

Oracle® Communications
Billing and Revenue Management
LDAP Manager

Release 7.5

E16709-09

December 2019

Oracle Communications Billing and Revenue Management LDAP Manager, Release 7.5

E16709-09

Copyright © 2011, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Accessing Oracle Communications Documentation .. vii
Documentation Accessibility .. vii
Document Revision History ... vii

1 About LDAP Manager

How LDAP Manager Works .. 1-1
About Setting Up Your LDAP Integration .. 1-2

2 Mapping Data between LDAP Data Manager and Your Directory Server

About the LDAP Data Manager .. 2-1
LDAP Data Manager API and Mapping Files .. 2-1

LDAP Data Manager Data Types .. 2-1
LDAP Data Manager Mapping Files ... 2-2
Sample Mapping File... 2-3
LDAP Data Manager Class and Subclass Mapping Restrictions .. 2-5
LDAP Data Manager Supported Operations... 2-5
LDAP Data Manager Unsupported Operations.. 2-5
LDAP Data Manager Predefined Mapping Schemes ... 2-5

Understanding the BRM Object Model... 2-6
Replicatable User Objects (/r_user) .. 2-6
Replica User Objects .. 2-6

Understanding the Channel Framework ... 2-7
About Channels and Data Propagation.. 2-8

Channel Object Composition .. 2-9
Channel Event Composition ... 2-9
About Channel Families .. 2-9
About Channel Order.. 2-10
About Channel Publishing Mode.. 2-11
About Defining Channels ... 2-11
Example channel_config.xml File .. 2-13
How Channel Events are Published.. 2-15

Configuring How Channels are Published ... 2-16
Example of Publishing a Channel Family .. 2-17

iv

About Setting Replicatable Objects as Consumers... 2-18
Tracking New Account Creation... 2-19
Tracking modifications to accounts .. 2-19
Tracking service creation .. 2-19
Tracking modifications to services .. 2-19
Understanding the Replication Policy Push Operation ... 2-19

Understanding the Replication Module ... 2-20
Replication Policy Default Implementation .. 2-21
Defining the User Mapping Scheme .. 2-22
Related /account and /service Opcodes ... 2-26
Determining the /r_user Object Class Attributes .. 2-27
Creating the ruser Object Class in the Directory Server.. 2-29
Defining the One-to-One Mapping Scheme.. 2-29

One-to-One Mapping File Example .. 2-30
Changing the Replication Policy for the One-to-One Mapping Scheme 2-32

3 Managing the Directory Server Organization

About Managing Directory Server Entries.. 3-1
Semantics for the LDAP Modify Operation ... 3-1

Distinguished Name Field and the DN Flags Field .. 3-2
The Location Field.. 3-2

Creating Directory Server Entries ... 3-3
Distinguished Name Control Logic for PCM_OP_CREATE_OBJ .. 3-3
Pre-Existing Distinguished Names.. 3-4
Supplying Distinguished Names... 3-4
Not Supplying Distinguished Names ... 3-4
Understanding Matching Rules for Distinguished Names.. 3-4

Using Static Controls for DNs... 3-5
Using Dynamic Controls for DNs .. 3-5

Deleting Directory Server Entries ... 3-5
Changing Directory Server Entries ... 3-6

Adding Attributes to an Existing Directory Server Entry.. 3-6
Deleting Attributes from an Existing Directory Server Entry ... 3-7
Renaming Directory Server Entries... 3-8
Creating Subclass Objects in the Directory Server .. 3-9
Creating Related Entries Under One Node... 3-10

Specifying Directory Tree Entries.. 3-12
Using a Complete Distinguished Name .. 3-13
Using a Prefixed Distinguished Name... 3-13
Using a Parent Distinguished Name (Create Operation Only).. 3-13
Overriding the Base DN Location .. 3-14

Reading and Searching for Directory Server Entries ... 3-14
Reading Objects from the Directory Server... 3-14

Object Read examples ... 3-15
Reading Attributes from the Directory Server Entry... 3-15

Attribute Read Examples .. 3-15
Searching the Directory Server for Entries... 3-16

v

Setting the Search Scope... 3-17
Specifying the Base DN .. 3-18
Searching from Different Locations.. 3-18

Example Service Storable Class Tree and Search .. 3-18
Using the Sample LDAP Search Filters.. 3-19

LDAP Search Limitations ... 3-20
Testing Directory Server Connections .. 3-20
BRM LDAP Profile Object .. 3-20

4 Installing LDAP Manager

System Requirements.. 4-1
Software Requirements ... 4-1

Installing LDAP Manager... 4-2
Uninstalling LDAP Manager ... 4-3

5 Configuring LDAP Manager

Configuring the LDAP Data Manager ... 5-1
Setting Up the Mapping File .. 5-1
Setting Up the Directory Server ... 5-1
Editing the LDAP Data Manager Configuration File ... 5-2

Configuring the Connection Manager for LDAP Manager ... 5-3
Configuring the LDAP Data Manager for Multiple Schemas ... 5-3
Configuring the LDAP Data Manager with Different LDAP Data Manager Pointers 5-3

Configuring Event Notification for LDAP Manager... 5-4
Loading the LDAP Price List.. 5-4
Configuring the Channel Framework .. 5-4

Configuring the pin_channel_export Utility.. 5-4
Configuring Channel Definitions .. 5-5
Loading Channel Definitions into the BRM Database.. 5-6
Saving Channel Definitions to a File ... 5-7

Enabling Secure Communication between LDAP Manager and LDAP Directory Servers 5-7

6 Customizing Your BRM LDAP Environment

Exporting Additional Data to the Directory Server... 6-1
Exporting Additional Fields from Objects ... 6-1
Tracking Additional Changes to /account or /service Objects .. 6-2

Exporting New Service Types.. 6-3

7 Troubleshooting Your BRM LDAP Environment

Checking for Event Errors and Recovering from Failure ... 7-1
Verifying Event Creation by Running testnap... 7-1

Status Values for Channel Events.. 7-2
Verifying the Mapping Between Object Classes and Entries ... 7-3

Mismatches between the Mapping File and Directory Server Entries....................................... 7-3
Entry Class Type Definition Contains a Typo .. 7-3

vi

Case or Spelling Mismatches in Attribute Names ... 7-3
Object Classes or Attributes are Missing in the Directory Server... 7-4

Object Class Attributes Undefined in the Directory Server.. 7-4
Attribute Used in Mapping File is Undefined in the Directory Server............................... 7-4
Directory Server Object Class is Created without Its Required Attributes 7-4
No Such Object Errors .. 7-5

8 LDAP Manager Utilities

load_channel_config .. 8-2
pin_channel_export.. 8-4

vii

Preface

This book provides an overview about how to integrate Oracle Communications
Billing and Revenue Management (BRM) LDAP Manager with your LDAP directory
server.

Audience
This document is intended for developers and system administrators.

Accessing Oracle Communications Documentation
BRM documentation and additional Oracle documentation; such as Oracle Database
documentation, is available from Oracle Help Center:

http://docs.oracle.com

Additional Oracle Communications documentation is available from the Oracle
software delivery Web site:

https://edelivery.oracle.com

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Document Revision History
The following table lists the revision history for this book.

Version Date Description

E16709-01 November 2011 Initial release.

viii

E16709-02 May 2012 Documentation updates for BRM 7.5 Patch Set 1.

■ Made minor formatting and text changes.

E16709-03 March 2013 Documentation updates for BRM 7.5 Patch Set 4.

■ Replaced multidatabase information with
multischema information.

E16709-04 August 2013 On HP-UX IA64, BRM 7.5 is certified as of BRM 7.5 Patch
Set 5.

Documentation added for HP-UX IA64.

E16709-05 February 2014 Documentation updates for BRM 7.5 Patch Set 7.

■ Made minor formatting and text changes.

E16709-06 August 2014 Documentation updates for BRM 7.5 Patch Set 9.

■ Made minor formatting and text changes.

E16709-07 January 2015 Documentation updates for BRM 7.5 Patch Set 11.

■ Made minor formatting and text changes.

E16709-08 December 2016 Documentation updates for BRM 7.5 Patch Set 17.

■ Added the "Enabling Secure Communication
between LDAP Manager and LDAP Directory
Servers" section.

E16709-09 December 2019 Documentation updates for BRM 7.5 Patch Set 23.

■ Removed Netscape Directory Server SDK.

Version Date Description

1

About LDAP Manager 1-1

1About LDAP Manager

This chapter provides an overview of integrating Oracle Communications Billing and
Revenue Management (BRM) LDAP Manager with your LDAP directory server.

Before you integrate BRM with your LDAP directory server, you need to be familiar
with the following:

■ BRM.

■ LDAP protocol, in particular, how your own directory server tree is organized and
replicated across your network.

■ C programming.

■ Directory server tools.

■ Object-oriented data modeling.

■ Basic database knowledge.

How LDAP Manager Works
Use LDAP Manager to integrate your LDAP directory server with BRM. The LDAP
Manager replicates account and service data in the BRM database to the LDAP
database. Changes made to the LDAP database are not replicated in the BRM
database.

To send data to the LDAP directory server, LDAP Manager uses the following
components:

■ The replication opcode determines which BRM data is sent to the LDAP directory,
and how it is structured. For more information on the replication module, see
"Understanding the Replication Module".

■ The channel framework sends data to the LDAP directory server either serially or
in parallel, depending on your configuration. In addition, you use the channel
framework to handle directory server downtime and to satisfy auditing
requirements. For more information on the channel framework, see
"Understanding the Channel Framework".

■ The LDAP Data Manager translates data to the LDAP database format, and
provides a connection between BRM and the LDAP database. For more
information on the LDAP Data Manager, see "About the LDAP Data Manager".

Important: LDAP Manager is an optional component, not part of
base BRM.

About Setting Up Your LDAP Integration

1-2 BRM LDAP Manager

■ The export application (pin_channel_export) propagates changes from BRM to the
directory server. It synchronizes data in the BRM channel with the data in the
external directory server. It includes a report and error utility, pin_channel_report
and pin_channel_clear_errors. For more information on the export utility, see
"Configuring the pin_channel_export Utility".

Figure 1–1 shows how changes to data in the BRM database are sent to the LDAP
directory server:

Figure 1–1 BRM Database Updates to LDAP Directory Server

About Setting Up Your LDAP Integration
To set up an LDAP integration, you perform these tasks:

■ Install and configure BRM and your LDAP Server, for example, Oracle Unified
Directory (OUD).

■ Install and configure LDAP Manager. For example, you need to configure the
connections between the CM and the LDAP Data Manager. See "Installing LDAP
Manager".

■ Define the mapping between BRM data and LDAP data. For example, you need to
specify how an account object in BRM is stored in the LDAP database. See
"Mapping Data between LDAP Data Manager and Your Directory Server".

■ Set up your directory server. To set up your directory server with attributes that
BRM can understand, such as Portal Object ID (POID), names, addresses, currency,
login, and service information, you must create a BRM object-type definition
called the replicate user or r_user object class in your directory server. See
"Managing the Directory Server Organization".

2

Mapping Data between LDAP Data Manager and Your Directory Server 2-1

2Mapping Data between LDAP Data Manager
and Your Directory Server

This chapter describes Oracle Communications Billing and Revenue Management
(BRM) LDAP Data Manager, its API and mapping files, its predefined mapping
schemes, the BRM LDAP object model, the channel framework, and the replication
module.

About the LDAP Data Manager
The LDAP Data Manager translates the BRM object model to the directory server
object model. It implements a subset of the standard BRM object API.

You can think of the mapping task between BRM and your directory server in these
terms:

■ At the lowest level, you map BRM fields to directory server attributes.

■ At the next level, you map BRM classes to directory server objects.

■ At the highest level, you determine the mapping scheme to use for your directory
server, for example, the user mapping scheme or the one-to-one mapping scheme.

LDAP Data Manager API and Mapping Files
The next sections describe the LDAP Data Manager API, in particular, the data types,
the LDAP mapping files, class and subclass mapping restrictions, required fields, base
class attributes, as well as LDAP Manager supported and unsupported operations.

LDAP Data Manager Data Types
BRM accesses all attribute values as UTF8 strings in the directory server. You can
encode the following BRM field values as strings:

■ PIN_FLDT_INT, PIN_FLDT_ENUM, and PIN_FLD_DECIMAL are encoded as the
decimal representation of their values, with each decimal digit represented by its
character equivalent. For example, the number 1234 is represented by the character
string 1234.

■ PIN_FLDT_POID and PIN_FLDT_STR are encoded as is.

■ PIN_FLDT_TSTAMP is encoded as the string representation of the UTC time
value. By default, time stamps are encoded in their decimal format.

LDAP Data Manager API and Mapping Files

2-2 BRM LDAP Manager

■ PIN_FLDT_ARRAY fields are mapped to multivalue attributes.

■ PIN_FLDT_BINSTR fields are encoded using base-64 encoding and stored as
binary values.

■ PIN_FLDT_SUBSTRUCT, PIN_FLDT_BUF, PIN_FLDT_OBJ, and PIN_FLDT_ERR
type fields are not supported.

LDAP Data Manager Mapping Files
The LDAP Data Manager mapping file specifies the BRM data elements to replicate in
your directory server. The mapping file maps:

■ BRM classes to directory server classes.

■ BRM objects to directory server entries.

■ BRM fields to directory server attributes.

Figure 2–1 shows snippets of the BRM LDAP flist, the mapping file, and the directory
schema and how the components correspond to each other:

Figure 2–1 BRM LDAP Flist, Mapping File and Directory Server Entries

When you install LDAP Manager, a sample mapping file (BRM_Home/sys/ldap.idl)
and the LDAP Data Manager configuration file (BRM_Home/sys/dm_ldap/pin.conf)
are included with your installation. You use the ldap.idl mapping file to define your
BRM LDAP mapping configuration.

Note: You can also represent time stamps as printable strings in a
more readable format. For more information, see "Configuring the
Connection Manager for LDAP Manager".

Note: The array elements must each have only one field and the
element-id is not significant. Arbitrary BRM arrays are not supported.

LDAP Data Manager API and Mapping Files

Mapping Data between LDAP Data Manager and Your Directory Server 2-3

The mapping file needs to match your directory server implementation. The mapping
file specifies this information for each object type:

■ Mapping from BRM fields to LDAP attributes, permission for attributes
(mandatory/optional/system), and modify permissions (readable/writable).

■ Absolute Distinguished Name (DN) suffix, which determines the location of the
entry for replication purposes.

For more information on how BRM composes the DN when it creates objects, see
"About Managing Directory Server Entries".

In some cases, after you set up your mapping file, you might want to override the
location value in the mapping file by using BRM LDAP DN qualifiers or location
parameters. For more information, see "Specifying Directory Tree Entries".

■ BRM field for the Relative Distinguished Name (RDN) of the entry. The LDAP
Data Manager uses the RDN when you do not specify a DN during creation of the
entry.

■ ObjectClass of the entry that corresponds to the object type.

■ Ordered list of LDAP attributes with explicit values that are passed along when
you create the entry. This is useful in LDAP environments that use inherited object
classes.

In addition to the mapping file you create, you must configure the following directory
server information in the LDAP Data Manager pin.conf file:

■ Directory server port and location

■ Directory server bind information

■ Directory server password information

■ Queue-based daemon parameters

The LDAP Data Manager authenticates itself by using a clear password (simple
authentication). BRM binds to the User ID and password that you set up for your
directory server. For more information on configuring BRM and LDAP components to
communicate with each other, see "Installing LDAP Manager".

Sample Mapping File
The LDAP Data Manager uses the interface description language (idl) format to map
BRM classes, subclasses, and fields to directory server entries.

The LDAP Data Manager parses the mapping file when it starts. BRM determines the
location of directory server entries from the mapping file for replication purposes.

Figure 2–2 shows parts of the class definitions you can create and their corresponding
implementation values:

Important: BRM does not support RDNs composed of multiple
attributes within the entry. Only one top-level, non-array field in the
base class can be tagged as an RDN component.

LDAP Data Manager API and Mapping Files

2-4 BRM LDAP Manager

Figure 2–2 Class Definitions and Corresponding Implementation Values

This has two sections:

■ Class definitions specify the required and optional fields, the permissions for
fields (read/write), and the length for string fields.

■ Implementation definitions specify directory server object classes, base location
in the directory tree, attribute names for fields, and how to compose a
Distinguished Name (directory’s object id).

LDAP Data Manager API and Mapping Files

Mapping Data between LDAP Data Manager and Your Directory Server 2-5

LDAP Data Manager Class and Subclass Mapping Restrictions
The following restrictions apply to the classes and subclasses you define in the
mapping file:

■ Only one non-array required field in the base class can be tagged as RDN_PIECE.

■ Only a field within an array can be tagged MULTIVALUED.

■ Required fields in the base class:

– PIN_FLD_POID

– PIN_FLD_MOD_T

– PIN_FLD_CREATED_T

■ Attributes that apply only to the base class:

– ENTRY_TYPE

– ATTRVAL

LDAP Data Manager Supported Operations
The LDAP Data Manager uses LDAP-specific inputs and outputs to opcodes that
perform operations on a base BRM system. Therefore, if you have experience
customizing BRM, calling the LDAP Data Manager opcodes is similar to calling the
Oracle Data Manager (dm_oracle) opcode.

Use the BRM and LDAP Data Manager API opcodes to perform the following data
propagation tasks:

■ Create entries in the directory server.

■ Modify entries in the directory server.

■ Delete entries in the directory server.

■ Delete attributes from the directory server entry.

■ Read entries from the directory server.

■ Read attributes from an entry in the directory server.

■ Search for entries in the directory server.

■ Verify that the LDAP Data Manager and the directory server daemon/service
processes are up and running and communicating with each other.

For more detailed information on these operations, including their inputs and outputs,
see "LDAP Base Opcodes" in BRM Developer's Reference.

For more information on working with directory server entries, see "About Managing
Directory Server Entries".

LDAP Data Manager Unsupported Operations
LDAP Data Manager does not support transaction operations (PCM_OP_TRANS_*).

LDAP Data Manager Predefined Mapping Schemes
The purpose of the mapping scheme is to replicate BRM data to your directory server.
The LDAP Data Manager provides you with the following predefined mapping
schemes:

Understanding the BRM Object Model

2-6 BRM LDAP Manager

■ user mapping scheme - Maps BRM /account and /service objects to one entry in
the directory server.

■ one-to-one mapping scheme - Maps BRM /account and /service objects to
separate entries in the directory server.

