ORACLE

Oracle® Communications
Billing and Revenue Management

Configuring and Collecting Payments
Release 7.5
E16712-14

December 2016

Oracle Communications Billing and Revenue Management Configuring and Collecting Payments, Release
7.5

E16712-14
Copyright © 2011, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

Preface ... XV
AUAIEIICE ..o XV
Accessing Oracle Communications Documentationccccooeeeiiiineeinceecce e XV
Documentation ACCESSIDILILYcccciuiiuiiiiiiiciiicccee e XV
Document Revision HiStOIYccocciiiiiiiiiiiiiiii XV

1 About Payments

ADout PAYMENtS........c.cocvviiiiiiiiiiiiiii s 1-1
About BRM-Initiated Payment Processingcccocovvvinininnninnninnncnncnccccene 1-1
About Collecting BRM-Initiated Payments..........ccoccicieciieiiiicieieeceeieeeeeneeeeeeeeeeeeenes 1-1
Supported BRM-Initiated Payment Methodsccooiiiiiiiiiiii e, 1-2
About Externally Initiated Payment Processingccococovnvnnniinnnnininnnncccccc, 1-2
About Collecting Externally Initiated Payments..........cccocovvrvrininnnnnnnnnrre e 1-2
Supported Externally Initiated Payment Methods ..o 1-2
About Payment Methodscccooviiiiiiiiiiiiii s 1-3
Cash, Check, and Postal Order Payment Methodsc.ccccccceuiiriiininnininnncrcreeeceecenee 1-3
Credit Card Payment Method ..o 1-4
Direct Debit Payment Methodcccccceuiiiiiiiiiiiiniiiiiiiicce e 1-4
Invoice Payment Method ... 1-4
Prepaid Payment Method ..o 1-4
Nonpaying (Subordinate) Payment Method............c.cooviiiiiii e, 1-5
Undefined Payment Method ..o 1-5
About Credit Limits for Undefined Payment Methodscccooeviiiiiii 1-5
Voucher Payment Method ... 1-5
Wire Transfer Payment Method ... 1-6
Finding Payment INfO..........oooiii 1-6
About Payment AtribUtes............ccccoiiviiiiiiiiiii s 1-6
Account and Bill NUMDETcccccoiiiiiiiiiiiiiiiiiicccc s 1-6
Payment Method ... 1-6
Payment Chanmnelcccoociiiiiiiiiiiiiir e 1-7
Payment StatUsocueuiiii s 1-7
BatCh ID ..o 1-7
TTaNSACHON ID ...ccviiiiiiiiiicic s 1-7
Subtransaction ID ..o 1-7
About Validating Payments.............ccccccooiiiiiniiiiii s 1-8

About Payment Status........ccoeveiiiiiiiiiii s 1-8

Default BRM Status Codes and Descriptions...........cooccueuiiriciiiiiiccieicccc e 1-9
About Allocating Paymentsccccccooiiniiiiiiiiiii s 1-10
Allocating Account-Level Payments to Multiple Bill Units...........cccooooiviiiiiiniiie, 1-11
About Reversing Paymentsccccocoviiiiiiiiiiiiiiiis s 1-13
About Payment Fees ..o 1-14
About Payment INCENIVES ... 1-14
About Credit Card Payment Confirmation Numbers...............cccccccovviniinnnnniii 1-15
ADbOout AcCOUNE TOP-UPSorvieiiiiiiiiiieceeeee ettt aees 1-15
About Payment Suspense Manager.............cccccoveiiiiiiiiniiiiininiiicie s 1-15
About Unconfirmed Payment Processingccccocovuvviviiininniiniiiiiiciis 1-16
About Reversing Account Write-Offs during Payment Collection.............cccccccovviiiinnnnn. 1-16
About Payment PrOCESSOLScccccovviiiiiiiiiiiiiiiiiciicccec s 1-16
About Automated Clearing HOUSES...........c.ccorueieiiiiiiiiiciec 1-16
About Credit Card, Debit Card, and Direct Debit Processors.........ccoeevveevevevveecveeieeeeeeneeenes 1-16
About Payment GateWaysccocueveiiiieiiiiicieiec 1-17
How BRM Collects PAYmMents.............ccccooviviiiiiiiiiiiiiniiiiiiissss s 1-17
BRM-Initiated Payment ProCesSiNg.........cccccceueuriiuiiriririiiiiiinrrcccresees s 1-17
Externally Initiated Payment Processing.........c.cccccoeoeurueiiiicieiiiiciciecc e 1-18
Selecting the Items to Which Payments Are Applied ..o 1-19
How Items Are Selected for PAymMEentscccccoccueuiuiiiiiiiiiiciieceeceeeceeeeeeeeeeeeeeeeeeeees 1-19
How BRM Calculates Payment Collection Datesccccccoviiiiiiiiiiiiic 1-20
How BRM Receives Payments.............cccccoovriiiiiiiiiiiiiiiiicec s 1-21
How BRM Reverses PAYMEentscccccccoviiiiiiiiiiiiiii s 1-22
How BRM Refunds Paymentsccccoccciiiiiiiiiiiiiiiiic s 1-24
How BRM Writes Off PAYmMentsccccccoviviiiiiiiiiiiiiiiiissssss 1-24
Related DOCUMENESooiiiiiiicicccccccccr ettt 1-24

2 About BRM-Initiated Payment Processing

About BRM-Initiated Payments............ccccccoviviiiiiiiiiiii e 2-1
About Transactional and Nontransactional Payment Processingcccccoueeueiiiicieinicnnnen. 2-2
About Account Verification for Online Processingccccoovvvvninnnnnnnnnninncnene, 2-2
PrereqUiSItes.......ccooiiiiiiiiiiiiiiiiiic s 2-3
About Action and Response Reason Codes..........cccoviiiiiiiiiiiieiiiiiiiiiiceeeeeeeeeeeneines 2-3
Supported Transaction TYPESccccceuiiiimiiiiiiiiiiiiicic e 2-3
About Credit Card TranSaACtIONS.ccecuieierieiieierieetereetere st eeeee e estesseesesseensesseessesseessesseensesseens 2-4
About Merchant Numbers and Account Identifiersccooeeieiieiinieciececceee e, 2-4
Paymentech Merchant INformation.............ccccccciiiiiiiiiiiiieeeeae 2-5
Using More Than One Merchant ..o 2-5
About Credit Card Validation and Authorization..............cc.cocevieiiiieiinieciececeeee e 2-5
About Credit Card Validation..........cceeuieieiieieiieiecieeeeereet ettt eae e eve et re e beeaeereennas 2-5
About Credit Card AUthOTiZationccc.evveieieieieieietre ettt st a e ssesaesaeneas 2-6
The Credit Card Validation and Authorization Processccceeeeeveeceeneecieneecieneeieseeee e 2-6
About Credit Card TOKENIZAatioNcooovieviiiiieiiiiiieieieceeee ettt ettt re et e reeete e esbe e ebeernens 2-7
The Credit Card TOKENiZation PrOCESScccecvevieieieieeieiiisiesiesesieieseesteseeaeseesessessessessessessesseseas 2-7
About Replacing Credit Card Numbers with Tokensccccccoovinnininne, 2-8
Replacing Credit Card Numbers with TOKENSccooveiiieiiiiniiii e 2-8

About Purging Old Credit Card Event and Audit Trail Objectscccooeviirieiiiiciiine, 2-9

About Migrating Credit Card Information from Legacy Databases...............ccccccovvnnininnnnen. 2-9
Paymentech and International Transactionsccccooiiiiiiiinii, 2-10
About the Paymentech HeartBeat Applicationccccooviiiiiiiii 2-10
About Applying Charges Directly to Credit Card Accounts.............ccccoouviiiiiiinnnciccnne, 2-11
General Ledger Impact of Chargescccccccccueiiiiiiiiiicceecceeceeeeeeeeeeeeeeeeeeeeeesees 2-11
About Collecting BRM-Initiated Payments...............ccccccooooiiiiiiiicce 2-11
When to Run the pin_collect Utility ..o 2-12
Increasing Performance of the pin_collect UtIlitycccccoeueieieiiiiiiiiiiiccccccceeeeeees 2-12
Setting the Minimum Amount to Collect ..o, 2-12
About Depositing BRM-Initiated Paymentscccccocovviiiniiniinii 2-12
When to RUN pin_depositcccciiiiiiiiiiiiiccceeeeeeee e 2-12
Increasing Performance of the pin_deposit Utilityc.cccooooiriiiiiiiii, 2-13
About Resolving Failed BRM-Initiated Payment Transactions..............ccccocevivnninninnnnn 2-13
When to Run the pin_clean ULtycccoovriiiiniiiicccccceceeceeeeeeeee s 2-13
Example of RUNNing pin_clean ... 2-13
About Recovering BRM-Initiated Payment Transactions.............ccccocevvvnnnnnnnniniinnnnn, 2-14
When to Run the pin_recover Uity ... 2-14
How BRM-Initiated Payment Transactions Are Performed..............ccccoeiviniiinnniinnnnen, 2-14
How BRM Performs Credit Card Chargescccccueiiiiieiiiiieiicccc e 2-17
How BRM Performs Direct Debit Charges.........c.cccoccueueuciiiiiniiiicieeeeeeeeeeeeeeeeeeeneees 2-18
About Paymentech Direct Debit Implementation............cccceuoviiiiiiiiiiiiiic 2-18
Creating a Custom Direct Debit Implementationcccoooiieiiiiiiicc 2-19

How BRM Performs a Batch of Direct Debit Chargesc.cccoevvvverinirnnnrrrrccceeene 2-19
How BRM Checks the Results of BRM-Initiated Batch Payment Operations........................ 2-19
How BRM Validates Credit Card and Direct Debit Transactionsccccceeeeeereieieicnennnee. 2-20
How BRM Handles Credit Card Information during Account Creation...............ccccccerennne. 2-20
About Credit Card Fraud Prevention ... 2-21

3 About SEPA Payment Processing

About SEPA Paymentsccccccoviiiiiiiiiiiiiiiiiiis s 3-1
About the SEPA Direct Debit Payment............ccccccociiiiiiiiiiiiiiiiicececeeeeeeens 3-1
About the SEPA Credit Transfer Payment.........cccccccicuiiiiiiiiiieecceeeeeeeeeeeeeeeeeeeenes 3-1

About Specifying SEPA Payment Information During Customer Registration 3-2
About the Account Currency for SEPA Payments.........ccccooveviieiiiniiiieiniicceceeeceene 3-2
About Registering the Mandate for SEPA Direct Debit Payments..........cccccoevevvrrnnncnncnnnce. 3-2
About the Different Types of Mandatesccccecuiiiiiiiiiiiiiiies 3-3

Managing Customer’s SEPA Payment Information...............coccooooi 3-3
Changing the SEPA Payment Methodcccccccuiiiiiiiiiiiicccecccceeceeeeeeeeeeeas 3-3
Deleting the SEPA Payment Method ... 3-3
Changing the Mandate Information............c.ccccccceiiiiiiniiiie 3-4

About Loading Your Creditor Information into the BRM Database...............cccoeviiniiininnnn. 3-4
Setting Up and Loading Creditor Information ..o 3-4
Updating the Creditor Information...........cccccccciiiiiiiiiiice 3-5

Processing SEPA PaymMents ..o 3-5
Creating SEPA Direct Debit Payment Requestsccccocovviiniiiininnnii, 3-5
Creating SEPA Credit Transfer Payment Requests..........c.cccocovuiivivininnnnninnniiccccce, 3-6

Generating SEPA Request XML Files...........coiiiiiiiiiiiice e 3-6

Sending the SEPA Request XML Files to Your Bank to Collect Paymentccccceevvininnnee. 3-7
Processing SEPA Response XML Files to Handle Failed Payment Transactions..................... 3-7
Reversing an Erroneous Payment Collectionccooeiiiiiiiiiniiiniiiiicces 3-8
Using SEPA XML Messages to Exchange Customer’s Payment Information 3-8
Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files 3-9
How BRM Handles Mandate Information...............cccccocovviiiiiiiii 3-11
How BRM Registers a Mandate ..o 3-11
How BRM Updates a Mandatec.cccceueiuiiuiriniiiiieieieccieeeeeeeeeeeneeeeeeeeseseeeneee s 3-12
How BRM Cancels a Mandateccceeiiiiiiiiinininiie s 3-12

4 Configuring BRM-Initiated Payment Processing

Overview of Setting Up BRM-Initiated Payment Processingccccococevniiiiiniciinennnnn, 4-1
Information You Need from Paymentechccoooiii 4-2
Information Paymentech Needs from YOU ... eeneneenenennes 4-2

How Paymentech Manager Handles Electronic Check Processing...............ccccocovvvinninninininenne. 4-4
About Electronic Check Processing (ECP) Methods............ccccoevvvviiniiiiiiiiiiie, 4-4
Payment Formats and Batch Processing...........cccccocccicuciiiiiiiiiiiiiieecceeieieeeceeieneieenenennes 4-5

Points t0 CONSIALTcuiviiiiiiiiiiiiiciciic e 4-5

Setting Up Merchants and Payment Processors...............cccoocciiiiiiiiiiiinniiiis 4-5
Using More Than One Payment ProCeSSOTcooiiiiiiiiiiiiiceeeeeeeieeeeneeeeeeneneeenenenes 4-7
Connecting Your Payment Processor Data Managers to the BRM Database............................ 4-8

Configuring the Connection Manager for Paymentech.................cccocooovniiii, 4-8
Enabling Direct Debit PrOCESSINGc.cceuruririiiiiiiiiirrecrr e 4-8
Enabling Credit Card ToKenizationccooeuoiiiiiiiiicic e, 4-9
Requiring Additional Protection against Credit Card Fraud ..o, 4-9

Specifying the Maximum Number of Digits Allowed for CVV2 Verification................ 4-10
Disabling Paymentech Real-Time Credit Card Validationsccccooueiiiiiniiiiicicnnan, 4-10

Configuring the Paymentech Data Managerccccoooiiiiiiiiiiiiiicccccccceenes 4-10
Specifying Merchant IDs and Merchant NUmMDbersccccccoveiiniiiiinnnircrccceeees 4-11
Adding Soft Descriptor Informationccoeeueiiiiiiiiicc 4-11
Handling Concurrent Online Paymentech Requestsccooooreiiiiiiiiiicniicceen, 4-11
Increasing Registration Speed When Paymentech Is Offlinecccccccecevviicnnnnnnnene. 4-12
Setting the Connection Timeout Length and Retries.............cooeiiiiiiiii, 4-13
Specifying the Batch Mode Encryption Key ..o, 4-13
Using the Paymentech HeartBeat Applicationcocovveriveninninininiinieccccecc e 4-14

Troubleshooting HeartBeat EXTOTScoooviiiiiiii 4-15

Changing How BRM Handles Paymentech Address Validation Return Codes 4-15
Handling AVS Validations for International Credit Cardsccccoceevurrvnrrnnnnrrrnes 4-16

Customizing How the Results of Credit Card Transactions Are Processed.................ccccc.c..... 4-17

Changing How BRM Handles Paymentech Authorization Return Codes...............cccccceueee. 4-19

Testing Paymentech Credit Card Processing.............cccccccoviviniiiininiiiinniiicce 4-19
Setting Up the Paymentech Simulator ... 4-20

Defining the Credit Card Functionality to Test..........ccccccooiiiiiiiiiiiiiiiicccce 4-20
Setting Up the Paymentech DM Configuration File for Testing..........cccccccceeuvuvuvurueununnnn. 4-21
Specifying an IP Address for the Paymentech Simulator...........c.cooieieiiiciiiinene, 4-21
Running the Paymentech SImulators............ccccooiiiiiiiiiiiiiiicecceeees 4-21

vi

Simulating Failed Credit Card Transactions..........ccccoueerueieiiicieiiiiicic 4-22

Resolving Failed Credit Card Transactionscccceeeeereieiiiicieeccccccc e 4-22
About Paymentech Fraud Prevention Using CID and CVV2 ... 4-23
About Paymentech Soft Descriptor Credit Card and Checking Statement Information........ 4-23
Implementing a Direct Debit Payment Method ..., 4-23
Direct Debit OPtions ... 4-24
Direct Debit INstallationcccceeiiiiiiiiiiiiiiiiiiccc s 4-24
Direct Debit COMPONENScooiuiiiiiiiicc e 4-24
Implementing a Custom Direct Debit Payment Methodcccccoeeiiiinniiiniiicne 4-24
Overview of Adding a Custom Direct Debit Implementation............ccccooeiieiiinnnnnnes 4-24
Creating /payinfo Storable Classes............cococeueieiiiiiieiiicicice e 4-25
Modifying CUStOmMeEr CENLETc.ccveuiuriririiiiieiirireeieeerrieeee s 4-25
Creating OPCOdES..........cuiiiiieiiiiiei s 4-25
Creating Event Storable Classes ..o 4-25
Creating a Data Manager ..o 4-26
Updating the /config/payment Storable Object............ccooeueiiiiiiiiii 4-26

5 Configuring Payment Channels

About Payment Channel Information..............ccccocovvviiiiiiii 5-1
Setting Up Payment Channel Informationcccccccoiiiiiii 5-1
Defining Payment Channel Information in BRM..........ccccccccoiiiiiiiiniinccreeecereeee 5-2
Mapping Payment Channel IDs for BRM-Initiated Payments..........c.cccooooieiiiiiiiiiiiniiene, 5-2
Configuring Payment Channel IDs for Externally Initiated Paymentsccccccoooiinnnnnn. 5-3
Assigning Payment Channel IDs to Externally Initiated Paymentscccooeiiniiinnn. 5-3

6 Configuring Payment Collection Dates for Automatic Payments

About Configuring Payment Collection Dates for Automatic Payments..................ccoeeiinn. 6-1
About Configurable Payment Collection Dates and On-Demand Billing..........c.c.ccccoeeveineene. 6-2
About Configurable Payment Collection Dates and Delayed Billingcccccooviiiiinnnnnn. 6-3

7 Configuring Payment Fees

About Failed PAYMEentsccccccviiiiiiiiiiiiiiiiii s 7-1
About Payment Fees ..o 7-2
Configuring BRM for Payment Fees ... 7-2
Defining Payment Attributes for Payment Fees............cccccccciiiiniiinnninininncncc, 7-3
Defining Reason Codes for Failed Payments...........cccccccceiiiiiiiiiiiiiiicceccceeeeeeeeenes 7-3
Creating Payment Fees ... 7-4
Defining a Payment FEeccccccvvviiiiiiiiiiiiiiicic e 7-4
Defining Thresholds for Payment Fees...........ccccccoiiiiiiiiiiiiincrccerreeeeeeeeeeeene 7-6
Defining Exemptions from Payment Fees...........cccoooiiiiiii e, 7-7
Removing a Payment Fee from an Account Balancec..occoovvioriiiiie, 7-8
Customizing Payment Fees ... 7-8
How Payment Fees Are Applied ..o 7-8
Customizing Payment FEesccccoviiiiiiiiiiiicc e 7-9
Storing Additional Information with Payment Fees...........cccccccceciiiiiiiiiiiiccecccee 7-10

Vii

8 Configuring Payment Incentives

About Payment INCENEIVESccoviviiiiiiiiiiiiii s 8-1
About Setting Up Payment INCENIVES..........cccccvviiiiiiiiiiiiiiiiicccces 8-2
About Payment Incentive ProCeSSINGccoeueviiiiieiiiiiiciccc 8-2
How Payment Reversals Affect Payment Incentives...........c.cooooeuiiiiiiiiiiiciiiiiiccccce 8-4

Enabling BRM for Payment Incentivescccccooiiiniiiiiniiccs 8-4

Creating Payment Incentive Products...........ccccoooiiiiiiiiiiiiii s 8-5
Defining a Payment INCENtIVEcocoiiiiiiii e 8-5

Customizing Payment INCentivescccccooviiiiiiiiiii 8-7
How Payment Incentives WOrKcooiiiiiiiiiiic 8-7
How Payment Incentives Are Triggered.........c.cocoooiiiiiiiiiiiii 8-8
Customizing How to Trigger Payment Incentives...........cccoceeiviviiniiiiniiiinnnicicccns 8-8
How Payment Incentives Are Granted ..o 8-9
Customizing How to Grant Payment INCeNtives ... 8-10
How Payment Incentives Are ReVersedc.cccceiuiiiiiiiiniiiiceecceeeeeeeeeeeeeeeeees 8-11
Manually Reversing a Payment Incentive...........c.oooiiiiiiiiiiiii e, 8-12

9 Configuring Payment Suspense Manager

About Payment Suspense Manager..............ccccoovviiininiiiiiiiiniii s 9-1
Suspended Payment Processing OVeIVIEWcoceioiiueiiiiiiiciciiicicie e 9-2
About Setting Up Payment Suspense Manager............cccoceiiviiiiniininiiiiiincncncesesnenenns 9-3
About the Payment Suspension Process............ooccueiiicieiniiiiciiiicicecinci e 9-4

About Payment Validation ..o 9-6
About Processing Suspended Payments in a Payment Batch ..., 9-7
About Processing Suspended Payments in the BRM Database..........c.cccoooeueriiiriiiniinnne 9-7
About Payment Correction..........oceuirrieiiiicicieeecce s 9-8
About Distributing One Payment to Multiple ACCOUNLSccccceveueieiiiiiiciniiiccceeceeees 9-8
About Allocating an Account-Level Payment to Multiple Bill Units.........cccccooiiieiinnnan. 9-10
Understanding Payment RecyCling...........ccoooveieiiiiiiiiiiiic 9-10
About Original Payments ..o eeenes 9-11
About Payment Transfer Direction and Verification............ccoooeviiiiiiiiiis 9-11
About Recycling Payments from SUSPENSecccooevviiuriniiicieieicecce e 9-12
About Recycling Payments t0 SUSPENSEcccccucuiuiiiieiiiriiicieiiirincecereeceeeeeeeeeeses s 9-12
How Payment Reversals Work with Suspense and Recyclingc.cccooeeeieiiiieieinnne, 9-12
How BRM Tracks Suspended Payments.........c...ccocoeueviiiiiiniiciciciecee e, 9-13
How Direct Reversals and Refunds Relate to SUSPensecccccovvvrirernnncnvnncirnene 9-16
About Directly Reversing Payments from BRMcccooouoiiiiiiiii 9-17
About Refunding Payments.............ccccccciiiiiiiiiiiiiiicccccees 9-17
About Removing Unallocatable Payments from SUspenseccccceeueuvvveverivverneeenernenenes 9-17
About Payment Suspense Manager and Client Applicationscccceeeeniineiiiiiiienennn, 9-18
Summary of Payment Suspension Guidelines and Restrictions............cccccccvuvuiiviciriininnnnne. 9-20
General GUIAEHNES ..o 9-20
Suspended Payment GUIidelines...........c.ceviiurieiiiiiiiiiiicce s 9-21
Distributed Payment Guidelinesccccceuciiiiiiiiiniiiiininiiiiiiincccccecs 9-21

Configuring BRM for Payment Suspense Manager.............cccovuiiiininiiiininiiiiccseenes 9-22
Enabling Payment Suspense in BRMccooooiiiiiii e 9-22
Creating a Payment Suspense ACCOUNLcociiiiiiiiicicicccctctcccce s 9-23

viii

Working with Suspense Reason Codes and Action Owner Codesccccevvviinriiiriinnnnnee. 9-24

About the Reasons.locale File............ccccoiiiiiiiiniiiiiiiiices 9-24
Loading Reason Codes into the BRM Databasecccccccocueueueiiueiciiiiiieeieccceeeneiennens 9-26
Setting Up Permissions for Payment Center...........cccooviiiiiiiiicieiiiccc e, 9-27
About Customizing Payment Suspense Managercccocovvvvviiniiiniinninnines 9-27
How Payments Are Suspended during Payment Processingcccccccocceueucuceucevcicucnnnne. 9-28
How Payments Are Recycled to and from Suspense..........ccoooeueiiiiiiiniiiciiccc, 9-28
How Recycled Payments Are Retrieved..........cccoviiiiiniiiiiiiiiiiccce 9-30
How Payments Are Reversed ... 9-31
How Payments Are Reversed During Recyclingcccoouovoiiiiiiiniiiieiiicccc 9-32
How Payments Are Removed As Unallocatable...........ccccooooiiiiiiii, 9-32
Customizing Payment Suspense Validationc.cccoeeiiinniiiinniiccneeceeeeeeeees 9-33
Customization Example: Suspending Large Paymentsc.ccccoooieiiiiiiiiiincenn, 9-33
Customization Example: Threshold for Suspending Paymentsc.cccccoceviiniriinnnes 9-34
Customization Example: Finding Unconfirmed Payments...........cccccccocveccceinnccnnnne. 9-34
Customization Example: Error Handlingcooooioiiiiiiiiiie, 9-35
Default Payment Validation Processccocoioiiiieiiiicciiiiiccceccec i 9-35
Payment Validation FIags........cccccccuiiiiiiiiiiiiceeeeeiceeeeeceeeee s 9-37
Customizing Payment Guidance to SUSPENSE.c.ccucueiirieieiiiicicicc e, 9-37
Customizing Payment Failure Reason Codes..........cccooiiiiiiiicieiiicciccc 9-38
Customizing Payment TOOLcccciiiiiiiiiiicceeecece e 9-38
Adding a Cash Reversal Batch...........oooooiiie, 9-38
Customizing Suspense Criteria for Payment Tool..........ccoooiiiiiii 9-39
Handling Custom Payment Methodscccccceiiiiiiiiiiiccccecceeeeeeeeeeeeeeeeeees 9-39
Adding Multischema Support in Payment Processing...............cccocoevvviinininiinninin, 9-40

10 Configuring Top-Ups

About Topping Up ACCOUNEScccvviiiiiiiiiiiiiicccccc s 10-1
About Standard TOP-UpPS.......c.cceruieiiiiiiicii e 10-1
Standard Top-Up Payment Methods..........ccccceuiiciiiiiiiiiniiccrccccceeeeeeeceees 10-2

About SpPonsored TOP-UPS ... s 10-3
About Sponsored TOP-UpP GIOUPScccceueiiieiniiiiieice s 10-3

About Sponsored Top-Up Credit Limits.......cccceieiiiiiiiiiiccceccccccccieeeeeenees 10-4
Sponsored Top-Up Limitations ... 10-5

About Top-Up Discount INCENIVES..........ccccciiiiiiiiiiiiiiiiiceeeeeeees 10-5
Implementing Top-Ups in Custom Client Applications..............cccccovviiinniiniiinin, 10-5
Implementing Manual Standard TOp-UpPS........c.cccccvuiieiniiiiiiniiiiiiiciceeeees 10-5
Implementing Automatic Standard Top-Ups.......cccccoveeieiiiiiiiicicceecc, 10-6
Implementing Manual Sponsored TOP-UpPSccccccueueueuiiiiiieiiieiiiieeeceeeeeeeeeeeeeeeeeeeeees 10-7
Implementing Automatic Sponsored TOP-UPSccccevvvviiiiiiiininiiiiiiiiiiccccccs 10-9
How BRM Sets Up Top-Up Information for an Account............cccccoevvvnnnnnnnnnnninnnnnn 10-9
Preparing an Account’s Top-Up INformation..........c.cccccceceuccccenneennneeerseeseeceeenes 10-10
Additional Preparation for Sponsored Top-Ups........ccccoviiiiiiiiiiiiiiiicnes 10-11
Validating an Account’s Top-Up Information...........ccccccceueiiiiiiniiiiiiiiiiccnccccne 10-11
Creating or Modifying an Account’s Top-Up Information...........cccecevveeeeieiiiniiiccinncnnee 10-12
Creating Top-Up INformation..........ccceviiiiiiininiiiiiiicccs 10-12
Modifying Top-Up INfOrmationcccceeueivviiiiiiininiiininininiiinnccnsccceeees 10-13

Setting an Account’s Sponsored Top-Up Member Status and PINccccccevvviiiinnnnn 10-13

Activating Sponsored Top-Up Group Members...........ccccouoiirieiniiiiciiicccccc 10-13
Inactivating Sponsored Top-Up Group Membersccccccovuvivirrirnnnrnnnennnerecenes 10-14

Setting Sponsored Top-Up Member PINS...........ccccovviviniiiiniiiiiicceenas 10-14
Finding Sponsored TOp-Up Groups.........cccceueiiiiiiiieiicicieiccie e 10-15
About Tracking Sponsored Top-Up Adjustments..............ccccoeiivniiiiinniin, 10-16
Customizing and Loading Sponsored Top-Up Reason Codes.........cccccovviiiviiiiiiinnnnes 10-16
Offering Discount Incentives with Top-Ups.........cccooiiiiiiiiiiiiiica, 10-17
How BRM Performs TOP-UPS.......ccvueirieireiniiieineeetenteeneeeseeesaee et st saesesae e saeesseesnenens 10-17
Triggering PCM_OP_PYMT_TOPUPcccccceviviniiiiiiiiiiissscssssessssnns 10-18
Performing Top-Ups with PCM_OP_PYMT_TOPUPcccccceovvnniiiiiiiiiiccnes 10-18
How PCM_OP_PYMT_TOPUP Handles Manual Standard Top-Ups.........cccccccveuenecee 10-18

How PCM_OP_PYMT_TOPUP Handles Automatic Standard Top-Ups..........ccc........ 10-19

How PCM_OP_PYMT_TOPUP Handles Manual Sponsored Top-Ups.........cccccccevueuee 10-19

How PCM_OP_PYMT_TOPUP Handles Automatic Sponsored Top-Ups.......c.cc....... 10-20

About Transferring Sponsored Top-Ups from Debit Balancesccccoovvviiiiiiiinnnes 10-21
About Retrieving Balance Impact Information for Voucher Top-Ups.......c.ccccoeririiinnnnn. 10-21
About Taxes Applied during Voucher TOp-UpPS......cccovvrvrrrirnnrnineeccecccccccenenes 10-21
Topping Up Accounts in Customer Center and Self-Care Manager.............ccccceevvvvviinnnnnne. 10-22
Performing Top-Ups in Customer Center..............cooceiiiiriieiiiicicieceece e 10-22
Performing Top-Ups in Self-Care Managerc.ccccceueueueicinnirinieencrereeeceeeeseeeeaes 10-23
Performing Automatic Sponsored TOP-UpPScccceveiniiiiiininiiiniiiiiccs 10-23
Running the pin_balance_transfer Utilityccocooiiiiiii 10-23

About Reversing Voucher TOP-UPSccccooeiiiiiiiiniiiiiiiccnns 10-24
Reversing Vouchers That Have Only Non-Currency Resources.............ooeeueiiiiicieieinnnen. 10-24
Reversing Vouchers That Have Currency and Non-Currency Resourcesc.ccco........ 10-24
About Vouchers Having Non-Currency Resources with a Positive Impact............................ 10-24
Viewing Sponsored Top-Up History..........cccccooviiiiiiiniiiiiiiiccccs 10-24
Displaying All Sponsored Top-Ups Associated with an Account...........ccocooviiriinnnnn. 10-25
Displaying Sponsored Top-Ups Associated with Only One Groupcccceevccucirccnnne 10-25
Displaying Only Sponsored Top-Up Credits or Debits...........cccooviiiiiiiiiiiiiiiinns 10-25
Canceling TOP-UPSccoooiiiiiiii e 10-26
Canceling Sponsored TOP-UPS.......cccvvrirrrirrrirrrrirri et 10-26
Canceling a Single Membet’s Sponsored Top-Ups.......cccccovvvivinninninniiennns 10-26
Canceling an Entire Group’s Sponsored Top-Ups........cccoceuviiriiiiieceieieiiccieicceiee 10-27
Reinstating Sponsored Top-UpPs........ccccvviiiiiniiiiniiiiiciicceeees 10-27
Deleting Accounts That Are Sponsored Top-Up Owners or Members.............cccovrururnnnnes 10-27
About Deleting OWNer ACCOUNLSccovuviiiriniriniiiiiiiii e 10-27

About Deleting Member ACCOUNLS.......c.ccceueuemiuriririreiiiirirceeeeseeees e 10-28

11 Handling Atypical Payments

Handling Overpayments and Underpaymentscccoviiiiiniiiinniniiinccnes 11-1
Handling Late or Missed Paymentscccccccoviiiiiiiiiiininiiinc s 11-2
Handling Multiple Payments to the Same Account................cccocuviinniinnnnnni 11-2
Applying Multiple Payments to an Account through Payment Gateways.........ccccccceueueeee. 11-2
Handling Failed Unconfirmed Payments.............cccocooeiiiiiiiiiniiiiiiiccs 11-3
Submitting Failed Unconfirmed Payments with Payment Toolccccooveeriiiiiiiinicnnnn, 11-4

Requirements for Posting Unconfirmed Paymentsccccoeirieiiiiiiiiiiicciccee, 11-4
Customizing Unconfirmed Payment Processingcccoooeoereieiiiiiiiiiiicceecceecc, 11-4

12 Managing Externally Initiated Payments

About Externally Initiated Paymentscccccoovviiiiiiiiiin 12-1
Supported Externally Initiated Payment Methods ... 12-1
Processing a Batch of Payments by Using Payment Tool..............c.ccoeiiiniiinnininine, 12-2
Who Uses Payment TOOL? ..o 12-3
Running Payment Tool on Windows 7 and Windows 8.1 ... 12-4
About Allocating Paymentscccooeiiiiiiiiniiiiiiic s 12-4
About Required and Suggested ALlOCAtioNSc.cceuiiiiciiiiiiieec e, 12-4
About Allocating Multiple Payments for the Same Billccccccovviiiininiicne 12-4
Allocating Payments to Bills and Items ..o 12-4
Allocating an Account-Level Payment to Multiple Bill Units...........cccooovoiiiiiiiiiiiie, 12-5
Allocating Payments Later ..o eees 12-6
Allocating Payments in More Than One CUITencycccooerieiiiiciciciiicicieeeceei s 12-6
Improving Payment Allocation Performance..........cccoooveiiiiicieiiiicieeccccccee, 12-6
Allocating Externally Initiated Payments by Due Amount.........ccccoceevvvviinnnnnnnnceccnes 12-7
Finding Bills by Due AMOUNtccoiiiiiiii e 12-7
About Reversing Paymentsccccocoviiiiiiiininiiiiiiics s 12-9
Supported Payment Reversal TYPESccccovuiuiuiurriririiiriiirirrcrrrree e 12-10
Processing a Batch of Payment Reversals by Using Payment Tool...............ccoooeeiiiinnnnnee. 12-10
About Externally Initiated Refundsccccooviiiiiiiiiicce, 12-10
Supported Batch Refund TYPesc.ccccccueiiiiiiiiiiciicccicrrccerreee s 12-11
Processing a Batch of Refunds by Using Payment Tool..........cccccoooiiiiiiiiiiciiiie, 12-11
Managing Refunds with Your Custom Application............cccceeieiiiciiiiiiiccicccece, 12-11
Managing Nonvalidated Batch Entries............cccococoiiinniiiii 12-12
Processing Lockbox Batches...............ccccoooiiiiiiiiiiies 12-12
About the Columns in Batch Windows ..o 12-13
Importing Batch Data into Payment Tool..............cccooiiiiniiiiinicc 12-14
Handling Overpayments and Underpayments by Using Payment Toolc.ccccceeeee. 12-15
Working with Multiple Currency Types in the Payment Toolcccocoiiiiiiiiinne. 12-16
Applying Multiple Payments to the Same Account................cccccoiviiniiniinne, 12-16
Manually Allocating Account-Level Payments to Accounts with Multiple Bill Units 12-16
Enabling Overallocation to an Item...............ccococooiiiiiiiiiiiiccces 12-16
Configuring Payment Tool to Lock at the Account Level during Batch Processing.............. 12-17
Customizing Payment Details Displayed in BRM Client Toolscccccooeriiiiiiiiiinnne. 12-18
About the Default /config/paymenttoolcccccoviiiiiiiniiiiniiiiiee 12-18
Rules for Modifying Payment and Reversal Fields.........ccccccoceeiriiinnnnniinncrnene 12-19
Creating an Object Definition for a New Payment or Reversal Event ..o 12-20
Changing the Order of Columns in Payment ToOlccccoviiivininiiniiiiiiiicccccnes 12-21
Adding a New Column to Payment TOOL...........ccccovuviiiirrnnrrrrrrre s 12-22
Adding Direct Debit Details to the Customer Center Payments Tab.........c.c.ccccooerieennie. 12-22
Customizing the Date Format of Batch Files in Payment Toolccccooiiniininiiininnnnn, 12-23

xi

13

14

15

Xii

Managing Suspended Payments

About Payment Centercccooviiiiiiiiiiiiiiiiiiiin s 13-1
How BRM Processes Suspended Payments............cccceueeeeeivieririniiininniieeeeeeeeeeeeeeeeeeees 13-1
About Searching for PAymentscccccoeviiiiiiiiiiiiiiii s 13-2
About Searching for Suspense ACCOUNLS..........ccuoiiriiiiiiiicieicce e 13-2
About Payment Center Validation ..o 13-3
About Allocating Suspended Payments..............ccccoovviiiiiiiiiiiii 13-4
About Deferred Payment ALlOCAtiON..........coooiuiiiiiiiiicic e 13-4
About Overallocations and Underallocations ..o, 13-5
About Allocating Suspended Payments to Multiple Bill Units.........cccocoooiiiiiiiiiinnnn, 13-5
Working with Overpayments and Underpaymentscccccoorrieiiiiiiiiiiiiceieicccecce, 13-6
Configuring Payment Center for Custom Payment Methods ... 13-6
Customizing the Date Format for Payment Centercocooiiiiiiiiiiniicccees 13-7
Improved Performance of Searches for Payment Events in Payment Center 13-8

Resolving Failed BRM-Initiated Payment Transactions

About Failed BRM-Initiated Payment Transactions..............cccocevvivininininnninii 14-1

How BRM Records Transactionscoceueueueieieieieiiieieeecieeeee s 14-2
Checking for Transaction EXTOrS ..o 14-3
Deleting Failed Verifications.............c.ccccoooviiiiiiiiiiis 14-4
Resolving Authorizations..............ccccooiiiiiiiiii 14-4
Resolving Refunds...........ccooiiiiiiiiii s 14-5
Resolving Transactions by Using a Request for Response (RFR) Filecccccccocoiiiiins 14-6
Resubmitting Transactions ... 14-7
Checking for Transactions in Paymentech Send Files..............ccocoooii, 14-8
Resolving PaymMents...........ccccooiiiiiiiiiii e 14-8

Resolving Payments for Custom Pay TYPescccciiiiiiiiciiiciceeceeieeeeneeneeneenenens 14-9
Deleting Transactions..............ccccovviiiiiiiiiiiiiiii s 14-9
Troubleshooting Unresolvable Credit Card Transactions..............ccccoooeiiiiiiiiiiiiiiinn. 14-10

Reserving Resources for Concurrent Network Sessions

About Resource Reservation Manager...............ccccooviiiiiiininiiiiininiiiiiiincsceeessseessessessees 15-1
About Creating Reservations ... 15-2
About Storing Reservations in IMDB Cache..........ccocouiiiiiicii 15-2
About Storing Reservations in the BRM Database...........ccccooouviirieiniiciiiiiceeceecce, 15-2
Setting the Type of Resource ReServed.........c.cccocciuiiiiiuciiiiiiicicinieieieeeieecceeeeeeneieeeenene s 15-3
Setting an Expiration Time for the Reservation Requestcccccoevviniiiiinninnnnnn 15-3
Setting the Expiration Time for Prepaid Servicesccccccveiuvniiiiiciiinniniiiiinne 15-3
Loading Reservation Preferences for Policy-Driven Charging.............ccooviivnninninn 15-4
Updating Reservation Preferences Configuration for Policy-Driven Charging.................... 15-4
Loading Reservation Preferences for Policy-Driven Chargingccccccoeeceininiiccnerninccnnn, 15-5
About Extending a Resource Reservation Amount ..., 15-6
About Extending a Resource Reservation Expiration Time...........cccocoooiiiiiniininiinnnn, 15-6
About Releasing a Partially Used Reservation..............ccccccceeuviviviiinininiinininniincincces 15-6
About Releasing an Unused Reservation...............ccoooiiiiiiiniiiccces 15-6
About Reserving and Releasing Disputed Amounts...............ccccocovvviviininniniiici 15-7

16

Sending Reservation Requests to the Resource Reservation Manager Opcodes..................... 15-7

Creating ReSeIVatioNS.........ociuiiiiiiiiiiiicicicc s 15-8
Associating a Session with @ Reservation...........cccccoeeeeiiiniiiinincerrecrrce e 15-9
Extending the Reservation AmMOUNt...........cooiiiiiiiiiiiii 15-9
Finding a ReServation.........ccoiiuiiiiici i 15-11
Releasing ReServations.........cccoiiiiiiiiiiiniiiiiicc e 15-11
Extending the Expiration Time for a Reservation ... 15-12
Customizing Resource Reservation ..o 15-13
Customizing Resource Reservation Rules..........ccccccoeuiiiiiirnininnnirnenceneccceeeeeees 15-13
Customizing the Rules for Extending a Reservation............ccoeeveiiiiiiiiciciicicc 15-13
Customizing the Rules for Releasing a Reservationc.ococeeoiiiiiiiccieccciecc, 15-14
Customizing the Offer Profile Threshold Notificationsccoceeevverrvrnnnnnnnirrecaes 15-14
Installing Resource Reservation Managerccccooveiieiiiiiiieiniiinicceeeeeeeneseseenes 15-14
System ReqUITEMENtScccouiiiiiiiiiiiiii 15-14
Software REQUITEIMENESc.covviiiiririririiceieeee e 15-14
Installing Resource Reservation Manager ...t 15-14
Uninstalling Resource Reservation Manager ..o 15-16

Payment Utilities

10ad_PIN_aCh ... e 16-2
Pin_balance transfer ..ot 16-4
PIN_CO_MUGIALE ..ot 16-6
PIN_CLEAM ..ot 16-8
PIN_COLLECL ...ttt st st a ettt ene e 16-10
PIN_dEPOSIt ... s 16-13
PINL_TECOVET ...t 16-15
PIN_SEPA .ttt et a et a et eae e 16-17

xiii

Xiv

Preface

This guide describes how to collect and manage payments data in Oracle
Communications Billing and Revenue Management (BRM).

Audience

This guide is intended for developers and system administrators.

Accessing Oracle Communications Documentation

BRM documentation and additional Oracle documentation; such as Oracle Database
documentation, is available from Oracle Help Center:

http://docs.oracle.com

Additional Oracle Communications documentation is available from the Oracle
software delivery Web site:

https://edelivery.oracle.com

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Document Revision History
The following table lists the revision history for this book.

Version Date Description

E16712-01 November 2011 Initial release.

E16712-02 May 2012 Documentation updates for BRM 7.5 Patch Set 1.
= Made minor formatting and text changes.

XV

XVi

Version Date Description
E16712-03 August 2012 Documentation updates for BRM 7.5 Patch Set 2.
= Added an example in "Specifying the Batch Mode
Encryption Key".
E16712-04 December 2012 Documentation updates for BRM 7.5 Patch Set 3.
= Updated "Reserving Resources for Concurrent
Network Sessions" for policy-driven charging.
= Added the section "Improved Performance of
Searches for Payment Events in Payment Center".
E16712-05 March 2013 Replaced multidatabase information with multischema
information.
E16712-06 August 2013 On HP-UX IA64, BRM 7.5 is certified as of BRM 7.5
Patch Set 5.
Documentation added for HP-UX TA64.
E16712-07 February 2014 Documentation updates for BRM 7.5 Patch Set 7.
= Made minor formatting and text changes.
E16712-08 May 2014 Documentation updates for BRM 7.5 Patch Set 8.
= Made minor formatting and text changes.
E16712-09 August 2014 Documentation updates for BRM 7.5 Patch Set 9.
= Made minor formatting and text changes.
= Added information about SEPA payment
processing in the section "BRM-Initiated Payment
Processing".
s Added information about SEPA Direct Debit
reversal in the section "How BRM Reverses
Payments".
= Added the new chapter "About SEPA Payment
Processing".
= Added the new payment utility "pin_sepa".
= Added SEPA payment type to pin_collect utility.
E16712-10 October 2014 Documentation updates for BRM 7.5 Patch Set 10.
= Updated the following sections:
About Payment Incentive Processing
Running Payment Tool on Windows 7 and
Windows 8.1
= Added the following sections:
About Credit Card Tokenization
About Replacing Credit Card Numbers with
Tokens
About Migrating Credit Card Information from
Legacy Databases
Enabling Credit Card Tokenization
pin_cc_migrate
E16712-11 June 2015 Documentation updates for BRM 7.5 Patch Set 12.

= Made minor formatting and text changes.

Version

Date

Description

E16712-12

December 2015

Documentation updates for BRM 7.5 Patch Set 14.
= Updated the following section:
BRM-Initiated Payment Processing
Creating a Payment Suspense Account
Adding a Cash Reversal Batch
About Searching for Payments

Adding Direct Debit Details to the Customer
Center Payments Tab

Customizing Payment Suspense Validation

Working with Multiple Currency Types in the
Payment Tool

= Added information about suspense account in
"About Searching for Suspense Accounts".

E16712-13

August 2016

Documentation updates for BRM 7.5 Patch Set 16.
= Added the following section:
Resolving Payments for Custom Pay Types

E16712-14

December 2016

Documentation updates for BRM 7.5 Patch Set 17.
= Added the following sections:
Improving Payment Allocation Performance

Enabling Overallocation to an Item

Xvii

xviii

1

About Payments

This chapter presents an overview of Oracle Communications Billing and Revenue
Management (BRM) payments and payment processing.

Before reading this chapter, you should have a basic understanding of BRM concepts.
See “Introducing BRM” in BRM Concepts.

About Payments

A payment consists of the amount and method by which customers pay their bills.
There are several different payment methods available in BRM, depending on the type
of payment processing your company performs: BRM-initiated, or externally initiated.

When payments are received in BRM, a payment event is recorded, and the BRM
system creates a payment accounts receivable (A /R) item. Payments can be submitted
to BRM automatically, by a payment processor, or manually, by using Payment Tool.

You use Customer Center to search for and review customer payments. You can view
the payment amount, payment date, payment method, and other payment attributes.

For information on accounts receivable, see “About Accounts Receivable” in BRM
Managing Accounts Receivable.

About BRM-Initiated Payment Processing

There are two types of payment processing in BRM: BRM-initiated and externally
initiated. All payments received in BRM fall into one of these categories.

BRM-initiated payment processing is triggered by BRM and requires no action from
customers. Payments processed in this way are those for which a customer is
automatically charged, such as credit card and direct debit payments.

To begin processing such payments, BRM sends a customer’s payment information to
your online payment processor. The payment processing service charges the
customer’s credit card or checking account, and then BRM automatically allocates the
payment and updates the customer’s account balance. Any outstanding payment
items are closed, and no A/R management is required by a customer service
representative (CSR).

For more information, see "About BRM-Initiated Payment Processing".

About Collecting BRM-Initiated Payments

You use the "pin_collect" utility to collect BRM-initiated payments. This utility is
typically run automatically by one of the billing scripts. The customer’s credit card or

About Payments 1-1

About Externally Initiated Payment Processing

checking account is charged by your payment processor, and then the payments are
sent to the BRM Payment Data Manager (DM).

You can use multiple payment processors and configure multiple Data Managers to
handle payment processing.

For more information on collecting BRM-initiated payments, see "About BRM-Initiated
Payment Processing".

Supported BRM-Initiated Payment Methods

The following BRM-initiated payment methods are supported:
s Credit card

= Debit card

s Direct debit

Note: Only debit cards that do nof require a personal identification
number (PIN) are supported in BRM.

For information on creating new payment methods, see “Customizing Payment
Methods” in BRM Managing Customers.

About Externally Initiated Payment Processing

Externally initiated payments, such as cash or check payments, are triggered by an
action from a financial institution. They are usually in response to an invoice that was
sent to the customer.

Typically, after such payments are received from a customer, they are sent to a bank.
The bank then initiates the payment processing by sending you a list of payments that
have been received and deposited. If the bank sends the payment information through
a directly integrated third-party service (payment gateway), BRM automatically
allocates the payments and updates the customer’s account balance. If the payment
information is not sent through a payment gateway, you use Payment Tool to allocate
the payment and update the account. See "Managing Externally Initiated Payments"
for more information.

About Collecting Externally Initiated Payments

You use Payment Tool or a third-party payment application to collect externally
initiated payments and post them in BRM.

For information on processing externally initiated payments, see "Managing Externally
Initiated Payments".

Supported Externally Initiated Payment Methods
The following externally initiated payment methods are supported in BRM:

s Cash
s Check
s Inter-bank transfer

s Postal order

1-2 BRM Configuring and Collecting Payments

About Payment Methods

s Wire transfer
s Voucher

For information on creating new payment methods, see “Customizing Payment
Methods” in BRM Managing Customers.

About Payment Methods

A payment method is the mode by which customers pay their bills. The payment
method is selected for an account when the account is created, but it can be changed at
any time.

Important: You can set up multiple payment methods for an account,
and assign a different one to each bill unit in an account, but you can
use only one payment method per bill unit.

By default, BRM supports the following payment methods:
» Cash, Check, and Postal Order Payment Methods

» Credit Card Payment Method

s Direct Debit Payment Method

= Invoice Payment Method

= Prepaid Payment Method

= Nonpaying (Subordinate) Payment Method

s Undefined Payment Method

= Voucher Payment Method

= Wire Transfer Payment Method

When you add a new payment method, you must update the /config/payment
storable object.

For a complete list of payment methods defined in your BRM system, see the pin_
pymt.h file.

For information on creating custom payment methods, see “Customizing Payment
Methods” in BRM Managing Customers.

Customer payment information contains sensitive data such as account numbers. BRM
supports the masking of such data in system responses and logging for protecting
customer data. For information on masking payment information, see "About Securing
Sensitive Customer Data with Masking" in BRM Managing Customers.

Cash, Check, and Postal Order Payment Methods

Customers who pay their bills with cash, checks, or postal orders usually have the
Invoice payment method defined in their accounts. You handle cash. check, and postal
order payments by using Payment Tool.

For more information, see Payment Tool Help.

About Payments 1-3

About Payment Methods

Credit Card Payment Method

Credit card payments are BRM-initiated; therefore they are submitted directly to BRM
by the Payment DM. Because some credit card payments are made automatically,
accounts that pay bills by these methods should always use the balance forward
billing type. See “About Accounting Types” in BRM Configuring and Running Billing.

When a customer registers for a credit card payment method, BRM attempts to
validate the card by default. See “Validating Credit Cards at Registration” in BRM
Managing Customers.

When a credit card payment is made, BRM returns a confirmation number that the
customer can use to identify the payment. See "About Credit Card Payment
Confirmation Numbers".

Important: Debit cards that are controlled by credit card companies,
such as Visa and MasterCard, are supported by BRM; debit cards that
require a personal identification number (PIN) to make purchases are
not.

Direct Debit Payment Method

If a customer uses the direct debit payment, the customer’s bank account is debited
automatically each billing cycle. Direct debit charges are verified by the bank routing
number and the checking account number.

Because some direct debit payments are made automatically, accounts that pay bills by
this method should use the balance forward billing type. See “About Accounting
Types” in BRM Confiquring and Running Billing.

Direct debit payments are BRM-initiated and are therefore submitted directly to BRM
by a payment processor.

Note: BRM supports direct debit only in the United States and
Canada.

For information on BRM-initiated payment processing, see "About BRM-Initiated
Payment Processing".

Invoice Payment Method

Accounts that use the Invoice payment method pay by check, cash, or other externally
initiated payment methods. By default, accounts that use an Invoice payment method
receive invoices on a monthly basis.

You use Payment Tool to process invoice-generated payments. For more information,
see Payment Tool Help.

Prepaid Payment Method

Customers who use the Prepaid payment method pay for service usage in advance.
They send check or cash payments and can also pay by using a prepaid voucher.

With prepaid balances, the customer is always expected to have a credit (negative)
balance. For example, when an IP telephony customer pays $10 for 100 minutes of
usage, the account currency balance is -10 US Dollars. As the customer makes calls, the
balance increases until the credit limit (0) is reached.

1-4 BRM Configuring and Collecting Payments

About Payment Methods

Accounts that have prepaid balances should use balance forward accounting because
payments are made before there is a due amount. (With open item accounting, you are
billed only for open items that are due.)

When you run billing, no collection process is performed on prepaid balances because
they are paid in advance of billing.

With prepaid balances, there is no credit risk, because customers cannot use services
until they have paid for them.

Nonpaying (Subordinate) Payment Method

Accounts that use the Paid by parent account payment method are child accounts.
These accounts have a nonpaying (subordinate) bill unit. Their bill is paid by their
parent accounts. If a child account has two bill units (and thus two bills), one paying
and one nonpaying, the child account can pay one bill and the parent account pays the
other. See “About Account Groups” in BRM Concepts.

Undefined Payment Method

Accounts with the Undefined payment method never receive a payment request.
When accounting and billing cycles occur, billing utilities that request payments ignore
undefined accounts.

Undefined accounts require a login name and password so customers can be
authenticated and authorized. You can only assign an undefined payment method to
an account during account creation.

Revenue generated from undefined accounts is recorded as general ledger (G/L) data.

You typically use undefined accounts for free trial offers. Creating an undefined
account enables a customer to register without having to submit a credit card number.

You can also use undefined accounts for testing BRM and for creating CSR accounts.

About Credit Limits for Undefined Payment Methods

Even though accounts that use the Undefined payment method are never billed, credit
limits are still enforced. This is because credit limits are enforced by rating, not billing.
Because undefined accounts are not billed, the balance is never reduced. When the
credit limit is reached, the account is inactivated, or the customer cannot log in due to
authorization failure.

To avoid this, create an unlimited credit limit for undefined accounts. You can do this
in plans designed specifically for those types of accounts or by adjusting
account-specific credit limits in Customer Center.

Voucher Payment Method

To provide voucher payments for your customers, you must have Voucher Manager
and Voucher Administration Center installed.

By default, vouchers are not a standard payment method that can be assigned to an
account; they can only be applied manually. When a customer buys a voucher, either a
CSR or the customer enters the voucher ID & PIN into a CRM tool such as Customer
Center, and BRM validates the voucher and transfers its prepaid resources to the
specified account balance.

Voucher payments cannot be handled by the BRM-initiated payment process or by
Payment Tool.

About Payments 1-5

About Payment Attributes

For more information, see “About Managing Voucher Inventory” in BRM Telco
Integration.

Wire Transfer Payment Method

Wire transfers include any transfer of money from a customer’s bank account to your
company or to your company’s payment processor through an automated teller
machine (ATM), computer, telephone, or the like.

Customers who pay their bills with wire transfer payments usually have the Invoice
payment method defined in their accounts.

You handle wire transfer payments by using Payment Tool. For more information, see
Payment Tool Help.

Finding Payment Info

For information about how BRM uses payment methods, see "About Payment
Methods".

To find /payinfo objects that belong to an account, use the PCM_OP_CUST_FIND_
PAYINFO opcode.

This opcode is given the account POID and returns the information from the storable
/payinfo object.

About Payment Attributes

This section describes a subset of the payment attributes that help characterize each
payment:

= Account and Bill Number
= Payment Method

= Payment Channel

= Payment Status

= BatchID

» Transaction ID

m Subtransaction ID

Account and Bill Number

The account number identifies the account in BRM to which the payment is applied. If
the account number is missing or incorrect, BRM uses the bill number to guide the
payment to the correct account. The bill number therefore identifies a specific bill and
determines to which bill the payment applies and is typically allocated.

Payment Method

The payment method identifies how customers pay their bill (for example, by credit card
or check). See "About Payment Methods".

You use Customer Center to manage the payment method for an account. For more
information, see the Customer Center Help.

1-6 BRM Configuring and Collecting Payments

About Payment Attributes

Payment Channel

The payment channel identifies how the payment was sent to your third-party payment
processor, such as by the Internet or Voice over IP (VOIP). You can create custom
payment rules based on the payment channel ID; for example, you can grant a
payment incentive if customers pay their bills over the Internet.

For more information, see "Configuring Payment Channels".

Payment Status

The payment status identifies the success or failure of a payment when it is received.
BRM uses the status code to determine how to process each payment. The status
description is displayed in Payment Tool to assist payment clerks in handling
externally initiated payment batches.

For more information, see "About Payment Status".

Batch ID

All payments in a payment batch contain the same batch ID. This helps you to identify
payments that do not contain a payment ID.

Transaction ID

BRM uses the payment transaction ID to internally manage A /R and to identify
payment transactions that occurred between BRM and the payment processor. All
BRM-initiated payments, such as credit card and direct debit payments, contain a
transaction ID.

BRM identifies failed transactions by keeping a record of each transaction in the BRM
database. For information on resolving failed BRM-initiated payment transactions, see
"Resolving Failed BRM-Initiated Payment Transactions".

If unconfirmed payment processing is enabled in your BRM system, when a failed
unconfirmed payment is received, BRM identifies the original successful payment by
using its transaction ID. For more information on unconfirmed payment processing,
see "About Unconfirmed Payment Processing".

Important: The maximum length of a payment transaction ID is 16
characters for BRM-initiated payments and 30 characters for
externally initiated payments. If your company generates transaction
IDs by appending characters to the payment batch IDs, ensure that the
batch IDs are short enough to be within the limit after the additional
characters are appended. If the payment transaction ID does not
comply with the length restrictions, BRM does not generate an ID for
the payment. (BRM-initiated payment transaction IDs are restricted by
Paymentech processing requirements.)

Subtransaction ID

The subtransaction ID identifies a payment that was reversed due to suspended
payment recycling. BRM uses subtransaction IDs internally to track a recycled
payment back to its original payment. The subtransaction ID of a recycled payment is
the same as the transaction ID of the payment from which it originated.

Payments that have never been recycled have a SUB_TRANS_ID value of NULL.

About Payments 1-7

About Validating Payments

For information on Payment Suspense Manager and tracking suspended payments,
see "How BRM Tracks Suspended Payments".

About Validating Payments

Before payments can be processed and posted by BRM, they must pass validation.
Payment validation is initiated automatically, through the payment gateway, or
manually, by a payment clerk. When a payment arrives in BRM, the PCM_OP_PYMT_
COLLECT opcode calls the PCM_OP_PYMT_VALIDATE_PAYMENT opcode to
perform the validation. BRM validates the payment information in the input flist and,
in the output flist, indicates whether the opcode successfully performed the validation.

The PIN_FLD_STATUS value returned by the opcodes indicates whether the payment
arrived in BRM as successful or failed for financial reasons. If you have the Payment
Suspense Manager functionality installed, payments can also arrive as suspended. See
"About Payment Suspense Manager" for more information on payment suspense.

» If the payment is successful and passes the validation process, the PIN_FLD_
STATUS value is PIN_PYMT_SUCCESS, and BRM posts the payment to the
account.

» If the payment meets the validation criteria, but fails for financial reasons, the
PIN_FLD_STATUS value is PIN_PYMT_FAILED, and BRM posts the payment to
the account as a failed payment.

» If the payment status is marked for suspense, the PIN_FLD_STATUS value is PIN_
PYMT_SUSPENSE, and PCM_OP_PYMT_COLLECT calls the PCM_OP_PYMT_
POL_SUSPEND_PAYMENT policy opcode to process the payment. For more
information about suspended payment validation, see "About Payment
Validation".

If an account-level payment is made to an account with multiple bill units, the PCM_
OP_PYMT_POL_VALIDATE_PAYMENT opcode validates that the payment is an
account-level payment and the account has multiple bill units. If the payment is
successful and passes the validation process, it adds the reason ID, PIN_REASON_ID_
MBI_DISTRIBUTION_REQD to the PIN_FLD_PAYMENT_REASONS array in the
output flist. This reason ID helps in later payment processing by distinguishing a
normal payment from an account-level payment made to an account with multiple bill
units.

If the payment fails the validation, BRM informs you that the payment cannot be
posted. For example, if a payment specifies no account number and no bill number,
BRM cannot post the payment. You must create an exception batch to handle
payments that fall into this category.

For more information on payment status, see "About Payment Status".

For information specific to BRM-initiated payment validation, see "Changing How
BRM Handles Paymentech Authorization Return Codes".

About Payment Status

BRM uses the PIN_FLD_STATUS field of a payment to validate payments before they
are posted in BRM. By default, payments are received with a status of successful, failed,
or invalid.

Successful payments are automatically posted to the account to which they belong.
The payment amount is removed from the current balance on the account, and any
remaining amount is allocated according to your business policies. Failed payments

1-8 BRM Configuring and Collecting Payments

About Validating Payments

are payments that are declined for financial reasons, such as an overdrawn account or
an expired credit card. Invalid payments are payments that cannot be posted correctly
for the following reasons:

s The account that the payment applies to is closed.

s Both the account number and the bill number are incorrect and cannot be found in
BRM.

s The POID for the account number does not exist in BRM.

If the Payment Suspense Manager feature is enabled, payments can have a status of
suspended.

Value ranges for the PIN_FLD_STATUS field:

= Successful payments have a value >= PIN_PYMT_SUCCESS and < PIN_PYMT_
SUSPENSE. The numeric range for successful payments is 0-14.

= Suspended payments have a value >= PIN_PYMT_SUSPENSE and < PIN_
PYMT_FAILED. This range includes payments that arrive in BRM as failed for
financial reasons, but that also meet the criteria for suspending a payment. The
numeric range for suspended payments is 15-29.

» Failed payments have a value >= PIN_PYMT_FAILED and < PIN_PYMT_
STATUS_MAX. The numeric range for financially failed payments is 30-44.

= Payments with a status >= PIN_PYMT_STATUS_MAX are not supported by
BRM.

If a payment is invalid, you must manually fix it before it can be posted in BRM,
unless the Payment Suspense Manager feature is enabled. In such cases, invalid
payments might be received as suspended.

Default BRM Status Codes and Descriptions
The following values described in Table 1-1 are assigned by default:

Table 1-1 Default BRM Status Codes and Descriptions

Default
Value Code Description

PIN_PYMT_SUCCESS 0 The payment was automatically posted to the
account to which it belongs. The payment amount
is removed from the current balance on the account,
and any remaining amount is allocated according
to your business policies.

Status codes 1 through 14 are configurable. If you
have the Payment Suspense Manager feature
enabled, they can also be used for payments
successfully recycled from suspense to a customer
account.

PIN_PYMT_WRITEOFF _ 10 The payment was successfully applied to a
SUCCESS written-off account.

The write-off reversal feature must be enabled. See
“Configuring Write-off and Write-off Reversals” in
BRM Managing Accounts Receivable.

About Payments 1-9

About Allocating Payments

Table 1-1 (Cont.) Default BRM Status Codes and Descriptions

Value

Default
Code

Description

PIN_PYMT_SUSPENSE

15

The payment:

= Arrived in BRM as invalid but meets the
criteria for suspending a payment. The
payment is saved to the payment suspense
account.

= Arrived in BRM as valid but was manually
suspended before or after it posted to the
customer account.

This status code is not used for recycled payments.

The Payment Suspense Manager feature must be
enabled. See "Configuring Payment Suspense
Manager".

PIN_PYMT_FAILED_
SUSPENSE

16

The payment arrived in BRM as failed for financial
reasons but meets the criteria for suspending a
payment. Failed suspended payments are saved to
the payment suspense account.

This status code is used only for payments that
originally post to the suspense account. It is not
used for recycled payments.

The Payment Suspense Manager feature must be
enabled. See "Configuring Payment Suspense
Manager".

PIN_PYMT_RECYCLED_
SUSPENSE

17

The payment was generated for an amount that
remains in the payment suspense account after an
original payment has been partially distributed to
customer accounts. You can continue to generate
distributed payments until this remaining
suspended payment is used up.

For example, an original payment fails validation
and enters BRM as a suspended payment with a
payment status of PIN_PYMT_SUSPENSE. The
original payment is then partially distributed and a
new suspended payment is generated for the
remainder. This new suspended payment is
assigned a status of PIN_PYMT_RECYCLED_
SUSPENSE.

PIN_PYMT_RETURNED_
SUSPENSE

19

The payment was distributed to a customer account
from the payment suspense account but was then
resuspended.

PIN_PYMT_FAILED

30

The payment does not comply with the financial
practices of your company because, upon
collection, it has been dishonored or rejected by the
bank. For example, payments can fail due to
expired credit cards, incorrect account details, or
insufficient funds.

PIN_PYMT_STATUS_MAX

45

Payments with a value equal to or greater than 45
are not supported by BRM.

About Allocating Payments

Payment allocation is the process of applying a payment toward an account’s open
items, balancing all credits and debits, and then closing all balanced items.

1-10 BRM Configuring and Collecting Payments

About Allocating Payments

Payments are allocated automatically by BRM or manually by a payment clerk.
BRM-initiated payments for credit card or direct debit accounts are automatically
allocated during the collection process; externally initiated payments for invoice
accounts are allocated by a clerk or CSR through Payment Tool or Customer Center.

The allocation level determines how the funds are applied:
= Account

When a payment is made at account-level (without specifying bill or item), the
payment can be allocated to accounts with single bill unit or multiple bill units.

— Payment allocated to accounts with single bill unit: Payment is allocated to
the items of the bill unit that contains the default balance group for the
account and update the account balance accordingly. When a payment is
applied to an account as unallocated, the account balance is updated but the
open bills and bill items are not closed. Unallocated payments can be allocated
to specific bills and items at any time by using Customer Center or your CRM
application.

— Payment allocated to accounts with multiple bill units: Payment is
distributed to different bill units of the account based on distribution logic
implemented in the PCM_OP_PYMT_POL_MBI_DISTRIBUTE policy opcode.

= Bills

Payments allocated to one or more bills close the bills and the account balance is
updated accordingly.

By default, bill allocation is determined during payment validation. BRM uses the
bill number to find the correct bill. If the bill number is missing or cannot be
found, BRM uses the bill amount to find the correct bill. If neither the bill number
nor the bill amount can be determined, BRM allocates the payment to the oldest
bills first, because they are collected first.

Note: You cannot allocate a payment to a nonpaying (subordinate)
bill unit of a child account.

s Items

Payments allocated to one or more items close each item and update the balance
accordingly. If all items in a bill are closed, the bill is also closed. Item-level
allocation also updates the account balance.

Underpayments and overpayments may also require allocation. See "Handling
Overpayments and Underpayments".

An account-level payment applied to an account with multiple bill units may also
require allocation. See "Allocating Account-Level Payments to Multiple Bill Units".

For information on how to allocate payments in Payment Tool, see "About Allocating
Payments".

Allocating Account-Level Payments to Multiple Bill Units

If an account-level payment is made to an account having multiple bill units, you can
allocate the payment to multiple bill units of the account.

About Payments 1-11

About Allocating Payments

Note: The Payment Suspense Management feature must be enabled
in your BRM system for you to allocate account-level payments to
multiple bill units. For more information, see "Enabling Payment
Suspense in BRM".

To allocate an account-level payment to multiple bill units of an account, BRM calls the
PCM_OP_PYMT_COLLECT opcode. PCM_OP_PYMT_COLLECT performs the
following operations:

1.
2.

Opens a transaction.

Calls the PCM_OP_PYMT_VALIDATE_PAYMENT opcode to validate the
payment.

PCM_OP_PYMT_VALIDATE_PAYMENT invokes the PCM_OP_PYMT_POL_
VALIDATE_PAYMENT policy opcode to validate the payment. This policy
opcode:

a. Checks the appropriate /config/business_params objects to find out if
Payment Suspense Manager is enabled.

b. Checks that the payment is an account-level payment and that the account has
multiple bill units.

c. If the payment is successful and passes the validation process, adds the reason
ID, PIN_REASON_ID_MBI_DISTRIBUTION_REQD to the PIN_FLD_
PAYMENT_REASONS array in the output flist.

Note: For failed or suspended payments, the PCM_OP_PYMT_POL_
VALIDATE_PAYMENTYpolicy opcode does not add the PIN_
REASON_ID_MBI_DISTRIBUTION_REQD reason ID.

Calls the PCM_OP_PYMT_MBI_DISTRIBUTE opcode to distribute the payment to
multiple bill units. The PCM_OP_PYMT_MBI_DISTRIBUTE opcode invokes the
PCM_OP_PYMT_POL_MBI_DISTRIBUTE policy opcode if the following
conditions are true:

s The PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode returns the
PIN_REASON_ID_MBI_DISTRIBUTION_REQD reason ID.

s The PIN_FLD_SELECT_STATUS field in the input flist of PCM_OP_PYMT_
COLLECT is not PIN_SELECT_STATUS_MBI_DISTRUBUTED.

PCM_OP_PYMT_POL_MBI_DISTRIBUTE distributes the payment according to
the default distribution logic. You can customize how payments are distributed by
using the PCM_OP_PYMT_POL_MBI_DISTRIBUTE policy opcode. This policy
opcode searches for all the open /bill objects of all the /billinfo objects for the
given /account object, sorted by the bill due date.

PCM_OP_PYMT_POL_MBI_DISTRIBUTE returns the PIN_FLD_BILLINFO array
that contains an array of PIN_FLD_BILLS having the distributed payment amount
for each bill. The PIN_FLD_BILLINFO array is added to the output flist of PCM_
OP_PYMT_MBI_DISTRIBUTE, which is passed to the PCM_OP_PYMT_SELECT_
ITEMS opcode to get item-level distribution.

Calls the PCM_OP_PYMT_SELECT_ITEMS opcode for item-level payment
distribution for each bill unit.

1-12 BRM Configuring and Collecting Payments

About Reversing Payments

5. If the reason ID in the output flist of PCM_OP_PYMT_SELECT_ITEMS is PIN_
REASON_ID_MBI_DISTRIBUTION_REQD, PCM_OP_PYMT_COLLECT detaches
the distribution part from the output flist to use later while recycling payment.

6. If the reason ID in the output flist of PCM_OP_PYMT_SELECT_ITEMS is PIN_
REASON_ID_MBI_DISTRIBUTION_REQD and the PIN_FLD_STATUS value is
successful (value in the range of 0 to 14), PCM_OP_PYMT_COLLECT changes the
status to PIN_PYMT_SUSPENSE to suspend the payment before calling the PCM_
OP_PYMT_POL_PRE_COLLECT policy opcode.

7. Calls the PCM_OP_PYMT_POL_PRE_COLLECT policy opcode to perform policy
checks before the payment occurs.

8. Calls the PCM_OP_PYMT_POL_SUSPEND_PAYMENT policy opcode to get the
suspense account.

9. Calls the PCM_OP_BILL_RCV_PAYMENT opcode to record the payment and
create the payment item.

10. Prepares the input flist of the PCM_OP_PYMT_RECYCLE_PAYMENT opcode by
using the distribution detached from PCM_OP_PYMT_SELECT_ITEMS.

11. Calls PCM_OP_PYMT_RECYCLE_PAYMENT to distribute the suspended
payment to multiple bill units.

12. Prepares the output flist for PCM_OP_PYMT_COLLECT such that the output flist
contains all the payment events created as a result of the recycle payment.

About Reversing Payments

Payment reversals are necessary when a payment is recorded in the BRM database, but
the payment is not deposited. Reversing the payment enables BRM to treat the
payment as if it never happened.

Payments are reversed in BRM for a variety of reasons, the most common of which is
that the funds for a payment are never actually deposited (for example, when a check
does not clear).

When a payment is reversed, any bills or items previously closed by the payment are
reopened, and the payment is deactivated in the BRM system.

There are three types of reversals in BRM:

= Reversals that you perform directly by using Payment Tool or a third-party
application

= Reversals that occur indirectly during payment suspense recycling
= Reversals that occur when you remove a suspended payment as unallocatable

The last two reversal types are related to payment suspense. For more information on
reversals related to payment suspense, see "How Direct Reversals and Refunds Relate
to Suspense".

Reversals that you perform directly by using Payment Tool or a third-party
application

Direct reversals occur when you use Payment Tool or a third-party application to
manually reverse a payment that was recorded in the BRM database but never actually
deposited. They remove an active payment completely from the system and reopen
any bills and items so the payment can be made again.

About Payments 1-13

About Payment Fees

Direct reversals are the most frequent type of reversal in BRM, and they occur outside
of the suspense and recycling processes. Unlike reversals that occur during recycling,
direct reversals are not initiated by the creation of a new recycled payment.

BRM uses the PCM_OP_BILL_REVERSE opcode to process direct reversals. For more
information, see "How BRM Reverses Payments".

Reversals that occur indirectly during payment suspense recycling

Indirect reversals occur when you transfer a suspended payment to a customer account
or from a customer account to suspense. With an indirect reversal, the payment is
removed from the source account and moved to the target account, resulting in a
complete reversal of the payment in the source account so that the payment
information can be transferred to the destination account as a recycled payment. If the
payment being recycled had been posted in a customer account, any bills and items
that were closed due to the payment are reopened.

Note: To reverse a batch of payments from the BRM system, use
Payment Tool. For more information, see "How BRM Reverses
Payments".

Indirect reversals are assigned a G/L ID of 113, placing the payment amount in a
special G/L bucket so that you can keep a separate record of these reversals. For more
information on G/L IDs and reversals, see "Working with Suspense Reason Codes and
Action Owner Codes".

For more information about reversals due to recycling, see "Understanding Payment
Recycling" and "How Payments Are Reversed".

