OIPA. There are five different types of
cycle messages. The five types are as follows:

1. InitializeGroupProcessing

2. MemberCommand

3. MemberStatus

4. GroupCommand

5. GroupStatus

Every CycleMessage object has information identifying the type of cycle message as well as details about the
sending cycle agent, including identification, status and other necessary information such as timestamp, etc.

MESSAGEDISPATCHER INVOCABLE
Coherence invocable objects are cluster-portable objects that can be invoked on any set of remote agents. When
an invocable object is received by the invocation service on an agent, the invocation service deserializes the
object, executes its init() method, then invokes it by executing its run() method.

The cycle subsystem defines an invocable implementation in class MessageDispatcher. Every
MessageDispatcher instance carries one cycle message, and its execution dispatches the cycle message to all
message listeners registered to the local cycle group agent for the corresponding message type.

Version 9 OIPA Coherence 12 of 15
 Revised: 01/05/10

Figure 4 – Coherence Invocable

The following is the implementation of MessageDispatcher run() method.

BaseCycleGroupConnection cycleGroupConnection =
 SpringBeanUtl.getBeanByName(
"cycleGroupConnection");
cycleGroupConnection.dispatchLocalCycleMessage(cycleMessage);

CYCLEGROUPDCL AND CYCLE CACHE REGION
CycleGroupDcl class defines information about the cycle group, such as current cycle group status, current
cycle type, information of the current controller cycle agent, and all cycle agents identified by member ID’s,
etc. Group information in CycleGroupDcl is shared across all agents in the group through Coherence cache
using a fixed string caching key.

Cycle defines its own cache region, named “Cycle”, where cycle agents share cycle group information. Any
group information update made by a member, including the group controller, is ported to the other remote
members by Coherence.

The cycle cache region does not have to be configured differently in the Coherence caching scheme mapping
from the other caching regions in the system, though it can be configured differently if necessary.

INITIALIZATION
Both the Coherence cache and invocation service are initialized in the connect() method class
CoherenceCycleGroupConnection, which is executed when a cycle agent connects to a cycle group.

COHERENCE CONFIGURATION FOR CYCLE INVOCATION
The following is an example of Coherence configuration for cycle invocation.
<cache-config>
 ……
<caching-schemes>
 ……
 <invocation-scheme>
 <scheme-name>CycleMessagingService</scheme-name>
 <service-name>InvocationService</service-name>
 <autostart>true</autostart>
 </invocation-scheme>
</caching-schemes>
</cache-config>

Version 9 OIPA Coherence 13 of 15
 Revised: 01/05/10

APPLICATION PROFILING
OIPA provides a profiling subsystem that gathers information for the purposes of providing insights into system
execution. The OIPA profiling subsystem sends lifecycle events of request processing and transaction
processing to registered listeners. Profiling event information can be used for performance analysis and
improvement, system optimization, auditing and reports.

OIPA provides one profiling listener implementation that uses Coherence cache to pass profiling event
information to a separated profiling application that runs in the same Coherence cluster.

Figure 5 – Profiling Diagram

PROFILINGEVENTCACHEBLL AND PROFILINGEVENTCACHEENTRYKEY
Class ProfilingEventCacheBll provides methods to save a profiling event object or a list of profiling event
objects into a Coherence NamedCache. Every cache entry of an event object or an event object list is associated
with a caching key of ProfilingEventCacheEntryKey instance, which has a time stamp and a string UUID.

Right now the provided Coherence based profiling listener implementation saves screen profiling events
individually, and saves lists of transaction profiling events at a fixed one second interval.

Version 9 OIPA Coherence 14 of 15
 Revised: 01/05/10

PROFILINGEVENTCACHEHELPER
ProfilingEventCacheHelper extends ProfilingEventCacheBll. It creates the Coherence NamedCache with a
default cache region name “cacheForAsProfiler”. All access to this Coherence cache in the provided profiling
listener are through ProfilingEventCacheHelper.

COHERENCE CONFIGURATION FOR PROFILING EVENT CACHE
The Coherence cache configuration for OIPA profiling is similar to that for static data caching. It can be
configured differently if necessary.

EXTERNAL PROFILING APPLICATION
An external profiling application is not part of OIPA. In order to access information from the profiling event
listener through Coherence cache, external profiling application must be in the same Coherence cluster and use
the same cache name. Typically a map listener is configured to be invoked whenever a new cache entry is
inserted that has a profiling event object, or a list of profiling event objects, so the profiling event data can be
captured for the monitoring application to use.

Version 9 OIPA Coherence 15 of 15
 Revised: 01/05/10

COHERENCE CLUSTER CONFIGURATION
Coherence cluster configuration defines all the nodes in the cluster, along with a pointer to the cache factory
configuration file. This is necessary in order for coherence to run. During the configuring of the application
server, an argument must be passed to the JVM to define the location of this coherence configuration file,
coherence-config.xml. The argument to be passed is “tangosol.coherence.over”, along with the absolute path to
the configuration file.

Example: “-Dtangosol.coherence.override=/opt/oracle/oipa/properties/coherence-
config.xml”

Sample Coherence Cluster Configuration
(This file can be found in the properties folder and is named coherence-cache-config.xml.)

<coherence>
 <cluster-config>
 <unicast-listener>
 <well-known-addresses>
 <socket-address id="1">
 <address>localhost</address>
 <port>8080</port>
 </socket-address>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
 <logging-config>

 <severity-level>5</severity-level>
 </logging-config>
 <configurable-cache-factory-config>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>/opt/oracle/oipa/properties/coherence-cache-
config.xml</param-value>
 </init-param>
 </init-params>
 </configurable-cache-factory-config>
</coherence>

