

Oracle® Insurance Policy
Administration

Web Services

Version 9.2.0.0.0

Part number: E16287-01

March 2010

Release 9.2.0.0.0 OIPA Web Services 2 of 21
Revised: 03/01/2010

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall
be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related notices. For
information on third party notices and the software and related documentation in connection with which they need to be
included, please contact the attorney from the Development and Strategic Initiatives Legal Group that supports the
development team for the Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development,
release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Software
License and Service Agreement, which has been executed and with which you agree to comply. This document and
information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any
contractual agreement with Oracle or its subsidiaries or affiliates.

Release 9.2.0.0.0 OIPA Web Services 3 of 21
Revised: 03/01/2010

Table of Contents

Web Services Overview ... 4
Creating Messages with SOAP .. 5

SOAP Overview.. 5
WSDL ... 5
Security... 5

OIPA Web Services.. 7
PAS Properties ... 7
FileReceived ... 7

Introduction ... 7
High Level Flow Overview .. 8
AsFile Overview.. 8
XSLT... 11
Functions .. 11
Validation and Error Handling... 12
A Transformation Example ... 12
AsXml ... 13
Schema... 13
Examples .. 13

Exposed Computation .. 14
Overview... 14
Request Flow.. 14
AsExposedComputation Table ... 14
Exposed Computation Business Rule .. 14
Valuation... 15
Exposed Computation SOAP Messages.. 15

Additional File Received Examples using Accord LOMA... 17
SOAP Request ... 17

Full Request.. 17
XML Message... 18

SOAP Response... 18
Successful Response ... 18
SOAP Fault... 19

XMLData... 19
XSLT... 20

Format .. 20
Templates ... 20
Data Validation ... 21

Release 9.2.0.0.0 OIPA Web Services 4 of 21
Revised: 03/01/2010

WEB SERVICES OVERVIEW
The Oracle Insurance Policy Administration (OIPA) system exposes many of its system’s functionalities to
external applications through web services. The available exposed services are as follows:

• FileReceived – Service for inserting data and providing quote details.

• ExposedComputation – Service for exposing OIPA’s math engine.

• PASProperties – Service for retrieving system configuration properties.

This document not only discusses the available web services, but also gives basic overviews of protocols and
demonstrates creating messages needed by the web services for a more holistic explanation of the available
functionality. Note that this documentation uses SOAP messages as a means to explain functionality.

Release 9.2.0.0.0 OIPA Web Services 5 of 21
Revised: 03/01/2010

CREATING MESSAGES WITH SOAP

SOAP OVERVIEW
SOAP (Simple Object Access Protocol) is a XML-based language used for the transport of structured
information from a requester to a provider. A SOAP message is sent from the requesting application to an OIPA
web service. The web service will interpret the data and write it to the database as specified in the message. A
SOAP response message including the outcome is then returned to the requester.
In the context of OIPA, a SOAP message can be sent using HTTP or HTTPS, for added security. The proper
authentication information must be included in the security portion of the header. The body, explained in detail
later in this document, simply consists of the processFileReceivedRequest message, as defined by the service’s
WSDL.

WSDL
WSDL (Web Service Definition Language) is a XML-based language used to describe web services. In case of
OIPA, the WSDL for each available web service defines the message format, data type, and transport protocols
to be used between the requester and OIPA, the provider.
A listing of all available web services and their associated WSDL can be found here:
http://<OIPA-SERVER:9080>/PASJava/service/

Security
OIPA adheres to the WS-Security standards for the authentication of SOAP messages.
The standards, as developed by the OASIS Open committee, can be referenced here:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
The <wsse:UsernameToken> element is used to contain the authentication information. The username and
password are specified inside of the <wsse:Username>, and <wsse:Password> elements, respectively.
It is suggested that SSL (Secure Socket Layer) is used as a method of encryption for all SOAP messages.
The optional <wsse:Nonce> element allows for the usage of a nonce as added security. A nonce is a random
number, in this case represented in base 64, which is embedded in the security header to aid in preventing old
communications from being reused. This number is newly generated for each request on the client side and is
returned along with the SOAP response from OIPA. The <wsu:Created> element must contain the
timestamp of the creation time of the nonce.

