Skip Headers
Oracle® Grid Infrastructure Installation Guide
11g Release 2 (11.2) for HP-UX

Part Number E10815-02
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Index
Index
Go to Feedback page
Contact Us

Go to previous page
Previous
Go to next page
Next
View PDF

3 Configuring Storage for Grid Infrastructure for a Cluster and Oracle Real Application Clusters (Oracle RAC)

This chapter describes the storage configuration tasks that you must complete before you start the installer to install Oracle Clusterware and Automatic Storage Management (ASM), and that you must complete before adding an Oracle Real Application Clusters (Oracle RAC) installation to the cluster.

This chapter contains the following topics:

3.1 Reviewing Oracle Grid Infrastructure Storage Options

This section describes supported options for storing Oracle grid infrastructure for a cluster storage options. It contains the following sections:

See Also:

The Oracle Certify site for a list of supported vendors for Network Attached Storage options:
http://www.oracle.com/technology/support/metalink/

Refer also to the Certify site on My Oracle Support for the most current information about certified storage options:

https://metalink.oracle.com/

3.1.1 Overview of Oracle Clusterware and Oracle RAC Storage Options

There are two ways of storing Oracle Clusterware files:

  • Automatic Storage Management (Oracle ASM): You can install Oracle Clusterware files (OCR and voting disks) in Oracle ASM diskgroups.

    Oracle ASM is the required database storage option for Typical installations, and for Standard Edition Oracle RAC installations. It is an integrated, high-performance database file system and disk manager for Oracle Clusterware and Oracle Database files. It performs striping and mirroring of database files automatically.

    Only one Oracle ASM instance is permitted for each node regardless of the number of database instances on the node.

  • A supported shared file system: Supported file systems include the following:

    • A supported cluster file system Note that if you intend to use a cluster file system for your data files, then you should create partitions large enough for the database files when you create partitions for Oracle grid infrastructure.

      See Also:

      The Certify page on My Oracle Support for supported cluster file systems
    • Network File System (NFS): Note that if you intend to use NFS for your data files, then you should create partitions large enough for the database files when you create partitions for Oracle grid infrastructure. NFS mounts differ for software binaries, Oracle Clusterware files, and database files.

      Note:

      You can no longer use OUI to install Oracle Clusterware or Oracle Database files on block or raw devices.

      See Also:

      My Oracle Support for supported file systems and NFS or NAS filers

3.1.2 General Storage Considerations for Oracle Grid Infrastructure and Oracle RAC

For all installations, you must choose the storage option to use for Oracle grid infrastructure (Oracle Clusterware and Oracle ASM), and Oracle Real Application Clusters databases (Oracle RAC). To enable automated backups during the installation, you must also choose the storage option to use for recovery files (the Fast Recovery Area). You do not have to use the same storage option for each file type.

3.1.2.1 General Storage Considerations for Oracle Clusterware

Oracle Clusterware voting disks are used to monitor cluster node status, and Oracle Cluster Registry (OCR) files contain configuration information about the cluster. You can place voting disks and OCR files either in an ASM diskgroup, or on a cluster file system or shared network file system. Storage must be shared; any node that does not have access to an absolute majority of voting disks (more than half) will be restarted.

3.1.2.2 General Storage Considerations for Oracle RAC

Use the following guidelines when choosing the storage options to use for each file type:

  • You can choose any combination of the supported storage options for each file type provided that you satisfy all requirements listed for the chosen storage options.

  • Oracle recommends that you choose Oracle ASM as the storage option for database and recovery files.

  • For Standard Edition Oracle RAC installations, Oracle ASM is the only supported storage option for database or recovery files.

  • If you intend to use Oracle ASM with Oracle RAC, and you are configuring a new Oracle ASM instance, then your system must meet the following conditions:

    • All nodes on the cluster have Oracle Clusterware and Oracle ASM 11g release 2 (11.2) installed as part of an Oracle grid infrastructure for a cluster installation.

    • Any existing Oracle ASM instance on any node in the cluster is shut down.

  • Raw or block devices are supported only when upgrading an existing installation using the partitions already configured. On new installations, using raw or block device partitions is not supported by Automatic Storage Management Configuration Assistant (ASMCA) or Oracle Universal Installer (OUI), but is supported by the software if you perform manual configuration.

    See Also:

    Oracle Database Upgrade Guide for information about how to prepare for upgrading an existing database
  • If you do not have a storage option that provides external file redundancy, then you must configure at least three voting disk areas to provide voting disk redundancy.

3.1.3 Supported Storage Options

The following table shows the storage options supported for storing Oracle Clusterware and Oracle RAC files.