Reversals that occur when you remove a suspended payment as unallocatable

If a suspended payment cannot be fixed but you want to track revenue for these
payments and generate reports on how much unallocatable revenue you have, you can
remove them from suspense as unallocatable. When you do this, BRM reverses the
payment in the payment suspense account and assigns it to a special G/L ID bucket.
These reversals are rare in BRM. Even though they are part of suspense, they occur
outside of the recycling process.

For more information about removing payments as unallocatable, see "About
Removing Unallocatable Payments from Suspense".

About Payment Fees

When payments are received in BRM, they are posted as successful or failed by default.
Failed payments are those that have been dishonored or rejected by the bank for
financial reasons. For example, payments can fail due to expired credit cards, incorrect
account details, and insufficient funds. You can charge customers a fee for sending
payments that fail.

For more information, see "Configuring Payment Fees".
4

About Payment Incentives

You can provide payment incentives for customers who pay their bills early and in
full. Incentives can include currency resources such as monetary credit (for example, a
5% reduction in the monthly bill amount) or non-currency resources (for example, 20
free minutes).

1-14 BRM Configuring and Collecting Payments

About Payment Suspense Manager

For more information, see "Configuring Payment Incentives".

About Credit Card Payment Confirmation Numbers

When a credit card payment completes successfully, BRM returns a confirmation
number that the customer can use later to identify the payment. BRM uses the
payment item number as the confirmation number.

The PCM_OP_PYMT_COLLECT opcode returns the confirmation number in the PIN_
FLD_ITEM_NO output flist field of the PIN_FLD_RESULTS array.

About Account Top-Ups

The BRM top-up features enable your customers to top up: add currency or
non-currency resources to: balances in their own accounts or in other customer
accounts. For example, a customer can top up her account balance with a $50 payment
from her credit card, or she can top up her teenage son’s account with a $50 payment
from her account.

BRM supports two types of top-ups:
» Standard top-ups
= Sponsored top-ups

For information, see "About Topping Up Accounts".

About Payment Suspense Manager

Payment Suspense Manager is an optional payment feature that lets you more
effectively handle the following payment scenarios:

= Payments that fail the BRM validation process.

A payment may fail validation because it contains a missing or incorrect account
number and bill number or because the payment attributes do not comply with
your custom BRM validation rules. If Payment Suspense Manager is enabled in
your BRM system, such payments are saved to a payment suspense account so
that your payment processing can continue without having to fix the payments,
allocate them manually, or save them to an exception batch.

= Payments that were posted incorrectly to customer accounts.

If a payment was posted incorrectly, you can suspend it and then repost it to the
correct account: you do not need to use Payment Tool or a custom CRM
application to reverse the payment from the BRM system and then resubmit it in a
new payment batch.

= Payments that pay the bills for multiple accounts.

You can subdivide a suspended payment into a list of distributed payments and
apply each payment to an individual customer account.

= Account-level payments allocated to accounts with multiple bill units.

You can allocate an account-level payment to multiple bill units of an account. See
"Allocating Account-Level Payments to Multiple Bill Units".

For more information about Payment Suspense Manager, see "Configuring Payment
Suspense Manager".

About Payments 1-15

About Unconfirmed Payment Processing

About Unconfirmed Payment Processing

By default, BRM requires acknowledgment from a bank or payment processor before
BRM-initiated payments are posted. In some cases, such as nontransactional
payments, the response from the bank or payment processor does not occur
immediately with the request for funds.

To avoid the possible delay in posting payments, you can configure a new payment
Data Manager (DM) to post payments immediately: before the funds are confirmed by
the bank or payment processor. The DM requires an input flist of payments from BRM
and must return the results to BRM in the output flist.

If the payment processor later sends a failure notification (for example, due to
insufficient funds or an expired credit card), BRM reverses the initially successful
payments and posts the failed payments.

Important: Only credit card and debit card payment methods can be
posted before they are confirmed.

For information on reversing failed unconfirmed payments, see "Handling Failed
Unconfirmed Payments".

About Reversing Account Write-Offs during Payment Collection

A write-off is an accounts receivable transaction that removes an uncollectable balance
from a customer’s account so it is not considered as an asset for accounting purposes.
If a CSR wrrites off a balance in an account, and later a payment for that account is
received, you can reverse the write-off so that the payment can be allocated. You can
perform the write-off reversal manually by calling the reversal opcodes, or you can
configure BRM to automatically reverse the write-off during the payment collection
process.

For more information about write-offs and write-off reversals, see “Configuring
Write-offs and Write-off Reversals” in BRM Managing Accounts Receivable.

About Payment Processors

You use payment processors to collect payments. The BRM system supports the
following payment processors and middleware.

About Automated Clearing Houses

An automated clearing house (ACH) is a secure system that connects banks with
financial institutions and enables the electronic transfer of funds to and from checking
and savings accounts. For example, you use an ACH to handle check payments and
direct debit payments.

When using an ACH, it may take a couple of days before the money is transferred
because the ACH waits until it has received confirmation that the transaction was
valid.

ACHs do not handle credit card or debit card transactions.

About Credit Card, Debit Card, and Direct Debit Processors
BRM supports the Paymentech credit card and debit card processor.

1-16 BRM Configuring and Collecting Payments

How BRM Collects Payments

For information on using the Paymentech processing service with BRM, see
"Configuring BRM-Initiated Payment Processing".

About Payment Gateways

A payment gateway is any third-party payment transaction application that is integrated
with BRM. Payment gateways are designed by software development companies for
enterprise merchants who already have a BRM billing system in place. A payment
gateway provides a way for merchants to receive and process external payment data
seamlessly with BRM. A payment gateway receives payment files from multiple
sources (such as banks, credit card processors, and automated clearing houses),
preprocesses them, formats the files for BRM, and calls BRM opcodes to record the
payments in the database.

Before you can load payments into BRM, you must configure your payment gateway
with the same payment information you defined in the BRM database.

See also "Applying Multiple Payments to an Account through Payment Gateways".

How BRM Collects Payments

The main payment collection opcode is PCM_OP_PYMT_COLLECT. This opcode
communicates with Payment Tool or a payment processor to perform payment
collections, refunds, and reversals. It processes payments according to the payment
processing type: BRM-initiated, or externally initiated.

= BRM-Initiated Payment Processing
= Externally Initiated Payment Processing

By default, BRM allocates payments automatically. You can prevent allocation by
using the PIN_BILLFLG_DEFER_ALLOCATION flag (0x1000000) in the PCM_OP_
PYMT_COLLECT input flist PIN_FLD_CHARGES array.

BRM-Initiated Payment Processing

For BRM-initiated payment processing, the normal flow of PCM_OP_PYMT_
COLLECT is as follows:

1. Creates a batch checkpoint.

2. Calls the PCM_OP_PYMT_SELECT_ITEMS opcode, to identify the items to which
the payments are applied. See "Selecting the Items to Which Payments Are
Applied".

3. Calls the PCM_OP_PYMT_POL_PRE_COLLECT policy opcode, to perform policy
checks before the charge, payment, or refund occurs after allocating the PIN_FLD_
CHARGE array elements to open items. See “Setting the Minimum Amount to
Charge” in BRM Configuring and Running Billing.

4. Calls the PCM_OP_PYMT_CHARGE opcode, to perform a BRM-initiated payment
transaction. This opcode checks the /config/payment object to determine which
opcode to call to retrieve the payment information from the Payment DM and to
create the charge: PCM_OP_PYMT_CHARGE_CC or PCM_OP_PYMT_CHARGE_
DD.

5. For SEPA payments, creates the SEPA Direct Debit payment requests (/sepa/dd).
6. Calls the PCM_OP_BLL_RCV_PAYMENT opcode. This opcode:

About Payments 1-17

How BRM Collects Payments

a. Calls the PCM_OP_ACT_USAGE opcode to update the
/event/billing/payment/payment type object.

b. Calls the PCM_OP_BILL_ITEM_TRANSFER opcode to allocate each payment
to open items for each bill unit (/billinfo object) specified for the account.

Calls the PCM_OP_PYMT_APPLY_FEE opcode, to apply payment fees. If a
payment fee is applied, the POID of the payment fee event is added to the output
flist for PCM_OP_PYMT_APPLY_FEE.

Calls the PCM_OP_PYMT_POL_COLLECT policy opcode, to process the result of
a credit card transaction for a specified account bill unit. This opcode sends the
charge result to the policy opcode which specifies both the result to be returned to
the caller and the actions to be performed on the account’s bill unit.

For BRM-initiated payments, the PCM_OP_PYMT_POL_COLLECT policy opcode
calls the PCM_OP_CUST_SET_STATUS opcode if the operation requires a status
change.

By using checkpoints, finalizes the batch.

Externally Initiated Payment Processing

For externally initiated payment processing, the normal flow of PCM_OP_PYMT_
COLLECT is as follows:

1.

Calls the PCM_OP_PYMT_VALIDATE_PAYMENT opcode, to determine the status
of the payment records. See "About Validating Payments".

Calls the PCM_OP_PYMT_SELECT_ITEMS opcode to identify the items to which
the payments in the batch are applied. See "Selecting the Items to Which Payments
Are Applied".

If necessary, this opcode then calls the PCM_OP_PYMT_POL_OVER_PAYMENT
policy opcode and the PCM_OP_PYMT_POL_UNDER_PAYMENT policy opcode,
to allocate overpayment and underpayment of funds, respectively.

Calls the PCM_OP_PYMT_POL_PRE_COLLECT policy opcode, to perform policy
checks before the charge, payment, or refund occurs after allocating the PIN_FLD_
CHARGE array elements to open items. See “Setting the Minimum Amount to
Charge” in BRM Configuring and Running Billing.

4. Calls the following standard opcodes:

s Calls PCM_OP_BLL_RCV_PAYMENT to create the
/event/billing/payment/pay_type object.

If the payment status is marked as a failed unconfirmed payment, the PCM_
OP_BILL_REVERSE_PAYMENT opcode reverses the unconfirmed successful
payments that have a value of PIN_PYMT_FAILED in the PIN_FLD_STATUS
field. The PIN_FLD_AMOUNT value in the input flist CHARGES array is set
to the value of PIN_FLD_ AMOUNT_ORIGINAL_PAYMENT, and the value of
PIN_FLD_AMOUNT is set to 0.

s Calls PCM_OP_PYMT_ITEM_TRANSEFER to allocate the payment to open
items.

s Calls PCM_OP_PYMT_APPLY_FEE to record failed payments and apply
payment fees. If a payment fee is applied, the POID of the payment fee event
is added to the output flist for the PCM_OP_PYMT_APPLY_FEE opcode.

n If the cease_billing action was received, calls PCM_OP_CUST_SET_
BILLINFO to change the status of the bill unit.

1-18 BRM Configuring and Collecting Payments

Selecting the ltems to Which Payments Are Applied

5. If mandated by the policy FM, calls the PCM_OP_PYMT_POL_COLLECT policy
opcode to perform the following actions listed in Table 1-2, which are based on the
payment result:

Table 1-2 PCM_OP_PYMT_POL_COLLECT Policy Opcode Actions

Action Description

clear_pending Apply the payment to reduce the pending receivable of
the bill unit by the amount specified.

set_status Change the bill unit’s status to that given, using the
reasons indicated by the flags.

issue_refund Apply a refund by crediting the bill unit with the refund
amount specified.

cease_billing Discontinue billing an account after a determined period
of inactivity by marking the given bill unit as no longer
billed.

6. Creates the final batch.

Selecting the Items to Which Payments Are Applied

The PCM_OP_PYMT_COLLECT opcode calls the PCM_OP_PYMT_SELECT_ITEMS
opcode to identify the items to which the payment is applied. PCM_OP_PYMT_
SELECT_ITEMS is also called by Payment Tool.

PCM_OP_PYMT_SELECT_ITEMS does the following:

1. Selects open items based on the input fields and the accounting type of the
account. For more information, see "How Items Are Selected for Payments".

2. If the amount passed in on the input flist is not in the primary account currency,
PCM_OP_PYMT_SELECT_ITEMS attempts to convert it to the primary account
currency.

3. One of the following actions is taken:

» If called by PCM_OP_PYMT_COLLECT, PCM_OP_PYMT_SELECT_ITEMS
returns the PIN_FLD_ AMOUNT and the list of selected items.

s If called by Payment Tool, PCM_OP_PYMT_SELECT_ITEMS compares the
sum of the amount due from all the selected items to the PIN_FLD_AMOUNT
value to see if the payment is an exact payment, an overpayment, or an
underpayment. If it is an overpayment, it calls the PCM_OP_PYMT_POL_
OVER_PAYMENT policy opcode. If it is an underpayment, it calls the PCM_
OP_PYMT_POL_UNDER_PAYMENT policy opcode.

4. Returns the list of selected items.

How Items Are Selected for Payments
Items are selected by PCM_OP_PYMT_SELECT_ITEMS based on the fields in the
input flist.

s The contents of the PIN_FLD_BILLS array is examined. For BRM-initiated
payments, the contents of the PIN_FLD_BILLINFO array is also examined.

— The PIN_FLD_BILLS array indicates which /bill storable object PCM_OP_
PYMT_SELECT_ITEMS is collecting or paying off. If one or more bills are

About Payments 1-19

How BRM Calculates Payment Collection Dates

included, all items belonging to those bills are selected. If none are specified,
the default /billinfo storable object is used to apply the payment.

— The PIN_FLD_BILLINFO array specifies the /billinfo object to select items for.
If none are specified, the items are retrieved based on the bills in the PIN_
FLD_BILLS array. If neither a bill unit POID or bill is included, the items are
selected from the account’s default /billinfo object. This is the /billinfo object
that contains the default balance group for the account.

Note: For account-level payments to accounts with multiple bill
units, there are multiple PIN_FLD_BILLINFO arrays corresponding to
each bill unit that contain the bill unit-level distribution.

» If the accounting type is PIN_ACTG_TYPE_OPEN_ITEMS or if the accounting
type is PIN_FLD_ACTG_TYPE_BALANCE_FORWARD and the PIN_FLD_BILLS
array is passed in, there are two options for items to be eligible for the selection
criteria:

- If the PIN_FLD_INCLUDE_CHILDREN field is not specified or is specified
and set to 1, items that belong to the A /R bill unit (including nonpaying child
bill items) are selected.

— If the PIN_FLD_INCLUDE_CHILDREN field is specified and set to 0, items
that belong only to the specified bill are selected.

Note: PIN_FLD_INCLUDE_CHILDREN applies only when the PIN_
FLD_BILLS array is specified.

s If PIN_FLD_ACTG_TYPE is PIN_FLD_ACTG_TYPE_BALANCE_FORWARD and
PIN_FLD_BILLS is not specified, PCM_OP_PYMT_SELECT_ITEMS selects all the
open items for this bill unit and sums up the amount due from all the open items
selected.

s The PIN_FLD_AMOUNT field determines whether the overpayment or
underpayment policy opcodes are called. If PIN_FLD_AMOUNT is not specified,
the payment amount is based on the charges of the bill unit’s open items.

If the PIN_FLD_AMOUNT field is passed:

— The payment is not allocated to other open items and the deferred allocation
flag is set.

— The payment must be allocated manually.

s If the PIN_FLD_BILLINFO array contains bill unit level payment distribution, the
PCM_OP_PYMT_SELECT_ITEMS opcode finds out the item-level distribution for
the selected bill units.

How BRM Calculates Payment Collection Dates

By default, BRM-initiated payments, such as payments made by credit card or direct
debit, are collected on the date that bills are finalized. Alternatively, you can configure
BRM to collect a BRM-initiated payment on the date a bill is due or on a specified
number of days before the bill is due. See "Configuring Payment Collection Dates for
Automatic Payments".

1-20 BRM Configuring and Collecting Payments

How BRM Receives Payments

To support configurable payment collection dates, the PCM_OP_BILL_POL_CALC_
PYMT_DUE_T policy opcode calculates a bill’s payment collection date after
calculating its due date.

Note: Although configurable payment collection dates are used only
for BRM-initiated payments, they are calculated and stored for bills
associated with all payment methods.

To calculate payment collection dates, the PCM_OP_BILL_POL_CALC_PYMT_DUE_T
policy opcode performs these tasks:

1. Finds the /payinfo object that is linked to the /billinfo object with which the bill is
associated.

2. Reads the value of the PIN_FLD_PAYMENT_OFFSET field in the /payinfo object.
3. Does one of the following:

» If the value is -1, sets the payment collection date to the date the bill is
finalized.

» If the value is 0, sets the payment collection date to the date the bill is due.

» If the value is any positive integer (x), sets the payment collection date to x
days before the bill is due.

Note: If x makes the payment collection date earlier than the date the
bill is finalized, the PCM_OP_BILL_POL_CALC_PYMT_DUE_T
policy opcode uses the finalization date instead.

4. Stores the payment collection date in the PIN_FLD_COLLECTION_DATE field of
the /billinfo object.

Note: By default, the "pin_collect" utility collects BRM-initiated
payments for all bills associated with /billinfo objects whose PIN_
FLD_COLLECTION_DATE is the day the utility is run or the day
before the utility is run.

How BRM Receives Payments

When payments are received in BRM, they are processed by the PCM_OP_PYMT_
COLLECT opcode. To record the payments, PCM_OP_PYMT_COLLECT calls the
PCM_OP_BILL_RCV_PAYMENT opcode. This opcode records the payment items and
events and updates account balances by calling the PCM_OP_BILL_ITEM_TRANSFER
opcode. If there is excess money after paying the item list off, PCM_OP_BILL_RCV_
PAYMENT adds that amount to the sub-balance as a credit. If there is no sub-balance,
one is created.

= When posting a suspended payment, PCM_OP_BILL_RCV_PAYMENT stores the
reason code, action owner code, and original reason code for the payment in the
payment event’s PIN_FLD_EVENT_MISC_DETAILS array. The reason codes are
passed in from the PCM_OP_PYMT_COLLECT input flist's PYMT_REASONS
array.

The PIN_FLD_EVENT_MISC_DETAILS array uses specific element IDs as follows:

About Payments 1-21

How BRM Reverses Payments

- Array Element 0: Stores the reason code used to determine the G/L ID of the
payment being moved to the payment suspense account.

— Array Element 1: Stores the action owner code for suspended or failed
payments.

— Array Element 2: Stores the original reason code for failed payments that BRM
suspended. This ensures that the reason initially associated with the financial
failure is not lost if BRM places the payment in suspense. Element 2 is used
only for Payment Suspense Manager; if payment suspense is not enabled, only
element 0 will be present.

When the failed payment leaves suspense and PCM_OP_BILL_RCV_PAYMENT
creates new payment objects to record the corrected payment, Elements 0 and 1 are
no longer needed. The object does not contain the elements 0 and 1 recorded for
suspense, and Element 2 becomes the new Element 0.

= When processing multiple resource voucher top-ups that include non-currency
resources, PCM_OP_BILL_RCV_PAYMENT retrieves the non-currency balance
impacts from the PIN_FLD_TOPUP_RESOURCE_INFO substruct in the PCM_
OP_PYMT_COLLECT input flist and passes them to the PCM_OP_ACT_USAGE
opcode so that they are recorded in the corresponding
/event/billing/payment/voucher object. See "How BRM Performs Top-Ups".

PCM_OP_BILL_RCV_PAYMENT uses the PIN_FLD_SESSION_OB]J field in the input
flist to reference the type of session in which the event occurred: either
/event/billing/batch/refund or /event/billing/batch/payment, depending on the batch.

How BRM Reverses Payments

Payments are directly reversed from BRM by using Payment Tool. To process a
payment reversal batch, the PCM_OP_BILL_REVERSE opcode performs the following
operations:

Note: PCM_OP_BILL_REVERSE is a wrapper for the PCM_OP_
BILL_REVERSE_PAYMENT opcode, and it is the recommended
opcode to use. Custom client applications should not directly call
PCM_OP_BILL_REVERSE_PAYMENT.

1. Opens a transaction and checks the appropriate /config/business_params objects
to find out if Payment Suspense Manager is enabled.

2. Validates that the PIN_FLD_FLAGS field is not present in the input flist or, if the
flag is present, that it is not set to PIN_REVERSE_FLAG_REVERSE_AS_
UNALLOCATED (1). If the flag is set, the operation fails because payments that
were removed already from BRM as unallocatable cannot also be reversed.

3. Checks the PIN_FLD_STATUS field of each reversal associated with the payment
being reversed.

4. Calls the PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH opcode, which
performs the following operations:

= Validates that the payment does not have a SUB_TRANS_ID value, and is
therefore the original payment. If the payment has a SUB_TRANS_ID value,
the operation will fail.

1-22 BRM Configuring and Collecting Payments

How BRM Reverses Payments

= Finds all distributed payment events that have the same SUB_TRANS_ID
value as this payment’s TRANS_ID value, and have not been reversed already
due to the recycling process.

» Assigns a reversal TRANS_ID value to each payment returned by the search
and populates the reversal flist with each TRANS_ID value.

Checks the PIN_FLD_STATUS field of each /event/billing/reversal object
associated with the payment being reversed to ensure that no part of the payment
has been removed from suspense as unallocatable.

Calls PCM_OP_BILL_REVERSE_PAYMENT to reverse the list of payments.

= If the payment was originally made to a customer account, the list includes
any recycled payment generated if the payment was moved into the suspense
account after it posted to the customer account.

= If the payment was originally made to the suspense account, the list contains
all payments generated from the original payment, including distributed
payments and any payment remaining in the suspense account.

In both cases, the sum of all the payments reversed in this operation should equal
the amount of the original payment.

If the reversal is called for a SEPA payment transaction, the opcode creates the
/sepal/dd/reversal object only if the original payment request is in the
REQUESTED status. If the charge event, /event/billing/charge/sepa, does not
exist, it records the reversal only (the /sepa/dd/reversal object is not created
assuming that the payment request has not been sent to the bank).

PCM_OP_BILL_REVERSE_PAYMENT verifies that the reversal operation was
successful for all of the payments. It uses the PIN_FLD_SESSION_OB] field in the
input flist to reference the reversal batch event.

It also checks the /config/business_params object to determine whether payment
incentives are enabled. If so, PCM_OP_BILL_REVERSE_PAYMENT calls the
PCM_OP_PYMT_REVERSE_INCENTIVE opcode, which removes the payment
incentive trigger in the /billinfo object, thus eliminating the payment incentive.

Populates the payment batch with the sum of the reversal flist.

Returns the reversal information for all the payments in the PIN_FLD_MULTI_
RESULTS array.

The PIN_FLD_RESULTS field of the output flist indicates whether the reversal was
successful. Direct reversal is not allowed if either of the following conditions is true:

The payment has a SUB_TRANS_ID value and, therefore, is not an original
payment.

PCM_OP_BILL_REVERSE is called from the PCM_OP_PYMT_RECYCLE_
PAYMENT opcode. In this case, a reversal takes place, but it is not a direct
reversal. See "How Payments Are Reversed".

To customize how written off payments are reversed, use the PCM_OP_BILL_POL_
REVERSE_PAYMENT policy opcode. See “Customizing Reversal of Payments
Allocated to Written-Off Accounts” in BRM Managing Accounts Receivable.

If you have Payment Suspense Manager enabled, you can reverse only original
payments. For information on payment reversals that occur during payment suspense
processing, see "How Payments Are Reversed".

For information on processing a payment reversal batch by using Payment Tool, see
"About Reversing Payments".

About Payments 1-23

How BRM Refunds Payments

How BRM Refunds Payments

Refunds are accounts receivable actions. For more information, see "Managing
Refunds with Your Custom Application".

The PCM_OP_BILL_ITEM_REFUND opcode is used to create a refund item for a /bill
or /billinfo object. After the refund items are created, BRM uses the PCM_OP_PYMT _
COLLECT opcode to refund the payment amount to the account. For BRM-initiated
payments, use the "pin_collect" utility to refund payments based on the payment
method. For externally initiated payments, use Customer Center to perform the refund
operation.

How BRM Writes Off Payments
The following opcodes are used for writing off payments:
s PCM_OP_AR_ACCOUNT_WRITEOFF
s PCM_OP_AR_BILL_WRITEOFF
s PCM_OP_AR_ITEM_WRITEOFF

Write-offs and write-off reversals are accounts receivable actions. For more
information, see “Writing off Debts and Reversing Write-Offs with Your Custom
Application” in BRM Managing Accounts Receivable.

Related Documents

For more information about payments and accounts receivable, see the following
documents:

= "About Accounts Receivable" in BRM Managing Accounts Receivable
= About BRM-Initiated Payment Processing
» Managing Externally Initiated Payments

1-24 BRM Configuring and Collecting Payments

2

About BRM-Initiated Payment Processing

This chapter describes Oracle Communications Billing and Revenue Management
(BRM)-initiated payment processing, and provides information on how to set it up in
your BRM system.

For information on using Paymentech to process credit card or direct debit payments,
see "Configuring BRM-Initiated Payment Processing".

For information about handling externally initiated payments, such as checks or cash,
see "Managing Externally Initiated Payments".

About BRM-Initiated Payments

A BRM-initiated payment is a payment that requires no action from the customer. The
customer's credit card or checking account is charged by your online payment
processor or automated clearing house (ACH). The customer's account balances are
updated automatically and any outstanding payments are closed.

BRM supports direct debit of funds by using Paymentech and all of the credit cards
supported by Paymentech. It also supports debit cards that do not require a personal
identification number (PIN) to perform transactions. See your Paymentech
documentation for the latest information.

When you select direct debit payment support during installation, the direct debit
payment method is defined in the BRM system, and direct debit is available as a
payment method when creating or modifying an account. For more information about
direct debit processing, see "Implementing a Direct Debit Payment Method".

BRM also supports Single Euro Payments Area (SEPA) Direct Debit and SEPA Credit
Transfer as BRM-initiated payments. For more information about SEPA payment
processing, see "About SEPA Payment Processing".

Figure 2-1 shows how BRM handles BRM-initiated payments:

About BRM-Initiated Payment Processing 2-1

About Account Verification for Online Processing

Figure 2-1 BRM-Initiated Payments

BEM system
Billing application Payrment is recorded
rakes pay ment in BRM database
reguest
F
L

Cnline payment
processor deposits
payment

About Transactional and Nontransactional Payment Processing

BRM-initiated payment processing is either transactional or nontransactional:

s Transactional: Payments that occur in their entirety in one communication session
between BRM and a payment processor. The communication session is
bidirectional and occurs entirely online. By default, all BRM-initiated payments
are processed this way.

= Nontransactional: Payments that occur in two or more communication sessions
between BRM and a payment processor. The initial session occurs online when
BRM sends a payment request to the payment processor. Subsequent sessions can
occur online or offline; for example, processing service personnel may send
payment information to you over a network or on CDs. BRM-initiated payments
are processed this way whenever the initial communication is interrupted; for
example, the processing system may have a system failure, or missing data may
need to be supplied manually.

About Account Verification for Online Processing

BRM supports Paymentech’s Account Verification function in the BRM-initiated
payment processing for Paymentech. This Account Verification functionality complies
with Paymentech Online version 7.4 Revision 3. For information, see the OnLine
Processing Format Specification version 7.4 Revision 3 technical specification on the
Chase Paymentech library Web site.

Paymentech recommends the use of Account Verification to differentiate credit
card/account validation requests from authorization requests. This is because Visa
imposes a penalty for all authorization requests that are neither deposited nor
reversed.

The Account Verification function supports the following Paymentech methods of
payment for credit cards:

» VI, the entry used to indicate Visa as the method of payment.
s MC, the entry used to indicate MasterCard as the method of payment.

The account verification function supports EC as the method of payment entry for
direct debit cards in the United States and Canada.

2-2 BRM Configuring and Collecting Payments

About Account Verification for Online Processing

Prerequisites

To use Paymentech’s 120-byte batch request/response format, you must complete the
required certification with Paymentech for online payment processing. This step
should be completed before you allow customers to log in to a production system. You
can obtain more information on obtaining the required certification from the Chase
Paymentech Web site at:

http://www.chasepaymentech.com

If you plan to enhance your existing payment processing with Paymentech’s Account
Verification function, then before you do so, ensure that all pre-authorized payments
are deposited or reversed.

About Action and Response Reason Codes

BRM Paymentech Manager sends the following Action Codes to indicate the type of
service Paymentech must perform on the transaction:

= When a transaction needs validation only, Paymentech Manager sends the action
code LO and a transaction amount is $0.00.

Paymentech in turn, validates this direct debit transaction against an Automatic
Clearing House (ACH) eligibility file, Notification of Change (NOC) file, and
Electronic Check Processing (ECP) internal negative file for Canadian ECP.

If the account verification is successful for a transaction with an LO action code
and the amount set to $0.00, Paymentch responds with a Response Reason Code
101 (Validation passed Paymentech negative file and data edit check).

= When the Paymentech Manager must verify the direct debit transaction against a
third-party negative file for United States ECP, it sends the action code VO and a
transaction amount $0.00.

If the account verification of a transaction with an VO action code for an amount
set to $0.00 passed the third-party negative file for United States ECP, Paymentech
responds with a Response Reason Code 102 (Account verification Passed external
negative file).

= When the Paymentech Manager must verify the account for VISA or MasterCard,
it sends the action code VF and a transaction amount $0.00.

If the account verification of a transaction with an VF action code for an amount
set to $0.00 is successfully approved, Paymentech responds with a Response
Reason Code 104 (No Reason to Decline).

For more information, see the 120-Byte Batch Processing Versions 2.0.0-3.0.0 Rev 2
Addendum in Support of Account Verification technical specification on the Chase
Paymentech library Web site.

Supported Transaction Types

BRM supports the following transaction types to describe the circumstances under
which a transaction takes place.

= A transaction type 1 indicates a single mail /telephone order transaction where the
cardholder is not present at a merchant location and completes the sale through
the phone or mail. The transaction is not for recurring services and does not
include sales that are processed through an installment plan.

About BRM-Initiated Payment Processing 2-3

About Credit Card Transactions

= A transaction type 2 indicates a recurring transaction that represents an
arrangement between a cardholder and a merchant where transactions are going
to be on a periodic basis.

= A transaction type 7 indicates a channel encrypted transaction between a
cardholder and a merchant. The transaction was completed through the internet,
using a form of Internet security such as Secure Sockets Layer (SSL) but
authentication was not performed.

The BRM Paymentech Manager Configuration file stores " (blank) as the default value
for the transaction type field. Configure the BRM_Home/sys/dm_fusa/pin.conf
configuration file to provide the required transaction type.

For information on transaction types in the online processing detail record, see the
OnLine Processing Format Specification version 7.4 Revision 3 technical specification
on the Chase Paymentech library Web site.

About Credit Card Transactions

To process credit card payments and authorizations, BRM uses two types of credit card
transactions: online and batch:

= Online transaction handles a single transaction, for example, a credit card
validation or authorization.

To process online transactions for Paymentech, BRM creates a permanent socket
connection to the credit card processor.

s Batch transaction handles more than one transaction at a time. You use batch
processing when you run the "pin_collect" and "pin_deposit" billing utilities.

To process batch transactions for Paymentech, BRM creates a new socket
connection for each batch. When the batch has been sent, the connection is closed.

About Merchant Numbers and Account Identifiers

To determine where to deposit your BRM-initiated payments, the payment processors
use a merchant ID and a merchant number. Your payment processor assigns your
merchant numbers.

If you collect payments in multiple currencies, you need a merchant ID and merchant
number pair for each currency.

Note: The Paymentech Data Manager (DM) determines the type of
credit card from the credit card number.

A merchant ID consists of the following parts:

» The merchant identifies a type of account. In most cases, all of your accounts use
the same merchant. The default merchant is the first merchant listed for the
payment processor, which is defined in the /config/ach storable object.

s The ISO currency code, such as 840 for US Dollars.

2-4 BRM Configuring and Collecting Payments

About Credit Card Validation and Authorization

Paymentech Merchant Information

The following example shows merchant IDs and numbers in the Paymentech Data
Manager (DM) configuration file. In this example, mid_ispname_840 is the first
merchant ID, and 050505 is the first merchant number.

Note: There is a merchant ID for each currency, and each merchant
ID is mapped to a different merchant number.

- dm_fusa mid_ispname_840 050505
- dm_fusa mid_ispname_250 050506
- dm_fusa mid_ispname_276 050507

Using More Than One Merchant

You might use more than one merchant if you separate deposits based on payment
method (for example, if you deposit payments to a third-party service provider).

If you use multiple merchants, each merchant must be entered in the following files:

» The payment processor configuration file (BRM_
Homelsys/data/pricing/example/pin_ach). You specify merchants for each
processor and then load the file into the BRM database. See "Setting Up Merchants
and Payment Processors".

s The payment processor Data Manager (DM) configuration file (for example, BRM_
Home/sys/dm_fusa/pin.conf).

s The Connection Manager (CM) configuration file (BRM_Home/sys/cm/pin.conf). In
this file you specify a connection to the database for each payment processor Data
Manager.

About Credit Card Validation and Authorization

Credit card validation validates the customer’s address by checking the ZIP code and
street address. Credit card authorization validates the customer’s credit card by checking
the card number, expiration date, credit limit, and so forth.

By default, validation occurs during registration, and when a customer changes their
credit card number.

Authorization occurs at the following times:

= During billing, the pin_collect utility authorizes payments and deposits them. (A
credit card deposit is also called a settlement.)

» If there are charges during registration, for example, cycle forward fees or
purchase fees.

= When a customer service representative (CSR) changes an account payment
method by using Customer Center.

About Credit Card Validation

If you use the Address Verification System (AVS), Paymentech gives you a discount for
each credit card transaction charge. By default, BRM sends the customer’s name,
address, and ZIP code for validation. However, you can get the AVS discount even if
you only supply the ZIP code.

About BRM-Initiated Payment Processing 2-5

About Credit Card Validation and Authorization

Important: AVS supports addresses in the United States and Canada
only. For information on changing the AVS validation results, see
"Changing How BRM Handles Paymentech Address Validation
Return Codes".

About Credit Card Authorization

Credit card authorizations made during registration or later by using Customer Center
do not charge the customer’s account balance. The payment is recorded in the BRM
database, and the balance in the account is adjusted, but the deposit is made later by
the "pin_deposit" utility when you run billing.

The Credit Card Validation and Authorization Process

Credit card validation and authorization occurs in the same transaction, but BRM
handles one at a time.

1. BRM sends a validation request along with an authorization to charge $1.00.

Note: The validation process requires a monetary charge. BRM
issues an authorization for $1.00 so that only $1.00 is reserved on the
customer’s credit card if the AVS request passes.

The credit card processor returns a validation code and an authorization code.
BRM ignores the authorization code, and uses the validation code to determine if
the address validation passed. For example, by default an address validation fails
if the 5-digit ZIP code is wrong.

Note: Because BRM ignores the authorization, the customer is not
charged $1.00.

If the address validation fails, the next step, authorization, does not take place.

Note: If the Paymentech DM detects non-ASCII data in the address
fields during the validation step, the result of the validation request is
ignored. This has the same effect as not performing the validation
check. This can occur when characters from another language are sent.

2. BRM sends another validation request along with an authorization to charge for
an actual amount, for example, a purchase fee.

The credit card processor returns a validation code and an authorization code.
This time, BRM ignores the validation code and uses the authorization code to
determine if the authorization passed.

You can change how BRM responds to validation and authorization return codes. For
more information about how BRM handles Paymentech address validation and
authorization return codes, see:

s Changing How BRM Handles Paymentech Address Validation Return Codes
s Changing How BRM Handles Paymentech Authorization Return Codes

2-6 BRM Configuring and Collecting Payments

About Credit Card Tokenization

About Credit Card Tokenization

Credit card tokenization is a secure method of storing credit and debit card data. It
replaces the credit and debit card numbers with random identifiers, referred to as
tokens. These tokens are typically of the same length as the credit or debit card
numbers and includes the last four digits of the credit or debit card numbers. This
enables customer service representatives (CSRs) to identify credit and debit cards.

You can enable credit card tokenization in BRM by updating the Paymentech DM
configuration file (BRM_Home/sys/dm_fusa/pin.conf). See "Enabling Credit Card
Tokenization" for more information.

When credit card tokenization is enabled, BRM requests Paymentech for tokens and
stores only the tokens in the BRM database. These tokens are then used for any
BRM-initiated payments instead of the actual card numbers. The actual card numbers
and their mapping to the tokens are stored securely in Paymentech. Tokens are valid
only between the merchant system and the credit card processor. Therefore, these
tokens can be transmitted safely without the risk of exposing the credit or debit card
data.

Credit card tokenization occurs:

s During account registration

= When credit cards are used for one-time payments

= When customers change their credit or debit card number

= When customers want to change to the credit card payment method

Use the pin_cc_migrate utility to replace the existing credit or debit card numbers in
the /payinfo/cc objects with tokens. See "About Replacing Credit Card Numbers with
Tokens" for more information.

The Credit Card Tokenization Process

Credit card validation, authorization, and tokenization occurs in the same transaction,
but BRM handles these one at a time.

1. BRM sends the credit or debit card number along with the validation and
authorization request to Paymentech.

Note: When credit card validation is disabled, BRM sends the credit
or debit card number along with a token-only request to Paymentech.

2. Paymentech returns a token along with the validation and authorization codes to
BRM.

3. BRM stores the token, instead of the credit or debit card number, in the
/payinfo/cc, /event/billing/charge/cc, or /event/billing/validate/cc objects.

Important: If the credit card validation fails, tokenization does not
take place. In this case, a string value (asterisks (******) followed by the
last four digits of the credit card) is stored in the
/event/billing/validate/cc object. This string value can be used to
authenticate a credit or debit card, but cannot be used for any
transaction.

About BRM-Initiated Payment Processing 2-7

About Replacing Credit Card Numbers with Tokens

About Replacing Credit Card Numbers with Tokens

When you enable credit card tokenization, the new credit and debit card numbers
entered in Customer Center; for example, during account registration, are
automatically replaced with tokens. To replace the existing credit or debit card
numbers stored in the BRM database with tokens, use the pin_cc_migrate utility. See
"pin_cc_migrate" for information on the pin_cc_migrate utility.

To replace the credit or debit card numbers with tokens:

Note: If you are migrating legacy credit card data into the BRM
database, migrate the data before running the pin_cc_migrate utility.
See "About Migrating Credit Card Information from Legacy
Databases" for more information.

1. Enable credit card tokenization in BRM. See "Enabling Credit Card Tokenization"
for more information.

2. Ensure that the outstanding payments for credit card accounts are closed. See
"About Depositing BRM-Initiated Payments" for more information.

3. Run the pin_cc_migrate utility. See "Replacing Credit Card Numbers with Tokens"
for more information.

4. (Optional) Purge the old credit card event and audit trail objects that contain the
credit card numbers. See "About Purging Old Credit Card Event and Audit Trail
Objects" for more information.

Replacing Credit Card Numbers with Tokens

To replace all the credit card numbers in the /payinfo/cc objects, run the following
command:

pin_cc_migrate -vendor payment_processor_name

where payment_processor_name is the credit card processor or automated clearing house
(ACH) to use for validating credit cards and debit cards.

For example:

pin_cc_migrate -vendor fusa

To replace only a specific number of credit card numbers in the /payinfo/cc objects, run
the following command:

pin_cc_migrate -vendor payment_processor_name -num number

where number is the number of /payinfo/cc objects to be selected for tokenization.
For example:

pin_cc_migrate -vendor fusa -num 10

To replace the credit card numbers only for a specific account, run the following
command:

pin_cc_migrate -vendor payment_processor_name -account account_POID

where account_POID is the Portal object ID (POID) of the account to be selected for
tokenization.

2-8 BRM Configuring and Collecting Payments

About Migrating Credit Card Information from Legacy Databases

For example:

pin_cc_migrate -vendor fusa -account 3421343

To specify the time range for selecting the credit card numbers for tokenization, run
the following command:

pin_cc_migrate -vendor payment_processor_name -start_date mm/dd/yy -end_date
mm/dd/yy

For example:

pin_cc_migrate -vendor fusa -start_date 01/01/11 -end date 10/30/11

The start and end dates specify the time range for selecting the /payinfo/cc objects for
tokenization.

See "pin_cc_migrate" for information on the pin_cc_migrate utility.

About Purging Old Credit Card Event and Audit Trail Objects

When you run the pin_cc_migrate utility, only the credit and debit card numbers
stored in the /payinfo/cc objects are replaced with tokens. The credit and debit card
numbers stored in the following objects are not replaced:

= Event objects created for credit card validation and credit card charges (such as
/event/billing/charge/cc and /event/billing/validate/cc objects)

= Audit trail objects created for tracking credit card payments (such as
/event/audit/customer/payinfo/cc and /au_payinfo/cc objects)

Oracle recommends that you purge these event and audit trial objects immediately
after you run the pin_cc_migrate utility. You can purge the old event and audit trail
objects by using the BRM utilities or purging scripts. See the following for more
information:

= To purge the event objects, see "About Purging Event Objects" in BRM System
Administrator’s Guide.

= To purge the audit trail objects, see "Archiving Audit Data" in BRM Developer's
Guide.

Important: If you purge the /event/billing/charge/cc objects, you
cannot refund payments to the same credit card accounts that were
used for one-time payments made before running the pin_cc_migrate
utility.

About Migrating Credit Card Information from Legacy Databases

When migrating legacy credit and debit card data into the BRM database, do one of
the following:

» If tokens are stored in the legacy database instead of the actual credit or debit card
numbers, when you create the XML file for migrating data, do the following:

1. Ensure that you add the card type value for each credit card account. This
ensures that the legacy credit and debit card data is migrated in the same
format that is used for storing the credit card data in the PAYINFO_CC_T
table.

About BRM-Initiated Payment Processing 2-9

Paymentech and International Transactions

The following are the card type values that are used in the PAYINFO_CC_T
table:

— 1 for VISA card

— 2 for MASTER card

- 3 for American Express card

— 5 for Discover card

— 6 for Diners Club card

— 7 for Carte Blanche

- 8for]JCB

— 9 for SWITCH

- 10 when the card type is unknown

See "About Creating XML Files" in BRM Managing Customers for more
information on creating XML file for migrating legacy credit card data.

2. Enable credit card tokenization in BRM. See "Enabling Credit Card
Tokenization" for more information.

= If credit or debit card numbers are stored in the legacy database, after migrating
the card numbers from the legacy database, do the following:

1. Enable credit card tokenization in BRM. See "Enabling Credit Card
Tokenization" for more information.

2. Run the pin_cc_migrate utility to replace the credit and debit card numbers
with tokens. See "pin_cc_migrate" for more information on the pin_cc_migrate
utility.

See "Migrating Customer Accounts" in BRM Managing Customers, for more information
on migrating data from legacy databases.

Paymentech and International Transactions

You can use Paymentech for credit card processing transfers outside the United States.
Paymentech supports different currencies for different credit cards.

The Paymentech Address Verification System (AVS), which verifies customer
addresses at time of purchase, is turned off if any non-ASCII encoding is entered in the
address fields. You can customize the use of AVS further by changing some policy
opcodes. For more information, see "Configuring BRM-Initiated Payment Processing".

Paymentech supports only US and Canadian direct debit accounts. The routing
number must be 9 digits and the checking account number can be up to 17 digits.

About the Paymentech HeartBeat Application

The Paymentech HeartBeat application is a background process that checks the
application-to-application connectivity between BRM and Paymentech. When the
Paymentech DM (dm_fusa) successfully connects to Paymentech to process
BRM-initiated payments, Paymentech acknowledges the secure connection by sending
a HeartBeat message. The Paymentech DM responds by sending back a HeartBeat
message to Paymentech to confirm that the connection is working properly and that
the expected transactions and data types are being sent.

2-10 BRM Configuring and Collecting Payments

About Collecting BRM-Initiated Payments

If Paymentech does not receive a response message from BRM within 120 seconds of
sending a request message, or if the response message is incorrect, Paymentech resets
the connection to a listen state. BRM handles this as a socket disconnect and recovers
accordingly. Errors are written to the BRM_Home/sys/dm_fusa/dm_fusa.pinlog file.

Important: If BRM stops receiving HeartBeat messages and is in the
middle of a transaction, the connection will not disconnect.

The request and response messages should continue for the duration of the connection
and are comprised of a unique sequence number and a current timestamp.

For information on initializing the HeartBeat application and troubleshooting errors,
see "Using the Paymentech HeartBeat Application".

About Applying Charges Directly to Credit Card Accounts
You use Customer Center to apply charges directly to a customer’s credit card.

When you charge a credit card, BRM performs only a credit card authorization. The
payment is deposited by running the "pin_deposit" payment utility. By default, you
run the pin_deposit utility every day by running the pin_bill_day script.

See "About Depositing BRM-Initiated Payments".

General Ledger Impact of Charges

The general ledger impact of charges made directly to credit cards is recorded when
the payment is made, not when the charge is initiated. By default, payments are
associated with G/L ID 109.

About Collecting BRM-Initiated Payments

The pin_collect utility collects the balance due for bills that are paid by credit card or
direct debit. The balance due is calculated by the pin_bill_accts utility, and is derived
from the total from all bill items, minus amounts that were adjusted, transferred, and
so forth.

The pin_collect utility collects payments for accounts that had a bill created by the
pin_bill_accts utility on that day. This is why you run the pin_bill_accts utility first.

If you miss a billing day, the pin_collect utility still collects on accounts whose billing
day was missed. This is because the pin_bill_accts utility creates bills for the missed
billing days, and the pin_collect utility collects payments for those bills.

You can use the -rebill option to collect on accounts whose billing day is before the
day that you run the pin_collect utility.

The pin_collect utility performs the credit card authorization and deposits the
payment at the same time (as opposed to pin_deposit, which only deposits payments
that have been pre-authorized.)

The pin_collect utility searches for outstanding checkpoint events for the specified
/account object. If any are found, it flags the result as “Checkpoint Outstanding”.

For information about the pin_collect utility syntax, see "pin_collect".

About BRM-Initiated Payment Processing 2-11

About Depositing BRM-Initiated Payments

When to Run the pin_collect Utility

Run the pin_collect utility at the following times:
s In the pin_bill_day script for all accounts.
s In the pin_bill_week script with the rebill option on all active accounts.

s In the pin_bill_month script with the rebill option on all closed /inactive
accounts.

Important: When you use multiple payment processors, you run this
utility for each payment processor. See "Using More Than One
Payment Processor".

You can also run the pin_collect utility manually to rebill accounts from a specific
date.

Increasing Performance of the pin_collect Utility

To increase billing performance, you run multiple threads of the pin_collect utility. See
"Tuning Billing Performance" in BRM System Administrator’s Guide.

Setting the Minimum Amount to Collect

By default, pin_collect does not collect amounts less than two dollars. To change the
minimum amount, see "Specifying the Minimum Payment to Collect" in BRM
Configuring and Running Billing.

About Depositing BRM-Initiated Payments

The pin_deposit utility deposits pre-authorized credit card payments into your
account.

Pre-authorization occurs in two cases:
= When a customer specifies a credit card payment method.
s When a CSRissues a charge in Customer Center.

The pin_deposit utility searches for all pre-authorized but unpaid credit card
transactions made within the past 30 days (from yesterday), and sends the credit card
authorization codes and the transaction dates to the credit card processor for
depositing.

For information about the pin_deposit utility, see "pin_deposit".

When to Run pin_deposit
Use the pin_bill_day script to run the pin_deposit utility daily.

You should run the pin_deposit utility daily because VISA authorizations expire in 7
days. (MasterCard authorizations expire in 30 days.) You can deposit pre-authorized
payments after the authorization has expired, but the transactions cost more to
process.

2-12 BRM Configuring and Collecting Payments

About Resolving Failed BRM-Initiated Payment Transactions

Important: When you use multiple payment processors, you run this
utility for each payment processor. See "Using More Than One
Payment Processor".

If performance warrants, you can modify the scope of the search by using the start and
end options to change the starting and ending dates of the search.

Increasing Performance of the pin_deposit Utility

To increase billing performance, you run multiple threads of the pin_deposit utility.
See "Tuning Billing Performance" in BRM System Administrator’s Guide.

About Resolving Failed BRM-Initiated Payment Transactions

Use the pin_clean utility to troubleshoot failed BRM-initiated payment transactions,
such as credit card or direct debit transactions. For more information, see "Resolving
Failed BRM-Initiated Payment Transactions".

For information about the pin_clean utility, see "pin_clean".

When to Run the pin_clean Utility

You should run the pin_clean utility every day to look for failed BRM-initiated
payment transactions.

Tip: The pin_clean utility writes output to stdout, so you can write a
script to run the pin_clean utility daily and write the output to a file.

Example of Running pin_clean
The following example shows a typical pin_clean session:
1. Start the pin_clean utility:

% pin_clean

2. A summary of checkpoint records appears, followed by a list of options.

CheckPoint Log Summary:
PIN_CHARGE_CMD_VERIFY
PIN_CHARGE_CMD_AUTH_ONLY
PIN_CHARGE_CMD_CONDITION
PIN_CHARGE_CMD_DEPOSIT
PIN_CHARGE_CMD_REFUND

N O O W W

Choose function by number:

1) View PIN_CHARGE_CMD_VERIFY
) View PIN_CHARGE_CMD_AUTH_ONLY
3) View PIN_CHARGE_CMD_CONDITION
4) View PIN_CHARGE_CMD_DEPOSIT
5) View PIN_CHARGE_CMD_REFUND
6) Delete All
7) Done

In this example, there are three failed verification transactions, three failed
authorization transactions, and two failed refund transactions.

About BRM-Initiated Payment Processing 2-13

About Recovering BRM-Initiated Payment Transactions

About Recovering BRM-Initiated Payment Transactions

Use the pin_recover utility to resolve failed BRM-initiated payment transactions.
When resubmitting failed credit card and direct debit transactions, the pin_recover
utility takes the billinfo’s current payment type while, which must be either 10003 for
credit cards or 10005 for direct debit transactions.

When to Run the pin_recover Utility

You should run this utility whenever the pin_clean utility finds failed transactions. See
"Resolving Failed BRM-Initiated Payment Transactions".

For information about the pin_recover utility, see "pin_recover".

Caution: If you use a credit card payment processor other than
Paymentech, ensure that it uses duplicate transaction detection. If not,
using the pin_recover utility can cause customers to be billed twice.

How BRM-Initiated Payment Transactions Are Performed

Note: The BRM-initiated payment collection utilities (pin_collect
and pin_deposit) process payments for multiple bills associated with
multiple /billinfo objects. To process externally initiated payments,
such as checks and cash payments, for multiple /billinfo objects, write
custom code that records the deposits you have received and calls
PCM_OP_PYMT_COLLECT.

To perform a BRM-initiated payment transaction, PCM_OP_PYMT_COLLECT calls
PCM_OP_PYMT_CHARGE.

The input flist contains a PIN_FLD_SESSION_OB]J field, which defines the session in
which the event occurred: either a payment batch event or a refund batch event.

The input flist also contains an array of specific operations to perform, so any number
of operations can be batched together into a single call. The command is specified
within each operation, so a single batch can contain a mixture of different commands.

The billing information for each operation, such as credit card number and expiration
date, can be specified as options on the input flist. If it isn't specified, PCM_OP_
PYMT_CHARGE retrieves the necessary information from the account storable objects
specified within the operations. After it has all the data, the operations are forwarded
to the opcode responsible for processing that payment method (for example, PCM_
OP_PYMT_CHARGE_CC and PCM_OP_PYMT_CHARGE_DD for credit card charges
and direct debit charges, respectively).

2-14 BRM Configuring and Collecting Payments

How BRM-Initiated Payment Transactions Are Performed

Note:

For security reasons, the credit card CVV2 and CID numbers are
not stored in BRM. If the cc_collect entry is enabled, PCM_OP_
PYMT_CHARGE passes the security information to the payment
processor for authorization and collection only at time of account
creation. When collecting payments, PCM_OP_PYMT_CHARGE
does not pass the information. In addition, it omits the PIN_FLD_
SECURITY_ID field from the input flist of PCM_OP_ACT_
USAGE so it is not written to the /event/billing/charge/cc object.
The result is that the CVV2/CID information is stored in the
database with a NULL value. For more information, see
"Requiring Additional Protection against Credit Card Fraud".

BRM supports direct debit transactions from checking accounts

only.

Each of the commands listed below in Table 2-1 can be executed as an operation. They

are also called by Customer Center:

Table 2-1

Commands to Perform Transactions

Command

Description

PIN_CHARGE_CMD_VERIFY

Verify the address information.

PIN_CHARGE_CMD_AUTH_ONLY

Authorize a charge. The credit limit is
decreased on the credit card, but no charge
is posted.

PIN_CHARGE_CMD_CONDITION

Authorize and deposit a charge.

PIN_CHARGE_CMD_DEPOSIT

Deposit a previously authorized charge.

PIN_CHARGE_CMD_RECOVER_PAYMENT

Recovers payments by using outstanding
checkpoints.

PIN_CHARGE_CMD_REFUND

Refund a charge.

PIN_CHARGE_CMD_RESUBMIT

Resubmit the batch of charges.

PIN_CHARGE_CMD_RFR

For transactional payments, requests the
RER file to retrieve payments.

For nontransactional payments, reads the
RER file to retrieve payments.

For each operation specified, the result of the operation is stored in the corresponding

/event/billing/charge storable object.

The result is stored both as a numeric value returned by the payment processor, and as
an enumerated result. The enumerated result should generally be used by applications
to determine what happened because its values are independent of which settlement

house was used.

Possible result values for an operation are shown in Table 2-2:

Table 2-2 Result Values for Operation

Input Output
PIN_FLD_RESULT

PIN_FLD_RESULT

Output
PIN_FLD_DESCR

PIN_CHARGE_RES_PASS

PIN_RESULT_PASS

Validation successful

About BRM-Initiated Payment Processing 2-15

How BRM-Initiated Payment Transactions Are Performed

Table 2-2 (Cont.) Result Values for Operation

Input
PIN_FLD_RESULT

Output
PIN_FLD_RESULT

Output
PIN_FLD_DESCR

PIN_CHARGE_RES_SRVC_UNAVAIL

PIN_RESULT_PASS

Validation successful

PIN_CHARGE_RES_FAIL_ADDR_AVS

PIN_RESULT_FAIL

Unable to verify address

PIN_CHARGE_RES_FAIL_ADDR_LOC

PIN_RESULT_PASS

Street address mismatch

PIN_CHARGE_RES_FAIL_ADDR_ZIP

PIN_RESULT_FAIL

ZIP code mismatch

PIN_CHARGE_RES_FAIL_CARD_BAD

PIN_RESULT_FAIL

Credit card number not
valid

PIN_CHARGE_RES_FAIL_DECL_SOFT

PIN_RESULT_FAIL

General soft decline
Card failed credit check

PIN_CHARGE_RES_FAIL_DECL_HARD

PIN_RESULT_FAIL

General hard decline

Card failed credit check

No answer from
settlement house

PIN_CHARGE_RES_FAIL_NO_ANS PIN_RESULT_FAIL

Unable to validate now

PIN_CHARGE_RES_CHECKPOINT PIN_RESULT_FAIL | Unable to validate now

PIN_CHARGE_RES_CVV_BAD PIN_RESULT_FAIL | Security ID check failed

General soft declines are failures that can be retried later with possible success. This
includes reasons like insufficient credit limit and other transitory causes. General hard
declines are failures that are unlikely to succeed if retried. These include reasons like
lost and stolen credit card and chronic payment failures.

Note: By default, account balances are not updated if there is a
decline. To update account balances when a decline occurs, you must
customize the PCM_OP_PYMT_POL_CHARGE policy opcode.

You can send multiple charges in one call by using the PIN_FLD_CHARGES array on
the input flist. This array is designed for batch processing; you just make one call to
PCM_OP_PYMT_CHARGE for a whole list of charges (or accounts to charge). These
entries on the input flist of this opcode are of special interest:

s The PIN_FLD_POID entry at the top of the input flist is only used for routing; it
only requires a correct (user) database number.

s The PIN_FLD_ACCOUNT_OB]J entry is the POID of the account actually being
charged (verified) by this element of the PIN_FLD_CHARGES array. In a batch,
this POID is presumably different for every element.

If the PCM_OPFLG_CALC_ONLY flag is set, the opcode does not change any fields in
the database and does not create an /event/billing/charge object. However, it does
provide a charge calculation to the caller by returning the fields that would have been
used to create the event object and the charge item.

2-16 BRM Configuring and Collecting Payments

How BRM-Initiated Payment Transactions Are Performed

Caution: Do not set the PCM_OPFLG_CALC_ONLY flag if you are
connected to a payment processor, for example Paymentech. This may
cause the charge to be sent to the credit card company, even though
the charge is not created in BRM. This may result in a double charge
on the account.

PCM_OP_PYMT_CHARGE works as follows:
1. Opens a transaction.
2. Using checkpoints, creates the /event/billing/charge event for each payment.

3. Calls PCM_OP_PYMT_CHARGE_CC or PCM_OP_PYMT_CHARGE_DD,
depending on the payment method, to process the charges from the payment DM.

4. Updates the checkpoint in the charge event for each transaction received from the
payment DM.

5. For each PIN_FLD_CHARGES in the input flist:
a. Closes billing for the account.

b. Creates a payment item and records the account number, bill number, and
transaction ID from the input flist, and the fact that the money has been
received.

c. Adds the PIN_FLD_STATUS value in the output flist.

For failed payments, sets the PIN_FLD_STATUS value to PIN_PYMT_
FAILED. For successful payments, sets the PIN_FLD_STATUS value to PIN_
PYMT_SUCCESS.

d. Calls the PCM_OP_PYMT_POL_CHARGE policy opcode to update the
reasons array.

e. Sends the payment status and the reasons array (PIN_FLD_REASON_ID and
PIN_FLD_REASON_DOMAIN_ID) to PCM_OP_PYMT_COLLECT.

f. For payments with a successful status, applies the charge to the customer’s
account. For payments with a failed status, sends the PIN_FLD_STATUS value
to the PCM_OP_PYMT_APPLY_FEE to create the payment fees.

6. Closes the transaction.

How BRM Performs Credit Card Charges

To perform a credit card charge, PCM_OP_PYMT_CHARGE calls PCM_OP_PYMT_
CHARGE_CC.

The PCM_OP_PYMT_CHARGE_CC input flist contains the PIN_FLD_SESSION_OB]
field, which references either the /event/billing/batch/payment or
/event/billing/batch/refund object. This determines the batch type being submitted
(payment or refund).

The PCM_OP_PYMT_CHARGE_CC input flist contains an array of specific operations
to perform, so any number of operations can be batched together into a single call. The
command is specified within each operation, so a single batch can contain a mixture of
different commands. This opcode supports all commands handled by PCM_OP_
PYMT_CHARGE.

The operations are forwarded to the credit card processing Data Manager (for
example, the Paymentech DM) for processing.

About BRM-Initiated Payment Processing 2-17

How BRM-Initiated Payment Transactions Are Performed

With most credit card payment services, performing an authorization is much faster
than a conditional deposit (authorization plus deposit). Thus, for applications where
latency is important, it may be desirable to perform just the authorization step in
real-time. BRM daily billing performs the necessary deposits for all outstanding
authorizations from the previous day. This removes a significant amount of latency
from the real-time process, but still authorizes the charge so it is guaranteed to deposit
successfully.

The set of Paymentech return codes handled by BRM is listed in the BRM_
Homelsys/dm_fusa/fusa_codes file. As explained in "Changing How BRM Handles
Paymentech Authorization Return Codes", these codes can be modified. See "How
BRM-Initiated Payment Transactions Are Performed" for a list of the PIN result codes
from BRM-initiated payment transactions.

Unless the PCM_OPFLG_CALC_ONLY flag is specified, PCM_OP_PYMT_CHARGE_
CC creates an /event/billing/charge/cc storable object for each operation. If an array of
operations was specified, then more than one event storable object is created. The
event storable objects are created even if the credit card operations cannot be
performed.

Caution: Do not set the PCM_OPFLG_CALC_ONLY flag if you are
connected to a payment processor, for example, Paymentech. This
may cause the charge to be sent to the credit card company, even
though the charge is not created in BRM. This may result in a double
charge on the account.

How BRM Performs Direct Debit Charges

BRM supports direct debit transactions from customer checking accounts only. To
perform a batch of Paymentech direct debit transactions, PCM_OP_PYMT_CHARGE
calls PCM_OP_PYMT_CHARGE_DD.

This opcode is used for the Paymentech direct debit implementation shipped with
BRM, and is available for you to use in creating a custom direct debit implementation
for the bank or payment clearing house you choose.

Important: Debit cards that require a personal identification number
(PIN) are not supported.

About Paymentech Direct Debit Implementation

PCM_OP_PYMT_CHARGE_DDEBIT supports all commands handled by PCM_OP_
PYMT_CHARGE.

Unless the PCM_OPFLG_CALC_ONILY flag is specified, this routine creates an
/event/billing/charge/ddebit storable object for each operation. If an array of
operations is specified, then more than one event object is created.

Caution: Do not set the PCM_OPFLG_CALC_ONLY flag if you are
connected to a payment processor, for example, Paymentech. This
may cause the charge to be sent to the credit card company, even
though the charge is not created in BRM. This may result in a double
charge on the account.

2-18 BRM Configuring and Collecting Payments

How BRM-Initiated Payment Transactions Are Performed

Creating a Custom Direct Debit Implementation

By default, PCM_OP_PYMT_CHARGE_DD returns direct debit payment information,
a charge status, and a payment status to the calling opcode for updating respective
events. Effectively this opcode performs a loopback operation that you must change
before you can implement direct debit charging. It does not output transaction data for
a direct debit clearinghouse. BRM users must create an application to extract the
information from the database for a specific direct debit clearinghouse.

For more information on adding a direct debit to your BRM system, see
"Implementing a Direct Debit Payment Method".

How BRM Performs a Batch of Direct Debit Charges

To perform a batch of Paymentech direct debit transactions, PCM_OP_PYMT_
CHARGE calls PCM_OP_PYMT_CHARGE_DD. The processing is performed on a
per-batch basis; only one command and one payment method can exist in the same
batch.

PCM_OP_PYMT_CHARGE_DD supports all commands handled by PCM_OP_
PYMT_CHARGE, except that it does not create a payment structure and handles
transaction charges of $1 only. See "How BRM-Initiated Payment Transactions Are
Performed" for a list of the PIN result codes from BRM-initiated transactions.

The input flist contains a PIN_FLD_SESSION_OB]J field, which defines the session in
which the event occurred: either a payment batch event or a refund batch event
(/fevent/billing/batch/payment or /event/billing/batch/refund).

Unless the PCM_OPFLG_CALC_ONLY flag is specified, this routine creates an
/event/billing/charge/dd storable object for each operation. If an array of operations
was specified, then more than one event storable object is created. The event storable
objects are created even if the direct debit operations cannot be performed.

Caution: Do not set the PCM_OPFLG_CALC_ONLY flag if you are
connected to a payment processor, for example, Paymentech. This
may cause the charge to be sent to the credit card company, even
though the charge is not created in BRM. This may result in a double
charge on the account.

For more information on credit card handling, see "About the Billing Utilities" and the
pin_collect, pin_recover, and pin_deposit sections in particular.

The set of Paymentech return codes handled by BRM is listed in the BRM_
Homelsys/dm_fusa/fusa_codes file. As explained in "Changing How BRM Handles
Paymentech Authorization Return Codes", these codes can be modified.

How BRM Checks the Results of BRM-Initiated Batch Payment Operations

To check the results of batch payment operations, set the PIN_FLD_COMMAND value
in the PCM_OP_PYMT_COLLECT input flist to PIN_CHARGE_CMD_RECOVER_
PAYMENT. This causes PCM_OP_PYMT_CHARGE to call PCM_OP_PYMT_
RECOVER.

PCM_OP_PYMT_RECOVER posts the results of charges for which no information was
returned.

PCM_OP_PYMT_RECOVER calls the following opcodes:

About BRM-Initiated Payment Processing 2-19

How BRM Handles Credit Card Information during Account Creation

s To check the results of a batch of credit card charges, PCM_OP_PYMT_
RECOVER_CC calls PCM_OP_PYMT_RECOVER_CC. This opcode posts results of
credit card charges for which no information was returned.

PCM_OP_PYMT_RECOVER_CC is specific to the Paymentech DM.

s To check the results of a batch of direct debit charges, PCM_OP_PYMT_
RECOVER_CC calls PCM_OP_PYMT_RECOVER_DD. This opcode posts results
of direct debit charges for which no information was returned. The results are
passed back and used for transaction reconciliation.

PCM_OP_PYMT_RECOVER_DD is specific to the Paymentech DM.

How BRM Validates Credit Card and Direct Debit Transactions

To validate credit card and direct debit transactions, use PCM_OP_PYMT_VALIDATE.
This opcode is called by PCM_OP_CUST_PREP_CUSTOMER and PCM_OP_CUST_
POL_VALID_PAYINFO during registration.

PCM_OP_PYMT_VALIDATE calls the PCM_OP_PYMT_POL_VALIDATE policy
opcode to determine the success or failure of a BRM-initiated transaction validation.
See "Changing How BRM Handles Paymentech Address Validation Return Codes".

PCM_OP_PYMT_VALIDATE reads the /config/payment storable class to determine
the transaction type and the opcode to call, and then calls the appropriate opcode to
validate the transaction.

m Credit card transactions: PCM_OP_PYMT_VALIDATE_CC.

PCM_OP_PYMT_VALIDATE_CC performs a batch of online credit card
validations and applies the validation policy to the results.

s Direct debit transactions: PCM_OP_PYMT_VALIDATE_DD.

PCM_OP_PYMT_VALIDATE_DD performs a batch of online direct debit
validations and applies the validation policy to the results. PCM_OP_PYMT_
VALIDATE_DD calls the appropriate DM to process validations, then returns the
results to the Internet.

Note: BRM supports direct debit transactions from checking
accounts only.

For both opcodes, the input flist contains an array of specific operations to perform, so
any number of operations can be batched together into a single call. The command is
specified within each operation, so a single batch can contain different commands. The
PIN_FLD_SESSION_OB] in the input flist is either /event/billing/batch/refund or
/event/billing/batch/payment, depending on the batch type: payment or refund.

How BRM Handles Credit Card Information during Account Creation

During the account creation process, PCM_OP_CUST_COMMIT_CUSTOMER passes
credit card information to PCM_OP_PYMT_VALIDATE and PCM_OP_PYMT_
COLLECT, which collect any credit card payments charged at account creation and
validate the credit card information returned by the payment processor.

= PCM_OP_PYMT_COLLECT calls the PCM_OP_PYMT_POL_SPEC_COLLECT
policy opcode, which passes the bill unit associated with the payment and returns
a list of open items to be paid in the PIN_FLD_ITEMS array.

2-20 BRM Configuring and Collecting Payments

About Credit Card Fraud Prevention

» PCM_OP_PYMT_POL_SPEC_COLLECT calls PCM_OP_PYMT_GET_ACH_INFO
to retrieve the Automated Clearing House (ACH) information.

s PCM_OP_PYMT_GET_ACH_INFO retrieves ACH information from the
/config/ach object. It uses the ACH vendor name or element ID in the input flist to
determine which element in the ACH_INFO array should be used.

If the cc_collect value in the CM pin.conf file is set to 1, during account creation for
credit card accounts, the total due amount for the account is charged immediately and
the payment is allocated immediately to all open bill items. Therefore, after the
account is created, it will have no pending amount due and no unapplied payments.
For such accounts, Customer Center displays the following account balance
information in the Summary tab:

= Amount due for all bills: 0
= Adjustments/Payments not applied: 0

s Duenow:0

Important: In the Payments tab, the received payment is displayed
as allocated, regardless of whether a bill has been created yet.

About Credit Card Fraud Prevention

Paymentech offers an additional fraud prevention option for Visa and American
Express transactions. Visa and American Express debit and credit cards have a
non-embossed identifier.

» For Visa cards, this field holds the three-digit CVV2 (Card Verification Value 2) ID.
s For American Express, this fields holds the four-digit CID (Card identifier).

Many people who defraud with credit cards know the account numbers and
expiration dates of the card, but do not have the card in their possession and cannot
provide the CVV2 or CID number. The Visa CVV2 number is on the back of the card in
the signature panel. The American Express CID number is on the front of the card.
CSRs can request this information when registering customers.

For security reasons, these numbers are not stored in BRM. PCM_OP_PYMT_
VALIDATE omits the PIN_FLD_SECURITY_ID field from input flist of PCM_OP_
ACT_USAGE so it is not written to the /event/billing/charge/cc object. The result is
that the CVV2/CID information is stored in the database with a NULL value.

You can configure BRM to make the identification numbers required or optional when
a CSR registers a customer, adds a credit card to an account, or changes a customer’s
credit card information. In such cases, PCM_OP_PYMT_VALIDATE_CC sends the
information in the PIN_FLD_SECURITY_ID field directly to the payment processor.
The PIN_FLD_SECURITY_RESULT field is part of the PIN_FLD_RESULTS element.
The value is validated when PCM_OP_VALIDATE_CC issues the PIN_CHARGE_
CMD_VERIFY command to the Paymentech DM.

You can also configure Customer Center and BRM to validate the maximum number
of digits entered for the CVV2 number. See "Specifying the Maximum Number of
Digits Allowed for CVV2 Verification".

For more information, see "Requiring Additional Protection against Credit Card
Fraud".

About BRM-Initiated Payment Processing 2-21

About Credit Card Fraud Prevention

2-22 BRM Configuring and Collecting Payments

3

About SEPA Payment Processing

This chapter describes the Oracle Communications Billing and Revenue Management
(BRM) Single Euro Payments Area (SEPA) payment processing.

For more information on payments, see "About Payments".

About SEPA Payments

SEPA payments are electronic payment transfers between bank accounts in the euro
countries that participate in SEPA.

SEPA defines a common set of standards and rules for any organization or individual
making or receiving payments in euro. With SEPA, all bank accounts are uniquely
identified by the International Bank Account Number (IBAN), and the banks related to
the accounts are uniquely identified by the Business Identifier Code (BIC). These
standards improve the ability of consumers to transfer money, for example, from the
home bank account to an account in another country that participates in SEPA.

Note: BRM supports the SEPA specifications in the SEPA Rulebook
Version 7.0.

SEPA defines two payment schemes: SEPA Direct Debit and SEPA Credit Transfer.
Both SEPA Direct Debit and SEPA Credit Transfer are supported as BRM-initiated
payments.

About the SEPA Direct Debit Payment

SEPA Direct Debit is a payment transfer that is initiated by the service provider for
automated payments from the customer’s bank account.

This type of payment is commonly used for recurring payments such as automated
payments for a monthly subscription charge (can also be used for one-time payments)
and requires a pre-authorization (mandate) from the customer.

About the SEPA Credit Transfer Payment

SEPA Credit Transfer is a payment transfer that is initiated by the service provider to
transfer money from the service provider’s bank account to the customer’s bank
account.

SEPA Credit Transfer is used to give refunds to customers. The service provider must
provide the customer’s IBAN and the customer’s bank’s BIC to initiate the credit
transfer.

About SEPA Payment Processing 3-1

About Specifying SEPA Payment Information During Customer Registration

About Specifying SEPA Payment Information During Customer
Registration
Use Customer Center to register your customer’s SEPA payment information.

When you register a new customer (or when an existing customer purchases a new
service) and the customer wants to pay by SEPA Direct Debit, specify SEPA as the
payment method.

In addition to the customer’s name and address information, your customer must
provide a mandate, a pre-authorization form that is signed by your customer, to debit
the customer’s bank account automatically through SEPA Direct Debit.

For more information about creating accounts using the SEPA payment method, see
the discussion about creating customer accounts in the Customer Center Help.

About the Account Currency for SEPA Payments
SEPA Direct Debit and SEPA Credit Transfer payments are allowed in euro only.

When you register a customer, the account’s primary currency must be euro.

About Registering the Mandate for SEPA Direct Debit Payments

To pay for services by SEPA Direct Debit, your customer must first fill out and sign a
mandate (provided by the service provider) to authorize automatic payments from the
customer’s bank account.

SEPA requires the service provider to send this mandate information with each
collection of the SEPA Direct Debit payment. The service provider is also required to
retain the mandate (throughout the period when the customer is using SEPA Direct
Debit and according to the national legal requirements and its Terms and Conditions)
along with any amendments or information concerning its cancellation or lapse with
the service provider’s bank.

The mandate must include the following information:
= Your customer’s name and address

= Your customer’s IBAN

= Your customer’s bank’s BIC

= Your business name and address

= Your creditor identification number

= Type of mandate (recurrent or one-off)

= Your customer’s signature

Your customer service representative (CSR) receives the signed mandate and enters the
data into the BRM system using Customer Center.

A mandate is identified by the unique mandate reference (UMR) number. If a unique
mandate reference number is not provided, BRM automatically generates one for the
mandate.

In BRM, a mandate is associated with a bill unit and is valid for collection of the
payment for this bill unit. If your customer has multiple services associated with
different bill units and wants to pay for the different services by SEPA Direct Debit,
your customer must provide separate mandates for the collection of payments for each
service. If the same mandate is associated with multiple services, it is assumed that

3-2 BRM Configuring and Collecting Payments

Managing Customer’s SEPA Payment Information

your customer has authorized collection of payment for all the services using a single
mandate.

For information on the requirements for retaining the paper mandate and any
amendments to it, refer to the SEPA Direct Debit Rulebook.

About the Different Types of Mandates

Mandates are of two types: recurrent and one-off.