For a procedure overview of how to use the user mapping scheme, see "Defining the
User Mapping Scheme". For a procedure overview of how to use the one-to-one
mapping scheme, see "Defining the One-to-One Mapping Scheme".

Understanding the BRM Object Model
Before you map BRM objects to directory server entries, you need to understand the
BRM object model. The next sections describe the BRM object model and how BRM
translates its data elements to directory server entries.

Replicatable User Objects (/r_user)
Both the user mapping scheme and one-to-one mapping scheme use a replicatable
user object (/r_user) class to propagate BRM information to the directory server. The
/r_user object is not an actual BRM object, but rather, an object type definition that
allows the LDAP Data Manager to translate directory server information into a format
that BRM can understand.

BRM objects that are replicated to the directory server are called replicatable objects.
These can be virtual objects defined just for replication; these objects do not necessarily
exist in the BRM database.

The only requirements for these replicatable objects are that they have a unique Portal
object ID (POID) and that they are replicated intact to external sites. Reasons for the
whole replication are:

■ To preserve the object interface

■ To simplify mapping to and from external implementations

For more information on BRM data types and the POID, see "Understanding the BRM
Data Types" in BRM Developer's Guide.

Replica User Objects
A replica object is a subset of the corresponding BRM /account and /service objects that
you define. By default, the /r_user replica object includes a number of the fields that
make up the /account and /service objects as defined in the ldap.idl mapping file.

The replica contains enough information to point to the corresponding replicatable
object, but with object IDs that are different from those of the replicatable objects. The
object types must be the same.

BRM maps replicas to entries in the directory server, and these entries have a pinpoid
directory attribute that holds the replica object ID.

Because you cannot represent the entire /account object in the directory server, it
cannot serve as a replicatable object. To locate the /account object easily, BRM creates a
replicatable object with the same POID as the /account object, but with a different type.

For example, if you use the one-to-one mapping scheme for translation purposes, the
POID of the replicatable object, such as 0.0.0.1 /r_account 455, is used to create a
replica with the object id 0.0.5.X /r_account 455, where the first part of the POID is the
LDAP Data Manager database number and X is the number of the Oracle database.

Understanding the Channel Framework

Mapping Data between LDAP Data Manager and Your Directory Server 2-7

Figure 2–3 shows the BRM replication scenario for both the user scheme and the
one-to-one mapping scheme.

Figure 2–3 BRM Replication Scenarios

Understanding the Channel Framework
By default, BRM propagates changes to the directory server by using the channel
framework. You can configure BRM to export data serially or in parallel. The default is
serially.

Figure 2–4 shows the BRM channel framework data flow:

Understanding the Channel Framework

2-8 BRM LDAP Manager

Figure 2–4 BRM Channel Framework Data Flow

As changes take place within BRM through a client application (driver application),
such as the addition of a new account or service, a transaction occurs within BRM and
is captured as an event. After you commit the changes to the BRM database, BRM
pushes the changes to the specified LDAP Data Manager in near real-time.

About Channels and Data Propagation
BRM uses the /channel object to store configuration information for BRM channel
events. A channel determines how a set of events gets published to an LDAP directory
server. Channels also organize what data is transferred between the BRM database and
the LDAP database by defining suppliers and consumers:

■ Suppliers (PIN_FLD_SUPPLIER_OBJ) contain information about the BRM object
that triggered the creation of the /channel_event object. A channel definition can
contain any number of suppliers.

Suppliers include the BRM database number in which the event occurred and the
BRM object name. For example:

0.0.0.1 /account

When an event occurs in the BRM database, the PCM_OP_CHANNEL_PUSH
opcode searches for all suppliers and returns a list of the channels that contain
them. For each channel retrieved, it creates one /channel_event object in the BRM
database. This handles the case in which the same supplier is associated with
multiple channels.

■ Consumers (PIN_FLD_CONSUMER_OBJ) accept change information from
suppliers, translate the change information, and call the LDAP Data Manager to
propagate the changes to the directory server.

Consumers include the LDAP Data Manager (DM) to which the Connection
Manager (CM) connects and the destination object name. For example:

0.0.5.1 /r_account -1

Each consumer is coupled with a reference to an opcode (PIN_FLD_PUSH_
OPCODE field) that publishes the object data to the directory server. For example,
745 is the opcode reference to the PCM_OP_REPL_POL_PUSH policy opcode,
which is the default push opcode.

Understanding the Channel Framework

Mapping Data between LDAP Data Manager and Your Directory Server 2-9

Channels act as reliable message queues and provide retry capabilities.

Channel Object Composition
The /channel object contains the following information:

■ Channel ID

■ Description

■ Channel family

■ Channel order

■ List of suppliers

■ List of consumers and a per-consumer push opcode

For an example channel definition, see "Example channel_config.xml File".

Channel Event Composition
BRM uses /channel_event objects to track changes to a specific consumer. For
example, BRM creates a channel_event entry to indicate that a billing type change was
made.

The /channel_event object contains the following information:

■ Channel ID

■ Channel event ID

■ Source ID

■ Supplier ID

■ Status

Each /channel_event represents a unit of work that needs to be propagated. It contains
a pointer to the object that generates the change (SOURCE_OBJ).

About Channel Families
A channel family is a channel attribute that enables you to create independent groups
of channels that get handled separately by the channel framework. You define a family
by setting the PIN_FLD_FAMILY_ID value in the /channel object.

To retrieve channel events for a channel family, run the pin_channel_export utility
with the -f parameter and specify the family ID. When the pin_channel_export utility
runs, it retrieves the channels containing that ID and then determines how to process
the channel events based on their channel definitions.

For more information on assigning a channel family, see "Configuring Channel
Definitions".

For information on how the pin_channel_export utility works, see "How Channel
Events are Published".

Note: A channel definition can have only one channel family value.
Within that family, all channels are published according to the channel
priority, if defined. For more information, see "About Channel Order".

Understanding the Channel Framework

2-10 BRM LDAP Manager

About Channel Order
The channel order defines the sequence in which channels with the same family ID are
processed. The publishing order is ascending, with 1 being the highest priority. You
define the channel order by setting the PIN_FLD_CHANNEL_ORDER value in the
/channel object.

When the "pin_channel_export" utility runs, it reads the channel definitions in that
family and prioritizes them based on their channel order. For example, consider the
channel IDs 10, 20, 30, and 40 in family 100 shown in Figure 2–5:

Figure 2–5 Example Channel IDs for Family ID 100

Because channel 30 is an account creation channel event, its order is set to 1 so it will
be created in the LDAP database before any modification events associated with the
account are published. Channel 10, which contains account modification suppliers, is
published next. Channel 20, the service creation channel, is ordered after the account
creation channel but is published before the service modification channel 40 as
depicted in Figure 2–6):

Figure 2–6 Example Publishing Order for Family ID 100

When the pin_channel_export utility runs, it first retrieves batches of /channel_event
objects belonging to channel 30 and publishes them, then it does the same for channels
10, 20, and 40, in that order.

For information on assigning a channel order, see "Configuring Channel Definitions".

Note: You can also set the publishing priority to 0, which is the
default. In such cases, the channels are published in increasing order
of their channel IDs.

Understanding the Channel Framework

Mapping Data between LDAP Data Manager and Your Directory Server 2-11

For more information on how channel events are published, see "How Channel Events
are Published".

About Channel Publishing Mode
You can define whether channel events are published to an LDAP server serially (0,
the default) or in parallel by setting the PIN_FLD_MULTI_THREADED value of the
/channel object. When you set the value to 1, all channel events with that channel ID
are published concurrently.

For example, say channel ID 30 has a PIN_FLD_MULTI_THREADED value of 1 and
channel ID 20 has a PIN_FLD_MULTI_THREADED value of 0. When the pin_
channel_export utility runs, it processes the channel events for channel ID 30 in
parallel because the publishing mode is set to multithreaded (1) as shown in
Figure 2–7:

Figure 2–7 Multithreaded Publishing Example for Family ID 100

It processes channel events for channel ID 20 one after another because the publishing
mode is set to serial (0) as shown in Figure 2–8:

Figure 2–8 Serial Publishing Example for Family ID 100

For information on assigning a publishing order, see "Configuring Channel
Definitions".

For more information on how channel events are published, see "How Channel Events
are Published".

About Defining Channels
By default, you define channels in the BRM_Home/sys/data/config/channel_
config.xml file. This configuration file contains one or more channel definitions that
get stored in the /channel object. Each channel definition is defined in the file as a
Channel child element of the ChannelConfig parent element.

Understanding the Channel Framework

2-12 BRM LDAP Manager

Table 2–1 describes the elements and attributes in the Channel child element and
shows their corresponding fields in the /channel object.

Table 2–1 Channel Elements and Attributes with Corresponding Fields in the /channel Object

XML Field /channel Object Field Description Possible Values

FldChannelId PIN_FLD_POID A number that identifies the
/channel object in the BRM
database.

Any positive integer less than
1000.

Channel IDs 100-103 are
pre-defined but can be
customized.

FldName PIN_FLD_NAME An optional character string
that provides a descriptive
name for the channel.

The name must be unique
within your BRM system.

Minimum length is 1
character; maximum length is
255.

FldFamilyId PIN_FLD_FAMILY_ID A number that identifies the
family ID. Channels with the
same family ID are processed
as an independent group.

Any positive integer.

0 - Disables the family
functionality.

FldOrder PIN_FLD_CHANNEL_
ORDER

The publishing order of the
channel in a family, in
ascending order.

If two channels in the same
family have the same channel
order, the behavior is
considered undefined.

Any positive integer.

1 - The highest priority.

0 - The default, which sets the
order as undefined. Channels
are published in increasing
order of their channel IDs.

FldMultithread PIN_FLD_MULTI_
THREADED

Specifies if the channel should
be published serially or in
parallel.

0 - Publish channels serially.

1 - Publish channels in parallel.

FldSupplierObj PIN_FLD_SUPPLIERS An array that holds
information about the
suppliers.

The array element ID must be
1.

FldDatabase PIN_FLD_SUPPLIER_OBJ The BRM database number. The BRM database number
(FldDatabase) and the supplier
event name
(FldSupplierName).

The format is database_
number/object_name.

FldSupplierName PIN_FLD_SUPPLIER_OBJ The name of the supplier
object.

The BRM database number
(FldDatabase) and the supplier
event name
(FldSupplierName).

The format is database_
number/object_name.

FldConsumerObj PIN_FLD_CONSUMERS An array that holds
information about the
consumers.

The array element ID is not
significant.

Understanding the Channel Framework

Mapping Data between LDAP Data Manager and Your Directory Server 2-13

After editing the contents of the XML file, you use the "load_channel_config" utility to
load the contents of the file into the /channel object in the database. Before loading the
contents of the file, the utility validates the contents against the file’s schema
definition. If the contents do not conform to the schema definition, the load operation
fails.

By default, the schema definition is located in the BRM_Home/xsd/channel_config.xsd
file.

Example channel_config.xml File
The following example shows a typical channel_config.xml file. It defines two channel
families, 100 and 200, and eight channels: 10, 20, 30, 40 in family 100, and 50, 60, 70, 80
in family 200.

<?xml version="1.0" encoding="UTF-8"?>
<ChannelConfig xmlns="http://www.portal.com/schemas/BusinessConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.portal.com/schemas/BusinessConfig channel_config.xsd">

<Channel FldChannelId="30" FldFamilyId="100" FldOrder="1" FldMultithread="1" FldName="Account
Creation Channel">

<ConsumersArray>
<FldConsumerObj> "/r_account" </FldConsumerObj>
<FldPushOpcode> 745 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>
<FldSupplierObj> "/account" </FldSupplierObj>
</SuppliersArray>

</Channel>

FldDatabase PIN_FLD_CONSUMER_
OBJ

The LDAP database number. The LDAP database number
(FldDatabase) and the
consumer name
(FldConsumerName).

The format is database_
number/object_name.

FldConsumerNam
e

PIN_FLD_CONSUMER_
OBJ

The name of the replicatable
object in the LDAP database.

The consumer object is
comprised of the LDAP
database number
(FldDatabase) and the
consumer name
(FldConsumerName).

The format is database_
number/object _name.

FldPushOpcode PIN_FLD_PUSH_
OPCODE

The number of the opcode that
is used to publish information
to the LDAP database. By
default, this points to the
PCM_OP_REPL_POL_PUSH
policy opcode.

Any positive integer.

Important: The channel_config.xml file must follow all standard
XML formatting rules.

Table 2–1 (Cont.) Channel Elements and Attributes with Corresponding Fields in the /channel Object

XML Field /channel Object Field Description Possible Values

Understanding the Channel Framework

2-14 BRM LDAP Manager

<Channel FldChannelId="10" FldFamilyId="100" FldOrder="2" FldMultithread="1" FldName="Account
Modification Channel">

<ConsumersArray>
<FldConsumerObj> "/r_account" </FldConsumerObj>
<FldPushOpcode> 745 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>

<FldSupplierObj> "/event/customer/nameinfo" </FldSupplierObj>
<FldSupplierObj> "/event/customer/product_status" </FldSupplierObj>
<FldSupplierObj> "/event/customer/status" </FldSupplierObj>
<FldSupplierObj> "/event/customer/billinfo"</FldSupplierObj>

</SuppliersArray>
</Channel>

<Channel FldChannelId="20" FldFamilyId="100" FldOrder="3" FldMultithread="0" FldName="Service
Creation Channel">

<ConsumersArray>
<FldConsumerObj> "/r_service" </FldConsumerObj>
<FldPushOpcode> 745 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>

<FldSupplierObj> "/service" </FldSupplierObj>
</SuppliersArray>

</Channel>

<Channel FldChannelId="40" FldFamilyId="100" FldOrder="4" FldMultithread="1" FldName="Service
Modification Channel">

<ConsumersArray>
<FldConsumerObj> "/r_service" </FldConsumerObj>
<FldPushOpcode> 745 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>

<FldSupplierObj> "/event/customer/login" </FldSupplierObj>
<FldSupplierObj> "/event/customer/password" </FldSupplierObj>
<FldSupplierObj> "/event/notification/service" </FldSupplierObj>
<FldSupplierObj> "/event/customer/status" </FldSupplierObj>
<FldSupplierObj> "/event/billing/product" </FldSupplierObj>

</SuppliersArray>
</Channel>

<Channel FldChannelId="50" FldFamilyId="200" FldOrder="1" FldMultithread="1" FldName="Account
Creation Channel">

<ConsumersArray>
<FldConsumerObj> "/r_account" </FldConsumerObj>
<FldPushOpcode> 746 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>

<FldSupplierObj> "/account" </FldSupplierObj>
</SuppliersArray>

</Channel>

<Channel FldChannelId="70" FldFamilyId="200" FldOrder="2" FldMultithread="0" FldName="Account
Modification Channel">

<ConsumersArray>
<FldConsumerObj> "/r_account" </FldConsumerObj>
<FldPushOpcode> 746 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>

<FldSupplierObj> "/event/customer/nameinfo" </FldSupplierObj>
<FldSupplierObj> "/event/customer/status" </FldSupplierObj>

Understanding the Channel Framework

Mapping Data between LDAP Data Manager and Your Directory Server 2-15

<FldSupplierObj> "/event/customer/billinfo" </FldSupplierObj>
</SuppliersArray>

</Channel>

<Channel FldChannelId="60" FldFamilyId="200" FldOrder="3" FldMultithread="1" FldName="Broadband
Creation Channel">

<ConsumersArray>
<FldConsumerObj> "/r_service" </FldConsumerObj>
<FldPushOpcode> 746 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>

<FldSupplierObj> "/service/broadband" </FldSupplierObj>
</SuppliersArray>

</Channel>

<Channel FldChannelId="80" FldFamilyId="200" FldOrder="4" FldMultithread="1" FldName="Broadband
Usage Channel">

<ConsumersArray>
<FldConsumerObj> "/r_service" </FldConsumerObj>
<FldPushOpcode> 746 </FldPushOpcode>

</ConsumersArray>
<SuppliersArray>

<FldSupplierObj> "/event/broadband" </FldSupplierObj>
<FldSupplierObj> "/event/broadband/usage" </FldSupplierObj>

</SuppliersArray>
</Channel>

</ChannelConfig>

How Channel Events are Published
The "pin_channel_export" utility publishes channel events to an LDAP database
according to their channel ID (PIN_FLD_POID) and family ID (PIN_FLD_FAMILY_
ID), if specified.

Each pin_channel_export instance does the following:

1. If specified, uses the family ID value in the -f parameter to retrieve a batch of
channels with that family ID. The channels are retrieved in increasing order of the
channel IDs.

2. Reads the channel configurations that were retrieved and processes channel events
by:

■ Prioritizing the channels based on the PIN_FLD_CHANNEL_ORDER value.

■ Determining whether channels should be published serially or in parallel
based on the PIN_FLD_MULTI_THREADED value.

■ Reading the PIN_FLD_CONSUMER_OBJ value to determine which LDAP
DM to send the results to.

3. Calls the PCM_OP_REPL_POL_PUSH policy opcode to publish the channel events
to respective LDAP databases.

After the "pin_channel_export" utility has cycled through all necessary channels, it
sleeps for the period specified in its pin.conf file and then starts the publishing cycle
again.

Note: You must have one instance of the pin_channel_export utility
running for each family ID in your system.

Understanding the Channel Framework

2-16 BRM LDAP Manager

For information on the channel configuration values, see "About Defining Channels".

Configuring How Channels are Published
You can define any number of LDAP directory servers to which you publish data.
Before publishing data, make certain you:

■ Configure the CM pin.conf file, including the following entries:

– Set the -ldap_db entry for each LDAP database in your system.

– Set the -dm_pointer entry for each LDAP DM in your system.

See "Configuring the Connection Manager for LDAP Manager".

■ Configure each /channel object to contain the LDAP database number in the PIN_
FLD_CONSUMER_OBJ field. The PCM_OP_REPL_POL_PUSH policy opcode
retrieves this value when publishing data. See "Configuring Channel Definitions".

■ Set up one instance of the pin_channel_export utility for each family ID in your
system and make sure they both point to the same CM.

For example, Figure 2–9 shows two instances of the pin_channel_export utility (one
for family 100 and one for family 200) which publish channels to the BRM database
and two LDAP databases. Each database is connected to its own DM:

Figure 2–9 Double pin_channel_export Instance Publishing

The channel IDs and channel family IDs must be unique across each LDAP database.
This is a requirement for multidatabase publishing. For example, say you have the
configuration described in Table 2–2 defined in your system:

Table 2–3 lists the scenarios that are either invalid or valid, depending on the database
number, the family ID, and the channel IDs defined:

Table 2–2 Example Channel ID and Family Configuration

Database Family ID Channel ID Validity Description

0.0.5.1 100 10, 20, 30, 40 Valid These are the first unique family ID and channel IDs
defined in the system.