Table 3-1 Supported Storage Options for Oracle Clusterware and Oracle RAC

Storage Option OCR and Voting Disks Oracle Clusterware binaries Oracle RAC binaries Oracle Database Files Oracle Recovery Files

Automatic Storage Management

Yes

No

No

Yes

Yes

Local file system

No

Yes

Yes

No

No

NFS file system on a certified NAS filer

Yes

Yes

Yes

Yes

Yes

Shared disk partitions (block devices or raw devices)

Not supported by OUI or ASMCA, but supported by the software. They can be added or removed after installation.

No

No

Not supported by OUI or ASMCA, but supported by the software. They can be added or removed after installation.

No

Shared Logical Volume Manager (SLVM)

Not supported by OUI or ASMCA, but supported by the software. They can be added or removed after installation.

No

No

Not supported by OUI or ASMCA, but supported by the software. They can be added or removed after installation.

No


Use the following guidelines when choosing storage options:

  • You can choose any combination of the supported storage options for each file type provided that you satisfy all requirements listed for the chosen storage options.

  • You can use Oracle ASM 11g release 2 (11.2) to store Oracle Clusterware files. You cannot use Oracle ASM releases prior to 11g release 2 (11.2) to do this.

  • If you do not have a storage option that provides external file redundancy, then you must configure at least three voting disk locations and at least three Oracle Cluster Registry locations to provide redundancy.

3.1.4 After You Have Selected Disk Storage Options

When you have determined your disk storage options, configure shared storage:

3.2 Shared File System Storage Configuration

The installer does not suggest a default location for the Oracle Cluster Registry (OCR) or the Oracle Clusterware voting disk. If you choose to create these files on a file system, then review the following sections to complete storage requirements for Oracle Clusterware files:

Note:

The OCR is a file that contains the configuration information and status of the cluster. Oracle Universal Installer (OUI) automatically initializes the OCR during the Oracle Clusterware installation. Database Configuration Assistant uses the OCR for storing the configurations for the cluster databases that it creates.

3.2.1 Requirements for Using a Shared File System

To use a shared file system for Oracle Clusterware, Oracle ASM, and Oracle RAC, the file system must comply with the following requirements:

  • To use an NFS file system, it must be on a certified NAS device. Log in to My Oracle Support at the following URL, and click the Certify tab to find a list of certified NAS devices.

    https://metalink.oracle.com/

  • If you choose to place your Oracle Cluster Registry (OCR) files on a shared file system, then Oracle recommends that one of the following is true:

    • The disks used for the file system are on a highly available storage device, (for example, a RAID device).

    • At least two file systems are mounted, and use the features of Oracle Clusterware 11g release 2 (11.2) to provide redundancy for the OCR.

  • If you choose to place your database files on a shared file system, then one of the following should be true:

    • The disks used for the file system are on a highly available storage device, (for example, a RAID device).

    • The file systems consist of at least two independent file systems, with the database files on one file system, and the recovery files on a different file system.

  • The user account with which you perform the installation (oracle or grid) must have write permissions to create the files in the path that you specify.

Note:

Upgrading from Oracle9i release 2 using the raw device or shared file for the OCR that you used for the SRVM configuration repository is not supported.

If you are upgrading Oracle Clusterware, and your existing cluster uses 100 MB OCR and 20 MB voting disk partitions, then you can continue to use those partition sizes.

All storage products must be supported by both your server and storage vendors.

Use Table 3-2 and Table 3-3 to determine the minimum size for shared file systems:

Table 3-2 Oracle Clusterware Shared File System Volume Size Requirements

File Types Stored Number of Volumes Volume Size

Voting disks with external redundancy

3

At least 280 MB for each voting disk volume.

Oracle Cluster Registry (OCR) with external redundancy

1

At least 280 MB for each OCR volume

Oracle Clusterware files (OCR and voting disks) with redundancy provided by Oracle software.

1

At least 280 MB for each OCR volume

At least 280 MB for each voting disk volume


Table 3-3 Oracle RAC Shared File System Volume Size Requirements

File Types Stored Number of Volumes Volume Size

Oracle Database files

1

At least 1.5 GB for each volume

Recovery files

Note: Recovery files must be on a different volume than database files

1

At least 2 GB for each volume


In Table 3-2 and Table 3-3, the total required volume size is cumulative. For example, to store all Oracle Clusterware files on the shared file system with normal redundancy, you should have at least 2 GB of storage available over a minimum of three volumes (three separate volume locations for the OCR and two OCR mirrors, and one voting disk on each volume). You should have a minimum of three physical disks, each at least 500 MB, to ensure that voting disks and OCR files are on separate physical disks. If you add Oracle RAC using one volume for database files and one volume for recovery files, then you should have at least 3.5 GB available storage over two volumes, and at least 5.5 GB available total for all volumes.