A recurrent mandate is used to collect multiple bill payments for a bill unit; for
example, to collect a recurring monthly service fee. If a recurrent mandate is not used
within a 36-month period, it is considered expired; BRM automatically sets the
mandate status to Expired.

A one-off mandate is used to collect only one bill payment for a bill unit. For example,
your customer pays bills regularly by check or credit card but wants to pay a bill by
SEPA Direct Debit. After collection of the one bill payment, the mandate cannot be
used to collect other bill payments; BRM automatically sets the mandate status to
Expired.

You cannot re-activate a mandate that is expired. A new mandate is required to
process any SEPA payment requests.

Managing Customer’s SEPA Payment Information
Use Customer Center to change or delete your customer’s SEPA payment information.
You can do the following:
s Change payment method (see "Changing the SEPA Payment Method")
» Delete the payment method (see "Deleting the SEPA Payment Method")
= Change the mandate information (see "Changing the Mandate Information")

See Customer Center Help for more information.

Changing the SEPA Payment Method

If your customer wants to change from SEPA to a different payment method, you need
to register new payment information and associate the customer’s services with the
new payment information. Your customer’s existing SEPA payment method in the
BRM database is not changed.

If your customer wants to change from a different payment method to SEPA, you need
to first register the SEPA payment information. For instance, if your customer is
currently paying by credit card and wants to pay by SEPA Direct Debit instead,
register new payment information that includes the SEPA-related information such as
the IBAN, BIC, and the mandate information. Your customer’s existing payment
information in the BRM database is not changed.

Deleting the SEPA Payment Method

When you delete a SEPA payment method, BRM also cancels the mandate that is
associated with the payment method and the mandate cannot be used with any future
payment requests; a new mandate is required.

You cannot delete the SEPA payment method if it is associated with a bill unit.

About SEPA Payment Processing 3-3

About Loading Your Creditor Information into the BRM Database

If the SEPA payment method is associated with a payment request that is pending,
BRM cancels the mandate only for future payment requests.

Changing the Mandate Information

To update the customer information in a mandate, you use Customer Center.

To update the creditor information in a mandate, you update the creditor
configuration object. See "Updating the Creditor Information" for more information.

BRM stores the new mandate information and also keeps a record of the information
that is amended and sends both the new and amended information to the bank with
the next SEPA payment collection.

About Loading Your Creditor Information into the BRM Database

Your creditor information includes your business name and address and the creditor
identification number. You load the creditor information into the creditor
configuration objects (/config/creditor) in the BRM database. For more information,
see "Setting Up and Loading Creditor Information".

During customer registration, Customer Center retrieves your creditor configuration
information from the BRM database.

Setting Up and Loading Creditor Information
Creditor information is stored in the /config/creditor object in the BRM database.
To set up and load creditor information:

1. Open the BRM_Homelsys/data/config/config_creditor.xml file in a text editor,
where BRM_Home is the directory in which BRM is installed.

2. In the CREDITOR_INFO child element, provide the values listed in Table 3-1.

Table 3-1 Elements in the CREDITOR_INFO Child Element
Element Description
ADDRESS Your business street address
BIC Your Business Identifier Code
BRAND_OB] The brand account for your business
CITY The city where your business is located
COUNTRY The country where your business is located
CREDITOR_ID Your creditor identification number
CURRENCY Your currency
IBAN Your International Bank Account Number
NAME Your business name
REF_PARTY The name of your reference party
REF_PARTY_ID_CODE The identification code of your reference party
ZIP The postal code where your business is located

3. Save and close the file.

3-4 BRM Configuring and Collecting Payments

Processing SEPA Payments

4. Run the following command, which loads the contents of the file into the
/config/creditor object:

BRM_Home/apps/load_config/load_config -v config creditor.xml

The load_config utility validates the contents using the config_creditor.xsd file
before loading the data.

See "load_config" in BRM Developer’s Guide for more information about the
utility’s syntax and parameters.

5. Read the object by using the robj command with the testnap utility or by using
Object Browser to verify that the creditor configurations are loaded.

See "Using testnap” in BRM Developer’s Guide for general instructions on using the
testnap utility.

See "Reading Objects by Using Object Browser" in BRM Developer’s Guide for
information on how to use Object Browser.

6. Stop and restart the Connection Manager (CM). For more information, see
"Starting and Stopping the BRM System" in BRM System Administrator’s Guide.

You can use load_config utility to add new creditor configuration data; it does not
overwrite any existing data in the configuration objects. However, to update or delete
a creditor configuration object, you need to use opcodes. For more information, see
"Updating the Creditor Information".

Updating the Creditor Information

To update the creditor information, use the PCM_OP_CUST_AMEND_CREDITOR _
INFO opcode. This opcode updates the creditor name and the creditor ID only.

PCM_OP_CUST_AMEND_CREDITOR_INFO uses the creditor ID to update the
/config/creditor object with the new creditor information.

Any update to a creditor configuration triggers automatic updates to all the mandates
with this creditor ID in the BRM database. For example, if you have multiple
customers that have mandates with the same creditor ID, BRM automatically locates
the customers’ payment information and updates their mandates with the new
creditor information.

Processing SEPA Payments
Processing of SEPA payments includes these tasks:

» Creating the payment requests in BRM. See "Creating SEPA Direct Debit Payment
Requests" and "Creating SEPA Credit Transfer Payment Requests".

= Generating the SEPA request files. See "Generating SEPA Request XML Files".

n Collecting the payments. See "Sending the SEPA Request XML Files to Your Bank
to Collect Payment".

= Handling the failed payments. See "Processing SEPA Response XML Files to
Handle Failed Payment Transactions".

Creating SEPA Direct Debit Payment Requests

You run the pin_collect utility to create the SEPA Direct Debit payment requests in the
BRM database. The pin_collect utility is run as part of the pin_bill_day script.

About SEPA Payment Processing 3-5

Processing SEPA Payments

The SEPA Direct Debit payment requests record the customer's payment details, such
as the amount due and mandate information, and the payment transaction ID.

The pin_collect utility retrieves the pending bills for accounts that use the SEPA
payment method and calculates the amount due. For each bill unit, it records the
payment details in the payment request (/sepa/dd) and sets the payment request status
to Pending.

The pin_collect utility does not create a payment request if the mandate for the bill
unit is expired. To collect the payment, your customer has to provide a valid mandate
or use another payment method.

SEPA Direct Debit payments are applied to the accounts at the time payment requests
are created (before payment requests are sent to the bank). The pin_collect utility calls
the PCM_OP_PYMT_COLLECT opcode to apply the payments and update the
account’s balance in the BRM database. If your bank is unable to collect the payment
from your customer’s bank, you reverse the payment recorded in BRM using the pin_
sepa utility. For more information, see "Processing SEPA Response XML Files to
Handle Failed Payment Transactions".

For more information about the pin_collect utility, see "pin_collect".

Creating SEPA Credit Transfer Payment Requests

You run the pin_mass_refund and the pin_refund utilities to create SEPA Credit
Transfer refund requests in the BRM database.

The SEPA Credit Transfer payment requests record the customer's payment details,
such as the refund amount and the payment transaction ID.

The pin_mass_refund utility aggregates the credit balance for each bill unit for each
account and generates refund items for the aggregated credit amount.

The pin_refund utility retrieves the refund items for the accounts that use the SEPA
payment method. For each bill unit, it records the payment details in the refund
request (/sepa/ct) and sets the refund request status to Pending. You run the pin_
refund utility after running the pin_mass_refund utility.

SEPA Credit Transfer refunds are applied to the accounts at the time refund requests
are created (before refund requests are sent to the bank). The pin_refund utility calls
the PCM_OP_PYMT_COLLECT opcode to apply the refunds and update the account’s
balance in the BRM database. If your bank is unable to process the refund, you reverse
the refund recorded in BRM using the pin_sepa utility. For more information, see
"Processing SEPA Response XML Files to Handle Failed Payment Transactions".

For more information about the pin_mass_refund and pin_refund utilities, see "About
Refunds" in BRM Managing Accounts Receivable.

Generating SEPA Request XML Files

You run the pin_sepa utility to generate the SEPA request XML files. For more
information about the utility syntax, see "pin_sepa".

Before running pin_sepa, configure the utility to provide the information it requires
for generating the SEPA request XML files. For more information, see "Configuring the
pin_sepa Utility for Generating and Processing SEPA XML Files".

The pin_sepa utility extracts payment details from the SEPA Direct Debit and SEPA
Credit Transfer payment requests (created by the pin_collect and pin_refund utilities),
which are in Pending status, from the BRM database into SEPA request XML files. All
the payment transactions belonging to the same creditor are grouped in one file. The

3-6 BRM Configuring and Collecting Payments

Processing SEPA Payments

number of payment transactions in a file is configurable by using the
infranet.threadpool.fetchsize entry in the Infranet.properties file for pin_sepa.

You must manually send the SEPA request XML files to your bank for collection of the
payments. For more information, see "Sending the SEPA Request XML Files to Your
Bank to Collect Payment".

After the SEPA request XML files are generated, BRM considers the payment as
successful and changes the status of the payment requests to Requested. The payment
requests remain in Requested status unless the payment is reversed for any reason.

Important:

»s The SEPA request XML files cannot be regenerated. You must
ensure the files are protected from accidental loss or corruption.

» The SEPA request XML files contain sensitive customer data. You
must ensure the files are protected from unauthorized access.

For more information on security, see BRM Security Guide.

By default, the pin_sepa utility is not included in the pin_bill_day billing script. You
can either add it to the daily billing script or run it separately; however, Oracle
recommends to run pin_sepa daily for SEPA payment collection. You can run the pin_
sepa utility manually or as a cron job that runs at specified times.

Sending the SEPA Request XML Files to Your Bank to Collect Payment

The SEPA request XML files are stored in the directory that you specify in the
Infranet.properties file until they are delivered to your bank for collection of payment.
You must manually send the files to your bank or payment processing center: BRM
does not send the files.

After sending the files, ensure the files were successfully delivered to your bank.
Potential revenue loss can occur if the SEPA request XML files that are generated in
BRM are not received by your bank for processing.

Processing SEPA Response XML Files to Handle Failed Payment Transactions

Your bank sends back the SEPA response XML files with the payment transactions that
are rejected. Your bank may reject a SEPA payment or refund request for reasons such
as the following:

s The payment or refund request contains an invalid IBAN or BIC.
s The payment request contains an invalid or incorrect mandate.
» The customer’s bank account has insufficient funds to process the payment.

SEPA Direct Debit payments and SEPA Credit Transfer refunds are applied to the
accounts in BRM at the time payment requests are created. Therefore, any payment
transactions that are rejected by the bank needs to be reversed in BRM.

The SEPA response XML file indicates a status at the group level,
payment-information level, and transaction level.

If the group-level status is Reject, all the payment transactions in the response file are
rejected.

If the payment-information-level status is Reject, all the payment transactions in the
payment information are rejected.

About SEPA Payment Processing 3-7

Reversing an Erroneous Payment Collection

If the transaction-level status is Reject, only the payment for this transaction is rejected.

You run pin_sepa utility to process the rejected payments in the SEPA response file.
For more information about the utility, see "pin_sepa". The utility automatically
initiates the payment reversal in BRM. Using the payment transaction ID, BRM locates
the corresponding SEPA payment request in the database and changes the status of the
payment request to Reject.

To reverse a SEPA Direct Debit payment, BRM uses the PCM_OP_BILL_REVERSE
opcode to reverse the payment from the account balance and to reopen the bills and
items that were previously closed when the payment was applied.

To reverse a SEPA Credit Transfer refund, BRM uses the PCM_OP_AR_REVERSE_
REFUND opcode to reverse the refund from the account balance and to reopen the
refund items that were previously closed when the refund was applied.

Reversing an Erroneous Payment Collection

An erroneous or duplicate payment occurs when your customer is billed twice for the
same charge. The payment is recorded in BRM, and the payment transaction is
successfully completed by the bank.

Unlike a payment reversal that occurs when a payment is rejected by the bank,
duplicate payment reversals are not initiated by BRM.

To reverse a duplicate payment recorded in BRM, use the PCM_OP_BILL_REVERSE
opcode. The PCM_OP_BILL_REVERSE opcode changes the status for the duplicate
payment request to Reversed and creates a new payment reversal request
(/sepa/dd/reversal).

After the payment reversal requests are created, you run the pin_sepa utility to
generate the SEPA reversal request XML files. For more information about the utility
syntax, see "pin_sepa". The pin_sepa utility extracts the payment details from the
payment reversal requests, which are in Pending status, from the BRM database into
SEPA reversal request XML files.

After the SEPA reversal request XML files are generated, BRM considers the payment
reversal as successful and changes the status of the payment reversal requests to
Requested.

You must manually send the SEPA reversal request files to your bank to reverse the
charges from the customer’s bank account.

Using SEPA XML Messages to Exchange Customer’s Payment

Information

For SEPA compliance, banks are required to use SEPA 15020022 XML messages to
exchange customer’s payment information.

BRM supports the following 15020022 XML messages:
For SEPA Credit Transfer:

» Customer Credit Transfer Initiation (pain.001.001.03): This message transports the
customer-to-bank credit transfer information sent by the customer (originator) to
the customer’s bank.

» Customer Payment Status Report (pain.002.001.03): This message transports the
credit transfer reject instruction between the bank and its remitting customer.

For SEPA Direct Debit:

3-8 BRM Configuring and Collecting Payments

Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files

s Customer Direct Debit Initiation (pain.008.001.02): This message transports the
direct debit collection instruction from the creditor to the creditor’s bank.

s Customer to Bank Payment Reversal (pain.007.001.02): This message transports
the customer-to-bank reversal instruction for a collection sent by the creditor to the
creditor’s bank.

= Bank to Customer Payment Status Report (pain.002.001.03): This message
transports the direct debit reject instruction between the bank and its remitting
customer.

You and your bank must use this version of ISO20022 XML message to ensure the
messages sent and received are interpreted correctly.

The SEPA request and response XML files must comply with the XML schema
definitions (XSD) that are provided in BRM.

Before processing a SEPA response file, BRM validates the contents using the XSD.
BRM cannot process a response file that uses a different XSD.

Configuring the pin_sepa Utility for Generating and Processing SEPA

XML Files

You use the pin_sepa utility to generate the SEPA request XML files and to process
SEPA response XML files.

Before running the pin_sepa utility, you must edit the utility’s Infranet.properties file
to include the information that it requires to generate and process SEPA request and
response XML files.

To configure the Infranet.properties file:
1. Open the BRM_Homelapps/pin_sepa/Infranet.properties file in a text editor.
2. Provide the values listed in Table 3-2.

The Infranet.properties file for the pin_sepa utility includes standard
configuration entries. See "Using Configuration Files to Connect and Configure
Components" in BRM System Administrator’s Guide for more information.

Table 3-2 pin_sepa Infranet.properties Configuration Entries

Entry Description

infranet.connection Specifies the connection information to connect to the BRM
database.

infranet.login.type Specifies if a login name and password is required to

connect to the BRM database. The default is 1.

infranet.log.level Specifies the error reporting level. The default is 1.
= 0:nologging

= 1:log error messages only

= 2:]og error messages and warnings

= 3:log error, warning, and debugging messages.

infranet.log.file Specifies the file name used to log errors. The default is
pin_sepa.pinlog.

infranet.threadpool.size Specifies the number of threads. The default is 3.

infranet.threadpool.maxsize Specifies the maximum number of threads. The default is 5.

About SEPA Payment Processing 3-9

Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files

Table 3-2 (Cont.) pin_sepa Infranet.properties Configuration Entries

Entry

Description

infranet.threadpool.fetchsize

Specifies the number of records fetched from the BRM
database and assigned to a thread at one point of time.

This entry also controls the maximum number of payment
transactions that can be in a SEPA request XML file. The
default is 100.

infranet.sepa_dd_req_dir.path

Specifies the directory path to the SEPA Direct Debit
request XML files. The default directory is BRM_
Homelapps/pin_sepa/sepa_dd.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

infranet.sepa_ct_req_dir.path

Specifies the directory path to the SEPA Credit Transfer
request XML files. The default directory is BRM_
Homelapps/pin_sepa/sepa_ct.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

infranet.sepa_rev_req_dir.path

Specifies the directory path to the SEPA Direct Debit
reversal request XML files. The default directory is BRM_
Homelapps/pin_sepa/sepa_rev.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

infranet.sepa_resp_dir.path

Specifies the directory path to the SEPA Direct Debit,
Credit Transfer, and Direct Debit reversal response XML
files. The default directory is BRM_Homelapps/pin_
sepa/sepa_resp/input.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

The utility reads all the files in the directory for processing.
Hence, it recommended to store only response XML files in
this directory.

infranet.sepa.sddrequest.ReqdC
olltnDt.pattern

Specifies the date pattern for the SEPA Direct Debit
request.

infranet.sepa.sddrequest.ReqdC
olltnDt.value

Specifies the date on which to collect the money from the
customer.

infranet.sepa.sddrequest.InitgPt
y.Nm

Specifies the name of the party initiating the SEPA Direct
Debit request.

infranet.sepa.sddrequest.InitgPt
y.Orgld

Specifies the ID of the party initiating the SEPA Direct
Debit request.

infranet.sepa.sddrequest.PmtInf.

PmtMtd

Specifies the SEPA Direct Debit payment method.
This entry must be set to DD.

infranet.sepa.sddrequest.InstrPr

ty

Specifies the instruction priority for the SEPA Direct Debit
request. The default is NORM.

infranet.sepa.sddrequest.ChrgBr

Specifies the party who will pay for the charges. The
default is SLEV.

According to the SEPA Rulebook, the only value allowed
for this entry is SLEV.

3-10 BRM Configuring and Collecting Payments

How BRM Handles Mandate Information

Table 3-2 (Cont.) pin_sepa Infranet.properties Configuration Entries

Entry

Description

infranet.sepa.sddrequest. PmtTp
Inf.LclInstrm

Specifies the Local instrument code for SEPA Direct Debit
request. The default is CORE.

s CORE: Core Scheme

= B2B: Business to Business Scheme

infranet.sepa.sddrequest. PmtTp
Inf.SvcLvl

Specifies the service level for the SEPA Direct Debit
request. The default is SEPA.

infranet.sepa.sctrequest.PmtInf.
PmtMtd

Specifies the SEPA Credit Transfer payment method.
This entry must be set to TRF.

infranet.sepa.sctrequest.ReqdEx
ctnDt.pattern

Specifies the date pattern for the SEPA Credit Transfer
request.

infranet.sepa.sctrequest.ReqdEx
ctnDt.value

Specifies the date on which to credit the money to
customer account.

infranet.sepa.sctrequest.InstrPrt
y

Specifies the instruction priority for SEPA Credit Transfer
request. The default is NORM.

infranet.sepa.sctrequest.ChrgBr

Specifies the party who will pay for the charges. The
default is SLEV.

According to the SEPA Rulebook, the only value allowed
for this entry is SLEV.

infranet.sepa.sctrequest.InitgPty.
Nm

Specifies the name of the party initiating the SEPA Credit
Transfer request.

infranet.sepa.sctrequest.InitgPty.
Orgld

Specifies the ID of the party initiating the SEPA Credit
Transfer request.

infranet.sepa.sctrequest. PmtTpl
nf.LclInstrm

Specifies the Local instrument code for SEPA Credit
Transfer request. The default is CORE.

s CORE: Core Scheme

s B2B: Business to Business Scheme

infranet.sepa.sctrequest.PmtTpl
nf.SvcLvl

Specifies the service level for the SEPA Credit Transfer
request. The default is SEPA.

infranet.sepa.sddreversal.InitgPt
y.Nm

Specifies the name of the party initiating the SEPA Direct
Debit Reversal request.

infranet.sepa.sddreversal.InitgPt
y.Orgld

Specifies the ID of the party initiating the SEPA Direct
Debit Reversal request.

3. Save and close the file.

How BRM Handles Mandate Information

The following sections describe how BRM handles mandate information.

How BRM Registers a Mandate

To register the mandate information provided during customer registration, BRM uses
the PCM_OP_CUST_SET_PAYINFO opcode.

PCM_OP_CUST_SET_PAYINFO takes as input the mandate information such as the
customer’s IBAN and BIC and the creditor identification code.

This opcode adds the mandate by:

About SEPA Payment Processing 3-11

How BRM Handles Mandate Information

1. Creating a unique mandate reference number (UMR) for the mandate, if it is not
provided in the input flist

2. Setting the status of the mandate to active
3. Creating the /payinfo/sepa object with the mandate information

The PCM_OP_CUST_SET_PAYINFO opcode calls PCM_OP_CUST_CREATE_
PAYINFO, which calls the PCM_OP_CUST_POL_VALID_PAYINFO policy opcode,
which validates that the format of the IBAN and BIC comply with the formats
described in the SEPA rulebooks. Additional custom validations can be performed on
the mandate information, such as country-specific validations.

How BRM Updates a Mandate

To update the mandate information, BRM uses the following opcodes:
= PCM_OP_CUST_AMEND_MANDATE, to update the customer information
= PCM_OP_CUST_AMEND_CREDITOR_INFO, to update the creditor information

PCM_OP_CUST_AMEND_MANDATE takes as input a reference to the /payinfo/sepa
object and the mandate information to update.

This opcode updates the mandate by:
1. Updating the /payinfo/sepa object with the new mandate information

2. Updating the PIN_FLD_MANDATE_AMENDED field in the /payinfo/sepa object
by using flags to indicate the fields that are amended

3. Generating the /event/activity/sepa/mandate_amendment event to record the
mandate update

PCM_OP_CUST_AMEND_CREDITOR_INFO takes as input the creditor ID to be
updated and the new creditor ID and creditor name.

This opcode updates the creditor information by:
1. Updating the /config/creditor object with the new creditor information

2. Determining if any /payinfo/sepa object exists that is associated with the original
creditor ID and updating the /payinfo/sepa object with the new creditor
information

3. Ineach /payinfo/sepa object that is updated, updating the PIN_FLD_MANDATE_
AMENDED field by using flags to indicate the fields that are amended

4. Generating the /event/activity/sepa/mandate_amendment event to record the
update

How BRM Cancels a Mandate
To cancel a mandate, BRM uses the PCM_OP_CUST_CANCEL_MANDATE opcode.

PCM_OP_CUST_CANCEL_MANDATE takes as input the reference to the
/payinfo/sepa object that contains the mandate to cancel.

This opcode cancels the mandate by:

1. Setting the PIN_FLD_MANDATE_STATUS field in the /payinfo/sepa object to
PIN_MANDATE_STATUS_CANCELED

2, Setting the PIN_FLD_MANDATE_END_T field to the current time to record the
time of cancellation

3-12 BRM Configuring and Collecting Payments

How BRM Handles Mandate Information

3. Calling the PCM_OP_CUST_DELETE_PAYINFO opcode to delete the
/payinfo/sepa object. The opcode does not cancel the /payinfo/sepa object if it
determines that it is associated with a bill unit or if a SEPA payment request is
pending

About SEPA Payment Processing 3-13

How BRM Handles Mandate Information

3-14 BRM Configuring and Collecting Payments

4

Configuring BRM-Initiated Payment Processing

This chapter provides instructions for setting up Oracle Communications Billing and
Revenue Management (BRM) credit card and direct debit processing by using
Paymentech.

To use Paymentech with BRM, you must install the Paymentech Manager software.
Paymentech Manager integrates the Paymentech software with BRM.

Important: Paymentech Manager is an optional component, not part
of BRM.

Before reading this chapter, read “About Billing” in BRM Configuring and Running
Billing for information about how BRM handles billing. See "About BRM-Initiated
Payment Processing” for information about BRM-initiated payment processing,

Note: The initials FUSA are sometimes used to represent
Paymentech in BRM file names. For example, the Paymentech Data
Manager (DM) is named dm_fusa.

Unless otherwise noted, the procedures described in this chapter apply to both credit
card and direct debit processing with Paymentech. BRM-initiated payments refers to
both credit card and direct debit transactions.

For information about creating a custom DM to handle direct debit processing, see
"Implementing a Direct Debit Payment Method".

Overview of Setting Up BRM-Initiated Payment Processing
To enable BRM-initiated payment processing for Paymentech:

1. Install BRM. For more information, see “Putting Together Your BRM System” in
BRM Installation Guide.

2. Install the Paymentech Manager software. See “Installing Paymentech Manager”
in BRM Installation Guide.

3. Establish a link with Paymentech.

Note: To perform transactions with Paymentech, you need a leased
line, such as a T-1 link or a frame-relay link. Connecting to
Paymentech by using a standard modem is not supported.

Configuring BRM-Initiated Payment Processing 4-1

Overview of Setting Up BRM-Initiated Payment Processing

To use the HeartBeat application to monitor connectivity, provide Paymentech
with the IP address and port number of the machine running the Paymentech DM.
See "Using the Paymentech HeartBeat Application".

Edit the payment processor configuration file (BRM_
Homelsys/data/pricing/example/pin_ach) and load it into the BRM database. This
file specifies merchant names for Paymentech and any other payment processors
that you use. See "Setting Up Merchants and Payment Processors".

To use direct debit processing, Visa CVV2, or American Express CID for your
credit card processing, edit the Connection Manager (CM) configuration file
(BRM_Homelsys/cm/pin.conf). See "Configuring the Connection Manager for
Paymentech".

Specify connection parameters by editing the Paymentech DM configuration file
(BRM_Homelsys/dm_fusa/pin.conf). The Paymentech DM (dm_fusa) provides a
link between BRM and the Paymentech credit card processor. See "Configuring the
Paymentech Data Manager".

Start the Paymentech DM. See “Starting and Stopping the BRM System” in BRM
System Administrator’s Guide.

Test the installation. See "Testing Paymentech Credit Card Processing".

Information You Need from Paymentech

Before setting up BRM-initiated payment processing, you need the following
information from Paymentech:

The IP address and port for the Paymentech online server (the server used for
registering customers) and batch server (the server used for handling regular
payments).

The presenter ID and password and the submitter ID and password. See the
Paymentech documentation for more information.

Merchant numbers for each currency you support. See "About Merchant Numbers
and Account Identifiers". The same sets of merchant IDs and merchant numbers
can be used for both credit card and direct debit.

Even if you already use Paymentech for credit card processing, you must plan for a
setup and testing period for Paymentech direct debit.

Information Paymentech Needs from You

Paymentech needs the following information specific to your BRM software
configuration. Table 4-1 lists the defaults suggested by BRM.

Table 4-1 BRM Default Values for Paymentech

Paymentech Information BRM Default

The IP address and port number for the None.
machine running the Paymentech Data
Manager (dm_fusa).

This is required only to use the Paymentech
HeartBeat application, which is integrated with
the Paymentech Data Manager. It is required to
secure the port. For more information, see "Using
the Paymentech HeartBeat Application".

Is this for an existing Presenter ID (PID)? | No

4-2 BRM Configuring and Collecting Payments

Overview of Setting Up BRM-Initiated Payment Processing

Table 4-1 (Cont.) BRM Default Values for Paymentech

Paymentech Information

BRM Default

What is the application software that
formats the file?

Written by in-house programmers

What is the communications software
that sends the file?

Customized by the software vendor listed above

What is the online data communications
protocol used to send the online
authorization transaction?

TCP/IP Berkley Socket Interface

What is the batch data communications
protocol used to send the batch file?

TCP/IP Berkley Socket Interface

What online format will you use to send
online authorizations?

See the discussion about other compatible
software in “BRM Software Compatibility” in
BRM Installation Guide for information on the
format version currently supported by BRM.

Will you load balance online
authorizations (requires leased line)
between Paymentech's data centers, or
will you use one data center as primary
and one as backup?

Primary and Backup

What batch format will you use to send
batch files?

See the discussion about other compatible
software in “BRM Software Compatibility” in
BRM Installation Guide for information on the
format version currently supported by BRM.

Will you receive the batch reply file by
sending an RFR (Request For Response)
record or not?

1 Call (IA) - No RER record sent to pick up reply
file.

Will you send authorizations separately
from deposits OR will you send
conditional deposits that will result in a
deposit upon authorization approval?

Separate authorizations and deposits and
conditional deposits.

What will the average size of your files be
in production?

(How many records/transactions?)

None.

This number should be based on your company’s
projected customer registration growth and
billing rate.

What is the projected submission Daily.
schedule?
Number of times per day? Once.

Configuring BRM-Initiated Payment Processing 4-3

How Paymentech Manager Handles Electronic Check Processing

Table 4-1 (Cont.) BRM Default Values for Paymentech

Paymentech Information BRM Default

What Paymentech functionality do you This list reflects a typical pre-paid services
intend to test? company.

The first five features require a dedicated
connection (leased line)

s Online Credit Card Authorization

= Online Electronic Check Processing (ECP)
Verification

= Batch Electronic Check Processing (ECP)
Validate & Deposit

= Batch Deposits

= Batch Conditional Deposits (for
authorization & settlement)

= Batch Refunds
» Full AVS (Address Verification Service)
= Zip only AVS

] No AVS
s VisaCVV2
s Amex CID

= MasterCard CVC2

= Discover CID

= ECIIndicator (also called Transaction Type)
= International Currencies (specify)

= Merchant Descriptor (requires Risk approval)
= Switch/Solo Cards

How Paymentech Manager Handles Electronic Check Processing

BRM Paymentech Manager processes all electronic check processing (ECP)
transactions in accordance with National Automated Clearing House Association
(NACHA) operating rules.

BRM Paymentech Manager provides Account Verification functionality for
transactions in batch mode from any custom client to Paymentech. For more on
Account Verification functionality and the support for online transactions, see "About
Account Verification for Online Processing".

About Electronic Check Processing (ECP) Methods
Valid entries for ECP Authorization Method are:

» A. Accounts Receivable. When ECP Authorization Method is set to A, values for
Check Serial Number, and Image Reference Number are mandatory.

s I Internet.

s P. Point of Purchase. When ECP Authorization Method is set to P, values for
Check Serial Number, Terminal City, Terminal State, and Image Reference
Number are mandatory.

s T. Telephone.

4-4 BRM Configuring and Collecting Payments

Setting Up Merchants and Payment Processors

s W. Written.

BRM Paymentech Manager supports these new authorization method values and the
corresponding information as required by Paymentech.

If you customize electronic check processing with Paymentech, when ECP
Authorization Method is set to A or P:

= Connection Manager ignores any input you provide in the fields that Paymentech
mandates for Check Serial Number, Terminal City, Terminal State, and Image
Reference Number.

s The Check Serial Number, Terminal City, Terminal State, and Image Reference
Number mandatory fields are blank in the input BRM Paymentech Data Manager
receives from Connection Manager.

In BRM, when you customize electronic check processing for end-to-end payment
operations with Paymentech, avoid setting ECP Authorization Method to A or P.

Payment Formats and Batch Processing

Paymentech batch requests/responses support the following.

= Arefund file can be in 120-byte format, even if the corresponding
authorization/deposit was completed in 96-byte format.

s The Request for Response (RFR) header record must be in the same byte format as
the response file. That is, to pick up a 96-byte response file, Paymentech expects a
96-byte RFR header record; to pick up a 120-byte response file, Paymentech
expects a 120-byte RFR header record

Points to Consider

Consider the following points about batch processing functionality complying with
Paymentech Batch Version 3.0.0 Revision 4.2:

= If you use the 120-byte message format, you must complete the certification for
batch processing for Paymentech before you allow customers to log in to the
production system.

» For the UK Domestic Maestro (Switch/Solo) card (MOP = SW) with batch
processing functionality complying with Paymentech Batch Version 3.0.0 Revision
4.2, Paymentech expects the card issue date and the issue number (if present) in
the UK Domestic Maestro extension record.

= BRM does not support registration of new subscribers with UK Domestic Maestro
(Switch/Solo) card type. For already registered subscribers, transactions other
than the refund (Action Code = RF) are not supported.

For more information about Paymentech’s 120-byte batch format, view the 120-Byte
Batch Processing Format Specification version 3.0.0 - Revision 4.2 document at the
Chase Paymentech Web site.

Setting Up Merchants and Payment Processors

Important: This is a mandatory configuration task if you use
Paymentech or another payment processor.

Configuring BRM-Initiated Payment Processing 4-5

Setting Up Merchants and Payment Processors

You specify merchants and the payment processor vendors that process your
BRMH-initiated payment transactions for the entire system. You can specify any number
of payment processor vendor and merchant pairs.

To specify merchants and vendors, you edit the pin_ach file, then run the "load_pin_
ach" utility to load the contents of the file into the /config/ach object in the BRM
database.

Important: The utility needs a configuration (pin.conf) file in the
directory from which you run the utility. See “Creating Configuration
Files for BRM Utilities” in BRM System Administrator’s Guide.

1. Edit the pin_ach file in BRM_Home/sys/data/pricing/example. The pin_ach file
includes examples and instructions.

Note: The default merchant for each payment processor is the first
merchant listed for the vendor.

The file includes this entry for Paymentech:

fusa 0.0.0.1 /payment -1 test 0

where:
= fusais the name of the payment processor.

= 0.0.0.1 /payment -1 is a routing POID used to identify the database where the
payment processor Data Manager (DM) runs. The object type and ID
(/payment -1) are not significant.

s testis the merchant name.

Edit this field to specify your merchant name. This name must match the
merchant name entry in the payment processing data manager (DM)
configuration file. For example, if the merchant name in the dm_fusa pin.conf
file is mid_ispDealer, the merchant name in pin_ach must be ispDealer.

= 0is the payment channel ID.

Edit this field to specify the payment channel ID for each vendor. The
channel_id value must match a payment channel ID configured in the /strings
object. If a payment does not contain a payment channel ID, a value of 0 is
saved with the payment by default, which configures it as Unspecified
Payment Channel. For more information, see "Configuring Payment
Channels".

Caution: The load_pin_ach utility overwrites existing payment
processor and merchant information. If you are updating this
information, you cannot load new data only. You must load complete
sets of payment processor and merchant entries each time you run the
load_pin_ach utility.

2. Save the pin_ach file.
3. Use the following command to run the load_pin_ach utility:

load_pin ach pin_ach

4-6 BRM Configuring and Collecting Payments

Setting Up Merchants and Payment Processors

If you are not in the same directory as the pin_ach file, include the complete path
to the file. For example:

load pin_ach BRM Home/sys/data/pricing/example/pin_ach

For more information, see "load_pin_ach".

To verify that the payment processor and merchant information was loaded, you can
display the /config/ach object by using the Object Browser, or use the robj command
with the testnap utility. See “Reading an Object and Writing its Contents to a File” in
BRM Developer’s Guide.

Using More Than One Payment Processor

You can use more than one payment processing Data Manager (DM) simultaneously to
collect and validate payments. To use multiple payment processors, you must run the
following utilities for each payment processor vendor you use:

= pin_collect

= pin_deposit

= pin_refund

These utilities are typically run by the following billing scripts:
= pin_bill_day

By default, this script is scheduled to run pin_collect, pin_deposit, and pin_
refund.

= pin_bill_week

By default, this script runs pin_collect.
= pin_bill_week

By default, this script runs pin_collect.

To modify the pin_bill* scripts to run the collect, deposit, and refund scripts for every
payment processor:

1. Go to the BRM_Home/bin directory and open the pin_bill* utility in a text editor.

2. Find the entries for the billing utility and add new entries that specify the
additional payment processor vendors.

For example, if you use dm_fusa and another vendor, find these existing entries:

pin_refund -active -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%

pin_collect -inactive -pay_type 10003 -vendor fusa
IF %$ERR% EQU 0 IF $ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%

pin_deposit -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%

And add entries to run the utility for each payment processor vendor:

pin_refund -active -pay_type 10003 -vendor fusa

IF %$ERR% EQU 0 IF $ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
pin_refund -active -pay_type 10003 -vendor new_vendor

IF %ERR% EQU 0 IF $ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%

Configuring BRM-Initiated Payment Processing 4-7

Configuring the Connection Manager for Paymentech

pin_collect -inactive -pay_type 10003 -vendor fusa

IF %ERR% EQU 0 IF $ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
pin_collect -inactive -pay_type 10003 -vendor new_vendor
IF %$ERR% EQU 0 IF $ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%

pin_deposit -pay_type 10003 -vendor fusa

IF $ERR% EQU 0 IF $ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
pin_deposit -pay_type 10003 -vendor new_vendor

IF %$ERR% EQU 0 IF $ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%

Important: There might be several sets of entries for each vendor. Be
sure to add new entries for each set of existing entries.

Connecting Your Payment Processor Data Managers to the BRM Database

You payment processor data managers (DMs) require a connection to the BRM
database.

1. Open the Connection Manager (CM) configuration file (BRM_
Homelsys/cm/pin.conf).

2. Add a dm_pointer entry for each payment processor vendor DM. Use the
following format:

- cm dm_pointer database_number ip host_name port_number

3. Stop and restart the CM. See “Starting and Stopping the BRM System” in BRM
System Administrator’s Guide.

Configuring the Connection Manager for Paymentech

The following procedures involve configuring your Connection Manager (CM).

Enabling Direct Debit Processing

Depending on the choices made during installation, the settings for direct debit might
not be turned on. (Turned off is the default.)

1. Open the Connection Manager (CM) configuration file (BRM_
Homelsys/cm/pin.conf).

2. Change the value of the direct debit entries according to the instructions in the file.
For example:

- fm_pymt_pol dd_validate 1
- fm_pymt_pol dd_revalidation_interval 3600
- fm_pymt_pol dd_collect 1

3. Save the file.
You do not need to restart the CM to enable this entry.

4-8 BRM Configuring and Collecting Payments

Configuring the Connection Manager for Paymentech

Enabling Credit Card Tokenization

By default, credit card tokenization is disabled. You can enable credit card tokenization
by modifying the cc_token_enabled entry in the Paymentech DM configuration file
(BRM_Homelsys/dm_fusa/pin.conf).

To enable credit card tokenization:
1. Open the BRM_Homelsys/dm_fusa/pin.conf file in a text editor.
2. Change the value of the cc_token_enabled entry to 1.

For example:

- dm_fusa cc_token_enabled 1

3. Save and close the file.

4. Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

For more information on credit card tokenization, see "About Credit Card
Tokenization".

Requiring Additional Protection against Credit Card Fraud

Paymentech offers additional fraud prevention using Visa CVV2 numbers and
American Express CID numbers.

Customer service representatives (CSRs) can request this information when they use
Customer Center to register customers or update credit card information in customer
accounts. By default, the CVV2 and CID numbers are considered to be optional when
CSRs add or change a customer’s credit card information. To require the CVV2 or CID
number as part of customer registration, change the following fields in the Connection
Manager (CM) configuration file (BRM_Homelsys/cm/pin.conf).

Important: For security reasons, the CVV2 and CID numbers are
stored in BRM with a NULL value. If you have the cvv2_required
entry enabled, the information is sent directly to Paymentech for
validation without being stored in the database. (Even if your CM
does not require this additional fraud prevention, Paymentech still
accepts the information if it is sent.)

To require Visa CVV2:

1. Open the Connection Manager (CM) configuration file (BRM_
Homelsys/cm/pin.conf).

2. Change the value in the following entry from the default, 0, to 1:

- fm_pymt_pol cvv2_required 1

3. Save the file.
You do not need to restart the CM to enable this entry.
To require American Express CID:

1. Open the Connection Manager (CM) configuration file (BRM_
Homelsys/cm/pin.conf).

2. Change the value in the following entry from the default, 0, to 1:

Configuring BRM-Initiated Payment Processing 4-9

Configuring the Paymentech Data Manager

- fm_pymt_pol cid_required 1

3. Save the file.
You do not need to restart the CM to enable this entry.

If these entries are missing from the CM configuration file, CVV2 and CID are not
required for customer registration. For more information on how BRM handles these
numbers, see “CVV2/CID Fraud Prevention Functionality” in BRM Managing
Customers.

Specifying the Maximum Number of Digits Allowed for CVV2 Verification

By default, Customer Center and BRM accept a maximum of three CVV2 digits when
validating a customer’s credit card.

To change the maximum number of CVV2 digits that can be entered, perform the
following:

» For Customer Center: Use the Configurator application provided with Customer
Center SDK to modify the maximum number of CCV2 digits allowed by Customer
Center. You enter the information in the CVV2 Number - maximum digits
allowed field of the Payment Configurator.

s For BRM: Customize the PCM_OP_CUST_POL_VALID_PAYINFO policy opcode
to validate the number of digits passed in the PIN_FLD_SECURITY_ID input flist
field of the PIN_FLD_CC_INFO array.

Disabling Paymentech Real-Time Credit Card Validations

During account creation, credit card information is validated in two phases:

1. BRM calls the PCM_OP_PYMT_VALIDATE opcode to do basic validations,
including number sequence validations against the numbers defined in the pin_
cc_pattern.h file.

2. BRM sends the credit card information to Paymentech, which does a real-time
validation of the credit card number, expiration date, and so on.

For example, suppose you enter credit card information for an account that has a Visa
number pattern and a future expiration date; however, the card is actually expired.
The BRM validation will pass successfully because the credit card number sequence is
valid but the Paymentech validation will fail.

To disable the real-time Paymentech credit card validation:

1. Open the Connection Manager (CM) configuration file (BRM_
Homelsys/cm/pin.conf).

2. Change the value in the following entry to 0:

- fm_pymt_pol cc_validate 0

3. Save the file.

4. Stop and restart the CM.See “Starting and Stopping the BRM System” in BRM
System Administrator’s Guide.

Configuring the Paymentech Data Manager
Follow these procedures to configure the Paymentech Data Manager (DM):
s Specifying Merchant IDs and Merchant Numbers

4-10 BRM Configuring and Collecting Payments

Configuring the Paymentech Data Manager

Adding Soft Descriptor Information

Handling Concurrent Online Paymentech Requests
Increasing Registration Speed When Paymentech Is Offline
Setting the Connection Timeout Length and Retries
Specifying the Batch Mode Encryption Key

Using the Paymentech HeartBeat Application

Specifying Merchant IDs and Merchant Numbers

For information about merchant numbers, see "About Merchant Numbers and
Account Identifiers".

1.
2.

Open the Paymentech DM configuration file (BRM_Home/sys/dm_fusa/pin.conf).

Change the merchant entry. (Merchant must match the entry described in "Setting
Up Merchants and Payment Processors".) Use this syntax:

- dm_fusa mid_merchant_ISOcurrency# Merchant_number

For example:

- dm_fusa mid_ispname_840 050505

Save and close the file.

Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

Adding Soft Descriptor Information

You can help your customers understand their credit card and checking account
statements by showing your doing-business-as (DBA) name, a recognizable product
name, and a customer service number for questions. To add this information:

1.
2.

Open the Paymentech DM configuration file (BRM_Home/sys/dm_fusa/pin.conf.)
Turn on soft descriptors by changing the descriptor flag value to 1:

- dm_fusa sd_descriptor_flag 1

Change the other related entries according to the instructions in the file.
Save and close the file.

Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

For an overview of soft descriptors, see "About Paymentech Soft Descriptor Credit
Card and Checking Statement Information” and the Paymentech soft descriptor
specifications.

To create multiple DBA names, product names, and phone number entries, you must
customize the PCM_OP_PYMT_POL_PRE_COLLECT policy opcode.

Handling Concurrent Online Paymentech Requests

You can increase billing performance by using the fusamux program. Because
Paymentech allows only a single connection per customer, the fusamux program takes
multiple DM backends and bundles them into a single connection. This enables BRM

Configuring BRM-Initiated Payment Processing 4-11

Configuring the Paymentech Data Manager

to process multiple transactions and send them to Paymentech in a single connection
as shown in Figure 4-1.

Without fusamux, the Paymentech DM connects directly to Paymentech. When you
use fusamux, the Paymentech DM connects to the fusamux application, which in turn
connects to Paymentech. When you use fusamux, you must change entries in the
Paymentech DM to point to fusamux instead of pointing to Paymentech.

Figure 4-1 Paymentech Requests with or without Fusamux

Without fusamux

Paymentech DW —w Paymentech

With fusamux

Paymentech DM Fusarmuzx Fusarmux - Faymentech

To configure the fusamux daemon:
1. Open the Paymentech DM configuration file (BRM_Homelsys/dm_fusa/pin.conf).
2. Edit the fusamux entries:

= Set the fusamux online_port and fusamux online_srvr entries to point to the
Paymentech online server IP address and port number.

= Set the fusamux_port entry to the port on which the fusamux daemon listens.
= Set the dm_fusa online_port entry to the port on which fusamux listens.
= Set the dm_fusa online_srvr entry to point to the fusamux IP address.
= Set the dm_fusa qm_n_be entry to a number between 4 and 8.
3. Save the file.

4. Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

Increasing Registration Speed When Paymentech Is Offline

If you know that your connection to Paymentech will be offline for a long time, you
can speed up registration by not allowing timeouts. Instead, a connection to
Paymentech results in a “no answer” error immediately. By default, registration can
occur even though there is a “no answer” error. Also, a “no answer” error does not
create checkpoint records, so you do not have to resolve the transaction.

You can also create accounts that use the Undefined checkpoint records. For more
information, see “Allowing Registration Without Credit Card Validation” in BRM
Managing Customers.

Note: If you use this option, you cannot process credit card
transactions by using the pin_collect or pin_deposit utilities. You
must wait and run billing when the Paymentech connection is
restored.

4-12 BRM Configuring and Collecting Payments

Configuring the Paymentech Data Manager

Tip: If the credit card payment service is not available and you still
want to register customers, you must isolate those accounts for later
credit card authorization. Modify the PCM_OP_PYMT_POL_
VALIDATE policy source file either to save a list of permissive
registrations or to send email to the system administrator.
Alternatively, you can write a simple application to periodically check
accounts and flag the ones that have been registered without
verification.

Open the Paymentech DM configuration file (BRM_Home/sys/dm_fusa/pin.conf).
Edit the online_proto entry:

= Enter linkdown to disable timeouts and report “no answer” for all
connections.

= Enter socket to enable the connection to function normally.
Edit the batch_proto entry:

= Enter linkdown to disable timeouts and report “no answer” for all
connections.

= Enter socket to enable the connection to function normally.
Save the file.

Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

Setting the Connection Timeout Length and Retries

If you have problems connecting to Paymentech, increase the connection timeout
length and number of retries:

1.
2.
3.

Open the Paymentech DM configuration file (BRM_Home/sys/dm_fusa./pin.conf).
Edit the connect_retrys entry. The default is 2. You can enter any number.

Change the timeout value for online attempts and for batch attempts separately:

= To change the timeout value for online attempts, edit the fusa_timeout entry.

= To change the timeout value for batch attempts, edit the fusa_batch_timeout
entry.

The default for both entries is 600 seconds.
Save the file.

Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

Specifying the Batch Mode Encryption Key

If you process multiple credit card transactions at a time, batch mode processing uses
temporary send and receive files to capture records to and from Paymentech. To
prevent any misuse of the temporary batch files, sensitive data like the credit card and
security code is encrypted.

Configuring BRM-Initiated Payment Processing 4-13

Configuring the Paymentech Data Manager

You specify the encryption method and key in the Paymentech configuration file. The
encryption method supported is MD5. For more information, see “About MD5
Encryption” in BRM Developer’s Guide.

Tip: You should change the encryption key regularly. Before
changing the encryption key, ensure that all pin_recover operations
using the -rfr and -resubmit parameters that depend on the current
encryption key are completed.

To specify the encryption key:
1. Open the Paymentech DM configuration file (BRM_Homelsys/dm_fusa/pin.conf).
2. Search for the following line:
- crypt
3. Do one of the following:

= To specify the MD5 encryption key, change the line to the following:

- crypt md5| libpin_cryptdgm.so "encryption_key"

= To specify the AES encryption key, change the line to the following:
- crypt aes| libpin_cryptdgm.so "encryption_ key"

where encryption_key is the key you generate.

For example:

For MD5:

- crypt md5| libpin_cryptdgm.so "24CFD43E8CE5273B0B7781140CB71B92"

For AES:

- crypt aes| libpin_crypt4gm.so "24CFD43E8CE5273B0B7781140CB71B92"

Tip: You can copy and paste the key or you can type it.

4. Save and close the file.

5. Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

Using the Paymentech HeartBeat Application

The Paymentech Data Manager is integrated with the Paymentech HeartBeat
application and runs the process by default after it is initialized by Paymentech.

To initialize the HeartBeat application, provide Paymentech with the IP address and
port number of the machine running the Paymentech Data Manager (dm_fusa). The
HeartBeat application will run automatically each time you process BRM-initiated
payments.

For more information, see "About the Paymentech HeartBeat Application".

4-14 BRM Configuring and Collecting Payments

Changing How BRM Handles Paymentech Address Validation Return Codes

Troubleshooting HeartBeat Errors

The BRM_Homelvar/dm_fusa/dm_fusa.pinlog file records the Paymentech HeartBeat
request and response message pairs throughout the connection with Paymentech. Each
request message must have a response message within 120 seconds to avoid a socket
disconnect.

The following entry is a typical HeartBeat request and response pair:

Received (20) chars: Heartbeat request [H019999999813123258"M]
Sending Heartbeat response [HI19999999813123300"M]

If these entries are missing from the dm_fusa.pinlog file or are not continuous for the
duration of the connection with Paymentech, the payment processing company should
call Paymentech to troubleshoot why the connection was lost or the HeartBeat
application was not enabled from their end.

Note: If a connection is made between the DM and Paymentech, and
Paymentech does not initiate the HeartBeat messages, BRM assumes
there is no HeartBeat application support and continues with payment
processing as normal.

If an error occurs with the HeartBeat application during payment simulation, an error
message similar to the following is written to the BRM_Home/apps/fusa_
server/answer_s.pinlog file:

Received (20) chars: Heartbeat response Validation failed in process_it()
HI19999999813123300™M

In order for this message to be logged, the payment processing simulator
configuration file (BRM_Home/apps/fusa_server/pin.conf) must contain the following
entries:

- answer_s loglevel 3
- answer_s logfile answer_s.pinlog

For more information, see "Defining the Credit Card Functionality to Test".

If a socket disconnect occurs with the payment processing simulator and no online
transactions are occurring, errors similar to the following are written to the answer_
s.pinlog file:

E Tue Aug 08 10:51:24 2006 elm dm_fusa:2994 qgbe_fusa.c(1.13):645 1l:elm:dm_
fusa:2991:1:0:1155059471:0

Socket read error in dm_fusa_respond_heartbeat () recv() returned (0)

E Tue Aug 08 10:51:24 2006 elm dm_fusa:2994 gm back.c(7):299 l:elm:dm_
fusa:2991:1:0:1155059471:0

Error(7) processing heartbeat monitor £d(5)

Changing How BRM Handles Paymentech Address Validation Return

Codes

Paymentech provides return codes when verifying customer addresses. To change
how BRM responds to validation return codes, edit the PCM_OP_PYMT_POL_
VALIDATE policy opcode source.

For example, by default a invalid address does not cause a validation failure. You can
change the policy to fail validation if the customer’s street address is wrong. For
example, change the following code:

Configuring BRM-Initiated Payment Processing 4-15

Changing How BRM Handles Paymentech Address Validation Return Codes

case PIN_CHARGE_RES_FAIL_ADDR_LOC:
/* street address failure is acceptable */
result = PIN_RESULT_PASS;
descr = "street address not correct";
break;

To this:

case PIN_CHARGE_RES_FAIL_ADDR_LOC:
/* street address failure is acceptable */
result = PIN RESULT_FAIL;
descr = "street address not correct";
break;

For more information about credit card validation, see "About Credit Card Validation
and Authorization".

PCM_OP_PYMT_POL_VALIDATE returns the result of validating a credit card
transaction in the PIN_FLD_VENDOR_RESULTS field, including a description of that
result. You can customize credit card validations based on the response from ACH by
passing a PIN_FLD_ VENDOR_RESULTS value in the input flist. For example, you
can set the validation to pass or fail, or turn on logging based on the results from the
ACH.

PCM_OP_PYMT_VALIDATE calls this policy opcode during customer registration to
determine the success or failure of credit card validation.

You can change both the PIN_FLD_RESULT and PIN_FLD_DESCR values to modify
BRM responses to validation results returned in PIN_FLD_VENDOR_RESULTS. For
example, if your company does not want to proceed with a transaction when the result
is PIN_CHARGE_RES_SRV_UNAVAIL, change the PIN_FLD_RESULT_PASS value to
PIN_FLD_RESULT_FAIL and change the PIN_FLD_DESCR value to “Service
unavailable”.

If the PIN_FLD_RESULT value passed in on the input flist is NULL, PCM_OP_PYMT_
POL_VALIDATE does nothing. Otherwise, the default validation result depends on
the PIN_FLD_RESULT value. See Table 2-2, " Result Values for Operation".

Important: If you add custom result values to your system, do not
assign them the following result codes, which are reserved by BRM: 0
-17,777, 888, 999, 1000 - 1017, 1777, and 1999.

Handling AVS Validations for International Credit Cards

By default, BRM sends a customer’s name, address, and ZIP code for validation when
processing credit card charges. If you use the Address Verification System (AVS) to
validate addresses, only credit cards with addresses in the United States and Canada
pass validation.

To change how BRM handles credit card address verifications, do one of the following;:

= Set the cc_validate flag in the CM’s pin.conf file to 0. This disables the address
validation process by Paymentech for all credit cards, including United States and
Canada credit cards.

= Set the cc_validate flag in the CM’s pin.conf file to 1 and modify PCM_OP_
PYMT_POL_VALIDATE to ignore all AVS failure response codes for other

4-16 BRM Configuring and Collecting Payments

Customizing How the Results of Credit Card Transactions Are Processed

countries. This changes how BRM responds to Paymentech’s validation return
codes for countries other than the United States and Canada.

Customizing How the Results of Credit Card Transactions Are Processed

To process the result of a credit card transaction for a specified account, use the PCM_
OP_PYMT_POL_COLLECT policy opcode.

PCM_OP_PYMT_POL_COLLECT sets the PIN_FLD_RESULT and PIN_FLD_DESCR
values returned in the output flist. It also specifies the actions to be performed on the
account based on the results of the credit card transaction by returning a PIN_FLD_
ACTIVITIES array.

PCM_OP_PYMT_COLLECT calls this opcode after the credit card has been charged.

The default behavior of PCM_OP_PYMT_POL_COLLECT is determined by the PIN_
FLD_RESULT field passed in on the input flist.

» If the result is successful, PIN_CHARGE_RES_PASS is passed in. Depending on
the PIN_FLD_COMMAND passed in on the flist, PCM_OP_PYMT_POL_
COLLECT sets the PIN_FLD_DESCR value as shown in Table 4-2:

Table 4-2 Input and Output Values
Input Input Output Output
PIN_FLD_RESULT PIN_FLD_COMMAND PIN_FLD_RESULT | PIN_FLD_DESCR
PIN_CHARGE_RES_PASS | PIN_CHARGE_CMD_AUTH_ONLY PIN_RESULT_PASS | Authorization
successful

PIN_CHARGE_RES_PASS

PIN_CHARGE_CMD_CONDITION

PIN_RESULT_PASS

Authorization &
deposit successful

PIN_CHARGE_RES_PASS

PIN_CHARGE_CMD_DEPOSIT

PIN_RESULT_PASS

Deposit successful

PIN_CHARGE_RES_PASS

PIN_CHARGE_CMD_REFUND

PIN_RESULT_PASS

Refund successful

PCM_OP_PYMT_POL_COLLECT then specifies actions to be performed on the
account based on the PIN_FLD_COMMAND, the payment amount, and the
pending receivable amount as shown in Table 4-3:

Table 4-3 PCM_OP_PYMT_POL_COLLECT Actions

Input PIN_FLD_COMMAND

Actions When Payment >=
Pending Receivable

Action When Payment <
Pending Receivable

PIN_CHARGE_CMD_AUTH_ONLY .
PIN_CHARGE_CMD_CONDITION
PIN_CHARGE_CMD_REFUNDS "

amount.

If the account status is

it to active.

Clear the pending receivable .

currently set to inactive, change

= Set the status flag value to
PIN_STATUS_FLAG_DEBT.

bill.

Credit toward outstanding

PIN_CHARGE_CMD_DEPOSIT

No action specified

No action specified

m If the result is unsuccessful, and PIN_CHARGE_RES_FAIL._CARD_BAD or PIN_
CHARGE_RES_FAIL_DECL_HARD are passed in, PCM_OP_PYMT_POL_
COLLECT sets the PIN_FLD_RESULT value and the PIN_FLD_DESCR
description, and then specifies these actions as shown in Table 4—4:

Configuring BRM-Initiated Payment Processing 4-17

Customizing How the Results of Credit Card Transactions Are Processed

Table 4-4 Input and Output Values
Input Output Output
PIN_FLD_RESULT PIN_FLD_RESULT | PIN_FLD_DESCR | Action
PIN_CHARGE_RES_FAIL_CARD_BAD | PIN_RESULT_FAIL | Credit card s Setaccount status to
operation declined inactive.

PIN_CHARGE_RES_FAIL_DECL_HARD

= Setstatus flag value
to PIN_STATUS_
FLAG_DEBT.

The PIN_FLD_PAYMENT_REASONS array in the input flist contains a PIN_FLD_
PAYMENT_REASONS array, which contains information related to failed payments.
These values are recorded in the FAILED_ACCOUNTS array of the /process_
audit/billing object.

Note: If a single payment is submitted for multiple bills, and fails, it
is stored as multiple FAILED_ACCOUNTS arrays.

The remaining input PIN_FLD_RESULT values are implemented in the same way.
PCM_OP_PYMT_POL_COLLECT sets the output PIN_FLD_RESULT value and the
PIN_FLD_DESCR description, and then reads the item for the account to determine if
there is an amount that is 30 days past due. If so, it specifies the following actions
shown in Table 4-5:

Table 4-5 Input and Output Values

Input Output Output
PIN_FLD_RESULT PIN_FLD_RESULT | PIN_FLD_DESCR Action
PIN_CHARGE_RES_FAIL_ | PIN_RESULT_FAIL | Credit card s Setaccount
DECL_SOFT operation declined status to
PIN_CHARGE_RES_FAIL_ mnactive.
ADDR_AVS = Setstatus flag
PIN_CHARGE_RES_FAIL_ value to PIN_
ADDR_LOC STATUS_

— FLAG_DEBT.
PIN_CHARGE_RES _FAIL
ADDR_ZIP
PIN_CHARGE_RES_FAIL_
NO_ANS
PIN_CHARGE_RES
SRVC_UNAVAIL

You can customize PCM_OP_PYMT_POL_COLLECT to specify any of these actions:
» clear_pending

n set_status

= cease_billing

For example, to discontinue billing an account after a determined period of inactivity,
specify the cease_billing action. The default implementation does not specify the
cease_billing action for any input PIN_FLD_RESULT values.

4-18 BRM Configuring and Collecting Payments

Testing Paymentech Credit Card Processing

Changing How BRM Handles Paymentech Authorization Return Codes

The Paymentech authorization codes used by BRM are listed in BRM_Homelsys/dm_
fusa/fusa_codes. This file maps Paymentech authorization codes to BRM result codes.

The fusa_codes file is not a complete list, but it includes the most common codes
returned by Paymentech. If a Paymentech code is not included in the list, it is mapped
to a hard decline.

You can change the mappings or add new mappings by editing the fusa_codes file.

Note: You can map a Paymentech code to any BRM result code
except CHECKPOINT.

1. Open BRM_Homelsys/dm_fusa/fusa_codes.
Use the instructions in the file to edit the file.

Save the file.

P w N

Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

For more information about credit card authorization, see "About Credit Card
Validation and Authorization".

Testing Paymentech Credit Card Processing

Paymentech provides connections for testing credit card and direct debit processing,
but you must schedule testing times with Paymentech. It can take several weeks to
establish a link with Paymentech. You can use the BRM Paymentech simulators to test
credit card and direct debit processing without connecting to Paymentech.

Caution: To test credit card and debit card processing with BRM
Paymentech simulators, you must use the account numbers from the
test environment only.

Use the payment processing simulator to do the following:
s Test the connections in your payment processing configuration.
= Test how to handle no response or dropped-line situations.

s Test any part of your BRM system that includes BRM-initiated payment
processing. For example, you can create credit card accounts in Customer Center
and use the simulator to charge them.

» Test how the BRM system responds to credit card validation and authorization.
You can also test BRM's response to the Visa fraud prevention system (CVV2). For
example, you can test how BRM responds when trying to create an account that
uses a invalid credit card.

Note: The Paymentech simulator does not check for the expiration
date of the credit card.

Configuring BRM-Initiated Payment Processing 4-19

Testing Paymentech Credit Card Processing

The payment processing simulator is located in BRM_Home/bin. It includes two
utilities, answer_s and answer_b.

Caution: Use the answer_s and answer_b utilities only in the test
environment.

In the production environment, uninstall these utilities to prevent
sensitive data from being used for verification.

= The answer_s utility simulates online transactions.

Note: The answer_s utility automatically simulates the Paymentech
HeartBeat application during BRM-initiated payment processing. It
verifies that the HeartBeat responses from the Paymentech Data
Manager (dm_fusa) are on time and in the correct format when sent to
the payment processor (which is the answer_s utility in this case). If
not, the utility resets itself to a listen state, which the simulator
handles as a socket disconnect and writes the errors to the BRM_
Homelapps/fusa_server/answer_s.pinlog file, if one is configured. See
"Defining the Credit Card Functionality to Test". For information on
how to handle the errors, see "Troubleshooting HeartBeat Errors".

s The answer_b utility simulates batch transactions.

Setting Up the Paymentech Simulator

Setting up the Paymentech simulator involves the following tasks:
s Defining the Credit Card Functionality to Test

s Setting Up the Paymentech DM Configuration File for Testing
= Specifying an IP Address for the Paymentech Simulator

Defining the Credit Card Functionality to Test

You can define which area of functionality to test with answer_s and answer_b by
editing the Paymentech simulator configuration file (BRM_Home/apps/fusa_
server/pin.conf). This file includes configuration instructions.

Note: The entries can be changed interactively because the answer_a
and answer_s servers read them from the configuration file at each
connection.

For information about validation and authorization, see "About Credit Card Validation
and Authorization".

1. Open the simulator configuration file (BRM_Home/apps/fusa_server/pin.conf).

2. Change the response and result codes as necessary. For example:

- answer_s v_code 100
- answer_s avs I3
- answer_s s_code M

- answer_b v_code 100
- answer_b avs I3

4-20 BRM Configuring and Collecting Payments

Testing Paymentech Credit Card Processing

3.

4.

To write processing information to a log file, add the following entries:

- answer_s loglevel 3
- answer_s answer_S.pinlog
- answer_b loglevel 3
- answer_b answer_b.pinlog

Save and close the file.

Setting Up the Paymentech DM Configuration File for Testing

1.
2.
3.

Open the Paymentech DM configuration file (BRM_Home/sys/dm_fusa/pin.conf)
Specify at least two dm_fusa back ends.

Change the online_srvr and online_port entries to point to the answer_s utility
port number and IP address. By default, the port number is 5678.

Change the batch_srvr and batch_port entries to point to the answer_b utility port
number and IP address. By default, the port number is 5679.

Save and close the file.

Stop and restart the Paymentech DM. See “Starting and Stopping the BRM
System” in BRM System Administrator’s Guide.

Specifying an IP Address for the Paymentech Simulator

Systems configured with multiple network cards use multiple IP addresses for each
network card. You can configure the Paymentech simulator to listen to all IP addresses
to determine where to connect, or, if you know the IP address (for example, one
provided by Paymentech), you can define it in the answer pin.conf file.

1.
2.

Open the simulator configuration file (BRM_Home/apps/fusa_server/pin.conf).
Do one of the following:

= To enable Paymentech to listen to any IP address located on the machine
where the answer utility is running, add the following entry to the file:

- answer answer_name -

s To assign a specific IP address for the answer utility, add the following entry to

the file:

- answer answer_name 1P address

where IP_address is the IP address of the system running the simulator.
For example:

- answer answer_name 102.13.112.122

Running the Paymentech Simulators

The Paymentech simulators are in BRM_Home/bin.

Note: Start the simulators before you start the Paymentech DM.

You can start and stop the simulators through the command line:

Configuring BRM-Initiated Payment Processing 4-21

Testing Paymentech Credit Card Processing

start_answer &
stop_answer

Simulating Failed Credit Card Transactions

General soft declines are failures that can be retried later with possible success. This
includes reasons like insufficient credit limit and other transitory causes. General hard
declines are failures that are unlikely to succeed if retried. These include reasons like
lost and stolen credit card and chronic payment failures.

To create a hard or soft decline on a credit card that you can use to test resolving
failures, do the following:

1.
2.
3.

Create a credit card account.
Stop the answer_b utility and the Paymentech DM.

Open the answer_b configuration file (BRM_Home/apps/fusa_server/pin.conf)
and change the vcode value to 502.

Restart the answer_b utility. See "Running the Paymentech Simulators".

Restart the Paymentech DM. See “Starting and Stopping the BRM System” in BRM
System Administrator’s Guide.

Advance the time one month and run pin_bill_day.
Verify that the amount due is not collected.

Use Event Browser to verify the PIN_FLD_RESULTS value in the
/event/billing/payment/cc object is a 7 (soft decline) or an 8 (hard decline).

Resolving Failed Credit Card Transactions

In addition to the regular responses, answer_b also handles request for response (RFR)
file requests by returning the contents of the RFR file specified in the answer_b
configuration file.

To test recovery of failed transactions:

1.
2.

Create a credit card account.

If you have not already created failed credit card transactions, do the following to
force a transaction failure:

a. Advance the time one month.
b. Run pin_bill_day.
c. Stop the answer_b utility while billing runs.

Use Event Browser to verify the PIN_FLD_RESULTS value in the
levent/billing/payment/cc object is a 6 (service unavailable).

Run the pin_clean utility to find transaction IDs for failed transactions.

Edit a fusa send file (fusas®*). Enter the transaction IDs for the transactions that
have checkpoint records. Fusa send files are located in the TEMP directory.

Enter the file name of the REFR file in the Paymentech simulator configuration file.

Resolve the failed transactions. See "Resolving Failed BRM-Initiated Payment
Transactions".

4-22 BRM Configuring and Collecting Payments

Implementing a Direct Debit Payment Method

About Paymentech Fraud Prevention Using CID and CVV2

Paymentech offers an additional fraud prevention option for Visa and American
Express transactions. Visa and American Express debit and credit cards have a
non-embossed identifier. The Visa CVV2 (Card Verification Value 2) number is on the
back of the card in the signature panel. The American Express CID (Card identifier)
number is on the front of the card. CSRs can request this information when registering
customers. For more information, see "About Credit Card Fraud Prevention" and
"Requiring Additional Protection against Credit Card Fraud".

About Paymentech Soft Descriptor Credit Card and Checking Statement

Information

You can add soft descriptors to customers’ credit card or checking-account statements
to make charges easier to understand. Soft descriptors are available for Paymentech
direct debit and credit card processing. You can add to these statements:

= Your DBA name
= Your product name
= A customer service phone number (instead of your headquarters city)

Visa gives a discount, the Visa PS2000 Direct Marketing interchange rate, to companies
that provide a customer service number in this manner.

Use this format for DBA name, product name, and phone entries:

- dm_fusa sd_merchant_dba DBA
- dm_fusa sd_merchant_pdt ProductName
- dm_fusa sd_merchant_phone 800-XXXXXXX

The value for merchant is described in "About Merchant Numbers and Account
Identifiers".

On the customer's statement, an asterisk is used to separate the DBA name and
product name. If the entry is longer than 22 characters (including spaces), it is
truncated on the statement. In this 22-character-maximum line, the asterisk delimiter
can appear in position 4, 8, or 13.

For example, if the merchant is psi, the DBA name is BRM, the pdt (product) is
internetSVC, and customer service number is 800-555-1234, use the following entries:

- dm_fusa sd_psi_dba BRM
- dm_fusa sd_psi_pdt InternetSVC
- dm_fusa sd_psi_phone 800-555-1234

For more information on soft descriptors, see "Adding Soft Descriptor Information"
and the Paymentech specifications.

To use multiple DBA names, product names, or phone numbers, you must customize
the PCM_OP_PYMT_POL_PRE_COLLECT policy opcode.

Implementing a Direct Debit Payment Method

This section explains how to implement a direct debit payment method with BRM.

Configuring BRM-Initiated Payment Processing 4-23

Implementing a Direct Debit Payment Method

Direct Debit Options

BRM provides you with the following options for charging customers using a direct
debit payment method:

= A direct debit method using the Paymentech payment processing service. See
"Enabling Direct Debit Processing" for details.

= Tools for creating a direct-debit-processing implementation using the bank of your
choice. See "Implementing a Custom Direct Debit Payment Method".

Caution: To avoid corrupting your database, perform the
instructions in this section on a test system. You will re initialize your
database with schema changes as the last step of this process.

Direct Debit Installation

Before installation, change the default values for these entries in the BRM_
Homelsetup/pin_setup.values file before you run the pin_setup script at installation:

SINIT_DDEBIT = "YES";
$SETUP_DROP_ALL_TABLES = "YES";

If you did not set these values when you installed BRM, you must do so and reinstall.

Direct Debit Components
To process Paymentech and BRM payment methods, BRM includes:

» Objects
= Opcodes
u DMs

= /payinfo storable classes
= DLLs
= Entries for the default bill types in the /config/payment storable object

You can add other billing and payment methods that you need for your business, and
customize the payment interface for those bill types.

Implementing a Custom Direct Debit Payment Method

This section describes how to add a custom direct debit payment method to your BRM
system. See "Direct Debit Installation" for important installation information.

Overview of Adding a Custom Direct Debit Implementation
To implement a payment interface for other bill types:

1. Create /payinfo storable classes as required. See "Creating /payinfo Storable
Classes".

2. Modify Customer Center to support communications between Customer Center
and the modular payment interface. See "Modifying Customer Center".

3. Create new opcodes as required. See "Creating Opcodes".

4. Create new event storable classes as required. See "Creating Event Storable
Classes".

4-24 BRM Configuring and Collecting Payments

Implementing a Direct Debit Payment Method

5. Create a Data Manager. See "Creating a Data Manager".

6. Update the /config/payment storable object to support new opcodes. See
"Updating the /config/payment Storable Object".

7. View payment information for a custom payment method to see the options. See
“Viewing Payment Information for a Custom Payment Method” in BRM Managing
Customers.

Note: Whenever you add opcodes, opcode flags, or new event types
to BRM, you must also then edit the init_objects_ddebit.source file
and run the pin_init script.

Creating /payinfo Storable Classes

Your new class is a subclass of the /payinfo storable class with information specific to
the new payment method. The information contained in the object instances of your
new subclass comes from account creation. For each new payment method:

1. Determine what information you require to bill the customer correctly.
2. Create a storable class to store that information.

For information on creating new subclasses, see “Creating Custom Fields and Storable
Classes” in BRM Developer’s Guide.

Modifying Customer Center

To get payment information from and to support data entry for the new payment
methods in Customer Center, you must modify Customer Center. See “Using
Customer Center SDK” in BRM Developer’s Guide.

Creating Opcodes

To manipulate objects derived from your new storable class, create opcodes and
Facilities Modules to implement them. For more information, see “Writing a Custom
Facilities Module” in BRM Developer's Guide.

Creating Event Storable Classes

Your direct debit implementation will probably require you to add information to the
existing BRM default /event/billing classes.

This list should cover what you will be adding. Add a subclass if needed:
= /event/billing/charge

= /event/billing/payment

= /event/billing/recover

= /event/billing/refund

= /event/billing/validate

For example, to extend /event/billing/charge for a program called my_dd, the class
name would be /event/billing/charge/my_dd.

These storable classes are good models for what you’ll need. They are used for BRM's
default payment methods:

= /event/billing/charge/cc
= /event/billing/charge/dd

Configuring BRM-Initiated Payment Processing 4-25

Implementing a Direct Debit Payment Method

For information on creating storable classes, see “Creating Custom Fields and Storable
Classes” in BRM Developer's Guide.

Creating a Data Manager

You must create a Data Manager (DM) if collection or validation of your new payment
method requires interaction with an external system. For information on creating a
DM, see “Writing a Custom Data Manager” in BRM Developer’s Guide.

Updating the /config/payment Storable Object
When you add a new payment method, you must update the /config/payment
storable object. See “Customizing Payment Methods” in BRM Managing Customers.

For information on how to view custom payment information in Customer Center, see
“Viewing Payment Information for a Custom Payment Method” in BRM Managing
Customers.

4-26 BRM Configuring and Collecting Payments

O

Configuring Payment Channels

This chapter provides an overview of Oracle Communications Billing and Revenue
Management (BRM) payment channel information and describes how to define and
load the payment channel IDs and descriptions into the BRM database.

Before reading this chapter, you should understand BRM payment processing. See the
following documents:

= About Payments
= How BRM Collects Payments

About Payment Channel Information

Payment channel information is a payment property that identifies the delivery method
by which customer payments are sent to a financial institution. For example, payment
channels include the Internet, Interactive Voice Response (IVR) phone service,
Automated Clearing House (ACH), and lockbox.

Note: You can copy and paste the key, or you can type it.

You can use the payment channel information to implement customizations in BRM,
such as suspending payments, charging failed payment fees, and offering
early-payment incentives. For more information, see "How BRM Collects Payments".

Setting Up Payment Channel Information

To set up payment channel information for your system, you must first define and
load the information into BRM, and then configure it for BRM-initiated payment
processing.

For BRM-initiated payment, the payment gateway must include the payment channel
information in each payment. When the payments are received by BRM, they will be
processed automatically with the correct channel ID.

