Oracle Berkeley DB, Java Edition

Getting Started with
High Availability Applications

12c¢ Release 2
Library Version 12.2.7.5

ORACLE
BERKELEY DB

Legal Notice
Copyright © 2002 - 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure

and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks
are reserved. No third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Published 31-Oct-2017

Table of Contents

o] = = Lo \%
Conventions Used in this BOOKcceeiiietiiiieiiiiiieieriiaerererreneerenaeeranaesaaneens \%
For More Informationeeeeeeiiit it e e e e et re et e renareeeneesannnenes vi
(00 31 t- Vot 6 e vi

LIPS 10T 11 Tt o o T 1
OV VI BW ettt ettt et ettt et et eeeteeeateeanaesannesannnasanasssannesannnesenanssenness 1
Replication Group MEmMDEISuuuuiiiiiiiiiiiiiiiiietteeeiiieeeeeeeennneeeeesennnnnnes 2
Replicated ENVIrONMENES .uviiiiiiittiiiiiiiitteeeiiieeeeeeeninaeeeeeennnneseesessnnnneens 3
SeleCtiNg @ MaSTEr 1iiiiiiieti ittt eiiii e eeeieeeeeeeeananeeeassnnneesssesnnnnnes 4
REPLICAtION STrEAMS ittt iiiiiiii ittt tereiieeeeeeennnaeneeeesnnnsessesennnnnnes 5
Managing Data GUANANTEES ...veiiieieeteeereiieeeeeeeenrneeeeesessnsseeeeessnnsseeessnsnssssesenns 5
DU =1 0] 111 4V A PP 6
Managing Data CONSISTENCY tiviuuueietiiiiiietetreeeiieeeeeeenrneeeeeesenneeseesennnaeeeens 6
Replication Group Life CYCle civuriiiiiiiiiiiiiiiiiiiii e eeiiieeeeeeirnaeeeeesannnseseennnns 7
TEIMINOLOGY tiuniitetttiiiiiiteteteeieteeeeeennaeeeeesernsaeeseessnnasesssssnnnsesseesannnnes 7
1[0 Ta Lo =L 8

New Replication Group Startup ..ieeevieeeeeieeiiieeeeeeeeiieeeeeeeernnneeeeeeennnseseesanns 9
SUDSEQUENT STAITUDPS .uvvetttiiiiitetieeeiineeeereerneeeeeessnnneeeeessnnnssssssssnnnaeeens 10

[N o] { ot B - | (U o J PP 10
Lt R W)l oYU 1Y 11

TWO NOAE GIrOUPS .uvveeereeeiueeeeeeeennueeeeeessneeeeesesnssssssessnnssesessssnssssesanns 12

2. Replication APl First STEPS tiiieiiruttttereiieeeeereereeeeeeeeenaseeeeessnseeesssssnssesesesnnnanes 13
Using Replicated ENVIFONMENTSueiiiiiiiiueteeeeeiiueeeeeeenrnneseeresenneseeeesssnnaesssanns 13
Configuring Replicated ENVIrONMENTS ..vviiiiiieiieiiiiiieeeieiiieeeereeenneeeeeeannns 14

N = o o] -t 17
Master-Specific HA EXCEPLIONS tiiiiiieiiiiiiiiiiitteiiiiieteeeeennneeeerensnneneseaannns 17
Replica-Specific HA EXCEPLIONS .uviiiiiiiietteiiiiieeeieenieeeeeeeenneneeessennnnesenns 18
Replicated Environment Handle-Specific EXCEPLiONS ..ccvvveviiieiiineneeeiennnneeennn. 19
Opening a Replicated ENVIrONMENT ...vviiiiiiiitiiiiiiiieteeeeeinneeeeeeenrneeeeesennnneneens 20
Managing Write Requests at @ REPlICA «vvviiiiiiiniiiiiiiiiiiiiiiiiiiieeeeiieeeeeeannnnnnes 21
Using the StateChangeListeneruviiiiiiiietteiiiiiireeeeeiireeeeeeeninneeeeseennnanes 22
Catching ReplicCaWriteEXCEPLION t..uuueeiiiiiiiiieieiiiieeeeeenineeeereeenneneeeaanns 23
SECONAArY NOAES wiiiiiiiiitttiiiiiitteeeeiieeeeeeeraeeeeesennaneeeesesnnssesessnnnssseesenns 24
TimMe SYNCRIONIZAtiON .uiiiiiitiiiiiiiiiieiiiieeeeeiiaeeeeeeennneaeeseennnseseseannnnnnes 25
Configuring TWO-NOAE GIrOUPS ..uveeerreriuereeeeeeineeeeeeenrseeeeeressnsesessessnnsssssssannnes 25
3. Transaction ManagemMENT ...ciiiiiineetetieiiieteteeearneeeeeeesenneeeeesssrnseesssessnnnnsssesennnes 28
Managing DUrability ..cccuueeeiiiiiiiiiii it ittt ettt e eeiiaeeeeeaenneaeeaaanns 29
DUrability CONtrolSueeeeiiiiiitiieiiiiteeeeeeiieeeeeeennneeeesessnnnneeeesssnnneneens 29
Commit File Synchronizationceeeeiiiiiiiiiiiiiiiiiiiiiieeiireeeeaeennaaeens 30
Managing ACKNOWLEdZEMENES ..vviiireeiiiiiiiiteeieeiieeeeeeeninneeeeresnnnnnecseannns 31
Managing Acknowledgement TIMEOULSceviiiiiieierieiiiieneeeeeennneeeeeanns 33

ManNAGiNg CONSISTENCY tiiiiiietttiereiieteeeeeaiieeeeeeeerneeeeeeesnneseeesennnssesesesnnsneens 34
Setting ConsiStENCY POLICIES .uuuueeiiiiiiiitieiiiieeeeeiiieeeeeeennneeeeeesnnnnaeeens 36
Time ConsSisteNCY POLICIES .uuviiiiiiiiitieiiiitetereiiieeeeeeeenineeeesesssnnneeeesannnes 37
Commit Point ConsistenCy POLICIES ..viviirueiiiiiiiiieiiieiiieeeeeiineeeeeeennnenenns 38

F Y- 1 |1 Y P PP PP 40

31-Oct-2017 Using JE High Availability Page iii

Write AVailability cocueeiiieiiiiiiiiii it riiieieeeneeeeineeeeneeennneeeanneens 41

Read Availability .oueeieieereieiiriiiiiiiieiiteeiieeeeneeeanneeesneeesnneeesnneeenneeees 41
Consistency and Durability US@ Caseseveverereneireiueireneeeerneereneeeesnecesnneesonaeess 42
L0013 T 3 T 0o P ¥

ReAdING REVIEWS .nuuiiiiieiiiiiiiiitiiiiteeiieeeenneeeeneeeenneeeeneesnsneeesnneess 42

WIIting REVIEWS it iiiiiiii i reeiieereennaneesseannaneasssanses 42

Updating Events and Restaurant Listingsc.cccvevviiiieiiiieiieeennneennnne.. 43

Updating Account Profilesceeeeiieiieiiiiiiiiieiiieireieeennieereineeeenneeanns 43

53 To T = o 1A [0 VPP 2

Logging Sampling RESULES ...uviiiineiiiiniiiiiiiiiieeieiiennieeeeineeeeneeennneees. 44

Monitoring the Production Streamcceeviiiiiiiiiiiiieiieeieneeeenneeeen.. 45

Managing Transaction ROIDACKS ...ccviiriniiiiiiiiiiiiiiiiiiiiieiieeeiieeeenneeenneeeennes. 4D
Example Run Transaction Class ..cicveeieeeiiiieeiriieeerneeieneeennneeeenneescneeeennececnness 46
RUNTransaction Classeevveeiieniieiiiiiiiiieiiieiieeiieeiiiesieeeneecnsecnsseneenss 46

Using RUNTIaNSACTION tiiunneeeiitiiiiiittiieiiiitetteeennnneeeseensnaneesssassansasssassss D2

T U == P 1o |
Administering the Replication GroUPcccveieieiierietieieeeeieeeesneeeeseeeeneeeasneeeaes DD
Listing Group MemMDErS ...uiiiueiiiiiiiiitieiieteeiieeeeieeeeneeeeseeeesneeessassasnaees DD

Locating the Current Masterieveiiieieiieiiiiriietieieereneeeeseceenaeessneeesnneess D0

Adding and Removing Nodes from the Groupc.cccceveiiiiiiiiniieeenieeneneees. 57

RESEONNG LOG FileS .uviinneiiiiitiiiitiiiiieieereieteeeeeeenaeeeeneeeesneessnaesssnessssnssaans D9
Reclaiming LOg FileS ...uiveueiiiiiiiiiiiiiiiiiiiiiiiieieiieeieieeeesneescnneeaanneennnss 00
Suspending Writes Due to Disk Thresholdscccevveiiiiiiiiiiiiiiiiiiinneennne... 60

Backing up a Replicated Applicationcceeeeiiiiiiiniiiriiieiiieeeineeeeieeeenneeennneeanns 61
Converting Existing Environments for Replicationcc.ccevvviiiiiiiiiiiiiiiiiniinnen.. 61

5. Writing Monitor NOAESiiiiniiiiiiiiiitiiiitiiiiteeeieererneerenaeeesneesenneessnessesneseannes. 04
MONTEOT CLAaSS .venntrtiitiiiiiiiiie ittt eiieeeieetieesiteeneeensscnsecnseonssonssnnsses 04
Listening for EVENTS ..uiiiiuiiiiitiiiiiiiiitieiieteeiieeeeiaeeesneeeesneeessneessneesssnasesnneess 0D

6. Replication EXamMPLES ...uueieiieiirieeieitireieteeneeeenneeeeneeeesnseeesneeesnassesnssssnnseesnaes 07
A Ye 1301 () A L (o] o PPN o |
L F= Y0 1T U PR o |
Time SyNChronizationceeieiiiiiiiiiiiiiiiiiiiieiieeieeeeieeeeeneeeasneeesnneessneeeass 09
Node Configuration ...icveeiieieiiiitiiiiiiiiieiteeeieteeneereneeeesneeeenneesonasessneeeees 09
RUNNTNG BACKUPS +uuvtiettieittieitieeieteenneeeenneeeeneeeesneeeesneeesnnesesnesessnseesnansanns 71
Adding and Removing NOAESuviiiieiiriieiiiittreieeeenieerenneereneeeesneerennseeonneeanns 71
Upgrading a JE Replication GIrOUPccuveeeiueierieeeenueeeeiueeesneeeeseeessneeessaeeasnaeees 72
UPZrade PrOCESS ..vvieiutireretieieeraieeeeeneeeenneeeenaeeesnecessnsesonaesssnesssnnsenanes 12

Things To Remember While Upgradingcceeviiiiiiiiiiiiiiiiienieeeenneeeennness 73

Handling Problems While Upgradingcceeeiiiieiieiieieniieienineeesneeennneeeannees 73

Resetting a Replication GrOUD ...cccviiiieiiiiieiiniieiieitereieeeenneerenneeesneeeesneeeannees 14

A. Managing a Failure of the Majority «.cceeieieiiriiiiiiiiiiiiiieiieeiieeeeieeeesneeecnneeeannes 7D
Overriding the Electable Group Siz€ccceiiiiiiiiiiiiiiiiiiiiniiereieeeeneeeenneeeanaes 1D
Setting the OVErrideiiviiiiiiiiiiiiiiiiiiiiii it eiteeeneeeesneeeenaseesneeeannes 10

Restoring the Default Stateccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeieeeeneeeanneesss 10

Override EXampPle ..uiiiiiiiiiiiiiiiiiiiiiiiteeiieereneeeeeneeeesneesenaseesnsesasneeeaes 10

31-Oct-2017

Using JE High Availability Page iv

Preface

This document describes how to write replicated Berkeley DB, Java Edition applications. The
APIs used to implement replication in your application are described here. This book describes
the concepts surrounding replication, the scenarios under which you might choose to use it,
and the architectural requirements that a replication application has over a transactional
application.

This book is aimed at the software engineer responsible for writing a replicated JE
application.

This book assumes that you have already read and understood the concepts contained in the
Berkeley DB, Java Edition Getting Started with Transaction Processing guide.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment() constructor returns an Environment class object.”

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory.”

Program examples are displayed in a monospaced font on a shaded background. For example:

import com.sleepycat.je.Environment;

// Open the environment. Allow it to be created if it does not already
// exist.
Environment myDbEnv;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

// Open the environment. Allow it to be created if it does not already
// exist.

Environment myDbEnv;

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);

myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

31-Oct-2017 Using JE High Availability Page v

Note

Finally, notes of special interest are represented using a note block such as this.

For More Information

Contact Us

Beyond this manual, you may also find the following sources of information useful when
building a replicated JE application:

» Getting Started with Berkeley DB, Java Edition

» Berkeley DB, Java Edition Javadoc

» Berkeley DB, Java Edition Getting Started with Transaction Processing
» Berkeley DB, Java Edition Collections Tutorial

To download the latest Berkeley DB Java Edition documentation along with white papers
and other collateral, visit http://www.oracle.com/technetwork/indexes/documentation/
index.html.

For the latest version of the Oracle Berkeley DB Java Edition downloads, visit http://
www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/
index.html.

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB Java Edition at: https://forums.oracle.com/forums/forum.jspa?forumiD=273.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

31-Oct-2017

Using JE High Availability Page vi

http://docs.oracle.com/cd/E17277_02/html/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf
http://docs.oracle.com/cd/E17277_02/html/java/index.html
http://docs.oracle.com/cd/E17277_02/html/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://docs.oracle.com/cd/E17277_02/html/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
https://forums.oracle.com/forums/forum.jspa?forumID=273
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Introduction

Overview

This book provides a thorough introduction to replication as used with Berkeley DB, Java
Edition (JE). It begins by offering a general overview to replication and the benefits it
provides. It also describes the APIs that you use to implement replication, and it describes
architecturally the things that you need to do to your application code in order to use the
replication APIs.

You should understand the concepts from the Berkeley DB, Java Edition Getting Started with
Transaction Processing guide before reading this book.

Welcome to the JE High Availability (HA) product. JE HA is a replicated, single-master,
embedded database engine based on Berkeley DB, Java Edition. JE HA offers important
improvements in application availability, as well as offering improved read scalability and
performance. JE HA does this by extending the data guarantees offered by a traditional
transactional system to processes running on multiple physical hosts.

The JE replication APIs allow you to distribute your database contents (performed on a
read-write Master) to one or more read-only Replicas. For this reason, JE's replication
implementation is said to be a single master, multiple replica replication strategy.

Replication offers your application a number of benefits that can be a tremendous help.
Primarily, replication's benefits revolve around performance, but there is also a benefit in
terms of data durability guarantees.

Briefly, some of the reasons why you might choose to implement replication in your JE
application are:

« Improved application availability.

By spreading your data across multiple machines, you can ensure that your application’'s
data continues to be available even in the event of a hardware failure on any given machine
in the replication group.

 Improve read performance.

By using replication you can spread data reads across multiple machines on your network.
Doing so allows you to vastly improve your application’s read performance. This strategy
might be particularly interesting for applications that have readers on remote network
nodes; you can push your data to the network’s edges thereby improving application data
read responsiveness.

« Improve transactional commit performance
In order to commit a transaction and achieve a transactional durability guarantee, the

commit must be made durable. That is, the commit must be written to disk (usually, but not
always, synchronously) before the application’s thread of control can continue operations.

31-Oct-2017

Using JE High Availability Page 1

Library Version 12.2.7.5 Introduction

Replication allows you to batch disk I/0 so that it is performed as efficiently as possible
while still maintaining a degree of durability by committing to the network. In other words,
you relax your transactional durability guarantees on the machine where you perform the
database write, but by virtue of replicating the data across the network you gain some
additional durability guarantees beyond what is provided locally.

» Improve data durability guarantee.

In a traditional transactional application, you commit your transactions such that data
modifications are saved to disk. Beyond this, the durability of your data is dependent upon
the backup strategy that you choose to implement for your site.

Replication allows you to increase this durability guarantee by ensuring that data
modifications are written to multiple machines. This means that multiple disks, disk
controllers, power supplies, and CPUs are used to ensure that your data modification makes
it to stable storage. In other words, replication allows you to minimize the problem of a
single point of failure by using more hardware to guarantee your data writes.

If you are using replication for this reason, then you probably will want to configure your
application such that it waits to hear about a successful commit from one or more replicas
before continuing with the next operation. This will obviously impact your application’s
write performance to some degree — with the performance penalty being largely dependent
upon the speed and stability of the network connecting your replication group.

Replication Group Members

Processes that take part in a JE HA application are generically called nodes. Most nodes serve
as a read-only Replica. One node in the HA application can perform database writes. This is
the Master node.

The sum totality of all the nodes taking part in the replicated application is called the
replication group. While it is only a logical entity (there is no object that you instantiate

and destroy which represents the replication group), the replication group is the first-order
element of management for a replicated HA application. It is very important to remember
that the replication group is persistent in that it exists regardless of whether its member
nodes are currently running. In fact, nodes that have been added to a replication group (with
the exception of Secondary nodes) will remain in the group until they are manually removed
from the group by you or your application's administrator.

Replication groups consist of electable nodes and, optionally, Monitor and Secondary nodes.

Electable nodes are replication group members that can be elected to become the group's
Master node through a replication election. Electable nodes are also the group members
that vote in these elections. If an electable node is not a Master, then it serves in the
replication group as a read-only Replica. Electable nodes have access to a JE environment,
and are persistent members of the replication group. Electable nodes that are Replicas also
participate in transaction durability decisions by providing the master with acknowledgments
of transaction commits.

31-Oct-2017

Using JE High Availability Page 2

Library Version 12.2.7.5 Introduction

Note

Beyond Master and Replica, a node can also be in several other states. See Replication
Group Life Cycle (page 7) for more information.

Most of the nodes in a replication group are electable nodes, but it is possible to have nodes
of the other types as well.