3.2.2 Deciding to Use a Cluster File System for Oracle Clusterware Files

For new installations, Oracle recommends that you use Automatic Storage Management (Oracle ASM) to store voting disk and OCR files.

3.2.3 Deciding to Use NFS for Data Files

Network-attached storage (NAS) systems use NFS to access data. You can store data files on a supported NFS system.

NFS file systems must be mounted and available over NFS mounts before you start installation. Refer to your vendor documentation to complete NFS configuration and mounting.

Be aware that the performance of Oracle software and databases stored on NAS devices depends on the performance of the network connection between the Oracle server and the NAS device.

For this reason, Oracle recommends that you connect the server to the NAS device using a private dedicated network connection, which should be Gigabit Ethernet or better.

3.2.4 Configuring Storage NFS Mount and Buffer Size Parameters

If you are using NFS for the Grid home or Oracle RAC home, then you must set up the NFS mounts on the storage so that they allow root on the clients mounting to the storage to be considered root instead of being mapped to an anonymous user, and allow root on the client server to create files on the NFS filesystem that are owned by root.

On NFS, you can obtain root access for clients writing to the storage by enabling root=access_list on the server side. For example, to set up Oracle Clusterware file storage in the path /vol/grid, with nodes node1, node 2, and node3 in the domain mycluster.example.com, add a line similar to the following to the /etc/dfs/dfstab file:

share -F nfs -o 
rw=node1.mycluster.example.com,node2,mycluster.example.com,node3.mycluster.example
.com,root=node1.mycluster.example.com,node2.mycluster.example.com,node3.mycluster.
example.com /vol/grid

Note:

Enter share settings as a single line.

If the domain or DNS is secure so that no unauthorized system can obtain an IP address on it, then you can grant root access by domain, rather than specifying particular cluster member nodes:

For example:

/vol/grid/ *.mycluster.example.com

Oracle recommends that you use a secure DNS or domain, and grant root access to cluster member nodes using the domain, as using this syntax allows you to add or remove nodes without the need to reconfigure the NFS server.

If you use Grid Naming Service (GNS), then the subdomain allocated for resolution by GNS within the cluster is a secure domain. Any server without a correctly signed Grid Plug and Play (GPnP) profile cannot join the cluster, so an unauthorized system cannot obtain or use names inside the GNS subdomain.

Caution:

Granting root access by domain can be used to obtain unauthorized access to systems. System administrators should refer to their operating system documentation for the risks associated with using root=access.

After changing /etc/dfs/dfstab, reload the file system mount using the following command:

# /usr/sbin/shareall 

3.2.5 Checking NFS Mount and Buffer Size Parameters for Oracle Clusterware

On the cluster member nodes, you must set the values for the NFS buffer size parameters rsize and wsize to 32768.

The NFS client-side mount options are:

rw,bg,vers=3,proto=tcp,noac,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid

If you have Oracle grid infrastructure binaries on an NFS mount, then you must include the suid option.

The NFS client-side mount options for Oracle Clusterware files (OCR and voting disk files) are:

rw,bg,vers=3,proto=tcp,noac,forcedirectio,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid

Update the /etc/fstab file on each node with an entry containing the NFS mount options for your platform. For example, if your platform is x86-64, and you are creating a mount point for Oracle Clusterware files, then update the /etc/fstab files with an entry similar to the following:

nfsserver:/vol/grid  /u02/oracle/cwfiles nfs \
rw,bg,vers=3,proto=tcp,noac,forcedirectio,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid

Note that mount point options are different for Oracle software binaries, compared to Oracle Clusterware files (OCR and voting disks) and data files.

To create a mount point for binaries only, provide an entry similar to the following for a binaries mount point:

nfs-server:/vol/bin /u02/oracle/grid nfs \
rw,bg,vers=3,proto=tcp,noac,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid

See Also:

My Oracle Support bulletin 359515.1, "Mount Options for Oracle Files When Used with NAS Devices" for the most current information about mount options, available from the following URL:

https://metalink.oracle.com

Note:

Refer to your storage vendor documentation for additional information about mount options.

3.2.6 Checking NFS Mount and Buffer Size Parameters for Oracle RAC

If you use NFS mounts, then you must mount NFS volumes used for storing database files with special mount options on each node that has an Oracle RAC instance. When mounting an NFS file system, Oracle recommends that you use the same mount point options that your NAS vendor used when certifying the device. Refer to your device documentation or contact your vendor for information about recommended mount-point options.

Update the /etc/fstab file on each node with an entry similar to the following:

nfs-server:/vol/DATA/oradata  /u02/oradata     nfs\   
rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac,forcedirectio,vers=3,suid

The mandatory mount options comprise the minimum set of mount options that you must use while mounting the NFS volumes. These mount options are essential to protect the integrity of the data and to prevent any database corruption. Failure to use these mount options may result in the generation of file access errors. Refer to your operating system or NAS device documentation for more information about the specific options supported on your platform.

