

Oracle® Coherence
Getting Started Guide

Release 3.5

E14510-01

June 2009

Oracle Coherence Getting Started Guide, Release 3.5

E14510-01

Copyright © 2008, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joseph Ruzzi

Contributing Author: Noah Arliss, Jason Howes, Mark Falco, Alex Gleyzer, Gene Gleyzer, David Leibs,
Andy Nguyen, Brian Oliver, Patrick Peralta, Cameron Purdy, Jonathan Purdy, Everet Williams, Tom
Beerbower, John Speidel, Thomas Pfaeffle

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documents ... xvi
Conventions ... xvi

Part I Coherence Concepts

1 Defining a Data Grid

2 Provide a Data Grid

Targeted Execution ... 2-1
Parallel Execution ... 2-1
Query-Based Execution ... 2-2
Data-Grid-Wide Execution ... 2-2
Agents for Targeted, Parallel and Query-Based Execution .. 2-2
Data Grid Aggregation .. 2-6
Node-Based Execution... 2-8
Work Manager.. 2-10

Oracle Coherence Work Manager: Feedback from a Major Financial Institution 2-10
Summary ... 2-11

3 Provide a Queryable Data Fabric

Data Fabric ... 3-2
EIS and Database Integration .. 3-2
Queryable... 3-3
Continuous Query.. 3-3
Summary .. 3-4

4 Cluster Your Objects and Data

Coherence and Clustered Data .. 4-1
Availability .. 4-1

Supporting Redundancy in Java Applications .. 4-1
Enabling Dynamic Cluster Membership .. 4-1

iv

Exposing Knowledge of Server Failure .. 4-2
Eliminating Other Single Points Of Failure (SPOFs) .. 4-2
Providing Support for Disaster Recovery (DR) and Contingency Planning............................. 4-2

Reliability .. 4-2
Scalability .. 4-3

Distributed Caching... 4-3
Partitioning.. 4-3
Session Management ... 4-4

Performance... 4-5
Replication... 4-5
Near Caching .. 4-5
Write-Behind, Write-Coalescing and Write-Batching... 4-5

Serviceability... 4-6
Manageability ... 4-6
Summary .. 4-7

5 Deliver Events for Changes as they Occur

 Listener Interface and Event Object ... 5-1
Caches and Classes that Support Events ... 5-3
Signing Up for All Events... 5-4
Using an Inner Class as a MapListener.. 5-5
Configuring a MapListener for a Cache .. 5-5
Signing up for Events on specific identities ... 5-6
Filtering Events ... 5-6
"Lite" Events .. 5-7
Advanced: Listening to Queries .. 5-8

Filtering Events Versus Filtering Cached Data.. 5-9
Advanced: Synthetic Events ... 5-9
Advanced: Backing Map Events ... 5-10

Producing Readable Backing MapListener Events from Distributed Caches........................ 5-11
Advanced: Synchronous Event Listeners ... 5-13
Summary ... 5-13

6 Automatically Manage Dynamic Cluster Membership

Cluster and Service Objects ... 6-1
Member object .. 6-1
Listener interface and Event object... 6-2

7 Managing an Object Model

Cache Usage Paradigms .. 7-1
Techniques to Manage the Object Model .. 7-2
Domain Model .. 7-3

Best Practices for Data Access Objects in Coherence .. 7-4
Service Layer ... 7-5

Automatic Transaction Management.. 7-5
Explicit Transaction Management ... 7-5

v

Optimized Transaction Processing.. 7-5
Managing Collections of Child Objects .. 7-6

Shared Child Objects ... 7-7
Owned Child Objects... 7-7
Bottom-Up Management of Child Objects ... 7-7
Bi-Directional Management of Child Objects .. 7-7

Colocating Owned Objects... 7-8
Denormalization... 7-8
Affinity... 7-8

Managing Shared Objects .. 7-8
Refactoring Existing DAOs .. 7-9

8 Overview for Implementors

Basic Concepts .. 8-1
Clustered Data Management.. 8-1
A single API for the logical layer, XML configuration for the physical layer........................... 8-1
Caching Strategies.. 8-2
Data Storage Options... 8-2
Serialization Options ... 8-3
Configurability and Extensibility .. 8-3
Namespace Hierarchy ... 8-3

Read/Write Caching ... 8-4
NamedCache... 8-4
Requirements for Cached Objects.. 8-4
NamedCache Usage Patterns ... 8-5

Querying the Cache ... 8-6
Transactions ... 8-6
HTTP Session Management... 8-7
Invocation Service .. 8-7
Events.. 8-7
Object-Relational Mapping Integration .. 8-8
C++/.NET Integration .. 8-8
Management and Monitoring .. 8-8

9 Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching

Pluggable Cache Store... 9-1
Read-Through Caching .. 9-1
Write-Through Caching .. 9-2
Write-Behind Caching .. 9-3
Write-Behind Requirements... 9-4
Refresh-Ahead Caching ... 9-5
Selecting a Cache Strategy.. 9-6

Read-Through/Write-Through versus Cache-Aside ... 9-6
Refresh-Ahead versus Read-Through... 9-7
Write-Behind versus Write-Through .. 9-7

Idempotency .. 9-7

vi

Write-Through Limitations... 9-7
Cache Queries ... 9-7
Creating a CacheStore Implementation .. 9-8
Plugging in a CacheStore Implementation ... 9-8
Implementation Considerations.. 9-9

Re-entrant Calls .. 9-9
Cache Server Classpath .. 9-10
CacheStore Collection Operations .. 9-10
Connection Pools... 9-10

10 Coherence*Extend

Types of Clients ... 10-1
Proxy Service Overview ... 10-2

11 Real Time Client—RTC

Uses .. 11-1
Cache Access... 11-1
Local Caches ... 11-1
Event Notification ... 11-2
Agent Invocation ... 11-2
Connection Failover .. 11-2

12 Clustering

13 Cluster Services Overview

14 Replicated Cache Service

15 Partitioned Cache Service

16 Near Cache

Near Cache Invalidation Strategies ... 16-3
Configuring the Near Cache ... 16-4
Obtaining a Near Cache Reference .. 16-4
Cleaning Up Resources Associated with a Near Cache ... 16-4
Sample Near Cache Configuration .. 16-5

17 Storage and Backing Map

Cache Layers... 17-1
Operations .. 17-2
Capacity Planning ... 17-3
Partitioned Backing Maps ... 17-4

vii

18 Local Storage

19 Local Cache

Configuring the Local Cache... 19-2

20 Best Practices

Coherence and Cache Topologies... 20-1
Data Access Patterns ... 20-1

Data Access Distribution (hot spots) .. 20-1
Cluster-node Affinity.. 20-2
Read/Write Ratio and Data Sizes... 20-2
Interleaving Cache Reads and Writes .. 20-2

 Heap Size Considerations... 20-2
Using Several Small Heaps.. 20-2
Moving the Cache Out of the Application Heap.. 20-3

21 Network Protocols

Coherence and the TCMP Protocol.. 21-1
Protocol Reliability ... 21-2
Protocol Resource Utilization ... 21-2
Protocol Tunability.. 21-2
Multicast Scope.. 21-2
Disabling Multicast .. 21-2

22 The Coherence Ecosystem

Breakdown of Coherence editions ... 22-1
Coherence Client and Server Connections... 22-1
Coherence Modules Involved in Connecting Client and Server Editions................................. 22-2

How a Single Coherence Client Process Connects to a Single Coherence Server 22-2
Considering Multiple Clients and Servers ... 22-3

23 Session Management for Clustered Applications

Basic Terminology ... 23-1
Sharing Data in a Clustered Environment ... 23-2
Reliability and Availability... 23-3
Scalability and Performance ... 23-5
Conclusion .. 23-7

24 The Portable Object Format

Overview ... 24-1
Why Should I Use POF .. 24-1
Working with POF... 24-2

Implementing the PortableObject interface... 24-2
Implementing the PofSerializer interface: ... 24-2

viii

Assigning POF indexes .. 24-3
The ConfigurablePofContext... 24-3
Configuring Coherence to use the ConfigurablePofContext.. 24-4

Summary ... 24-5

25 PofExtractors and PofUpdaters

Overview ... 25-1
Navigating a POF object .. 25-1
Using PofExtractors... 25-3
Using PofUpdaters .. 25-3

Part II Installing Coherence

26 Installing Oracle Coherence

Downloading and Extracting Coherence .. 26-1
Installing Coherence... 26-1
Verifying that Multiple Nodes and Servers are Able to Form a Cluster 26-1

A Coherence Features by Edition

Coherence Server Editions .. A-1
Coherence Client Editions ... A-3

B AbstractMultiplexingBackingMapListener Class Listing

Glossary

ix

x

List of Figures

3–1 Data fabric illustrating which senders and receivers are connected................................... 3-1
7–1 Processes for Refactoring DAOs .. 7-9
9–1 Read Through Caching .. 9-2
9–2 Write-Through Caching ... 9-3
9–3 Write Behind Caching .. 9-4
14–1 Get Operation in a Replicated Cache Environment.. 14-1
14–2 Put Operation in a Replicated Cache Environment ... 14-2
15–1 Get Operations in a Partitioned Cache Environment ... 15-2
15–2 Put Operations in a Partitioned Cache Environment ... 15-3
15–3 Failover in a Partitioned Cache Environment ... 15-4
15–4 Local Storage in a Partitioned Cache Environment .. 15-5
16–1 Put Operations in a Near Cache Environment .. 16-2
16–2 Get Operations in a Near Cache Environment .. 16-3
17–1 Backing Map Storage... 17-2
17–2 Conventional Backing Map Implementation... 17-4
17–3 Partitioned Backing Map Implementation... 17-5
22–1 Client/Server Features by Edition .. 22-2
22–2 Single Client, Single Server... 22-3
22–3 Multiple Clients and Servers .. 22-4
23–1 Session Models Supported by Coherence .. 23-2
23–2 Sharing Data Between Web Applications .. 23-3
23–3 Performance as a Function of Session Size... 23-6

xi

List of Tables

16–1 Near Cache Invalidation Strategies.. 16-3
A–1 Coherence Server Editions... A-1
A–2 Coherence Client Editions ... A-3

xii

xiii

List of Examples

2–1 Querying Across a Data Grid.. 2-2
2–2 Methods in the EntryProcessor Interface .. 2-3
2–3 InvocableMap.Entry API ... 2-4
2–4 Aggregation in the InvocableMap API.. 2-6
2–5 EntryAggregator API ... 2-7
2–6 ParallelAwareAggregator API for running Aggregation in Parallel 2-7
2–7 Simple Agent to Request Garbage Collection... 2-8
2–8 Agent to Support a Grid-Wide Request and Response Model .. 2-8
2–9 Printing the Results from a Grid-Wide Request or Response .. 2-9
2–10 Stateful Agent Operations ... 2-9
2–11 Using a Work Manager ... 2-10
3–1 Querying the Cache for a Particular Object .. 3-3
3–2 Implementing a Continuous Query ... 3-4
5–1 Excerpt from the MapListener API .. 5-1
5–2 Excerpt from the MapEvent API .. 5-2
5–3 Methods on the ObservableMap API... 5-4
5–4 Sample MapListener Implementation ... 5-4
5–5 Holding a Reference to a Listener .. 5-4
5–6 Removing a Listener... 5-5
5–7 Inner Class that Prints Only Cache Insert Events .. 5-5
5–8 Routing All Events to a Single Method for Handling ... 5-5
5–9 Triggering an Event when a Specific Integer Key is Inserted or Updated 5-6
5–10 Adding a Listener with Filter for Deleted Events .. 5-6
5–11 Inserting, Updating, and Removing a Value from the Cache .. 5-7
5–12 Sample Output .. 5-7
5–13 Listening for Events from a Cache ... 5-8
5–14 Listening for Events on an Object... 5-8
5–15 Using MapEventFilter to Filter on Various Events .. 5-8
5–16 Determining Synthetic Events ... 5-10
5–17 An AbstractMultiplexingBackingMapListener Implementation...................................... 5-11
5–18 Cache Configuration Specifying a Verbose Backing Map Listener.................................. 5-12
6–1 Determining Services Running in the Cluster .. 6-1
6–2 A Sample MemberListener Implementation... 6-2
6–3 Using Event Type Information in a MemberEvent Object ... 6-3
7–1 Implementing Methods for NamedCache Access.. 7-4
7–2 Using an Ordered Locking Algorithm... 7-6
7–3 Using a "Lazy Getter" Pattern ... 7-8
8–1 Sample Code to Create an Index... 8-6
8–2 Sample Code to Query a NamedCache ... 8-6
8–3 Methods in the InvocationService API .. 8-7
9–1 Cache Configuration Specifying a Refresh-Ahead Factor .. 9-5
9–2 A Cache Configuration with a Cachestore Module... 9-8
16–1 Obtaining a Near Cache Reference.. 16-4
16–2 Sample Near Cache Configuration.. 16-5
19–1 Local Cache Configuration ... 19-2
20–1 Disabling Partition Storage... 20-3
24–1 Implementation of the PortableObject Interface ... 24-2
24–2 Implementation of the PofSerializer Interface ... 24-3
26–1 Sample Output after Starting the First Member.. 26-2
26–2 Sample Output after Starting the Second Member ... 26-3
26–3 Output from Execurint the "who" Command.. 26-4
B–1 Code Listing of the AbstractMultiplexingBackingMapListener Class............................... B-1

xiv

xv

Preface

This book provides conceptual information on the caching technology behind Oracle
Coherence. It describes the various types of caches that can be employed, caching
strategies, and the features of clients that interact with caching services.

This book also provides information on how to install Oracle Coherence.

Audience
This document is intended for software developers who want to become familiar with
the concepts behind Oracle Coherence caching technology.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at

xvi

http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following documents that are included in the Oracle
Coherence documentation set:

■ Oracle Coherence Client Guide

■ Oracle Coherence Developer's Guide

■ Oracle Coherence Integration Guide for Oracle Coherence

■ Oracle Coherence Java API Reference

■ Oracle Coherence Tutorial for Oracle Coherence

■ Oracle Coherence User's Guide for Oracle Coherence*Web

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Coherence Concepts

Part I, Coherence Concepts, contains the following chapters:

■ Chapter 1, "Defining a Data Grid"

■ Chapter 2, "Provide a Data Grid"

■ Chapter 3, "Provide a Queryable Data Fabric"

■ Chapter 4, "Cluster Your Objects and Data"

■ Chapter 5, "Deliver Events for Changes as they Occur"

■ Chapter 6, "Automatically Manage Dynamic Cluster Membership"

■ Chapter 7, "Managing an Object Model"

■ Chapter 8, "Overview for Implementors"

■ Chapter 9, "Read-Through, Write-Through, Write-Behind, and Refresh-Ahead
Caching"

■ Chapter 10, "Coherence*Extend"

■ Chapter 11, "Real Time Client—RTC"

■ Chapter 12, "Clustering"

■ Chapter 13, "Cluster Services Overview"

■ Chapter 14, "Replicated Cache Service"

■ Chapter 15, "Partitioned Cache Service"

■ Chapter 16, "Near Cache"

■ Chapter 18, "Local Storage"

■ Chapter 19, "Local Cache"

■ Chapter 20, "Best Practices"

■ Chapter 21, "Network Protocols"

■ Chapter 22, "The Coherence Ecosystem"

■ Chapter 23, "Session Management for Clustered Applications"

■ Chapter 24, "The Portable Object Format"

■ Chapter 25, "PofExtractors and PofUpdaters"

1

Defining a Data Grid 1-1

1Defining a Data Grid

The Oracle Coherence In-Memory Data Grid is a data management system for
application objects that are shared across multiple servers, require low response time,
very high throughput, predictable scalability, continuous availability and information
reliability. For clarity, each of these terms and claims is explained:

As a result of these capabilities, Oracle Coherence is ideally suited for use in
computationally intensive, stateful middle-tier applications. Coherence is targeted to
run in the application tier, and is often run in-process with the application itself, for
example in an Application Server Cluster.

The combination of these four capabilities results is the information within the Data
Grid being reliable for use by transactional applications.

■ A Data Grid is a system composed of multiple servers that work together to
manage information and related operations - such as computations - in a
distributed environment.

■ An In-Memory Data Grid is a Data Grid that stores the information in memory to
achieve very high performance, and uses redundancy—by keeping copies of that
information synchronized across multiple servers—to ensure the resiliency of the
system and the availability of the data in the event of server failure.

■ The application objects are the actual components of the application that contain
the information shared across multiple servers. These objects must survive a
possible server failure in order for the application to be continuously available.
These objects are typically built in an object-oriented language such as Java (for
example, POJOs), C++, C#, VB.NET or Ruby. Unlike a relational schema, the
application objects are often hierarchical and may contain information that is
pulled from any database.

■ The application objects must be shared across multiple servers because a
middleware application (such as eBay and Amazon.com) is horizontally scaled by
adding servers - each server running an instance of the application. Since the
application instance running on one server may read and write some of the same
information as an application instance on another server, the information must be
shared. The alternative is to always access that information from a shared
resource, such as a database, but this will lower performance by requiring both
remote coordinated access and Object/Relational Mapping (ORM), and decrease
scalability by making that shared resource a bottleneck.

■ Because an application object is not relational, to retrieve it from a relational
database the information must be mapped from a relational query into the object.
This is known as Object/Relational Mapping (ORM). Examples of ORM include
Java EJB 3.0, JPA, and ADO.NET. The same ORM technology allows the object to
be stored in a relational database by deconstructing the object (or changes to the

1-2 Oracle Coherence Getting Started Guide

object) into a series of SQL inserts, updates and deletes. Since a single object may
be composed of information from many tables, the cost of accessing objects from a
database using Object/Relational Mapping can be significant, both in terms of the
load on the database and the latency of the data access.

■ An In-Memory Data Grid achieves low response times for data access by keeping
the information in-memory and in the application object form, and by sharing that
information across multiple servers. In other words, applications may be able to
access the information that they require without any network communication and
without any data transformation step such as ORM. In cases where network
communication is required, the Oracle Coherence avoids introducing a Single
Point of Bottleneck (SPOB) by partitioning—spreading out—information across
the grid, with each server being responsible for managing its own fair share of the
total set of information.

■ High throughput of information access and change is achieved through four
different aspects of the In-Memory Data Grid:

■ Oracle Coherence employs a sophisticated clustering protocol that can achieve
wire speed throughput of information on each server. This allows the
aggregate flow of information to increase linearly with the number of servers.

■ By partitioning the information, as servers are added each one assumes
responsibility for its fair share of the total set of information, thus
load-balancing the data management responsibilities into smaller and smaller
portions.

■ By combining the wire speed throughput and the partitioning with automatic
knowledge of the location of information within the Data Grid, Oracle
Coherence routes all read and write requests directly to the servers that
manage the targeted information, resulting in true linear scalability of both
read and write operations; in other words, high throughput of information
access and change.

■ For queries, transactions and calculations, particularly those that operate
against large sets of data, Oracle Coherence can route those operations to the
servers that manage the target data and execute them in parallel.

■ By using dynamic partitioning to eliminate bottlenecks and achieving predictably
low latency regardless of the number of servers in the Data Grid, Oracle
Coherence provides predictable scalability of applications. While certain
applications can use Coherence to achieve linear scalability, that is largely
determined by the nature of the application, and thus varies from application to
application. More important is the ability of a customer to examine the nature of
their application and to be able to predict how many servers will be required to
achieve a certain level of scale, such as supporting a specified number of
concurrent users on a system or completing a complex financial calculation within
a certain number of minutes. One way that Coherence accomplishes this is by
executing large-scale operations, such as queries, transactions and calculations, in
parallel using all of the servers in the Data Grid.

■ One of the ways that Coherence can eliminate bottlenecks is to queue up
transactions that have occurred in memory and asynchronously write the result to
a system of record, such as an Oracle database. This is particularly appropriate in
systems that have extremely high rates of change due to the processing of many
small transactions, particularly when only the result must be made persistent.
Coherence both coalesces multiple changes to a single application object and
batches multiple modified application objects into a single database transaction,
meaning that a hundred different changes to each of a hundred different

Defining a Data Grid 1-3

application objects could be persisted to a database in a single, large—and thus
highly efficient—transaction. Application objects pending to be written are
safeguarded from loss by being managed in a continuously available manner.

■ Continuous availability is achieved by a combination of four capabilities.

■ First, the clustering protocol used by Oracle Coherence can rapidly detect
server failure and achieve consensus across all the surviving servers about the
detected failure.

■ Second, information is synchronously replicated across multiple servers, so no
Single Point of Failure (SPOF) exists.

■ Third, each server knows where the synchronous replicas of each piece of
information are located, and automatically re-routes information access and
change operations to those replicas.

■ Fourth, Oracle Coherence ensures that each operation executes in a
Once-and-Only-Once manner, so that operations that are being executed when
a server fails do not accidentally corrupt information during failover.

■ Failover is the process of switching over automatically to a redundant or standby
computer server, system, or network upon the failure or abnormal termination of
the previously active server, system, or network. Failover happens without human
intervention and generally without warning. (As defined by Wikipedia:
http://en.wikipedia.org/wiki/Failover)

■ Information reliability is achieved through a combination of four capabilities.

■ Oracle Coherence uses cluster consensus to achieve unambiguous ownership
of information within the Data Grid. At all times, exactly one server is
responsible for managing the master copy of each piece of information in the
Data Grid.

■ Because that master copy is owned by a specific server, that server can order
the operations that are occurring to that information and synchronize the
results of those operations with other servers.

■ Because the information is continuously available, these qualities of service
exist even during and after the failure of a server.

■ By ensuring Once-and-Only-Once operations, no operations are lost or
accidentally repeated when server failure does occur.

1-4 Oracle Coherence Getting Started Guide

2

Provide a Data Grid 2-1

2Provide a Data Grid

Coherence provides the ideal infrastructure for building Data Grid services, and the
client and server-based applications that use a Data Grid. At a basic level, Coherence
can manage an immense amount of data across a large number of servers in a grid; it
can provide close to zero latency access for that data; it supports parallel queries across
that data; and it supports integration with database and EIS systems that act as the
system of record for that data. Additionally, Coherence provides several services that
are ideal for building effective data grids.

For more information on the infrastructure for the Data Grid features in Coherence, see
Chapter 3, "Provide a Queryable Data Fabric".

Targeted Execution
Coherence provides for the ability to execute an agent against an entry in any map of
data managed by the Data Grid:

map.invoke(key, agent);

In the case of partitioned data, the agent executes on the grid node that owns the data
to execute against. This means that the queuing, concurrency management, agent
execution, data access by the agent and data modification by the agent all occur on
that grid node. (Only the synchronous backup of the resultant data modification, if
any, requires additional network traffic.) For many processing purposes, it is much
more efficient to move the serialized form of the agent (usually only a few hundred
bytes, at most) than to handle distributed concurrency control, coherency and data
updates.

For request/response processing, the agent returns a result:

Object oResult = map.invoke(key, agent);

In other words, Coherence as a Data Grid will determine the location to execute the
agent based on the configuration for the data topology, move the agent there, execute
the agent (automatically handling concurrency control for the item while executing the
agent), back up the modifications if any, and return a result.

Parallel Execution
Coherence additionally provides for the ability to execute an agent against an entire
collection of entries. In a partitioned Data Grid, the execution occurs in parallel,

Note: All of the Data Grid capabilities described in the following
sections are features of Coherence Enterprise Edition and higher.

Query-Based Execution

2-2 Oracle Coherence Getting Started Guide

meaning that the more nodes that are in the grid, the broader the work is
load-balanced across the Data Grid:

map.invokeAll(collectionKeys, agent);

For request/response processing, the agent returns one result for each key processed:

Map mapResults = map.invokeAll(collectionKeys, agent);

In other words, Coherence determines the optimal location(s) to execute the agent
based on the configuration for the data topology, moves the agent there, executes the
agent (automatically handling concurrency control for the item(s) while executing the
agent), backing up the modifications if any, and returning the coalesced results.

Query-Based Execution
As discussed in Chapter 3, "Provide a Queryable Data Fabric", Coherence supports the
ability to query across the entire data grid. For example, in a trading system it is
possible to query for all open Order objects for a particular trader:

Example 2–1 Querying Across a Data Grid

NamedCache map = CacheFactory.getCache("trades");
Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));
Set setOpenTradeIds = mapTrades.keySet(filter);

By combining this feature with Parallel Execution in the data grid, Coherence provides
for the ability to execute an agent against a query. As in the previous section, the
execution occurs in parallel, and instead of returning the identities or entries that
match the query, Coherence executes the agents against the entries:

map.invokeAll(filter, agent);

For request/response processing, the agent returns one result for each key processed:

Map mapResults = map.invokeAll(filter, agent);

In other words, Coherence combines its Parallel Query and its Parallel Execution
together to achieve query-based agent invocation against a Data Grid.

Data-Grid-Wide Execution
Passing an instance of AlwaysFilter (or a null) to the invokeAll method will
cause the passed agent to be executed against all entries in the InvocableMap:

map.invokeAll((Filter) null, agent);

As with the other types of agent invocation, request/response processing is supported:

Map mapResults = map.invokeAll((Filter) null, agent);

An application can process all the data spread across a particular map in the Data Grid
with a single line of code.

Agents for Targeted, Parallel and Query-Based Execution
An agent implements the EntryProcessor interface, typically by extending the
AbstractProcessor class.

Agents for Targeted, Parallel and Query-Based Execution

Provide a Data Grid 2-3

Several agents are included with Coherence, including:

■ AbstractProcessor - an abstract base class for building an EntryProcessor

■ ExtractorProcessor - extracts and returns a specific value (such as a property
value) from an object stored in an InvocableMap

■ CompositeProcessor - bundles together a collection of EntryProcessor
objects that are invoked sequentially against the same Entry

■ ConditionalProcessor - conditionally invokes an EntryProcessor if a
Filter against the Entry-to-process evaluates to true

■ PropertyProcessor - an abstract base class for EntryProcessor
implementations that depend on a PropertyManipulator

■ NumberIncrementor - pre- or post-increments any property of a primitive
integral type, and Byte, Short, Integer, Long, Float, Double, BigInteger,
BigDecimal

■ NumberMultiplier - multiplies any property of a primitive integral type, and
Byte, Short, Integer, Long, Float, Double, BigInteger, BigDecimal, and
returns either the previous or new value

The EntryProcessor interface (contained within the InvocableMap interface)
contains only two methods:

Example 2–2 Methods in the EntryProcessor Interface

/**
* An invocable agent that operates against the Entry objects within a
* Map.
*/
public interface EntryProcessor
 extends Serializable
 {
 /**
 * Process a Map Entry.
 *
 * @param entry the Entry to process
 *
 * @return the result of the processing, if any
 */
 public Object process(Entry entry);

 /**
 * Process a Set of InvocableMap Entry objects. This method is
 * semantically equivalent to:
 * <pre>
 * Map mapResults = new ListMap();
 * for (Iterator iter = setEntries.iterator(); iter.hasNext();)
 * {
 * Entry entry = (Entry) iter.next();
 * mapResults.put(entry.getKey(), process(entry));
 * }
 * return mapResults;
 * </pre>
 *
 * @param setEntries a read-only Set of InvocableMap Entry objects to
 * process
 *
 * @return a Map containing the results of the processing, up to one

Agents for Targeted, Parallel and Query-Based Execution

2-4 Oracle Coherence Getting Started Guide

 * entry for each InvocableMap Entry that was processed, keyed
 * by the keys of the Map that were processed, with a
 * corresponding value being the result of the processing for
 * each key
 */
 public Map processAll(Set setEntries);
 }

(The AbstractProcessor implements the processAll method as described in the
previous example.)

The InvocableMap.Entry that is passed to an EntryProcessor is an extension of
the Map.Entry interface that allows an EntryProcessor implementation to obtain
the necessary information about the entry and to make the necessary modifications in
the most efficient manner possible:

Example 2–3 InvocableMap.Entry API

/**
* An InvocableMap Entry contains additional information and exposes
* additional operations that the basic Map Entry does not. It allows
* non-existent entries to be represented, thus allowing their optional
* creation. It allows existent entries to be removed from the Map. It
* supports several optimizations that can ultimately be mapped
* through to indexes and other data structures of the underlying Map.
*/
public interface Entry
 extends Map.Entry
 {
 // ----- Map Entry interface ------------------------------------

 /**
 * Return the key corresponding to this entry. The resultant key does
 * not necessarily exist within the containing Map, which is to say
 * that <tt>InvocableMap.this.containsKey(getKey)</tt> could return
 * false. To test for the presence of this key within the Map, use
 * {@link #isPresent}, and to create the entry for the key, use
 * {@link #setValue}.
 *
 * @return the key corresponding to this entry; may be null if the
 * underlying Map supports null keys
 */
 public Object getKey();

 /**
 * Return the value corresponding to this entry. If the entry does
 * not exist, then the value will be null. To differentiate between
 * a null value and a non-existent entry, use {@link #isPresent}.
 * <p/>
 * Note: any modifications to the value retrieved using this
 * method are not guaranteed to persist unless followed by a
 * {@link #setValue} or {@link #update} call.
 *
 * @return the value corresponding to this entry; may be null if the
 * value is null or if the Entry does not exist in the Map
 */
 public Object getValue();

 /**
 * Store the value corresponding to this entry. If the entry does

Agents for Targeted, Parallel and Query-Based Execution

Provide a Data Grid 2-5

 * not exist, then the entry will be created by invoking this method,
 * even with a null value (assuming the Map supports null values).
 *
 * @param oValue the new value for this Entry
 *
 * @return the previous value of this Entry, or null if the Entry did
 * not exist
 */
 public Object setValue(Object oValue);

 // ----- InvocableMap Entry interface ---------------------------

 /**
 * Store the value corresponding to this entry. If the entry does
 * not exist, then the entry will be created by invoking this method,
 * even with a null value (assuming the Map supports null values).
 * <p/>
 * Unlike the other form of {@link #setValue(Object) setValue}, this
 * form does not return the previous value, and consequently may be
 * significantly less expensive (in terms of cost of execution) for
 * certain Map implementations.
 *
 * @param oValue the new value for this Entry
 * @param fSynthetic pass true only if the insertion into or
 * modification of the Map should be treated as a
 * synthetic event
 */
 public void setValue(Object oValue, boolean fSynthetic);

 /**
 * Extract a value out of the Entry's value. Calling this method is
 * semantically equivalent to
 * <tt>extractor.extract(entry.getValue())</tt>, but this method may
 * be significantly less expensive because the resultant value may be
 * obtained from a forward index, for example.
 *
 * @param extractor a ValueExtractor to apply to the Entry's value
 *
 * @return the extracted value
 */
 public Object extract(ValueExtractor extractor);

 /**
 * Update the Entry's value. Calling this method is semantically
 * equivalent to:
 * <pre>
 * Object oTarget = entry.getValue();
 * updater.update(oTarget, oValue);
 * entry.setValue(oTarget, false);
 * </pre>
 * The benefit of using this method is that it may allow the Entry
 * implementation to significantly optimize the operation, such as
 * for purposes of delta updates and backup maintenance.
 *
 * @param updater a ValueUpdater used to modify the Entry's value
 */
 public void update(ValueUpdater updater, Object oValue);

 /**
 * Determine if this Entry exists in the Map. If the Entry is not

Data Grid Aggregation

2-6 Oracle Coherence Getting Started Guide

 * present, it can be created by calling {@link #setValue} or
 * {@link #setValue}. If the Entry is present, it can be destroyed by
 * calling {@link #remove}.
 *
 * @return true iff this Entry is existent in the containing Map
 */
 public boolean isPresent();

 /**
 * Remove this Entry from the Map if it is present in the Map.
 * <p/>
 * This method supports both the operation corresponding to
 * {@link Map#remove} and synthetic operations such as
 * eviction. If the containing Map does not differentiate between
 * the two, then this method will always be identical to
 * <tt>InvocableMap.this.remove(getKey())</tt>.
 *
 * @param fSynthetic pass true only if the removal from the Map
 * should be treated as a synthetic event
 */
 public void remove(boolean fSynthetic);
 }

Data Grid Aggregation
While the agent discussion in the previous section corresponds to scalar agents, the
InvocableMap interface also supports aggregation:

Example 2–4 Aggregation in the InvocableMap API

/**
* Perform an aggregating operation against the entries specified by the
* passed keys.
*
* @param collKeys the Collection of keys that specify the entries within
* this Map to aggregate across
* @param agent the EntryAggregator that is used to aggregate across
* the specified entries of this Map
*
* @return the result of the aggregation
*/
public Object aggregate(Collection collKeys, EntryAggregator agent);

/**
* Perform an aggregating operation against the set of entries that are
* selected by the given Filter.
* <p/>
* Note: calling this method on partitioned caches requires a
* Coherence Enterprise Edition (or higher) license.
*
* @param filter the Filter that is used to select entries within this
* Map to aggregate across
* @param agent the EntryAggregator that is used to aggregate across
* the selected entries of this Map
*
* @return the result of the aggregation
*/
public Object aggregate(Filter filter, EntryAggregator agent);

Data Grid Aggregation

Provide a Data Grid 2-7

A simple EntryAggregator processes a set of InvocableMap.Entry objects to
achieve a result:

Example 2–5 EntryAggregator API

/**
* An EntryAggregator represents processing that can be directed to occur
* against some subset of the entries in an InvocableMap, resulting in a
* aggregated result. Common examples of aggregation include functions
* such as min(), max() and avg(). However, the concept of aggregation
* applies to any process that must evaluate a group of entries to
* come up with a single answer.
*/
public interface EntryAggregator
 extends Serializable
 {
 /**
 * Process a set of InvocableMap Entry objects to produce an
 * aggregated result.
 *
 * @param setEntries a Set of read-only InvocableMap Entry objects to
 * aggregate
 *
 * @return the aggregated result from processing the entries
 */
 public Object aggregate(Set setEntries);
 }

For efficient execution in a Data Grid, an aggregation process must be designed to
operate in a parallel manner.

