OoORACLE
INSURANCE

Oracle® Insurance Policy Administration

Extensibility

Version 9
E16287 01
December 2009

ORACLE

ORACLE
INSURANCE

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use,
copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or
by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the
Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related notices. For information on
third party notices and the software and related documentation in connection with which they need to be included, please contact the
attorney from the Development and Strategic Initiatives Legal Group that supports the development team for the Oracle offering.
Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a
customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or
functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your
access to and use of this confidential material is subject to the terms and conditions of your Oracle Software License and Service
Agreement, which has been executed and with which you agree to comply. This document and information contained herein may not
be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not
part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Release 9.x Extensibility 2 0f 18
Revised: 03/01/2010

Contents

R 1 o o 11 T 1[0 o PP 4
2. Transaction ProCesSiNg EXIENSIONSuuiiiiiiiiiiiiiiiis e et e e et s e e e e e e e e e aaeanaaaeaeaaeeeeees 6
N Y = L1 T e q 1= 153 o o 1RSSR 6
2.2 EXternalProcess BUSINESS RUIE.........oouui e e e e e 8
2.3 FIleRECEIVEA WED SEIVICE... .ottt e e e e e e et e e e e e e e e e e e aasaaaaaeeaeeeaeees 9
3. System Level Extensions (Extensibility FrameWOrK)cooiiiiiiiiiiiiee e 11
3.1 Shared RUIES ENQINEo 12
ATV o IS Y= Vo = RSP 15
GG B U LY 1 (=T = Tt TSP 18
Release 9.x Extensibility 30f 18

Revised: 03/01/2010

1. Introduction

Extensibility is a critical factor when selecting an architecture that can be enhanced with the speed of
your organizations’ needs. The ability to extend the system and hook in new system capability
without making major infrastructure changes is necessary for system maintainability and in avoiding
early obsolescence. The Oracle Insurance Policy Administration system (OIPA) provides several
mechanisms for extensibility. Currently, all extensions are implemented as Java classes that are
injected into specific points or levels in the OIPA infrastructure. Extension developers need only
implement the requisite Java interfaces in order to access this powerful OIPA feature.

Primarily, there are two levels of extensions which are called the transaction level and the system
level.
1. The transaction level extensions allow for custom logic within the context of a policy’s
lifecycle.
2. The system level extensions allow for custom logic through the lifecycle of specific system
events. In general, system level extensions allow for finer-grained customization.

I ATISICLIOTY EXLENS N

Custom Java Code Custom Java Code

Transaction Level Extensions

The key benefit of transaction level extensions is to allow for greater control over a policy’s lifecycle.
Since transaction level extensions are provided with data from running transactions, they are powerful
tools for integration. Transaction level processing is the logic that executes when an activity or event
is ran against a policy. In the example below, a policy lifecycle includes the OIPA transactions of
Premium Receipt, Issue and Billing respectively. The first two transactions illustrate how the system
can perform messaging over an enterprise service bus (ESB). The last transaction, Billing, illustrates
MQ series integration.

Release 9.x Extensibility 40f 18
Revised: 03/01/2010

Example Policy Lifecycle

Premium Receipt
Transaction Logic Web Service Call Extension *

Transaction Logic Data Verification Extension °
Billing

Transaction Logic MQ Extension

System Level Extensions

When finer-grained control over the application’s lifecycle is required, system level extensions can be
employed. System level extensions are provided through the Extensibility Framework which is
discussed later in this document.

Below is a simplified rules engine processing example that illustrates how system level extensions
can provide pre- or post-processing or replace a processing step altogether.

1) Default implementation

Process Persist
Allocations Results

2) Pre-processing added via an extension

Process
Value Polic =

3) Post-processing added via an extension

Start Value Polic Process Persist
Processing ¥ Allocations Results

4) Math processing lifecycle step is replaced with custom math via an extension

Start Value Polic Process Persist
Processing ¥ Allocations Results

Release 9.x Extensibility 50f 18
Revised: 03/01/2010

2. Transaction Processing Extensions

There are several facilities in place that enable extensibility within transaction processing. They are
in the Math processing of a transaction rule, via the ExternalProcess business rule and through the
FileReceived web service. Each mechanism for extending OIPA transaction processing is explained
in detail below.