See Also:

My Oracle Support note 359515.1 for updated NAS mount option information, available at the following URL:
https://metalink.oracle.com

3.2.7 Creating Directories for Oracle Clusterware Files on Shared File Systems

Use the following instructions to create directories for Oracle Clusterware files. You can also configure shared file systems for the Oracle Database and recovery files.

Note:

For NFS storage, you must complete this procedure only if you want to place the Oracle Clusterware files on a separate file system from the Oracle base directory.

To create directories for the Oracle Clusterware files on separate file systems from the Oracle base directory, follow these steps:

  1. If necessary, configure the shared file systems to use and mount them on each node.

    Note:

    The mount point that you use for the file system must be identical on each node. Ensure that the file systems are configured to mount automatically when a node restarts.
  2. Use the bdf command to determine the free disk space on each mounted file system.

  3. From the display, identify the file systems to use. Choose a file system with a minimum of 600 MB of free disk space (one OCR and one voting disk, with external redundancy).

    If you are using the same file system for multiple file types, then add the disk space requirements for each type to determine the total disk space requirement.

  4. Note the names of the mount point directories for the file systems that you identified.

  5. If the user performing installation (typically, grid or oracle) has permissions to create directories on the storage location where you plan to install Oracle Clusterware files, then OUI creates the Oracle Clusterware file directory.

    If the user performing installation does not have write access, then you must create these directories manually using commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on the directory. For example, where the user is oracle, and the Oracle Clusterware file storage area is cluster:

    # mkdir /mount_point/cluster
    # chown oracle:oinstall /mount_point/cluster
    # chmod 775 /mount_point/cluster
    

    Note:

    After installation, directories in the installation path for the Oracle Cluster Registry (OCR) files should be owned by root, and not writable by any account other than root.

When you have completed creating a subdirectory in the mount point directory, and set the appropriate owner, group, and permissions, you have completed NFS configuration for Oracle grid infrastructure.

3.2.8 Creating Directories for Oracle Database Files on Shared File Systems

Use the following instructions to create directories for shared file systems for Oracle Database and recovery files (for example, for an Oracle RAC database).

  1. If necessary, configure the shared file systems and mount them on each node.

    Note:

    The mount point that you use for the file system must be identical on each node. Ensure that the file systems are configured to mount automatically when a node restarts.
  2. Use the bdf command to determine the free disk space on each mounted file system.

  3. From the display, identify the file systems:

    File Type File System Requirements
    Database files Choose either:
    • A single file system with at least 1.5 GB of free disk space.

    • Two or more file systems with at least 1.5 GB of free disk space in total.

    Recovery files Choose a file system with at least 2 GB of free disk space.

    If you are using the same file system for multiple file types, then add the disk space requirements for each type to determine the total disk space requirement.

  4. Note the names of the mount point directories for the file systems that you identified.

  5. If the user performing installation (typically, oracle) has permissions to create directories on the disks where you plan to install Oracle Database, then DBCA creates the Oracle Database file directory, and the Recovery file directory.

    If the user performing installation does not have write access, then you must create these directories manually using commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on them:

    • Database file directory:

      # mkdir /mount_point/oradata
      # chown oracle:oinstall /mount_point/oradata
      # chmod 775 /mount_point/oradata
      
    • Recovery file directory (Fast Recovery Area):

      # mkdir /mount_point/fast_recovery_area
      # chown oracle:oinstall /mount_point/fast_recovery_area
      # chmod 775 /mount_point/fast_recovery_area
      

By making members of the oinstall group owners of these directories, this permits them to be read by multiple Oracle homes, including those with different OSDBA groups.

When you have completed creating subdirectories in each of the mount point directories, and set the appropriate owner, group, and permissions, you have completed NFS configuration for Oracle Database shared storage.

3.3 Automatic Storage Management Storage Configuration

Review the following sections to configure storage for Automatic Storage Management:

3.3.1 Configuring Storage for Automatic Storage Management

This section describes how to configure storage for use with Automatic Storage Management.

3.3.1.1 Identifying Storage Requirements for Automatic Storage Management

To identify the storage requirements for using Automatic Storage Management, you must determine how many devices and the amount of free disk space that you require. To complete this task, follow these steps:

  1. Determine whether you want to use Automatic Storage Management for Oracle Clusterware files (OCR and voting disks), Oracle Database files, recovery files, or all files except for Oracle Clusterware or Oracle Database binaries. Oracle Database files include data files, control files, redo log files, the server parameter file, and the password file.