Understanding the Channel Framework

Mapping Data between LDAP Data Manager and Your Directory Server 2-17

Example of Publishing a Channel Family
This example shows how the family ID is used to publish channels to an LDAP
database. Channel IDs 10, 20, 30, and 40 have a family ID value of 100. In addition,
they all have the same PIN_FLD_CONSUMER_OBJ value of 0.0.5.1, which means they
are all published to the same LDAP database.

When you run the pin_channel_export utility with the -f parameter value set to 100,
the channels for that family ID are first prioritized by order, and, for each channel, the
pin_channel_export utility does the following:

■ Searches for /channel_event objects in the BRM database.

■ Calls the PCM_OP_REPL_POL_PUSH policy opcode (defined in the PIN_FLD_
PUSH_OPCODE field) to read the LDAP database number from the PIN_FLD_
CONSUMER_OBJ field.

■ Reads the CM pin.conf file to determine the LDAP DM for the LDAP database
retrieved.

■ Reads the channel’s PIN_FLD_MULTI_THREADED value to determine whether
to publish the channel events serially or in parallel.

The result is that all channel events for channel IDs 10, 20, 30, and 40 are pushed to
LDAP DM 0.0.5.1 using three threads as shown in Figure 2–10:

Table 2–3 Validity

Database Family ID Channel ID Validity Description

0.0.6.1 200 50,60,70,80 Valid The family ID and channel IDs are unique across the
databases.

0.0.6.1 100 10,20,30,40 Invalid The family ID and channel IDs are already defined in
database 0.0.5.1.

0.0.6.1 100 50,60,70,80 Invalid The family ID is already defined in database 0.0.5.1.

0.0.6.1 200 10,20,30,40 Invalid The channel IDs are already defined in database
0.0.5.1

Understanding the Channel Framework

2-18 BRM LDAP Manager

Figure 2–10 Example of Publishing a Channel Family

About Setting Replicatable Objects as Consumers
When you set up replicatable objects as consumers, BRM uses the
supplier/consumer/channel paradigm. BRM predefines several /channel
configuration objects in the BRM_Home/sys/dd/data/init_objects.source file.

Each channel object contains two array fields:

■ Consumer array (PIN_FLD_CONSUMERS)

■ Supplier array (PIN_FLD_SUPPLIERS)

You can register a list of suppliers for a particular /channel object by adding new array
elements to the PIN_FLD_SUPPLIERS array. The consumers for each of the /channel
objects are the replicated objects that the replication module and the LDAP Manager
Data Manager create.

The next sections describe the BRM LDAP channel configuration objects and the
logical data that these objects track.

Note: To connect to the BRM database, the load_channel_config
utility needs a configuration file in the directory from which you run
the utility. See "Creating Configuration Files for BRM Utilities" in BRM
System Administrator's Guide.

Understanding the Channel Framework

Mapping Data between LDAP Data Manager and Your Directory Server 2-19

Tracking New Account Creation
The /channel 100 channel object tracks new account creation.

Tracking modifications to accounts
The /channel 101 channel object tracks changes to /account objects. In particular, it
tracks modifications to customer billing information, name information, and whether
the product status is active or closed or whether a credit card is valid or invalid.

Tracking service creation
The /channel 102 object tracks changes to /service objects.

Tracking modifications to services
The /channel 103 object propagates changes to /service objects.

Understanding the Replication Policy Push Operation
The channel framework uses the PCM_OP_REPL_POL_PUSH opcode to implement
the push operation.

This opcode implements the translation logic for /account and /service storable objects.

This policy opcode performs one of the following mapping functions. The mapping
function for PCM_OP_REPL_POL_PUSH is determined by the Connection Manager
(CM) pin.conf user_scheme entry.

Table 2–4 /channel 100 Channel Object

Consumer Array Supplier Array

$DB_NO /r_account -1

PCM_OP_REPL_POL_PUSH

$DB_NO /account -1

Table 2–5 /channel 101 Channel Object

Consumer Array Supplier Array

$DB_NO /r_account -1

PCM_OP_REPL_POL_PUSH

$DB_NO /event/customer/billinfo -1

$DB_NO /event/customer/nameinfo -1

$DB_NO /event/customer/product_
status -1

$DB_NO /event/customer/status -1

Table 2–6 /channel 102 Channel Object

Consumer Array Supplier Array

$DB_NO /r_service -1

PCM_OP_REPL_POL_PUSH

$DB_NO /service -1

Table 2–7 /channel 103 Channel Object

Consumer Array Supplier Array

$DB_NO /r_service -1

PCM_OP_REPL_POL_PUSH

$DB_NO /event/customer/login -1

$DB_NO /event/customer/password -1

$DB_NO /event/notification/service -1

$DB_NO /event/customer/status -1

Understanding the Replication Module

2-20 BRM LDAP Manager

■ If user_scheme is 0, the opcode maps the /account and /service storable objects
one-to-one to /r_account and /r_service objects respectively. There will be one
entry in the directory for every object in BRM.

■ If user_scheme is 1, the opcode merges the /account and /service storable object
fields to form the /r_user storable object.

By default, the Connection Manager user_scheme pin.conf entry is set to 1, and the
LDAP Data Manager implements a single-entry mapping operation.

If the PIN_FLD_POID field in the input flist indicates that the consumer is /r_account
-1, this opcode does the following operations:

■ If the supplier is /account -1, it searches for all accounts created within the time
range passed to this opcode by the input fields PIN_FLD_INVOKE_T and PIN_
FLD_LAST_INVOKE_T. For each account, it reads a subset of the account fields
and forms a replicated object /r_user. It then invokes the PCM_OP_CREATE_OBJ
operation on dm_ldap to create the directory entry, which serves as the replica of
this /r_user object.

■ For all other suppliers, it searches for all events created within the time range. For
the account associated with each event, it reads the same subset of the account
fields from the previous step, and invokes the PCM_OP_WRITE_FLDS operation
on dm_ldap to modify the directory entry.

If the PIN_FLD_POID field in the input flist indicates that the consumer is /r_service
-1, this opcode does the following operations:

■ If the supplier is /service -1, it searches for all services created within the time
range passed to this opcode by the input fields PIN_FLD_INVOKE_T and PIN_
FLD_LAST_INVOKE_T. For each service, it reads a subset of the service fields and
invokes the PCM_OP_WRITE_FLDS operation on dm_ldap, and modifies the
directory entry that corresponds to the /r_user object. The modified directory entry
relates to the /account object to which the service belongs.

■ For all other suppliers, this opcode searches for services modified within the time
range. For each service, it reads the same subset of the service fields as in the
previous step, and invokes the PCM_OP_WRITE_FLDS operation on dm_ldap to
modify the directory entry.

The default implementation for push operations is as follows:

1. BRM searches for all events listed in the supplier list and retrieves a list of the
changed /account objects (sources).

2. For each /account object, BRM calls PCM_OP_REPL_POL_PUSH operations with
the corresponding replicatable object PID ID.

3. BRM sends the result of the push operation to the LDAP Data Manager based on
the LDAP database specified in the PIN_FLD_CONSUMER_OBJ value and the
family ID (PIN_FLD_FAMILY_ID), if specified. See "How Channel Events are
Published".

Understanding the Replication Module
The module that controls what BRM data gets pushed and how it is structured in the
directory server is the replication module. BRM calls the replication module from the
channel framework synchronization operation for each channel event object in the
channel event table.

Figure 2–11 shows the replication module data flow:

Understanding the Replication Module

Mapping Data between LDAP Data Manager and Your Directory Server 2-21

Figure 2–11 Replication Module Data Flow

The replication module implements the translation logic for /account and /service
objects, handling account and service creation and modification. By default, the
replication module merges fields from /account and /service objects during the
translation. For more information, see "Defining the User Mapping Scheme".

Replication Policy Default Implementation
The replication policy, PCM_OP_REPL_POL_PUSH, pushes data about the object
whose POID is supplied in the input flist. It locates the account supplied in the input
flist and performs the operations shown in Figure 2–12:

Understanding the Replication Module

2-22 BRM LDAP Manager

Figure 2–12 Replication Policy Default Implementation

1. Reads a subset of the account fields, such as bill_type and currency.

LDAP Data Manager derives this information from the field list in the mapping
file.

2. Forms the replicatable /r_user object (assuming user scheme).

3. Calls the create object opcode, PCM_OP_CREATE_OBJ on dm_ldap to create the
directory entry, which serves as the replica of this /r_user object.

4. Iteratively reads the same subset of account fields for all other suppliers (assuming
events) and calls the PCM_OP_WRITE_FLDS operation on dm_ldap to modify the
directory entry.

The opcode searches for the object whose POID was supplied in the input flist. For
that service, it reads a subset of the service fields and calls the PCM_OP_WRITE_FLDS
operation on dm_ldap to modify the directory entry that corresponds to the /r_user
object.

Defining the User Mapping Scheme
The user mapping scheme maps BRM /account and /service objects to one entry in the
directory server, and it is deemed acceptable in a single-logon environment.

The parameter that controls whether BRM uses this scheme is the Connection Manager
user_scheme entry in the Connection Manager (CM) pin.conf file. If the user_scheme
is set to 1, the LDAP Data Manager uses the user mapping scheme.

Understanding the Replication Module

Mapping Data between LDAP Data Manager and Your Directory Server 2-23

Figure 2–13 shows how BRM maps the /account and /service objects to the ruser entry
in the directory server:

Figure 2–13 /account and /service Object Mapping to ruser Entry

The replication policy uses fields from the /account and /service objects to form an /r_
user object. The LDAP Data Manager uses the data in the /r_user object and pushes it
to the directory server. The replication policy determines whether to use this merge /r_
user object by reading the user_scheme entry of the CM pin.conf file.

For more information on the Connection Manager pin.conf file, see "Configuring the
Connection Manager for LDAP Manager".

The /r_user object uses fields from the BRM /account and /service objects. You map
attributes in the mapping file to BRM fields. Some of these attributes are predefined
for LDAP directory servers; however, the BRM-specific attributes cannot be created
automatically. For more information on defining the ruser object class in the directory
server, "Determining the /r_user Object Class Attributes".

In the user scheme, it is possible for the field name spaces to collide. Fields such as the
status field in /account and /service objects have different field and attribute names in
the /r_user object (for example, PIN_FLD_ACCOUNT_STATUS and PIN_FLD_
SERVICE_IP_STATUS).

The following example shows a default mapping file for the LDAP Data Manager
(ldap.idl) for the user scheme:

Class Definitions:
All attributes need to be defined in the directory server
All the entry_type objectclasses and attrval objectclasses need to be
defined in the directory server.
#
STORABLE CLASS /r_user {
POID PIN_FLD_POID {
CREATE = System;
MODIFY = System;
}

Note: With the user scheme, it is difficult for an account to have
multiple services of a given type. BRM usually allows this.

Understanding the Replication Module

2-24 BRM LDAP Manager

TIMESTAMP PIN_FLD_CREATED_T {
CREATE = System;
MODIFY = System;
}
TIMESTAMP PIN_FLD_MOD_T {
CREATE = System;
MODIFY = System;
}
STRING PIN_FLD_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
POID PIN_FLD_ACCOUNT_OBJ {
CREATE = Required;
MODIFY = Writeable;
}
STRING PIN_FLD_ACCOUNT_NO {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_FIRST_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_LAST_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_ACCOUNT_STATUS {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_BILL_TYPE_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_ADDRESS {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_CURRENCY_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_LOGIN {
CREATE = Required;
MODIFY = Writeable;
}
STRING PIN_FLD_PASSWD {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_EMAIL_LOGIN {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_EMAIL_STATUS {
CREATE = Optional;
MODIFY = Writeable;
}

Understanding the Replication Module

Mapping Data between LDAP Data Manager and Your Directory Server 2-25

STRING PIN_FLD_IP_LOGIN {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_IP_STATUS {
CREATE = Optional;
MODIFY = Writeable;
}
INT PIN_FLD_MAX_MBOX_SIZE {
CREATE = Optional;
MODIFY = Writeable;
}
INT PIN_FLD_MAX_MSG_CNT {

CREATE = Optional;
MODIFY = Writeable;

}
INT PIN_FLD_MAX_MSG_SIZE {

CREATE = Optional;
MODIFY = Writeable;

}
ARRAY PIN_FLD_ARGS {

STRING PIN_FLD_ARG {
CREATE = Optional;
MODIFY = Writeable;

}
}

}

STORABLE CLASS /r_user IMPLEMENTATION LDAPV3 {
ATTRVAL = "objectClass : top";
ATTRVAL = "objectClass : person";
ATTRVAL = "objectClass : inetOrgPerson";

ENTRY_TYPE = "ruser";

LOCATION = "o=portal.com";

POID PIN_FLD_POID {
ATTRIBUTE = "pinpoid";
}
TIMESTAMP PIN_FLD_CREATED_T {
ATTRIBUTE = "pincreatedt";
}
TIMESTAMP PIN_FLD_MOD_T {
ATTRIBUTE = "pinmodt";
}
STRING PIN_FLD_NAME {
ATTRIBUTE = "cn";
}
POID PIN_FLD_ACCOUNT_OBJ {
ATTRIBUTE = "billingid";
}
STRING PIN_FLD_ACCOUNT_NO {
ATTRIBUTE = "accountno";
}
STRING PIN_FLD_FIRST_NAME {
ATTRIBUTE = "givenname";
}
STRING PIN_FLD_LAST_NAME {
ATTRIBUTE = "sn";

Understanding the Replication Module

2-26 BRM LDAP Manager

}
STRING PIN_FLD_ACCOUNT_STATUS {
ATTRIBUTE = "billingstatus";
}
STRING PIN_FLD_BILL_TYPE_NAME {
ATTRIBUTE = "billingtype";
}
STRING PIN_FLD_ADDRESS {
ATTRIBUTE = "billingaddress";
}
STRING PIN_FLD_CURRENCY_NAME {
ATTRIBUTE = "currency";
}
STRING PIN_FLD_LOGIN {
ATTRIBUTE = "uid";
RDN_PIECE = 1;
}
STRING PIN_FLD_PASSWD {
ATTRIBUTE = "userpassword";
}
STRING PIN_FLD_EMAIL_LOGIN {
ATTRIBUTE = "mail";
}
STRING PIN_FLD_EMAIL_STATUS {
ATTRIBUTE = "mailstatus";
}
STRING PIN_FLD_IP_LOGIN {
ATTRIBUTE = "iplogin";
}
STRING PIN_FLD_IP_STATUS {
ATTRIBUTE = "ipstatus";
}
INT PIN_FLD_MAX_MBOX_SIZE {
ATTRIBUTE = "mailquota";
}
INT PIN_FLD_MAX_MSG_CNT {
ATTRIBUTE = "mailmaxmsgcount";
}
INT PIN_FLD_MAX_MSG_SIZE {
ATTRIBUTE = "mailmaxmsgsize";
}

ARRAY PIN_FLD_ARGS {
STRING PIN_FLD_ARG {

ATTRIBUTE = "ipargs";
MULTIVALUED = 1;

}
}

}

Related /account and /service Opcodes
Table 2–8 summarizes the opcodes that capture changes made to /account and /service
objects (so that fields in these objects can then be pushed to the directory server:

Understanding the Replication Module

Mapping Data between LDAP Data Manager and Your Directory Server 2-27

Determining the /r_user Object Class Attributes
BRM cannot automatically create directory server entries. Therefore, you must
manually define the BRM data elements that you are interested in capturing with your
own directory server tools.

For example, BRM-specific information such as the POID must map to a pinpoid
attribute, which is not predefined the directory server. For this reason, you must create
a replicatable user object for BRM to use in the directory server. BRM can then modify
the schema of a particular entry based on how it is configured.

The next table describes the BRM /r_user object and how it is composed of BRM fields
in the /service and /account objects as well as its corresponding directory attributes,
and whether they are predefined in the LDAP directory server.

Refer to Table 2–9 when you create the ruser directory server entry and its
corresponding BRM attributes for replication purposes. This table also lists the fields
that BRM pushes to the directory server by default.

Table 2–8 Related /account and /service Opcodes

Opcode(s) Action

PCM_OP_CUST_COMMIT_CUSTOMER

PCM_OP_CUST_PREP_CUSTOMER

Accepts the DNs for the /account storable object in the form of an
optional /profile/ldap storable object.

PCM_OP_ACT_POL_EVENT_NOTIFY Calls CM_OP_CHANNEL_PUSH to create an entry in the
channel_event table to track changes.

PCM_OP_CUST_POL_ENCRYPT_PASSWD Disables or enables encryption of the /service/ldap password.

PCM_OP_CUST_CREATE_ACCT Calls PCM_OP_CHANNEL_PUSH to create an entry in the
channel_event table to track creation of accounts.

PCM_OP_CUST_CREATE_SERVICE Calls PCM_OP_CHANNEL_PUSH to create an entry in the
channel_event table to track creation of services.

PCM_OP_TRANS_POL_COMMIT Defers PCM_OP_CHANNEL_SYNC automatically.

Important:

■ Case is significant for the directory server attributes. For example,
you must enter givenName, not givenname. If you do not enter
these attributes exactly as shown, you will encounter object class
violations when you map BRM fields to directory server
attributes.

■ Make sure that the object class name in the directory server
matches the entry type name in the ldap.idl mapping file.

Table 2–9 Default Directory Server Fields

/r_user Field Object Components and Comments
Directory
Attribute

Predefined in
LDAP

PIN_FLD_POID /account. ldap_db db_no + POID ID pinpoid N

PIN_FLD_CREATED_T Created time set by dm_ldap pincreatedt N

PIN_MOD_T Modified time set by dm_ldap pinmodt N

Understanding the Replication Module

2-28 BRM LDAP Manager

PIN_FLD_NAME /account. Composed by concatenating the
first_name, middle_name, and last_name
fields. PIN_FLD_BILLINFO [PIN_
NAMEINFO_BILLING]

cn - LDAP Y

PIN_FLD_ACCOUNT_OBJ /account.PIN_FLD_POID billingid N

PIN_FLD_ACCOUNT_NO /account.PIN_FLD_ACCOUNT_NO accountno N

PIN_FLD_FIRST_NAME See PIN_FLD_NAME givenName Y

PIN_FLD_LAST_NAME See PIN_FLD_NAME sn Y

PIN_FLD_ACCOUNT_STATUS /account.PIN_FLD_STATUS

Values: Active, Inactive, and Closed

billingstatus N

PIN_FLD_BILL_TYPE_NAME /account.PIN_FLD_BILL_TYPE

Values: Prepaid, Invoice, Debit, Credit
Card, Direct Debit, Smart Card,
Subordinate, Internal, Guest, Cash,
Check, Wire Transfer, Inter-Bank
Payment Order,

Postal Order, Unknown

billingtype N

PIN_FLD_ADDRESS /account.PIN_FLD_NAMEINFO[PIN_
NAMEINFO_BILLING]:

Street, city, state, ZIP code, and country
concatenated using comma separators

billingaddress N

PIN_FLD_CURRENCY_NAME /account.PIN_FLD_CURRENCY.

