

Agile Product Lifecycle Management

EC MCAD Connectors for Agile Engineering
Collaboration

Installation and Administration Guide

March 2010

v2.5.1

E16681-02

ii Agile Product Lifecycle Management

Oracle Copyright

Copyright © 1995, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures
to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third party content, products and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third party content, products or services.

v2.5.1 iii

CONTENTS

Oracle Copyright ... ii

Chapter 1 Introduction to Engineering Collaboration ... 1

Overview ...1

Key Features ..1

Engineering Collaboration Process ..2

Save and Load CAD Files .. 3

View CAD Files... 3

Create BOM.. 3

Chapter 2 Installation and Configuration .. 5

Prerequisites ...5

Java Version Support ...5

Obtaining Software from Oracle E-Delivery ...6

Implementation Checklist ...6

Chapter 3 Getting Started with Engineering Collaboration ... 9

Attribute Exchange ...9

Setting Up EC Attributes and Attribute Mapping ... 10

Required Attribute Configuration .. 10

Attribute Mapping Configuration Files .. 10

XML File Attribute Definition ... 11

INI File Attribute Definition .. 11

Methods for Mapping from CAD to PLM ... 12

Adding Customer-specific Attributes ... 13

Changing an Attribute to a Different Base ID .. 13

Controlling Attribute Visibility in EC Client Dialogs .. 14

Methods for Updating Properties from PLM to CAD ... 16

Updating During Save .. 17

Updating During Load... 17

Synchronizing an Attribute on a Drawing .. 18

Additional Text Processing .. 18

Options for Design Numbering .. 18

Basic Numbering Methods ... 19

Appending the CAD Filetype .. 20

Options for Part Numbering ... 21

File Renaming Options .. 21

iv Agile Product Lifecycle Management

Configuring the Standard Numbering Scenario .. 22

Overview of Design Change Process and Attributes .. 23

Change Process and Revisioning Using Part Workflow ... 26

Change Process and Revisioning Using Routing Slips... 27

Additional Change Process Information .. 29

Chapter 4 Installing and Configuring Pro/ENGINEER Connector 31

Extracting Files for Connector ... 32

Extracting Files for EC Client .. 32

Configure PLM API for WAN Mode ... 32

Editing the Configuration File .. 33

Editing the Mapping File .. 34

Installing the AgileAPI.jar file ... 34

Creating a Shortcut to the Startup File .. 34

Creating the Agile Toolbar in Pro/E ... 35

Installing on Additional Computers .. 36

Configuring the Pro/ENGINEER Connector .. 36

Configuration File Acp.cfg .. 37

Mapping File AcpCustomer9.ini.. 37

Mapping Options for [ProEToAgile.XXXX] Sections ... 39

Mapping Options for [AgileToProE.XXXX] Sections... 40

Mapping Options for [AgileGetProperties.XXX] Sections ... 41

Chapter 5 Installing and Configuring SolidWorks Connector .. 43

Extracting Files for Connector ... 44

Extracting Files for EC Client .. 44

Configure PLM API for WAN Mode ... 44

Configuring for a 64-bit System ... 45

Editing the Configuration File .. 45

Registering the Library .. 47

Installing the AgileAPI.jar file ... 47

Setting Up the Agile Menu ... 47

SolidWorks Connector Administration ... 49

Configuring the 3DCADMapping.ini File ... 49
Mapping Options for Update Properties Sections - SolidWorks ... 56
Controlling Custom vs. Configuration-specific Properties .. 60

Modifying the Agile Menu Definition .. 60

Removing Commands and Menus ... 62

Renaming Commands and Menus ... 62

Restructuring Commands and Menus .. 62

v2.5.1 v

Adding or Removing Menu Separators .. 62

Chapter 6 Installing and Configuring Unigraphics NX Connector 63

Extracting Files for Connector ... 64

Extracting Files for EC Client .. 64

Configure PLM API for WAN Mode ... 64

Editing the Startup File .. 65

Creating a Shortcut to the Startup File ... 65

Installing the AgileAPI.jar file ... 65

Installing on Additional Computers .. 66

Unigraphics NX Connector Administration .. 67

Mapping File Ecu.ini ... 67
Mapping Options for Load Properties Sections .. 69

Menu Definition File ecu.men ... 74

Chapter 7 Installing and Configuring CATIA V5 Connector ... 75

Extracting Files for Connector ... 76

Extracting Files for EC Client .. 76

Configure PLM API for WAN Mode ... 76

Creating a Shortcut to the Startup File .. 77

Editing the Configuration File .. 77

Editing the Environment File ... 78

Installing the AgileAPI.jar file ... 78

Installing on Additional Computers .. 78

CATIA V5 Connector Administration ... 79

Configuration File AccInitialize.ini ... 79

Filename Creation .. 80

Mapping File AccCustomer9.ini .. 81
Mapping Options for [CatiaToAgile.XXXX] Sections .. 83
Mapping Options for [AgileTo.XXXX] Sections .. 84
Mapping Options for [AgileGetProperties.XXX] Sections ... 84
Mapping Options for [FrameDefinition] Section .. 84
Mapping Options for Update Properties Sections - CATIA .. 84

Chapter 8 Installing and Configuring Solid Edge Connector ... 87

Extracting Files for Connector ... 88

Extracting Files for EC Client .. 88

Configure PLM API for WAN Mode ... 88

Editing the Configuration File .. 89

Registering Libraries.. 90

Installing the AgileAPI.jar File .. 90

Setting Up the Agile Menu ... 91

vi Agile Product Lifecycle Management

Setting Up the Agile Toolbar... 91

Solid Edge Connector Administration.. 92

Configuring the 3DCADMapping.ini File ... 92
Mapping Options for Update Properties Sections - Solid Edge ... 99
Controlling Custom vs. Configuration-specific Properties .. 101

Modifying the Agile Menu Definition .. 101

Removing Commands and Menus ... 103

Renaming Commands and Menus ... 103

Restructuring Commands and Menus .. 103

Adding or Removing Menu Separators .. 103

Chapter 9 EC Client Configuration Options .. 105

Startup File - CaxClient.bat ... 105

Configuration File - CAXClient_{type}.xml .. 106

clientConfig Parameters ... 106

fileOperation Parameters.. 113

Setting EC Client Data Model ... 114

Agile Data Model Parameters ... 114

Data Model Configuration for Design Objects .. 116

Data Model Configuration for Document Objects ... 117

EC Client Log File... 117

Agile Roles and Privileges ... 117

EC Client Customizing .. 118

Appendix A Tips and Tricks .. 121

Appendix B PLM Data Model Configuration ... 123

Design Object .. 123

Document Object ... 124

Part Object ... 125

v2.5.1 vii

Preface
The Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle Technology

Network (OTN) Web site http://www.oracle.com/technology/documentation/agile.html contains the
latest versions of the Agile PLM PDF files. You can view or download these manuals from the Web
site, or you can ask your Agile administrator if there is an Agile PLM Documentation folder available
on your network from which you can access the Agile PLM documentation (PDF) files.

Note To read the PDF files, you must use the free Adobe Acrobat Reader version 7.0 or later.
This program can be downloaded from the Adobe Web site http://www.adobe.com.

The Oracle Technology Network (OTN) Web site
http://www.oracle.com/technology/documentation/agile.html can be accessed through Help >
Manuals in both Agile Web Client and Agile JavaClient. If you need additional assistance or
information, please contact My Oracle Support (https://support.oracle.com) for assistance.

Note Before calling Oracle Support about a problem with an Agile PLM manual, please have
the full part number, which is located on the title page.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the
United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398.
Outside the United States, call +1.407.458.2479.

Readme

Any last-minute information about Agile PLM can be found in the Readme file on the Oracle

Technology Network (OTN) Web site http://www.oracle.com/technology/documentation/agile.html

Agile Training Aids

Go to the Oracle University Web page
http://www.oracle.com/education/chooser/selectcountry_new.html for more information on Agile
Training offerings.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty line;
however, some screen readers may not always read a line of text that consists solely of a bracket or
brace.

This documentation may contain links to Web sites of other companies or organizations that Oracle
does not own or control. Oracle neither evaluates nor makes any representations regarding the
accessibility of these Web sites.

http://www.oracle.com/technology/documentation/agile.html
http://www.adobe.com/
http://www.oracle.com/technology/documentation/agile.html
https://support.oracle.com/
http://www.oracle.com/technology/documentation/agile.html
http://www.oracle.com/education/chooser/selectcountry_new.html

v2.5.1 1

Chapter 1

Introduction to Engineering Collaboration
This chapter includes the following:

 Overview .. 1
 Key Features ... 1
 Engineering Collaboration Process ... 2

Overview

Agile Engineering Collaboration (EC) is an application that provides data and process integration
between CAD applications and Agile PLM. The application consists of a core Engineering
Collaboration Client (known as the "EC Client"), and individual MCAD Connectors to specific CAD
systems (such as Pro/ENGINEER, SolidWorks, etc.). It allows CAD designers and engineers to
capture and control the data representing a primary source of the product record. The EC Client
provides a window into the Agile environment that is geared towards CAD designers and engineers.
It supports searching and viewing of Agile data, and provides the user interface for all Connector
operations such as saving and loading CAD data.

Each captured CAD file is stored in a PLM object. This object can be a Document, or as a new
option available starting Agile PLM 9.2.2.4 release, a Design object. If using with Agile 9.2.2.4 or
later, a configuration option allows setting the EC Client to work with either object class.

You can view CAD datasets created by the EC Connectors using AutoVue for Agile, allowing
anyone with access to Agile PLM to be able to view, markup, and collaborate in real time on the 3D
CAD designs across the web, without using the CAD tool.

Agile Engineering Collaboration requires Agile Product Collaboration as a prerequisite, and data
created by Engineering Collaboration can be used in all other PLM solutions including Product
Portfolio Management, Product Cost Management, Product Governance & Compliant, and Product
Quality Management.

Key Features

The main features of the EC Connectors are:

 Save - Saves native CAD data from the current session into Agile

 Load - Loads native CAD data from Agile into the current CAD session

 Manage Change - Allows users to control checkout reservation and revisioning

 Update Properties - Updates property (attribute) values between the CAD files and Agile

 Create Viewables - Creates neutral format files, such as PDF, to be used for viewing, plotting, or
manufacturing

2 Agile Product Lifecycle Management

 BOM Publication - Automatically creates and updates the Part BOM based on the CAD design
structure, with Agile change control.

Some of the characteristics of Agile Engineering Collaboration are:

 Multi platform, Java Client.

 Centralized configuration via XML.

 Dynamically loaded sessions support customization of the CAD connector's business logic.

 Simplified Common Search and View functionality for CAD designers and engineers.

 Manages both work in progress (WIP) and released CAD design data.

 Supports concurrent engineering, enabling multiple designers to work with a common
assembly.

 Data access controlled by checkout reservation and/or timestamp.

 Automated BOM creation process.

 Bi-directional metadata exchange.

 Support for special CAD capabilities such as Pro/ENGINEER family tables, CATIA CGR fields
and SolidWorks configurations.

Engineering Collaboration Process

The diagram below illustrates the main use cases supported by Agile Engineering Collaboration.

v2.5.1 3

Save and Load CAD Files

CAD designs are created within the CAD system environment, with files in a working directory
(which may be local or network attached). The designer saves into Agile, which creates a Document
or Design structure that mimics the structure of the CAD assembly. You attach the native CAD files
to this structure, and use them as the basis for loading and re-saving the CAD designs. Since Agile
is a centralized repository, all CAD designers in the enterprise have access to these files, subject to
the control of Agile roles and privileges. Individual designers can set checkout reservation in Agile
when they load files into their CAD session, enabling concurrent engineering within CAD
assemblies. You can attach additional viewable files (PDF, HPGL, etc.) to the Document or Design
structure.

View CAD Files

One reason for managing the native CAD files within Agile are that the Agile viewer can be used to
view and markup the files. This works across the web, and without having the native CAD system.
Advanced functionality such as digital mockup, 3D comparison, interference checking, and real-time
collaboration make this an important tool to support the overall design process.

Create BOM

When a design or design change is completed, the designer may use the Create Item/BOM
command to create or update the Agile Part BOM, representing the true product structure. You use
this function when there is a high correlation between the document/design structure and product
structure, to avoid tedious manual entry of the Part BOM. This works in the context of an Agile
change object, resulting in automated BOM redlining. You can also manually update the BOM, to
add bulk items such as paint or glue. Further automated updates from CAD will not remove the
manually added items.

v2.5.1 5

Chapter 2

Installation and Configuration
This chapter includes the following:

 Prerequisites .. 5
 Java Version Support .. 5
 Obtaining Software from Oracle E-Delivery ... 6
 Implementation Checklist ... 6

Prerequisites

Prior to the installation of the Engineering Collaboration interface on a local system, you must verify
the following items:

 Database is operational and running

 Install Agile PLM (see Introduction for supported versions) successfully on an accessible server
(the prerequisites for Java Runtime Environment are the same as for Agile PLM server).

Important If you are not working with a member of Agile’s Solutions Delivery Organization, you
are strongly encouraged to refer Oracle | Agile Product Lifecycle Management
Documentation for installation procedures.

 Agile File Management Server is usable and accessible.

 A test environment is prepared

 Install a CAD system that the test user can launch from the home directory.

 Login name and password of the Agile PLM test user are known in Agile PLM.

 The test user can launch an Agile PLM client session.

Java Version Support

The EC Client runs on Java 1.6 (for Agile 9.2.2.4 and later and for Agile 9.3 and later).

6 Agile Product Lifecycle Management

Obtaining Software from Oracle E-Delivery

Oracle products are distributed as Media Packs on Obtaining Software from Oracle E-delivery
(http://edelivery.oracle.com). A Media Pack is an electronic version of the software. Refer to the
Media Pack description or the list of products that you purchased on your Oracle Ordering
Document. Then, view the Quick Install Guide License List to help you decide which Product Pack
you need to select in order to search for the appropriate Media Pack(s) to download. Prior to
downloading, verify that the product you are looking for is in the License and Options section of the
E-Pack README. Oracle recommends that you print the README for reference.

There will be an itemized part list within each of the packs and you will need to download all items in
order to have the complete download for the desired Oracle Agile release.

All Oracle E-Delivery files have been archived using Info-ZIP's highly portable Zip utility. After
downloading one or more of the archives, you will need the UnZip utility or the WinZip utility to
extract the files. You must unzip the archive on the platform for which it was intended. Verify that
the file size of your downloaded file matches the file size displayed on E-Delivery. Unzip each Zip
file to its own temporary directory.

Implementation Checklist

The following process is recommended for successful implementation of the Agile EC MCAD
connectors. This process should coincide with a customer workshop to determine how to set the
various configuration options.

 Download latest MCAD connector software version from Oracle E-Delivery for your specific
CAD tools.

 Download latest MCAD EC Client software version from Oracle E-Delivery.

 Review the Quick Install Guide and Readme documents that come with the software. The
Quick Install Guide includes a platform support matrix showing the supported CAD tool
versions for each connector

 Check for connector patch updates on My Oracle Support (Metalink); download any that apply
and read the associated Readme file

 Read the EC MCAD Connector Installation and Administration Guide Introduction, Installation
Requirements, and Getting Started sections to familiarize yourself with the basics of CAD
connector operation and configuration.

 Install the connector, following the instructions in the Installating and Configuring section for
that particular connector. This includes basic configuration instructions to get the connector
working at a minimal level.

 Refer to the EC Client Configuration Options section to configure objects and attributes using
the Agile Admin client.

 Test saving a single CAD part with the CAD Connector using the Save command.

 Review the object in Agile and the CaxClient.log file

 Correct any attribute or permission errors and re-test

http://edelivery.oracle.com/

v2.5.1 7

 Follow the Administrator Guide Installation and Configuration section for the particular
connector to perform further configuration to match customer requirements.

 Test creating a Part BOM using the Create Item/BOM command from the Connector

 Review the Agile Part Object and the CaxClient.log

 Correct any attribute or permission errors and re-test

 Conduct further tests of Save and Load using CAD assemblies and drawings, to make sure
data is being saved properly

The problems most often seen during EC implementation are lack of testing, not reviewing the log
files and not reading the Administrator Guide instructions.

v2.5.1 9

Chapter 3

Getting Started with Engineering
Collaboration

This chapter includes the following:

 Attribute Exchange .. 9
 Setting Up EC Attributes and Attribute Mapping .. 10
 Methods for Mapping from CAD to PLM .. 12
 Adding Customer-specific Attributes .. 13
 Changing an Attribute to a Different Base ID ... 13
 Controlling Attribute Visibility in EC Client Dialogs .. 14
 Methods for Updating Properties from PLM to CAD .. 16
 Synchronizing an Attribute on a Drawing ... 18
 Additional Text Processing .. 18
 Options for Design Numbering .. 18
 Options for Part Numbering ... 21
 File Renaming Options .. 21
 Configuring the Standard Numbering Scenario ... 22
 Overview of Design Change Process and Attributes ... 23
 Change Process and Revisioning Using Part Workflow .. 26
 Change Process and Revisioning Using Routing Slips ... 27
 Additional Change Process Information .. 29

Attribute Exchange

Agile EC includes capability for bi-directional attribute exchange between CAD and PLM. In CAD
these attributes are typically called "properties" or "parameters", and represent important textual
information associated with the design file. The following capabilities are supported by EC:

 Setting PLM attributes for Design objects during the Save process
 Based on existing CAD properties
 Based on direct user input, which can also be captured in the CAD file properties

 Setting PLM attributes for Part objects during the Create Item/BOM process
 Based on existing CAD properties
 Based on direct user input, which can also be captured in the CAD file properties

 Updating CAD properties based on PLM attributes, on demand by the user

 Updating CAD properties based on PLM attributes, automatically during the Save process
(some CAD connectors only)

 Updating CAD properties based on PLM attributes, automatically during the Load process
(some CAD connectors only)

10 Agile Product Lifecycle Management

 Updating text within drawing title blocks, based on PLM attributes.

Setting Up EC Attributes and Attribute Mapping

Before setting up any attribute mapping you must first configure attributes in the Agile Admin client.
There are two sets of attributes to be concerned with:

1. Attributes required for the proper operation of EC CAD connectors

2. Additional customer-specific attributes to be mapped between CAD and PLM using EC

Required Attribute Configuration

The effort involved for setting up the required (type 1) attributes depends on the data model you are
using. The required attribute values are shown in Appendix B.

 Using DocuBOM data model
 All EC Document attributes must be manually configured in the Admin client
 All EC Part attributes must be manually configured in the Admin client

 Using Design data model
 All EC Design attribute are pre-configured on the Design class (see note below)
 All EC Part attributes must be manually configured in the Admin client

Note In Agile PLM 9.2.2.4 (and later 9.2.2.x versions), the Model Name attribute on the Design
Structure tab is improperly set as a Text attribute. See Appendix B for details on how to
fix this.

To insure that all required attributes can be access by EC correctly, it is necessary to check all
privileges associated with the specific object classes to make sure that all the required attributes are
selected in the "Applied To" list of each privilege.

Attribute Mapping Configuration Files

Attribute mapping involves both the XML (CaxClient_Designs.xml or CaxClient_Documents.xml)
configuration file and the specific connector’s INI configuration file, as follows:

XML file:

 Defines a symbolic attribute name which maps to an attribute with a specific PLM base ID

 Determines whether the attribute will be visible for interactive entry within the EC Client

INI file:

 Defines the actual mapping between the specific CAD property and specific PLM attribute, and
under what conditions the mapping occurs

 Defines additional string manipulation to modify the attribute value during the mapping (CAD
connector dependent)

v2.5.1 11

XML File Attribute Definition

The definition of symbolic attribute names used by EC is performed in the <objectProperties>
section of the XML file (basically the bottom half of the file). There are three object classes defined
in this section as follows:

<subclass name="FILEFOLDER" type="55" id="subclass id"> -- Design

subclass

<subclass name="DOCUMENT" type="2" id="subclass id"> -- Document

subclass

<subclass name="ITEM" type="2" id="subclass id"> -- Part subclass

Either the Design or Document subclass is used in any particular installation, depending on which
data model is in use. The unused section can simply be ignored. The Part subclass is always used.

The way these sections are configured is that for "subclass id" you substitute the desired subclass
ID you want to use. For example, for the standard Designs subclass you use 2000008310, and for
the standard Parts subclass you use 9141. Whichever subclass is identified here will be the default
in all EC Client dialogs.

Note Note: Do not change the subclass name identifiers in these sections.

Note Note: Object subclass IDs are not accessible from the Admin client. The CaxClient.log
file lists all pertinent class IDs for easy access.

Within the three subclass sections you will see various "table name" sections which define the tabs
for each object class, and within those sections are "attribute name" definitions. For example:

<attribute name="CAX_CRE_SYSTEM" id="2007" set="0" get="1"/>

The name "CAX_CRE_SYSTEM" is called a symbolic name, and is used by the CAD connector INI
file to define attribute mappings (see next section). This is NOT the name the user sees in the PLM
user interface. For example, in this case the UI name is "Design System", which is base ID 2007.

For further details see the EC Client Configuration Options chapter in this document.

INI File Attribute Definition

Each CAD connector has an INI configuration file that is used partially for defining attribute
mapping:

 SolidWorks, Solid Edge – 3DCADMapping.ini

 Pro/ENGINEER – AcpCustomer9.ini

 CATIA – AccCustomer9.ini

 Unigraphics NX – Ecu.ini

These files include sections for defining the following types of mappings:

 Mapping from CAD to PLM
 Attributes to be set for Designs or Documents in PLM, during the Save process

 This is set separately for initial Saves and update Saves

12 Agile Product Lifecycle Management

 Attributes to be set for Parts in PLM, during the Create Item/BOM process

 Mapping from PLM to CAD
 Attributes to be updated from PLM Designs, Documents or Parts to CAD file properties

 Based on using the Update Properties command, or during the Save or Load
commands (not supported in all CAD systems)

 Attributes to be updated from PLM Designs, Documents or Parts to CAD drawing title
blocks

Here are examples of each of the main types of mapping, using SolidWorks:

Mapping from CAD to PLM, to a Design object during the Save process

[Agile9CreateDocument]

CAX_CRE_SYSTEM = 3DCADTable.ModelVersion

This says that the symbolic name CAX_CRE_SYSTEM, representing a specific PLM base ID per
the XML file mapping, is going to be set equal to the value on the right side (which happens to be a
system variable representing the version of SolidWorks)

Mapping from CAD to PLM, to a Part object during the Create Item/BOM process

[Agile9UpdateItem]

DESCRIPTION = 3DCADTable.Property.Description

This says that the symbolic name DESCRIPTION, representing a specific PLM base ID per the
XML file mapping, is going to be set equal to the value on the right side (which is the CAD property
"Description")

Mapping from PLM to CAD, from a Design object using the Update Properties command

[Agile9UpdateProperties]

Part_Number = CAX_PART

This says that the CAD property Part_Number will be set to the value of the symbolic name
CAX_PART, representing a specific PLM base ID per the XML file mapping.

For further details pertaining to each CAD connector, see the appropriate Connector Administration
section in this document.

Methods for Mapping from CAD to PLM

As previously mentioned there are two use cases for mapping attributes from CAD to PLM:

1. Designs, during initial creation or update using the Save command

2. Parts, during initial creation or update using the Create Item/BOM command

The chart below summarizes the capabilities of all connectors and in which section of the INI file the
settings are made:

CAD Tool Des igns - In i t ia l Des igns - Update Parts

SolidWorks [Agile9CreateDocument] [Agile9UpdateDocument] [Agile9UpdateItem] – For regular

parts

v2.5.1 13

[Agile9UpdateItemConfigured] – For

configured parts

Solid Edge [Agile9CreateDocument] [Agile9UpdateDocument] [Agile9UpdateItem]

Pro/ENGINEER [ProEToAgile.Create_DOCUMENT] [ProEToAgile.Update_DOCUMENT] [ProEToAgile.Update_ITEM]

UG NX [SaveProperties], using Create.Doc. prefix [SaveProperties], using Update.Doc. prefix [SaveProperties], using

Create.Item. or Update.Item. prefix

CATIA V5 [CatiaToAgile.DOCUMENT], for both initial and update [CatiaToAgile.ITEM]

Adding Customer-specific Attributes

To add customer-specific attributes and map them with the CAD connectors, follow this
process:

1. Configure the attribute in the Agile Admin client per the standard process. Turn on an available
attribute of the desired type, and set the desired name.

2. Add the attribute to the appropriate section in the XML configuration file. The symbolic name
can be anything you want, and it does not have to start with "CAX".

3. Set up the desired mappings in the INI file, using the symbolic name you defined in step 2.

For example, say that you want to add a "Material" attribute of type List to the Design object, and
allow it to be set with a Material property from the CAD file. This is what you need to do:

 In the Agile Admin client, go to the Design class and to the attribute definition list for Page Two.

 Double-click on an unused List-type attribute, for example "List11".