2.1 Math Extensions

Some tasks may require interaction with custom Java code during the math processing of rules.
OIPA has a dedicated math variable type which can be added to any XML math section that contains
the <Mathvariable> elements. The math variable type is PROCESS, see the OIPA XML Syntax
guide for further detail. This has the advantage of allowing for rule logic to dictate which extension
should execute and which parameters should be passed.

Example XML Configuration
This example illustrates the PROCESS type <MathVariable> and the available attributes and parameter
passing.
<MathVariable NAME="VariableName”
TYPE="PROCESS”
NAMESPACE="com.example.package”
OBJECT="ClassName”
ISARRAY="YES |NO”
DATATYPE="DataType*”>
<Parameters>
<Parameter NAME=”InputVar” TYPE=”INPUT”>Literal|VariableName</Parameter>
<Parameter NAME="OutputVar” TYPE=”OUTPUT”>VariableName</Parameter>
</Parameters>
</MathVariable>

*Data type can be one of: TEXT, INTEGER, DECIMAL, BOOLEAN, DATE

Java Implementation Details

The above example requires that a class, com.example.package.ClassName, implements the
interface IProcessableObject. This class must be present on the class path of the application’s class
loader. The IProcessableObject interface is defined as follows:

public interface IProcessableObject {

public Object execute(Map<String, Object> inputParameterMap,
Map<String, Object> outputParameterMap)
throws Exception;

}

The implementation will receive two java.util.map instances. The first, inputParametermap, contains all of
the values defined as input parameters in the Math XML, keyed on the parameter name. Similarly,
the outputParamatermap contains all of the values defined as output parameters in the Math XML, keyed
on the parameter name. Output parameters will be copied back to the original variable name
specified as the value of the parameter. In other words, the value of the output variables will be
passed into the extension. Any changes to that value will be applied to the variable that is provided
by the parameter definition. In essence, the variable is “passed by reference” to the extension.

Release 9.x Extensibility 6 of 18
Revised: 03/01/2010

By supporting output parameters, the extension can return any number values. By default the
extension returns a single value, which is stored in the variable given by the variasLename attribute from
the example above.

2.1.1 Example Use of Math Extension

Assume there is some service that is available in the enterprise that will validate that a postal code,
provided by the user, matches the city provided by the user. The extension will return a Boolean
indicating whether or not the postal code/city pair are a match. It will also return the valid city name
for the given postal code in the event that the city and postal code do not match.

Example XML Configuration

<MathVariable NAME="PostalCodeMV”
TYPE="FIELD” DATATYPE="TEXT”>Policy:IssuePostalCode</MathVariable>
<MathVariable NAME="CityMv”
TYPE="FIELD” DATATYPE="TEXT”>Policy:IssueCity</MathVariable>
<MathVariable NAME="CorrectCityMv”
TYPE="VALUE” DATATYPE="TEXT”></MathVariable>
<MathVariable NAME="PostalCodeAndCityMatch”
TYPE="PROCESS”
NAMESPACE="com.example.package”
OBJECT="ValidatePostalCode”
ISARRAY="NO”
DATATYPE="BOOLEAN”>
<Parameters>
<Parameter NAME="PostalCode” TYPE="INPUT”>PostalCodeMV</Parameter>
<Parameter NAME=”City” TYPE=”INPUT”>CityMV</Parameter>
<Parameter NAME="CorrectedCity” TYPE="OUTPUT”’>CorrectCityMV</Parameter>
</Parameters>
</MathVariable>

Extension Pseudo-Code

class VerifyPostalCode implements IProcessableObject {

public Object execute(Map <String, Object> inputVariableMap,
Map <String, Object> outputVariableMap) throws Exception {