(String BEID name such as US Dollar
from /config/beid_balances)

currency Y

PIN_FLD_LOGIN Login associated with /service/ldap for
LDAP Manager

uid [RDN
component] for
LDAP Manager

Y

PIN_FLD_PASSWD Cleartext password associated with

/service/ldap for LDAP Manager

userPassword Y

PIN_FLD_EMAIL_LOGIN /service/email. Login mail Y

PIN_FLD_EMAIL_STATUS /service/email. PIN_FLD_STATUS

Values: Active, Inactive, and Closed

mailstatus N

PIN_FLD_IP_LOGIN /service/ip. Login iplugin Y

PIN_FLD_IP_STATUS /service/ip.PIN_FLD_STATUS

Values: Active, Inactive, and Closed

ipstatus N

PIN_FLD_MAX_MBOX_SIZE /service/email.PIN_FLD_SERVICE_
EMAIL.PIN_FLD_MAX_MBOX_SIZE

mailboxQuota Y

PIN_FLD_MAX_MSG_CNT /service/email.PIN_FLD_SERVICE_
EMAIL PIN_FLD_MAX_MSG_CNT

mailmaxmsgcn
t

N

Table 2–9 (Cont.) Default Directory Server Fields

/r_user Field Object Components and Comments
Directory
Attribute

Predefined in
LDAP

Understanding the Replication Module

Mapping Data between LDAP Data Manager and Your Directory Server 2-29

Creating the ruser Object Class in the Directory Server
To replicate data from BRM to your directory server, you must set up the ruser object
class in your directory server:

1. Start your LDAP directory server.

2. Define the ruser object class in the LDAP directory server or Membership
directory.

3. Use the /r_user mapping table described in the previous section to define the
required BRM-specific attributes that you want to replicate to the list of allowable
attributes in the ruser objectClass.

4. Save the object class in the directory server.

5. Change the value of the LOCATION key in the implementation section of the /r_
user object definition in the ldap.idl mapping file.

Defining the One-to-One Mapping Scheme
The one-to-one mapping scheme maps one BRM object to one LDAP directory entry.
Figure 2–14 shows how BRM maps the /account and /service objects to the raccount
and rservice entries in the directory server.

Figure 2–14 BRM /raccount and rservice Object Mapping in Directory Server

PIN_FLD_MAX_MSG_SIZE /service/emailad mailmaxmsgsiz
e

N

PIN_FLD_PATH /service/email.PIN_FLD_SERVICE_
EMAIL.PIN_FLD_PATH

mailmessagest
ore

Y

PIN_FLD_ARGS[].PIN_FLD_
ARG

/service/ip.PIN_FLD_ARGS. The

PIN_FLD_NAME and PIN_FLD_VALUE
are concatenated (using "=" separators)

ipargs N

Table 2–9 (Cont.) Default Directory Server Fields

/r_user Field Object Components and Comments
Directory
Attribute

Predefined in
LDAP

Understanding the Replication Module

2-30 BRM LDAP Manager

To use the one-to-one mapping scheme, you must modify the replication policy C
source code file. After you define the LDAP schema, you modify the replication policy
(PCM_OP_REPL_POL_PUSH) to perform multiple pushes; one for the account and
one for each service.

To use the one-to-one mapping scheme:

1. Set the user_scheme entry of the Connection Manager (CM) pin.conf file to 0. See
"Configuring the Connection Manager for LDAP Manager".

2. Map the following classes in the LDAP Data Manager mapping file (ldap.idl). You
can find the mapping file in BRM_Home/sys/dm_ldap.

■ /r_account

■ /r_service

■ /r_service/ip

■ /r_service/email

See "One-to-One Mapping File Example" for the details.

3. Define raccount and rservice object classes in the directory server.

4. For each of the /r_account and /r_service, /r_service/ip and /r_service/email fields
you want to export, define a corresponding attribute and add to the list of allowed
attributes of the raccount or rservice object classes.

5. Set up the rservice object class to allow all attributes mapped to /r_service and its
subtypes (/r_service/email and /r_service/ip).

6. Modify the replication policy C source code file, fm_repl_pol_translate.c.

This file implements the replication policy PCM_OP_REPL_POL_PUSH. See
"Changing the Replication Policy for the One-to-One Mapping Scheme" for details.

One-to-One Mapping File Example
This example shows a subset of the mapping file (the implementation section) as an
example for the one-to-one mapping scheme.

##
/r_account (to represent Portal /account storable class)
##
STORABLE CLASS /r_account {
list all the /r_account fields (similar to the /r_user fields in the user scheme
without the service related fields like PIN_FLD_EMAIL_LOGIN, etc.

Note: The default implementation for the one-to-one mapping
scheme in the replication module exports only /service/email and
/service/ip objects.

Tip: You can define the mappings in a new file and point to it from
the LDAP Data Manager pin.conf file.

Note: The LDAP Data Manager mapping scheme requires you to
map to one ENTRY_TYPE per class and its subtypes.

Understanding the Replication Module

Mapping Data between LDAP Data Manager and Your Directory Server 2-31

#PIN_FLD_POID
#PIN_FLD_CREATED_T
#PIN_FLD_MOD_T
#PIN_FLD_NAME
#PIN_FLD_ACCOUNT_OBJ
#PIN_FLD_ACCOUNT_NO
#PIN_FLD_FIRST_NAME
#PIN_FLD_LAST_NAME
#PIN_FLD_ACCOUNT_STATUS
#PIN_FLD_BILL_TYPE_NAME
#PIN_FLD_ADDRESS
#PIN_FLD_CURRENCY_NAME
#PIN_FLD_GUID
#PIN_FLD_LOGIN
#PIN_FLD_PASSWD
}

#
STORABLE CLASS /r_account IMPLEMENTATION LDAPV3 {

ENTRY_TYPE = "raccount";
LOCATION = "o=xyz, c=US";

provide mapping for /r_account fields
}

##
/r_service (to represent Portal /service storable class)
##
STORABLE CLASS /r_service {
list all the /r_service fields
PIN_FLD_POID
PIN_FLD_CREATED_T
PIN_FLD_MOD_T
PIN_FLD_ACCOUNT_OBJ
PIN_FLD_LOGIN
PIN_FLD_PASSWD
PIN_FLD_STATUS
}

/r_service/ip (to represent Portal /service/ip storable class)
STORABLE CLASS /r_service/ip {
list all the /r_service/ip related fields
PIN_FLD_ARGS
#PIN_FLD_ARG
}
/r_service/email (to represent Portal /service/email storable class)
STORABLE CLASS /r_service/email {
list all the /r_service/email related fields
PIN_FLD_EMAIL_INFO
#PIN_FLD_MBOX_SIZE
#PIN_FLD_MAX_MSG_CNT
#PIN_FLD_MAX_MSG_SIZE
}

#
STORABLE CLASS /r_service IMPLEMENTATION LDAPV3 {

ENTRY_TYPE = "rservice";

Understanding the Replication Module

2-32 BRM LDAP Manager

LOCATION = "ou=services, o=xyz, c=US";

provide mapping for /r_service fields
MAKE PIN_FLD_POID as the RDN_PIECE.
}

#
STORABLE CLASS /r_service/ip IMPLEMENTATION LDAPV3 {
provide mapping for /r_service/ip fields
}

#
STORABLE CLASS /r_service/email IMPLEMENTATION LDAPV3 {
provide mapping for /r_service/email fields
}

Changing the Replication Policy for the One-to-One Mapping Scheme
Use this section to guide you in modifying the PCM_OP_REPL_POL_PUSH
replication policy. You make all changes to the C source code file fm_repl_pol_
translate.c, which is located at:

BRM_Home/source/sys/fm_repl_pol

1. Save a copy of fm_repl_pol_translate.c.

2. Package the input flist to LDAP Data Manager to match the mapping information
you specified in the mapping file (ldap.idl) file associated with dm_ldap as
described in "LDAP Data Manager Mapping Files".

3. In the fm_repl_pol_prep_service_flds() function, drop the PIN_FLD_STATUS and
PIN_FLD_LOGIN associated with /service/ldap only if you are using the user_
scheme.

4. In the fm_repl_pol_prep_service_email_flds() function, move the information in
the PIN_FLD_SERVICE_EMAIL substruct to the PIN_FLD_EMAIL_INFO array
field as shown here:

e_flistp = PIN_FLIST_SUBSTR_TAKE(rep_flistp,
PIN_FLD_SERVICE_EMAIL, 0, ebufp);

if (user_scheme) {
PIN_FLIST_CONCAT(rep_flistp, e_flistp, ebufp);
PIN_FLIST_DESTROY(e_flistp, NULL);

} else {
PIN_FLIST_ELEM_PUT(rep_flistp, e_flistp,

PIN_FLD_EMAIL_INFO, 0, ebufp);
}

3

Managing the Directory Server Organization 3-1

3Managing the Directory Server Organization

This chapter describes how to use the Oracle Communications Billing and Revenue
Management (BRM) LDAP API to manage and manipulate the directory tree
organization.

About Managing Directory Server Entries
You can create, delete, read, and write directory server entries and attributes in any
part of a directory tree.

BRM uses Distinguished Names (DNs) for these operations in one of two ways:

■ From the location value in the mapping file

■ From the location in the input flist based on:

– The location value and Relative Distinguished Name (RDN) piece

– The DN field and DN qualifiers (complete and prefixed) used in the create
operation. The create operation can also use the parent DN qualifier.

For more information, see "Specifying Directory Tree Entries".

The BRM LDAP Data Manager makes the following assumptions during create, delete,
read, and write operations with the DN you supply at run time:

■ The directory server entry is an instance of the object defined in the mapping file.

■ The location value matches the location you specified in the mapping file.

Semantics for the LDAP Modify Operation
You use the LDAP modify operation to manage directory server entries. This operation
is used by the following opcodes:

■ PCM_OP_DELETE_FLDS

■ PCM_OP_DELETE_OBJ

■ PCM_OP_WRITE_FLDS

■ PCM_OP_CREATE_OBJ

The LDAP modify operation accepts a list of modifications to be performed, and
performs the modifications in the order listed as a single atomic operation. The value
that may be taken on by the operation field in each modification construct can have
the following semantics:

Semantics for the LDAP Modify Operation

3-2 BRM LDAP Manager

■ Add: Adds specified values to the given attribute and creates the attribute if
necessary.

■ Delete: Deletes specified values from the given attribute. Removes the entire
attribute if no values are specified or if all existing values of the attribute are listed
for deletion.

■ Replace: Replaces all existing values of the given attribute with the specified
values, and creates the attribute if it does not already exist. Using replace with no
specified values deletes the entire attribute.

Distinguished Name Field and the DN Flags Field
Use the Distinguished Name field, PIN_FLD_DN, and the Distinguished Name flags
field, PIN_FLD_DN_FLAGS with one of its values to specify the locations in the
directory tree shown in Table 3–1:

The Location Field
You can use the location field, PIN_FLD_LOCATION to override the base LOCATION
value specified in the mapping file. The override is a one shot override for that
particular operation only. This lets you specify a different tree root location (base DN)
for the directory server entry. For more detailed information and an example, see
"Overriding the Base DN Location".

Table 3–1 PIN_FLD_DN Settings

Value Meaning

0 Complete DN.

To specify a complete DN, pass the complete DN of the entry in the PIN_FLD_
DN field. You can optionally set PIN_FLD_DN_FLAGS to 0.

For more detailed information and an example, see "Using a Complete
Distinguished Name".

1 Prefixed DN.

To specify a prefixed DN, pass the prefixed DN of the entry in the PIN_FLD_
DN field and set the PIN_FLD_DN_FLAGS to 1.

A prefixed DN is the case when the module that calls the LDAP Data Manager
(typically, PCM_OP_REPL_POL_PUSH) passes in the RDN as a prefix.

For more detailed information and an example, see "Using a Prefixed
Distinguished Name".

2 Parent DN.

You cannot use the parent value as a flag to the following opcodes:

■ PCM_OP_DELETE_FLDS

■ PCM_OP_DELETE_OBJ

■ PCM_OP_WRITE_FLDS

You can only use the parent value with PCM_OP_CREATE_OBJ.

To specify a parent DN, pass the parent DN of the entry in the PIN_FLD_DN
field, and set the PIN_FLD_DN_FLAGS to 2.

For more detailed information and an example, see "Using a Parent
Distinguished Name (Create Operation Only)".

Creating Directory Server Entries

Managing the Directory Server Organization 3-3

Creating Directory Server Entries
This section describes the default control logic of the LDAP create operation.

For information on specifying directory tree entries, see "Specifying Directory Tree
Entries".

To create new directory server entries or reuse entries in the directory server for
replication purposes, use the LDAP PCM_OP_CREATE_OBJ base opcode.

The LDAP PCM_OP_CREATE_OBJ base opcode performs the following operations:

■ Makes entries compatible with BRM by adding these BRM fields:

– Portal object ID (POID)

– PIN_FLD_POID

– CREATED_T

– MOD_T

■ Composes the Distinguished Name (DN).

■ Accepts the Distinguished Name (DN) of the entry as an input.

PCM_OP_CREATE_OBJ requires the following inputs:

■ PIN_FLD_POID. Use the replica POID for this field.

■ PCM_OP_USE_POID_GIVEN opflag.

■ Other fields depending on the object you create.

If you specify a Distinguished Name for the PIN_FLD_DN field in the input flist, the
LDAP Data Manager creates a directory entry with the DN that you provide. If the
entry already exists, this opcode ignores the error and performs a modify directory
operation instead of an add directory operation.

For more information see "Semantics for the LDAP Modify Operation".

Distinguished Name Control Logic for PCM_OP_CREATE_OBJ
You can specify the location in the directory tree by using the PIN_FLD_DN, PIN_
FLD_DN_FLAGS as well as the PIN_FLD_LOCATION fields:

■ If you use the PIN_FLD_DN in the input flist, the create opcode creates an entry
with the value of the DN you provide.

■ If you do not supply a DN for the PIN_FLD_DN field, the LDAP Data Manager
uses the RDN_PIECE in the mapping file to compose the Relative Distinguished
Name (RDN).

Note: When writing array elements, this opcode does not use the
element ID.

Note: The modify directory operation updates all attributes in an
entry.

Creating Directory Server Entries

3-4 BRM LDAP Manager

■ If you use the PIN_FLD_DN field without the PIN_FLD_DN_FLAGS in the input
flist, then the create opcode assumes you want to pass in a complete DN. This sets
the PIN_FLD_DN_FLAGS field to 0.

■ If you use the PIN_FLD_DN field with the PIN_FLD_DN_FLAGS field set to 1,
then the create opcode appends the LOCATION value to construct the DN. This is
the prefixed DN.

■ If you use the PIN_FLD_DN field with the PIN_FLD_DN_FLAGS field set to 2,
then the create opcode appends the LOCATION to PIN_FLD_DN. It then appends
this to the value specified for the attribute that is tagged as the RDN_PIECE in the
mapping file. This is the parent DN case.

If you use the PIN_FLD_LOCATION field in the input flist, the create opcode
overrides the location value that you specified in the mapping file for this operation. If
you do not use this field in the input flist, the create opcode assumes that you want to
use the location value you specified in the mapping file.

Pre-Existing Distinguished Names
If you supply a DN in the input flist for PCM_OP_CREATE_OBJ, and an entry with
the same DN exists in the directory server, BRM adds the information to the existing
entry based on the information that you provide.

LDAP Data Manager does not treat pre-existing entries as errors.

Supplying Distinguished Names
If you supply a DN to the LDAP Data Manager for the PCM_OP_CREATE_OBJ
operation, BRM uses it to create a directory server entry. This lets you use existing
LDAP customer entries and also gives you flexibility in assigning DNs.

Not Supplying Distinguished Names
If you do not supply a DN to the LDAP Data Manager for the PCM_OP_CREATE_OBJ
operation, BRM uses the attribute tagged with the key RDN_PIECE in the mapping
file as the RDN.

For example, the LOCATION "o=portal.com" is appended to the value specified for
the attribute cn (tagged as RDN_PIECE) in the mapping file to compose the REAL DN,
"cn=john,o=portal.com".

Understanding Matching Rules for Distinguished Names
You control the location of directory tree entries by using a combination of values in
the mapping file and by using DN qualifiers, or location parameters at run time as
inputs to the BRM LDAP create, delete, read, and write operations.

LDAP Data Manager uses static and dynamic matching rules for DNs to determine the
location for directory server entries in the directory tree.

Note: You can specify only a parent DN for the create opcode.

Deleting Directory Server Entries

Managing the Directory Server Organization 3-5

Using Static Controls for DNs
The LDAP Data Manager lets you specify the location of directory server entries
statically for each object type by using the LOCATION key in the mapping file. You
specify different LOCATION values for different object types as follows:

STORABLE CLASS /info1 IMPLEMENTATION LDAPV3 {
LOCATION = "ou=portal,c=US";
}
STORABLE CLASS /info2 IMPLEMENTATION LDAPV3 {
LOCATION = "ou=abc,o=xyz,c=US";
}

Using Dynamic Controls for DNs
LDAP Data Manager lets you manipulate the static controls in the mapping file by
using the control field for DNs, the PIN_FLD_DN field and a flag for the DN, PIN_
FLD_FLAGS.

Rule matching for the given DN with the LOCATION field allows entries to be at
arbitrary depths relative to the location instead of limiting entries to one location. For
example:

If

LOCATION = "o=portal.com"

Then the following locations are accepted:

PIN_FLD_DN = "cn=john, ou=dev, ou=engg, o=portal.com"

Deleting Directory Server Entries
To delete directory server entries, use the LDAP PCM_OP_DELETE_OBJ base opcode
to perform the delete object operation. This opcode invokes the delete entry semantics
of the LDAP modify operation in the directory server

To delete an entry from an existing directory server, create the PCM_OP_DELETE_OBJ
input flist. Specify the complete POID or the DN of the entry in the flist.