<soapenv:Header>

<wsse:Security
soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

wsu:Id="UsernameToken-1"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd">

http://oipa-server:9080/PASJava/service/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

Release 9.2.0.0.0 OIPA Web Services 6 of 21
Revised: 03/01/2010

<wsse:Username>username</wsse:Username>
<wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0#PasswordText">password
</wsse:Password>

<wsse:Nonce
EncodingType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary">
OUtRdmO7dLg/v+0DI04/DA==</wsse:Nonce>

<wsu:Created>
2009-09-28T17:43:02.546Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

</soapenv:Header>

Release 9.2.0.0.0 OIPA Web Services 7 of 21
Revised: 03/01/2010

OIPA WEB SERVICES

PAS PROPERTIES
The PAS Properties web service is exposed for an external application to retrieve all property values from the
PAS.properties configuration file.
It is available using the “getPASProperties” operation on the wsdl “…/PASJava/service/PASProperties?wsdl”.
There are no required parameters. The response XML from a call to this service has “PasProperties” as the root
element. Then there is a child “Property” element for each property in the file. Below is a sample response from
calling this service (not all properties are included):
<PasProperties>

<Property NAME=”application.defaultCurrencyCode”>USD</Property>
<Property NAME=”application.databaseType”>Oracle</Property>
<Property NAME=”transaction.manager”>jpa</Property>

</PasProperties>

FILERECEIVED

Introduction
The OIPA FileReceived web service allows for an application to send records to be written to tables in the
OIPA database. A SOAP message is sent by the application to the FileReceived web service. Note: This is also
called by the name AsFile by project team members.
The SOAP message includes two OIPA-specific elements, the FileID and the XML element. The FileID
element identifies the configuration for OIPA to use when transforming the inbound XML into OIPA’s AsXml.
The XML element includes the data to be written to the OIPA database.
Once the SOAP message is received by the FileReceived web service, attributes needed to complete the request
are assigned values as configured in XMLData. The data in the XML element is then transformed into AsXml
using the configured XSLT. The result of this transformation is then written to the database.
A SOAP message is sent back to the requestor, or caller, including the result of the request. If the request was
successful, the message will consist of the transformed AsXml. If the request was not successful, the message
will consist of a SOAP Fault detailing any possible errors.
The WSDL for the FileReceived service is located here:
http:/</OIPA-SERVER:9080>/PASJava/service/FileReceived?wsdl

http://oipa-server:9080/PASJava/service/FileReceived?wsdl

Release 9.2.0.0.0 OIPA Web Services 8 of 21
Revised: 03/01/2010

High Level Flow Overview

Inbound Flow
1) FileReceived Web Service receives a request via a SOAP message
2) The File is looked up using the FileID specified by the request.
3) The XMLData’s AssignAttributes XML is processed.
4) The XSLT maps the request XML to AsXml.
5) The transformed AsXml is mapped to data objects.
6) PreInsert operations are performed on the objects.
7) The objects are inserted into the database.
8) PostInsert operations are performed on the objects.
9) The transformed AsXml is returned to the caller.

An example of this inbound message would be the addition of an activity to a policy in the OIPA system. Such
a need might arise in the case of integration with a new business system. When approved a message might be
sent to the OIPA system to create a new copy of a policy.

AsFile Overview
The AsFile database table stores the user-configurable portion of the FileReceived web service. The table
contains a separate record for each type of file OIPA has been configured to receive.
The table includes six columns, FileGUID, CompanyGUID, FileNameFormat, FileID, XSLT, and XMLData.
The FileNameFormat column stores the descriptive name of the file format type.
The FileID column stores a unique three-character ID used to describe the file format. An inbound SOAP
message will include a <FileID> element specifying the format of the file being sent.
The XMLData column stores the XML configuration for each specific File business rule.
The XSLT column stores the XSLT used to transform the inbound XML into AsXml.