String postalCode = (String)inputVariableMap.get("PostalCode");
String city = (String)inputVariableMap.get("City");
VerificationResult result = ExternalService.verifyPostalCode(postalCode, city);

if(result.isvalid()) {
return true;

}

else {
outputVariableMap.put("CorrectedCity", result.getCorrectedCity());
return false;

Release 9.x Extensibility 7 of 18
Revised: 03/01/2010

2.2 ExternalProcess Business Rule

Every transaction in OIPA can have business rules associated with it. These business rules are
responsible for applying logic at the end of the transaction lifecycle. Typical business rules will
perform actions at a higher level than the transaction itself, such as generating a suspense account or
writing data to fields (i.e. policy, role, client, etc.) Business rules are the only mechanism that allows
for data persistence within the transaction’s unit of work.

In order to facilitate greater flexibility, OPA includes a special business rule that is capable of calling
custom Java code called ExternalProcess.

Implementing externalprocess requires the following:
1. A business rule named externalprocess attached to the transaction.
a. The business rule will describe the Java class to be executed.
2. The business rule name must exist in the Transaction-Business-Rule-Packet business rule in
the order it should be executed compared to other attached business rules.
3. An extension class that implements the 1apeExtension interface

Example XML Configuration

<ExternalProcess>
<Process>
<Assembly>com.example.extension</Assembly>
<Object>ExternalProcessImpl</Object>
</Process>
<Parameters>
<Parameter NAME="ParameterName”>ParameterValue</Parameters>
</Parameters>
</ExternalProcess>

Java Implementation Details

The above example requires that a class, com.example.extension.ExternalProcessImpl, implements the
interface 1apeExtension. This class must be present on the class path of the application’s class loader.
The 1apeExtension interface is defined as follows:

public interface IApeExtension {
public void process(IActivityBll activityBLL, Map <String, String> parameterCollection);

public void processUndo(IActivityBll activityBLL, Map <String, String> parameterCollection);
}

The process(..) method is executed during forward processing. The processundo(..) method is
executed during reversal.

The activityBll parameter exposes the necessary surface area for extension. It's critical to
understand that activities are executed as a single unit of work. That is, if any operation fails, then no
changes will have been made to the system. To enable this, insert, change and delete operations are
exposed by 1activityB1l. All data changes should be made through these mechanisms as they
ensure proper transactional integrity. Note: direct modification of the database can lead to
undesirable; or inaccurate; results.

Release 9.x Extensibility 8 of 18
Revised: 03/01/2010

2.3 FileReceived Web Service

The FileReceived web service, sometimes referred to as “AsFile”, exposes extensions before and
after the insert operation occurs. lllustrated below is the FileReceived lifecycle and the associated
insert extension opportunities.

The basic lifecycle for the FileReceived web service is:

1. Web service request received

2. The appropriate AsFile entry is retrieved based on the given FilelD

3. The AssignAttributes XML is processed

4. The XSLT associated with the AsFile entry maps the request XML to AsXml

5. If the AsXml contains Validation Errors, AsFile stops and a SOAP fault is returned to the caller
6. AsFile maps the AsXml to business objects

7. Prelnsert extensions are executed against the objects

8. The objects are inserted into the database

9. Postlnsert extensions are executed against the objects

10.The AsXml is returned to the caller

Example XML Configuration

<File>
<AssignAttributes>

</AssignAttributes>
<Prelnsert>
<Object CLASS="com.example.extension.PreInsertExtension">
<Parameters>
<Parameter NAME=”Name”>Value</Parameter>
<Parameter NAME=”Name”>Value</Parameter>

</Parameters>
</Object>
<Object CLASS="com.example.extension.PreInsertExtension2" />

</Prelnsert>

<PostInsert>
<Object CLASS="com.example.extension.PostInsertExtension" />
<Object CLASS="com.example.extension.PostInsertExtension2" />

</PostInsert>
</File>

Java Implementation Details

The preinsert and postInsert extensions must implement the 1rilepreinsertProcessorsll and
IFilePostInsertProcessorBll respectively. If the rarameters element is present, the specified parameters
will be passed to the extension. The text of the parameter elements should contain the name of an
attribute from the assignattributes section. This allows for the passage of data to the defined
extensions.