    Note:

    You do not have to use the same storage mechanism for Oracle Clusterware, Oracle Database files and recovery files. You can use a shared file system for one file type and Automatic Storage Management for the other.

    If you choose to enable automated backups and you do not have a shared file system available, then you must choose Automatic Storage Management for recovery file storage.

    If you enable automated backups during the installation, then you can select Automatic Storage Management as the storage mechanism for recovery files by specifying an Automatic Storage Management disk group for the Fast Recovery Area. Depending on how you choose to create a database during the installation, you have the following options:

    • If you select an installation method that runs ASMCA in interactive mode, then you can decide whether you want to use the same Automatic Storage Management disk group for database files and recovery files, or use different failure groups for each file type.

    • If you select an installation method that runs DBCA in noninteractive mode, then you must use the same Automatic Storage Management disk group for database files and recovery files.

  2. Choose the Automatic Storage Management redundancy level to use for the Automatic Storage Management disk group.

    The redundancy level that you choose for the Automatic Storage Management disk group determines how Automatic Storage Management mirrors files in the disk group and determines the number of disks and amount of free disk space that you require, as follows:

    • External redundancy

      An external redundancy disk group requires a minimum of one disk device. The effective disk space in an external redundancy disk group is the sum of the disk space in all of its devices.

      Because Automatic Storage Management does not mirror data in an external redundancy disk group, Oracle recommends that you use external redundancy with storage devices such as RAID, or other similar devices that provide their own data protection mechanisms.

    • Normal redundancy

      In a normal redundancy disk group, to increase performance and reliability, Automatic Storage Management by default uses two-way mirroring. A normal redundancy disk group requires a minimum of two disk devices (or two failure groups). The effective disk space in a normal redundancy disk group is half the sum of the disk space in all of its devices.

      For Oracle Clusterware files, Normal redundancy disk groups provide 3 voting disk files, 1 OCR and 2 copies (one primary and one secondary mirror). With normal redundancy, the cluster can survive the loss of one failure group.

      For most installations, Oracle recommends that you select normal redundancy.

    • High redundancy

      In a high redundancy disk group, Automatic Storage Management uses three-way mirroring to increase performance and provide the highest level of reliability. A high redundancy disk group requires a minimum of three disk devices (or three failure groups). The effective disk space in a high redundancy disk group is one-third the sum of the disk space in all of its devices.

      For Oracle Clusterware files, High redundancy disk groups provide 5 voting disk files, 1 OCR and 3 copies (one primary and two secondary mirrors). With high redundancy, the cluster can survive the loss of two failure groups.

      While high redundancy disk groups do provide a high level of data protection, you should consider the greater cost of additional storage devices before deciding to select high redundancy disk groups.

  3. Determine the total amount of disk space that you require for Oracle Clusterware files, and for the database files and recovery files.

    Use Table 3-4 and Table 3-5 to determine the minimum number of disks and the minimum disk space requirements for installing Oracle Clusterware files, and installing the starter database, where you have voting disks in a separate disk group:

    Table 3-4 Total Oracle Clusterware Storage Space Required by Redundancy Type

    Redundancy Level Minimum Number of Disks Oracle Cluster Registry (OCR) Files Voting Disk Files Both File Types

    External

    1

    280 MB

    280 MB

    560 MB

    Normal

    3

    560 MB

    840 MB

    1.4 GBFoot 1 

    High

    5

    840 MB

    1.4 GB

    2.3 GB


    Footnote 1 If you create a diskgroup during installation, then it must be at least 2 GB.

    Note:

    If the voting disk files are in a disk group, be aware that disk groups with Oracle Clusterware files (OCR and voting disks) have a higher minimum number of failure groups than other disk groups.

    If you create a diskgroup as part of the installation in order to install the OCR and voting disk files, then the installer requires that you create these files on a diskgroup with at least 2 GB of available space.

    Table 3-5 Total Oracle Database Storage Space Required by Redundancy Type

    Redundancy Level Minimum Number of Disks Database Files Recovery Files Both File Types

    External

    1

    1.5 GB

    3 GB

    4.5 GB

    Normal

    2

    3 GB

    6 GB

    9 GB

    High

    3

    4.5 GB

    9 GB

    13.5 GB


  4. For Oracle Clusterware installations, you must also add additional disk space for the Automatic Storage Management metadata. You can use the following formula to calculate the additional disk space requirements (in MB):

    total = [2 * ausize * disks] + [redundancy * (ausize * (nodes * (clients + 1) + 30) + (64 * nodes) + 533)]

    Where:

    • redundancy = Number of mirrors: external = 1, normal = 2, high = 3.

    • ausize = Metadata AU size in megabytes.

    • nodes = Number of nodes in cluster.

    • clients - Number of database instances for each node.

    • disks - Number of disks in disk group.