XMLData
The File business rule allows for values to be assigned to various attributes before the inbound XML undergoes
the transformation process into AsXml. This is configured by using the <Attribute> element inside of the
<AssignAttribute> parent element to assign values. By assigning values at this stage of the process, preexisting
data from OIPA can be used to populate the AsXml.

Release 9.2.0.0.0 OIPA Web Services 9 of 21
Revised: 03/01/2010

<AssignAttributes>
The <AssignAttributes> element is the parent element which contains <Attribute> elements.
<Attribute>
Any processing of data that needs to take place prior to the transformation process is done using the <Attribute>
element. The element has two attributes, NAME and TYPE. NAME specifies the name of the attribute, while
TYPE defines how the expression will be evaluated. Attributes are evaluated from the top down, so attributes
listed first can be used in expressions below them.
For example, the GUID type will set the attribute to a newly generated GUID, and the XPATH attribute will
parse data from the inbound XML so that it may be manipulated prior to transformation.
All Attributes that will be used in the XSLT stylesheet must also be defined in the XSLT stylesheet. This is
explained in the XSLT section.
The following table lists the available TYPES:

TYPE Description
GUID Sets the attribute to a newly generated GUID.

VALUE Sets the attribute to the specified value.

SYSTEMDATE Sets the attribute to the current system date.

SEQUENCE Sets the attribute by calling asc_NextSequenceInteger and passing the NAME as a
parameter.

XPATH Sets the attribute to the result of the specified XPATH expression

XPATHSTRINGLIST Sets the attribute to a comma delimited list containing the resulting values of the XPATH

XPATHNUMBERLIST Sets the attribute to a comma delimited list containing the resulting values of the XPATH

SQL Sets the attribute to the result of the specified SQL statement

SQLMAP Sets the attribute to a ‘key-value-pair’ type collection of the resulting values of the SQL
Statement

Examples:
GUID:
<Attribute NAME="PolicyGUID" TYPE="GUID"></Attribute>

XPATH:
<Attribute NAME="Field" TYPE="XPATH">/Request/PolicyName</Attribute>

<PreInsert> and <PostInsert>
<PreInsert> and <Post Insert> are optional elements that allow for other system functionally to be called before
or after the data is inserted into the database. This is done by calling specific types of Java classes which are
used for these operations. The architecture of the Pre and Post Insert functionality allows for these classes to be
dynamically instantiated at runtime
Pre and Post Insert operations are specified in the XMLData portion of a File’s configuration, after the closing
of the AssignAttributes element. The CLASS attribute of both elements allows for setting the name of the Java
class to be called.
The following example will invoke the AsFile Post Insert Activity Processor
after the records are inserted into the database:
<PostInsert>

Release 9.2.0.0.0 OIPA Web Services 10 of 21
Revised: 03/01/2010

<Object CLASS="com.adminserver.pas.webservice.bll.AsFilePost
InsertIndividualActivityProcessorBll">
</Object>

</PostInsert>

Release 9.2.0.0.0 OIPA Web Services 11 of 21
Revised: 03/01/2010

XSLT

Overview
XSLT (Extensible Stylesheet Language) is a XML-based language used for the transformation of XML
documents into other XML documents. Using XSLT, OIPA transforms the inbound payload of the SOAP
message into AsXml, which can then be processed by the system.
OIPA adheres to XSLT Version 2 specifications which allows for very flexible configuration of the
transformation process. Standard XSLT elements can be used to transform the inbound message into AsXml
based on templates, perform data validation and error handling.