For externally initiated payments, the payment gateway must map the external
payment channel information to BRM channel IDs in each payment file. Therefore, the
payment channel information should already be included in the imported payment
batch. If a payment does not contain a payment channel ID, the payment batch-level
channel ID is used for that payment. If neither the payment nor the batch contains a
payment channel ID, the information can be entered manually by using Payment Tool.

Configuring Payment Channels 5-1

Setting Up Payment Channel Information

Important: By default, verification of accurate payment channel ID
mapping is not performed in BRM.

Defining Payment Channel Information in BRM

The payment channel information you load into the BRM database consists of
payment channel IDs and the text strings that describe them. To define payment
channel IDs, you edit the payment_channel.en_US sample file in the BRM_
Homelsys/msgs/paymentchannels directory. You then use the load_localized_strings
utility to load the contents of the file into the /strings objects.

When you run the load_localized_strings utility, use this command:

load_localized_strings payment_channel.locale

Note: If you're loading a localized version of this file, use the correct
file extension for your locale. For a list of file extensions, see Locale
names.

For information on loading the payment_channel.locale file, see “Loading Localized
or Customized Strings” in BRM Developer's Guide. For information on creating new
strings for this file, see “Creating New Strings and Customizing Existing Strings” in
BRM Developer’s Guide.

Mapping Payment Channel IDs for BRM-Initiated Payments

For BRM-initiated payments such as credit card and direct debit payments, the
payment channel for a particular vendor is retrieved from the payment processor
configuration object and automatically saved in BRM with each payment.

To map the payment channels, you run the load_pin_ach utility to load the contents of
the pin_ach file into the /config/ach object in the BRM database.

Note: Theload_pin_ach utility requires a pin.conf configuration file.
For more information, see “Creating Configuration Files for BRM
Utilities” in BRM System Administrator’s Guide.

Caution: The load_pin_ach utility overwrites existing payment
processor and merchant information. If you are updating information,
you cannot load new data only. You must load complete sets of
payment processor and merchant entries each time you run the load_
pin_ach utility.

1. Edit the pin_ach file in BRM_Home/sys/data/pricing/example by specifying each
vendor and its payment channel ID. The channel_id value must match a payment
channel ID configured in the /strings object.

The file contains instructions and an example.
2. Save the pin_ach file.

3. Use the following command to run the "load_pin_ach" utility:

5-2 BRM Configuring and Collecting Payments

Assigning Payment Channel IDs to Externally Initiated Payments

load pin_ach ach file

If you are not in the same directory as the load_pin_ach file, include the complete
path to the file. For example:

load_pin_ach BRM Home/sys/data/pricing/example/ach file

4. Stop and restart the Connection Manager (CM). See “Starting and Stopping the
BRM System” in BRM System Administrator’s Guide. If necessary, restart Payment
Tool.

5. Verify that the pin_ach file was loaded successfully by using the Object Browser to
display the /config/ach object, or use the testnap utility with the robj command.
See “Reading an Object and Writing its Contents to a File” in BRM Developer's
Guide.

If a payment does not contain a payment channel ID, a value of 0 will be saved with
the payment by default, which configures it as Unspecified Payment Channel.

For more information on setting up merchants and automated clearing houses, see
"About BRM-Initiated Payment Processing".

Configuring Payment Channel IDs for Externally Initiated Payments

For externally initiated payments, you must configure the payment gateway or custom
CRM tool with the payment channel ID information. When the payment batch is
received, you use the PCM_OP_PYMT_COLLECT opcode or Payment Tool to load the
channel ID into BRM.

You can run the testnap utility to check that the payment channel IDs were loaded
properly. For more information on testnap, see “Testing Your Applications and
Custom Modules” in BRM Developer’s Guide.

Assigning Payment Channel IDs to Externally Initiated Payments

You assign a payment channel ID to a payment batch or an individual payment by
using Payment Tool. Each batch accepts payments, refunds, or reversals in only one
payment channel ID.

For information on assigning or changing the payment channel ID, see Payment Tool
Help.

Configuring Payment Channels 5-3

Assigning Payment Channel IDs to Externally Initiated Payments

5-4 BRM Configuring and Collecting Payments

6

Configuring Payment Collection Dates for

Automatic Payments

This chapter explains how to configure Oracle Communications Billing and Revenue
Management (BRM) payment collection dates for automatic customer payments.
Before reading this chapter, read the following topics:

“About Billing” in BRM Configuring and Running Billing

About Payments

About BRM-Initiated Payment Processing

“About Accounts Receivable” in BRM Managing Accounts Receivable

About Configuring Payment Collection Dates for Automatic Payments

By default, BRM-initiated payments, such as payments made by credit card or direct
debit, are collected on the date that bills are finalized. Alternatively, you can configure
BRM to collect a BRM-initiated payment on the date a bill is due or on a specified
number of days before the bill is due.

To support configurable payment collection dates, BRM-initiated payment processing
involves these steps:

1.

You configure the payment collection date.

During account creation or modification, a customer service representative (CSR)
uses third-party customer relationship management (CRM) software to set the
collection date for BRM-initiated payments. This date is one of the following;:

» Date the bill is finalized (default)
= Date the bill is due
= A specified number of days before the bill due date

For information about the opcode to call to set this date, see "How BRM Calculates
Payment Collection Dates".

BRM calculates the payment collection date.

At the end of each billing cycle, the PCM_OP_BILL_POL_CALC_PYMT DUE_T
policy opcode calculates a bill’s payment collection date after the opcode
determines the bill’s due date.

BRM collects the payment.

BRM-initiated payments are collected by the pin_collect utility. This utility collects
payments for bills whose payment collection date is one of the following days:

Configuring Payment Collection Dates for Automatic Payments 6-1

About Configuring Payment Collection Dates for Automatic Payments

s The day the utility is run
s The day before the utility is run

Note:

s The payment collection date of a bill (/bill object) is stored in the
/billinfo object with which the bill is associated.

= To collect BRM-initiated payments for bills whose payment
collection date is on a day other than the days listed above, use the
pin_collect utility’s start and end parameters. See “Specifying
Start and End Times” in BRM Configuring and Running Billing.

For more information, see "About Collecting BRM-Initiated Payments" and "pin_
collect”.

About Configurable Payment Collection Dates and On-Demand Billing

Usually, you bill a customer only at the end of the customer’s billing cycle. However,
you can use the Bill Now feature in Customer Center or the BRM on-demand billing
feature to bill the customer immediately. When you use these features, multiple bills
associated with a single bill unit (/billinfo object) may be generated during the same
billing cycle. When this occurs, all subsequent bills generated before BRM collects the
first bill are collected on the first bill’s payment collection date.

For example, Account A has one bill unit. Its monthly bill, which is paid by direct
debit, is due 31 days after it is finalized. Its payment is collected 5 days before the due
date. On August 10 (the end of the July 10-August 10 billing cycle), regular billing is
run:

= Bill finalized = “Bill 1” (see Figure 6-1)
= Due date = September 10 (August 10 + 31 days)
= Payment collection date = September 5 (September 10 - 5 days)

Figure 6—1 Regular Billing Cycle Dates
Monthly billing cycle Monthly billing cycle
T T T T T e A N S e e 3
[Bill 1 [I
| collected | I
| s | |
Bill 1 Bill 1 due
finalized Sept. 10
Aug. 10
The Bill 1 payment collection date (September 5) is stored in the /billinfo object
associated with Bill 1.
On August 18, the Bill Now feature is used to bill the account:
= Bill finalized = “Bill Now” (see Figure 6-2)
6-2 BRM Configuring and Collecting Payments

About Configuring Payment Collection Dates for Automatic Payments

= Due date = September 18 (August 18 + 31 days)
= Payment collection date = September 13 (September 18 - 5 days)

Figure 6-2 Bill Now Billing Cycle Dates

Monthly billing cycle Monthly billing cycle
A

______________________________ S
—
4 Bill1 | Bill Now b

|
|
|

|
| collectad lcollected
: Sepl. 5 : Sept. 13

Bill 1 Bill Now Bill 1 due Bill Now
finalized finalized Sept. 10 due
Aug. 10 Aug. 18 Sept. 18

However, the Bill Now payment collection date (September 13) is not stored in the
/billinfo object. Instead, the earlier payment collection date (September 5) is applied to
both bills, as shown in Figure 6-3:

Figure 6-3 Bill Now Payment Collection Date

Manthly billing cyele Manthly billing cyele

| |
' & Bill Now | '
: collected I':":’II :
| SE‘PL 3 |
Bill 1 Bill Mow Bill 1 due Bill Mow
finalized finalized Sept. 10 due
Aug. 10 Aug. 18 Sept. 18

Note: If the Bill Now payment collection date were stored in the
/billinfo object on August 18, it would overwrite the Bill 1 payment
collection date, changing the date from September 5 to September 18.
This would postpone Bill 1’s payment collection for over a week.

For more information about Bill Now and on-demand billing, see “About Bill Now”
and “About On-demand Billing” in BRM Configuring and Running Billing.

About Configurable Payment Collection Dates and Delayed Billing

The BRM delayed billing feature enables billing for all the bill units (/billinfo objects)
in your system to be run a specified number of days after the end of their billing cycle.
If you use delayed billing, be careful to avoid configuring payment collection dates
that occur before bills are finalized.

Configuring Payment Collection Dates for Automatic Payments 6-3

About Configuring Payment Collection Dates for Automatic Payments

For example, your system has a 14-day billing delay. Account A’s bill is due 21 days
after the end date of its monthly billing cycle. If you set a payment collection date that
is more than 7 days before the bill due date, the payment collection date will occur
before the bill is finalized. In such cases, BRM ignores the payment collection date and
collects the payment on the date the bill is finalized.

For information about delayed billing, see “Setting up Delayed Billing” in BRM
Configuring and Running Billing.

6-4 BRM Configuring and Collecting Payments

7

Configuring Payment Fees

This chapter provides an overview of how payment fees are handled in your Oracle
Communications Billing and Revenue Management (BRM) system. It includes:

= Anoverview of failed payments and payment fee processing.

» Information on how to configure BRM for payment fees, create payment fee
products, and manually remove a payment fee from an account balance.

For information on customizing payment fees, see "Customizing Payment Fees".

For background information on payments, see "About Payments".

About Failed Payments

If you use BRM-initiated payment processing, payments are loaded directly into BRM
by the payment processor. If you use externally initiated payment processing, you use
Payment Tool to load payments into BRM. Regardless of the way they are loaded, by
default they are posted as successful or failed, and are identified by PIN_FLD_STATUS
value.

Successful payments are automatically posted to the account to which they belong. The
payment amount is removed from the current balance on the account, and any
remaining amount is allocated according to your business policies.

Failed payments are those that do not comply with the financial practices of your
company because, upon collection, they have been dishonored or rejected by the bank.
For example, payments can fail due to expired credit and debit cards, incorrect account
details, and insufficient funds. You can configure BRM to charge payment fees for
payments that have a failed status.

Note: If you have the Payment Suspense Manager feature enabled,
failed payments are submitted to the payment suspense account, but
can still receive payment fees. See “Configuring Payment Suspense
Manager” for more information on Payment Suspense Manager.

For information on payment status, see "About Payment Status".

For information on failed unconfirmed payments, see "Handling Failed Unconfirmed
Payments".

Configuring Payment Fees 7-1

About Payment Fees

About Payment Fees

Payment fees are one-time, non-recurring penalties that can be charged to an account
for payments that fail due to financial errors. For example, if a customer check is
denied due to insufficient funds, or a credit card is invalid because it has expired, you
can charge the customer a payment fee.

By default, payment fees can be charged only for failures that occur due to financial
reasons, and not for failures that occur due to communication errors between BRM
and the payment transaction service. Communication errors are considered
unresolved transactions. You run the "pin_clean" utility to find all unresolved credit
card and direct debit payments recorded in the BRM database. For more information,
see "Resolving Failed BRM-Initiated Payment Transactions".

When a failed payment is posted in BRM, it is recorded in BRM with a balance impact
of 0, and is identified by a transaction ID, a failure status, and a reason ID for the
failure. BRM uses the failure status and reason ID to determine whether to apply
payment fees when the payment is posted. Payment fees can be applied only to
payments that have a PIN_FLD_STATUS value of PIN_PYMT_FAILED.

Note: If the transaction ID, status or reason ID is missing from the
actual payment, it can be retrieved from the payment batch header.
See Payment Tool Help for information on batch headers and footers.

If you defined payment fees, the failed payment triggers the creation of a payment fee
event, and the rated amount is applied to the customer’s current account balance.
Failed payments can be posted to an account only when the account number is
available in BRM. If a failed payment is not posted, the associated fee cannot be
applied.

Note: If you have Payment Suspense Manager enabled, and
configured to handle failed payments, any failed payment will be
posted to the payment suspense account and will receive a payment
fee. When the payment is later fixed and posted to the correct account,
the payment fee will be allocated along with the payment.

You create fees for failed payments by setting up pricing plans. The product in the
plan contains a rate that is mapped to the payment fee event. When you create a
payment fee product, any account that own the product will receive a payment fee if a
payment fails; you cannot exempt accounts from receiving payment fees. To cancel out
unwanted fees from an account’s balance, you set up account-level discounts for the
payment fee event. See "Defining Exemptions from Payment Fees".

BRM applies the balance impact of the payment fee event to the default balance group
of the bill unit.

Configuring BRM for Payment Fees

Before you can define payment fees, you must configure BRM with the payment
information. After your system is configured, you create the payment fees by using
pricing plans.

Setting up payment fees involves the following processes:

= Defining Payment Attributes for Payment Fees

7-2 BRM Configuring and Collecting Payments

Configuring BRM for Payment Fees

s Defining Reason Codes for Failed Payments

Defining Payment Attributes for Payment Fees

BRM calculates payment fees by using real-time rating. Payment fees are based on
attributes you define in the Pricing Center rate plan selector. By default, the rate plan
selector and rating opcodes work with three attributes when determining the payment
fee: customer segment, payment channel, and payment method. The failed payment
storable class contains these default fields upon which you can base your payment
fees.

To charge payment fees based on any of these payment attributes, you must first
define the attributes in the BRM database. For information on defining payment
attributes, see the following information:

s Creating and Managing Customer Segments in BRM Managing Customers
s Configuring Payment Channels
s Customizing Payment Methods in BRM Managing Customers

To expand the attributes available in the rate plan selector, you can customize the
PCM_OP_PYMT_POL_APPLY_FEE policy opcode such that the flist includes extra
field types or provides additional filtering logic. You also extend the
/event/billing/payment/failed storable class to include the added fields. After you
perform this customization, you can create payment fee rate plans that enable BRM to
consider the additional attributes.

For more information, see "Customizing Payment Fees".

Defining Reason Codes for Failed Payments

Reason codes explain why payments fail, and they enable you to charge a payment fee
based on the reason for the failure.

The payment gateway and your third-party payment application must be configured
to identify failed payments and send reason codes with the payment information.
When a failed payment is received, the reason code is mapped to the reason code ID
defined in the BRM database.

You define reason codes in the reasons.locale file and load them into the BRM database
as a /strings object. The file contains instructions on how to add the new domain
Reason Codes - Payment Failure Reasons. For example:

DOMAIN = "Reason codes-Payment Failure Reasons";
STR

ID = 1001 ;

VERSION = 13 ;

STRING = "Invalid Credit Card";
END

Note: If you add your own reason codes to the reasons.locale file,
you should use IDs above 100,000.

To define reason codes for failed payments, you edit the reasons.en_US sample file in
the BRM_Homelsys/msgs/reasoncodes directory. You then use the load_localized
strings utility to load the contents of the file into the /strings objects.

When you run the load_localized_strings utility, use this command:

Configuring Payment Fees 7-3

Creating Payment Fees

load localized_strings reasons.locale

Note:

= If you are loading a localized version of this file, use the correct
file extension for your locale. For a list of file extensions, see
Locale names.

= Ifafailed payment is loaded into BRM with an invalid reason
code, payment fees are not applied.

For information on loading the reasons.locale file, see “Loading Localized or
Customized Strings” in BRM Developer’s Guide. For information on creating new
strings for this file, see "Creating New Strings and Customizing Existing Strings" in
BRM Developer’s Guide.

Creating Payment Fees

You create payment fees by defining rates and configuring real-time rating. The rates
you define for payment fees are based on the fields defined in the
/event/billing/fee/failed_payment event. These fields enable you to charge and
suppress payment fees.

Note: You should be familiar with real-time rating before you begin.

For information on creating rates and pricing plans, see Pricing Center
Help and "About Real-time Rate Plans" in BRM Setting Up Pricing and

Rating.

Defining a Payment Fee

This example defines payment fees based on the payment method, which is the means
by which customers pay their bills. It charges a $5 fee for failed wire transfers, credit
card, debit card, and direct debit payments; a $7 fee for failed check, postal order, and
invoice payments; and no fee for failed cash payments. Failed cash payments are
handled by BRM as non-payments or overdue payments.

See "About Payment Methods" for more information about payment methods.

1. Start Pricing Center and begin creating a System product.

Note: This defines payment fees for all customer accounts. To define
fees only for certain accounts, create a Subscription product and
purchase the product for the account.

2. Apply the product at the account level and define the purchase and ownership
information.

3. Inthe General Product Info tab, type 1 in Priority.

4. Under Event Map, click Add.
a. Inthe Event column, select Failed Payment Fee Event.
b. In the Measured By column, select Occurrence.

c. In the Rate Plan Structure column, select Rate Plan Selector.

7-4 BRM Configuring and Collecting Payments

Creating Payment Fees

5. Set up the rate plan for the $5 fee.
Under Rate Plan Selector, type a name for the payment fee.

a
b. Click Edit Plans and click New.

c. Define the Plan Details and Rate Plan Structure.

d. In the Balance Impacts tab, select US Dollars [840] as the Resource ID and
type 5.00 in Fixed Amount.

e. Click OK.

6. Set up the rate plan for the $7 fee. Repeat step 5, but in the Balance Impacts tab,
type 7.00 in Fixed Amount.

7. Set up the rate plan selector.

a. Click ...+ in the first column, select Event, choose PIN_FLD_FAILED _
PAYMENT_FEE.PIN_FLD_PAY_TYPE from the attributes list, and click OK.

b. Click + in the row column to create a row for each payment method, except
Cash payments. Omitting the cash payment method from the rate plan selector
excludes it from being rated and no fees will be applied.

c. In the first column of each row, type the element ID for each payment method.

d. For the credit card, debit card, direct debit, and wire transfer payment
methods, select the $5 payment fee rate plan.

e. For the invoice, check, and postal order payment methods, select the $7
payment fee rate plan.

The rate plan selector for this example looks like Figure 7-1 in Pricing Center:

Figure 7-1 Rate Plan Selector

Rate Plan Selector \
Plan zelector narme: |F‘a':.-'mer'|t Fees
Zone mag:
Bowe| EWEHT.PIN_FIL O _FAI FD PAYRMENT FEE.PIH FILO PAY TYPE| +.. | Rate Plan | Ai
1 11000 S failure fee et
2 o002 57 failure fee deﬂl
3 o003 57 failure fee ey
4 10005 57 failure fee el
5110012 S failure fee deﬂ
B 110013 S failure fee def],
Fo0s S failure fee defél
Y

8. Click OK and Apply.

Configuring Payment Fees 7-5

Creating Payment Fees

Note:

= To configure the rate plan according to additional payment fee
attributes, click ...+ in the next column and choose the field on
which to base the fees. Then enter the field values in each row.

= A rate plan selector can only contain fields defined in the payment
fee event. For example, you can apply a payment fee based on a
customer segment, payment channel, or payment method, or a
combination of these attributes.

To exempt accounts from receiving fees, see "Defining Exemptions from Payment
Fees".

To define a threshold at which to suppress payment fees, see "Defining Thresholds for
Payment Fees".

Defining Thresholds for Payment Fees

You can define a threshold amount at which payment fees are applied for failed
payments. If the amount of the failed payment is less than the threshold, the payment
fee is not applied. For example, you can set payment fees to be applied only for failed
payments of $20 or more.

To create a payment fee threshold, define a rate plan selector in which you base the fee
on the PIN_FLD_AMOUNT_ORIGINAL_PAYMENT attribute for the failed payment
fee event. Then define balance impacts to define the threshold quantity.

This example charges a $5 fee if the failed payment is over $99.
1. Start Pricing Center.
= To set up thresholds for all customer accounts. create a System product.

= To set up thresholds only for certain accounts, create a Subscription product
and purchase the product for those accounts.

2. Apply the product at the account level and define the purchase and ownership
information.

3. Inthe General Product Info tab, type 1 in Priority.
4. Under Event Map, click Add.
a. In Event, select Failed Payment Fee Event.
b. In Measured By, select Amount.
c. In Rate Plan Structure, select Single Rate Plan.
5. Set up the rate plan that suppresses the payment fee.
a. Under Rate Plan, click Open Rate Plan and set up the Plan Details.
b. Under Rate Structure, select Tier 1 and set up the Tier Details.
c. Under Rate Structure, select Rate 1 and set up the Rate Data.
d. Under Quantity Discount Brackets, in Based on, select Rate Dependent.

e. Under Rate Structure, select No Minimum - No Maximum to open the
Balance Impacts tab.

f. Under Valid Quantities, clear Maximum and type 100.

7-6 BRM Configuring and Collecting Payments

Creating Payment Fees

In Resource ID, select US Dollars [840].

Under Rate Structure, select Rate 1 and click Add to add another balance
impact.

i. Select No Minimum - No Maximum to open the Balance Impacts tab.
j- Under Valid Quantities, clear Minimum and type 100.

k. Under Balance Impacts, type 5.00 in Fixed.

I. Click OK.

Defining Exemptions from Payment Fees

To exempt accounts from receiving payment fees, you create a real-time pipeline
discount and associated it with the failed payment fee event.

For more information on discounting, see Pricing Center Help and "About Discounts"
in BRM Configuring Pipeline Rating and Discounting.

1. Start Pricing Center and create a subscription discount that applies to the account.
2. Create a Discount Model that defines a discount of 100%.

a. Using the Pipeline Toolbox, choose Discount/ChargeShare Trigger from the
Discount list, select the DM10%OFF discount trigger, and change it to
DM100%OFF.

b. Create a discount rule and set the Rule Type to Threshold and the Drum Type
to Charge.

c. Enter the threshold amount and charge information.

d. Change the DM10%OFF discount master to DM100%OFF and the
DM10%OFF discount model to DM100% OFF.

3. Set up the event map.
a. Under Map an Event to a Discount Model, click Add.
b. In the Event column, select Failed Payment Fee Event.
c. In the list of discount models, choose DM100%OFF and click Select.
4. Create a deal and add the discount to the deal.
5. Purchase the deal for the accounts that are exempt from the failed payment fee.
When the fee is rated, the following operations occur in BRM.

1. The balance impact of the /event/billing/fee/failed_payment is determined by
BRM, and the balance impact is saved as a charge packet.

2. The real-time discounting pipeline calculates the charge packet discount and
translates it into a second balance impact for the fee. This balance impact amount
is the negative equivalent of the original fee amount.

3. The fee is saved with a balance impact amount of $0.

For example, an account that is exempt from the payment fee receives a $5 balance
impact for the fee when it is rated. When the 100% discount is applied, a second
balance impact of -$5 is saved with the fee. The two amounts cancel each other,
and the fee is $0.

For more information on thresholds, see Pricing Center Help.

Configuring Payment Fees 7-7

Customizing Payment Fees

Removing a Payment Fee from an Account Balance

To remove a payment fee from an account balance, you use Customer Center to credit
the balance of the account for the amount of the fee.

1.

© ® N o a M 0 Db

10.

Open the account in Customer Center.

Go to the Post Paid tab and click the Balance Adjustment link.

Select the balance to adjust.

If this is a dual currency account, select the currency to adjust.

Type the amount of the adjustment and select Credit.

Select a reason and type any notes about the adjustment.

Select a transaction date and an accounting date for the adjustment.

Click OK.

Click Yes in response to the confirmation message if the information is correct.

When the adjustment is recorded in the BRM database, the amount of the
adjustment is added to the amount in the Adjustments/Payments not applied
field. The adjusted amount reduces the amount in the Due now field.

If the account uses open item accounting, you must allocate the adjusted amount
to one or more bills.

Until you perform the allocation, the credit reduces the amount due on the
account, but it does not reduce the balance of any bills. When allocated, the credit
reduces the due amount of the bill or bills.

For more information, see Customer Center Help.

Customizing Payment Fees

You can configure BRM to handle failed payments and to charge payment fees
according to custom business policies.

To apply payment fees, use PCM_OP_PYMT_APPLY_FEE. See "How Payment
Fees Are Applied".

To customize payment fees, use the PCM_OP_PYMT_POL_APPLY_FEE policy
opcode. See "Customizing Payment Fees".

This section describes the following customization tasks:

Customizing Payment Fees

Storing Additional Information with Payment Fees

For background information on payment fees, see the following documents:

Configuring Payment Fees
Creating Payment Fees

Defining Reason Codes for Failed Payments

How Payment Fees Are Applied

Payment fees are applied by PCM_OP_PYMT_APPLY_FEE. This opcode creates
payment fees for payments that fail, for example, due to insufficient account funds or

7-8 BRM Configuring and Collecting Payments

Customizing Payment Fees

an expired credit card. It calls PCM_OP_ACT_USAGE to create the payment fee event
to be rated.

PCM_OP_PYMT_APPLY_FEE is called by PCM_OP_PYMT_COLLECT.

The behavior of PCM_OP_PYMT_APPLY_FEE is determined by the PIN_FLD_
STATUS field passed in on the input flist. Payments are eligible to receive payment
fees if they have a PIN_FLD_STATUS value >= PIN_PYMT_FAILED and < PIN_
PYMT_STATUS_MAX. The numeric range for financially failed payments is 30-44.
For more information, see "About Payment Status".

The normal flow of PCM_OP_PYMT_APPLY_FEE is as follows:

1. Checks the input flist for the status of the payment and the reason ID that
describes why the payment failed.

2. Calls the PCM_OP_PYMT_POL_APPLY_FEE policy opcode to perform custom
checks before the failed payment fee is applied. See "Customizing Payment Fees".

When it returns the output flist, PCM_OP_PYMT_APPLY_FEE validates the
information, and creates the failed payment fee events for all failed payments
based on the information. The default value in the PIN_FLD_BOOLEAN field on
the output flist is 0, which specifies that the fee will be created.

3. If a payment fails, records the /event/billing/payment/payment_type event.

Note: If the payment is an unconfirmed payment, records the
/event/billing/payment/failed event.

4. Creates the /event/billing/fee/failed_payment event.

PCM_OP_PYMT_APPLY_FEE provides feedback on its success or failure through the
PIN_FLD_RESULTS array in the output flist. The value in the PIN_FLD_RESULTS
field specifies whether the payment fee event was created. A value of 0 signifies that
the payment fee event was created and the payment fee applied. A nonzero value
signifies that the payment fee event was not created.

In the case of a write-off reversal, the output flist sends a results array of reversal
events and tax events (if created) that were passed in by PCM_OP_AR_REVERSE _
WRITEOFFE.

Note: Failed payments can only be applied to account numbers that
already exist in the BRM database.

The PIN_FLD_EVENTS array of the output flist stores the POID of the failed payment
fee event or write off event, if one is created. The PIN_FLD_EVENTS array is
contained in the PIN_FLD_RESULTS array.

Flags are not used directly by PCM_OP_PYMT_APPLY_FEE. They are passed in from
PCM_OP_PYMT_COLLECT for PCM_OP_PYMT_SELECT_ITEMS. For example,
Payment Tool can set the PCM_BILLFLG_DEFER_ALLOCATION flag to indicate
which payments should be left unallocated.

Customizing Payment Fees

You can define additional rules for payment fee processing by configuring the PCM_
OP_PYMT_POL_APPLY_FEE policy opcode. This policy opcode is called by PCM_
OP_PYMT_APPLY_FEE.

Configuring Payment Fees 7-9

Customizing Payment Fees

PCM_OP_PYMT_POL_APPLY_FEE enables you to customize payment fees by
preprocessing, filtering, and extending the information available in failed payment fee
events. For example:

= You can charge different fee amounts based on thresholds, or on the reason ID
associated with a failed payment.

= You can use payment attributes such as the customer segment, payment method,
payment channel, or a combination of these attributes to charge payment fees. You
create the filters by passing the values in the PIN_FLD_EXTENDED_INFO
substruct or the PIN_FLD_CHARGES array.

The default behavior of PCM_OP_PYMT_POL_APPLY_FEE is determined by the PIN_
FLD_STATUS and PIN_FLD_REASON_ID fields passed in on the input flist. It
enhances the input flist by adding fields to filter and extend the information available
in the payment fee events.

Customization example: Charging a fee based on the customer segment

The following opcode customization is used to control which failed payment fee is
assigned to an account based on the account’s customer segment:

If (customer_segment = “early bill payer”)
Then set PIN_FLD_BOOLEAN to False
END

The PIN_FLD_BOOLEAN value of False specifies that the fee event is not created.
When payments are posted, BRM uses the customer segment ID to determine if a
payment fee is charged.

You can also use the PIN_RESULT_PASS and PIN_RESULT_FAIL return values in
PCM_OP_PYMT_POL_APPLY_FEE to configure whether payment fees are applied.

Storing Additional Information with Payment Fees

You can store additional information for payment fees by extending the
/event/billing/fee/failed_payment storable class. Use the PIN_FLD_FAILED_
PAYMENT_FEE field inside the PIN_FLD_EXTENDED_INFO substruct. This enables
you to record any additional criteria you defined to create the payment fee.

You can then use the PIN_FLD_REASON_ID field in the input flist to configure fees
based on this value of the PIN_FLD_FAILED_PAYMENT_FEE field. It contains the
reason for failure that was sent by the payment processor for failed credit card and
direct debit transactions.

You can then charge payment fees based on custom payment attributes such as
currency type:

1. Extend the /event/billing/fee/failed_payment storable class with the new
attributes by using Developer Center.

2. Customize the PCM_OP_PYMT_POL_APPLY_FEES policy opcode to pass the
value in the PIN_FLD_CHARGES array or the PIN_FLD_FAILED_PAYMENT_
FEE field in the PIN_FLD_EXTENDED_INFO substruct.

3. Use Pricing Center to create the rates for the new attribute values.

See "Configuring Payment Fees".

7-10 BRM Configuring and Collecting Payments

8

Configuring Payment Incentives

This chapter provides an overview of how payment incentives are handled in your
Oracle Communications Billing and Revenue Management (BRM) system. It includes:

= A summary of the payment incentive functionality.

= Anoverview of how BRM processes payment incentives.

» Information on how to enable BRM for payment incentives, create payment
incentive products, and manually reverse a payment incentive.

For information on customizing payment incentives, see "Customizing Payment

Incentives".

For background information on payments, see "About Payments".

About Payment Incentives

A payment incentive is a special compensation for customers who pay their bills early
and in full. Payment incentives can take the form of free gifts, certificates, free minutes,
and so forth. In typical implementations, they reward customers by reducing the bill
amount or adding resource bonuses to their accounts. Payment incentives can include
currency resources such as monetary credit or non-currency resources such as free
minutes. For example, you can award 20 free minutes or provide a 5% reduction in the
monthly bill amount. In addition, you can define attributes that govern whether a
payment incentive is granted. These attributes specify the types of customers that
qualify, the payment methods that qualify, and so forth.

BRM determines an account’s basic eligibility for a payment incentive at payment time
but applies the payment incentive during billing, as shown in Figure 8-1:

Figure 8—1 Payment Incentive Time Line

Billing cycle

AN

Billing time,
Customer pays payment incentive
a bill in full granted

Payment due date;

-

«\ Infranet determines that
customer is eligible

L | .

%

1/1/04

[I I

204 2704 aiM7ing /04

Configuring Payment Incentives 8-1

About Payment Incentives

Here, the payment incentive is applied to the current bill, but you can apply it to the
next bill instead.

About Setting Up Payment Incentives

You create payment incentives in Pricing Center by defining a product and rate plan.
You can create payment incentives for the following product types:

= Subscription: Create a subscription product for payment incentives that you want
to apply on a recurring basis (for example, a reduction in the monthly bill).
Subscription products must be purchased by the customer.

= System: Create a system product for payment incentives that you want apply to
an entire class of accounts. For example, to reward all your customers who pay by
credit card, you create the payment incentive as a system discount.

A single payment incentive can impact multiple resources (for example, both free
minutes and the amount due for a cycle forward fee). Customers may be eligible for
multiple payment incentives depending on which products they purchase and
whether any payment incentive system products are valid for their account. For more
information on creating products and rate plans, see Pricing Center Help.

BRM calculates payment incentives through real-time rating based on attributes you
define in the Pricing Center rate plan selector. By default, BRM works with three
attributes when determining the payment incentive: customer segment, payment
channel, and payment method. To expand the attributes available through the rate
plan selector, you customize the PCM_OP_PYMT_POL_GRANT_INCENTIVE policy
opcode such that the flist includes extra field types or provides additional filtering
logic. You also extend the /event/billing/incentive storable class to include the added
fields. After you perform this customization, you can create payment incentive rate
plans that enable BRM to consider the additional attributes.

In addition to creating payment incentives, you must enable payment incentives in
BRM. To perform this task, you modify the /config/business_params storable object.

For more information on performing these tasks, see the following:
= Enabling BRM for Payment Incentives
s Creating Payment Incentive Products

s Customizing Payment Incentives

About Payment Incentive Processing

BRM determines whether to apply a payment incentive when it allocates the payment
for the previous bill. BRM makes this decision by verifying:

s Account eligibility for payment incentives.
s Full payment before the bill due date.

If the account qualifies for a payment incentive by meeting both of these conditions,
BRM adds a trigger to the /billinfo object. This is known as provisioning the payment
incentive.

During the next billing run, BRM checks the /billinfo object for this trigger. If the
trigger is present, indicating that the payment incentive is provisioned, BRM passes
the payment incentive information to the rating opcodes to calculate the payment
incentive. Depending on how the payment incentive is set up, BRM performs one of
these actions:

8-2 BRM Configuring and Collecting Payments

About Payment Incentives

= If the payment incentive is a fee reduction, BRM subtracts the incentive amount
from the total currency amount.

s If the payment incentive is a resource grant such as free minutes, BRM reduces or
increases the total resource amount by the incentive amount, depending on the
conventions you use for non-currency resources.

In either case, the payment incentive is applied to the default balance group of the bill
unit associated with the bill.

During real-time rating, BRM bases its calculations on either the current bill total or
the last bill total, depending on how your pricing expert defined the product.

Note: The current bill total indicates the current bill amount. This
does not include the debits and credits from the previous bill.

In default implementations, payment incentives are granted after BRM processes all
billing time events including the application of taxes. Therefore, payment incentives
cannot be based on a pre-tax bill amount: only on the total after-tax amount. However,
you can customize the PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode to
consider all the /bill items on a before tax basis.

Figure 8-2 shows how BRM processes payment incentives:

Figure 8-2 BRM Payment Incentives Processing

Incentive
Provisioning Payment
Faymentizs allocated |—m BRM setsthe - Inrir?r?;:zﬁ;z in
pavrent incentive H T,
Hiaoer BRM database S
oo .
Incentive G rant
BRM determines Fayment
Marrral hilling run) whether payment | incentive is
OCCUrS incerntive is ™ recarded in BRM [BREM
provisioned and, if database database
20, grants it
Feal-time Rating —
Engine calculates
payment incentive

Payment incentives are granted only in the billing run for the account’s normal billing
cycle. BRM does not apply payment incentives for:

= On-demand billing runs.

Configuring Payment Incentives 8-3

Enabling BRM for Payment Incentives

= Bill-now billing runs.

If these types of billing runs occur during a billing cycle, BRM ignores any payment
incentives. Later, BRM applies the payment incentive during the next normal billing
run, provided there was an early payment within the normal billing cycle and the
account is eligible.

How Payment Reversals Affect Payment Incentives

The provisioning of payment incentives can be reversed under certain circumstances,
particularly ones that involve unconfirmed payments: those where a payment was
allocated before the credit card processor or automated clearing house (ACH) verified
funding. For example, a customer pays a bill early by personal bank check, and BRM
allocates an unconfirmed payment, consequently applying the incentive. Then, the
ACH notifies BRM that the bank account had insufficient funds, and the check failed.
In this case, BRM must reverse both the payment and the payment incentive provision.

The payment reversal itself triggers the reversal of the payment incentive provision. If
a payment is reversed, BRM reverses only those payment incentives that meet these
conditions:

s The payment incentive has been provisioned.

s The payment incentive has not yet been applied to the account during a billing
run.

If the payment incentive was already applied, you must perform the adjustment
manually. For information on streamlining manual reversals, see "Manually Reversing
a Payment Incentive".

Note: Unconfirmed payment processing requires a custom payment
Data Manager (DM) to post the payments immediately. The DM
requires an input flist of payments from BRM, and must return the
results to BRM in the output flist. For more information, see "About
Unconfirmed Payment Processing'".

Enabling BRM for Payment Incentives

By default, BRM does not process payment incentives. You can enable this feature by
modifying a field in the ar instance /config/business_params object created during
BRM installation. As part of payment allocation, payment reversal, and billing, BRM
reads this object, checking the payment incentive array to determine whether the PIN_
FLD_PARAM_VALUE field for this array is set to enable payment incentives.

You modify the /config/business_params object by using the pin_bus_params utility.
For information on this utility, see pin_bus_params.

To enable payment incentives:

1. Use the following command to create an editable XML file for the BusParamsAR
parameter class:

pin_bus_params -r BusParamsAR bus_params_AR.xml
This command creates the XML file named bus_params_AR.xml.out in your

working directory. If you do not want this file in your working directory, specify
the full path as part of the file name.

2. Search the XML file for following line:

8-4 BRM Configuring and Collecting Payments

Creating Payment Incentive Products

<PaymentIncentive>disabled</PaymentIncentive>

3. Change disabled to enabled.

Caution: BRM uses the XML in this file to overwrite the existing
/config/business_params object for the ar instance. If you delete or
modify any other parameters in the file, these changes affect the
associated aspects of BRM’s billing configuration.

4. Use the following command to load the change into the /config/business_params
object:

pin bus_params bus_params_AR.xml

You should execute this command from the BRM_Homel/sys/data/config directory,
which includes support files used by the utility. To execute it from a different
directory, see pin_bus_params.

5. Read the object with the testnap utility or the Object Browser to verify that all
fields are correct.

See "Using testnap" in BRM Developer’s Guide for general instructions on using
testnap. See "Reading Objects by Using Object Browser" in BRM Developer’s Guide
for information on how to use Object Browser.

6. Stop and restart the Connection Manager (CM). For more information, see
"Starting and Stopping the BRM System" in BRM System Administrator’s Guide.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG
parameter. For more information, see "pin_multidb" in the BRM System
Administrator’s Guide.

Creating Payment Incentive Products

You create payment incentives by defining products and rate plans. The rate plans you
set up for payment incentives are based on the fields defined in the
/event/billing/incentive event. You use these fields to create attribute combinations in
Pricing Center that BRM compares with the actual event to determine whether it
should rate the payment incentive and, if so, which rate to use.

Note: You should be familiar with real-time rating before you begin.
For detailed information on creating rates and pricing plans, see
Pricing Center Help and BRM Setting Up Pricing and Rating.

Defining a Payment Incentive

This example uses a rate plan selector to define payment incentives based on
combinations of two attributes: the payment method and customer segment:

s The payment incentive awards a 15% reduction on the total bill amount for all
customers in the “Platinum Subscriber” customer segment who pay by credit card.

= Italso awards a $10 reduction on the total bill amount plus 30 free minutes for
customers in the “Silver Subscriber” customer segment who pay by cash.

Configuring Payment Incentives 8-5

Creating Payment Incentive Products

This example includes a restriction for customers in the “Silver Subscriber” customer
segment. These customers do not qualify for a payment incentive unless their total bill
is over $100.

Note: A rate plan selector can only contain fields defined in the
payment incentive event. For example, you can apply a payment
incentive based on a customer segment, payment channel, or payment
method, or a combination of these attributes.

1. Start Pricing Center and begin creating a System product.

Note: This defines payment fees for all customer accounts. To define
fees only for certain accounts, create a Subscription product and
purchase the product for the account.

2. Apply the product at the account level and define the purchase and ownership
information.

3. In the General Product Info tab, type 1 in Priority.
4. Under Event Map, click Add.

a. In the Event column, select Payment Incentive Event.

b. Inthe Measured By column, select Current Bill Total.

c. In the Rate Plan Structure column, select Rate Plan Selector.
5. Set up arate plan for the 15% total bill reduction.

a. Under Rate Plan Selector, type 15% Reduction as the name for the payment
incentive.

b. Click Edit Plans and click New.
c. Define the Plan Details and Rate Plan Structure.

d. Define the Quantity Discount Bracket for the new rate as Based on: Rate
Dependent.

e. In the Balance Impacts tab, select US Dollars [840] as the Resource ID and
type —0.15 in Scaled Amount. Because the value for Scaled Amount is

negative, this results in a 15% reduction. (A positive number would result in a
fee.)

f. Click OK.

6. Set up a second rate plan for the $10 total bill reduction plus the 30 free minutes.
This reduction is applied only if the total for the current bill is over $100.

a. Under Rate Plan Selector, type $10 Reduction + 30 Minutes as the name for
the payment incentive.

b. Click Edit Plans and click New.
c. Define the Plan Details and Rate Plan Structure.

d. Define the Quantity Discount Bracket for the new rate as Based on: Rate
Dependent.

e. In the Balance Impacts tab, deselect Minimum and type 100 in the associated
entry box.

8-6 BRM Configuring and Collecting Payments

Customizing Payment Incentives

f. Select US Dollars [840] as the Resource ID and type —10 in Fixed Amount.

g. Add arow to the balance impacts table that sets Free Domestic Minutes as the
Resource ID and enter 30 in Fixed Amount.

h. Click OK.
Set up the rate plan selector.

a. Click ...+ in the first column, select Event, choose PIN_FLD_
INCENTIVE.PIN_FLD_PAY_TYPE from the attributes list, and click OK.

b. Click ...+ in the next column, select Event, choose PIN_FLD_
INCENTIVE.PIN_FLD_CUSTOMER_SEGMENT from the attributes list, and
click OK.

c. Click + in the row column to create a row for each of the two payment
method/customer segment combinations. The system product does not
provide incentives to any customers who do not meet one of these two criteria.

d. For the first row, type 10003 to define credit card as the payment method and
Platinum Subscriber to define the customer segment. Select the 15%
Reduction rate plan.

e. For the second row, type 10011 to define cash as the payment method and
Silver Subscriber to define the customer segment. Select the $10 Reduction +
30 Minutes rate plan.

f. Click OK and Apply.

Customizing Payment Incentives

You can configure BRM to grant payment incentives. See "Configuring Payment
Incentives".

To customize payment incentives, read the following:

To learn about the standard payment incentive opcodes, see "How Payment
Incentives Work".

To customize how payment incentives are triggered (for example, by date), use the
PCM_OP_PYMT_POL_PROVISION_INCENTIVE policy opcode. See
"Customizing How to Trigger Payment Incentives".

To customize how to grant payment incentives, use the PCM_OP_PYMT_POL_
GRANT_INCENTIVE policy opcode. See "Customizing How to Grant Payment
Incentives".

To manually reverse payment incentives, see "Manually Reversing a Payment
Incentive".

How Payment Incentives Work

Payment incentives are implemented by calling PCM_OP_PYMT_PROVISION_
INCENTIVE and PCM_OP_PYMT_GRANT_INCENTIVE.

PCM_OP_PYMT_PROVISION_INCENTIVE evaluates a payment to determine
whether a payment incentive should be provisioned and, if so, sets the payment
incentive trigger. If a payment incentive is triggered, the PCM_OP_PYMT_GRANT_
INCENTIVE performs the incentive.

For more information, see "How Payment Incentives Are Triggered" and "How
Payment Incentives Are Granted".

Configuring Payment Incentives 8-7

Customizing Payment Incentives

How Payment Incentives Are Triggered

PCM_OP_PYMT_PROVISION_INCENTIVE is called by PCM_OP_BILL_ITEM_
TRANSFER immediately after payment allocation, provided BRM is configured for
payment incentives.

PCM_OP_PYMT_PROVISION_INCENTIVE determines whether the payment
resulted in an early, in-full settlement of the last bill. If so, the current bill may be
eligible for a payment incentive and PCM_OP_PYMT_POL_PROVISION_INCENTIVE
creates a trigger for payment incentive processing to apply an incentive.

PCM_OP_PYMT_PROVISION_INCENTIVE performs the following functions:

1. It calls the PCM_OP_PYMT_POL_PROVISION_INCENTIVE policy opcode to
determine if the PIN_EFFECTIVE_T field or any other customizable field contains
a payment timestamp. See "Customizing How to Trigger Payment Incentives".

2. Itretrieves all of the bills and determines whether each of the bills is from the last
billing cycle or a prior cycle. PCM_OP_PYMT_PROVISION_INCENTIVE is only
concerned with the bills from the last billing cycles; none of the other bills qualify
for early incentives.

3. It reads the Due and Due Time in each /bill object. PCM_OP_PYMT_PROVISION_
INCENTIVE uses this information along with the timestamp in the PIN_FLD_
END_T field from the /event/billing/payment object or a timestamp from the
policy opcode to determine whether the payment for a given bill was allocated in
full and early. PCM_OP_PYMT_PROVISION_INCENTIVE must find the
following conditions:

s PIN_FLD_DUE must be 0, indicating that there are no more payments due for
the bill, and it was paid in full.

s The timestamp in PIN_FLD_END_T or the timestamp provided by the policy
opcode must be earlier than or the same as the one in PIN_FLD_DUE_T,
indicating that the payment was allocated before or at the same time as the
due time. BRM considers both of these conditions to be indications of an early
payment.

BRM always attempts to use whatever timestamp the policy opcode provides.
PCM_OP_PYMT_PROVISION_INCENTIVE only uses PIN_FLD_END_T if the
policy opcode does not return a timestamp or returns PIN_FLD_END_T instead of
some other timestamp.

4, If the payment meets these conditions, PCM_OP_PYMT_PROVISION_
INCENTIVE modifies the /billinfo object by setting the PIN_FLD_PAYMENT _
EVENT_OB]J to the POID of the payment event that resulted in early, in-full
payment. This acts as a trigger for granting the payment incentive during the
billing run.

5. It returns a list of /billinfo objects to which it added the payment incentive.

Customizing How to Trigger Payment Incentives

You can configure the PCM_OP_PYMT_POL_PROVISION_INCENTIVE policy
opcode to determine the payment date that should be considered when provisioning
incentives.

This policy opcode is called by PCM_OP_PYMT_PROVISION_INCENTIVE to provide
the payment date that will be used when determining whether the bill was paid on
time. It receives the POID of the /event/billing/payment object in the input flist and
reads this object to determine the payment date. If it finds a payment date it’s

8-8 BRM Configuring and Collecting Payments

Customizing Payment Incentives

configured to provide, it returns the date to PCM_OP_PYMT_PROVISION_
INCENTIVE, which performs the following tasks:

= Retrieves the bill for which the payment allocation was made.
= Determines if the bill was the last bill.

s Compares the timestamp provided by the policy opcode to the due date for the
payment.

By default, PCM_OP_PYMT_POL_PROVISION_INCENTIVE reads the PIN_FLD_
END_T field to obtain the timestamp.

You can customize PCM_OP_PYMT_POL_PROVISION_INCENTIVE to provide the
timestamp from a field other than PIN_FLD_END_T (for example, PIN_FLD_
EFFECTIVE_T) or to apply business logic that determines the payment date.

For example, you can customize this opcode to use the payment receipt date as the
payment timestamp for all credit card payments, and 3 days after the payment receipt
date for all check payments.

You can also create custom payment objects that use fields other than PIN_FLD_
EFFECTIVE_T or its equivalent. In this case, you would customize this policy opcode
to read these fields and provide them as output for PCM_OP_PYMT_PROVISION_
INCENTIVE.

How Payment Incentives Are Granted

PCM_OP_PYMT_GRANT_INCENTIVE is called by PCM_OP_BILL_MAKE_BILL as
part of the billing run. PCM_OP_PYMT_GRANT_INCENTIVE grants payment
incentives based on:

s Whether the account has purchased a payment incentive subscription product or
the account is eligible for a system product that includes a payment incentive.

= Whether the payment incentive trigger is set in the /billinfo object.
= Conditions specified in the rate plan.

= Any additional conditions specified in the PCM_OP_PYMT_POL_GRANT_
INCENTIVE policy opcode.

PCM_OP_PYMT_GRANT_INCENTIVE performs the following functions:

1. If the bill qualifies for a payment incentive, the opcode uses information from the
/account and /event/billing/payment objects to enrich the input flist with the
payment method, payment channel, and customer segment list. It also includes:

s The total for the current bill calculated during the current billing run.
s The total for the last bill, as determined from the /bill object for that bill.
By default, both these totals are after-tax amounts.

2, It calls the PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode to
determine whether it must enrich the input flist with any extra fields, and
validates the fields returned by the policy opcode. See "Customizing Payment
Incentives".

3. It creates an /item/incentive object and an /event/billing/incentive object for the
bill. In addition to the payment method, payment channel, and so forth, the
/event/billing/incentive object contains any fields specified in the PCM_OP_
PYMT_POL_GRANT_INCENTIVE policy opcode, provided the object has been
suitably extended.

Configuring Payment Incentives 8-9

Customizing Payment Incentives

4. It sends the event to the rating opcodes to calculate the payment incentive for each
bill. BRM applies the balance impact of the payment incentive event to the default
balance group of the bill unit.

5. It clears the payment incentive trigger in the PIN_FLD_PAYMENT_EVENT_OB]
field for the /billinfo objects of each affected bill, returning this field to a null
value.

Two other standard opcodes are used for payment incentives:

= PCM_OP_PYMT_PROVISION_INCENTIVE triggers payment incentives. See
"How Payment Incentives Are Triggered".

= PCM_OP_PYMT_REVERSE_INCENTIVE reverses payment incentives. See "How
Payment Incentives Are Reversed".

Customizing How to Grant Payment Incentives

By default, you can set up a rate plan so that BRM considers three attributes when
determining whether to apply a payment incentive:

= Customer segment
= Payment channel
= Payment method.

You can broaden this scope by customizing the PCM_OP_PYMT_POL_GRANT_
INCENTIVE policy opcode. When you customize this opcode, you must also extend
the /event/billing/incentive storable class.

You implement additional attributes that BRM can work with by customizing the
PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode to include a broader set
of account and service attributes (for example, service type, currency type, and so on).
PCM_OP_PYMT_POL_GRANT_INCENTIVE augments the input flist by adding
fields that PCM_OP_PYMT_GRANT_INCENTIVE includes when creating the
/event/billing/incentive object.

If you include additional attributes in PCM_OP_PYMT_POL_GRANT_INCENTIVE,
you must also extend the /event/billing/incentive object by adding these fields so that
the object records all the criteria considered for the payment incentive. The additional
fields are then included in the choices you can make when creating columns in the
Pricing Center rate plan selector. Therefore, you can use these additional fields as
criteria when defining attribute combinations that result in payment incentives.

The contents of the /event/billing/invoice object determine:

» The list of attributes that can be considered when setting up a rate plan. The
pricing expert associates combinations of these attributes with specific rate plans
when creating the payment incentive product.

s The information BRM compares with the attribute combinations defined for the
payment incentive product. If BRM finds a match, it rates the payment incentive
event according to the rate plan for the matching combination.

For example, to award a payment incentive to premium customers who pay in a
certain currency, you perform two tasks:

s Customize PCM_OP_PYMT_POL_GRANT_INCENTIVE by adding the PIN_FLD_
SERVICE_OB]J and PIN_FLD_CURRENCY fields to the input flist. The opcode
then includes the service type for the account and the currency type in the
information sent to the real-time rating opcodes. As a result, the rating opcodes are
able to consider the service type and currency along with the usual criteria when

8-10 BRM Configuring and Collecting Payments

Customizing Payment Incentives

determining whether to apply the incentive and when calculating the payment
incentive.

Extend the /event/billing/incentive class by adding the PIN_FLD_SERVICE_OB]
and PIN_FLD_CURRENCY fields. BRM then includes the service type and
currency in the event object each time it’s created. When you create columns in the
rate plan selector, you can select these two fields along with the default fields.

In addition to performing this type of customization, you can also customize the
PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode to do the following:

Provide special types of incentives such as free gifts. In this case, you modify the
opcode so that it calls the opcodes that process and control product purchases, for
example, PCM_OP_SUBSCRIPTION_PURCHASE_DEAL. Then, you create a deal
that includes an item product that awards the free gift.

Develop an aggregation application to count the number of subscription services
for an account and customize PCM_OP_PYMT_POL_GRANT_INCENTIVE to
include this information in the enriched flist.

Customize which customer segment to use. You can also customize this opcode to
select a different customer segment from PIN_FLD_CUSTOMER_SEGMENT _
LIST. By default, PCM_OP_PYMT_POL_GRANT_INCENTIVE selects the first
customer segment from the PIN_FLD_CUSTOMER_SEGMENT_LIST it gets from
PCM_OP_PYMT_GRANT_INCENTIVE. The customer segment returned by
PCM_OP_PYMT_POL_GRANT_INCENTIVE is the one that BRM uses as a
filtering attribute during payment incentive calculation.

How Payment Incentives Are Reversed

PCM_OP_PYMT_REVERSE_INCENTIVE reverses a payment incentive if it has not yet
been granted.

PCM_OP_PYMT_REVERSE_INCENTIVE is called by PCM_OP_BILL_REVERSE_
PAYMENT as part of payment reversal, provided BRM is configured for payment
incentives. It determines whether payment is being reversed for a bill that had a
payment incentive either provisioned or granted. If so, it either deactivates the
payment incentive trigger or, for payment incentives that have already been granted,
issues warnings and flags the reversal event so that you can initiate manual
processing.

PCM_OP_PYMT_REVERSE_INCENTIVE performs the following functions:

1.

It retrieves all bills affected by the reversal and searches for the associated /billinfo
objects.

For each /billinfo object, it checks the PIN_FLD_PAYMENT_EVENT_OB]J field to
determine whether a payment incentive has been provisioned but not yet granted.
If so, it resets this field, removing the POID of the payment event, which
automatically reverses the payment incentive.

If the PIN_FLD_PAYMENT_EVENT_OB]J field does not indicate that a payment

incentive has been provisioned, the opcode searches all /event/billing/incentive

objects for the account to determine whether any of them are associated with the
bill for which payment is being reversed.

The existence of this object for a given bill means that BRM already granted a
payment incentive for the bill. In this case, the opcode generates a warning in the
cm.pinlog file to indicate that manual adjustment is required.

Configuring Payment Incentives 8-11

Customizing Payment Incentives

Manually Reversing a Payment Incentive

When a payment is reversed, BRM reverses any payment incentive provisioning
triggers created at payment time, provided the payment was for the last bill. If
payment was reversed for an earlier bill, BRM has already applied the incentive and
does not reverse it. In this case, you must perform a manual account adjustment
through your CRM client application. This type of adjustment debits account resources
rather than crediting them.

BRM identifies payment incentives that need manual reversal in the cm.pinlog file,
which lists any cases where a payment incentive reversal failed. Searching the
cm.pinlog for this information can be time consuming. Therefore, you should consider
customizing this process in one of the following ways:

= Write your own reporting application that creates a list of all bills that meet the
following two conditions:

— The bill had a payment incentive that was not only provisioned, but also
granted.

— The payment reversal was for the bill before the one that had the payment
incentive granted.

Operations personnel can use this report to identify the adjustments they must
perform.

s Create your own custom opcode or customize the PCM_OP_ACT_POL_EVENT_
NOTIFY policy opcode so that it checks the reporting conditions discussed above
and alerts the CRM client application whenever both conditions are true. Then,
enable event notification and add the following information to your system’s
event notification list so that BRM calls PCM_OP_ACT_POL_EVENT_NOTIFY
(opcode number 301) each time an /event/billing/reversal/* event is generated
during payment reversal:

comment, if any
301 0 /event/billing/reversal/cc

301 0 /event/billing/reversal/check

301 0 /event/billing/reversal/dd

301 0 /event/billing/reversal/payorder
301 0 /event/billing/reversal/postalorder
301 0 /event/billing/reversal/transfer

For more information, see "Using Event Notification" in BRM Developer’s Guide.

In addition, you must customize your middleware and CRM applications to
process the notification correctly and issue appropriate messages to operations
personnel.

8-12 BRM Configuring and Collecting Payments

9

Configuring Payment Suspense Manager

This chapter provides an overview of Payment Suspense Manager and how your
Oracle Communications Billing and Revenue Management (BRM) system handles
suspended payments. It includes:

= A summary of the Payment Suspense Manager functionality.

= Anoverview of how BRM determines the status of a payment and how it
suspends payments.

» Information on how to set up BRM for Payment Suspense Manager.

Note: Payment Suspense Manager is available only for externally
initiated payments (for example, check payments that are sent from a
bank). It does not apply to BRM-initiated payments because the
problems that trigger payment suspense cannot occur in
BRM-initiated payments.

For background information on payments and payment processing, see "About
Payments". For information on the client applications that support Payment Suspense
Manager, see the following;:

» Payment Tool Help
= Payment Center Help

About Payment Suspense Manager

Payment Suspense Manager lets you more effectively handle payments that cannot be
posted immediately to customer accounts due to insufficient information, account
closure, or other criteria, and payments that were posted incorrectly to customer
accounts. It is a two-way process between the payment suspense account and a
customer account: you can apply suspended payments to customer accounts or
suspend payments that have been posted in customer accounts.

With Payment Suspense Manager, BRM automatically suspends payments that exhibit
certain problems instead of failing them or wrongly allocating them. It removes the
payment from the payment processing stream, postponing it for later investigation.
This enables the payment posting process to complete without requiring immediate
intervention to fix the errors.

Payment Suspense Manager also enables you to perform the following payment
processing tasks:

Configuring Payment Suspense Manager 9-1

About Payment Suspense Manager

= Manually suspend payments during payment processing. If you find a successful
payment in a payment batch that you suspect contains incorrect data or requires
special handling, you can manually suspend that payment so that it can be
carefully examined before it is posted to the account. Such payments can be
processed later, so you can avoid performing the allocations during normal
payment collection.

= Manually suspend payments after they have been posted to customer accounts. If
a payment was posted incorrectly, you can suspend it and then repost it to the
correct account: you no longer need to use Payment Tool or a custom CRM
application to reverse a posted payment from the BRM database and then
resubmit it as a new payment.

= Allocate suspended payments to one or more accounts. See "About Distributing
One Payment to Multiple Accounts".

= Partially allocate a suspended payment so that an amount remains in the payment
suspense account. If all or part of a suspended payment cannot be allocated, you
can remove the suspended payment or unallocated amount from the BRM system
so that you can recognize the unallocated revenue. This enables you to track the
unrealized revenue in your general ledger (G/L) system.

s Create financial reports on revenue that you have realized but that remains
unallocated. Suspended payments are assigned to their own G/L segment, so you
can develop reporting facilities that isolate suspended payments and quantify that
type of revenue.

= Allocate an account-level payment to multiple bill units of a customer’s account.
See "Allocating Account-Level Payments to Multiple Bill Units".

Payments can remain suspended indefinitely. This gives you the flexibility of fixing
and applying them to the correct accounts at any time. You can move payments back
and forth between customer accounts and the payment suspense account any number
of times.

Suspended Payment Processing Overview

The payment suspense process begins when you collect payments from a financial
institution: whether you use payment clerks to manually post payments from batch
files or use a third-party payment gateway to automatically post payments. It is a
three-step process:

1. Validate the payment.

Determines whether there is enough information for BRM to post the payment
successfully or if the payment should be suspended.

2. Submit the suspended payment to the payment suspense account.

Moves a suspended payment into the BRM payment suspense account, a special
account you set up to store all suspended payments. You can also suspend
payments that have already been validated and posted to customer accounts.

3. Correct the suspended payment.

Corrects the problem and moves the payment from the payment suspense account
to the accounts for which the payment should be made.

You use two client applications to work with suspended payments: Payment Tool and
Payment Center. As a general rule, you use Payment Tool to validate incoming
payments, manually suspend payments before they get posted to customer accounts,
and submit payments to the BRM database. You use Payment Center to manually

9-2 BRM Configuring and Collecting Payments

About Payment Suspense Manager

suspend payments that were incorrectly posted to customer accounts and to correct
suspended payments.

How you work with these applications depends on whether you receive the payment
as a batch file from the bank or use a payment gateway that has been directly
integrated with BRM payment services.

For details on the payment suspense process, see "About the Payment Suspension
Process". For more information on how to work with Payment Tool and the payment
gateway in relation to Payment Suspense Manager, see "About Payment Suspense
Manager and Client Applications".

About Setting Up Payment Suspense Manager

Payment Suspense Manager is an optional BRM feature. By default, this feature is
disabled. To enable payment suspense, you modify the appropriate /config/business_
params storable object. For more information, see "Enabling Payment Suspense in
BRM".

After you enable Payment Suspense Manager, you must perform the following tasks:
= Setup a BRM payment suspense account.

The payment suspense account is an ownerless account that stores each
suspended payment along with details such as credit card number, payment
channel, payment method, and so forth.

If, during validation, BRM determines that a payment should be suspended, it
performs one of these actions:

- If the payment was submitted through a third-party payment gateway, it
automatically moves the payment to the payment suspense account.

- If you are working with a payment in Payment Tool, it moves the payment to
the payment suspense account when your payment clerk submits the payment
batch to the BRM database.

- If you are working with Payment Center, it moves the payment to the
payment suspense account when your payment clerk performs an undo
allocation operation on a posted payment.

After a suspended payment is corrected, BRM moves the payment from the
payment suspense account to the correct customer account.

The payment suspense account is assigned to a unique G/L segment, and the
payments in the payment suspense account will only belong to this G/L segment:
not the G/L segment to which the customer accounts belong. Thus, while the
items in the payment suspense account are excluded from normal financial
reporting, billing, and collection, you can obtain information on the associated
revenue by generating financial reports for the G/L segment to which the
payment suspense account belongs.

For more information, see "Creating a Payment Suspense Account”.

Note: By default, the payment suspense account is included in the
billing run. For information on how to suspend billing on the payment
suspense account, see "Suspending and Resuming Billing of Closed
Accounts" in BRM Configuring and Running Billing.

= Define suspense reason codes and action owner codes.

Configuring Payment Suspense Manager 9-3

About Payment Suspense Manager

The reason codes and action owner codes provide information on why a payment
is suspended and who is assigned to correct the problem. To help payment clerks
understand the nature of a suspended payment, BRM displays descriptions
associated with reason codes and action owner codes in Payment Tool and
Payment Center. In addition, BRM uses reason codes and action owner codes to
populate selection lists in these tools.

Note: You can also create additional search fields in Payment Center
and additional batch types in Payment Tool. For information on
modifying payment options in these tools, see BRM Developer’s Guide.

For more information, see "Working with Suspense Reason Codes and Action
Owner Codes".

Define any custom suspense rules.

BRM validates a payment by determining whether the payment has certain
mandatory information such as the correct account number and bill number. You
can customize BRM such that it considers extra validation criteria like the
customer segment. You can also define the conditions under which you submit a
suspended payment to the payment suspense account (for example, a minimum
payment amount).

For more information, see "About Customizing Payment Suspense Manager".

About the Payment Suspension Process

Payment suspension begins when you collect payments from a financial institution:
whether you use payment clerks to manually post payments from batch files or you
use a third-party payment gateway to automatically post payments. When payments
are received, BRM validates payments based on the following criteria to determine
whether they should be suspended rather than posted immediately to customer
accounts:

The account number and bill number are missing or incorrect.

The account number and bill number are correct, but the bill belongs to a different
account.

The account is closed.

The payment attributes (for example, the customer segment or payment amount)
do not comply with your custom BRM validation rules.

The payment processing phase involves three steps: validation, suspension, and
correction. These steps are sequential and rely on the completion of the prior step.

1.

Validation: BRM determines whether a payment meets the validation criteria and
assigns a status of successful or “to be suspended.” BRM takes the following
actions:

» If the payment is successful, BRM posts the payment to the account.

= If the payment does not meet the validation criteria but has enough
information to qualify for suspense, BRM marks it as “to be suspended” and
forwards it to the opcodes responsible for suspending the payment.

BRM can suspend both successful and financially failed payments. For
example, a payment batch includes two check payments, each with an

9-4 BRM Configuring and Collecting Payments

About Payment Suspense Manager

incorrect account number. The payment information indicates that one check
has cleared and the other bounced.

Coming into BRM, the first payment would be considered successful and the
second, failed. When BRM validates the payments, both would be marked for
suspense because, regardless of the financial success or failure of the payment,
neither payment can be posted to the correct account.

» If the payment does not meet the validation criteria and also does not qualify
for suspense, BRM informs you that the payment cannot be posted. You must
create an exception batch to handle payments that fall into this category.

Payment validation is initiated automatically through the payment gateway or
manually by a payment clerk.

For details on payment validation, see "About Payment Validation".

Suspension: BRM moves the payment to the payment suspense account and
creates the associated events and items to store information on the suspended
payment.

There are two distinct situations in which payment suspense can occur: during
payment processing, when a payment batch is submitted to the BRM database,
and during account maintenance, after payments have been saved to the BRM
database.

s During payment processing, payment suspense is initiated automatically
through a third-party payment gateway or manually by using Payment Tool.
It is initiated in Payment Tool when you submit a payment batch that includes
payments marked for suspense. Such payments can be successful payments
that you manually mark for suspense because you suspect they have a
problem or you know they require manual allocation. For details on
suspending unposted payments, see "About Processing Suspended Payments
in a Payment Batch".

s During account maintenance, payment suspense is initiated manually by
using Payment Center. Payment suspense is initiated when you undo the
allocation of a payment from a customer account. For details on suspending
posted payments, see "About Processing Suspended Payments in the BRM
Database".

Correction: To correct a suspended payment, you use Payment Center to assign it
to a correct account number or bill number and apply it to the customer account.
You can also create a distribution list for a suspended payment, which enables you
to apply the payment to multiple accounts.

After payment analysts correct suspended payments and assign them to one or
more accounts, the payments must be validated again. If the payment validation is
successful, BRM posts the payments to the correct accounts. If the suspended
payment is allocated completely (an amount does not remain in suspense), BRM
reverses the suspended payment, removing it from the payment suspense account.
While performing this operation, BRM creates the required objects and events.

Note: Payment correction is always initiated by a payment clerk
through Payment Center; this step is never automatic. If, during
revalidation, the payment still meets the suspense criteria, BRM again
assigns a status of suspended and the payment is resubmitted to
suspense.

Configuring Payment Suspense Manager 9-5

About Payment Suspense Manager

For details on payment correction, see "About Payment Correction".

Figure 9-1 shows the steps involved in payment suspension and the basic operations
they perform:

Figure 9—1 Basic Operations and Steps Involved in Payment Suspension

Validate the payment

Check the payment to
determine if it is valid.

v

~——p Suspend the payment ——» Correct the payment

Find and comect

Move the payment to
the payment suspense

missing or emoneous
information.

account.

v

Assign a status of
successful, suspended,
or failed-suspended.

Suspended ar
failed-suspended

Create a payment event
and item,

Revalidate the payment
and resubmit.

Successiul

"

v

If the: payment is valid,
reverse the payment to
the payment suspense
account. Create the
reversal event and item.

Post the payment.
Create the event and
item for payment.

-

About Payment Validation

Before payments can be processed and posted by BRM, they must pass validation.
BRM uses the PIN_FLD_STATUS value to verify that the PCM_OP_PYMT_
VALIDATE_PAYMENT opcode and the PCM_OP_PYMT_POL_VALIDATE_
PAYMENT policy opcode successfully performed the payment validation and to
determine how to handle the payment. When Payment Suspense Manager is enabled,
BRM updates the PIN_FLD_STATUS value as follows:

= Successful payments that pass the validation process: Retains the original PIN_

FLD_STATUS of PIN_PYMT_SUCCESS. These payments are loaded into BRM and

allocated to the correct account according to the default BRM payment processing
behavior.

= Failed payments that pass the validation process: Retains the original PIN_FLD_

STATUS of PIN_PYMT_FAILED. These payments are loaded into BRM and posted

to the correct account using the default BRM payment processing behavior.

= Payments that fail the validation process: Updates PIN_FLD_STATUS to PIN_
PYMT_SUSPENSE, PIN_PYMT_FAILED_SUSPENSE (for failed payments that
must be suspended), or any other status in the suspense range. These payments
require further investigation, which you can perform immediately or defer by
submitting the payments to BRM. Upon submission, BRM passes all payments
marked for suspense to the PCM_OP_PYMT_POL_SUSPEND_PAYMENT policy
opcode, which is responsible for actually directing them to suspense.

9-6 BRM Configuring and Collecting Payments

About Payment Suspense Manager

For more information about payment status, see "About Payment Status".

For information on the suspense validation opcodes, see "Payment FM Standard
Opcodes" and "Payment FM Policy Opcodes" in BRM Developer’s Reference.

About Processing Suspended Payments in a Payment Batch
If you are using Payment Tool and a payment has been marked for suspense, you can:

= Investigate and correct the problem before submitting the payment batch to the
BRM database. If you do so, the payment is not actually suspended. Instead, it is
revalidated and posted to the correct account.

s Defer the investigation until later by submitting the payment to the database by
using Payment Tool. In this case, the payment is suspended, and BRM moves it to
the payment suspense account.

Note: If you use a payment gateway to process your payments, all
payments marked for suspense are automatically submitted to
suspense.

Whether you use Payment Tool or a payment gateway, BRM calls the PCM_OP_
PYMT_POL_SUSPEND_PAYMENT policy opcode to process any payment submitted
with the status PIN_PYMT_SUSPENSE. The opcode places a payment in suspense by
enriching the flist so that the payment can be directed to the payment suspense
account. It then calls the opcodes that post the payment to this account and create
objects to record the suspended payment. The event object contains all information
about the payment and its suspense, including the account number, bill number,
transaction ID, and any associated reason codes or action owner codes. This
information can be used to investigate why the payment failed the validation process
and who is responsible for resolving the problem.

About Processing Suspended Payments in the BRM Database

To suspend payments that are posted in customer accounts, you use Payment Center
to perform an Undo Allocation operation and to assign a reason for suspense. The
PCM_OP_PYMT_RECYCLE_PAYMENT opcode validates that the source account is
the account to which the payment was posted and that the destination account is the
payment suspense account. If both requirements are true, the payment is recycled to
suspense. See "About Recycling Payments to Suspense".

Payment Center sets the payment status to PIN_PYMT_RETURNED_SUSPENSE,
indicating that allocation has been undone for this payment at least once. BRM uses
this flag to identify the payment when you search for a suspended payment in
Payment Center. See "About Payment Status".

When you suspend a payment that was posted to a customer account, the entire
payment is reversed from the customer account. You cannot suspend a partial
payment amount. For example, a payment is allocated to two correct bills and one
incorrect bill. The entire payment allocation must be undone to correct the error, not
just the amount allocated to the incorrect bill. To undo the allocation, the payment is
suspended. Then, it can be reallocated to the correct account or bills.

Configuring Payment Suspense Manager 9-7

About Payment Suspense Manager

Note: If you do not want to undo the allocation and reallocate the
suspended payment to the same account, you can directly transfer the
correct amount to the correct item, bill, or account by performing an
adjustment. See "Transferring Amounts between Items" in BRM
Managing Accounts Receivable.

If you are resuspending a payment that was distributed to multiple accounts, you can
resuspend any number of the distributed payments simultaneously.

You use Payment Center to suspend payments that were posted to customer accounts.
For more information, see Payment Center Help.

You use Customer Center to perform adjustments, if necessary. For more information,
see Customer Center Help.

About Payment Correction

If a payment is suspended, you must correct the problem. If you are working with a
payment that was already submitted to the BRM database, you must also resubmit the
payment after correcting it.

You investigate and correct suspended payments by using Payment Center. After you
update a payment with the corrected information, the action you take depends on how
you opened the payment you are working on: from a current payment batch by using
Payment Tool or from the BRM database by using Payment Center. If the payment is in
a current payment batch in Payment Tool, you must return to Payment Tool to
revalidate it and submit the batch.

However, if the payment was already in the BRM database, Payment Center uses
PCM_OP_PYMT_RECYCLE_PAYMENT to validate and allocate the corrected
payment to the proper account. For valid payments, BRM searches for the original
payment details and moves the corrected payment from the payment suspense
account to the correct account by:

= Posting the payment to the correct account and allocating the payment to the
correct bill.

= Reversing the original suspended payment stored in the payment suspense
account.

If the corrected payment does not pass revalidation, BRM again suspends the payment
and assigns a new reason code to describe the problem.

In some cases, you may determine that a suspended payment cannot be fixed; for
example, the payment has stayed in suspense after repeated correction attempts.
Payments of this nature represent unrealized revenue. To track revenue and report for
these payment, you can remove them from suspense as unallocatable. When you do
this, BRM uses the PCM_OP_BILL_REVERSE_PAYMENT opcode to reverse the
payment in the payment suspense account and create the associated objects in the
database. BRM assigns a G/L ID of 112 for the reversal, placing the payment amount
in a special G/L bucket so that you can obtain information about how much
unallocatable revenue you have.