■ If you specify the DN, make sure that the POID is a type-only POID, for example:

POID [0] 0.0.5.1 /r_user -1

■ By default, the delete entry operation expects a complete DN. You can optionally
supply a prefixed DN.

– To set up a complete DN, see "Using a Complete Distinguished Name".

– To set up a prefixed DN, see "Using a Prefixed Distinguished Name".

PCM_OP_DELETE_OBJ performs the following operations:

■ Invokes the delete entry semantics of the LDAP modify operation in the directory
server.

■ If the pinpoid attribute does not form the Relative Distinguished Name (RDN), this
opcode locates the directory server entry first using a search operation and then
deletes the object.

You must supply the PIN_FLD_POID (replica POID ID) and the POID of the object
that you want to delete in the input flist.

For more information see "Semantics for the LDAP Modify Operation".

Changing Directory Server Entries

3-6 BRM LDAP Manager

Changing Directory Server Entries
You can manage changes to directory server entries by performing the following
operations:

■ Adding Attributes to an Existing Directory Server Entry

■ Deleting Attributes from an Existing Directory Server Entry

■ Renaming Directory Server Entries

■ Creating Subclass Objects in the Directory Server

■ Creating Related Entries Under One Node

The next sections describe how to accomplish these tasks.

For information on specifying directory tree entries, see "Specifying Directory Tree
Entries".

Adding Attributes to an Existing Directory Server Entry
You can add an attribute that already exists in the directory server schema to an
instance of an object defined in the mapping file. This lets you access and modify the
schema of the directory server entry by using the BRM API.

Follow these rules when you add an attribute to the directory server:

■ If an attribute belongs to an auxiliary class, specify the attribute’s auxiliary class in
the mapping file.

■ An attribute can belong to only one auxiliary class.

■ Attribute names must be unique across object classes.

■ Attributes being added must already exist in the directory schema.

If you add an attribute that belongs to an auxiliary class to an existing directory server
entry, the auxiliary class is automatically added to the entry.

To update or rename an entry, use the LDAP PCM_OP_WRITE_FLDS base opcode.

This opcodes performs the following operations:

■ Updates attributes by using the LDAP modify operation

■ Uses the replace semantics of the LDAP modify operation

■ Renames directory server entries

When you specify an array field, the entire array is replaced. The PCM_OPFLG_ADD_
ENTRY opflag is used to invoke the add semantics, thereby adding new values to an
existing entry.

You must supply the PIN_FLD_POID (replica POID ID) and at least one field that you
want to write in the input flist. For rename operations, you can only specify the RDN
piece as it is specified in the mapping file. You must also set the deleteOldRdn entry in
the LDAP Data Manager pin.conf file to 1.

For more information see "Semantics for the LDAP Modify Operation".

For the procedure on renaming a directory server entries, see "Renaming Directory
Server Entries".

To add an attribute to an existing directory server entry:

1. Create the PCM_OP_WRITE_FLDS input flist:

Changing Directory Server Entries

Managing the Directory Server Organization 3-7

a. Add the complete POID or DN of the entry.

If you specify the DN, make sure that the POID is a type-only POID, for
example, POID [0] 0.0.5.1 /r_user -1.

b. (Optional) Specify whether the DN is a complete or prefixed DN.

By default, the write fields operation expects a complete DN. You can
optionally supply a prefixed DN.

To set up a complete DN, see "Using a Complete Distinguished Name".

To set up a prefixed DN, see "Using a Prefixed Distinguished Name".

2. In the mapping file, define all possible attributes including the auxiliary class that
the directory server entry might contain.

3. For the attribute you are adding:

a. Set the CREATE string to Optional.

b. Specify the auxiliary class that the attribute belongs to.

In this sample, PIN_FLD_HTTP_URL corresponds to the attribute labeleduri for
an auxiliary class called labeleduriobject.

STORABLE CLASS /r_user {
...
STRING PIN_FLD_HTTP_URL {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_TYPE_STR {
CREATE = Optional;
MODIFY = Writeable;
}
...
}
STORABLE CLASS /r_user IMPLEMENTATION LDAPV3 {
...
STRING PIN_FLD_HTTP_URL {
ATTRIBUTE = "labeleduri";
OBJECTCLASS = "labeleduriobject";
}
STRING PIN_FLD_TYPE_STR {
ATTRIBUTE = "memberurl";
OBJECTCLASS = "mylabeleduriobject";
}
.......
}

Deleting Attributes from an Existing Directory Server Entry
To delete an attribute from an existing directory server entry, follow these rules:

■ Delete only those attributes that you have defined in the mapping file and are
tagged as optional.

■ Do not delete fields that you have used for the RDN or any fields tagged as
required. You can delete an entire array by using PIN_ELEM_ID_ANY.

Changing Directory Server Entries

3-8 BRM LDAP Manager

For more information see "Semantics for the LDAP Modify Operation".

To delete values and attributes in an entry, use the LDAP PCM_OP_DELETE_FLDS
base opcode. This opcode performs the delete operation by using the LDAP modify
operation, which imposes delete semantics.

To delete an attribute from an existing directory server entry, create the PCM_OP_
DELETE_FLDS input flist.

1. Specify the complete POID or DN of the entry.

You must supply the PIN_FLD_POID (replica POID) and at least one field that
you want to delete in the input flist.

If you specify the DN, make sure that the POID is a type-only POID, for example:

POID [0] 0.0.5.1 /r_user -1

2. (Optional) Specify whether the DN is a complete or prefixed DN.

3. By default, the delete fields operation expects you to supply a complete DN. You
can optionally supply a prefixed DN.

■ To set up a complete DN, see "Using a Complete Distinguished Name".

■ To set up a prefixed DN, see "Using a Prefixed Distinguished Name".

4. Provide the names of the fields that you want to delete.

0 PIN_FLD_<field to be deleted>
...
...

The LDAP Data Manager deletes the attribute and the auxiliary object class if it is
the last attribute belonging to that auxiliary class.

Renaming Directory Server Entries
You can rename a directory server entry in BRM. This is useful when the customer
names or login names (RDN piece) of the directory server entry changes. For example,
you can rename an entry for Jane Doe by changing her name to Jane Smith. In this
case, this directory entry:

cn=Jane Doe; o=portal.com; c=US

Changes to this directory entry:

cn=Jane Smith; o=portal.com; c=US

Follow these rules when to rename directory server entries:

■ Do not rename the entry such that it moves to a different part of the directory tree.

■ Do not specify any field other than the field tagged by the RDN_PIECE in the
mapping file in the input flist on this operation.

Important: Before you delete an attribute, make sure that doing so
does not violate the schema constraints of the directory server entry. If
you attempt to violate schema constraints, the LDAP Data Manager
reports an object violation error.

Changing Directory Server Entries

Managing the Directory Server Organization 3-9

■ Rename only the left-most value in the DN entry. In the example above, this is the
cn value.

LDAP Data Manager uses the PCM_OP_WRITE_FLDS opcode to rename entries. For
more information on the inputs and outputs of this opcode, see PCM_OP_WRITE_
FLDS. Additionally, it uses an entry in the LDAP Data Manager configuration file
BRM_Home/sys/dm_ldap/pin.conf to determine if the old RDN value should be
removed from the entry.

For more information see "Semantics for the LDAP Modify Operation".

To propagate a name change from BRM to the directory server entry:

1. Create the PCM_OP_WRITE_FLDS input flist by adding the POID or complete
DN of the old entry and the new name of the entry:

0 PIN_FLD_POID POID [0]
0.0.5.1 /r_user <account_number>
0 PIN_FLD_LOGIN STR [0] "Jane Smith"

2. In the pin.conf file, uncomment the following entry and set the delete value to 1.

- ldap_ds deleteOldRdn 1

BRM reads the new value of the attribute tagged as the RDN_PIECE in the
mapping file from the input flist and uses it to rename the entry.

Creating Subclass Objects in the Directory Server
You can extend, or subclass, an existing object class to add attributes to it. In this case,
you use the create opcode to create subclass objects in any location in the directory
server. You can create entries for a given BRM subclass object type in a particular part
of the directory information tree independent of the location of objects belonging to
the parent class. For example, /service objects can be located in the following location:

ou=Services, o=portal.com, c=US

The /service/email subclass object can be located in a different location:

ou=ServiceEmail, o=portal.com, c=US

To create a subclass object in the directory server independent of its parent’s location:

1. Using your directory server tools, create the organizational unit (ou) for the
subclass object in the directory server.

2. Create the corresponding subclass mapping for this attribute by specifying the
LOCATION key in the implementation definition section of the mapping file.

3. Start LDAP Data Manager and make sure that the dm_ldap.pinlog file reports no
errors.

Important: When you use the write fields operation to rename
entries, the input flist should not contain other fields.

Note: When you set the delete value to 1, LDAP Data Manager
deletes the old RDN (Jane Doe). To keep the old RDN, set the delete
value to 0.

Changing Directory Server Entries

3-10 BRM LDAP Manager

4. Create the input flist that contains the complete POID or DN of the object that you
want to create.

Creating Related Entries Under One Node
You can group any set of related entries under one node in the directory tree. To set up
your BRM LDAP environment to replicate data in this type of structure, you use the
link object attribute to define the related node entries in the mapping file.

For example, you can create all services associated with a particular account under the
account entry in the directory tree.

If the creation of linked objects requires containers, this feature will not create the
container objects automatically. You must create the containers for these objects with
your directory server tools manually, as Figure 3–1 shows:

Figure 3–1 Manually Created Containers Example

In each top-level service, you must use a link attribute that has the POID of the
account that the service is linked to.

To group all services under an account:

1. In the mapping file, configure the link object for each class and link attribute for
each top-level class as in this example:

STORABLE CLASS /r_user {
...
}
##
/r_service (to represent Portal /service storable class)

Note: This procedure assumes that your related services are linked.

Note: The link attribute must be a POID. Specify the types and link
attributes for all classes.

Changing Directory Server Entries

Managing the Directory Server Organization 3-11

##
STORABLE CLASS /r_service {
list all the /r_service fields

...
POID PIN_FLD_PARENT {

CREATE = Optional;
MODIFY = Writeable;

}
....
}

/r_service/ip (to represent Portal /service/ip storable class)
STORABLE CLASS /r_service/ip {
list all the /r_service/ip related fields

...
POID PIN_FLD_PARENT {

CREATE = Optional;
MODIFY = Writeable;

}
....
}
/r_service/email (to represent Portal /service/email storable class)
STORABLE CLASS /r_service/email {
list all the /r_service/email related fields

...
POID PIN_FLD_PARENT {

CREATE = Optional;
MODIFY = Writeable;

}
....
}

STORABLE CLASS /r_user IMPLEMENTATION LDAPV3 {
ATTRVAL = "objectClass: top";
ATTRVAL = "objectClass: person";
ATTRVAL = "objectClass: inetOrgPerson";

ENTRY_TYPE = "ruser";

LOCATION = "o=portal.com";
...
}

For LDAP Manager

STORABLE CLASS /r_service IMPLEMENTATION LDAPV3 {
ATTRVAL = "objectClass: top";
ENTRY_TYPE = "rservice";
LINK_OBJECT = "/r_user";

...
POID PIN_FLD_PARENT {
ATTRIBUTE = "parent";
LINK_ATTRIBUTE = 1;

}
...
}
#
STORABLE CLASS /r_service/ip IMPLEMENTATION LDAPV3 {

Specifying Directory Tree Entries

3-12 BRM LDAP Manager

provide mapping for /r_service/ip fields
LINK_OBJECT = "/r_user";
Provide mapping for /r_service fields.
The link attribute is inherited from the parent.
...

POID PIN_FLD_PARENT {
ATTRIBUTE = "parent";
LINK_ATTRIBUTE = 1;

}
...
}
#STORABLE CLASS /r_service/email IMPLEMENTATION LDAPV3 {
Provide mapping for /r_service/email fields
The link attribute is inherited from the parent.

LINK_OBJECT = "/r_user";
...

POID PIN_FLD_PARENT {
ATTRIBUTE = "parent";
LINK_ATTRIBUTE = 1;

}
...
}

2. Specify one of the flexible DN assignment rules to dynamically manipulate the
static behavior defined in the mapping file.

■ If the DN flag indicates that the DN is a complete DN, the DN supplied is
used to create the /r_service entry.

■ If the DN flag indicates that the DN is a prefix, the DN of the located /r_user
entry is appended to the DNs supplied to compose the DN of the /r_service
entry.

■ If the DN flag indicates that the DN is a parent, the /r_service DN supplied is
appended to the value of the attribute tagged as the RDN piece. The DN of the
located /r_user entry is appended to this string.

■ If you do not supply a DN, then the value of the DN of the /r_user entry will
be appended to the RDN of /r_service.

Specifying Directory Tree Entries
You specify directory server entries by using the DN field, the DN qualifier field flags,
and the location parameter. The DN field and the DN qualifiers let you manipulate
location of entries for your directory tree, while the location parameter lets you
override the mapping file location.

This section describes the controls you can use as inputs to the create, delete, read, and
write operations either to manipulate directory entries or to override the base location
value.

■ Using a Complete Distinguished Name

■ Using a Prefixed Distinguished Name

■ Using a Parent Distinguished Name (Create Operation Only)

Note: To locate the parent /r_user object, the LDAP Data Manager
uses the LOCATION attribute of the /r_user class as the base DN.

Specifying Directory Tree Entries

Managing the Directory Server Organization 3-13

■ Overriding the Base DN Location

Using a Complete Distinguished Name
A complete DN is the absolute root in the directory tree for the directory server entry.
To specify a complete DN, pass the complete DN of the entry in the PIN_FLD_DN
field. You can optionally set PIN_FLD_DN_FLAGS to 0.

This example shows how to specify a complete DN in the input flist to the create,
delete, read, and write operations at run time:

LOCATION = "o=portal.com"
PIN_FLD_DN = "cn=john, ou=dev, ou=engg, o=portal.com"
PIN_FLD_DN_FLAGS=0

REAL DN = "cn=john, ou=dev, ou=engg, o=portal.com"

For a complete DN, PIN_FLD_DN must match the LOCATION. For example, if the
LOCATION is "o=portal.com", then the last element of PIN_FLD_DN must be
"o=portal.com". The PIN_FLD_DN is the REAL DN in this case.

Using a Prefixed Distinguished Name
The prefixed DN is the RDN location in the directory tree for the directory server entry.
To specify a prefixed DN, pass the prefixed DN of the entry in the PIN_FLD_DN field
and set the PIN_FLD_DN_FLAGS to 1.

This example shows how to specify a prefixed DN in the input flist to the create,
delete, read, and write input flists at run time:

LOCATION = "o=portal.com"
PIN_FLD_DN = "cn=john, ou=dev, ou=engg"
PIN_FLD_DN_FLAGS=1

REAL DN = "cn=john, ou=dev, ou=engg, o=portal.com"

The LOCATION "o=portal.com" is appended to PIN_FLD_DN "cn=john, ou=dev,
ou=engg" to compose the REAL DN "cn=john, ou=dev, ou=engg, o=portal.com".

Using a Parent Distinguished Name (Create Operation Only)
A parent DN is the location of the parent of the entry in the directory tree. You can pass
a parent DN only in the create operation (PCM_OP_CREATE_OBJ).

To specify a parent DN, pass the parent DN of the entry in the PIN_FLD_DN field, and
set the PIN_FLD_DN_FLAGS to 2.

This example shows how to specify a parent DN in the input flist to PCM_OP_
CREATE_OBJ at run time:

LOCATION = "o=portal.com"
PIN_FLD_DN = "ou=dev, ou=engg"
PIN_FLD_DN_FLAGS=2

REAL DN = "cn=john, ou=dev, ou=engg, o=portal.com"

The LDAP Data Manager appends the LOCATION "o=portal.com" to PIN_FLD_DN
"ou=dev, ou=engg" and appends the value "ou=dev, ou=engg, o=portal.com" to the
value "john" (cn) tagged as RDN_PIECE in the mapping file to compose the REAL DN
"cn=john, ou=dev, ou=engg, o=portal.com".

Reading and Searching for Directory Server Entries

3-14 BRM LDAP Manager

Overriding the Base DN Location
A base DN is the root location in the directory tree for the directory server entry. You
can use the location field, PIN_FLD_LOCATION to dynamically override the
LOCATION value specified in the mapping file for the create, delete, delete field, and
write field operations. Overrides affect the immediate operation only.

For example, if you defined this location in the mapping file (ldap.idl):

ou=engg, o=portal, dc=US

To create this entry:

mail=login1@company.com.us, ou=engg, o=portal, dc=US

And you want to create another entry in a different location such as:

ou=techdocs, o=mycompany, dc=US

You can override the value specified for the location in the mapping file to create the
following entry:

mail=login2@company.com.us, ou=techdocs, o=mycompany, dc=US

To do this, you override the mapping file location by using the PIN_FLD_LOCATION
field as an input to the create operation. This lets you create accounts in a different tree
without LDAP Data Manager checking the LOCATION value in the mapping file.

To specify a new base location for a directory server entry, enter the new base location
in the input flist:

0 PIN_FLD_LOCATION STR[0] = "mail=login2@company.com.us, ou=techdocs, o=mycompany,
dc=US"

When subsequent operations are performed on this entry, you should override the
mapping file location by using the PIN_FLD_LOCATION field as an input.

Reading and Searching for Directory Server Entries
You can do these operations on directory server entries:

■ Reading Objects from the Directory Server

■ Reading Attributes from the Directory Server Entry

■ Searching the Directory Server for Entries

Reading Objects from the Directory Server
You can read objects from the directory server and return an flist containing fields and
values for each attribute in the directory server entry.

To read fields in a directory server entry, use the LDAP PCM_OP_READ_FLDS base
opcode. This opcode reads attributes from a directory server entry from the database
using the LDAP search operation

The LDAP Data Manager parses the mapping file (ldap.idl). After this file is parsed,
the LDAP Data Manager creates a mapping class that contains a mapping of the /r_
user class attributes to BRM fields.

The read fields opcode accepts the POID of the object that you want to read. If the
POID is a type-only POID, and you provide a DN, the LDAP Data Manager uses the
DN to locate the object in the directory server.

Reading and Searching for Directory Server Entries

Managing the Directory Server Organization 3-15

You supply the list of the fields that you want to read from the object. These fields
correspond the attributes of the directory server object. For each entry that you
provide in the input flist, the LDAP Data Manager queries the mapping class for the
corresponding attribute name to generate the list of attributes names.