Using Attributes from XMLData
Each Attribute defined in the XMLData section that will be needed in the XSLT stylesheet must first be
declared as a parameter in the XSLT.
As an example, if an Attribute named PolicyGuid was set in the XMLData section, and it’s value needs to be
referenced in the XSLT, the following would need to be added in the beginning of the XSLT, directly
proceeding the prolog.
<xsl:param name="PolicyGuid"/>

Functions
Several functions are available for use inside of the XSLT stylesheet which allow for added functionally such as
generating GUIDs and retrieving the current system time. The available utility functions are:

• getNextGUID()

• getGmtTime()

• formatDateTime()

• addMillis()

In order to use these added functions, the XsltFunctionHelper class must be added as a namespace in the XSLT
prolog as noted below.

xmlns:utl="com.adminserver.webservice.helper.XsltFunctionHelper"

The getNextGUID() function will generate a new GUID. As an example, the following code would output a
newly generated GUID inside of the <PolicyGuid> element.
<xsl:element name="PolicyGuid">

<xsl:value-of select="utl:getNextGUID()"/>
</xsl:element>

Functions can also be used to retrieve the current system time and then format it properly for insertion into the
database.
<xsl:template name="GMT">

<xsl:param name="Offset" select="0" as="xs:integer"/>
<xsl:value-of select="utl:formatDateTime(utl:addMillis

(utl:getGmtTime(), $Offset))"/>
</xsl:template>

Release 9.2.0.0.0 OIPA Web Services 12 of 21
Revised: 03/01/2010

Validation and Error Handling
AsFile has the ability to perform data validations using XSLT portion of the configuration. As an example, the
value of a variable can be tested to ensure the value is as expected.
The following validation syntax can be used anywhere in the XSLT:
<xsl:if test=“$variable = ‘incorrect value’">

<xsl:variable name=“Error1" select=“Error Message"/>
<ValidationError ERRORSTATUSCODE=“Err001">

<xsl:value-of select=“$Error1 "/>
</ValidationError>

</xsl:if>

If upon evaluation the <xsl:if> expression is true, the <ValidationError> element will be included in
the resulting AsXml.
If the one or more <ValidationError> elements exist in the AsXml, a SOAP fault will be thrown and the
text within the element and the ERRORSTATUSCODE will be returned to the caller as part of the SOAP fault.

A Transformation Example

XML Portion of SOAP Request
<Request>

<PolicyName>TestPolicy</PolicyName>
</Request>

XSLT
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="2.0">

<xsl:template match="/Request">

<AsXml>
<AsPolicy>

<PolicyName>
<xsl:value-of select="/Request/PolicyName"/>

</PolicyName>
</AsPolicy>

</AsXml>
</xsl:template>
</xsl:stylesheet>

Resulting AsXml after transformation:
<AsXml>

<AsPolicy>
<PolicyName>

TestPolicy
</PolicyName>

</AsPolicy>
</AsXml>

Release 9.2.0.0.0 OIPA Web Services 13 of 21
Revised: 03/01/2010

AsXml
AsXml is the XML formatting used by OIPA to store data destined for the database. The format is very
simplistic, including a parent element for each database table, and a child element for each column of the table.
The root element, <AsXml>, must be used to identify the formatting.
Each element must exactly match the name of the table or column in the database for mapping purposes. Each
column of the table needs to be populated with data unless the column is set to allow NULL.

Schema
<AsXml>

<Table>
<Column>Value</Column>

</Table>
</AsXml>

Examples
Example of a record from AsPolicy in AsXml format:
<AsXml>

<AsPolicy>
<PolicyGuid>6CCA0B15-EFAC-471F-A698-27949AB9B9C4</PolicyGuid>
<PlanGuid>3904A440-E035-40A1-9905-D544F7A6C093</PlanGuid>
<CompanyGuid>A9211F9D-2C3B-4523-8151-768684696488</CompanyGuid>
<PolicyNumber>GLPT31012265</PolicyNumber>
PolicyName>Term Policy</PolicyName>
<IssueStateCode>38</IssueStateCode>
<PlanDate>1/29/2031 12:00:00 AM</PlanDate>
<UpdatedGmt>9/10/2009 6:43:01 PM</UpdatedGmt>
<StatusCode>09</StatusCode>
<CreationDate>1/29/2031 12:00:00 AM</CreationDate>
<XmlData></XmlData>