 Set Visible to Yes, and enter the Name "Material"

 Because this is a List-type attribute, you need to define the valid list values

 In the XML file, create an entry in the FILEFOLDER section which defines the new attribute,
such as this:

 <attribute name="MATERIAL" id="1271" set="1" get="1"/>

 If you want the Material attribute in PLM to be set by the value from the CAD property, then in
the INI file you would make an entry like this (this example uses SolidWorks):
[Agile9CreateDocument]

MATERIAL = 3DCADTable.Property.Material

Changing an Attribute to a Different Base ID

The standard EC attributes are pre-defined in the XML file to use certain base IDs. Sometimes you
may have a conflict where one of these base IDs is already being used by the customer for some
other attribute. This happens most commonly with the Part object. It is not necessary to change

14 Agile Product Lifecycle Management

the existing customer attribute, you can simply change the base ID used by EC for the standard
attributes.

As an example, let’s say that base ID 1313 on Page Two of the Part subclass is already being used
by the customer. This base ID is defined by default in EC for the CAX_PUBLISHED attribute (which
is "Published From" in the UI and contains the value of the Design version used to publish the Part).
Here is the standard definition in the XML file:

<attribute name="CAX_PUBLISHED" id="1313" set="0" get="1"/>

In order to change this to a different base ID, follow this process:

1. In the Agile Admin client, go to the Part class and to the attribute definition list for Page Two.

2. Verify that the attribute in question, base ID 1313, is a Text type attribute

3. Double-click on an unused attribute of the same type (in this case Text), for example "Text05".

4. Set Visible to Yes, and enter the Name "Published From" (or whatever the attribute name is
supposed to be)

5. In the XML file, change the attribute definition entry by putting in the new base ID:
<attribute name="CAX_PUBLISHED" id="2011" set="0" get="1"/>

Controlling Attribute Visibility in EC Client
Dialogs

Within the EC Client there are two places where attributes can be displayed for manual entry by the
user. Within the Save command there is an Interactive Save dialog for Designs (or Documents),
and within the Create Item/BOM command there is a similar interactive dialog for Parts. These
interactive dialogs are typically used only when first creating the object in PLM, but can also be
displayed during updates.

Visibility of attributes in these interactive dialogs is controlled by the XML file. Within each attribute
definition line there is an option called "set". If this is set to 1, the attribute is displayed, and if it is
set to 0 it is not displayed. Note that in either case, the attribute will be mapped per the settings in
the INI file. This "set" option just gives an additional capability to allow the user to interactively view
and modify the value prior to saving to PLM. This is a powerful capability, since these dialogs have
full capability for List and Multi-List type attributes, allowing the user to pick from the list of values
defined in PLM.

Here is an example showing the attribute "Component Type" as defined in the XML file, with
set="1", and what the resulting interactive Save dialog looks like:

v2.5.1 15

<attribute name="COMPONENTTYPE" id="2000008317" set="1" get="1"/>

You can also enforce attributes to be entered by using a special "mandatory" flag on the attribute
definition.

<attribute name="MATERIAL" id="2023" set="1" get="1" mandatory="1"/>

When the attribute is set as mandatory it shows up as bold in the dialog, and if the user does not
enter a value an error message will appear when clicking on OK, as shown below.

16 Agile Product Lifecycle Management

Note The setting of "mandatory" is independent of the Agile server definition of "required"
fields. For best results, mark those fields that are required by the Agile server, also as
mandatory for the EC Client. Both mandatory and required fields are indicated by bold
text in the EC Client user interface.

Methods for Updating Properties from PLM to
CAD

As previously mentioned there are three methods for updating properties from PLM to CAD

1. On demand, using the Update Properties command

2. Automatically during the Save process

3. Automatically during the Load process

The first thing to understand is that not all CAD connectors support all three methods. The chart
below summarizes the capabilities of all connectors and in which section of the INI file the settings
are made:

CAD Tool On Demand During Save During Load

SolidWorks [Agile9UpdateProperties]

[Agile9SaveUpdateProperties] [Agile9LoadUpdateProperties]

Solid Edge [Agile9UpdateProperties]

[Agile9SaveUpdateProperties] [Agile9LoadUpdateProperties]

v2.5.1 17

Pro/E [AgileGetProperties.PRT]

[AgileGetProperties.DRW]

[AgileGetProperties.ASM]

[AgileToProE.ProE]

[AgileToProE.PRT]

[AgileToProE.DRW]

[AgileToProE.ASM]

Not directly available, however
this can be accomplished by
creating a mapkey in Pro/E that
performs a Load and then an
Update Properties

UG NX [LoadProperties] – This defines properties updated both On Demand
and during the Save process

[LoadProperties] – The same
section applies to the Load
operation, but only if
LoadAttributes = 1

CATIA V5 [AgileGetProperties.Catia]
[AgileGetProperties.CATPart]

[AgileGetProperties.CATDrawing]

[AgileGetProperties.CATProduct]

[AgileTo.Catia]

[AgileTo.CADPart]

[AgileTo.CATDrawing]

[AgileTo.CATProduct]

Updating During Save

The usefulness of updating CAD properties during the Save process is to capture attribute values
entered interactively by the user and put them into the CAD file at the same time as the value is
saved into PLM. The process works like this – note the highlighted step:

 User executes Save command

 During the Save command, attribute are entered interactively

 PLM objects are created (or updated) and entered attributes are saved into the objects

 Attribute values are updated into the CAD file based on the defined mapping

 The CAD file is saved into PLM

So this insures that the value in the CAD file matches the value set in PLM. Note that it is not
required to keep the attribute in both the CAD file and in PLM, but many times it is advantageous to
do so, so that users disconnected from PLM can see the values by looking in the CAD file.

Note With the SolidWorks Connector, the ability to update properties during Save is disabled
by default, in order to improve performance. To enable this capability, please see the
instructions in Chapter 5, in the section entitled “Master Switch for Update Properties on
Save”.

Updating During Load

The usefulness of updating CAD properties during the Load process is to make sure that any values
updated directly in PLM are updated to the CAD file. However, the problem with doing this is that
by always updating every CAD file as it is loaded from PLM and CAD, it marks the CAD file as
"dirty" and then upon subsequent Saves all files will appear to be modified. So it is more commonly
to use the Update Properties "on demand" to update the needed files, rather than do it for all files
upon Load.

18 Agile Product Lifecycle Management

Synchronizing an Attribute on a Drawing

One important use of attributes within CAD is to control textual content within drawing title blocks.
By synchronizing these attributes with PLM, important information such as Part Number,
Description, and Revision can be kept in synch. The following chart summarizes the steps
necessary to get CAD properties to appear within drawing title blocks. For further specifics on how
to create drawing text and properties please see the appropriate documentation for your CAD
system.

CAD System Steps to get CAD property to appear in d rawing t i t le b lock

SolidWorks  Create a drawing Text property linked to a part property

 Declare a mapping of the property in 3DCADmapping.ini, in the sections described
above

Pro/E  Create a Note in Pro/E with &Parametername

 Declare a mapping of the parameter in AcpCustomer9.ini, in the sections described
above

UG NX Option 1:

 Create a named Note in NX, set the Note name to a unique value

 Declare a mapping for the text note within Ecu.ini in the [FillFrame] and/or
[FillFrameHistory] sections, with syntax Notename = Agile value

Option 2:

 Create a Note in NX, link the Note content to a NX Part Attribute

 Declare a mapping of the part attribute within Ecu.ini, in the sections described above

CATIA V5  Create a text object in frame which corresponds with a CATIA property

 Declare a CATIA property mapping in AccCustomer9.ini, in the sections described
above

Additional Text Processing

Some of the CAD connectors have capability for performance additional text processing on attribute
values, for example to append prefixes or suffixes, or remove portions of the text string. See the
administration section for details on what is supported for each CAD connector.

Options for Design Numbering

One of the most important decisions when implementing EC is determining the numbering scheme
to be used by the Design (or Document) objects, and how this relates to the CAD filenames and
Agile Part Numbers. This is a decision made during the implementation workshop, and so it is
important to know what the available options are. There are 4 primary methods for numbering

v2.5.1 19

using EC:

1. Using the existing filename

2. Using an autonumber from PLM

3. Using a CAD property

4. Manual entry

With any of these methods, you also have the option to automatically append the CAD file
extension (e.g. ".ASM") on the end of the Design number.

The configuration option that controls the Design number is a special symbolic attribute called
CAX_NEW_NUMBER. The attribute does not directly appear in the XML configuration file, it is
simply used within the INI file to specify the Design number. As described in the section "Methods
for Mapping from CAD to PLM", the INI file for each connector has a section where attribute are
mapped. The CAX_NEW_NUMBER attribute is used within this section to define the Design
number mapping. Here is an example using SolidWorks:

[Agile9CreateDocument]

CAX_NEW_NUMBER = 3DCADTable.ModelTitle

This happens to be the way to set the Design number equal to the current filename, since
"ModelTitle" is a special property in SolidWorks that contains the filename.

Basic Numbering Methods

The following table describes the process to set each of the four options for Design numbering.

Method CAX_NEW_NUMBER
set t ing

In i t i a l va lue of
Des ign Number

f ie ld in EC Cl ient

User act ion in Save
d ia log

1. Existing filename Set equal to a special CAD
property which equates to
the filename (see admin
section for each connector
for details)

The filename value will
be displayed

None

2. Autonumber Leave out of INI file (or
comment out)

Blank Select desired
autonumber sequence
and click autonumber
button to get the next
value

3. CAD property Set equal to the desired
CAD property

The CAD property value
will be displayed, if it
exists and has an
assigned value.
Otherwise it will be blank

None

4. Manual entry Any of the above Any of the above Type in desired Design
Number

Here are some important conclusions from this chart:

 Options 1 and 3 are similar, in that you are assigning CAX_NEW_NUMBER to be equal to

20 Agile Product Lifecycle Management

some value, either the filename or a CAD property. In these cases the value will appear in the
dialog.

 For option 2, you simply leave off any definition of CAX_NEW_NUMBER, and as a result the
initial dialog value will be blank. The user must select the autonumber within the dialog. Note:
Even if the user does not explicitly click the autonumber button to display the next number, this
will be automatically done when exiting the dialog.

 Manual entry can be used in combination with any of the other methods, to override the initial
default value.

Appending the CAD Filetype

It is often desired to append the CAD filetype to the Design number, for the following reasons:

 It makes the Design number look "CAD-like", and provides a way to determine the filetype at a
glance

 It provides a way to separate the 3D model file from the 2D drawing file, if they have the same
base number. For example, you can have D00111.PRT and D00111.DRW.

The option to automatically append the CAD file extension is located in the XML file. There are
actually two settings, one to specify the CAD system being used and one to specify the delimiter
used.

NumberingMode - Appends CAD-specific filetype suffix to autonumber to create Document/Design
number

For CAD suffix use PROE,UG,CATIA,SOLIDWORKS,SOLIDEDGE

For no suffix use NONE

NumberingDelim - Value inserted between autonumber and CAD-specific filetype suffix

Default value is "." to match a normal CAD filename

Here is a typical example of how the settings are used:

 <clientConfig name="NumberingMode" value="PROE"/>

 <clientConfig name="NumberingDelim" value="."/>

With these settings, the Design numbers will have the appropriate Pro/E filetypes appended to
them, using a dot as a separator. The will occur regardless of the method of determining the rest of
the number field. Here are some examples:

Using an autonumber and saving a Pro/E part file

 Without using NumberingMode: D00111

 Using NumberingMode: D00111.PRT

Using manual entry and saving a Pro/E drawing file

 Without using NumberingMode: MA-4321

 Using NumberingMode: MA-4321.DRW

Note that when this NumberingMode option is used, the appended CAD filetype does not appear in

v2.5.1 21

the EC Client dialog. You will not see the effect of it until you display the Design object and see its
Number field.

Options for Part Numbering

PLM Part objects can be assigned to Design objects using the Create Item/BOM command. It is
not required to perform this assignment or to publish the Part BOM structure, but when this function
is used you need to be aware of the options for defining Part numbers. There are the same 4
primary methods for Part numbering as there are for Design numbering:

1. Using the existing filename

2. Using an autonumber from PLM

3. Using a CAD property

4. Manual entry

These options are only necessary when creating a new Part. If the Part already exists in PLM and
you simply want to associate it to a Design, you can use the "Use Existing Item" function within the
Create Item/BOM dialog.

The only differences between the options for Design numbering shown above and the options for
Part numbering are the symbolic attribute used and the section of the INI file where it is defined.
Instead of CAX_NEW_NUMBER the symbolic attribute is called ITEM. See the section "Methods for
Mapping from CAD to PLM" where it describes the INI file for each connector and the appropriate
section to use. Here is an example using SolidWorks:

[Agile9UpdateItem]

ITEM = 3DCADTable.Property.Part_Number

This says to set the Part number equal to the "Part_Number" property found inside the CAD file.

Note For most CAD systems there is a one-to-one mapping between each Design object and
each Part object. For SolidWorks this is not the case when configurations are used.
With configurations it is possible to define multiple parts or assemblies within one CAD
file. Because of this, there is a special section in the INI file called
[Agile9UpdateItemConfigured] which is used to define Parts related to files containing
configurations. See the SolidWorks administration section for more details.

File Renaming Options

It is a common tendency with CAD users to use informal filenames when first designing a CAD
model. For example a part may be called "new_housing.prt", because it is convenient to use an
arbitrary name and it provides information about the file.

EC CAD connectors have the option for what is called "initial renaming", to rename the CAD
filenames once they go into PLM. This provides a way to standardize filenames and to insure there
are no filename conflicts caused by multiple users coincidentally using the same filename. The
renamed file is typically made equal to the Design number, generally using an autonumber.

Initial renaming is set within each CAD connector’s INI configuration file; see the administrator guide
for details.

22 Agile Product Lifecycle Management

Here is an example of how it is used:

Before saving to PLM

CAD filename = new_housing.prt

After saving to PLM

CAD filename = D00111.prt

Design number = D00111.PRT

The original filename can be captured into an attribute in PLM as well, to enable searching on that
legacy information. Symbolic attribute CAX_FIL_OLD_NAME, which is called "CAD Old Filename"
in the user interface, is available for this purpose. An example of mapping this in the INI file is
shown here, using SolidWorks:

[Agile9CreateDocument]

CAX_FIL_OLD_NAME = 3DCADTable.ModelName

The process by which the CAD filenames are renamed varies by CAD system. For Pro/E, UG NX,
and CATIA, the renaming occurs immediately within session as the files are being saved to PLM.
The new filenames are updated in the model tree in CAD. For SolidWorks and Solid Edge, the
renaming does not occur immediately upon saving; the files are saved with their original names but
flagged in a special way such that on the subsequent Load command they are renamed. Upon the
second save everything is updated property in PLM.

Note that since this initial renaming is occuring upon the first save of the particular file in PLM, there
is no concern about updating any "where used" links, because the file has not been used anywhere
other than the current CAD model.

Configuring the Standard Numbering Scenario

One approach for Design and Part numbering is the most common within customer
implementations and is known as the "standard numbering scenario". In this approach, an
autonumber is used which equals the Part number, and with the addition of the CAD filetype equals
both the Design number and the updated filename. Here is an example:

Fi lename
before sav ing

to PLM

Fi lename af te r
saving to PLM

Des ign Number Part Number

mypart123.sldprt P12345.sldprt P12345.SLDPRT P12345

This numbering scheme relies on using an autonumber to form the basis of both the Design and
Part number. Since the Design object is actually created first, the autonumber is pulled during the
Save command, and the value is stored to be re-used when creating the Part during the Create
Item/BOM command. The process works like this:

 User creates a CAD file with the arbitrary filename mypart123.sldprt.

 User saved into PLM using the CAD connector Save command

v2.5.1 23

 During the save process, the user pulls an autonumber P12345, which in combination with the
CAD filetype appending option, creates the Design number P12345.SLDPRT

 Since initial file renaming is in use, the filename get re-named to match the Design number

 The original base autonumber (P12345) is automatically saved by EC into a Design attribute
called Part Number (symbolic name CAX_PART)

 This Part Number attribute is updated into the CAD file during the Save process using the
"update during save" capability. This creates a CAD property called Part_Number.

 Later on the user creates the Part using the Create Item/BOM command. The Part number is
mapped from the CAD property Part_Number, which gives the original autonumber value of
P12345.

The settings required for this numbering scheme are as follows. This example uses SolidWorks:

1. In the Agile admin client, an autonumber source is created which can create the desired type of
numbers, in this case Pnnnnn where nnnnn is a 5-digit number.

2. The XML configuration file must be configured to support CAD filetype appending. For the
case of SolidWorks this is:
<clientConfig name="NumberingMode" value="SOLIDWORKS"/>

<clientConfig name="NumberingDelim" value="."/>

3. The INI configuration file must be configured to use an autonumber for the Design number,
meaning that CAX_NEW_NUMBER should be omitted or commented out.
[Agile9CreateDocument]

;CAX_NEW_NUMBER = 3DCADTable.ModelTitle (commented out!)

4. The INI configuration file must be configured to map the "Part Number" attribute from the
Design object into the CAD file during the save process. Note that the value is set into the
Design objects "Part Number" attribute automatically by the EC Client, no mapping is required.
What we are doing here is to map it back into the CAD file.
[Agile9SaveUpdateProperties]

Part_Number = CAX_PART

5. The INI configuration file must be configured to set the Part’s Number attribute from the CAD
property "Part_Number"
[Agile9UpdateItem]

ITEM = 3DCADTable.Property.Part_Number

6. The INI configuration file must be configured to enable initial file renaming
[Agile9Renaming]

1

Overview of Design Change Process and
Attributes

A number of options exist for controlling changes of CAD data using Agile EC. This section will
explain the options and show how to configure them.

24 Agile Product Lifecycle Management

The picture below describes the important Design attributes related to the change process, which
are Version, Label, Revision, and Revision Date.

Of these four attributes, only the behavior of Version is pre-determined; all the other ones can be
configured to support a variety of change processes.

The Version attribute is a numeric value starting at 1 and is incremented each time a Design goes
through a check-out/check-in cycle. During this check-out/check-in cycle, the associated files,
attributes, and structure of a Design object may be changed, and are associated with the specific
Version. All versions are retained in PLM unless they are manually purged.

The other three attributes, Label, Revision, and Revision Date, are version-specific, meaning that
each individual version of the Design has its own values for these three attributes.

v2.5.1 25

The Revision field is controlled by configurable logic in EC. By default the field consists of two
parts, a major and minor revision, which is very similar to how other CAD data managers work.
(Note that the minor revision is also referred to as "version" but it is not the same thing as the actual
Version attribute itself). An example of how the Revision field works is shown in the diagram below;
the Revision field is the black text underneath each red dot.

The EC Client logic allows for a major and minor component of the Revision field, with an optional
seperator (or "indicator"). The Here are some examples:

Des ign Revis ion
Sequence

Des ign Version
Sequence

Indicato r Resu l t ing Sequence

A,B,C,D,E,etc. NUMERIC <null> A1,A2,A3,etc,B1,B2,etc,C1,C2,etc

A,B,C,D,E,etc. NUMERIC " v" A v1,A v2,A v3,etc,B v1,B v2,etc,C v1,C v2,etc

-,A,B,C,D,E,etc. NUMERIC " " - 1,- 2,- 3,etc,A 1,A 2,A 3,etc,B 1,B 2,etc

These options are configured within the XML file, using the following lines (this is showing the last
example from above):

<clientConfig name="DesignRevisionSequence" value=",-

,A,B,C,D,E,F,G,H,I,J,K,L,M, N,O,P,Q,R,S,T,U,V,W,X,Y,Z,"/>

<clientConfig name="DesignVersionSequence" value="NUMERIC"/>

<clientConfig name="DesignVersionIndicator" value=" "/>

The way the logic works in the EC Client is that the Revision starts with the first code resulting from
the options described above. In the last example this is "- 1". After that, the minor revision portion
(the "version") increments upon each check-out/check-in cycle. For example, after "- 1" you will get
"- 2".

The question is, what causes the major revision code to increment; what causes you to go from "-
3" to "A 1". The answer is that it depends on whether you are using the BOM Publishing capability
in EC to link Designs to Parts. If so, a process extension (PX) trigger on the Part workflow is used
to increment the major revision. If not, the major revision can be incremented using Routing Slip
approval capability in the EC Client. These two options are described next.

26 Agile Product Lifecycle Management

Change Process and Revisioning Using Part
Workflow

The preferred method for controlling the change process with Designs is to let the associated Part
workflow control the major revision, and the check-out/check-in of Designs control the minor
revision. This is only possible if using the BOM publishing functionality of EC CAD connectors (the
Create Item/BOM command).

The table below shows a typical change process when using this approach. This assumes that Part
revisions are using the alpha sequence A, B, C, etc.

 Des ign At t r ibutes Part At t r ibutes

User Act ion Version Rev is ion Rev is ion Date Rev is ion

User saves CAD model into a Design
object in PLM for the first time

1 - 1 <null>

User checks out the Design object,
makes a change in CAD, and saves
back to PLM

2 - 2 <null>

User uses "Create Item/BOM" to create
a Part corresponding to the Design, and
to publish the BOM

2 - 2 <null> (A) ECO123

Change ECO123 is submitted 2 (A) ECO123 <null> (A) ECO123

Change ECO123 is released 2 A 05/19/2009
02:37:34 PM PDT

A ECO123

User checks out the Design object,
makes a change in CAD, and saves
back to PLM

3 A 1 <null>

The important points to note about this process are:

 The process extension is used in order to allow the Part workflow to set attributes on the
Design objects. This is necessary because the Part workflow is outside the realm of what EC
has direct control over.

 This process works only when the Design objects are attached to the Part objects when using
the Create Item/BOM command. The PX determines which Design objects to modify based on
the Attachments tab of the Part.

 The value of the Revision attribute for Version 2 of the Design is actually changed by the PX,
going from "– 2" to "(A) ECO123" to "A".

 The Revision Date field is used to track the date and time of the Part’s release.

 Version 2 of the Design is permanently locked to Revision A of the Part, after the Part is
released.

v2.5.1 27

 After release, the Revision field of new Design version is sequenced up from the latest major
revision, for example "A" goes to "A 1", indicating the first Design version after the released rev
A.

Change Process and Revisioning Using Routing
Slips

An alternative method for controlling the change process with Designs is to use Routing Slips,
which are associated directly to the Design objects themselves. This can be useful if the BOM
publishing functionality of EC CAD connectors is not being used.

EC automates the Routing Slips capability through the use of "Label Types", which combine the
following capabilities together:

 Autonumber for generating Labels, to identify all Designs changes which are being approved at
the same

 User group that defines the Approvers

 User group that defines the Observers

 Whether it is a major or minor revision approval

Here is an example of some standard Label types:

Name: DV (stands for Design Version, meaning the minor revision)
Autonumber: DV00001, etc.
Approvers Group: DV Approvers
Observers Group: DV Observers
Revision Type: Minor

Name: DR (stands for Design Revision, meaning the major revision)
Autonumber: DR00001, etc.
Approvers Group: DR Approvers
Observers Group: DR Observers
Revision Type: Major

Here is a sequence of user actions showing how the Revision field of Designs is controlled by the
use of different Label Types and the corresponding processes:

User Act ion Version Rev is ion Label Notes

User saves CAD model into a Design
object in PLM for the first time

1 - 1

User uses "Create New Label"
function, with the Label Type set to
"DV"

[2] - 2 DV00101

User saves, using the Check In option 2 - 2 DV00101 Routing Slip notifications are
sent to all approvers and
observers designated by the
groups assigned to the DV Label
Type.

28 Agile Product Lifecycle Management

Approvers sign off on the Routing Slip

User uses "Create New Label"
function, with the Label Type set to
"DR"

[3] - 3 DR00312

User saves, using the Check In option 3 - 3 DR00312 Routing Slip notifications are
sent to all approvers and
observers designated by the
groups assigned to the DR Label
Type.

Approvers sign off on the Routing Slip

User checks out the Design object for
work

[4] A 1 The major revision is now
incremented, because the
approval of the previous version
was a DR, which is a "Major
revision type" Label.

The important points to note about this process are:

 The "Create New Label" function checks out the Design as well

 Routing Slip approvals are done after the Design version is checked in. If there are approvals
in progress, EC will not allow checking out the next version until the approvals are complete.

 There is no configurable workflow associated with Routing Slips. It is just a simple approve or
reject for all assigned approvers.

 Incrementing of the major revision happens on the first checkout AFTER the approval of a
Design version that is labelled as a major revision type. This is a different type of sequencing
than in the change process using Part workflow.

The configuration options to set up the Lable Types are in the XML file. This example shows the
definition of the DV and DR types as described in the example:

<clientConfig name="LabelTypes" value="DV,DR"/>

<clientConfig name="LabelApproverDV" value="DV Approvers"/>

<clientConfig name="LabelObserverDV" value="DV Observers"/>

<clientConfig name="LabelAutonumberDV" value="DV Label"/>

<clientConfig name="LabelUseRevisionLogicDV" value="0"/>

<clientConfig name="LabelApproverDR" value="DR Approvers"/>

<clientConfig name="LabelObserverDR" value="DR Observers"/>

<clientConfig name="LabelAutonumberDR" value="DR Label"/>

<clientConfig name="LabelUseRevisionLogicDR" value="1"/>

The setting "LabelUseRevisionLogicXX" is what determines whether the major revision code is
incremented upon the next checkout.

v2.5.1 29

Additional Change Process Information

It is possible to use both change process methods in combination. The typical case of this would be
to use the DV (or similar) Label Type to allow approval for minor revisions of the Designs, and then
use the Part workflow process for revision approval.