The preinsert and postiInsert interfaces are defined as:

public interface IFilePostInsertProcessorBll {

public <T extends AdminServerPersistentDcl> String process(ArraylList<T> dcllList, String requestXml, Map
<String, String> parameterMap);

}

Release 9.x Extensibility 9 of 18
Revised: 03/01/2010

public interface IFilePostInsertProcessorBll {

public <T extends AdminServerPersistentDcl> String process(ArraylList <T> dclList, String requestXmlL, Map
<String, String> parameterMap);

}

Release 9.x Extensibility 10 of 18
Revised: 03/01/2010

3. System Level Extensions (Extensibility Framework)

The Extensibility Framework provides a mechanism by which system event lifecycles can be
extended. Custom Java code can be added before or after a lifecycle step and it can also replace the
lifecycle step altogether. The Extensibility Framework is present at the transaction processing, web
service and user interface levels.

The Extensibility Framework maps custom Java classes to named points in the system. These
names vary based on the context and are described in detail later. A single Java class can be
mapped to multiple extension points and, conversely, a single extension point can have multiple Java
classes mapped to it.

The Extensibility Framework allows for wildcards in the specification of the extension point name. For
instance, Activity.* will call a custom Java class for every extension point starting with Activity.*. If
“¥" is used by itself, then all extension points will be processed by the Java class.

Wildcard options are as follows:

<Qualifier>.<Name> Activity.StartProcessing | Only the StartProcessing event will be intercepted
<Qualifier>.* Activity.* All extension points starting with Activity will be intercepted
* * All extension points will be intercepted

Lifecycle flow control is managed through the two methods exposed by every extension point
interface, processpre(..) and processPost(..). The processpre(..) method is executed prior to the
lifecycle event. This method always returns a Boolean where true indicates that the lifecycle step
should execute and false indicates that it should be skipped. This allows for lifecycle steps to be
overridden by custom code. The processpost(..) method is called after the lifecycle step has
completed. If that lifecycle step generated any data, it will be present in the context map as “Result”.

It's important to note that extensions are not thread-safe. That is, for performance, a single instance
is created and continually executed. The use of member variables in an extension is discouraged
unless proper locking is in place.

All extension points contain context data in the form of a java.util.map. The contents of this map will
vary depending on the extension point. This map is shared between the processpre(..) and
processPost(..) methods, but it is not shared with other extension points. Inter-extension
communication can be achieved through the use of some context data mechanism, depending on the
implementation. This could be in the form of a ThreadLocal variable, or an HTTP/Servlet request
context, for example.

Each extension point can have one or more extension registered to it. These extensions are
executed in the order in which they appear in the XML configuration.

Example XML Configuration

<extensions>
<extensionPoint type="com.example.extension.ExtensionPointClassName"
extensionPointName="ExtensionPoint.Name">
<register extension="com.example.extension.ExtensionClLassNamel" />
<register extension="com.example.extension.ExtensionClLassName2" />
</extensionPoint>
</extensions>

Release 9.x Extensibility 11 of 18
Revised: 03/01/2010

3.1 Shared Rules Engine

The Shared Rules Engine (SRE) can be extended through the use of the extensibility framework.
The SRE powers activity processing and can be extended at every critical lifecycle point.

Example XML Configuration

<extensionPoint type="com.adminserver.sre.extensibility.SreExtensionPoint"
extensionPointName="Activity.*">
<register extension="com.example.SreExtension" />
</extensionPoint>

All extensions written for the sreextensionPoint must implement 1sreextension.

public interface ISreExtension {
public boolean processPre(SreExtensionContext extensionContext);

public void processPost(SreExtensionContext extensionContext);