</AsPolicy>
</AsXml>

Example of a record from AsRate in AsXml format:
<AsXml>

<AsRate>
<RateGuid>CA132F95-E768-45AE-ABBE-00000980034B</RateGuid>
<RateGroupGuid> C6496E59-7EF7-4719-959B2C0065CA4EF9</RateGroupGuid>
<RateDescription>Term_20_Premium<RateDescription>
<Criteria1>03</Criteria1>
<Criteria2>02</Criteria2>
<IntegerCriteria>12</IntegerCriteria>
<Rate>11.35</Rate>

<AsRate>
</AsXml>

Release 9.2.0.0.0 OIPA Web Services 14 of 21
Revised: 03/01/2010

EXPOSED COMPUTATION

Overview
The Exposed Computation web service is exposed to give an external application access to OIPA’s robust math
engine. An exposed computation can execute a calculation and return result values in the SOAP response XML.
The web service is available by using the “processExposedComputation” operation of the ExposedComputation
web service. The WSDL is located at: “/PASJava/service/ExposedComputation?wsdl”.
A request to this service takes two text parameters:

• ComputationID – Identifier for a record in the AsExposedComputation table.

• XML – A text parameter which is treated as an xml document by the service.

The service processes a math engine based on the configuration for the passed ComputationID parameter. The
XML document can be used for feeding extra dynamic parameters to a request. The response from the call is
also driven by the configuration of the ComputationID in the request.

Request Flow
The ExposedComputation web service processes a request with the following steps:

1) Load the AsExposedComputation record for the ComputationID from the request.
2) Parse the parameters from the incoming xml document, and set policy context if policy information is

supplied.
3) Load exposed computation business rule (from AsBusinessRules).
4) Do valuation if the exposed computation business rule is configured to do so.
5) Execute math from the Input configuration in the exposed computation business rule.
6) Build response xml from the Output configuration in the exposed computation business rule.

AsExposedComputation Table
The AsExposedComputation table is a configuration table for processing exposed computations. An
AsExposedComputation record will have a unique ComputationID value. The other relevent coluimn in this
table is the RuleName column which is the name of the rule in the AsBusinessRules table that contains the
configuration for processing.

Exposed Computation Business Rule
The RuleName from the AsExposedComputation for the exposed computation request is used to load an
AsBusinessRule record that contains the configuration for how to process. The Exposed Computation business
rule is setup in a similar way to how the Calculate business rules are configured for calculating segments. There
is an Input element which contains the math variables configuration for processing the math engine. The math
variables are to be configured the same way as any other math section in the system. Then, there is an Output
element which contains the mappings for the input variables to output in the response. Below is a sample of a
simple exposed computation configuration:
<ExposedComputation>

<Input>
<MathVariables>

<MathVariable VARIABLENAME="Variable1"
TYPE="VALUE" DATATYPE="TEXT">
TestValue</MathVariable>

Release 9.2.0.0.0 OIPA Web Services 15 of 21
Revised: 03/01/2010

</MathVariables>
</Input>
<Output>

<Mappings>
<Mapping OUTPUTNAME="Result1">Variable1</Mapping>

</Mappings>
</Output>

</ExposedComputation>

The Input element contains the math to process, and the Output element pulls the one math variable into the
output for “Result1”. The response of the exposed computation request will contain the value for “Result1”.

Valuation
The exposed computation also has the ability to do valuation. The configuration for this support is below:
<ExposedComputation VALUATION=”Yes”>

…
</ExposedComputation>

By adding this attribute, valuation is run before executing math. This makes available all valuation FIELDs
(Valuation:Policy:CashValue, Valuation:Fund:FundGUID:CashValue, etc.) to the math configuration.
Valuation can only be executed if the request is being processed in the context of a policy.
When processing valuation that may contain variable funds, there is also the ability for using the nearest nuvs
for the funds. This is achieved through the following configuration:
<ExposedComputation VALUATION=”Yes” NEARESTNUV=”Yes”>

…
</ExposedComputation>

Exposed Computation SOAP Messages

SOAP Request Input Parameters
When making an ExposedComputation request, the second parameter available is a String that the service treats
as an XML document. This XML contains parameters that can be used as FIELD values when executing the
math engine.