When using the Label Types it is also possible to just use observers during the "approval process",
which amounts to sending notifications witout actually requiring approval. In order to do this, you
must assign a "LabelApproverXX" group, and define this group in PLM, but just do not include any
users in the group definition.

v2.5.1 31

Chapter 4

Installing and Configuring
Pro/ENGINEER Connector

This chapter includes the following:

 Extracting Files for Connector ... 32
 Extracting Files for EC Client ... 32
 Configure PLM API for WAN Mode ... 32
 Editing the Configuration File ... 33
 Editing the Mapping File .. 34
 Installing the AgileAPI.jar file ... 34
 Creating a Shortcut to the Startup File .. 34
 Creating the Agile Toolbar in Pro/E ... 35
 Installing on Additional Computers .. 36
 Configuring the Pro/ENGINEER Connector .. 36

This section describes setting up the connection between your Pro/ENGINEER CAD application
and Agile Engineering Collaboration.

The main steps are:

 Extract files from Pro/ENGINEER Connector zip file

 Extract files from EC Client zip file

 Configure PLM API for WAN mode (optional)

 Edit some parameters in the configuration file

 Edit some parameters in the mapping file

 Install proper AgileAPI.jar file

 Create shortcut to new startup file

 Create toolbar in Pro/E (optional)

The installation requires the following file:

acpNNNN.zip - Main installation package, where NNNN is the release level.

Performing the installation steps described here will enable the Agile menu to appear within Pro/E.
In order to have a completely functional integration, you must also:

 Perform the core Agile configuration, as described in the Administration section of the
document Agile Engineering Collaboration Client

 Configure desired Pro/E Connector parameters as described in the section Pro/E Connector

Administration on page 36 on page 35.

32 Agile Product Lifecycle Management

Extracting Files for Connector

Extract the installation file to the folder location D:\AgileEC, or C:\AgileEC for a single-drive system.
When you unzip, make sure that you retain the folder paths from the zip file. When the files are
unzipped, you should see a folder named acp, which contains the Connector installation.

Extracting Files for EC Client

Extract the EC Client installation file to a temporary location. After extraction you will see 5
connector directories (acc, ace, acp, acu, acw) plus a jar directory.

 Copy the entire jar directory inside the \AgileEC\acp directory.

 From the temporary acp\com directory, copy the file CaxClient.bat to the \AgileEC\acp\com
directory.

 From the temporary acp\jar\Agile9 directory, copy the file CaxClient_Designs.xml to the
\AgileEC\acp\jar\Agile9 directory.

Configure PLM API for WAN Mode

PLM API is a high-performance web services API used to support operations across wide area
network (WAN). This is an optional capability that is only necessary if you are going to be
supporting MCAD connectors at remote sites (i.e. locations distant from your Agile application
server). If you do not need this capability, skip to the next step.

 Log in with the Agile 9 web client to the server that will be used with the MCAD connectors.
Use an account that has privileges to create File Folder objects.

 Create the following three File Folder objects, using the number listed in the first column, and
then attach the file listed in the second column. Check In the File Folder following attachment.
The files can be found under the jar/agile9/server folder. Note that depending on your system
settings, you might need to temporarily modify the admin settings for File Folder objects to
allow using an arbitrary Number field.

Fi le Folder number F i le to at tach

PLMAPI_ASYNC plm-api-server.xml

PLMAPI_CONFIG plm-api-config.properties

PLMAPI_CONNECTOR plm-api-sdk.xml

 Copy the file plm-api-server.jar from jar/agile9/server to the WSX extensions folder of the target
Agile 9 server. Usually this folder is located in {agile_home}/integration/sdk/extensions).

 The EC Client configuration file must be edited to turn on PLM API mode. To do this, bring up
either the CAXClient_Documents.xml or CAXClient_Designs.xml file (depending on which data
model you are using) in a text editor. Change the following line as follows (change from 0 to 1).
Save the file.

v2.5.1 33

<clientConfig name="usePlmApi" value="1"/> <!-- Use PLM API Web

Services 1=enabled, 0=disabled -->

 The EC Client startup file must also be edited to enable PLM API mode. To do this, bring up
acp\com\caxclient.bat in a text editor. Change the following lines by appropriately
uncommenting and commenting the lines. Note that lines with "rem" in front of them are
commented out and inactive:

Sett ings Necessary set t ings fo r using PLM API

DFM_JAR set DFM_JAR=%CAX_ROOT%\jar\agile9\axis.jar;………(etc.)
rem set DFM_JAR=

JAVA_HEAP_SIZE rem set JAVA_HEAP_SIZE=-Xms128m -Xmx128m

set JAVA_HEAP_SIZE=-Xms128m -Xmx1024m

Editing the Configuration File

Open the file \AgileEC\acp\com\Acp.cfg in a text editor. Edit the values as described in the table below
to match your system configuration.

Sample values What th is command spec i f ies

AcpUserRoot=D:\AcpUser Working directory for user data and files

AcpLang=english Menu and UI language

AcpJava=C:\j2sdk1.4.2_04\jre Path to Java Runtime Environment. Determine the required
Pro/ENGINEER connector JRE version from the chart in Appendix C,
and then select the appropriate path from the available ones provided
in the acp installation. If no value is set then the default
%AcpRoot%\jre1.5.0 is used.

Note: Avoid blanks or spaces in path.

AcpProEV=2007 Currently, installed version of Pro/E:

 “2007” designates Pro/E Wildfire 4

 “2006” designates Pro/E Wildfire 3

 “2003” designates Pro/E Wildfire 2

AcpStartProE=D:\proewildfire\bin\proewildfire.bat  Set to the path and filename of your Pro/E startup script; this file is
usually located in the bin directory of the Pro/ENGINEER
installation. However, if your company has a customized Pro/E
start script, please set this value accordingly.



34 Agile Product Lifecycle Management

Editing the Mapping File

Open the file \AgileEC\acp\ini\AcpCustomer9.ini in a text editor. Edit the values as described in the table
below to match your system configuration.

Important Avoid blank lines in this file! A comment line always starts with a # sign.

Sample values What th is command spec i f ies

AcpAgileServerURL =
http://agileserver:8888/Agile

URL for your Agile server. Change to your server name or address. This is the
default server URL that will be used when you run the EC Client, it can be changed
interactively.

AcpAgileUser = cax Default username that will be used when you run the EC Client, it can be changed
interactively.

AcpAgilePwd = agile Default password that will be used when you run the EC Client, it can be changed
interactively. Use ““ (double quotes) for a blank entry.

Installing the AgileAPI.jar file

Important If this step is not done correctly, the connector may appear to be functioning normally
but data corruption may occur!

The correct AgileAPI.jar file, matching the specific Agile service pack level, must be installed in the
directory \AgileEC\acp\jar\Agile9.

 Search for the file AgileAPI.jar within your site’s Agile server installation (such as C:\Program
Files\Agile).

 Copy this file to \AgileEC\acp\jar\Agile9, overwriting the file already there.

 If you are unable to locate this file, please contact Agile Support.

Creating a Shortcut to the Startup File

In order to run Pro/E with the Connector, you must run using the startup file
\AgileEC\acp\com\acp_start.bat. To make this more convenient, you may want to create a Windows
shortcut to this file, either on your Desktop or in your Quick Launch bar.

Verify that the Pro/E Connector is working by double-clicking on your shortcut to launch Pro/E. You
should see an Agile menu appear in the main menu bar.

http://agileserver:8888/Agile

v2.5.1 35

Creating the Agile Toolbar in Pro/E

This step is optional, it will create a toolbar that you can use to run the Agile commands, in addition
to the Agile menu.

To create the toolbar icon on the Pro/E toolbar:

1. Choose Tools > Customize Screen and select the Toolbars tab.

2. When you enable the Toolbar 1 field by clicking the checkbox, a new “blank icon” appears on
the main toolbar.

Figure: Enabling the Toolbar

Figure 1: Toolbar in Pro/E

1. Again, under Tools > Customize Screen, this time select the Commands tab. Scroll down and select

Foreign applications. The icons of the “Agile” menu appear in the Commands area.

36 Agile Product Lifecycle Management

Figure: Moving icons to the Toolbar

Installing on Additional Computers

Once the Pro/E Connector has been installed and configured on one machine, you can install on
other machines simply by copying the entire \AgileEC\acp folder structure. This works as long as
the machines are configured the same in terms of their Pro/E setup, Java setup, etc.

Configuring the Pro/ENGINEER Connector

This section provides a complete summary of configuration options available for the
Pro/ENGINEER connector. Once the basic installation has been done following the instructions in
the previous section, you can refer here for details of all possible settings.

Note that in addition to the configuration files listed here, the EC Client must be additionally
configured to provide complete operation of the Pro/ENGINEER Connector. See the EC Client
Configuration Options section for details.

Table: List of all Configuration Files for the Pro/E Connector

Conf igurat ion f i l es Purpose Locat ion

Acp.cfg System configuration AgileEC\acp\com

AcpCustomer9.ini Mapping and configuration AgileEC\acp\ini

Note Configuration files typically change content between connector releases. When
upgrading to a new release, please incorporate your site’s configuration settings into the
new version of the configuration files. Failure to do so will cause unpredictable behavior
of the connector.

v2.5.1 37

Configuration File Acp.cfg

The configuration file Acp.cfg contains basic system parameters. It is described fully in the Installing

and Configuring Pro/ENGINEER Connector section on page 31 on page 30.

Mapping File AcpCustomer9.ini

This is the main file for controlling the behavior of the Pro/E Connector. This file is structured in
several sections. The first line of a section starts with a left square bracket followed by a space and
its name again followed by a space and the right square bracket. Each section starts with the
section name. A comment line starts with the # sign #.

Note Please make sure not to leave blank lines when editing the file.

Tables below gives a description of all sections in AcpCustomer9.ini, and the following tables provide
the details of each section.

Table: Description of all sections in AcpCustomer9.ini

Sect ion name Descript ion

Initialize Common switches to control the behavior of the Pro/E Connector

ProEToAgile.Create_DOCUMENT This mapping section is used for initial creation of documents using the
Save command.

ProEToAgile.Update_DOCUMENT This section is used when existing documents are updated using the
Save command.

ProEToAgile.Update_FILEFOLDER This section is used when existing objects are updated via the Agile Save
command.

ProEToAgile.Create_ITEM Not used

ProEToAgile.Update_ITEM This section is used when creating or updating parts when using the
Create Item/BOM command.

AgileToProE.ProE Defines those Agile attributes that are saved automatically into all Pro/E
files, during the Save command.

AgileToProE.PRT Defines those Agile attributes that are saved automatically into Pro/E
PRT files, during the Save command.

AgileToProE.DRW Define those Agile attributes that are saved automatically into Pro/E
DRW files, during the Save command.

AgileToProE.ASM Defines those Agile attributes that are saved automatically into Pro/E
ASM files, during the Save command.

AgileGetProperties.PRT Defines those Agile attributes that are saved into Pro/E PRT files, when
using the Update Properties command.

AgileGetProperties.DRW Defines those Agile attributes that are saved into Pro/E DRW files, when
using the Update Properties command.

38 Agile Product Lifecycle Management

Sect ion name Descript ion

AgileGetProperties.ASM Defines those Agile attributes that are saved into Pro/E ASM files, when
using the Update Properties command.

EcpMenu Defines the mapping betwwen TCL procedures and menus (internal use
only)

Table: [Initialize] Section Parameters

Parameter name in section

[Initialize]

 Parameter values Description

AcpStartPart = START Name of the default seed part

AcpStartAssembly = START Name of the default seed assembly

AcpStartDrawing = START Name of the default seed drawing

AcpDebug = 1../..0 Turns debug mode on (1) and off (0). A log file is
written to the user’s working directory.

AcpAgileServerURL = http://agileserver:8888/Agi
le

Default URL that the EC Client will use to connect to
the Agile Application Server

AcpAgileUser = cax Default user that is used to log in to Agile when the
user chooses Connect from the CAD system

AcpAgilePwd = agile Default password to log in to Agile

AcpSaveDrwFrm = 1../..0 1 = [Pro/E] drawing formats are stored in a unique
document object in Agile

0 = drawing formats are stored in a local [Pro/E] path

AcpSaveLay = 1../..0 1 = [Pro/E] layouts are stored in a unique document
object in Agile

0 = layouts are stored in a local [Pro/E] path

AcpHelpPartIdent = ITEM Name of Pro/E parameter used to identify models in
the design that should not be included in the BOM,
such as “skeleton parts.” These objects are saved
into Agile as documents, but are filtered out when
using the Create Item/BOM function.

AcpHelpPartValue = NO Value that the Pro/E parameter should be set to in
order to activate the filter

AcpDefaultClass = DOCUMENT System use only, do not modify

AcpCheckModify = 1../..0 0 = objects will be saved to Agile whether or not they
have been modified in the Pro/E session.
1 = only objects modified in the Pro/E session will be
saved to Agile.

http://agileserver:8888/Agile
http://agileserver:8888/Agile

v2.5.1 39

Parameter name in section

[Initialize]

 Parameter values Description

AcpParAgileNumber = AgileId This parameter is the place where the name of a
Pro/E parameter can be defined. It will be updated
with the Agile ID number after saving to Agile.

AcpSearchAgileNumberPar = AgileId “Par” refers to user-defined parameters in Pro/E. This
Pro/E parameter value is used to map a CAD object
to a previously existing Agile object. For example:

AcpSearchAgileNumberPar=PART_NUMBER

A parameter called PART_NUMBER exists in the
model. Its value is set to, e.g., MODEL01234.

Upon execution of the Agile > Save command in
Pro/E, the connector tries to attach the CAD file to an
existing Agile object whose ID number is
MODEL01234. If such an object is not found, a new
object is automatically created.

AcpUseObjectNameForId = 1../..0 0 = files are not renamed

1 = files are renamed to match the Agile Number field
or custom mapping

EcpMenuMainRes = [EcpGetenvAcpMainRes] System use only, do not modify

EcpMenuCallback = EcpMenu System use only, do not modify

Mapping Options for [ProEToAgile.XXXX] Sections

Each mapping consists of a pair of objects. The right side of the pair defines information that can be
extracted from Pro/E. Here, Pro/E is the source of the attribute value. The left side of the pair
defines the attribute value’s target location in Agile.

There are several configuration options for the “right side” that define what kind of data should be
extracted from Pro/E, and what kind of transformation can be applied to the data. Each right side
attribute consists of three sections, for example:

DESCRIPTION = Std.ObjectName-Type.ToUpper

The first section is either Std or Par. “Std” refers to Pro/E system attributes such as file name, object
type, version of Pro/E that is being used, and so forth.

Table: Standard mapping values using “Std2 prefix

Std.CreSystem Pro/E version such as “Pro/E 2001” or “Pro/E Wildfire”

Std.VerStamp Timestamp

Std.FileName File name, for example “BOLT.PRT”

Std.ObjectName Pro/E file name without the extension - “BOLT”

40 Agile Product Lifecycle Management

Std.ObjectName-
Type

Object name with the type appended. This creates an easy way to differentiate an assembly
from a part.

Examples include: BOLT-PRT, BOLT-ASM, or BOLT-DRW.

Std.ObjectType Pro/E object type. Possible values are PRT, ASM, DRW, or FRM.

“Par” is a reference to user-defined parameter in Pro/E, such as MATERIAL, DESCRIPTION, or
ENGINEER. These types of mappings are only useful where the Pro/E file has a parameter
corresponding to the name mentioned in the mapping.

Finally, the final suffix is a description of how the data should be modified. The following modifiers
are possible:

Table: Suffix Options for Mapping

ToUpper Transfer all characters to upper case

ToLower Transfer all characters to lowercase

None Do not modify the data

Range-<idx1>-<idx2> Range of the string from position idx1 to idx2, example: Part.PartNumber.Range-0-2

Prefix Prefix to be added in front of the string, example: Par.PartNumber.PrefixPRT

Suffix Suffix to append to the string, example: Par.PartNumber.SuffixPRT

There are two special values that are used on the left side of these mappings. In the
[ProEToAgile.Create_DOCUMENT] section, you use the value CAX_NEW_NUMBER to represent
the Number field that will be assigned to newly created Documents. In the [
ProEToAgile.Update_ITEM] section, you use the value ITEM to represent the Number field that will
be assigned to newly created Parts.

The following are some example mappings for a Pro/ENGINEER part called housing.asm with a
material value of Aluminum:

Table: Example Mapping Definitions

Std.ObjectName-Type.ToUpper = DESCRIPTION

Par.Material.None = MATERIAL

Std.FileName.ToLower = CAD_FILENAME

In this example, the Agile Description would be HOUSING-ASM, an attribute in Agile called
CAD_FILENAME would have the value housing.asm and an Agile Attribute called Material would
have the value Aluminum.

Mapping Options for [AgileToProE.XXXX] Sections

These section are used to define mappings from Agile to Pro/E, which occur automatically during
the Save process. As this will add time to the Save process, the list of attributes should be kept to
the bare minimum that absolutely need to be kept synchronized. Other attributes can be
synchronized using “Update Properties”, as described in the next section. The format of this section
is:

DocNumber = NUMBER

v2.5.1 41

Where the left side value is the name of the Pro/E parameter to be updated, and the right side is the
Agile attribute value to be used as the source.

Mapping Options for [AgileGetProperties.XXX] Sections

These section is used to define mappings from Agile to Pro/E, which occur when the user runs the
Update Properties command manually. For standard attributes the format of this section is:

CAD Parameter = <Source Table>_Field.Format

For example:

Agile_Des = Title Block_Description.ToUpper

Where the left side value is the name of the Pro/E parameter to be updated, and the right side is the
Agile attribute value to be used as the source, as follows:

Sect ion Represents Example

<Source Table> Agile tab name Title Block

Field Agile attribute name Description

Format Text processing ToUpper

For history and change history attributes, which are arranged in a table, the format of this section is:

CAD Parameter = <Filter Table>_Field,<Filter Value>,<Filter>,<Source Table>_Field.Format

For example:

Agile_CreUser = History_Action,Create,first,History_User.None

HIS_RELDATE_1 = Change History_Status,Released,last,Change History_Rel
Date_int.Date01

Where the left side value is the name of the Pro/E parameter to be updated, and the right side
specifies how to find the desired row and column in the table below:

Sect ion Represents Example

<Filter Table> Agile tab name to search Title Block

Field Desired column to search Action

<Filter Value> Value to detect in the column Create

<Filter> Which row to select, with these options:

first

first+n n=integer value

last

last-n n=integer value

first

<Source Table> Agile tab name to retrieve value from History

Field Desired column to retrieve value from User

42 Agile Product Lifecycle Management

Sect ion Represents Example

Format Text processing None

Options for “Format”

The Format string allows you to perform additional processing on the text string being passed back
into CAD. This includes predefined formats and general TCL format procedures.

Predefined formats

Format Descript ion

None no processing

ToLower convert the value to lower case

ToUpper convert the value to upper case

Range-x-y substring of the value from index x to index y (y may be numeric or "end")

Date01 convert int dateformat to "%d.%m.%y %H:%M:%S" example: 01.01.2007
00:00:00

Date02 convert int dateformat to "%d.%m.%Y" example: 01.01.2007

Date03 convert int dateformat to "%d.%m.%y" example: 01.01.07

Date04 convert int dateformat to "%d-%m-%y" example: 01-01-07

Date05 convert int dateformat to "%m/%d/%y" example: 01/01/07

Date06 convert int dateformat to "%d-%b-%y" example: 01-Jan-07

Prefix<str> append a prefix <str> to the value

Suffix<str> append a suffix <str> to the value

TCL format procedures

Any registered (tclIndex) TCL procedure that gets the current value as input and returns the
formatted string. For instance:

proc MyFormat { value } {

 set formatedvalue $value

 return $formatedvalue

}

Mapping Part Attributes

In addition to mapping attributes from the CAD Document back into CAD, you can map attributes
from the corresponding Part object that has been associated to the Document using the Create
Item/BOM command. In order to specify a Part attribute, simply prefix the attribute value with
“PART:”. This example shows mapping both the Document Number and Part Number into CAD:

Agile_DocId = Title Block_Number.None

Agile_PartId = PART:Title Block_Number.None

v2.5.1 43

Chapter 5

Installing and Configuring SolidWorks
Connector

This chapter includes the following:

 Extracting Files for Connector ... 44
 Extracting Files for EC Client ... 44
 Configure PLM API for WAN Mode ... 44
 Configuring for a 64-bit System ... 45
 Editing the Configuration File ... 45
 Registering the Library ... 47
 Installing the AgileAPI.jar file ... 47
 Setting Up the Agile Menu ... 47
 SolidWorks Connector Administration ... 49
 Modifying the Agile Menu Definition .. 60

This section describes setting up the connection between your SolidWorks CAD application and
Agile Engineering Collaboration. The main steps are:

 Extract files from SolidWorks Connector zip file

 Extract files from EC Client zip file

 Configure PLM API for WAN mode (optional)

 Special setup for 64-bit

 Edit some parameters in the configuration file

 Register library and executable

 Install proper AgileAPI.jar file

 Set up Agile menu in SolidWorks

The installation requires the following file:

acwNNNN.zip – Main installation package, where NNNN is the release level

Performing the installation steps described here will enable the Agile menu to appear within
SolidWorks. In order to have a completely functional integration, you must also:

 Perform the core Agile configuration as described in the Administration section of the document
Agile Engineering Collaboration Client.

 Configure desired SolidWorks Connector parameters as described in the section SolidWorks

Connector Administration on page 49 on page 47.

44 Agile Product Lifecycle Management

Extracting Files for Connector

Extract the installation file to the folder location D:\AgileEC or C:\AgileEC for a single-drive system.
When you unzip, make sure that you retain the folder paths from the zip file. When the files are
unzipped, you should see a folder named acw, which contains the Connector installation.

Extracting Files for EC Client

Extract the EC Client installation file to a temporary location. After extraction you will see 5
connector directories (acc, ace, acp, acu, acw) plus a jar directory.

 Copy the entire jar directory inside the \AgileEC\acw directory.

 From the temporary acw\server\scripts directory, copy the file caxclient.bat to the
\AgileEC\acw\server\scripts directory.

 From the temporary acw\jar\Agile9 directory, copy the file CaxClient_Designs.xml to the
\AgileEC\acw\jar\Agile9 directory.

Configure PLM API for WAN Mode

PLM API is a high-performance web services API used to support operations across wide area
network (WAN). This is an optional capability that is only necessary if you are going to be
supporting MCAD connectors at remote sites (i.e. locations distant from your Agile application
server). If you do not need this capability, skip to the next step.

 Log in with the Agile 9 web client to the server that will be used with the MCAD connectors.
Use an account that has privileges to create File Folder objects.

 Create the following three File Folder objects, using the number listed in the first column, and
then attach the file listed in the second column. Check In the File Folder following attachment.
The files can be found under the jar/agile9/server folder. Note that depending on your system
settings, you might need to temporarily modify the admin settings for File Folder objects to
allow using an arbitrary Number field.

Fi le Folder number F i le to at tach

PLMAPI_ASYNC plm-api-server.xml

PLMAPI_CONFIG plm-api-config.properties

PLMAPI_CONNECTOR plm-api-sdk.xml

 Copy the file plm-api-server.jar from jar/agile9/server to the WSX extensions folder of the target
Agile 9 server. Usually this folder is located in {agile_home}/integration/sdk/extensions).

 The EC Client configuration file must be edited to turn on PLM API mode. To do this, bring up
either the CAXClient_Documents.xml or CAXClient_Designs.xml file (depending on which data
model you are using) in a text editor. Change the following line as follows (change from 0 to 1).
Save the file.

v2.5.1 45

<clientConfig name="usePlmApi" value="1"/> <!-- Use PLM API Web

Services 1=enabled, 0=disabled -->

 The EC Client startup file must also be edited to enable PLM API mode. To do this, bring up
\acw\server\scripts\caxclient.bat in a text editor. Change the following lines by appropriately
uncommenting and commenting the lines. Note that lines with “rem” in front of them are
commented out and inactive:

Sett ings Necessary set t ings fo r using PLM API

DFM_JAR set DFM_JAR=%CAX_ROOT%\jar\agile9\axis.jar;………(etc.)
rem set DFM_JAR=

JAVA_HEAP_SIZE rem set JAVA_HEAP_SIZE=-Xms128m -Xmx128m

set JAVA_HEAP_SIZE=-Xms128m -Xmx1024m

Configuring for a 64-bit System

With 64-bit, the macro PlmSWMacro.swp is used for the communication between SolidWorks Addin
and the CaxOleServer. This macro can be found in the following directory: acw\server\Scripts and
must be edited manually.