Example 2–6 ParallelAwareAggregator API for running Aggregation in Parallel

/**
* A ParallelAwareAggregator is an advanced extension to EntryAggregator
* that is explicitly capable of being run in parallel, for example in a
* distributed environment.
*/
public interface ParallelAwareAggregator
 extends EntryAggregator
 {
 /**
 * Get an aggregator that can take the place of this aggregator in
 * situations in which the InvocableMap can aggregate in parallel.
 *
 * @return the aggregator that will be run in parallel
 */
 public EntryAggregator getParallelAggregator();

 /**
 * Aggregate the results of the parallel aggregations.
 *
 * @return the aggregation of the parallel aggregation results
 */
 public Object aggregateResults(Collection collResults);
 }

Coherence comes with all of the natural aggregation functions, including:

■ Count

Node-Based Execution

2-8 Oracle Coherence Getting Started Guide

■ DistinctValues

■ DoubleAverage

■ DoubleMax

■ DoubleMin

■ DoubleSum

■ LongMax

■ LongMin

■ LongSum

See the com.tangosol.util.aggregator package for a list of Coherence
aggregators. To implement your own aggregator, see the AbstractAggregator
abstract base class.

Node-Based Execution
Coherence provides an Invocation Service which allows execution of single-pass
agents (called Invocable objects) anywhere within the grid. The agents can be executed
on any particular node of the grid, in parallel on any particular set of nodes in the grid,
or in parallel on all nodes of the grid.

An invocation service is configured using the <invocation-scheme> element in the
cache configuration file. Using the name of the service, the application can easily
obtain a reference to the service:

InvocationService service = CacheFactory.getInvocationService("agents");

Agents are simply runnable classes that are part of the application. An example of a
simple agent is one designed to request a GC from the JVM:

Example 2–7 Simple Agent to Request Garbage Collection

/**
* Agent that issues a garbage collection.
*/
public class GCAgent
 extends AbstractInvocable
 {
 public void run()
 {
 System.gc();
 }
 }

To execute that agent across the entire cluster, it takes one line of code:

service.execute(new GCAgent(), null, null);

Here is an example of an agent that supports a grid-wide request/response model:

Example 2–8 Agent to Support a Grid-Wide Request and Response Model

/**

Note: All aggregators that come with Coherence are parallel-aware.

Node-Based Execution

Provide a Data Grid 2-9

* Agent that determines how much free memory a grid node has.
*/
public class FreeMemAgent
 extends AbstractInvocable
 {
 public void run()
 {
 Runtime runtime = Runtime.getRuntime();
 int cbFree = runtime.freeMemory();
 int cbTotal = runtime.totalMemory();
 setResult(new int[] {cbFree, cbTotal});
 }
 }

To execute that agent across the entire grid and retrieve all the results from it, it still
takes only one line of code:

Map map = service.query(new FreeMemAgent(), null);

While it is easy to do a grid-wide request/response, it takes a bit more code to print
out the results:

Example 2–9 Printing the Results from a Grid-Wide Request or Response

Iterator iter = map.entrySet().iterator();
while (iter.hasNext())
 {
 Map.Entry entry = (Map.Entry) iter.next();
 Member member = (Member) entry.getKey();
 int[] anInfo = (int[]) entry.getValue();
 if (anInfo != null) // nullif member died
 System.out.println("Member " + member + " has "
 + anInfo[0] + " bytes free out of "
 + anInfo[1] + " bytes total");
 }

The agent operations can be stateful, which means that their invocation state is
serialized and transmitted to the grid nodes on which the agent is to be run.

Example 2–10 Stateful Agent Operations

/**
* Agent that carries some state with it.
*/
public class StatefulAgent
 extends AbstractInvocable
 {
 public StatefulAgent(String sKey)
 {
 m_sKey = sKey;
 }

 public void run()
 {
 // the agent has the key that it was constructed with
 String sKey = m_sKey;
 // ...
 }

 private String m_sKey;
 }

Work Manager

2-10 Oracle Coherence Getting Started Guide

Work Manager
Coherence provides a grid-enabled implementation of the CommonJ Work Manager.
Using a Work Manager, an application can submit a collection of work that must be
executed. The Work Manager distributes that work in such a way that it is executed in
parallel, typically across the grid. In other words, if there are ten work items submitted
and ten servers in the grid, then each server will likely process one work item. Further,
the distribution of work items across the grid can be tailored, so that certain servers
(for example, one that acts as a gateway to a particular mainframe service) will be the
first choice to run certain work items, for sake of efficiency and locality of data.

The application can then wait for the work to be completed, and can provide a timeout
for how long it is willing to wait. The API for this purpose is quite powerful, allowing
an application to wait for the first work item to complete, or for a specified set of the
work items to complete. By combining methods from this API, it is possible to do
things like "Here are 10 items to execute; for these 7 unimportant items, wait no more
than 5 seconds, and for these 3 important items, wait no more than 30 seconds".

Example 2–11 Using a Work Manager

Work[] aWork = ...
Collection collBigItems = new ArrayList();
Collection collAllItems = new ArrayList();
for (int i = 0, c = aWork.length; i < c; ++i)
 {
 WorkItem item = manager.schedule(aWork[i]);

 if (i < 3)
 {
 // the first three work items are the important ones
 collBigItems.add(item);
 }

 collAllItems.add(item);
 }

Collection collDone = manager.waitForAll(collAllItems, 5000L);
if (!collDone.containsAll(collBigItems))
 {
 // wait the remainder of 30 seconds for the important work to finish
 manager.waitForAll(collBigItems, 25000L);
 }

Oracle Coherence Work Manager: Feedback from a Major Financial Institution
Our primary use case for the Work Manager is to allow our application to serve
coarse-grained service requests using our blade infrastructure in a standards-based
way. We often have what appears to be a simple request, like "give me this family's
information." In reality, however, this request expands into a large number of requests
to several diverse back-end data sources consisting of web services, RDMBS calls, and
so on. This use case expands into two different but related problems that we are
looking to the distributed version of the work manager to solve.

■ How do we take a coarse-grained request that expands into several fine-grained
requests and execute them in parallel to avoid blocking the caller for an
unreasonable time? In the previous example, we may have to make upwards of
100 calls to various places to retrieve the information. Since Java EE has no legal
threading model, and since the threading we observed when trying a

Summary

Provide a Data Grid 2-11

message-based approach to this was unacceptable, we decided to use the
Coherence Work Manager implementation.

■ Given that we want to make many external system calls in parallel while still
leveraging low-cost blades, we are hoping that fanning the required work across
many dual processor (logically 4-processor because of hyperthreading) machines
allows us to scale an inherently vertical scalability problem with horizontal
scalability at the hardware level. We think this is reasonable because the cost to
marshall the request to a remote Work Manager instance is small compared to the
cost to execute the service, which usually involves dozens or hundreds of
milliseconds.

Summary
Coherence provides an extensive set of capabilities that make Data Grid services
simple, seamless and seriously scalable. While the data fabric provides an entire
unified view of the complete data domain, the Data Grid features enable applications
to take advantage of the partitioning of data that Coherence provides in a scale-out
environment.

Summary

2-12 Oracle Coherence Getting Started Guide

3

Provide a Queryable Data Fabric 3-1

3Provide a Queryable Data Fabric

Oracle invented the concept of a data fabric with the introduction of the Coherence
partitioned data management service in 2002. Since then, Forrester Research has
labeled the combination of data virtualization, transparent and distributed EIS
integration, queryability and uniform accessibility found in Coherence as an
information fabric. The term fabric comes from a 2-dimensional illustration of
interconnects, as in a switched fabric. The purpose of a fabric architecture is that all
points within a fabric have a direct interconnect with all other points.

Figure 3–1 Data fabric illustrating which senders and receivers are connected

This graphic is described in the text.

Data Fabric

3-2 Oracle Coherence Getting Started Guide

Data Fabric
An information fabric, or the more simple form called a data fabric or data grid, uses a
switched fabric concept as the basis for managing data in a distributed environment.
Also referred to as a dynamic mesh architecture, Coherence automatically and
dynamically forms a reliable, increasingly resilient switched fabric composed of any
number of servers within a grid environment. Consider the attributes and benefits of
this architecture:

■ The aggregate data throughput of the fabric is linearly proportional to the number
of servers;

■ The in-memory data capacity and data-indexing capacity of the fabric is linearly
proportional to the number of servers;

■ The aggregate I/O throughput for disk-based overflow and disk-based storage of
data is linearly proportional to the number of servers;

■ The resiliency of the fabric increases with the extent of the fabric, resulting in each
server being responsible for only 1/n of the failover responsibility for a fabric with
an extent of n servers;

■ If the fabric is servicing clients, such as trading systems, the aggregate maximum
number of clients that can be served is linearly proportional to the number of
servers.

Coherence accomplishes these technical feats through a variety of algorithms:

■ Coherence dynamically partitions data across all data fabric nodes;

■ Since each data fabric node has a configurable maximum amount of data that it
will manage, the capacity of the data fabric is linearly proportional to the number
of data fabric nodes;

■ Since the partitioning is automatic and load-balancing, each data fabric node ends
up with its fair share of the data management responsibilities, allowing the
throughput (in terms of network throughput, disk I/O throughput, query
throughput, and so on) to scale linearly with the number of data fabric nodes;

■ Coherence maintains a configurable level of redundancy of data, automatically
eliminating single points of failure (SPOFs) by ensuring that data is kept
synchronously up-to-date in multiple data fabric nodes;

■ Coherence spreads out the responsibility for data redundancy in a dynamically
load-balanced manner so that each server backs up a small amount of data from
many other servers, instead of backing up all of the data from one particular
server, thus amortizing the impact of a server failure across the entire data fabric;

■ Each data fabric node can handle a large number of client connections, which can
be load-balanced by a hardware load balancer.

EIS and Database Integration
The Coherence information fabric can automatically load data on demand from an
underlying database or EIS using automatic read-through functionality. If data in the
fabric are modified, the same functionality allows that data to be synchronously
updated in the database, or queued for asynchronous write-behind. For more
information on read-through and write behind functionality, see Chapter 9,
"Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching".

Continuous Query

Provide a Queryable Data Fabric 3-3

Coherence automatically partitions data access across the data fabric, resulting in
load-balanced data accesses and efficient use of database and EIS connectivity.
Furthermore, the read-ahead and write-behind capabilities can cut data access
latencies to near-zero levels and insulate the application from temporary database and
EIS failures.

Queryable
The Coherence information fabric supports querying from any server in the fabric or
any client of the fabric. The queries can be performed using any criteria, including
custom criteria such as XPath queries and full text searches. When Coherence
partitioning is used to manage the data, the query is processed in parallel across the
entire fabric (that is, the query is also partitioned), resulting in a data query engine
that can scale its throughput up to fabrics of thousands of servers. For example, in a
trading system it is possible to query for all open Order objects for a particular trader:

Example 3–1 Querying the Cache for a Particular Object

NamedCache mapTrades = ...
Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));
Set setOpenTrades = mapTrades.entrySet(filter);

When an application queries for data from the fabric, the result is a point-in-time
snapshot. Additionally, the query results can be kept up-to-date by placing a query on
the listener itself or by using the Coherence Continuous Query feature. For more
information on placing a query on a listener, see Chapter 5, "Deliver Events for
Changes as they Occur".

Continuous Query
While it is possible to obtain a point in time query result from a Coherence data fabric,
and it is possible to receive events that would change the result of that query,
Coherence provides a feature that combines a query result with a continuous stream of
related events that maintain the query result in a real-time fashion. This capability is
called continuous query because it has the same effect as if the desired query had zero
latency and the query were repeated several times every millisecond. See

Coherence implements Continuous Query using a combination of its data fabric parallel
query capability and its real-time event-filtering and streaming. The result is support for
thousands of client application instances, such as trading desktops. Using the previous
trading system example, it can be converted to a Continuous Query with only one a
single line of code changed:

Note: Coherence solves the data bottleneck for large-scale compute
grids.

In large-scale compute grids, such as in DataSynapse financial grids
and biotech grids, the bottleneck for most compute processes is in
loading a data set and making it available to the compute engines that
require it. By layering a Coherence data fabric onto (or beside) a
compute grid, these data sets can be maintained in memory at all
times, and Coherence can feed the data in parallel at close to wire
speed to all of the compute nodes. In a large-scale deployment,
Coherence can provide several thousand times the aggregate data
throughput of the underlying data source.

Summary

3-4 Oracle Coherence Getting Started Guide

Example 3–2 Implementing a Continuous Query

NamedCache mapTrades = ...
Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));
NamedCache mapOpenTrades = new ContinuousQueryCache(mapTrades, filter);

The result of the Continuous Query is maintained locally, and optionally all of
corresponding data can be cached locally as well.

Summary
Coherence is successfully deployed as a large-scale data fabric for many of the world's
largest financial, telecommunications, logistics, travel and media organizations. With
unlimited scalability, the highest levels of availability, close to zero latency, an
incredibly rich set of capabilities and a sterling reputation for quality, Coherence is the
Information Fabric of choice Coherence is the Information Fabric of choice.

4

Cluster Your Objects and Data 4-1

4Cluster Your Objects and Data

Coherence is an essential ingredient for building reliable, high-scale clustered
applications. The term clustering refers to the use of more than one server to run an
application, usually for reliability and scalability purposes. Coherence provides all of
the necessary capabilities for applications to achieve the maximum possible
availability, reliability, scalability and performance. Virtually any clustered application
will benefit from using Coherence.

Coherence and Clustered Data
One of the primary uses of Coherence is to cluster an application's objects and data.
In the simplest sense, this means that all of the objects and data that an application
delegates to Coherence are automatically available to and accessible by all servers in
the application cluster. None of the objects or data will be lost in the event of server
failure.

By clustering the application's objects and data, Coherence solves many of the difficult
problems related to achieving availability, reliability, scalability, performance,
serviceability and manageability of clustered applications.

Availability
Availability refers to the percentage of time that an application is operating. High
Availability refers to achieving availability close to 100%. Coherence is used to achieve
High Availability in several different ways:

Supporting Redundancy in Java Applications
Coherence makes it possible for an application to run on more than one server, which
means that the servers are redundant. Using a load balancer, for example, an
application running on redundant servers will be available if one server is still
operating. Coherence enables redundancy by allowing an application to share,
coordinate access to, update and receive modification events for critical runtime
information across all of the redundant servers. Most applications cannot operate in a
redundant server environment unless they are architected to run in such an
environment; Coherence is a key enabler of such an architecture.

Enabling Dynamic Cluster Membership
Coherence tracks exactly what servers are available at any given moment. When the
application is started on an additional server, Coherence is instantly aware of that
server coming online, and automatically joins it into the cluster. This allows
redundancy (and thus availability) to be dynamically increased by adding servers.

Reliability

4-2 Oracle Coherence Getting Started Guide

Exposing Knowledge of Server Failure
Coherence reliably detects most types of server failure in less than a second, and
immediately fails over all of the responsibilities of the failed server without losing any
data. Consequently, server failure does not impact availability.

Part of an availability management is Mean Time To Recovery (MTTR), which is a
measurement of how much time it takes for an unavailable application to become
available. Since server failure is detected and handled in less than a second, and since
redundancy means that the application is available even when that server goes down,
the MTTR due to server failure is zero from the point of view of application
availability, and typically sub-second from the point of view of a load-balancer
re-routing an incoming request.

Eliminating Other Single Points Of Failure (SPOFs)
Coherence provides insulation against failures in other infrastructure tiers. For
example, Coherence write-behind caching and Coherence distributed parallel queries
can insulate an application from a database failure; in fact, using these capabilities, two
different Coherence customers have had database failure during operational hours, yet
their production Coherence-based applications maintained their availability and their
operational status.

Providing Support for Disaster Recovery (DR) and Contingency Planning
Coherence can even insulate against failure of an entire data center, by clustering
across multiple data centers and failing over the responsibilities of an entire data
center. Again, this capability has been proven in production, with a Coherence
customer running a mission-critical real-time financial system surviving a complete
data center outage.

Reliability
Reliability refers to the percentage of time that an application is able to process
correctly. In other words, an application may be available, yet unreliable if it cannot
correctly handle the application processing. An example that we use to illustrate high
availability but low reliability is a mobile phone network: While most mobile phone
networks have very high uptimes (referring to availability), dropped calls tend to be
relatively common (referring to reliability).

Coherence is explicitly build to achieve very high levels of reliability. For example,
server failure does not impact "in flight" operations, since each operation is atomically
protected from server failure, and will internally re-route to a secondary node based
on a dynamic pre-planned recovery strategy. In other words, every operation has a
backup plan ready to go!

Coherence is designed based on the assumption that failures are always about to occur.
Consequently, the algorithms employed by Coherence are carefully designed to
assume that each step within an operation could fail due to a network, server,
operating system, JVM or other resource outage. An example of how Coherence plans
for these failures is the synchronous manner in which it maintains redundant copies of
data; in other words, Coherence does not gamble with the application's data, and that
ensures that the application will continue to work correctly, even during periods of
server failure.

Scalability

Cluster Your Objects and Data 4-3

Scalability
Scalability refers to the ability of an application to predictably handle more load. An
application exhibits linear scalability if the maximum amount of load that an
application can sustain is directly proportional to the hardware resources that the
application is running on. For example, if an application running on 2 servers can
handle 2000 requests per second, then linear scalability would imply that 10 servers
would handle 10000 requests per second.

Linear scalability is the goal of a scalable architecture, but it is difficult to achieve. The
measurement of how well an application scales is called the scaling factor (SF). A
scaling factor of 1.0 represents linear scalability, while a scaling factor of 0.0 represents
no scalability. Coherence provides several capabilities designed to help applications
achieve linear scalability.

When planning for extreme scale, the first thing to understand is that application
scalability is limited by any necessary shared resource that does not exhibit linear
scalability. The limiting element is referred to as a bottleneck, and in most applications,
the bottleneck is the data source, such as a database or an EIS.

Coherence helps to solve the scalability problem by targeting obvious bottlenecks, and
by completely eliminating bottlenecks whenever possible. It accomplishes this through
a variety of capabilities, including:

Distributed Caching
Coherence uses a combination of replication, distribution, partitioning and
invalidation to reliably maintain data in a cluster in such a way that regardless of
which server is processing, the data that it obtains from Coherence is the same. In
other words, Coherence provides a distributed shared memory implementation, also
referred to as Single System Image (SSI) and Coherent Clustered Caching.

Any time that an application can obtain the data it needs from the application tier, it is
eliminating the data source as the Single Point Of Bottleneck (SPOB).

Partitioning
Partitioning refers to the ability for Coherence to load-balance data storage, access and
management across all of the servers in the cluster. For example, when using
Coherence data partitioning, if there are four servers in a cluster then each will
manage 25% of the data, and if another server is added, each server will dynamically
adjust so that each of the five servers will manage 20% of the data, and this data load
balancing will occur without any application interruption and without any lost data or
operations. Similarly, if one of those five servers were to die, each of the remaining
four servers would be managing 25% of the data, and this data load balancing will
occur without any application interruption and without any lost data or operations -
including the 20% of the data that was being managed on the failed server.

Coherence accomplishes failover without data loss by synchronously maintaining a
configurable number of copies of the data within the cluster. Just as the data
management responsibility is spread out over the cluster, so is the responsibility for
backing up data, so in the previous example, each of the remaining four servers would
have roughly 25% of the failed server's data backed up on it. This mesh architecture
guarantees that on server failure, no particular remaining server is inundated with a
massive amount of additional responsibility.

Coherence prevents loss of data even when multiple instances of the application run
on a single physical server within the cluster. It does so by ensuring that backup copies
of data are being managed on different physical servers, so that if a physical server

Scalability

4-4 Oracle Coherence Getting Started Guide

fails or is disconnected, all of the data being managed by the failed server has backups
ready to go on a different server.

Lastly, partitioning supports linear scalability of both data capacity and throughput.
It accomplishes the scalability of data capacity by evenly balancing the data across all
servers, so four servers can naturally manage two times as much data as two servers.
Scalability of throughput is also a direct result of load-balancing the data across all
servers, since as servers are added, each server is able to use its full processing power
to manage a smaller and smaller percentage of the overall data set. For example, in a
ten-server cluster each server has to manage 10% of the data operations, and - since
Coherence uses a peer-to-peer architecture - 10% of those operations are coming from
each server. With ten times that many servers (that is, 100 servers), each server is
managing only 1% of the data operations, and only 1% of those operations are coming
from each server - but there are ten times as many servers, so the cluster is
accomplishing ten times the total number of operations! In the 10-server example, if
each of the ten servers was issuing 100 operations per second, they would each be
sending 10 of those operations to each of the other servers, and the result would be
that each server was receiving 100 operations (10x10) that it was responsible for
processing. In the 100-server example, each would still be issuing 100 operations per
second, but each would be sending only one operation to each of the other servers, so
the result would be that each server was receiving 100 operations (100x1) that it was
responsible for processing. This linear scalability is made possible by modern switched
network architectures that provide backplanes that scale linearly to the number of
ports on the switch, providing each port with dedicated fully-duplexed (upstream and
downstream) bandwidth. Since each server is only sending and receiving 100
operations (in both the 10-server and 100-server examples), the network bandwidth
utilization is roughly constant per port regardless of the number of servers in the
cluster.

Session Management
One common use case for Coherence clustering is to manage user sessions
(conversational state) in the cluster. This capability is provided by the Coherence*Web
module, which is a built-in feature of Coherence. Coherence*Web provides linear
scalability for HTTP Session Management in clusters of hundreds of production
servers. It can achieve this linear scalability because at its core it is built on Coherence
dynamic partitioning.

Session management highlights the scalability problem that typifies shared data
sources: If an application could not share data across the servers, it would have to
delegate that data management entirely to the shared store, which is typically the
application's database. If the HTTP session were stored in the database, each HTTP
request (in the absence of sticky load-balancing) would require a read from the
database, causing the desired reads-per-second from the database to increase linearly
with the size of the server cluster. Further, each HTTP request causes an update of its
corresponding HTTP session, so regardless of sticky load balancing, to ensure that
HTTP session data is not lost when a server fails the desired writes-per-second to the
database will also increase linearly with the size of the server cluster. In both cases, the
actual reads and writes per second that a database is capable of, does not scale in
relation to the number of servers requesting those reads and writes, and the database
quickly becomes a bottleneck, forcing availability, reliability (for example,
asynchronous writes) and performance compromises. Additionally, related to
performance, each read from a database has an associated latency, and that latency
increases dramatically as the database experiences increasing load.

Coherence*Web, however, has the same latency in a 2-server cluster as it has in a
200-server cluster, since all HTTP session read operations that cannot be handled

Performance

Cluster Your Objects and Data 4-5

locally (for example, locality as the result of the sticky load balancing) are spread out
evenly across the rest of the cluster, and all update operations (which must be handled
remotely to ensure survival of the HTTP sessions) are likewise spread out evenly
across the rest of the cluster. The result is linear scalability with constant latency,
regardless of the size of the cluster.

Performance
Performance is the inverse of latency, and latency is the measurement of how long
something takes to complete. If increasing performance is the goal, then getting rid of
anything that has any latency is the solution. Obviously, it is impossible to get rid of all
latencies, since the High Availability and reliability aspects of an application are
counting on the underlying infrastructure, such as Coherence, to maintain reliable
up-to-date back-ups of important information, which means that some operations
(such as data modifications and pessimistic transactions) have unavoidable latencies.
However, every remaining operation that could possibly have any latency must be
targeted for elimination, and Coherence provides a large number of capabilities
designed to do just that.

Replication
Just as partitioning dynamically load-balances data evenly across the entire server
cluster, replication ensures that a desired set of data is up-to-date on every single server
in the cluster at all times. Replication allows operations running on any server to
obtain the data that they need locally, at basically no cost, because that data has
already been replicated to that server. In other words, replication is a tool to
guarantee locality of reference, and the result is zero-latency access to replicated data.

Near Caching
Since replication works best for data that should be on all servers, it follows that
replication is inefficient for data that an application would want to avoid copying to all
servers. For example, data that changes all of the time and very large data sets are both
poorly suited to replication, but both are excellently suited to partitioning, since it
exhibits linear scale of data capacity and throughput.

The only downside of partitioning is that it introduces latency for data access, and in
most applications the data access rate far out-weighs the data modification rate. To
eliminate the latency associated with partitioned data access, near caching maintains
frequently- and recently-used data from the partitioned cache on the specific servers
that are accessing that data, and it keeps that data coherent with event-based
invalidation. In other words, near caching keeps the most-likely-to-be-needed data
near to where it will be used, thus providing good locality of access, yet backed up by
the linear scalability of partitioning.

Write-Behind, Write-Coalescing and Write-Batching
Since the transactional throughput in the cluster is linearly scalable, the cost associated
with data changes can be a fixed latency, typically in the range of a few milliseconds,
and the total number of transactions per second is limited only by the size of the
cluster. In one application, Coherence was able to achieve transaction rates close to a
half-million transactions per second - and that on a cluster of commodity two-CPU
servers.

Often, the data being managed by Coherence is actually a temporary copy of data that
exists in an official System Of Record (SOR), such as a database. To avoid having the

Serviceability

4-6 Oracle Coherence Getting Started Guide

database become a transaction bottleneck, and to eliminate the latency of database
updates, Coherence provides a Write-Behind capability, which allows the application to
change data in the cluster, and those changes are asynchronously replayed to the
application's database (or EIS). By managing the changes in a clustered cache (which
has all of the High Availability, reliability and scalability attributes described
previously,) the pending changes are immune to server failure and the total rate of
changes scales linearly with the size of the cluster.

The Write-Behind functionality is implemented by queuing each data change; the
queue contains a list of what changes must be written to the System Of Record. The
duration of an item within the queue is configurable, and is referred to as the
Write-Behind Delay. When data changes, it is added to the write-behind queue (if it is
not already in the queue), and the queue entry is set to ripen after the configured
Write-Behind Delay has passed. When the queue entry has ripened, the latest copy of
the corresponding data is written to the System Of Record.

To avoid overwhelming the System Of Record, Coherence will replay only the latest
copies of data to the database, thus coalescing many updates that occur to the same
piece data into a single database operation. The longer the Write-Behind Delay, the
more coalescing may occur. Additionally, if many different pieces of data have
changed, all of those updates can be batched (for example, using JDBC statement
batching) into a single database operation. In this way, a massive breadth of changes
(number of pieces of data changed) and depth of changes (number of times each was
changed) can be bundled into a single database operation, which results in
dramatically reduced load on the database. The batching is also fully configurable; one
option, called the Write Batch Factor, even allows some of the queue entries that have
not yet ripened to be included in the batched update.

Serviceability
Serviceability refers to the ease and extent of changes that can be affected without
affecting availability. Coherence helps to increase an application's serviceability by
allowing servers to be taken off-line without impacting the application availability.
Those servers can be serviced and brought back online without any end-user or
processing interruptions. Many configuration changes related to Coherence can also be
made on a node-by-node basis in the same manner. With careful planning, even major
application changes can be rolled into production—again, one node at a
time—without interrupting the application.

Manageability
Manageability refers to the level of information that a running system provides, and
the capability to tweak settings related to that information. For example, Coherence
provides a clusterwide view of management information through the standard JMX
API, so that the entire cluster can be managed from a single server. The information
provided includes hit and miss rates, cache sizes, read-, write- and write-behind
statistics, and detailed information all the way down to the network packet level.

Additionally, Coherence allows applications to place their own management
information—and expose their own configurable settings—through the same clustered
JMX implementation. The result is an application infrastructure that makes managing
and monitoring a clustered application as simple as managing and monitoring a single
server, and all through Java's standard management API.

Summary

Cluster Your Objects and Data 4-7

Summary
There are a lot of challenges in building a highly available application that exhibits
scalable performance and is both serviceable and manageable. While there are many
ways to build distributed applications, only Coherence reliably clusters objects and
data. After objects and data are clustered by Coherence, all the servers in the cluster
can access and modify those objects and that data, and the objects and data managed
by Coherence will not be affected if and when servers fail. By providing a variety of
advanced capabilities, each of which is configurable, and application can achieve the
optimal balance of redundancy, scalability and performance, and do so within a
manageable and serviceable environment.

Summary

4-8 Oracle Coherence Getting Started Guide

5

Deliver Events for Changes as they Occur 5-1

5Deliver Events for Changes as they Occur

Coherence provides cache events using the JavaBean Event model. It is extremely
simple to receive the events that you need, where you need them, regardless of where
the changes are actually occurring in the cluster. Developers with any experience with
the JavaBean model will have no difficulties working with events, even in a complex
cluster.

 Listener Interface and Event Object
In the JavaBeans Event model, there is an EventListener interface that all listeners
must extend. Coherence provides a MapListener interface, which allows application
logic to receive events when data in a Coherence cache is added, modified or removed.

Example 5–1 illustrates an excerpt from the com.tangosol.util.MapListener
API.