PolicyNumber
Inclusion of a “PolicyNumber” parameter tells the exposed computation that it is being processed for a policy.
The exposed computation business rule is now overridable by plan with this parameter, and the math engine
will have access to Policy and Plan FIELD variables for that policy when executed. This parameter is also
required if the exposed computation is configured to do valuation during the request.

EffectiveDate
Inclusion of an “EffectiveDate” parameter can be done when an exposed computation executes valuation during
the request. This date will be used as the valuation date during valuation. If this parameter is not defined and
valuation is still executed, the valuation date will default to the system date.
Below is the expected format for the XML parameter in the request:
<Parameters>

<Parameter NAME=”PolicyNumber”>POL12345</Parameter>
<Parameter NAME=”EffectiveDate”>01/01/2009</Parameter>

</Parameters>

Release 9.2.0.0.0 OIPA Web Services 16 of 21
Revised: 03/01/2010

SOAP Response
The data returned in the SOAP response xml from a call to ExposedComputation is built from the <Output>
mappings configured in the exposed computation rule. The root element from the response is the
ComputationID from the request. Each child element of the root is the Mapping from the output configuration
with its math value as the element text. For the ComputationID “EC_Test” with the below exposed computation
configuration:
<ExposedComputation>

<Input>
<MathVariables>

<MathVariable VARIABLENAME="Variable1"
TYPE="VALUE" DATATYPE="TEXT">
TestValue1</MathVariable>

<MathVariable VARIABLENAME="Variable2"
TYPE="VALUE" ATATYPE="TEXT">
TestValue2</MathVariable>

</MathVariables>
</Input>
<Output>

<Mappings>
<Mapping OUTPUTNAME="Result1">Variable1</Mapping>
<Mapping OUTPUTNAME="Result2">Variable2</Mapping>

</Mappings>
</Output>

</ExposedComputation>

This will be the response xml:
<EC_Test>

<Result1>TestValue1</Result1>
<Result2>TestValue2</Result2>

</EC_Test>

Release 9.2.0.0.0 OIPA Web Services 17 of 21
Revised: 03/01/2010

ADDITIONAL FILE RECEIVED EXAMPLES USING ACCORD LOMA
Each of the following examples is meant to show how the various configuration files can be used to configure
the FileReceived web service to integrate with other systems. A majority of these examples are from the Accord
103 implementation which is included in version 9.1 of OIPA.

SOAP REQUEST

Full Request
The SOAP request message must include an element indicating the service to use, processFileReceived in the
case of the FileReceived web service. Inside of this parent element two child elements need to be included, the
first declaring the corresponding FileID in AsFile, and the second including the XML destined for
transformation.
The <![CDATA[]]> section allows for us to pass the full XML message to the web service without it being
evaluated by the initial parser of the SOAP message. If the usage of CDATA is not desired, all characters which
may be misinterpreted, such as “<” and “&”, must replaced with their respective escape sequences, “<” and
“&” in this case.
<soapenv:Envelope

xmlns:fil="http://filereceived.webservice.adminserver.com"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd">

<wsse:UsernameToken wsu:Id="UsernameToken-6"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd">

<wsse:Username>install</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/

2004/01/oasis-200401-wss-username-token-profile-
1.0#PasswordText">install</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

</soapenv:Header>
<soapenv:Body>

<fil:processFileReceived
soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/">