1. Start SolidWorks and select Extras > Macro > Edit.

2. Select the file acw\server\Scripts\PlmSWMacro.swp.

The SolidWorks VBA development environment is opened.

3. Select Extra > References.

All dlls registered for the System are displayed. For all dlls used by the Integration, the checkbox is
marked.

4. Select the "axalantSW 1.0 Type library" and click the “Search” button to set the reference as
follows:
 SolidWorks 2009 x 64: acw\SolidWorks\agilePLMSW2009x64.dll
 SolidWorks 2008 x 64: acw\SolidWorks\agilePLMSW2008x64.dll
 SolidWorks 2007 x 64: acw\SolidWorks\agilePLMSW2007x64.dll

5. Click OK to confirm the changes.

The system will return to the SolidWorks VBA development environment.

6. Click Debug > Compile PlmSWMacro.

7. Select File > Close and back to SolidWorks.

8. You can now activate the integration in SolidWorks by selecting Extras > Additional Applications.

Editing the Configuration File

Open the file \AgileEC\acw\Server\Scripts\3DCADMapping.ini in a text editor. Edit the values as described

46 Agile Product Lifecycle Management

in the table below to match your system configuration.

Sample values What this command specifies

[JNIOPTIONS]
;
-

Djava.class.path=D:\AgileEC\acw\jre1.5.0\li

b\rt.jar;

D:\AgileEC\acw\Server\AgileCaxConnector.jar

;

D:\AgileEC\acw\Server\AgileAPI.jar;

D:\AgileEC\acw\Server\xercesImpl.jar;

D:\AgileEC\acw\Server\xmlParserAPIs.jar;

D:\AgileEC\acw\Server\CaxAglProxy.jar;

D:\AgileEC\acw\Server\CaxAglDataTypes.jar

-

Dagile.xml.file=D:\AgileEC\acw\Server\Agile

Connector.xml

-Djava.agile.gui.address=localhost

-Djava.agile.gui.listener=5112

-Djava.agile.proxy.listener=5113

-Dagile.caxconnect.logfile=C:\agile.log

;-Djava.agile.proxy.logfile=C:\Proxy.log

;

This provides the paths to all jar files. Edit each path to
match your system configuration.

The first path listed is the JRE environment. Determine
the required SolidWorks connector JRE version from the
chart in Appendix C, and then select the appropriate path
from the available ones provided in the acw installation.

Edit all other paths to match the drive and directory in
your installation.

Note Note that the proxy.log file (the last
line in this section) should be
commented out for production use,
because this causes an additional
log file window to pop up that would
be annoying to users. Uncomment
only for debugging.

[CheckOutDisk]

;

D:

;

The disk drive on the client computer to be used for the
working directory.

[CheckOutPath]

;

\AgileSW\Work\

;

The path of the working directory.

Important You must also create this directory
on your computer.

[LogFileDir]

;

D:\AgileSW\Temp\

;

The full path of the log file directory.

Important You must also create this directory
on your computer.

v2.5.1 47

Sample values What this command specifies

[AgileURL]

;

http://servername:8888/Agile

;

The URL for the EC Client.

[Agile9TemplatePath]

;

D:\AgileSW\Template

The path of the template directory. This path must exist
and at least one template file must exist for parts,
assemblies, and drawings.

Registering the Library

Navigate to the \AgileEC\acw directory, and double-click on register.bat. A command window will
appear and just follow the prompts to enter the proper SolidWorks version and Windows OS
version. For example:

Please enter SolidWorks Version (SW2007 or SW2008 or SW2009 or SW2010) : SW2010

Please enter your OS architecture (x32 or x64) : x32

Registration procedure for SolidWorks2010x32 connector started

After a moment you will see a pop-up with a message similar to this:

DllRegisterServer in D:\AgileEC\acw\SolidWorks\agilePLMSW2008.dll succeeded.

Click OK to complete.

Installing the AgileAPI.jar file

Important If this step is not done correctly, the connector may appear to be functioning normally
but data corruption may occur!

The correct AgileAPI.jar file, matching the specific Agile service pack level, must be installed in the
directory \AgileEC\acw\jar\Agile9.

 Search for the file AgileAPI.jar within your site’s Agile server installation (such as C:\Program
Files\Agile).

 Copy this file to \AgileEC\acw\jar\Agile9, overwriting the file already there.

 If you are unable to locate this file, please contact Agile Support.

Setting Up the Agile Menu

To set up the Agile menu within SolidWorks, do the following steps:

http://servername:8888/Agile

48 Agile Product Lifecycle Management

 Launch SolidWorks as you normally would (Using the Start menu or desktop icon, etc.)

 In SolidWorks, go to Tools > Add-Ins and check the box next to AgilePLM. Click OK.

 The Agile menu should now appear in the SolidWorks menu bar. If it does not, or you receive
an error at this point, something has not been set up properly.

The Agile menu in SolidWorks should now be functional.

v2.5.1 49

SolidWorks Connector Administration

This section provides a complete summary of configuration options available for the SolidWorks
connector. Once the basic installation has been done following the instructions in the previous
section, you can refer here for details of all possible settings.

Note that in addition to the configuration files listed here, the EC Client must be additionally
configured to provide complete operation of the SolidWorks Connector. See the EC Client
Configuration Options section for details.

Table: List of all Configuration Files for the SolidWorks Connector

Conf igurat ion f i l e Purpose Locat ion

3DCADMapping.ini Mapping and configuration AgileEC\acw\Server\Scripts

PlmSWAddin.xml Menu definition AgileEC\acw\Server\Scripts

Note Configuration files typically change content between connector releases. When
upgrading to a new release, please incorporate your site’s configuration settings into the
new version of the configuration files. Failure to do so will cause unpredictable behavior
of the connector.

Configuring the 3DCADMapping.ini File

There is one main configuration file, which controls nearly all aspects of the SolidWorks Connector.
The file is named 3DCADMapping.ini and is located in the ..\AgileEC\acw\Server\Scripts directory. Since
this file is located within the SolidWorks Connector installation on the client machine, it is possible to
customize configuration options on a per-machine basis, although typical usage is to have a
common configuration file within a given site. When changes are made to the configuration file, it is
necessary to exit and re-start SolidWorks in order to use the new settings.

The configuration file is made up of a series of configuration options (also called “sections”), with
the option listed between square brackets, and the various settings for the option listed on the
following lines. Lines beginning with a semi-colon (;) are commented out. In this file, unused options
are commented out rather than deleted, which may help later if you want to enable some of the
unused options.

Because this configuration file is also used for Agile 8.5 and Agile e-series installations, not all of
the configuration options are valid for Agile 9. The following list summarizes the options that are
valid for Agile 9.

Table: Valid configuration options in SolidWorks 3DCADMapping.ini

Opt ion Name Usage

[JNIOPTIONS] Sets various Java parameters

[LogFileDir] Drive & path of temp directory

[CheckOutDisk] Disk drive of work directory

[CheckOutPath] Path of work directory

50 Agile Product Lifecycle Management

Opt ion Name Usage

[LogFileDir] Disk and path of log file directory

[AgilePartViewFile] OBSOLETE. See [Agile9PartViewFileExtensions]

[AgileAssemblyViewFile] OBSOLETE. See [Agile9AssemblyViewFileExtensions]

[AgileDrawingViewFile] OBSOLETE. See [Agile9DrawingViewFileExtensions]

[AgileViewFileCustomScript] Drive, path & name of a executable file which will be executed to generate a
customized neutral view file to be saved

[AgilePartCheckinFile] OBSOLETE. See [Agile9PartViewFileExtensions]

[AgileAssembly CheckinFile] OBSOLETE. See [Agile9AssemblyViewFileExtensions]

[AgileDrawing Checkin File] OBSOLETE. See [Agile9DrawingViewFileExtensions]

[AgileURL] Information required to connect to the Agile server.

[Agile9CreateDocument] This mapping section is used for setting attributes for Documents during the
Save command, for the initial save.

[Agile9UpdateDocument] This mapping section is used for setting attributes for Documents during the
Save command, after the initial save.

[Agile9UpdateItem] This mapping section is used for setting attributes for Parts during the Create
Item/BOM command

[Agile9UpdateItemConfigured] This mapping section is used for setting attributes for Parts during the Create
Item/BOM command, when the CAD file is identified as configured.

[Agile9CheckinDocument] This mapping section is used for setting file attachment attributes in Agile.

[Agile9CheckinViewableTIF]

[AgileViewableIncludeRevision] Appends the revision of the Document object onto the end of the viewable
filenames generated in the Save comment.

[Agile9GetRevision] Retrieves the current revision field of the Document

[Agile9UpdateProperties] Defines the property mapping from Agile to SolidWorks, when using the
Update Properties command

[Agile9SaveUpdateProperties] Defines the property mapping from Agile to SolidWorks that occurs
automatically during the Save command.

[Agile9LoadUpdateProperties] Defines the property mapping from Agile to SolidWorks that occurs
automatically during the Load command

[Agile9UpdateTitleBox] Defines the property mapping from Agile to SolidWorks, when the properties
of a drawing are updated using the Update Title Block command

[AgilePartTemplate] Drive, path & name of a SolidWorks template part file for use with the New
command

[AgileAssemblyTemplate] Drive, path & name of a SolidWorks template assembly file for use with the
New command

v2.5.1 51

Opt ion Name Usage

[AgileDrawingTemplate] Drive, path & name of a SolidWorks template drawing file for use with the New
command

[Agile9Configuration] Controls how SolidWorks configurations are handled

[EC_CLIENT_URL] OBSOLETE

[Agile9PartViewFileExtensions] Sets the allowable viewable file formats created during the Save command

[Agile9AssemblyViewFileExtensions] Sets the allowable viewable file formats created during the Save command

[Agile9DrawingViewFileExtensions] Sets the allowable viewable file formats created during the Save command

[Agile9TemplatePath] Sets the path to where template files are stored, for use by the New command

[Agile9Units] Sets the default units for the New command

[Agile9Renaming] Activates the filename renaming process during the Load command

[SaveAllConfigurationsToEDrawing] Sets whether just the active configuration or all configurations are saved to
eDrawings files.

[SWTraverseMode] Sets the type of structure traversal algorithm is used by the connector.

Table: Detailed Configuration Options

Opt ion Descript ion

Syntax Configuration Options

[JNIOPTIONS] Java Parameters

-Djava.class.path=<path><file>.jar, etc. 1.For rt.jar, edit <path> to match location of Java installation.

2. For other jar files, edit <path> to match installation path (default is
D:\AgileEC\acw\Server)

-Dagile.xml.file=<path>\AgileConnector.xml Edit <path> to match installation path (default is
D:\AgileEC\acw\Server)

-Djava.agile.gui.address=localhost Do not change

-Djava.agile.gui.listener=5112 Do not change

-Djava.agile.proxy.listener=5113 Do not change

-Djava.agile.proxy.logfile=C:\Proxy.log Uncomment this line to enable a Java debug window and log file.

[CheckOutDisk] Drive of work directory

Syntax <drive>

Default Value D:

Configuration Set to drive where work directory is located

[CheckOutPath] Path of work directory

52 Agile Product Lifecycle Management

Opt ion Descript ion

Syntax <path>

Default Value \AgileSW\Work

Configuration Set to path where work directory is located

[LogFileDir] Drive & path of temp directory

Syntax <drive><path>

Default Value D:\AgileSW\Temp

Configuration Options Set to drive and path where temp directory is located

[AgileViewFileCustomScript] Drive, path & name of a executable file which will be executed to
generate a customized view file to be saved

Syntax <drive><path><name><extention>

Default Value D:\AgileEC\acw\Server\Scripts\ViewFileCustom.bat

Configuration Options Set to drive and path where the executable file is located. In special
cases this file will not be executed (see descriptions below).

[AgileURL] URL and Port of the Agile9 server

Syntax http://<server>:<port>/<Agile file name>

Default Value http://agileserver:8888/Agile http://agileserver:8888/Agile

Configuration Options Set to a dedicated port of a server machine where the Agile server
software is located

[Agile9CreateDocument] Defines the property mapping from SolidWorks to Agile, when the
Documents are saved into Agile using the Save command, for the first
time.

http://agileserver:8888/Agile
http://agileserver:8888/Agile

v2.5.1 53

Opt ion Descript ion

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of an Agile attribute that is the target of a property
that is derived from the SolidWorks Model. The right side of the pair
defines the SolidWorks property name.

There are several configuration options for the right side of the pair
that define what kind of data should be extracted from SolidWorks.
Each right side attribute consists of two or three sections. All
SolidWorks mappings begin with 3DCADTable. The second section
can define system attributes.

Possible values include:

 FileStamp – Timestamp (in seconds)

 ModelPathOnly – Directory where the CAD file is stored when
saved to Agile, e.g. D:\CAD_file\Housing

 ModelName – Name of SolidWorks file with extension, e.g.,
BOLT.SLDPRT

 ModelVersion – SolidWorks version, e.g., SW2005

 ModelConfigurationName – For configured parts/assemblies, the
name of the configuration

 ModelTitle – Name of SolidWorks model without file extension,
e.g., BOLT

 ModelExtension – SolidWorks Model type, e.g., SLDPRT,
SLDASM, SLDDRW

Values of the format 3DCADTable.Property.[value], where [value] is
the name of a SolidWorks custom property such as Description or
PartNumber.

The following are some example mappings for a SolidWorks part
called housing.sldpart with a custom property called Material with a
value of Aluminum:

 CAX_FIL_NAME = 3DCADTable.ModelName

 DESCRIPTION = 3DCADTable.ModelTitle

 MATERIAL = 3DCADTable.Property.Material

In this example, the Agile description is “housing”. An attribute in Agile
called CAX_FIL_NAME has the value “housing.sldasm” and an Agile
attribute called Material has the value “Aluminum”.

The name used for the Agile attribute on the left side of the mapping is
arbitrary. The actual attribute that is targeted for mapping is defined in
the file CAXClient.xml, which is explained in the EC Client
Configuration section.

There is one special value that is used on the left side of these
mappings. You use the value CAX_NEW_NUMBER to represent the
Number field that will be assigned to newly created Documents.

54 Agile Product Lifecycle Management

Opt ion Descript ion

[Agile9UpdateDocument] Defines the property mapping from SolidWorks to Agile, when the
Documents are saved into Agile using the Save command, after the
first time. Configuration options are the same as
[Agile9CreateDocument].

[Agile9UpdateItem] Defines the property mapping from Agile to SolidWorks,
when Items are created using the Save command

Configuration Options See at [Agile9UpdateDocument] section

There is one special value that is used on the left side of these
mappings. You use the value ITEM to represent the Number field that
will be assigned to newly created Parts.

[Agile9UpdatedItemConfigured] Defines the property mapping from Agile to SolidWorks, when Items
are created or updated using the Create Item/BOM command, and the
Items are marked as Configured (see Agile9Configuration section)

Configuration Options see the [Agile9UpdateDocument] section

There is one special value that is used on the left side of these
mappings. You use the value ITEM to represent the Number field that
will be assigned to newly created Parts.

[Agile9CheckinDocument] Defines the property mapping for file attachements, when the files are
checked in during the Save command.

Configuration Options System parameters - do not change

[Agile9UpdateProperties] Defines the property mapping from Agile to SolidWorks, when using
the Update Properties command manually.

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a SolidWorks property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

[Agile9SaveUpdateProperties] Defines the property mapping from Agile to SolidWorks which occurs
automatically during the Save command

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a SolidWorks property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

v2.5.1 55

Opt ion Descript ion

[Agile9LoadUpdateProperties] Defines the property mapping from Agile to SolidWorks, which occurs
automatically during the Load command

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a SolidWorks property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

[Agile9UpdateTitleBox] Defines the property mapping from Agile to SolidWorks, when the
properties of a drawing are updated using the Update Title Block
command

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a SolidWorks property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

[Agile9Configuration] Setting that control how you identify configured parts

Syntax ConfigProperty = Configured

ConfigPropertyValue = YES

Configuration Options ConfigProperty is the name of the SolidWorks Custom Property that is
used to identify configured parts. ConfigPropertyValue is the value
that must be set for this property, to indicate that this part is to treated
as containing multiple part configurations.

When this value is set for a part or assembly, each different
configuration is treated as a unique part, when generating the Part
BOM with the Create Item /BOM command.

[Agile9PartViewFileExtensions] Sets the allowable viewable file formats for parts, as created during the
Save command

Syntax (x_t$)|(x_b$)|(igs$)|(step$)|(sat$)|(stl$)

|(wrl$)|(eprt$)|(pdf$)|(u3d$)|(3dxml$)|(xa

ml$)|(cgr$)|(jpg$)|(hcg$)|(hsf$)|(tif$)

[Agile9AssemblyViewFileExtensions] Sets the allowable viewable file formats for assemblies, as created
during the Save command

Syntax (x_t$)|(x_b$)|(igs$)|(step$)|(sat$)|(stl$)

|(wrl$)|(eprt$)|(pdf$)|(u3d$)|(3dxml$)|(xa

ml$)|(cgr$)|(jpg$)|(hcg$)|(hsf$)|(tif$)

[Agile9DrawingViewFileExtensions] Sets the allowable viewable file formats for drawings, as created
during the Save command

56 Agile Product Lifecycle Management

Opt ion Descript ion

Syntax (dxf$)|(dwg$)|(edrw$)|(jpg$)|(pdf$)|(tif$)

[Agile9TemplatePath] Sets the path to where template files are stored, for use by the New
command

Syntax <drive><path>

Configuration Options The designated path will be scanned for *.prtdot, *.asmdot, and
*.drwdot files, and these files will be made available as templates
within the New command.

[Agile9Units] Sets the default units for the New command

Syntax Millimeters | Inches

[Agile9Renaming] Activates the filename renaming process during the Load command

Syntax 0 | 1

Configuration Options 0 = Do not rename files during the Load process

1 = Rename files during the Load process, so that the filename
matches the Agile Number field or a customized text string. This is
used to support both the initial rename use case and the “save as” use
case.

For details of how to customize the filename see the file
acwCustomer.tcl

[SaveAllConfigurationsToEDrawing] Sets whether just the active configuration or all configurations are
saved to eDrawing files.

Syntax 0 | 1

Configuration Options 0 = Save only the active configuration to the eDrawing file

1 = Save all configurations to the eDrawing file

[SWTraverseMode] Sets the type of structure traversal algorithm is used by the connector.

Syntax 0 | 1

Configuration Options 0 = Use the old and slow traverse mode from the SolidWorks standard
API

1 = Use the new and fast traverse mode from the SoldWorks
DocumentManager API

Mapping Options for Update Properties Sections - SolidWorks

Multiple sections of the 3DCADMapping.ini file, as listed above, are used to define mappings from

v2.5.1 57

Agile to SolidWorks. For standard attributes the format of this section is:

CAD Parameter = <Source Table>_Field.Format

For example:

Agile_Des = Title Block_Description.ToUpper

Where the left side value is the name of the SolidWorks parameter to be updated, and the right side
is the Agile attribute value to be used as the source, as follows:

Sect ion Represents Example

<Source Table> Agile tab name Title Block

Field Agile attribute name Description

Format Text processing ToUpper

For history and change history attributes, which are arranged in a table, the format of this section is:

CAD Parameter = <Filter Table>_Field,<Filter Value>,<Filter>,<Source Table>_Field.Format

For example:

Agile_CreUser = History_Action,Create,first,History_User.None

HIS_RELDATE_1 = Change History_Status,Released,last,Change History_Rel
Date_int.Date01

Where the left side value is the name of the SolildWorks parameter to be updated, and the right
side specifies how to find the desired row and column in the table below:

Sect ion Represents Example

<Filter Table> Agile tab name to search Title Block

Field Desired column to search Action

<Filter Value> Value to detect in the column Create

<Filter> Which row to select, with these options:

first

first+n n=integer value

last

last-n n=integer value

first

<Source Table> Agile tab name to retrieve value from History

Field Desired column to retrieve value from User

Format Text processing None

Options for “Format”

The Format string allows you to perform additional processing on the text string being passed back
into CAD. This includes predefined formats and general TCL format procedures.

Predefined formats

58 Agile Product Lifecycle Management

Format Descript ion

None no processing

ToLower convert the value to lower case

ToUpper convert the value to upper case

Range-x-y substring of the value from index x to index y (y may be numeric or "end")

Date01 convert int dateformat to "%d.%m.%y %H:%M:%S" example: 01.01.2007
00:00:00

Date02 convert int dateformat to "%d.%m.%Y" example: 01.01.2007

Date03 convert int dateformat to "%d.%m.%y" example: 01.01.07

Date04 convert int dateformat to "%d-%m-%y" example: 01-01-07

Date05 convert int dateformat to "%m/%d/%y" example: 01/01/07

Date06 convert int dateformat to "%d-%b-%y" example: 01-Jan-07

Prefix<str> append a prefix <str> to the value

Suffix<str> append a suffix <str> to the value

TCL format procedures

Any registered (tclIndex) TCL procedure that gets the current value as input and returns the
formatted string. For instance:

proc MyFormat { value } {

v2.5.1 59

 set formatedvalue $value

 return $formatedvalue

}

Mapping Part Attributes

In addition to mapping attributes from the CAD Document back into CAD, you can map attributes
from the corresponding Part object that has been associated to the Document using the Create
Item/BOM command. In order to specify a Part attribute, simply prefix the attribute value with
“PART:”. This example shows mapping both the Document Number and Part Number into CAD:

Agile_DocId = Title Block_Number.None

Agile_PartId = PART:Title Block_Number.None

Note If you do NOT have any Part attributes mapped back into CAD, you can improve
performance of the connector somewhat by using the following setting in the
CAXClient_Designs.xml file:

Note <clientConfig name="skipGetItemProperties" value="1"/>

Note By setting this to 1, the logic to check associated Parts is skipped, thereby improving
performance. Design attributes are still exchanged.

Master Switch for Update Properties on Save

The Update Properties on Save functionality has a "master switch" which can be used to turn this
functionality on or off. By turning it off, performance of the Save process can be improved, which is
most noticable for CAD models with many components. Of course when it is turned off, the trade-off
is that no properties can be exchanged during the Save process and this must be done manually by
the user, using the Update Properties command. The master switch is contained in the menu
definition file PlmSWAddin.xml as described in the next section. The switch is accomplished by
having two sets of menu callbacks, one that includes the update properties on save, and the other
which doesn’t:

Includes Update Properties on Save

Save: AgileSave202

QuickSave: AgileSave203

Save Session: AgileSave204

Does NOT include Update Properties on Save

Save: AgileSave205

QuickSave: AgileSave206

Save Session: AgileSave207

Simply edit the menu definition file with a text editor, and change all instances of the callback
names to the proper number (e.g. change AgileSave202 to AgileSave205, or vice versa).

60 Agile Product Lifecycle Management

Controlling Custom vs. Configuration-specific Properties

In the following sections:

 [Agile9UpdateDocument]

 [Agile9UpdateItem]

 [Agile9UpdateItemConfigured]

You can use the "Custom_" and "ActiveConfiguration_" modifiers to control whether the properties
are coming from Custom or Configuration-specific Properties.

For example:
ITEM = 3DCADTable.Property.Custom_PartNumber

Sets the Part number attribute using a Custom property called "PartNumber"
DESCRIPTION = 3DCADTable.Property.ActiveConfiguration_Description

Sets the Description attribute from a configuration-specific property called "Description".

If you omit the "Custom_" or "ActiveConfiguration_" modifier, it defaults to configuration-specific.
Note also that SolidWorks properties are case-sensitive!

Modifying the Agile Menu Definition

There is another configuration file, which controls the layout of the Agile menu. The file is named
PlmSWAddin.xml and is located in the AgileEC\acw\Server\Scripts directory. Since this file is located
within the SolidWorks Connector installation on the client machine, it is possible to customize menu
options on a per-machine basis, although typical usage is to have a common configuration file
within a given site. When changes are made to the configuration file, it is necessary to exit and re-
start SolidWorks in order to use the new menus.

Configuration of the menus is limited to:

 Removal of unneeded commands and menus

 Renaming of commands and menus

 Restructuring of commands and menus

 Addition or removal of menu separators

The portion of the file which can be configured is within the <CaxMenu_EN> tags (for English
language). Within this section you will see four sets of tags, which contain the menu entries for the
following situations in SolidWorks:

<Base> - Menus when no SolidWorks component is active

<Part> - Menus when a single Part is active

<Assembly> - Menus when an Assembly is active

<Drawing> - Menus when a Drawing is active

v2.5.1 61

For example, the <Base> section looks like this when you call up the file in an editor.

However, note that for each of these lines, there is additional text if you scroll over to the right side.
Make sure when cutting and pasting lines, that you get the entire line. The portion of the lines that
you would need to edit is limited to what is shown above (i.e. do not edit any part of the text further
to the right).

The editable sections of the file are described as follows:

<menu…> tags Defines the type of menu entry

Syntax menu – Indicates a menu or sub-menu entrymenu

item – Indicates a menu command

type Distinguishes the entries for each section.