Secondary nodes also have access to a JE environment, but can only serve as read-only
replicas, not masters, and do not participate in elections. Secondary nodes can be used to
provide read-only data access from locations with higher latency network connections to

the rest of the replication group without introducing communication delays into elections.
Secondary nodes are not persistent members of the replication group; they are only
considered members when they are connected to the current master. Secondary nodes do not
participate in transaction durability decisions.

Monitor nodes do not have access to a JE environment and do not participate in elections.

For this reason, they cannot serve as either a Master or a Replica. Instead, they merely
monitor the composition of the replication group as changes are made by adding and removing
electable nodes, joining and leaving of electable and secondary nodes, and as elections are
held to select a new Master. Monitor nodes are therefore used by applications external to the
JE replicated application to route data requests to the various members of the replication
group. Monitor nodes are persistent members of the replication group. Monitor nodes do not
participate in transaction durability decisions.

Note that all nodes in a replication group have a unique group-wide name. Further, all
replication groups are also assigned a unique name. This is necessary because it is possible for
a single process to have access to multiple replication groups. Further, any given collection

of hardware can be running multiple replication groups (a production and a test group, for
example.) By uniquely identifying the replication group with a unique name, it is possible

for JE HA to internally check that nodes have not been misconfigured and so make sure that
messages are being routed to the correct location.

Replicated Environments

All electable and secondary nodes must have access to a database environment. Further, no
node can share a database environment with another node.

More to the point, in order to create an electable or secondary node in a replication group,
you use a specialized form of the environment handle: ReplicatedEnvironment.

There is no JE-specified limit to the number of environments which can join a replication
group. The only limitation here is one of resources — network bandwidth, for example.

We discuss ReplicatedEnvironment handle usage in Using Replicated Environments (page
13). For an introduction to database environments, see the Getting Started with Berkeley
DB, Java Edition guide.

31-Oct-2017

Using JE High Availability Page 3

../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html

Library Version 12.2.7.5 Introduction

Selecting a Master

Every replication group is allowed one and only one Master. Masters are selected by holding
an election. All such elections are performed by the underlying Berkeley DB, Java Edition
replication code.

When a node joins a replication group, it attempts to locate the Master. If it is the first
electable node added to the replication group, then it automatically becomes the Master.

If it is an electable node, but is not the first to startup in the replication group and it
cannot locate the Master, it calls for an election. Further, if at any time the Master becomes
unavailable to the replication group, the electable replicas will call for an election.

When holding an election, election participants vote on who should be the Master. Among the
electable nodes participating in the election, the node with the most up-to-date set of logs
will win the election. In order to win an election, a node must win a simple majority of the
votes.

Usually JE requires a majority of electable nodes to be available to hold an election. If a
simple majority is not available, then the replication group will no longer be able to accept
write requests as there will be no Master.

Note that an electable node is part of the replication group even if it is currently not running
or is otherwise unreachable by the rest of the replication group. Membership of electable
nodes in the replication group is persistent; once an electable node joins the group, it
remains in the group regardless of its current state. The only way an electable node leaves a
replication group is if you manually remove it from the group (see Adding and Removing Nodes
from the Group (page 57) for details). This is a very important point to remember when
considering elections. An election cannot be held if the majority of electable nodes in the
group are not running or are otherwise unreachable.

Note

There are two circumstances under which a majority of electable nodes need not be
available in order to hold an election. The first is for the special circumstance of the
two-node group. See Configuring Two-Node Groups (page 25) for details.

The second circumstance is if you explicitly relax the requirement for a majority of
electable nodes to be available in order to hold an election. This is a dangerous thing
to do, and your replication group should rarely (if ever) be configured this way. See
Managing a Failure of the Majority (page 75) for more information.

Once a node has been elected Master, it remains in that role until the replication group has
a reason to hold another election. Currently, the only reason why the group will try to elect
a new Master is if the current Master becomes unavailable to the group. This can happen
because you shutdown the current Master, the current Master crashes due to bugs in your
application code, or a network outage causes the current Master to be unreachable by a
majority of the electable nodes in your replication group.

In the event of a tie in the number of votes, JE's underlying implementation of the election
code will pick the Master. Moreover, the election code will always make a consistent choice

31-Oct-2017

Using JE High Availability Page 4

Library Version 12.2.7.5 Introduction

when settling a tie. That is, all things being even, the same node will always be picked to win
a tied election.

Replication Streams

Managing

Write transactions can only be performed at the Master. The results of these transactions are
replicated to Replicas using a logical replication stream.

Logical replication streams are performed over a TCP/IP connection. The stream contains a
description of the logical changes (for example, insert, update or delete) operations that were
performed on the database as a result of the transaction commit. Each such replicated change
is assigned a group-wide unique identifier called a Virtual Log Sequence Number (VLSN). The
VLSN can be used to locate the replicated change in the log files associated with any member
of the group. Through the use of the VLSN, each operation described by the replication stream
can be replayed at each Replica using an efficient internal replay mechanism.

A consequence of this logical replaying of a transaction is that physical characteristics of
the log files contained at the Replicas can be different across the replication group. The
data contents of the environments found across the replication group, however, should be
identical.

Note that there is a process by which a non-replicated environment can be converted such
that it has the log structure and metadata required for replication. See Converting Existing
Environments for Replication (page 61) for more information.

Data Guarantees

All replicated applications are first transactional applications. This means that you have the
standard data guarantee issues to consider, all of which have to do with how durable and
consistent you want your data to be. Of course, considerations of this nature also play a
role in your application’s performance. These issues are even more important for replicated
applications because replication adds additional dimensions to them.

Notably, in a replicated application you must decide how durable your data is, by deciding
how careful the Master will be to make sure a data write has been written to disk on its
various Replica nodes before completing the transaction.

Consistency also adds an additional dimension in a replicated application, because now you
must decide how consistent the various nodes in the replication group will be relative to the
Master at any given time. If no writes are being performed on the Master, all Replicas will
eventually catch up to the Master and so be completely consistent with it. But for most HA
applications, writes are occurring on the Master, and so it is possible for some number of
your Replicas to lag behind the Master. What you have to decide, then, is how sensitive your
application is to this kind of temporary inconsistency.

Note that your consistency requirements can be gated by your durability requirements.
Durability, in turn, can be gated by any concerns you might have on write throughput. At the
same time, your consistency requirement can have an affect on the read performance of your
Replicas. It is therefore a mistake to think about any one of these requirements in the absence
of the others.

31-Oct-2017

Using JE High Availability Page 5

Library Version 12.2.7.5 Introduction

Durability

One of the reasons you might be writing a replicated application is to achieve a higher
durability guarantee than you can get with a traditional transactional application. In

a traditional application, your data's durability is a function of how you perform your
transactional commits, and how frequently you perform your backups. For this class of
application, the strongest durability guarantee you can have is to use synchronous commits
(the commit does not complete until the data is written to disk), coupled with very frequent
backups of your environment.

The problem with a stand-alone application in which you are seeking a very high durability
guarantee is that your write throughput will suffer. Synchronous commits require disk writes,
and disk /0 is one of the most expensive operations you can ask a database to perform.

In order to increase write throughput in your transactional application, you may decide to use
asynchronous commits that do not require the disk I/0 to complete before the transaction
commit completes. The problem with this is that your application can potentially crash before
a transaction has been completely written to disk. This represents a loss of data, which is to
say the data is not durable.

Replication can help with your data durability in a couple of ways. Most importantly,
replication allows you to commit to the network. This means that when your Master commits
a transaction, the results of that commit are sent to one or more nodes available over the
network. Consequently, multiple disks, disk controllers, power supplies, and CPUs are used to
ensure the data modification makes it to stable storage.

Usually JE makes the commit operation on the Master wait until it receives acknowledgements
from some number of electable nodes before returning from the operation. However, if

you want to increase write throughput, you can configure your Master to proceed without
acknowledgements, and so return immediately from the commit operation (once the commit
operation has met the local durability requirement). The price that you pay for this is a
reduced durability guarantee. How reduced the guarantee is, is a function of the number

of electable nodes in your replication group (the more you have, the higher your durability
guarantee is) and the quality and stability of your network.

Alternatively, you can obtain an extremely high durability guarantee by configuring the Master
to wait for all electable nodes to acknowledge a commit operation before returning from the
operation. The price you pay for this very high guarantee is greatly reduced write throughput.

For information on configuring and managing durability guarantees for your replicated
application, see Managing Durability (page 29).

Managing Data Consistency

Data consistency means that the data you thought you wrote to your environment is in fact
written to your environment. It also means that you will never find partial records written to
your environment.

In a replicated application, consistency also means that data which is available on the Master
is also available on the Replicas.

31-Oct-2017

Using JE High Availability Page 6

Library Version 12.2.7.5 Introduction

A simple transactional application offers consistency guarantees that are enforced when

you commit a transaction. Your replicated application also offers this consistency guarantee
(because it is also a transactional application). For this reason, the environment on the Master
is always absolutely consistent. But beyond that, you need to manage consistency for data
across all the nodes in your replication group.

When you commit a transaction on the Master, your Replica nodes may or may not have

the data changes performed by that transaction at the end of the commit. Whether they

do depends on how high a durability guarantee you implemented for your Master (see the
previous section). If, for example, you configured your Master to require acknowledgements
from all electable nodes before returning from the commit, then the data will be consistently
available across all of those nodes in the replication group, although not necessarily by
secondary nodes. However, if you configured the Master such that no acknowledgements are
necessary, then your data is probably not consistent across the replication group.

To ensure that read transactions on the Replicas see a sufficiently consistent view of the
environment, you can set a consistency policy for each transaction. This policy describes how
current the Replica must be before a transaction can be initiated on it. If the Replica is not
current enough, the start of the transaction is delayed until the Replica has caught up.

There are two possible consistency policies. First, there is a time-based policy that describes

how far back in time the Replica is allowed to lag behind the Master. Secondly, you can use a

commit-based consistency policy that is based on the commit of a specified transaction. This

policy is used to ensure the Replica is at least current enough to have the changes made by a

specific transaction, and by all transactions committed prior to the specified transaction. The
start of a transaction on a Replica can be delayed until the Replica can meet the consistency

policy defined for that transaction.

This means that a stringent consistency policy can affect your Replica's read throughput.
Transactions, even read-only transactions, cannot begin until the Replica is consistent enough.
So if you have a Replica that has lagged far behind the Master, and which is having trouble
catching up due to network latency or other issues, then read requests may stall, and perhaps
even time out, which will affect the latency of your Replica's read requests, and perhaps even
its overall availability for read requests. For this reason, give careful consideration to how
well you want your Replica to perform on reads, versus how consistent you want the Replica to
be with other nodes in the replication group.

For more information on managing consistency in your replicated application, see Managing
Consistency (page 34).

Replication Group Life Cycle
This section describes how your replication group behaves over the course of the application’s
lifetime. Startup is described, both for new nodes as well as for existing nodes that are
restarting. This section also describes Master failover.

Terminology

Before continuing, it is necessary to define some terms used in this document as they relate to
node membership in a replication group.

31-Oct-2017 Using JE High Availability Page 7

Library Version 12.2.7.5 Introduction

e Add/Remove

When we say that a node has been persistently added to a replication group, this means
that it has become a persistent member of the group. Regardless of whether the node

is running or otherwise reachable by the group, once it has been added to the group it
remains a member of the group. If the added node is an electable node, the group size
used during elections, or transaction commit acknowledgements, is increased by one. Note
that secondary nodes are not persistent members of the replication group, so they are not
considered to be persistently added or removed.

A node that has been persistently added to a replication group remains a member of
that group until it is explicitly removed from the group. Once a node has been removed
from the group, it is no longer a member of the group. If the node that was removed
was an electable node, the group size used during elections, or transaction commit
acknowledgements, is decreased by one.

e Join/Leave

We say that a member has joined the replication group when it starts up and begins
operating in the group as an active node. Electable and secondary nodes join a replication
group by successfully opening a ReplicatedEnvironment handle. Monitor nodes are not
considered to join a replication group because they do not actively participate in replication
or elections.

A member, then, leaves a replication group by shutting down, or losing the network contact
that allows it to operate as an active member of the group. When operating normally,
member nodes leave a replication group by closing their last ReplicatedEnvironment handle.
Joining or leaving a group does not change the electable group size, and so the number of

nodes required to hold an election, as well as the number of nodes required to acknowledge
transaction commits, does not change.

Node States
Member nodes can be in the following states:
« Master

When in the Master state, a member node can service read and write requests. At any given
time, there can be only one node in the Master state in the replication group.

» Replica

Member nodes in the Replica state can only service read requests. All of the electable nodes
other than the Master, and all of the secondary nodes, should be in the Replica state.

e Unknown

The member node is not aware of a Master and is actively trying to discover or elect a
Master. A node in this state is constantly striving to transition to the more productive Master
or Replica state.

31-Oct-2017 Using JE High Availability Page 8

../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html

Library Version 12.2.7.5 Introduction

A node in the Unknown state can still process read transactions if the node can satisfy its
transaction consistency requirements.

o Detached

The member node has been shutdown (that is, it has left the group, but it has not been
removed from the group — see the previous section). It is still a member of the replication
group, but is not active in elections or replicating data. Note that secondary nodes do not
remain members when they are in the detached state; when they lose contact with the
Master, they are no longer considered members of the group.

Note that from time to time this documentation uses the term active node. An active node is
a member node that is in the Master, Replica or Unknown state. More to the point, an active
node is a node that is available to participate in elections — if it is an electable node — and in
data replication. Monitor nodes are not considered active and do not report their state.

New Replication Group Startup

The first time you start up a replication group using an electable node, the group exists (for at
least a small time) as a group of size one. At this time, the single node belonging to the group
becomes the Master. So long as there is only one electable node in the replication group, that
one node behaves as if it is a non-replicated application. There are some differences in the
format of the log file that the application maintains, but it otherwise behaves identically to a
non-replicated transactional application.

Subsequently, upon startup a new node must be given the contact information for at least one
currently active node in the replication group in order for it to be added to the group. The
new node contacts this active node who will identify the Master for the new node.

Note

As is the case with elections, an electable node cannot be added to the replication
group unless a simple majority of electable nodes are active at the time that it starts
up. If too many nodes are down or otherwise unavailable, you cannot add a new
electable node to the group.

The new node then contacts the Master, and provides all necessary identification information
about itself to the Master. This includes host and port information, the node's unique name,
and the replication group name. For electable nodes, the Master stores this identifying
information about the node persistently, meaning the effective number of electable members
of the replication group has just grown by one. For secondary nodes, the information about
the node is only maintained while the secondary node is active; the number of electable
members does not change.

Note

Note that the new electable node is now a permanent member of the replication
group until you manually remove it. This is true even if you shutdown the node for a
long time. See Adding and Removing Nodes from the Group (page 57) for details.

31-Oct-2017

Using JE High Availability Page 9

Library Version 12.2.7.5 Introduction

Once the new node is an established member of the group, the Master provides the Replica
with the logical logs needed to replicate the environment. The sequence of logical log records
sent from the Master to the Replica constitutes the Replication Stream. At this time, the node
is said to have joined the group. Once a replication stream is established, it is maintained
until either the Replica or the Master goes down.

Subsequent Startups

Each node stores information about other persistent replication group members in its
replicated environment so that this information is available to it upon restart.

When a node that is already an established member of a replication group is restarted, the

node uses its knowledge of other members of the replication group to locate the Master. It

does this by by querying the members of the group to locate the current Master. If it finds a
Master, the node joins the group and proceeds to operate in the group as a Replica.

If a Master is not available and the restarting node is an electable node, the node initiates

an election so as to establish a Master. If a simple majority of electable nodes are available
for the election, a Master is elected. If the restarting node is elected Master, it then waits

for Replicas to connect to it so that it can supply them a replication stream. If the restarting
node is a secondary node, then it continues to try to find the Master, waiting for the electable
nodes to elect a Master as needed.

Under ordinary circumstances, if a Master cannot be determined for some reason, the
restarting node will fail to open. However, you can permit the node to instead open in the
UNKOWN state. While in this state, the node is persistently attempting to find a Master, but it
is also available for read-only requests.

To configure a node in this way, use the ReplicationConfig.setConfigParam() method to set the
ReplicationConfig.ENV_UNKNOWN_STATE_TIMEOUT parameter. This parameter requires you

to define a Master election timeout period. If this election timeout expires while the node is
attempting to restart, then the node opens in the UNKNOWN state instead of failing its open
operation entirely.

Replica Startup

Regardless of how it happens, when a node joins a replication group, it contacts the Master
and then goes through the following three steps:

1. Handshake

The Replica sends the Master its configuration information, along with the unique name
associated with the Replica's environment. This name is a pseudo-randomly generated
Universal Unique Identifier (UUID).

This handshake establishes the node as a valid member of the group. It is used both by
new nodes joining the group for the first time, and by existing nodes that are simply
restarting.

In addition, during this handshake process, the Master and Replica nodes will compare
their clocks. If the clocks are too far off from one another, the handshake will fail and

31-Oct-2017

Using JE High Availability Page 10

../java/com/sleepycat/je/rep/ReplicationConfig.html#setConfigParam(java.lang.String,java.lang.String)
../java/com/sleepycat/je/rep/ReplicationConfig.html#ENV_UNKNOWN_STATE_TIMEOUT

Library Version 12.2.7.5 Introduction

the Replica node will fail to start up. See Time Synchronization (page 25) for more
information.

2. Replication Stream Sync-Up

The Replica sends the Master its current position in the replication stream sequence. The
Master and Replica then negotiate a point in the replication stream that the Master can
use as a starting point to resume the flow of logical records to the Replica.

Note that normally this sync-up process will be transparent to your application. However,
in rare cases the sync-up may require that committed transactions be undone.

Also, if the Replica has been offline for a long time, it is possible that the Master can no
longer supply the Replica with the required contiguous interval of the replication stream.
(This can happen due to log cleaning on the Master.) In this case, the log files must be
copied to the restarting node from some other up-to-date node in the replication group.
See Restoring Log Files (page 59) for details.