Example 5–1 Excerpt from the MapListener API

public interface MapListener
 extends EventListener
 {
 /**
 * Invoked when a map entry has been inserted.
 *
 * @param evt the MapEvent carrying the insert information
 */
 public void entryInserted(MapEvent evt);

 /**
 * Invoked when a map entry has been updated.
 *
 * @param evt the MapEvent carrying the update information
 */
 public void entryUpdated(MapEvent evt);

 /**
 * Invoked when a map entry has been removed.
 *
 * @param evt the MapEvent carrying the delete information
 */
 public void entryDeleted(MapEvent evt);
 }

An application object that implements the MapListener interface can sign up for
events from any Coherence cache or class that implements the ObservableMap

Listener Interface and Event Object

5-2 Oracle Coherence Getting Started Guide

interface, simply by passing an instance of the application's MapListener
implementation to one of the addMapListener() methods.

The MapEvent object that is passed to the MapListener carries all of the necessary
information about the event that has occurred, including the source (ObservableMap)
that raised the event, the identity (key) that the event is related to, what the action was
against that identity (insert, update or delete), what the old value was and what the
new value is:

Example 5–2 illustrates an excerpt from the com.tangosol.util.MapEvent API.

Example 5–2 Excerpt from the MapEvent API

public class MapEvent
 extends EventObject
 {
 /**
 * Return an ObservableMap object on which this event has actually
 * occurred.
 *
 * @return an ObservableMap object
 */
 public ObservableMap getMap()

 /**
 * Return this event's id. The event id is one of the ENTRY_*
 * enumerated constants.
 *
 * @return an id
 */
 public int getId()

 /**
 * Return a key associated with this event.
 *
 * @return a key
 */
 public Object getKey()

 /**
 * Return an old value associated with this event.
 * <p>
 * The old value represents a value deleted from or updated in a map.
 * It is always null for "insert" notifications.
 *
 * @return an old value
 */
 public Object getOldValue()

 /**
 * Return a new value associated with this event.
 * <p>
 * The new value represents a new value inserted into or updated in
 * a map. It is always null for "delete" notifications.
 *
 * @return a new value
 */
 public Object getNewValue()

 // ----- Object methods ---

Caches and Classes that Support Events

Deliver Events for Changes as they Occur 5-3

 /**
 * Return a String representation of this MapEvent object.
 *
 * @return a String representation of this MapEvent object
 */
 public String toString()

 // ----- constants --

 /**
 * This event indicates that an entry has been added to the map.
 */
 public static final int ENTRY_INSERTED = 1;

 /**
 * This event indicates that an entry has been updated in the map.
 */
 public static final int ENTRY_UPDATED = 2;

 /**
 * This event indicates that an entry has been removed from the map.
 */
 public static final int ENTRY_DELETED = 3;
 }

Caches and Classes that Support Events
All Coherence caches implement ObservableMap; in fact, the NamedCache interface
that is implemented by all Coherence caches extends the ObservableMap interface.
That means that an application can sign up to receive events from any cache,
regardless of whether that cache is local, partitioned, near, replicated, using
read-through, write-through, write-behind, overflow, disk storage, and so on.

In addition to the Coherence caches (those objects obtained through a Coherence cache
factory), several other supporting classes in Coherence also implement the
ObservableMap interface:

■ ObservableHashMap

■ LocalCache

■ OverflowMap

■ NearCache

■ ReadWriteBackingMap

■ AbstractSerializationCache, SerializationCache, and
SerializationPagedCache

■ WrapperObservableMap, WrapperConcurrentMap, and
WrapperNamedCache

Note: Regardless of the cache topology and the number of servers,
and even if the modifications are being made by other servers, the
events will be delivered to the application's listeners.

Signing Up for All Events

5-4 Oracle Coherence Getting Started Guide

For a full list of published implementing classes, see the Coherence Javadoc for
ObservableMap.

Signing Up for All Events
To sign up for events, simply pass an object that implements the MapListener
interface to one of the addMapListener methods on ObservableMap. The
addMapListener methods are illustrated in Example 5–3.

Example 5–3 Methods on the ObservableMap API

public void addMapListener(MapListener listener);
public void addMapListener(MapListener listener, Object oKey, boolean fLite);
public void addMapListener(MapListener listener, Filter filter, boolean fLite);

Let's create an example MapListener implementation. Example 5–4 illustrates a
sample MapListener implementation that prints each event as it receive.

Example 5–4 Sample MapListener Implementation

/**
* A MapListener implementation that prints each event as it receives
* them.
*/
public static class EventPrinter
 extends Base
 implements MapListener
 {
 public void entryInserted(MapEvent evt)
 {
 out(evt);
 }

 public void entryUpdated(MapEvent evt)
 {
 out(evt);
 }

 public void entryDeleted(MapEvent evt)
 {
 out(evt);
 }
 }

Using this implementation, it is extremely simple to print out all events from any
given cache (since all caches implement the ObservableMap interface):

cache.addMapListener(new EventPrinter());

Of course, to be able to later remove the listener, it is necessary to hold on to a
reference to the listener:

Example 5–5 Holding a Reference to a Listener

Listener listener = new EventPrinter();
cache.addMapListener(listener);
m_listener = listener; // store the listener in a field

Later, to remove the listener:

Configuring a MapListener for a Cache

Deliver Events for Changes as they Occur 5-5

Example 5–6 Removing a Listener

Listener listener = m_listener;
if (listener != null)
 {
 cache.removeMapListener(listener);
 m_listener = null; // clean up the listener field
 }

Each addMapListener method on the ObservableMap interface has a
corresponding removeMapListener method. To remove a listener, use the
removeMapListener method that corresponds to the addMapListener method
that was used to add the listener.

Using an Inner Class as a MapListener
When creating an inner class to use as a MapListener, or when implementing a
MapListener that only listens to one or two types of events (inserts, updates or
deletes), you can use the AbstractMapListener base class. For example, the
anonymous inner class in Example 5–7 prints out only the insert events for the cache.

Example 5–7 Inner Class that Prints Only Cache Insert Events

cache.addMapListener(new AbstractMapListener()
 {
 public void entryInserted(MapEvent evt)
 {
 out(evt);
 }
 });

Another helpful base class for creating a MapListener is the
MultiplexingMapListener, which routes all events to a single method for
handling. This class would allow you to simplify the EventPrinter example to the
code illustrated in Example 5–8. Since only one method must be implemented to
capture all events, the MultiplexingMapListener can also be very useful when
creating an inner class to use as a MapListener.

Example 5–8 Routing All Events to a Single Method for Handling

public static class EventPrinter
 extends MultiplexingMapListener
 {
 public void onMapEvent(MapEvent evt)
 {
 out(evt);
 }
 }

Configuring a MapListener for a Cache
If the listener should always be on a particular cache, then place it into the cache
configuration using the <listener> element and Coherence will automatically add
the listener when it configures the cache.

Signing up for Events on specific identities

5-6 Oracle Coherence Getting Started Guide

Signing up for Events on specific identities
Signing up for events that occur against specific identities (keys) is just as simple. For
example, to print all events that occur against the Integer key 5:

cache.addMapListener(new EventPrinter(), new Integer(5), false);

Thus, the code in Example 5–9 would only trigger an event when the Integer key 5 is
inserted or updated:

Example 5–9 Triggering an Event when a Specific Integer Key is Inserted or Updated

for (int i = 0; i < 10; ++i)
 {
 Integer key = new Integer(i);
 String value = "test value for key " + i;
 cache.put(key, value);
 }

Filtering Events
Similar to listening to a particular key, it is possible to listen to particular events. In
Example 5–10 a listener is added to the cache with a filter that allows the listener to
only receive delete events.

Example 5–10 Adding a Listener with Filter for Deleted Events

// Filters used with partitioned caches must be
// Serializable, Externalizable or ExternalizableLite
public class DeletedFilter
 implements Filter, Serializable
 {
 public boolean evaluate(Object o)
 {
 MapEvent evt = (MapEvent) o;
 return evt.getId() == MapEvent.ENTRY_DELETED;
 }
 }

cache.addMapListener(new EventPrinter(), new DeletedFilter(), false);

If you then make the following sequence of calls:

cache.put("hello", "world");
cache.put("hello", "again");
cache.remove("hello");

Note: Filtering events versus filtering cached data:

When building a Filter for querying, the object that will be passed to
the evaluate method of the Filter will be a value from the cache, or - if
the Filter implements the EntryFilter interface - the entire Map.Entry
from the cache. When building a Filter for filtering events for a
MapListener, the object that will be passed to the evaluate method of
the Filter will always be of type MapEvent.

For more information on how to use a query filter to listen to cache
events, see "Advanced: Listening to Queries" on page 5-8.

"Lite" Events

Deliver Events for Changes as they Occur 5-7

The result would be:

CacheEvent{LocalCache deleted: key=hello, value=again}

For more information, see the "Advanced: Listening to Queries" on page 5-8.

"Lite" Events
By default, Coherence provides both the old and the new value as part of an event.
Consider the following example:

Example 5–11 Inserting, Updating, and Removing a Value from the Cache

MapListener listener = new MultiplexingMapListener()
 {
 public void onMapEvent(MapEvent evt)
 {
 out("event has occurred: " + evt);
 out("(the wire-size of the event would have been "
 + ExternalizableHelper.toBinary(evt).length()
 + " bytes.)");
 }
 };
cache.addMapListener(listener);

// insert a 1KB value
cache.put("test", new byte[1024]);

// update with a 2KB value
cache.put("test", new byte[2048]);

// remove the 2KB value
cache.remove("test");

The output from running the test, illustrated inExample 5–12, shows that the first
event carries the 1KB inserted value, the second event carries both the replaced 1KB
value and the new 2KB value, and the third event carries the removed 2KB value.

Example 5–12 Sample Output

event has occurred: CacheEvent{LocalCache added: key=test, value=[B@a470b8}
(the wire-size of the event would have been 1283 bytes.)
event has occurred: CacheEvent{LocalCache updated: key=test, old value=[B@a470b8,
new value=[B@1c6f579}
(the wire-size of the event would have been 3340 bytes.)
event has occurred: CacheEvent{LocalCache deleted: key=test, value=[B@1c6f579}
(the wire-size of the event would have been 2307 bytes.)

When an application does not require the old and the new value to be included in the
event, it can indicate that by requesting only "lite" events. When adding a listener, you
can request lite events by using one of the two addMapListener methods that takes
an additional boolean fLite parameter. In Example 5–11, the only change would be:

cache.addMapListener(listener, (Filter) null, true);

Advanced: Listening to Queries

5-8 Oracle Coherence Getting Started Guide

Advanced: Listening to Queries
All Coherence caches support querying by any criteria. When an application queries
for data from a cache, the result is a point-in-time snapshot, either as a set of identities
(keySet) or a set of identity/value pairs (entrySet). The mechanism for
determining the contents of the resulting set is referred to as filtering, and it allows an
application developer to construct queries of arbitrary complexity using a rich set of
out-of-the-box filters (for example, equals, less-than, like, between, and so on), or to
provide their own custom filters (for example, XPath). For more information on
querying by any criteria, see Chapter 3, "Provide a Queryable Data Fabric".

The same filters that are used to query a cache can be used to listen to events from a
cache. For example, in a trading system it is possible to query for all open Order
objects for a particular trader:

Example 5–13 Listening for Events from a Cache

NamedCache mapTrades = ...
Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));
Set setOpenTrades = mapTrades.entrySet(filter);

To receive notifications of new trades being opened for that trader, closed by that
trader or reassigned to or from another trader, the application can use the same filter:

Example 5–14 Listening for Events on an Object

// receive events for all trade IDs that this trader is interested in
trades.addMapListener(listener, new MapEventFilter(filter), true);

The MapEventFilter converts a query filter into an event filter.

The MapEventFilter has several very powerful options, allowing an application
listener to receive only the events that it is specifically interested in. More importantly
for scalability and performance, only the desired events have to be communicated over
the network, and they are communicated only to the servers and clients that have
expressed interest in those specific events. Example 5–15 illustrates these scenarios.

Example 5–15 Using MapEventFilter to Filter on Various Events

// receive all events for all trades that this trader is interested in
nMask = MapEventFilter.E_ALL;
trades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

// receive events for all this trader's trades that are closed or
// re-assigned to a different trader
nMask = MapEventFilter.E_UPDATED_LEFT | MapEventFilter.E_DELETED;
trades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

// receive events for all trades as they are assigned to this trader
nMask = MapEventFilter.E_INSERTED | MapEventFilter.E_UPDATED_ENTERED;

Note: Obviously, a lite event's old value and new value may be null.
However, even if you request lite events, the old and the new value
may be included if there is no additional cost to generate and deliver
the event. In other words, requesting that a MapListener receive lite
events is simply a hint to the system that the MapListener does not
need to know the old and new values for the event.

Advanced: Synthetic Events

Deliver Events for Changes as they Occur 5-9

trades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

// receive events only fornew trades assigned to this trader
nMask = MapEventFilter.E_INSERTED;
trades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

For more information on the various options supported, see the API documentation
for MapEventFilter.

Filtering Events Versus Filtering Cached Data
When building a Filter for querying, the object that will be passed to the evaluate
method of the Filter will be a value from the cache, or if the Filter implements the
EntryFilter interface, the entire Map.Entry from the cache. When building a
Filter for filtering events for a MapListener, the object that will be passed to the
evaluate method of the Filter will always be of type MapEvent.

The MapEventFilter converts a Filter that is used to do a query into a Filter
that is used to filter events for a MapListener. In other words, the MapEventFilter
is constructed from a Filter that queries a cache, and the resulting
MapEventFilter is a filter that evaluates MapEvent objects by converting them into
the objects that a query Filter would expect.

Advanced: Synthetic Events
Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache while another server is adding several items to a cache
while a third server is removing an item from the same cache, all while fifty threads on
each and every server in the cluster is accessing data from the same cache! All the
modifying actions will produce events that any server within the cluster can choose to
receive. We refer to these actions as client actions, and the events as being dispatched to
clients, even though the "clients" in this case are actually servers. This is a natural
concept in a true peer-to-peer architecture, such as a Coherence cluster: Each and every
peer is both a client and a server, both consuming services from its peers and
providing services to its peers. In a typical Java Enterprise application, a "peer" is an
application server instance that is acting as a container for the application, and the
"client" is that part of the application that is directly accessing and modifying the
caches and listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the
most common cases are:

■ When entries automatically expire from a cache;

■ When entries are evicted from a cache because the maximum size of the cache has
been reached;

■ When entries are transparently added to a cache as the result of a Read-Through
operation;

■ When entries in a cache are transparently updated as the result of a Read-Ahead
or Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and
typically automatic) operations from within a cache. These events are referred to as
synthetic events.

When necessary, an application can differentiate between client-induced and synthetic
events simply by asking the event if it is synthetic. This information is carried on a

Advanced: Backing Map Events

5-10 Oracle Coherence Getting Started Guide

sub-class of the MapEvent, called CacheEvent. Using the previous EventPrinter
example, it is possible to print only the synthetic events:

Example 5–16 Determining Synthetic Events

public static class EventPrinter
 extends MultiplexingMapListener
 {
 public void onMapEvent(MapEvent evt)
 {
 if (evt instanceof CacheEvent && ((CacheEvent) evt).isSynthetic())
 {
 out(evt);
)
 }
 }

For more information on this feature, see the API documentation for CacheEvent.

Advanced: Backing Map Events
While it is possible to listen to events from Coherence caches, each of which presents a
local view of distributed, partitioned, replicated, near-cached, continuously-queried,
read-through/write-through and/or write-behind data, it is also possible to peek
behind the curtains, so to speak.

For some advanced use cases, it may be necessary to "listen to" the "map" behind the
"service". Replication, partitioning and other approaches to managing data in a
distributed environment are all distribution services. The service still has to have
something in which to actually manage the data, and that something is called a "backing
map".

Backing maps are configurable. If all the data for a particular cache should be kept in
object form on the heap, then use an unlimited and non-expiring LocalCache (or a
SafeHashMap if statistics are not required). If only a small number of items should be
kept in memory, use a LocalCache. If data are to be read on demand from a database,
then use a ReadWriteBackingMap (which knows how to read and write through an
application's DAO implementation), and in turn give the ReadWriteBackingMap a
backing map such as a SafeHashMap or a LocalCache to store its data in.

Some backing maps are observable. The events coming from these backing maps are
not usually of direct interest to the application. Instead, Coherence translates them into
actions that must be taken (by Coherence) to keep data synchronous and properly
backed up, and it also translates them when appropriate into clustered events that are
delivered throughout the cluster as requested by application listeners. For example, if
a partitioned cache has a LocalCache as its backing map, and the local cache expires
an entry, that event causes Coherence to expire all of the backup copies of that entry.
Furthermore, if any listeners have been registered on the partitioned cache, and if the
event matches their event filter(s), then that event will be delivered to those listeners
on the servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where
the data are being maintained, and it must do so on the structure (backing map) that is
actually managing the data. In these cases, if the backing map is an observable map, a
listener can be configured on the backing map or one can be programmatically added
to the backing map. (If the backing map is not observable, it can be made observable
by wrapping it in an WrapperObservableMap.)

Advanced: Backing Map Events

Deliver Events for Changes as they Occur 5-11

For more information on this feature, see the API documentation for
BackingMapManager.

Producing Readable Backing MapListener Events from Distributed Caches
Backing MapListener events are returned from replicated caches in readable Java
format. However, backing MapListener events returned from distributed caches are
in internal Coherence format. The current version of Coherence provides an
AbstractMultiplexingBackingMapListener class that enables you to obtain
readable backing MapListener events from distributed caches. follow these steps:

1. Implement the AbstractMultiplexingBackingMapListener class.

2. Register the implementation in the <listener> section of the
backing-map-scheme in the cache-config file.

3. Start the cache server application file and the client file with the cacheconfig
Java property:

-Dtangosol.coherence.cacheconfig="cache-config.xml"

The AbstractMultiplexingBackingMapListener class provides an
onBackingMapEvent method which you can override to specify how you would like
the event returned. For a complete listing of the class, see Appendix B,
"AbstractMultiplexingBackingMapListener Class Listing".

The following listing of the VerboseBackingMapListener class is a sample
implementation of AbstractMultiplexingBackingMapListener. The
onBackingMapEvent method has been over-ridden to send the results to standard
output.

Example 5–17 An AbstractMultiplexingBackingMapListener Implementation

import com.tangosol.net.BackingMapManagerContext;
import com.tangosol.util.MapEvent;

public class VerboseBackingMapListener extends
AbstractMultiplexingBackingMapListener {

 public VerboseBackingMapListener(BackingMapManagerContext context) {
 super(context);
 }

 @Override
 protected void onBackingMapEvent(MapEvent mapEvent, Cause cause) {

 System.out.printf("Thread: %s Cause: %s Event: %s\n",
Thread.currentThread().getName(), cause, mapEvent);

 try {
 Thread.currentThread().sleep(5000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }
}

Advanced: Backing Map Events

5-12 Oracle Coherence Getting Started Guide

Example 5–18 is a listing of a sample cache-config.xml file. In the <listener>
section of the file, the VerboseBackingMapListener is identified as being of type
com.tangosol.net.BackingMapManagerContext.

Example 5–18 Cache Configuration Specifying a Verbose Backing Map Listener

<cache-config>

 <distributed-scheme>
 <scheme-name>my-dist-scheme</scheme-name>
 <service-name>DistributedCache</service-name>

 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme>
 <high-units>0</high-units>
 <expiry-delay>0</expiry-delay>
 </local-scheme>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>
 <class-name>CustomCacheStore</class-name>
 <init-params>
 <init-param>

<param-type>java.lang.String</param-type>

<param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>

 <listener>
 <class-scheme>
 <class-name>VerboseBackingMapListener</class-name>
 <init-params>
 <init-param>

<param-type>com.tangosol.net.BackingMapManagerContext</param-type>

<param-value>{manager-context}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </listener>
 </read-write-backing-map-scheme>
 </backing-map-scheme>

 <autostart>true</autostart>
 </distributed-scheme>
...
</cache-config>

Summary

Deliver Events for Changes as they Occur 5-13

Advanced: Synchronous Event Listeners
Some events are delivered asynchronously, so that application listeners do not disrupt
the cache services that are generating the events. In some rare scenarios, asynchronous
delivery can cause ambiguity of the ordering of events compared to the results of
ongoing operations. To guarantee that the cache API operations and the events are
ordered as if the local view of the clustered system were single-threaded, a
MapListener must implement the SynchronousListener marker interface.

One example in Coherence itself that uses synchronous listeners is the Near Cache,
which can use events to invalidate locally cached data ("Seppuku").

For more information on this feature, see the API documentation for
SynchronousListener.

Summary
Coherence provides an extremely rich event model for caches, providing the means for
an application to request the specific events it requires, and the means to have those
events delivered only to those parts of the application that require them.

Summary

5-14 Oracle Coherence Getting Started Guide

6

Automatically Manage Dynamic Cluster Membership 6-1

6Automatically Manage Dynamic Cluster
Membership

Coherence manages cluster membership by automatically adding new servers to the
cluster when they start up and automatically detecting their departure when they are
shut down or fail. Applications have full access to this information and can sign up to
receive event notifications when members join and leave the cluster. Coherence also
tracks all the services that each member is providing and consuming. This information
is used to plan for service resiliency in case of server failure; to load-balance data
management; as well as other responsibilities across all members of the cluster.

Cluster and Service Objects
From any cache, the application can obtain a reference to the local representation of a
cache's service. From any service, the application can obtain a reference to the local
representation of the cluster.

CacheService service = cache.getCacheService();
Cluster cluster = service.getCluster();

From the Cluster object, the application can determine the set of services that run in
the cluster. This is illustrated in Example 6–1.

Example 6–1 Determining Services Running in the Cluster

...
for (Enumeration enum = cluster.getServiceNames(); enum.hasMoreElements();)
 {
 String sName = (String) enum.nextElement();
 ServiceInfo info = cluster.getServiceInfo(sName);
 // ...
 }
...

The ServiceInfo object provides information about the service, including its name,
type, version and membership.

For more information on this feature, see the API documentation for NamedCache,
CacheService, Service, ServiceInfo and Cluster.

Member object
The primary information that an application can determine about each member in the
cluster is:

Listener interface and Event object

6-2 Oracle Coherence Getting Started Guide

■ The Member's IP address

■ What date/time the Member joined the cluster

As an example, if there are four servers in the cluster with each server running one
copy ("instance") of the application and all four instances of the application are
clustered together, then the cluster is composed of four Members. From the Cluster
object, the application can determine what the local Member is:

Member memberThis = cluster.getLocalMember();

From the Cluster object, the application can also determine the entire set of cluster
members:

Set setMembers = cluster.getMemberSet();

From the ServiceInfo object, the application can determine the set of cluster
members that are participating in that service:

ServiceInfo info = cluster.getServiceInfo(sName);
Set setMembers = info.getMemberSet();

For more information on this feature, see the API documentation for Member.

Listener interface and Event object
To listen to cluster and/or service membership changes, the application places a
listener on the desired Service. As discussed before, the Service can come from a
cache:

Service service = cache.getCacheService();

The Service can also be looked up by its name:

Service service = cluster.getService(sName);

To receive membership events, the application implements a MemberListener.
Example 6–2 illustrates a listener implementation that prints out all the membership
events that it receives:

Example 6–2 A Sample MemberListener Implementation

public class MemberEventPrinter
 extends Base
 implements MemberListener
 {
 public void memberJoined(MemberEvent evt)
 {
 out(evt);
 }

 public void memberLeaving(MemberEvent evt)
 {
 out(evt);
 }

 public void memberLeft(MemberEvent evt)
 {
 out(evt);
 }
 }

Listener interface and Event object

Automatically Manage Dynamic Cluster Membership 6-3

The MemberEvent object carries information about the event type (either joined,
leaving, or left), the member that generated the event, and the service that acts as the
source of the event. Additionally, the event provides a method, isLocal(), that
indicates to the application that it is this member that is joining or leaving the cluster.
This is useful for recognizing soft restarts in which an application automatically rejoins
a cluster after a failure occurs. Example 6–3 illustrates how information encapsulated
in a MemberEvent object can be used.

Example 6–3 Using Event Type Information in a MemberEvent Object

public class RejoinEventPrinter
 extends Base
 implements MemberListener
 {
 public void memberJoined(MemberEvent evt)
 {
 if (evt.isLocal())
 {
 out("this member just rejoined the cluster: " + evt);
 }
 }

 public void memberLeaving(MemberEvent evt)
 {
 }

 public void memberLeft(MemberEvent evt)
 {
 }
 }

For more information on these feature, see the API documentation for Service,
MemberListener and MemberEvent.

Listener interface and Event object

6-4 Oracle Coherence Getting Started Guide

7

Managing an Object Model 7-1

7Managing an Object Model

This document describes best practices for managing an object model whose state is
managed in a collection of Coherence named caches. Given a set of entity classes, and
a set of entity relationships, what is the best means of expressing and managing the
object model across a set of Coherence named caches?

Cache Usage Paradigms
The value of a clustered caching solution depends on how it is used. Is it simply
caching database data in the application tier, keeping it ready for instant access? Is it
taking the next step to move transactional control into the application tier? Or does it
go a step further by aggressively optimizing transactional control?

Simple Data Caching
Simple data caches are common, especially in situations where concurrency control is
not required (for example, content caching) or in situations where transactional control
is still managed by the database (for example, plug-in caches for Hibernate and JDO
products). This approach has minimal impact on application design, and is often
implemented transparently by the Object/Relational Mapping (ORM) layer or the
application server (EJB container, Spring, etc). However, it still does not completely
solve the issue of overloading the database server; in particular, while
non-transactional reads are handled in the application tier, all transactional data
management still requires interaction with the database.

It is important to note that caching is not an orthogonal concern when data access
requirements go beyond simple access by primary key. In other words, to truly benefit
from caching, applications must be designed with caching in mind.

Transactional Caching
Applications that need to scale and operate independently of the database must start
to take greater responsibility for data management. This includes using Coherence
features for read access (read-through caching, cache queries, aggregations), features
for minimizing database transactions (write-behind), and features for managing
concurrency (locking, cache transactions).

Transaction Optimization
Applications that need to combine fault-tolerance, low latency and high scalability will
generally need to optimize transactions even further. Using traditional transaction
control, an application might need to specify SERIALIZABLE isolation when
managing an Order object. In a distributed environment, this can be a very expensive
operation. Even in non-distributed environments, most databases and caching
products will often use a table lock to achieve this. This places a hard limit on

Techniques to Manage the Object Model

7-2 Oracle Coherence Getting Started Guide

scalability regardless of available hardware resources; in practice, this may limit
transaction rate to hundreds of transactions per second, even with exotic hardware.
However, locking "by convention" can help - for example, requiring that all acessors
lock only the "parent" Order object. Doing this can reduce the scope of the lock from
table-level to order-level, enabling far higher scalability. (Of course, some applications
already achieve similar results by partitioning event processing across multiple JMS
queues to avoid the need for explicit concurrency control.) Further optimizations
include using an EntryProcessor to avoid the need for clustered coordination, which
can dramatically increase the transaction rate for a given cache entry.

Techniques to Manage the Object Model
The term "relationships" refers to how objects are related to each other. For example, an
Order object may contain (exclusively) a set of LineItem objects. It may also refer to a
Customer object that is associated with the Order object.

The data access layer can generally be broken down into two key components, Data
Access Objects (DAOs) and Data Transfer Objects (DTOs) (in other words, behavior
and state). DAOs control the behavior of data access, and generally will contain the
logic that manages the database or cache. DTOs contain data for use with DAOs, for
example, an Order record. Also, note that a single object may (in some applications)
act as both a DTO and DAO. These terms describe patterns of usage; these patterns
will vary between applications, but the core principles will be applicable. For
simplicity, the examples in this document follow a "Combined DAO/DTO" approach
(behaviorally-rich Object Model).

Managing entity relationships can be a challenging task, especially when scalability
and transactionality are required. The core challenge is that the ideal solution must be
capable of managing the complexity of these inter-entity relationships with a
minimum of developer involvement. Conceptually, the problem is one of taking the
relationship model (which could be represented in any of several forms, including
XML or Java source) and providing runtime behavior which adheres to that
description.

Present solutions can be categorized into a few groups:

■ Code generation (.java or .class files)

■ Runtime byte-code instrumentation (ClassLoader interception)

■ Predefined DAO methods

Code Generation
Code generation is a popular option, involving the generation of .java or .class files.
This approach is commonly used with several Management and Monitoring, AOP and
ORM tools (AspectJ, Hibernate). The primary challenges with this approach are the
generation of artifacts, which may need to be managed in a software configuration
management (SCM) system.

Byte-code instrumentation
This approach uses ClassLoader interception to instrument classes as they are loaded
into the JVM. This approach is commonly used with AOP tools (AspectJ,
JBossCacheAop, TerraCotta) and some ORM tools (very common with JDO
implementations). Due to the risks (perceived or actual) associated with run-time
modification of code (including a tendency to break the hot-deploy options on
application servers), this option is not viable for many organizations and as such is a
non-starter.

Domain Model

Managing an Object Model 7-3

Developer-implemented classes
The most flexible option is to have a runtime query engine. ORM products shift most
of this processing off onto the database server. The alternative is to provide the query
engine inside the application tier; but again, this leads toward the same complexity
that limits the manageability and scalability of a full-fledged database server.

The recommended practice for Coherence is to map out DAO methods explicitly. This
provides deterministic behavior (avoiding dynamically evaluated queries), with some
added effort of development. This effort will be directly proportional to the complexity
of the relationship model. For small- to mid-size models (up to ~50 entity types
managed by Coherence), this will be fairly modest development effort. For larger
models (or for those with particularly complicated relationships), this may be a
substantial development effort.

As a best practice, all state, relationships and atomic transactions should be handled
by the Object Model. For more advanced transactional control, there should be an
additional Service Layer which coordinates concurrency (allowing for composable
transactions).

Composable Transactions:
The Java language does not directly support composable transactions (the ability to
combine multiple transactions into a single transaction). The core Coherence API,
based on standard JavaSE patterns, does not either. Locking and synchronization
operations support only non-composable transactions.

To quote from the Microsoft Research Paper titled "Composable Memory Transactions
(PDF)":

Perhaps the most fundamental objection, though, is that lock-based programs do not compose:
correct fragments may fail when combined. For example, consider a hash table with thread-safe
insert and delete operations. Now suppose that we want to delete one item A from table t1, and
insert it into table t2; but the intermediate state (in which neither table contains the item) must
not be visible to other threads. Unless the implementor of the hash table anticipates this need,
there is simply no way to satisfy this requirement. [...] In short, operations that are individually
correct (insert, delete) cannot be composed into larger correct operations.-Tim Harris et al,
"Composable Memory Transactions", Section 2

This is one reason that "transparent clustering" (or any form of clustering that relies on
the basic Java language features) only works for non-composable transactions.
Applications may use the (composable) TransactionMap to enable composite
transactions. Alternatively, applications may use transactional algorithms such as
ordered locking to more efficiently support desired levels of isolation and atomicity.
"Service Layer" on page 7-5 provides more detail on the latter.

Domain Model
A NamedCache should contain one type of entity (in the same way that a database
table contains one type of entity). The only common exception to this are
directory-type caches, which often may contain arbitrary values.

Each additional NamedCache consumes only a few dozen bytes of memory per
participating cluster member. This will vary, based on the backing map. Caches
configured with the <read_write_backing_map_scheme> for transparent
database integration will consume additional resources if write-behind caching is
enabled, but this will not be a factor until there are hundreds of named caches.

Domain Model

7-4 Oracle Coherence Getting Started Guide

If possible, cache layouts should be designed so that business transactions map to a
single cache entry update. This simplifies transactional control and can result in much
greater throughput.