Syntax type = “<number>”

where <number> equals:

0 = Base menu1 = Part menu

2 = Assembly menu

3 = Drawing menu

text Defines the menu text and hierarchy level

Syntax For menu:

text = “<menu>@<next-higher-menu>”

For menuitem:

text = “<command>@<menu>@<next-higher-menu>”

Examples Example of first-level menu and a command within it:

<menu type = "0" text = "Agile"
<menuitem type = "0 text = "Connect@Agile"

Example of second-level menu and a command within it:

<menu type = "0" text = "New@Agile"
<menuitem type = "0" text = "Part@New@Agile"

For turning on or off the update properties on save please modify the following setting:

62 Agile Product Lifecycle Management

Removing Commands and Menus

It can be useful to remove commands from the menus, for example to eliminate commands that do
not fit with your specific business processes. To remove a command from the menus, simply delete
the entire line containing the command that you want to remove. Remember to delete it from all
menus that it appears in (<Base>, <Part>, etc.). You can also remove entire sub-menus, but make
sure to also remove or restructure all commands within the sub-menu.

Renaming Commands and Menus

Commands and menus can be renamed simply by changing the text values. Remember to rename
them in all menus that they appear in (<Base>, <Part>, etc.). If you rename a menu, make sure to
also change the menu portion of the text field in each command in the menu.

Restructuring Commands and Menus

Commands can be restructured, for example to move them in or out of a sub-menu. To move a
command from a sub-menu to the next higher menu, change the text field of the command to
remove the reference to the sub-menu. To move a command into a sub-menu, do the reverse. You
can add your own sub-menus, if necessary, by adding additional menu lines.

Adding or Removing Menu Separators

Menu separators can easily be added or removed. Separators are defined by lines in the file such
as this:

<menuitem type = "1" text = "@Agile" position = "-1" callback =

"Separator" enablemethod = "" hint = "" />

The difference between this menuitem, and one for a real command, is that the text entry has no
command text before the first @ sign, and the callback entry is "Separator". You can add or remove
any of these separator lines to control the positioning of separators in the menus.

v2.5.1 63

Chapter 6

Installing and Configuring Unigraphics
NX Connector

This chapter includes the following:

 Extracting Files for Connector ... 64
 Extracting Files for EC Client ... 64
 Configure PLM API for WAN Mode ... 64
 Editing the Startup File .. 65
 Installing the AgileAPI.jar file ... 65
 Installing on Additional Computers .. 66
 Unigraphics NX Connector Administration .. 67

This section describes setting up the connection between your Unigraphics NX CAD application and
Agile Engineering Collaboration. The main steps are:

 Extract files from Unigraphics NX Connector zip file

 Extract files from EC Client zip file

 Configure PLM API for WAN mode (optional)

 Edit some parameters in the startup file

 Install proper AgileAPI.jar file

 Create shortcut to new startup file

The installation requires the following file:

acuNNNN.zip – Main installation package, where NNNN is the release level.

Performing the installation steps described here will enable the Agile menu to appear within
Unigraphics NX. In order to have a completely functional integration, you must also:

 Perform the core Agile configuration as described in the Administration section of the document
Agile Engineering Collaboration Client.

 Configure desired Unigraphics NX Connector parameters as described in the Unigraphics NX

Connector Administration on page 67 section on page 63.

Note The Unigraphics NX Connector supports Unix platforms in addition to Windows. Only
instructions for Windows are provided below, but the process for Unix is very similar,
using equivalent Unix commands and directory paths. Please consult with Oracle
Consulting Services if you need assistance with installation.

64 Agile Product Lifecycle Management

Extracting Files for Connector

Extract the installation file to the folder location D:\AgileEC or C:\AgileEC for a single-drive system.
When you unzip, make sure that you retain the folder paths from the zip file. When the files are
unzipped, you should see a folder named acu, which contains the Connector installation.

Extracting Files for EC Client

Extract the EC Client installation file to a temporary location. After extraction you will see 5
connector directories (acc, ace, acp, acu, acw) plus a jar directory.

 Copy the entire jar directory inside the \AgileEC\acw directory.

 From the temporary acu\com directory, copy the file CaxClient.bat to the \AgileEC\acu\com
directory.

 From the temporary acu\jar\Agile9 directory, copy the file CaxClient_Designs.xml to the
\AgileEC\acu\jar\Agile9 directory.

Configure PLM API for WAN Mode

PLM API is a high-performance web services API used to support operations across wide area
network (WAN). This is an optional capability that is only necessary if you are going to be
supporting MCAD connectors at remote sites (i.e. locations distant from your Agile application
server). If you do not need this capability, skip to the next step.

 Log in with the Agile 9 web client to the server that will be used with the MCAD connectors.
Use an account that has privileges to create File Folder objects.

 Create the following three File Folder objects, using the number listed in the first column, and
then attach the file listed in the second column. Check In the File Folder following attachment.
The files can be found under the jar/agile9/server folder. Note that depending on your system
settings, you might need to temporarily modify the admin settings for File Folder objects to
allow using an arbitrary Number field.

Fi le Folder number F i le to at tach

PLMAPI_ASYNC plm-api-server.xml

PLMAPI_CONFIG plm-api-config.properties

PLMAPI_CONNECTOR plm-api-sdk.xml

 Copy the file plm-api-server.jar from jar/agile9/server to the WSX extensions folder of the target
Agile 9 server. Usually this folder is located in {agile_home}/integration/sdk/extensions).

 The EC Client configuration file must be edited to turn on PLM API mode. To do this, bring up
either the CAXClient_Documents.xml or CAXClient_Designs.xml file (depending on which data
model you are using) in a text editor. Change the following line as follows (change from 0 to 1).
Save the file.

v2.5.1 65

<clientConfig name="usePlmApi" value="1"/> <!-- Use PLM API Web

Services 1=enabled, 0=disabled -->



Sett ings Necessary set t ings fo r using PLM API

DFM_JAR set DFM_JAR=%CAX_ROOT%\jar\agile9\axis.jar;………(etc.)
rem set DFM_JAR=

JAVA_HEAP_SIZE rem set JAVA_HEAP_SIZE=-Xms128m -Xmx128m

set JAVA_HEAP_SIZE=-Xms128m -Xmx1024m

Editing the Startup File

Open the file \AgileEC\acu\com\acu_start.bat in a text editor. Edit the values as described in
table below to match your system configuration.

Sample values What th is command s pec i f ies

set ECU_UGV=nx4 Unigraphics NX version (nx3, nx4, nx5)

set ECU_LANG=eng User interface language (eng, ger)

set
UGII_ROOT_DIR=D:\CAD\UGNX2\UGII

The root directory of the Unigraphics NX installation directory

set
ug_start=D:\CAD\UGNX2\UGII\ugraf.exe

The complete path of the executable file to be started when
using Unigraphics NX

set cax_usr_home=D: Directory for saving the temporary data files

(suggested value: D:\AgileUG or C:\AgileUG)

Creating a Shortcut to the Startup File

In order to run Unigraphics NX with the Connector, you must run using the startup file
\AgileEC\acu\com\acu_start.bat. To make this more convenient, you may want to create a Windows
shortcut to this file, either on your Desktop or in your Quick Launch bar.

Verify that the Unigraphics NX Connector is working by double-clicking on your shortcut to launch
Unigraphics NX. You should see an Agile menu appear in the main menu bar.

Installing the AgileAPI.jar file

Important If this step is not done correctly, the connector may appear to be functioning normally
but data corruption may occur!

The correct AgileAPI.jar file, matching the specific Agile service pack level, must be installed in the
directory \AgileEC\acu\jar\agile9.

66 Agile Product Lifecycle Management

 Search for the file AgileAPI.jar within your site’s Agile server installation (such as C:\Program
Files\Agile).

 Copy this file to \AgileEC\acu\jar\agile9, overwriting the file already there.

 If you are unable to locate this file, please contact Agile Support.

Installing on Additional Computers

Once the Unigraphics NX Connector has been installed and configured on one machine, you can
install on other machines simply by copying the entire \AgileEC\acu folder structure. This works as
long as the machines are configured the same in terms of their Unigraphics NX setup, Java setup,
etc.

v2.5.1 67

Unigraphics NX Connector Administration

This section provides a complete summary of configuration options available for the Unigraphics NX
connector. Once the basic installation has been done following the instructions in the previous
section, you can refer here for details of all possible settings.

Note that in addition to the configuration files listed here, the EC Client must be additionally
configured to provide complete operation of the Unigraphics NX Connector. See the EC Client
Configuration Options section for details.

Table: List of all Configuration Files for the Unigraphics NX Connector

Conf igurat ion F i le Purpose Locat ion

acu_start.bat Startup file with system parameters AgileEC\acu\com

Ecu.ini Mapping and configuration AgileEC\acu\ini\Agile9

ecu.men Menu definition AgileEC\acu\ini\agile9\<lang>\startup

Note Configuration files typically change content between connector releases. When
upgrading to a new release, please incorporate your site’s configuration settings into the
new version of the configuration files. Failure to do so will cause unpredictable behavior
of the connector.

Mapping File Ecu.ini

This is the main file for controlling the behavior of the Unigraphics NX Connector. This file is
structured in several sections. The first line of a section starts with a left square bracket followed by
a space and its name again followed by a space and the right square bracket. Each section starts
with the section name. A comment line starts with the # sign.

Note Please make sure not to leave blank lines when editing the file.

The following tables provide the details of each section of Ecu.ini:

Table: Description of all sections in the Ecu.ini file

Sect ion name Descript ion

Initialize Common necessary switches to enable a reasonable behavior of the connector

LoadProperties Describes the assignment of Agile attributes to UG-part properties, when using the
Update Properties command, and also automatically during the Save command

SaveProperties Dscribes the assignment of UG properties to Agile attributes, during the Save command

FillFrame Describes the attributes which will be transferred from Agile into the drawing title block,
when using the Update Title Block command

FillFrameHistory Describes the History and Change History attributes which will be transferred from Agile
into the drawing title block, when using the Update Title Block command

68 Agile Product Lifecycle Management

Sect ion name Descript ion

JT Describes the settings for generation of JT viewable files

SaveViewable Describes the available options for save with a viewable file and which custom script is
called or execution

CGM Describes the assignment of a pen-definition to a specific pen when generating a
Computer-Graphic Metafile, obsolete with NX3

Table: Details of the Initialize section

Parameter name in section [Initialize] Parameter values Description

JNI_DEBUG = 1 Enables proxy.log for debug of CAD input and
output, disabled by commenting out using a #
sign at the beginning of the line

LoadAttributes = 1../..0 Set part attributes defined in this section after
loading a part in UG

LoadFrame = 1../..0 Fill the frame title box text notes after loading a
drawing in UG

EcuChangeFrame = 1../..0 Automatic replacement of the old frame with a
frame template on local disc

EcuEmptyText = - Placeholder for empty text notes in the drawing
title block

DefaultUnits = MILLIMETERS/INCH
ES

The default UG part unit used in New command
dialog

CheckOutOnModify = 0 = 1../..0 Automatic attachment checkout on UG

SaveOnDiscThenToAgile = 0 = 1../..0 Save all to disc first then to agile PLM

RenameOnInitialSave = 0 = 1../..0 Rename on first save to agile

RenameOnSaveAs = 1 = 1../..0 Rename on save as

AcuFileNameProcedure =
AcuCustomProcedure

= 1../..0 Customer file name generation

The section [LoadProperties] describes the assignment of Agile attributes to UG properties. There
are three situations where these attributes will be assigned:

 When the user picks the Update Properties command

 Automatically during the Save command

 Automatically during the Load command, if LoadAttributes = 1

Table: Load Attributes Examples

UG-Part Attribute in section [LoadProperties] Object.Field

PLM_DOC_NUMBER = Doc.NUMBER

v2.5.1 69

UG-Part Attribute in section [LoadProperties] Object.Field

CAX_MULTI = Doc.CAX_MULTI

Mapping Options for Load Properties Sections

For standard attributes the format of the [LoadProperties] section is:

CAD Parameter = <Source Table>_Field.Format

For example:

Agile_Des = Title Block_Description.ToUpper

The left side value is the name of the UG property to be updated.

The right side can be either the symbolic attribute name from the CaxClient.xml file (such as
NUMBER, DESCRIPTION, etc.) or any Agile attribute represented as follows:

Sect ion Represents Example

<Source Table> Agile tab name Title Block

Field Agile attribute name Description

Format Text processing ToUpper

For history and change history attributes, which are arranged in a table, the format of this section is:

CAD Parameter = <Filter Table>_Field,<Filter Value>,<Filter>,<Source Table>_Field.Format

For example:

Agile_CreUser = History_Action,Create,first,History_User.None

HIS_RELDATE_1 = Change History_Status,Released,last,Change History_Rel
Date_int.Date01

Where the left side value is the name of the UG property to be updated, and the right side specifies
how to find the desired row and column in the table below:

Sect ion Represents Example

<Filter Table> Agile tab name to search Title Block

Field Desired column to search Action

<Filter Value> Value to detect in the column Create

<Filter> Which row to select, with these options:

first

first+n n=integer value

last

last-n n=integer value

first

70 Agile Product Lifecycle Management

Sect ion Represents Example

<Source Table> Agile tab name to retrieve value from History

Field Desired column to retrieve value from User

Format Text processing None

Options for “Format”

The Format string allows you to perform additional processing on the text string being passed back
into CAD. This includes predefined formats and general TCL format procedures.

Predefined formats

Format Descript ion

None no processing

ToLower convert the value to lower case

ToUpper convert the value to upper case

Range-x-y substring of the value from index x to index y (y may be numeric or "end")

Date01 convert int dateformat to "%d.%m.%y %H:%M:%S" example: 01.01.2007
00:00:00

Date02 convert int dateformat to "%d.%m.%Y" example: 01.01.2007

Date03 convert int dateformat to "%d.%m.%y" example: 01.01.07

Date04 convert int dateformat to "%d-%m-%y" example: 01-01-07

Date05 convert int dateformat to "%m/%d/%y" example: 01/01/07

Date06 convert int dateformat to "%d-%b-%y" example: 01-Jan-07

Prefix<str> append a prefix <str> to the value

Suffix<str> append a suffix <str> to the value

TCL format procedures

Any registered (tclIndex) TCL procedure that gets the current value as input and returns the
formatted string. For instance:

proc MyFormat { value } {

 set formatedvalue $value

 return $formatedvalue

}

Mapping Part Attributes

In addition to mapping attributes from the CAD Document back into CAD, you can map attributes
from the corresponding Part object that has been associated to the Document using the Create
Item/BOM command. In order to specify a Part attribute, simply prefix the attribute value with
“PART:”. This example shows mapping both the Document Number and Part Number into CAD:

Agile_DocId = Title Block_Number.None

v2.5.1 71

Agile_PartId = PART:Title Block_Number.None

[SaveProperties]

Icon Lock Localization Description BasedOn Modified ModifiedBy Code
 Version State

2 [SaveProperties] Normal Template 16.01.2008 06:22:43
 trana 27786 1

Icon Lock Localization Description BasedOn Modified ModifiedBy Code
 Version State

2 [SaveProperties] Normal Template 16.01.2008 06:22:43
 trana 27786 1

The section [SaveProperties] describes the assignment of UG properties to Agile attributes, in a
variety of situations. These situations include:

 Creating Documents with the Save command (Create.Doc)

 Updating Documents with the Save command (Update.Doc)

 Creating Parts with the Create Item/BOM command (Create.Item)

 Updating Parts with the Create Item/BOM command (Update.Item)

Table: Save Properties Examples

Mode.Object .F ie ld in sec t ion

[SavePropert ies]

 Type.At t r ibu te .Format

Create.Doc.CAX_NEW_NUMBER = System.FileName.ToUpper

Create.Doc.CAX_CRE_SYSTEM = String.Unigraphics.None

Create.Doc.CAX_FIL_NAME = System.ObjectName.None

Update.Doc.CAX_FIL_NAME = System.ObjectName.None

Update.Doc.CAX_CRE_SYSTEM = String.Unigraphics.None

Create.Item.ITEM = System.ObjectName.None

Update.Item.ITEM = System.ObjectName.None

72 Agile Product Lifecycle Management

Table: Type Attribute Values in SaveProperties Section

Type At t r ibu te Va lues in
sect ion

[SavePropert ies]

Descript ion

Attribute.<Attributename> Returns the value of the UG part attribute that matches the name in
<Attributename>, example:

Attribute.PART_ID.None -> delivers the value in PART_ID without
additional string conversion

String.<fixed String> Sets the string given in <fixed String> as default setting for the mapped
field

System.Timestamp Returns the current Timestamp of the part file on disk.

System.Object.Name Returns the current Name of the part file without path or extension.

System.FileName Returns the current Name of the part file without path but with extension.

System.FullName Returns the current Name of the part file including path and extension.

System.Version Returns the current UG-Version

Table: String Formatting Options in SaveProperties Section

Format st r ing in sect ion

[SavePropert ies]

Descript ion

ToUpper Converts to upper case

ToLower Converts to lower case

Range-<idx1>-<idx2> Range of the string from position idx1 to idx2, example:

System.ObjectName.Range-2-3

Prefix Prefix to be added in front of the string, example:

 System.ObjectName.PrefixPRT

Suffix Suffix to append to the string, example:

 System.ObjectName.SuffixPRT

None No string conversion

The sections [FillFrame] and [FillFrameHistory] describe the source and the format for the content
which will be transferred from Agile and displayed in the drawing title block. The structure of such a
line is TextNoteName = Object.Field.

Table: Fill Frame Examples

Example Descript ion

ZVS1:20:1 = Doc.Number Line length is 20 and it is a multi line attribute

v2.5.1 73

Example Descript ion

ZVS1:20:0 = Doc.Number Line length is 20 and will be cut after 20th char and it is no multi line
attribute

ZVS1 = Doc.Number Standard line length and no multi line attribute

The formatting of the sections [FillFrame] and [FillFrameHistory] follow the syntax described above
in the section Mapping Options for Load Properties Sections.

The section [JT] describes how JT format viewable files are generated. The options are:

Monolithic = 1 creates one JT container file with all components inside

Monolithic = 0 creates one JT file for each component

CheckInComponents = 1 works for Monolithic=0 only and copies all JT file of any component
into the PLM vault

The section [SaveViewable] describes the available options for saving viewable files with the Save
command. The structure of such a line is:

Format = Scriptname

Table: SaveViewable Examples

Format in sect ion

[SaveViewable]

 Scriptname

CGM = AcuSaveCGM.tcl

PDF = AcuSavePDF.tcl

The section [CGM] describes the assignment of a pen-definition to a specific pen when generating a
Computer-Graphic Metafile. The structure of such a line is:

open = number of the format description.

Table: CGM Examples

Pen1 = 1

Pen1 = 2

Pen1 = 3

Pen1 = 4

Pen1 = 5

Pen1 = 6

Pen1 = 7

Pen1 = 8

Pen1 = 9

Pen1 = 10

Pen1 = 11

74 Agile Product Lifecycle Management

Pen1 = 12

Pen1 = 13

Pen1 = 14

Pen1 = 15

PenSelection = 1

TextRepresentation = 2

Menu Definition File ecu.men

The Menufiles of the Connector are implemented using UG-Menuscript language. The definition file
is named ecu.men and is located in the language specific subdirectory of your Connector, for
instance the English Menufile is located in AgileEC/acu/ini/agile9/eng/startup. See UG-NX
documentation for details about UG-Menuscript.

v2.5.1 75

Chapter 7

Installing and Configuring CATIA V5
Connector

This chapter includes the following:

 Extracting Files for Connector ... 76
 Extracting Files for EC Client ... 76
 Configure PLM API for WAN Mode ... 76
 Creating a Shortcut to the Startup File .. 77
 Editing the Configuration File ... 77
 Editing the Environment File .. 78
 Installing the AgileAPI.jar file ... 78
 Installing on Additional Computers .. 78
 CATIA V5 Connector Administration ... 79

This section describes setting up the connection between your CATIA V5 CAD application and Agile
Engineering Collaboration. The main steps are:

 Extract files from CATIA V5 Connector zip file

 Extract files from EC Client zip file

 Configure PLM API for WAN mode (optional)

 Edit some parameters in the configuration file

 Edit some parameters in the environment file

 Install proper AgileAPI.jar file

 Create shortcut to new startup file

The installation requires the following file:

accNNNN.zip – Main installation package, where NNNN is the release level

Performing the installation steps described here will enable the Agile toolbars to appear within
CATIA V5. In order to have a completely functional integration, you must also:

 Perform the core Agile configuration as described in the Administration section of the document
Agile Engineering Collaboration Client.

 Configure desired CATIA V5 Connector parameters as described in the section CATIA V5

Connector Administration on page 79 on page 75.

Note The CATIA V5 Connector supports Unix platforms in addition to Windows. Only
instructions for Windows are provided below, but the process for Unix is very similar,
using equivalent Unix commands and directory paths. Please consult with the Oracle
Consulting Services if you need assistance with installation.

76 Agile Product Lifecycle Management

Extracting Files for Connector

Extract the installation file to the folder location D:\AgileEC\acc or C:\AgileEC\acc for a single-drive
system. When you unzip, make sure that you retain the folder paths from the zip file. When the files
are unzipped, you should have a folder named acc, which contains the Connector installation.

Extracting Files for EC Client

Extract the EC Client installation file to a temporary location. After extraction you will see 5
connector directories (acc, ace, acp, acu, acw) plus a jar directory.

 Copy the entire jar directory inside the \AgileEC\acc directory.

 From the temporary acc\com directory, copy the file CaxClient.bat to the \AgileEC\acc\com
directory.

 From the temporary acc\jar\Agile9 directory, copy the file CaxClient_Designs.xml to the
\AgileEC\acc\jar\Agile9 directory.

Configure PLM API for WAN Mode

PLM API is a high-performance web services API used to support operations across wide area
network (WAN). This is an optional capability that is only necessary if you are going to be
supporting MCAD connectors at remote sites (i.e. locations distant from your Agile application
server). If you do not need this capability, skip to the next step.

 Log in with the Agile 9 web client to the server that will be used with the MCAD connectors.
Use an account that has privileges to create File Folder objects.

 Create the following three File Folder objects, using the number listed in the first column, and
then attach the file listed in the second column. Check In the File Folder following attachment.
The files can be found under the jar/agile9/server folder. Note that depending on your system
settings, you might need to temporarily modify the admin settings for File Folder objects to
allow using an arbitrary Number field.

Fi le Folder number F i le to at tach

PLMAPI_ASYNC plm-api-server.xml

PLMAPI_CONFIG plm-api-config.properties

PLMAPI_CONNECTOR plm-api-sdk.xml

 Copy the file plm-api-server.jar from jar/agile9/server to the WSX extensions folder of the target
Agile 9 server. Usually this folder is located in {agile_home}/integration/sdk/extensions).

 The EC Client configuration file must be edited to turn on PLM API mode. To do this, bring up
either the CAXClient_Documents.xml or CAXClient_Designs.xml file (depending on which data
model you are using) in a text editor. Change the following line as follows (change from 0 to 1).

v2.5.1 77

Save the file.

<clientConfig name="usePlmApi" value="1"/> <!-- Use PLM API Web

Services 1=enabled, 0=disabled -->

 The EC Client startup file must also be edited to enable PLM API mode. To do this, bring up
acc\com\caxclient.bat in a text editor. Change the following lines by appropriately
uncommenting and commenting the lines. Note that lines with “rem” in front of them are
commented out and inactive:

Sett ings Necessary set t ings fo r using PLM API

DFM_JAR set DFM_JAR=%CAX_ROOT%\jar\agile9\axis.jar;………(etc.)
rem set DFM_JAR=

JAVA_HEAP_SIZE rem set JAVA_HEAP_SIZE=-Xms128m -Xmx128m

set JAVA_HEAP_SIZE=-Xms128m -Xmx1024m

Creating a Shortcut to the Startup File

In order to run CATIA V5 with the Connector, you must run using the startup file
\AgileEC\acc\com\cv5.cmd. To make this more convenient, you may want to create a Windows
shortcut to this file, either on your Desktop or in your Quick Launch bar.

Verify that the CATIA V5 Connector is working by double-clicking on your shortcut to launch CATIA
V5. You should see the Agile toolbars appear in the CATIA user interface.

Editing the Configuration File

Open the file \AgileEC\acc\com\Acc.cfg in a text editor. Edit the values to match your system
configuration.

Sample values What th is command spec i f ies

AccUserRoot=f:\AccUser Root directory for user data and files

(suggested value:D:\AgileCAT or C:\AgileCAT)

AccTemplateFolder=f:\acc2-

work\templates\
Template folder for use with the “New” command. A
default template folder is provided at
D:\AgileEC\acc\templates

CatiaEnv=CATIA_ECC Your CATIA environment. This selects the CATIA
environment file to use

AccJava=D:\j2sdk1.4.1_02\jre Path to Java Runtime Environment (Note: Avoid
blanks or spaces in path.)