3. Steady state replication stream flow

Once the Replica has successfully started up and joined the group, the Master
maintains a flow of log records to the Replica. Beyond that, the Master will request
acknowledgements from electable Replicas whenever the Master needs to meet
transaction commit durability requirements.

Master Failover

A Master failing or shutting down causes all of the replication streams between the Master and
its various Replicas to terminate. In reaction, the Replicas transition to the Unknown state and
the electable nodes initiate an election.

An election can be held if at least a simple majority of the replication group's electable nodes
are active. The electable node that wins the election transitions to the Master state, and all
other active nodes transition to the Replica state.

Upon transitioning to the Replica state, nodes connect to the new Master and proceed through
the handshake, sync-up, replication replay process described in the previous section.

If no Master can be elected (because a majority of electable nodes are not available to
participate in the election), then the nodes remain in the Unknown state until such a time as
a Master can be elected. In this state, the nodes might be able to service read-only requests,
but the replication group is incapable of servicing write requests. Read requests can be
serviced so long as the transaction's consistency requirements can be met (see Managing
Consistency (page 34)).

Note that the JE Replication application needs to make provisions for the following state
transitions after failover:

» A node that transitions from the Replica state to the Master state as a result of a failover
needs to start accepting update requests. There are several ways to determine whether a
node can handle update requests. See Managing Write Requests at a Replica (page 21) for
more information.

31-Oct-2017

Using JE High Availability Page 11

Library Version 12.2.7.5 Introduction

« If a node remains in the Replica state after a failover, the failover should be transparent
to the application. However, an application may need to take corrective action in the rare
situation where the sync-up process has to roll back committed transactions.

See Managing Transaction Rollbacks (page 45) for an example of how handle a transaction
commit roll back.

Two Node Groups

Replication groups comprised of just two electable nodes represents a unique corner case for
JE replication. In order to elect a master, usually a simple majority of electable nodes must
be available to participate in an election. However, for replication groups of size two, if even
one electable node is unavailable for the election then by default it is impossible to hold an
election.

However, for some classes of application, it is desirable for the application to proceed with
operations using just one electable node. That is, the application trades off the durability
guarantees offered by using two electable nodes for the higher availability permissible by
allowing the application to run with just one of the nodes.

JE allows you to do this by designating one of the nodes in a two electable node group as a
primary node. When the non-primary node of the pair is not available, the number of nodes
required for a simple majority is reduced from two to one by the primary node. Consequently,
the primary node is able to elect itself as the Master. It can then commit transactions that
require a simple majority to acknowledge commits. When the non-primary node becomes
available again, the number of nodes required for a simple majority at the primary once again
reverts to two.

At any given time, there must be either zero or one electable nodes designated as the primary
node, but it is up to your application to make sure both nodes are not erroneously designated
as the primary. Your application must be very careful not to mistakenly designate two nodes
as the primary. If this happened, and the two nodes could not communicate with one another
(due to a network malfunction of some kind, for example), they could both then consider
themselves to be Masters and start accepting write requests. This violates a fundamental
requirement that at any given instant in time, there should be exactly one node that is
permitted to perform writes on the replicated environment.

Note that the non-primary electable node always needs two electable nodes for a simple
majority, so it can never become the Master in the absence of the primary node. If the
primary node fails, you can make provisions to swap the primary and non-primary designations
so that the surviving node is now the primary. This swap must be performed carefully so as to
ensure that both nodes are not concurrently designated the primary. The most important thing
is that the failed node comes up as the non-primary after it has been repaired.

For more information on using two-node groups, see Configuring Two-Node Groups (page
25).

31-Oct-2017

Using JE High Availability Page 12

Chapter 2. Replication API First Steps

From an API point of view, there are two basic requirements that every replicated application
must meet:

1. It must be a transactional application.

2. It must use a specific form of the Environment handle, which you get by using the
ReplicatedEnvironment class.

Beyond that, there are some additional requirements in terms of exception handling that your
application should perform.

The transactional nature of your replicated application is described in Transaction
Management (page 28). This chapter discusses replicated environments and the exceptions
unique to exceptions in detail.

Using Replicated Environments

Every electable or secondary node manages a single replicated JE environment directory. The
environment follows the usual regulations governing a JE environment; namely, only a single
read/write process can access the environment at a single point in time.

Usually this requirement is met naturally, because usually each node in a replicated
application is also operating on a machine that is independent of all the other nodes.
However, in some test and development scenarios, this one node to one machine rule might
not be met, so the bottom line is that you need to make sure that no two processes are ever
attempting to manage the same environment.

Note

An application can access a replicated JE environment directory using a read only
Environment handle. The usual semantics of read only non-replicated Environment
handles apply in this case. That is, the application can view a snapshot of the
replicated environment as of the time the Environment handle was opened, through
the Environment handle. An application can therefore open a ReplicatedEnvironment
handle in one process, and concurrently open read only Environment handles in other
processes. Any changes subsequently made to the replicated environment, either by
virtue of the node being a Master, or due to a replay of the replication stream (if the
node is a Replica), are not accessible through the read only Environment handles until
they are closed and reopened.

Normally you manage your JE environments using the Environment class. However, to
provide for the underlying infrastructure needed to implement replication, your JE HA
application must instead use the ReplicatedEnvironment class, which is a subclass of
Environment. Its constructor accepts the normal environment configuration properties using
the EnvironmentConfig class, just as you would normally configure an Environment object.
However, the ReplicatedEnvironment class also accepts an ReplicationConfig class object,
which allows you to manage the properties specific to replication.

31-Oct-2017 Using JE High Availability Page 13

../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/EnvironmentConfig.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicationConfig.html

Library Version 12.2.7.5 Replication API First Steps

Configuring

The following is an example of how you instantiate a ReplicatedEnvironment object. Note
that there are some differences in how this is used, depending on whether you are starting
a brand-new node or you are restarting an existing node. We discuss these differences in the
next section.

For a general description of environments and environment configuration, see the Getting
Started with Berkeley DB Java Edition guide.
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Identify the node

ReplicationConfig repConfig = new ReplicationConfig();
repConfig.setGroupName("PlanetaryRepGroup");
repConfig.setNodeName("Mercury");
repConfig.setNodeHostPort("mercury.example.com:5001");

// This is the first node, so its helper is itself
repConfig.setHelperHosts("mercury.example.com:5001");

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(envHome, repConfig, envConfig);

Replicated Environments

You configure a JE ReplicatedEnvironment handle using two different configuration classes:
EnvironmentConfig and ReplicationConfig. Your usage of EnvironmentConfig is no different
than if you were writing a non-replicated application, so we will not describe its usage here.
For an introduction to basic environment configuration, see the Getting Started with Berkeley
DB, Java Edition guide.

The ReplicationConfig class allows you to configure properties that are specific to replicated
applications. Some of these properties are important in terms of how your application will
behave and how well it will perform. These properties are discussed in detail later in this
book.

To an extent, you can get away with ignoring most of the configuration properties until you
are ready to tune your application's performance and behavior. However, no matter what,
there are four properties you must always configure for a ReplicatedEnvironment before
opening it. They are:

1. Group Name

The group name is a string that uniquely identifies the group to which the node belongs.
This name must be unique. It is possible to operate multiple replication groups on the
same network. In fact, a single process can even interact with multiple replication
groups, so long as it maintains separate replicated environments for each group in which
it is participating.

By using unique group names, the JE replication code can make sure that messages
arriving at a given client are actually meant for that client.

31-Oct-2017

Using JE High Availability Page 14

../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/EnvironmentConfig.html
../java/com/sleepycat/je/rep/ReplicationConfig.html
../java/com/sleepycat/je/EnvironmentConfig.html
../java/com/sleepycat/je/rep/ReplicationConfig.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html

Library Version 12.2.7.5

Replication API First Steps

You set the group name by using the ReplicationConfig.setGroupName() method. Note
that if you do not set a group name, then the default GROUP_NAME value is used.

Node Name

This name must be unique to the replication group. This name plus the replication group
name uniquely identifies a node in your enterprise.

You set the node name by using the ReplicationConfig.setNodeName() method.
Host

The host property identifies the network name and port where this node can be reached.
Other nodes in the replication group will use this host/port pair to establish a TCP/IP
connection to this node. This connection is used to transfer data between machines, hold
elections, and monitor the status of the replication group.

You provide the host and port information using a string of the form:
host: [port]

The port that you provide must be higher than 1023.

You set the host information by using the ReplicationConfig.setNodeHostPort() method.
Note that if you do not set a node host, then the default NODE_HOST_PORT value is used.

Helper Host

The helper host or hosts are used by a node the very first time it starts up to find the
Master. Basically, this string should provide one or more host/port pairs for nodes who
should know where the Master is.

One of the nodes that you provide on this string can be the current Master, but that is not
required. All that matters is that the hosts identified here can tell a new node where the
current Master is.

If the brand new node is an electable node and cannot find a Master, it will initiate an
election. If no other electable nodes are available to the new node, and the current
node is specified as the only helper host, then it will elect itself as Master. If the current
node is truly the very first electable node starting up in the replication group, then self-
electing itself to be the Master is probably what you want it to do.

However, if the current node is not the very first node starting up in the replication
group, then a misconfiguration of this property can cause you to end up with multiple
replication groups, each with the same group name. This represents an error situation,
one that can be very difficult to diagnose by people who are inexperienced with managing
replication groups. For this reason, it is very important to make sure the hosts identified
on this string do NOT identify only the local host except when creating the first node.

On subsequent start ups after the very first startup, the node should be able to locate
other participants in the replication group using information located in its own database.

31-Oct-2017

Using JE High Availability Page 15

../java/com/sleepycat/je/rep/ReplicationConfig.html#setGroupName(java.lang.String)
../java/com/sleepycat/je/rep/ReplicationConfig.html#GROUP_NAME
../java/com/sleepycat/je/rep/ReplicationConfig.html#setNodeName(java.lang.String)
../java/com/sleepycat/je/rep/ReplicationConfig.html#setNodeHostPort(java.lang.String)
../java/com/sleepycat/je/rep/ReplicationConfig.html#NODE_HOST_PORT

Library Version 12.2.7.5 Replication API First Steps

In that case, the information provided on this string is largely ignored unless the current
node has been down or otherwise out of communication with the rest of the group for
so long that its locally cached information has grown stale. In this case, the node will
attempt to use the information provided here to locate the current Master.

You set the helper host information by using the ReplicationConfig.setHelperHosts()
method.

When configuring and instantiating a ReplicatedEnvironment object, you should usually
configure the environment so that a helper host other than the local machine is used:

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Identify the node

ReplicationConfig repConfig = new ReplicationConfig();
repConfig.setGroupName("PlanetaryRepGroup");
repConfig.setNodeName("Jupiter");
repConfig.setNodeHostPort("jupiter.example.com:5002");

// Use the node at mercury.example.com:5001 as a helper to find the rest
// of the group.
repConfig.setHelperHosts("mercury.example.com:5001");

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(envHome, repConfig, envConfig);

Note that if you are restarting a node that has already been added to the replication group,
then you do not have to supply a helper host at all. This is because the node will already have
locally stored host and port information about the other nodes in the group.

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Identify the node
ReplicationConfig repConfig =
new ReplicationConfig("PlanetaryRepGroup”,
"Jupiter”,
"jupiter.example.com:5002");

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(envHome, repConfig, envConfig);

However, if you are starting the very first node in the replication group for the very first
time, then there is no other helper host that the node can use to locate a Master. In this
case, identify the current node as the helper host, and it will then go ahead and become a
replication group of size 1 with itself as a Master.

31-Oct-2017

Using JE High Availability Page 16

../java/com/sleepycat/je/rep/ReplicationConfig.html#setHelperHosts(java.lang.String)
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html

Library Version 12.2.7.5 Replication API First Steps

Note

Do this ONLY if you are truly starting the very first electable node in a replication
group for the very first time.

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Identify the node
ReplicationConfig repConfig =
new ReplicationConfig("PlanetaryRepGroup”,
"Jupiter”,
"jupiter.example.com:5002");

// This is the first node, so the helper is itself.
repConfig.setHelperHosts("jupiter.example.com:5002");

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(envHome, repConfig, envConfig);

HA Exceptions

JE HA requires you to manage more error situations that you would have to if you were writing
a non-replicated application. These error situations translate to additional exceptions that
you must contend with in your code. Before continuing with our description of how to write a
replicated application, it is useful to review the HA-specific exceptions that your application
must manage.

Master-Specific HA Exceptions

There are two exceptions that you can see on a Master node, and which you will not see
anywhere else. They are:

« InsufficientReplicasException

This exception can be raised on a transaction begin or commit. It means that the Master
cannot successfully commit a transaction, or begin one, because it is not in contact with
enough Electable Replicas. The number of Electable Replicas required to successfully
commit the transaction is a function of the durability policy that you have set for the
transaction. See Managing Durability (page 29) for more information.

If raised on a transaction commit operation, this exception means that the transaction has
not been committed. Instead, it has been marked as invalid. In response to this exception,
your application must at a minimum abort the transaction. It is up to you whether you want
to retry the transaction at some later time when more Replicas are in contact with the
Master.

If raised on a transaction begin operation, this exception means that the transaction has
not begun. If the application intended to initiate a read-only transaction on a Master,

31-Oct-2017

Using JE High Availability Page 17

../java/com/sleepycat/je/rep/InsufficientReplicasException.html

Library Version 12.2.7.5 Replication API First Steps

it can avoid this exception by ensuring that the transaction is configured to not require
any acknowledgments. For information on configuring acknowledgments, see Managing
Acknowledgements (page 31).

« InsufficientAcksException

This exception can be raised on a transaction commit. It means that the Master
has successfully committed the transaction locally, but it has not received enough
acknowledgements from its Electable Replicas in the timeframe allocated for
acknowledgements to be received.

The application should respond to this exception in such a way as to alert the administrator
that there might be a problem with the health of the network or the nodes participating in
the replication group.

For information on how to manage acknowledgement policies, see Managing
Acknowledgements (page 31).

Replica-Specific HA Exceptions
The exceptions that you can see on a Replica, and nowhere else, are:
» ReplicaConsistencyException

Indicates that the Replica was unable to meet the defined consistency requirements in the
allocated period of time.

If this exception is encountered frequently, it indicates that the consistency policy
requirements are too strict and cannot be met routinely given the load being placed on the
system and the hardware resources that are available to service the load. The exception
may also indicate that there is a network related issue that is preventing the Replica from
communicating with the Master and keeping up with the replication stream.

In response to this exception, your application can either attempt to retry the transaction,
or you can relax your application’s consistency requirements until the transaction can
successfully complete.

For information on managing consistency policies, see Managing Consistency (page 34).
 ReplicaWriteException

An attempt was made to perform a write operation on a Replica. The exception typically
indicates an error in the application logic. In some extremely rare cases it could be the
result of a transition of the node from Master to Replica, while a transaction was in
progress.

The application must abort the current transaction and redirect all subsequent update
operations to the Master. For example code that performs this action, see Example Run
Transaction Class (page 46).

o LockPreemptedException

31-Oct-2017 Using JE High Availability Page 18

../java/com/sleepycat/je/rep/InsufficientAcksException.html
../java/com/sleepycat/je/rep/ReplicaConsistencyException.html
../java/com/sleepycat/je/rep/ReplicaWriteException.html
../java/com/sleepycat/je/rep/LockPreemptedException.html

Library Version 12.2.7.5 Replication API First Steps

A read lock currently held by a Replica has been preempted by an HA write operation. The
Replica should abort and retry the read operation in response to this exception.

Note that your application should attempt to catch the LockConflictException base class
rather than this class because all of the locking exceptions are managed in the same way
(abort and retry the transaction).

» DatabasePreemptedException

The database handle on a Replica was forcibly closed due to the replay of
an Environment.truncateDatabase(), Environment.removeDatabase() or
Environment.renameDatabase() operation in the replication stream.

When this exception occurs, the application must close any open Cursors and abort any
open Transactions that are using the database, and then close the Database handle. If the
application wishes, it may reopen the database if it still exists.

* RollbackException

A new master has been selected, this Replica's log is ahead of the current Master, but the
Replica was unable to rollback without a recovery. As a consequence, one or more of the
most recently committed transactions may need to be rolled back, before the Replica can
synchronize its state with that of the current Master. This exception can happen if the
electable Replica with the most recent log files was unable to participate in the election of
the Master, perhaps because the node had been shut down.

For details on how to handle this exception, see Managing Transaction Rollbacks (page
45).

« InsufficientLogException

Indicates that the log files constituting the Environment are insufficient and cannot be used
as the basis for continuing with the replication stream provided by the current master.

This exception generally means that the node has been down for a long enough time that
it can not be brought up-to-date by the Master. For information on how to respond to this
condition, see Restoring Log Files (page 59).

Replicated Environment Handle-Specific Exceptions

In addition to Master- and Replica-specific exceptions, it is possible for a
ReplicatedEnvironment handle to throw an UnknownMasterException. This exception indicates
that the operation being tried requires communication with a Master, but the Master is not
available.

This exception typically indicates that there is a problem with your physical infrastructure.
It might mean that an insufficient number of electable nodes are available to elect a Master,
or that the current node is unable to communicate with other nodes due to, for example,
network problems.

31-Oct-2017

Using JE High Availability Page 19

../java/com/sleepycat/je/LockConflictException.html
../java/com/sleepycat/je/rep/DatabasePreemptedException.html
../java/com/sleepycat/je/Environment.html#truncateDatabase(com.sleepycate.je.Transaction,java.lang.String,boolean)
../java/com/sleepycat/je/Environment.html#removeDatabase(com.sleepycate.je.Transaction,java.lang.String)
../java/com/sleepycat/je/Environment.html#renameDatabase(com.sleepycate.je.Transaction,java.lang.String,java.lang.String)
../java/com/sleepycat/je/rep/RollbackException.html
../java/com/sleepycat/je/rep/InsufficientLogException.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/UnknownMasterException.html

Library Version 12.2.7.5 Replication API First Steps

In response to this exception, your application can try any number of corrective actions,
from immediately retrying the operation, to logging the problem and then abandoning the
operation, to waiting some predetermined period of time before attempting the operation
again. Your application can also use the Monitor or the StateChangeListener to be notified
when a Master becomes available. For more information see Writing Monitor Nodes (page
64) or Using the StateChangeListener (page 22).