To read an object:

1. Create the PCM_OP_READ_OBJ input flist.

2. Specify the complete POID or DN of the directory server entry.

Object Read examples
These examples explain how to read objects using a complete POID and a DN:

Read Object Using a Complete POID
0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user 71131 0
0 PIN_FLD_LOCATION STR [0] "o=company.com"

Read Object Using a DN
0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user -1
0 PIN_FLD_LOCATION STR [0] "o=company.com"
0 PIN_FLD_DN STR [0] "uid=link51, o=company.com"
0 PIN_FLD_DN_FLAGS INT [0] 0

Reading Attributes from the Directory Server Entry
The steps to read attributes from the directory server are similar to reading objects.
However, you need to pass the fields corresponding to the attributes of the directory
server object that you want to read in the input flist to PCM_OP_READ_FLDS as
opposed to the objects.

To read attributes from the directory server entry:

1. Create the PCM_OP_READ_FLDS input flist.

2. Specify the complete POID or DN of the entry.

3. Pass the fields of the attributes that you want to read in the input flist.

Attribute Read Examples
These examples show how to read attributes by using a complete POID and a DN:

Important: You can read only those objects that you have defined in
the mapping file.

Note: If you supply a DN then you must also supply a type-only
POID. A type-only POID is a POID with a value set to -1.

Note: If you supply a DN then you must also supply a type-only
POID. A type-only POID is a POID with a value set to -1.

Searching the Directory Server for Entries

3-16 BRM LDAP Manager

Read Attributes Using a Complete POID
0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user 71148
0 PIN_FLD_LOCATION STR [0] "o=company.com"
0 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1 /r_account 71145 13"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /r_account 71145
0 PIN_FLD_ACCOUNT_STATUS STR [0] "Active"
0 PIN_FLD_LOGIN STR [0] "link45"
0 PIN_FLD_NAME STR [0] "link45"
0 PIN_FLD_FIRST_NAME STR [0] "link45"
0 PIN_FLD_LAST_NAME STR [0] "link45"

Read Attributes Using a DN
0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user -1
0 PIN_FLD_LOCATION STR [0] "o=company.com"
0 PIN_FLD_DN STR [0] "uid=link45, o=company.com"
0 PIN_FLD_DN_FLAGS INT [0] 0
0 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1 /r_account 71145 13"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /r_account 71145
0 PIN_FLD_ACCOUNT_STATUS STR [0] "Active"
0 PIN_FLD_LOGIN STR [0] "link45"
0 PIN_FLD_NAME STR [0] "link45"
0 PIN_FLD_ADDRESS STR [0] "sdsdfs, sfsdfsd, CA 12345, USA"

Searching the Directory Server for Entries
You can search the directory server for entries that match a specified search filter. For
example, you can search for an entry that has a login attribute. You can search all
entries with the login attribute within a tree or sub tree.

To find LDAP objects, use the LDAP PCM_OP_SEARCH base opcode. This opcode
searches the directory server based on a specified search criteria that you supply as a
template in the input flist.

The LDAP Data Manager parses the mapping file (ldap.idl). After this file is parsed,
the LDAP Data Manager creates a mapping class that contains a mapping of the /r_
user class attributes to BRM fields.

You must supply the POID of the object for the search operation. The search opcode
uses the base Distinguished Name (DN) of the POID type as a base for the search
operation. You supply a search filter to this opcode as a template in PIN_FLD_
TEMPLATE. The template is the filter expression with attribute names and literal
values.

For each entry that matches the given search criteria, the search call returns the value
of the attributes in the attribute list, if they exist in the directory entry. For

Important: Only those objects and attributes that you define in the
mapping file can be returned by the LDAP Data Manager in the
output flist.

Important: Only those objects and attributes that you define in the
mapping file can be returned by the LDAP Data Manager in the
output flist.

Searching the Directory Server for Entries

Managing the Directory Server Organization 3-17

multi-valued attributes an array of values is returned. This call does not return an
error if it is queried for an attribute that does not exist in the directory entry.

For each attribute value or values, the class map is queried for the BRM field name
corresponding to the attribute name and an entry is added to the output flist with the
corresponding value for each attribute. For array attributes that are multi-valued, an
array entry is created for each value.

1. Select a search filter. See "Using the Sample LDAP Search Filters".

2. Create the PCM_OP_SEARCH input flist.

a. Add the POID for the PIN_FLD_POID field.

b. Select the search filter to use as a template for the PIN_FLD_TEMPLATE field.

c. Set PIN_FLD_ARGS to specify the arguments and value of arguments to be
substituted in the search filter.

d. Set the search scope. See "Setting the Search Scope".

3. Call the opcode to perform the search.

The search opcode replaces the search template criterion with attribute names (An)
and values (Vn). Attribute names and values are specified in pin_fld_args[n]. In
the example below, the filter translates into this search:

(&(cn-*link*)(ipstatus r=Aktivee))

Setting the Search Scope
You can set the search scope on the directory by using the PIN_FLD_SCOPE field. The
PIN_FLD_SCOPE field can have the values listed in Table 3–2:

The search opcode returns each attribute value or values as a result in the output flist.

This example shows a sample input flist that searches for a login with the pattern
"link" in it.

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user -1
0 PIN_FLD_LOCATION STR [0] "ou=engineering, o=company.com"
0 PIN_FLD_TEMPLATE STR [0] "(&(A1 = V1) (A2 ~= V2))"
0 PIN_FLD_SCOPE ENUM [0] 2
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_LOGIN STR [0] "*link*"
0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_IP_STATUS STR [0] "Aktivee"

Figure 3–2 shows a sample directory tree:

Table 3–2 PIN_FLD_SCOPE Settings

Value Meaning

LDAP_SCOPE_SUBTREE Default value. Searches the entire directory tree.

LDAP_SCOPE_ONELEVEL Searches one level down the directory tree.

Searching the Directory Server for Entries

3-18 BRM LDAP Manager

Figure 3–2 Sample Directory Tree

If the search scope is 0 PIN_FLD_SCOPE ENUM [0] 2, entries in all branches beneath
the location are searched. In this example, the searched entries include cn=scott,
cn=tim, and all entries in branches under ou=research. If the search scope is 0 PIN_
FLD_SCOPE ENUM [0] 1, only entries immediately below the location are searched. In
this example, these include only cn=scott and cn=tim.

Specifying the Base DN
The object type (/r_user) determines the base DN of a search. The value specified for
the location for /r_user in the IDL file is used as the base DN. You can override this by
specifying the value for PIN_FLD_LOCATION in the input flist. The results of the
search are mapped to this object class.

Searching from Different Locations
If all base class and subclass entries are under the same location, you can perform a
single search from that location to find entries that are instances of the base class and
subclasses that satisfy the search criteria. If the entries are under different locations,
you must perform a separate search under each location to find the instances.

Example Service Storable Class Tree and Search
This is a sample service storable class definition from an .IDL file:

STORABLE CLASS /r_service IMPLEMENTATION LDAPV3 {
ATTRVAL = "objectClass: top";
ENTRY_TYPE = "rservice";
LOCATION = "ou=services, o=company.com";
.....}

STORABLE CLASS /r_service/ip IMPLEMENTATION LDAPV3 {
provide mapping for /r_service/ip fields
LOCATION = "ou=ipservices, o=company.com";
.....}

Figure 3–3 shows the directory tree:

Searching the Directory Server for Entries

Managing the Directory Server Organization 3-19

Figure 3–3 Directory Tree

To locate base class and subclass entries, you must perform a search in each of the
locations:

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_service -1
0 PIN_FLD_TEMPLATE STR [0] "(A1 = V1)"
0 PIN_FLD_SCOPE ENUM [0] 2
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_LOGIN STR [0] "*john*"
Summary of Portal LDAP API operations

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_serviceip -1
0 PIN_FLD_TEMPLATE STR [0] "(A1 = V1)"
0 PIN_FLD_SCOPE ENUM [0] 2
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_LOGIN STR [0] "*john*"
Summary of Portal LDAP API operations

Using the Sample LDAP Search Filters
Table 3–3 shows sample search filters that you use as templates to search the directory
server entries. For information on how to search the directory server entries, see
"Searching the Directory Server for Entries".

Table 3–3 LDAP Search Filters

Filter Example Arguments Modified Filter Matches

(F1=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_NAME STR [0] "*bert*"

(cn=*bert*) All entries with the
string "bert"
somewhere in the
name.

(F1>=Fred) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_NAME STR [0] "Fred"

(cn>=Fred) All entries with a
common name that is
lexico-graphically
greater than "Fred".

(&(objectclass=person)
(F1=V1))

0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_EMAIL_LOGIN STR [1]
"*"

(&(objectclass=person)
(maillogin=*))

All people with an
email address.

Testing Directory Server Connections

3-20 BRM LDAP Manager

LDAP Search Limitations
The search does not return objects that are not defined in the mapping file. LDAP Data
Manager treats directory server objects that are not defined in the mapping file as an
error condition.

Testing Directory Server Connections
To test directory server connections, use the LDAP PCM_OP_TEST_LOOPBACK base
opcode. This opcode verifies that the LDAP Data Manager and the directory server
daemon/service processes are running and communicating with each other.

BRM LDAP Profile Object
For convenience, the /profile/ldap storable object holds the DN of the directory server
entries corresponding to the /account storable objects. This lets you pass in a DN when
you create the BRM account. BRM uses the PCM_OP_CUST_COMMIT_CUSTOMER
opcode to do this.

This is useful when you create BRM accounts based on customer information already
in the directory server. For example, when a new entry is created for a customer in the
directory server, the DN of the entry is passed to BRM while creating the
corresponding /account.

To avoid empty /profile objects, the /profile object is created only if it is passed in
during account creation.

Example of how input is passed in when you use a profile object:

/profile
PIN_FLD_POID MS POID profile POID
PIN_FLD_ACCOUNT_OBJ_POID MR POID Owning Account
PIN_FLD_NAME MR STR[255] Name("LDAP Information")
/profile/ldap

PIN_FLD_LDAP_INFO MR SUBST
PIN_FLD_DN MR TR[1024] DN of the Event Object

(F1~=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_LAST_NAME STR [0]
"Jensin"

(sn~=Jensin) All entries with a
surname
approximately equal
to Jensin.

(Note the misspelling)

(! (F1=V1)) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_EMAIL_LOGIN STR [0]
"*"

(! (mail=*)) Entries without a mail
attribute.

(F1=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_POID_STR [0] "0.0.6.1
/r_user 9999 0"

(pinpoid=0.0.6.1 /r_
user 9999 0)

Entries that have a
pinpoid equal to the
value specified.

(F1=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_DN [0] "cn=joe,
ou=People, o=microsoft"

(dn= cn=joe,
ou=People,
o=microsoft)

Entries that have a
DN equal to the value
specified.

Table 3–3 (Cont.) LDAP Search Filters

Filter Example Arguments Modified Filter Matches

4

Installing LDAP Manager 4-1

4Installing LDAP Manager

This chapter explains how to install the Oracle Communications Billing and Revenue
Management (BRM) LDAP Manager software.

Before you read this document, you should be familiar with BRM concepts and
architecture. See "Introducing BRM" and "BRM System Architecture" in BRM Concepts,
and "About LDAP Manager".

For information on customizing your BRM LDAP environment, see "Customizing
Your BRM LDAP Environment".

You have to install the LDAP Manager before you can configure it. To configure the
LDAP Manager, see "Configuring LDAP Manager".

System Requirements
LDAP Manager is available for the HP-UX IA64, Linux, Solaris, and AIX operating
systems. For information on disk space requirements for the operating systems, see
"Disk Space Requirements" in BRM Installation Guide.

Software Requirements
Before installing LDAP Manager, you must install:

■ Third-Party software, which includes the Perl libraries and JRE required for
installing BRM components. See "Installing the Third-Party Software" in BRM
Installation Guide.

■ BRM. See "Putting Together Your BRM System" in BRM Installation Guide.

■ LDAP V3 Compliant - LDAP Server.

■ Oracle 10g, Oracle 11g, or Oracle 12c client libraries.

Important: LDAP Manager is an optional feature that requires a
separate license.

Note: While BRM does not test every available directory server, as
long as you integrate with a 100 percent LDAPv3-compliant directory
server, your BRM integration with that server should work.

Installing LDAP Manager

4-2 BRM LDAP Manager

Installing LDAP Manager

To install LDAP Manager:

1. Download the software to a temporary directory (temp_dir).

2. Go to the directory where you installed the Third-Party package and source the
source.me file.

Bash shell:

source source.me.sh

C shell:

source source.me.csh

3. If you have a previous release of LDAP Manager installed, back up the existing
BRM_Home/sys/dm_ldap/pin.conf configuration file. If you have made changes to
the BRM_Home/sys/ldap.idl sample mapping file, back up this file also.

4. Go to the temp_dir directory and enter this command:

7.5.0_LDAPMgr_platform_opt.bin

where platform is the operating system name.

Note: If you have already installed the product, features that are
already installed cannot be reinstalled without uninstalling them first.
To reinstall a feature, uninstall it and then install it again.

Important:

■ If you download to a Windows workstation, use FTP to copy the
.bin file to a temporary directory on your UNIX server.

■ You must increase the heap size used by the Java Virtual Machine
(JVM) before running the installation program to avoid "Out of
Memory" error messages in the log file. For information, see
"Increasing Heap Size to Avoid "Out of Memory" Error Messages"
in BRM Installation Guide.

Caution: You must source the source.me file to proceed with
installation, otherwise "suitable JVM not found" and other error
messages appear.

Caution: The installation overwrites any pre-existing LDAP
Manager pin.conf and ldap.idl files. If you do not back up the original
files, you must manually recreate the settings in the new files to
restore your original configuration.

Uninstalling LDAP Manager

Installing LDAP Manager 4-3

5. Follow the instructions displayed during installation. The default installation
directory for LDAP Manager is opt/portal/7.5.

6. Go to the directory where you installed the LDAP Manager package and source
the source.me file:

Bash shell:

source source.me.sh

C shell:

source source.me.csh

7. If you backed up the original BRM_Home/sys/dm_ldap/pin.conf file in step 3,
merge the contents of the backup copy into the new pin.conf file.

8. If you backed up the original BRM_Home/sys/ldap.idl sample mapping file,
replace the newly installed file with your backup file.

9. Go to the BRM_Home/setup directory and run the pin_setup script.

Your LDAP Manager installation is now complete.

Uninstalling LDAP Manager
To uninstall LDAP Manager, run the BRM_
Home/uninstaller/LDAPMgr/uninstaller.bin.

Note: You can use the -console parameter to run the installation in
command-line mode. To enable a graphical user interface (GUI)
installation, install a GUI application such as X Windows and set the
DISPLAY environment variable before you install the software.

Note: The installation program does not prompt you for the
installation directory if BRM or LDAP Manager is already installed on
the machine and automatically installs the package at the BRM_Home
location.

Note: The pin_setup script starts all required BRM processes.

Uninstalling LDAP Manager

4-4 BRM LDAP Manager

5

Configuring LDAP Manager 5-1

5Configuring LDAP Manager

This chapter explains how to configure the Oracle Communications Billing and
Revenue Management (BRM) LDAP Manager.

Before you read this document, you should be familiar with BRM concepts and
architecture. See "Introducing BRM" and "BRM System Architecture" in BRM Concepts,
and "About LDAP Manager".

For information on customizing your BRM LDAP environment, see "Customizing
Your BRM LDAP Environment".

Before you configure the LDAP Manager, you need to install it. See "Installing LDAP
Manager".

Configuring the LDAP Data Manager
To configure the LDAP DM:

■ Set up the ldap.idl mapping file.

■ Set up the directory server to use a replicatable user object (/r_user) for BRM.

■ Edit the LDAP DM pin.conf file.

Setting Up the Mapping File
When you install the LDAP Manager, a default interface language definition (.idl)
mapping file is created for you. Use the ldap.idl mapping file.

You can find the mapping file in the BRM_home/sys/dm_ldap directory.

The mapping file needs to match your directory server implementation. For more
information on how to set up this file, see "LDAP Data Manager Mapping Files".

Setting Up the Directory Server
To set up your directory server with attributes that BRM can understand, such as
Portal Object ID (POID), names, addresses, currency, login, and appropriate service
information (email and other IP network services), you must create a BRM object-type
definition called the replicate user (/r_user) object class in your directory server. For
more information on setting up this object class in the directory server, see
"Determining the /r_user Object Class Attributes".

Important: LDAP Manager is an optional feature that requires a
separate license.

Configuring the LDAP Data Manager

5-2 BRM LDAP Manager

Editing the LDAP Data Manager Configuration File
1. Open the LDAP DM configuration file (BRM_home/sys/dm_ldap/pin.conf).

2. Edit the standard memory, connection, debugging, and log file entries. See "Using
Configuration Files to Connect and Configure Components" in BRM System
Administrator's Guide.

The hostname and port entries identify the machine when the LDAP directory
server runs:

- ldap_ds hostname my_company.com
- ldap_ds port port_number

3. To specify the mapping file, set the mapping_file entry to ldap.idl:

- ldap_ds mapping_file ldap.idl

4. To set the Bind Distinguished Name (DN) for authenticating BRM to the directory
server, set the bind entry to the Distinguished Name (DN) of the entry you want to
use for binding to the directory server.

For example:

- ldap_ds bind uid=admin,ou=Administrators,ou=TopologyManagement, o=Directory
Manager

5. Set the bind password for your LDAP directory server host:

- ldap_ds password password

6. To specify how the LDAP Manager outputs timestamps, edit the
encodeTimestamp entry.

■ Use UTCTIMESTRING to specify a readable format; for example,
20021207135225 (yyyymmddhhmmss).

■ Use UTCTIMEVALUE to specify a decimal format; for example, 962246667.
This is the default.

- ldap_ds encodeTimestamp UTCTIMESTRING

7. Use the appendZToTimestamp entry to append Z (which specifies the Zulu time
zone) to the end of the time stamp. The default (0) does not append a Z.

- ldap_ds appendZToTimestamp 1

8. Use the deleteOldRdn entry to specify whether to rename distinguished names.
See "Renaming Directory Server Entries". By default, the old name is deleted.

- ldap_ds deleteOldRdn 1

9. Use the ops_fields_extension_file entry to specify the file that contains the
definitions of custom field lists.

Note: You can check the directory bind DN by using your directory
server tools or you can ask your directory server system administrator
for this information.