Most caches should use meaningful keys (as opposed to the "meaningless keys"
commonly used in relational systems whose only purpose is to manage identity). The
one drawback to this is limited query support (as Coherence queries currently apply
only to the entry value, not the entry key); to query against key attributes, the value
must duplicate the attributes.

Best Practices for Data Access Objects in Coherence
DAO objects must implement the getter/setter/query methods in terms of
NamedCache access. The NamedCache API makes this very simple for the most types
of operations, especially primary key lookups and simple search queries.

Example 7–1 Implementing Methods for NamedCache Access

public class Order
 implements Serializable
 {
 // static"Finder" method
 public static Order getOrder(OrderId orderId)
 {
 return (Order)m_cacheOrders.get(orderId);
 }

 // ...
 // mutator/accessor methods for updating Order attributes
 // ...

 // lazy-load an attribute
 public Customer getCustomer()
 {
 return (Customer)m_cacheCustomers.get(m_customerId);
 }

 // lazy-load a collection of child attributes
 public Collection getLineItems()
 {
 // returns map(LineItemId -> LineItem); just return the values
 return ((Map)m_cacheLineItems.getAll(m_lineItemIds)).values();
 }

 // fields containing order state
 private CustomerId m_customerId;
 private Collection m_lineItemIds;

 // handles to caches containing related objects
 private static final NamedCache m_cacheCustomers =
CacheFactory.getCache("customers");
 private static final NamedCache m_cacheOrders =
CacheFactory.getCache("orders");
 private static final NamedCache m_cacheLineItems =
CacheFactory.getCache("orderlineitems");
 }

Service Layer

Managing an Object Model 7-5

Service Layer
Applications that require composite transactions should use a Service Layer. This
accomplishes two things. First, it allows for proper composing of multiple entities into
a single transaction without compromising ACID characteristics. Second, it provides a
central point of concurrency control, allowing aggressively optimized transaction
management.

Automatic Transaction Management
Basic transaction management consists of ensuring clean reads (based on the isolation
level) and consistent, atomic updates (based on the concurrency strategy). The
TransactionMap API (accessible either through the J2CA adapter or programmatically)
will handle these issues automatically.

Explicit Transaction Management
Unfortunately, the transaction characteristics common with database transactions
(described as a combination of isolation level and concurrency strategy for the entire
transaction) provide very coarse-grained control. This coarse-grained control is often
unsuitable for caches, which are generally subject to far greater transaction rates. By
manually controlling transactions, applications can gain much greater control over
concurrency and therefore dramatically increase efficiency.

The general pattern for pessimistic transactions is lock -> read -> write ->
unlock. For optimistic transactions, the sequence is read -> lock & validate ->
write -> unlock. When considering a two-phase commit, "locking" is the first phase,
and "writing" is the second phase. Locking individual objects will ensure
REPEATABLE_READ isolation semantics. Dropping the locks will be equivalent to
READ_COMMITTED isolation.

By mixing isolation and concurrency strategies, applications can achieve higher
transaction rates. For example, an overly pessimistic concurrency strategy will reduce
concurrency, but an overly optimistic strategy may cause excessive transaction
rollbacks. By intelligently deciding which entities will be managed pessimistically, and
which optimistically, applications can balance the trade-offs. Similarly, many
transactions may require strong isolation for some entities, but much weaker isolation
for other entities. Using only the necessary degree of isolation can minimize
contention, and thus improve processing throughput.

Optimized Transaction Processing
There are several advanced transaction processing techniques that can best be applied
in the Service Layer. Proper use of these techniques can dramatically improve
throughput, latency and fault-tolerance, at the expense of some added effort.

The most common solution relates to minimizing the need for locking. Specifically,
using an ordered locking algorithm can reduce the number of locks required, and also
eliminate the possibility of deadlock. The most common example is to lock a parent
object before locking the child object. In some cases, the Service Layer can depend on
locks against the parent object to protect the child objects. This effectively makes locks

Note: Transactions and Write-Through Caching See Chapter 9,
"Read-Through, Write-Through, Write-Behind, and Refresh-Ahead
Caching" for limitations on write-through caching and transactions.

Managing Collections of Child Objects

7-6 Oracle Coherence Getting Started Guide

coarse-grained (slightly increasing contention) and substantially minimizes the lock
count.

Example 7–2 Using an Ordered Locking Algorithm

public class OrderService
 {
 // ...

 public void executeOrderIfLiabilityAcceptable(Order order)
 {
 OrderId orderId = order.getId();

 // lock the parent object; by convention, all accesses
 // will lock the parent object first, guaranteeing
 // "SERIALIZABLE" isolation with respect to the child
 // objects.
 m_cacheOrders.lock(orderId, -1);
 try
 {
 BigDecimal outstanding = new BigDecimal(0);

 // sum up child objects
 Collection lineItems = order.getLineItems();
 for (Iterator iter = lineItems.iterator(); iter.hasNext();)
 {
 LineItem item = (LineItem)iter.next();
 outstanding = outstanding.add(item.getAmount());
 }

 // get the customer information; no locking, so
 // it is effectively READ_COMMITTED isolation.
 Customer customer = order.getCustomer();

 // apply some business logic
 if (customer.isAcceptableOrderSize(outstanding))
 {
 order.setStatus(Order.REJECTED);
 }
 else
 {
 order.setStatus(Order.EXECUTED);
 }

 // update the cache
 m_cacheOrders.put(order);
 }
 finally
 {
 m_cacheOrders.unlock(orderId);
 }
 }

 // ...
 }

Managing Collections of Child Objects
■ Shared Child Objects

Managing Collections of Child Objects

Managing an Object Model 7-7

■ Owned Child Objects

■ Bottom-Up Management of Child Objects

■ Bi-Directional Management of Child Objects

Shared Child Objects
For shared child objects (for example, two parent objects may both refer to the same
child object), the best practice is to maintain a list of child object identifiers (aka foreign
keys) in the parent object. Then use the NamedCache.get() or
NamedCache.getAll() methods to access the child objects. In many cases, it may
make sense to use a Near cache for the parent objects and a Replicated cache for the
referenced objects (especially if they are read-mostly or read-only).

If the child objects are read-only (or stale data is acceptable), and the entire object
graph is often required, then including the child objects in the parent object may be
beneficial in reducing the number of cache requests. This is less likely to make sense if
the referenced objects are already local, as in a Replicated, or in some cases, Near
cache, as local cache requests are very efficient. Also, this makes less sense if the child
objects are large. However, if fetching the child objects from another cache is likely to
result in additional network operations, the reduced latency of fetching the entire
object graph immediately might outweigh the cost of in-lining the child objects inside
the parent object.

Owned Child Objects
If the objects are owned exclusively, then there are a few additional options.
Specifically, it is possible to manage the object graph "top-down" (the normal
approach), "bottom-up", or both. Generally, managing "top-down" is the simplest and
most efficient approach.

If the child objects are inserted into the cache before the parent object is updated (an
"ordered update" pattern), and deleted after the parent object's child list is updated,
the application will never see missing child objects.

Similarly, if all Service Layer access to child objects locks the parent object first,
SERIALIZABLE-style isolation can be provided very inexpensively (with respect to the
child objects).

Bottom-Up Management of Child Objects
To manage the child dependencies "bottom-up", tag each child with the parent
identifier. Then use a query (semantically, "find children where parent = ?") to find the
child objects (and then modify them if needed). Note that queries, while very fast, are
slower than primary key access. The main advantage to this approach is that it reduces
contention for the parent object (within the limitations of READ_COMMITTED isolation).
Of course, efficient management of a parent-child hierarchy could also be achieved by
combining the parent and child objects into a single composite object, and using a
custom "Update Child" EntryProcessor, which would be capable of hundreds of
updates per second against each composite object.

Bi-Directional Management of Child Objects
Another option is to manage parent-child relationships bi-directionally. An advantage
to this is that each child "knows" about its parent, and the parent "knows" about the
child objects, simplifying graph navigation (for example, allowing a child object to
find its sibling objects). The biggest drawback is that the relationship state is

Colocating Owned Objects

7-8 Oracle Coherence Getting Started Guide

redundant; for a given parent-child relationship, there is data in both the parent and
child objects. This complicates ensuring resilient, atomic updates of the relationship
information and makes transaction management more difficult. It also complicates
ordered locking/update optimizations.

Colocating Owned Objects
■ Denormalization

■ Affinity

Denormalization
Exclusively owned objects may be managed as normal relationships (wrapping
getters/setters around NamedCache methods), or the objects may be embedded
directly (roughly analogous to "denormalizing" in database terms). Note that by
denormalizing, data is not being stored redundantly, only in a less flexible format.
However, since the cache schema is part of the application, and not a persistent
component, the loss of flexibility is a non-issue if there is not a requirement for
efficient ad hoc querying. Using an application-tier cache allows for the cache schema
to be aggressively optimized for efficiency, while allowing the persistent (database)
schema to be flexible and robust (typically at the expense of some efficiency).

The decision to inline child objects is dependent on the anticipated access patterns
against the parent and child objects. If the bulk of cache accesses are against the entire
object graph (or a substantial portion thereof), it may be optimal to embed the child
objects (optimizing the "common path").

To optimize access against a portion of the object graph (for example, retrieving a
single child object, or updating an attribute of the parent object), use an
EntryProcessor to move as much processing to the server as possible, sending only
the required data across the network.

Affinity
Affinity can be used to optimize colocation of parent and child objects (ensuring that
the entire object graph is always located within a single JVM). This will minimize the
number of servers involved in processing a multiple-entity request (queries, bulk
operations, and so on). Affinity offers much of the benefit of denormalization without
having any impact on application design. However, denormalizing structures can
further streamline processing (for example, turning graph traversal into a single
network operation).

Managing Shared Objects
Shared objects should be referenced by using a typical "lazy getter" pattern. For
read-only data, the returned object may be cached in a transient (non-serializable) field
for subsequent access. As usual, multiple-entity updates (for example, updating both
the parent and a child object) should be managed by the service layer.

Example 7–3 Using a "Lazy Getter" Pattern

public class Order
 {
 // ...

 public Customer getCustomer()

Refactoring Existing DAOs

Managing an Object Model 7-9

 {
 return (Customer)m_cacheCustomers.get(m_customerId);
 }

 // ...
 }

Refactoring Existing DAOs
Generally, when refactoring existing DAOs, the pattern is to split the existing DAO
into an interface and two implementations (the original database logic and the new
cache-aware logic). The application will continue to use the (extracted) interface. The
database logic will be moved into a CacheStore module. The cache-aware DAO will
access the NamedCache (backed by the database DAO). All DAO operations that
cannot be mapped onto a NamedCache will be passed directly to the database DAO.

Figure 7–1 Processes for Refactoring DAOs

This illustration is described in the text.

Refactoring Existing DAOs

7-10 Oracle Coherence Getting Started Guide

8

Overview for Implementors 8-1

8Overview for Implementors

This chapter is targeted at software developers and architects who need a very quick
overview of Coherence features. This document outlines product capabilities, usage
possibilities, and provides a brief overview of how one would go about implementing
particular features.

Basic Concepts
■ Clustered Data Management

■ A single API for the logical layer, XML configuration for the physical layer

■ Caching Strategies

■ Data Storage Options

■ Serialization Options

■ Configurability and Extensibility

■ Namespace Hierarchy

Clustered Data Management
At the core of Coherence is the concept of clustered data management. This implies the
following goals:

■ A fully coherent, single system image (SSI)

■ Scalability for both read and write access

■ Fast, transparent failover and failback

■ Linear scalability for storage and processing

■ No Single-Points-of-Failure (SPOFs)

■ Clusterwide locking and transactions

Built on top of this foundation are the various services that Coherence provides,
including database caching, HTTP session management, grid agent invocation and
distributed queries. Before going into detail about these features, some basic aspects of
Coherence should be discussed.

A single API for the logical layer, XML configuration for the physical layer
Coherence supports many topologies for clustered data management. Each of these
topologies has trade-offs in terms of performance and fault-tolerance. By using a single
API, the choice of topology can be deferred until deployment if desired. This allows

Basic Concepts

8-2 Oracle Coherence Getting Started Guide

developers to work with a consistent logical view of Coherence, while providing
flexibility during tuning or as application needs change.

Caching Strategies
Coherence provides several cache implementations:

■ Local Cache—Local on-heap caching for non-clustered caching.

■ Replicated Cache Service—Perfect for small, read-heavy caches.

■ Partitioned Cache Service—True linear scalability for both read and write access.
Data is automatically, dynamically and transparently partitioned across nodes.
The distribution algorithm minimizes network traffic and avoids service pauses by
incrementally shifting data.

■ Near Cache—Provides the performance of local caching with the scalability of
distributed caching. Several different near-cache strategies provide varying
trade-offs between performance and synchronization guarantees.

In-process caching provides the highest level of raw performance, since objects are
managed within the local JVM. This benefit is most directly realized by the Local,
Replicated, Optimistic and Near Cache implementations.

Out-of-process (client/server) caching provides the option of using dedicated cache
servers. This can be helpful when you want to partition workloads (to avoid stressing
the application servers). This is accomplished by using the Partitioned cache
implementation and simply disabling local storage on client nodes through a single
command-line option or a one-line entry in the XML configuration.

Tiered caching (using the Near Cache functionality) enables you to couple local caches
on the application server with larger, partitioned caches on the cache servers,
combining the raw performance of local caching with the scalability of partitioned
caching. This is useful for both dedicated cache servers and co-located caching (cache
partitions stored within the application server JVMs).

Data Storage Options
While most customers use on-heap storage combined with dedicated cache servers,
Coherence has several options for data storage:

■ On-heap—The fastest option, though it can affect JVM garbage collection times.

■ NIO RAM—No impact on garbage collection, though it does require
serialization/deserialization.

■ NIO Disk—Similar to NIO RAM, but using memory-mapped files.

■ File-based—Uses a special disk-optimized storage system to optimize speed and
minimize I/O.

It should be noted that Coherence storage is transient: the disk-based storage options
are for managing cached data only. If long-term persistence of data is required,
Coherence provides snapshot functionality to persist an image to disk. This is
especially useful when the external data sources used to build the cache are extremely
expensive. By using the snapshot, the cache can be rebuilt from an image file (rather
than reloading from a very slow external data source).

Basic Concepts

Overview for Implementors 8-3

Serialization Options
Because serialization is often the most expensive part of clustered data management,
Coherence provides the following options for serializing/deserializing data:

■ com.tangosol.io.pof.PofSerializer – The Portable Object Format (also
referred to as POF) is a language agnostic binary format. POF was designed to be
incredibly efficient in both space and time and has become the recommended
serialization option in Coherence. See Chapter 24, "The Portable Object Format."

■ java.io.Serializable – The simplest, but slowest option.

■ java.io.Externalizable – This requires developers to implement
serialization manually, but can provide significant performance benefits.
Compared to java.io.Serializable, this can cut serialized data size by a
factor of two or more (especially helpful with Distributed caches, as they generally
cache data in serialized form). Most importantly, CPU usage is dramatically
reduced.

■ com.tangosol.io.ExternalizableLite – This is very similar to
java.io.Externalizable, but offers better performance and less memory
usage by using a more efficient I/O stream implementation.

■ com.tangosol.run.xml.XmlBean – A default implementation of
ExternalizableLite (For more details, see the API Javadoc for XmlBean)).

Configurability and Extensibility
Coherence's API provides access to all Coherence functionality. The most commonly
used subset of this API is exposed through simple XML options to minimize effort for
typical use cases. There is no penalty for mixing direct configuration through the API
with the easier XML configuration.

Coherence is designed to allow the replacement of its modules as needed. For
example, the local "backing maps" (which provide the actual physical data storage on
each node) can be easily replaced as needed. The vast majority of the time, this is not
required, but it is there for the situations that require it. The general guideline is that
80% of tasks are easy, and the remaining 20% of tasks (the special cases) require a little
more effort, but certainly can be done without significant hardship.

Namespace Hierarchy
Coherence is organized as set of services. At the root is the "Cluster" service. A cluster
is defined as a set of Coherence instances (one instance per JVM, with one or more
JVMs on each physical machine). A cluster is defined by the combination of multicast
address and port. A TTL (network packet time-to-live; that is, the number of network
hops) setting can be used to restrict the cluster to a single machine, or the machines
attached to a single switch.

Under the cluster service are the various services that comprise the Coherence API.
These include the various caching services (Replicated, Distributed, and so on) and the
Invocation Service (for deploying agents to various nodes of the cluster). Each instance
of a service is named, and there is typically a default service instance for each type.

The cache services contain named caches (com.tangosol.net.NamedCache),
which are analogous to database tables—that is, they typically contain a set of related
objects.

Read/Write Caching

8-4 Oracle Coherence Getting Started Guide

Read/Write Caching
■ NamedCache

■ Requirements for Cached Objects

■ NamedCache Usage Patterns

NamedCache
The following source code will return a reference to a NamedCache instance. The
underlying cache service will be started if necessary.

import com.tangosol.net.*;
...
NamedCache cache = CacheFactory.getCache("MyCache");

Coherence will scan the cache configuration XML file for a name mapping for
MyCache. This is similar to Servlet name mapping in a web container's web.xml file.
Coherence's cache configuration file contains (in the simplest case) a set of mappings
(from cache name to cache strategy) and a set of cache strategies.

By default, Coherence will use the coherence-cache-config.xml file found at the
root of coherence.jar. This can be overridden on the JVM command-line with
-Dtangosol.coherence.cacheconfig=file.xml. This argument can reference
either a file system path, or a Java resource path.

The com.tangosol.net.NamedCache interface extends several other interfaces:

■ java.util.Map—basic Map methods such as get(), put(), remove().

■ com.tangosol.util.ObservableMap—methods for listening to cache events.
(See Chapter 5, "Deliver Events for Changes as they Occur".

■ com.tangosol.net.cache.CacheMap—methods for getting a collection of
keys (as a Map) that are in the cache and for putting objects in the cache. Also
supports adding an expiry value when putting an entry in a cache.

■ com.tangosol.util.QueryMap—methods for querying the cache. (See "Query
the Cache" in the Oracle Coherence Developer's Guide)

■ com.tangosol.util.ConcurrentMap—methods for concurrent access such as
lock() and unlock().

■ com.tangosol.util.InvocableMap—methods for sever-side processing of
cache data. (See Chapter 2, "Provide a Data Grid").

Requirements for Cached Objects
Cache keys and values must be serializable (for example, java.io.Serializable).
Furthermore, cache keys must provide an implementation of the hashCode() and
equals() methods, and those methods must return consistent results across cluster
nodes. This implies that the implementation of hashCode() and equals() must be
based solely on the object's serializable state (that is, the object's non-transient fields);
most built-in Java types, such as String, Integer and Date, meet this requirement.
Some cache implementations (specifically the partitioned cache) use the serialized
form of the key objects for equality testing, which means that keys for which
equals() returns true must serialize identically; most built-in Java types meet this
requirement as well.

Read/Write Caching

Overview for Implementors 8-5

NamedCache Usage Patterns
There are two general approaches to using a NamedCache:

■ As a clustered implementation of java.util.Map with several added features
(queries, concurrency), but with no persistent backing (a "side" cache).

■ As a means of decoupling access to external data sources (an "inline" cache). In
this case, the application uses the NamedCache interface, and the NamedCache
takes care of managing the underlying database (or other resource).

Typically, an inline cache is used to cache data from:

■ a database—The most intuitive use of a cache—simply caching database tables (in
the form of Java objects).

■ a service—Mainframe, web service, service bureau—any service that represents an
expensive resource to access (either due to computational cost or actual access
fees).

■ calculations—Financial calculations, aggregations, data transformations. Using an
inline cache makes it very easy to avoid duplicating calculations. If the calculation
is already complete, the result is simply pulled from the cache. Since any
serializable object can be used as a cache key, it is a simple matter to use an object
containing calculation parameters as the cache key.

See Chapter 9, "Read-Through, Write-Through, Write-Behind, and Refresh-Ahead
Caching" for more information on inline caching.

Write-back options:

■ write-through—Ensures that the external data source always contains up-to-date
information. Used when data must be persisted immediately, or when sharing a
data source with other applications.

■ write-behind—Provides better performance by caching writes to the external data
source. Not only can writes be buffered to even out the load on the data source,
but multiple writes can be combined, further reducing I/O. The trade-off is that
data is not immediately persisted to disk; however, it is immediately distributed
across the cluster, so the data will survive the loss of a server. Furthermore, if the
entire data set is cached, this option means that the application can survive a
complete failure of the data source temporarily as both cache reads and writes do
not require synchronous access the data source.

To implement a read-only inline cache, you simply implement two methods on the
com.tangosol.net.cache.CacheLoader interface, one for singleton reads, the other for
bulk reads. Coherence provides an abstract class
com.tangosol.net.cache.AbstractCacheLoader which provides a default
implementation of the bulk method, which means that you need only implement a
single method: public Object load(Object oKey). This method accepts an
arbitrary cache key and returns the appropriate value object.

If you want to implement read/write caching, you need to extend
com.tangosol.net.cache.AbstractCacheStore (or implement the interface
com.tangosol.net.cache.CacheStore), which adds the following methods:

public void erase(Object oKey);
public void eraseAll(Collection colKeys);
public void sore(Object oKey, Object oValue);
public void storeAll(Map mapEntries);

Querying the Cache

8-6 Oracle Coherence Getting Started Guide

The method erase() should remove the specified key from the external data source.
The method store() should update the specified item in the data source if it already
exists, or insert it if it does not presently exist.

After the CacheLoader/CacheStore is implemented, it can be connected through
the coherence-cache-config.xml file.

Querying the Cache
Coherence provides the ability to query cached data. With partitioned caches, the
queries are indexed and parallelized. This means that adding servers to a partitioned
cache not only increases throughput (total queries per second) but also reduces latency,
with queries taking less user time. To query against a NamedCache, all objects should
implement a common interface (or base class). Any field of an object can be queried;
indexes are optional, and used to increase performance. With a replicated cache,
queries are performed locally, and do not use indexes. For more information, see
"Query the Cache" in the Oracle Coherence Developer's Guide.

To add an index to a NamedCache, you first need a value extractor (which accepts as
input a value object and returns an attribute of that object). Indexes can be added
blindly (duplicate indexes are ignored). Indexes can be added at any time, before or
after inserting data into the cache.

It should be noted that queries apply only to cached data. For this reason, queries
should not be used unless the entire data set has been loaded into the cache, unless
additional support is added to manage partially loaded sets.

Developers have the option of implementing additional custom filters for queries, thus
taking advantage of query parallelization. For particularly performance-sensitive
queries, developers may implement index-aware filters, which can access Coherence's
internal indexing structures.

Coherence includes a built-in optimizer, and will apply indexes in the optimal order.
Because of the focused nature of the queries, the optimizer is both effective and
efficient. No maintenance is required.

The code in Example 8–1 creates an index:

Example 8–1 Sample Code to Create an Index

NamedCache cache = CacheFactory.getCache("MyCache");
ValueExtractor extractor = new ReflectionExtractor("getAttribute");
cache.addIndex(extractor, true, null);

The code in Example 8–2 queries a NamedCache and returns the keys corresponding
to all of the value objects with an Attribute greater than 5:

Example 8–2 Sample Code to Query a NamedCache

NamedCache cache = CacheFactory.getCache("MyCache");
Filter filter = new GreaterFilter("getAttribute", 5);
Set keySet = cache.keySet(filter);

Transactions
Coherence supports local transactions against the cache through both a direct API, and
through J2CA adapters for Java EE containers. Transactions support either pessimistic
or optimistic concurrency strategies, and the Read Committed, Repeatable Read,
Serializable isolation levels.

Events

Overview for Implementors 8-7

HTTP Session Management
Coherence*Web is an HTTP session-management module with support for a wide
range of application servers. For more information on Coherence*Web, see Oracle
Coherence User's Guide for Oracle Coherence*Web.

Using Coherence session management does not require any changes to the application.
Coherence*Web uses the NearCache technology to provide fully fault-tolerant caching,
with almost unlimited scalability (to several hundred cluster nodes without issue).

Invocation Service
The Coherence Invocation service can deploy computational agents to various
nodes within the cluster. These agents can be either execute-style (deploy and
asynchronously listen) or query-style (deploy and synchronously listen).

The Invocation service is accessed through the interface
com.tangosol.net.InvocationService through the two following methods:

Example 8–3 Methods in the InvocationService API

public void execute(Invocable task, Set setMembers, InvocationObserver observer);
public Map query(Invocable task, Set setMembers);

An instance of the service can be retrieved from the
com.tangosol.net.CacheFactory class.

Coherence implements the WorkManager API for task-centric processing.

Events
All NamedCache instances in Coherence implement the
com.tangosol.util.ObservableMap interface, which allows the option of
attaching a cache listener implementation (of com.tangosol.util.MapListener).
It should be noted that applications can observe events as logical concepts regardless
of which physical machine caused the event. Customizable server-side filters and
lightweight events can be used to minimize network traffic and processing. Cache
listeners follow the JavaBean paradigm, and can distinguish between system cache
events (for example, eviction) and application cache events (for example, get/put
operations).

Continuous Query functionality provides the ability to maintain a client-side
"materialized view".

Similarly, any service can be watched for members joining and leaving, including the
cluster service and the cache and invocation services.

Note: Coherence doesn't directly support XA. However, when using
the resource adapter, Coherence can participate in an XA transaction
using the Last Resource Commit optimization of the transaction
manager.

Object-Relational Mapping Integration

8-8 Oracle Coherence Getting Started Guide

Object-Relational Mapping Integration
Most ORM products support Coherence as an "L2" caching plug-in. These solutions
cache entity data inside Coherence, allowing application on multiple servers to share
cached data.

C++/.NET Integration
Coherence introduced support for cross-platform clients (usually layered on top of
TCP/IP).

■ Coherence 3.2 introduced a Java client. See Configuring and Using Coherence*Extend
in the Oracle Coherence Developer's Guide.

■ Coherence 3.3 added a native .NET client. See Coherence for .NET in the User's
Guide for Oracle Coherence.

■ Coherence 3.4 added a native C++ client. See Coherence for C++ in the User's Guide
for Oracle Coherence.

Note that all clients use the same wire protocol (the servers do not differentiate
between client platforms). Also note that there are no third-party components in any of
these clients (such as embedded JVMs or language bridges). The wire protocol
supports event feeds and coherent in-process caching for all client platforms.

Management and Monitoring
Coherence offers management and monitoring facilities by using Java Management
Extensions (JMX). A detailed set of statistics and commands is maintained in the API
documentation for com.tangosol.net.management.Registry.

9

Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching 9-1

9Read-Through, Write-Through, Write-Behind,
and Refresh-Ahead Caching

Coherence supports transparent read/write caching of any data source, including
databases, web services, packaged applications and filesystems; however, databases
are the most common use case. As shorthand "database" will be used to describe any
back-end data source. Effective caches must support both intensive read-only and
read/write operations, and in the case of read/write operations, the cache and
database must be kept fully synchronized. To accomplish this, Coherence supports
Read-Through, Write-Through, Refresh-Ahead and Write-Behind caching.

Pluggable Cache Store
A CacheStore is an application-specific adapter used to connect a cache to a
underlying data source. The CacheStore implementation accesses the data source by
using a data access mechanism (for example, Hibernate, Toplink Essentials, JPA,
application-specific JDBC calls, another application, mainframe, another cache, and so
on). The CacheStore understands how to build a Java object using data retrieved
from the data source, map and write an object to the data source, and erase an object
from the data source.

Both the data source connection strategy and the data source-to-application-object
mapping information are specific to the data source schema, application class layout,
and operating environment. Therefore, this mapping information must be provided by
the application developer in the form of a CacheStore implementation. See "Creating
a CacheStore Implementation" for more information.

Read-Through Caching
When an application asks the cache for an entry, for example the key X, and X is not
already in the cache, Coherence will automatically delegate to the CacheStore and ask
it to load X from the underlying data source. If X exists in the data source, the
CacheStore will load it, return it to Coherence, then Coherence will place it in the
cache for future use and finally will return X to the application code that requested it.
This is called Read-Through caching. Refresh-Ahead Cache functionality may further

Note: For use with Partitioned (Distributed) and Near cache
topologies: Read-through/write-through caching (and variants) are
intended for use only with the Partitioned (Distributed) cache
topology (and by extension, Near cache). Local caches support a
subset of this functionality. Replicated and Optimistic caches should
not be used.

Write-Through Caching

9-2 Oracle Coherence Getting Started Guide

improve read performance (by reducing perceived latency). See "Refresh-Ahead
Caching" for more information.

Figure 9–1 Read Through Caching

This illustration is described in the text.

Write-Through Caching
Coherence can handle updates to the data source in two distinct ways, the first being
Write-Through. In this case, when the application updates a piece of data in the cache
(that is, calls put(...) to change a cache entry,) the operation will not complete (that is,
the put will not return) until Coherence has gone through the CacheStore and
successfully stored the data to the underlying data source. This does not improve write
performance at all, since you are still dealing with the latency of the write to the data
source. Improving the write performance is the purpose for the Write-Behind Cache
functionality. See "Write-Behind Caching" for more information.

Write-Behind Caching

Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching 9-3

Figure 9–2 Write-Through Caching

This illustration is described in the text.

Write-Behind Caching
In the Write-Behind scenario, modified cache entries are asynchronously written to
the data source after a configurable delay, whether after 10 seconds, 20 minutes, a day
or even a week or longer. For Write-Behind caching, Coherence maintains a
write-behind queue of the data that must be updated in the data source. When the
application updates X in the cache, X is added to the write-behind queue (if it isn't
there already; otherwise, it is replaced), and after the specified write-behind delay
Coherence will call the CacheStore to update the underlying data source with the latest
state of X. Note that the write-behind delay is relative to the first of a series of
modifications—in other words, the data in the data source will never lag behind the
cache by more than the write-behind delay.

The result is a "read-once and write at a configurable interval" (that is, much less often)
scenario. There are four main benefits to this type of architecture:

■ The application improves in performance, because the user does not have to wait
for data to be written to the underlying data source. (The data is written later, and
by a different execution thread.)

■ The application experiences drastically reduced database load: Since the amount
of both read and write operations is reduced, so is the database load. The reads are
reduced by caching, as with any other caching approach. The writes, which are
typically much more expensive operations, are often reduced because multiple
changes to the same object within the write-behind interval are "coalesced" and
only written once to the underlying data source ("write-coalescing"). Additionally,
writes to multiple cache entries may be combined into a single database
transaction ("write-combining") by using the CacheStore.storeAll() method.

■ The application is somewhat insulated from database failures: the Write-Behind
feature can be configured in such a way that a write failure will result in the object

Write-Behind Requirements

9-4 Oracle Coherence Getting Started Guide

being re-queued for write. If the data that the application is using is in the
Coherence cache, the application can continue operation without the database
being up. This is easily attainable when using the Coherence Partitioned Cache,
which partitions the entire cache across all participating cluster nodes (with
local-storage enabled), thus allowing for enormous caches.

■ Linear Scalability: For an application to handle more concurrent users you need
only increase the number of nodes in the cluster; the effect on the database in
terms of load can be tuned by increasing the write-behind interval.

Figure 9–3 Write Behind Caching

This illustration is described in the text.

Write-Behind Requirements
While enabling write-behind caching is simply a matter of adjusting one configuration
setting, ensuring that write-behind works as expected is more involved. Specifically,
application design must address several design issues up-front.

The most direct implication of write-behind caching is that database updates occur
outside of the cache transaction; that is, the cache transaction will (in most cases)
complete before the database transaction(s) begin. This implies that the database
transactions must never fail; if this cannot be guaranteed, then rollbacks must be
accommodated.