    For example, for a four-node Oracle RAC installation, using three disks in a normal redundancy disk group, you require an additional X MB of space:

    [2 * 1 * 3] + [2 * (1 * (4 * (4 + 1)+ 30)+ (64 * 4)+ 533)] = 1684 MB

    To ensure high availability of Oracle Clusterware files on Oracle ASM, you need to have at least 2 GB of disk space for Oracle Clusterware files in three separate failure groups, with at least three physical disks. Each disk must have at least 1 GB of capacity to ensure that there is sufficient space to create Oracle Clusterware files.

  5. For Oracle RAC installations, you must also add additional disk space for the Automatic Storage Management metadata. You can use the following formula to calculate the additional disk space requirements (in MB):

    total = [2 * ausize * disks] + [redundancy * (ausize * (nodes * (clients + 1) + 30) + (64 * nodes) + 533)]

    Where:

    • ausize = Metadata AU size in megabytes.

    • clients = Number of database instances for each node.

    • disks = Number of disks in disk group.

    • nodes = Number of nodes in cluster.

    • redundancy = Number of mirrors: external = 1, normal = 2, high = 3.

    For example, for a four-node Oracle RAC installation, using three disks in a normal redundancy disk group, you require an additional 1684 MB of disk space:

    [2 * 1 * 3] + [2 * (1 * (4 * (4+1) + 30) + (64 * 4) + 533)] = 1684 MB

    If an Automatic Storage Management instance is already running on the system, then you can use an existing disk group to meet these storage requirements. If necessary, you can add disks to an existing disk group during the installation.

  6. Optionally, identify failure groups for the Automatic Storage Management disk group devices.

    If you intend to use a normal or high redundancy disk group, then you can further protect your database against hardware failure by associating a set of disk devices in a custom failure group. By default, each device comprises its own failure group. However, if two disk devices in a normal redundancy disk group are attached to the same SCSI controller, then the disk group becomes unavailable if the controller fails. The controller in this example is a single point of failure.

    To protect against failures of this type, you could use two SCSI controllers, each with two disks, and define a failure group for the disks attached to each controller. This configuration would enable the disk group to tolerate the failure of one SCSI controller.

    Note:

    Define custom failure groups after installation, using the GUI tool ASMCA, the command line tool asmcmd, or SQL commands.

    If you define custom failure groups, then for failure groups containing database files only, you must specify a minimum of two failure groups for normal redundancy disk groups and three failure groups for high redundancy disk groups.

    For failure groups containing database files and clusterware files, including voting disks, you must specify a minimum of three failure groups for normal redundancy disk groups, and five failure groups for high redundancy disk groups.

    Disk groups containing voting files must have at least 3 failure groups for normal redundancy or at least 5 failure groups for high redundancy. Otherwise, the minimum is 2 and 3 respectively. The minimum number of failure groups applies whether or not they are custom failure groups.

  7. If you are sure that a suitable disk group does not exist on the system, then install or identify appropriate disk devices to add to a new disk group. Use the following guidelines when identifying appropriate disk devices:

    • All of the devices in an Automatic Storage Management disk group should be the same size and have the same performance characteristics.

    • Do not specify multiple partitions on a single physical disk as a disk group device. Automatic Storage Management expects each disk group device to be on a separate physical disk.

    • Although you can specify a logical volume as a device in an Automatic Storage Management disk group, Oracle does not recommend their use. Non-shared logical volumes are not supported with Oracle RAC. If you want to use logical volumes for your Oracle RAC database, then you must use shared logical volumes created by a cluster-aware logical volume manager.

3.3.1.2 Creating Files on a NAS Device for Use with Automatic Storage Management

If you have a certified NAS storage device, then you can create zero-padded files in an NFS mounted directory and use those files as disk devices in an Automatic Storage Management disk group.

To create these files, follow these steps:

  1. If necessary, create an exported directory for the disk group files on the NAS device.

    Refer to the NAS device documentation for more information about completing this step.

  2. Switch user to root.

  3. Create a mount point directory on the local system.

  4. To ensure that the NFS file system is mounted when the system restarts, add an entry for the file system in the mount file /etc/fstab.

    See Also:

    My Oracle Support note 359515.1 for updated NAS mount option information, available at the following URL:
    https://metalink.oracle.com
    

    For more information about editing the mount file for the operating system, refer to the man pages. For more information about recommended mount options, refer to the section Section 3.2.6, "Checking NFS Mount and Buffer Size Parameters for Oracle RAC."

  5. Mount the NFS file system on the local system

  6. Choose a name for the disk group to create. For example: sales1.

  7. Create a directory for the files on the NFS file system, using the disk group name as the directory name.

  8. Use commands similar to the following to create the required number of zero-padded files in this directory:

    # dd if=/dev/zero of=/mnt/nfsdg/disk1 bs=1024k count=1000
    

    This example creates 1 GB files on the NFS file system. You must create one, two, or three files respectively to create an external, normal, or high redundancy disk group.