}

Release 9.x Extensibility 12 of 18
Revised: 03/01/2010

3.1.1 SRE Extension Points

Forward Processing

Lifecycle Step

Extension Point

Available Variables

ActivityBll.Process
ActivityProcessorBIl.Process
DoSuspense
ProcessSuspense
ProcessMultiSuspense
DoValuation
PolicyValuation.Value
DoBeginPointinTimeValuation
DoMath
DoBusinesslLogic
Rule.ProcessRule
DoAssignment
ProcessAssignments
ProcessAssignment
DoDisbursement
ProcessDisbursements
ProcessBalanced
ProcessUnbalanced
DoAccounting
ProcessAccounting
DoSpawn
DoEndPointIinTimeValuation
DoWrite
DoWriteOnSystemError

Release 9.x Extensibility

Revised: 03/01/2010

Activity.InitializeProcessing
Activity.StartProcessing
Activity.StartSuspense
Activity.ProcessSuspense
Activity.ProcessMultiSuspense
Activity.StartValuation
Activity.ValuePolicy
Activity.StartPITValuation
Activity.ProcessMath
Activity.StartBusinessLogic
Activity.ProcessBusinessRule
Activity.StartAssignment
Activity.ProcessAssignments
Activity.ProcessAssignment
Activity.StartDisbursement
Activity.ProcessDisbursements
Activity.ProcessBalancedDisbursements
Activity.ProcessUnBalancedDisbursements
Activity.StartAccounting
Activity.ProcessAccounting
Activity.ProcessSpawn
Activity.CompletePITValuation
Activity.Persist
Activity.SystemError

ClientNumber, ActivityProcessType
InputVariableMap, ApplicationCallback, ActivityProcessType
Activity, Transaction

Activity

Activity

Activity, Transaction

ValuationInformation

Activity, PointInTimeValuationProcess

Activity

Activity

BusinessRule, RuleOption, Activity

Activity, Transaction

AssignmentList, Activity, ExpressionValidator
Assignment, Activity

Activity, Transaction

DisbursementDetails, Activity
DisbursementDetails, Activity, DisbursementData
DisbursementDetails, Activity, DisbursementData
Activity

Activity

Activity, Transaction

Activity, PointInTimeValuationProcess, ActivityStatus
ActivityProcessResult

Exception

13 of 18

Reverse Processing

Lifecycle Step
ActivityBIll.Process
UndoProcessor.Process
DoBusinessLogicForNuvPending
Rule.ProcessNuvPending
ProcessValuationForUndo
DoAccounting
ProcessAccounting
DoBusinessLogicForUndo
Rule.ProcessUndo
DoWrite
DoWriteOnSystemError

Extensibility
Revised: 03/01/2010

Release 9.x

Extension Point
Activity.InitializeProcessing
Activity.StartUndoProcessing
Activity.StartNuvPendingBusinessLogic
Activity.ProcessBusinessRuleNuvPending
Activity.StartValuation
Activity.StartAccounting
Activity.ProcessAccounting
Activity.StartBusinessLogic
Activity.ProcessBusinessRuleUndo
Activity.Persist
Activity.SystemError

Available Variables
ClientNumber, ActivityProcessType
InputVariableMap, ApplicationCallback
Activity, Transactin
Activity, BusinessRule
Activity, Transaction
Activity, Transaction
Activity
Activity, Transaction
ActivityBll, BusinessRuleBII
ActivityProcessResult

Exception

14 of 18

3.2 Web Services
Web services can be extended through the use of the extensibility framework.

Example XML Configuration

<extensionPoint type="com.adminserver.webservice.extensibility.WebserviceExtensionPoint"
extensionPointName="SecuredWebService.*">
<register extension="com.example.WebServiceExtension" />

</extensionPoint>

All extensions written for the webserviceExtensionPoint MUSt implement IwebserviceExtension
public interface IWebserviceExtension {
public boolean processPre(WebserviceExtensionContext extensionContext);

public void processPost(WebserviceExtensionContext extensionContext);

}

The general webserviceExtensionPoint has a single extension point name,
SecureWebService.PerformAuthorization. This extension point allows for the overriding of the web service
security mechanism.