As write-behind may re-order database updates, referential integrity constraints must
allow out-of-order updates. Conceptually, this means using the database as ISAM-style
storage (primary-key based access with a guarantee of no conflicting updates). If other
applications share the database, this introduces a new challenge—there is no way to
guarantee that a write-behind transaction will not conflict with an external update.

Refresh-Ahead Caching

Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching 9-5

This implies that write-behind conflicts must be handled heuristically or escalated for
manual adjustment by a human operator.

As a rule of thumb, mapping each cache entry update to a logical database transaction
is ideal, as this guarantees the simplest database transactions.

Because write-behind effectively makes the cache the system-of-record (until the
write-behind queue has been written to disk), business regulations must allow
cluster-durable (rather than disk-durable) storage of data and transactions.

In earlier releases of Coherence, rebalancing (due to failover/failback) would result in
the re-queuing of all cache entries in the affected cache partitions (typically 1/N where
N is the number of servers in the cluster). While the nature of write-behind
(asynchronous queuing and load-averaging) minimized the direct impact of this, for
some workloads it could be problematic. Best practice for affected applications was to
use com.tangosol.net.cache.VersionedBackingMap. As of Coherence 3.2,
backups are notified when a modified entry has been successfully written to the data
source, avoiding the need for this strategy. If possible, applications should deprecate
use of the VersionedBackingMap if it was used only for its write-queuing behavior.

Refresh-Ahead Caching
In the Refresh-Ahead scenario, Coherence allows a developer to configure a cache to
automatically and asynchronously reload (refresh) any recently accessed cache entry
from the cache loader before its expiration. The result is that after a frequently
accessed entry has entered the cache, the application will not feel the impact of a read
against a potentially slow cache store when the entry is reloaded due to expiration.
The asynchronous refresh is only triggered when an object that is sufficiently close to
its expiration time is accessed—if the object is accessed after its expiration time,
Coherence will perform a synchronous read from the cache store to refresh its value.

The refresh-ahead time is expressed as a percentage of the entry's expiration time. For
example, assume that the expiration time for entries in the cache is set to 60 seconds
and the refresh-ahead factor is set to 0.5. If the cached object is accessed after 60
seconds, Coherence will perform a synchronous read from the cache store to refresh its
value. However, if a request is performed for an entry that is more than 30 but less
than 60 seconds old, the current value in the cache is returned and Coherence
schedules an asynchronous reload from the cache store.

Refresh-ahead is especially useful if objects are being accessed by a large number of
users. Values remain fresh in the cache and the latency that could result from excessive
reloads from the cache store is avoided.

The value of the refresh-ahead factor is specified by the <refresh-ahead-factor>
subelement of the <read-write-backing-map-scheme> element in the
coherence-cache-config.xml file. Refresh-ahead assumes that you have also set an
expiration time (<expiry-delay>) for entries in the cache.

The XML code fragment in Example 9–1 configures a refresh-ahead factor of 0.5 and
an expiration time of 20 seconds for entries in the local cache. This means that if an
entry is accessed within 10 seconds of its expiration time, it will be scheduled for an
asynchronous reload from the cache store.

Example 9–1 Cache Configuration Specifying a Refresh-Ahead Factor

<cache-config>
...

 <distributed-scheme>

Selecting a Cache Strategy

9-6 Oracle Coherence Getting Started Guide

 <scheme-name>categories-cache-all-scheme</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>

 <!--
 Read-write-backing-map caching scheme.
 -->
 <read-write-backing-map-scheme>
 <scheme-name>categoriesLoaderScheme</scheme-name>
 <internal-cache-scheme>
 <local-scheme>
 <scheme-ref>categories-eviction</scheme-ref>
 </local-scheme>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>

<class-name>com.demo.cache.coherence.categories.CategoryCacheLoader</class-name>
 </class-scheme>
 </cachestore-scheme>
 <refresh-ahead-factor>0.5</refresh-ahead-factor>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
...

 <!--
 Backing map scheme definition used by all the caches that require
 size limitation and/or expiry eviction policies.
 -->
 <local-scheme>
 <scheme-name>categories-eviction</scheme-name>
 <expiry-delay>20s</expiry-delay>
 </local-scheme>
...
</cache-config>

Selecting a Cache Strategy
This section compares and contrasts the benefits of several caching strategies.

■ Read-Through/Write-Through versus Cache-Aside

■ Refresh-Ahead versus Read-Through

■ Write-Behind versus Write-Through

Read-Through/Write-Through versus Cache-Aside
There are two common approaches to the cache-aside pattern in a clustered
environment. One involves checking for a cache miss, then querying the database,
populating the cache, and continuing application processing. This can result in
multiple database visits if different application threads perform this processing at the
same time. Alternatively, applications may perform double-checked locking (which
works since the check is atomic with respect to the cache entry). This, however, results
in a substantial amount of overhead on a cache miss or a database update (a clustered
lock, additional read, and clustered unlock - up to 10 additional network hops, or

Write-Through Limitations

Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching 9-7

6-8ms on a typical gigabit Ethernet connection, plus additional processing overhead
and an increase in the "lock duration" for a cache entry).

By using inline caching, the entry is locked only for the 2 network hops (while the data
is copied to the backup server for fault-tolerance). Additionally, the locks are
maintained locally on the partition owner. Furthermore, application code is fully
managed on the cache server, meaning that only a controlled subset of nodes will
directly access the database (resulting in more predictable load and security).
Additionally, this decouples cache clients from database logic.

Refresh-Ahead versus Read-Through
Refresh-ahead offers reduced latency compared to read-through, but only if the cache
can accurately predict which cache items are likely to be needed in the future. With full
accuracy in these predictions, refresh-ahead will offer reduced latency and no added
overhead. The higher the rate of misprediction, the greater the impact will be on
throughput (as more unnecessary requests will be sent to the database) - potentially
even having a negative impact on latency should the database start to fall behind on
request processing.

Write-Behind versus Write-Through
If the requirements for write-behind caching can be satisfied, write-behind caching
may deliver considerably higher throughput and reduced latency compared to
write-through caching. Additionally write-behind caching lowers the load on the
database (fewer writes), and on the cache server (reduced cache value deserialization).

Idempotency
All CacheStore operations should be designed to be idempotent (that is, repeatable
without unwanted side-effects). For write-through and write-behind caches, this
allows Coherence to provide low-cost fault-tolerance for partial updates by re-trying
the database portion of a cache update during failover processing. For write-behind
caching, idempotency also allows Coherence to combine multiple cache updates into a
single CacheStore invocation without affecting data integrity.

Applications that have a requirement for write-behind caching but which must avoid
write-combining (for example, for auditing reasons), should create a "versioned" cache
key (for example, by combining the natural primary key with a sequence id).

Write-Through Limitations
Coherence does not support two-phase CacheStore operations across multiple
CacheStore instances. In other words, if two cache entries are updated, triggering
calls to CacheStore modules sitting on separate cache servers, it is possible for one
database update to succeed and for the other to fail. In this case, it may be preferable
to use a cache-aside architecture (updating the cache and database as two separate
components of a single transaction) with the application server transaction manager.
In many cases it is possible to design the database schema to prevent logical commit
failures (but obviously not server failures). Write-behind caching avoids this issue as
"puts" are not affected by database behavior (and the underlying issues will have been
addressed earlier in the design process). This limitation will be addressed in an
upcoming release of Coherence.

Cache Queries

9-8 Oracle Coherence Getting Started Guide

Cache Queries
Cache queries only operate on data stored in the cache and will not trigger the
CacheStore to load any missing (or potentially missing) data. Therefore, applications
that query CacheStore-backed caches should ensure that all necessary data required
for the queries has been pre-loaded. For efficiency, most bulk load operations should
be done at application startup by streaming the dataset directly from the database into
the cache (batching blocks of data into the cache by using NamedCache.putAll().
The loader process will need to use a "Controllable Cachestore" pattern to disable
circular updates back to the database. The CacheStore may be controlled by using an
Invocation service (sending agents across the cluster to modify a local flag in each
JVM) or by setting the value in a Replicated cache (a different cache service) and
reading it in every CacheStore method invocation (minimal overhead compared to
the typical database operation). A custom MBean can also be used, a simple task with
Coherence's clustered JMX facilities.

Creating a CacheStore Implementation
CacheStore implementations are pluggable, and depending on the cache's usage of
the data source you will need to implement one of two interfaces:

■ CacheLoader for read-only caches

■ CacheStore which extends CacheLoader to support read/write caches

These interfaces are located in the com.tangosol.net.cache package. The
CacheLoader interface has two main methods: load(Object key) and
loadAll(Collection keys), and the CacheStore interface adds the methods
store(Object key, Object value), storeAll(Map mapEntries),
erase(Object key), and eraseAll(Collection colKeys).

See"Sample CacheStores in the Oracle Coherence Developer's Guide for an example
implementation.

Plugging in a CacheStore Implementation
To plug in a CacheStore module, specify the CacheStore implementation class
name within the distributed-scheme, backing-map-scheme,
cachestore-scheme, or read-write-backing-map-scheme, cache
configuration element.

The read-write-backing-map-scheme configures a
com.tangosol.net.cache.ReadWriteBackingMap. This backing map is
composed of two key elements: an internal map that actually caches the data (see
internal-cache-scheme), and a CacheStore module that interacts with the
database (see cachestore-scheme).

Example 9–2 illustrates a cache configuration that specifies a CacheStore module.
The <init-params> element contains an ordered list of parameters that will be
passed into the CacheStore constructor. The {cache-name} configuration macro is
used to pass the cache name into the CacheStore implementation, allowing it to be
mapped to a database table. For a complete list of available macros, see Cache
Configuration Parameter Macros.

For more detailed information on configuring write-behind and refresh-ahead, see the
read-write-backing-map-scheme, taking note of the write-batch-factor,
refresh-ahead-factor, write-requeue-threshold, and
rollback-cachestore-failures elements.

Implementation Considerations

Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching 9-9

Example 9–2 A Cache Configuration with a Cachestore Module

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>com.company.dto.*</cache-name>
 <scheme-name>distributed-rwbm</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-rwbm</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>

 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>
 <class-name>com.company.MyCacheStore</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Implementation Considerations
Please keep the following in mind when implementing a CacheStore.

Note: Thread Count: The use of a CacheStore module will
substantially increase the consumption of cache service threads (even
the fastest database select is orders of magnitude slower than
updating an in-memory structure). Consequently, the cache service
thread count will need to be increased (typically in the range 10-100).
The most noticeable symptom of an insufficient thread pool is
increased latency for cache requests (without corresponding behavior
in the backing database).

Implementation Considerations

9-10 Oracle Coherence Getting Started Guide

Re-entrant Calls
The CacheStore implementation must not call back into the hosting cache service.
This includes OR/M solutions that may internally reference Coherence cache services.
Note that calling into another cache service instance is allowed, though care should be
taken to avoid deeply nested calls (as each call will "consume" a cache service thread
and could result in deadlock if a cache service threadpool is exhausted).

Cache Server Classpath
The classes for cache entries (also known as Value Objects, Data Transfer Objects, and
so on) must be in the cache server classpath (as the cache server must
serialize-deserialize cache entries to interact with the CacheStore module.

CacheStore Collection Operations
The CacheStore.storeAll method is most likely to be used if the cache is
configured as write-behind and the <write-batch-factor> is configured. The
CacheLoader.loadAll method is also used by Coherence. For similar reasons, its
first use will likely require refresh-ahead to be enabled.

Connection Pools
Database connections should be retrieved from the container connection pool (or a 3rd
party connection pool) or by using a thread-local lazy-initialization pattern. As
dedicated cache servers are often deployed without a managing container, the latter
may be the most attractive option (though the cache service thread-pool size should be
constrained to avoid excessive simultaneous database connections).

10

Coherence*Extend 10-1

10Coherence*Extend

Coherence*Extend extends the reach of the core Coherence TCMP cluster to a wider
range of consumers, including desktops, remote servers and machines located across
WAN connections. It also provides a wider range of language support including .NET
and C++ clients. Typical uses of Coherence*Extend include providing desktop
applications with access to Coherence caches (including support for Near Cache and
Continuous Query) and Coherence cluster "bridges" that link together multiple
Coherence clusters connected through a high-latency, unreliable WAN.

Coherence*Extend consists of two basic components: a client running outside the
cluster, and a proxy service running in the cluster. The client API includes
implementations of both the CacheService and InvocationService interfaces
which route all requests to a proxy running within the Coherence cluster. The proxy
service in turn responds to client requests by delegating to an actual Coherence
clustered service (for example, a Partitioned or Replicated cache service).

There are three Coherence*Extend clients available:

■ Java—described in this chapter.

■ .NET—see "Overview" in Coherence for .NET

■ C++—see "Overview" in Coherence for C++

Types of Clients
Coherence*Extend clients provide the same rich API support as the standard
Coherence API without being full data members of the cluster. There are two
categories of clients:

■ Data client—The base client that allows for:

■ Key-based cache access through the NamedCache interface

■ Attribute-based cache access using Filters

■ Custom processing and aggregation of cluster side entries using the
InvocableMap interface

■ In process caching through LocalCache

■ Remote invocation of custom tasks in the cluster through the Invocation
Service

■ Real Time Client (described in Chapter 11, "Real Time Client—RTC")

Proxy Service Overview

10-2 Oracle Coherence Getting Started Guide

Proxy Service Overview
The proxy service is responsible for dispatching requests from Extend clients to actual
clustered services and returning the results of these requests to the appropriate client.
It is hosted by one or more DefaultCacheServer processes running within a cluster.
Clients communicate with a proxy service using a low-level messaging protocol that
has TCP/IP transport binding, Extend-TCP which uses a high performance, scalable
TCP/IP-based communication layer to connect to the cluster. This protocol is
supported by all available clients.

11

Real Time Client—RTC 11-1

11Real Time Client—RTC

The Coherence Real Time Client provides secure and scalable access from client
applications into a Coherence Data Grid. Coherence RTC extends the Data Grid to the
desktop, providing the same core API as the rest of the Coherence product line.

Connectivity into the Coherence Data Grid is achieved through Coherence*Extend
technology, which enables a client application to connect to a particular server within
the Data Grid. Since the connections are load-balanced across all of the servers in the
Data Grid, this approach to connectivity can scale to support tens of thousands of
clients. See Configuring and Using Coherence*Extend for more information.

Uses
The primary use for Coherence RTC is to provide clients with read-only/read-mostly
access to data held in a Coherence cluster. Clients can query clustered caches and
receive real-time updates as the data changes. Clients may also initiate server-side data
manipulation tasks, including aggregations and processing. For more information on
aggregations and processing, see the following API:

■ Java: com.tangosol.util.InvocableMap.EntryAggregator and
com.tangosol.util.InvocableMap.EntryProcessor

■ C++: coherence::util::InvocableMap::EntryAggregator and
coherence::util::InvocableMap::EntryProcessor

Cache Access
Normally, client applications are granted only read access to the data being managed
by the Data Grid (delegating cache updates to Data Grid Agents), although it is
possible to enable direct read/write access.

Local Caches
While the client application can directly access the caches managed by the Data Grid,
that may be inefficient depending on the network infrastructure. For efficiency, the
client application can use both Near Caching (Java, C++, or .NET) and Continuous
Query Caching (Java, C++, or .NET) to maintain cache data locally.

For more information on near caching and continuous query, see:

■ Java: "Near Cache", "Perform Continuous Query"

■ C++: "Configuring a Near Cache for C++ Clients", "Perform Continuous Query for C++
Clients"

Event Notification

11-2 Oracle Coherence Getting Started Guide

■ .NET: "Configuring a Near Cache for .NET Clients", "Continuous Query Cache for
.NET Clients"

Event Notification
Using the standard Coherence event model, data changes that occur within the Data
Grid are visible to the client application. Since the client application indicates the exact
events that it is interested in, only those events are actually delivered over the wire,
resulting in efficient use of network bandwidth and client processing.

For more information on the event model, see:

■ Java: "Deliver Events for Changes as they Occur"

■ C++: "Deliver events for changes as they occur (C++)"

Agent Invocation
Since the client application will likely only have read-only access, any manipulation of
data is done within the Data Grid itself; the mechanism for this is the Data Grid Agent,
which is presented by these API:.

■ Java: com.tangosol.util.InvocableMap

■ C++: coherence::util::InvocableMap

Clients may invoke tasks, aggregators and processors for server-side cached objects
using the InvocableMap methods.

For more information on the Data Grid Agent, see Chapter 2, "Provide a Data Grid".

Connection Failover
If the server to which the client application is attached happens to fail, the connection
is automatically reestablished to another server, and then any locally cached data is
re-synced with the cluster.

12

Clustering 12-1

12Clustering

Coherence is built on a fully clustered architecture. Since "clustered" is an overused
term in the industry, it is worth stating exactly what it means to say that Coherence is
clustered. Coherence is based on a peer-to-peer clustering protocol, using a conference
room model, in which servers are capable of:

■ Speaking to Everyone: When a party enters the conference room, it is able to
speak to all other parties in a conference room.

■ Listening: Each party present in the conference room can hear messages that are
intended for everyone, and messages that are intended for that particular party. It is
also possible that a message is not heard the first time, thus a message may need to
be repeated until it is heard by its intended recipients.

■ Discovery: Parties can only communicate by speaking and listening; there are no
other senses. Using only these means, the parties must determine exactly who is in
the conference room at any given time, and parties must detect when new parties
enter the conference room.

■ Working Groups and Private Conversations: Although a party can talk to
everyone, after a party is introduced to the other parties in the conference room
(that is, after discovery has completed), the party can communicate directly to any
set of parties, or directly to an individual party.

■ Death Detection: Parties in the conference room must quickly detect when parties
leave the conference room - or die.

Using the conference room model provides the following benefits:

■ There is no configuration required to add members to a cluster. Subject to
configurable security restrictions, any JVM running Coherence will automatically
join the cluster and be able to access the caches and other services provided by the
cluster. This includes Java EE application servers, Cache Servers, dedicated cache
loader processes, or any other JVM that is running with the Coherence software.
When a JVM joins the cluster, it is called a cluster node, or alternatively, a cluster
member.

■ Since all cluster members are known, it is possible to provide redundancy within
the cluster, such that the death of any one JVM or server machine does not cause
any data to be lost.

■ Since the death or departure of a cluster member is automatically and quickly
detected, failover occurs very rapidly, and more importantly, it occurs
transparently, which means that the application does not have to do any extra
work to handle failover.

■ Since all cluster members are known, it is possible to load balance responsibilities
across the cluster. Coherence does this automatically with its Distributed Cache

12-2 Oracle Coherence Getting Started Guide

Service, for example. Load balancing automatically occurs to respond to new
members joining the cluster, or existing members leaving the cluster.

■ Communication can be very well optimized, since some communication is
multi-point in nature (for example, messages for everyone), and some is between
two members.

Two of the terms used here describe processing for failed servers:

■ Failover: Failover refers to the ability of a server to assume the responsibilities of a
failed server. For example, "When the server died, its processes failed over to the
backup server."

■ Failback: Failback is an extension to failover that allows a server to reclaim its
responsibilities after it restarts. For example, "When the server came back up, the
processes that it was running previously were failed back to it."

All of the Coherence clustered services, including cache services and grid services,
provide automatic and transparent failover and failback. While these features are
transparent to the application, it should be noted that the application can sign up for
events to be notified of all comings and goings in the cluster.

13

Cluster Services Overview 13-1

13Cluster Services Overview

Coherence functionality is based on the concept of cluster services. Each cluster node
can participate in (which implies both the ability to provide and to consume) any
number of named services. These named services may already exist, which is to say
that they may already be running on one or more other cluster nodes, or a cluster node
can register new named services. Each named service has a service name that uniquely
identifies the service within the cluster, and a service type, which defines what the
service can do. There may be multiple named instances of each service type (other
than the root Cluster service). By way of analogy, a service instance corresponds
roughly to a database schema, and in the case of data services, a hosted NamedCache
corresponds roughly to a database table. While services are fully configurable, many
applications will only need to use the default set of services shipped with Coherence.
There are several service types that are supported by Coherence.

Connectivity Services
■ Cluster Service: This service is automatically started when a cluster node must

join the cluster; each cluster node always has exactly one service of this type
running. This service is responsible for the detection of other cluster nodes, for
detecting the failure (death) of a cluster node, and for registering the availability of
other services in the cluster. In other words, the Cluster Service keeps track of the
membership and services in the cluster.

■ Proxy Service: While many applications are configured so that all clients are also
cluster members, there are use cases where it is desirable to have clients running
outside the cluster, especially in cases where there will be hundreds or thousands
of client processes, where the clients are not running on the Java platform, or
where a greater degree of coupling is desired. This service allows connections
(using TCP) from clients that run outside the cluster.

Processing Services
■ Invocation Service: This service provides clustered invocation and supports grid

computing architectures. Using the Invocation Service, application code can
invoke agents on any node in the cluster, or any group of nodes, or across the
entire cluster. The agent invocations can be request/response, fire and forget, or an
asynchronous user-definable model.

Data Services
■ Distributed Cache Service: This is the distributed cache service, which allows

cluster nodes to distribute (partition) data across the cluster so that each piece of
data in the cache is managed (held) by only one cluster node. The Distributed
Cache Service supports pessimistic locking. Additionally, to support failover
without any data loss, the service can be configured so that each piece of data will

13-2 Oracle Coherence Getting Started Guide

be backed up by one or more other cluster nodes. Lastly, some cluster nodes can be
configured to hold no data at all; this is useful, for example, to limit the Java heap
size of an application server process, by setting the application server processes to
not hold any distributed data, and by running additional cache server JVMs to
provide the distributed cache storage.

■ Replicated Cache Service: This is the synchronized replicated cache service,
which fully replicates all of its data to all cluster nodes that run the service.
Furthermore, it supports pessimistic locking so that data can be modified in a
cluster without encountering the classic missing update problem. With the
introduction of near caching and continuous query caching, almost all of the
functionality of replicated caches is available on top of the Distributed cache
service (and with better robustness). But replicated caches are often used to
manage internal application metadata.

■ Optimistic Cache Service: This is the optimistic-concurrency version of the
Replicated Cache Service, which fully replicates all of its data to all cluster nodes,
and employs an optimization similar to optimistic database locking to maintain
coherency. Coherency refers to the fact that all servers will end up with the same
"current" value, even if multiple updates occur at the same exact time from
different servers. The Optimistic Cache Service does not support pessimistic
locking, so in general it should only be used for caching "most recently known"
values for read-only uses. This service is rarely used.

Regarding resources, a clustered service typically uses one daemon thread, and
optionally has a thread pool that can be configured to provide the service with
additional processing bandwidth. For example, the invocation service and the
distributed cache service both fully support thread pooling to accelerate database load
operations, parallel distributed queries, and agent invocations.

It is important to note that these are only the basic clustered services, and not the full
set of types of caches provided by Coherence. By combining clustered services with
cache features such as backing maps and overflow maps, Coherence can provide an
extremely flexible, configurable and powerful set of options for clustered applications.
For example, the Near Cache functionality uses a Distributed Cache as one of its
components.

Within a cache service, there exists any number of named caches. A named cache
provides the standard JCache API, which is based on the Java collections API for
key-value pairs, known as java.util.Map. The Map interface is the same API that is
implemented by the Java Hashtable class, for example.

14

Replicated Cache Service 14-1

14Replicated Cache Service

The replicated cache excels in its ability to handle data replication, concurrency control
and failover in a cluster, all while delivering in-memory data access speeds. A
clustered replicated cache is exactly what it says it is: a cache that replicates its data to
all cluster nodes.

There are several challenges to building a reliable replicated cache. The first is how to
get it to scale and perform well. Updates to the cache have to be sent to all cluster
nodes, and all cluster nodes have to end up with the same data, even if multiple
updates to the same piece of data occur at the same time. Also, if a cluster node
requests a lock, it should not have to get all cluster nodes to agree on the lock,
otherwise it will scale extremely poorly; yet in the case of cluster node failure, all of the
data and lock information must be kept safely. Coherence handles all of these
scenarios transparently, and provides the most scalable and highly available replicated
cache implementation available for Java applications.

The best part of a replicated cache is its access speed. Since the data is replicated to
each cluster node, it is available for use without any waiting. This is referred to as
"zero latency access," and is perfect for situations in which an application requires the
highest possible speed in its data access. Each cluster node (JVM) accesses the data
from its own memory:

Figure 14–1 Get Operation in a Replicated Cache Environment

14-2 Oracle Coherence Getting Started Guide

This illustration is described in the text.

In contrast, updating a replicated cache requires pushing the new version of the data
to all other cluster nodes:

Figure 14–2 Put Operation in a Replicated Cache Environment

This illustration is described in the text.

Coherence implements its replicated cache service in such a way that all read-only
operations occur locally, all concurrency control operations involve at most one other
cluster node, and only update operations require communicating with all other cluster
nodes. The result is excellent scalable performance, and as with all of the Coherence
services, the replicated cache service provides transparent and complete failover and
failback.

The limitations of the replicated cache service should also be carefully considered.
First, however much data is managed by the replicated cache service is on each and
every cluster node that has joined the service. That means that memory utilization (the
Java heap size) is increased for each cluster node, which can impact performance.
Secondly, replicated caches with a high incidence of updates will not scale linearly as
the cluster grows; in other words, the cluster will suffer diminishing returns as cluster
nodes are added.

15

Partitioned Cache Service 15-1

15Partitioned Cache Service

To address the potential scalability limits of the replicated cache service, both in terms
of memory and communication bottlenecks, Coherence has provided a distributed
cache service since release 1.2. Many products have used the term distributed cache to
describe their functionality, so it is worth clarifying exactly what is meant by that term
in Coherence. Coherence defines a distributed cache as a collection of data that is
distributed (or, partitioned) across any number of cluster nodes such that exactly one
node in the cluster is responsible for each piece of data in the cache, and the
responsibility is distributed (or, load-balanced) among the cluster nodes.

There are several key points to consider about a distributed cache:

■ Partitioned: The data in a distributed cache is spread out over all the servers in
such a way that no two servers are responsible for the same piece of cached data.
This means that the size of the cache and the processing power associated with the
management of the cache can grow linearly with the size of the cluster. Also, it
means that operations against data in the cache can be accomplished with a "single
hop," in other words, involving at most one other server.

■ Load-Balanced: Since the data is spread out evenly over the servers, the
responsibility for managing the data is automatically load-balanced across the
cluster.

■ Location Transparency: Although the data is spread out across cluster nodes, the
exact same API is used to access the data, and the same behavior is provided by
each of the API methods. This is called location transparency, which means that
the developer does not have to code based on the topology of the cache, since the
API and its behavior will be the same with a local JCache, a replicated cache, or a
distributed cache.

■ Failover: All Coherence services provide failover and failback without any data
loss, and that includes the distributed cache service. The distributed cache service
allows the number of backups to be configured; if the number of backups is one or
higher, any cluster node can fail without the loss of data.

Access to the distributed cache will often need to go over the network to another
cluster node. All other things equals, if there are n cluster nodes, (n - 1) / n operations
will go over the network:

15-2 Oracle Coherence Getting Started Guide

Figure 15–1 Get Operations in a Partitioned Cache Environment

This illustration is described in the text.

Since each piece of data is managed by only one cluster node, an access over the
network is only a "single hop" operation. This type of access is extremely scalable,
since it can use point-to-point communication and thus take optimal advantage of a
switched network.

Similarly, a cache update operation can use the same single-hop point-to-point
approach, which addresses one of the two known limitations of a replicated cache, the
need to push cache updates to all cluster nodes.

Partitioned Cache Service 15-3

Figure 15–2 Put Operations in a Partitioned Cache Environment

This illustration is described in the text.

In the figure above, the data is being sent to a primary cluster node and a backup
cluster node. This is for failover purposes, and corresponds to a backup count of one.
(The default backup count setting is one.) If the cache data were not critical, which is to
say that it could be re-loaded from disk, the backup count could be set to zero, which
would allow some portion of the distributed cache data to be lost in the event of a
cluster node failure. If the cache were extremely critical, a higher backup count, such
as two, could be used. The backup count only affects the performance of cache
modifications, such as those made by adding, changing or removing cache entries.

Modifications to the cache are not considered complete until all backups have
acknowledged receipt of the modification. This means that there is a slight
performance penalty for cache modifications when using the distributed cache
backups; however it guarantees that if a cluster node were to unexpectedly fail, that
data consistency is maintained and no data will be lost.

Failover of a distributed cache involves promoting backup data to be primary storage.
When a cluster node fails, all remaining cluster nodes determine what data each holds
in backup that the failed cluster node had primary responsible for when it died. Those
data becomes the responsibility of whatever cluster node was the backup for the data:

15-4 Oracle Coherence Getting Started Guide

Figure 15–3 Failover in a Partitioned Cache Environment

This illustration is described in the text.

If there are multiple levels of backup, the first backup becomes responsible for the
data; the second backup becomes the new first backup, and so on. Just as with the
replicated cache service, lock information is also retained in the case of server failure;
the sole exception is when the locks for the failed cluster node are automatically
released.

The distributed cache service also allows certain cluster nodes to be configured to store
data, and others to be configured to not store data. The name of this setting is local
storage enabled. Cluster nodes that are configured with the local storage enabled option
will provide the cache storage and the backup storage for the distributed cache.
Regardless of this setting, all cluster nodes will have the same exact view of the data,
due to location transparency.

Partitioned Cache Service 15-5

Figure 15–4 Local Storage in a Partitioned Cache Environment

This illustration is described in the text.

There are several benefits to the local storage enabled option:

■ The Java heap size of the cluster nodes that have turned off local storage enabled
will not be affected at all by the amount of data in the cache, because that data will
be cached on other cluster nodes. This is particularly useful for application server
processes running on older JVM versions with large Java heaps, because those
processes often suffer from garbage collection pauses that grow exponentially with
the size of the heap.

■ Coherence allows each cluster node to run any supported version of the JVM. That
means that cluster nodes with local storage enabled turned on could be running a
newer JVM version that supports larger heap sizes, or Coherence's off-heap
storage using the Java NIO features.

■ The local storage enabled option allows some cluster nodes to be used just for
storing the cache data; such cluster nodes are called Coherence cache servers.
Cache servers are commonly used to scale up Coherence's distributed query
functionality.

15-6 Oracle Coherence Getting Started Guide

16

Near Cache 16-1

16Near Cache

The objective of a Near Cache is to provide the best of both worlds between the
extreme performance of the Replicated Cache Service and the extreme scalability of the
Partitioned Cache Service by providing fast read access to Most Recently Used (MRU)
and Most Frequently Used (MFU) data. To achieve this, the Near Cache is an
implementation that wraps two caches: a "front cache" and a "back cache" that
automatically and transparently communicate with each other by using a
read-through/write-through approach.

The "front cache" provides local cache access. It is assumed to be inexpensive, in that it
is fast, and is limited in terms of size. The "back cache" can be a centralized or
multi-tiered cache that can load-on-demand in case of local cache misses. The "back
cache" is assumed to be complete and correct in that it has much higher capacity, but
more expensive in terms of access speed. The use of a Near Cache is not confined to
Coherence*Extend; it also works with TCMP.

This design allows Near Caches to have configurable levels of cache coherency, from
the most basic expiry-based caches and invalidation-based caches, up to advanced
data-versioning caches that can provide guaranteed coherency. The result is a tunable
balance between the preservation of local memory resources and the performance
benefits of truly local caches.