<fileId xsi:type="soapenc:string">TE1</fileId>
<xml xsi:type="soapenc:string">

<![CDATA[
<Request>

<PolicyName>TestPolicy</PolicyName>
</Request>

]]>
</xml>

Release 9.2.0.0.0 OIPA Web Services 18 of 21
Revised: 03/01/2010

</fil:processFileReceived>
</soapenv:Body>

</soapenv:Envelope>

XML Message
This example shows a very small portion of a sample request that follows the Acord 103 specification. You can
see in this example that the information can be nested in a structured manner as needed. Each element can have
attributes to aid in clarifying data.
<TXLife>

 <TXLifeRequest>
 <OLife>
 <Holding id="Holding_1">
 <HoldingTypeCode tc="2">Policy</HoldingTypeCode>
 <Purpose tc="21">Family Income</Purpose>
 <Policy>
 <LineOfBusiness tc="1">Life</LineOfBusiness>
 <ProductCode>F34523A4-7988-48E0-BED9-BE2CF82FFC5F</ProductCode>
 <PolicyStatus tc="21">Applied For</PolicyStatus>
 <IssueType tc="1">Full Underwriting</IssueType>
 <Jurisdiction tc="45">Pennsylvania</Jurisdiction>
 <ReplacementType tc="1">None</ReplacementType>
 <IssueDate>2008-02-15</IssueDate>
 <PaymentMode tc="1">Annual</PaymentMode>
 <PaymentMethod tc="2">Regular Billing</PaymentMethod>
 <Life>
 <QualPlanType tc="1">NonQualified</QualPlanType>
 <Coverage id="BaseCoverage">
 <PlanName>Acme Term</PlanName>
 <ProductCode>04</ProductCode>
 <LifeCovTypeCode tc="06">Term Life</LifeCovTypeCode>
 <IndicatorCode tc="1">Base</IndicatorCode>
 <LivesType tc="1">Single Life</LivesType>
 <QualAddBenefitInd tc="1">True</QualAddBenefitInd>
 <InitCovAmt>1000000</InitCovAmt>
 <EffDate>2008-02-15</EffDate>
 </Life>
 </Policy>
 </Holding>
 </OLife>
 </TXLifeRequest>
</TXLife>

SOAP RESPONSE
The SOAP Response is the message that OIPA returns to the caller after receiving a SOAP request. There are
two possible outcomes to a SOAP request, a success or a fault.

Successful Response
Upon successful processing of an inbound SOAP request a SOAP response is returned to the caller along with
the transformed AsXml which was inserted into the database. This default configuration can be changed and the

Release 9.2.0.0.0 OIPA Web Services 19 of 21
Revised: 03/01/2010

data returned to the caller can be modified by inserting a XSLT stylesheet in to the AsFileOutput table of the
database. This example shows the default SOAP response.
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <AsXml>
 <AsRate>
 <RateGuid>CA132F95-E768-45AE-ABBE-00000980034B</RateGuid>
 <RateGroupGuid>
 C6496E59-7EF7-4719-959B2C0065CA4EF9</RateGroupGuid>
 <RateDescription>Term_20_Premium<RateDescription>
 <Criteria1>03</Criteria1>
 <Criteria2>02</Criteria2>
 <IntegerCriteria>12</IntegerCriteria>
 <Rate>11.35</Rate>
 <AsRate>
 </AsXml>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Fault
If, for any reason, there is an error while processing the inbound SOAP request, OIPA will return a SOAP Fault
response message along with detail surrounding the error. In this example, a SOAP Fault message is being
returned because the security parameters sent in the SOAP request were incorrect.
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode>ns1:Receiver</faultcode>
 <faultstring>Authorization failed.</faultstring>
 <detail>
 <ns2:AsErrorDetail>
 <ns2:Error TYPE="System">
 <ns2:Message>Authorization failed.</ns2:Message>
 </ns2:Error>
 </ns2:AsErrorDetail>
 <ns3:hostname>WS-Training</ns3:hostname>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

XMLDATA
Any data that is needed prior to the XSLT transformation process can be processed in the XMLData section of
the File business rule. This example shows the use the XPATH, which allows for data from the incoming