This extension will receive the following parameters in the context map:

User The username passed to the web service for authentication
Password The password passed to the web service for authentication
WebMethod The web method being called

WebServiceName The web service containing the web method being called
Parameters The parameters passed to the web service

In the processpost method, the context map will contain AuthorizationResult, Which contains the result of
the authorization request. This object can be altered to adjust the behavior of the authentication.

Release 9.x Extensibility 15 of 18
Revised: 03/01/2010

3.2.1 File Received
The FileReceived web service can be extended through the use of the extensibility framework.

Example XML Configuration

<extensionPoint type="com.adminserver.webservice.extensibility.FileReceivedExtensionPoint"
extensionPointName="FileReceived. *">
<register extension="com.example.FileReceivedExtension" />

</extensionPoint>

All extensions written for the FileReceivedExtensionPoint MuUSt implement 1FileReceivedExtension
public interface IFileReceivedExtension {
public boolean processPre(FileReceivedExtensionContext extensionContext);

public void processPost(FileReceivedExtensionContext extensionContext);

Release 9.x Extensibility 16 of 18
Revised: 03/01/2010

3.2.2 File Received Extension Points

Lifecycle Step
FileReceived.ProcessFileReceived
GetFileProcessDcl
FindByFileld
CreateFileProcessDcl
ProcessAssignAttributes
ProcessRequest
TransformToAsXml
ValidateAsXml
MapXmIToObject
ProcessimportedObject
PerformPrelnsert
RetrieveDclList
BuildDclListFromAsXml
DoPrelnsert
Performinsert
PerformPostInsert
DoPostInsertProcessing
DoPostlnsert
BuildResultString
LoadOutputXslt

Release 9.x

Extensibility

Extension Point
FileReceived.StartProcessingFileReceived
FileReceived.StartRetrievingFileRecord
FileReceived.FindRecord
FileReceived.CreateDataCarrier
FileReceived.ProcessAssignAttributes
FileReceived.StartProcessingRequest
FileReceived.TransformToXml
FileReceived.ValidateXml
FileReceived.Deserialize
FileReceived.StartProcessingDataCarriers
FileReceived.StartPrelnsert
FileReceived.StartRetrievingDataCarriers
FileReceived.BuildDataCarriersList
FileReceived.Prelnsert
FileReceived.InsertData
FileReceived.StartPostInsert
FileReceived.StartPostInsertProcessing
FileReceived.PostInsert
FileReceived.StartBuildingResult
FileReceived.LoadOutputXslt

Revised: 03/01/2010

Available Variables
Fileld, IncomingXml
Fileld
FileProcessData
XmlHelperUtility, FileProcessData
FileProcessData
FileProcessData
FileProcessData
XmlIDocument
FileProcessData
FileProcessData,PendinglmportedObject, XmIDocument
FileProcessData, PendinglnsertObjects
PendinglmportedObject
PendinglmportedObject
FileProcessData, PendinglnsertObjects
PendinglnsertObjects
FileProcessData, PendinglnsertObjects, XmIDocument
FileProcessData, PendingInsertObjects, XmIDocument
FileProcessData, PendinglnsertObjects
FileProcessData

FileProcessData

17 of 18

3.3 User Interface

The extension point names for the user interface are convention based. They take the form of
<PageName>.<StartProcessing|Process[Action]>. An example would be policy.pProcesssave. All of the
extension point names can be discovered by writing a “catch-all” extension point and logging the
extension point names.

All extension points will receive the current form as an input parameter which can be retrieved with
the getcurrentForm() method in the uipExtensionContext.

Example XML Configuration

<extensionPoint type="com.adminserver.pas.uip.extensibility.UipExtensionPoint"
extensionPointName="*">
<register extension="com.example.UipExtension" />

</extensionPoint>

All extensions written for the uipextensionPoint must implement 1uipExtension

public interface IUipExtension {
public boolean processPre(UipExtensionContext extensionContext);

public void processPost(UipExtensionContext extensionContext);

}

Release 9.x Extensibility 18 of 18
Revised: 03/01/2010