About Distributing One Payment to Multiple Accounts

You can divide a suspended payment into any number of distributed payments and
apply each one to a different customer account. Distributed payments are
subpayments that together comprise one larger suspended payment.

9-8 BRM Configuring and Collecting Payments

About Payment Suspense Manager

In the example shown in Figure 9-2, a $3,000 suspended payment is portioned into
three distributed payments of $1000, $450, and $650, each of which is posted to a
different customer account:

Figure 9-2 Distributing One Payment to Multiple Accounts

Payment 1 » Suspense Account

$3000

¥

Distributed Payment A = Account 1123
1000

Distributed Payment B ———————— Account 1456
w450

Distributed Payment © ——— Account 1783
B30

Each distributed payment can be allocated to specific bills, items, or both, in an
account, or left unallocated at the account level. When distributing a suspended
payment to a group of accounts, you can mix allocation levels so that some distributed
payments are allocated to accounts and some to bills. For underpayments, you can
also allocate the payment to specific items in an account.

For example, in the scenario shown in Figure 9-3, Suspended Payment 1 is distributed
from the suspense account to three accounts. As indicated by the shaded boxes below,
the distributed payment is left unallocated in Account A and allocated to specific bills
in Account B. The underpayment to Account C is allocated to specific items.

Figure 9-3 Allocation of Distributed Payments from a Suspended Payment

Suspended Payment 1: $3000

v

Distributed Distributed Distributed
Payment 1 Payment 2 Payment 3
$1000 $1000 $1000
Due Amount Due Amount Due Amount
$1000 $1000 $1200
Account A
$1000 Account B Account C
Bill 1
$600 BllT 1 ttem1 || ttem2z | item3
$100 $100 300
Bill 2)
$400 Bill 2 Item 1 Item 2 Itermn 3
200 5200 £100

Configuring Payment Suspense Manager

About Payment Suspense Manager

You can specify only one payment allocation level for each target account in the
distribution list. For example, a payment analyst cannot choose to apply a payment to
Account A and then try to allocate it to specific bills in Account A. Likewise, if a
payment analyst chooses bill-level allocation for Account B, he or she cannot later
apply that payment at the account level for Account B.

You use Payment Center to process distributed payments. The procedure involves:
1. Opening a suspended payment that requires distribution.

2. Creating a payment distribution list and identifying the customer account, bills, or
items to which each distributed payment belongs.

3. Submitting the payment distribution list to BRM.

If you discover that one or more distributed payments were allocated incorrectly, you
can return them to suspense and redistribute them at any time.

For more information about Payment Center and distributed payments, see
"Managing Suspended Payments".

About Allocating an Account-Level Payment to Multiple Bill Units

For accounts having multiple bill units, BRM distributes the account-level payment to
multiple bill units of the account. Payment Suspense Manager is used to suspend the
original payment and recycle it to distribute to multiple bill units. The distribution
process is similar to distributing a single suspense payment to multiple accounts. Each
distributed payment has the original payment’s transaction ID as a subtransaction ID.
For accounts with multiple bill units, BRM calls the PCM_OP_PYMT_COLLECT
opcode to allocate the payment.

For more information on how BRM allocates payment to multiple bill units, see
"Allocating Account-Level Payments to Multiple Bill Units".

Understanding Payment Recycling

The payment suspension functionality involves payment recycling, which is the method
by which BRM reuses payment information. BRM uses payment recycling when
distributing suspended payments to customer accounts, returning a payment to
suspense, and placing a posted payment into suspense.

Payment recycling is a transactional process consisting of two sequential operations:
1. Reversing a payment from a source account.
2. Applying a payment to a target account.

Payment recycling occurs each time you move a payment from a customer account to
the payment suspense account or from the payment suspense account to a customer
account. When a payment is recycled, the current payment is reversed, and all of the
payment information, except for the original payment date, is transferred to the new
recycled payment. For more information on payment reversal, see "How Payment
Reversals Work with Suspense and Recycling".

BRM uses the PIN_FLD_STATUS field of a payment to validate payments before they
are recycled and submitted to an account. The status code is returned by Payment
Center and can be configured. For a complete list of default payment status codes and
descriptions, see "About Payment Status".

Payments can be recycled any number of times; however, each recycled payment can
be traced back to only one original payment. BRM uses the payment'’s transaction ID
and subtransaction ID to track their origin and descendants. For more information, see

9-10 BRM Configuring and Collecting Payments

About Payment Suspense Manager

"About Original Payments" and "How BRM Tracks Suspended Payments".

When performing reversals during recycling, the PCM_OP_BILL_REVERSE opcode
must be called by PCM_OP_PYMT_RECYCLE_PAYMENT. This ensures that only
payments with a SUB_TRANS_ID value of NULL can be reversed directly.

For more information, see "How Payments Are Recycled to and from Suspense".

About Original Payments

An original payment is the first instance of a payment that is saved to BRM, either
through Payment Tool or a payment processor. Original payments can be saved
initially to the suspense account or to a customer account. The distinguishing
characteristic of an original payment is that it has never been recycled.

Because an original payment is the first instance of a payment, it does not have a
subtransaction ID, which is an ID used to trace a recycled payment back to its original
payment.

An original payment can be the ancestor of one or more recycled payments, but a
recycled payment can be traced back to only one original payment. Both suspended
payments and those posted in customer accounts can be original payments.

For more information on subtransaction IDs and how payments are tracked in BRM,
see "How BRM Tracks Suspended Payments".

About Payment Transfer Direction and Verification

When PCM_OP_PYMT_RECYCLE_PAYMENT receives a distribution list from
Payment Center, it uses the information in the CHARGES array of the input flist to
determine the direction of the payment transfer: from the payment suspense account
to a customer account, or to the payment suspense account from a customer account.
The CHARGES array contains two fields that determine the direction of the transfer:

= PIN_FLD_EVENT_OB]J: This field identifies the payment event. The event, in turn,
identifies the source account, the account that owns the payment. This is the
account from which the opcode transfers payments.

= PIN_FLD_ACCOUNT_OB]J: This field identifies the target account, the account to
which the opcode transfers payments.

If a payment is being moved from suspense, the PIN_FLD_EVENT_OB]J field
establishes the payment suspense account as the source account, and the PIN_FLD_
ACCOUNT_ORB]J field contains one or more POIDs of valid customer accounts. If a
payment is being moved to suspense, the PIN_FLD_EVENT_OB]J field establishes a
valid customer account as the source account, and the PIN_FLD_ACCOUNT_OB] field
contains the POID of the payment suspense account.

Before recycling a payment, BRM verifies that there are no conditions present that
prevent the transfer. These conditions include:

s The currency for the source account and all target accounts is different.
s The source and target accounts are both customer accounts.
= Multiple suspended payments are recycled in the same operation.

= You attempt to partially suspend a payment originally posted to a customer
account. You can only perform this action if you suspend the entire payment.

= You attempt to distribute a failed payment from the suspense account into a
customer account.

Configuring Payment Suspense Manager 9-11

About Payment Suspense Manager

= You attempt to return a distributed payment from a customer account to the
suspense account, but the suspended payment is also a failed payment. This can
happen when you distribute a suspended payment to customer accounts and,
afterward, the payment fails for financial reasons (for example, the bank will not
honor the check). In this case, you cannot return the distributed payment to
suspense.

About Recycling Payments from Suspense

When you post a suspended payment to a customer account, the following operations
occur if validation and transfer verification are successful:

1. The suspended payment is reversed (an /event/billing/reversal object is created).
2. The payment item for the suspended payment is closed.

3. Arecycled payment is posted in the customer account. The payment status reflects
that the payment was successfully recycled. See "About Payment Status".

4. Bills, bill items, or both in the account might be closed, depending on the payment
allocation level.

5. A new suspended payment is created for any unallocated amount (partially
allocated payments).

You do not have to fully allocate a suspended payment. If you partially allocate a
suspended payment and an amount remains in suspense, you can apply the remaining
amount to any account at any time.

About Recycling Payments to Suspense

When you suspend a payment that has been posted in a customer account, the
following operations occur if validation is successful:

1. The posted payment is reversed (an /event/billing/reversal object is created).

2. Any accounts receivable items (/item/payment) that were previously closed by the
payment are reopened.

3. Arecycled payment is created in the payment suspense account. The payment
status reflects that the payment was successfully recycled. See "About Payment
Status".

4. A new billable item for the recycled suspended payment is created.

How Payment Reversals Work with Suspense and Recycling

Payments are reversed in BRM for a variety of reasons, the most common of which is
that the funds for a payment are never actually deposited (for example, when a check
does not clear). Payments also can be reversed as part of the suspense process.

When a payment is reversed, two things happen:
= Any bills or items previously closed by the payment are reopened.
s The payment is deactivated in the BRM system.

There are three types of reversals in BRM. The first two, indirect reversal and reversal
to remove an unallocatable suspended payment, are related to the suspense process.
The third, direct reversal, is not.

= Reversals that occur indirectly during the recycling process

Indirect reversals occur when you transfer a suspended payment to a customer
account or from a customer account to suspense. With an indirect reversal, the

9-12 BRM Configuring and Collecting Payments

About Payment Suspense Manager

payment is removed from the source account and moved to the target account,
resulting in a complete reversal of the payment in the source account so that the
payment information can be transferred to the destination account as a recycled
payment. If the payment being recycled had been posted in a customer account,
any bills and items that were closed due to the payment are reopened.

Note: To reverse a batch of payments from the BRM system, use
Payment Tool. For more information, see "About Directly Reversing
Payments from BRM".

Indirect reversals are assigned a G/L ID of 113, placing the payment amount in a
special G/L bucket so that you can keep a separate record of these reversals. For

more information on G/L IDs and reversals, see "Working with Suspense Reason
Codes and Action Owner Codes".

For more information about reversals due to recycling, see "Understanding
Payment Recycling".

Reversals that occur when you remove a payment as unallocatable

If a suspended payment cannot be fixed but you want to track revenue for these
payments and get reports on how much unallocatable revenue you have, you can
remove them from suspense as unallocatable. When you do this, BRM reverses the
payment in the payment suspense account and assigns it to a special G/L ID
bucket. These reversals are rare in BRM. Even though they are part of suspense,
they occur outside of the recycling process.

For more information about removing payments as unallocatable, see "About
Removing Unallocatable Payments from Suspense".

Reversals that you perform directly by using Payment Tool or a third-party
application

Direct reversals occur when you use Payment Tool or a third-party application to
reverse a payment that was recorded in the BRM database but never actually
deposited. Direct reversals are the most frequent type of reversal in BRM, and they
occur outside of the suspense and recycling processes.

Direct reversals reverse an active payment completely and reopen any bills and
items so the payment can be made again. Unlike reversals that occur during
recycling, direct reversals are not initiated by the creation of a new recycled
payment.

For more information about direct reversals, see "About Directly Reversing
Payments from BRM".

How BRM Tracks Suspended Payments

All payments and payment reversals contain a transaction ID (TRANS_ID field),
which is a unique identifier that enables you to track each payment and reversal in
BRM:

For payments, the transaction ID identifies the payment transaction from the
third-party payment processor. If a payment is submitted to BRM without a
transaction ID, one is assigned to it.

For reversals, the transaction ID is generated by BRM.

Configuring Payment Suspense Manager 9-13

About Payment Suspense Manager

In addition to having a transaction ID, payments and reversals have another ID that is
used to track all actions performed on a specific payment: a subtransaction ID (SUB_
TRANS_ID field) for payments, and a paytransaction ID (PAYMENT_TRANS_ID field)
for reversals. These ID values are used to find all payments and reversals that occur
due to the recycling of an original payment.

s The SUB_TRANS_ID value of an original (never-recycled) payment is NULL.

s The SUB_TRANS_ID value of a recycled payment is equal to the transaction ID of
its original payment.

s The PAYMENT_TRANS_ID value of a payment reversal is equal to the transaction
ID of the payment it reversed.

In the example shown in Figure 9—4, a $3000 payment is suspended when it first
arrives in BRM so that it can be posted to individual accounts within the corporation.
The original payment is represented in white.

The payment analyst first partially distributes the original suspended payment to two
accounts. The first distributed payment is for $1000 to Account A and the second is for
$700 to Account B. The remaining $1300 is resuspended. The results of this operation
are represented in Phase 1.

Later, the payment analyst realizes that the distributed payment made to Account B
was erroneous and puts the $700 payment back into suspense, leaving $1000 in
Account A and $2000 in the suspense account. The results of this operation are
represented in Phase 2.

9-14 BRM Configuring and Collecting Payments

About Payment Suspense Manager

Figure 9-4 Suspended Payment Distribution Example

Phase 1

You distribute part of the original
suspended paymeant o two
customer accounts, resulting in
Distributed Payment A and
Distributed Payment B. The
remainder stays in suspense.

Distributed Payment A
H1000
TRANS_ID: pA
SUB TRANS_ID: s1

Phase 2

You decide to resuspend
Distributed Payment B. BRM
reverses the payment fromthe
customer account and recycles
it back into suspense.

Payment Suspense
Account

Suspended Payment 1

— original payment —

$3000
TRANS_ID: s1
SUB_TRANS_ID: NULL

k

Distributed Payment B
Reversal 1 700
§3000 TRANS_ID: pB
TRANS_ID: r SUB_TRANS_ID: s1

PAY_TRANS_ID: s1

Suspended Payment 2

%1300
TRANS _ID: 52
SUB_TRANS ID: =1

Reversal 3 Reversal 2
$1300 5700
TRANS ID:r3 TRANS_ID: r2

PAY TRANS ID: s2 PAY_TRANS ID: pB

L

Suspended Payment 3

52000
TRANS_ID: 53
SUB_TRANS_ID: s1

In this figure, all payments except the original payment are recycled payments. Notice

that:

= Both distributed payments have the same subtransaction IDs (s1). The SUB_

TRANS_ID value is the same as the TRANS_ID value of the original payment.

= All of the recycled payments have SUB_TRANS_ID values that match the original
payment’s TRANS_ID values.

= Each reversal has a PAYMENT_TRANS_ID value that is equal to the TRANS_ID
value of the payment it reversed.

When an original suspended payment is applied to a customer account, the following

operations occur:

1. The suspended payment is reversed, and an /event/billing/reversal object is
created. The reversal object’s PAYMENT_TRANS_ID value is equal to the TRANS_
ID value of the suspended payment.

2. A new payment (event/billing/payment/pay_type object) is applied to the
customer account and contains the following information:

s The original suspended payment’s details, including a value for any amount
remaining in suspense.

Configuring Payment Suspense Manager

9-15

About Payment Suspense Manager

= A SUB_TRANS_ID value that is equal to the suspended payment’s TRANS_ID
value.

3. If an amount remains in suspense, a new suspended payment is created for that
amount; the original payment is not adjusted with a new amount. Instead, the new
suspended payment receives a SUB_TRANS_ID value that is equal to the original
payment’s TRANS_ID value.

Likewise, when a suspended payment is partially allocated to one or more
accounts, and then an allocated payment is resuspended, the current suspended
payment that was partially allocated is reversed and a new suspended payment
containing the new amount is created.

Note: An original payment does not have to be a suspended
payment. For example, if a payment was posted successfully to a
customer account when it was received by BRM, it is an original
payment. If it is later suspended and then reposted to customer
accounts, both the suspended payment and the posted payment will
have SUB_TRANS_ID values that match the TRANS_ID value of the
original successful payment as shown in Figure 9-5:

Figure 9-5 SUB_TRANS_ID of a Suspended Payment

~original payment =
Posted Payment A

3000

TRAMNS_|ID: pA
SUB_TRANS_ID: NULL

Reversal 1
3000
TRANS ID: 1 3
PAY_TRANS_ID: pA Suspended Payment 1
F3000
TRANS _ID: 81
SUB_TRANS_ID: pA
Distributed Payment B Reversal 2 Distributed Payment C
$1000 £3000 2000
TRANS_ID: pB TRANS_ID: r2 TRAMS_ID: pC
SUB_TRANS_ID: p& PAY_TRANS_ID: s1 SUB_TRANS_ID: pA

Payment Suspense
Account

» Payment A and Suspended Paymant 1 are no longer activa.

How Direct Reversals and Refunds Relate to Suspense

BRM distinguishes between original payments, suspended payments, and recycled
payments when processing direct reversals and refunds. Depending on the state of the
payment, BRM may or may not be able to perform these activities.

9-16 BRM Configuring and Collecting Payments

About Payment Suspense Manager

About Directly Reversing Payments from BRM

Payment reversals are necessary when a payment is recorded in the BRM database but
the payment is not deposited. You create payment reversal batches by using Payment
Tool.

When you have Payment Suspense Manager enabled, payments may be reversed due
to payment recycling, which is different from directly reversing the payment from the
BRM database. Reversals that occur due to recycling happen automatically, and the
funds are transferred from a source account to a target account: they are not removed
completely from BRM.

The type of payment reversal discussed here is different from recycled payment
reversals. Here, you manually reverse a payment to remove it from the system. A
recycled payment reversal is a consequence of transferring a payment to a target
account.

The following restrictions apply when reversing payments from BRM:

= You cannot directly reverse recycled payments: you can reverse only original
(non-recycled) payments with a SUB_TRANS_ID value of NULL. Therefore, when
creating the payment reversal batch for a payment that entered the database as
suspended, you must identify the original suspended payment rather than the
active recycled payment. When the reversal batch is submitted to BRM, all active
recycled payments that are descended from the original payment will be internally
reversed.

= When directly reversing a payment, you can reverse only original payments. If
you reverse an original suspended payment, PCM_OP_BILL_REVERSE reverses
all of the active recycled payments that were distributed to customer accounts
from that payment. See "About Directly Reversing Payments from BRM".

BRM uses PCM_OP_BILL_REVERSE to process manual reversals and PCM_OP_
PYMT_RECYCLE_PAYMENT to process payment reversals during recycling. For more
information, see "How Payments Are Reversed".

For more information on direct reversals, see "How BRM Reverses Payments".

About Refunding Payments
You create payment refunds by using Customer Center or calling the PCM_OP_BILL_

ITEM_REFUND opcode. You can only refund a payment that has been posted in a
customer account; you cannot refund a suspended payment.

Before it refunds a payment, PCM_OP_BILL_ITEM_REFUND determines whether
Payment Suspense Manager is enabled. If so, it checks the account POID in the input
flist against the account POID in the /config/psm object to see whether the account is
the suspense account. If the two POIDs match, the opcode generates an error.

If you suspend a payment that has been refunded (the /item/refund object was closed),
the due amount on the account is increased by the same amount that was removed by
the refund adjustment.

For more information on payment refunds, see "About Refunds" in BRM Managing
Accounts Receivable.

About Removing Unallocatable Payments from Suspense

In some cases, you may determine that a suspended payment cannot be allocated, and
should be removed from the system. Payments of this nature represent unrealized

Configuring Payment Suspense Manager 9-17

About Payment Suspense Manager

revenue. To track revenue and report for these payments, you can remove them from
the payment suspense account as unallocatable.

Note: When removing an unallocatable payment from suspense,
only the active suspended payment is reversed. You cannot reverse
any distributed payments or payments that have been reversed due to
recycling. After you remove a payment as unallocatable, you cannot
return it to the BRM system.

You use Payment Center to remove unallocatable payments from suspense. BRM
assigns a G/L ID of 112 for the reversal, placing the payment amount in a special G/L
bucket so that you can obtain information about how much unallocatable revenue you
have. This amount was a credit that your company could not recognize toward a debit
on any account. It is removed from the system and tracked for accounting purposes.

You can remove an original or recycled payment from suspense as unallocatable.
Removing unallocatable payments from suspense does not generate any recycled
payments.

In some cases, you may must partially distribute a suspended payment and remove
the remaining suspended amount as unallocatable. If you then resuspend one of the
distributed payments, BRM creates a new suspended payment for the distributed
payment's amount, and you can later remove this new amount as unallocatable if
necessary.

Note: If one or more distributed payments have been removed as
unallocatable, you cannot directly reverse the original payment from
the BRM database.

About Payment Suspense Manager and Client Applications

The payment suspense process is initiated in one of three ways:

s Through original payments, suspended payments, and Payment Tool when
payment analysts work with a payment batch.

s Through a payment gateway when it processes a payment file.

Note: For the full range of Payment Suspense Manager functionality
to work with a payment gateway, the payment gateway must be
directly integrated with BRM payment services.

s Through Payment Center when payment analysts work with payment batches that
contain suspended payments or after payments have been posted in customer
accounts.

There are two BRM client applications that are used in the payment suspense process:
Payment Tool and Payment Center. Payment Tool is used to determine whether any
payments should be suspended and Payment Center is used to investigate and correct
suspended payments. Depending on how you initiate the payment suspense process,
you use one or both of these applications.

= If a payment clerk loads payment batches into BRM, you use a combination of
Payment Tool and Payment Center.

9-18 BRM Configuring and Collecting Payments

About Payment Suspense Manager

s If the payment gateway loads payment batches into BRM, you use only Payment
Center.

s If payments are already posted to customer accounts, you use only Payment
Center.

How you use these client applications differs depending on how the payment process
is initiated.

Figure 9-6 shows how the payment suspense process works when you use Payment
Tool to load payments:

Figure 9-6 Payment Suspense Process Using Payment Tool

Payment Suspense

Payment Tool Center
Payment Tool —» Pavment Pa i Yes | payment
yment — | Submit to T, Faymer
batch o veldation [® suspense database now | comection |
Payment posted
Mo to corract
account

Correct before | V€8 | Payment
submitting * corraction

Payment sent to
No F“aiment Tool
for revalidation
Save payments and posting
as a .pmt file to
work on later |

When you receive externally initiated payment batches, you perform all validation
and suspense tasks by using Payment Tool and all correction tasks by using Payment
Center.

Use Payment Tool for the following tasks:
= Validate a batch of payments.

= Manually suspend a payment that passed validation but requires special handling.
Or, change the status of a manually suspended payment back to validated.

= Submit validated payments to BRM.

Use Payment Center for the following tasks:

» Investigate and correct suspended payments.

= Apply corrected payments to the appropriate account.

= Remove a payment from suspense if you cannot correct it within a reasonable
time.

Typically, when you use Payment Tool to process a batch of payments, you import the
batch and validate the payments. The results of validation show the status of payment,
indicating whether the payment was successful or suspended.

You can then do one of three things:

= Submit the batch to BRM, which posts all successful payments to the correct
accounts and posts any suspended payments to the payment suspense account. In
this case, you would later open Payment Center to investigate and correct the
suspended payments and resubmit the corrected payments to BRM.

Configuring Payment Suspense Manager 9-19

About Payment Suspense Manager

s Correct the suspended payments before submitting the batch. In this case, you
would immediately launch Payment Center from Payment Tool and correct the
payments. Then, you must return to Payment Tool to revalidate the payments and
submit the payment batch to BRM.

= Save the payment batch as a PMT file for later processing. In this case, you would
open the PMT file in Payment Tool and begin the validation process again.

When you use automated payment processing, like that provided by a payment
gateway, there is no need for payment personnel to handle a payment batch, validate
payments, or submit payments to BRM. These steps are all performed automatically
by the payment gateway working in concert with BRM.

Figure 9-7 shows how the payment suspense process works if you use a payment
gateway to process payments.

Figure 9-7 Payment Suspense Process Using Payment Gateway

BERM Payment Suspense Center
Fayment Fayment Payment i FPayment posted to
T[-l'laeyment UABWE —W yaiidation * suSpense * comection | correct account

In this case, the payment gateway directs BRM to perform the validation and suspense
tasks you would otherwise perform by using Payment Tool. After BRM determines
payment status, it submits the payments to the BRM database and moves any
suspended payments to the payment suspense account. Then you use Payment Center
to review the contents of the payment suspense account, investigate the suspended
payments, correct any problems, and submit the corrected payments to BRM.

When you suspend payments that were successfully submitted to customer accounts,
you use Payment Center to undo the allocation of the payments in the customer
accounts and save them to the payment suspense account. You can then investigate the
suspended payments, correct any problems, and resubmit them to the correct
accounts.

For detailed information on Payment Tool, see Payment Tool Help. For information on
Payment Center, see Payment Center Help.

Summary of Payment Suspension Guidelines and Restrictions

This section provides a review of guidelines and restrictions that apply to Payment
Suspense Manager.

= General Guidelines
= Suspended Payment Guidelines

» Distributed Payment Guidelines

General Guidelines
The following guidelines and restrictions apply to suspended payment processing.

s Only externally initiated payments can be suspended and managed by using
Payment Center.

s The currency of a recycled payment must match the currency of its original
payment.

9-20 BRM Configuring and Collecting Payments

About Payment Suspense Manager

Payments can be recycled any number of times, but a recycled payment can have
only one original payment.

You cannot change the properties of a payment after it has been directly reversed,
removed as unallocatable, or recycled completely.

You cannot directly reverse a suspended payment if any portion of the payment
has been removed from suspense as unallocatable.

You cannot distribute failed payments. These payments are stored in BRM as
/event/billing /payment/failed objects and have a status of PIN_PYMT_FAILED.
They are created to handle unconfirmed payment processing. For more
information, see "Handling Failed Unconfirmed Payments".

To directly reverse a payment outside of the recycling process, you must reverse
the original payment. If you reverse a suspended payment that was applied to one
or more customer accounts, all posted payments will be reversed before the
suspended payment is reversed.

Suspended Payment Guidelines
The following guidelines apply to suspended payments.

You can process only one suspended payment at a time; you cannot apply
multiple suspended payments to customer accounts in the same allocation.
Similarly, you cannot return two distributed payments that originated from
different suspended payments in the same operation.

If you change the properties (for example, the action owner) of a suspended
payment, it will be reversed and a new payment event is created to contain the
updated information.

You cannot change the action owner or any other properties of a suspended
payment after it has been completely distributed to customer accounts. However,
if you return any of the distributed payments to suspense, you can change the
properties of the resulting suspended payment.

You cannot refund a suspended payment; you can refund only a payment that has
been applied to a customer account. You create payment refunds by using
Customer Center or by calling PCM_OP_BILL_REFUND_ITEM.

If you suspend a payment that was previously refunded (the /item/refund object
was closed), the due amount on the account is increased by the same amount that
was removed by the refund adjustment. For more information on adjustments, see
"About Adjustments" in BRM Managing Accounts Receivable.

Distributed Payment Guidelines
The following guidelines apply to distributed payment processing.

If the entire list of distributed payments does not pass validation, it is rolled back
to suspense.

You cannot recycle a payment directly from one customer account to another
customer account; first you must suspend the payment and then apply it to the
target account.

When recycling a distributed payment to suspense, the entire payment is recycled;
you cannot recycle a partial payment amount.

If one or more distributed payments have been removed as unallocatable, you
cannot reverse the original payment from the BRM database.

Configuring Payment Suspense Manager 9-21

Configuring BRM for Payment Suspense Manager

Configuring BRM for Payment Suspense Manager
To set up BRM for Payment Suspense Manager, you complete three tasks:

Enabling Payment Suspense in BRM
Creating a Payment Suspense Account

Working with Suspense Reason Codes and Action Owner Codes

Enabling Payment Suspense in BRM

By default, Payment Suspense Manager is disabled in BRM. You can enable this
feature by modifying a field in the ar instance /config/business_params object created
during BRM installation.

With the feature enabled, BRM categorizes a payment as successful, suspended, or
failed whenever it validates a payment.

With this feature disabled, BRM determines only whether a payment is successful
or failed; it does not determine whether a payment should be suspended. Any
payment that would normally be suspended and moved to the payment suspense
account for investigation is, instead, considered a failed payment.

You modify the /config/business_params object using the pin_bus_params utility. For
information on this utility, see pin_bus_params.

To enable Payment Suspense Manager:

1.

Use the following command to create an editable XML file for the BusParamsAR
parameter class:

pin bus_params -r BusParamsAR bus_params_AR.xml

This command creates the XML file named bus_params_AR.xml.out in your
working directory. If you do not want this file in your working directory, specify
the full path as part of the file name.

Search the XML file for following line:

<PaymentSuspense>disabled</PaymentSuspense>

Change disabled to enabled.

Caution: BRM uses the XML in this file to overwrite the existing
/config/business_params object for the ar instance. If you delete or
modify any other parameters in the file, these changes affect the
associated aspects of BRM’s billing configuration.

Use the following command to load the change into the /config/business_params
object:

pin bus_params bus_params_AR.xml
You should execute this command from the BRM_Homel/sys/data/config directory,

which includes support files used by the utility. To execute it from a different
directory, see pin_bus_params.

Read the object with the testnap utility or Object Browser to verify that all fields
are correct.

9-22 BRM Configuring and Collecting Payments

Configuring BRM for Payment Suspense Manager

See "Using testnap" in BRM Developer’s Guide for general instructions on using
testnap. See "Reading Objects by Using Object Browser" in BRM Developer’s Guide
for Information on how to use Object Browser.

6. Stop and restart the Connection Manager (CM). For more information, see
"Starting and Stopping the BRM System" in BRM System Administrator’s Guide.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG
parameter. For more information, see "pin_multidb" in the BRM System
Administrator’s Guide.

Creating a Payment Suspense Account

When BRM determines that a payment should be suspended, it stores the suspended
payment and all information available for the payment in the payment suspense
account.

By default, BRM supports only one payment suspense account. For more information
about supporting multiple payment suspense accounts, see "Customizing Payment
Guidance to Suspense”. You create payment suspense accounts by using Customer
Center and base them on the default customer service representative (CSR) plan.

To create payment suspense accounts:

1. Start Customer Center and choose File - New - Account Type (Business or
Consumer) to activate the Account Creation wizard.

2. On the Contact page, create a suspense account. Enter the First Name with prefix
payment_value and the Last Name with prefix suspense_value, where value is any
string to distinguish a payment suspense account. The value can be same or
different for payment and suspense. This information is not case sensitive.

For example, payment_USD suspense_USD or payment_USD suspense_
country.

3. On the Plan page, select the CSR plan for your BRM system.

Important: The CSR plan you select must comply with these rules:

s The admin_client service should have been used when setting up
the plan.

» There can be absolutely no deals or charges attached to the plan.

4. On the Payment page, select Undefined for Payment Method.
5. For all other required fields in the Account Creation wizard, select the defaults.
6. Click Finish to create the account.

When BRM creates a payment suspense account, the PCM_OP_CUST_POL_PREP_
NAMEINFO policy opcode first prepares the contact information for validation and
then determines whether Payment Suspense Manager is enabled. If it is enabled and
the account being checked is the payment suspense account, this opcode retrieves the
POID of the /config/psm object if that object exists. BRM references the /config/psm
object to locate payment suspense accounts whenever it suspends a payment or you
correct a payment.

A payment suspense account POID is then passed to the PCM_OP_CUST_SET_
NAMEINFO opcode. This opcode stores the account POID in the /config/psm object.

Configuring Payment Suspense Manager 9-23

Configuring BRM for Payment Suspense Manager

Working with Suspense Reason Codes and Action Owner Codes

Suspense reason codes explain why a payment was moved into or out of suspense or
why an unallocatable payment is removed from the system. Action owner codes
indicate who is responsible for correcting the problem or taking other action on the
payment. For example, a reason code could indicate that an account number is wrong
or that a payment must be removed from suspense because it could not be allocated in
a reasonable amount of time. An action owner code could indicate that Sally Brown is
responsible for investigating the suspended payment.

Note: Action owner codes are typically used to assign payment
analysts to particular suspended payments and enable them to search
for all the payments they must correct. However, you can customize
action owner codes to provide different types of information such as
an action that you took regarding a suspended payment.

Reason codes and action owner codes are used in various ways by the different tools
you use to process payments:

= Payment Tool: Provides reason lists that payment personnel can choose from as
they suspend a payment.

= Payment Center: Provides action owner lists that payment personnel can choose
from when assigning a person to correct a payment or use as a criteria when
searching for a suspended payment. It also provides reason lists that payment
personnel choose from when correcting a payment, suspending a payment, or
removing an unallocatable payment from the system.

= Payment Gateway: Automatically assigns reasons to payments processed through
a payment gateway provided you implement a preprocessing application to map
reason codes in the payment file to reason codes you have created in BRM.

To ensure that BRM can assign the full range of reason codes and action owner codes
suitable for your business needs, you customize BRM by:

» Creating and loading a reasons.locale file that lists each reason code and action
owner code.

= Associating each reason code and action owner code with the appropriate
Payment Suspense Manager reason code domain.

About the Reasons.locale File

The reasons.locale file defines each reason code domain, the reason codes or action owner
codes that belong to the domain, and the event G/L ID. A reason code domain is a
unique identifier, or version, used to organize reason codes according to the activities
they are used for. For example, all reason codes that describe why you are removing an
unallocatable payment from suspense would be defined within the reason code
domain dedicated to that purpose. The domain and reason code information is used to
build the /strings object and the event G/L ID is used to build the /config/map_glid
object.

Payment suspense reason codes and action owner codes use the following domains:

= Payment suspense reason codes: “Reason codes-Payment Suspense
Management” version 14.

= Action owner codes: “Reason codes-Payment Suspense Management Action
Owner reason” version 15.

9-24 BRM Configuring and Collecting Payments

Configuring BRM for Payment Suspense Manager

= Reason codes for reversals due to recycling and removing unallocatable
payments from suspense: “Reason codes-Payment Suspense Management,
Reversal Reason” version 16.

The following ranges are reserved for default BRM reason codes related to payment
suspense and payment status:

= 0: Default reason code.

= 1to 1000: Reason codes for successful payments.

= 1001 to 2000: Reason codes for failed payments.

= 2001 to 3000: Reason codes for suspended payments.
= 3001 to 4000: Action owner codes.

= 4001 to 5000: Reason codes for reversals generated when a payment is moved from
a source account to a target account during recycling and for removing
unallocatable payments from suspense.

To add reason codes of your own, use values above 100,000.

You must assign G/L IDs for all reason codes you create for the following payment
processes:

= Removing unallocatable payments from suspense.

This enables BRM to map these payments to the G/L bucket used to store a record
of payments that were removed from suspense because they were not correctable.
You can then create reports and applications to help you track this form of
unrealized revenue. The G/L ID assigned to the /event/billing/reversal event,
which occurs when payments are removed from BRM as unallocatable, is 112.

= Recycling payments to or from suspense. You can use information in this bucket to
help determine how much revenue is recovered from suspense. This G/L bucket is
reserved for distributed payments, distributed payments returned to suspense,
and original payments to a customer account that are manually suspended, is 113.
G/LID bucket 113 stores both the recycled payment and its corresponding
payment reversal. Storing both the payment and reversal in the same G/L ID
bucket ensures the correct balance of debits to credits when generating reports.

Note: You should not assign G/L IDs for action owner codes, and
there is no need to assign G/L IDs for the reason codes for suspended
payments.

The following example shows a reasons.locale file segment defining a payment
suspense reason code domain. Some reason codes are BRM defaults, and some are
defined by a user (ID >= 100,000).

LOCALE = en_US
DOMAIN = "Reason Codes - Payment Suspense Management";

STR
ID = 2001;
VERSION = 14;

STRING = "Account No not found.";
HELPSTR = "Account Number not found in database"

STR
ID = 100,101;
VERSION = 14;

STRING = "Payment is too large.";

Configuring Payment Suspense Manager 9-25

Configuring BRM for Payment Suspense Manager

HELPSTR = "The amount of a cash payment is over 10,000."

END
DOMAIN = "Reason Codes - Payment Suspense Action Owner reason";
STR

ID = 102,001;

VERSION = 15;

STRING = "Alaya Baker";

HELPSTR = "Payments Processing department"
STR

ID = 102,002;

VERSION = 15;

STRING = "Micheal Orden";

HELPSTR = "Payments Processing department"

END
DOMAIN = "Reason Codes - Payment Suspense Management Reversal Reason";
STR

ID = 4999;

VERSION = 16;
STRING = "Unable to correct payment";
HELPSTR = "Unable to correct payment."
EVENT-GLID
"/event/billing/reversal" 112;
EVENT-GLID END
STR
ID = 110,000;
VERSION = 16;
STRING = "Payment recycled to suspense";
HELPSTR = "Payment moved from wrong customer account to payment suspense
account"
EVENT-GLID
"/event/billing/reversal" 113;
EVENT-GLID END
END
STR
ID = 110,001;
VERSION = 16;
STRING = "Distributed Payment allocation";
HELPSTR = "Suspended payment applied to multiple accounts"
EVENT-GLID "/event/billing/reversal" 113;
EVENT-GLID END
END

For more information on the reasons.locale file and assigning G/L IDs, see "Assigning
G/L IDs to Nonrated Events" in BRM Collecting General Ledger Data.

Loading Reason Codes into the BRM Database

To define reason codes and action owner codes for Payment Suspense Manager, you
edit the reasons.en_US sample file in the BRM_Home/sys/msgs/reasoncodes directory.
You then use the load_localized_strings utility to load the contents of the file into the
[strings and /config/map_glid objects.

When you run the load_localized_strings utility, use this command:

load_localized_strings reasons.locale

9-26 BRM Configuring and Collecting Payments

About Customizing Payment Suspense Manager

Note: If you are loading a localized version of this file, use the
correct file extension for your locale. For a list of file extensions, see
"Locale Names" in BRM Developer’s Guide.

Caution: The load_localized_strings utility overwrites the
/config/map_glid object. If you are updating this object, you cannot
load new G/L ID maps only. You must load complete sets of data each
time you run the load_localized_strings utility. This is also true when
using the /strings object, but only if you specify the -f parameter.
Otherwise, the load_localized_strings utility appends the new data to
the object.

For information on loading the reasons.locale file, see "Loading Localized or
Customized Strings" in BRM Developer’s Guide. For information on creating new

strings for this file, see "Creating New Strings and Customizing Existing Strings" in
BRM Developer’s Guide.

Setting Up Permissions for Payment Center

You use Permissioning Center to give payment analysts access to Payment Center and
to restrict them from performing certain activities.

1.

N o a 0 Dbd

Log in to Permissioning Center as the root user.
From the application list, select Payment Center.
Create one or more roles.

Set permissions for each role.

Assign each payment expert to one or more roles.
From the application list, select Customer Center.

Ensure that all payment analysts have Read Only or Read/Write access to
Customer Center.

Note: If you skip this step, some Payment Center functions may not
work correctly.

For detailed instructions on how to set permissions, see Permissioning Center Help.

About Customizing Payment Suspense Manager

You can customize Payment Suspense Manager in several ways, such as:

Applying suspended payments to one or more customer accounts
Returning one or more distributed payments to the suspense account
Suspending a payment originally posted to a customer account

Removing a payment from the suspense account as unallocatable

For an overview of how to perform these and other customizations, read these
sections:

Configuring Payment Suspense Manager 9-27

About Customizing Payment Suspense Manager

= How Payments Are Suspended during Payment Processing
s How Payments Are Recycled to and from Suspense

= How Recycled Payments Are Retrieved

= How Payments Are Reversed

s Customizing Payment Suspense Validation

s Customizing Payment Guidance to Suspense

s Customizing Payment Failure Reason Codes

= Customizing Payment Tool

= Handling Custom Payment Methods

How Payments Are Suspended during Payment Processing

During payment processing, the PCM_OP_PYMT_COLLECT opcode calls the PCM_
OP_PYMT_VALIDATE_PAYMENT opcode, to determine the status of the payment
records. For information about PCM_OP_PYMT_COLLECT, see "How BRM Collects
Payments".

When PCM_OP_PYMT_VALIDATE_PAYMENT receives a payment to validate, it
determines whether the payment should be suspended and prepares it for posting by
enriching the flist with any missing information.

It begins by evaluating the input flist to determine whether it contains the channel ID
for the payment. If not, it gets the channel ID from the /config/ach object and adds it to
the flist.

Then, PCM_OP_PYMT_VALIDATE_PAYMENT calls the PCM_OP_PYMT_POL_
VALIDATE_PAYMENT policy opcode to validate the payment and further enrich the
flist with any missing payment information.

After PCM_OP_PYMT_VALIDATE_PAYMENT receives the results from the PCM_
OP_PYMT_POL_VALIDATE_PAYMENT policy opcode, it returns the flist to PCM_
OP_PYMT_COLLECT for use when the payment is posted.

Flags are not used directly by PCM_OP_PYMT_VALIDATE_PAYMENT. They are
passed in from PCM_OP_PYMT_COLLECT for the PCM_OP_PYMT_SELECT_ITEMS
opcode. For example, Payment Tool can set the PCM_BILLFLG_DEFER _
ALLOCATION flag to indicate which payments should be left unallocated.

Note: When you submit payments by using Payment Tool, payments
that have a valid account number but a missing bill number are not
marked for suspense by default. To enable Payment Tool to return
such payments as suspended, see "Customizing Suspense Criteria for
Payment Tool".

How Payments Are Recycled to and from Suspense

9-28

The PCM_OP_PYMT_RECYCLE_PAYMENT opcode removes a payment from a
source account and posts it to a target account. It is called when one or more payments
in Payment Center are submitted to the BRM database.

Caution: It is not recommended to have more than one payment
suspense account in the /config/psm object.

BRM Configuring and Collecting Payments

About Customizing Payment Suspense Manager

When a payment is recycled from suspense to a customer account, the input flist
generated for the submission includes the corrected account number, corrected bill
number, and the transaction ID of the original payment. It can also contain other
corrected information if you customized BRM to include additional validation criteria.

When a transaction is opened, PCM_OP_PYMT_RECYCLE_PAYMENT handles all of
the activities required to move each payment in the CHARGES array from the source
account to the target account. The transaction ID is recorded in all the event objects
created when this opcode processes a payment.

In general, to recycle the payment, PCM_OP_PYMT_RECYCLE_PAYMENT uses the
source account referenced in the input flist’s PIN_FLD_EVENT_OB] field and the
destination account POID in the PIN_FLD_ACCOUNT_OB]J field to determine the
operation it will perform.

For example, if the account referenced in PIN_FLD_EVENT_OB] is the suspense
account and the account referenced in PIN_FLD_ACCOUNT_OB]J is a customer
account, the opcode distributes all or part of the suspended payment to the customer
account.

The source and target accounts, combined with the number of payments in the
CHARGES array, determine the operation that PCM_OP_PYMT_RECYCLE_
PAYMENT performs, as shown in the following table.

Recycled Payment Results

PCM_OP_PYMT_RECYCLE_PAYMENT performs the following operations when
recycling payments:

1. Opens a transaction.

2. Determines the direction of the payment recycling: to or from a payment suspense
account. The transfer direction is determined by the active payment’s account
POID and the target account POID.

s Determines if multiple distributed payments are being handled.
s Checks that the currency is the same for every charges element.

s Ifitis returning an entire distribution to suspense, calls PCM_OP_PYMT_
RECYCLED_PAYMENTS_SEARCH to retrieve the active suspended payment
information, including the amount remaining in the suspended payment after
recycling, and adds it to the CHARGES array.

3. Chooses a course of action based on the source account/target account
combination plus the information in the CHARGES array.

4. Calls PCM_OP_PYMT_COLLECT to apply the payments to the target accounts,
prepares the payment batch, and enriches the input flist of PCM_OP_PYMT_
COLLECT with the following information:

s The total charge amount.
= Total reversal amount, for posted payments that are being suspended.

s Total original payment amount, for payments that are being posted from a
payment suspense account to a customer account.

This opcode, in turn, calls PCM_OP_PYMT_VALIDATE_PAYMENT to validate the
information in the CHARGES array. If an invalid scenario exists, the payment is
guided to suspense.

Configuring Payment Suspense Manager 9-29

About Customizing Payment Suspense Manager

Note: For payments guided to suspense due to validation failures,
PCM_OP_PYMT_RECYCLE_PAYMENT rolls back the entire
transaction after PCM_OP_PYMT_COLLECT completes.

5. Prepares the reversal batch, creating new elements and setting a new reason code.

If PCM_OP_PYMT_RECYCLE_PAYMENT is being called for a distribution and
the total of the charges in the input flist does not equal the amount to be
distributed, the opcode determines whether the input flist specifies an amount to
be placed in suspense.

» If the input flist does not specify an amount to be placed in suspense, the
opcode posts the remaining amount to the suspense account.

» If the input flist specifies an amount to be placed in suspense, the opcode
generates an error.

6. Calls PCM_OP_PYMT_COLLECT to:
» Create the payment batch.

= Create a suspended payment if an amount remained in the suspended
payment after it was applied to one or more accounts.

= Update the /event/billing/payment/pay_type object with the SUB_TRANS_ID
value specified in the PIN_FLD_CHARGES array of the flist.

7. If the payment batch was successful, updates the input flist for the PCM_OP_
BILL_REVERSE opcode with the following information:

m The reason code for the reversal
s The PAYMENT_TRANS ID value
8. Calls PCM_OP_BILL_REVERSE to create the reversal batch.

PCM_OP_BILL_REVERSE updates the /event/billing/reversal/pay_type object with
the PAY_TRANS_ID, the POID of the payment suspense account, and the reversal
total.

If PCM_OP_PYMT_COLLECT fails or if any information is invalid, PCM_OP_
PYMT_RECYCLE_PAYMENT rolls back the entire transaction, leaving the
suspended payment in its original state.

9. Records the success or failure of the entire operation in the PIN_FLD_RESULTS
field of the output flist.

How Recycled Payments Are Retrieved

The PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH opcode retrieves payment
information such as the payment amount, transaction ID, subtransaction ID, account
and bill number, payment types, and payment status. If you specify that more
information be returned, this opcode can return additional payment information such
as the action owner and the date suspended.

This opcode is called by:

= Payment Center to provide additional information on the payments returned by a
search (for example, allocated amount and unallocated amount).

= PCM_OP_BILL_REVERSE when it reverses a payment that was posted to the
suspense account when it entered the BRM database. This opcode uses PCM_OP_

9-30 BRM Configuring and Collecting Payments

About Customizing Payment Suspense Manager

PYMT_RECYCLED_PAYMENTS_SEARCH to find all active payments associated
with the original suspended payment so that those payments also can be reversed.
For more information, see "How Payments Are Reversed".

s PCM_OP_PYMT_RECYCLE_PAYMENT when it returns an entire set of
distributed payments to the suspense account.

As input, this opcode receives the transaction ID of the payment it is to search for. It
also receives an optional PIN_FLD_RESULTS array, which, with the PCM_OP_FLAG_
READ_RESULT flag, determines the type of information returned by the opcode.

PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH performs the following
operations when searching for payments:

1. Verifies that the transaction ID in the PIN_FLD_TRANS_ID field is for an original
suspended payment. To do this, the opcode checks the PIN_FLD_SUB_TRANS_ID
field. If this field is not NULL, the payment is not an original payment, and the
opcode returns an error.

2, Searches for all payments whose subtransaction ID matches the PIN_FLD_
TRANS_ID field of the payment in the input flist.

3. Checks to see whether the PIN_FLD_RESULTS array in the input flist and the
PCM_OP_FLAG_READ_RESULT flag are present. The opcode returns payment
information based on these presence of the flag and array, as follows:

= If neither the flag nor the array is present, the opcode returns only the fields in
the output flist.

» If the flag is present, the opcode returns all the fields in the
/event/billing/payment object.

» If the flag is not present but the array is, the opcode returns the fields in
specified in the PIN_FLD_RESULTS array plus the payment information fields
normally included in the output flist.

= If the both the flag and array are present, the opcode ignores the array and
returns all the fields in the /event/billing/payment object.

PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH does not retrieve payment states
for payments that have been reversed and are no longer active. If the search results are
NULL, PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH searches for reversal
events related to a suspended payment. If a reversal event is found, the suspended
record is filtered and not returned.

How Payments Are Reversed

The PCM_OP_BILL_REVERSE opcode prepares information for PCM_OP_BILL_
REVERSE_PAYMENT to perform reversals. PCM_OP_BILL_REVERSE reverses
payments during the following payment suspense operations:

= A payment is recycled to or from suspense.
= A suspended payment is removed from BRM as unallocatable.

Payments can also be reversed directly from BRM by submitting a payment reversal
batch from Payment Tool. For information on how direct reversals are performed, see
"How BRM Reverses Payments".

Configuring Payment Suspense Manager 9-31

About Customizing Payment Suspense Manager

How Payments Are Reversed During Recycling

If PCM_OP_BILL_REVERSE is called from PCM_OP_PYMT_RECYCLE_PAYMENT,
the reversal is due to recycling, and PCM_OP_BILL_REVERSE performs the following
operations:

1.
2.

Assigns the reversal TRANS_ID value for each recycled payment.

Opens a transaction and checks the appropriate /config/business_params object to
verify that Payment Suspense Manager is enabled.

Calls PCM_OP_BILL_REVERSE_PAYMENT to perform the reversal and create the
associated objects in the database. For each /event/billing/reversal object created,
PIN_FLD_PAYMENT_TRANS_ID is set to the transaction ID of the recycled
payment. This opcode populates the reversal flist with each recycled payment’s
TRANS_ID value.

Populates the payment batch with the sum of the reversal flist.

If the reversal was performed as part of recycling multiple distributed payments
back into suspense, returns the recycled payments’ reversal information in the
PIN_FLD_MULTI_RESULTS array.

How Payments Are Removed As Unallocatable

PCM_OP_BILL_REVERSE performs the following operations to remove payments
from BRM as unallocatable:

1.
2

Assigns the reversal event a TRANS_ID value.

Opens a transaction and checks the appropriate /config/business_params object to
verify that Payment Suspense Manager is enabled.

Checks to see whether the following criteria are met:

= The payment is a suspended payment. To do so, it compares the account POID
in the flist with the account POID of the payment suspense account in the
/config/psm object.

s The payment is active.

s The value of the PIN_FLD_FLAGS field is set to PIN_REVERSE_FLAG _
REVERSE_AS_UNALLOCATED (1).

Calls PCM_OP_BILL_REVERSE_PAYMENT to reverse the payment in a payment
suspense account and create the associated objects in the database. For the
/event/billing/reversal object, PIN_FLD_PAYMENT_TRANS_ID is set to the
transaction ID of the suspended payment. This opcode populates the reversal flist
with the payment’s TRANS_ID value.

Populates the payment batch with the sum of the reversal flist.

Validates the reverse payment operation and creates the reversal batch event in the
database.

The result of the reversal is returned in the PIN_FLD_RESULTS field of PCM_OP_
BILL_REVERSE. The reversal will not be allowed if either of the following conditions
is true:

The payment is not a suspended payment.

The payment is not an active payment.

9-32 BRM Configuring and Collecting Payments

About Customizing Payment Suspense Manager

Customizing Payment Suspense Validation

The PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode validates payments
to determine whether they can be successfully posted or whether a failed,
unconfirmed payment needs reversal. If automatic write-off reversals are enabled, it
also determines whether BRM should perform a write-off reversal.

In default implementations, BRM considers two questions when determining whether
a payment should be suspended:

s Is the account number present and valid?
s Is the account closed?

By default, the bill number is not initially used to suspend payments. It is used only
when the account number is missing.

A payment is suspended in the following situations:

s The account is closed.

s The account number is missing and the bill number is missing.

s The account number and the bill number are invalid.

s The account number does not match the account number from the bill.
A payment is posted if the account is not closed and the following is true:

s The account number is present and valid. If the bill number is missing, the
payment is posted at the account level.

s The account number is missing but the bill number is present and valid. Such
payments are posted at the bill level.

To have Payment Tool mark these payments as suspended, see "Customizing Suspense
Criteria for Payment Tool".

You can broaden this scope by customizing the PCM_OP_PYMT_POL_VALIDATE_
PAYMENT policy opcode to perform validation using additional criteria (for example,
customer segment, payment amount, and so on). BRM uses these criteria to determine
whether the payment validation logic should mark a payment for suspense.

Note: If you include additional criteria in the PCM_OP_PYMT_POL_
VALIDATE_PAYMENT policy opcode that is not already part of the
objects created by payment processing, you must also extend these
objects by adding these fields so that the object records all the criteria
considered by payment validation.

If neither the bill number nor bill POID was submitted with the payment, you can
configure BRM to find the bill based on the due amount. See "Finding Bills by Due
Amount".

Customization Example: Suspending Large Payments

As an example, if you want a payment analyst to always examine suspiciously large
cash payments or cash payments that appear to arrive from the Internet, you can
customize BRM to suspend any payments that meet these conditions. If a cash
payment is suspiciously large, there may be a customer error or recording error that
must be investigated. Because the Internet is not a likely source of cash payments, you
may want to obtain extra confirmation on how this payment was made.

Configuring Payment Suspense Manager 9-33

About Customizing Payment Suspense Manager

This type of customization includes the following tasks:

= Modify the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to
include logic that checks the PIN_FLD_PAYMENT_TYPE field to determine if this
is a cash payment and also checks PIN_FLD_CHANNEL_ID to see whether the
payment was made over the Internet. If both conditions are met, have the opcode
set PIN_FLD_STATUS to PIN_PYMT_SUSPENSE.

= Also modify the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to
include logic that checks the PIN_FLD_AMOUNT field to see whether the
payment amount is greater than the amount you establish as the threshold for
suspiciously large payments (for example, $10,000). If this is a cash payment and
the payment amount exceeds the threshold, have the opcode set PIN_FLD_
STATUS to PIN_PYMT_SUSPENSE.

Customization Example: Threshold for Suspending Payments

You can customize the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode
to enforce business practices related to suspense. For example, if you find that having
payment analysts review suspended payments for very small amounts costs you more
than the payments are worth, you can customize BRM so that it does not move any
payment of less than a certain amount into the payment suspense account.

To create a suspense threshold, you customize the opcode to check the PIN_FLD_
AMOUNT field to see whether the payment amount is less than the threshold amount
(for example, $1). You check this condition for any payment whose status is set to PIN_
PYMT_SUSPENSE. For each payment that meets these conditions, you set the account
POID to a special account you set up for this type of unallocatable payment. You also
set PIN_FLD_STATUS to PIN_PYMT_SUCCESSFUL so that PCM_OP_PYMT_
COLLECT can post the payment.

Note: When you implement any of the customizations just
discussed, you modify the PCM_OP_PYMT_POL_VALIDATE_
PAYMENT policy opcode. This opcode validates only externally
initiated payments; it does not validate BRM-initiated payments.
Therefore, none of the customizations you implement through this
opcode affect BRM-initiated payments.

Customization Example: Finding Unconfirmed Payments

In the case of failed unconfirmed payment, if the payment processor is not able to send
a transaction ID with each payment, you can modify the PCM_OP_PYMT_POL_
VALIDATE_PAYMENT policy opcode to find the original unconfirmed payment by
using other payment properties that are sent from the payment gateway, such as the
original unconfirmed payment amount. When the original unconfirmed payment is
found, the item object to which the payment was applied can be loaded into the input
flist for the PCM_OP_PYMT_APPLY_FEES opcode.

Note: If you used failed payment properties to locate the payment,
you must also update the /event/billing/payment/failed object to
contain the same properties that you are using to locate the original
unconfirmed payment.

9-34 BRM Configuring and Collecting Payments

About Customizing Payment Suspense Manager

Customization Example: Error Handling

You can modify the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to
handle errors that occur because the original unconfirmed payment cannot be found
or the transaction IDs do not match.

Default Payment Validation Process

The PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode processes payments
in three phases:

1. Payment suspense phase: Receives a list of payments from PCM_OP_PYMT _
VALIDATE_PAYMENT and checks the /config/business_params object to
determine whether Payment Suspense Manager is enabled. If so, it checks the
payments to determine whether any payments must be suspended and updates
the PIN_FLD_STATUS field accordingly.

2. Failed unconfirmed payment phase: For all payments with a PIN_FLD_STATUS
in the failed range, uses the payment method value to determine whether a failed
payment has an associated unconfirmed successful payment or if it is a failed
confirmed payment.

The input flist contains the POID of the original payment item, the transaction ID,
and the amount of the original payment to properly handle unconfirmed failed
payments.

3. Write-off reversal phase: Checks the /config/business_params object to determine
whether automatic write-off reversals are enabled. If so, it determines whether the
payment is for an account, bill, or bill item that has been written off. If so, it sets
PIN_FLD_STATUS accordingly.

See "About Payment Status" for information on PIN_FLD_STATUS values and ranges.
Payment Suspense Phase

In this phase, the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode first
checks the PIN_FLD_STATUS field to determine whether the payment has a status in
the suspense range, indicating that the payment has already been marked for
suspense. In this case, the opcode passes the output flist and associated status back to
PCM_OP_PYMT_VALIDATE_PAYMENT. BRM will then use PCM_OP_PYMT_
COLLECT to direct the payment to the payment suspense account.

If the payment is not already marked for suspense, the PCM_OP_PYMT_POL_
VALIDATE_PAYMENT policy opcode does the following:

1. Validates the account number specified by the PIN_FLD_ACCOUNT_NO or PIN_
FLD_ACCOUNT_OB]J field in the input flist or searches for the corresponding
account POID.

2. Validates the bill number specified by the PIN_FLD_BILL_NO field in the input
flist and searches for the corresponding bill POID, /billinfo POID, and account
POID.

3. If neither a bill POID nor a bill number was submitted with the payment, BRM
uses the bill amount to find the bill.

If the account and bill numbers supplied in the input flist are both invalid or the
PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode cannot find the
account or bill POIDs (or bill amount), it marks the payment for suspense. It also
compares the account POID from the /bill object with the account POID found in
step 1. If they do not match, the opcode marks the payment for suspense.

Configuring Payment Suspense Manager 9-35

About Customizing Payment Suspense Manager

4. Checks the PIN_FLD_STATUS field in the /faccount object to determine whether
the account is closed. If the account is closed, the PCM_OP_PYMT_POL_
VALIDATE_PAYMENT policy opcode marks the payment for suspense.

5. Checks any custom validation criteria and marks the payment for suspense if
appropriate.

6. Writes the status of the payment in the PIN_FLD_STATUS field, and includes this
field in the output flist. If the payment must be suspended, it sets this field to one
of the values in the suspense range, as appropriate.

Note:

= When an /event/billing object is created for a suspended
payment, it stores the original reason code associated with a failed
payment that has been flagged for suspense. This ensures that the
reason initially associated with the failed payment is not lost if
BRM places the payment in suspense.

= When the /event/billing/payment object is created, it stores the
original account number provided for the payment being
suspended, the original bill number, and the original transaction
ID.

Failed Unconfirmed Payments Phase

In this phase, the opcode considers only payments whose status is marked as failed:
those whose PIN_FLD_STATUS value is in the financially failed range. These
payments are ones that the opcode was able to validate, but were marked by the
payment processor as failing for financial reasons. In default implementations, the
opcode requires the transaction ID and result of each payment to prepare the failed
unconfirmed payments for reversal.

If the failed payment is an unconfirmed payment, PCM_OP_PYMT_VALIDATE_
PAYMENT:

1. Searches the /event/billing/payment object for an unconfirmed payment with the
transaction ID passed in with the failed payment.

2. Does one of the following:

s If an unconfirmed payment is found, sets PIN_FLD_RESULT to PIN_PAY_
TYPE_SUCCESS.

» If the transaction ID of the unconfirmed payment is not found, it checks the
/config/business_params object to determine whether Payment Suspense
Manager is enabled.

If so, it sets PIN_FLD_STATUS to PIN_FLD_FAILED_SUSPENSE and BRM
posts the payment to the payment suspense account.

If not, it sets PIN_FLD_RESULT to PIN_FLD_PAYMENT_RESULT_FAIL, and
a reversal does not occur. The subsequent steps do not occur and manual
allocation is required.

3. Loads the following unconfirmed payment information from the
/event/billing/payment storable class into the PIN_FLD_FAILED_PAYMENT_FEE
substruct in the PIN_FLD_EXTENDED_INFO substruct of the output flist:

= Payment channel ID

9-36 BRM Configuring and Collecting Payments

About Customizing Payment Suspense Manager

= Payment method
s Transaction ID
s Original payment amount

= Customer segment

Note: For unconfirmed payments, the customer segment value is
also retrieved from PIN_FLIST _CUSTOMER_SEGMENT _LIST in the
input flist of this policy.

4. Passes the POID of the successful unconfirmed payment in the output flist to
PCM_OP_BILL_REVERSE_PAYMENT so it can be reversed.

The output flist sends the array of reversal events and tax events (if created) that were
passed in by the PCM_OP_AR_WRITEOFF_REVERSAL opcode.

Write-off Reversal Phase

In this phase, PCM_OP_PYMT_VALIDATE_PAYMENT considers only payments
whose status is marked as successful: those whose PIN_FLD_STATUS value is in the
successful range. The opcode determines which of these payments is for an account,
bill, or bill item that has been written off. It performs the following operations:

» Checks the /config/business_params object to determine if automatic write-off
reversal functionality for payment processing is enabled.

» If this is enabled, checks the /profile/writeoff object to verify that the write-off flag
is set for the account.

= If both checks are successful, sets the PIN_FLD_STATUS field in the output flist to
PIN_PYMT_WRITEOFF_SUCCESS.

Payment Validation Flags

Flags are not used directly by the PCM_OP_PYMT_POL_VALIDATE_PAYMENT
policy opcode. They are passed in from PCM_OP_PYMT_COLLECT for PCM_OP_
PYMT_SELECT_ITEMS. For example, Payment Tool can set the PCM_BILLFLG_
DEFER_ALLOCATION flag to indicate which payments should be left unallocated.

Customizing Payment Guidance to Suspense

The PCM_OP_PYMT_POL_SUSPEND_PAYMENT policy opcode enables you to
define custom rules for handling payments that are being guided into suspense. For
example, you can modify this policy opcode to track the number of times the same
payment is guided back to suspense after being applied to the wrong customer
account.

In addition, if your company processes distributed payments, you can implement
rules to distribute a payment directly to the proper accounts, without first saving the
payment to the suspense account. For example, by using the account number
associated with the original payment, the original payment amount, and the account
number associated with each subpayment amount, you can automatically divide the
payment into distributed payments and allocate them to the designated accounts.

For multiple suspense accounts, the PCM_OP_PYMNT_POL_SUSPEND_PAYMENT
policy opcode must be modified to select a payment suspense account that matches
the criteria specified while creating the account. Otherwise, the policy opcode selects a
payment suspense account that matches the login schema.

Configuring Payment Suspense Manager 9-37

About Customizing Payment Suspense Manager

Customizing Payment Failure Reason Codes

To customize payment failure reason codes, use the PCM_OP_PYMT_POL_CHARGE
policy opcode. This policy opcode provides the ability to map the online and offline
payment result to the payment status and the reason IDs defined in the /strings object.

In the output flist PIN_FLD_PAYMENT_REASONS array, the array of PIN_FLD_
REASONLID fields contains the failure reasons sent by the payment processor. You
can configure this policy opcode to apply fees for failed credit card and direct debit
transactions based on the reason for failure.

The input flist contains a results array for a payment batch, including reasons for
payment failures.

The output flist contains the payment method, transaction ID, and an array of reason
IDs for failed payments.

Customizing Payment Tool

The procedures in this section describe how to add a cash reversal batch to Payment
Tool and how to extend Payment Tool to automatically suspend payments that have a
missing bill number.

For more information on handling externally initiated payments by using Payment
Tool, see "Managing Externally Initiated Payments".

Adding a Cash Reversal Batch

Note: Before you begin, you should be familiar with the rules for
modifying the Payment Tool configuration object. See "Rules for
Modifying Payment and Reversal Fields".

You can add a cash reversal batch to Payment Tool to handle any cash payments that
were posted incorrectly and must be reversed from your BRM system. For example, if
the currency a customer used to make a payment was later found to be counterfeit,
you can remove the payment. This restores the customer’s previous account balance
and removes the payment from your company’s G/L system.

The /event/billing/reversal/cash storable class exists in the BRM database; therefore,
there is no need to create one. You only need to add the cash reversal entry to the
/config/paymenttool object.

Note: When you install BRM, a default /config/paymenttool object is
created from data in the init_objects.source file.

1. Use the PCM_OP_WRITE_FLDS opcode to add the cash reversal entry to the
/config/paymenttool class. Call the opcode using flag 32. For example:

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 13748 0

0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0

0 PIN_FLD_DESCR STR [0] "US_EN paymentTool pymnt type configuration
locale"

0 PIN_FLD_HOSTNAME STR [0] "-"

0 PIN_FLD_NAME STR [0] "PaymentTool payment Types: Default"

0 PIN_FLD_PROGRAM_NAME STR [0] "-"

0 PIN_FLD_VALUE STR [0] "

0 PIN_FLD_VERSION STR [0] ""

9-38 BRM Configuring and Collecting Payments

About Customizing Payment Suspense Manager

0 PIN_FLD_PAY_ TYPE ARRAY [10011] allocated 2, used 2
1 PIN_FLD_NAME STR [0] "Cash"
1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 4, used 4
2 PIN_FLD_BATCH_TYPE INT [0] 1
2 PIN_FLD_COLUMN_NAME STR [0] "Receipt Date"
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_EFFECTIVE_ T"
2 PIN_FLD_PURPOSE INT [0] O
1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [1] allocated 4, used 4
2 PIN_FLD_BATCH TYPE INT [0] 1
2 PIN_FLD_COLUMN_NAME STR [0] "Reason Code."
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_REASON_CODE"
2 PIN_FLD_PURPOSE INT [0] O
Note:

s The PIN_FLD_BATCH_TYPE value determines the batch type: 0
indicates a payment batch and 1 indicates a reversal batch. In this
example, PIN_FLD_BATCH_TYPE is set to 1 for reversal.

s The PIN_FLD_PURPOSE value determines the field type: 0
indicates the field is read-only and 1 indicates that data can be
entered into the field. In this example, the Receipt Date and
Reason Code. columns in the reversal batch are read-only. For
more information on entry values, see "Creating an Object
Definition for a New Payment or Reversal Event".

2. Stop and restart the CM. See "Starting and Stopping the BRM System" in BRM
System Administrator’s Guide.

All changes you make in /config/paymenttool are reflected in the Payment Tool Ul
when you restart BRM.

Customizing Suspense Criteria for Payment Tool
When you submit payments by using Payment Tool, payments that have a valid
account number and a missing bill number are not marked for suspense by default.

To enable Payment Tool to return such payments as suspended, customize the fm_
pymt_pol_validate_payment_bill function in the PCM_OP_PYMT_VALIDATE_
PAYMENT opcode. Use the &validation_result value to set the PIN_FLD_STATUS
value.

For more information on managing payments with Payment Tool, see "Managing
Externally Initiated Payments".

Handling Custom Payment Methods

If you create custom payment methods for your BRM system, you must customize
Payment Suspense Center to handle them. This overview procedure describes how to
create custom classes and fields and enable Payment Center to handle them.

For detailed information on creating custom classes and fields, see "Creating Client
Applications by Using Java PCM" and "Creating Custom Fields and Storable Classes"
in BRM Developer’s Guide. For information on Storable Class Editor, see Storable Class
Editor Help.

1. Complete the following tasks by using Storable Class Editor:

a. Create your storable classes and fields in the Java PCM package.

Configuring Payment Suspense Manager 9-39

Adding Multischema Support in Payment Processing

b. Create source files for your custom fields.

Note: Storable Class Editor creates a C header file called cust_flds.h,
a Java properties file called InfranetPropertiesAdditions.properties,
and a Java source file for each custom field.

In the directory where Storable Class Editor created the Java source files, compile
the source files:

javac -d . *.java

Package the new class files into a JAR file. For example:

jar cvf customfields.jar *.class

Copy the contents of the InfranetPropertiesAdditions.properties file and paste it
into the Payment Suspense Center Infranet.properties file. By default, this file is
located in:

C:\Program Files\Portal Software\PymtSuspCenter\PaymentCenter

Append the location of the JAR file to the PAYCTRCP environment variable path.
For example:

;.;C:\Program Files\Portal Software\PymtSuspCenter\customfields.jar;

Adding Multischema Support in Payment Processing

You can use Payment Center and Payment Tool in a multischema environment.

The multischema support for payment processing enables you to:

Create and submit a single payment batch containing payments made to customer
accounts residing in multiple schemas.

Create and submit a single reverse or refund payment batch containing payments
made to customer accounts residing in multiple schemas.

Move the suspended payments to the payment suspense account set up for the
connected schema.

Recycle the suspended payments to one or more customer accounts residing in
multiple schemas by using Payment Center. For example, if you are connected to
schema 1, you can use Payment Center to recycle payments from the payment
suspense account set up for schema 1 to customer accounts residing in different
schemas.

Important: The multischema support for payment processing is
applicable only for Oracle Data Manager (DM) and is not applicable
for Oracle IMDB Cache DM.

To add multischema support for payment processing;:

1.

2.

Set up a multischema system. See "Installing a Multischema System" in BRM
Installation Guide.

Create payment suspense accounts for each schema in your system. See "Creating
a Payment Suspense Account".

9-40 BRM Configuring and Collecting Payments

10

Configuring Top-Ups

This chapter describes how to implement the Oracle Communications Billing and
Revenue Management (BRM) top-up features.

Before reading this chapter, you should be familiar with the following topics:
= "About Managing Customers" in BRM Concepts
= "About Accounts Receivable" in BRM Managing Accounts Receivable

About Topping Up Accounts

The BRM top-up features enable your customers to top up: add currency and
non-currency resources to: balances in their own accounts or in other customer
accounts.

BRM supports two types of top-ups:

= Standard top-ups: Top-ups that customers make to their own accounts. See
"About Standard Top-Ups".

= Sponsored top-ups: Top-ups that are made from one customer’s account to
another customer’s account. See "About Sponsored Top-Ups".

About Standard Top-Ups

A standard top-up is a top-up that a customer makes to his or her own account. For
example, a customer can top up her account balance with a $50 payment from her
credit card.

BRM supports two types of standard top-ups:
= Manual standard top-ups

Manual standard top-ups are initiated by a customer service representative (CSR)
using a client application or by your customers using a self-care application. For
example, $100 can be added to an account balance by a CSR using Customer
Center or by a customer using Self-Care Manager.

Manual top-ups can occur at any time and can be performed on any account (no
special account configuration is required). They can be used to add resources to
credit balances or to debit balances. For example, a customer can add $50 to the
balance associated with his prepaid mobile phone service to extend the life of the
service, or he can use the top-up feature to lower the balance due on his next bill
by making an early, instant payment to his account. For more information, see
"Topping Up Accounts in Customer Center and Self-Care Manager".

s Automatic standard top-ups

Configuring Top-Ups 10-1

About Topping Up Accounts

Automatic standard top-ups are initiated by BRM, not by a CSR or a customer. They
occur when an account balance falls below a specified threshold amount. When
BRM rates a usage event and updates the account balance, it checks whether the
balance dropped below the threshold. If it did, BRM automatically tops up the
balance. For example, whenever a customer’s balance falls below $20, BRM can
charge her credit card $50 and credit the balance with that amount.

To receive automatic standard top-ups, an account must have one or more services
that are configured for top-ups. In addition, an automatic standard top-up
payment method, amount, and cap must be set for the account. For more
information, see "Implementing Automatic Standard Top-Ups".

Standard Top-Up Payment Methods

Customers can use the following payment methods for standard top-ups:

Credit card or direct debit (manual and automatic standard top-ups)

When a customer charges a top-up to her credit card or bank account, BRM
automatically contacts a payment service for authorization through an application
such as Paymentech. BRM then debits the credit card or bank account and tops up
the customer’s BRM account.

Voucher (manual standard top-ups only)

When a customer uses a voucher, such as a prepaid phone card, to top up his
account, the BRM API interacts with a voucher management system to validate
the voucher and payment amount. The voucher management system can be
Voucher Manager or a third-party voucher manager:

- For information about Voucher Manager, see "About Managing Voucher
Inventory" in BRM Telco Integration.

- To configure BRM to interact with a third-party voucher system, you must
customize the PCM_OP_PYMT_POL_VALID_VOUCHER policy opcode. See
"Customizing Voucher Validation" in BRM Telco Integration.

A voucher can be used to top up one or more resources in a specified balance
group (you cannot allocate a voucher’s resources to multiple balance groups). The
resources can include one currency resource and an unlimited number of
non-currency resources. Top-ups for currency resources are added to the existing
currency sub-balance, which maintains its original validity period. Top-ups for
non-currency resources are added to sub-balances according to their validity
period.

For example, suppose on February 20 you apply a voucher with $50 and 100 free
minutes to a balance group with a prepaid currency sub-balance of $10 that
expires on March 30 and a free-minutes sub-balance of 100 with a validity period
from February 1 to March 1. The balance group would now have:

— One currency sub-balance of $60 that expires on March 30.

— One free-minutes sub-balance of 100 with a validity period from February 1 to
March 1.

— One free-minutes sub-balance with a validity period from February 10 to the
date specified in Pricing Center.

10-2 BRM Configuring and Collecting Payments

About Topping Up Accounts

Note: Vouchers can be used for manual standard top-ups only. They
cannot be used for automatic standard top-ups because a voucher ID
and PIN must be manually entered when a voucher top-up is
performed.

About Sponsored Top-Ups

A sponsored top-up is a top-up that is performed by transferring resources from a
balance group in one account to a balance group in another account. For example, a
mother can top up her teenage son’s account with a $50 payment from her account.
Resources can be transferred from a debit balance to a credit balance or a debit
balance.

BRM supports two types of sponsored top-ups:
= Manual sponsored top-ups

Manual sponsored top-ups are initiated by a CSR using a custom client application or
by your customers using a custom self-care application. For example, $50 might be
transferred from a mother’s account to her son’s account. Like manual standard
top-ups, manual sponsored top-ups can occur at any time.