Configuring the Connection Manager for LDAP Manager

Configuring LDAP Manager 5-3

- dm_ldap ops_fields_extension_file my_ldap_implementation

For information on how to create custom fields, see "Creating Custom Fields" in
BRM Developer's Guide.

Configuring the Connection Manager for LDAP Manager
Make sure the LDAP entries have been added to your CM configuration file and edit
them as necessary (the fm_module entries are preconfigured, but you must uncomment
them if they are commented out).

1. Open the Connection Manager configuration file (BRM_home/sys/dm_
ldap/pin.conf) from the CM directory.

2. Set the dm_pointer entry to point to your LDAP Data Manager.

The default database number for the dm_pointer entry is 0.0.5.x, where x is the
number of the BRM database.

- cm dm_pointer 0.0.5.X dm_ldap_host dm_ldap_port

3. Do one of the following:

■ For the user mapping scheme, leave the mapping scheme entry (user_scheme)
set to 1. This is the default.

■ For the one-to-one mapping scheme, set user_scheme to 0.

- fm_repl_pol user_scheme 1

Configuring the LDAP Data Manager for Multiple Schemas
You can configure a BRM system to use multiple database schemas as well as multiple
LDAP Data Managers. For example:

- cm dm_pointer 0.0.0.1 ip 156.151.1.13 56971 # Oracle
- cm dm_pointer 0.0.0.2 ip 156.151.1.13 56972 # Oracle
- cm dm_pointer 0.0.0.3 ip 156.151.1.13 56973 # Oracle
- cm dm_pointer 0.0.5.1 ip 156.151.1.13 56981 # DM LDAP
- cm dm_pointer 0.0.5.2 ip 156.151.1.13 56982 # DM LDAP
- cm dm_pointer 0.0.5.3 ip 156.151.1.13 56983 # DM LDAP

In addition to setting these entries, you must define the LDAP DM’s database number
in the PIN_FLD_CONSUMER_OBJ field in the /channel object. The PCM_OP_REPL_
POL_PUSH policy opcode retrieves this database number and sends the data to that
LDAP DM. For more information, see "About Channels and Data Propagation".

Configuring the LDAP Data Manager with Different LDAP Data Manager Pointers
You can set different LDAP Data Manager pointers to reference the same host/port
combination. For example:

- cm dm_pointer 0.0.5.1 ip 156.151.1.13 56981 # DM LDAP
- cm dm_pointer 0.0.5.2 ip 156.151.1.13 56981 # DM LDAP
- cm dm_pointer 0.0.5.3 ip 156.151.1.13 56981 # DM LDAP

Important: Include this entry in your LDAP Data Manager pin.conf
file only when you create custom fields for your directory server
implementation.

Configuring Event Notification for LDAP Manager

5-4 BRM LDAP Manager

Configuring Event Notification for LDAP Manager
To trigger updates to the LDAP database, BRM uses event notification.

Before you can use LDAP Manager, you must configure the event notification feature
as follows:

1. If your system has multiple configuration files for event notification, merge them.
See "Merging Event Notification Lists" in BRM Developer's Guide.

2. Ensure that the merged file includes the entire event notification list in the BRM_
home/sys/data/config/pin_notify.ldap file.

3. (Optional) If necessary to accommodate your business needs, add, modify, or
delete entries in your final event notification list. See "Editing the Event
Notification List" in BRM Developer's Guide.

4. (Optional) If necessary to accommodate your business needs, create custom code
for event notification to trigger. See "Triggering Custom Operations" in BRM
Developer's Guide.

5. Load your final event notification list into the BRM database. See "Loading the
Event Notification List" in BRM Developer's Guide.

For more information, see "Using Event Notification" in BRM Developer's Guide.

Loading the LDAP Price List
LDAP Manager includes a price list that includes a plan that uses the LDAP service.
Use Pricing Center to add the LDAP plans to your price list, or use the "loadpricelist"
utility in BRM Setting Up Pricing and Rating as shown below:

loadpricelist -v -cf BRM_home/setup/scripts/LdapPlan.xml

Configuring the Channel Framework
This section includes the following channel framework configuration tasks:

■ Configuring the pin_channel_export Utility

■ Configuring Channel Definitions

■ Loading Channel Definitions into the BRM Database

Configuring the pin_channel_export Utility
The "pin_channel_export" utility publishes changes from the BRM database to the
directory server by synchronizing data in the channel with the data in the external
directory server. This utility runs as a process under UNIX; once you start it, it runs
continuously in the background until you end the process or until the BRM connection
goes down. To keep the pin_channel_export utility running even when BRM goes
down, configure the mta_retry_srch entry in the utility’s pin.conf file.

You can edit the pin_channel_export configuration file in BRM_
home/apps/pinapps/exportapps to configure the following options:

■ To specify whether to delete channel events that have been pushed, set the delete_
channel_entry entry. The default is 1, which deletes the objects. A value of 0 keeps
them.

■ To specify the interval time running the utility, set the sleep_interval entry. By
default, the pin_channel_export utility publishes data every 60 seconds.

Configuring the Channel Framework

Configuring LDAP Manager 5-5

■ To specify the number of worker threads spawned to perform the specified work,
set the children entry. The default is 5.

■ To specify the number of channel events processed by each worker thread in batch
mode, set the per_batch entry. The default is 5000.

■ To specify the number of channel events returned by each search step in the BRM
database, set the per_step entry. The default is 500.

■ To specify the number of channel events received from the BRM database in a
block and cached in system memory for processing, set the fetch_size entry. The
default is 1000.

■ To specify the number of times the MTA framework retries a search after the CM
goes down, set the retry_mta_srch entry. The framework retries the search the
specified number of times with a sleep interval of 30 seconds. The default is 0.

For more information, see "Configuring Your Multithreaded Application" in BRM
Developer's Guide.

To specify a channel family, run the pin_channel_export utility with the -f parameter
and specify the channel family ID. For example:

pin_channel_export -f 100

For more information on publishing channels, see "How Channel Events are
Published".

Configuring Channel Definitions
This procedure describes how to set the following attributes of a channel, which
determine how channel events are published to the LDAP server(s):

■ The channel family.

■ The publishing order.

■ The publishing method: serially or in parallel.

In addition to setting these attributes, you must set the general channel attribute
values, including the channel name, consumer array information, and supplier array
information. For more information on all channel attributes, see "About Defining
Channels".

1. Open the sample channel_config.xml file in the BRM_home/sys/data/config
directory with an XML editor or text editor.

2. Do the following for each channel definition in the file:

■ Set the FldChannelId value to assign a channel ID.

Note:

■ To publish channel events for different channel families, you need
a separate pin_channel_export instance for each family ID. The
channel events are published to their respective LDAP servers by
the PCM_OP_REPL_POL_PUSH policy opcode based on the PIN_
FLD_CONSUMER_OBJ value in the /channel object.

■ When channel events are not deleted from the channel_event_
table, the table can grow rapidly and reduce performance.

Configuring the Channel Framework

5-6 BRM LDAP Manager

■ Set the FldFamilyId value to assign a channel family. For more information,
see "About Channel Families".

■ Set the FldOrder value to define a publishing order for a channel inside a
family. For more information, see "About Channel Order".

■ Set the FldMultithread value to set whether the channel is published serially
or in parallel:

0 = serially

1 = in parallel

For more information, see "About Channel Publishing Mode".

3. Save the channel_config.xml file. You can save this configuration file with any
name and in any location.

4. Load the channel definitions into the BRM database. See "Loading Channel
Definitions into the BRM Database".

Loading Channel Definitions into the BRM Database
To load channel definitions, edit the sample channel_config.xml file, then run the
"load_channel_config" utility to load the contents into the /channel object in the BRM
database:

1. Define the channels for your database in the channel configuration XML file and
save the file. For more information, see "About Defining Channels".

2. Use the following command to load the channel_config file:

load_channel_config channel_config.xml

where channel_config is the name of the channel configuration file.

If the channel configuration XML file is not in your working directory, use the full
path to the file. For example:

load_channel_config BRM_home/sys/data/config/channel_config.xml

3. Stop and restart the pin_channel_export utility.

Important: Channel IDs must be less than 1000.

Note: To connect to the BRM database, the load_channel_config
utility needs a configuration file in the directory from which you run
the utility. See "Creating Configuration Files for BRM Utilities" in BRM
System Administrator's Guide.

Caution: When you run the load_channel_config utility, it
overwrites the existing channel definitions in the /channel object in
the BRM database. If a channel definition exists but is not included in
the channel_config.xml file, the database definition is not
overwritten.

Enabling Secure Communication between LDAP Manager and LDAP Directory Servers

Configuring LDAP Manager 5-7

To verify that the channel_config.xml file was loaded, you can display the /channel
object by using the Object Browser, or use the robj command with the testnap utility.
See "Reading an Object and Writing Its Contents to a File" in BRM Developer's Guide.

Saving Channel Definitions to a File
To save channel definitions stored in your BRM database to an XML file, run the load_
channel_config utility with the -r parameter:

load_channel_config -r channel_config.xml

To export the channel definitions to an XML file not in your working directory, use the
full path for the file:

load_channel_config -r BRM_home/data/config/channel_config.xml

For more information on the channel_config.xml file, see "About Defining Channels".

When creating a new supplier for a channel, the PCM_OP_ACT_POL_EVENT_
NOTIFY policy opcode formerly checked if the input event type was of a particular
sub-type and, if so, set the PIN_FLD_SUPPLIER_OBJ field to the event POID and sent
it to PCM_OP_CHANNEL_PUSH. Now, it sets the PIN_FLD_SUPPLIER_OBJ field to
the subtype value of the supplier. For details, see "Tracking Additional Changes to
/account or /service Objects".

Your LDAP Manager configuration is now complete.

Enabling Secure Communication between LDAP Manager and LDAP
Directory Servers

You can use Transport Layer Security (TLS) to enable secure communication between
LDAP Manager and LDAP directory servers.

Before you enable LDAP Manager to secure communications, ensure that you do the
following:

■ Download the 32-bit version of Oracle 12c client libraries to the directory in which
you store the Oracle client libraries.

■ Create or obtain server certificates for your LDAP directory servers.

■ Configure your LDAP directory servers to listen to incoming TLS connections.

■ Configure the LDAP Manager port specified in the BRM_home/sys/dm_
ldap/pin.conf file as the TLS port for your LDAP directory servers.

For more information on creating or obtaining server certificates and configuring your
LDAP directory servers, see the LDAP directory server documentation.

To enable secure communication between LDAP Manager and LDAP directory
servers:

1. Go to the BRM_home/bin directory.

2. Run the following command, which stops LDAP Manager:

Note: To connect to the BRM database, the load_channel_config
utility needs a configuration file in the directory from which you run
the utility. See "Creating Configuration Files for BRM Utilities" in BRM
System Administrator's Guide.

Enabling Secure Communication between LDAP Manager and LDAP Directory Servers

5-8 BRM LDAP Manager

stop_dm_Ldap

3. Open the start_dm_Ldap script file in a text editor.

4. Search for the following line:

XXX ought to save old log file, or check for > some-size...

5. Add the following lines above the line specified in step 4:

LDAP_12C_LIBS=Oracle12c_client_libs_path
.

if ["$LD_LIBRARY_PATH" = ""];
then

LD_LIBRARY_PATH=${LDAP_12C_LIBS}
else

LD_LIBRARY_PATH=${LDAP_12C_LIBS}:${LD_LIBRARY_PATH}
.

where Oracle12c_client_libs_path is the path to the directory in which the 32-bit
version of Oracle 12c client libraries are located.

6. Save and close the script file.

7. Create the Oracle wallet by doing the following:

a. Run the following command, which creates the Ldap_dir/Ldap_wallet
directory.

mkdir Ldap_dir/Ldap_wallet

where Ldap_dir is the directory in which you store the Oracle wallet for LDAP
Manager.

b. Copy the server certificates for your LDAP directory servers to the BRM_home
directory.

c. Go to the BRM_home/bin directory.

d. Run the following commands:

./orapki wallet create -wallet Ldap_dir/Ldap_wallet

./orapki wallet add -wallet Ldap_dir/Ldap_wallet -trusted_cert -cert cert_
file_name
./orapki wallet create -wallet Ldap_dir/Ldap_wallet -auto_login

where cert_file_name is the name of the server certificate file.

8. Go to the BRM_home/sys/dm_ldap directory.

9. Open the LDAP DM configuration file (BRM_home/sys/dm_ldap/pin.conf) in a
text editor.

10. Add the following lines in the file:

- ldap_ds ssl 1
- ldap_ds ssl_auth_mode server_ssl_mode
- ldap_ds wallet Ldap_dir/Ldap_wallet

where server_ssl_mode is the SSL mode enabled for your LDAP directory servers.
The valid values are:

■ 0. To disable authentication, use 0.

■ 1. To enable one way authentication, use 1.

Enabling Secure Communication between LDAP Manager and LDAP Directory Servers

Configuring LDAP Manager 5-9

■ 2. To enable two way authentication, use 2.

11. Run the following command, which starts LDAP Manager:

start_dm_Ldap

Enabling Secure Communication between LDAP Manager and LDAP Directory Servers

5-10 BRM LDAP Manager

6

Customizing Your BRM LDAP Environment 6-1

6Customizing Your BRM LDAP Environment

This chapter discusses how to extend and modify the list of objects that Oracle
Communications Billing and Revenue Management (BRM) LDAP Manager exports.
For the default list of objects, see "Determining the /r_user Object Class Attributes".

This document also describes sample filters you can use in the directory server with
input templates search opcodes in LDAP Manager.

Exporting Additional Data to the Directory Server
You can export more data to your LDAP directory server than the data exported by
default by LDAP Manager. However, you must make sure that the LDAP Data
Manager can update data in the directory server after the data is created.

Exporting Additional Fields from Objects
This section explains how to export additional fields from /account, /service/ip, or
/service/email objects to the directory server. For the list of fields that are pushed to
the directory server by default, see "Determining the /r_user Object Class Attributes".

Assume that you want to push some accounting information, specifically the
accounting cycle day of the month (PIN_FLD_ACTG_DOM) field from the /billinfo
object. Whenever you modify this field in the /billinfo object (via PCM_OP_CUST_
SET_BILLINFO), an /event/customer/billinfo event is generated.

You must perform the following steps in the PCM_OP_REPL_POL_PUSH opcode:

1. Read PIN_FLD_ACTG_CYCLE_DOM from the bill unit (/billinfo object) in
addition to other fields that are already being read in the function.

fm_repl_pol_get_account_flds() is located in the file fm_repl_pol_translate.c as
follows:

PIN_FLIST_FLD_SET(read_flistp, PIN_FLD_ACTG_CYCLE_DOM, NULL, ebufp);

2. Recompile the policy and restart the CM.

3. Define an attribute with integer syntax in the directory server. Make sure the
objectClass of the entry that holds the account /service information in the
directory server allows this attribute. For example, you could define the attribute
actgdom by editing the ruser object class using the directory server manager and
add actgdom to the list of allowed attributes.

4. Add the accounting day of the month field in the LDAP Data Manager mapping
file (ldap.idl):

5. Add the following code to the /r_user class definition of the mapping file:

Exporting Additional Data to the Directory Server

6-2 BRM LDAP Manager

INT PIN_FLD_ACTG_CYCLE_DOM {
CREATE = Optional;
MODIFY = Writeable;

}

6. Add the following code to the /r_user class implementation section of the mapping
file to define the new attribute:

INT PIN_FLD_ACTG_CYCLE_DOM {
 ATTRIBUTE = "actgdom";
}

Tracking Additional Changes to /account or /service Objects
The /account object information is pushed to the directory server when any of the
following events are generated (as listed in the PIN_FLD_SUPPLIERS array of
/channel 101):

■ /event/customer/nameinfo

■ /event/customer/product_status

■ /event/customer/status

■ /event/customer/billinfo

You can track additional changes to the /account and /service objects. This section
provides an example of how to track an additional change in the /account object so
that it can be pushed to the directory server.

Pushing the /account object information to the directory server when you update
account information creates and /event/customer/billinfo event:

1. Add /event/customer/billinfo to the PIN_FLD_SUPPLIERS array in /channel 100.
You can do this by running the PCM_OP_WRITE_FLDS opcode from testnap.

For example assume the following flist is stored in a file called add.flist:

0 PIN_FLD_POID POID [0] $DB_NO /channel 101
0 PIN_FLD_SUPPLIERS ARRAY [5]
1 PIN_FLD_SUPPLIER_OBJ POID [0] $DB_NO
/event/customer/billinfo -1

2. Run testnap and use this flist as input to the write fields operation:

sh> testnap
testnap> r add.flist 1
testnap> wflds 1
testnap> q

3. To trigger BRM to call the policy opcode PCM_OP_ACT_POL_EVENT_NOTIFY
(opcode number 301) whenever an /event/customer/billinfo event is generated,
add the following line to your system’s event notification list:

301 0 /event/customer/billinfo

See "Implementing Event Notification" in BRM Developer's Guide.

4. Set up the account modification channel to be updated when an
/event/customer/billinfo event is generated by adding the following to the fm_
act_pol_event_notify_ldap function in the PCM_OP_ACT_POL_EVENT_NOTIFY
policy opcode:

if (fm_utils_is_subtype(e_pdp,PIN_OBJ_TYPE_EVENT_CREATE_BILLINFO) == 1){

Exporting New Service Types

Customizing Your BRM LDAP Environment 6-3

type = PIN_OBJ_TYPE_EVENT_CREATE_BILLINFO;
push_account_modify = 1;

if (push_account_modify || push_service_modify) {
flistp = PIN_FLIST_CREATE(ebufp);
PIN_FLIST_FLD_PUT(flistp, PIN_FLD_POID, (void *)ch_pdp, ebufp);
db_id = PIN_POID_GET_DB(e_pdp);
id = PIN_POID_GET_ID(e_pdp);
e_pdp1 = PIN_POID_CREATE(db_id, type, id, ebufp);
PIN_FLIST_FLD_PUT(flistp, PIN_FLD_SUPPLIER_OBJ,

(void*)e_pdp1, ebufp);
}

The PCM_OP_REPL_POL_PUSH policy opcode searches for all channels that have
/event/customer/billinfo as one of its PIN_FLD_SUPPLIER_OBJ values and create
/channel_event objects for each of those channels.

5. Recompile the policy and restart the CM.

Exporting New Service Types
Assume that you want to export the information from a custom service object called
/service/web. BRM updates the service creation and service modification channel
objects (/channel 102 and /channel 103) when the /service/web objects are created or
modified. If you use the user scheme (where service and account object information
are made available from a single entry in the directory server), you do the following:

1. Define the attributes that correspond to this service object in the LDAP directory
server. For example, web-login, web-password, and web-size-limit.