Opening a Replicated Environment

In the previous two sections we looked at the basics of how to create a replicated
environment, and what exceptions you can expect to see in a JE HA application. Now
we need to combine these two topics in order to examine how you should open a
ReplicatedEnvironment handle to an existing replicated environment.

When you open the handle, the underlying HA code will attempt to open a TCP/IP connection
to other nodes in the replication group, based on the node's stored replication group metadata
or the helper host information that you provide. In doing so, the node will attempt to locate

a Master or, failing that, will hold an election in order to select a new Master, if it is an
electable node.

Due to issues of timing and network performance, the node may or may not be able to:
1. locate the master; and
2. hold an election.

This can happen if there simply are not enough electable nodes available in order for the
current node to start up, find the current master, or hold an election. Remember that a
majority of the electable nodes registered in the replication group must be available in order
to hold an election.

If this situation occurs, the ReplicatedEnvironment constructor will throw an
UnknownMasterException. Therefore, typically, it is best that you prepare for this situation by
performing the handle creation in a retry loop, as shown in the following code snippet.

In addition, if the Replica has been down for a long enough period of time, it might be so

far out of date that it cannot be brought up to date using the normal replication stream. In
this case, the ReplicatedEnvironment constructor will throw an InsufficientLogException. See
Restoring Log Files (page 59) for information on how to handle this exception.

private static int REP_HANDLE_RETRY_MAX = 100;

ReplicatedEnvironment getEnvironment(File envHome, String groupName,
String nodeName, String nodeHost,
String helperHosts)
throws IllegalStateException, InterruptedException {

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

31-Oct-2017

Using JE High Availability Page 20

../java/com/sleepycat/je/rep/monitor/Monitor.html
../java/com/sleepycat/je/rep/StateChangeListener.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/UnknownMasterException.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/InsufficientLogException.html

Library Version 12.2.7.5 Replication API First Steps

// Identify the node
ReplicationConfig repConfig =

new ReplicationConfig();
repConfig.setGroupName(groupName);
repConfig.setNodeName(nodeName);
repConfig.setNodeHostPort(nodeHost);
repConfig.setHelperHosts(helperHosts);

for (int i = @; i < REP_HANDLE_RETRY_MAX; i++) {
try {
return new
ReplicatedEnvironment(envHome, repConfig, envConfig);
} catch (UnknownMasterException ume) {
/*
* Insert application specific code here to indicate that
* this problem was encountered, such as writing the
* condition to a log file.
*/

Thread.sleep(5 * 1000);
continue;
} catch (InsufficientLogException ile) {
/* A network restore is required, make the necessary calls */

}
}

throw new
IllegalStateException("getEnvironment: reached max retries");

}

Note that for production code, you may want to retry the handle open without any maximum
retry limit.

Managing Write Requests at a Replica

For a replicated JE application, read requests can be serviced by any electable or secondary
node in the replication group, but write requests can only be serviced by the Master node.
For this reason, your application must be prepared to deal with the difference in operating
behavior between read-only Replicas and read-write Masters.

It is possible to be quite sophisticated in terms of tracking which node is the Master and

so which node can service write requests. You can even route write requests to the Master
node by writing a special router process. For an example of an application that does this, see
RouterDrivenStockQuotes and HARouter, both of which are available in your JE distribution in
the <JE HOME>/examples/je/rep/quote directory.

However, for our purposes here, we simply want to make sure our Replica nodes can gracefully
handle a situation where they receive a write request. The write request should be rejected
by the node, with some notification being returned to the requester that the write activity

31-Oct-2017

Using JE High Availability Page 21

../examples/je/rep/quote/RouterDrivenStockQuotes.html
../examples/je/rep/quote/HARouter.html

Library Version 12.2.7.5 Replication API First Steps

is rejected. While not the most robust solution, this is the simplest thing your JE replicated
application can do if it receives a write request at a Replica node.

There are two ways to determine whether a write request can be handled at the local node:

» Use a monitor node to implement request routing. Monitor nodes are described in Writing
Monitor Nodes (page 64).

« Use the StateChangeListener to detect when the local hode becomes a Master. Otherwise,
forward the write request to the Master node instead of attempting to service it locally.

Either way, any code that attempts database writes for an HA application should always be
prepared to handle a ReplicaWriteException.

Using the StateChangelistener

You use the StateChangeListener interface to implement a class that is capable of notifying
your node when it has changed state. In this way, you can track whether a node is in the
Master, Replica or Unknown state, and so know whether the node is capable of handling write
requests.

To do this, you must implement StateChangeListener.stateChange(), which receives a
StateChangeEvent object whenever it is called.

If the node is not in the Master state, then the node can either reject write requests
outright or, more usefully, forward write requests to the Master. For an example of an
HA application that forwards write requests and uses the StateChangelListener, see the
UpdateForwardingStockQuotes example.

Alternatively, you can write a router based on an HA Monitor. See Writing Monitor Nodes (page
64) for more information.

Briefly, you can implement StateChangeListener as follows. Notice that this partial

implementation relies on StateChangeEvent.getState() to determine the state that the node

has just transitioned to. It then uses StateChangeEvent.getMasterNodeName() to determine

where write requests should be forwarded to in the event that the new state is not MASTER.
private class Listener implements StateChangelListener {

private String currentMaster = null;

public void stateChange(StateChangeEvent se)
throws RuntimeException {

switch (stateChangeEvent.getState()) {

case MASTER:
// Do whatever your code needs you to do when the
// current node is the MASTER. For example,
// set a flag to indicate that the local node
// is in the MASTER state. Here, we just fall
// through and do the same thing as if we
// transitioned to the REPLICA state.

31-Oct-2017 Using JE High Availability Page 22

../java/com/sleepycat/je/rep/StateChangeListener.html
../java/com/sleepycat/je/rep/ReplicaWriteException.html
../java/com/sleepycat/je/rep/StateChangeListener.html
../java/com/sleepycat/je/rep/StateChangeListener.html#stateChange(com.sleepycat.je.rep.StateChangeEvent)
../java/com/sleepycat/je/rep/StateChangeEvent.html
../java/com/sleepycat/je/rep/StateChangeListener.html
../examples/je/rep/quote/UpdateForwardingStockQuotes.html
../java/com/sleepycat/je/rep/monitor/Monitor.html
../java/com/sleepycat/je/rep/StateChangeListener.html
../java/com/sleepycat/je/rep/StateChangeEvent.html#getState()
../java/com/sleepycat/je/rep/StateChangeEvent.html#getMasterNodeName()

Library Version 12.2.7.5

Replication API First Steps

}

case REPLICA:
// Again, do whatever your code needs done when
// a node is in the REPLICA state. At a minimum,
// you should probably capture which node is the
// current Master.
currentMaster = se.getMasterNodeName();
break;

// We get here if we have transitioned to the UNKNOWN
// state.
default:

currentmasterName = null;

break;

}

public String getCurrentMasterName() {
return currentMaster;

In order to make use of the new listener, the application must call
ReplicatedEnvironment.setStateChangeListener(). Note that this method can be called
at any time after the ReplicatedEnvironment handle has been created. Also, the listener
is set per environment, not per handle. So if you set different listeners for different
ReplicatedEnvironment handles, the last listener configured is used environment-wide.

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Identify the node

ReplicationConfig repConfig = new ReplicationConfig();
repConfig.setGroupName("PlanetaryRepGroup");
repConfig.setNodeName("Saturn™);
repConfig.setNodeHostPort("saturn.example.com:5001");

// Use the node at mars.example.com:5002 as a helper to find
// the rest of the group.
repConfig.setHelperHosts("mars.example.com:5002");

ReplicatedEnvironment repEnv =

new ReplicatedEnvironment(home, repConfig, envConfig);
StateChangelListener listener = new Listener();
repEnv.setStateChangelListener(listener);

Catching ReplicaWriteException

If you perform a Database write operation on a node that is not in the Master state, a
ReplicaWriteException is thrown when you attempt to commit the transaction. Therefore,

31-Oct-2017

Using JE High Availability Page 23

../java/com/sleepycat/je/rep/ReplicatedEnvironment.html#setStateChangeListener(com.sleepycat.je.rep.StateChangeListener)
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicaWriteException.html

Library Version 12.2.7.5 Replication API First Steps

whenever performing database write operations in an HA application, you should catch and
handle ReplicaWriteException.

For example:

Transaction txn = null;
try {
txn = env.beginTransaction(null, null);
/*
* Perform your write operations under the protection
* of the transaction handle here.
*/
txn.commit();
} catch (ReplicaWriteException replicaWrite) {
/*
* Perform whatever reporting (logging) activies you want
* to do in order to acknowledge that the write operation(s)
* failed. Then abort the transaction.
*/

if (txn != null) {
txn.abort();
¥
}

Secondary Nodes

If you are creating a replication group where there will be higher latency network connections
between some nodes and the rest of the replication group, typically because the nodes are
located in distant geographical regions, then it may be useful to create those distant nodes
nodes as Secondary nodes. Secondary nodes are nodes that only serve as read-only Replicas.
They cannot become Masters, participate in elections, or provide acknowledgements for
commit operations. Secondary nodes can be used to provide a distant location with quick
access to read-only data, although the data may be somewhat out of date due to replication
delays over the high latency link. By using Secondary nodes for the nodes at a distance, the
Electable nodes will be able to perform elections and provide acknowledgments without
experiencing network delays associated with higher latency connections to the Secondary
nodes.

Here is an example of how to create a Secondary node that can join an existing group of
Electable nodes:

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Identify the secondary node
ReplicationConfig electableRepConfig =
new ReplicationConfig("PlanetaryRepGroup”,
"Mars",
"mars.example.com:500");

31-Oct-2017

Using JE High Availability Page 24

../java/com/sleepycat/je/rep/ReplicaWriteException.html

Library Version 12.2.7.5 Replication API First Steps

// Configure the node to be a secondary node
repConfig.setNodeType(NodeType.SECONDARY);

// Specify one of the electable nodes as a helper
repConfig.setHelperHosts("jupiter.example.com:5002");

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(envHome, repConfig, envConfig);

Note that, if you have created an environment with NodeType.SECONDARY, it is possible to
convert the node from a Secondary node to an Electable node by restarting the environment
with NodeType.ELECTABLE. Once an environment has been used as an Electable node, though,
it is not possible to convert to be a Secondary node.

Time Synchronization

For best results, you should synchronize the clocks used by all machines in a replication
group. If you are using a time-based consistency policy, this is an absolute requirement (see
Time Consistency Policies (page 37) for more information). Time synchronization is easily
achieved using a mechanism like NTPD.

In addition, time synchronization is also a requirement for internal JE HA bookkeeping.
For example, JE checks for clock skew between the Master and a Replica when the Replica
performs its startup handshake with the Master. This handshake will abort and throw
EnvironmentFailureException if the clock skew between the two machines is greater

than the value set for the MAX_CLOCK_DELTA property. This property can be set using the
ReplicationConfig.setMaxClockDelta() method, or in the JE configuration file using the
je.rep.maxClockDelta property.

Finally, well synchronized clocks make it easier to correlate events in the logging output from
different nodes in the group.

Configuring Two-Node Groups

A group needs at least a simple majority of active nodes in order to elect a Master. This means
that for a replication group of size two, the failure of a single node means that the group

as a whole is no longer available. In some cases, it may be desirable for the application to
proceed anyway. If you are using a two-node group, and you decide you want your application
to continue even if one of the nodes is unavailable, then you can trade off some of your
durability guarantees, as well as potentially some of your performance, in exchange for a
higher availability guarantee.

JE HA can explicitly relax the requirement for a simple majority of nodes. This is only possible
when the replication group size is two. The application does this by designating one of the two
electable nodes as a Primary node. The other node in the group is implicitly the Non-Primary
node.

At any given instant in time, exactly one of the two nodes can be designated as the Primary.
The application is responsible for ensuring that this is the case.

31-Oct-2017

Using JE High Availability Page 25

http://www.ntp.org/
../java/com/sleepycat/je/EnvironmentFailureException.html
../java/com/sleepycat/je/rep/ReplicationConfig.html#MAX_CLOCK_DELTA
../java/com/sleepycat/je/rep/ReplicationConfig.html#setMaxClockDelta(long, java.util.concurrent.TimeUnit)

Library Version 12.2.7.5 Replication API First Steps

When the Non-Primary node is not available, the number of nodes required for a simple
majority is reduced to one. As a consequence, the Primary is able to elect itself as the Master
and then commit transactions that require a simple majority to commit. The Primary is said
to be active when it is operating in this state. The transition from a designated Primary to an
active Primary happens when the Primary needs to contact the Non-Primary node, but fails to
do so for one of the following reasons:

« An election is initiated by the Primary to determine a new Master. This might happen
because the Primary is just starting up, or because the Primary has lost contact with
the Non-Primary. In either case, if the election fails to establish a Master, the Primary is
activated and it becomes the Master.

Note that the Primary will attempt to locate a Master until it has hit the retry limit as
defined by the ELECTIONS_PRIMARY_RETRIES configuration property. But until the Primary
has reached that limit, it will not transition to the active state.

« An Environment.beginTransaction() operation is invoked on the Primary while it is in the
Master state, and it cannot establish contact with the Non-Primary in the time period
specified by the INSUFFICIENT_REPLICAS_TIMEOUT configuration property.

» A Transaction.commit() needing a commit acknowledgement is invoked on the Primary while
it is in the Master state, and the Primary does not receive the commit acknowledgement
within the time period specified by the REPLICA_ACK_TIMEOUT configuration property.

Both the INSUFFICIENT_REPLICAS_TIMEOUT and REPLICA_ACK_TIMEOUT error cases are driven
by the durability policy that you are using for your transactions. See Managing Durability (page
29) for more information.

The three properties described above: ELECTIONS_PRIMARY_RETRIES,
INSUFFICIENT_REPLICAS_TIMEOUT and REPLICA_ACK_TIMEOUT impact the time taken by

the Primary to become active in the absence of the Non-Primary. Choosing smaller values
for the timeouts and election retries will generally result in smaller service disruptions by
activating the Primary more rapidly. The downside is that transient network glitches may
result in unnecessary transitions to the active state where the Primary is operating with
reduced Durability. It's up to the application to make these tradeoffs appropriately based on
its operating environment.

When the Non-Primary becomes available again, the Primary becomes aware of it as part of
the Master/Replica handshake (see Replica Startup (page 10)). At that time, the number of
nodes required for a simple majority reverts to two. That is, the Primary is no longer in the
active state.

Your application must be very careful to not designate two nodes as Primaries. If both nodes
are designated as Primaries, and the two nodes cannot communicate with one another for
some reason, they could both consider themselves to be Masters and start accepting write
transactions. This would violate a fundamental requirement of JE HA that at any given instant
in time, there is only one node that is permitted to write to the replicated environment.

The Non-Primary always needs two nodes for a simple majority, and as a result can never
become a Master in the absence of the Primary. If the Primary node fails, you can make
provisions to swap the Primary and Non-Primary designations, so that the surviving node is now

31-Oct-2017

Using JE High Availability Page 26

../java/com/sleepycat/je/rep/ReplicationConfig.html#ELECTIONS_PRIMARY_RETRIES
../java/com/sleepycat/je/Environment.html#beginTransaction(com.sleepycat.je.Transaction, com.sleepycat.je.TransactionConfig)
../java/com/sleepycat/je/rep/ReplicationConfig.html#INSUFFICIENT_REPLICAS_TIMEOUT
../java/com/sleepycat/je/Transaction.html#commit()
../java/com/sleepycat/je/rep/ReplicationConfig.html#REPLICA_ACK_TIMEOUT
../java/com/sleepycat/je/rep/ReplicationConfig.html#INSUFFICIENT_REPLICAS_TIMEOUT
../java/com/sleepycat/je/rep/ReplicationConfig.html#REPLICA_ACK_TIMEOUT
../java/com/sleepycat/je/rep/ReplicationConfig.html#ELECTIONS_PRIMARY_RETRIES
../java/com/sleepycat/je/rep/ReplicationConfig.html#INSUFFICIENT_REPLICAS_TIMEOUT
../java/com/sleepycat/je/rep/ReplicationConfig.html#REPLICA_ACK_TIMEOUT

Library Version 12.2.7.5 Replication API First Steps

the Primary. The swap must be done carefully to ensure that both nodes are not concurrently
designated Primaries. In particular, the failed node must come up as a Non-Primary after it has
been repaired.

You designate a node as Primary using the mutable config property DESIGNATED_PRIMARY.
You set this property using ReplicationMutableConfig.setDesignatedPrimary(). This property is
ignored for groups of size greater than two.

As stated above, this configuration can only be set for one node at a time. This condition

is checked during the Master/Replica startup handshake, and if both are designated as
Primary then an EnvironmentFailureException is thrown. However, you should not rely on

this handshake process to guard against dual Primaries. As stated above, if both nodes

are designated Primary at some point after the handshake occurs, and your application
experiences a network partition event such that the two nodes can no longer communicate,
then both nodes will become Masters. This is error condition that will require you to lose data
on at least one of the nodes if writes have occurred on both nodes while the network partition
was in progress.

31-Oct-2017

Using JE High Availability Page 27

../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#DESIGNATED_PRIMARY
../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#setDesignatedPrimary(boolean)
../java/com/sleepycat/je/EnvironmentFailureException.html

Chapter 3. Transaction Management

A JE HA application is essentially a transactional application that distributes its data across
multiple environments for you. The assumption is that these environments are on separate
physical hosts, so the distribution of your data is performed over TCP/IP connections.

Because of this distribution activity, several new dimensions are added to your transactional
management. In particular, there is more to consider in the areas of durability, consistency
and performance than you have to think about for single-environment applications.

Before continuing, some definitions are in order:

1.