  9. Enter commands similar to the following to change the owner, group, and permissions on the directory and files that you created, where the installation owner is grid, and the OSASM group is asmadmin:

    # chown -R grid:asmadmin /mnt/nfsdg
    # chmod -R 660 /mnt/nfsdg
    
  10. If you plan to install Oracle RAC or a standalone Oracle Database, then during installation, edit the Automatic Storage Management disk discovery string to specify a regular expression that matches the file names you created. For example:

    /mnt/nfsdg/sales1/
    

3.3.1.3 Using an Existing Automatic Storage Management Disk Group

To store either database or recovery files in an existing Automatic Storage Management disk group, then you have the following choices, depending on the installation method that you select:

  • If you select an installation method that runs Database Configuration Assistant in interactive mode, then you can decide whether you want to create a disk group, or to use an existing one.

    The same choice is available to you if you use Database Configuration Assistant after the installation to create a database.

  • If you select an installation method that runs Database Configuration Assistant in noninteractive mode, then you must choose an existing disk group for the new database; you cannot create a disk group. However, you can add disk devices to an existing disk group if it has insufficient free space for your requirements.

Note:

The Automatic Storage Management instance that manages the existing disk group can be running in a different Oracle home directory.

To determine if an existing Automatic Storage Management disk group exists, or to determine if there is sufficient disk space in a disk group, you can use the ASM command line tool (asmcmd), Oracle Enterprise Manager Grid Control or Database Control. Alternatively, you can use the following procedure:

  1. View the contents of the oratab file to determine if an Automatic Storage Management instance is configured on the system:

    $ more /etc/oratab
    

    If an Automatic Storage Management instance is configured on the system, then the oratab file should contain a line similar to the following:

    +ASM2:oracle_home_path
    

    In this example, +ASM2 is the system identifier (SID) of the Automatic Storage Management instance, with the node number appended, and oracle_home_path is the Oracle home directory where it is installed. By convention, the SID for an Automatic Storage Management instance begins with a plus sign.

  2. Set the ORACLE_SID and ORACLE_HOME environment variables to specify the appropriate values for the Automatic Storage Management instance.

  3. Connect to the Automatic Storage Management instance and start the instance if necessary:

    $ $ORACLE_HOME/bin/asmcmd
    ASMCMD> startup
    
  4. Enter one of the following commands to view the existing disk groups, their redundancy level, and the amount of free disk space in each one:

    ASMCMD> lsdb
    

    or:

    $ORACLE_HOME/bin/asmcmd -p lsdg
    
  5. From the output, identify a disk group with the appropriate redundancy level and note the free space that it contains.

  6. If necessary, install or identify the additional disk devices required to meet the storage requirements listed in the previous section.

    Note:

    If you are adding devices to an existing disk group, then Oracle recommends that you use devices that have the same size and performance characteristics as the existing devices in that disk group.

3.3.1.4 Configuring Disk Devices for Oracle ASM

To configure disks for use with ASM on HP-UX, follow these steps:

  1. If necessary, install the shared disks that you intend to use for the ASM disk group.

  2. To make sure that the disks are available, enter the following command on every node:

    # /usr/sbin/ioscan -fun -C disk
    

    The output from this command is similar to the following:

    Class  I  H/W Path    Driver S/W State   H/W Type     Description
    ==========================================================================
    disk    0  0/0/1/0.6.0 sdisk  CLAIMED     DEVICE       HP   DVD-ROM 6x/32x
                           /dev/rdsk/c0t6d0   /dev/rdsk/c0t6d0
    disk    1  0/0/1/1.2.0 sdisk  CLAIMED     DEVICE      SEAGATE ST39103LC
                           /dev/rdsk/c1t2d0   /dev/rdsk/c1t2d0
    

    This command displays information about each disk attached to the system, including character raw device names (/dev/rdsk/).

    Note:

    On HP-UX 11i v.3, you can also use agile view to review mass storage devices, including character raw devices (/dev/rdisk/diskxyz). For example:
    #>ioscan -funN -C disk
    Class     I  H/W Path  Driver S/W State   H/W Type     Description
    ===================================================================
    disk      4  64000/0xfa00/0x1   esdisk   CLAIMED     DEVICE       HP 73.4GST373454LC
                     /dev/disk/disk4   /dev/rdisk/disk4
    disk    907  64000/0xfa00/0x2f  esdisk   CLAIMED     DEVICE       COMPAQ  MSA1000 VOLUME
                     /dev/disk/disk907   /dev/rdisk/disk907
    
  3. If the ioscan command does not display device name information for a device that you want to use, enter the following command to install the special device files for any new devices:

    # /usr/sbin/insf -e
    
  4. For each disk that you want to add to a disk group, enter the following command on any node to verify that it is not already part of an LVM volume group:

    # /sbin/pvdisplay /dev/dsk/cxtydz
    

    If this command displays volume group information, the disk is already part of a volume group. The disks that you choose must not be part of an LVM volume group.