The typical deployment uses a Local Cache for the "front cache". A Local Cache is a
reasonable choice because it is thread safe, highly concurrent, size-limited and/or
auto-expiring and stores the data in object form. For the "back cache", a remote,
partitioned cache is used.

The following figure illustrates the data flow in a Near Cache. If the client writes an
object D into the grid, the object is placed in the local cache inside the local JVM and in
the partitioned cache which is backing it (including a backup copy). If the client
requests the object, it can be obtained from the local, or "front cache", in object form
with no latency.

16-2 Oracle Coherence Getting Started Guide

Figure 16–1 Put Operations in a Near Cache Environment

This illustration is described in the text.

If the client requests an object that has been expired or invalidated from the "front
cache", then Coherence will automatically retrieve the object from the partitioned
cache. The updated object will be written to the "front cache" and then delivered to the
client.

Near Cache Invalidation Strategies

Near Cache 16-3

Figure 16–2 Get Operations in a Near Cache Environment

This illustration is described in the text.

Near Cache Invalidation Strategies
An invalidation strategy keeps the "front cache" of the Near Cache synchronized with
the "back cache." The Near Cache can be configured to listen to certain events in the
back cache and automatically update or invalidate entries in the front cache.
Depending on the interface that the back cache implements, the Near Cache provides
four different strategies of invalidating the front cache entries that have changed by
other processes in the back cache

Table 16–1 describes the invalidation strategies. You can find more information on the
invalidation strategies and the read-through/write-through approach in Chapter 9,
"Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching".

Table 16–1 Near Cache Invalidation Strategies

Strategy Name Description

None This strategy instructs the cache not to listen for invalidation
events at all. This is the best choice for raw performance and
scalability when business requirements permit the use of data
which might not be absolutely current. Freshness of data can be
guaranteed by use of a sufficiently brief eviction policy for the
front cache.

Configuring the Near Cache

16-4 Oracle Coherence Getting Started Guide

Configuring the Near Cache
A Near Cache is configured by using the <near-scheme> element in the
coherence-cache-config file. This element has two required sub-elements:
front-scheme for configuring a local (front-tier) cache and a back-scheme for defining a
remote (back-tier) cache. While a local cache (<local-scheme>) is a typical choice for
the front-tier, you can also use schemes based on Java Objects (<class-scheme>)
and, other than for .Net and C++ clients, non-JVM heap-based caches
(<external-scheme> or <paged-external-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A
back-tier cache can be either a distributed cache (<distributed-scheme>) or a
remote cache (<remote-cache-scheme>). The <remote-cache-scheme> element
enables you to use a clustered cache from outside the current cluster.

Optional sub-elements of <near-scheme> include <invalidation-strategy> for
specifying how the front-tier and back-tier objects will be kept synchronous and
<listener> for specifying a listener which will be notified of events occurring on the
cache.

For an example configuration, see "Sample Near Cache Configuration". The elements
in the file are described in the <near-scheme> topic.

Obtaining a Near Cache Reference
Coherence provides methods in the com.tangosol.net.CacheFactory class to
obtain a reference to a configured Near Cache by name. For example:

Example 16–1 Obtaining a Near Cache Reference

NamedCache cache = CacheFactory.getCache("example-near-cache");

The current release of Coherence also enables you to configure a Near Cache for Java,
C++, or for .NET clients.

Cleaning Up Resources Associated with a Near Cache
Instances of all NamedCache implementations, including NearCache, should be
explicitly released by calling the NamedCache.release() method when they are no
longer needed. This frees any resources they might hold.

Present This strategy instructs the Near Cache to listen to the back cache
events related only to the items currently present in the front
cache. This strategy works best when each instance of a front
cache contains distinct subset of data relative to the other front
cache instances (for example, sticky data access patterns).

All This strategy instructs the Near Cache to listen to all back cache
events. This strategy is optimal for read-heavy tiered access
patterns where there is significant overlap between the different
instances of front caches.

Auto This strategy instructs the Near Cache to switch automatically
between Present and All strategies based on the cache
statistics.

Table 16–1 (Cont.) Near Cache Invalidation Strategies

Strategy Name Description

Sample Near Cache Configuration

Near Cache 16-5

If the particular NamedCache is used for the duration of the application, then the
resources will be cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its release()
method when finished using it.

Sample Near Cache Configuration
The following sample code illustrates the configuration of a Near Cache. Sub-elements
of <near-scheme> define the Near Cache. Note the use of the <front-scheme>
element for configuring a local (front) cache and a <back-scheme> element for
defining a remote (back) cache. See the <near-scheme> topic for a description of the
Near Cache elements.

Example 16–2 Sample Near Cache Configuration

<?xml version="1.0"?>

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example-near-cache</cache-name>
 <scheme-name>example-near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <local-scheme>
 <scheme-name>example-local</scheme-name>
 </local-scheme>

 <near-scheme>
 <scheme-name>example-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>example-local</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-cache-scheme>
 <scheme-ref>example-remote</scheme-ref>
 </remote-cache-scheme>
 </back-scheme>
 </near-scheme>

 <remote-cache-scheme>
 <scheme-name>example-remote</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>

 <connect-timeout>5s</connect-timeout>
 </tcp-initiator>

 <outgoing-message-handler>

Sample Near Cache Configuration

16-6 Oracle Coherence Getting Started Guide

 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

17

Storage and Backing Map 17-1

17Storage and Backing Map

This chapter provides information on coherence storage using backing maps. The
following sections are included in this chapter:

■ Cache Layers

■ Operations

■ Capacity Planning

■ Partitioned Backing Maps

Cache Layers
Partitioned (Distributed) cache service in Coherence has three distinct layers:

■ Client View – The client view represents a virtual layer that provides access to the
underlying partitioned data. Access to this tier is provided using the NamedCache
interface. In this layer you can also create synthetic data structures such as
NearCache or ContinuousQueryCache.

■ Storage Manager – The storage manager is the server-side tier that is responsible
for processing cache-related requests from the client tier. It manages the data
structures that hold the actual cache data (primary and backup copies) and
information about locks, event listeners, map triggers etc.

■ Backing Map – The Backing Map is the server-side data structure that holds actual
data.

Coherence 3.x allows users to configure a number of out-of-the-box backing map
implementations as well as custom ones. Basically, the only constraint that all these
Map implementation have to be aware of, is the understanding that the Storage
Manager provides all keys and values in internal (Binary) format. To deal with
conversions of that internal data to and from an Object format, the Storage Manager
can supply Backing Map implementations with a BackingMapManagerContext
reference.

Figure 17–1 shows a conceptual view of backing maps.

Operations

17-2 Oracle Coherence Getting Started Guide

Figure 17–1 Backing Map Storage

Operations
There are number of operation types performed against the Backing Map:

■ Natural access and update operations caused by the application usage. For
example, NamedCache.get() call naturally causes a Map.get() call on a
corresponding Backing Map; the NamedCache.invoke() call may cause a
sequence of Map.get() followed by the Map.put(); the
NamedCache.keySet(filter) call may cause an
Map.entrySet().iterator() loop, and so on.

■ Remove operations caused by the time-based expiry or the size-based eviction. For
example, a NamedCache.get() or NamedCache.size() call from the client tier
could cause a Map.remove() call due to an entry expiry timeout; or
NamedCache.put() call causing a number of Map.remove() calls (for different
keys) caused by the total amount data in a backing map reaching the configured
high water-mark value.

■ Insert operations caused by a CacheStore.load() operation (for backing maps
configured with read-through or read-ahead features)

■ Synthetic access and updates caused by the partition distribution (which in turn
could be caused by cluster nodes fail-over or fail-back). In this case, without any
application tier call, a number of entries could be inserted or removed from the
backing map.

Capacity Planning

Storage and Backing Map 17-3

Capacity Planning
Depending on the actual implementation, the Backing Map stores the cache data in
one of the following ways:

■ on-heap memory

■ off-heap memory

■ disk (memory-mapped files or in-process DB)

■ combination of any of the above

Keeping data in memory naturally provides dramatically smaller access and update
latencies and is most commonly used.

More often than not, applications need to ensure that the total amount of data placed
into the data grid does not exceed some predetermined amount of memory. It could be
done either directly by the application tier logic or automatically using size- or
expiry-based eviction. Quite naturally, the total amount of data held in a Coherence
cache is equal to the sum of data volume in all corresponding backing maps (one per
each cluster node that runs the corresponding partitioned cache service in a storage
enabled mode).

Consider following cache configuration excerpts:

<backing-map-scheme>
 <local-scheme/>
</backing-map-scheme>

The backing map above is an instance of com.tangosol.net.cache.LocalCache
and does not have any pre-determined size constraints and has to be controlled
explicitly. Failure to do so could cause the JMV to go out-of-memory.

<backing-map-scheme>
 <local-scheme>
 <high-units>100m</high-units>
 <unit-calculator>BINARY</unit-calculator>
 <eviction-policy>LRU</eviction-policy>
 </local-scheme>
</backing-map-scheme>

This backing map is also a com.tangosol.net.cache.LocalCache and has a
capacity limit of 100MB. As the total amount of data held by this backing map exceeds
that high watermark, some entries will be removed from the backing map, bringing
the volume down to the low watermark value (<low-units> configuration element,
witch defaults to 75% of the <high-units>). The choice of the removed entries will
be based on the LRU (Least Recently Used) eviction policy. Other options are LFU
(Least Frequently Used) and Hybrid (a combination of the LRU and LFU). The value
of <high-units> is limited to 2GB. To overcome that limitation (but maintain
backward compatibility) Coherence 3.5 introduces a <unit-factor> element. For
example, the <high-units> value of 8192 with a <unit-factor> of 1048576 will
result in a high watermark value of 8GB (see a configuration excerpt below).

<backing-map-scheme>
 <local-scheme>
 <expiry-delay>1h</expiry-delay>
 </local-scheme>
</backing-map-scheme>

This backing map will automatically evict any entries that were not updated for more
that an hour. Note, that such an eviction is a "lazy" one and can happen any time after

Partitioned Backing Maps

17-4 Oracle Coherence Getting Started Guide

an hour since the last update happens; the only guarantee Coherence provides is that
more than one hour old value will not be returned to a caller.

<backing-map-scheme>
 <external-scheme>
 <high-units>100</high-units>
 <unit-calculator>BINARY</unit-calculator>
 <unit-factor>1048576</unit-factor>
 <nio-memory-manager>
 <initial-size>1MB</initial-size>
 <maximum-size>100MB</maximum-size>
 </nio-memory-manager>
 </external-scheme>
</backing-map-scheme>

This backing map is an instance of
com.tangosol.net.cache.SerializationCache which stores values in the
extended (nio) memory and has a capacity limit of 100MB (100*1048576). Quite
naturally, you would configure a backup storage for this cache being off-heap (or
file-mapped):

<backup-storage>
 <type>off-heap</type>
 <initial-size>1MB</initial-size>
 <maximum-size>100MB</maximum-size>
</backup-storage>

Partitioned Backing Maps
Prior to Coherence 3.5, a backing map would contain entries for all partitions owned
by the corresponding node. (During partition transfer, it could also hold "in flight"
entries that from the clients' perspective are temporarily not owned by anyone).

Figure 17–2 shows a conceptual view of the conventional backing map
implementation.

Figure 17–2 Conventional Backing Map Implementation

Coherence 3.5 introduced a concept of partitioned backing map, which is basically a
multiplexer of actual Map implementations, each of which would contain only entries
that belong to the same partition.

Partitioned Backing Maps

Storage and Backing Map 17-5

Figure 17–3 shows a conceptual view of the partitioned backing map implementation.

Figure 17–3 Partitioned Backing Map Implementation

To configure a partitioned backing map, add a <partitioned> element with a value
of true. For example:

<backing-map-scheme>
 <partitioned>true</partitioned>
 <external-scheme>
 <high-units>8192</high-units>
 <unit-calculator>BINARY</unit-calculator>
 <unit-factor>1048576<unit-factor>
 <nio-memory-manager>
 <initial-size>1MB</initial-size>
 <maximum-size>50MB</maximum-size>
 </nio-memory-manager>
 </external-scheme>
</backing-map-scheme>

This backing map is an instance of
com.tangosol.net.partition.PartitionSplittingBackingMap, with
individual partition holding maps being instances of
com.tangosol.net.cache.SerializationCache that each store values in the
extended (nio) memory. The individual nio buffers have a limit of 50MB, while the
backing map as whole has a capacity limit of 8GB (8192*1048576). Again, you would
need to configure a backup storage for this cache being off-heap or file-mapped.

Partitioned Backing Maps

17-6 Oracle Coherence Getting Started Guide

18

Local Storage 18-1

18Local Storage

The Coherence architecture is modular, allowing almost any piece to be extended or
even replaced with a custom implementation. One of the responsibilities of the
Coherence system that is completely configurable, extendable and replaceable is local
storage. Local storage refers to the data structures that actually store or cache the data
that is managed by Coherence. For an object to provide local storage, it must support
the same standard collections interface, java.util.Map. When a local storage
implementation is used by Coherence to store replicated or distributed data, it is called
a backing map, because Coherence is actually backed by that local storage
implementation. The other common uses of local storage is in front of a distributed
cache and as a backup behind the distributed cache.

Typically, Coherence uses one of the following local storage implementations:

■ Safe HashMap: This is the default lossless implementation. A lossless
implementation is one, like Java's Hashtable class, that is neither size-limited nor
auto-expiring. In other words, it is an implementation that never evicts ("loses")
cache items on its own. This particular HashMap implementation is optimized for
extremely high thread-level concurrency. (For the default implementation, use
class com.tangosol.util.SafeHashMap; when an implementation is required
that provides cache events, use com.tangosol.util.ObservableHashMap.
These implementations are thread-safe.)

■ Local Cache: This is the default size-limiting and/or auto-expiring
implementation. The local cache is covered in more detail below, but the primary
points to remember about it are that it can limit the size of the cache, and it can
automatically expire cache items after a certain period. (For the default
implementation, use com.tangosol.net.cache.LocalCache; this
implementation is thread safe and supports cache events,
com.tangosol.net.CacheLoader, CacheStore and configurable/pluggable
eviction policies.)

■ Read/Write Backing Map: This is the default backing map implementation for
caches that load from a database on a cache miss. It can be configured as a
read-only cache (consumer model) or as either a write-through or a write-behind
cache (for the consumer/producer model). The write-through and write-behind
modes are intended only for use with the distributed cache service. If used with a
near cache and the near cache must be kept synchronous with the distributed
cache, it is possible to combine the use of this backing map with a Seppuku-based
near cache (for near cache invalidation purposes); however, given these
requirements, it is suggested that the versioned implementation be used. (For the
default implementation, use class
com.tangosol.net.cache.ReadWriteBackingMap.)

18-2 Oracle Coherence Getting Started Guide

■ Versioned Backing Map: This is an optimized version of the read/write backing
map that optimizes its handling of the data by utilizing a data versioning
technique. For example, to invalidate near caches, it simply provides a version
change notification, and to determine whether cached data must be written back
to the database, it can compare the persistent (database) version information with
the transient (cached) version information. The versioned implementation can
provide very balanced performance in large scale clusters, both for read-intensive
and write-intensive data. (For the default implementation, use class
com.tangosol.net.cache.VersionedBackingMap; with this backing map,
you can optionally use the com.tangosol.net.cache.VersionedNearCache
as a near cache implementation.)

■ Binary Map (Java NIO): This is a backing map implementation that can store its
information in memory but outside of the Java heap, or even in memory-mapped
files, which means that it does not affect the Java heap size and the related JVM
garbage-collection performance that can be responsible for application pauses.
This implementation is also available for distributed cache backups, which is
particularly useful for read-mostly and read-only caches that require backup for
high availability purposes, because it means that the backup does not affect the
Java heap size yet it is immediately available in case of failover.

■ Serialization Map: This is a backing map implementation that translates its data
to a form that can be stored on disk, referred to as a serialized form. It requires a
separate com.tangosol.io.BinaryStore object into which it stores the
serialized form of the data; usually, this is the built-in LH disk store
implementation, but the Serialization Map supports any custom implementation
of BinaryStore. (For the default implementation of Serialization Map, use
com.tangosol.net.cache.SerializationMap.)

■ Serialization Cache: This is an extension of the SerializationMap that supports an
LRU eviction policy. This can be used to limit the size of disk files, for example.
(For the default implementation of Serialization Cache, use
com.tangosol.net.cache.SerializationCache.)

■ Overflow Map: An overflow map doesn't actually provide storage, but it deserves
mention in this section because it can tie together two local storage
implementations so that when the first one fills up, it will overflow into the
second. (For the default implementation of OverflowMap, use
com.tangosol.net.cache.OverflowMap.)

19

Local Cache 19-1

19Local Cache

While it is not a clustered service, the Coherence local cache implementation is often
used in combination with various Coherence clustered cache services. The Coherence
local cache is just that: a cache that is local to (completely contained within) a
particular cluster node. There are several attributes of the local cache that are
particularly interesting:

■ The local cache implements the same standard collections interface that the
clustered caches implement, meaning that there is no programming difference
between using a local or a clustered cache. Just like the clustered caches, the local
cache is tracking to the JCache API, which itself is based on the same standard
collections API that the local cache is based on.

■ The local cache can be size-limited. This means that the local cache can restrict the
number of entries that it caches, and automatically evict entries when the cache
becomes full. Furthermore, both the sizing of entries and the eviction policies are
customizable, for example allowing the cache to be size-limited based on the
memory used by the cached entries. The default eviction policy uses a
combination of Most Frequently Used (MFU) and Most Recently Used (MRU)
information, scaled on a logarithmic curve, to determine what cache items to evict.
This algorithm is the best general-purpose eviction algorithm because it works
well for short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

■ The local cache supports automatic expiration of cached entries, meaning that each
cache entry can be assigned a time to live in the cache. Furthermore, the entire
cache can be configured to flush itself on a periodic basis or at a preset time.

■ The local cache is thread safe and highly concurrent, allowing many threads to
simultaneously access and update entries in the local cache.

■ The local cache supports cache notifications. These notifications are provided for
additions (entries that are put by the client, or automatically loaded into the
cache), modifications (entries that are put by the client, or automatically reloaded),
and deletions (entries that are removed by the client, or automatically expired,
flushed, or evicted.) These are the same cache events supported by the clustered
caches.

■ The local cache maintains hit and miss statistics. These runtime statistics can be
used to accurately project the effectiveness of the cache, and adjust its size-limiting
and auto-expiring settings accordingly while the cache is running.

The local cache is important to the clustered cache services for several reasons,
including as part of Coherence's near cache technology, and with the modular backing
map architecture.

Configuring the Local Cache

19-2 Oracle Coherence Getting Started Guide

Configuring the Local Cache
The key element for configuring the Local Cache is <local-scheme>. Local caches
are generally nested within other cache schemes, for instance as the front-tier of a
near-scheme. Thus, this element can appear as a sub-element of any of these elements
in the coherence-cache-config file: <caching-schemes>,
<distributed-scheme>, <replicated-scheme>, <optimistic-scheme>,
<near-scheme>, <versioned-near-scheme>, <overflow-scheme>,
<read-write-backing-map-scheme>, and
<versioned-backing-map-scheme>.

The <local-scheme> provides several optional sub-elements that let you define the
characteristics of the cache. For example, the <low-units> and <high-units>
sub-elements allow you to limit the cache in terms of size. When the cache reaches its
maximum allowable size it prunes itself back to a specified smaller size, choosing
which entries to evict according to a specified eviction-policy (<eviction-policy>).
The entries and size limitations are measured in terms of units as calculated by the
scheme's unit-calculator (<unit-calculator>).

You can also limit the cache in terms of time. The <expiry-delay> sub-element
specifies the amount of time from last update that entries will be kept by the cache
before being marked as expired. Any attempt to read an expired entry will result in a
reloading of the entry from the configured cache store (<cachestore-scheme>).
Expired values are periodically discarded from the cache based on the flush-delay.

If a <cache-store-scheme> is not specified, then the cached data will only reside in
memory, and only reflect operations performed on the cache itself. See
<local-scheme> for a complete description of all of the available sub-elements.

The XML code Example 19–1 illustrates the configuration of a Local Cache. See Sample
Cache Configurations for additional examples.

Example 19–1 Local Cache Configuration

<?xml version="1.0"?>

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example-local-cache</cache-name>
 <scheme-name>example-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <local-scheme>
 <scheme-name>example-local</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>32000</high-units>
 <low-units>10</low-units>
 <unit-calculator>FIXED</unit-calculator>
 <expiry-delay>10ms</expiry-delay>
 <flush-delay>1000ms</flush-delay>
 <cachestore-scheme>
 <class-scheme>
 <class-name>ExampleCacheStore</class-name>
 </class-scheme>
 </cachestore-scheme>
 <pre-load>true</pre-load>
 </local-scheme>
 </caching-schemes>

Configuring the Local Cache

Local Cache 19-3

</cache-config>

For more information, see "Local Cache" in the C++ User Guide or .NET User Guide .

Configuring the Local Cache

19-4 Oracle Coherence Getting Started Guide

20

Best Practices 20-1

20Best Practices

Coherence supports several cache topologies.

Coherence and Cache Topologies
Coherence supports several cache topologies, but the replicated, partitioned, and near
options will satisfy the vast majority of use cases. All are fully coherent and support
clusterwide locking and transactions:

■ Replicated—Each machine contains a full copy of the dataset. Read access is
instantaneous.

■ Partitioned (or Distributed)—Each machine contains a unique partition of the
dataset. Adding machines to the cluster will increase the capacity of the cache.
Both read and write access involve network transfer and
serialization/deserialization.

■ Near—Each machine contains a small local cache which is synchronized with a
larger Partitioned cache, optimizing read performance. There is some overhead
involved with synchronizing the caches.

Data Access Patterns
■ Data Access Distribution (hot spots)

■ Cluster-node Affinity

■ Read/Write Ratio and Data Sizes

■ Interleaving Cache Reads and Writes

Data Access Distribution (hot spots)
When caching a large dataset, typically a small portion of that dataset will be
responsible for most data accesses. For example, in a 1000 object dataset, 80% of
operations may be against a 100 object subset. The remaining 20% of operations may
be against the other 900 objects. Obviously the most effective return on investment will
be gained by caching the 100 most active objects; caching the remaining 900 objects
will provide 25% more effective caching while requiring a 900% increase in resources.

However, if every object is accessed equally often (for example in sequential scans of
the dataset), then caching will require more resources for the same level of
effectiveness. In this case, achieving 80% cache effectiveness would require caching
80% of the dataset versus 10%. (Note that sequential scans of partially cached data sets
will generally defeat MRU, LFU and MRU-LFU eviction policies). In practice, almost

Heap Size Considerations

20-2 Oracle Coherence Getting Started Guide

all non-synthetic (benchmark) data access patterns are uneven, and will respond well
to caching subsets of data.

In cases where a subset of data is active, and a smaller subset is particularly active,
Near caching can be very beneficial when used with the "all" invalidation strategy (this
is effectively a two-tier extension of the above rules).

Cluster-node Affinity
Coherence's Near cache technology will transparently take advantage of cluster-node
affinity, especially when used with the "present" invalidation strategy. This topology is
particularly useful when used with a sticky load-balancer. Note that the "present"
invalidation strategy results in higher overhead (as opposed to "all") when the front
portion of the cache is "thrashed" (very short lifespan of cache entries); this is due to
the higher overhead of adding/removing key-level event listeners. In general, a cache
should be tuned to avoid thrashing and so this is usually not an issue.

Read/Write Ratio and Data Sizes
Generally speaking, the following cache topologies are best for the following use cases:

■ Replicated cache—small amounts of read-heavy data (for example, metadata)

■ Partitioned cache—large amounts of read/write data (for example, large data
caches)

■ Near cache—similar to Partitioned, but has further benefits from read-heavy tiered
access patterns (for example, large data caches with hotspots) and "sticky" data
access (for example, sticky HTTP session data). Depending on the synchronization
method (expiry, asynchronous, synchronous), the worst case performance may
range from similar to a Partitioned cache to considerably worse.

Interleaving Cache Reads and Writes
Interleaving refers to the number of cache reads between each cache write. The
Partitioned cache is not affected by interleaving (as it is designed for 1:1 interleaving).
The Replicated and Near caches by contrast are optimized for read-heavy caching, and
prefer a read-heavy interleave (for example, 10 reads between every write). This is
because they both locally cache data for subsequent read access. Writes to the cache
will force these locally cached items to be refreshed, a comparatively expensive
process (relative to the near-zero cost of fetching an object off the local memory heap).
Note that with the Near cache technology, worst-case performance is still similar to the
Partitioned cache; the loss of performance is relative to best-case scenarios.

Note that interleaving is related to read/write ratios, but only indirectly. For example,
a Near cache with a 1:1 read/write ratio may be extremely fast (all writes followed by
all reads) or much slower (1:1 interleave, write-read-write-read...).

 Heap Size Considerations
■ Using Several Small Heaps

■ Moving the Cache Out of the Application Heap

Using Several Small Heaps
For large datasets, Partitioned or Near caches are recommended. As the scalability of
the Partitioned cache is linear for both reading and writing, varying the number of

Heap Size Considerations

Best Practices 20-3

Coherence JVMs will not significantly affect cache performance. However, JVM
memory management routines show worse than linear scalability. For example,
increasing JVM heap size from 512MB to 2GB may substantially increase garbage
collection (GC) overhead and pauses.

For this reason, it is common to use multiple Coherence instances per physical
machine. As a general rule of thumb, current JVM technology works well up to 512MB
heap sizes. Therefore, using several 512MB Coherence instances will provide optimal
performance without a great deal of JVM configuration or tuning.

For performance-sensitive applications, experimentation may provide better tuning.
When considering heap size, it is important to find the right balance. The lower bound
is determined by per-JVM overhead (and also, manageability of a potentially large
number of JVMs). For example, if there is a fixed overhead of 100MB for infrastructure
software (for example JMX agents, connection pools, internal JVM structures), then the
use of JVMs with 256MB heap sizes will result in close to 40% overhead for non-cache
data. The upper bound on JVM heap size is governed by memory management
overhead, specifically the maximum duration of GC pauses and the percentage of CPU
allocated to GC (and other memory management tasks).

For Java 5 VMs running on commodity systems, the following rules generally hold
true (with no JVM configuration tuning). With a heap size of 512MB, GC pauses will
not exceed one second. With a heap size of 1GB, GC pauses are limited to roughly 2-3
seconds. With a heap size of 2GB, GC pauses are limited to roughly 5-6 seconds. It is
important to note that GC tuning will have an enormous impact on GC throughput
and pauses. In all configurations, initial (-Xms) and maximum (-Xmx) heap sizes
should be identical. There are many variations that can substantially impact these
numbers, including machine architecture, CPU count, CPU speed, JVM configuration,
object count (object size), object access profile (short-lived versus long-lived objects).

For allocation-intensive code, GC can theoretically consume close to 100% of CPU
usage. For both cache server and client configurations, most CPU resources will
typically be consumed by application-specific code. It may be worthwhile to view
verbose garbage collection statistics (for example, -verbosegc). Use the profiling
features of the JVM to get profiling information including CPU usage by GC (for
example, -Xprof).

Moving the Cache Out of the Application Heap
Using dedicated Coherence cache server instances for Partitioned cache storage will
minimize the heap size of application JVMs as the data is no longer stored locally. As
most Partitioned cache access is remote (with only 1/N of data being held locally),
using dedicated cache servers does not generally impose much additional overhead.
Near cache technology may still be used, and it will generally have a minimal impact
on heap size (as it is caching an even smaller subset of the Partitioned cache). Many
applications are able to dramatically reduce heap sizes, resulting in better
responsiveness.

Local partition storage may be enabled (for cache servers) or disabled (for application
server clients) with the tangosol.coherence.distributed.localstorage Java property (for
example, -Dtangosol.coherence.distributed.localstorage=false).

It may also be disabled by modifying the <local-storage> setting in the
tangosol-coherence.xml (or tangosol-coherence-override.xml) file as
follows:

Example 20–1 Disabling Partition Storage

<!--

Heap Size Considerations

20-4 Oracle Coherence Getting Started Guide

Example using tangosol-coherence-override.xml
-->
<coherence>
 <cluster-config>
 <services>
 <!--
 id value must match what's in tangosol-coherence.xml for DistributedCache
service
 -->
 <service id="3">
 <init-params>
 <init-param id="4">
 <param-name>local-storage</param-name>
 <param-value
system-property="tangosol.coherence.distributed.localstorage">false</param-value>
 </init-param>
 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

At least one storage-enabled JVM must be started before any storage-disabled clients
access the cache.

21

Network Protocols 21-1

21Network Protocols

This chapter describes the network protocols supported by Coherence.

Coherence and the TCMP Protocol
Coherence uses TCMP, a clustered IP-based protocol, for server discovery, cluster
management, service provisioning and data transmission. To ensure true scalability,
the TCMP protocol is completely asynchronous, meaning that communication is never
blocking, even when many threads on a server are communicating at the same time.
Further, the asynchronous nature also means that the latency of the network (for
example, on a routed network between two different sites) does not affect cluster
throughput, although it will affect the speed of certain operations.

TCMP uses a combination of UDP/IP multicast, UDP/IP unicast and TCP/IP as
follows:

■ Multicast

■ Cluster discovery: Is there a cluster already running that a new member can
join?

■ Cluster heartbeat: The most senior member in the cluster issues a periodic
heartbeat through multi-cast; the rate is configurable and defaults to once per
second.

■ Message delivery: Messages that need to be delivered to multiple cluster
members will often be sent through multicast, instead of unicasting the
message one time to each member.

■ Unicast

■ Direct member-to-member ("point-to-point") communication, including
messages, asynchronous acknowledgments (ACKs), asynchronous negative
acknowledgments (NACKs) and peer-to-peer heartbeats.

■ Under some circumstances, a message may be sent through unicast even if the
message is directed to multiple members. This is done to shape traffic flow
and to reduce CPU load in very large clusters.

■ TCP

■ An optional TCP/IP ring is used as an additional "death detection"
mechanism, to differentiate between actual node failure and an unresponsive
node, such as when a JVM conducts a full GC.

■ TCP/IP is not used as a data transfer mechanism due to the intrinsic overhead
of the protocol and its synchronous nature.

Protocol Reliability

21-2 Oracle Coherence Getting Started Guide

Protocol Reliability
The TCMP protocol provides fully reliable, in-order delivery of all messages. Since the
underlying UDP/IP protocol does not provide for either reliable or in-order delivery,
TCMP uses a queued, fully asynchronous ACK- and NACK-based mechanism for
reliable delivery of messages, with unique integral identity for guaranteed ordering of
messages.

Protocol Resource Utilization
The TCMP protocol requires only two UDP/IP sockets (one multicast, one unicast)
and six threads per JVM, regardless of the cluster size. This is a key element in the
scalability of Coherence, in that regardless of the number of servers, each node in the
cluster can still communicate either point-to-point or with collections of cluster
members without requiring additional network connections.

The optional TCP/IP ring will use a few additional TCP/IP sockets, and a total of one
additional thread.

Protocol Tunability
The TCMP protocol is very tunable to take advantage of specific network topologies,
or to add tolerance for low-bandwidth and/or high-latency segments in a
geographically distributed cluster. Coherence comes with a pre-set configuration.
Some TCMP attributes are dynamically self-configuring at runtime, but can also be
overridden and locked down for deployment purposes.

Multicast Scope
Multicast UDP/IP packets are configured with a time-to-live value (TTL) that
designates how far those packets can travel on a network. The TTL is expressed in
terms of how many "hops" a packet will survive; each network interface, router and
managed switch is considered one hop. Coherence provides a TTL setting to limit the
scope of multicast messages.