Durability is defined by how likely your data will continue to exist in the presence of
hardware breakage or a software crash. The first goal of any durability scheme is to get
your data stored onto physical media. After that, to make your data even more durable,
you will usually start to consider your backup schemes.

By its very nature, a JE HA application is offering you more data durability than does a
traditional transactional application. This is because your HA application is distributing
your data across multiple environments (which we assume are on multiple physical
machines), which means that data backups are built into the application. The more
backups, the more durable your application is.

Consistency is defined by how current your data is. In a traditional transactional
application, consistency is guaranteed by allowing you to group multiple read and write
operations in a single atomic unit, which is defined by the transactional handle. This
level of consistency continues to exist for your HA application, but in addition you must
concern yourself with how consistent (or correct) the data is across the various nodes in
the replication group.

Because the replication group is a collection of differing machines connected by a
network, some amount of a delay in data updates is to be naturally expected across the
Replicas. The amount of delay that you will see is determined by the number and size of
the data updates, the performance of your network, the performance of the hardware on
which your nodes are running, and whether your nodes are persistently available on the
network (as opposed to being down or offline or otherwise not on the network for some
period of time). Because they are not included in acknowledgments, Secondary nodes may
tend to show greater delay than Electable nodes.

A highly consistent HA application, then, is an application where the data across all
nodes in the replication group is identical or very nearly identical all the time. A not very
consistent HA application is one where data across the replication group is frequently
stale or out of date relative to the data contained on the Master node.

Performance is simply how fast your HA application is at performing read and write
requests. By its very nature, an HA application tends to perform much better than a
traditional transactional application at read-only requests. This is because you have
multiple machines that are available to service read-only requests. The only tricky thing
here is to make sure you load balance your read requests appropriately across all your

31-Oct-2017

Using JE High Availability Page 28

Library Version 12.2.7.5 Transaction Management

Managing

nodes so that you do not have some nodes that are swamped with requests while others
are mostly idle.

Write performance for an HA application is a mixed bag. Depending on your goals, you can
make the HA application perform better than a traditional transactional application that
is committing writes to the disk synchronously. However, in doing so you will compromise
your data's durability and consistency guarantees. This is no different than configuring a
traditional transactional application to commit transactions asynchronously to disk, and
so lose the guarantee that the write is stored on physical media before the transaction
completes. However, the good news is that because of the distributed nature of the HA
application, you have a better durability guarantee than the asynchronously committing
single-environment transactional application. That is, by "committing to the network" you
have a fairly good chance of a write making it to disk somewhere on some node.

Mostly, though, HA applications commit a transaction and then wait for an
acknowledgement from some number of nodes before the transaction is complete. An
HA application running with quorum acknowledgements and write no sync durability can
exhibit equal or better write performance than a single node standalone application, but
your write performance will ultimately depend on your application's configuration.

As you design your HA application, remember that each of these characteristics are
interdependent. You cannot, for example, configure your application to have extremely high
durability without sacrificing some amount of performance. A highly consistent application
may have to make sacrifices in durability. A high performance HA application may require you
to make trade-offs in both durability and consistency.

Durability

A highly durable application is one where you attempt to make sure you do not lose data,
ever. This is frequently (but not always) one of the most pressing design considerations for any
application that manages data. After all, data often equals money because the data you are
managing could involve billing or inventory information. But even if your application is not
managing information that directly relates to money, a loss of data may very well cost your
enterprise money in terms of the time and resources necessary to reacquire the information.

HA applications attempt to increase their data durability guarantees by distributing data
writes across multiple physical machines on the network. By spreading the data in this way,
you are placing it on stable storage on multiple physical hard drives, CPUs and power supplies.
Obviously, the more physical resources available to contain your data, the more durable it is.

However, as you increase your data durability, you will probably lower your consistency
guarantees and probably your write performance. Read performance may also take a hit,
depending on how many physical machines you include in the mix and how high a durability
guarantee you want. In order to understand why, you have to understand how JE HA
applications handle transactional commits.

Durability Controls

By default, JE HA makes transactional commit operations on the Master wait to return
from the operation until they receive acknowledgements from some number of Replicas.

31-Oct-2017

Using JE High Availability Page 29

Library Version 12.2.7.5 Transaction Management

Each Replica, in turn, will only return an acknowledgement once the write operation
has met whatever durability requirement exists for the Replica. (For example, you can
require the Replicas to successfully flush the write operation to disk before returning an
acknowledgement to the Master.)

Note

Be aware that write operations received on the Replica from the Master have lock
priority. This means that if the Replica is currently servicing a read request, it might
have to retry the read operation should a write from the Master preempt the read
lock. For this reason, you can see read performance degradation if you have Replicas
that are heavily loaded with read requests at a time when the Master is performing a
lot of write activity. The solution to this is to add additional nodes to your replication
group and/or better load-balance your read requests across the Replicas.

There are three things to control when you design your durability guarantee:

» Whether the Master synchronously writes the transaction to disk. This is no different from
the durability consideration that you have for a stand-alone transactional application.

» Whether the Replica synchronously writes the transaction to disk before returning an
acknowledgement to the Master, if any.

« How many, if any, Replicas must acknowledge the transaction commit before the commit
operation on the Master can complete.

You can configure your durability policy on a transaction-by-transaction basis
using TransactionConfig.setDurability(), or on an environment-wide basis using
EnvironmentMutableConfig.setDurability().

Commit File Synchronization

Synchronization policies are described in the Berkeley DB, Java Edition Getting Started with
Transaction Processing guide. However, for the sake of completeness, we briefly cover this
topic here again.

You define your commit synchronization policy by using a Durability class object. For HA
applications, the Durability class constructor must define the synchronization policy for both
the Master and the Master's replicas. The synchronization policy does not have to be the same
for both Master and Replica.

You can use the following constants to define a synchronization policy:
« Durability.SyncPolicy.SYNC

Write and synchronously flush the log to disk upon transaction commit. This offers the most
durable transaction configuration because the commit operation will not return until all of

the disk 1/0 is complete. But, conversely, this offers the worse possible write performance

because disk I/0 is an expensive and time-consuming operation.

« Durability.SyncPolicy.NO_SYNC

31-Oct-2017 Using JE High Availability Page 30

../java/com/sleepycat/je/TransactionConfig.html#setDurability(com.sleepycat.je.Durability)
../java/com/sleepycat/je/EnvironmentMutableConfig.html#setDurability(com.sleepycat.je.Durability)
../java/com/sleepycat/je/Durability.html
../java/com/sleepycat/je/Durability.html
../java/com/sleepycat/je/Durability.SyncPolicy.html#SYNC
../java/com/sleepycat/je/Durability.SyncPolicy.html#NO_SYNC

Library Version 12.2.7.5 Transaction Management

Do not synchronously flush the log on transaction commit. All of the transaction's write
activity is held entirely in memory when the transaction completes. The log will eventually
make it to disk (barring an application hardware crash of some kind). However, the
application's thread of control is free to continue operations without waiting for expensive
disk 1/0 to complete.

This represents the least durable configuration that you can provide for your transactions.
But it also offers much better write performance than the other options.

 Durability.SyncPolicy. WRITE_NO_SYNC

Log data is synchronously written to the OS's file system buffers upon transaction commit,
but the data is not actually forced to disk. This protects your write activities from an
application crash, but not from a hardware failure.

This policy represents an intermediate durability guarantee. It is not has strong as SYNC, but
is also not as weak as NO_SYNC. Conversely, it performs better than NO_SYNC (because your
application does not have to wait for actual disk 1/0), but it does not perform quite as well
as SYNC (because data still must be written to the file system buffers).

Managing Acknowledgements

Whenever a Master commits a transaction, by default it waits for acknowledgements from a
majority of its Electable Replicas before the commit operation on the Master completes. By
default, Electable Replicas respond with an acknowledgement once they have successfully
written the transaction to their local disk. Note that Secondary Replicas do not ever provide
acknowledgements.

Acknowledgements are expensive operations. They involve both network traffic, as well

as disk 1/0 at multiple physical machines. So on the one hand, acknowledgements help to
increase your durability guarantees. On the other, they hurt your application's performance,
and may have a negative impact on your application’'s consistency guarantee.

For this reason, JE allows you to manage acknowledgements for your HA application. As is the
case with synchronization policies, you do this using the Durability class. As a part of this class’
constructor, you can provide it with one of the following constants:

 Durability.ReplicaAckPolicy.ALL

All of the Electable Replicas must acknowledge the transactional commit. This represents
the highest possible durability guarantee for your HA application, but it also represents the
poorest performance. For best results, do not use this policy unless your replication group
contains a very small number of electable replicas, and those replicas are all on extremely
reliable networks and servers.

« Durability.ReplicaAckPolicy. NONE

The Master will not wait for any acknowledgements from its Replicas. In this case, your
durability guarantee is determined entirely by the synchronization policy your Master is
using for its transactional commits. This policy also represents the best possible choice for
write performance.

31-Oct-2017

Using JE High Availability Page 31

../java/com/sleepycat/je/Durability.SyncPolicy.html#WRITE_NO_SYNC
../java/com/sleepycat/je/Durability.html
../java/com/sleepycat/je/Durability.ReplicaAckPolicy.html#ALL
../java/com/sleepycat/je/Durability.ReplicaAckPolicy.html#NONE

Library Version 12.2.7.5 Transaction Management

« Durability.ReplicaAckPolicy.SIMPLE_MAJORITY

A simple majority of the Electable Replicas must return acknowledgements before the
commit operation returns on the Master. This is the default policy. It should work well for
most applications unless you need an extremely high durability guarantee, have a very large
number of Electable Replicas, or you otherwise have performance concerns that cause you
to want to avoid acknowledgements altogether.

You can configure your synchronization policy on a transaction-by-transaction basis
using TransactionConfig.setDurability(), or on an environment-wide basis using
EnvironmentMutableConfig.setDurability(). For example:

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Require no synchronization for transactional commit on the
// Master, but full synchronization on the Replicas. Also,
// wait for acknowledgements from a simple majority of Replicas.
Durability durability =
new Durability(Durability.SyncPolicy.WRITE_NO_SYNC,
Durability.SyncPolicy.NO_SYNC,
Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);

envConfig.setDurability(durability);

// Identify the node
ReplicationConfig repConfig =
new ReplicationConfig("PlanetaryRepGroup",
"Jupiter",
"jupiter.example.com:5002");

// Use the node at mercury.example.com:5001 as a helper to find
// the rest of the group.
repConfig.setHelperHosts("mercury.example.com:5001");

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(home, repConfig, envConfig);

Note that at the time of a transaction commit, if the Master is not in contact with enough
Electable Replicas to meet the transaction's durability policy, the transaction commit
operation will throw an InsufficientReplicasException. The proper action to take upon
encountering this exception is to abort the transaction, wait a small period of time in the
hopes that more Electable Replicas will become available, then retry the exception. See
Example Run Transaction Class (page 46) for example code that implements this retry loop.

You can also see an InsufficientReplicasException when you begin a transaction if the
Master fails to be in contact with enough Electable Replicas to meet the acknowledgement
policy. To manage this, you can configure how long the transaction begin operation

will wait for enough Electable Replicas before throwing this exception. You use the

31-Oct-2017

Using JE High Availability Page 32

../java/com/sleepycat/je/Durability.ReplicaAckPolicy.html#SIMPLE_MAJORITY
../java/com/sleepycat/je/TransactionConfig.html#setDurability(com.sleepycat.je.Durability)
../java/com/sleepycat/je/EnvironmentMutableConfig.html#setDurability(com.sleepycat.je.Durability)
../java/com/sleepycat/je/rep/InsufficientReplicasException.html
../java/com/sleepycat/je/rep/InsufficientReplicasException.html

Library Version 12.2.7.5 Transaction Management

INSUFFICIENT_REPLICAS_TIMEOUT configuration option, which you can set using the
ReplicationConfig.setConfigParam() method.

Managing Acknowledgement Timeouts

In addition to the acknowledgement policies, you have to also consider your replication
acknowledgement timeout value. This value specifies the maximum amount of time that the
Master will wait for acknowledgements from its Electable Replicas.

If the Master commits a transaction and the timeout value is exceeded while waiting

for enough acknowledgements, the Transaction.commit() method will throw an
InsufficientAcksException exception. In this event, the transaction has been committed on
the Master, so at least locally the transaction's durability policy has been met. However, the
transaction might not have been committed on enough Electable Replicas to guarantee your
HA application's overall durability policy.

There can be a lot of reasons why the Master did not get enough acknowledgements before
the timeout value, such as a slow network, a network failure before or after a transaction was
transmitted to a replica, or a failure of a replica. These failures have different consequences
for whether a transaction will become durable or will be subject to rollback. As a result, an
application may respond in various ways, and for example choose to:

« Do nothing, assuming that the transaction will eventually propagate to enough replicas to
become durable.

« Retry the operation in a new transaction, which may succeed or fail depending on whether
the underlying problems have been resolved.

» Retry using a larger timeout interval and return to the original timeout interval at a later
time.

« Fall back temporarily to a read-only mode.

« Increase the durability of the transaction on the Master by ensuring that the changes are
flushed to the operating system'’s buffers or to the disk.

» Give up and report an error at a higher level, perhaps to allow an administrator to check
the underlying cause of the failure.

The default value for this timeout is 5 seconds, which should work for most cases where

an acknowledgement policy is in use. However, if you have a very large number of

Electable Replicas, or if you have a very unreliable network, then you might see a lot of
InsufficientAcksException exceptions. In this case, you should either increase this timeout
value, relax your acknowledgement policy, or find out why your hardware and/or network is
performing so poorly.

Note

You can also see InsufficientAcksException or InsufficientReplicasException exceptions
if one or more replicas have exceeded their disk usage thresholds. See Suspending
Writes Due to Disk Thresholds (page 60) for more information.

31-Oct-2017

Using JE High Availability Page 33

../java/com/sleepycat/je/rep/ReplicationConfig.html#INSUFFICIENT_REPLICAS_TIMEOUT
../java/com/sleepycat/je/rep/ReplicationConfig.html#setConfigParam(java.lang.String,java.lang.String)
../java/com/sleepycat/je/Transaction.html#commit()
../java/com/sleepycat/je/rep/InsufficientAcksException.html
../java/com/sleepycat/je/rep/InsufficientAcksException.html
../java/com/sleepycat/je/rep/InsufficientAcksException.html
../java/com/sleepycat/je/rep/InsufficientReplicasException.html

Library Version 12.2.7.5 Transaction Management

You can configure your acknowledgement policy using the
ReplicationConfig.setReplicaAckTimeout() method.

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Require no synchronization for transactional commit on the
// Master, but full synchronization on the Replicas. Also,
// wait for acknowledgements from a simple majority of Replicas.
Durability durability =
new Durability(Durability.SyncPolicy.WRITE_NO_SYNC,
Durability.SyncPolicy.NO_SYNC,
Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);

envConfig.setDurability(durability);

// Identify the node
ReplicationConfig repConfig =
new ReplicationConfig("PlanetaryRepGroup",
"Jupiter”,
"jupiter.example.com:5002");

// Use the node at mercury.example.com:5001 as a helper to find the rest
// of the group.
repConfig.setHelperHosts("mercury.example.com:5001");

// Set a acknowledgement timeout that is slightly longer
// than the default 5 seconds.
repConfig.setReplicaAckTimeout(7, TimeUnit.SECONDS);

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(home, repConfig, envConfig);

Managing Consistency

In a traditional stand-alone transactional application, consistency means that a transaction
takes the database from one consistent state to another. What defines a consistent state is
application-specific. This transition is made atomically, that is, either all the operations that
constitute the transaction are performed, or none of them are. JE HA supports this type of
transactional consistency both on the Master, as well as on the Replicas as the replication
stream is replayed. That is, in the absence of failures, the Replicas will see exactly the same
sequence of transitions, from one consistent state to another, as the Master.

A JE HA application must additionally concern itself with the data consistency of the Replica
with respect to the Master. In a distributed system like JE HA, the changes made at the
Master are not always instantaneously available at every Replica, although they eventually
will be. For example, consider a three node group, containing only Electable nodes, where
a change is made on the Master and the transaction is committed with a durability policy
requiring acknowledgments from a simple majority of nodes. After a successful commit of

31-Oct-2017

Using JE High Availability Page 34

../java/com/sleepycat/je/rep/ReplicationConfig.html#setReplicaAckTimeout(long, java.util.concurrent.TimeUnit)

Library Version 12.2.7.5 Transaction Management

this transaction, the changes will be available at the Master and at one other Replica, thus
satisfying the requirement for a simple majority of acknowledgments. The state of the Master
and the acknowledging Replica will be consistent with each other after the transaction has
been committed, but the transaction commit makes no guarantees about the state of the
third Replica after the commit.

In general, Replicas not directly involved in contributing to the acknowledgment of a
transaction commit will lag in the replay of the replication stream because they do not
synchronize their commits with the Master. As a consequence, their state, on an instantaneous
basis, may not be current with respect to the Master. However, in the absence of further
updates, all Replicas will eventually catch up and reflect the instantaneous state of the
Master. This means that a Replica which is not consistent with the Master simply reflects an
earlier locally consistent state at the Master because transaction updates on the Replica are
always applied, atomically and in order. From the application's perspective, the environment
on the Replica goes through exactly the same sequence of changes to its persistent state as
the Master.

A Replica may similarly lag behind the Master if it has been down for some period of time and
was unable to communicate with the Master. Such a Replica will catch up, when it is brought
back up and will eventually become consistent with the Master.

Given the distributed nature of a JE HA application, and the fact that some nodes might lag
behind the Master, the question you have to ask yourself is how long will it take for that node
to be consistent relative to the Master. More to the point: how far behind the Master are you
willing to allow the node to lag?

This should be one of your biggest concerns when it comes to architecting a JE HA application.

You define how current the nodes in your replication group must be by defining a
consistency policy. You define your consistency policy using an implementation of the
ReplicaConsistencyPolicy interface. This interface allows you to define how current the
Replica must be before a transaction can be started on the Replica. (Remember that all read
operations are performed within a transaction.) If the Replica is not current enough, then
the start of that transaction is delayed until that level of consistency has been reached. This
means that Replicas that are not current enough will block read operations until they are
brought up to date.