To receive manual sponsored top-ups, an account must be a member of a
sponsored top-up group. For more information, see "About Sponsored Top-Up
Groups" and "Implementing Manual Sponsored Top-Ups".

= Automatic sponsored top-ups

Automatic sponsored top-ups are initiated by the "pin_balance_transfer" utility at
intervals (such as daily, weekly, or monthly) and in amounts that you specify.

To receive automatic sponsored top-ups, an account must be a member of a
sponsored top-up group. In addition, an automatic sponsored top-up amount
must be specified for the group, and an automatic sponsored top-up frequency
must be specified for the member account. For more information, see "About
Sponsored Top-Up Groups" and "Implementing Automatic Sponsored Top-Ups".

About Sponsored Top-Up Groups

To top up other accounts, an account must own a sponsored top-up group
(/group/topup object). An account can own multiple sponsored top-up groups.

To receive top-ups from a group owner account, an account must be a member of one
of the owner’s sponsored top-up groups. To be a member of a sponsored top-up
group, an account must have a /ftopup object, and that object must be linked to the
appropriate /group/topup object.

Note: The PIN_FLD_GROUP_OB] field in a receiving account’s
/topup object specifies the /group/topup object with which the
receiving account is associated. If the value is NULL, the account is
not associated with a /group/topup object. In such cases, the account’s
/topup object is used only to enable the account to receive standard
top-ups.

An account can be a member of only one sponsored top-up group at a time.

Configuring Top-Ups 10-3

About Topping Up Accounts

Caution: An account should be either a sponsored top-up group
owner or member. It should not be both. If an account both owns
sponsored top-up groups and belongs to one or more sponsored
top-up groups, its accounts receivable (A /R) data may become
inaccurate.

About Member Status

All accounts that belong to a sponsored top-up group have one of the member statuses
shown in Table 10-1:

Table 10-1 Sponsored Top-Up Group Member Statuses

Status Description
Active Member account can receive top-ups from the group owner account.
Inactive Member account’s top-ups from the owner account are suspended, but

member cannot join another sponsored top-up group.

Closed Member account no longer receives top-ups from the group owner account.
Member can join another sponsored top-up group.

Only member accounts whose member status is active can receive sponsored top-ups.
For more information about member status, see these topics:

» Setting an Account’s Sponsored Top-Up Member Status and PIN
= Canceling Top-Ups

About member top-up PINs

Each member account in a sponsored top-up group can be assigned a top-up PIN
(personal identification number). A top-up PIN is required to authorize all manual
sponsored top-ups requested by the member.

For more information about top-up PINs, see "Setting an Account’s Sponsored Top-Up
Member Status and PIN".

About Sponsored Top-Up Credit Limits

Sponsored top-ups are subject to the following credit limits. When either credit limit is
reached, the account cannot make any more sponsored top-ups until the credit balance
is reduced.

s Credit limit of owner account’s paying balance group

This credit limit controls the amount of currency and non-currency debits that can
accumulate in the owner’s paying balance group.

s Credit limit of group resource

Each resource supported by a sponsored top-up group has a group top-up cap. The
cap specifies the maximum amount of the resource that the owner account can
transfer to its members during each of the owner account’s accounting cycles.

The cap applies to the sum of all top-ups associated with the group, not to an
individual member’s top-ups. For example, if a sponsored top-up group with
three members has a $90 cap for US dollars, the cap can be reached as follows:

— All three members receive $30.

— Member A receives $50, and member B receives $40.

10-4 BRM Configuring and Collecting Payments

Implementing Top-Ups in Custom Client Applications

— Member A receives $90.

To set this credit limit, see "Implementing Manual Sponsored Top-Ups".

Note: Member accounts do not have individual sponsored top-up
credit limits.

Sponsored Top-Up Limitations
Sponsored top-ups cannot be made between the following accounts:

= Accounts with different primary currencies
= Accounts in different database schemas in a BRM multischema system

s Accounts in different brands

About Top-Up Discount Incentives

You can offer discount incentives to customers whenever they top up an account
balance by a specified amount. For example, you can offer 60 free off-peak minutes for
every $100 top-up.

For more information, see "Offering Discount Incentives with Top-Ups".

Implementing Top-Ups in Custom Client Applications
To implement top-ups in your custom client application, see the following topics:
s Implementing Manual Standard Top-Ups
s Implementing Automatic Standard Top-Ups
= Implementing Manual Sponsored Top-Ups

» Implementing Automatic Sponsored Top-Ups

Note: By default, Customer Center and Self-Care Manager are
configured to perform manual standard top-ups. See "Topping Up
Accounts in Customer Center and Self-Care Manager".

Implementing Manual Standard Top-Ups

To implement the manual standard top-up feature, configure your custom client
application to accept the following top-up information and pass it in the input flist to
the PCM_OP_PYMT_TOPUP opcode:

= For voucher top-ups, pass the following information in the PIN_FLD_
VOUCHERS_INFO array:

— Voucher serial number

Voucher PIN number

Bill unit to top up

Balance group to top up

Service to top up

Configuring Top-Ups 10-5

Implementing Top-Ups in Custom Client Applications

Note: To apply the voucher top up to a service-level balance group, you
must pass the /service object POID in the PIN_FLD_SERVICE_OB]J
field of the PIN_FLD_VOUCHERS_INFO array.

For credit card top ups, pass the following information in the PIN_FLD_TOPUP_
INFO array:

- Bill unit to top up

— Balance group to top up

— Credit card number

— Credit card expiration date

— Credit card owner’s name and address information.

For direct debit top ups, pass the following information in the PIN_FLD_TOPUP_
INFO array:

- Bill unit to top up

- Balance group to top up
- Bank routing number

- Bank account number

— Direct debit owner’s name and address information.

For more information, see "How PCM_OP_PYMT_TOPUP Handles Manual Standard
Top-Ups".

Implementing Automatic Standard Top-Ups

To implement the automatic standard top-up feature:

1.

In the Pricing Center, set a credit floor and credit threshold for any plan that
contains deals whose service balances you want your customers to top up. For
example, to trigger an automatic standard top-up when an account balance falls
below $30, set the credit floor to -100 and the threshold to 70%.

For more information, see "About Credit Thresholds and Credit Floors" in BRM
Setting Up Pricing and Rating.

Configure your custom client application to accept the following top-up
information:

s Payment method

To specify the payment method for automatic standard top-ups, set the
appropriate value in the PIN_FLD_PAYINFO field in the PIN_FLD_TOPUP_
INFO array of the called opcode’s input flist (see step 3 for opcode names).

See "Standard Top-Up Payment Methods".
s Automatic top-up amount

To specify the payment amount of each automatic standard top-up, set the
appropriate value in the PIN_FLD_TOPUP_AMT field in the PIN_FLD_
TOPUP_INFO array of the called opcode’s input flist.

s Automatic top-up cap

10-6 BRM Configuring and Collecting Payments

Implementing Top-Ups in Custom Client Applications

3.

To specify the aggregate amount of automatic standard top-ups that the
account can receive during an accounting cycle, set the appropriate value in
the PIN_FLD_TOPUP_CAP field in the PIN_FLD_TOPUP_INFO array of the
called opcode’s input flist.

Bill unit to top up

To specify the bill unit (/billinfo object) that contains the balance to top up, set
the appropriate value in the PIN_FLD_BILLINFO field in the PIN_FLD_
TOPUP_INFO array of the called opcode’s input flist.

Pass the information to one of these opcodes:

PCM_OP_CUST_COMMIT_CUSTOMER when creating accounts
PCM_OP_CUST_UPDATE_CUSTOMER when modifying accounts

Note: Both of these opcodes call PCM_OP_CUST_SET_TOPUP,
which is a wrapper opcode that calls other standard opcodes to set up
or modify top-up information.

For more information, see "How BRM Sets Up Top-Up Information for an Account".

Implementing Manual Sponsored Top-Ups

To implement the manual sponsored top-up feature:

1.

Configure your custom client application to accept the following top-up
information:

The POID of the account that initiates the creation or modification of the
top-up configuration. Set this value in the level-one PIN_FLD_POID field of
the called opcode’s input flist (see step 2 for opcode names).

The POID of the account that will receive the top-ups (the member account).
Set this value in the PIN_FLD_ACCOUNT_OB] field in the PIN_FLD_
TOPUP_INFO array of the called opcode’s input flist.

The POID of the /topup object associated with the account that will receive the
top-ups. If the account does not have a /topup object, specify the POID type.
Set this value in the PIN_FLD_POID field in the PIN_FLD_TOPUP_INFO
array of the called opcode’s input flist.

Group to add member to

To specify the sponsored top-up group to add the member account to, set the
POID of the appropriate /group/topup object in the PIN_FLD_POID field in
the PIN_FLD_GROUP_TOPUP_INFO array of the called opcode’s input flist.

If the object does not exist, pass the POID type.

For information about how BRM searches for existing groups if the POID is
not specified, see "Finding Sponsored Top-Up Groups".

Group name

To specify the name of the sponsored top-up group, set the appropriate value
in the PIN_FLD_NAME field in the PIN_FLD_GROUP_TOPUP_INFO array of
the called opcode’s input flist.

If you do not specify a group name, the group will be named default. See
"Finding Sponsored Top-Up Groups".

Configuring Top-Ups 10-7

Implementing Top-Ups in Custom Client Applications

Group owner

To specify the sponsored top-up group owner account, set the POID of the
owner account in the PIN_FLD_PARENT field in the PIN_FLD_GROUP_
TOPUP_INFO array of the called opcode’s input flist.

Paying balance group

To specify the owner account’s balance group to transfer top-up resources
from, set the POID of the balance group in the PIN_FLD_BAL_GRP_OB]J field
in the PIN_FLD_GROUP_TOPUP_INFO array of the called opcode’s input
flist.

Resources to top up

To specify the resources to be topped up in the member account, set the IDs of
the appropriate currency and non-currency resources in the PIN_FLD_
RESOURCE_ID fields in the PIN_FLD_GROUP_TOPUP_LIMITS array of the
called opcode’s input flist.

Resource top-up cap

To specify the maximum amount of a resource that the owner can transfer to
its members during the owner’s accounting cycle, set the appropriate value in
the resource’s PIN_FLD_TOPUP_CAP field in the PIN_FLD_GROUP_
TOPUP_LIMITS array.

Important: This cap applies to the sum of all top-ups in the group,
not to an individual member’s top-ups. The cap should not exceed the
credit limit of the paying balance group. See "About Sponsored
Top-Up Credit Limits".

Receiving balance group

To specify the member account’s balance group to transfer sponsored top-ups
to, set the POID of the balance group in the member’s PIN_FLD_BAL_GRP_
OB]J field in the PIN_FLD_GROUP_TOPUP_MEMBERS array of the called
opcode’s input flist.

Top-up PIN

To specify the member’s sponsored top-up PIN, set the appropriate value in
the PIN_FLD_PIN field in the PIN_FLD_GROUP_TOPUP_MEMBERS array of
the called opcode’s input flist. See "About member top-up PINs".

Top-up status

To specify the member’s sponsored top-up status, set the appropriate value in
the PIN_FLD_STATUS field in the PIN_FLD_GROUP_TOPUP_MEMBERS
array of the called opcode’s input flist. See "About Member Status".

2. Pass the information to one of these opcodes:

PCM_OP_CUST_COMMIT_CUSTOMER when creating accounts
PCM_OP_CUST_UPDATE_CUSTOMER when modifying accounts

Note: Both of these opcodes call PCM_OP_CUST_SET_TOPUP,
which is a wrapper opcode that calls other standard opcodes to set up
or modify top-up information.

10-8 BRM Configuring and Collecting Payments

How BRM Sets Up Top-Up Information for an Account

For more information, see "How BRM Sets Up Top-Up Information for an Account".

Implementing Automatic Sponsored Top-Ups

To implement the automatic sponsored top-up feature:

1. Configure your custom client application to accept the following top-up
information:

= All top-up information listed in "Implementing Manual Sponsored Top-Ups".
= Automatic top-up amount

To specify the amount of a resource to transfer from the owner to the member
during each automatic sponsored top-up, set the appropriate value in the
resource’s PIN_FLD_TOPUP_AMT field in the PIN_FLD_GROUP_TOPUP_
LIMITS array.

This amount applies to every member in the group.
= Automatic top-up frequency

To specify the number of days in the member’s automatic sponsored top-up
cycle, set the appropriate value in the member’s PIN_FLD_TOPUP_
INTERVAL field in the PIN_FLD_GROUP_TOPUP_MEMBERS array of the
called opcode’s input flist (see step 2 for opcode names).

This interval applies only to the member account.
2. Pass the information to one of these opcodes:
= PCM_OP_CUST_COMMIT_CUSTOMER when creating accounts
= PCM_OP_CUST_UPDATE_CUSTOMER when modifying accounts

Note: Both of these opcodes call PCM_OP_CUST_SET_TOPUP,
which is a wrapper opcode that calls other standard opcodes to set up
or modify top-up information.

For more information, see "How BRM Sets Up Top-Up Information for an Account".

How BRM Sets Up Top-Up Information for an Account

After your custom client application passes the required top-up information to PCM_
OP_CUST_COMMIT_CUSTOMER or PCM_OP_CUST_UPDATE_CUSTOMER, that
opcode calls PCM_OP_CUST_SET_TOPUP.

To create or modify an account’s top-up information, PCM_OP_CUST_SET_TOPUP
calls one of the following opcodes:

= PCM_OP_CUST_CREATE_TOPUP
= PCM_OP_CUST_MODIFY_TOPUP
See "Creating or Modifying an Account’s Top-Up Information".

If successful, the PCM_OP_CUST_SET_TOPUP output flist contains the PIN_FLD_
POID set to the POID of the created or modified /topup object.

If unsuccessful, the PCM_OP_CUST_SET_TOPUP output flist contains the following:
= PIN_FLD_FIELD_NUM set to the field that failed.

Configuring Top-Ups 10-9

How BRM Sets Up Top-Up Information for an Account

s PIN_FLD_TYPE set to the type of field that failed.
s PIN_FLD_RESULT set to the validation error code.

For standard top-ups, an account’s top-up information is stored in one object (/topup),
but for sponsored top-ups, an account’s top-up information is stored in fwo objects
(/topup and /group/topup). Sometimes, one of the objects must be created and the
other modified. For example, to add a member account to a sponsored top-up group,
BRM might need to create a /topup object for the member and associate it with an
existing /group/topup object. To determine which opcode to call in such cases, PCM_
OP_CUST_SET_TOPUP uses these rules:

= If at least one of the objects is being created, PCM_OP_CUST_SET_TOPUP calls
PCM_OP_CUST_CREATE_TOPUP. This is true even if the other object is being
modified.

= If neither object is being created, PCM_OP_CUST_SET_TOPUP calls PCM_OP_
CUST_MODIFY_TOPUP.

Preparing an Account’s Top-Up Information

To prepare top-up information for an account, PCM_OP_CUST_CREATE_TOPUP and
PCM_OP_CUST_MODIFY_TOPUP call the PCM_OP_CUST_POL_PREP_TOPUP
policy opcode. The policy opcode prepares information required to perform one of
these tasks:

s Create a standalone /topup object for standard top-ups. This occurs when the
following information is not passed to PCM_OP_CUST_POL_PREP_TOPUP:

— A /topup object POID
- A sponsored top-up group owner account POID

= Modify a standalone /topup object for standard top-ups. This occurs when the
following information is passed to PCM_OP_CUST_POL_PREP_TOPUP:

— A /topup object POID

But this information is not passed to it:

- A sponsored top-up group owner account POID
- A/group/topup POID

= Create one or both objects (/topup and /group/topup) for sponsored top-ups.
This occurs when the following information is passed to PCM_OP_CUST_POL _
PREP_TOPUP:

- A sponsored top-up group owner account POID
But this information is not passed to it:

— A /topup object POID

- A/group/topup POID

Note: Before creating a /group/topup object, the opcode checks for
an existing /group/topup object that matches the criteria in its input
flist. For more information, see "Finding Sponsored Top-Up Groups".

10-10 BRM Configuring and Collecting Payments

How BRM Sets Up Top-Up Information for an Account

= Modify both objects (/topup and /group/topup) for sponsored top-ups. This
occurs when the following information is passed to PCM_OP_CUST_POL_PREP_
TOPUP:

— A /topup object POID
- A/group/topup POID

Additional Preparation for Sponsored Top-Ups
For sponsored top-ups, PCM_OP_CUST_POL_PREP_TOPUP also prepares this
information:

= If the group owner account did not initiate the object creation or modification, the
policy opcode sets the following values in its output flist:

- PIN_FLD_STATUS (member account’s group membership status) = the value
associated with the PIN_STATUS_INACTIVE status in the BRM_
Homelinclude/ops/pcm.h header file

— PIN_FLD_PIN (member account’s top-up PIN) = NULL

= If the group owner account did initiate the object creation or modification, the
policy opcode does the following:

— If the status of the member account’s group membership is not specified in the
input flist, sets it to the value associated with the PIN_STATUS_ACTIVE in
the BRM_Homelinclude/ops/pcm.h header file

— (Creation only) If the group name is not specified in the input flist, sets the
name to default

For more information, see "Setting an Account’s Sponsored Top-Up Member
Status and PIN".

Validating an Account’s Top-Up Information

To validate the top-up information prepared for an account, PCM_OP_CUST_
CREATE_TOPUP and PCM_OP_CUST_MODIFY_TOPUP call the PCM_OP_CUST_
POL_VALID_TOPUP policy opcode. For more information, see "Preparing an
Account’s Top-Up Information". The policy opcode performs these tasks:

= Verifies that the status of the account to be debited for each top-up (the paying
account) is active.

= Verifies that the standard or sponsored top-up amount is less than or equal to the
corresponding top-up cap.

= (Sponsored top-ups only) Verifies that the member is not trying to join a group
that it owns.

= (Sponsored top-ups only) Verifies that the prospective member’s account is not
closed.

= (Sponsored top-ups only) Verifies that the prospective member is not a member of
any other sponsored top-up group.

You can customize PCM_OP_CUST_POL_VALID_TOPUP to change the way it
validates the output flist of the PCM_OP_CUST_POL_PREP_TOPUP policy opcode.

In its own output flist, PCM_OP_CUST_POL_VALID_TOPUP returns a PIN_FLD_
RESULT value that is associated with one of the following values:

s PIN_RESULT_PASS (validation succeeded)

Configuring Top-Ups 10-11

How BRM Sets Up Top-Up Information for an Account

PIN_RESULT FAIL (validation failed)

The associated values are defined in the pem.h header file. For more information, see
"Header Files" in BRM Developer’s Guide.

Creating or Modifying an Account’s Top-Up Information

If validation succeeds, the validated information is used to perform one of the
following tasks:

Creating Top-Up Information
Modifying Top-Up Information

For more information, see "Validating an Account’s Top-Up Information".

Creating Top-Up Information

PCM_OP_CUST_CREATE_TOPUP uses the validated information to perform one of
these operations:

If the information does not include the POID of a sponsored top-up group owner
account, the opcode creates a standalone /topup storable object that contains
information for automatic standard top-ups.

If the information includes the POID of a sponsored top-up group owner account
and /group/topup and /topup POID types, the opcode creates a sponsored top-up
relationship as follows:

1. Creates a /group/topup object for the owner account
2. Creates a /topup object for the member account
3. Associates the new /topup object with the new /group/topup object

If the information includes the POID of a sponsored top-up group owner account,
the POID of an existing /group/topup object, and a /topup POID type, PCM_OP_
CUST_CREATE_TOPUP creates a sponsored top-up relationship as follows:

1. Creates a /topup object for the member account
2. Associates the new /topup object with the existing /group/topup object

If the information includes the POID of a sponsored top-up group owner account,
a /group/topup POID type, and an existing /topup object, PCM_OP_CUST_
CREATE_TOPUP creates a sponsored top-up as follows:

1. Creates a /group/topup object for the owner account

2. Associates the existing /topup object with the new /group/topup object

If successful, the PCM_OP_CUST_CREATE_TOPUP output flist contains the
following:

PIN_FLD_POID set to the POID of the /topup object created

If unsuccessful, the output flist contains the following:

PIN_FLD_FIELD_NUM set to the field that failed
PIN_FLD_TYPE set to the type of field that failed
PIN_FLD_RESULT set to the validation error code

10-12 BRM Configuring and Collecting Payments

How BRM Sets Up Top-Up Information for an Account

Modifying Top-Up Information
PCM_OP_CUST_MODIFY_TOPUP uses the validated information to perform one of
these operations:

» If the information does not include the POID of an existing /group/topup object,
the opcode modifies the automatic standard top-up information in a standalone
/topup object.

» If the information includes the POID of an existing /group/topup object, the opcode
modifies the sponsored top-up information in the /group/topup and /topup
objects.

If successful, the PCM_OP_CUST_MODIFY_TOPUP output flist contains the
following:

= PIN_FLD_POID set to the POID of the /topup object modified

If unsuccessful, the PCM_OP_CUST_MODIFY_TOPUP output flist contains the
following:

s PIN_FLD_FIELD_NUM set to the field that failed
= PIN_FLD_TYPE set to the type of field that failed
s PIN_FLD_RESULT set to the validation error code

Setting an Account’s Sponsored Top-Up Member Status and PIN

If an account is a member of a sponsored top-up group, its group status and top-up
PIN are set as follows:

= When an owner account initiates adding a member to the group, the member’s
group status and PIN are set according to the information in the PCM_OP_CUST_
SET_TOPUP input flist. If member status is not specified in the flist, it is set to
active.

= When a member account initiates adding itself to a group, the member’s group
status is set to inactive and the PIN is set to NULL no matter what values are
provided for those items in the input flist. After the member is added to the group,
the group owner must activate the member’s member and sets its top-up PIN. See
"Activating Sponsored Top-Up Group Members" and "Setting Sponsored Top-Up
Member PINs".

= When a member account initiates a modification of its sponsored top-up settings
after being added to a group, its group status is reset to inactive. This occurs even
if the modification is not related to member status. The group owner must then
reactivate the member. See "Activating Sponsored Top-Up Group Members".

For related information, see the following topics:
s Inactivating Sponsored Top-Up Group Members
= Reinstating Sponsored Top-Ups

Activating Sponsored Top-Up Group Members

To receive sponsored top-ups, a member’s group status must be active. For more
information, see "About Member Status". By default, only groups owners can activate
a member. To enable members to activate themselves, customize the PCM_OP_CUST_
POL_PREP_TOPUP policy opcode.

To activate members whose group status is inactive or closed:

Configuring Top-Ups 10-13

How BRM Sets Up Top-Up Information for an Account

1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member’s PIN_FLD_STATUS field in the MEMBERS array of the opcode’s
input flist to the value associated with the PIN_STATUS_ACTIVE status in the
BRM_Homelinclude/ops/pcm.h header file.

Inactivating Sponsored Top-Up Group Members

A member whose group status is inactive can use any outstanding topped-up credit in
its topped-up balance group, but it cannot receive any more top-ups from the group
until its member status is reactivated. In addition, it cannot join another sponsored
top-up group.

To inactivate a member’s group status:

1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member’s PIN_FLD_STATUS field in the MEMBERS array of the opcode’s
input flist to the value associated with the PIN_STATUS_INACTIVE status in the
BRM_Homelinclude/ops/pcm.h header file.

Note: You can also inactivate sponsored top-ups by changing the
status of the member account to inactive. To change the status of an
account, see "Changing Account and Service Status" in BRM Managing
Customers.

To cancel a sponsored top-up relationship, see "Canceling Top-Ups".
For more information about member status, see "About Member Status".
Inactivating all the members in a sponsored top-up group

To inactivate the group status of every member in a group, change the status of the
sponsored top-up group owner account to inactive.

When a group owner account is inactive, the members of its sponsored top-up groups
can use any outstanding topped-up credit in their topped-up balance groups, but they
cannot receive any more top-ups from the group until the owner account is
reactivated, and they cannot join another sponsored top-up group.

To change the status of an account, see "Changing Account and Service Status" in BRM
Managing Customers.

Setting Sponsored Top-Up Member PINs

By default, only groups owners can set a member’s PIN.
To assign a top-up PIN to a member:
1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member’s PIN_FLD_PIN field in the MEMBERS array of the opcode’s
input flist to the appropriate string value.

10-14 BRM Configuring and Collecting Payments

How BRM Sets Up Top-Up Information for an Account

Note:

= By default, top-up PINs do not have to be unique. Members in the
same group and in different groups can have the same top-up
PIN.

s To enable members to set their own PINs, customize the PCM_
OP_CUST_POL_PREP_TOPUP policy opcode.

Finding Sponsored Top-Up Groups

When setting up sponsored top-ups, the PCM_OP_CUST_POL_PREP_TOPUP policy
opcode uses the following information from the PCM_OP_CUST_SET_TOPUP input
flist to determine whether the prospective member account can be added to an existing

group:
s The group owner account POID (PIN_FLD_PARENT)
= The name of the group (PIN_FLD_NAME)

Note: Each group owned by the same account must have a unique
name. Groups owned by different accounts can have the same name.

If a group name is not provided, the policy opcode searches for a group by owner
account POID and the ID of the resource or resources that you want to top-up in the
member account (PIN_FLD_RESOURCE_ID in the LIMITS array). The search has the
following results:

= If the policy opcode finds the group by name but a resource is specified in the
input flist that the group does not support, the following occurs:

— If the group owner account initiated the transaction, the resource is added to
the group.
— If the member account initiated the transaction, an error is returned.
= If the policy opcode finds the group by resource and the search returns multiple

groups, the groups are listed alphabetically by PIN_FLD_NAME value and the
member is added to the group at the top of the list.

= If the policy opcode fails to find a group by name or by resource, the following
occurs:

— If the group owner account has a group named default, the member is added
to that group.

— If the group owner account does not have a group named default, such a
group is created based on the information in the input flist. Each group owner
can have only one sponsored top-up group named default.

Note: To change the way the search is performed, customize the
PCM_OP_CUST_POL_PREP_TOPUP policy opcode.

Configuring Top-Ups 10-15

About Tracking Sponsored Top-Up Adjustments

About Tracking Sponsored Top-Up Adjustments

To differentiate sponsored top-up adjustments (/event/billing/adjustment/account
objects) from other types of account adjustments, the following reason codes and
domain IDs have been added to the reasons.locale file:

= Sponsored top-up debit reason code 4 and domain ID 1

DOMAIN = "Reason Codes-Debit Reasons" ;
STR
ID = 4 ;
VERSION = 1 ;
STRING = "Sponsored Topup. Sponsor Debit" ;
EVENT-GLID
"/event/billing/adjustment/account" 105 ;
EVENT-GLID-END
END

= Sponsored top-up credit reason code 5 and domain ID 8

DOMAIN = "Reason Codes-Credit Reasons" ;
STR
ID = 5 ;
VERSION = 8 ;
STRING = "Sponsored Topup. Sponsoree Credit" ;
EVENT-GLID
"/event/billing/adjustment/account" 105 ;
EVENT-GLID-END
END

The following definitions for these new reason codes and domain IDs have been
added to the pin_pymt.h file in the BRM_Homel/include directory:
= Sponsored top-up reason code definitions

#define PIN_REASON_ID_TOPUP_CREDIT 5
#define PIN_REASON_ID_TOPUP_DEBIT 4

= Sponsored top-up reason domain ID definitions

#define PIN_PYMT TOPUP_CREDIT_REASON_DOMAIN_ID 8
#define PIN_PYMT TOPUP_DEBIT REASON_DOMAIN_ID 1

The new reason codes and domain IDs are used by the following opcodes:
= PCM_OP_PYMT _TOPUP

= PCM_OP_BILL_TRANSFER_BALANCE

= PCM_OP_AR_ACCOUNT_ADJUSTMENT

Customizing and Loading Sponsored Top-Up Reason Codes

You can customize the default reason codes used for sponsored top-up adjustments as
follows:

s Change the G/L ID event mapping. (If you change the G/L ID mapping, be sure
the G/L IDs you define in the reasons.locale and pin_glid files match.)

= Change the reason code domain identifier (version number).

s Change the reason string.

10-16 BRM Configuring and Collecting Payments

How BRM Performs Top-Ups

To customize the default reason codes, edit the reasons.en_US sample file in the BRM_
Homelsys/msgs/reasoncodes directory.

To load the contents of the customized reasons.en_US file into the /strings and
/config/map_glid objects, use the load_localized_strings utility.

To run the load_localized_strings utility, use this command:

load localized_strings reasons.locale

Note: If you load a localized version of this file, use the correct file
extension for your locale. For a list of file extensions, see "Locale
Names" in BRM Developer’s Guide.

Caution: The load_localized_strings utility overwrites the
/config/map_glid object. If you are updating this object, you cannot
load new G/L ID maps only. You must load complete sets of data each
time you run the load_localized_strings utility. This is also true if you
specify the -f parameter when updating the /strings object. Otherwise,
the load_localized_strings utility appends the new data to the
[strings object.

For more information about loading the reasons.locale file, see "Loading Localized or
Customized Strings" in BRM Developer’s Guide.

For information about creating new strings for this file, see "Creating New Strings and
Customizing Existing Strings" in BRM Developer’s Guide.

Offering Discount Incentives with Top-Ups

You can offer customers discount incentives whenever they top up an account balance
by a specified amount. For example, you can offer 20 free peak minutes whenever a
customer makes a $50 top-up.

To offer top-up discount incentives:

1. Set up the discount in Pricing Center. See "Using Pricing Center to Configure
Discounts" in BRM Configuring Pipeline Rating and Discounting.

2. Configure the PCM_OP_PYMT_POL_PURCHASE_DEAL policy opcode to
validate the discount.

By default, this policy opcode is an empty hook provided to facilitate
customization. You can customize it to apply discounts to account balances when
they are topped up. For example, this policy opcode might grant 60 free minutes
of usage for every $50 top-up.

PCM_OP_PYMT_POL_PURCHASE_DEAL is called by PCM_OP_PYMT_TOPUP.
See "How BRM Performs Top-Ups".

How BRM Performs Top-Ups

All top-ups are performed by PCM_OP_PYMT_TOPUP. This section describes how
that opcode works.

Configuring Top-Ups 10-17

How BRM Performs Top-Ups

Triggering PCM_OP_PYMT_TOPUP
PCM_OP_PYMT_TOPUP is triggered as follows:

Manual top-ups: When a customer or CSR uses a client application to top up a
balance in an account (a manual top-up), the opcode is called by the client
application.

— To use Customer Center or Self-Care Manager to top up accounts, see
"Topping Up Accounts in Customer Center and Self-Care Manager".

— Touse a custom client application to top up accounts, see "Implementing
Top-Ups in Custom Client Applications".

Automatic standard top-ups: When a balance in an account configured for
automatic standard top-ups falls below a specified threshold, PCM_OP_PYMT_
TOPUP is called by the PCM_OP_ACT_POL_EVENT_NOTIFY policy opcode.

To configure accounts to receive automatic standard top-ups, see "Implementing
Automatic Standard Top-Ups".

Automatic sponsored top-ups: When the next automatic top-up date of an
account configured for automatic sponsored top-ups is within the time range
specified in the "pin_balance_transfer" utility’s command-line parameters, PCM_
OP_PYMT_TOPUP is called by the utility. See "Performing Automatic Sponsored
Top-Ups".

To configure accounts to receive automatic sponsored top-ups, see "Implementing
Automatic Sponsored Top-Ups".

Performing Top-Ups with PCM_OP_PYMT_TOPUP

For information about how PCM_OP_PYMT_TOPUP performs top-ups, see the
following topics:

How PCM_OP_PYMT_TOPUP Handles Manual Standard Top-Ups
How PCM_OP_PYMT_TOPUP Handles Automatic Standard Top-Ups
How PCM_OP_PYMT_TOPUP Handles Manual Sponsored Top-Ups
How PCM_OP_PYMT_TOPUP Handles Automatic Sponsored Top-Ups

How PCM_OP_PYMT_TOPUP Handles Manual Standard Top-Ups
PCM_OP_PYMT_TOPUP performs manual standard top-ups as follows:

1.
2.

Receives the top-up amount from a client application.

For top-ups paid with a voucher, calls the PCM_OP_PYMT_POL_VALID_
VOUCHER policy opcode to use Voucher Manager or a third-party voucher
management system to perform these operations:

a. Validate the voucher.
b. Associate the voucher with the account.
c. Retrieve the balance impacts of the voucher’s resources.

After the voucher is validated, the PCM_OP_PYMT_POL_VALID_VOUCHER
policy opcode performs these operations:

a. Determines whether the voucher has a currency resource.

b. Uses the resource with the earliest validity start date and the resource with the
latest validity end date to determine the validity period of the voucher.

10-18 BRM Configuring and Collecting Payments

How BRM Performs Top-Ups

c. Returns the preceding information and the voucher’s balance impacts to
PCM_OP_PYMT_TOPUP.

PCM_OP_PYMT_TOPUP then performs these operations:

a. If the validated voucher does not have a currency resource, creates an
/event/billing/vouchertopup event to record the top-up balance impact.

b. If the voucher has a currency resource, calls PCM_OP_PYMT_COLLECT,
which passes the balance group impacted by the top up and the top-up
resource information and in its input flist to PCM_OP_BILL_RCV_PAYMENT.

If there are non-currency balance impacts in the top-up resource information,
PCM_OP_BILL_RCV_PAYMENT adds them to the input flist of PCM_OP_
ACT_USAGE, which records them in the /event/billing/payment/voucher
object that it generates to record the top-up balance impact.

Note: When called by PCM_OP_PYMT_TOPUP, PCM_OP_PYMT_
COLLECT does not call the payment suspense manager PCM_OP_
PYMT_VALIDATE_PAYMENT opcode.

c. Posts the top-up as an unallocated payment.

For top-ups paid by credit card or direct debit, collects payment from the credit card
agency or direct debit company, and then updates the specified balance.

For all top-ups, applies any top-up discount incentives to the account by calling
the PCM_OP_PYMT_POL_PURCHASE_DEAL policy opcode. See "Offering
Discount Incentives with Top-Ups".

Note: The PIN_FLD_DESCR field in the input flist contains a
description of the topup. This value is stored in the
/event/billing/payment/cc object and is used by Customer Center
when making a “One time credit card” or “Charge credit card now”
payment.

How PCM_OP_PYMT_TOPUP Handles Automatic Standard Top-Ups
PCM_OP_PYMT_TOPUP performs automatic standard top-ups as follows:

1.
2

Retrieves the top-up amount from the specified /topup object.

Verifies that the top-up amount will not cause the sum of all automatic standard
top-ups received during the current accounting cycle to exceed the account’s
automatic standard top-up cap.

Applies any top-up discount incentives to the account by calling the PCM_OP_
PYMT_POL_PURCHASE_DEAL policy opcode. See "Offering Discount Incentives
with Top-Ups".

How PCM_OP_PYMT_TOPUP Handles Manual Sponsored Top-Ups
PCM_OP_PYMT_TOPUP performs manual sponsored top-ups as follows:

1.
2

Receives the top-up amount from a client application.
Verifies the following:

s The status of the member is active. See "About Member Status".

Configuring Top-Ups 10-19

How BRM Performs Top-Ups

s (Member-initiated top-ups only) The top-up PIN is valid. See "About member
top-up PINs".

s The top-up amount will not cause the total amount of credit charged to the
owner account’s balance group to exceed the credit limit of the associated
resource in that balance group. See "About Sponsored Top-Up Credit Limits".

s The top-up amount will not cause the sum of all top-ups received during the
current accounting cycle of the owner account to exceed the group’s top-up
cap.

3. Performs these operations:
s Calls PCM_OP_BILL_TRANSFER_BALANCE to transfer the top-up resources

from the paying balance group to the receiving balance group. See "About
Transferring Sponsored Top-Ups from Debit Balances".

» Passes the reason ID and the reason domain ID used to differentiate sponsored
top-up adjustments from other types of adjustments to PCM_OP_BILL _
TRANSFER_BALANCE, which passes them to PCM_OP_AR_ACCOUNT_
ADJUSTMENT. See "About Tracking Sponsored Top-Up Adjustments".

= Updates the sum of all sponsored top-ups credited to members of the group
during the group owner account’s current accounting cycle. This value is
stored in the PIN_FLD_CYCLE_TOPPED_AMT field of the LIMITS array in
the /group/topup object.

If the last sponsored top-up occurred in the owner account’s current
accounting cycle, PCM_OP_PYMT_TOPUP adds the amount of the current
top-up to the value already in this field.

If the last sponsored top-up occurred in the owner account’s previous
accounting cycle, the opcode sets this field to the amount of the current

top-up.
4. Applies any top-up discount incentives to the account by calling the PCM_OP_

PYMT_POL_PURCHASE_DEAL policy opcode. See "Offering Discount Incentives
with Top-Ups".

How PCM_OP_PYMT_TOPUP Handles Automatic Sponsored Top-Ups
PCM_OP_PYMT_TOPUP performs automatic sponsored top-ups as follows:

1. Retrieves the top-up amount from the specified /group/topup object.
2. Verifies the following:
s The status of the member is active. See "About Member Status".

s The top-up amount will not cause the total amount of credit charged to the
owner account’s balance group to exceed the credit limit of the associated
resource in that balance group. See "About Sponsored Top-Up Credit Limits".

s The top-up amount will not cause the sum of all top-ups received during the
current accounting cycle of the owner account to exceed the group’s top-up

cap.
3. Performs these operations:

= Calls PCM_OP_BILL_TRANSFER_BALANCE to transfer the top-up resources
from the paying balance group to the receiving balance group. See "About
Transferring Sponsored Top-Ups from Debit Balances".

10-20 BRM Configuring and Collecting Payments

How BRM Performs Top-Ups

n Passes the reason ID and the reason domain ID used to differentiate sponsored
top-up adjustments from other types of adjustments to PCM_OP_BILL _
TRANSFER_BALANCE, which passes them to PCM_OP_AR_ACCOUNT_
ADJUSTMENT. See "About Tracking Sponsored Top-Up Adjustments".

s Updates the time that the member’s last automatic sponsored top-up occurred
to the current time.

This value is stored in the PIN_FLD_LAST_TOPUP_T field of the LIMITS
array in the /group/topup object. PCM_OP_PYMT_TOPUP uses this value to
determine when to execute the member’s next automatic sponsored top-up.

s Calculates the time that the member’s next automatic sponsored top-up will
occur. This value is stored in the PIN_FLD_NEXT_TOPUP_T field of the
LIMITS array in the /group/topup object.

= Updates the sum of all sponsored top-ups credited to members of the group
during the group owner account’s current accounting cycle. This value is
stored in the PIN_FLD_CYCLE_TOPPED_AMT field of the LIMITS array in
the /group/topup object.

If the last sponsored top-up occurred in the owner account’s current
accounting cycle, PCM_OP_PYMT_TOPUP adds the amount of the current
top-up to the value already in this field.

If the last sponsored top-up occurred in the owner account’s previous
accounting cycle, the opcode sets this field to the amount of the current

top-up.
4. Applies any top-up discount incentives to the account by calling the PCM_OP_

PYMT_POL_PURCHASE_DEAL policy opcode. See "Offering Discount Incentives
with Top-Ups".

About Transferring Sponsored Top-Ups from Debit Balances

To perform a sponsored top-up, PCM_OP_BILL_TRANSFER_BALANCE must
transfer resources from a debit balance in a group owner account to a debit or credit
balance in a member account. By default, however, this opcode transfers resources
only from credit balances. To enable the opcode to transfer resources from a debit
balance, the PIN_FLD_VERIFY_BALANCE field in its input flist is set to PIN_
BOOLEAN_FALSE by PCM_OP_PYMT_TOPUP.

Note: If this field is not set (default) or is set to PIN_BOOLEAN_
TRUE, the opcode cannot transfer resources from debit balances.

About Retrieving Balance Impact Information for Voucher Top-Ups

To retrieve the balance impacts associated with a voucher top-up, such as the tax
payment and original top-up amount, use Event Browser to retrieve the balance
impacts from the PIN_FLD_BAL_IMPACTS array in the
/event/billing/payment/voucher object. The /event/billing/payment/voucher object
contains the net amount and tax amount in separate PIN_FLD_BAL_IMPACTS arrays.

About Taxes Applied during Voucher Top-Ups

By default, when you apply a voucher with tax to an account, BRM applies a negative
balance impact to the account balance.

Configuring Top-Ups 10-21

How BRM Performs Top-Ups

When you apply a voucher with tax to an account, you must set the tax to a negative
value. For example, if a voucher grants $100 with -10% tax on the amount granted,
BRM applies a balance impact of -100 for the voucher and +10 for the tax to the
account balance. In this case, the final balance is 0 - (-100) - (+10) = $90.

Topping Up Accounts in Customer Center and Self-Care Manager

Manual standard top-ups are performed by a CSR using a client application such as
Customer Center or by a customer using a self-care application such as Self-Care
Manager.

To perform manual standard top-ups in Customer Center and Self-Care Manager, see
the following topics:

s Performing Top-Ups in Customer Center

s Performing Top-Ups in Self-Care Manager

Performing Top-Ups in Customer Center

To perform manual standard top-ups in Customer Center, see "Topping Up Accounts
in Customer Center and Self-Care Manager".

Changing the default top-up payment method

The default top-up payment method in Customer Center is voucher. To change this
default, add the following parameter to the CCSDK_
home/CustomerCareSDK/CustCntr/custom/Customized.properties file:

customized.default.topup.payment .method = payment_method

where payment_method is one of these values:
= ONFILE (Payment method on file)

s ONETIME (One-time credit card)

s VOUCHER (Voucher)

Note: If this parameter is not included in the file, voucher is the
default payment method.

For information about modifying the Customized.properties file, see "Modifying
Behaviors Defined by the Default Properties Files" in BRM Developer’s Guide.

For information about standard top-up payment methods, see "Standard Top-Up
Payment Methods".

Turning off “Top-up completed” message

By default, Customer Center displays the message “Top-up completed” after you
complete a top-up. If you typically perform multiple top-ups in a row and do not want
to close this message after each of them, you can prevent the message from appearing.
To do so, set the following parameter in the CCSDK_
home/CustomerCareSDK/CustCntr/custom/Customized.properties file to true:

customized.turn.off.topup.completed.msg = true

By default, this parameter is set to false.

For information about modifying the Customized.properties file, see "Modifying
Behaviors Defined by the Default Properties Files" in BRM Developer’s Guide.

10-22 BRM Configuring and Collecting Payments

How BRM Performs Top-Ups

About voucher top-up error handling

When an error occurs during a voucher top-up in Customer Center, the PCM_OP_
VOUCHER_ASSOCIATE_VOUCHER opcode creates an EBufException. The
EBufException includes the error type and the name of the field associated with the
error in the error buffer (ebuf). Customer Center uses this information to determine
which error message to display to the user.

Table 10-2 lists the default error messages that are displayed in Customer Center when
errors associated with the corresponding error type and field name occur:

Table 10-2 Default Error Messages in Customer Center for Top-Ups

Error Message Error Type Field Name

Voucher has already been used ERR_NOT_FOUND PIN_FLD_EXTENDED_INFO
Invalid voucher ID/PIN combination ERR_NOT_FOUND PIN_FLD_POID

Voucher has already been used or has ERR_BAD_VALUE PIN_FLD_STATE_ID

expired

Voucher has expired ERR_BAD_VALUE PIN_FLD_EXPIRATION_T
Voucher and account brands do not match | ERR_PERMISSION_DENIED PIN_FLD_BRAND_OB]J
Invalid voucher ID/PIN combination ERR_BAD_ARG PIN_FLD_VOUCHER_PIN
Vou.chgr has already been used or has ERR_BAD_ARG PIN_FLD_STATE_ID

expire

These error messages are stored in the CustomerCenterResources.properties file. To
modify them, see "Modifying the Customer Center Properties Files" in BRM
Developer’s Guide.

Performing Top-Ups in Self-Care Manager

To perform manual standard top-ups in Self-Care Manager, see "Applying Voucher
Top-Ups" in BRM Managing Customers.

Performing Automatic Sponsored Top-Ups

Automatic sponsored top-ups are initiated by the "pin_balance_transfer" utility. The
utility triggers such top-ups for all member accounts in your system whose next
automatic top-up date is within the time range specified in the utility’s command-line
parameters. To perform the top-ups, the utility calls PCM_OP_PYMT_TOPUP.

For more information, see the following topics:
= For an overview of automatic sponsored top-ups, see "About Sponsored Top-Ups".

= To set up automatic sponsored top-ups for an account, see "Implementing
Automatic Sponsored Top-Ups'".

s For information about how PCM_OP_PYMT_TOPUP implements top-ups, see
"How BRM Performs Top-Ups".

Running the pin_balance_transfer Utility

To run the "pin_balance_transfer" utility, use a cron job with a crontab entry. The
following crontab entry runs pin_balance_transfer at 1:00 a.m. daily:

0 1 * * * BRM Home/bin/pin_balance_transfer &

Configuring Top-Ups 10-23

About Reversing Voucher Top-Ups

About Reversing Voucher Top-Ups
To reverse voucher top-ups, see the following topics:
= Reversing Vouchers That Have Only Non-Currency Resources

= Reversing Vouchers That Have Currency and Non-Currency Resources

Caution: When a voucher is associated with an account balance, its
state becomes used and it cannot be associated with another account or
balance group. Thus, although its impact on the balance to which it
was applied can be reversed, its resources cannot be reapplied to
another account or balance group.

Reversing Vouchers That Have Only Non-Currency Resources

If a voucher has only non-currency resources, an /event/billing/vouchertopup event is
generated when the voucher is associated with an account. To reverse the balance
impact of this event, you must perform an adjustment. See "About Adjustments” in
BRM Managing Accounts Receivable.

Reversing Vouchers That Have Currency and Non-Currency Resources

If a voucher has currency and non-currency resources, an
/event/billing/payment/voucher event is generated when the voucher is associated
with an account. To reverse the balance impact of this event, you must use testnap to
perform a payment reversal. For more information, see "Using testnap" in BRM
Developer’s Guide. The payment reversal will be recorded in an
/event/billing/reversal/voucher event by PCM_OP_BILL_REVERSE_PAYMENT.

About Vouchers Having Non-Currency Resources with a Positive Impact

By default, when you apply a voucher with non-currency resources to an account, a
negative balance impact is applied to the account balance. For example, if a voucher
grants 30 free minutes, a balance impact of -30 is applied to the customer’s account
balance. As the customer uses the free minutes, the account balance approaches 0. For
example, if the customer uses 20 of the 30 free minutes, the account balance becomes
-10. In this case, the non-currency resource has a credit limit of 0 by default, or it can be
changed to a negative value.

To have vouchers with non-currency resources apply a positive balance impact to
account balances, you must set the resource’s credit limit to a positive nonzero value.
For example, you must set the free minutes resource to +2.

To set the credit limit for non-currency resources to a positive value, perform one of
the following:

= Specify the credit limit in your plan.

= Specify the credit limit in an account.

Viewing Sponsored Top-Up History

To display information about sponsored top-up transactions, configure your custom
client application to call PCM_OP_PYMT_FIND_TOPUP_EVENTS to retrieve balance
transfer events (/event/billing/adjustment/account objects) in which top-up
transactions are recorded.

10-24 BRM Configuring and Collecting Payments

Viewing Sponsored Top-Up History

Historic sponsored top-up information can be displayed for both sponsored top-up
owner accounts and member accounts:

= Member accounts can view only the sponsored top-ups that they received.

s Owner accounts can view all sponsored top-ups associated with their sponsored
top-up groups.

Displaying All Sponsored Top-Ups Associated with an Account

To retrieve all sponsored top-up events associated with a group owner account or a
member account, include the following values in the PCM_OP_PYMT_FIND_TOPUP_
EVENTS input flist:

s Account’s POID in the PIN_FLD_POID field

Note: This field stores the POID of the account that initiates the
search. If a POID type rather than an actual POID is provided, an
actual balance group POID must be set in the flist’s PIN_FLD_BAL_
GRP_ORBJ field.

s No value in these fields:

- PIN_FLD_BAL_GRP_OBJ

Note: If no account POID is provided, a balance group POID must be
provided. In such cases, the opcode retrieves top-up events associated
only with the specified balance group.

— PIN_FLD_REASON_ID
— PIN_FLD_REASON_DOMAIN_ID

Displaying Sponsored Top-Ups Associated with Only One Group

If an owner account has multiple sponsored top-up groups, retrieve sponsored top-up
events related only to one group by including the following values in the PCM_OP_
PYMT_FIND_TOPUP_EVENTS input flist:

s Group owner account’s POID in the PIN_FLD_POID field
= Paying balance group’s POID in the PIN_FLD_BAL_GRP_OB]J field
= No value in these fields:

— PIN_FLD_REASON_ID

— PIN_FLD_REASON_DOMAIN_ID

Displaying Only Sponsored Top-Up Credits or Debits

By default, PCM_OP_PYMT_FIND_TOPUP_EVENTS retrieves all sponsored top-up
debit and credit adjustment events associated with the initiating account. Thus, if a
sponsored top-up group owner account initiates the search, the opcode retrieves two
events for each top-up:

= An event for debiting the top-up amount from the owner’s paying balance group

= Anevent for crediting the top-up amount to a member’s receiving balance group

Configuring Top-Ups 10-25

Canceling Top-Ups

To limit the search to debit or credit adjustment events, include the appropriate reason
ID and reason domain ID in the PIN_FLD_REASON_ID and PIN_FLD_REASON_
DOMAIN_ID fields of the opcode’s input flist. For more information, see "About
Tracking Sponsored Top-Up Adjustments".

Note: If you create custom reason and reason domain IDs for
sponsored top-up events, PCM_OP_PYMT_FIND_TOPUP_EVENTS
returns events associated with all the IDs unless you limit the search to
specified IDs.

Canceling Top-Ups
To cancel top-ups, see the following topics:
= Canceling Sponsored Top-Ups
s Deleting Accounts That Are Sponsored Top-Up Owners or Members

Canceling Sponsored Top-Ups

Sponsored top-ups can be canceled for a single member or for an entire group. For
more information, see the following topics:

s Canceling a Single Member’s Sponsored Top-Ups
= Canceling an Entire Group’s Sponsored Top-Ups

Canceling a Single Member’s Sponsored Top-Ups
To cancel a member account’s sponsored top-ups, see the following topics:

= Canceling Top-Ups by Changing a Member’s Group Status
» Canceling Top-Ups by Closing a Member Account

To stop sponsored top-ups temporarily, see "Inactivating Sponsored Top-Up Group
Members".

Canceling Top-Ups by Changing a Member’s Group Status

To cancel a member account’s sponsored top-ups, change the member’s group status
to closed. When the member’s group status is closed, the account can use any
outstanding topped-up credit in its topped-up balance group, but it can no longer
receive sponsored top-ups from the group. It can, however, join another sponsored
top-up group.

By default, only the group owner can change a member’s group status to closed. To

enable members to close their group status themselves, customize the PCM_OP_
CUST_POL_PREP_TOPUP policy opcode.

To change a member’s group status to closed:
1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member’s PIN_FLD_STATUS field in the PIN_FLD_GROUP_TOPUP_
MEMBERS array of the opcode’s input flist to the value associated with the PIN_
STATUS_CLOSED status in the BRM_Home/include/ops/pcm.h header file.

Note: This changes only the member’s group status. It does not
change the member’s account status.

10-26 BRM Configuring and Collecting Payments

Canceling Top-Ups

Canceling Top-Ups by Closing a Member Account

You can also cancel a member account’s sponsored top-ups by changing the account
status of the member to closed. By default, when a member account is closed, its
sponsored top-up group member status is set to closed. To change the status of an
account, see "Changing Account and Service Status" in BRM Managing Customers.

Caution: When a member account is closed, any outstanding
topped-up credit that it has is forfeited, not transferred back to the
group owner account or refunded to either the owner or the member.
Even if the member account’s sponsored top-ups are reactivated, the
forfeited credit is not reinstated.

Canceling an Entire Group’s Sponsored Top-Ups

To cancel the sponsored top-ups of every member in a group, change the account status
of the sponsored top-up group owner to closed. By default, when the owner account is
closed, the member status of its member accounts is set to closed.

To change the status of an account, see "Changing Account and Service Status" in BRM
Managing Customers.

Reinstating Sponsored Top-Ups

When an account’s sponsored top-up group member status is set to closed, its array
element is not removed from the PIN_FLD_GROUP_TOPUP_MEMBERS array in the
/group/topup object with which it was associated.

If you later reactivate the member’s status and want to use its old MEMBERS array
element, the client application must pass the called opcode the same receiving balance
group POID that was used the last time the member belonged to the group. For more
information, see "Implementing Top-Ups in Custom Client Applications". Otherwise, a
new array element will be created for the member account.

Note: If a lot of members have multiple MEMBERS array elements,
your system’s performance may be affected.

Deleting Accounts That Are Sponsored Top-Up Owners or Members

This section describes what happens to /group/topup and /topup objects when the
accounts with which they are associated are deleted.

For general information about deleting accounts, see the following topics:

= "Removing Accounts by Using the sample_del.c Program" in BRM Developer’s
Reference

» PCM_OP_CUST_DELETE_ACCT

Caution: Do not delete accounts in a production system.

About Deleting Owner Accounts

When a sponsored top-up group owner account is deleted, the sponsored top-ups for
all its member accounts end. In addition, the following occurs:

» If a /topup object is associated with the owner account, it is deleted.

Configuring Top-Ups 10-27

Canceling Top-Ups

= All/group/topup objects associated with the owner account are deleted.

= The following fields in all /topup objects of accounts that were members of the
deleted /group/topup objects are set to NULL:

- PIN_FLD_GROUP_OBJ
- PIN_FLD_GROUP_INDEX

About Deleting Member Accounts

When a sponsored top-up group member account is deleted, PCM_OP_CUST_
DELETE_ACCT calls PCM_OP_CUST_DELETE_TOPUP, which performs these
operations:

n Deletes the /topup object associated with the member account.

= Removes the member’s array element from the MEMBERS array of the
/group/topup object with which the /topup object was associated.

Important: PCM_OP_CUST_DELETE_TOPUP should not be used to
cancel an account’s membership in a sponsored top-up group. See
"Canceling Top-Ups".

If successful, the PCM_OP_CUST_DELETE_TOPUP output flist contains the
following:

= PIN_FLD_POID set to the POID of the deleted /topup object

If unsuccessful, the PCM_OP_CUST_DELETE_TOPUP output flist contains the
following:

s PIN FLD FIELD _NUM set to the field that failed
s PIN_FLD_TYPE set to the type of field that failed
s PIN FLD RESULT set to the validation error code

10-28 BRM Configuring and Collecting Payments

11

Handling Atypical Payments

This chapter describes how to handle payments that are not tailored to your normal
payment processing.

For more information on payments, see the following documents:
= About Payments
= About BRM-Initiated Payment Processing

Handling Overpayments and Underpayments

If a customer pays too much or too little, your Oracle Communications Billing and
Revenue Management (BRM) business policies may require payment allocation. See
"About Allocating Payments".

= For underpayments, choose which bills or items to allocate the payment to.
» For overpayments, pay all items and generate a credit balance.
By default, BRM requires overpayments to be allocated.

To change the default BRM behavior for overpayments and underpayments,
customize the PCM_OP_PYMT_POL_UNDER_PAYMENT or PCM_OP_PYMT_POL_
OVER_PAYMENT policy opcodes.

If the money received is more or less than the sum of the total due of all the open items
selected by PCM_OP_PYMT_SELECT_ITEMS, PCM_OP_PYMT_SELECT_ITEMS calls
PCM_OP_PYMT_POL_OVER_PAYMENT or PCM_OP_PYMT_POL_UNDER_
PAYMENT, respectively. PCM_OP_PYMT_SELECT_ITEMS does not call these policy
opcodes if:

s The amount is equal to the sum of the total due.
s The flag PIN_BILLFLG_SELECT_FINAL is passed in.
s The flag PIN_BILLFLG_DEFER_ALLOCATION is passed in.

By default, PCM_OP_PYMT_POL_OVER_PAYMENT returns the amount overpaid on
the output flist. The excess amount remains in the bill unit specified on the input flist
(or the default bill unit if none was specified) until they are manually redistributed by
using Customer Center. You can customize PCM_OP_PYMT_POL_OVER_PAYMENT
to perform as a hook for an application that would search for and settle all overpaid
payment items.

By default, PCM_OP_PYMT_POL_UNDER_PAYMENT pays the billed items in order
they are listed on the input flist (item[0] first, then item[1], item [2], and so on). It then
returns the items paid on the output flist. Items that are partially paid are returned
with a new amount due. Items not paid are not returned.

Handling Atypical Payments 11-1

Handling Late or Missed Payments

Handling Late or Missed Payments

You can specify how BRM handles late or missed payments, for example, change the
account status to inactive or charge a late fee.

To change the account status, customize the PCM_OP_PYMT_POL_COLLECT policy
opcode.

To charge a late fee, customize the PCM_OP_PYMT_POL_APPLY_FEE policy opcode.

Handling Multiple Payments to the Same Account

By default, you cannot use Payment Tool to apply more than one payment from a
batch to a single account. However, if the account uses open item accounting, you
might need to apply more than one payment to more than one bill.

To enable Payment Tool to apply multiple payments from the same batch to a single
account, you edit the PaymentTool.ini file.

See "Applying Multiple Payments to the Same Account".

Applying Multiple Payments to an Account through Payment Gateways

The PCM_OP_PYMT_COLLECT opcode enables a payment gateway to apply
multiple payments from the same batch to a single account. Payment gateways need
no additional configuration to enable this feature.

To avoid payment allocation errors when a batch contains multiple payments for the
same account, the PCM_OP_PYMT_COLLECT opcode processes them sequentially:
that is, it performs all operations on one payment before moving on to the next
payment. For example, a batch contains two payments for the same account: payment
1 =%10 and payment 2 = $20. The account has three open bill items: item 1 = $5, item 2
= $3, and item 3 = $22. Hence, the total payment amount ($30) is equal to the total due
amount ($30) of all the items. The PCM_OP_PYMT_COLLECT opcode allocates the
payments as shown in Table 11-1:

Table 11-1 PCM_OP_PYMT_COLLECT Payment Allocation

Operation/Remaining Total Due for Open Bill ltems Iltem 1 ltem 2 ltem 3

1. Select items for payment 1 ($10). $5 $3 $22

Beginning with the oldest open item (item 1), BRM
selects items in chronological order until the payment is
completely spent.

2. Apply payment 1 ($10): $0 $0 $20
$5 to Item 1
$3 to Item 2
$2 to Item 3

3. Select items for payment 2 ($20). $0 $0 $20

Because payment 1 has been applied, the two oldest
items selected in step 1 are now paid and closed, and the
amount due for item 3 has been reduced to $20.

4. Apply payment 2 ($20): $0 $0 $0
$0 to Item 1
$0 to Item 2
$20 to Item 3

11-2 BRM Configuring and Collecting Payments

Handling Failed Unconfirmed Payments

For information about payment gateways, see "About Payment Gateways".

Handling Failed Unconfirmed Payments

An unconfirmed payment is an BRM-initiated payment that is posted as successful in
BRM before receiving a confirmation from the bank or payment processor, for
example, an automated clearing house.

If the bank or payment processor later sends a failure notification for a BRM-initiated
payment (for example, due to insufficient funds or an expired credit card), BRM
reverses the initially-successful payments and posts the failed payments.

Failed unconfirmed payments can be submitted to BRM by using a payment gateway,
or by using Payment Tool or another third-party payment application.

Figure 11-1 shows how failed unconfirmed payments are processed with an
automated clearing house (ACH). Each step in the process is described below.

Figure 11-1 ACH Processing of Failed Unconfirmed Payments

Failed
Payment
records

3

Payment Tool

third-party
payment
application

I
—

The Connection Manager (CM) collects the balances due on accounts and sends
the charges to the Data Manager (DM) for processing.

levent/billing/charge/pay_type events are recorded in BRM.
The Data Manager (DM) processes the charges and sends them to the ACH.

Before charges are confirmed by the ACH, the DM automatically sends them back
to the CM as successful payments.

/event/billing/payment/pay_type events are recorded in BRM.

The ACH returns any failed unconfirmed payments in a failed payment file. The
failed payment records must include the transaction ID, payment failure reason
code, and result.

The failed payment file is loaded into Payment Tool or a third-party payment
application.

The transaction ID, reason code, and result are validated, the failed payments are
recorded, and the unconfirmed successful payments are reversed.

Handling Atypical Payments 11-3

Handling Failed Unconfirmed Payments

Failed unconfirmed payments are recorded as /event/billing/payment/failed
events, and the reversals of the initially-successful payments are recorded as
/event/billing/reverse/pay_type events.

Note: Both the /event/billing/payment/failed event and the
/event/billing/reversal event contain the same transaction ID of the
original unconfirmed payment.

When a unconfirmed payment fails, the failed payment is recorded in BRM with a
balance impact of 0, and the successful payment amount is re-applied to the account
balance.

To charge fees for failed unconfirmed payments, see "Configuring Payment Fees".

Submitting Failed Unconfirmed Payments with Payment Tool

Failed unconfirmed payment records are sent to BRM in a batch containing only failed
payments. When you open the failed payment batch in Payment Tool, payments are
displayed with a failed payment status.

You process failed payments the same way you process other payment batches. See
"Processing a Batch of Payments by Using Payment Tool".

Requirements for Posting Unconfirmed Payments

Failed unconfirmed payments are processed by the PCM_OP_PYMT_COLLECT
opcode. The interface you use to load failed payments into the BRM database must be
configured to send the following information with each failed payment to be validated
in BRM:

s Transaction ID
= Failed payment status
» Failure reason ID

The transaction ID of the failed payment is compared against the transaction ID in the
levent/billing/payment/pay_type object of the initial unconfirmed payment that was
posted successfully in BRM.

If the transaction IDs are the same, the original payment is reversed and the failed
payment is recorded. If the transaction ID is missing or incorrect, or the successful
payment cannot be located in the database, the PCM_OP_PYMT_VALIDATE_
PAYMENT opcode returns a value of PIN_PYMT_FAILED in the PIN_FLD_RESULT
field, and an error is displayed. The payment is not reversed and the failed payment is
not allocated. You must manually fix the transaction ID to resubmit the payment. Or,
you can configure BRM to identify the original payment by using other payment
attributes. See "Customizing Payment Fees".

Customizing Unconfirmed Payment Processing

When a failed unconfirmed payment is received, the original successful payment is
identified by using its transaction ID.

The PIN_FLD_PAYMENT_TRANS_ID field in the /event/billing/payment/failed event
must be equal to the PIN_FLD_TRANS_ID of the successful unconfirmed payment
item. If so, the unconfirmed payment is reversed and the failed payment posted to the
proper account.

11-4 BRM Configuring and Collecting Payments

Handling Failed Unconfirmed Payments

If the payment processor is not able to send a transaction ID with each payment, or if
the transaction ID is not a reliable means of identifying a payment, you can configure
PCM_OP_PYMT_POL_VALIDATE_PAYMENT to find the original unconfirmed
payment by using other payment properties. For example, you can use a combination
of the payment amount, account number, and invoice number.

When the payment is received, BRM compares these values in the failed payment with
those of the original unconfirmed payment, and if the values match, it will reverse the
unconfirmed payment and post the failed payment.

Note: The result of the validation is the POID of the unconfirmed
successful payment item that was recorded in BRM. If the item is not
available, the reversal cannot occur. By default, this policy opcode
retrieves the item by finding the payment event with corresponding
transaction ID.

Handling Atypical Payments 11-5

Handling Failed Unconfirmed Payments

11-6 BRM Configuring and Collecting Payments

12

Managing Externally Initiated Payments

This chapter describes how to use Oracle Communications Billing and Revenue

Management (BRM) to handle externally initiated payments, such as check or cash
payments.

For information about handling BRM-initiated payments, see "About BRM-Initiated
Payment Processing".

About Externally Initiated Payments

With externally initiated payments, such as payment by check or cash, an invoice is sent
to the customer, who responds by sending the payment. Typically, payments are sent
to a bank, and the bank sends you a list of payments that have been received and
deposited. You then use Payment Tool to update the customer’s account and close

outstanding payments. For more information, see "Processing a Batch of Payments by
Using Payment Tool".

Figure 12-1 shows how BRM collects externally initiated payments:

Figure 12-1 BRM Collection of Externally Initiated Payments

BRM system
BRM generates Payment iz recarded
iroice in BRM database
F Y
h 4
Customer receires .| Payment is deposited
iroice 1 inbank

Supported Externally Initiated Payment Methods

You can submit the following externally initiated payments to BRM by using Payment

Tool:
s Check
s Cash

s Wire transfer

Managing Externally Initiated Payments 12-1

Processing a Batch of Payments by Using Payment Tool

Postal order

Inter-bank transfer

Note: If unconfirmed payment processing is enabled, you can submit
a batch of failed payments for unconfirmed payments that later fail.
For more information, see "About Unconfirmed Payment Processing".

To add more payment methods, see "Rules for Modifying Payment and Reversal

Fields".

Processing a Batch of Payments by Using Payment Tool

Processing payments with Payment Tool typically follows this procedure. This
example shows how to process a batch of payments. Processing payment reversals and
refunds is a nearly identical procedure.

1.

You receive a batch of check payments. (A batch of check payments is typically a
record of checks received and deposited in your bank.) Review the batch of
payments to determine the number of payments and the total of all payments in
the batch.

Open Payment Tool.

If you have branding enabled, choose the brand containing the accounts you must
process. (You can work in only one brand at a time.)

Choose the type of payment batch to create (for example, check payments).

Enter the following batch properties:

The number of payments that you are processing.

(Optional) The projected total for the payments in the batch. You use this total
to validate that you have entered all the payments.

(Optional) The currency.
(Optional) The payment channel.

(Optional) The effective date of the batch. You can backdate a batch, but not
before the date of the last posted general ledger transaction report.

(Optional) The Lockbox ID and Lockbox date.

The allocation level. You can allocate payments to specific items or to an entire
bill.

Record the data for each payment in the batch window, as shown in Figure 12-2.

12-2 BRM Configuring and Collecting Payments

Processing a Batch of Payments by Using Payment Tool

Figure 12-2 Payment Tool Check Payment Batch Window

B Check Payment Batch | _ O] x|
Batch |D: I Batch Submit D ate: I Bateh Currency: ILIS Dollar
- Bill Account Check Check |Bank | Bank Payment il
Staces [Allocation (K Humber| Humber Date Humber | Code |Account Comment Amount

1 [Input n 0.0.0.1-5470 084 62001 34230 3228 F 1500

2 |Input r 0.0.01-5229 081 62001 YFG: 1182 F 15000

3 |Input r 0.0.0.1-7651 :08M 652001 12558 1543 k] 15.00
4 |Input I 0.0.0.1-2391 084 52001 2411 5233 ki 10000 j
*Wwhen checked, the payment will be left unallocated at the account. Calzulated Total : I 732.00
Specified Total: | 792.00

Walidate | St I Clear Cloze

After each entry is complete, Payment Tool displays the updated batch total in the
Calculated Total field. When you finish entering all the data in a batch, compare
the entry in the Calculated Total field with the entry in the Specified Total box. If
you expect the entries to match and they do not, check the values in the Payment
Amount column.

Note: If Payment Suspense Manager is enabled, the Suspended
Total box may contain an entry. This entry displays the total for all
payments that cannot be submitted to the correct accounts and are
therefore submitted to the payment suspense account.=poi

For information about Payment Suspense Manager, see "About Payment Suspense
Manager". For information about handling suspended payments, see Payment
Tool Help.

When all the payments are recorded, click Validate to validate the batch of
payments. If you entered a projected total when you created the batch and the
calculated total of the payments in the batch does not equal the projected total,
Payment Tool asks whether you want to continue. You can change the payment
amounts before submitting the batch.

If a customer paid too much or too little, an entry might not be validated
(depending on your BRM configuration). You can create a batch that includes only
payments that are not valid. You can use that batch to process the payments that
are not valid, usually by allocating payments. See "About Allocating Payments".

When all payments are validated, submit the batch to BRM.

For information about manually suspending payments, see Payment Tool Help.

Who Uses Payment Tool?

Payment Tool is used mostly by data entry personnel. Batches of payments that cannot
be validated because they require allocation are typically processed by a senior
customer service representative (CSR) or an accountant.

Managing Externally Initiated Payments 12-3

About Allocating Payments

Note: If your BRM system contains brands, you can see only the
brands that you have permission to access. Before you can process
payments, you must select a brand to work in.

Running Payment Tool on Windows 7 and Windows 8.1

On Windows 7 and Windows 8.1, Payment Tool must be run as an administrator. See
the Windows 7 or Windows 8.1 online Help for information.

About Allocating Payments

When customers pay more or less than they owe, you can allocate payments. For
example, if a customer pays too little, you can specify which items on the bill to apply
the payment to. If your batch supports bill-level allocation, you can also allocate a
payment to a specific bill when there are multiple unpaid bills for an account.

When you validate data, if you see a message in the status bar that says something
similar to “Payment allocation required,” you must allocate payments.

You can also allocate an account-level payment when the payment is applied to an
account with multiple bill units.

When applying payments to an account, you can allocate the payments before or after
you validate them.

For the steps to allocate payments, see Payment Tool Help.

About Required and Suggested Allocations

Payment allocations can be required or suggested. If an allocation is required, you
must make the payment allocation before the payment can be submitted. If an
allocation is suggested, your business policy should recommend that you allocate the
payment, but allocation is not required.

About Allocating Multiple Payments for the Same Bill

When a payment clerk submits a payment batch that contains multiple payments for
the same bill, BRM views each payment portion as an underpayment and displays a
message requiring the payment to be allocated manually.

By default, BRM views each payment as an underpayment and prompts the payment
clerk to manually allocate it. To disable the underpayment validation so
underpayments are not returned with an error, set the NoManualAllocation flag in
the PaymentTool.ini configuration file to 1. This also disables the Allocate button in
Payment Tool. When the batch is submitted to BRM, the payments are allocated
correctly.

Allocating Payments to Bills and Items

You can allocate a payment to a specific bill or to individual charges (items) on a bill. A
payment batch can contain either bill-level allocations or item-level allocations, but not
both. You must choose the allocation level before you create a payment batch.

If you enter a bill number and a payment amount when creating a batch, and the
payment amount matches the bill amount, the bill is closed automatically when the
payment is submitted. If the payment amount does not equal the amount due for the
bill, your business policies should handle the underpayment or overpayment.

12-4 BRM Configuring and Collecting Payments

About Allocating Payments

For example, an account has an unpaid bill of $30 and the customer pays $35. If the
CSR records the payment and indicates the bill number in the payment batch, the bill
is closed automatically and the overpayment is allocated to another open bill or
recorded at the account level, according to your business policies.

For more information on configuring overpayment and underpayment rules, see
"Handling Overpayments and Underpayments".

Allocating an Account-Level Payment to Multiple Bill Units

You can allocate an account-level payment to multiple bill units of an account.
Payment Tool allocates the payment according to the business policies defined in the
PCM_OP_PYMT_POL_MBI_DISTRIBUTE policy opcode. However, you can manually
allocate the payment to override the default payment distribution.

Default payment distribution follows these rules:
= Bills having older due dates receive the payment amount first.

s If all the bills have the same due date, the bills with the higher due amounts are
considered first.

= In the case of overpayment, the excess payment remains unallocated to the default
bill unit of the account.

s In the case of underpayment, bills with later due dates or low due amounts do not
get any payment amount.

Note: The Payment Suspense Management feature must be enabled
in your BRM system for you to allocate payments to accounts with
multiple bill units. For more information, see "Enabling Payment
Suspense in BRM".

Payment Tool performs the following steps to allocate an account-level payment to
multiple bill units:

1. When you validate a payment, Payment Tool calls the PCM_OP_PYMT _
VALIDATE_PAYMENT opcode, which is wrapper opcode for the PCM_OP_
PYMT_POL_VALIDATE_PAYMENT policy opcode. The PCM_OP_PYMT_POL_
VALIDATE_PAYMENT policy opcode validates that the account-level payment
requires distribution to multiple bill units. This validation opcode adds the reason
ID as PIN_REASON_ID_MBI_DISTRIBUTION_REQD and domain ID as PIN_
PYMT_SUSPENSE_REASON_DOMAIN_ID to the PIN_FLD_PAYMENT_
REASONS array in the return flist if:

s The payment is made to an account with multiple bill units.
= The payment is not suspended or failed.
2. After validating the payment, Payment Tool distributes the payment.

a. Payment Tool calls the PCM_OP_PYMT_MBI_DISTRIBUTE opcode to get the
payment distribution across multiple bill units. PCM_OP_PYMT_MBI_
DISTRIBUTE invokes the PCM_OP_PYMT_POL_MBI_DISTRIBUTE policy
opcode. The PCM_OP_PYMT_POL_MBI_DISTRIBUTE policy opcode
distributes the payment according to the default distribution logic.

b. Payment Tool calls the PCM_OP_PYMT_SELECT ITEMS opcode by giving the
output of PCM_OP_PYMT_MBI_DISTRIBUTE (bill unit-level distribution) as
input. PCM_OP_PYMT_SELECT_ITEMS identifies the item-level distribution.

Managing Externally Initiated Payments 12-5

About Allocating Payments

Payment Tool calls the PCM_OP_PYMT_MBI_ITEM_SEARCH opcode to
retrieve the bills/item across multiple bill units of the account.