Disabling Multicast
In most WAN environments, and some LAN environments, multicast traffic is
disallowed. To prevent Coherence from using multicast, configure a list of
well-known-addresses (WKA). This will disable multicast discovery, and also
disable multicast for all data transfer. Coherence is designed to use point-to-point
communication as much as possible, so most application profiles will not see a
substantial performance impact.

22

The Coherence Ecosystem 22-1

22The Coherence Ecosystem

The purpose of this document is to describe the:

■ Breakdown of Coherence editions

■ Coherence Client and Server Connections

■ Coherence Modules Involved in Connecting Client and Server Editions

Breakdown of Coherence editions
The Coherence ecosystem is divided into two subsections: Coherence client editions
and Coherence server editions. There are two different client editions:

■ Data Client

■ Real Time Client—RTC

And there are three different server editions:

■ Standard Edition

■ Enterprise Edition

■ Grid Edition

Each edition has a different (graduated) list of features which can be found in
Appendix A, "Coherence Features by Edition".

Coherence Client and Server Connections
Figure 22–1 illustrates which client editions can connect to which server editions. It
illustrates two important points:

■ Coherence Data Client can connect to any of the Coherence Server Editions.

■ Coherence Real Time Client can only connect to Coherence Grid Edition.

Coherence Modules Involved in Connecting Client and Server Editions

22-2 Oracle Coherence Getting Started Guide

Figure 22–1 Client/Server Features by Edition

This figure is described in the text.

Coherence Modules Involved in Connecting Client and Server Editions
There are two Coherence modules involved in connecting Coherence client and server
editions:

■ Coherence*Extend—which is the protocol (built on TCP/IP) that is used between
the Coherence client and server processes.

■ Coherence*Extend TCP Proxy—which is the module that sits within a Coherence
server edition process that manages the Coherence Extend*TCP connections
coming in from the clients.

How a Single Coherence Client Process Connects to a Single Coherence Server

Figure 22–2 illustrates how a request is passed from a Coherence client process to
internal data storage:

1. A Coherence client process uses Extend*TCP to initiate and maintain a connection
to the Coherence (server-side) Data Grid.

2. Extend*TCP connects to the Coherence Server JVM process, specifically the
Extend*Proxy service that is running within the process space.

3. The Extend*Proxy service routes the client requests to the internal data storage.

Note: Coherence provides cross-platform client support by
providing native clients for Java, .NET (C#), and C++. This allows
different platforms to access, modify, query, (and so on), data between
programming languages by connecting to the Coherence data grid.
For more information on a data grid, see Chapter 1, "Defining a Data
Grid".

Coherence Modules Involved in Connecting Client and Server Editions

The Coherence Ecosystem 22-3

Figure 22–2 Single Client, Single Server

This figure is described in the text.

Considering Multiple Clients and Servers
This section assumes that the components involved remain the same as in the previous
example. Figure 22–3 illustrates how requests are passed from the client processes to
internal data storage where there are multiple Coherence server JVM processes:

1. The Coherence client processes use Extend*TCP to initiate and maintain a
connection to the Coherence (server-side) Data Grid.

2. Extend*TCP connects to a single Coherence server JVM process, specifically the
Extend*Proxy service that is running within the process space. In the event of
failure the client process will connect to another Coherence server JVM process
that is running the Extend*Proxy service.

3. The Extend*Proxy service then routes the client requests to the correct Coherence
server JVM process (that is, the process or processes that hold the data relevant to
the client request) represented by the "internal data storage" in the diagram.

Coherence Modules Involved in Connecting Client and Server Editions

22-4 Oracle Coherence Getting Started Guide

Figure 22–3 Multiple Clients and Servers

This figure is described in the text.

23

Session Management for Clustered Applications 23-1

23Session Management for Clustered
Applications

Clustered applications require reliable and performant HTTP session management.
Unfortunately, moving to a clustered environment introduces several challenges for
session management. This article discusses those challenges and proposes solutions
and recommended practices. The included session management features of Oracle
Coherence*Web are examined here.

Basic Terminology
An HTTP session ("session") spans a sequence of user interactions within a Web
application. "Session state" is a collection of user-specific information. This session
state is maintained for a period, typically beginning with the user's first interaction
and ending a short while after the user's last interaction, perhaps thirty minutes later.
Session state consists of an arbitrary collection of "session attributes," each of which is
a Java object and is identified by name. "Sticky load balancing" describes the act of
distributing user requests across a set of servers in such a way that requests from a
given user are consistently sent to the same server.

Coherence is a data management product that provides real-time, fully coherent data
sharing for clustered applications. Coherence*Web is a session management module
that is included as part of Coherence. An HTTP session model ("session model")
describes how Coherence*Web physically represents session state. Coherence*Web
includes three session models. The Monolithic model stores all session state as a single
entity, serializing and deserializing all attributes as a single operation. The Traditional
model stores all session state as a single entity but serializes and deserializes attributes
individually. The Split model extends the Traditional model but separates the larger
session attributes into independent physical entities. The applications of these models
are described in later sections of this article.

"Select the Appropriate Session Model" in the Coherence FAQ provides more information
on the Monolithic, Traditional, and Split Session models. It also describes how to
configure Coherence to use a particular model.

Figure 23–1 illustrates the Monolithic, Traditional, and Split Session models.

Sharing Data in a Clustered Environment

23-2 Oracle Coherence Getting Started Guide

Figure 23–1 Session Models Supported by Coherence

This figure is described in the text.

Sharing Data in a Clustered Environment
Session attributes must be serializable if they are to be processed across multiple JVMs,
which is a requirement for clustering. It is possible to make some fields of a session
attribute non-clustered by declaring those fields as transient. While this eliminates the
requirement for all fields of the session attributes to be serializable, it also means that
these attributes will not be fully replicated to the backup server(s). Developers who
follow this approach should be very careful to ensure that their applications are
capable of operating in a consistent manner even if these attribute fields are lost. In
most cases, this approach ends up being more difficult than simply converting all
session attributes to serializable objects. However, it can be a useful pattern when very
large amounts of user-specific data are cached in a session.

The J2EE Servlet specification (versions 2.2, 2.3, and 2.4) states that the servlet context
should not be shared across the cluster. Non-clustered applications that rely on the
servlet context as a singleton data structure will have porting issues when moving to a
clustered environment. Coherence*Web does support the option of a clustered context,
though generally it should be the goal of all development teams to ensure that their
applications follow the J2EE specifications.

A more subtle issue that arises in clustered environments is the issue of object sharing.
In a non-clustered application, if two session attributes reference a common object,

Reliability and Availability

Session Management for Clustered Applications 23-3

changes to the shared object will be visible as part of both session attributes. However,
this is not the case in most clustered applications. To avoid unnecessary use of
compute resources, most session management implementations serialize and
deserialize session attributes individually on demand. Coherence*Web (Traditional
and Split session models) normally operates in this manner. If two session attributes
that reference a common object are separately deserialized, the shared common object
will be instantiated twice. For applications that depend on shared object behavior and
cannot be readily corrected, Coherence*Web provides the option of a Monolithic
session model, which serializes and deserializes the entire session object as a single
operation. This provides compatibility for applications that were not originally
designed with clustering in mind.

Many projects require sharing session data between different Web applications. The
challenge that arises is that each Web application typically has its own class loader.
Consequently, objects cannot readily be shared between separate Web applications.
There are two general methods for working around this, each with its own set of
trade-offs.

■ Place common classes in the Java CLASSPATH, allowing multiple applications to
share instances of those classes at the expense of a slightly more complicated
configuration.

■ Use Coherence*Web to share session data across class loader boundaries. Each
Web application is treated as a separate cluster member, even if they run within
the same JVM. This approach provides looser coupling between Web applications
(assuming serialized classes share a common serial Version UID), but suffers from
a performance impact because objects must be serialized-deserialized for transfer
between cluster members.

Figure 23–2 illustrates the sharing of data between Web applications or portlets by
clustering (serializing-deserializing session state).

Figure 23–2 Sharing Data Between Web Applications

This figure is described in the text.

Reliability and Availability
An application must guarantee that a user's session state is properly maintained to
exhibit correct behavior for that user. Some availability considerations occur at the
application design level and apply to both clustered and non-clustered applications.
For example, the application should ensure that user actions are idempotent: the

Reliability and Availability

23-4 Oracle Coherence Getting Started Guide

application should be capable of handling a user who accidentally submits an HTML
form twice.

With sticky load balancing, issues related to concurrent session updates are normally
avoided, as all updates to session state are made from a single server (which
dramatically simplifies concurrency management). This has the benefit of ensuring no
overlap of user requests occurs even in cases where a user submits a new request
before the previous request has been fully processed. Use of HTML frames complicates
this, but the same general pattern applies: Simply ensure that only one display element
is modifying session state.

In cases where there may be concurrent requests, Coherence*Web manages concurrent
changes to session state (even across multiple servers) by locking sessions for exclusive
access by a single server. With Coherence*Web, developers can specify whether session
access is restricted to one server at a time (the default), or even one thread at a time.

As a general rule, all session attributes should be treated as immutable objects if
possible. This ensures that developers are consciously aware when they change
attributes. With mutable objects, modifying attributes often requires two steps:
modifying the state of the attribute object, and then manually updating the session
with the modified attribute object by calling
javax.servlet.http.HttpSession.setAttribute(). This means that your
application should always call setAttribute() if the attribute value has been
changed, otherwise, the modified attribute value will not replicate to the backup
server. Coherence*Web tracks all mutable attributes retrieved from the session, and so
will automatically update these attributes, even if setAttribute() has not been
called. This can help applications that were not designed for clustering to work in a
clustered environment.

Session state is normally maintained on two servers, one primary and one backup. A
sticky load balancer will send each user request to the specified primary server, and
any local changes to session state will be copied to the backup server. If the primary
server fails, the next request will be rerouted to the backup server, and the user's
session state will be unaffected. While this is a very efficient approach (among other
things, it ensures that the cluster is not overwhelmed with replication activity after a
server failure), there are a few drawbacks. Because session state is copied when the
session is updated, failure (or cycling) of both the primary and backup servers
between session updates will result in a loss of session state. To avoid this problem,
wait thirty minutes between each server restart when cycling a cluster of server
instances. The thirty-minute interval increases the odds of a return visit from a user,
which can trigger session replication. Additionally, if the interval is at least as long as
the session timeout, the session state will be discarded anyway if the user has not
returned.

This cycling interval is not required with Coherence*Web, which will automatically
redistribute session data when a server fails or is cycled. Coherence's "location
transparency" ensures that node failure does not affect data visibility. However, node
failure does impact redundancy, and therefore fresh backup copies must be created.
With most Coherence*Web configurations, two machines (primary and backup) are
responsible for managing each piece of session data, regardless of cluster size. With
this configuration, Coherence can handle one failover transition at any time. When a
server fails, no data will be lost if the next server failure occurs after the completion of
the current failover process. The worst-case scenario is a small cluster with large
amounts of session data on each server, which may require a minute or two to
rebalance. Increasing the cluster size, or reducing the amount of data storage per
server, will improve failover performance. In a large cluster of commodity servers, the
failover process may require less than a second to complete. For particularly critical

Scalability and Performance

Session Management for Clustered Applications 23-5

applications, increasing the number of backup machines will increase the number of
simultaneous failures that Coherence can manage.

The need for serialization in clustered applications introduces a new opportunity for
failure. Serialization failure of a single session attribute will ordinarily prevent the
remaining session attributes from being copied to the backup server and can result in
the loss of the entire session. Coherence*Web works around this by replicating only
serializable objects, while maintaining non-serializable objects in the local server
instance.

One last issue to be aware of is that under heavy load, a server can lose session
attribute modifications due to network congestion. The log will contain information
about lost attributes, which brings up the most critical aspect of high-availability
planning: Be sure to test all of your application components under full load to ensure
that failover and failback operate as expected. While many applications will see no
difficulties even at 99-percent load, the real test of application availability occurs when
the system is fully saturated.

Scalability and Performance
Moving to a clustered environment makes session size a critical consideration.
Memory usage is a factor regardless of whether an application is clustered or not, but
clustered applications also need to consider the increased CPU and network load that
larger sessions introduce. While non-clustered applications using in-memory sessions
do not need to serialize-deserialize session state, clustered applications must do this
every time session state is updated. Serializing session state and then transmitting it
over the network becomes a critical factor in application performance. For this reason
and others, a server should generally limit session size to no more than a few
kilobytes.

While the Traditional and Monolithic session models for Coherence*Web have the
same limiting factor, the Split session model was explicitly designed to efficiently
support large HTTP sessions. Using a single clustered cache entry to contain all of the
small session attributes means that network traffic is minimized when accessing and
updating the session or any of its smaller attributes. Independently deserializing each
attribute means that CPU usage is minimized. By splitting out larger session attributes
into separate clustered cache entries, Coherence*Web ensures that the application only
pays the cost for those attributes when they are actually accessed or updated.
Additionally, because Coherence*Web leverages the data management features of
Coherence, all of the underlying features are available for managing session attributes,
such as near caching, NIO buffer caching, and disk-based overflow.

Figure 23–3 illustrates performance as a function of session size. Each session consists
of ten 10-character Strings and from zero to four 10,000-character Strings. Each HTTP
request reads a single small attribute and a single large attribute (for cases where there
are any in the session), and 50 percent of requests update those attributes. Tests were
performed on a two-server cluster. Note the similar performance between the
Traditional and Monolithic models; serializing-deserializing Strings consumes
minimal CPU resources, so there is little performance gain from deserializing only the
attributes that are actually used. The performance gain of the Split model increases to
over 37:1 by the time session size reaches one megabyte (100 large Strings). In a
clustered environment, it is particularly true that application requests that access only
essential data have the opportunity to scale and perform better; this is part of the
reason that sessions should be kept to a reasonable size.

Scalability and Performance

23-6 Oracle Coherence Getting Started Guide

Figure 23–3 Performance as a Function of Session Size

This illustration is described in the text.

Another optimization is the use of transient data members in session attribute classes.
Because Java serialization routines ignore transient fields, they provide a very
convenient means of controlling whether session attributes are clustered or isolated to
a single cluster member. These are useful in situations where data can be "lazy loaded"
from other data sources (and therefore recalculated in the event of a server failover
process), and also in scenarios where absolute reliability is not critical. If an application
can withstand the loss of a portion of its session state with zero (or acceptably
minimal) impact on the user, then the performance benefit may be worth considering.
In a similar vein, it is not uncommon for high-scale applications to treat session loss as
a session timeout, requiring the user to log back in to the application (which has the
implicit benefit of properly setting user expectations regarding the state of their
application session).

Sticky load balancing plays a critical role because session state is not globally visible
across the cluster. For high-scale clusters, user requests normally enter the application
tier through a set of stateless load balancers, which redistribute (more or less
randomly) these requests across a set of sticky load balancers, such as Microsoft IIS or
Apache HTTP Server. These sticky load balancers are responsible for the more
computationally intense act of parsing the HTTP headers to determine which server
instance will be processing the request (based on the server ID specified by the session
cookie). If requests are misrouted for any reason, session integrity will be lost. For
example, some load balancers may not parse HTTP headers for requests with large
amounts of POST data (for example, more than 64KB), so these requests will not be
routed to the appropriate server instance. Other causes of routing failure include
corrupted or malformed server IDs in the session cookie. Most of these issues can be
handled with proper selection of a load balancer and designing tolerance into the
application whenever possible (for example, ensuring that all large POST requests
avoid accessing or modifying session state).

Sticky load balancing aids the performance of Coherence*Web but is not required.
Because Coherence*Web is built on the Coherence data management platform, all
session data is globally visible across the cluster. A typical Coherence*Web
deployment places session data in a near cache topology, which uses a partitioned
cache to manage huge amounts of data in a scalable and fault-tolerant manner,
combined with local caches in each application server JVM to provide instant access to
commonly used session state. While a sticky load balancer is not required when
Coherence*Web is used, there are two key benefits to using one. Due to the use of near

Conclusion

Session Management for Clustered Applications 23-7

cache technology, read access to session attributes will be instant if user requests are
consistently routed to the same server, as using the local cache avoids the cost of
deserialization and network transfer of session attributes. Additionally, sticky load
balancing allows Coherence to manage concurrency locally, transferring session locks
only when a user request is rebalanced to another server.

Conclusion
Clustering can boost scalability and availability for applications. Clustering solutions
such as Coherence*Web solve many problems for developers, but successful
developers must be aware of the limitations of the underlying technology, and how to
manage those limitations. Understanding what the platform provides, and what users
require, gives developers the ability to eliminate the gap between the two.

Conclusion

23-8 Oracle Coherence Getting Started Guide

24

The Portable Object Format 24-1

24The Portable Object Format

The following sections are included in this chapter:

■ Overview

■ Why Should I Use POF

■ Working with POF

■ Summary

Overview
Serialization is the process of encoding an object into a binary format. It is a critical
component to working with Coherence as data needs to be moved around the
network. The Portable Object Format (also referred to as POF) is a language agnostic
binary format. POF was designed to be incredibly efficient in both space and time and
has become a cornerstone element in working with Coherence. For more information
on the POF binary stream, see "The PIF-POF Binary Format" in Oracle Coherence
Developer's Guide.

Why Should I Use POF
There are several options available with respect to serialization including standard
Java serialization, POF, and your own custom serialization routines. Each has their
own trade-offs. Standard Java serialization is easy to implement, supports cyclic object
graphs and preserves object identity. Unfortunately, it's also comparatively slow, has a
verbose binary format, and restricted to only Java objects.

The Portable Object Format on the other hand has the following advantages:

■ It's language independent with current support for Java, .NET, and C++.

■ It's very efficient, in a simple test class with a String, a long, and three ints,
(de)serialization was seven times faster, and the binary produced was one sixth the
size compared with standard Java serialization.

■ It's versionable, objects can evolve and have forward and backward compatibility.

■ It supports the ability to externalize your serialization logic.

■ It's indexed which allows for extracting values without deserializing the whole
object. See Chapter 25, "PofExtractors and PofUpdaters."

Working with POF

24-2 Oracle Coherence Getting Started Guide

Working with POF
POF requires you to implement serialization routines that know how to serialize and
deserialize your objects. There are two ways to do this:

■ Have your objects implement the com.tangosol.io.pof.PortableObject
interface.

■ Implement a serializer for your objects using the
com.tangosol.io.pof.PofSerializer interface.

Implementing the PortableObject interface
The PortableObject interface is a simple interface made up of two methods:

■ public void readExternal(PofReader reader)

■ public void writeExternal(PofWriter writer)

As mentioned above, POF elements are indexed. This is accomplished by providing a
numerical index for each element that you write or read from the POF stream. It's
important to keep in mind that the indexes must be unique to each element written
and read from the POF stream, especially when you have derived types involved
because the indexes must be unique between the super class and the derived class.

Example 24–1 is a simple example of implementing the PortableObject interface:

Example 24–1 Implementation of the PortableObject Interface

public void readExternal(PofReader in)
 throws IOException
 {
 m_symbol = (Symbol) in.readObject(0);
 m_ldtPlaced = in.readLong(1);
 m_fClosed = in.readBoolean(2);
 }

public void writeExternal(PofWriter out)
 throws IOException
 {
 out.writeObject(0, m_symbol);
 out.writeLong(1, m_ldtPlaced);
 out.writeBoolean(2, m_fClosed);
 }

Implementing the PofSerializer interface:
The PofSerializer interface provide you with a way to externalize your
serialization logic from the classes you want to serialize. This is particularly useful
when you don't want to change the structure of your classes to work with POF and
Coherence. The PofSerializer interface is also made up of two methods:

■ public Object deserializer(PofReader in)

■ public void writeObject(PofWriter out, Object o)

As with the PortableObject interface, all elements written to or read from the POF
stream must be uniquely indexed. Below is an example implementation of the
PofSerializer interface:

Working with POF

The Portable Object Format 24-3

Example 24–2 Implementation of the PofSerializer Interface

public Object deserialize(PofReader in)
 throws IOException
 {
 Symbol symbol = (Symbol)in.readObject(0);
 long ldtPlaced = in.readLong(1);
 bool fClosed = in.readBoolean(2);

 // mark that we're done reading the object
 in.readRemainder(null);

 return new Trade(symbol, ldtPlaced, fClosed);
 }

public void serialize(PofWriter out, Object o)
 throws IOException
 {
 Trade trade = (Trade) o;
 out.writeObject(0, trade.getSymbol());
 out.writeLong(1, trade.getTimePlaced());
 out.writeBoolean(2, trade.isClosed());

 // mark that we're done writing the object
 out.writeRemainder(null);
 }

Assigning POF indexes
When assigning POF indexes to your object's attributes, it's important to keep a few
things in mind:

■ Order your reads and writes: you should start with the lowest index value in your
serialization routine and finish with the highest. When deserializing a value, you
want to read in the same order you've written.

■ It's ok to have non-contiguous indexes but you must read/write sequentially.

■ When Subclassing reserve index ranges: index's are cumulative across derived
types. As such, each derived type must be aware of the POF index range reserved
by its super class.

■ Don't re-purpose your indexes: if you ever want Evolvable support, it's imperative
that you don't re-purpose the indexes of your attributes across class revisions.

■ Label your indexes: if you label your indexes with a public static final
int, it will be much easier to work with the object, especially when using
PofExtractors and PofUpdaters. See Chapter 25, "PofExtractors and PofUpdaters."
Note that once you've labeled your indexes, you want to still make sure that they
are read and written out in order as mentioned above.

The ConfigurablePofContext
Coherence provides a ConfigurablePofContext class which is responsible for
mapping a POF serialized object to an appropriate serialization routine (either a
PofSerializer or by calling through the PortableObject interface). Each class is
given a unique type-id in POF that can be mapped to an optional PofSerializer. Once
your classes have serialization routines, they must be registered with the
ConfigurablePofContext. Custom user types are registered with the
ConfigurablePofContext using a POF configuration file. This is an XML file
which has a <user-type-list> element that contains a list of classes that

Working with POF

24-4 Oracle Coherence Getting Started Guide

implement PortableObject or have a PofSerializer associated with them. The
type-id for each class must be unique, and must match across all cluster instances
(including extend clients).

The following is an example of what a pof-config.xml file would look like:

<pof-config>
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 ...
 <!-- User types must be above 1000 -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.examples.MyTrade</class-name>
 <serializer>
 <class-name>com.examples.MyTradeSerializer</class-name>
 </serializer>
 </user-type>

 <user-type>
 <type-id>1002</type-id>
 <class-name>com.examples.MyPortableTrade</class-name>
 </user-type>
 ...
</pof-config>

Configuring Coherence to use the ConfigurablePofContext
In order to start using POF, you must also configure each service to use the
ConfigurablePofContext. This is accomplished using the <serializer>
element of your cache scheme in your cache configuration file. The
ConfigurablePofContext takes a string based <init-param> that points to your
pof-configuration file.

Below is an example of a distributed cache scheme configured to use POF:

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-value>my-pof-config.xml</param-value>
 <param-type>String</param-type>
 </init-param>
 </init-params>
 </serializer>
 ...
 </distributed-scheme>

Alternatively you can configure an entire JVM instance to use POF using the following
system properties:

Note: Coherence reserves the first 1000 type-id's for internal use. If
you look closely you'll see that the user-type-list includes the
coherence-pof-config.xml file. This is where the Coherence
specific user types are defined and should be included in all of your
POF configuration files.

Summary

The Portable Object Format 24-5

■ tangosol.pof.enabled=true - This will turn on POF for the entire JVM
instance.

■ tangosol.pof.config=CONFIG_FILE_PATH - The path to the POF
configuration file you want to use. Note that if this is not in the class path it must
be presented as a file resource (for example
file:///opt/home/coherence/mycustom-pof-config.xml).

Summary
Using POF has many advantages ranging from performance benefits to language
independence. It's recommended that you look closely at POF as your serialization
solution when working with Coherence. For information on how to work with POF in
.NET, see "Configuration and Usage for .NET Clients" in Oracle Coherence Client Guide.
For information on how to work with POF in C++, see "Configuration and Usage for
C++ Clients" in Oracle Coherence Client Guide.

Summary

24-6 Oracle Coherence Getting Started Guide

25

PofExtractors and PofUpdaters 25-1

25PofExtractors and PofUpdaters

The following sections are included in this chapter:

■ Overview

■ Navigating a POF object

■ Using PofExtractors

■ Using PofUpdaters

Overview
In Coherence, the ValueExtractor and ValueUpdater interfaces are used to extract
and update values of objects that are stored in the cache. The PofExtractor and
PofUpdater interfaces take advantage of Portable Object Format’s indexed state to
extract or update an object without the need to go through the full
serialization/deserialization routines.

The addition of PofExtractors and PofUpdaters adds flexibility in working with
non-primitive types in Coherence. For most cases where you're working with extend
clients, it's no longer required to have corresponding Java classes in the grid. Because
POFExtractors/PofUpdaters can navigate the binary, we don't need to deserialize the
entire key/value into Object form. This implies that indexing can be achieved by
simply using PofExtractors to pull a value to index on. There are however
circumstances where you must provide a corresponding Java class:

■ Key Association – When using key association, Coherence always deserializes
keys to determine whether they implement KeyAssociation.

■ Cache Stores – When using a cache store, Coherence passes the deserialized
version of the key and value to the cache store to write to the back end.

Navigating a POF object
Due to the fact that the Portable Object Format (POF) is indexed, it's possible to
quickly traverse the binary to a specific element for extraction or updating. It's the
responsibility of the PofNavigator interface to traverse a POF value object and
return the desired POF value object. Out of the box, coherence provides a
SimplePofPath class that can navigate a POF value based on integer indices. In the
simplest form, all you need to do is to provide the index of the attribute that you want
to extract/update.

Consider the following example:

public class Contact
 implements PortableObject

Navigating a POF object

25-2 Oracle Coherence Getting Started Guide

 {
 ...
 // ----- PortableObject interface ---------------------------------------

 /**
 * {@inheritDoc}
 */
 public void readExternal(PofReader reader)
 throws IOException
 {
 m_sFirstName = reader.readString(FIRSTNAME);
 m_sLastName = reader.readString(LASTNAME);
 m_addrHome = (Address) reader.readObject(HOME_ADDRESS);
 m_addrWork = (Address) reader.readObject(WORK_ADDRESS);
 m_mapPhoneNumber = reader.readMap(PHONE_NUMBERS, null);
 }

 /**
 * {@inheritDoc}
 */
 public void writeExternal(PofWriter writer)
 throws IOException
 {
 writer.writeString(FIRSTNAME, m_sFirstName);
 writer.writeString(LASTNAME, m_sLastName);
 writer.writeObject(HOME_ADDRESS, m_addrHome);
 writer.writeObject(WORK_ADDRESS, m_addrWork);
 writer.writeMap(PHONE_NUMBERS, m_mapPhoneNumber);
 }

 // ----- constants ---

 /**
 * The POF index for the FirstName property
 */
 public static final int FIRSTNAME = 0;

 /**
 * The POF index for the LastName property
 */
 public static final int LASTNAME = 1;

 /**
 * The POF index for the HomeAddress property
 */
 public static final int HOME_ADDRESS = 2;

 /**
 * The POF index for the WorkAddress property
 */
 public static final int WORK_ADDRESS = 3;

 /**
 * The POF index for the PhoneNumbers property
 */
 public static final int PHONE_NUMBERS = 4;

 ...

Using PofUpdaters

PofExtractors and PofUpdaters 25-3

}
Notice that there's a constant for each data member that is being written to and from
the POF stream. This is an excellent practice to follow as it simplifies both writing your
serialization routines as well as making it easier to work with PofExtractors and
PofUpdaters. By labeling each index, it becomes much easier to think about what we're
working with. As mentioned above, in the simplest case, we could pull the work
address out of the contact by using the WORK_ADDRESS index. The SimplePofPath
also allows using an Array of ints to traverse the PofValues. So for example if we
wanted the zip code of the work address we would use [WORK_ADDRESS, ZIP].
We'll go through the example in more detail below.

Using PofExtractors
PofExtractors are typically used when querying a cache and should greatly improve
the performance of your queries. If we were to use the example class above, and
wanted to query the cache for all Contacts with the last names Jones, the query would
look something like this:

ValueExtractor veName = new PofExtractor(Contact.LASTNAME);
Filter filter = new EqualsFilter(veName, "Jones");

// find all entries that have a last name of Jones
Set setEntries = cache.entrySet(filter);

In the above use case, PofExtractor has a convenience constructor that will use a
SimplePofPath to retrieve a singular index, in our case the Contact.LaSTNAME
index. Now if we wanted to find all Contacts with the area code 01803, the query
would look like this:

ValueExtractor veZip = new PofExtractor(
 new SimplePofPath(new int[] {Contact.WORK_ADDRESS, Address.ZIP}));

Filter filter = new EqualsFilter(veZip, "01803");

// find all entries that have a work address in the 01803 zip code
Set setEntries = cache.entrySet(filter);

Using PofUpdaters
PofUpdater works in the same way as PofExtractor except that they will update
the value of an object rather than extract it. So if we wanted to change John Jones' last
name to Smith, we would use the UpdaterProcessor like this:

ValueExtractor veName = new PofExtractor(Contact.LASTNAME);
Filter filter = new EqualsFilter(veName, "Jones");
ValueUpdater updater = new PofUpdator(Contact.LASTNAME);

Note: while these examples operate on String based values, this
functionality will work on any POF encoded value.

Using PofUpdaters

25-4 Oracle Coherence Getting Started Guide

Part II
Part II Installing Coherence

The Installing Coherence section is targeted at software developers and architects. It
provides detailed technical information for installing, configuring, developing with,
and finally deploying Oracle Coherence.

For ease-of-reading, the documentation uses only the most basic formatting
conventions. Code elements and file contents are printed with a fixed-width font.
Multi-line code segments are also color-coded for easier reading.

Oracle Coherence is a JCache-compliant in-memory caching and data management
solution for clustered Java EE applications and application servers. Coherence makes
sharing and managing data in a cluster as simple as on a single server. It accomplishes
this by coordinating updates to the data using clusterwide concurrency control,
replicating and distributing data modifications across the cluster using the highest
performing clustered protocol available, and delivering notifications of data
modifications to any servers that request them. Developers can easily take advantage
of Coherence features using the standard Java collections API to access and modify
data, and use the standard JavaBean event model to receive data change notifications.

■ Chapter 26, "Installing Oracle Coherence"

26

Installing Oracle Coherence 26-1

26Installing Oracle Coherence

This chapter provides instructions for installing Oracle Coherence.

Downloading and Extracting Coherence
Coherence is distributed as a zip file for Windows and any other operating system
supporting the zip format. If prompted by your browser, choose to save the
downloaded file. When it has completed downloading, expand the zip file (using
WinZip or the unzip command-line utility) to the location of your choice. On
Windows, you can expand it to your c:\ directory; on UNIX, it is suggested that you
expand it to the /opt directory. Expanding the zip will create a coherence directory
with several sub-directories.

Installing Coherence
If you are adding Coherence to an application server, you will need to make sure that
the coherence.jar library (found in coherence/lib/) is in the CLASSPATH (or
the equivalent mechanism that your application server uses).

Alternatively, if your application server supports it, you can package the
coherence.jar libraries into your application's .ear, .jar or .war file.

For purposes of compilation, you will need to make sure that the coherence.jar
library is on the CLASSPATH (or the equivalent mechanism that your compiler or IDE
uses).