2. Add the attributes that correspond to the ruser service object to the list of allowed
attributes in the objectclass.

3. Define the mapping for these attributes in the LDAP Data Manager mapping file
(ldap.idl).

For example:

PIN_FLD_WEB_LOGIN maps to web-login

PIN_FLD_WEB_PASSWORD maps to web-password

PIN_FLD_WEB_LIMIT maps to web-size-limit

4. Enhance the replication policy PCM_OP_REPL_POL_PUSH to handle
/service/web. Since each creation and modification is individually tracked, the
newly created service or service modification is automatically picked up.

Note: This policy opcode is implemented in the BRM_
Home/source/sys/fm_act_pol/fm_act_pol_event_notify.c file.

Tip: See the code in policy file fm_repl_pol_translate.c, which
implements the part that reads from the service object and pushes it to
dm_ldap. You can handle the /service/web object fields just like the
fields in /service/email.

Exporting New Service Types

6-4 BRM LDAP Manager

7

Troubleshooting Your BRM LDAP Environment 7-1

7Troubleshooting Your BRM LDAP Environment

This chapter describes how to fix common Oracle Communications Billing and
Revenue Management (BRM) LDAP environment problems.

Checking for Event Errors and Recovering from Failure
Periodically check for and correct event errors:

1. Run pin_channel_report to print a list of objects whose changes could not be
exported.

2. Check the dm_ldap.pinlog for errors that prevent events from being pushed.

3. Correct each of the errors in the dm_ldap.pin.log file.

4. After the errors are corrected, clear them by running:

pin_channel_clear_error type poid

where:

■ type is one of the following values:

-a: Clears the status of all the channel_event objects with errors.

-i: Clears the status of a particular channel_event object.

■ poid is the particular channel_event object containing an error.

5. To verify that the errors are cleared, run pin_channel_report. This returns an
empty list if all the errors have been cleared.

6. After the errors are cleared, push the changes to the directory server by using pin_
channel_export.

If the pin_channel_report utility does not return any errors and the changes are still
not exported, the problem must be elsewhere. Run testnap to find the problem.

Verifying Event Creation by Running testnap
You can verify that channel event objects were created by running the testnap utility:

1. Create and name a test file. For example, stest.

2. Enter the following flist into the test file:

Note: Errors are unique to specific configurations.

Verifying Event Creation by Running testnap

7-2 BRM LDAP Manager

r stest

1 nap(13860)> d 1
number of field entries allocated 20, used 6
0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /channel_event where F1 = V1 or
F2 = V2 "
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_STATUS ENUM [0] 4
0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 5
1 PIN_FLD_POID POID [0] NULL poid pointer
1 PIN_FLD_OBJECT POID [0] NULL poid pointer
1 PIN_FLD_CHANNEL_OBJ POID [0] NULL poid pointer
1 PIN_FLD_SUPPLIER_OBJ POID [0] NULL poid pointer
1 PIN_FLD_STATUS ENUM [0] 0

3. Run testnap and read the test file into a buffer:

testnap

by typing:

r file_name buffer_number

4. Search for the list entries by typing:

search buffer_number

A list is returned, similar to this sample:

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 8645 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 100 0
1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /account -1 0
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_RESULTS ARRAY [1] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 9669 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 102 0
1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /service -1 0
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_RESULTS ARRAY [2] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 10693 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 102 0
1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /service -1 0
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_RESULTS ARRAY [3] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 11717 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 102 0
1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /service -1 0
1 PIN_FLD_STATUS ENUM [0] 0

Status Values for Channel Events
The pin_channel_export utility initiates synchronization every 60 seconds by default.
All /channel_events ready to be pushed (those with a status of 0 or 4) are exported to
the Connection Manager. The pin_channel_export utility calls PCM_OP_REPL_POL_
PUSH to export the data.

Verifying the Mapping Between Object Classes and Entries

Troubleshooting Your BRM LDAP Environment 7-3

Table 7–1 shows the status values that appear in the channel_event_table:

Verifying the Mapping Between Object Classes and Entries
You can avoid object class violation problems in the BRM LDAP environment by
making sure that BRM object class type definitions map to directory server schema
entries correctly.

The common object class violations are:

■ Mismatches between the Mapping File and Directory Server Entries

■ Object Classes or Attributes are Missing in the Directory Server

Mismatches between the Mapping File and Directory Server Entries
There are two common mismatches between the mapping file and directory server
entries:

■ The object class type definition in the mapping file does not match the
corresponding directory server name.

■ The attribute name in the mapping file does not match the corresponding
directory server attribute name.

Entry Class Type Definition Contains a Typo
Problem: The name in the mapping file (BRM_Home/sys/ldap.idl) does not match the
name of the entry in the directory server. For example, the directory server entry is
named ruesr (a typo) while the mapping file has an object type of ruser.

Solution: Verify that the object class name matches the entry type name.

Case or Spelling Mismatches in Attribute Names
Problem: There is a mismatch between the attribute name in the directory server and
the name supplied in the mapping file. Sometimes, the mismatch is due to a difference

Table 7–1 Status Entries in channel_event_table

Numeric
Value Value Description

0 PIN_STATUS_NOT_PUSHED Needs to be pushed.

2 PIN_STATUS_PUSHED Channel event has been pushed.

By default, pushed /channel_events
are deleted from the channel event
table.

To save a record of a pushed
/channel_event, set delete_
channel_events to 0 in the
Connection Manager pin.conf file.

3 PIN_STATUS_ERROR Requires user intervention to fix.
These errors usually occur during
configuration and are less likely to
occur in a stable, operating
environment.

4 PIN_STATUS_LINK_ERROR The directory service is down. Does
not require user intervention, since
errors are resolved automatically.

Verifying the Mapping Between Object Classes and Entries

7-4 BRM LDAP Manager

in case or spelling. The most common errors are with these attributes shown in
Table 7–2:

 Solution: Verify that the attributes names match (check for case).

Object Classes or Attributes are Missing in the Directory Server
BRM cannot create directory server schema elements. Therefore, you must manually
define the BRM data elements that you are interested in capturing with your own
directory server tools. If you do not define these object classes and attributes in the
directory server, you will encounter BRM object class errors. For example, to capture
BRM account object data, you must create a directory entry called r_user with an
attribute called pin-poid-id, which is relevant only to BRM.

Object Class Attributes Undefined in the Directory Server
Problem: None of the attributes belonging to the object class were created in the
directory server, added to the object class, or both. For example, the /r_user object class
must be modeled correctly, that is, it must contain all of the required BRM attributes to
push data to the directory server.

Solution: Verify that the attributes were created and added to the object class.

For more information on the /r_user directory server attributes, see "Determining the
/r_user Object Class Attributes".

Attribute Used in Mapping File is Undefined in the Directory Server
Problem: An attribute used in the mapping file was not defined in the directory server,
nor was it added to the object class in the directory server. For example, userPassword
was never defined in the directory server, but it was used in the mapping file. Any
attempt to add or modify this attribute to the directory server entry will fail.

Solution: Verify that an attribute with this name exists in the directory server. If it does
not, create it, and add it to the object class. Make sure that the case matches, too.

Directory Server Object Class is Created without Its Required Attributes
Problem: The object class is created without all the required attributes for the class. A
common problem is that all attributes of the class are marked as required and only a
subset is supplied during object creation.

LDAP Data Manager verifies that all the attributes marked as required in the mapping
file are supplied during object creation. However, if an attribute is marked as optional
in the directory server and required in the mapping file it is your responsibility to
make sure that the object class definition in the directory server and mapping file are
in sync.

Table 7–2 Common Errors with Attribute

Attribute Name in the Directory Server Attribute Name in the Mapping File

userpassword userPassword

maxmsgcount maxmsgcnt

Note: This error is reported as "Undefined Attribute Type" in some
directory servers.

Verifying the Mapping Between Object Classes and Entries

Troubleshooting Your BRM LDAP Environment 7-5

Solution: Verify that only required attributes are marked as required for the class and
the object class definition in the directory server and mapping file are in sync.

No Such Object Errors
Table 7–3 shows the most common "no such object" errors.

Table 7–3 No Such Object Errors

Problem Solution

You get a "no such object" error. The location specified in the mapping file does not exist in the
directory server. For example, the location in the mapping file
was o=portal, and the directory server had a tree rooted at
o=portal.com.

Verify that the tree with the correct root exits in the directory.
You should also check for typos.

The ou specified in the PIN_FLD_DN or in the
Location in the mapping file does not exist. For
example, if the PIN_FLD_DN has uid=user1,
ou=ipservices, o=portal.com, but the directory
server has ou=serviceip, any attempt to create
or modify the entry will return this error.

Some directory servers return a constraint violation if this error
is present along with a duplicate RDN_PIECE. For example, if
you have the same DN and user1 already exists in the directory
server, you receive a constraint violation. After you fix that
problem, you will see the "No such object error".

Verify that the ou specified exists in the directory server. You
should also check for typos.

Already Exists. The value of the RDN_PIECE already exists in the DS. Check
for duplicates.

Not all attributes in the DS entry are returned
when an entry is read or searched from the DS.

The mapping file (ldap.idl) does not specify a mapping for all
attributes in the directory server entry.

Specify a mapping for all the fields that you are interested in
reading from the entry.

Not all DS entries are returned when the DS is
searched using a search filter.

The scope of the search might be limiting the entries returned.
For example, LDAP_SCOPE_ONELEVEL (1) limits the scope of
the search to one level from the starting point of the search.
Whereas, LDAP_SCOPE_SUBTREE (2) will search the entire
sub tree.

Specify the correct scope depending on what you are looking
for.

When a complete DN is specified, you get the
error "Given DN cannot reside in location o."

The DN's location suffix does not match the value specified in
the BRM_Home/sys/ldap.idl file. For example, if ldap.idl
specified a location o=portal.com and the complete DN
specified uid=user1, o=portal.

Verify that the location suffix o=portal and the value specified
for location o=portal.com match.

Verifying the Mapping Between Object Classes and Entries

7-6 BRM LDAP Manager

8

LDAP Manager Utilities 8-1

8LDAP Manager Utilities

This chapter provides reference information for Oracle Communications Billing and
Revenue Management (BRM) LDAP Manager utilities.

load_channel_config

8-2 BRM LDAP Manager

load_channel_config

Use this utility to load channel definitions into the /channel object in the Oracle
Communications Billing and Revenue Management (BRM) database and to export
existing channels to an XML file. Define the channel definitions in the BRM_
Home/sys/data/config/channel_config.xml file or another file that uses the same
format. The format of the XML file is specified in the channel_config.xsd schema file
in the BRM_Home/xsd directory.

When you run the utility, the channel_config.xml and channel_config.xsd files must
be in the same directory. If you do not run the utility from the directory in which
channel_config.xml is located, include the complete path to the file. For example:

load_channel_config BRM_Home/sys/data/config/channel_config.xml

For information on the contents and format of the channel_config.xml file, see "About
Defining Channels".

8Location
BRM_Home/sys/data/config

8Syntax
load_channel_config [-d] [-v] [-t] [-r] [-h] channel_config.xml

8Parameters

-d
Displays detailed information on status and error messages as the utility loads data.

-v
Writes error information for debugging purposes to the utility log file. By default, the
file is located in the same directory as the utility and is called default.pinlog. You can
specify a different name and location in the Infranet.properties file.

-t
Checks the validity of the config_channel.xml file without creating the /channel
object.

-r
Retrieves the contents of the /channel object and writes it to the XML file specified.

Caution: When you run the load_channel_config utility, it
overwrites the existing channel definitions in the /channel object in
the BRM database. If a channel definition exists in the BRM database,
but isn’t included in the channel_config.xml file, the database
definition won’t be overwritten.

Note: To connect to the BRM database, the load_channel_config
utility needs a configuration file in the directory from which you run
the utility. See "Creating Configuration Files for BRM Utilities" in BRM
System Administrator's Guide.

load_channel_config

LDAP Manager Utilities 8-3

-h
Displays the syntax and parameters for this utility.

channel_config.xml
The XML file containing the channel definitions. A sample file (BRM_
Home/sys/data/config/channel_config.xml) is included, which you can edit to meet
your business needs.

If you copy the channel_config.xml file to the same directory from which you run the
load_channel_config utility, you don’t have to specify either the path or the file name.

If you run the command in a different directory from where the load_channel_config
pin.conf file is located, you must include the entire path for the file.

pin_channel_export

8-4 BRM LDAP Manager

pin_channel_export

The Oracle Communications Billing and Revenue Management (BRM) LDAP Manager
uses the pin_channel_export utility to collect channel events accumulated in the BRM
database since the last run of this utility. After collecting all necessary information and
translating the BRM object model to the directory server object model, the utility
pushes the data to the LDAP directory servers.

For more information, see "About Channels and Data Propagation".

8Location
BRM_Home/apps/pinapps/exportapps

8Syntax
pin_channel_export [-f family_ID]

8Parameters

-f family_ID
Publishes channels with the specified family ID to the LDAP directory server specified
in the channel definition. There must be one pin_channel_export instance running per
family ID.

For example, the following command publishes channels with the family ID 100:

pin_channel_export -f 100

Important: To connect to the BRM database, the pin_channel_export
utility needs a configuration file in the directory from which you run
the utility. See "Creating Configuration Files for BRM Utilities" in BRM
System Administrator's Guide.

Note: To specify the time interval after which the utility runs and to
specify whether to delete channel events from the Informant database
after they are pushed to the LDAP directory server, edit the pin_
channel_export utility’s configuration file. See "Installing LDAP
Manager".

	Contents
	Preface
	Audience
	Accessing Oracle Communications Documentation
	Documentation Accessibility
	Document Revision History

	1 About LDAP Manager
	How LDAP Manager Works
	About Setting Up Your LDAP Integration

	2 Mapping Data between LDAP Data Manager and Your Directory Server
	About the LDAP Data Manager
	LDAP Data Manager API and Mapping Files
	LDAP Data Manager Data Types
	LDAP Data Manager Mapping Files
	Sample Mapping File
	LDAP Data Manager Class and Subclass Mapping Restrictions
	LDAP Data Manager Supported Operations
	LDAP Data Manager Unsupported Operations
	LDAP Data Manager Predefined Mapping Schemes

	Understanding the BRM Object Model
	Replicatable User Objects (/r_user)
	Replica User Objects

	Understanding the Channel Framework
	About Channels and Data Propagation
	Channel Object Composition
	Channel Event Composition
	About Channel Families
	About Channel Order
	About Channel Publishing Mode
	About Defining Channels
	Example channel_config.xml File
	How Channel Events are Published

	Configuring How Channels are Published
	Example of Publishing a Channel Family

	About Setting Replicatable Objects as Consumers
	Tracking New Account Creation
	Tracking modifications to accounts
	Tracking service creation
	Tracking modifications to services
	Understanding the Replication Policy Push Operation

	Understanding the Replication Module
	Replication Policy Default Implementation
	Defining the User Mapping Scheme
	Related /account and /service Opcodes
	Determining the /r_user Object Class Attributes
	Creating the ruser Object Class in the Directory Server
	Defining the One-to-One Mapping Scheme
	One-to-One Mapping File Example
	Changing the Replication Policy for the One-to-One Mapping Scheme

	3 Managing the Directory Server Organization
	About Managing Directory Server Entries
	Semantics for the LDAP Modify Operation
	Distinguished Name Field and the DN Flags Field
	The Location Field

	Creating Directory Server Entries
	Distinguished Name Control Logic for PCM_OP_CREATE_OBJ
	Pre-Existing Distinguished Names
	Supplying Distinguished Names
	Not Supplying Distinguished Names
	Understanding Matching Rules for Distinguished Names
	Using Static Controls for DNs
	Using Dynamic Controls for DNs

	Deleting Directory Server Entries
	Changing Directory Server Entries
	Adding Attributes to an Existing Directory Server Entry
	Deleting Attributes from an Existing Directory Server Entry
	Renaming Directory Server Entries
	Creating Subclass Objects in the Directory Server
	Creating Related Entries Under One Node

	Specifying Directory Tree Entries
	Using a Complete Distinguished Name
	Using a Prefixed Distinguished Name
	Using a Parent Distinguished Name (Create Operation Only)
	Overriding the Base DN Location

	Reading and Searching for Directory Server Entries
	Reading Objects from the Directory Server
	Object Read examples

	Reading Attributes from the Directory Server Entry
	Attribute Read Examples

	Searching the Directory Server for Entries
	Setting the Search Scope
	Specifying the Base DN
	Searching from Different Locations
	Example Service Storable Class Tree and Search

	Using the Sample LDAP Search Filters
	LDAP Search Limitations

	Testing Directory Server Connections
	BRM LDAP Profile Object

	4 Installing LDAP Manager
	System Requirements
	Software Requirements

	Installing LDAP Manager
	Uninstalling LDAP Manager

	5 Configuring LDAP Manager
	Configuring the LDAP Data Manager
	Setting Up the Mapping File
	Setting Up the Directory Server
	Editing the LDAP Data Manager Configuration File

	Configuring the Connection Manager for LDAP Manager
	Configuring the LDAP Data Manager for Multiple Schemas
	Configuring the LDAP Data Manager with Different LDAP Data Manager Pointers

	Configuring Event Notification for LDAP Manager
	Loading the LDAP Price List
	Configuring the Channel Framework
	Configuring the pin_channel_export Utility
	Configuring Channel Definitions
	Loading Channel Definitions into the BRM Database
	Saving Channel Definitions to a File

	Enabling Secure Communication between LDAP Manager and LDAP Directory Servers

	6 Customizing Your BRM LDAP Environment
	Exporting Additional Data to the Directory Server
	Exporting Additional Fields from Objects
	Tracking Additional Changes to /account or /service Objects

	Exporting New Service Types

	7 Troubleshooting Your BRM LDAP Environment
	Checking for Event Errors and Recovering from Failure
	Verifying Event Creation by Running testnap
	Status Values for Channel Events

	Verifying the Mapping Between Object Classes and Entries
	Mismatches between the Mapping File and Directory Server Entries
	Entry Class Type Definition Contains a Typo
	Case or Spelling Mismatches in Attribute Names

	Object Classes or Attributes are Missing in the Directory Server
	Object Class Attributes Undefined in the Directory Server
	Attribute Used in Mapping File is Undefined in the Directory Server
	Directory Server Object Class is Created without Its Required Attributes
	No Such Object Errors

	8 LDAP Manager Utilities
	load_channel_config
	pin_channel_export