You can override the default distribution by manually allocating the payment.
After manual allocation of payment, revalidate the payment. For more
information on how to manually allocate payment to multiple bill units, see
Payment Tool Help.

3. After distributing the payment, Payment Tool calls the PCM_OP_PYMT_
COLLECT opcode. For more information on how PCM_OP_PYMT_COLLECT
allocates the payment to multiple bill units, see "Allocating Account-Level
Payments to Multiple Bill Units".

Note: For manually allocated payments, the input flist contains the
status as PIN_SELECT_STATUS_MBI_DISTRIBUTED. PCM_OP_
PYMT_VALIDATE_PAYMENT is already called from Payment Tool.
So, PCM_OP_PYMT_VALIDATE_PAYMENT does not perform
previous actions again when PCM_OP_PYMT_COLLECT calls it.

Allocating Payments Later

You can create a batch for only those payments that need allocations. See "Managing
Nonvalidated Batch Entries".

As an alternative, you can apply a payment to an account and allocate it later by using
Customer Center. When you apply a payment at the account level, the account balance
is reduced, but items and bills are not closed.

Allocating Payments in More Than One Currency

Each batch accepts payments in only one currency. If your customers pay bills in an
EMU national currency and the euro, be sure to create a separate batch for each
currency.

Important: For countries that joined the EMU before February, 2002,
the euro is the only legal currency. Countries that joined the EMU after
2/28/2002 can continue to use their national currency during the
crossover period; however, the accounts should also use the euro, not
the EMU currency, as the primary account currency. If you are unsure
whether you should create an additional batch for the EMU currency,
ask your supervisor.

Improving Payment Allocation Performance

You can improve the payment allocation performance for batch processing by
disabling the payment validation for due amounts. When the payment validation is
disabled for the due amounts, the due amounts are not displayed in the Due Amount
column in Payment Tool.

To improve performance of payment allocation:

1. Open the Payment Tool INI file (C:\Windows\ PaymentTool.ini).

2. Add the following entry in the CONFIG section:

DisableBatchDue=1

12-6 BRM Configuring and Collecting Payments

About Allocating Payments

3. Save and close the file.

You do not need to exit Payment Tool; the change takes effect the next time you
allocate a payment.

Allocating Externally Initiated Payments by Due Amount

When allocating an externally initiated payment, such as a payment made by check or
cash, that is associated with a valid account number but not a valid bill POID, BRM
uses the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to find the
appropriate bill as follows:

1. If the element associated with the payment in the PIN_FLD_CHARGES array of
the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode input flist has a
bills array (PIN_FLD_BILLS) and the array contains a bill number (PIN_FLD_
BILL_NO), the policy opcode searches for the bill POID associated with the bill
number.

2, If the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode finds the
POID, it adds it to the bills array in its output flist. The information in the output
flist is passed to the PCM_OP_PYMT_SELECT_ITEMS opcode by Payment Tool or
by the PCM_OP_PYMT_COLLECT opcode.

3. If the payment is not associated with a valid bill number, the opcode searches for a
bill whose total due amount matches the payment amount. The search is restricted
to bills linked to the account with which the payment is associated.

Note: By default, this search is disabled. To enable it, see "Finding
Bills by Due Amount".

Finding Bills by Due Amount

Note: If the DisableBatchDue entry is set to 1, you cannot search
bills by the due amount.

If the payment element in the PIN_FLD_CHARGES array does not have a bills array
or if the bills array does not contain a valid bill POID or bill number, the PCM_OP_
PYMT_POL_VALIDATE_PAYMENT policy opcode searches for a bill whose total due
amount matches a specified payment amount. BRM uses this search to find a bill to
allocate a payment to when the bill POID and bill number associated with the
payment are unknown. The search is restricted to bills that belong to the account with
which the payment is associated. By default, this search is disabled.

If the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode finds the bill, it
adds its POID to the bills array in its output flist. If the bills array is missing, the
opcode creates the array before adding the POID.

To enable the search, you modify a field in the ar instance /config/business_params
object created during the BRM installation. Use the pin_bus_params utility or perform
this modification.

To enable this search:

1. Use the following command to create an editable XML file for the BusParamsAR
parameter class:

Managing Externally Initiated Payments 12-7

About Allocating Payments

pin_bus_params -r BusParamsAR bus_params_AR.xml

This command creates the XML file named bus_params_AR.xml.out in your
working directory. If you do not want this file in your working directory, specify
the full path as part of the file name.

2. Search the XML file for following line:

<SearchBillAmount>disabled</SearchBillAmount>

3. Change disabled to enabled.

Caution: BRM uses the XML in this file to overwrite the existing
/config/business_params object for the ar instance. If you delete or
modify any other parameters in the file, these changes affect the
associated aspects of BRM’s billing configuration.

4. Use the following command to load the change into the /config/business_params
object:

pin bus_params bus_params_AR.xml

You should execute this command from the BRM_Homel/sys/data/config directory,
which includes support files used by the utility. To execute it from a different
directory, see pin_bus_params.

5. Read the object with the testnap utility or Object Browser to verify that all fields
are correct.

See "Using testnap" in BRM Developer’s Guide for general instructions on using
testnap. See "Reading Objects by Using Object Browser" in BRM Developer’s Guide
for information on how to use Object Browser.

6. Stop and restart the Connection Manager (CM). For more information, see
"Starting and Stopping the BRM System" in BRM System Administrator’s Guide.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG
parameter. For more information, see "pin_multidb" in the BRM System
Administrator’s Guide.

12-8 BRM Configuring and Collecting Payments

About Reversing Payments

Caution: If an account that uses balance forward accounting receives
an underpayment when this search is enabled, some bill items in the
account might remain open even after funds to cover the
underpayment are submitted and the account balance (amount due
for all bills) returns to zero. As the open items age, they might trigger
debt management programs such as BRM Collections Manager.

For example, Account A has a monthly billing cycle. At the end of
May:

s Total due amount for Bill 1 is $10 (Item 1a = $5, Item 1b = $5).
s Customer makes a $5 payment.

s Item lais closed, Item 1b remains open, and the total due for the
account is set to $5.

At the end of June:

n Total due for Bill 2 is $15 (Item 2a = $5, Item 2b = $5, and the
amount due from previous bills = $5).

= Customer makes a $15 payment.

= Neither a bill POID nor a bill number was submitted with the
payment, so BRM uses the payment amount to find a bill to apply
the payment to. It finds Bill 2 because the total due amount for Bill
2 matches the payment amount.

m Items 2a and 2b are closed, $5 is left unallocated at the account
level (it remains in the open payment item), and the total due for
the account is set to $0.

= Item 1b remains open.
To close bill items such as 1b:

= Use a database reporting tool such as BRM Reports to find all the
open payment items in your BRM database.

= In Customer Center, manually allocate the amount in each open
payment item to the corresponding open bill item.

About Reversing Payments

Payment reversals are necessary when a payment is recorded in the BRM database, but
the payment is not deposited. For example, you could record a check payment for a
check that does not clear. To reopen the bill so the payment can be made again, you
reverse the payment. Reversing the payment enables BRM to treat the payment as if it
never happened.

You use Payment Tool to process batches of payment reversals. For more information
on how BRM reverses payments, see "How BRM Reverses Payments".

Managing Externally Initiated Payments 12-9

About Externally Initiated Refunds

Note:

» Toreverse failed unconfirmed payments, create a failed payment
batch.

» The reversals discussed in this section are referred to as direct
reversals. They differ from indirect reversals that occur due to
payment recycling during suspended payment processing. For
information on reversals and how they relate to payment
recycling, see "Understanding Payment Recycling".

= To reverse account-level payment made to an account having
multiple bill units, you pass the original payment’s transaction ID
to Payment Tool. When you submit a reversal batch, the reversal
batch reverses all the sub-payments created during the
account-level payment allocation to multiple bill units.

Supported Payment Reversal Types

You can directly reverse the following types of payments:
s Check

s Credit card

s Direct debit

= Inter-bank transfers

= Postal order

s Wire transfer

Important: Cash reversals enable cash payments to be recycled
during payment suspense processing. They are not intended to
directly reverse cash payments from the BRM database. For more
information on payment reversals and recycling, see "How Payments
Are Reversed".

Processing a Batch of Payment Reversals by Using Payment Tool

To process payment reversals, follow the basic procedure described in "Processing a
Batch of Payments by Using Payment Tool".

= Instead of entering the bill number, you enter the payment ID. To find the
payment ID, search for the account to see a list of payments.

= (Optional) Enter the original transaction date in the batch window. See "About the
Columns in Batch Windows".

About Externally Initiated Refunds

To make refunds to customers with invoice accounts, first create the refund items,
either manually or by using the pin_mass_refund utility. See "About Refunds" in BRM
Managing Accounts Receivable. You then make the refund payments by check or other
externally initiated payment, and record those payments by using Payment Tool. See
"Processing a Batch of Refunds by Using Payment Tool".

12-10 BRM Configuring and Collecting Payments

About Externally Initiated Refunds

= You cannot refund suspended payments. For information on suspended payment
processing, see "Configuring Payment Suspense Manager".

= You cannot reverse a refund. If you refund a customer account by mistake, adjust
the account for the refunded amount. See "Performing Adjustments with Your
Custom Application" in BRM Managing Accounts Receivable.

Supported Batch Refund Types

Payment Tool supports the following types of refunds:
s Check

s Cash

= Wire transfer

= Postal order

s Inter-bank transfer

Note: Payment Tool does not support batches of credit card refunds.
BRM-initiated refunds are handled by the pin_refund utility.

Processing a Batch of Refunds by Using Payment Tool

To process refunds, you follow the same procedure described in "Processing a Batch of
Payments by Using Payment Tool". The only difference is that you do not allocate
payments for refunds.

Managing Refunds with Your Custom Application

For background information, see "About Refunds" in BRM Managing Accounts
Receivable.

To create a refund, use the PCM_OP_BILL_ITEM_REFUND opcode. This opcode
creates a refund item for a /bill or /billinfo object.

POIDs passed in to either the PIN_FLD_BILL_OB]J field or the PIN_FLD_BILLINFO_
OB]J field specify the billing entity to receive the refund.

There are two ways to run PCM_OP_BILL_ITEM_REFUND: calculate-only mode or
regular mode.

In calculate-only mode, PCM_OP_BILL_ITEM_REFUND:

= Computes the total refund amount without actually creating the refund item or
committing any changes to the database.

» It shows the amount that a CSR can refund, based on both credit and debit items.
In the regular mode, PCM_OP_BILL_ITEM_REFUND does the following:

» Creates a refund item for the account if it has an open credit. Otherwise the refund
fails and an error message is returned.

s Transfers amounts from any open credit items to the new refund item, and closes
the credit items.

Note: For any transfers, PCM_OP_BILL_ITEM_REFUND calls the
PCM_OP_BILL_ITEM_TRANSEFER opcode.

Managing Externally Initiated Payments 12-11

Managing Nonvalidated Batch Entries

s Transfers amounts from the /billinfo or /bill object to any open debit items.

Each transfer from the new refund item to debit items decreases the value of the
new refund item.

= Creates the /item/refund object, which contains the total credit amount.
s Closes these credit and debit items.
= Returns the refundable amount in the /item/refund object.

If you use a custom program to perform refunds, you can put the program name in the
input flist optional field PIN_FLD_PROGRAM_NAME. If this field is used to contain
the name of the program refunding a customer’s account, the program name is
recorded in the events associated with an item refund. If the program name is not
specified, the default value, Refund Opcode, is used.

Note:

= You cannot refund suspended payments. For more information,
see "How Direct Reversals and Refunds Relate to Suspense".

= You cannot reverse a refund. If you refund a customer account by
mistake, adjust the account for the refunded amount. See
"Performing Adjustments with Your Custom Application" in BRM
Managing Accounts Receivable.

Managing Nonvalidated Batch Entries

While processing a payment, refund, or reversal batch, you might have some entries
that cannot be validated easily. You can create a batch that includes only those entries
with validation errors. This enables you to submit the entries that can be validated. If
Payment Suspense Manager is enabled, you can manually suspend any invalid
payments and continue with submitting the batch.

To create a batch of nonvalidated entries, first validate the batch, then choose Tools -
Create Exception Batch. A new batch is created that includes only non-valid batches.
The non-valid batches are removed from the validated batch.

Processing Lockbox Batches

Lockbox processing is a typical way to handle externally initiated payments, reversals,
and refunds. With lockbox processing, the bank sends you a record of the data, which
you enter into the BRM database by using Payment Tool.

Most banks that perform lockbox processing can format a text file according to your
specifications, which might include:

s Which data is included.
s The format (fixed width or delimited).
s The order of the entries.

s A batch header or footer. The batch header and footer can contain information
common to all payments in the payment batch, and information specific to the
batch, including the lockbox number, date, number of checks, and total payment
amount. If a payment is missing information, the batch data is used.

You can have the bank deliver the file electronically, and you can use Payment Tool to
import data directly from the file. See "Importing Batch Data into Payment Tool".

12-12 BRM Configuring and Collecting Payments

About the Columns in Batch Windows

Note:
= You might need to create a utility to retrieve the file.

If the bank creates the file with the EBCDIC character set, you
must create a utility to convert it to ASCIL

Payment Tool does not support the EDI 823 format.

About the Columns in Batch Windows

This table describes the columns in the Payment Tool batch window. Most types of
batches use the same columns. Depending on the type of payment batch, and the
functionality that is enabled, some columns might not be displayed. For example, the
Receipt No. column appears only for cash payment batches, and the Suspense
Description column appears only if Payment Suspense Manager is enabled.

The only required columns are the Bill Number and Account Number columns, but
you only need one of them. For example, if you enter the account number, the bill
number is not required.

You can configure custom columns for each type of batch. For example, a cash
payment batch might include a column for entering the name of the person who
signed the receipt.

Entering data in optional columns makes it easier for a BRM administrator to find
payment information as shown in Table 12-1.

Table 12-1 Payment Data

Column Batch Type Description

Status All batches The status of the entry.

Payment ID Payment reversal batches The amount of payment to reverse.

Allocation Payment batches The expansion level of the entries that include payment
allocations. If you allocate payments, you can see all of the
open bill items for the account.

This column appears in refund batches but is not used.

* Payment batches When checked, the payment is allocated to the account, but
is not allocated to any bills or items.

You can record a payment at the account level, and allocate
it later by using Customer Center. When you record a
payment at the account level, the account balance is
reduced, but items and bills are not closed.

Bill Number Payment batches and refund | The bill number that the payment or refund applies to.

batches If the account number is not supplied, the bill number is
required.

Account Number All batches The account number that the payment applies to.

If the bill number is not supplied, the account number is
required.

Payment All batches The transaction ID of the payment.

Transaction ID

Check Date All check batches The date on the check.

Receipt Date All cash batches The date on the receipt.

Managing Externally Initiated Payments 12-13

Importing Batch Data into Payment Tool

Table 12-1 (Cont.) Payment Data

Column Batch Type Description

Original Payment reversal batches The date that the payment was originally closed.

transaction date

Chargeback date Payment reversal batches The date that the payment reversal was made.

Check Number All check batches The serial number on the customer’s check.

Receipt No. All cash batches The serial number on the receipt.

Credit card No. Credit card payment reversal | The credit card number for the payment.
batches

Bank RDFI No. Direct debit payment reversal | The direct debit card number for the payment.
batches

Order ID All postal order batches The serial number of the postal order or the inter-bank

All inter-bank batches

payment order.

Wire-Transfer ID

All wire transfer batches

The serial number of the wire transfer receipt.

Bank Code All check batches The bank branch ID number.
All inter-bank batches
All wire transfer batches

Bank Account All check batches The customer’s personal account number.
All inter-bank batches

All wire transfer batches

Channel All batches The payment channel ID.

Suspense Payment batches The reason why the payment failed validation and was

Description suspended.

Status Description | Payment batches The reason why the payment status was set.

Status Code Payment batches The status code for the payment, which is used by BRM
during validation.

Comment All batches Comments about the entry.

Payment Amount | Payment batches The amount paid.

The payment amount is required.

Reason code

Payment reversal batches

A number representing a reason for reversing the payment.

Importing Batch Data into Payment Tool

You can import data from text files into Payment Tool batch format. For example, if
you have electronic files of data formatted in columns, you can import that data into a
batch instead of entering it manually.

To import a batch, the information must be in a text file. Payment Tool supports a wide
variety of formats, including almost any delimiter character. Data can be in any order:
the columns do not need to match the columns in the Payment Tool batch windows.

Data must be in a format that can be imported. Before you begin importing data,
ensure that you know how your data is formatted:

When you import data, you must specify how the data is separated in columns
(for example, with spaces or tabs). Open a file containing your data to see how it is

formatted.

12-14 BRM Configuring and Collecting Payments

Handling Overpayments and Underpayments by Using Payment Tool

= Your data can include information that is not formatted in columns (for example, a
document heading). This information can be imported as the batch header and
batch footer.

s For payment data and refund data, there are two required columns:

- The amount paid

— Either the account number or the bill number
s For payment reversal data, the only required column is the payment ID.
A typical input file looks like this:

Account Number, Payment Amount,Date,Check Number
0.0.0.1-887,19.95,5/11/99,1243
0.1-425,19.95,5/11/99,1543
.1-776,19.95,5/11/99,1273

0.0.
0.0.
0.0.0.1-143,19.95,5/11/99,1254

0
0

Figure 12-3 shows how an input file, such as the one shown above, appears in the
Batch Import Wizard. The data is organized in columns, as defined by the delimiter
character (in this case, a comma).

Figure 12-3 Batch Import Wizard

Batch Import Wizard - Step 3 of 4 |

Thiz szreen lets wou format your data .
“ou can zee how wour text iz affected in the presiews below.

[T Semicalan 2pace [T Tieat consecutive delimiters as one
’ & Single
¥ Comma [Other: I_ " Multiple Text Qualifier : I j

A B C D
00018371295 5/11400: 1243
0.0.0.1-425:13.95:5/11./01: 1543
0.0.01-776:13.95:511.01:1273
0.0.01-143:13.95:5/11./01: 1254

LI = | D3| 2

¢ Back I MHewt > | Cancel | Help |

Handling Overpayments and Underpayments by Using Payment Tool

If a customer pays too much or too little, you allocate the payment as required by your
BRM business policies. For example, these are alternative underpayment policy
configurations:

= Automatically apply payments to bill items.

Managing Externally Initiated Payments 12-15

Working with Multiple Currency Types in the Payment Tool

= Suggest payment allocation in Payment Tool.
= Require payment allocation in Payment Tool.

For more information, see "Handling Overpayments and Underpayments".

Working with Multiple Currency Types in the Payment Tool

When you process payments with Payment Tool, you choose the currency to use for
each batch of payments. You can make a payment to an account in any currency. The
amount will be converted to the account’s primary currency and then posted to the
account. For information on how BRM uses currencies, see "About System and
Account Currencies" in BRM Managing Customers.

Applying Multiple Payments to the Same Account

By default, to prevent duplicate entries, you cannot use Payment Tool to apply more
than one payment in a batch to a single account. However, you might need to apply
more than one payment if the account uses open item accounting and you need to
apply payments to more than one bill.

To apply more than one payment to an account:
1. Open the Payment Tool INI file (C:\Windows\ PaymentTool.ini).
2. Change this entry:

ALLOWACCOUNTDUP=0

To this:

ALLOWACCOUNTDUP=1

You do not need to exit Payment Tool; the change takes effect the next time you
validate a payment.

Manually Allocating Account-Level Payments to Accounts with Multiple
Bill Units

When you submit an account-level payment to an account with multiple bill units,
BRM applies the payment across multiple bill units. You can override the default
payment distribution by manually allocating the payment to multiple bill units.

By default, BRM enables you to manually allocate the payment to multiple bill units.
To disable the manual payment allocation, set the NoManualAllocation flag in the
PaymentTool.ini configuration file to 1. In this case, you are not allowed to manually
allocate the payment, and the default BRM payment distribution applies.

Enabling Overallocation to an ltem

Submitting duplicate payments for the same account with a single payment tool batch
can cause an overallocated payment, resulting in a credit to the customer’s account.
The new ItemOverallocation business parameter checks for item overallocation and
determines if an item can be allocated beyond what the customer owes.

By default, the item overallocation feature is disabled in BRM. You can enable this
feature by modifying a field in the billing instance of the /config/business_params
object.

12-16 BRM Configuring and Collecting Payments

Configuring Payment Tool to Lock at the Account Level during Batch Processing

You modify the /config/business_params object by using the pin_bus_params utility.
For more information, see "pin_bus_params" in BRM Developer’s Guide.

To enable overallocation to an item:
1. Go to BRM_homelsys/data/config.

2. Create an editable XML file from the /config/business_params object by running
the following command:

pin_bus_params -r BusParamsBilling bus_params_billing.xml

3. Search the XML file for the following line:

<ItemOverallocation>disabled</ItemOverallocation>

4. Change disabled to enabled.
5. Save the file as bus_params_billing.xml.
6. Load the XML file into the BRM database by running the following command:

pin bus_params bus_params_billing.xml

7. Stop and restart the CM.

8. (Multischema systems only) Run the pin_multidb script with the -R CONFIG
parameter. For more information, see "pin_multidb" in BRM System Administrator’s
Guide.

Configuring Payment Tool to Lock at the Account Level during Batch

Processing

When processing a batch of payments, Payment Tool, by default, locks all accounts
associated with the batch and keeps them locked until it finishes processing the batch.
This can cause problems if your batches contain a large number of payments, because
other processes cannot access the accounts during payment processing.

You can configure Payment Tool to lock only the account that it is currently processing
rather than the entire batch.

When processing payments in a batch, Payment Tool initiates the transaction for the
entire batch and any errors that are encountered while processing any payment entry
in the batch is ignored. However, when you configure Payment Tool to lock only the
account it is currently processing, the payment item and payment event is recorded in
the BRM database only when the payment entry is processed successfully. The
payment is not recorded if any errors are encountered while processing the payment
entry.

Important: Processing payments at the account level rather than at
the batch level can produce problems if the CM or Data Manager
(DM) fails during payment processing; Payment Tool cannot
determine which payments in the batch failed or were successfully
processed. Thus, when you resubmit the batch for processing,
Payment Tool may process a payment twice for the same account.

To find out which payments failed or were successful after a CM or DM failure, you
must either check the logs or check in the database for failed

Managing Externally Initiated Payments 12-17

Customizing Payment Details Displayed in BRM Client Tools

/event/billing/payment/pay_type events with the correct batch ID. Then, you must
batch only the failed payments and submit it to Payment Tool for processing.

To configure Payment Tool to lock at the account level when processing a batch of
payments:

1. Open the CM configuration file (BRM_Home/sys/cm/pin.conf) in a text editor.
2. Edit the payment_batch_lock entry:

- fm_pymt payment_batch_lock 0
Use 0 to lock at the account level or 1 to lock at the batch level.

3. Save and close the file.

4. Stop and restart the CM. For more information, see "Starting and Stopping the
BRM System" in BRM System Administrator’s Guide.

Customizing Payment Details Displayed in BRM Client Tools

BRM uses /config/paymenttool objects to create payment, reversal, and refund batch
type actions in the Payment Tool database. While you can handle most of your
payment decisions using Payment Tool, you can also customize actions in the
database. This section describes the characteristics of /config/paymenttool objects that
you can customize.

When you customize /config/paymenttool, follow the rules defined in "Rules for
Modifying Payment and Reversal Fields".

[config/paymenttool is defined in the init_objects.source file, which BRM reads when
it starts. The init_objects.source file provides information that determines:

= What Payment Tool displays, including the columns that are displayed and
whether the columns can be used for entering data or are read-only.

= What the Customer Center Payments tab displays, including the payment method
and credit card numbers.

Important: You should make a backup copy of the init_
objects.source file each time you modify it. When you upgrade BRM,
the installation program overwrites init_objects.source, including
your customizations. You can use the backup to restore your changes.

About the Default /config/paymenttool

The following is the default config/paymenttool as defined in init_objects.source.

! PaymentTool Payment Config object
Mandatory fields for creation for each PIN_FLD_PAY TYPES element specified

1
!
! PIN_FLD_NAME
! for each PIN_PAYMENT TOOL_FIELDS
! PIN_FLD FIELD NAME

! PIN_FLD_COLUMN_NAME

! PIN_FLD_PURPOSE

! PIN_FLD_BATCH_TYPE

TYPE = /config/paymenttool
FIELDS =

array PIN_FLD_PAY_TYPES (type = PIN_FLDT ARRAY, perms = ORW,) ;
field * PIN_FLD_NAME (type = PIN_FLDT_STR(255), perms = MRW,) ;

12-18 BRM Configuring and Collecting Payments

Customizing Payment Details Displayed in BRM Client Tools

)i

array
field
field
field
field

* PIN_FLD_PAYMENTTOOL_FIELDS(type = PIN_FLDT ARRAY, perms = ORW,) ;
* * PIN_FLD_FIELD NAME (type = PIN_FLDT_STR(255), perms = MRW,);
* * PIN_FLD_COLUMN_NAME (type = PIN_FLDT_STR(255), perms = MRW,);
* * PIN_FLD_PURPOSE (type = PIN_FLDT_INT, perms = MRW,) ;
* * PIN_FLD_BATCH TYPE (

type = PIN_FLDT_INTINT,
perms = MRW,

Rules for Modifying Payment and Reversal Fields

All changes you make in /config/paymenttool are reflected in the Payment Tool
graphical user interface when you stop and restart BRM. If you are changing or adding
values to the payment or reversal fields, follow these rules:

If you add a bill type in the /config/paymenttool storable class, you must add a
corresponding entry in the /config/payment storable class.

All user-defined fields for a particular type (data entry or display) for a given
batch should be from the same array in the /event object.

See the /config/paymenttool and /event storable class definitions.

If the charge opcode fields in /config/payment are valid, the display fields for the
corresponding reversal batch should be from /event/billing/charge/name, where
name can be defined as a credit card, direct debit, and so on.

Tip: The charge object contains a lot of payment information;
therefore, it might be useful to display the charge object information
when reversing a payment.

There must be at least one /config/paymenttool object for each supported
language.

You can set a language as the default by entering Default in PIN_FLD_NAME as
shown below:

0 PIN_FLD_NAME STR [0] "PaymentTool payment Types: Default"

By default, the language is set to English (United States).

The Customer Center, Payment Tool, and Payment Center client applications read
the /config/paymenttool object that has PIN_FLD_NAME set to Default.

To customize the client applications to read a specific locale of English, update
PIN_FLD_NAME in the /config/paymenttool object as shown in the following
examples:

- For English (United States):

0 PIN_FLD_NAME STR [0] "PaymentTool payment Types: English(United
States)"

— For English (United Kingdom):

0 PIN_FLD_NAME STR [0] "PaymentTool payment Types: English(United
Kingdom) "

You can also use the PCM_OP_WRITE_FLDS opcode to set the locale.

Managing Externally Initiated Payments 12-19

Customizing Payment Details Displayed in BRM Client Tools

Note: The country name you specify should exactly be the same as
the country name in the language parameter for that particular locale.

= In the /config/paymenttool definition, an array element must always begin with
PIN_FLD_PAYMENTTOOL_FIELDS. Each array corresponds to an array element
in the /config/payment object. The sequence of array elements determines the
order of columns displayed in Payment Tool.

= A payment batch must have only data-entry fields. A reversal batch can have
display and data-entry fields.

= All the fields you use to enter or display data in Payment Tool for a particular
batch grid must be defined in the same array in the object definition.

= Storable objects for payment reversal are created as subclasses from
/event/billing/payment or /event/billing/reversal.

Creating an Object Definition for a New Payment or Reversal Event

To create a payment or reversal event, start a new PIN_FLD_PAYMENTTOOL_FIELDS
array. Use the following example to define your custom fields. Before you define an
object, see "Rules for Modifying Payment and Reversal Fields".

PIN_FLD_PAY_TYPES is the first line. The 0 to the left of this line indicates that this is
the beginning of a sequence of arrays.

0 PIN_FLD_PAY TYPE ARRAY (0] allocated 3, used 3

PIN_FLD_NAME indicates that the array has been allocated 5 items and 3 have been
used. This line is at the same level as the following PIN_FLD_PAYMENTTOOL_
FIELDS items.

1 PIN_FLD NAME ARRAY [10003] allocated 5, used 3

10003 comes from a corresponding entry in /config/payment/.

PIN_FLD_PAYMENTTOOL_FIELDS begins the definition of an individual,
user-defined array. The 1 to the left of the line shows that this is a subset of PIN_FLD_
PAYMENTTOOL_FIELDS but of equal status to PIN_FLD_NAME.

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 3, used 3

An example of individual arrays is shown below.

Within the first PIN_FLD_BATCH_TYPE array the numeral 1, not [1], says that this is a
reversal batch type while 0 is a payment method. The second PIN_FLD_BATCH_TYPE
in this example is also a reversal batch type. Remember that while a payment batch
only has data entry fields, a reversal batch can have display and data entry fields.

The first PIN_FLD_PURPOSE, with a value of 1 indicates that this field is read-only.
The second PIN_FLD_PURPOSE value is 0, indicating that data can be entered in this
field. In other words, you cannot enter information in "Credit Card No.", but you can
enter a value for "Chargeback Date". PIN_FLD_FIELD_NAME is the database field
name, not the column name (PIN_FLD_COLUMN_NAME).

The values in brackets, [0], [1], and [2] are index values dealing with the sequence of

fields.
1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 3, used 3
2 PIN_FLD_BATCH_TYPE INT [0] 1

12-20 BRM Configuring and Collecting Payments

Customizing Payment Details Displayed in BRM Client Tools

2 PIN_FLD_COLUMN_NAME STR [0] "Credit Card No."

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_DEBIT NUM"

2 PIN_FLD_PURPOSE INT [0] 1

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [1] allocated 3, used 3
2 PIN_FLD_BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Chargeback Date"

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_EFFECTIVE_T"
2 PIN_FLD_PURPOSE INT [0] O

Changing the Order of Columns in Payment Tool

The sequence of fields, PIN_FLD_PAYMENTTOOL_FIELDS, determines the order of
columns in Payment Tool. If you are not satisfied with the default settings and you
want to add another column of information or change a column name, you must
customize Payment Tool. To do this, you must change the /event/billing/payment,
/event/billing/reversal, and /config/paymenttool objects.

To change the order of the columns, you must change the order of PIN_FLD_
PAYMENTTOOL_FIELDS arrays in /config/paymenttool because the column order is
determined by the order in which they appear in this object.

In the following example, the three configurable, user-defined columns are in the
order:

s Credit Card No.
= Chargeback Date

= Reason Code

0 PIN_FLD_PAY TYPES ARRAY [10003] allocated 5, used 5

1 PIN_FLD_NAME STR [0] "Credit Card"

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 3, used 3

2 PIN_FLD BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Credit Card No."

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_DEBIT_NUM"

2 PIN_FLD_PURPOSE INT [0] 1

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [1] allocated 3, used 3

2 PIN_FLD BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Chargeback Date"

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_EFFECTIVE_T"
2 PIN_FLD_PURPOSE INT [0] O

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [2] allocated 3, used 3

2 PIN_FLD_BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Reason Code"

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_REASON_CODE"
2 PIN_FLD_PURPOSE INT [0] O

To change the order of the columns in Payment Tool, you must change the order of
each array. In the following example, the columns are in the order:

s Credit Card No.
s Reason Code

s Chargeback Date

0 PIN_FLD_PAY TYPES ARRAY [10003] allocated 5, used 5

1 PIN_FLD_NAME STR [0] "Credit Card"

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 3, used 3
2 PIN_FLD BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Credit Card No."

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_DEBIT_NUM"

Managing Externally Initiated Payments 12-21

Customizing Payment Details Displayed in BRM Client Tools

2 PIN_FLD_PURPOSE INT [0] 1

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [1] allocated 3, used 3

2 PIN_FLD_ BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Reason Code"

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_REASON_CODE"
2 PIN_FLD_PURPOSE INT [0] O

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [2] allocated 3, used 3

2 PIN_FLD BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Chargeback Date"

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_EFFECTIVE_T"
2 PIN_FLD_PURPOSE INT [0] O

Adding a New Column to Payment Tool

To add a new column to Payment Tool, you add a new column section to an array in
/config/paymenttool. The new section contains information needed for that column.

The following example shows the information for a Customer Complaint column:

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 3, used 3

2 PIN_FLD_BATCH_TYPE INT [0] 1

2 PIN_FLD_COLUMN_NAME STR [0] "Customer Complaint"
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_COMPLAINT"

2 PIN_FLD_PURPOSE NT32 [0] 1

Adding Direct Debit Details to the Customer Center Payments Tab

By default, the Customer Center Payments tab does not display details from payment
vendors on whether direct debit payments were authorized. To have the direct debit
details added to the Payments tab, add the direct debit fields to the PIN_FLD_PAY_
TYPES array of the /config/paymenttool class.

1. Use the PCM_OP_WRITE_FLDS opcode to add the direct debit vendor details to
the /config/paymenttool class. Call the opcode using flag 32. For example:

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 10574 0

0 PIN_FLD_OP_CORRELATION_ID STR [0]
"2:CT1255:UnknownProgramName: 0 : AWT-EventQueue-0:5:1226568418:0:ro0t.0.0.0.1::us
erl:123456789"

0 PIN_FLD_PAY TYPES ARRAY [10005] allocated 2, used 2

1 PIN_FLD_NAME STR [0] "Direct Debit"

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [4] allocated 4, used 4
2 PIN_FLD_BATCH_TYPE INT [0] O

2 PIN_FLD_COLUMN_NAME STR [0] "Authorization Result"

2 PIN_FLD_FIELD _NAME STR [0] "PIN_FLD_RESULT"

2 PIN_FLD_PURPOSE INT [0] 9

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 10574 0

0 PIN_FLD_OP_CORRELATION_ID STR [0]
"2:CT1255:UnknownProgramName: 0 : AWT-EventQueue-0:5:1226568418:0:ro00t.0.0.0.1::us
erl:123456789"

0 PIN_FLD_PAY TYPES ARRAY [10005] allocated 2, used 2

1 PIN_FLD_NAME STR [0] "Direct Debit"

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [5] allocated 4, used 4
2 PIN_FLD_BATCH_TYPE INT [0] O

2 PIN_FLD_COLUMN_NAME STR [0] "Authorization Code"

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_AUTH_CODE"

2 PIN_FLD_PURPOSE INT [0] 9

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 10574 0

0 PIN_FLD_OP_CORRELATION_ID STR [0]

12-22 BRM Configuring and Collecting Payments

Customizing Payment Details Displayed in BRM Client Tools

"2:CT1255:UnknownProgramName: 0 : AWT-EventQueue-0:5:1226568418:0:ro0t.0.0.0.1::us
erl:123456789"

0 PIN_FLD_PAY TYPES ARRAY [10005] allocated 2, used 2

1 PIN_FLD_NAME STR [0] "Direct Debit"

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [6] allocated 4, used 4

2 PIN_FLD_BATCH_TYPE INT [0] O

2 PIN_FLD_COLUMN_NAME STR [0] "Vendor Results"

2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_VENDOR_RESULTS"

2 PIN_FLD_PURPOSE INT [0] 9

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 10574 0

0 PIN_FLD_OP_CORRELATION_ID STR [0]

"1 :MCHELLAM-1idc : UnknownProgramName: 0 : AWT-EventQueue-0:5:1226568418:0"

0 PIN_FLD_PAY TYPES ARRAY [10005] allocated 2, used 2

1 PIN_FLD_NAME STR [0] "Direct Debit"

1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [7] allocated 4, used 4 PIN_FLD BATCH_
TYPE INT [0] O

2 PIN_FLD_COLUMN_NAME STR [0] "Authorization Date"
2 PIN_FLD_FIELD NAME STR [0] "PIN_FLD_AUTH_DATE"
2 PIN_FLD_PURPOSE INT [0] 9

Stop and restart the CM. See "Starting and Stopping the BRM System" in BRM
System Administrator’s Guide.

Note: All changes you make in /config/paymenttool are reflected in
the Customer Center UI when you restart BRM.

Customizing the Date Format of Batch Files in Payment Tool

By default, when processing both imported and manually created batch files, Payment
Tool uses the date format of the system locale of the client on which it is running. For
example, if the locale is United States English, Payment Tool uses MM/dd/yyyy format.
If the locale is New Zealand English, Payment Tool uses dd/MM/yyyy format.

To configure Payment Tool to use a different date format from the one used by your
client system:

1.
2.

Open the Payment Tool INI file (C:\Windows\PaymentTool.ini).
In the file, find this entry:

DefaultDateFormat=

Set the entry to the appropriate date format.
Possible values:

» MM]scldd[sclyyyy

» dd[sc]MM[sclyyyy

where [sc] is the date separator character, such as slash (/) or dot (.), specified in
the regional settings of the Windows client.

Important: The values are case sensitive.

For example:

DefaultDateFormat=dd/MM/yyyy

Managing Externally Initiated Payments 12-23

Customizing Payment Details Displayed in BRM Client Tools

If no date format is specified, Payment Tool uses the default format of the system
locale.

You do not need to exit Payment Tool after updating the INI file; the change takes
effect the next time you create or import a payment batch.

12-24 BRM Configuring and Collecting Payments

13

Managing Suspended Payments

This chapter provides an overview of how Oracle Communications Billing and
Revenue Management (BRM) handles payment suspense operations performed using
Payment Center. For information on how to use Payment Center, see the Payment
Center Help.

About Payment Center

You use Payment Center to apply suspended payments to customer accounts and to
suspend payments that have been posted incorrectly. You can process only one
suspended payment at a time, and you need either a valid account number or bill
number to associate with the suspended payment.

Important: Payment Center does not support branded databases or
multischema environments.

Note: Payment Center is packaged in the PaymentTool.zip file and
shares the same installation. To install Payment Center, download and
install Payment Tool. To uninstall Payment Center, uninstall Payment
Tool.

You can perform the following tasks by using Payment Center:
= Search for accounts, bills, and payments.
= Apply suspended payments to customer accounts.

= Divide one suspended payment into multiple distributed payments, and apply
each one to a different customer account.

= Allocate suspended payments to bills and bill items in one or more accounts.
= Suspend payments that have been posted in customer accounts.
= Remove unallocatable payments from the payment suspense account.

For more information, see the Payment Center Help.

How BRM Processes Suspended Payments

Payment Center calls the following opcodes to process suspended payments:

s The PCM_OP_PYMT_VALIDATE_PAYMENT opcode to perform the validation.

Managing Suspended Payments 13-1

About Searching for Payments

s The PCM_OP_PYMT_MBI_DISTRIBUTE opcode to distribute the \payment to
multiple bill units if the payment is made to an account with multiple bill units.

s The PCM_OP_PYMT_SELECT_ITEMS opcode to prepare the item list for
allocation.

s The PCM_OP_PYMT_POL_OVERPAYMENT and PCM_OP_PYMT_POL_
UNDERPAYMENT policy opcode if the payment amount is more or less than the
sum of the total due of all the open items selected by PCM_OP_PYMT_SELECT_
ITEMS.

s The PCM_OP_PYMT_RECYCLE_PAYMENT opcode to reverse the suspended
payment and create the recycled payment in the accounts.

For more information, see "Configuring Payment Suspense Manager".

About Searching for Payments

You use Payment Center to search for suspended payments and payments that have
been posted in customer accounts. Depending on how the payment analyst specifies
the search, BRM looks for the following types of payments:

= Suspended payments: This search finds payments that entered BRM as
suspended and payments that were made to customer accounts and later
suspended. Payment analysts typically use this type of search when they want to
find suspended payments to distribute to customer accounts.

s All payments: This search finds suspended payments and active payments made
to customer accounts. Payment analysts can use this type of search if they are also
looking for payments that have been allocated to customer accounts but that must
be placed in suspense instead. You can narrow this type of search to include only
payments that have a specific payment type such as cash or check.

After it has the list of payments, Payment Center retrieves information on the state of
any suspended payments returned by the search. It does so by performing a second
search, this time for payments that have never been reversed. This search finds states
for all payments that were generated from a suspended payment, such as distributed
payments, but it does not retrieve payment states for payments that are no longer
active.

The types of payments returned in these searches include:
» Partially distributed suspended payments.

» Fully distributed suspended payments (only if the payment analyst specifies
Include Fully Allocated Payment).

= Suspended payments that were removed from the suspense account as
unallocatable.

= Payments that were reversed using Payment Tool.

= Suspended Payments made to a specified suspense account.

About Searching for Suspense Accounts

Payment Center retrieves information about suspended payments associated with
selected suspense account.

The Suspense Account field in the Payment Search dialog box lists the suspense
account in the following format:

13-2 BRM Configuring and Collecting Payments

About Searching for Payments

s If the company name is associated with the suspense account, the suspense
account is displayed as company_name_account_number.

For example:

XYZ Corporation 23456

s If the company name is not associated wit h the suspense account, the suspense
account is displayed as first_name_last_name_account_number.

For example:

Joe Smith 23456

About Payment Center Validation

Before a distribution list from Payment Center is submitted to BRM, it is validated.
You can choose how to validate payments that you submit through Payment Center.
Payment Center can validate payments in one of two ways:

= Automatically: When you enter information, the data is validated as soon as you
move your focus to the next field. If errors are detected, you must correct them
before continuing.

If a payment is an overpayment or underpayment, Payment Center notifies you
and enables you to change the allocated amount. During allocation, you will also
be notified if you underallocate a payment. You are prevented from overallocating
payments.

Field-level validation is the default for Payment Center. If you do not want to use
field-level validation, you can turn it off and validate the information manually
after entering any amount of data.

= Manually: After you enter any amount of data, you click Validate. Payment
Center then uses the Status column in the Allocate Payment window to display
the validation result of each allocation. It also indicates whether the allocation was
an overpayment or an underpayment so you can correct the payment amount.

Although allocation is on a per-account basis, validation occurs for the entire
transaction; if one of the distributed payments fails, the entire distribution list will fail.
Therefore, when performing a distributed payment allocation, it is better to use the
default (field-level validation) so you do not encounter problems after entering a large
amount of payment data.

Payment Center populates certain lists depending on the validation level you choose.
If field-level validation is enabled during account-level allocation, the open bills in an
account are automatically listed in the user interface as you enter information. If
field-level validation is disabled, you must manually enter each bill number for a
particular account. The open bills for an account are not populated in the Bill Number
column.

If one or more payments fail validation, the suspended payment is returned to its
preallocation state. In effect, the entire result of the payment distribution list is
undone. You must correct the problems and the list must pass validation before you
can submit the distributed payments. For information about payment validation, see
the discussion about managing payments in the BRM documentation. For information
on how BRM validates suspended payments, see the discussion about payment
processing implementation and customization in the BRM documentation.

If you determine that one or more distributed payments from the same list were
submitted incorrectly, you can resuspend them at any time. And, if you do not know

Managing Suspended Payments 13-3

About Allocating Suspended Payments

how to fully allocate a suspended payment to a distribution list, you can leave an
amount in suspense. You can continue allocating the payment at any time.

About Allocating Suspended Payments
You allocate suspended payments from the Payment Allocation window.

You can allocate a payment based on the account number only, the bill number only, or
either the account number or bill number, depending on the information available in
the payment. The allocation method you choose configures the columns in the
Payment Allocation window. This makes entering payment information easier, the
column for the chosen method is enabled, and the column for the method that is not
chosen is disabled. For example:

s If you choose Account Number, the bill number field is disabled so that you can
tab directly from the Account Number column to the Allocate column across each
row.

= If you choose Bill Number, the account number field is disabled, so that you can
tab directly from the Bill Number column to the Allocate column across each row.

= If you choose Account Number or Bill Number, both columns are enabled. If you
enter information in only one of the columns, you must tab through the other
column before you can enter the amount in the Allocate column.

Note: You can change the allocation method on a per-row basis; your
entire distribution list does not have to use the same method.

If you apply a payment to specific bills or items in an account, BRM retrieves all open
bills and all open bill items. The results are displayed in the allocation window so you
can assign an amount to each account, bill, or item. If you perform an item-level
allocation after having entered a bill number for the payment, the item list will only
contain open items for that bill. If you perform an item-level allocation with the
account number entered only, the item list will contain all open items for that account.

About Deferred Payment Allocation

By default, when a payment is submitted to BRM, the BRM business policies either
allocate the payment automatically or post it to the account without being allocated to
specific bills or bill items. Unallocated payments remain as a credit on the account and
can be allocated later by using Customer Center.

For an account with multiple bill units, when an account-level payment is submitted
with deferred allocation flag set, the payment is distributed to multiple bill units but
remains unallocated.

Payment Center provides both options when you submit payments by using the
account number only. If you choose to have BRM allocate the payment automatically
and the allocated amount is less than the amount due, you will have the option of
manually allocating the payment to specific bills and items.

You can restrict Payment Center from providing the defer allocation option by setting
the Allocation Window preferences in Payment Center. For instructions on how to
allocate payments and set Payment Center preferences, see the Payment Center Help.
See "About Payments" for more information on how BRM allocates payments.

13-4 BRM Configuring and Collecting Payments

About Allocating Suspended Payments

About Overallocations and Underallocations

Owerallocation occurs when the sum of distributed payment amounts is greater than the
amount of the suspended payment. Underallocation occurs when the sum of distributed
payment amounts is less than the amount of the suspended payment.

Overallocation is not valid in BRM, but you can configure BRM to handle
underallocations. For example, if an underallocation occurs, BRM can cancel the entire
allocation operation or leave the remaining amount in suspense.

In Payment Center, if you overallocate a suspended payment to a bill or item in an
account, you are required to change the allocation amount to be less than or equal to
the amount due on the bill or item, respectively. If you underallocate a suspended
payment, you are warned that the payment has been underallocated and are prompted
to fix the allocation. For example, if a suspended payment is $100, and you divide it
into three $25 distributed payments, the result is a $25 underallocation.

If this occurs, you can use Payment Center to correct the payment allocation any of the
following ways:

= Cancel the entire payment allocation and leave the suspended payment in its
previous state.

= Modify the total amount that was allocated in each distributed payment.

= Add an account to the payment distribution list, and allocate the remaining
amount to that account.

= Leave the remaining amount in the suspended payment.

For more information on allocating payments, see the Payment Center Help.

About Allocating Suspended Payments to Multiple Bill Units

If an account has multiple bill units, you can allocate a suspended payment to specific
bill units of that account.

After a suspended payment is validated for an account having multiple bill units, it
can have any of the following statuses:

= Validated (with MBI Distribution): UnderPayment: If the payment-allocated
amount is less than the actual bill amount.

= Validated (with MBI Distribution): OverPayment: If the payment-allocated
amount is more than the actual bill amount.

= Validated (with MBI Distribution): Exact Match: If the payment-allocated
amount is the same as the actual bill amount.

You can allocate a payment to multiple bill units only if:
s The suspended payment is allocated by specifying the account number.
= The validation status is Validated (with MBI Distribution): UnderPayment.

Payment Center displays the default payment distribution to multiple bill units. The
default payment distribution is defined in your business policy. You can manually
allocate the payment that overrides the default distribution. After manual allocation,
revalidate the payment.

s For a parent account having multiple bill units, you can allocate the payment to
different bill units of the parent account and its child accounts.

= For a non-paying child account having multiple bill units, you can allocate the
payment to different bill units of the child account.

Managing Suspended Payments 13-5

Configuring Payment Center for Custom Payment Methods

s For accounts with multiple bill units, you can allocate the suspended payment that
has been partially allocated to multiple bill units of that account.

For more information on how to allocate account-level payments to multiple bill units,
see the Payment Center Help.

Working with Overpayments and Underpayments

As you enter data in Payment Center to allocate a suspended payment to one or more
accounts, you are warned if a row contains an underpayment or an overpayment. If
there is an overpayment, you can:

= Apply the overpayment to the account, leaving the excess amount unallocated in
the account.

= Change the distributed payment amount to equal the account balance.

= Cancel the entire distributed payment allocation, leaving the suspended payment
in its original state.

If there is an underpayment, you can:
= Change the distributed payment amount to equal the account balance.
= Accept the underpayment, and continue with the allocation.

= Cancel the entire distributed payment allocation, leaving the suspended payment
in its original state.

If an underpayment occurs during item-level allocation, you can either accept the item
allocation list suggested by BRM or reject the list and manually select which items
receive the payment.

When you submit the payment batch, BRM processes the payments and identifies the
items to which the payment is applied. If you allowed the underpayment or
overpayment in Payment Center, BRM allocates overpayments and underpayments of
funds according to the payment analyst’s instructions.

If the payment amount equals the amount due, BRM closes each bill and bill item.
Payment amounts that do not equal the amount due for the bill are underpayments or
overpayments, and your business policies should be set up to handle both these
conditions. For example, a $35 payment is received for an unpaid $30 bill. When the
payment analyst enters the payment and indicates the bill number, the bill is closed
automatically and the $5 overpayment is either allocated to another open bill or is
recorded at the account level, according to your business policies.

Note: Depending on your business policies, overpayments may
require manual allocation.

For information on how to customize BRM to handle overpayments and
underpayments, see the discussion about payment processing implementation and
customization in the BRM documentation.

Configuring Payment Center for Custom Payment Methods

If you create custom payment methods for your BRM system, you must customize
Payment Center to handle them. This overview procedure describes how to create
custom classes and fields and enable Payment Center to handle them.

13-6 BRM Configuring and Collecting Payments

Customizing the Date Format for Payment Center

Note: Before customizing your payment functionality, you should be
familiar with the Java PCM and the BRM Storable Class Editor, which
you use to create custom classes and fields. For background
information on creating custom classes and fields, see "Creating Client
Applications by Using Java PCM" and "Creating Custom Fields and
Storable Classes" in BRM Developer’s Guide. For information on the
Storable Class Editor, see the Storable Class Editor Help.

Complete the following tasks by using Storable Class Editor:
a. Create your storable classes and fields in the Java PCM package.

b. Create source files for your custom fields.

Important: Storable Class Editor creates a C header file called cust_
flds.h, a Java properties file called
InfranetPropertiesAdditions.properties, and a Java source file for
each custom field.

In the directory in which Storable Class Editor created the Java source files,
compile the source files:

javac -4 . *.java

Package the new class files into a JAR file. For example:
jar cvf customfields.jar *.class
Copy the contents of the InfranetPropertiesAdditions.properties file and paste it

into the Payment Center Infranet.properties file. By default, this file is located in
the C:\Program Files\Portal Software\PaymentCtr\PaymentCenter directory.

Append the location of the JAR file to the PAYCTRCP environment variable path.
For example:

;.:C:\Program Files\Portal Software\PaymentCtr\customfields.jar;

Customizing the Date Format for Payment Center

You can customize the format of the date displayed in the Payment Search dialog box,
the Undo Allocation dialog box, and the Payment Results screen in Payment Center.

To customize the date format for Payment Center:

1.

Open the PaymentCenter_Home/paymentcenter.properties file in a text editor,
where PaymentCenter_Home is the directory in which you installed Payment
Center.

Note: If the paymentcenter.properties file does not exist, you must
create it manually.

Add the following entry:

DefaultDateFormat=format

where format is one of the following:

Managing Suspended Payments 13-7

Improved Performance of Searches for Payment Events in Payment Center

dd/MM/yyyy
dd/MMM/yyyy
dd MMMM.yyyy

where MMMM is the spelled-out name of the month (for example,
September).

yyyy/dd/MM
MMM/dd/yyyy
MM/dd/yyyy

The default is MM/dd/yyyy.

For example, if you set DefaultDateFormat=dd/MM/yyyy, Payment Center
displays June 30, 2012 as 30/06/2012.

3. Save and close the file.

Improved Performance of Searches for Payment Events in Payment

Center

By default, Payment Center retrieves five payment events for each step of a search.
You can improve Payment Center’s performance of payment event searches by
configuring the paymentsearch.stepsize entry in the paymentcenter.properties
configuration file.

To configure the step search size:

1. Open the Payment_Center_Home/paymentcenter.properties file in a text editor,
where Payment_Center_Home is the directory in which Payment Center is installed.

2. Set the paymentsearch.stepsize entry to a value based on the number of events in
your system and your client/server memory configuration. For example:

paymentsearch.stepsize=100

3. Save the file.

13-8 BRM Configuring and Collecting Payments

14

Resolving Failed BRM-Initiated Payment
Transactions

This chapter describes how to resolve failed credit card and direct debit transactions in
Oracle Communications Billing and Revenue Management (BRM) for Paymentech.

For information about the utilities used for resolving BRM-initiated payment
transactions, see "pin_clean" and "pin_recover".

About Failed BRM-Initiated Payment Transactions

Failed credit card or direct debit payment transactions occur when BRM connects to a
credit card processor, sends a transaction, but does not get confirmation from the
credit card processor that the transaction was completed. This is usually caused by a
connection loss.

BRM identifies failed transactions by keeping a record of each transaction in the BRM
database. If BRM does not get confirmation that the clearing house (Paymentech)
received the transaction successfully, checkpoint records are left in the database. To
resolve failed transactions, you must resolve all checkpoint records. Transactions
usually have a checkpoint record for the following reasons:

= A transaction batch was received by the credit card processor, but it wasn’t

processed completely. To resolve this error, you must resubmit the transaction
batch.

= A transaction was processed by the credit card processor, but the connection was
lost before BRM received the results. To resolve this error, you must update the
checkpoints in the BRM database.

Note: If the payment processor is offline or too busy to handle your
transactions, BRM records a no-answer (1) record. You do not need to
resolve no-answer records.

BRM includes two utilities that you use to resolve failed BRM-initiated payment
transactions, "pin_recover" and "pin_clean". To resolve a failed BRM-initiated payment
transaction, you first run the pin_clean utility to see if there are any errors. If there are,
the method you use for resolving the error depends on the type of transaction. For
example, you follow a different procedure for resolving a failed verification than you
do for resolving a failed authorization. See " Types of Failed Credit Card Transactions".

Resolving Failed BRM-Initiated Payment Transactions 14-1

About Failed BRM-Initiated Payment Transactions

How BRM Records Transactions

Before BRM connects to the credit card processor, a table row with the value 999 is
inserted in the database. This value remains in the row until BRM processes the result
from the Paymentech credit card processor. BRM first sets the result field to the
number 1000, plus the Paymentech result code. When BRM begins processing the
payment, it resets the result value to the Paymentech result code. If the transactions are
completed successfully: regardless of whether the credit card charge was successful: the
result column will not have any values over 999.

The following Paymentech result codes are used by BRM:
= PASS=0

= FAIL_NO_ANS=1

= FAIL_ADDR_AVS =2

= FAIL_ADDR_LOC =3

= FAIL_ADDR_ZIP = 4

= FAIL_CARD_BAD =5

= SRVC_UNAVAIL = 6

= FAIL_DECL_SOFT =7

= FAIL_DECL_HARD =8

= FAIL_NO_MIN =9

= INVALID_CMD = 10

= FAIL_SELECT_ITEMS =11

= CVV_BAD=12

= NO_CREDIT_BALANCE =13

= FAIL_LOGICAL_PROBLEM = 14
= FAIL_FORMAT_ERROR = 15

= FAIL_INVALID_CONTENT = 16
= FAIL_TECHNICAL_PROBLEM = 17
= DEPOSIT_PENDING = 777

= AUTH_PENDING = 888

s CHECKPOINT = 999

= OFFSET = 1000

Failed credit card transactions (checkpoint value of 999) are not collected by pin_
collect or PCM_OP_BILL_COLLECT to avoid double charges. Such results indicate a
communication problem between Paymentech and BRM.

Result values of 1000+, indicate that an exception occurred within BRM. This means
that the 999 checkpoint has been cleared; however payment events were not created in
BRM. See "Checkpoints are Cleared but Payment Events Are Not Created" to fix these
transaction errors.

14-2 BRM Configuring and Collecting Payments

Checking for Transaction Errors

Important: If you add result codes to your system, do not assign
them the following values, which are reserved by BRM: 0 - 17, 777,
888,999, 1000 - 1017, 1777, and 1999.

Checking for Transaction Errors

You should check for transaction errors every day. The best way to do this is to create a
script that runs the "pin_clean" utility and reports transaction failures.

Tip: The pin_clean utility writes output to stdout, so you can write a
script to run the pin_clean utility daily and write the output to a file.

The following procedure shows how to run the pin_clean utility manually.
1. Run the pin_clean utility with the summary option:

pin clean -summary

The pin_clean utility is in BRM_Home/bin.

Tip: If there are a lot of checkpoint records, use the -search_count_
limit option to limit the number of records found.

pin_clean -summary -search count_limit n

2. Review the results. The following example contains six failures: 1 verification
failure, 3 authorization failures, and 2 refund failures.

CheckPoint Log Summary:
PIN_CHARGE_CMD_VERIFY 1
PIN_CHARGE_CMD_AUTH_ONLY 3
PIN_CHARGE_CMD_CONDITION 0
PIN_CHARGE_CMD_DEPOSIT 0
PIN_CHARGE_CMD_REFUND 2

3. Determine how to resolve the transaction, as described in Table 14-1.

Table 14-1 Types of Failed Credit Card Transactions

Record Type | Error Action

verify The connection was lost Delete the transaction record from the BRM
during an online database. You do not need to resubmit it. See
transaction such as "Deleting Failed Verifications".
registration.

authorize The connection was lost Delete the transaction record from the BRM
during an online database. If necessary, repeat the transaction; for
transaction such as example, use Customer Center to charge the

registration, or a one-time | account again. Because the transaction was for
charge to a single account. | an authorization, not for a payment, the
customer cannot be charged twice. See
"Resolving Authorizations".

conditional The connection was lost See "Resolving Transactions by Using a Request
deposit while running the "pin_ for Response (RFR) File".
collect" utility.

Resolving Failed BRM-Initiated Payment Transactions 14-3

Deleting Failed Verifications

Table 14-1 (Cont.) Types of Failed Credit Card Transactions

Record Type | Error Action
deposit The connection was lost See "Resolving Transactions by Using a Request
while running the "pin_ for Response (RFR) File".

deposit" utility.

refund The connection was lost See "Resolving Refunds".

when a refund was made.

Deleting Failed Verifications

Because no charge was authorized or made during a verification, you can delete all
failed verification transactions. There is no need to resubmit a verification.

1.

4,

Run the "pin_clean" utility without the summary option to display unresolved
transaction records:

pin clean

The pin_clean utility is in BRM_Home/bin.
A summary of transaction errors appears, followed by a choice of commands.
To display the transactions for verifications, press 1.

When you display a type of transaction, a list of batches appears, followed by a list
of commands.

To delete all verification transaction records, press 2.

Note: You should delete records with a value greater than 999 when
you want to recharge an account by using pin_collect. (The pin_clean
utility only processes payments with checkpoint records = 999.) This
deletes the /event/billing/charge object and the appropriate rows in
the EVENT_T, EVENT_BILLING_CHARGE_T, and EVENT_
BILLING_CHARGE_CC_T tables.

To quit, press 3.

Resolving Authorizations

To resolve failed authorizations, you can delete all transactions, but you must find out
which transactions must be resubmitted. For example, if a customer service
representative (CSR) issues a debit in Customer Center, and that transaction fails, you
must reissue the debit after deleting the checkpoint record.

1.

3.

Run the "pin_clean" utility without the summary option to display unresolved
transaction records:

pin_clean

The pin_clean utility is in BRM_Home/bin.

A summary of transaction errors appears, followed by a choice of commands.
To display the transactions for authorizations, press 2.

A list of transactions appears, followed by a list of commands.

To display a single transaction record, press 1.

14-4 BRM Configuring and Collecting Payments

Resolving Refunds

9.

10.

Enter the number of the transaction.
The event details appear.

Read the event details to find out if this is an event you want to repeat. For
example:

= The event description. The following example is for credit card transactions.

0 PIN_FLD_SYS_DESCR STR [0] "Authorization"

s The account number:

0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 28456 0

s The amount:

0 PIN_FLD_AMOUNT NUM [0] 100.000000

s The date and time:

0 PIN_FLD_CREATED_T TSTAMP [0] (827435459) Thu Mar 21 11:10:59 1996

Make a note of the amount and the account number so that you can repeat the
transaction later.

To delete the checkpoint, press 1.

Continue displaying and deleting checkpoints until all authorization checkpoints
are deleted.

To return to the summary screen, press 2.
To quit, press 3.

Repeat the transactions that you recorded.

Resolving Refunds

To resolve failed refunds, you can delete all transactions, but you must find out which
transactions must be resubmitted.

If there is a checkpoint, there is no original refund. You can resubmit the refund.

1.

Run the "pin_clean" utility without the summary option to display unresolved
transaction records:

pin_clean

The pin_clean utility is in BRM_Home/bin.

A summary of transaction errors appears, followed by a choice of commands.
To display the transactions for refunds, press 5.

A list of transactions appears, followed by a list of commands.

To display a single transaction record, press 1.

Enter the number of the transaction.

The event details appear.

Read the event details to find out if this is an event you want to repeat. For
example:

s The event description:

Resolving Failed BRM-Initiated Payment Transactions 14-5

Resolving Transactions by Using a Request for Response (RFR) File

0 PIN_FLD_SYS_DESCR STR [0] "Refund"

s The account number:

0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 28456 0

s The amount:

0 PIN_FLD_AMOUNT NUM [0] 10.000000

s The date and time:
0 PIN_FLD_CREATED_T TSTAMP [0] (827435459) Thu Mar 21 11:10:59 1996
Make a note of the amount, date, and the account number so that you can repeat
the action, if necessary.
6. To delete the checkpoint, press 1.

7. Continue displaying and deleting checkpoints until all refund checkpoints are
deleted.

8. To return to the summary screen, press 2.
9. To quit, press 3.
10. Find out if the refund was made. Use the Event Browser to search for the refund.

11. If the refund was made, you're finished. If the refund was not made, issue the
refund again.

Resolving Transactions by Using a Request for Response (RFR) File

14-6

To resolve failed "pin_collect” and "pin_deposit" batches, you should always first use
the "pin_recover" utility with the rfr option.

Important: You cannot use the rfr option if the transaction was an
online transaction such as a charge or refund made by using Customer
Center. See "Resolving Authorizations" and "Resolving Refunds".

1. Request an RER file from the Paymentech customer support service. If there is no
REFR file, you cannot complete this procedure. See "Resubmitting Transactions".

Note: When you request an RER file, Paymentech does not send you
the file. Instead, it posts it so that the "pin_recover" utility can access it
at Paymentech.

2. Run the pin_recover utility with the rfr option:

pin_recover -rfr

The pin_recover utility is in BRM_Home/bin.

3. After the pin_recover utility has finished, run it again by using the rfr option.
Paymentech sometimes posts multiple RFR files, and you must process all of them
before continuing.

BRM Configuring and Collecting Payments

Resubmitting Transactions

Note: Regardless of the number of times you run the pin_recover
utility with the rfr option, accounts are charged only once for each
transaction.

4. Run the pin_clean utility in summary mode again. If you still find transaction
errors, refer to "Resubmitting Transactions".

Resubmitting Transactions

Caution: If you use a payment processor other than Paymentech,
ensure that it uses duplicate transaction detection. If not, using the
"pin_recover" utility with the resubmit option can cause customers to
be billed twice. The duplicate transaction detection offered by
Paymentech eliminates this problem.

If running the pin_recover utility with the rfr option does not resolve all transactions,
run the pin_recover utility with the resubmit option to resubmit the same batch and
process the transactions that didn’t go through.

Important: Resubmit your transactions promptly, or the
authorizations might need to be redone. VISA authorizations, for
example, last only seven days.

1. To run the "pin_recover" utility with the resubmit option, you must find the batch
ID for the batch you are resubmitting. To do so, run the "pin_clean" utility in
summary mode again:

pin clean -summary

The pin_clean utility is in BRM_Home/bin.

A summary of transaction errors appears, followed by a choice of commands. For
example:

CheckPoint Log Summary:
PIN_CHARGE_CMD_VERIFY
PIN_CHARGE_CMD_AUTH_ONLY
PIN_CHARGE_CMD_CONDITION
PIN_CHARGE_CMD_DEPOSIT
PIN_CHARGE_CMD_REFUND

S e

Choose function by number:

1) View PIN_CHARGE_CMD_VERIFY
) View PIN_CHARGE_CMD_AUTH_ONLY
) View PIN_CHARGE_CMD_CONDITION
) View PIN_CHARGE_CMD_DEPOSIT
) View PIN_CHARGE_CMD_REFUND
) Delete All
) Done

2. Do one of the following;:

» Press 3 to display transactions made by running the "pin_collect" utility.

Resolving Failed BRM-Initiated Payment Transactions 14-7

Checking for Transactions in Paymentech Send Files

= DPress 4 to display transactions made by running the "pin_deposit" utility.
A list of batches appears.
3. Make a note of the batch ID that you want to resubmit (for example T,2f).

Note: When resubmitting deposits, each transaction has two
transaction IDs, one for the original authorization, and one for the
deposit batch sent by the pin_deposit utility. Use the batch ID that
was used by the pin_deposit utility.

4. DPress 3 to quit the pin_clean utility.

5. Run the "pin_recover" utility with the resubmit option to resubmit the
unprocessed transactions. The pin_recover utility is in BRM_Home/bin.

pin_recover -resubmit batch_ID

For example:

pin recover -resubmit T, 2f

6. Run the pin_clean utility in summary mode again. If you still find transaction
errors, refer to "Deleting Transactions".

Checking for Transactions in Paymentech Send Files

If there are still checkpoint records after using the "pin_recover" utility with the rfr and
resubmit options, you can search the Paymentech send files to find out if the
transaction was sent to Paymentech, located by default in /fusa_temp. (You define the
location of the send files in the temp_dir Paymentech Data Manager (DM)
configuration file entry.)

There will probably be multiple files. Find the file that matches the date of the
transaction. Open the file in a text editor and search for the batch ID that was reported
by the "pin_clean" utility. If the batch ID is not present in any file, the connection was
broken between the Connection Manager (CM) and the DM, and the transaction was
never sent.

If the transaction is a deposit, you should search the database to find outstanding
deposits. To do so, use the testnap utility to search for authorization records with no
matching deposit record. See "Testing Your Applications and Custom Modules" in
BRM Developer’s Guide.

If the transaction is a payment, see "Resolving Payments".

Resolving Payments

In rare cases, a credit card charge is made and the checkpoint record is cleared, but the
/event/billing/payment object is not recorded in the BRM database. This might
happen because of a network or hardware failure.

To find charge events in your database that have no matching payment events, use the
testnap utility. See "Testing Your Applications and Custom Modules" in BRM
Developer’s Guide.

If you are missing payment events, use the "pin_recover" utility with the recover_
payment option. Because the charge has been made, this option has no effect on the
customer’s credit card.

14-8 BRM Configuring and Collecting Payments

Deleting Transactions

pin_recover -recover_payment

This creates the payment item (if necessary) and payment event objects.

Note: To create the objects, rows are inserted into the EVENT_T and
EVENT_BILLING_PAYMENT_T database tables. If the payment item
does not exist for the bill, a row is also inserted into the ITEM_T
database table. If possible, the money is allocated to open items;
however, you may need to manually allocate the payment.

When a payment recovery was successful, the Event Browser displays the message,
“Payment - Thank you” and the EVENT_BILLING_PAYMENT_CC_T value = 0.

Resolving Payments for Custom Pay Types

To resolve payments for custom pay types, you must perform additional configuration
steps before you run the pin_recover utility with the recover_payment option for the
first time.

To resolve payments for custom pay types:

1.

Customize the PCM_OP_PYMT_POL_CHARGE policy opcode to perform the
following when it processes your custom pay type:

a. In the policy opcode’s output flist, set the PIN_FLD_BATCH_INFO.PIN_FLD_
RESULT field to PIN_CHARGE_RES_OFFSET.

b. Update your custom /event/billing/charge/* subclass by setting its PIN_FLD_
CHARGE.PIN_FLD_RESULT field to 1000 (PIN_CHARGE_RES_OFFSET).

Go to the BRM_Homelapps/pin_billd directory.
Open the pin.conf file in a text editor.
Add the following line for each custom pay type:

- pin_recover config payment paymentPOID

where paymentPOID is the POID of your /config/payment object.
For example:

- pin_recover config_payment 0.0.0.1 /config/payment 200

Deleting Transactions

Important: Deleting transactions is typically only used for failed
verification and authorization transactions. Always use the "pin_
recover" utility first to resolve transactions submitted by the "pin_
collect” and "pin_deposit" utilities. Only delete and resubmit pin_
collect and pin_deposit transactions as a last resort.

Run the "pin_clean" utility without the summary option to display any remaining
unresolved transaction records:

pin_clean

The pin_clean utility is in BRM_Home/bin.

Resolving Failed BRM-Initiated Payment Transactions 14-9

Troubleshooting Unresolvable Credit Card Transactions

A summary of transaction errors appears, followed by a choice of commands.

2, Press the key that corresponds to the command you want to perform. For example,
press 3 to display transactions made by running the pin_collect utility.

A list of batches appears, followed by a list of commands.

CheckPoint Log Summary:
PIN_CHARGE_CMD_VERIFY
PIN_CHARGE_CMD_AUTH ONLY
PIN_CHARGE_CMD_CONDITION
PIN_CHARGE_CMD_DEPOSIT
PIN_CHARGE_CMD_REFUND

S e

Choose function by number:

1) View PIN_CHARGE_CMD_ VERIFY
) View PIN_CHARGE_CMD_AUTH_ONLY
3) View PIN_CHARGE_CMD_CONDITION
4) View PIN_CHARGE_CMD_DEPOSIT
5) View PIN_CHARGE_CMD_REFUND
6) Delete All
7) Done

Important: Do not delete condition or deposit records until you
know that the corresponding charge was successful. Do not delete
records that are less than seven days old.

If you delete checkpoints for failed condition or deposit records that
are created within the duplicate detection period, customers might be
charged twice, because BRM resubmits these records.

The length of time for charges to be processed depends on the
payment processor. Check with your payment processor.

3. Make a note of the batch IDs that you must delete. You will need them when you
resubmit the batches.

4, Press the key that corresponds to the command you want to perform; for example,
press 2 to delete all transaction records.

When there is more than one record per transaction type, you can display each
record and delete it, or you can delete all records of that type without displaying
them.

5. When you have deleted all of the transactions that must be resubmitted, quit the
utility.

6. Use the pin_recover utility to resubmit the batch.

pin_recover -resubmit T,2a

The pin_recover utility is in BRM_Home/bin.

Troubleshooting Unresolvable Credit Card Transactions

This section lists problems you might encounter while trying to resolve failed credit
card transactions and provides information on how to fix them.

14-10 BRM Configuring and Collecting Payments

Troubleshooting Unresolvable Credit Card Transactions

Unable to remove checkpoints when using an RFR file

If checkpoints still exist after running the pin_recover utility, resubmit the batch. See
"Resubmitting Transactions" for more information.

Note: Paymentech has duplicate transaction detection, which
prevents a customer from being charged twice.

If resubmitting the batch does not clear the checkpoints, do the following:
1. Delete the transactions.
2. Run the pin_recover utility with the resubmit option.

3. Run the pin_clean utility with the summary option to select and delete batches. Be
sure to note the batch ID.

4. Run the pin_recover utility with the -resubmit option and provide the batch ID.

Checkpoints are Cleared but Payment Events Are Not Created

Look in the database for checkpoints with a value of 1000. If they exist, run the pin_
recover utility with the recover_payment option.

Note: The pin_clean utility does not show charges that have
checkpoint values greater than 999.

Important: You should only use this option when a credit card
number is reported as charged in both BRM and Paymentech, but it
has not been recorded as paid in BRM. This is an uncommon scenario
that can occur when the network connection is dropped after
Paymentech responds and before BRM allocates the payment.

This creates the payment item (if necessary) and payment event objects.

Note: To create the objects, rows are inserted into the EVENT_T and
EVENT_BILLING_PAYMENT_T database tables. If the payment item
does not exist for the bill, a row is also inserted into the ITEM_T
database table. If possible, the money is allocated to open items;
however, you may need to manually allocate the payment.

When a payment recovery was successful, the Event Browser displays the message,
“Payment - Thank you” and the EVENT_BILLING_PAYMENT_CC_T value = 0.

Paymentech does not have an RFR file and never received the payment batch

If you requested an REFR file from Paymentech and one does not exist, run the pin_
recover utility with the -resubmit option and provide the batch ID. See "Resubmitting
Transactions" for more information.

If Paymentech confirms they received the batch but checkpoints still exist, request an
RER file and run the pin_recover utility with the rfr option.

Resolving Failed BRM-Initiated Payment Transactions 14-11

Troubleshooting Unresolvable Credit Card Transactions

14-12 BRM Configuring and Collecting Payments

15

Reserving Resources for Concurrent Network
Sessions

This chapter describes the Oracle Communications Billing and Revenue Management
(BRM) Resource Reservation Manager and explains how to use its components to
reserve resources.

Important: Resource Reservation Manager is an optional component
that requires a separate license.

Before using Resource Reservation Manager, you should be familiar with the
following:

= BRM concepts and architecture. See "Introducing BRM" and "BRM System
Architecture” in BRM Concepts.

= Modifying policy opcodes. See "Adding and Modifying Policy Facilities Modules"
in BRM Developer’s Guide.