    Note:

    If you are using different volume management software, for example VERITAS Volume Manager, refer to the appropriate documentation for information about verifying that a disk is not in use.
  5. Enter commands similar to the following on every node to change the owner, group, and permissions on the character raw device file for each disk that you want to add to a disk group, so that the owner is the grid infrastructure owner (in this example, grid), and the group that has access is the OSASM group (in this example, asmadmin):

    # chown grid:asmadmin /dev/rdsk/cxtydz
    # chmod 660 /dev/rdsk/cxtydz
    

    Note:

    If you are using a multi-pathing disk driver with ASM, make sure that you set the permissions only on the correct logical device name for the disk.

    If the nodes are configured differently, the device name for a particular device might be different on some nodes. Make sure that you specify the correct device names on each node.

3.3.2 Using Diskgroups with Oracle Database Files on ASM

Review the following sections to configure Automatic Storage Management storage for Oracle Clusterware and Oracle Database Files:

3.3.2.1 Identifying and Using Existing Oracle Database Diskgroups on ASM

The following section describes how to identify existing diskgroups and determine the free disk space that they contain.

  • Optionally, identify failure groups for the Automatic Storage Management disk group devices.

    If you intend to use a normal or high redundancy disk group, then you can further protect your database against hardware failure by associating a set of disk devices in a custom failure group. By default, each device comprises its own failure group. However, if two disk devices in a normal redundancy disk group are attached to the same SCSI controller, then the disk group becomes unavailable if the controller fails. The controller in this example is a single point of failure.

    To protect against failures of this type, you could use two SCSI controllers, each with two disks, and define a failure group for the disks attached to each controller. This configuration would enable the disk group to tolerate the failure of one SCSI controller.

    Note:

    If you define custom failure groups, then you must specify a minimum of two failure groups for normal redundancy and three failure groups for high redundancy.

3.3.2.2 Creating Diskgroups for Oracle Database Data Files

If you are sure that a suitable disk group does not exist on the system, then install or identify appropriate disk devices to add to a new disk group. Use the following guidelines when identifying appropriate disk devices:

  • All of the devices in an Automatic Storage Management disk group should be the same size and have the same performance characteristics.

  • Do not specify multiple partitions on a single physical disk as a disk group device. Automatic Storage Management expects each disk group device to be on a separate physical disk.

  • Although you can specify a logical volume as a device in an Automatic Storage Management disk group, Oracle does not recommend their use. Logical volume managers can hide the physical disk architecture, preventing Automatic Storage Management from optimizing I/O across the physical devices. They are not supported with Oracle RAC.

3.3.3 Migrating Existing Oracle ASM Instances

If you have an Oracle ASM installation from a prior release installed on your server, or in an existing Oracle Clusterware installation, then you can use Automatic Storage Management Configuration Assistant (ASMCA, located in the path Grid_home/bin) to upgrade the existing Oracle ASM instance to 11g release 2 (11.2), and subsequently configure failure groups, and ASM volumes.

Note:

You must first shut down all database instances and applications on the node with the existing Oracle ASM instance before upgrading it.

During installation, if you chose to use Oracle ASM and ASMCA detects that there is a prior Oracle ASM version installed in another ASM home, then after installing the Oracle ASM 11g release 2 (11.2) binaries, you can start ASMCA to upgrade the existing Oracle ASM instance.

On an existing Oracle Clusterware or Oracle RAC installation, if the prior version of Oracle ASM instances on all nodes is 11g release 1, then you are provided with the option to perform a rolling upgrade of Oracle ASM instances. If the prior version of Oracle ASM instances on an Oracle RAC installation are from a release prior to 11g release 1, then rolling upgrades cannot be performed. Oracle ASM on all nodes will be upgraded to 11g release 2 (11.2).

3.4 Desupport of Block and Raw Devices

With the release of Oracle Database 11g release 2 (11.2) and Oracle RAC 11g release 2 (11.2), using Database Configuration Assistant or the installer to store Oracle Clusterware or Oracle Database files on block or raw devices is not supported.

If you intend to upgrade an existing Oracle RAC database, or an Oracle RAC database with Oracle ASM instances, then you can use an existing raw or block device partition, and perform a rolling upgrade of your existing installation. Performing a new installation using block or raw devices is not allowed.