Determine the required CATIA connector JRE
version from the chart in Appendix C, and then
select the appropriate path from the available ones
provided in the acc installation.

78 Agile Product Lifecycle Management

Sample values What th is command spec i f ies

Csp=r13spx CATIA version (r14spx, r15spx, r16spx)

CatiaBin=z:\Programme\DassaultSyste

mes\B13\

intel_a\code\bin\CNEXT.exe

Path to CATIA executable

Editing the Environment File

You must edit your CATIA environment file to put in the appropriate folder paths. The file to edit
depends on your CATIA version and environment name. By default, the filename is CATIA_ECC.txt,
and is located in the \AgileEC\acc\bin\<os>\<agile_version>\<catia_version>\ folder.

For example, \AgileEC\acc\bin\intel_a\agile9\r13spx\CATIA_ECC.txt.

Edit all folder paths within this file to match your system’s CATIA installation.

Installing the AgileAPI.jar file

Important If this step is not done correctly, the connector may appear to be functioning normally
but data corruption may occur!

The correct AgileAPI.jar file, matching the specific Agile service pack level, must be installed in the
directory \AgileEC\acc\jar\agile9.

 Search for the file AgileAPI.jar within your site’s Agile server installation (such as C:\Program
Files\Agile).

 Copy this file to \AgileEC\acc\jar\agile9, overwriting the file already there.

 If you are unable to locate this file, please contact Agile Support.

Installing on Additional Computers

Once the CATIA V5 Connector has been installed and configured on one machine, you can install
on other machines simply by copying the entire \AgileEC\acc folder structure. This works as long as
the machines are configured the same in terms of their CATIA V5 setup, Java setup, etc.

v2.5.1 79

CATIA V5 Connector Administration

This section provides a complete summary of configuration options available for the CATIA V5
connector. Once the basic installation has been done following the instructions in the previous
section, you can refer here for details of all possible settings.

Note that in addition to the configuration files listed here, the EC Client must be additionally
configured to provide complete operation of the CATIA V5 Connector. See the EC Client
Configuration Options section for details.

Table: List of all Configuration Files for the CATIA V5 Connector

Conf igurat ion f i l e Purpose Locat ion

Acc.cfg System configuration AgileEC\acc\com

AccInitialize.ini Configuration AgileEC\acc\ini

AccCustomer9.ini Mapping AgileEC\acc\ini

Note Configuration files typically change content between connector releases. When
upgrading to a new release, please incorporate your site’s configuration settings into the
new version of the configuration files. Failure to do so will cause unpredictable behavior
of the connector.

Configuration File AccInitialize.ini

This is the main file for controlling the behavior of the CATIA V5 Connector. This file has a single
[Initialize] section. A comment line starts with the # sign.

Note Please make sure not to leave blank lines when editing the file.

Table: [Initialize] Section Parameters

Parameter name in
Sect ion

[In i t i a l i ze]

 Parameter va lues Descript ion

AccCustomerId = None System setting (do not change)

AccLanguage = English Language setting

AccMappingFile = Acc.ini Mapping file name

AccCustomerFile = AccCustomer9.ini Customer file name

AccMessages = AccMessages.ini Messages file name

AccDebug = 1../..0 Turns debug mode on (1) and off (0). A log file is written to
the user’s working directory.

AccAgileServerURL = http://agileserver:8888/A
gile

Default URL that the EC Client will use to connect to the
Agile Application Server

http://agileserver:8888/Agile
http://agileserver:8888/Agile

80 Agile Product Lifecycle Management

Parameter name in
Sect ion

[In i t i a l i ze]

 Parameter va lues Descript ion

AccAgileUser = cax Default user that is used to log in to Agile when the user
chooses Connect from the CAD system

AccAgilePwd = agile Default password to log in to Agile

AccDefaultClass = DOCUMENT The value used here must agree with the value
for defaultClass in CAXclient.xml. System setting
(do not change)!

AccHelpPartIdent = ITEM Name of CATIA V5 property used to identify models in the
design that should not be included in the BOM. These
objects are saved into Agile as Documents, but are filtered
out when using the Create Item/BOM function.

AccHelpPartValue = NO Value that the CATIA V5 property should be set to in order
to activate the filter

AccAgileBackupId = AgileID Indicates the field to use for re-associating a file to the
correct Agile Document. This assignment tracks the Agile
Document number.

AccAgileBackupName = AgileName Indicates the field to use for re-associating a file to the
correct Agile Document. This assignment tracks the Agile
filename.

AccEnableRename = 1 0 = files are not renamed

1 = files are renamed to match the Agile Number field or
custom mapping

AccSchemeOfFileName = % Format definition (in “C” style) used to define the CATIA
filename

AccFileNameValues = NUMBER / CATIAFILE Basis of the filename. Standard values are either
NUMBER (Agile Document Number) or CATIAFILE
(original filename)

Filename Creation

During the first Save into Agile, a new CATIA V5 filename can be created. In the file AccInitialize.ini
are two variables that control this process:

 AccFilenameValues

 AccSchemeOfFileName

AccFilenameValues can contain a list of attributes from Agile either defined in the EC Client
definition file or simply “CATIAFILE”. “CATIAFILE” means the usage of the original Catia file name.
AccSchemeOfFileName is a format definition based on the “C” style.

v2.5.1 81

AccSchemeOfFileName = %s

AccFileNameValues = NUMBER

After checkin of a part to Agile, the object will be renamed to D00444.CATPart because D00444 is
the number of the Agile document.

AccSchemeOfFileName = %s

AccFileNameValues = CATIAFILE

After checkin of a part to Agile the object will not be renamed.

AccSchemeOfFileName = CAT-%s

AccFileNameValues = NUMBER

After checkin of a part to Agile the object will be renamed to CAT-D00444.CATPart.

[Customer Functions] Section

To better support the ability for project-based customization of TCL scripting, entry points are now
provided for TCL add-ins through the [CustomerFunctions] section in AccInitialize.ini.

[CustomerFunctions]

...

<EntryPoint> = <Customer specific procedure>

....

There are 7 predefined entrypoints:

1. CatiaScanTree-01

2. CatiaScanTree-02

3. CatiaScanTree-03

4. CatiaAccSaveToAgile-01

5. CatiaAccLoad-01

6. CatiaAccSave-01

7. CatiaAccUpdateFrame-01

Mapping File AccCustomer9.ini

This is the main file for controlling attribute mapping in the CATIA V5 Connector. This file is
structured in several sections. The first line of a section starts with a left square bracket followed by
a space and its name again followed by a space and the right square bracket. Each section starts
with the section name. A comment line starts with the # sign.

82 Agile Product Lifecycle Management

Note Please make sure not to leave blank lines when editing the file.

The following table gives a description of all sections in AccCustomer9.ini, and the following tables
provide the details of each section.

Table: Description of all sections in AccCustomer9.ini

Sect ion name Descript ion

CatiaToAgile.DOCUMENT This mapping section is used for assigning attributes when Documents using
the Save command.

CatiaToAgileUpdate.DOCUMENT This mapping section is used for assigning attributes when updating
Documents using the Save command.

CatiaToAgile.FILEFOLDER OBSOLETE

CatiaToAgile.ITEM This mapping section is used for creating and updating Parts using the
Create Item/BOM command.

AgileTo.Catia Defines those Agile attributes that are saved automatically into all CATIA V5
files, during the Save command.

AgileTo.CATPart Defines those Agile attributes that are saved automatically into CATIA V5
CATPart files, during the Save command.

AgileTo.CATDrawing Defines those Agile attributes that are saved automatically into CATIA V5
CATDrawing files, during the Save command.

AgileTo.CATProduct Defines those Agile attributes that are saved automatically into CATIA V5
CATProduct files, during the Save command.

AgileGetProperties.Catia Defines those Agile attributes that are saved into all CATIA V5 files, when
using the Update Properties command.

AgileGetProperties.CATPart Defines those Agile attributes that are saved into CATIA V5 CATPart files,
when using the Update Properties command.

AgileGetProperties.CATDrawing Defines those Agile attributes that are saved into CATIA V5 CATDrawing
files, when using the Update Properties command.

AgileGetProperties.CATProduct Defines those Agile attributes that are saved into CATIA V5 CATProduct
files, when using the Update Properties command.

FrameDefinition Defines those Agile attributes that are mapped onto drawing title blocks,
when using the Update Title Block command.

AccCreateObjectTypes Not used

CatiaToAgileNew.DOCUMENT This mapping section is used for assigning attributes when creating
Documents using the New command.

AccSaveViewable.CATPart Defines types of viewable files that can be saved for CATParts in the Save
With… command

AccSaveViewable.CATProduct Defines types of viewable files that can be saved for CATProducts in the
Save With… command

v2.5.1 83

Sect ion name Descript ion

AccSaveViewable.CATDrawing Defines types of viewable files that can be saved for CATDrawings in the
Save With… command

Mapping Options for [CatiaToAgile.XXXX] Sections

Each mapping consists of a pair of objects. The right side of the pair defines information that can be
extracted from CATIA V5. Here, CATIA V5 is the source of the attribute value. The left side of the
pair defines the attribute value’s target location in Agile.

There are several configuration options for the “right side” that define what kind of data should be
extracted from CATIA V5, and what kind of transformation can be applied to the data. Each right
side attribute consists of three sections, for example:

DESCRIPTION = Std.DescriptionReference.ToUpper

The first section is either Std, Par, or Def. “Std” refers to CATIA V5 system attributes, as listed here:

Table: Standard mapping values using “Std” prefix

Std.DescriptionReference

Std.Extension

Std.PartNumber

Std.Definition

Std.Nomenclature

Std.Revision

“Par” is a reference to user-defined property in CATIA V5, such as MATERIAL, DESCRIPTION, or
ENGINEER. These types of mappings are only useful where the CATIA V5 file has a property
corresponding to the name mentioned in the mapping.

“Def” is a default fixed string value.

Finally, the final suffix is a description of how the data should be modified. The following modifiers
are possible:

Table: Suffix Options for Mapping

ToUpper Transfer all characters to upper case

ToLower Transfer all characters to lowercase

None Do not modify the data

Range-<idx1>-<idx2> Range of the string from position idx1 to idx2, example: Part.PartNumber.Range-0-2

Prefix Prefix to be added in front of the string, example: Par.PartNumber.PrefixPRT

Suffix Suffix to append to the string, example: Par.PartNumber.SuffixPRT

There are two special values that are used on the left side of these mappings. In the [
CatiaToAgile.DOCUMENT] section, you use the value CAX_NEW_NUMBER to represent the

84 Agile Product Lifecycle Management

Number field that will be assigned to newly created Documents. In the [CatiaToAgile.ITEM]
section, you use the value ITEM to represent the Number field that will be assigned to newly
created Parts.

Mapping Options for [AgileTo.XXXX] Sections

These section are used to define mappings from Agile to CATIA, which occur automatically during
the Save process. As this will add time to the Save process, the list of attributes should be kept to
the bare minimum that absolutely need to be kept synchronized. Other attributes can be
synchronized using “Update Properties”, as described in the next section. For formatting details see
Mapping Options for Update Properties Sections - CATIA on page 84 on page 80 below.

Mapping Options for [AgileGetProperties.XXX] Sections

These section is used to define mappings from Agile to CATIA V5, which occur when the user runs
the Update Properties command manually. For formatting details see Mapping Options for Update

Properties Sections - CATIA on page 84 on page 80.

Mapping Options for [FrameDefinition] Section

These section is used to define mappings from Agile attributes to the CATIA V5 drawing title block,
which occurs when the user runs the Update Title Block command. For formatting details see
Mapping Options for Update Properties Sections - CATIA on page 84 on page 80.

Mapping Options for Update Properties Sections - CATIA

Multiple sections of the AccCustomer9.ini file, as listed above, are used to define mappings from
Agile to CATIA. For standard attributes the format of this section is:

CAD Parameter = <Source Table>_Field.Format

For example:

Agile_Des = Title Block_Description.ToUpper

The left side value is the name of the CATIA parameter to be updated. For the [AgileTo.XXXX] and
[AgileGetProperties.XXX] sections, the formatting of the left side matches the description shown for
the RIGHT side of the [CatiaToAgile.XXXX] section (see above for details). For the
[FrameDefinition] section, the left side represents a CATIA text property in the format Text.n, where
n is an integer.

The right side can be either the symbolic attribute name from the CaxClient.xml file (such as
NUMBER, DESCRIPTION, etc.) or any Agile attribute represented as follows:

Sect ion Represents Example

<Source Table> Agile tab name Title Block

Field Agile attribute name Description

Format Text processing ToUpper

For history and change history attributes, which are arranged in a table, the format of this section is:

CAD Parameter = <Filter Table>_Field,<Filter Value>,<Filter>,<Source Table>_Field.Format

v2.5.1 85

For example:

Agile_CreUser = History_Action,Create,first,History_User.None

HIS_RELDATE_1 = Change History_Status,Released,last,Change History_Rel
Date_int.Date01

Where the left side value is the name of the CATIA parameter to be updated, and the right side
specifies how to find the desired row and column in the table below:

Sect ion Represents Example

<Filter Table> Agile tab name to search Title Block

Field Desired column to search Action

<Filter Value> Value to detect in the column Create

<Filter> Which row to select, with these
options:

first

first+n n=integer value

last

last-n n=integer value

first

<Source Table> Agile tab name to retrieve value from History

Field Desired column to retrieve value from User

Format Text processing None

Options for “Format”

The Format string allows you to perform additional processing on the text string being passed back
into CAD. This includes predefined formats and general TCL format procedures.

Predefined formats

Format Descript ion

None no processing

ToLower convert the value to lower case

ToUpper convert the value to upper case

Range-x-y substring of the value from index x to index y (y may be numeric or "end")

Date01 convert int dateformat to "%d.%m.%y %H:%M:%S" example: 01.01.2007
00:00:00

Date02 convert int dateformat to "%d.%m.%Y" example: 01.01.2007

Date03 convert int dateformat to "%d.%m.%y" example: 01.01.07

Date04 convert int dateformat to "%d-%m-%y" example: 01-01-07

Date05 convert int dateformat to "%m/%d/%y" example: 01/01/07

86 Agile Product Lifecycle Management

Format Descript ion

Date06 convert int dateformat to "%d-%b-%y" example: 01-Jan-07

Prefix<str> append a prefix <str> to the value

Suffix<str> append a suffix <str> to the value

TCL format procedures

Any registered (tclIndex) TCL procedure that gets the current value as input and returns the
formatted string. For instance:

proc MyFormat { value } {

 set formatedvalue $value

 return $formatedvalue

}

Mapping Part Attributes

In addition to mapping attributes from the CAD Document back into CAD, you can map attributes
from the corresponding Part object that has been associated to the Document using the Create
Item/BOM command. In order to specify a Part attribute, simply prefix the attribute value with
“PART:”. This example shows mapping both the Document Number and Part Number into CAD:

Agile_DocId = Title Block_Number.None

Agile_PartId = PART:Title Block_Number.None

v2.5.1 87

Chapter 8

Installing and Configuring Solid Edge
Connector

This chapter includes the following:

 Extracting Files for Connector ... 88
 Extracting Files for EC Client ... 88
 Configure PLM API for WAN Mode ... 88
 Editing the Configuration File ... 89
 Registering Libraries .. 90
 Installing the AgileAPI.jar File .. 90
 Setting Up the Agile Menu ... 91
 Solid Edge Connector Administration .. 92
 Modifying the Agile Menu Definition .. 101

This section describes setting up the connection between your Solid Edge CAD application and
Agile Engineering Collaboration.

The main steps are:

 Extract files from zip file

 Extract files from EC Client zip file

 Configure PLM API for WAN mode (optional)

 Edit some parameters in the configuration file

 Register libraries and executable

 Install proper AgileAPI.jar file

 Set up Agile menu in Solid Edge

 Set up Agile toolbar in Solid Edge

The installation requires the following file:
 aceNNNN.zip – Main installation package, where NNNN is the release level

Performing the installation steps described here will enable the Agile commands to appear within
Solid Edge. In order to have a completely functional integration, you must also:

 Perform the core Agile configuration as described in the Administration section of the document
Agile Engineering Collaboration Client.

 Configure desired Solid Edge Connector parameters as described in the section Solid Edge

Connector Administration on page 92 on page 101.

88 Agile Product Lifecycle Management

Extracting Files for Connector

Extract the installation file to the folder location D:\AgileEC or C:\AgileEC for a single-drive system.
When you unzip, make sure that you retain the folder paths from the zip file. When the files are
unzipped, you should see a folder named ace, which contains the Connector installation.

Extracting Files for EC Client

Extract the EC Client installation file to a temporary location. After extraction you will see 5
connector directories (acc, ace, acp, acu, acw) plus a jar directory.

 Copy the entire jar directory inside the \AgileEC\ace directory.

 From the temporary ace\server\scripts directory, copy the file caxclient.bat to the
\AgileEC\ace\server\scripts directory.

 From the temporary ace\jar\Agile9 directory, copy the file CaxClient_Designs.xml to the
\AgileEC\ace\jar\Agile9 directory.

Configure PLM API for WAN Mode

PLM API is a high-performance web services API used to support operations across wide area
network (WAN). This is an optional capability that is only necessary if you are going to be
supporting MCAD connectors at remote sites (i.e. locations distant from your Agile application
server). If you do not need this capability, skip to the next step.

 Log in with the Agile 9 web client to the server that will be used with the MCAD connectors.
Use an account that has privileges to create File Folder objects.

 Create the following three File Folder objects, using the number listed in the first column, and
then attach the file listed in the second column. Check In the File Folder following attachment.
The files can be found under the jar\agile9\server folder. Note that depending on your system
settings, you might need to temporarily modify the admin settings for File Folder objects to
allow using an arbitrary Number field.

Fi le Folder number F i le to at tach

PLMAPI_ASYNC plm-api-server.xml

PLMAPI_CONFIG plm-api-config.properties

PLMAPI_CONNECTOR plm-api-sdk.xml

 Copy the file plm-api-server.jar from jar\agile9\server to the WSX extensions folder of the target
Agile 9 server. Usually this folder is located in {agile_home}\integration\sdk\extensions).

 The EC Client configuration file must be edited to turn on PLM API mode. To do this, bring up
the \jar\agile9\CAXClient_Designs.xml file in a text editor. Change the following two lines as
follows (change from 0 to 1). Save the file.

<clientConfig name="DFM" value="1"/> <!-- Use direct DFM file transfer

1=enabled, 0=disabled -->

v2.5.1 89

<clientConfig name="usePlmApi" value="1"/> <!-- Use PLM API Web

Services 1=enabled, 0=disabled -->

 The EC Client startup file must also be edited to enable PLM API mode. To do this, bring up
\ace\server\scripts\caxclient.bat in a text editor. Change the following lines by appropriately
uncommenting and commenting the lines. Note that lines with “rem” in front of them are
commented out and inactive:

Sett ings Necessary set t ings fo r using PLM API

DFM_JAR set DFM_JAR=%CAX_ROOT%\jar\agile9\axis.jar;………(etc.)
rem set DFM_JAR=

JAVA_HEAP_SIZE rem set JAVA_HEAP_SIZE=-Xms128m -Xmx128m

set JAVA_HEAP_SIZE=-Xms128m -Xmx1024m

Editing the Configuration File

Open the file \AgileEC\ace\Server\Scripts\3DCADMapping.ini in a text editor. Edit the values as
described in table below to match your system configuration.

Sample values What th is command spec i f ies

[JNIOPTIONS]

;

-

Djava.class.path=D:\AgileEC\ace\jre1.5.0\lib

\rt.jar;

D:\AgileEC\ace\Server\AgileCaxConnector.jar;

D:\AgileEC\ace\Server\AgileAPI.jar;

D:\AgileEC\ace\Server\xercesImpl.jar;

D:\AgileEC\ace\Server\xmlParserAPIs.jar;

D:\AgileEC\ace\Server\CaxAglProxy.jar;

D:\AgileEC\ace\Server\CaxAglDataTypes.jar

-

Dagile.xml.file=D:\AgileEC\ace\Server\AgileC

onnector.xml

-Djava.agile.gui.address=localhost

-Djava.agile.gui.listener=5112

-Djava.agile.proxy.listener=5113

-Dagile.caxconnect.logfile=C:\agile.log

;-Djava.agile.proxy.logfile=C:\Proxy.log

;

To all jar files. Edit each path to
match your system configuration.

The first path listed is the JRE
environment. Determine the
required SolidWorks connector
JRE version from the chart in
Appendix C, and then select the
appropriate path from the
available ones provided in the
acw installation.

Edit all other paths to match the
drive and directory in your
installation.

Note The proxy.log file (the last line in
this section) should be
commented out for production
use, because this causes an
additional log file window to pop
up that would be annoying to
users. Uncomment only for
debugging.

90 Agile Product Lifecycle Management

Sample values What th is command spec i f ies

[CheckOutDisk]

;

D:

;

The disk drive on the client computer
to be used for the working directory.

[CheckOutPath]

;

\AgileSE\Work\

;

The path of the working directory

Important You must also
create this
directory on your
computer.

[LogFileDir]

;

D:\AgileSE\Temp\

;

The full path of the log file directory

Important You must also
create this
directory on your
computer.

[AgileURL]

;

http://servername:8888/Agile

;

The URL for the EC Client

Registering Libraries

 Navigate to the \AgileEC\ace directory, and double-click on registerSE.bat. A command window
will appear; eventually this will show a “SUCCESS” message and then terminate.

Installing the AgileAPI.jar File

Note If this step is not done correctly, the connector may appear to be functioning normally but
data corruption may occur!

The correct AgileAPI.jar file, matching the specific Agile service pack level, must be installed in the
directory \AgileEC\ace\jar\Agile9.

 Search for the file AgileAPI.jar within your site’s Agile server installation (such as C:\Program
Files\Agile).

 Copy this file to \AgileEC\ace\jar\Agile9, overwriting the file already there.

 If you are unable to locate this file, please contact Agile Support.

http://servername:8888/Agile

v2.5.1 91

Setting Up the Agile Menu

To set up the Agile menu within Solid Edge, do the following steps:

 Launch Solid Edge as you normally would (Using the Start menu or desktop icon, etc.).

 Create or open a file (so that you are not at the startup screen).

 Go to Tools > Add-Ins > Add-In Manager… and check the box next to Agile. Click OK.

 Now if you navigate to Tools > Add-Ins you will see an Agile menu. Since it is not possible
within Solid Edge to have this menu appear on the top menu bar, it is advisable to add the
Agile toolbar (see next step).

Setting Up the Agile Toolbar

To set up the Agile command icons on the Solid Edge toolbar, do the following steps:

 Launch Solid Edge, and create or open a file (so that you are not at the startup screen)

 Go to Tools > Customize…

 On the Toolbars tab, scroll down and highlight Agile

 Drag any icon from the Buttons area on the right, up to a blank area of the main toolbar (the
gray area). When you let go, a new toolbar will be created and the icon will be inserted in it.

 Drag the remaining icons into the toolbar you just created. When completed you can dock the
toolbar with the other standard toolbars.

 You must repeat the above steps for each separate mode of Solid Edge (Part, Assembly,
Drawing).

92 Agile Product Lifecycle Management

Solid Edge Connector Administration

This section provides a complete summary of configuration options available for the Solid Edge
connector. Once the basic installation has been done following the instructions in the previous
section, you can refer here for details of all possible settings.

Note that in addition to the configuration files listed here, the EC Client must be additionally
configured to provide complete operation of the Solid Edge Connector. See the EC Client
Configuration Options section for details.

Table: List of all Configuration Files for the Solid Edge Connector

Conf igurat ion f i l e Purpose Locat ion

3DCADMapping.ini Mapping and configuration AgileEC\ace\Server\Scripts

PlmSEAddin.xml Menu definition AgileEC\ace\Server\Scripts

Note Configuration files typically change content between connector releases. When
upgrading to a new release, please incorporate your site’s configuration settings into the
new version of the configuration files. Failure to do so will cause unpredictable behavior
of the connector.

Configuring the 3DCADMapping.ini File

There is one main configuration file, which controls nearly all aspects of the Solid Edge Connector.
The file is named 3DCADMapping.ini and is located in the ..\AgileEC\ace\Server\Scripts directory. Since
this file is located within the Solid Edge Connector installation on the client machine, it is possible to
customize configuration options on a per-machine basis, although typical usage is to have a
common configuration file within a given site. When changes are made to the configuration file, it is
necessary to exit and re-start Solid Edge in order to use the new settings.

The configuration file is made up of a series of configuration options (also called “sections”), with
the option listed between square brackets, and the various settings for the option listed on the
following lines. Lines beginning with a semi-colon (;) are commented out. In this file, unused options
are commented out rather than deleted, which may help later if you want to enable some of the
unused options.

Because this configuration file is also used for Agile 8.5 and Agile e-series installations, not all of
the configuration options are valid for Agile 9. The following list summarizes the options that are
valid for Agile 9.

Table: Valid configuration options in Solid Edge 3DCADMapping.ini

Opt ion Name Usage

[JNIOPTIONS] Sets various Java parameters.