Obviously your consistency policy can have an affect on your Replica's read performance

by increasing the latency experienced by read transactions. This is because transactions

may have to wait to either begin or commit until the consistency policy can be satisfied.

If the consistency policy is so stringent that it cannot be satisfied using the available
resources, the Replica's availability for reads may deteriorate as transactions timeout. A
Durability.SyncPolicy.SYNC policy on the Replica can slow down write operations on the
Replica, making it harder for the Replica to meet its consistency guarantee. Conversely, a
Durability.SyncPolicy.NO_SYNC policy on the Replica makes it easy for the Replica to keep up,
which means you can have a stronger consistency guarantee.

One of three interface implementations are available for you to use when defining your
consistency policy:

» NoConsistencyRequiredPolicy

31-Oct-2017

Using JE High Availability Page 35

../java/com/sleepycat/je/ReplicaConsistencyPolicy.html
../java/com/sleepycat/je/Durability.SyncPolicy.html#SYNC
../java/com/sleepycat/je/Durability.SyncPolicy.html#NO_SYNC
../java/com/sleepycat/je/rep/NoConsistencyRequiredPolicy.html

Library Version 12.2.7.5 Transaction Management

No consistency policy is enforced. This policy allows a transaction on a Replica to proceed
regardless of the state of the Replica relative to the Master. This policy can also be used to
access a database when the replication node is in a DETACHED state.

« TimeConsistencyPolicy
Defines how far back in time the Replica is permitted to lag the Master.
o CommitPointConsistencyPolicy

Defines consistency in terms of a specified commit token. That is, the Replica must be at
least as current as the CommitToken provided to this class.

Setting Consistency Policies

You set a consistency policy by using ReplicationConfig.setConsistencyPolicy(). For example:

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Require no synchronization for transactional commit on the
// Master, but full synchronization on the Replicas. Also,
// wait for acknowledgements from a simple majority of Replicas.
Durability durability =
new Durability(Durability.SyncPolicy.NO_SYNC,
Durability.SyncPolicy.SYNC,
Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);

envConfig.setDurability(durability);

// Identify the node
ReplicationConfig repConfig =
new ReplicationConfig("PlanetaryRepGroup",
"Jupiter",
"jupiter.example.com:5002");

// Use the node at mercury.example.com:5001 as a helper to find the rest
// of the group.
repConfig.setHelperHosts("mercury.example.com:5001");

// Turn off consistency policies. Transactions can occur
// regardless of how consistent the Replica is relative
// to the Master.
NoConsistencyRequiredPolicy ncrp =

new NoConsistencyRequiredPolicy();
repConfig.setConsistencyPolicy(ncrp);

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(home, repConfig, envConfig);

31-Oct-2017 Using JE High Availability Page 36

../java/com/sleepycat/je/rep/TimeConsistencyPolicy.html
../java/com/sleepycat/je/rep/CommitPointConsistencyPolicy.html
../java/com/sleepycat/je/CommitToken.html
../java/com/sleepycat/je/rep/ReplicationConfig.html#setConsistencyPolicy(com.sleepycat.je.ReplicaConsistencyPolicy)

Library Version 12.2.7.5 Transaction Management

Note that the consistency policy is set on a node-by-node basis. There is no requirement that
you set the same policy for every node in your replication group.

You can also set consistency policies on a transaction-by-transaction basis when you begin the
transaction:

// Turn off consistency policies. The transactions can
// be performed regardless of how consistent the Replica is
// relative to the Master.
NoConsistencyRequiredPolicy ncrp =
new NoConsistencyRequiredPolicy();

TransactionConfig tc = new TransactionConfig();
tc.setConsistencyPolicy(ncrp);

// env is a ReplicatedEnvironment handle
env.beginTransaction(null, tc);

Time Consistency Policies

A time consistency policy is a time-oriented policy that defines how far back in time the
Replica is permitted to lag the Master. It does so by comparing the time associated with the
latest transaction committed on the Master with the current time. If the Replica lags by an
amount greater than the permissible lag, it will hold back the start of the transaction until
the Replica has replayed enough of the replication stream to narrow the lag to within the
permissible lag.

Use of a time based consistency policy requires that nodes in a replication group have their
clocks reasonably synchronized. This can be easily achieved using a daemon like NTPD.

You implement a time-based consistency policy by using the TimeConsistencyPolicy class. To
instantiate this class, you provide it with the following:

« A number representing the permissible lag.

« A TimeUnit constant indicating the units of time that the permissible lag represents.

A number representing the timeout period during which a transaction will wait for the
Replica to catch up so that the consistency policy can be met. If the transaction waits more
than the timeout period, a ReplicaConsistencyException is thrown.

« A TimeUnit constant indicating the units of time in use for the timeout value.

For example:

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
envConfig.setTransactional(true);

// Require no synchronization for transactional commit on the
// Master, but full synchronization on the Replicas. Also,

// wait for acknowledgements from a simple majority of Replicas.
Durability durability =

31-Oct-2017

Using JE High Availability Page 37

http://www.ntp.org/
../java/com/sleepycat/je/rep/TimeConsistencyPolicy.html
http://java.sun.com/j2se/1.5/docs/api/java/util/concurrent/TimeUnit.html
../java/com/sleepycat/je/rep/ReplicaConsistencyException.html
http://java.sun.com/j2se/1.5/docs/api/java/util/concurrent/TimeUnit.html

Library Version 12.2.7.5 Transaction Management

new Durability(Durability.SyncPolicy.NO_SYNC,
Durability.SyncPolicy.SYNC,
Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);

envConfig.setDurability(durability);

// Identify the node
ReplicationConfig repConfig =
new ReplicationConfig("PlanetaryRepGroup",
"Jupiter”,
"jupiter.example.com:5002");

// Use the node at mercury.example.com:5001 as a helper to find the rest
// of the group.
repConfig.setHelperHosts("mercury.example.com:5001");

// Set consistency policy for replica.
TimeConsistencyPolicy consistencyPolicy = new TimeConsistencyPolicy
(1, TimeUnit.SECONDS, /* 1 sec of lag */
10, TimeUnit.SECONDS /* Wait up to 10 sec */);
repConfig.setConsistencyPolicy(consistencyPolicy);

ReplicatedEnvironment repEnv =
new ReplicatedEnvironment(home, repConfig, envConfig);

Commit Point Consistency Policies

A commit point consistency policy defines consistency in terms of the commit of a specific
transaction. This policy can be used to ensure that a Replica is at least current enough to
have the changes made by a specific transaction. Because transactions are applied serially, by
ensuring a Replica has a specific commit applied to it, you know that all transaction commits
occurring prior to the specified transaction have also been applied to the Replica.

As is the case with a time consistency policy, if the Replica is not current enough relative to
the Master, all attempts to begin a transaction will be delayed until the Replica has caught up.
If the Replica does not catch up within a specified timeout period, the transaction will throw a
ReplicaConsistencyException.

In order to specify a commit point consistency policy, you must provide a CommitToken that
is used to identify the transaction that the Replica must have in order to be current enough.
Because the commit point that you care about will change from transaction to transaction,
you do not specify commit point consistency policies on an environment-wide basis. Instead,
you specify them when you begin a transaction.

For example, suppose the application is a web application where a replicated group is
implemented within a load balanced web server group. Each request to the web server
consists of an update operation followed by read operations (say from the same client), The
read operations naturally expect to see the data from the updates executed by the same
request. However, the read operations might have been routed to a node that did not execute
the update.

31-Oct-2017

Using JE High Availability Page 38

../java/com/sleepycat/je/rep/ReplicaConsistencyException.html
../java/com/sleepycat/je/CommitToken.html

Library Version 12.2.7.5 Transaction Management

In such a case, the update request would generate a CommitToken, which would be
resubmitted by the browser, along with subsequent read requests. The read request could be
directed at any one of the available web servers by a load balancer. The node which executes
the read request would create a CommitPointConsistencyPolicy with that CommitToken and
use it at transaction begin. If the environment at the web server was already current enough,
it could immediately execute the transaction and satisfy the request. If not, the "transaction
begin” would stall until the Replica replay had caught up and the change was available at that
web server.

You obtain a commit token using the Transaction.getCommitToken() method. Use this
method after you have successfully committed the transaction that you want to base a
CommitPointConsistencyPolicy upon.

For example:

Database myDatabase = null;
Environment myEnv = null;
CommitToken ct = null;

try {

// Environment and database setup removed for brevity

Transaction txn = myEnv.beginTransaction(null, null);

try {
myDatabase.put(txn, key, data);

txn.commit();

ct = txn.getCommitToken();

if (ct != null) {
// Do something with the commit token to
// forward it to the Replica where you
// want to use it.

}

} catch (Exception e) {

if (txn != null) {
txn.abort();
txn = null;

}

} catch (DatabaseException de) {
// Exception handling goes here

}

To create your commit point token consistency policy, transfer the commit token to
the Replica performing a read using whatever mechanism that makes sense for your HA
application, and then create the policy for that specific transaction handle: Note that
CommitToken implements Serializable, so you can use the standard Java serialization
mechanisms when passing the commit token between processes.

31-Oct-2017

Using JE High Availability Page 39

../java/com/sleepycat/je/CommitToken.html
../java/com/sleepycat/je/rep/CommitPointConsistencyPolicy.html
../java/com/sleepycat/je/CommitToken.html
../java/com/sleepycat/je/Transaction.html#getCommitToken()
../java/com/sleepycat/je/rep/CommitPointConsistencyPolicy.html
../java/com/sleepycat/je/CommitToken.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

Library Version 12.2.7.5 Transaction Management

Database myDatabase = null;
Environment myEnv = null;
CommitToken ct = null;

try {

// Environment and database setup removed for brevity

CommitPointConsistencyPolicy cpcp =
new CommitPointConsistencyPolicy(ct, // The commit token
10, TimeUnit.SECONDS); // Timeout value

TransactionConfig txnConfig = new TransactionConfig();
txnConfig.setConsistencyPolicy(cpcp);

Transaction txn = myEnv.beginTransaction(null, txnConfig);

try {
// Perform your database read here using the transaction

// handle, txn.
txn.commit();
} catch (Exception e) {
// There are quite a lot of different exceptions that can be
// seen at this level, including the LockConflictException.
// We just catch Exception for this example for simplicity's
// sake.
if (txn != null) {
txn.abort();
txn = null;

} catch (ReplicaConsistencyException rce) {
// Deal with this timeout error here. It is thrown by the
// beginTransaction operation if the consistency policy
// cannot be met within the timeout time.
} catch (DatabaseException de) {
// Database exception handling goes here.
} catch (Exception ee) {
// General exception handling goes here.

}

Availability

A key difference between standalone JE and JE HA is that for standalone JE the environment
is available for both reads and writes as long as the application (including the underlying
hardware) is functioning correctly. That is, the availability of a standalone JE application is
independent of the local durability policy set for the transaction. However, the distributed

31-Oct-2017

Using JE High Availability Page 40

Library Version 12.2.7.5 Transaction Management

nature of JE HA, means that availability can be dependent upon the state of other nodes
in the replication group. It can also be dependent upon the policies you set for your HA
application.

Write Availability

JE HA requires that a simple majority of electable nodes be available to elect a Master. If a
simple majority of those nodes is not available, the group is not available for writes because
the group is unable to elect a Master.

In the presence of a Master, the availability of a replicated environment (at the Master) for
write operations is determined by the durability requirements associated with the transaction:

« If the transaction’s durability requirements specify an acknowledgement policy of NONE,
the Master is always available for write operations, just as is the case for standalone JE
applications.

« If the durability requirements are made more stringent and specify a simple majority for
acknowledgements, or if all the electable group members must acknowledge transaction
commits, the environment might not be available for writes when one or more of the
Electable Replicas is unable to provide an acknowledgment. This loss of write availability
can occur even in the absence of hardware failures.

Replicas might be unable to provide acknowledgements because a node is down. It could
also occur if the Replica is simply lagging too far behind in the replication stream and

so needs to commit earlier transactions before it can commit the current transaction.
Note that in the absence of system level failures, the Replica will eventually commit the
transaction, it just can not do so in the window of time required to indicate a successful
commit of the transaction to the Master.

In other words, a durability policy that calls for commit acknowledgments can result in
decreased availability of the system for write operations. It is important for you to keep this
tradeoff in mind when choosing a durability policy.

Read Availability

A Master is always available for read operations because the data on it is always absolutely
consistent. However, Replica read availability can be affected by the consistency policy that
you are using:

« A Replica is always available for read operations that do not have any read consistency
requirements. That is, when the Replica is allowed to lag arbitrarily far behind the Master,
then the Replica will always be available to service read requests.

« If you are using higher levels of read consistency, then Replicas might not be available for
read operations. This occurs when the Replica is forced to wait until it has caught up far
enough in the replication stream before it can service a read operation. For example, if you
choose a time consistency policy, and the the Replica cannot meet that consistency policy
for a specific read operation, then the operation might be delayed or even abandoned
entirely until the consistency policy can be met. This represents a loss of read availability.

31-Oct-2017

Using JE High Availability Page 41

Library Version 12.2.7.5 Transaction Management

There are many reasons why a Replica might not be able to meet a consistency policy. For
example, the Master might be very busy and so is unable to supply the Replica with the
replication stream fast enough. Or, it could be because the Replica is experiencing very
heavy read loads and so the replication stream might not be fast enough to keep up. It is
also possible that the Replica has been down and is trying to catch up, which means that it
might not be able to meet a consistency policy.

All of these scenarios represent a loss of read availability, albeit a temporary one.

In other words, a consistency policy that requires the Replica to match the state of the Master
to one degree or another can affect the Replica's read availability. It is important for you to
keep this tradeoff in mind when choosing a consistency policy.

Consistency and Durability Use Cases

As discussed throughout this chapter, there is an interaction between consistency and
durability. This interaction results in design decisions that you will have to make when
designing your HA application. To further illustrate this interaction, this section provides
several use cases as examples of how durability and consistency policies are used to reach
application design goals.

Out on the Town

Out on the Town is a social networking site about restaurants and artistic events. Restaurant
locations and an event calendar are available on the site. Members can submit reviews about
restaurants and events, and other members can comment on the reviews. Further, members

maintain accounts and profiles.

The site experiences most of its traffic as read-only requests. There is heavy read traffic
from users who are browsing the site. In addition, periodic write traffic occurs as reviews and
comments are submitted to the site.

Reading Reviews

Based on the site's usage characteristics, the web developers know that it is critical that the
site perform well for read traffic. Listings must be readily available, and the site must be able
to adapt to changing read loads. However, the site only needs a low threshold for most reads.

While users should not experience a delay when they access the site, it is okay if read
requests do not see the very latest reviews. For this reason, when starting read-only
transactions for the purpose of viewing reviews, the application specifies a consistency
policy of NoConsistencyRequiredPolicy. This provides the highest possible availability for read
requests for the Replica nodes, which is the critical thing for this particular site. (Any other
consistency policy might cause the node to delay reads while waiting for the node to meet its
consistency policy, which would represent an unacceptable loss of availability as it could cost
the site lost readership.)

Writing Reviews

Most write operations are for new user reviews, and for comments on those reviews. For these
writes, the application needs only a very lenient durability policy. It is not critical that a new

31-Oct-2017 Using JE High Availability Page 42

../java/com/sleepycat/je/rep/NoConsistencyRequiredPolicy.html

Library Version 12.2.7.5 Transaction Management

review is immediately available to other users, nor is it critical that they are saved in the
event of a catastrophic failure.

Therefore, the application uses the convenience constant Durability. COMMIT_WRITE_NO_SYNC
as the system default durability policy. (This is done by specifying the durability policy using
EnvironmentMutableConfig.setDurability().) This means:

» Write operations on the Master use Durability.SyncPolicy. WRITE_NO_SYNC.

« When the write operation is forwarded by the Master to the Replicas, those Replicas use
Durability.SyncPolicy.NO_SYNC when they internally update their own databases.

« Only a simple majority of the Electable nodes need to acknowledge the update.

Updating Events and Restaurant Listings

Periodically, the calendar of events and restaurant locations are updated. These write
operations happen fairly infrequently relative to reviews and comments, but the site’s
operators deem this information to be of more importance (or valuable) than the reviews
and comments. Therefore, they want a stronger guarantee that the information is backed
up to all nodes, which is the same thing as saying they want a stronger durability guarantee.
Nevertheless, they also want this class of writes to consume few resources.

To achieve this, for transactions performing these kind of writes, the web engineers choose to
override the site's default durability guarantee. Instead, they use a durability guarantee that:

» Uses Durability.SyncPolicy.SYNC for the local synchronization policy. This ensures that the
write is fully backed up to the Master's local disk before the transaction commit operation
returns.

» Uses Durability.SyncPolicy. WRITE_NO_SYNC for the synchronization policy on the Replica
nodes. This causes the updates to be written to the disk controller's buffers, but they are
not flushed to disk before the Electable Replicas acknowledge the commit operation.

« Stays with a simply majority for acknowledgements, which is the same as is used for the
default durability policy.

That is, for updating events and restaurant locations, the application uses this durability
policy:
useForUpdates =
new Durability(Durability.SyncPolicy.SYNC,
Durability.SyncPolicy.WRITE_NO_SYNC,
Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);

Updating Account Profiles

If a user makes an account profile change as part of a web session, she will naturally expect
to see her changes when she next looks at the profile during the same session. From the user's
perspective, this is all one operation: she causes her profile to change and then the profile
page is refreshed with her new information.