About Resource Reservation Manager

Resource Reservation Manager enables you to set aside a portion of a customer’s
resources for a prepaid session. It enables you to reserve resources for single-RUM and
multi-RUM sessions. This prevents customers from applying those resources to other
services while the session is in progress.

It also enables customers to use multiple prepaid services concurrently and charge the
usage against a single account balance. For example, it enables customers to make a
wireless phone call while downloading an MP3 file.

You can use Resource Reservation Manager to implement the following functionality:

» Create resource reservations. See "About Creating Reservations" for more
information.

= Extend the amount that is reserved for an existing reservation. See "About
Extending a Resource Reservation Amount" for more information.

= Extend the validity period for an existing reservation. See "About Extending a
Resource Reservation Expiration Time" for more information.

= Release reservations. See "About Releasing a Partially Used Reservation" for more
information.

Resource Reservation Manager is a framework, consisting of opcodes and storable
classes, that enables you to quickly support reservations for prepaid services.

Reserving Resources for Concurrent Network Sessions 15-1

About Creating Reservations

About Creating Reservations

Resource Reservation Manager creates reservation objects in one of the following:

IMDB Cache, in IMDB Cache-enabled systems. See "About IMDB Cache DM" in
BRM Concepts.

The BRM database.

The object specifies how much resource has been reserved, when the reservation
expires, and the service type to which the reservation request applies.

Resource Reservation Manager performs these tasks when creating a reservation:

1.

a0 DN

Determines whether to store the reservation in IMDB Cache or in the BRM
database. See "About Storing Reservations in IMDB Cache" and "About Storing
Reservations in the BRM Database".

Calculates the amount of resources that are required to use the service.
Calculates the account’s available resources.

Applies rules to determine whether the account contains sufficient resources.
If there are sufficient resources, creates the reservation object.

See "Creating Reservations" for more information.

About Storing Reservations in IMDB Cache

In IMDB Cache, BRM stores reservations in these transient objects:

[reservation/active: This object stores information about a single reservation. BRM
creates one such object for each balance group that is impacted by a prepaid
session. For example, if a session impacts balance groups A and B, BRM creates
one object for balance group A and one object for balance group B.

/reservation_list: This object tracks reservations for a single balance group. It
stores a list of current /reservation/active objects and the total resources reserved
in /reservation/active objects, separated by resource type. For example, it stores
that a balance group is reserving $10 and 30 minutes of free usage. BRM creates
one object for each balance group.

When a prepaid session ends, BRM deletes or releases the /reservation/active object,
decrements the RESERVED_AMOUNT field in the /reservation_list object, deletes any
consumed reserved amount in the CONSUMED_RESERVED_AMOUNT field in the
/balance_group object, and returns unused resources back to the customer’s prepaid
account balance.

About Storing Reservations in the BRM Database

In the BRM database, reservations are stored in these objects:

[reservation: This object stores information about a reservation for single-RUM
and multi-RUM quantities. It stores the reservation balance and the consumed
reserved amount for a resource. BRM creates one such object for each balance
group that is impacted by the prepaid session.

/balance_group: The RESERVED_AMOUNT field in the BALANCES array for this
object stores the total reserved amount for the resource and the CONSUMED_
RESERVED_AMOUNT field in the BALANCES array for this object stores the
consumed reserved amount currently in the corresponding /reservation object.

15-2 BRM Configuring and Collecting Payments

About Creating Reservations

When a session ends, BRM deletes or releases the /reservation object, decrements the
RESERVED_AMOUNT field in the /balance_group object, and returns any unused
resources back to the account.

Setting the Type of Resource Reserved

You can reserve both currency and non-currency resources. If multiple resource types
such as dollars and free minutes are specified, the order in which resources are used
must be specified in the price list. To use one resource type such as free minutes first,
give that resource a higher priority. You do this by creating multiple rates in your price
plan and assigning a priority to the rate. For more information, see "Common Price
List Solutions" in BRM Setting Up Pricing and Rating.

Setting an Expiration Time for the Reservation Request

You can limit how long a reservation is valid by setting an expiration time. The length
of time you reserve a resource can have important effects on your customers’ usage
and your business. For example, if the expiration time is too long, resources remain
unavailable to other services. If the expiration time is too short, the reservation might
expire before the customer has a chance to use the resources.

To specify an expiration time, set the PIN_FLD_EXPIRATION_T field in the input flist
to PCM_OP_RESERVE_CREATE.

If the field is not passed in, the expiration is set to a default time of 24 hours. However,
you can change the default expiration time by customizing the PCM_OP_RESERVE_
POL_PREP_CREATE policy opcode.

Setting the Expiration Time for Prepaid Services

If your customers prepay for services, it is possible to lose revenue when all of the
following are true:

= You implement a custom application to return unused reserved resources to the
account. See "About Releasing an Unused Reservation" for more information.

= A customer starts a session before the reservation expires but ends the session after
the reservation expiration time.

= The same customer starts a session for a second service before the first service
session ends but after the resource for the first session is returned to the account
balance.

The customer’s account balance is not debited for a session until the session ends.
Therefore, if a resource reservation expires while an initial session is in progress, the
entire reserved amount is returned to the account balance. If a customer starts another
service session, all of the account balance can be reserved for the second session, even
though the initial session might still be using those resources.

Figure 15-1 shows how a revenue loss occurs when a customer ends an initial session
after the reservation time has expired:

Reserving Resources for Concurrent Network Sessions 15-3

Loading Reservation Preferences for Policy-Driven Charging

Figure 15-1 Revenue Loss Due to Expired Reservations

Customer logs in to service
selection interface and selects
o use service.

Resource Reservation Manager
reserves 58.00 of the
customer’s acccount balance for
senvicel.

Reservation for service1 expires
before customer's session for
semnvicel is ended.

Entire reservad amount of $8.00
is returned to the account
balance.

Customer logs in to service
selection interface and selects
to use service.

Resource Reservation
Manager reserves 36,00 of the
customer's account balance for
serviceZ.

Beginning balance = 510.00 Current balance = $2.00 Current balance = 510.00
Reservation debit = -$8.00 Reservalion credit = +§8.00 Besenvation debit = -56.00
Availabla balanca = $2.00 Available balance = $10.00 Available balance = $4.00
(10:004M) (10:30AM) {10:40AM)
Y ¥ ¥ -
'y 'y =
(10:25AM) (10:45AM)

Customer ends session for
sarviceland used 58.00 worth of
servica,

Customer connects to and starts
using the servicel service.

Resource Reservation Manager
attemnpls to debit customer's
account for $8.00,

Insufficient funds exist because
available balance is only $4.00.

Current balance = $4.00
Reservalion debit = -%$8.00
Available balance = -54.00

In the above example, revenue is also lost if the customer does not use service2 and
the reserved resource for service2 is returned to the account balance: Resource
Reservation Manager debits the account $4.00 for servicel, because that’s all that is
available, resulting in a loss of $4.00. When the account is credited for unused service2
resources, the lost $4.00 is not recovered, even though there is now enough resource to
cover that amount.

To help prevent revenue loss, you can extend the resource reservation expiration time.
See "About Extending a Resource Reservation Expiration Time" for more information.

Loading Reservation Preferences for Policy-Driven Charging

You load the reservation preferences configuration for policy-driven charging in the
following way:

1. Enable the reservation preferences in the configuration file. See "Updating
Reservation Preferences Configuration for Policy-Driven Charging".

2. Load the event notifications into the BRM database. See "Loading Reservation
Preferences for Policy-Driven Charging".

Updating Reservation Preferences Configuration for Policy-Driven Charging

BRM stores the default entries for reservation preferences associated with
policy-driven charging the pin_config reservation_aaa_prefs_XXX file. For example:

= pin_config reservation_aaa_prefs_gsm_telephony (GSM telephony)

15-4 BRM Configuring and Collecting Payments

Loading Reservation Preferences for Policy-Driven Charging

pin_config_reservation_aaa_prefs_gsm_data (GSM data)

pin_config_reservation_aaa_prefs_gprs (GPRS)

Configure the resource id for the resource appropriate counters in the following way:

1.

3.

Open the BRM_Home/sys/data/config/pin_config_reservation_aaa_prefs XXX
configuration file in a text editor.

For our example, open the BRM_Home/sys/data/config/pin_config_reservation_
aaa_prefs_gsm_data file.

Add an entry to specify the appropriate resource id with the entity to be rated,
such as duration (2), volume (3), duration and volume (4), and occurrence (8).

For example:

1 PIN _FLD RESOURCE_ID INT [0] 1000009 in REQ MODE 4

Here, a non-currency resource, (Megabytes Used), with the resource id 100009 is
associated with a volume-based request (REQ_MODE 4).

Note: Policy-driven charging does not support prerated events
REQ_MODE 1.

Save and close the file.

For more information, see "Editing the event notification list" in BRM Developer’s
Guide.

Loading Reservation Preferences for Policy-Driven Charging

To load the event notifications list for policy-driven charging, you run the load_
config_reservation_aaa_prefs utility to load the pin_config reservation_aaa_prefs_
XXX configuration file into the database:

1.
2.

Go to the BRM_Home/sys/data/config directory.
Use the following command to run the load_config_reservation_aaa_prefs utility:

load_config reservation_aaa_prefs -d -v load config reservation_aaa_prefs XXX

where:
= -dcreates a log file for debugging purposes.

» -vdisplays information about successful or failed processing as the utility
runs

» load_config_reservation_aaa_prefs_XXX is the specific reservation configuration
file.

For example:

load_config reservation _aaa_prefs -d -v pin config reservation_ aaa_prefs_gsm
data

For information on the load_config_reservation_aaa_prefs utility, see "load_
config_reservation_aaa_prefs" in BRM Telco Integration.

To verify that the reservation preferences were loaded, display the /config/reserve
object by using the Object Browser or the robj command with the testnap utility.

Stop and restart the Connection Manager (CM).

Reserving Resources for Concurrent Network Sessions 15-5

About Extending a Resource Reservation Amount

For more information, see "Specifying Default Authorization and Reauthorization
Values" in BRM Telco Integration.

About Extending a Resource Reservation Amount

To extend a reservation amount, you use the PCM_OP_RESERVE_EXTEND opcode.
This opcode’s input flist includes the POID of the reservation object to extend and the
new reservation amount, which is the existing reservation amount plus the extended
amount. For example, if the existing reservation is for $20 and you extend the
reservation by $10, the new reservation amount is $30.

You can customize how reservations are extended by using the PCM_OP_RESERVE _
POL_PREP_EXTEND policy opcode.

About Extending a Resource Reservation Expiration Time

You might want to extend the reservation time if a customer has not used all of the
reserved amount before the reservation expiration time.

To extend the reservation expiration time, you use the PCM_OP_RESERVE_RENEW
opcode. This opcode’s input flist includes the POID of the reservation object to extend
and the length of time in seconds to add to the current reservation expiration time. For
example, if the reservation object expires in 30 minutes, and you extend the
reservation by 15 minutes, the total reservation time will be for 45 minutes.

About Releasing a Partially Used Reservation

When a reservation is released, any unused resources are credited back to the account
balance by the PCM_OP_RESERVE_RELEASE opcode. This occurs at the end of a
session after final rating is completed. If a session is terminated unexpectedly, this
opcode also releases and returns the reservation amount to the account balance.

If a reservation expires while a session is still in progress, the reserved resource for that
session is also returned to the account. This might result in lost revenue if your
customers have prepaid services. See "Setting the Expiration Time for Prepaid
Services" for more information.

About Releasing an Unused Reservation

If resources are reserved for a session but the session does not start before the resource
reservation expires, the resource is locked and is not returned to the account balance.
Therefore, if you want resources from unused reservations returned to the account
balance, you must write a script to do this.

For example, create a script that searches for /reservation and /reservation/active
objects with an expiration time (PIN_FLD_EXPIRATION_T field) that is less than the
current time and that has a reservation status (in the PIN_FLD_RESERVATION_
STATUS field) of PIN_RESERVATION_RESERVED (0). Then return the resources from
those objects back to the appropriate accounts by using the PCM_OP_RESERVE _
RELEASE opcode.

You should run this script as often as possible to ensure that resources are always
available. The script can be stored and run from any directory. If you use PCM_OP_
RESERVE_RELEASE to return resources, your script must include the location of the
Connection Manager (CM).

15-6 BRM Configuring and Collecting Payments

Sending Reservation Requests to the Resource Reservation Manager Opcodes

Tip: Using the cron command is a good way to run your script. For
details, see your UNIX documentation.

About Reserving and Releasing Disputed Amounts

You can reserve resources whenever an account disputes a bill item. This prevents
your customers from misusing resources during the dispute. After a dispute is settled,
you can release the resources back to the account. For more information, see
Customizing Item-Level Disputes and "Customizing Item-level Settlements" in BRM
Managing Accounts Receivable.

You use the following policy opcodes to manage reservations for disputes:

= Toreserve a disputed amount, use the PCM_OP_RESERVE_POL_POST_DISPUTE
policy opcode. See "Customizing Resource Reservation for Disputes” in BRM
Managing Accounts Receivable.

» To release a reservation as part of the settlement process, use the PCM_OP_
RESERVE_POL_POST_SETTLEMENT policy opcode. See "Customizing Resource
Reservation for Settlements" in BRM Managing Accounts Receivable.

Sending Reservation Requests to the Resource Reservation Manager

Opcodes

To manage reservations for prepaid services, your system must be designed to collect
the information needed for creating or updating the relevant objects and pass the
appropriate fields in the input flist to the resource reservation manager opcodes.

There are two types of reservation requests that can be passed on to the resource
reservation manager opcodes: amount-based and quantity-based. Resource reservation
manager reserves resources for amount-based requests without going through rating
and discounting. For example, if a customer requests 15 minutes of usage time for a
session and the customer’s account balance is greater than 15 minutes, then 15 minutes
are reserved for the session. Otherwise, the reservation request is denied.

Resource reservation manager reserves resources for quantity-based requests based on
the results of rating and discounting. For example, if a customer requests 45 minutes
for a download session, BRM rates this request to determine the cost for the session. If
the cost is $.10 per minute, the requested session will cost $4.50. If the customer’s
account balance allows it, then $4.50 is reserved for the requested session. Otherwise,
the request is denied (if the minimum quantity requested is 45 minutes) or a portion of
the requested quantity is reserved depending on the customer’s account balance.

You can use the resource reservation manager API to perform the following;:
» Create a reservation. See "Creating Reservations" for more information.

= Associate a reservation with a session. See "Associating a Session with a
Reservation" for more information.

= Extend the reservation amount. See "Extending the Reservation Amount" for more
information.

= Find a reservation. See "Finding a Reservation" for more information.

= Return unused resources back to the customer’s account balance. See "Releasing
Reservations" for more information.

= Extend the expiration time for a reservation. See "Extending the Expiration Time
for a Reservation" for more information.

Reserving Resources for Concurrent Network Sessions 15-7

Sending Reservation Requests to the Resource Reservation Manager Opcodes

Creating Reservations

Use the PCM_OP_RESERVE_CREATE opcode to create a /reservation or
[/reservation/active object.

Note: The /reservation object is not created for zero balance impact
events or free events.

To create a reservation, this opcode performs the following actions:

1.

7.
8.

Determines whether to create a /reservation or /reservation/active object by
reading the balance_coordinator entry in the CM pin.conf file:

» If balance_coordinator is set to 0, the opcode creates a /reservation/active
object. This configuration is used for IMDB Cache-enabled prepaid systems.

= If balance_coordinator is set to 1, the opcode creates a /reservation object. This
setting is used for prepaid systems that use the BRM database for AAA and
for non-prepaid systems.

Verifies whether an amount-based or a quantity-based field is passed in the input
flist. If both are passed, the opcode generates an error.

Calls the PCM_OP_BAL_GET_BALANCES opcode to retrieve the /balance_group
object POID.

For prepaid requests, calls the PCM_OP_BAL_GET_PREPAID_BALANCES
opcode to retrieve the balance group’s /reservation_list object and current
reservation balance.

Calls the PCM_OP_RESERVE_POL_PREP_CREATE policy opcode to perform any
custom validations. See "Customizing Resource Reservation Rules" for more
information.

Determines whether it is an amount-based or a quantity-based request by
checking the PIN_FLD_BALANCES array in the input flist:

» If the array is present, it’s an amount-based request. The opcode determines
whether the account’s available resources are greater than the requested
amount and, if they are, proceeds to the next step. Otherwise, the reservation
request is denied.

» If the array is not present, it’s a quantity-based request. The opcode calls the
PCM_OP_ACT_USAGE opcode in CALC_ONLY mode to calculate whether
the account has resources to cover the requested quantity (single-RUM) or
quantities (multi-RUM) based on the rating parameters that are passed in the
PIN_FLD_EVENT substruct.

For information on how BRM applies rating and discounting to reserve the
requested resources, see "How BRM Rates and Records Usage Events"” in BRM
Setting Up Pricing and Rating.

PCM_OP_ACT _USAGE returns the reservation amount and the list of balance
groups impacted by the event. If the account’s available resources are greater
than the reservation request, it proceeds to the next step. Otherwise, the
reservation request is denied.

Creates a reservation object for each balance group impacted by the event.

Updates the customer’s reservation balance:

15-8 BRM Configuring and Collecting Payments

Sending Reservation Requests to the Resource Reservation Manager Opcodes

= For /reservation/active objects, updates each balance group’s /reservation_list
object.

s For /reservation objects, updates the reserved amount in each balance group’s
PIN_FLD_RESERVED_AMOUNT field.

9. Returns the following, depending on the success of the action:

s Ifitis successful, returns the amount reserved and sets PIN_FLD _
RESERVATION_ACTION to PIN_FLD_RESERVATION_SUCCESS. It also
returns reservation information for any sponsoring accounts in the PIN_FLD_
RESERVATION_LIST array.

» Ifit fails, returns PIN_FLD_RESERVATION_ACTION set to PIN_FLD_
RESERVATION_FAIL.

Associating a Session with a Reservation

Use the PCM_OP_RESERVE_ASSOCIATE opcode to associate a session with a
reservation.

This opcode is called at the start of a session. When a session starts, a session POID is
created. This opcode copies the session POID to the reservation object, thereby
associating the session with the reservation object. This opcode takes as input the
POID of the reservation object and the POID of the session object.

This opcode returns the POID of the reservation object.

Extending the Reservation Amount

Use the PCM_OP_RESERVE_EXTEND opcode to extend an existing amount for a
resource reservation. See "About Extending a Resource Reservation Amount" for more
information.

When the PCM_OP_RESERVE_EXTEND opcode is called by the network application
in association with policy-driven charging sessions, the input to this opcode contains
the consumed reservation amount for resources sent from the network. The PIN_FLD
BALANCES array in the input flist contains the consumed amounts for resources
configured as the resources to be tracked for managing policy changes.

To extend a reservation amount, this opcode performs the following actions:

1. Verifies whether an amount-based or a quantity-based field is passed in the input
flist. If both are passed, the opcode generates an error.

2. For policy-driven charging sessions, if the network application sends the
consumed reservation amount for the resource, this opcode sets the consumed
reservation amount in the PIN_FLD_CONSUMED_RESERVED_ AMOUNT field in
the PIN_FLD_BALANCES array in the following objects:

s /reservation_list
s /reservation
= /balance_group

3. Calls PCM_OP_BAL_GET_BALANCES to retrieve the /balance_group object
POID.

4. Determines whether to extend /reservation or /reservation/active objects by
reading the balance_coordinator entry in the CM pin.conf file:

Reserving Resources for Concurrent Network Sessions 15-9

Sending Reservation Requests to the Resource Reservation Manager Opcodes

= If balance_coordinator is set to 0, the opcode extends /reservation/active
objects. Use this configuration for IMDB Cache-enabled prepaid systems.

= If balance_coordinator is set to 1, the opcode extends /reservation objects. Use
this configuration for non-prepaid systems and for prepaid systems that use
the BRM database for AAA.

5. For prepaid requests, calls PCM_OP_BAL_GET_PREPAID_BALANCES to retrieve
the balance group’s /reservation_list object and current reservation balance.

6. Calls the PCM_OP_RESERVE_POL_PREP_EXTEND policy opcode to perform any
custom validations.

7. Determines whether this is a quantity-based or an amount-based request by
checking the PIN_FLD_BALANCES array in the input flist.

» If the array is present, it’s an amount-based request. The opcode determines
whether the requested amount is an incremental amount or an aggregated
amount by reading the PIN_FLD_RESERVATION_MODE input flist field.

If the field is set to PIN_RESERVE_INCREMENTAL_AMOUNT, the opcode
adds the amount passed in the input flist to the existing reservation amount.

If the field is set to PIN_RESERVE_AGGREGATED_AMOUNT, the opcode
uses the amount passed in the input flist.

» If the array is not present, it’s a quantity-based request. The opcode calls
PCM_OP_ACT _USAGE in CALC_ONLY mode to calculate whether the
account has resources to extend the requested quantity (single-RUM) or
quantities (multi-RUM) based on the rating parameters that are passed in the
PIN_FLD_EVENT substruct.

For information on how BRM applies rating and discounting to extend the
requested resources, see "How BRM Rates and Records Usage Events" in BRM
Setting Up Pricing and Rating.

PCM_OP_ACT_USAGE returns the extension amount and the list of balance
groups that are impacted.

8. Determines whether PIN_FLD_FLAGS is set to ignore previous reservations; if
yes, ignores previous reservations. For example, if the current reservation is $20,
and the extension amount is $10, if you ignore the previous reservation, the
extended reservation amount is set to $10. If you do not ignore the previous
reservation, the reservation amount is set to $30.

9. Calculates the account’s available resources.

10. Determines whether the account’s available resources are greater than the
reservation request and, if they are, proceeds to the next step.

11. Updates the reservation object for each balance group impacted by the event.
12. Updates the account’s reservation balance:

s For policy-driven charging sessions, if the network application sends the
consumed reservation amount for the resources used, this opcode updates the
PIN_FLD_CONSUMED_RESERVED_AMOUNT in the PIN_FLD_BALANCES
array of the /balance_group object.

» For /reservation objects, updates total reserved amount in the PIN_FLD_
RESERVED_AMOUNT field in each /balance_group object.

s For /reservation/active objects, updates the PIN_FLD_BALANCES field in
each /reservation_list object.

15-10 BRM Configuring and Collecting Payments

Sending Reservation Requests to the Resource Reservation Manager Opcodes

13.

14.

Calls the PCM_OP_BAL_POL_APPLY_MULTI_BAL_IMPACTS policy opcode to
trigger policy threshold notifications. This policy opcode sets up in-session and
out-of session notifications if the sum of current balance and consumed
reservation reaches (or crosses) the nearest threshold configured in the offer profile
for a given service and resource id.

Returns the reservation amount and sets PIN_FLD_RESERVATION_ACTION to
either PIN_RESERVATION_SUCCESS to indicate that the extension succeeded or
to PIN_RESERVATION_FAILURE to indicate that the extension failed.

Finding a Reservation

Use the PCM_OP_RESERVE_FIND_OB] opcode to find one or more /reservation or
/reservation/active objects.

This opcode takes as input:

A routing POID from PIN_FLD_POID indicating the database to search.
The reservation number from PIN_FLD_RESERVATION_NO.

One or more of the following:

— The account object POID

- The session POID

— The service object POID

- The balance group POID

An optional reservation status field, PIN_FLD_RESERVATION_STATUS. If this
field is included, PCM_OP_RESERVE_FIND_OB]J will search reservation objects
with the status specified. If this field is not included, PCM_OP_RESERVE_FIND_
OB]J searches reservation objects with a status of PIN_RESERVATION_RESERVED.

When PCM_OP_RESERVE_FIND_OB]J finds an object successfully, it returns the POID
of the matching /reservation or /reservation/active object.

When the PCM_OPFLG_READ_RESULT flag is included in the call to PCM_OP_
RESERVE_FIND_OBJ, PCM_OP_RESERVE_FIND_OB]J also returns the following
details about the object:

Quantity (single-RUM) or quantities (multi-RUM) reserved
POID of the account, service, balance group, and session objects
Expiration time

Status

Reservation number

All amounts that have been reserved for this reservation object

If not successful, check the flist spec to determine the error.

Releasing Reservations

Use the PCM_OP_RESERVE_RELEASE opcode to release one or more reservations.
This opcode returns unused resources to the account so they can be used later.

Note: If a reservation object is not specified, this opcode searches for
and releases all expired reservation objects.

Reserving Resources for Concurrent Network Sessions 15-11

Sending Reservation Requests to the Resource Reservation Manager Opcodes

See "About Releasing a Partially Used Reservation" or "About Releasing an Unused
Reservation" for more information.

PCM_OP_RESERVE_RELEASE is called when a session is terminated by a stop
accounting event. This opcode takes as input the POIDs of the /account and
/reservation_list objects. Additional input may include an expiration time to search for
the expired reservation object, the reservation object array to be released, and the
reservation object POID.

To release /reservation or /reservation/active objects, this opcode performs the
following actions:

1. Retrieves the /reservation and /reservation/active objects by using the specified
/account and /reservation_list POIDs. If the /reservation_list POID is not passed
in, this opcode finds all unexpired reservation objects that are associated with the
/account object.

2, Calls the PCM_OP_RESERVE_POL_PRE_RELEASE policy opcode to perform
custom validation.

3. Updates the reservation balance:

s For /reservation/active objects, updates the /reservation_list object by
removing the POIDs of the /reservation/active objects and by decrementing
the total reserved amount in its PIN_FLD_BALANCES field.

s For /reservation objects:

- Updates the PIN_FLD_RESERVED_AMOUNT fields in their associated
/balance_group objects

- Resets the PIN_FLD_CONSUMED_RESERVED_AMOUNT to zero in their
associated /balance_group objects

4. Determines whether to delete or release the reservation objects by checking the
PIN_FLD_DELETED_FLAG field in the input flist:

= If the flag is set to True, deletes the reservation objects.
= If the flag is set to False or if it is missing, releases the reservation objects.

5. Returns the POIDs of the /account object and the released /reservation and
/reservation/active objects.

Extending the Expiration Time for a Reservation

Use the PCM_OP_RESERVE_RENEW opcode to extend the expiration time for an
existing resource reservation. See "About Extending a Resource Reservation Expiration
Time" for more information.

This opcode takes as input:
» The /reservation or /reservation/active object from PIN_FLD_POID.

s The amount of time, in seconds, to add to the expiration time from PIN_FLD_
EXPIRATION_T.

To extend the expiration time for a reservation, this opcode performs the following
actions:

1. Checks the reservation status.
= If the reservation is expired or no longer active, this opcode returns an error.

n If the reservation is active, this opcode proceeds to the next step.

15-12 BRM Configuring and Collecting Payments

Customizing Resource Reservation

2. Extends the reservation expiration time by the amount specified in PIN_FLD_
EXPIRATION_T.

3. [Ifitis successful, returns the POID of the /reservation or /reservation/active object.

PCM_OP_RESERVE_RENEW fails when the reservation has already expired or is no
longer active.

Customizing Resource Reservation
Use the following policy opcodes to customize the resource reservation rules:

» To specify the rules to qualify for a resource reservation, use the PCM_OP_
RESERVE_POL_PREP_CREATE policy opcode. See "Customizing Resource
Reservation Rules" for more information.

» To specify the rules to qualify for a resource reservation extension, use the PCM_
OP_RESERVE_POL_PREP_EXTEND policy opcode. See "Customizing the Rules
for Extending a Reservation" for more information.

» To specify the rules for releasing a resource reservation, use the PCM_OP_
RESERVE_POL_PRE_RELEASE policy opcode. See "Customizing the Rules for
Releasing a Reservation" for more information.

= To customize offer profile threshold notification for both in-session and
out-of-session charging use the PCM_OP_BAL_POL_APPLY_MULTI_BAL_
IMPACTS policy opcode. See "Customizing the Offer Profile Threshold
Notifications" for more information.

Customizing Resource Reservation Rules

Use the PCM_OP_RESERVE_POL_PREP_CREATE policy opcode to specify the rules
that permit a resource reservation. By default, this policy opcode generates a unique
reservation ID if one is not passed in the input flist. The reservation ID uses this
format: hostnamet#threadid#tsystemtime (systemtime is in milliseconds).

However, you can customize this policy opcode to include custom resource
reservation rules. For example, you can do the following;:

= Reserve whatever resource is available, even if the available resource is less than
the requested amount.

» Check for duplicate reservation requests.

This policy opcode is called by the PCM_OP_RESERVE_CREATE opcode before a
[reservation or /reservation/active object is created.

Customizing the Rules for Extending a Reservation

Use the PCM_OP_RESERVE_POL_PREP_EXTEND policy opcode to specify the rules
for extending a resource reservation amount. By default, this policy opcode does
nothing, but you can customize it to include custom extension rules.

This policy opcode is called by PCM_OP_RESERVE_EXTEND before the reservation
amount is extended.

See "Extending the Reservation Amount" for more information.

Reserving Resources for Concurrent Network Sessions 15-13

Installing Resource Reservation Manager

Customizing the Rules for Releasing a Reservation

Use the PCM_OP_RESERVE_POL_PRE_RELEASE policy opcode to perform custom
actions before releasing a /reservation or /reservation/active object. By default, this
policy opcode does nothing, but you can customize it to release unused resources back
to the account or to perform other custom actions.

This policy opcode is called by the PCM_OP_RESERVE_RELEASE opcode before it
releases a reservation object.

Customizing the Offer Profile Threshold Notifications

Use the PCM_OP_BAL_POL_APPLY_MULTI_BAL_IMPACTS policy opcode to
customize the information you retrieve from BRM. By default, this policy opcode
generates (/event/notification/offer_profile/ThresholdBreach) notifications whenever
the sum of the current balance and consumed reservation reaches (or crosses) the
nearest threshold configured in the offer profile for the given service and resource id.

This policy opcode is called by the PCM_OP_RESERVE_EXTEND opcode before it
returns the information on the reservation extension.

Installing Resource Reservation Manager

Before installing Resource Reservation Manager, you should be familiar with BRM
concepts and architecture. See "Introducing BRM" and "BRM System Architecture” in
BRM Concepts.

System Requirements

Resource Reservation Manager is available for the HP-UX IA64, Linux, Solaris, and
AIX operating systems. For information on disk space requirements for these
operating systems, see Disk space requirements.

Software Requirements

This section describes the software that must be installed before you install Resource
Reservation Manager.

Before installing Resource Reservation Manager you must install:

» Third-Party software, which includes the PERL libraries and JRE required for
installing BRM components. See "Installing the Third-Party Software" in BRM
Upgrade Guide.

= BRM. For information, see "Putting Together Your BRM System" in BRM
Installation Guide.

= Oracle 10g or Oracle 11g.

Installing Resource Reservation Manager

15-14

Note: If you have already installed the product, features that are
already installed cannot be reinstalled without uninstalling them first.
To reinstall a feature, uninstall it and then install it again.

To install Resource Reservation Manager:

BRM Configuring and Collecting Payments

Installing Resource Reservation Manager

1. Download the software to a temporary directory (temp_dir).

Important:

s If you download to a Windows workstation, use FTP to copy the
.bin file to a temporary directory on your UNIX server.

= You must increase the heap size used by the Java Virtual Machine
(JVM) before running the installation program to avoid “Out of
Memory” error messages in the log file. For information, see
"Increasing Heap Size to Avoid “Out of Memory” Error Messages"
in BRM Installation Guide.

2. Go to the directory where you installed the Third-Party package and source the
source.me file.

Caution: You must source the source.me file to proceed with
installation, otherwise “suitable JVM not found” and other error
messages appear.

Bash shell:

source source.me.sh

C shell:

source source.me.csh

3. Go to the temp_dir directory and enter this command:

7.5.0_ResourceResMgr platform opt.bin

where platform is the operating system name.

Note: You can use the -console parameter to run the installation in
command-line mode. To enable a graphical user interface (GUI)
installation, install a GUI application such as X Windows and set the
DISPLAY environment variable before you install the software.

4. Follow the instructions displayed during installation. The default installation
directory for Resource Reservation Manager is opt/portal/7.4.

Note: The installation program does not prompt you for the
installation directory if BRM or Resource Reservation Manager is
already installed on the machine and automatically installs the
package at the BRM_Home location.

5. Go to the directory where you installed the Resource Reservation Manager
package and source the source.me file:

Bash shell:

source source.me.sh

Reserving Resources for Concurrent Network Sessions 15-15

Uninstalling Resource Reservation Manager

C shell:

source source.me.csh

6. Go to the BRM_Home/setup directory and run the pin_setup script.

Note: The pin_setup script starts all required BRM processes.

Your Resource Reservation Manager installation is now complete.

Uninstalling Resource Reservation Manager

To uninstall Resource Reservation Manager, run the BRM_
Homeluninstaller/ResourceResMgr/uninstaller.bin.

15-16 BRM Configuring and Collecting Payments

16

Payment Utilities

This chapter provides reference information for Oracle Communications Billing and
Revenue Management (BRM) payment utilities.

Payment Utilities 16-1

load_pin_ach

load_pin_ach

Location

Syntax

Parameters

Use this utility to load the merchant information for all credit card processor and
automated clearing house (ACH) vendors into the /config/ach object in the BRM
database. You define the payment processor and merchant information in the BRM_
Homelsys/data/pricing/example/pin_ach file.

For information about configuring merchants and payment processors, see "Setting Up
Merchants and Payment Processors".

Note: You cannot load separate /config/ach objects for each brand.
All brands use the same object.

Caution: When you run the load_pin_ach utility, it replaces the
existing payment processor and merchant information. If you are
updating a set of processors and merchants, you cannot load new
information only. You load complete sets of information each time you
run the load_pin_ach utility.

Important: To connect to the BRM database, the load_pin_ach utility
needs a configuration file in the directory from which you run the
utility. See "Creating Configuration Files for BRM Utilities" in BRM
System Administrator’s Guide.

BRM_Homel/bin

load pin_ach [-d][-v][-t] pin ach file

-d

Creates a log file for debugging purposes. Use this parameter for debugging when the
utility appears to have run with no errors, but the ACH merchant data has not been
loaded into the database.

-v
Displays information about successful or failed processing as the utility runs.

-t
Runs a test to check the input to the utility. It verifies that the input file exists and
validates the information contained in the input file.

pin_ach_file
The name and location of the file that defines payment processor merchants. The
default pin_ach file is in BRM_Homel/sys/data/pricing/example.

16-2 BRM Configuring and Collecting Payments

load_pin_ach

If you copy the pin_ach file to the same directory from which you run the load_pin_
ach utility, you do not have to specify either the path or the file name.

If you run the command in a different directory from where the pin_ach file is located,
you must include the entire path for the file.

Results

The load_pin_ach utility notifies you when it successfully creates the /config/ach
storable object.

If the load_pin_ach utility does not notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

Payment Utilities 16-3

pin_balance_transfer

pin_balance_transfer

Use this utility to perform all automatic sponsored top-ups that are scheduled to occur
within the time range specified in the utility’s command line parameters.

For information about automatic sponsored top-ups, see the following topics:
s About Sponsored Top-Ups

s Performing Automatic Sponsored Top-Ups

Important: To connect to the BRM database, this utility needs a
configuration file in the directory from which you run the utility. For
information about creating configuration files for BRM utilities, see
"Creating Configuration Files for BRM Ultilities" in BRM System
Administrator’s Guide.

Location

BRM_Homel/bin
Syntax

pin_balance transfer [-verbose] [-test] [-start mm/dd/yy] [-end mm/dd/yy]
Parameters

-verbose

Displays information about successful or failed processing as the utility runs.

Note: This parameter is always used with other parameters and
commands. It is not position dependent. For example, you can enter
-verbose at the beginning or end of a command to initiate the verbose
parameter. To redirect the output to a log file, use the following syntax
with the verbose parameter. Replace filename.log with the name of the
log file:

pin_balance_transfer other_parameter —verbose > filename.log

-test

Tests the utility, but does not affect accounts. Use this parameter to see which accounts
will receive automatic sponsored top-ups without actually transferring funds from
group owner accounts to member accounts.

-start mm/dd/yy or yyyy
Start date. For information on using this parameter, see "Specifying Start and End
Times" in BRM Configuring and Running Billing.

-end mm/dd/yy or yyyy
End date. For information on using this parameter, see "Specifying Start and End
Times" in BRM Configuring and Running Billing.

16-4 BRM Configuring and Collecting Payments

pin_balance_transfer

Results

This utility notifies you only if it encounters errors. Look in the default.pinlog file for
errors. This file is either in the directory from which the utility was started or in a
directory specified in the utility configuration file.

Payment Utilities 16-5

pin_cc_migrate

pin_cc_migrate

Location

Syntax

Parameters

Use this utility to replace the credit or debit card numbers stored in the /payinfo/cc
objects with tokens. This utility does the following:

1. Selects the /payinfo/cc objects that contain credit or debit card numbers.

2. Sends the credit or debit card numbers to Paymentech requesting for tokens for
each credit or debit card number.

3. Replaces the credit or debit card numbers stored in the /payinfo/cc objects with the
tokens returned by Paymentech.

Important: Ensure that the outstanding payments for credit card
accounts are closed before running this utility.

This utility does not process the credit or debit card numbers stored in any other
storable objects; for example, /event/billing/charge/cc, /event/billing/validate/cc, and
/au_payinfo/cc objects. It is recommended that you purge the old event and audit trial
objects after you run this utility. See "About Purging Old Credit Card Event and Audit
Trail Objects" for more information.

When you use multiple payment processors, you run this utility for each payment
processor. See "Using More Than One Payment Processor" for more information.

For more information on credit card tokenization, see the following topics:
= About Credit Card Tokenization
= About Replacing Credit Card Numbers with Tokens

BRM_Homelbin

pin_cc_migrate -vendor payment_processor_name
[=num number]
[-account account_POID]
[-start_date mm/dd/yy]
[-end_date mm/dd/yy]
[-verbose]
[-report]
[-help]

-vendor payment_processor_name

Specifies the credit card processor or automated clearing house (ACH) to use for
validating credit cards and debit cards. This parameter is used to get the payment
processor information from the /config/ach storable object.

For information on configuring payment processor information, see "Setting Up
Merchants and Payment Processors".

16-6 BRM Configuring and Collecting Payments

pin_cc_migrate

Results

-num number
Specifies the number of /payinfo/cc objects to be selected for tokenization.

-account account_POID
Specifies the account POID. Use this parameter to replace the credit or debit card
numbers with tokens for only a single account.

-start_date mm/ddlyy

Specifies the start date. The start and end dates specify the time range for selecting the
objects for tokenization. The pin_cc_migrate utility selects only the objects whose
PIN_FLD_CREATED_T value falls between the start and end dates. Note that the start
date is automatically the current date if you do not specify a value for the -start_date
parameter. If a start date is specified, the entire day is included.

-end_date mm/ddlyy

Specifies the end date. Note that the end date is automatically the current date if you
do not specify a value for the -end_date parameter. If an end date is specified, that
entire day is included, ending at, but not including, the Oth (first) second of the next
day (00:00:00 a.m.).

-verbose
Displays information about successful or failed processing as the utility runs.

Note: This parameter is always used with other parameters and
commands. It is not position dependent. For example, you can enter
-verbose at the beginning or end of a command to initiate the verbose
parameter. To redirect the output to a log file, use the following syntax
with the verbose parameter. Replace filename.log with the name of the
log file:

pin_cc_migrate other_parameter —verbose > filename.log

-report
Displays more information than the verbose parameter. Requires the verbose option.
Returns a list of the /payinfo/cc objects for which tokenization has been completed.

-help
Displays syntax and parameters for this utility.

If the pin_cc_migrate utility does not notify you that it was successful, look in the
utility log file (default.pinlog) to find any errors. The log file is either in the directory
from which the utility was started, or in a directory specified in the configuration file.

Payment Utilities 16-7

pin_clean

pin_clean

Location

Syntax

Parameters

Use this utility to find all unresolved credit card and direct debit payments recorded in
the BRM database.

For more information about unresolved payment transactions, see "Resolving Failed
BRM-Initiated Payment Transactions".

Note: To connect to the BRM database, the pin_clean utility needs a
configuration file in the directory from which you run the utility. See
"Creating Configuration Files for BRM Ultilities" in BRM System
Administrator’s Guide.

Important: For multischema systems, you must run the utility
separately against each database schema in your system. See
"Running Non-MTA Utilities in Multischema Systems" in BRM System
Administrator’s Guide.

BRM_Homelbin

pin_clean [-summary] [-search count_limit n] [-auth_pending]
[-verbose] [-help]

-summary

Displays the total number of each type of unresolved credit card transactions. In this
example, there are three verification errors, three authorization errors, and two refund
errors. For more information about these errors, see Table 14-1, " Types of Failed
Credit Card Transactions".

CheckPoint Log Summary:
PIN_CHARGE_CMD_VERIFY
PIN_CHARGE_CMD_AUTH_ONLY
PIN_CHARGE_CMD_CONDITION
PIN_CHARGE_CMD_DEPOSIT
PIN_CHARGE_CMD_REFUND

N O O W W

Without the summary option, the log summary is displayed and a menu if there are
checkpoints to resolve.

-search_count_limit n
Specifies the number of records to return.

-auth_pending
Specifies the number of records with the auth pending status. This is only applicable to
nontransactional payments.

16-8 BRM Configuring and Collecting Payments

pin_clean

-verbose
Displays information about successful or failed processing as the utility runs.

Note: This parameter is always used with other parameters and
commands. It is not position dependent. For example, you can enter
-verbose at the beginning or end of a command to initiate the verbose
parameter. To redirect the output to a log file, use the following syntax
with the verbose parameter. Replace filename.log with the name of the
log file:

pin_clean other_parameter —verbose > filename.log

-help
Displays syntax and parameters for this utility.

Results

If the pin_clean utility does not notify you that it was successful, look in the utility log
file (default.pinlog) to find any errors. The log file is either in the directory from which
the utility was started, or in a directory specified in the configuration file.

Payment Utilities 16-9

pin_collect

pin_collect

Use this utility to collect the balance due for accounts that use credit card and direct
debit, and SEPA payment methods.

This process does not collect against any bills that have been corrected. After a
corrective bill has been finalized, BRM collects all subsequent payments against the
due amount on the bill items of the corrective bill.

For corrective bills, the payment collection is triggered based on the payment
collection date. You can configure the payment collection date to be the bill finalization
date, the due date or a specific number of days before the due date (as with regular
bills).

This utility does not any process payments against original bills after a corrective bill
has been issued. It processes payments against the corrective bill depending on the
configuration of the RejectPaymentsForPreviousBill business parameter. If there are
multiple corrective bills, any payment against any past bill for the same period is
applied to the latest corrective bill.

When you use multiple payment processors, you run this utility for each one. See
"Using More Than One Payment Processor" for more information.

By default, this utility collects payments for bills whose payment collection date is on
the day the utility is run and on the day before the utility is run. For example, if you
run pin_collect on 01/01/06, payments are collected from 00:00:00 a.m. on 12/31/05
to 00:00:00 a.m. on 01/02/06.

To collect BRM-initiated payments for bills whose payment collection date is on a day
other than the days listed above, use this utility’s start and end parameters. See
"Specifying Start and End Times" in BRM Configuring and Running Billing.

Note: The payment collection date of a bill (/bill object) is stored in
the /billinfo object with which the bill is associated.

For more information on collecting BRM-initiated payments, see the following topics:
= About Collecting BRM-Initiated Payments

= Configuring Payment Collection Dates for Automatic Payments

Note: To connect to the BRM database, the pin_collect utility needs a
configuration file in the directory from which you run the utility. See
"Creating Configuration Files for BRM Utilities" in BRM System
Administrator’s Guide.

Location
BRM_Homelbin

Syntax

pin_collect -pay_type payment_method
[-vendor] payment_processor_name
[-active | -close | -inactive]

16-10 BRM Configuring and Collecting Payments

pin_collect

Parameters

[- start [mm/dd/yy | number_of_days]]
[-end [mm/dd/yy | number_of_days]]
[-report]
[-rebill]
[-test]

[-verbose]
[-help]

-pay_type payment_method
Specifies the payment method. The possible values are:

= 10003 for credit card

= 10005 for direct debit

= 10018 for SEPA

Payment methods are defined in BRM_Home/include/pin_pymt.h.

-vendor payment_processor_name

Specifies the credit card processor or automated clearing house (ACH) to use for
validating credit cards, debit cards, and direct debit transactions. This parameter is
used to get the payment processor information from the /config/ach storable object.

This parameter is not applicable for SEPA payment type.

For information on configuring payment processor information, see "Setting Up
Merchants and Payment Processors" for more information.

-active |- close | -inactive
Specifies the status of the accounts to collect payments from.

-test

Runs a test to find out how many accounts meet the criteria without performing the
collection. The test has no effect on the accounts. This is most useful when run with the
-verbose and -report options.

-verbose
Displays information about successful or failed processing as the utility runs.

Note: This parameter is always used with other parameters and
commands. It is not position dependent. For example, you can enter
-verbose at the beginning or end of a command to initiate the verbose
parameter. To redirect the output to a log file, use the following syntax
with the verbose parameter. Replace filename.log with the name of the
log file:

pin_collect other_parameter —verbose > filename.log

-report

Displays more information than the verbose parameter. Requires the verbose option.
Returns a list of the accounts being charged and the amount of each charge. This is an
important verification tool when used with the -test and -verbose options: you can
check the list of accounts and charges before charging them. See "Running Billing
Utilities Manually" in BRM Configuring and Running Billing.

Payment Utilities 16-11

pin_collect

-rebill
Collects any outstanding bills for a given account status. See "Running Weekly Billing"
and "Running Monthly Billing" in BRM Configuring and Running Billing.

-start [mm/ddlyy or yyyy | number_of_days]

Start date. Collects payments on the day utility is run and the day before the utility is
run. For information on using this parameter, see "Specifying Start and End Times" in
BRM Configuring and Running Billing.

-end [mm/ddlyy or yyyy | number_of_days]
End date. For information on using this parameter, see "Specifying Start and End
Times" in BRM Configuring and Running Billing.

-help
Displays syntax and parameters for this utility.

Results

If the pin_collect utility doesn't notify you that it was successful, look in the utility log
file (default.pinlog) to find any errors. The log file is either in the directory from which
the utility was started, or in a directory specified in the configuration file.

When it is called internally by the pin_bill_day script, the pin_collect utility logs error
information in the pin_mta.pinlog file.

16-12 BRM Configuring and Collecting Payments

pin_deposit

pin_deposit

Use this utility to deposit all pre-authorized credit card and direct debit transactions
made within the past 30 days (from yesterday).

When you use multiple payment processors, you run this utility for each one. See
"Setting Up Merchants and Payment Processors" for more information.

Note: To connect to the BRM database, the pin_deposit utility needs
a configuration file in the directory from which you run the utility. See
"Creating Configuration Files for BRM Utilities" in BRM System
Administrator’s Guide.

See "About Collecting BRM-Initiated Payments" for more information on collecting
BRM-initiated payments.

Important: For multischema systems, you must run the utility
separately against each database schema in your system. See
"Running Non-MTA Utilities in Multischema Systems" in BRM System
Administrator’s Guide.

Location
BRM_Homelbin
Syntax
pin_deposit -pay_type payment_method
-vendor payment_processor_name
[-start mm/dd/yy | number_of_days]
[-end mm/dd/yy | number_of_days]
[-test]
[-verbose]
[-help]
Parameters

-pay_type payment_method
Specifies the payment method. There are two possible values:

s 10003 for credit card
= 10005 for direct debit
Payment methods are defined in BRM_Home/include/pin_pymt.h.

-vendor payment_processor_name

Specifies the credit card processor or automated clearing house (ACH) to use for
validating credit cards, debit cards, and direct debit transactions. This parameter is
used to get the payment processor information from the /config/ach storable object.

See "Setting Up Merchants and Payment Processors" for more information on
configuring payment processor information.

Payment Utilities 16-13

pin_deposit

-start [nm/dd/yy or yyyy | number_of_days]

-end [mm/dd/yy or yyyy | number_of_days]

Start and end date. For information on using start and end parameters, see "Specifying
Start and End Times" in BRM Configuring and Running Billing.

-test
Runs a test to find out how many accounts meet the criteria without performing the
deposit. The test has no effect on the accounts.

-verbose
Displays information about successful or failed processing as the utility runs.

Note: This parameter is always used with other parameters and
commands. It is not position dependent. For example, you can enter
-verbose at the beginning or end of a command to initiate the verbose
parameter. To redirect the output to a log file, use the following syntax
with the verbose parameter. Replace filename.log with the name of the
log file:

pin_deposit other_parameter —verbose > filename.log

-help
Displays syntax and parameters for this utility.

Results

If the pin_deposit utility doesn't notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

When it is called internally by the pin_bill_day script, the pin_deposit utility logs
error information in the pin_billd.pinlog file.

16-14 BRM Configuring and Collecting Payments

pin_recover

pin_recover

Location

Syntax

Parameters

Use this utility to resolve failed credit card and direct debit transactions.

See "Resolving Failed BRM-Initiated Payment Transactions" for more information
about resolving failed credit card and direct debit transactions.

Note: To connect to the BRM database, the pin_recover utility needs
a configuration file in the directory from which you run the utility. See
"Creating Configuration Files for BRM Utilities" in BRM System
Administrator’s Guide.

Important: For multischema systems, you must run the utility
separately against each database schema in your system. See
"Running Non-MTA Utilities in Multischema Systems" in BRM System
Administrator’s Guide.

Note: When resubmitting failed credit card and direct debit
transactions, the pin_recover utility takes the billinfo’s current
payment type while, which must be either 10003 for credit cards or
10005 for direct debit transactions.

BRM_Homelbin

pin_recover -pay_type payment_method
-vendor payment_processor_name

[-rfr | -resubmit batch ID | -recover_payment]
[-verbose] [-test] [-help]

-pay_type payment_method
Specifies the payment method. There are two possible values:

s 10003 for credit card
s 10005 for direct debit
Payment methods are defined in BRM_Homel/include/pin_pymt.h.

-vendor payment_processor_name

Specifies the credit card processor or automated clearing house (ACH) to use for
validating credit cards, debit cards, and direct debit transactions. This parameter is
used to get the payment processor information from the /config/ach storable object.

See "Setting Up Merchants and Payment Processors" for more information on
configuring payment processor information.

Payment Utilities 16-15

pin_recover

Results

-rfr

Uses the Paymentech request for response (RFR) file to retrieve and reprocess an
incomplete batch. See "Resolving Transactions by Using a Request for Response (RFR)
File" for more information.

-resubmit batch_ID

Resends the original batch with the same batch ID to avoid double authorization. To
find the batch ID, run the pin_clean utility. See "Resubmitting Transactions" for more
information.

Note: If you use a transaction processing service or credit card
processing service other than Paymentech, ensure that it uses
duplicate transaction detection. If not, using -resubmit can cause
customers to be billed twice.

-recover_payment
Creates payment events for payments that have been successfully charged, but not
recorded. See "Resolving Payments" for more information.

-verbose
Displays information about successful or failed processing as the utility runs.

Note: This parameter is always used with other parameters and
commands. It is not position dependent. For example, you can enter
-verbose at the beginning or end of a command to initiate the verbose
parameter. To redirect the output to a log file, use the following syntax
with the verbose parameter. Replace filename.log with the name of the
log file:

pin_recover other_parameter —verbose > filename.log

-test
Runs a test to find out how many accounts meet the criteria without performing the
recovery. The test has no effect on the accounts.

-help
Displays syntax and parameters for this utility.

If the pin_recover utility doesn't notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

16-16 BRM Configuring and Collecting Payments

pin_sepa

pin_sepa

Location

Syntax

Parameters

Use this utility to generate and process SEPA request and response files.
You use this utility to generate the following SEPA request XML files:

= SEPA Direct Debit payment request files

s SEPA Credit Transfer payment request files

» SEPA Direct Debit reversal payment request files

You use this utility to process the following SEPA response XML files:

= SEPA Direct Debit payment response files

» SEPA Credit Transfer payment response files

The SEPA request and response XML files must comply with the XML schema
definitions (XSD) that are provided in the BRM_Home/apps/pin_sepa/xsd directory.
The pin_sepa utility cannot process an XML file that uses a different XSD.

The pin_sepa utility uses the BRM_Home/apps/pin_sepa/Infranet.properties file,
which provides the configuration information that the utility requires to create and
process SEPA request and response files.

For more information about configuring the Infranet.properties file, see "Configuring
the pin_sepa Utility for Generating and Processing SEPA XML Files".

For more information about creating and processing SEPA request and response files,
see "About SEPA Payment Processing".

BRM_Homelapps/pin_sepa

To generate SEPA request XML files:

pin_sepa [-sdd_req \ -sct_req | -sepa_rev] [-verbose [>filename]] [-help]

To process SEPA response XML files:

pin_sepa -sepa resp [-verbose] [-help]

To generate SEPA request XML files and process SEPA response XML files:

pin_sepa -all [-verbose] [-help]

-sdd_req
Generates SEPA Direct Debit request XML files.

-sct_req
Generates SEPA Credit Transfer request XML files.

-sepa_rev
Generates SEPA Direct Debit reversal request XML files.

Payment Utilities 16-17

pin_sepa

Results

-sepa_resp
Processes SEPA response XML files for SEPA Direct Debit and SEPA Credit Transfer.

-all

Generates SEPA request XML files for SEPA Direct Debit, SEPA Credit Transfer, and
SEPA Direct Debit reversal and processes SEPA response XML files for SEPA Direct
Debit and SEPA Credit Transfer.

-verbose [>filename]
Displays information about successful or failed processing as the utility runs. filename
specifies the file to redirect the output to.

Note: This parameter is always used in conjunction with other
parameters and commands.

-help
Displays the syntax and parameters for this utility.

The pin_sepa utility uses the following file naming convention for the request XML
files:

typedbno-YYYYMMDD-X.xml
where:

» typeis SDD for SEPA Direct Debit, SCT for SEPA Credit Transfer, or SDD-REV for
SEPA Direct Debit reversal.

= dbno is the database number.
= YYYYMMDD is the year, month, and day on which the file was generated.
» X is aunique, eight-digit sequence number.

If the pin_sepa utility does not notify you that it was successful, look in the log file
(javapcm.log is the default log filename) to find any errors. The log file is either in the
directory from which the utility was started or in a directory specified in the
Infranet.properties configuration file.

16-18 BRM Configuring and Collecting Payments

	Contents
	Preface
	Audience
	Accessing Oracle Communications Documentation
	Documentation Accessibility
	Document Revision History

	1 About Payments
	About Payments
	About BRM-Initiated Payment Processing
	About Collecting BRM-Initiated Payments
	Supported BRM-Initiated Payment Methods

	About Externally Initiated Payment Processing
	About Collecting Externally Initiated Payments
	Supported Externally Initiated Payment Methods

	About Payment Methods
	Cash, Check, and Postal Order Payment Methods
	Credit Card Payment Method
	Direct Debit Payment Method
	Invoice Payment Method
	Prepaid Payment Method
	Nonpaying (Subordinate) Payment Method
	Undefined Payment Method
	About Credit Limits for Undefined Payment Methods

	Voucher Payment Method
	Wire Transfer Payment Method
	Finding Payment Info

	About Payment Attributes
	Account and Bill Number
	Payment Method
	Payment Channel
	Payment Status
	Batch ID
	Transaction ID
	Subtransaction ID

	About Validating Payments
	About Payment Status
	Default BRM Status Codes and Descriptions

	About Allocating Payments
	Allocating Account-Level Payments to Multiple Bill Units

	About Reversing Payments
	About Payment Fees
	About Payment Incentives
	About Credit Card Payment Confirmation Numbers
	About Account Top-Ups
	About Payment Suspense Manager
	About Unconfirmed Payment Processing
	About Reversing Account Write-Offs during Payment Collection
	About Payment Processors
	About Automated Clearing Houses
	About Credit Card, Debit Card, and Direct Debit Processors
	About Payment Gateways

	How BRM Collects Payments
	BRM-Initiated Payment Processing
	Externally Initiated Payment Processing

	Selecting the Items to Which Payments Are Applied
	How Items Are Selected for Payments

	How BRM Calculates Payment Collection Dates
	How BRM Receives Payments
	How BRM Reverses Payments
	How BRM Refunds Payments
	How BRM Writes Off Payments
	Related Documents

	2 About BRM-Initiated Payment Processing
	About BRM-Initiated Payments
	About Transactional and Nontransactional Payment Processing

	About Account Verification for Online Processing
	Prerequisites
	About Action and Response Reason Codes
	Supported Transaction Types

	About Credit Card Transactions
	About Merchant Numbers and Account Identifiers
	Paymentech Merchant Information
	Using More Than One Merchant

	About Credit Card Validation and Authorization
	About Credit Card Validation
	About Credit Card Authorization
	The Credit Card Validation and Authorization Process

	About Credit Card Tokenization
	The Credit Card Tokenization Process

	About Replacing Credit Card Numbers with Tokens
	Replacing Credit Card Numbers with Tokens
	About Purging Old Credit Card Event and Audit Trail Objects

	About Migrating Credit Card Information from Legacy Databases
	Paymentech and International Transactions
	About the Paymentech HeartBeat Application
	About Applying Charges Directly to Credit Card Accounts
	General Ledger Impact of Charges

	About Collecting BRM-Initiated Payments
	When to Run the pin_collect Utility
	Increasing Performance of the pin_collect Utility
	Setting the Minimum Amount to Collect

	About Depositing BRM-Initiated Payments
	When to Run pin_deposit
	Increasing Performance of the pin_deposit Utility

	About Resolving Failed BRM-Initiated Payment Transactions
	When to Run the pin_clean Utility
	Example of Running pin_clean

	About Recovering BRM-Initiated Payment Transactions
	When to Run the pin_recover Utility

	How BRM-Initiated Payment Transactions Are Performed
	How BRM Performs Credit Card Charges
	How BRM Performs Direct Debit Charges
	About Paymentech Direct Debit Implementation
	Creating a Custom Direct Debit Implementation

	How BRM Performs a Batch of Direct Debit Charges
	How BRM Checks the Results of BRM-Initiated Batch Payment Operations
	How BRM Validates Credit Card and Direct Debit Transactions

	How BRM Handles Credit Card Information during Account Creation
	About Credit Card Fraud Prevention

	3 About SEPA Payment Processing
	About SEPA Payments
	About the SEPA Direct Debit Payment
	About the SEPA Credit Transfer Payment

	About Specifying SEPA Payment Information During Customer Registration
	About the Account Currency for SEPA Payments
	About Registering the Mandate for SEPA Direct Debit Payments
	About the Different Types of Mandates

	Managing Customer’s SEPA Payment Information
	Changing the SEPA Payment Method
	Deleting the SEPA Payment Method
	Changing the Mandate Information

	About Loading Your Creditor Information into the BRM Database
	Setting Up and Loading Creditor Information
	Updating the Creditor Information

	Processing SEPA Payments
	Creating SEPA Direct Debit Payment Requests
	Creating SEPA Credit Transfer Payment Requests
	Generating SEPA Request XML Files
	Sending the SEPA Request XML Files to Your Bank to Collect Payment
	Processing SEPA Response XML Files to Handle Failed Payment Transactions

	Reversing an Erroneous Payment Collection
	Using SEPA XML Messages to Exchange Customer’s Payment Information
	Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files
	How BRM Handles Mandate Information
	How BRM Registers a Mandate
	How BRM Updates a Mandate
	How BRM Cancels a Mandate

	4 Configuring BRM-Initiated Payment Processing
	Overview of Setting Up BRM-Initiated Payment Processing
	Information You Need from Paymentech
	Information Paymentech Needs from You

	How Paymentech Manager Handles Electronic Check Processing
	About Electronic Check Processing (ECP) Methods
	Payment Formats and Batch Processing
	Points to Consider

	Setting Up Merchants and Payment Processors
	Using More Than One Payment Processor
	Connecting Your Payment Processor Data Managers to the BRM Database

	Configuring the Connection Manager for Paymentech
	Enabling Direct Debit Processing
	Enabling Credit Card Tokenization
	Requiring Additional Protection against Credit Card Fraud
	Specifying the Maximum Number of Digits Allowed for CVV2 Verification

	Disabling Paymentech Real-Time Credit Card Validations

	Configuring the Paymentech Data Manager
	Specifying Merchant IDs and Merchant Numbers
	Adding Soft Descriptor Information
	Handling Concurrent Online Paymentech Requests
	Increasing Registration Speed When Paymentech Is Offline
	Setting the Connection Timeout Length and Retries
	Specifying the Batch Mode Encryption Key
	Using the Paymentech HeartBeat Application
	Troubleshooting HeartBeat Errors

	Changing How BRM Handles Paymentech Address Validation Return Codes
	Handling AVS Validations for International Credit Cards

	Customizing How the Results of Credit Card Transactions Are Processed
	Changing How BRM Handles Paymentech Authorization Return Codes
	Testing Paymentech Credit Card Processing
	Setting Up the Paymentech Simulator
	Defining the Credit Card Functionality to Test
	Setting Up the Paymentech DM Configuration File for Testing
	Specifying an IP Address for the Paymentech Simulator

	Running the Paymentech Simulators
	Simulating Failed Credit Card Transactions
	Resolving Failed Credit Card Transactions
	About Paymentech Fraud Prevention Using CID and CVV2

	About Paymentech Soft Descriptor Credit Card and Checking Statement Information
	Implementing a Direct Debit Payment Method
	Direct Debit Options
	Direct Debit Installation
	Direct Debit Components
	Implementing a Custom Direct Debit Payment Method
	Overview of Adding a Custom Direct Debit Implementation
	Creating /payinfo Storable Classes
	Modifying Customer Center
	Creating Opcodes
	Creating Event Storable Classes
	Creating a Data Manager
	Updating the /config/payment Storable Object

	5 Configuring Payment Channels
	About Payment Channel Information
	Setting Up Payment Channel Information
	Defining Payment Channel Information in BRM
	Mapping Payment Channel IDs for BRM-Initiated Payments
	Configuring Payment Channel IDs for Externally Initiated Payments

	Assigning Payment Channel IDs to Externally Initiated Payments

	6 Configuring Payment Collection Dates for Automatic Payments
	About Configuring Payment Collection Dates for Automatic Payments
	About Configurable Payment Collection Dates and On-Demand Billing
	About Configurable Payment Collection Dates and Delayed Billing

	7 Configuring Payment Fees
	About Failed Payments
	About Payment Fees
	Configuring BRM for Payment Fees
	Defining Payment Attributes for Payment Fees
	Defining Reason Codes for Failed Payments

	Creating Payment Fees
	Defining a Payment Fee
	Defining Thresholds for Payment Fees
	Defining Exemptions from Payment Fees
	Removing a Payment Fee from an Account Balance

	Customizing Payment Fees
	How Payment Fees Are Applied
	Customizing Payment Fees
	Storing Additional Information with Payment Fees

	8 Configuring Payment Incentives
	About Payment Incentives
	About Setting Up Payment Incentives
	About Payment Incentive Processing
	How Payment Reversals Affect Payment Incentives

	Enabling BRM for Payment Incentives
	Creating Payment Incentive Products
	Defining a Payment Incentive

	Customizing Payment Incentives
	How Payment Incentives Work
	How Payment Incentives Are Triggered
	Customizing How to Trigger Payment Incentives
	How Payment Incentives Are Granted
	Customizing How to Grant Payment Incentives
	How Payment Incentives Are Reversed
	Manually Reversing a Payment Incentive

	9 Configuring Payment Suspense Manager
	About Payment Suspense Manager
	Suspended Payment Processing Overview
	About Setting Up Payment Suspense Manager
	About the Payment Suspension Process
	About Payment Validation
	About Processing Suspended Payments in a Payment Batch
	About Processing Suspended Payments in the BRM Database
	About Payment Correction

	About Distributing One Payment to Multiple Accounts
	About Allocating an Account-Level Payment to Multiple Bill Units
	Understanding Payment Recycling
	About Original Payments
	About Payment Transfer Direction and Verification
	About Recycling Payments from Suspense
	About Recycling Payments to Suspense
	How Payment Reversals Work with Suspense and Recycling

	How BRM Tracks Suspended Payments
	How Direct Reversals and Refunds Relate to Suspense
	About Directly Reversing Payments from BRM
	About Refunding Payments

	About Removing Unallocatable Payments from Suspense
	About Payment Suspense Manager and Client Applications
	Summary of Payment Suspension Guidelines and Restrictions
	General Guidelines
	Suspended Payment Guidelines
	Distributed Payment Guidelines

	Configuring BRM for Payment Suspense Manager
	Enabling Payment Suspense in BRM
	Creating a Payment Suspense Account
	Working with Suspense Reason Codes and Action Owner Codes
	About the Reasons.locale File
	Loading Reason Codes into the BRM Database

	Setting Up Permissions for Payment Center

	About Customizing Payment Suspense Manager
	How Payments Are Suspended during Payment Processing
	How Payments Are Recycled to and from Suspense
	How Recycled Payments Are Retrieved
	How Payments Are Reversed
	How Payments Are Reversed During Recycling
	How Payments Are Removed As Unallocatable

	Customizing Payment Suspense Validation
	Customization Example: Suspending Large Payments
	Customization Example: Threshold for Suspending Payments
	Customization Example: Finding Unconfirmed Payments
	Customization Example: Error Handling
	Default Payment Validation Process
	Payment Validation Flags

	Customizing Payment Guidance to Suspense
	Customizing Payment Failure Reason Codes
	Customizing Payment Tool
	Adding a Cash Reversal Batch
	Customizing Suspense Criteria for Payment Tool

	Handling Custom Payment Methods

	Adding Multischema Support in Payment Processing

	10 Configuring Top-Ups
	About Topping Up Accounts
	About Standard Top-Ups
	Standard Top-Up Payment Methods

	About Sponsored Top-Ups
	About Sponsored Top-Up Groups
	About Sponsored Top-Up Credit Limits
	Sponsored Top-Up Limitations

	About Top-Up Discount Incentives

	Implementing Top-Ups in Custom Client Applications
	Implementing Manual Standard Top-Ups
	Implementing Automatic Standard Top-Ups
	Implementing Manual Sponsored Top-Ups
	Implementing Automatic Sponsored Top-Ups

	How BRM Sets Up Top-Up Information for an Account
	Preparing an Account’s Top-Up Information
	Additional Preparation for Sponsored Top-Ups

	Validating an Account’s Top-Up Information
	Creating or Modifying an Account’s Top-Up Information
	Creating Top-Up Information
	Modifying Top-Up Information

	Setting an Account’s Sponsored Top-Up Member Status and PIN
	Activating Sponsored Top-Up Group Members
	Inactivating Sponsored Top-Up Group Members
	Setting Sponsored Top-Up Member PINs

	Finding Sponsored Top-Up Groups

	About Tracking Sponsored Top-Up Adjustments
	Customizing and Loading Sponsored Top-Up Reason Codes

	Offering Discount Incentives with Top-Ups
	How BRM Performs Top-Ups
	Triggering PCM_OP_PYMT_TOPUP
	Performing Top-Ups with PCM_OP_PYMT_TOPUP
	How PCM_OP_PYMT_TOPUP Handles Manual Standard Top-Ups
	How PCM_OP_PYMT_TOPUP Handles Automatic Standard Top-Ups
	How PCM_OP_PYMT_TOPUP Handles Manual Sponsored Top-Ups
	How PCM_OP_PYMT_TOPUP Handles Automatic Sponsored Top-Ups

	About Transferring Sponsored Top-Ups from Debit Balances
	About Retrieving Balance Impact Information for Voucher Top-Ups
	About Taxes Applied during Voucher Top-Ups
	Topping Up Accounts in Customer Center and Self-Care Manager
	Performing Top-Ups in Customer Center
	Performing Top-Ups in Self-Care Manager

	Performing Automatic Sponsored Top-Ups
	Running the pin_balance_transfer Utility

	About Reversing Voucher Top-Ups
	Reversing Vouchers That Have Only Non-Currency Resources
	Reversing Vouchers That Have Currency and Non-Currency Resources

	About Vouchers Having Non-Currency Resources with a Positive Impact
	Viewing Sponsored Top-Up History
	Displaying All Sponsored Top-Ups Associated with an Account
	Displaying Sponsored Top-Ups Associated with Only One Group
	Displaying Only Sponsored Top-Up Credits or Debits

	Canceling Top-Ups
	Canceling Sponsored Top-Ups
	Canceling a Single Member’s Sponsored Top-Ups
	Canceling an Entire Group’s Sponsored Top-Ups
	Reinstating Sponsored Top-Ups

	Deleting Accounts That Are Sponsored Top-Up Owners or Members
	About Deleting Owner Accounts
	About Deleting Member Accounts

	11 Handling Atypical Payments
	Handling Overpayments and Underpayments
	Handling Late or Missed Payments
	Handling Multiple Payments to the Same Account
	Applying Multiple Payments to an Account through Payment Gateways

	Handling Failed Unconfirmed Payments
	Submitting Failed Unconfirmed Payments with Payment Tool
	Requirements for Posting Unconfirmed Payments
	Customizing Unconfirmed Payment Processing

	12 Managing Externally Initiated Payments
	About Externally Initiated Payments
	Supported Externally Initiated Payment Methods

	Processing a Batch of Payments by Using Payment Tool
	Who Uses Payment Tool?
	Running Payment Tool on Windows 7 and Windows 8.1

	About Allocating Payments
	About Required and Suggested Allocations
	About Allocating Multiple Payments for the Same Bill
	Allocating Payments to Bills and Items
	Allocating an Account-Level Payment to Multiple Bill Units
	Allocating Payments Later
	Allocating Payments in More Than One Currency
	Improving Payment Allocation Performance
	Allocating Externally Initiated Payments by Due Amount
	Finding Bills by Due Amount

	About Reversing Payments
	Supported Payment Reversal Types
	Processing a Batch of Payment Reversals by Using Payment Tool

	About Externally Initiated Refunds
	Supported Batch Refund Types
	Processing a Batch of Refunds by Using Payment Tool
	Managing Refunds with Your Custom Application

	Managing Nonvalidated Batch Entries
	Processing Lockbox Batches
	About the Columns in Batch Windows
	Importing Batch Data into Payment Tool
	Handling Overpayments and Underpayments by Using Payment Tool
	Working with Multiple Currency Types in the Payment Tool
	Applying Multiple Payments to the Same Account
	Manually Allocating Account-Level Payments to Accounts with Multiple Bill Units
	Enabling Overallocation to an Item
	Configuring Payment Tool to Lock at the Account Level during Batch Processing
	Customizing Payment Details Displayed in BRM Client Tools
	About the Default /config/paymenttool
	Rules for Modifying Payment and Reversal Fields
	Creating an Object Definition for a New Payment or Reversal Event
	Changing the Order of Columns in Payment Tool
	Adding a New Column to Payment Tool
	Adding Direct Debit Details to the Customer Center Payments Tab
	Customizing the Date Format of Batch Files in Payment Tool

	13 Managing Suspended Payments
	About Payment Center
	How BRM Processes Suspended Payments

	About Searching for Payments
	About Searching for Suspense Accounts
	About Payment Center Validation

	About Allocating Suspended Payments
	About Deferred Payment Allocation
	About Overallocations and Underallocations
	About Allocating Suspended Payments to Multiple Bill Units
	Working with Overpayments and Underpayments

	Configuring Payment Center for Custom Payment Methods
	Customizing the Date Format for Payment Center
	Improved Performance of Searches for Payment Events in Payment Center

	14 Resolving Failed BRM-Initiated Payment Transactions
	About Failed BRM-Initiated Payment Transactions
	How BRM Records Transactions

	Checking for Transaction Errors
	Deleting Failed Verifications
	Resolving Authorizations
	Resolving Refunds
	Resolving Transactions by Using a Request for Response (RFR) File
	Resubmitting Transactions
	Checking for Transactions in Paymentech Send Files
	Resolving Payments
	Resolving Payments for Custom Pay Types

	Deleting Transactions
	Troubleshooting Unresolvable Credit Card Transactions

	15 Reserving Resources for Concurrent Network Sessions
	About Resource Reservation Manager
	About Creating Reservations
	About Storing Reservations in IMDB Cache
	About Storing Reservations in the BRM Database
	Setting the Type of Resource Reserved
	Setting an Expiration Time for the Reservation Request
	Setting the Expiration Time for Prepaid Services

	Loading Reservation Preferences for Policy-Driven Charging
	Updating Reservation Preferences Configuration for Policy-Driven Charging
	Loading Reservation Preferences for Policy-Driven Charging

	About Extending a Resource Reservation Amount
	About Extending a Resource Reservation Expiration Time
	About Releasing a Partially Used Reservation
	About Releasing an Unused Reservation
	About Reserving and Releasing Disputed Amounts
	Sending Reservation Requests to the Resource Reservation Manager Opcodes
	Creating Reservations
	Associating a Session with a Reservation
	Extending the Reservation Amount
	Finding a Reservation
	Releasing Reservations
	Extending the Expiration Time for a Reservation

	Customizing Resource Reservation
	Customizing Resource Reservation Rules
	Customizing the Rules for Extending a Reservation
	Customizing the Rules for Releasing a Reservation
	Customizing the Offer Profile Threshold Notifications

	Installing Resource Reservation Manager
	System Requirements
	Software Requirements
	Installing Resource Reservation Manager

	Uninstalling Resource Reservation Manager

	16 Payment Utilities
	load_pin_ach
	pin_balance_transfer
	pin_cc_migrate
	pin_clean
	pin_collect
	pin_deposit
	pin_recover
	pin_sepa