[LogFileDir] Drive & path of temp directory

[CheckOutDisk] Disk drive of work directory

[CheckOutPath] Path of work directory

v2.5.1 93

Opt ion Name Usage

[LogFileDir] Disk and path of log file directory

[AgilePartViewFile] OBSOLETE. See [Agile9PartViewFileExtensions]

[AgileAssemblyViewFile] OBSOLETE. See [Agile9AssemblyViewFileExtensions]

[AgileDrawingViewFile] OBSOLETE. See [Agile9DrawingViewFileExtensions]

[AgileViewFileCustomScript] Drive, path & name of a executable file which will be executed to generate a
customized neutral view file to be saved.

[AgilePartCheckinFile] OBSOLETE. See [Agile9PartViewFileExtensions]

[AgileAssembly CheckinFile] OBSOLETE. See [Agile9AssemblyViewFileExtensions]

[AgileDrawing Checkin File] OBSOLETE. See [Agile9DrawingViewFileExtensions]

[AgileURL] Information required to connect to the Agile server.

[Agile9CreateDocument] This mapping section is used for setting attributes for Documents during the
Save command, for the initial save.

[Agile9UpdateDocument] This mapping section is used for setting attributes for Documents during the
Save command, after the initial save.

[Agile9UpdateItem] This mapping section is used for setting attributes for Parts during the Create
Item/BOM command.

[Agile9UpdateItemConfigured] This mapping section is used for setting attributes for Parts during the Create
Item/BOM command, when the CAD file is identified as configured.

[Agile9CheckinDocument] This mapping section is used for setting file attachment attributes in Agile.

[AgileViewableIncludeRevision] Appends the revision of the Document object onto the end of the viewable
filenames generated in the Save comment.

[Agile9GetRevision] Retrieves the current revision field of the Document

[Agile9UpdateProperties] Defines the property mapping from Agile to Solid Edge, when using the
Update Properties command.

[Agile9SaveUpdateProperties] Defines the property mapping from Agile to Solid Edge that occurs
automatically during the Save command.

[Agile9LoadUpdateProperties] Defines the property mapping from Agile to Solid Edge that occurs
automatically during the Load command

[Agile9UpdateTitleBox] Defines the property mapping from Agile to Solid Edge, when the properties
of a drawing are updated using the Update Title Block command

[AgilePartTemplate] OBSOLETE. See [Agile9TemplatePath]

[AgileAssemblyTemplate] OBSOLETE. See [Agile9TemplatePath]

[AgileDrawingTemplate] OBSOLETE. See [Agile9TemplatePath]

[Agile9Configuration] Controls how SolidWorks configurations are handled

[Agile9PartViewFileExtensions] Sets the allowable viewable file formats created during the Save command

94 Agile Product Lifecycle Management

Opt ion Name Usage

[Agile9AssemblyViewFileExtensions] Sets the allowable viewable file formats created during the Save command

[Agile9DrawingViewFileExtensions] Sets the allowable viewable file formats created during the Save command

[Agile9TemplatePath] Sets the path to where template files are stored, for use by the New
command

[Agile9Units] Sets the default units for the New command

[Agile9Renaming] Activates the filename renaming process during the Load command

Table: Detailed Configuration Options

Opt ion Descript ion

Syntax Configuration Options

[JNIOPTIONS] Java Parameters

-Djava.class.path=<path><file>.jar, etc. 1.For rt.jar, edit <path> to match location of Java installation.

2. For other jar files, edit <path> to match installation path (default is
D:\AgileEC\ace\Server)

-Dagile.xml.file=<path>\AgileConnector.xml Edit <path> to match installation path (default is
D:\AgileEC\ace\Server)

-Djava.agile.gui.address=localhost Do not change

-Djava.agile.gui.listener=5112 Do not change

-Djava.agile.proxy.listener=5113 Do not change

-Djava.agile.proxy.logfile=C:\Proxy.log Uncomment this line to enable a Java debug window and log file.

[CheckOutDisk] Drive of work directory

Syntax <drive>

Default Value D:

Configuration Set to drive where work directory is located

[CheckOutPath] Path of work directory

Syntax <path>

Default Value \AgileSE\Work

Configuration Set to path where work directory is located

[LogFileDir] Drive & path of temp directory

Syntax <drive><path>

v2.5.1 95

Opt ion Descript ion

Default Value D:\AgileSE\Temp

Configuration Options Set to drive and path where temp directory is located

[AgileViewFileCustomScript] Drive, path & name of a executable file which will be executed to
generate a customized view file to be saved

Syntax <drive><path><name>

Default Value D:\AgileEC\ace\Server\Scripts\ViewFileCustom.bat

Configuration Options Set to drive and path where the executable file is located. In special
cases this file will not be executed (see descriptions below).

[AgileURL] URL and Port of the Agile9 server

Syntax http://<server>:<port>/<Agile file name> Error!
Hyperlink reference not valid.

Default Value http://agileserver:8888/Agile

Configuration Options Set to a dedicated port of a server machine where the Agile server
software is located

[Agile9CreateDocument] Defines the property mapping from Solid Edge to Agile, when the
Documents are saved into Agile using the Save command, for the
first time.

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of an Agile attribute that is the target of a property
that is derived from the Solid Edge Model. The right side of the pair
defines the Solid Edge property name.

There are several configuration options for the right side of the pair
that define what kind of data should be extracted from Solid Edge.
Each right side attribute consists of two or three sections. All Solid
Edge mappings begin with 3DCADTable. The second section can
define system attributes.

 Possible values include:

 FileStamp – Timestamp (in seconds)

 ModelPathOnly – Directory where the CAD file is
stored when saved to Agile, e.g. D:\CAD_file\Housing

 ModelName – Name of Solid Edge file with extension,
e.g., BOLT.SLDPRT

 ModelVersion – Solid Edge version

 ModelConfigurationName – For configured
parts/assemblies, the name of the configuration

http://agileserver:8888/Agile

96 Agile Product Lifecycle Management

Opt ion Descript ion

 ModelTitle – Name of Solid Edge model without file
extension, e.g., BOLT

 ModelExtension – Solid Edge Model type, e.g.,
SLDPRT, SLDASM, SLDDRW

 Values of the format 3DCADTable.Property.[value], where [value] is
the name of a Solid Edge custom property such as Description or
PartNumber.

The following are some example mappings for a Solid Edge part
called housing.sldpart with a custom property called Material with a
value of Aluminum:

 CAX_FIL_NAME = 3DCADTable.ModelName

 DESCRIPTION = 3DCADTable.ModelTitle

 MATERIAL = 3DCADTable.Property.Material
 In this example, the Agile description is “housing”. An attribute in

Agile called CAX_FIL_NAME has the value “housing.sldasm” and an
Agile attribute called Material has the value “Aluminum”.

The name used for the Agile attribute on the left side of the mapping
is arbitrary. The actual attribute that is targeted for mapping is defined
in the EC Client configuration.

There is one special value that is used on the left side of these
mappings. You use the value CAX_NEW_NUMBER to represent the
Number field that will be assigned to newly created Documents.

[Agile9UpdateDocument] Defines the property mapping from Solid Edge to Agile, when the
Documents are saved into Agile using the Save command, after the
first time. Configuration options are the same as
[Agile9CreateDocument].

[Agile9UpdateItem] Defines the property mapping from Agile to Solid Edge,
when Items are created using the Save command

Configuration Options See at [Agile9UpdateDocument] section

There is one special value that is used on the left side of these
mappings. You use the value ITEM to represent the Number field
that will be assigned to newly created Parts.

[Agile9UpdatedItemConfigured] Defines the property mapping from Agile to Solid Edge, when Items
are created or updated using the Create Item/BOM command, and
the Items are marked as Configured (see Agile9Configuration
section)

v2.5.1 97

Opt ion Descript ion

Configuration Options See the [Agile9UpdateDocument] section

There is one special value that is used on the left side of these
mappings. You use the value ITEM to represent the Number field
that will be assigned to newly created Parts.

[Agile9CheckinDocument] Defines the property mapping for file attachements, when the files are
checked in during the Save command.

Configuration Options System parameters - do not change

[Agile9UpdateProperties] Defines the property mapping from Agile to Solid Edge, when using
the Update Properties command manually.

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a Solid Edge property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

Examples AgileNumber = Title Block.Number

Description = Title Block.Description

[Agile9SaveUpdateProperties] Defines the property mapping from Agile to Solid Edge which occurs
automatically during the Save command

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a Solid Edge property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

[Agile9LoadUpdateProperties] Defines the property mapping from Agile to Solid Edge, which occurs
automatically during the Load command

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a Solid Edge property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

[Agile9UpdateTitleBox] Defines the property mapping from Agile to Solid Edge, when the
properties of a drawing are updated using the Update Title Block
command

Configuration Options Each mapping consists of a pair of objects. The left side of the pair
defines the name of a Solid Edge property that is being set. The right
side of the pair defines the Agile attribute. For details of the mapping
see the section “ Mapping Options for Update Properties Sections”

98 Agile Product Lifecycle Management

Opt ion Descript ion

[Agile9Configuration] Setting that control how you identify configured parts

Syntax ConfigProperty = Configured

ConfigPropertyValue = YES

Configuration Options ConfigProperty is the name of the Solid Edge Custom Property that is
used to identify configured parts. ConfigPropertyValue is the value
that must be set for this property, to indicate that this part is to be
treated as containing multiple part configurations.

When this value is set for a part or assembly, each different
configuration is treated as a unique part, when generating the Part
BOM with the Create Item /BOM command.

[Agile9PartViewFileExtensions] Sets the allowable viewable file formats for parts, as created during
the Save command

Syntax (igs$)|(jt$)|(sat$)|(step$)|(xgl$)|(x_b$)|(x_t$)|(ems$)|(stl$)|(plmxml$)|(
model$)|(catpart$)|(pdf$)

[Agile9AssemblyViewFileExtensions] Sets the allowable viewable file formats for assemblies, as created
during the Save command

Syntax (bmk$)|(igs$)|(sat$)|(step$)|(sgl$)|(x_b$)|(x_t$)|(plmxml$)|(model$)|(jt
$)|(catpart$)|(pdf$)

[Agile9DrawingViewFileExtensions] Sets the allowable viewable file formats for drawings, as created
during the Save command

Syntax (igs$)|(dgn$)|(dwg$)|(dxf$)|(pdf$)

[Agile9TemplatePath] Sets the path to where template files are stored, for use by the New
command

Syntax <drive><path>

Configuration Options The designated path will be scanned for *.prtdot, *.asmdot, and
*.drwdot files, and these files will be made available as templates
within the New command.

[Agile9Units] Sets the default units for the New command

Syntax Millimeters | Inches

[Agile9Renaming] Activates the filename renaming process during the Load command

v2.5.1 99

Opt ion Descript ion

Syntax 0 | 1

Configuration Options 0 = Do not rename files during the Load process

1 = Rename files during the Load process, so that the filename
matches the Agile Number field or a customized text string. This is
used to support both the initial rename use case and the “save as”
use case.

For details of how to customize the filename see the file
acwCustomer.tcl

Mapping Options for Update Properties Sections - Solid Edge

Multiple sections of the AccCustomer9.ini file, as listed above, are used to define mappings from
Agile to Solid Edge. For standard attributes the format of this section is:

CAD Parameter = <Source Table>_Field.Format

For example:

Agile_Des = Title Block_Description.ToUpper

The left side value is the name of the Solid Edge parameter to be updated, For the [AgileTo.XXXX]
and [AgileGetProperties.XXX] sections, the formatting of the left side matches the description
shown for the RIGHT side of the [CatiaToAgile.XXXX] section (see above for details). For the
[FrameDefinition] section, the left side represents a CATIA text property in the format Text.n, where
n is an integer.

The right side can be either the symbolic attribute name from the CaxClient.xml file (such as
NUMBER, DESCRIPTION, etc.) or any Agile attribute represented as follows:

Sect ion Represents Example

<Source Table> Agile tab name Title Block

Field Agile attribute name Description

Format Text processing ToUpper

For history and change history attributes, which are arranged in a table, the format of this section is:

CAD Parameter = <Filter Table>_Field,<Filter Value>,<Filter>,<Source Table>_Field.Format

For example:

Agile_CreUser = History_Action,Create,first,History_User.None

HIS_RELDATE_1 = Change History_Status,Released,last,Change History_Rel
Date_int.Date01

Where the left side value is the name of the Solid Edge parameter to be updated, and the right side
specifies how to find the desired row and column in the table below:

100 Agile Product Lifecycle Management

Sect ion Represents Example

<Filter Table> Agile tab name to search Title Block

Field Desired column to search Action

<Filter Value> Value to detect in the column Create

<Filter> Which row to select, with these options:

first

first+n n=integer value

last

last-n n=integer value

first

<Source Table> Agile tab name to retrieve value from History

Field Desired column to retrieve value from User

Format Text processing None

Options for “Format”

The Format string allows you to perform additional processing on the text string being passed back
into CAD. This includes predefined formats and general TCL format procedures.

Predefined formats

Format Descript ion

None no processing

ToLower convert the value to lower case

ToUpper convert the value to upper case

Range-x-y substring of the value from index x to index y (y may be numeric or "end")

Date01 convert int dateformat to "%d.%m.%y %H:%M:%S" example: 01.01.2007
00:00:00

Date02 convert int dateformat to "%d.%m.%Y" example: 01.01.2007

Date03 convert int dateformat to "%d.%m.%y" example: 01.01.07

Date04 convert int dateformat to "%d-%m-%y" example: 01-01-07

Date05 convert int dateformat to "%m/%d/%y" example: 01/01/07

Date06 convert int dateformat to "%d-%b-%y" example: 01-Jan-07

Prefix<str> append a prefix <str> to the value

Suffix<str> append a suffix <str> to the value

TCL format procedures

Any registered (tclIndex) TCL procedure that gets the current value as input and returns the
formatted string. For instance:

v2.5.1 101

proc MyFormat { value } {

 set formatedvalue $value

 return $formatedvalue

}

Mapping Part Attributes

In addition to mapping attributes from the CAD Document back into CAD, you can map attributes
from the corresponding Part object that has been associated to the Document using the Create
Item/BOM command. In order to specify a Part attribute, simply prefix the attribute value with
“PART:”. This example shows mapping both the Document Number and Part Number into CAD:

Agile_DocId = Title Block_Number.None

Agile_PartId = PART:Title Block_Number.None

Controlling Custom vs. Configuration-specific Properties

In the following sections:

 [Agile9UpdateDocument]

 [Agile9UpdateItem]

 [Agile9UpdateItemConfigured]

You can use the "Custom_" and "ActiveConfiguration_" modifiers to control whether the properties
are coming from Custom or Configuration-specific Properties. For example:

ITEM = 3DCADTable.Property.Custom_PartNumber

Sets the Part number attribute using a Custom property called "PartNumber"

DESCRIPTION = 3DCADTable.Property.ActiveConfiguration_Description

Sets the Description attribute from a configuration-specific property called "Description".

If you omit the "Custom_" or "ActiveConfiguration_" modifier, it defaults to configuration-specific.
Note also that Solid Edge properties are case-sensitive!

Modifying the Agile Menu Definition

There is another configuration file, which controls the layout of the Agile menu. The file is named
PlmSEAddin.xml and is located in the AgileEC\ace\Server\Scripts directory. Since this file is located
within the Solid Edge Connector installation on the client machine, it is possible to customize menu
options on a per-machine basis, although typical usage is to have a common configuration file
within a given site. When changes are made to the configuration file, it is necessary to exit and re-
start Solid Edge in order to use the new menus.

Configuration of the menus is limited to:

 Removal of unneeded commands and menus

 Renaming of commands and menus

 Restructuring of commands and menus

102 Agile Product Lifecycle Management

 Addition or removal of menu separators

The portion of the file which can be configured is within the <CaxMenu_EN> tags (for English
language). Within this section you will see four sets of tags, which contain the menu entries for the
following situations in Solid Edge:

<Base> - Menus when no Solid Edge component is active

<Part> - Menus when a single Part is active

<Assembly> - Menus when an Assembly is active

<Drawing> - Menus when a Drawing is active

For example, the <Base> section looks like this when you call up the file in an editor:

However, note that for each of these lines, there is additional text if you scroll over to the right side.
Make sure when cutting and pasting lines, that you get the entire line. The portion of the lines that
you would need to edit is limited to what is shown above (i.e. do not edit any part of the text further
to the right).

The editable sections of the file are described as follows:

Editable Sections Description

<menu…> tags Defines the type of menu entry

Syntax menu – Indicates a menu or sub-menu entrymenu

item – Indicates a menu command

type Distinguishes the entries for each section.

Syntax type = “<number>”

where <number> equals:

0 = Base menu1 = Part menu

2 = Assembly menu

3 = Drawing menu

text Defines the menu text and hierarchy level

Syntax For menu:

text = “<menu>@<next-higher-menu>”

For menuitem:

text = “<command>@<menu>@<next-higher-menu>”

v2.5.1 103

Examples Example of first-level menu and a command within it:

<menu type = "0" text = "Agile"
<menuitem type = "0 text = "Connect@Agile"

Example of second-level menu and a command within it:

<menu type = "0" text = "New@Agile"
<menuitem type = "0" text = "Part@New@Agile"

Removing Commands and Menus

It can be useful to remove commands from the menus, for example to eliminate commands that do
not fit with your specific business processes. To remove a command from the menus, simply delete
the entire line containing the command that you want to remove. Remember to delete it from all
menus that it appears in (<Base>, <Part>, etc.). You can also remove entire sub-menus, but make
sure to also remove or restructure all commands within the sub-menu.

Renaming Commands and Menus

Commands and menus can be renamed simply by changing the text values. Remember to rename
them in all menus that they appear in (<Base>, <Part>, etc.). If you rename a menu, make sure to
also change the menu portion of the text field in each command in the menu.

Restructuring Commands and Menus

Commands can be restructured, for example to move them in or out of a sub-menu. To move a
command from a sub-menu to the next higher menu, change the text field of the command to
remove the reference to the sub-menu. To move a command into a sub-menu, do the reverse. You
can add your own sub-menus, if necessary, by adding additional menu lines.

Adding or Removing Menu Separators

Menu separators can easily be added or removed. Separators are defined by lines in the file such
as this:

<menuitem type = "1" text = "@Agile" position = "-1" callback =

"Separator" enablemethod = "" hint = "" />

The difference between this menuitem, and one for a real command, is that the text entry has no
command text before the first @ sign, and the callback entry is "Separator". You can add or remove
any of these separator lines to control the positioning of separators in the menus.

v2.5.1 105

Chapter 9

EC Client Configuration Options
This chapter includes the following:

 Startup File - CaxClient.bat .. 105
 Configuration File - CAXClient_{type}.xml ... 106
 Agile Data Model Parameters .. 114
 Agile Roles and Privileges ... 117
 EC Client Customizing ... 118

Regardless of which CAD Connector you are using, the main user interface is the EC Client. The
configuration of the EC Client is done the same way for all CAD connectors. There are two main
files to be aware of, the startup file (CaxClient.bat) and the configuration file (CaxClient_{type}.xml).
The options available in these files are described in this chapter, as well as the necessary
configuration that needs to be done using the Agile Admin client, to allow the EC Client and the
CAD Connectors to work properly with Agile PLM.

Startup File - CaxClient.bat

The EC Client is started by the startup file CaxClient.bat. Each CAD connector has this file, which
is triggered by the Agile > Start Client command.

CAD Connector Locat ion

Pro/ENGINEER AgileEC\acp\com

SolidWorks AgileEC\acw\Server\Scripts

Unigraphics NX AgileEC\acu\com

CATIA V5 AgileEC\acc\com

CATIA V4 /acc-rt/jar

SolidEdge AgileEC\ace\Server\Scripts

There are three settings that can be modified in this file, as listed below. Note that
CAXCLIENTXML is the primary switch that controls whether Designs or Documents are used for
the EC data model.

Sett ings What th is set t ings speci f ies

JAVA_HOME JRE directory path. Select the appropriate path from the available
ones provided in the acw installation. See "Set Java Version"
above.

DFM_JAR Sets the jar files necessary for direct DFM file access. Do not set if
using JRE 1.4.

CAXCLIENTXML Sets the appropriate XML file for running in Document mode or

106 Agile Product Lifecycle Management

Design mode.

Configuration File - CAXClient_{type}.xml

The EC Client is configured by editing an XML file called CAXClient_{type}.xml, where {type} is
either Documents or Designs. Each file, depending on the connector you choose to work with, is
located in one of the following locations.

CAD Connector Locat ion

Pro/ENGINEER AgileEC\acp\jar\Agile9

SolidWorks AgileEC\acw\jar\Agile9

Unigraphics NX AgileEC\acu\jar\Agile9

CATIA V5 AgileEC\acc\jar\Agile9

CATIA V4 /acc-rt/jar

SolidEdge AgileEC\ace\jar\Agile9

In each case, this file is configured in exactly the same way. This configuration file is used to:

 control the behavior of the EC Client

 define the data model used for storing CAD data in Agile

Since you can run the EC client with one of the two data models (Documents or Designs), there are
now two independent XML files. The "CAXCLIENT" parameter in the CAXClient bat script
determines which file is used, and therefore which data model is used.

clientConfig Parameters

The tag <clientConfig> indicates the parameters in this section. Configure these parameters as
desired to match system and process requirements at your site.

clientConfig section

Name Va lue Remarks

userName cax default user (filled in login form)

serverURL http://localhost:8888/Agile used server connect string

dateFormat yyyy-MM-dd HH:mm:ss z default date format

enableFields ON | OFF If ON, will automatically turn on the necessary
attributes configured for the sub-classes
defined in CAXClient.xml (does not name the
attributes however).

http://localhost:8888/Agile

v2.5.1 107

Name Va lue Remarks

editMode ON | OFF Allows editing within forms

ping ON | OFF Helps to keep the client session alive under
certain conditions

ObjectCache ON | OFF ADVANCED OPTION - Contact Agile Solution
Delivery for assistance

SessionXMLCache ON | OFF ADVANCED OPTION - Contact Agile Solution
Delivery for assistance

CopySourceAttachmentsForward ON | OFF If ON - removes all non-SOURCE attachments
automatically when creating a new pending
revision using EC Client. Useful for removing
viewable and baseline attachments.

SingleFieldUpdate ON | OFF If ON - updates objects one attribute at a time,
rather than all at once. Required only to bypass
an update problem on AIX JRE platform.

drsListenPort 5112 Dresden (drs) protocol listen port (do not
change)

creationMode INT | BAT Default mode (possible is INT or BAT) for
creation of new objects in Save Command
(interactive or batch-mode)

creationModePart INT | BAT Default mode (possible is INT or BAT) for
creation of new parts in create Item BOM
command (interactive or batch-mode)

revisionSequence

(also revisionSequenceECO,
revisionSequenceDVO etc.)

Examples:

,A,B,C,D,E,F,G,H,I,J,K,L,M
,N,O,P,Q,R,S,T,U,V,W,X,Y,
Z,

,1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21
,22,23,24,25,

Default Sequence of Revision letters. Keep a
comma at the beginning and the end of the
sequence. You can create multiple entries of
this line, by appending the name of an Agile
Change sub-class on the end. That will assign
the given revision sequence to that sub-class
only.

revisionSequenceEditor ON | OFF If ON - allows selecting a revision from the pre-
defined revisionSequence list in Manage
Change.

 If OFF - you must enter the revision.

EcoDefaultWorkflow Examples:

"Default Change Orders"

"{class} Default Workflow"

The workflow assigned automatically when
creating a Change object, ECO in Manage
Change.

If the name contains the string "{class}", the
name of the Change sub-class is inserted.
This allows assigning a unique workflow per
Change sub-class.

108 Agile Product Lifecycle Management

Name Va lue Remarks

EcoIgnoreRuleForLatest ON | OFF If ON - allows you to select a non-latest
revision for creation of a pending revision, in
the Manage Change command (although it
displays a warning icon). This supports design
branching.

If OFF - attempting to create a pending revision
from a non-latest revision will not work
(Displays a stop sign).

NumberingMode Allowable values:

NONE

Pro/E

UG

CATIA

SOLIDWORKS

SOLIDEDGE

If set to a value other than NONE, when
creating a new CAD model using the Agile >
New command, the appropriate CAD extension
for the given CAD system will be appended to
the autonumber from Agile, to create the
Document number. The value of
NumberingDelim is also inserted (see next
entry). For example, if this is set to
SOLIDWORKS, and the next available
autonumber in the New dialog is P12345, the
Document number will be P12345.SLDPRT
(instead of P12345).

NumberingDelim Examples:

"." (period)

"-" (dash)

You insert the value between the autonumber
value and the value of the NumberingMode
parameter (see above).

NumberingCreateParts ON | OFF If ON - creates a Part object automatically
during the New command, and links it to the
created Document. The Part number will match
the selected autonumber. In the example
above, the Part will be P12345 and the
Document will be P12345.SLDPRT.