However, from the application's perspective, there are several things going on:

31-Oct-2017

Using JE High Availability Page 43

../java/com/sleepycat/je/Durability.html#COMMIT_WRITE_NO_SYNC
../java/com/sleepycat/je/EnvironmentMutableConfig.html#setDurability(com.sleepycat.je.Durability)
../java/com/sleepycat/je/Durability.SyncPolicy.html#WRITE_NO_SYNC
../java/com/sleepycat/je/Durability.SyncPolicy.html#NO_SYNC
../java/com/sleepycat/je/Durability.SyncPolicy.html#SYNC
../java/com/sleepycat/je/Durability.SyncPolicy.html#WRITE_NO_SYNC

Library Version 12.2.7.5 Transaction Management

» A write transaction is performed on the Master.

» One or more read transactions are performed on the Replica node in use by the user as she
updates her profile and then reads back the changes she just made.

To ensure that the session interaction looks intuitively consistent to the user, the application:
« Performs the write transaction on the Master.
« Saves the CommitToken for the account profile update within the web session.

» The Replica node uses a CommitPointConsistencyPolicy policy for the follow-on account
profile read(s). To do this, the application uses the CommitToken stored in the previous
step when beginning the read transactions. In this way, the Replica will not serve up the
new profile page until it has received the profile updates from the Master. From the user's
perspective, there may be a delay in her page refresh when she submits her updates. How
long of a delay experienced by the user is a function of how busy the site is with write
updates, as well as the performance characteristics of the hardware and networks in use by
the site.

Bio Labs, Inc

Bio Labs, Inc is a biotech company that is doing pharmaceutical production which must be
audited by government agencies. Production sampling results are logged frequently. All such
updates must be guaranteed to be backed up. (In other words, this application requires a very
high durability guarantee.)

In addition, there are frequent application defined sample points that represent phases in the
production cycle. The application performs monitoring of the production stream. These reads
are time critical, so the data must be no older than a specific point in time.

Logging Sampling Results

Due to the auditing requirement for the sampling results, the application developers want an
extremely high data durability guarantee. Therefore, they require the synchronization policy
on both the Master and all Electable Replica nodes to be Durability.SyncPolicy.SYNC, which
means that the logging data is guaranteed to be written to stable storage before the host
returns from its transaction commit.

For an acknowledgement policy, the engineers considered requiring all Electable nodes to
acknowledge the commit. This would provide them with the strongest possible durability
guarantee. However, they decided against this because it represents a possible loss of write
availability for the application; if even one Electable node is shutdown or hidden by a network
outage, then the Master would not be able to perform any write operations at all. So instead,
the engineers stick with the default acknowledgement policy, which is to require a simple
majority of the Electable nodes to acknowledge the commit.

The durability policy, then, looks like this:

resultsDurability =
new Durability(Durability.SyncPolicy.SYNC,
Durability.SyncPolicy.SYNC,

31-Oct-2017

Using JE High Availability Page 44

../java/com/sleepycat/je/CommitToken.html
../java/com/sleepycat/je/rep/CommitPointConsistencyPolicy.html
../java/com/sleepycat/je/CommitToken.html
../java/com/sleepycat/je/Durability.SyncPolicy.html#SYNC

Library Version 12.2.7.5 Transaction Management

Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);

Monitoring the Production Stream

The BioLabs application is required to monitor the production stream. All such monitoring
must be of data that is no older than a defined age.

This represents a read activity that has a time concurrency policy requirement. Therefore,
whenever the application performs a write (that is, logs sampling results), the application
creates a CommitToken. Each of the nodes, then, use this commit token to specify a
CommitPointConsistencyPolicy policy when the Environment.beginTransaction() method is
called. This guarantees that the application's data monitoring activities will be performed on
data that is not out of date or stale.

Managing Transaction Rollbacks

In the event that a new Master is elected, it is possible for a Replica to find that some of its
logs are ahead of the logs held by the Master. While this is unlikely to occur, your code must
still be ready to deal with the situation. When it happens, you must roll back the transactions
represented by the logs that are ahead of the Master.

You do this by simply closing all your ReplicatedEnvironment handles, and then reopening.
During the handshaking process that occurs when the Replica joins the replication group, the
discrepancy in log files is resolved for you.

Note that the problem of logs on replicas being ahead of the log on the master is unlikely to
occur because the election mechanism favors nodes with the most recent logs. When selecting
a master, a simple majority of nodes are required to vote on the choice of master, and they
will vote for the node with the most recent log files. When the problem does occur, though,

it results in the updates reflected in the Replica's log being discarded when the log is rolled
back.

Logs on a Replica can be ahead of the logs on the Master if network or node failures
result in transactions becoming durable on fewer than a majority of the nodes in the
replication group. This reduced durability is more likely in cases where one or more
Replicas show large replication lags relative to the Master. Administrators should
monitor replication lags and evaluate whether they are caused by issues with network
or host performance. Applications can reduce the chance of transaction rollbacks by
avoiding the use of weak durability requirements like ReplicaAckPolicy.NONE or a
ReplicationMutableConfig.NODE_PRIORITY of zero.

JE HA lets your application know that a transaction must be rolled back by throwing
RollbackException. This exception can by thrown by any operation that is performing routine
database access.

ReplicatedEnvironment repEnv = new ReplicatedEnvironment(...);
boolean doWork = true;

while doWork {

try {
// performSomeDBWork is the method that

31-Oct-2017

Using JE High Availability Page 45

../java/com/sleepycat/je/CommitToken.html
../java/com/sleepycat/je/rep/CommitPointConsistencyPolicy.html
../java/com/sleepycat/je/Environment.html#beginTransaction(com.sleepycat.je.Transaction, com.sleepycat.je.TransactionConfig)
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/RollbackException.html

Library Version 12.2.7.5 Transaction Management

// performs your database access.
doWork = performSomeDBWork();
} catch (RollbackException rb) {
if (repEnv != null) {
repEnv.close();
repeEnv = new ReplicatedEnvironment(...);

}
Example Run Transaction Class

Usage of JE HA requires you to handle many different HA-specific exceptions. While some of
these are Master-specific and others are Replica-specific, your code may still need to handle
both. The reason why is that it is not uncommon for HA applications to have standard classes
that perform database access, regardless of whether the class is used for a node in the Master
state or a node in the Replica state.

The following class is an example class that can be used to perform transactional reads and
writes in an HA application. This class is used by the on-disk HA examples that you can find in
your JE distribution (see Replication Examples (page 67) for more information). However,

we think this particular example class is important enough that we also describe it here.

RunTransaction Class

The RunTransaction abstract class is used to implement a utility class that performs
database access for HA applications. It provides all the transaction error handling and retry
framework that is required for database access in an HA environment.

Because RunTransaction is a class that is meant to be used by different example HA
applications, it does not actually implement the database operations. Instead, it provides an
abstract method that must be implemented by the HA application that uses RunTransaction.

We begin by importing the classes that RunTransaction uses.

package je.rep.quote;
import java.io.PrintStream;

import com.sleepycat.je.EnvironmentFailureException;
import com.sleepycat.je.LockConflictException;

import com.sleepycat.je.OperationFailureException;

import com.sleepycat.je.Transaction;

import com.sleepycat.je.rep.InsufficientAcksException;
import com.sleepycat.je.rep.InsufficientReplicasException;
import com.sleepycat.je.rep.ReplicaConsistencyException;
import com.sleepycat.je.rep.ReplicaWriteException;

import com.sleepycat.je.rep.ReplicatedEnvironment;

Then we define a series of private data members that identify how our HA transactions are
going to behave in the event of an error condition.

31-Oct-2017 Using JE High Availability Page 46

Library Version 12.2.7.5 Transaction Management

abstract class RunTransaction {

/* The maximum number of times to retry the transaction. */
private static final int TRANSACTION_RETRY_MAX = 10;

/*

* The number of seconds to wait between retries when a sufficient
* number of replicas are not available for a transaction.

*/

private static final int INSUFFICIENT_REPLICA_RETRY_SEC = 1;

/* Amount of time to wait to let a replica catch up before
* retrying.

*/

private static final int CONSISTENCY_RETRY_SEC = 1;

/* Amount of time to wait after a lock conflict. */
private static final int LOCK_CONFLICT_RETRY_SEC = 1;

private final ReplicatedEnvironment env;
private final PrintStream out;

Then we implement our class constructor, which is very simple because all the heavy lifting is
done by whatever application calls this utility class.

RunTransaction(ReplicatedEnvironment repEnv,
PrintStream printStream) {

repEnv;

printStream;

env
out

}

Now we implement our run() method. This is what actually performs all the error checking
and retry work for the class.

The run() method catches the exceptions most likely to occur as we are reading and writing
the database, and then handles them, but it will also throw InterruptedException and
EnvironmentFailureException.

InterruptedException can be thrown if the thread calling this method is sleeping and some
other thread interrupts it. The exception is possible because this method calls Thread.sleep in
the retry cycle.

EnvironmentFailureException can occur both when beginning a transaction and also when
committing a transaction. It means that there is something significantly wrong with the node's
environment.

The readOnly parameter for this method is used to indicate that the transaction will

only perform database reads. When that happens, the durability guarantee for the
transaction is changed to Durability. READ_ONLY_TXN because that policy does not call for any
acknowledgements. This eliminates the possibility of an InsufficientReplicasException being
thrown from the Environment.beginTransaction() operation.

31-Oct-2017

Using JE High Availability Page 47

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/InterruptedException.html
../java/com/sleepycat/je/EnvironmentFailureException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/InterruptedException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html#sleep(long)
../java/com/sleepycat/je/EnvironmentFailureException.html
../java/com/sleepycat/je/Durability.html#READ_ONLY_TXN
../java/com/sleepycat/je/rep/InsufficientReplicasException.html
../java/com/sleepycat/je/Environment.html#beginTransaction(com.sleepycat.je.Transaction, com.sleepycat.je.TransactionConfig)

Library Version 12.2.7.5 Transaction Management

public void run(boolean readOnly)
throws InterruptedException, EnvironmentFailureException {

Now we begin our retry loop and define our sleep cycle between retries. Initially, we do not
actually sleep before retrying the transaction. However, some of the error conditions caught
by this method will cause the thread to sleep before the operation is retried. After every

sleep operation, the sleep time is returned to 0 because usually putting the thread to sleep is
of no benefit.

OperationFailureException exception = null;
boolean success = false;
long sleepMillis = ©;
final TransactionConfig txnConfig = readOnly ?
new TransactionConfig().setDurability(Durability.READ_ONLY_TXN) :
null;

for (int i = @; i < TRANSACTION_RETRY_MAX; i++) {
/* Sleep before retrying. */
if (sleepMillis != @) {
Thread.sleep(sleepMillis);
sleepMillis = @;
}

Now we create our transaction, perform the database operations, and then do the work.
The doTransactionWork() method is an abstract method that must be implemented by the

application using this class. Otherwise, this is standard transaction begin/commit code that
should hold no surprises for you.

Transaction txn = null;

try {
txn = env.beginTransaction(null, null);
doTransactionWork(txn); /* CALL APP-SPECIFIC CODE */
txn.commit();
success = true;
return;

The first error case that we check for is InsufficientReplicasException. This exception means
that the Master is not in contact with enough Electable Replicas to successfully commit the
transaction. It is possible that Replicas are still starting up after an application restart, so we
put the thread to sleep before attempting the transaction again.

InsufficientReplicasException is thrown by Transaction.commit(), so we do have to perform
the transaction all over again.

} catch (InsufficientReplicasException insufficientReplicas) {

/*

* Retry the transaction. Give replicas a chance to
* contact this master, in case they have not had a
* chance to do so following an election.

*/

31-Oct-2017 Using JE High Availability Page 48

../java/com/sleepycat/je/rep/InsufficientReplicasException.html
../java/com/sleepycat/je/rep/InsufficientReplicasException.html
../java/com/sleepycat/je/Transaction.html#commit()

Library Version 12.2.7.5 Transaction Management

exception = insufficientReplicas;
out.printf(insufficientReplicas.toString());
sleepMillis = INSUFFICIENT_REPLICA_RETRY_SEC * 1000;
continue;

Next we check for InsufficientAcksException. This exception means that the transaction has

successfully committed on the Master, but not enough Electable Replicas have acknowledged
the commit within the allowed period of time. Whether you consider this to be a successful

commit depends on your durability policy.

As provided here, the code considers this situation to be an unsuccessful commit. But if you
have a lot of Electable Replicas and you have a strong durability guarantee on the Master,
then you might be able to still consider this to be a successful commit. If so, you should set
success = true; before returning from the method.

For more information on this error case, see Managing Acknowledgement Timeouts (page
33).

} catch (InsufficientAcksException insufficientReplicas) {

/*

* Transaction has been committed at this node. The
* other acknowledgments may be late in arriving,

* or may never arrive because the replica just

* went down.

*/

/*
* INSERT APP-SPECIFIC CODE HERE: For example, repeat
idempotent changes to ensure they went through.

some applications may consider the transaction to be
complete.
*/
out.println(insufficientReplicas.toString());
txn = null;
return;

*
*
* Note that 'success' is false at this point, although
*
*

Next we check for ReplicaWriteException. This happens when a write operation is attempted
on a Replica. In response to this, any number of things can be done, including reporting the
problem to the application attempting the write operation and then aborting, to forwarding
the write request to the Master. This particular method responds to this condition based on
how the onReplicaWrite() method is implemented.

For more information on how to handle this exception, see Managing Write Requests at a
Replica (page 21).

} catch (ReplicaWriteException replicaWrite) {

/*

31-Oct-2017 Using JE High Availability Page 49

../java/com/sleepycat/je/rep/InsufficientAcksException.html
../java/com/sleepycat/je/rep/ReplicaWriteException.html

Library Version 12.2.7.5 Transaction Management

Attempted a modification while in the Replica
state.

CALL APP-SPECIFIC CODE HERE: Cannot accomplish
the changes on this node, redirect the write to
the new master and retry the transaction there.
This could be done by forwarding the request to
the master here, or by returning an error to the
requester and retrying the request at a higher
level.

* K K X X X X X X ¥

*/
onReplicaWrite(replicalrite);
return;

Now we check for LockConflictException, which is thrown whenever a transaction experiences
a lock conflict with another thread. Note that by catching this exception, we are also catching
the LockPreemptedException, which happens whenever the underlying HA code "steals” a lock
from an application transaction. The most common cause of this is when the HA replication
stream is updating a Replica, and the Replica is holding a read lock that the replication stream
requires.

Here, it is useful to sleep for a period of time before retrying the transaction.
} catch (LockConflictException lockConflict) {

/*
* Retry the transaction. Note that LockConflictException
* covers the HA LockPreemptedException.
*/
exception = lockConflict;
out.println(lockConflict.toString());
sleepMillis = LOCK_CONFLICT RETRY_SEC * 1000;
continue;

The last error we check for is ReplicaConsistencyException. This exception can be thrown
when the transaction begins. It means that the beginTransaction() method has waited too
long for the Replica to catch up relative to the Master. This situation does not really represent
a failed transaction because the transaction never had a chance to proceed in the first place.

In any case, the proper thing to do is to put the thread to sleep for a period of time so
that the Replica has the chance to meet its consistency requirements. Then we retry the
transaction.

Note that at this point in time, the transaction handle is in whatever state it was in when
beginTransaction() was called. If the handle was in the null state before attempting the
operation, then it will still be in the null state. The important thing to realize here is that
the transaction does not have to be aborted, because the transaction never began in the first
place.

For more information on consistency policies, see Managing Consistency (page 34).
} catch (ReplicaConsistencyException replicaConsistency) {

31-Oct-2017

Using JE High Availability Page 50

../java/com/sleepycat/je/LockConflictException.html
../java/com/sleepycat/je/rep/LockPreemptedException.html
../java/com/sleepycat/je/rep/ReplicaConsistencyException.html

Library Version 12.2.7.5 Transaction Management

/*

*

Retry the transaction. The timeout associated with
the ReplicaConsistencyPolicy may need to be

* relaxed if it's too stringent.

*/
exception = replicaConsistency;
out.println(replicaConsistency.toString());
sleepMillis = CONSISTENCY_RETRY_SEC * 1000;

continue;

*

Finally, we abort our transaction and loop again as needed. onRetryFailure() is called if
the transaction has been retried too many times (as defined by TRANSACTION RETRY_MAX. It
provides the option to log the situation.

} finally {

if (!success) {
if (txn != null) {
txn.abort();
}

/*
* INSERT APP-SPECIFIC CODE HERE: Perform any
* app-specific cleanup.
*/

}

/*

* CALL APP-SPECIFIC CODE HERE:

* Transaction failed, despite retries.
*/

onRetryFailure(exception);

}

Having done that, the class is almost completed. Left to do is to define a couple of methods,
one of which is an abstract method that must be implemented by the application that uses
this class.

doTransactionWork() is an abstract method where the actual database operations are
performed.

onReplicaWrite() is a method that should be implemented by the HA application that uses
this class. It is used to define whatever action the Replica should take if a write is attempted
on it. For examples of how this is used, see the next section.

For this implementation of the class, we simply throw the ReplicaWriteException that got us
here in the first place.

31-Oct-2017

Using JE High Availability Page 51

../java/com/sleepycat/je/rep/ReplicaWriteException.html

Library Version 12.2.7.5 Transaction Management

abstract void doTransactionWork(Transaction txn);

void onReplicaWrite(ReplicaWriteException replicaWrite) {
throw replicaWrite;

}

Finally, we implement onRetryFailure(), which is what this class does if the transaction
retry loop goes through too many iterations. Here, we simply print the error to the console. A
more robust application should probably write the error to the application logs.

void onRetryFailure(OperationFailureException lastException) {
out.println("Failed despite retries."” +
((lastException == null) ?

Encountered exception:" +
lastException));

}
Using RunTransaction

Having implemented the RunTransaction class, it is fairly easy to use. Essentially, you only
have to implement the RunTransaction.doTransactionWork() method so that it performs
whatever database access you want.