Release 9.2.0.0.0 OIPA Web Services 20 of 21
Revised: 03/01/2010

request to be manipulated. Also illustrated in this example is the GUID Attribute type, which automatically sets
the Attribute value to a newly generated GUID.
<File>
 <AssignAttributes>
 <Attribute NAME="PlanGUID" TYPE="XPATH">
 /TXLife/TXLifeRequest/OLifE/Holding/Policy/ProductCode
 </Attribute>
 <Attribute NAME="PolicyGUID" TYPE="GUID"></Attribute>
 <Attribute NAME="CompanyGUID" TYPE="VALUE">
 18B611A8-4429-4C67-94E6-3F4A882C9A8D</Attribute>
 </AssignAttributes>
 <PostInsert>
 <Object
 CLASS="com.adminserver.utl.AsFilePostInsertActivityProcessorUtl">
 </Object>
 </PostInsert>
</File>

XSLT
Format
Each XSLT stylesheet used must include a prolog defining the XSLT namespace and version. The stylesheet
must also create the necessary database table structure inside the <AsXml> element as shown.
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

 <xsl:template match="/">
 <AsXml>
 <AsPolicy>
 <PolicyName>
 <xsl:value-of select="/Request/PolicyName"/>
 </PolicyName>
 </AsPolicy>
 <AsXml>
 </xsl:template>
</xsl:stylesheet>

Templates
A XSLT stylesheet can have several templates that allow for setting rules to be used during the transformation
process. The following example shows the construction of the AsPolicy database table.
<xsl:template match="TXLife">
 <xsl:element name="AsXml">
 <!-- Create the AsPolicy Record -->
 <xsl:comment>Policy Info</xsl:comment>
 <xsl:element name="AsPolicy">
 <xsl:element name="PolicyGuid">
 <xsl:value-of select="$PolicyGUID"></xsl:value-of>
 </xsl:element>
 <xsl:element name="StatusCode">
 <xsl:text>08</xsl:text>
 </xsl:element>

Release 9.2.0.0.0 OIPA Web Services 21 of 21
Revised: 03/01/2010

 <xsl:element name="IssueStateCode">
 <xsl:value-of select="$StateCode"></xsl:value-of>
 </xsl:element>
 <xsl:element name="PolicyNumber">
 <xsl:value-of select="$PolicyNumber"></xsl:value-of>
 </xsl:element>
 <xsl:element name="PlanDate">
 <xsl:value-of select="$PlanDate"></xsl:value-of>
 </xsl:element>
 <xsl:element name="PlanGuid">
 <xsl:value-of select="$PlanGUID"></xsl:value-of>
 </xsl:element>
 <xsl:element name="CompanyGuid">
 <xsl:value-of select="$CompanyGUID"></xsl:value-of>
 </xsl:element>
 <xsl:element name="UpdatedGMT">
 <xsl:value-of select="$UpdatedGMT"></xsl:value-of>
 </xsl:element>
 <xsl:element name="CreationDate">
 <xsl:value-of select="$CreationDate"></xsl:value-of>
 </xsl:element>
 </xsl:element>
 </xsl:element>
</xsl:template>

Data Validation
The XSLT style sheet can be used to test information in the inbound request and make any changes necessary to
be compactable with OIPA. The following example tests the Code parameter for certain possibilities and then
outputs the correct gender code, M or F, as understood by the OIPA chassis.
<xsl:template name="getGenderCode">
 <xsl:param name="Code"></xsl:param>
 <xsl:choose>
 <!--Male -->
 <xsl:when test="$Code = '1'">
 <xsl:text>M</xsl:text>
 </xsl:when>
 <xsl:when test="$Code = 'Male'">
 <xsl:text>M</xsl:text>
 </xsl:when>
 <!-- Female -->
 <xsl:when test="$Code = '2'">
 <xsl:text>F</xsl:text>
 </xsl:when>
 <xsl:when test="$Code = 'Female'">
 <xsl:text>F</xsl:text>
 </xsl:when>
 </xsl:choose>
</xsl:template>