InitialECOClass Allowable values:

NONE

A name of a Change
sub-class

If set to something other than NONE, when
Documents are first created in the EC Client
(using New or Save), they will be automatically
placed on a Change object, using this sub-
class.

InitialRev Examples:

"1"

"A"

"-" (dash)

If InitialECOClass is not NONE, this will be the
value of the initial pending revision created for
Documents during New or Save.

InitialPartECOClass Allowable values:

32105

A name of a Change
sub-class

If set to something other than NONE, when
Parts are first created in the EC Client (using
New, Save, or Create Item/BOM), they will be
automatically placed on a Change object, using
this sub-class.

v2.5.1 109

Name Va lue Remarks

InitialPartRev Examples:

"1"

"A"

"-" (dash)

If InitialPartECOClass is not NONE, this will be
the value of the initial pending revision created
for Parts during New, Save, or Create
Item/BOM.

AutoCreateECO ON | OFF If ON, automatically creates Change objects
and assigns revision values based on values
coming from CAD. Used for dataload
operations.

AddPartToECO ON | OFF If ON, and if Parts are automatically generated
using the NumberingCreateParts option, then
the Parts will automatically be assigned as
affected items on the same Change as the
Documents, in the Manage Change command.

assignDrawingToPart ON | OFF If ON, will link the 2D drawing Document as
well as the 3D model Document into the Part
BOM, during the Create Item/BOM command.
Is only valid if disableDocumentPartLink is
OFF.

disableDocumentPartLink ON | OFF If ON, the Create Item/BOM command will not
link the Documents into the Part BOM, but will
instead set attributes on each object,
referencing each other (for 9.2.1) or
Relationship links (for 9.2.2).

checkLocalStamp 0 | 1 ADVANCED OPTION - Contact Agile Solution
Delivery for assistance

overWrite ASK | ON | OFF Sets the default value of the Assignment
selector found at the top of the Save dialog

ASK = Confirm

ON = Assign and Overwrite

OFF = Don't Assign or Overwrite

autoSaveBatch 0 | 1 If set to 1- saves in batch mode with no client
interaction. Used for dataload operations.

mapAttributesToFileFolder ON | OFF If ON, will set attributes on the File Folder
object attached to the Document, that are
equal to the attributes set on the Document.
This requires configuration of the File Folder
section of the CAXClient.xml file. This is used
to better control access at the File Folder level.

getFilesSelective 0 | 1 If set to1- Enables an additional check box
column in the Load dialog that allows users to
select which files to load.

CAUTION: Only some CAD systems support

110 Agile Product Lifecycle Management

Name Va lue Remarks

this capability.

baselineColumn 0 | 1 If set to 0 - Removes the Create Baseline
check box column in the Save dialog,
preventing users from creating Baselines.

If set to 1- Displays a save Baseline column in
Save dialog.

DefaultUnit Metric | Inches Sets the default units for the New dialog

LoadOptionsLatest Allowable values (one or
more):

LATEST_PENDING

RELEASED

ASSAVED

Sets valid options for structure resolution
during Load command, for a selected pending
revision. The user will receive a pop-up dialog
prompting them to select an option.

LoadOptionsNonLatest Allowable values (one or
more):

LATEST_PENDING

RELEASED

ASSAVED

Sets valid options for structure resolution
during Load command, for a selected released
revision. The user will receive a pop-up dialog
prompting them to select an option.

LoadSimplified 0 | 1 | NONE Enables the "Simplified Reps" check box in the
Load dialog, which is only valid for
Pro/ENGINEER.

If set to 0 - the check box is enabled and not
checked.

If set to 1 - the check box is enabled and
checked.

If set to NONE - the check-box is disabled.

ViewablesDrawing Example:

TIF,PDF,CGM,PDF,JPG,H
PGL,PS,DXF,DWG,EDRW,
CALS

The list of allowable viewable filetypes for
Drawings that will be on display in the Save
Preferences dialog.

Note: Further configuration may be necessary
to generate the desired filetype.

ViewablesModel Example:

JT,CGR,WRL,STL,X_T,X_
B,STEP,IGES,EPRT,EAS
M,ED,
EDP,EDZ,3DXML,SAT,VD
A

The list of allowable viewable filetypes for
Models (parts and assemblies), that will display
in the Save Preferences dialog. Note: Further
configuration may be necessary to generate
the desired filetype.

v2.5.1 111

Name Va lue Remarks

AutoSubmitXYZ

(Where XYZ is the name of a
Change sub-class. Example:
DVO)

Examples:

Released

Submitted

Gives the target workflow status for given
Change sub-class, for use with "Submit
Changes" option in Save dialog. The workflow
must be configured with a valid path using
"default next status" to target workflow status.

Viewer Allowable values:

ON

OFF

LOCAL

Controls the viewing function from the EC
Client.

If set to OFF - view button is disabled.

If set to LOCAL - enables the view button and
supports launching file attachments using
client-side MIME type applications.

If set to ON - view button is enabled and uses
the Agile Viewer.

PublishModelFiles Allowable Values

PRT, JT, CGM, EPRT,
EASM, SLDASM, SLDPRT

Sets the filetypes from 3D Design objects
(parts and assemblies) which attach to Part
objects during the Create Item/BOM process.

PublishDrawingFiles Allowable Values

EDRW, CGM, TIF, PDF,
PRT

Sets the filetypes from CAD drawings (parents
of 3D models) which attach to Part objects
during the Create Item/BOM process.

Label Types Examples

DV

DC

LabelApproversXYZ

(where XYZ is the name of the
Label Type.
Example: DV)

Examples:

DV Approvers

Name of the approver group for a specific label
type. When you choose this label type, Users
within this group are assigned to the Routing
Slip

LabelObserversXYZ

(where XYZ is the name of the
Label Type.
Example: DV)

Examples:

DV Observers

Name of the observer group for a specific label
type. When you choose this label type, Users
within this group are assigned to the Routing
Slip.

LabelAutonumber XYZ
(where XYZ is the name of the
Label Type.

Example:DV)

Examples:

DV Label

Name of the Autonumber to use for the specific
label type.

Note: The prefix of the autonumber must begin
with label value. For example, the autonumber
prefix for DV must begin with "DV".

LabelUseRevisionLogicXYZ
(where XYZ is the name of the
Label Type.

Example:DR

0 | 1 For this label type, will the major revision
increment upon the next checkout. 0=No,
1=Yes.

112 Agile Product Lifecycle Management

Name Va lue Remarks

DesignSequenceRevision Examples;
A,B,C,D,E,F,G,H,I,J,K,L,M,
N,O,P,Q,R,S,T,U,V,W,X,Y,
Z

Revision sequence for the major revision
component of the Design Revision field.

DesignVersionSequence Either the value
"NUMERIC" or an actual
sequence. (similar to
above)

Revision sequence for the minor revision
component of the Design Revision field.

DesignVersionIndicator Examples:

"v" A v1

"" A1

Separator text between major and minor
revision components of the Design Revision
field.

AllApprovalsRequired 0 | 1 Controls ability to check out Design based on
existing Routing Slip approval.

If set to 1, all approvers have to approve.

If set to 0, only one approval (with no
rejections) is required.

CheckOutWhileInApproval 0 | 1 If set to 1 - Allows Users to check out the next
Design version even if the current one is still in
approval.

If set to 0 - Users cannot check out until
approval occurs.

Note: If check out occurs, prior to approval,
major revisioning will not occur.

DFM 0 | 1 If set to 1 - enables DFM capability

If set to 0 - disables DFM capability.

usePlmApi 0 | 1 If set to 1 – enables PLM API for WAN usage

If set to 0 – disables PLM API for WAN usage

useStreamCompression 0 | 1 If set to 1 – enables compression for PLM API

If set to 0 – disables compression for PLM API

PublishBOMStructure ON | OFF If set to OFF, the part BOM will not be
published only the relations between models
and parts

generateAssemblyThumbnails 0 | 1 If set to 1 – trigger generating of thumbnails for
assemblies

If set to 0 – do not trigger generating of
thumbnails for assemblies

skipGetItemProperties 0 | 1 If set to 1 – does not return attributes from
associated Parts, thereby improving
performance in cases where Part attributes are

v2.5.1 113

Name Va lue Remarks

not used.

If set to 0 – return attributes from Parts

fileOperation Parameters

The tag <fileOperation> indicates the parameters in the section. They control the behavior of the
Save and Load operations. Configure them to match the process requirements at your site.

fileOperation section

Name
Parameter

Va lue Remarks

get Parameters relating to the "Load" command

autoCheckout "0" no automatic checkout (reserve)

"1" automatic reserve

URLcopy 0 Obsolete

put Parameters relating to the "Save" command

saveOption "1" enable save if object isn't checked out by another user

"2" enable save if object isn't checked out by another user and the
object has not been changed in PLM (not out-of-date)

"3" obsolete (out-of-date)

"4" enable save only if object is checked out by current user

timeStampField 6151 Obsolete

viewable VIEWABLE The value used to identify source (native) CAD files, in the Attachment
Type attribute of the Attachments tab on the Document.

source SOURCE The value used to identify viewable files, in the Attachment Type
attribute of the Attachments tab on the Document.

baseline BASELINE The value used to identify baselines, in the Attachment Type attribute
of the Attachments tab on the Document.

viewables ,CGM,TIF,TIFF,JP
G,JPEG,GIF,PDF,J
T,
X_T,CGR,EPRT,
EASM,EDRW

A comma-separated list of file extensions flagged as viewable file
types. Make sure there is a comma at the beginning and end of the list.

keepCheckout 0 | 1 Default pre-selection of checkboxes for objects in save dialog.

"1" - indicates the file is still checked out after the Save command is
completed.

114 Agile Product Lifecycle Management

Name
Parameter

Va lue Remarks

checkInDefault 0 | 1 Default pre-selection of checkboxes for objects in save dialog,

"1" - indicates the filefolder is checked in after file transport to make
changes visible to other users.

Setting EC Client Data Model

The EC Client also allows you to switch between the Document and Design object based on the
properties set in your configurations file. Since these settings pre-exist in the
CAXClient_Designs.xml and CAXClient_Documents.xml, respectively, in order to switch between
data models, it is necessary only to change the setting in the CaxClient.bat file as described in the
beginning of this chapter.

Setting for Design objects:

<createObject defaultClass="FILEFOLDER"/>

<setProperties defaultClass='FILEFOLDER'/>

Setting for Document objects:

<createObject defaultClass="DOCUMENT"/>

<setProperties defaultClass="DOCUMENT"/>

Agile Data Model Parameters

The CAXClient_{type}.xml file defines the types of objects that are used by Agile to store your CAD
data, and also which attributes from those objects are accessed. The object definitions are within
the <objectProperties> section, and consist of <subclass> definitions which define tabs and
attributes.

There are three main <subclass> sections: File Folder (Design), Document, and Item.

 The File Folder subclass section is used when using Design objects to manage CAD files.

 The Document subclass section is used when using Document objects to manage CAD files.

 The Item subclass defines the object class for the Part BOM (the "Product Structure").

Subclass definitions appear as follows:

<subclass name="DOCUMENT" type="2" id="24147">

Where type is the Agile object type, and id is the Agile sub-class ID. By setting the id equal to a
specific Agile sub-class (such as CAD Model), you can control which Document sub-class appears
in the EC Client by default.

v2.5.1 115

Note The drawback of this setting is that the sub-class ID cannot be determined directly
through the Agile administrator client. However, when you run EC Client it will output a
list of all object sub-class IDs in the CaxClient.log file.

Tab definitions appear as follows:

<table name="TITLE_BLOCK" id="0">

Within each tab, attribute definitions appear as follows:

<attribute name="DESCRIPTION" id="1002" set="1" get="1" mandatory="1"/>

This has the following parameters:

id = the Agile base ID of the attribute

set = 0 or 1 where 1 means to include this attribute in UI for creating or setting object properties

get = 0 or 1 where 1 means to return this attribute to the CAD Connector

mandatory = 0 of 1 where 1 means that the user cannot continue until a value is entered.

Note The setting of "mandatory" is independent of the Agile server definition of "required"
fields. For best results, mark those fields that are required by the Agile server, also as
mandatory for the EC Client. Bold text in the EC Client user interface indicates both
mandatory and required fields.

You define the Agile data model for EC by determining which attributes to set within the
CAXClient.xml file, and then configuring these attributes in Agile. These attributes are set in the
Agile Java Client.

Data Model Configuration for Design Objects

If you are using Design objects as the basis of storing CAD files, most data model configurations
are already in place. The main task is to re-configure the "Model Name" attribute from a text
attribute to a multitext attribute.

 Rename the existing “Model Name” attribute (ID 2000008376) to a name of your choice.

 Rename the “Structure MultiText01” attribute (ID 2000008365) to “Model Name”

In the FILEFOLDER subclass section of the CAXClient.xml file, set the CAX_FILENAME entry to
the new ID as follows:

<attribute name="CAX_FILENAME" id="2000008365" set="0" get="0"/>

The CAXClient_{type}.xml file defines the types of objects that are used by Agile to store your CAD
data, and also which attributes from those objects are accessed. The object definitions are within
the <objectProperties> section, and consist of <subclass> definitions which define tabs and
attributes.

There are three main <subclass> sections: File Folder (Design), Document, and Item.

 The File Folder subclass section is used when using Design objects to manage CAD files.

116 Agile Product Lifecycle Management

 The Document subclass section is used when using Document objects to manage CAD files.

 The Item subclass defines the object class for the Part BOM (the "Product Structure")

Subclass definitions appear as follows:

<subclass name="DOCUMENT" type="2" id="24147">

Where type is the Agile object type, and id is the Agile sub-class ID. By setting the id equal to a
specific Agile sub-class (such as CAD Model), you can control which Document sub-class appears
in the EC Client by default.

Note The drawback of this setting is that the sub-class ID cannot be determined directly
through the Agile administrator client. However, when you run EC Client it will output a
list of all object sub-class IDs in the CaxClient.log file.

Tab definitions appear as follows:

<table name="TITLE_BLOCK" id="0">

Within each tab, attribute definitions appear as follows:

<attribute name="DESCRIPTION" id="1002" set="1" get="1" mandatory="1"/>

This has the following parameters:

id = the Agile base ID of the attribute

set = 0 or 1 where 1 means to include this attribute in UI for creating or setting object properties

get = 0 or 1 where 1 means to return this attribute to the CAD Connector

mandatory = 0 of 1 where 1 means that the user cannot continue until a value is entered.

Note The setting of "mandatory" is independent of the Agile server definition of "required"
fields. For best results, mark those fields that are required by the Agile server, also as
mandatory for the EC Client. Bold text in the EC Client user interface indicates both
mandatory and required fields.

You define the Agile data model for EC by determining which attributes to set within the
CAXClient_{type}.xml file, and then configuring these attributes in Agile. These attributes are set in
the Agile Admin Client. The following two sections show the steps for the two different EC data
models.

Data Model Configuration for Design Objects

If you are using the Design object with your EC CAD connectors to manage CAD data, configure
Agile PLM using the following steps:

 Check the configuration of the Design object attributes, following the "Design Object" section in

v2.5.1 117

Appendix B.
 If using Agile 9.2.2.x, make sure to follow the instructions listed for Note 1, to fix a

configuration problem with the Model Name attribute on the Design Structure tab.

 Configure the required Part object attributes, following the "Part Object" section in Appendix B.

 For both the Design and Part objects, make sure that any privileges which reference these
objects are properly set such that the "Applied To" field of the privileges includes all the
required attributes.

Data Model Configuration for Document Objects

If you are using the Document object with your EC CAD connectors to manage CAD data, configure
Agile PLM using the following steps:

 Create a new Document sub-class to be used by the MCAD data. For example this could be
called "Model" or "CAD Model".

 Edit the CAXClient_Documents.xml file, and modify the ID of the Document sub-class line to
match the actual ID of the new sub-class. Do NOT change the "Document" name in the XML
file to match the sub-class name. It should remain as "Document".
 The ID can be determined by running the EC Client and checking the CaxClient.log file.

 Configure the required attributes for this new Document sub-class, following the "Document
Object" section in Appendix B.

 Configure the required Part object attributes, following the "Part Object" section in Appendix B.

 For both the Document and Part objects, make sure that any privileges which reference these
objects are properly set such that the "Applied To" field of the privileges includes all the
required attributes.

EC Client Log File

Each time an EC Client session starts, a log file called CaxClient.log is created in the user's working
directory. This log file can be viewed or printed to help debug any configuration problems that might
occur. Typically Oracle Support will request this file when helping to resolve any issue with Agile
EC.

Agile Roles and Privileges

For detailed information on Agile Roles and Privileges, see Agile PLM Administrator Guide.
However, given below are some aspects critical to proper operation of the EC Client.

It is typical to create a role or roles for those CAD users who will create objects in Agile through EC
CAD Connectors. They should have privileges to modify objects from any Document or Design
subclass that you have defined to be used to store CAD data. Other users should not have Modify
privileges to these subclasses. Typically non-CAD users would not have Modify privileges to these
subclasses.

When using the Design object for storing CAD data, there is a standard role called "Design
Engineer" that has a good basic set of privileges for managing Designs. This can be modified as

118 Agile Product Lifecycle Management

desired.

The necessary privileges for performing functions supported by the EC CAD connectors when using
the Design object are as follows:

EC Funct ion Object Class Priv i leges

Save, Load,
Manage Change

Designs Discover, Create, Read, Modify, Delete, Checkout, Checkin, Cancel
Checkout, Print, Get, View

Create Item/BOM

Parts Discover, Create, Read, Modify

Eng Changes Discover, Create, Read, Modify, Change Status

Pay particular attention to the “Applied To” field of these privileges, since as you enable new
attributes aspart of the data model configuration
they will not be part of the selected set of attributes by default.

EC Client Customizing

The MCAD systems call CAD Connectors. The MCAD system delivers and receives data to and
from Agile using I Ag l Parameter objects. There are three different ways to modify this dataflow:

 Add your own ActionHandler to CAD Connector

 Extend your own Connector from CAD Connector

 Extend your own Connector from CAD Connector and add your own ActionHandler to CAD
Connector (combination of both steps above).

1. To add your own ActionHandler:

1. Create your own JAVA class, which extends CAXAction and implements ICAXAction.
Please see example of com.Agile.cax.custom.CustomAction in CustomConnector.jar.
ICAXAction implements methods, called within the workflow of, save and load processes.
Here you can modify the behavior using pre-defined entries.

2. Create your own JAVA-jar-File, which contains your class. Compile and link against the
CAXConnector.jar, CAXClient.jar, CaxAglDataTypes.jar and AgileAPI.jar.

3. Ensure your jar-file and all needed sub-jars are contained in your java class path when the
CAXClient is started. You can check cax_client.bat for that.

4. Register your ActionListener for CAXConnector in CAXClient.xml. If your class is
com.Agile.cax.custom.CustomAction, the line looks like this:

<drsExtension logicalName="com.Agile.cax.CAXConnector"

className="com.Agile.cax.CAXConnector"

actionHandler="com.Agile.cax.custom.CustomAction" >

Note You can only add this ActionListener to the mentioned line. Ignore all other drsExtension
tags.

After restart of CAXClient you see your registered handler in stdout.

2. To extend CAXConnector:

v2.5.1 119

1. Create your own JAVA class, which extends CAXConnector. Please see the example of
com.Agile.cax.custom.CustomConnector in CustomConnector.jar. This CAXConnector
implements all methods which are called directly by MCAD. Here you can modify the
behavior by changing the dataflow or making a complete replacement of single methods
(overloading).

2. Please follow 1.1 and 1.2 for creating and using your jar file in CAXClient.

3. Register your connector in CAXClient.xml by creating your own drsExtension tag (see
CustomConnector for example). Assume you implemented your own Connector in class
com.Agile.cax.custom.CustomConnector, then the lines look like this:

<drsExtension logicalName="com.Agile.cax.custom.CustomConnector"

className="com.Agile.cax.custom.CustomConnector" ></drsExtension>

4. Register your connector and the changed methods in CAXClient.xml. Each method called
by MCAD has a name, which is mapped to a JAVA class in XML: <classMapping
methodName="symbolicName" className="containingClass">

If you implemented your own method "searchObject" in your connector
com.Agile.cax.custom.CustomConnector, the XML entry has to be modified like this:

<classMapping methodName="searchObject" className="

com.Agile.cax.custom.CustomConnector">

The available methodName's are predefined and called by CAD.

3. To extend CAXConnector and ActionHandler combined:

1. In order to extend your own Connector and use an ActionHandler just combine the steps in
1 and 2 above.

ActionHandlers only work for a CAXConnector and can only be registered there. A
"CustomConnector" may not have its own ActionHandler, but you can register this ActionHandler at
the CAXConnector. Always first try to use own ActionHandlers instead of own Connectors, because
making your own Connector is much more complex than making your own ActionHandler

v2.5.1 121

Appendix A

Tips and Tricks
Tip #1

Reloading
INI f i l e

If you have a CAD connector running and you need to make a change to the INI
configuration file (e.g. 3DCADMapping.ini for SolidWorks, AcpCustomer9.ini for Pro/E),
you can have the changes take effect without restarting the CAD system.

Once the INI file updates are saved, simply pick the "Agile > About" command within the
CAD system. This reloads the configuration information from the INI file.

Tip #2

Removing
f i le t rack ing

EC uses a few mechanisms to track the fact that CAD files have already been stored in
PLM. There are times when you may purposely want to defeat this tracking, for
example to repeat a demo. There are two basic mechanisms:

Master Tracking File – Same for all CAD systems

 .caxsession.xml file, located in C:\Documents and Settings\{username}

File-based Tracking – Different depending on the CAD system

 For SolidWorks and Solid Edge: .CID file created for each tracked CAD file

 For Pro/E, UG NX, and CATIA: Attribute saved inside CAD file (usually AGILEID)

Removing tracking:

Stop and CAD system and EC Client

Delete the .caxsession.xml file

For SolidWorks or Solid Edge, delete the .CID files of the CAD files for which you wish
to remove tracking.

For all other systems, run the CAD system and delete the AGILEID attribute from each
file. However, if the CAD files were originally saved from outside the EC working
directory, the AGILEID attribute will not be present so no further work is required.

Tip #3

Res iz ing EC
Cl ient

Dia logs

If an EC Client dialog (such as Save or Load) is extending outside the frame of the EC
Client window itself, just double-click on the title bar of the dialog and it will resize to fit
within the client window.

Tip #4

Save
Preferences

Defaul ts

In Save Preferences, when entering a Default value, make sure to click out of the data
entry field or the value will not be saved.

Tip #5

Sta rt ing the
EC Cl ient

The SolidWorks and Solid Edge connectors do not by default start the EC Client when
the CAD system is started. If it is desired to do this, you can create a Windows batch
file to start both the CAD system and the EC Client concurrently.

v2.5.1 123

Appendix B

PLM Data Model Configuration
This Appendix includes the following:

 Design Object .. 123
 Document Object ... 124
 Part Object ... 125

This appendix lists the necessary settings to make in the PLM data model for using EC MCAD
Connectors.

Design Object

The following table shows the necessary attributes to configure when using Design objects as the
basis of MCAD data management. Using the Agile Admin client, check to make sure that all
attribute marked as Required in this table are configured and set to visible. If a specific attribute
needs to be changed to a different base ID due to customer requirements, see the section entitled
"Changing an Attribute to a Different Base ID" in the Getting Started chapter of this document.

For the Design object, all of these attributes are pre-configured in the standard database dump,
other than what is described in the notes below.

124 Agile Product Lifecycle Management

To insure that the Design class can be access by EC correctly, it is necessary to check all privileges
associated with the Design object to make sure that all the above required attributes are selected in
the "Applied To" list of each privilege.

Document Object

The following table shows the necessary attributes to configure when using Document objects
(DocuBOMs) as the basis of MCAD data management. Using the Agile Admin client, create
a Document sub-class to be used for MCAD (e.g. "CAD Model"), and define all attributes
marked as Required in this table. This needs to be done manually, since this is not
pre-configured in the standard PLM database dump. If a specific attribute needs to be changed
to a different base ID due to customer requirements, see the section entitled "Changing an
Attribute to a Different Base ID" in the Getting Started chapter of this document.

To insure that the Document sub-class can be access by EC correctly, it is necessary to check all
privileges
associated with the sub-class to make sure that all the above required attributes are selected in the

v2.5.1 125

"Applied To" list of each privilege.

Part Object

The following table shows the necessary attributes to configure when using Parts objects with EC
MCAD Connectors, specifically with the "Create Item/BOM" command which publishes Part BOMs.
This configuration is necessary when using either Designs or Documents as the basis of the MCAD
data management. Using the Agile Admin client, define all attributes marked as Required in this
table. This needs to be done manually, since this is not pre-configured in the standard PLM
database dump. If a specific attribute needs to be changed to a different base ID due to customer
requirements, see the section entitled "Changing an Attribute to a Different Base ID" in the Getting
Started chapter of this document.

To insure that the Part class can be access by EC correctly, it is necessary to check all privileges
associated with the class to make sure that all the above required attributes are selected in the
"Applied To" list of each privilege.

This page is blank.