Verifying that Multiple Nodes and Servers are Able to Form a Cluster
Coherence includes a self-contained console application that can be used to verify that
installation is successful and that all the servers that are meant to participate in the
cluster are indeed capable of joining the cluster. We recommend that you perform this
quick test when you first start using Coherence in a particular network and server
environment, to verify that the nodes do indeed connect as expected. You can do that
by repeating the following set of steps to start Coherence on each server (you can start
multiple instances of Coherence on the same server as well):

■ Change the current directory to the Coherence library directory (%COHERENCE_
HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

■ Make sure that the paths are configured so that the Java command will run.

■ Run the following command to start Coherence command line:

java -jar coherence.jar

Verifying that Multiple Nodes and Servers are Able to Form a Cluster

26-2 Oracle Coherence Getting Started Guide

You should see something like this after you start the first member:

Example 26–1 Sample Output after Starting the First Member

D:\coherence\lib>java -jar coherence.jar
2008-09-15 19:37:16.164 Oracle Coherence 3.4/405 <Info> (thread=main, member=n/a):
Loaded operational configuration from
resource "jar:file:/D:/coherence/lib/coherence.jar!/tangosol-coherence.xml"
2008-09-15 19:37:16.164 Oracle Coherence 3.4/405 <Info> (thread=main,
member=n/a): Loaded operational overrides from
resource
"jar:file:/D:/coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml"
2008-09-15 19:37:16.164 Oracle Coherence 3.4/405 <D5> (thread=main, member=n/a):
Optional configuration override
"/tangosol-coherence-override.xml" is not specified
2008-09-15 19:37:16.174 Oracle Coherence 3.4/405 <D5> (thread=main, member=n/a):
Optional configuration override
"/custom-mbeans.xml" is not specified

Oracle Coherence Version 3.4/405
 Grid Edition: Development mode
Copyright (c) 2000-2008 Oracle. All rights reserved.

2008-09-15 19:37:17.106 Oracle Coherence GE 3.4/405 <D5> (thread=Cluster,
member=n/a): Service Cluster joined the
cluster with senior service member n/a
2008-09-15 19:37:20.320 Oracle Coherence GE 3.4/405 <Info> (thread=Cluster,
member=n/a): Created a new cluster
"cluster:0x19DB" with Member(Id=1, Timestamp=2008-09-15 19:37:16.735,
Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,
Location=site:mydomain.com,machine:mycomputer,process:3716, Role=CoherenceConsole,
Edition=Grid Edition, Mode=Development,
CpuCount=1, SocketCount=1) UID=0x0A8F9C7A0000011BE7A10EBF197A1F98
SafeCluster: Name=cluster:0x19DB

Group{Address=224.3.4.0, Port=34405, TTL=4}

MasterMemberSet
 (
 ThisMember=Member(Id=1, Timestamp=2008-09-15 19:37:16.735,
Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:3716,
Role=CoherenceConsole)
 OldestMember=Member(Id=1, Timestamp=2008-09-15 19:37:16.735,
Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:3716,
Role=CoherenceConsole)
 ActualMemberSet=MemberSet(Size=1, BitSetCount=2
 Member(Id=1, Timestamp=2008-09-15 19:37:16.735, Address=xxx.xxx.xxx.xxx:8088,
MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:3716,
Role=CoherenceConsole)
)
 RecycleMillis=120000
 RecycleSet=MemberSet(Size=0, BitSetCount=0
)
)

Services
 (

Verifying that Multiple Nodes and Servers are Able to Form a Cluster

Installing Oracle Coherence 26-3

 TcpRing{TcpSocketAccepter{State=STATE_OPEN, ServerSocket=xxx.xxx.xxx.xxx:8088},
Connections=[]}
 ClusterService{Name=Cluster, State=(SERVICE_STARTED, STATE_JOINED), Id=0,
Version=3.4, OldestMemberId=1}
)

Map (?):

As you can see there is only one member listed in the ActualMemberSet. When the
second member is started, you should see something similar to the following at its
start up:

Example 26–2 Sample Output after Starting the Second Member

D:\coherence\lib>java -jar coherence.jar
2008-09-15 19:47:24.379 Oracle Coherence 3.4/405 <Info> (thread=main,
member=n/a): Loaded operational configuration from
resource "jar:file:/D:/coherence/lib/coherence.jar!/tangosol-coherence.xml"
2008-09-15 19:47:24.389 Oracle Coherence 3.4/405 <Info> (thread=main, member=n/a):
Loaded operational overrides from
resource
"jar:file:/D:/coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml"
2008-09-15 19:47:24.389 Oracle Coherence 3.4/405 <D5> (thread=main, member=n/a):
Optional configuration override
"/tangosol-coherence-override.xml" is not specified
2008-09-15 19:47:24.399 Oracle Coherence 3.4/405 <D5> (thread=main, member=n/a):
Optional configuration override
"/custom-mbeans.xml" is not specified

Oracle Coherence Version 3.4/405
 Grid Edition: Development mode
Copyright (c) 2000-2008 Oracle. All rights reserved.

2008-09-15 19:47:25.380 Oracle Coherence GE 3.4/405 <D5> (thread=Cluster,
member=n/a): Service Cluster joined the
cluster with senior service member n/a
2008-09-15 19:47:25.591 Oracle Coherence GE 3.4/405 <Info> (thread=Cluster,
member=n/a): This Member(Id=2,
Timestamp=2008-09-15 19:47:25.39, Address=xxx.xxx.xxx.xxx:8089, MachineId=6522,
Location=site:mydomain.com,
machine:mycomputer,process:2768, Role=CoherenceConsole, Edition=Grid Edition,
Mode=Development, CpuCount=1, SocketCount=1) joined
cluster "cluster:0x19DB" with senior Member(Id=1, Timestamp=2008-09-15
19:37:16.735, Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,
Location=site:mydomain.com,machine:mycomputer,process:3716, Role=CoherenceConsole,
Edition=Grid Edition, Mode=Development,
CpuCount=1, SocketCount=1)
SafeCluster: Name=cluster:0x19DB

Group{Address=224.3.4.0, Port=34405, TTL=4}

MasterMemberSet
 (
 ThisMember=Member(Id=2, Timestamp=2008-09-15 19:47:25.39,
Address=xxx.xxx.xxx.xxx:8089, MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:2768,
Role=CoherenceConsole)
 OldestMember=Member(Id=1, Timestamp=2008-09-15 19:37:16.735,
Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,

Verifying that Multiple Nodes and Servers are Able to Form a Cluster

26-4 Oracle Coherence Getting Started Guide

 Location=site:mydomain.com,machine:mycomputer,process:3716,
Role=CoherenceConsole)
 ActualMemberSet=MemberSet(Size=2, BitSetCount=2
 Member(Id=1, Timestamp=2008-09-15 19:37:16.735, Address=xxx.xxx.xxx.xxx:8088,
MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:3716,
Role=CoherenceConsole)
 Member(Id=2, Timestamp=2008-09-15 19:47:25.39, Address=xxx.xxx.xxx.xxx:8089,
MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:2768,
Role=CoherenceConsole)
)
 RecycleMillis=120000
 RecycleSet=MemberSet(Size=0, BitSetCount=0
)
)

Services
 (
 TcpRing{TcpSocketAccepter{State=STATE_OPEN, ServerSocket=xxx.xxx.xxx.xxx:8089},
Connections=[]}
 ClusterService{Name=Cluster, State=(SERVICE_STARTED, STATE_JOINED), Id=0,
Version=3.4, OldestMemberId=1}
)

Map (?):
2008-09-15 19:47:27.293 Oracle Coherence GE 3.4/405 <D5> (thread=TcpRingListener,
member=2): TcpRing: connecting to
member 1 using TcpSocket{State=STATE_OPEN,
Socket=Socket[addr=/xxx.xxx.xxx.xxx,port=2820,localport=8089]}

Map (?):

If you execute the who command at the prompt of the first member after the second
member is started, you should see the same two members:

Example 26–3 Output from Execurint the "who" Command

Map (?): who
SafeCluster: Name=cluster:0x19DB

Group{Address=224.3.4.0, Port=34405, TTL=4}

MasterMemberSet
 (
 ThisMember=Member(Id=1, Timestamp=2008-09-15 19:37:16.735,
Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,
 Location=mydomain.com,machine:mycomputer,process:3716, Role=CoherenceConsole)
 OldestMember=Member(Id=1, Timestamp=2008-09-15 19:37:16.735,
Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:3716,
Role=CoherenceConsole)
 ActualMemberSet=MemberSet(Size=2, BitSetCount=2
 Member(Id=1, Timestamp=2008-09-15 19:37:16.735, Address=xxx.xxx.xxx.xxx:8088,
MachineId=6522,
 Location=site:mydomain.com,machine:mycomputer,process:3716,
Role=CoherenceConsole)
 Member(Id=2, Timestamp=2008-09-15 19:47:25.39, Address=xxx.xxx.xxx.xxx:8089,
MachineId=6522,

Verifying that Multiple Nodes and Servers are Able to Form a Cluster

Installing Oracle Coherence 26-5

 Location=site:mydomain.com,machine:mycomputer,process:2768,
Role=CoherenceConsole)
)
 RecycleMillis=120000
 RecycleSet=MemberSet(Size=0, BitSetCount=0
)
)

Services
 (
 TcpRing{TcpSocketAccepter{State=STATE_OPEN, ServerSocket=xxx.xxx.xxx.xxx:8088},
Connections=[2]}
 ClusterService{Name=Cluster, State=(SERVICE_STARTED, STATE_JOINED), Id=0,
Version=3.4, OldestMemberId=1}
)

Map (?):

As more new members are started, you should see their addition reflected in the
ActualMemberSet list. If you do not see new members being added, your network
may not be properly configured for multicast traffic. See "Performing a Multicast
Connectivity Test" to diagnose the problem..

Verifying that Multiple Nodes and Servers are Able to Form a Cluster

26-6 Oracle Coherence Getting Started Guide

A

Coherence Features by Edition A-1

ACoherence Features by Edition

Coherence Server Editions

Table A–1 Coherence Server Editions

Standard Edition
(formerly known
as Caching
Edition)

Enterprise
Edition (formerly
known as
Application
Edition)

Grid Edition (formerly
known as Data Grid
Edition)

Application
caching solution

* Fault-tolerant
data caching

Application data
management

* Fault-tolerant
data caching

* Data
management
including
write-behind,
transactions,
analytics and
events

Enterprise-wide data
management

* Fault-tolerant data caching

* Data management
including write-behind,
transactions, analytics and
events

* Support for heterogeneous
clients

Connectivity Embedded Data
Client and Real
Time Client
functionality (see
note 1)

Yes Yes Yes

TCMP cluster
technology (see
notes 3, 7)

Yes Yes Yes

Support for
cross-platform
Data Clients

Yes Yes Yes

Multicast-free
operation (WKA)

Yes Yes Yes

Security Network traffic
encryption

Yes Yes Yes

Coherence Server Editions

A-2 Oracle Coherence Getting Started Guide

Java
Authentication &
Authorization
Service (JAAS)

Yes Yes Yes

Management &
Monitoring

Management host
(see note 2)

Yes Yes Yes

Manageable
through clustered
JMX

Yes Yes

Caching Local cache, Near
cache, continuous
query cache,
real-time events

Yes Yes Yes

Fully replicated
data management

Yes Yes Yes

Partitioned data
management

Yes Yes Yes

Data source
integration
through
read-through/writ
e-through caching

Yes Yes Yes

Integration Hibernate
integration

Yes Yes Yes

HTTP session
management for
application servers

Yes Yes

BEA Portal "p13n
cache" integration

Yes Yes

Analytics Parallel
InvocableMap and
QueryMap (see
note 4)

Yes Yes

Transactions Write-behind
caching

Yes Yes

J2CA Resource
Adapter

Yes Yes

Compute Grid InvocationService Yes Yes

WorkManager Yes Yes

Enterprise Data Grid WAN support (see
note 5)

Yes

Support for
cross-platform Real
Time Clients

Yes

Table A–1 (Cont.) Coherence Server Editions

Standard Edition
(formerly known
as Caching
Edition)

Enterprise
Edition (formerly
known as
Application
Edition)

Grid Edition (formerly
known as Data Grid
Edition)

Coherence Client Editions

Coherence Features by Edition A-3

Coherence Client Editions
In Table A–2, note that the Data Client may be used with all Coherence Server
Editions. The Real Time Client may only be used with Grid Edition. Extend/TCP is an
abbreviation for Coherence*Extend configured for transport over TCP/IP.

Table A–2 Coherence Client Editions

Data Client (see
note 9)

Real Time Client (see note
10) (configured as
Extend/TCP Client; see
note 11)

Real Time Client (see
note 10) (configured as
Compute Client)

Data Grid client
for use anywhere

* Access to data
and services on
the data grid

Real time desktop client

* Access to data and
services on the data grid

* Real time synchronization
with the data grid

Server-class client

* Access to data and
services on the data grid

* Real time
synchronization with the
data grid

* Server-class client:
manageability,
monitoring, Quality of
Service, performance

API Language Java Yes Yes Yes

.NET Yes Yes No

C++ Yes Yes No

Client API Data
transformation
(PIFPOF /
ExternalizableLite
/ XmlBean)

Yes Yes Yes

InvocationService Yes (see note 6) Yes (see note 6) Yes

NamedCache (core) Yes Yes Yes

NamedCache (with
ObservableMap
real time events)

Yes Yes

MemberListener Yes

Connectivity

Coherence*Extend
client (see note 8)

Yes Yes Yes

Multicast-free
operation

Yes (see note 8) Yes (see note 8) Yes

TCMP cluster
technology (see
note 7)

Yes

Security Network traffic
encryption

Yes Yes Yes

Java Authentication
& Authorization
Service (JAAS)

Yes

Caching Local cache Yes Yes

Coherence Client Editions

A-4 Oracle Coherence Getting Started Guide

Notes:
1. Coherence TCMP clusters must be homogeneous with respect to the Coherence

Edition. A TCMP cluster of one type (for example, Caching Edition) may connect
to a TCMP cluster of another type (for example, Grid Edition) as a Data Client or
as a Real Time Client, but this requires server-side licenses. The connection type is
configurable and defaults to Real Time Client.

2. Supports integration with a local MBeanServer. This, with local JMX "agents",
allows this node to provide management and monitoring features. Clustered JMX
support adds the ability for this node to manage and monitor remote nodes as
well.

3. Coherence Editions may not be mixed within the context of a single TCMP-based
cluster. Integration of different Edition types is accomplished through
Coherence*Extend (with each cluster acting as either a Data Client or a Real Time
Client).

4. Parallel support for InvocableMap and QueryMap will result in server-side
execution whenever possible, minimizing data transfer, allowing use of indexing,
and parallelizing execution across the cluster. Without parallel support, the
operations will retrieve the full dataset to the client for evaluation (which may be
very inefficient).

5. Grid Edition is required for WAN and other deployments that implement
cluster-to-cluster interconnects, including any deployment where responsibility

Near cache Yes Yes

Continuous query
cache

Yes Yes

Fully replicated
cache

Yes

Partitioned Data
Management

Transactions Local transactions Yes

Integration Hibernate
integration

Yes

HTTP session
management for
application servers

Yes

BEA Portal "p13n
cache" integration

Yes

Management
& Monitoring

Management host Yes

Manageable
through clustered
JMX

Yes

Compute Grid InvocationService Yes

WorkManager Yes

Table A–2 (Cont.) Coherence Client Editions

Data Client (see
note 9)

Real Time Client (see note
10) (configured as
Extend/TCP Client; see
note 11)

Real Time Client (see
note 10) (configured as
Compute Client)

Coherence Client Editions

Coherence Features by Edition A-5

for data and/or processing spans more than one data center and activities are
coordinated between those data centers using any form of Coherence-provided
messaging or connectivity, such as deployments that feature two or more TCMP
clusters interconnected by Coherence*Extend.

6. Data Client and Real Time Client invocations are executed by the Extend Proxy
Server they are connected to.

7. Oracle's cluster-aware wire protocol (TCMP) provides detailed knowledge of the
entire cluster that enables direct server access for lower latency and higher
throughput, faster failover/failback/rebalancing, and the ability for any
participating member to act as a service provider (for example, data management,
remote invocation, management and monitoring, and so on).

8. Coherence*Extend is used to extend the core TCMP cluster to a greater ranging
network, including desktops, other servers and WAN links. The
Coherence*Extend protocol is transported over TCP/IP.

9. Data Client may be used with all Coherence Server Editions.

10. Real Time Client may only be used with Grid Edition.

11. Extend/TCP is an abbreviation for Coherence*Extend configured for transport
over TCP/IP.

Coherence Client Editions

A-6 Oracle Coherence Getting Started Guide

B

AbstractMultiplexingBackingMapListener Class Listing B-1

BAbstractMultiplexingBackingMapListener
Class Listing

Backing MapListener events are returned from replicated caches in readable Java
format. However, backing MapListener events returned from distributed caches are
in internal Coherence format. To return readable backing MapListener events from
distributed caches, extend the AbstractMultiplexingBackingMapListener
class.

The class provides an onBackingMapEvent method which you can override to
specify how you would like the event returned.

The following is a code listing of the
AbstractMultiplexingBackingMapListener class.

Example B–1 Code Listing of the AbstractMultiplexingBackingMapListener Class

import com.tangosol.net.BackingMapManager;
import com.tangosol.net.BackingMapManagerContext;
import com.tangosol.net.cache.CacheEvent;
import com.tangosol.util.Binary;
import com.tangosol.util.ConverterCollections;
import com.tangosol.util.MapEvent;
import com.tangosol.util.MapListener;
import com.tangosol.util.MultiplexingMapListener;

/**
 * <p>The {@link AbstractMultiplexingBackingMapListener} provides a simplified
 * base implementation for backing {@link MapListener}s that provide real objects
 * in a map event (in normal Java representation) rather than those that use
 * the internal Coherence format (ie: {@link Binary}s.</p>
 *
 * <p>Backing {@link MapListener}s are embeddable {@link MapListener}s that are
 * injected into Coherence Cache members (storage-enabled) for handling events
 * directly in-process of the primary partitions (of distributed schemes).</p>
 *
 * <p>They are extremely useful for performing in-process processing of events
 * within Coherence itself.</p>
 *
 * @author Brian Oliver (brian.oliver@oracle.com)
 */
public abstract class AbstractMultiplexingBackingMapListener extends
MultiplexingMapListener {

 /**
 * <p>The possible causes of backing map events.</p>
 */

B-2 Oracle Coherence Getting Started Guide

 public enum Cause {
 /**
 * <p><code>Regular</code> is for regular insert, updates and
 * deletes.</p>
 */
 Regular,

 /**
 * <p><code>Eviction</code> is for deletes that are due to cache
 * eviction.</p>
 */
 Eviction,

 /**
 * <p><code>Distribution</code> is for insert or delete events due
 * to coherence having
 * to repartition data due to changes in cluster membership.</p>
 */
 Distribution
 }

 /**
 * <p>The {@link BackingMapManagerContext} that owns this listener.
 * (all Backing {@link MapListener}s require a
 * {@link BackingMapManagerContext})</p>
 */
 private BackingMapManagerContext context;

 /**
 * <p>Standard Constructor</p>
 *
 * <p>The {@link BackingMapManagerContext} will be injected by Coherence
 * during initialization and construction of the
 * {@link BackingMapManager}.</p>
 *
 * @param context
 */
 public AbstractMultiplexingBackingMapListener(BackingMapManagerContext
 context) {
 this.context = context;
 }

 /**
 * <p>The {@link BackingMapManagerContext} in which the Backing
 * {@link MapListener} is operating.</p>
 *
 * @return {@link BackingMapManagerContext}
 */
 public BackingMapManagerContext getContext() {
 return context;
 }

 /**
 * <p>This is the standard {@link MultiplexingMapListener} event handler.
 * In here we convert the internally formatted event into something a
 * developer would expect if using a client-side {@link MapListener}.</p>
 *

AbstractMultiplexingBackingMapListener Class Listing B-3

 * <p>After converting the internally formatted event, this method calls
 * the abstract {@link #onBackingMapEvent(MapEvent, Cause)}
 * method that may be used to handle the actual event.</p>
 */
 protected final void onMapEvent(MapEvent mapEvent) {

 // convert the mapEvent (in internal format) into a real event
 // we can deal with
 MapEvent realMapEvent =
ConverterCollections.getMapEvent(mapEvent.getMap(), mapEvent,
context.getKeyFromInternalConverter(), context.getValueFromInternalConverter());

 //determine the underlying cause of the map event
 Cause cause;
 if (context.isKeyOwned(mapEvent.getKey())) {
 cause = mapEvent instanceof CacheEvent && ((CacheEvent)
mapEvent).isSynthetic() ? Cause.Eviction : Cause.Regular;
 } else {
 cause = Cause.Distribution;
 }

 // now call the abstract event handler with the real event
 // and underlying cause
 onBackingMapEvent(realMapEvent, cause);
 }

 /**
 * <p>Override this method to handle real backing map events.</p>
 *
 * @param mapEvent A standard mapEvent (in Java format)
 * @param cause The underlying cause of the event
 */
 abstract protected void onBackingMapEvent(MapEvent mapEvent, Cause cause);

B-4 Oracle Coherence Getting Started Guide

Glossary-1

Glossary

Coherence Clustering and Federation

For most Coherence deployments, there will be a single cluster in each data center
(through TCMP), and federation between each data center (through
Coherence*Extend). While TCMP scalability is dependent on many variables, a good
rule of thumb is that with solid networking infrastructure, a cluster of 100 server JVMs
is readily supported, and a cluster of 1000 server JVMs is possible but requires far
more care to achieve.

Oracle Coherence supports both homogeneous server clusters and the federated server
model. Any application or server process that is running the Coherence software is
called a cluster node. All cluster nodes on the same network will automatically cluster
together. Cluster nodes use a peer-to-peer protocol, which means that any cluster node
can talk directly to any other cluster node.

Coherence is logically sub-divided into clusters, services and caches. A Coherence
cluster is a group of cluster nodes that share a group address, which allows the cluster
nodes to communicate. Generally, a cluster node will only join one cluster, but it is
possible for a cluster node to join (be a member of) several different clusters, by using
a different group address for each cluster.

Within a cluster, there exists any number of named services. A cluster node can
participate in (join) any number of these services; when a cluster node joins a service,
it automatically has all of the information from that service available to it; for example,
if the service is a replicated cache service, then joining the service includes replicating
the data of all the caches in the service. These services are all peer-to-peer, which
means that a cluster node typically plays both the client and the server role through
the service; furthermore, all of these services will failover in the event of cluster node
failure without any data loss.

Failback

Failback is an extension to failover that allows a server to reclaim its responsibilities
when it restarts. For example, "When the server came back up, the processes that it
was running previously were failed back to it."

Failover

 Failover refers to the ability of a server to assume the responsibilities of a failed server.
For example, "When the server died, its processes failed over to the backup server."

JCache

JCache (also known as JSR-107), is a caching API specification that is currently in
progress. While the final version of this API has not been released yet, Oracle and
other companies with caching products have been tracking the current status of the

Load Balancer

Glossary-2

API. The API has been largely solidified at this point. Few significant changes are
expected going forward.

The .Net and C++ platforms do not have a corresponding multi-vendor standard for
data caching.

Load Balancer

A load balancer is a hardware device or software program that delegates network
requests to several servers, such as in a server farm or server cluster. Load balancers
typically can detect server failure and optionally retry operations that were being
processed by that server at the time of its failure. Load balancers typically attempt to
keep the servers to which they delegate equally busy, hence the use of the term
"balancer". Load balancer devices often have a high-availability option that uses a
second load balancer, allowing one of the load balancer devices to die without
affecting availability.

Server Cluster

A server cluster is composed of multiple servers that are mutually aware of each other.
Because of this, the servers can communicate directly with each other, safely share
responsibilities, and are able to assume the responsibilities failed servers. This
simplifies development because there is no longer any need to use asynchronous
messaging (which may require idempotent and/or compensating transactions) or
synchronous two-phase commits (which may block indefinitely and reduce system
availability).

Due to the need for global coordination, clustering scales to a lesser degree than
federation, but generally with much stronger data integrity guarantees.

Server Farm

The loosest form of coupling, a server farm uses multiple servers to handle increased
load and provide increased availability. It is common for a load-balancer to be used to
assign work to the various servers in the server farm, and server farms often share
back-end resources, such as database servers, but each server is typically unaware of
other servers in the farm, and usually the load-balancer is responsible for failover.

Farms are commonly used for stateless services such as delivering static web content
or performing high volumes of compute-intensive operations for high-performance
computing (HPC).

Server Federation

A federated server model is similar to a server farm, but allows multiple servers to
work together even if they were not originally intended to do so. Federation may
operate synchronously through technologies such as distributed XA transactions, or
asynchronously through messaging solutions such as JMS. Federation may be used to
scale out (for example, with federated databases, data can be "partitioned" or
"sharded" across multiple database instances). Federation may also be used to
integrate between heterogeneous systems (for example, sharing data between
applications within a web portal).

In the context of scale-out, federated systems are primarily used when data integrity is
important but not absolutely crucial, such as for many stateful web applications or
transactional compute grids. In the former case, HTTP sessions are generally require
only a "best effort" guarantee. In the latter case, there is usually an external system of
record that ensures data integrity (by rolling back any invalid transactions that the
compute grid submits).

Server Federation

Glossary-3

Federation supports enormous scale at the cost of data integrity guarantees (though
such guarantees can be reinstated with the elimination of transparent failover/failback
and dynamic partitioning, which is the case for most WAN-style deployments).

Server Federation

Glossary-4

	Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Coherence Concepts
	1 Defining a Data Grid
	2 Provide a Data Grid
	Targeted Execution
	Parallel Execution
	Query-Based Execution
	Data-Grid-Wide Execution
	Agents for Targeted, Parallel and Query-Based Execution
	Data Grid Aggregation
	Node-Based Execution
	Work Manager
	Oracle Coherence Work Manager: Feedback from a Major Financial Institution

	Summary

	3 Provide a Queryable Data Fabric
	Data Fabric
	EIS and Database Integration
	Queryable
	Continuous Query
	Summary

	4 Cluster Your Objects and Data
	Coherence and Clustered Data
	Availability
	Supporting Redundancy in Java Applications
	Enabling Dynamic Cluster Membership
	Exposing Knowledge of Server Failure
	Eliminating Other Single Points Of Failure (SPOFs)
	Providing Support for Disaster Recovery (DR) and Contingency Planning

	Reliability
	Scalability
	Distributed Caching
	Partitioning
	Session Management

	Performance
	Replication
	Near Caching
	Write-Behind, Write-Coalescing and Write-Batching

	Serviceability
	Manageability
	Summary

	5 Deliver Events for Changes as they Occur
	Listener Interface and Event Object
	Caches and Classes that Support Events
	Signing Up for All Events
	Using an Inner Class as a MapListener
	Configuring a MapListener for a Cache
	Signing up for Events on specific identities
	Filtering Events
	"Lite" Events
	Advanced: Listening to Queries
	Filtering Events Versus Filtering Cached Data

	Advanced: Synthetic Events
	Advanced: Backing Map Events
	Producing Readable Backing MapListener Events from Distributed Caches

	Advanced: Synchronous Event Listeners
	Summary

	6 Automatically Manage Dynamic Cluster Membership
	Cluster and Service Objects
	Member object
	Listener interface and Event object

	7 Managing an Object Model
	Cache Usage Paradigms
	Techniques to Manage the Object Model
	Domain Model
	Best Practices for Data Access Objects in Coherence

	Service Layer
	Automatic Transaction Management
	Explicit Transaction Management
	Optimized Transaction Processing

	Managing Collections of Child Objects
	Shared Child Objects
	Owned Child Objects
	Bottom-Up Management of Child Objects
	Bi-Directional Management of Child Objects

	Colocating Owned Objects
	Denormalization
	Affinity

	Managing Shared Objects
	Refactoring Existing DAOs

	8 Overview for Implementors
	Basic Concepts
	Clustered Data Management
	A single API for the logical layer, XML configuration for the physical layer
	Caching Strategies
	Data Storage Options
	Serialization Options
	Configurability and Extensibility
	Namespace Hierarchy

	Read/Write Caching
	NamedCache
	Requirements for Cached Objects
	NamedCache Usage Patterns

	Querying the Cache
	Transactions
	HTTP Session Management
	Invocation Service
	Events
	Object-Relational Mapping Integration
	C++/.NET Integration
	Management and Monitoring

	9 Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching
	Pluggable Cache Store
	Read-Through Caching
	Write-Through Caching
	Write-Behind Caching
	Write-Behind Requirements
	Refresh-Ahead Caching
	Selecting a Cache Strategy
	Read-Through/Write-Through versus Cache-Aside
	Refresh-Ahead versus Read-Through
	Write-Behind versus Write-Through

	Idempotency
	Write-Through Limitations
	Cache Queries
	Creating a CacheStore Implementation
	Plugging in a CacheStore Implementation
	Implementation Considerations
	Re-entrant Calls
	Cache Server Classpath
	CacheStore Collection Operations
	Connection Pools

	10 Coherence*Extend
	Types of Clients
	Proxy Service Overview

	11 Real Time Client-RTC
	Uses
	Cache Access
	Local Caches
	Event Notification
	Agent Invocation
	Connection Failover

	12 Clustering
	13 Cluster Services Overview
	14 Replicated Cache Service
	15 Partitioned Cache Service
	16 Near Cache
	Near Cache Invalidation Strategies
	Configuring the Near Cache
	Obtaining a Near Cache Reference
	Cleaning Up Resources Associated with a Near Cache
	Sample Near Cache Configuration

	17 Storage and Backing Map
	Cache Layers
	Operations
	Capacity Planning
	Partitioned Backing Maps

	18 Local Storage
	19 Local Cache
	Configuring the Local Cache

	20 Best Practices
	Coherence and Cache Topologies
	Data Access Patterns
	Data Access Distribution (hot spots)
	Cluster-node Affinity
	Read/Write Ratio and Data Sizes
	Interleaving Cache Reads and Writes

	Heap Size Considerations
	Using Several Small Heaps
	Moving the Cache Out of the Application Heap

	21 Network Protocols
	Coherence and the TCMP Protocol
	Protocol Reliability
	Protocol Resource Utilization
	Protocol Tunability
	Multicast Scope
	Disabling Multicast

	22 The Coherence Ecosystem
	Breakdown of Coherence editions
	Coherence Client and Server Connections
	Coherence Modules Involved in Connecting Client and Server Editions
	How a Single Coherence Client Process Connects to a Single Coherence Server
	Considering Multiple Clients and Servers

	23 Session Management for Clustered Applications
	Basic Terminology
	Sharing Data in a Clustered Environment
	Reliability and Availability
	Scalability and Performance
	Conclusion

	24 The Portable Object Format
	Overview
	Why Should I Use POF
	Working with POF
	Implementing the PortableObject interface
	Implementing the PofSerializer interface:
	Assigning POF indexes
	The ConfigurablePofContext
	Configuring Coherence to use the ConfigurablePofContext

	Summary

	25 PofExtractors and PofUpdaters
	Overview
	Navigating a POF object
	Using PofExtractors
	Using PofUpdaters

	Part II Installing Coherence
	26 Installing Oracle Coherence
	Downloading and Extracting Coherence
	Installing Coherence
	Verifying that Multiple Nodes and Servers are Able to Form a Cluster

	A Coherence Features by Edition
	Coherence Server Editions
	Coherence Client Editions

	B AbstractMultiplexingBackingMapListener Class Listing
	Glossary