For example, the following method performs a read on an EntityStore used by the StockQuotes
example HA application. Notice that the class is instantiated, doTransactionWork() is
implemented, and the RunTransaction.run() method are all called in one place. This makes
for fairly easy maintenance of the code.

private void printStocks(final PrintStream out)
throws InterruptedException {

new RunTransaction(repEnv, out) {

@0verride
void doTransactionWork(Transaction txn) {

// dao is a DataAccessor class used to access

// an entity store.

final EntityCursor<Quote> quotes =
dao.quoteById.entities(txn, null);

try {
out.println("\tSymbol\tPrice");
out.println("\t======\t=====");

int count = 0;
for (Quote quote : quotes) {
out.println("\t" + quote.stockSymbol +
"\t" + quote.lastTrade);
count++;

31-Oct-2017 Using JE High Availability Page 52

../java/com/sleepycat/persist/EntityStore.html
../examples/je/rep/quote/StockQuotes.html

Library Version 12.2.7.5 Transaction Management

}
out.println("\n\t" + count + " stock"
+ ((count == 1) ?» "" : "s") +
" listed.\n");
} finally {

quotes.close();
}
}
}.run(true /*readOnly*/);

/* Output local indication of processing. */
System.out.println("Processed print request");

}

In the previous example, we do not bother to override the
RunTransaction.onReplicaWrite() method because this transaction is performing read-
only access to the database. Regardless of whether the transaction is run on a Master or

a Replica, ReplicaWriteException can not be raised here, so we can safely use the default
implementation.

However, if we were running a transaction that performs a database write, then we should
probably do something with onReplicaWrite() other than merely re-throwing the exception.

The following is an example usage of RunTransaction that is also used in the StockQuotes
example.

void updateStock(final String line, final PrintStream printStream)
throws InterruptedException {

// Quote is a utility class used to parse a line of input
// obtained from the console.
final Quote quote = QuoteUtil.parseQuote(line);
if (quote == null) {
return;

}

new RunTransaction(repEnv, printStream) {

void doTransactionWork(Transaction txn) {
// dao is a Data Accessor class used to perform access
// to the entity store.
dao.quoteById.put(txn, quote);
/* Output local indication of processing. */
System.out.println("Processed update request:

+ line);

}

// For this example, we simply log the error condition.
// For a more robust example, so other action might be

// taken; for example, log the situation and then route
// the write request to the Master.

31-Oct-2017 Using JE High Availability Page 53

../java/com/sleepycat/je/rep/ReplicaWriteException.html
../examples/je/rep/quote/StockQuotes.html

Library Version 12.2.7.5 Transaction Management

void onReplicaWrite(ReplicaWriteException replicaWrite) {
/* Attempted a modification while in the replica state. */
printStream.println
(repEnv.getNodeName() +
" is not currently the master. Perform the update" +
at the node that's currently the master.");

}
}.run(false /*not readOnly */);

31-Oct-2017 Using JE High Availability Page 54

Chapter 4. Utilities

This chapter discusses the APIs that you use to administer and manage your replication group.

Administering the Replication Group

There are a series of administrative activities that an application might want to take relative
to a replication group. These activities can be performed by electable or secondary nodes in
the replication group, or by applications that do not have access to a replicated environment
(in other words, utilities designed to help administer and monitor the group). All of these
functions can be accessed using the ReplicationGroupAdmin class.

You can use the ReplicationGroupAdmin class to:

1. List replication group members.

2. Locate the current Master.

3. Remove electable nodes from the replication group.

You instantiate an instance of the ReplicationGroupAdmin class by providing it with the name
of the replication group that you want to administer, as well as a Set of InetSocketAddress
objects. The InetSocketAddress objects are used as a list of helper hosts that the application
can use to perform administrative functions. For example:

Set<InetSocketAddress> helpers =

new HashSet<InetSocketAddress>();
InetSocketAddress helperl =

new InetSocketAddress("nodel.example.com", 1550);
InetSocketAddress helper2 =

new InetSocketAddress("node2.example.com", 1550);

helpers.add(helperl);
helpers.add(helper2);

ReplicationGroupAdmin rga =
new ReplicationGroupAdmin("test_rep_group", helpers);

Listing Group Members

To list all the members of a replication group, use the ReplicationGroupAdmin.getGroup()
method. This returns an instance of ReplicationGroup. You then can then:

1. use the ReplicationGroup.getNodes() method to locate all the nodes in the replication
group.

2. use the ReplicationGroup.getElectableNodes() method to locate all the electable nodes in
the replication group.

31-Oct-2017

Using JE High Availability Page 55

../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html
http://java.sun.com/j2se/1.5/docs/api/java/util/Set.html
http://java.sun.com/j2se/1.5/docs/api/java/net/InetSocketAddress.html
http://java.sun.com/j2se/1.5/docs/api/java/net/InetSocketAddress.html
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#getGroup()
../java/com/sleepycat/je/rep/ReplicationGroup.html
../java/com/sleepycat/je/rep/ReplicationGroup.html#getNodes()
../java/com/sleepycat/je/rep/ReplicationGroup.html#getElectableNodes()

Library Version 12.2.7.5

Utilities

use the ReplicationGroup.getSecondaryNodes() method to locate all the secondary nodes
in the replication group.

use ReplicationGroup.getMonitorNodes() to locate all the monitor nodes that currently
belong to the replication group.

Note

In order to obtain a ReplicationGroup object, the process must be able to discover the
current Master. This means that the helper nodes you provide when you instantiate
the ReplicationGroupAdmin class must be reachable and able to identify the current
Master. If they cannot, then these methods throw an UnknownMasterException.

All of these methods return a set of ReplicationNode objects, which you can then use to query
for node information, such as its name, the InetSocketAddress where the node is located, and
the node's type.

For example:

Set<InetSocketAddress> helpers =

new HashSet<InetSocketAddress>();
InetSocketAddress helperl =

new InetSocketAddress("nodel.example.com", 1550);
InetSocketAddress helper2 =

new InetSocketAddress("node2.example.com", 1550);

helpers.add(helperl);
helpers.add(helper2);

ReplicationGroupAdmin rga =
new ReplicationGroupAdmin("test_rep_group", helpers);

try {
ReplicationGroup rg = rga.getGroup();

for (ReplicationNode rn : rg.getElectableNodes()) {
// Do something with the replication node.
}
} catch (UnknownMasterException ume) {
// Can't find a master

}

Locating the Current Master

You can use the ReplicationGroupAdmin class to locate the current Master in the replication
group. This information is available using the ReplicationGroupAdmin.getMasterNodeName()
and ReplicationGroupAdmin.getMasterSocket() methods.

ReplicationGroupAdmin.getMasterNodeName() returns a string that holds the node name
associated with the Master.

31-Oct-2017

Using JE High Availability Page 56

../java/com/sleepycat/je/rep/ReplicationGroup.html#getSecondaryNodes()
../java/com/sleepycat/je/rep/ReplicationGroup.html#getMonitorNodes()
../java/com/sleepycat/je/rep/ReplicationGroup.html
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html
../java/com/sleepycat/je/rep/UnknownMasterException.html
../java/com/sleepycat/je/rep/ReplicationNode.html
http://java.sun.com/j2se/1.5/docs/api/java/net/InetSocketAddress.html
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#getMasterNodeName()
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#getMasterSocket()
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#getMasterNodeName()

Library Version 12.2.7.5 Utilities

ReplicationGroupAdmin.getMasterSocket() returns an InetSocketAddress class object that
represents the host and port where the Master can currently be found.

Both methods will throw an UnknownMasterException if the helper nodes are not able to
identify the current Master.

For example:

import java.net.InetSocketAddress;
import java.util.HashSet;
import java.util.Set;

import com.sleepycat.je.rep.UnknownMasterException;
import com.sleepycat.je.rep.util.ReplicationGroupAdmin;

Set<InetSocketAddress> helpers =

new HashSet<InetSocketAddress>();
InetSocketAddress helperl =

new InetSocketAddress("nodel.example.com", 1550);
InetSocketAddress helper2 =

new InetSocketAddress("node2.example.com", 1550);

helpers.add(helperl);
helpers.add(helper2);

ReplicationGroupAdmin rga =
new ReplicationGroupAdmin("test_rep_group", helpers);

try {
InetSocketAddress master = rga.getMasterSocket();

System.out.println("Master is on host " +
master.getHostName() + " at port " +
master.getPort());

}

} catch (UnknownMasterException ume) {

// Can't find a master

}

Adding and Removing Nodes from the Group

In order to add nodes to a replication group, you simply start up a node and identify at least
one helper node that can identify the current Master to the new node. After the new node has
been populated with a current enough copy of the data contained on the Master, the new node
is automatically a member of the replication group.

An electable node's status as a member of the group is persistent. That is, it is a member
of the group regardless of whether it is running, and whether other nodes in the group
can reach it over the network. This means that for the purposes of elections and message

31-Oct-2017

Using JE High Availability Page 57

../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#getMasterSocket()
http://java.sun.com/j2se/1.5/docs/api/java/net/InetSocketAddress.html
../java/com/sleepycat/je/rep/UnknownMasterException.html

Library Version 12.2.7.5 Utilities

acknowledgements, the node counts toward the total number of nodes that must respond
and/or participate in an event.

If, for example, you are using a durability guarantee that requires all electable nodes in the
replication group to acknowledge a transaction commit on the Master, and if a node is down
or otherwise unavailable for some reason, then the commit cannot complete on the Master
because it will not receive acknowledgements from all the electable nodes in the replication
group.

Similarly, elections for Masters require a bare majority of electable nodes to participate in the
election. If so many nodes are shutdown or unavailable due to a network partition event that
a bare majority of electable nodes cannot be found to hold the election, then your replication
group can perform no write activities. This situation persists until at least enough nodes come
back online to represent a bare majority of the electable nodes belonging to the replication
group.

For this reason, if you have an electable node that you intend to shutdown for a long
time, then you should remove that node from the replication group. You do this using the
ReplicationGroupAdmin.removeMember() method. Note the following rules when using this
method:

» For best results, shutdown the node before removing it.

 You use the node's name (not the host/port pair) to identify the node you want to
remove from the group. If the node name that you specify is unknown to the replication
group, a MemberNotFoundException is thrown. If it names a secondary node, an
IllegalArgumentException is thrown.

» Once removed, the electable node can no longer connect to the Master, nor can it
participate in elections. If you want to reconnect the node to the Master (that is, you want
to add it back to the replication group), you will have to do so using a different node name
than the node was using when it was removed from the group.

» An active Master cannot be removed from the group. To remove the active Master, either
shut it down or wait until it transitions to the Replica state. If you attempt to remove an
active Master, a MasterStateException is thrown.

For example:

Set<InetSocketAddress> helpers =

new HashSet<InetSocketAddress>();
InetSocketAddress helperl =

new InetSocketAddress("nodel.example.com", 1550);
InetSocketAddress helper2 =

new InetSocketAddress("node2.example.com", 1550);

helpers.add(helperl);
helpers.add(helper2);

31-Oct-2017

Using JE High Availability Page 58

../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#removeMember(java.lang.String)
../java/com/sleepycat/je/rep/MemberNotFoundException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalArgumentException.html
../java/com/sleepycat/je/rep/MasterStateException.html

Library Version 12.2.7.5 Utilities

ReplicationGroupAdmin rga =
new ReplicationGroupAdmin("test_rep_group", helpers);

try {
rga.removeMember ("NODE3");

} catch (MemberNotFoundException mnfe) {
// Specified a node name that is not known to the
// replication group.

} catch (MasterStateException mse) {
// Tried to remove an active Master

}

Restoring Log Files

During normal operations, the nodes in a replication group communicate with one another to
ensure that the JE cleaner does not reclaim log files still needed by the group. The tail end

of the replication stream may still be needed by a lagging Replica in order to make it current
with the Master, and so the replication group tries to make sure the trailing log files needed to
bring lagging Replicas up-to-date are not reclaimed.

However, if a node is unavailable for a long enough period of time, then log files needed to
bring it up to date might have been reclaimed by the cleaner. For information on how and
when log files are reclaimed in a replicated environment, see Reclaiming Log Files (page
60).

Once log files have been reclaimed by a cleaner, then the Replica can no longer be brought
up to date using the normal replication stream. Your application code will know this has
happened when the ReplicatedEnvironment constructor throws an InsufficientLogException.

When your code catches an InsufficientLogException, then you must bring the Replica up-
to-date using a mechanism other than the normal replication stream. You do this using the
NetworkRestore class. A call to NetworkRestore.execute() causes the Replica to copy the
missing log files from a member of the replication group who owns the files and seems to be
the least busy. Once the Replica has obtained the log files that it requires, it automatically
re-establishes its replication stream with the Master so that the Master can finish bringing the
Replica up-to-date.

For example:
try {
node = new ReplicatedEnvironment(envDir, repConfig, envConfig);

} catch (InsufficientLogException insufficientLogEx) {

NetworkRestore restore = new NetworkRestore();
NetworkRestoreConfig config = new NetworkRestoreConfig();
config.setRetainLogFiles(false); // delete obsolete log files.

// Use the members returned by insufficientLogEx.getLogProviders()

31-Oct-2017

Using JE High Availability Page 59

../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/InsufficientLogException.html
../java/com/sleepycat/je/rep/InsufficientLogException.html
../java/com/sleepycat/je/rep/NetworkRestore.html
../java/com/sleepycat/je/rep/NetworkRestore.html#execute(com.sleepycate.je.rep.InsufficientLogException,com.sleepycat.je.rep.NetworkRestoreConfig)

Library Version 12.2.7.5 Utilities

// to select the desired subset of members and pass the resulting
// list as the argument to config.setLogProviders(), if the
// default selection of providers is not suitable.

restore.execute(insufficientLogEx, config);

// retry
node = new ReplicatedEnvironment(envDir, repConfig, envConfig);

b

Note that the replication group does not maintain information about the log files needed by
secondary nodes. Instead, the system retains a set of log files beyond those required for a
network restore based on the NETWORK_RESTORE_OVERHEAD property, which you can manage
using ReplicationConfig.setConfigParam(). The default value is 10, which means that the
system uses the estimate of 10 percent for the additional amount of data that performing a
network restore needs to send over the network as compared to using the same log files to
perform replication. In this case, the system saves files containing an additional 10 percent of
log data beyond the amount needed for a network restore.

Reclaiming Log Files

Ordinarily JE's cleaner thread reclaims log files as soon as possible so as to minimize the
amount of disk space used by the database. Log files are reclaimed as records are deleted,
and log files are subsequently compacted.

However, various database activities might cause log files to be temporarily reserved or

protected temporarily. A reserved file is a file that JE can delete but has yet done so. A

protected file is a file that should be deleted, but JE cannot do so due to some database
activity, such as a backup.

For replicated environments, JE hangs on to log files as long as possible in case they are
needed to bring a replica up to date. Log files that have been cleaned but then saved due
because of replication are in a reserved state. All such files are retained until the disk usage
thresholds as defined by EnvironmentConfig. MAX_DISK and EnvironmentConfig.FREE_DISK are
exceeded. At that point, JE deletes reserved log files.

Suspending Writes Due to Disk Thresholds

In the previous section, we mentioned that JE reserves cleaned log files until disk threshold
limits are encountered, at which time log files are reclaimed (deleted).

Be aware that if reclaiming log files does not allow JE to meet its disk usage threshold limits,
then writes are disabled for one or more nodes in the replication group.

If the threshold limits cannot be met on the Master, then write operations will throw
DiskLimitException just as they would for a non-replicated environment.

If the threshold limit cannot be met on a replica, then writes are disabled only on that
replica. In this case, the Master might see InsufficientAcksException thrown in response to

31-Oct-2017

Using JE High Availability Page 60

../java/com/sleepycat/je/rep/ReplicationConfig.html#NETWORK_RESTORE_OVERHEAD
../java/com/sleepycat/je/rep/ReplicationConfig.html#setConfigParam(java.lang.String,java.lang.String)
../java/com/sleepycat/je/EnvironmentConfig.html#MAX_DISK
../java/com/sleepycat/je/EnvironmentConfig.html#FREE_DISK
../java/com/sleepycat/je/DiskLimitException.html
../java/com/sleepycat/je/rep/InsufficientAcksException.html

Library Version 12.2.7.5 Utilities

a write — if your application’'s durability guarantee cannot be met due to the replica being
unable to perform writes.

Backing up a Replicated Application

In a stand-alone, non-replicated JE application, the log is strictly append only. You use the
DbBackup class to help applications coordinate while database operations are continuing to
add to the log. This helper class does this by defining the log files needed for a consistent
backup, and then freezes all changes to those files, including any changes that might be made
by JE background operations. The application can copy that defined set of files and finish
operation without checking for the ongoing creation of new files. Also, there will be no need
to check for a newer version of the last file on the next backup.

When you are using JE HA, however, log files other than the last log file might be modified
as part of the HA sync-up operation. Though a rare occurrence, such modifications would
invalidate the backup because there is the chance that files are modified after being copied.

If this happens, DbBackup.endBackup() throws a LogOverwriteException. Upon encountering
this exception, the backup files should be discarded and a new set of backup files created.

For example:

for (int i=0; i < BACKUP_RETRIES; i++) {
final ReplicatedEnvironment repEnv = ...;
final DbBackup backupHelper = new DbBackup(repEnv);

backupHelper.startBackup();
String[] filesForBackup =
backupHelper.getLogFilesInBackupSet();

/* Copy the files to archival storage. */
myApplicationCopyMethod(filesForBackup);

try {
backupHelper.endBackup();

break;

} catch (LogOverwriteException e) {
/* Remove backed up files. */
myApplicationCleanupMethod();
continue;

} finally {
repEnv.close();

}

}

Converting Existing Environments for Replication
JE HA environments log files contain information and data used only by replication. Non-

replicated environments are lacking this information, so in order to use a previously-existing
non-replicated environment in an HA application, it must undergo a one time conversion.

31-Oct-2017 Using JE High Availability Page 61

../java/com/sleepycat/je/util/DbBackup.html
../java/com/sleepycat/je/util/DbBackup.html#endBackup()
../java/com/sleepycat/je/rep/LogOverwriteException.html

Library Version 12.2.7.5 Utilities

Note

If you try to open a non-replicated environment as a replicated environment, the
operation will throw an UnsupportedOperationException. This is the only way your
code can tell if an environment needs to be converted.

You use the DbEnableReplication class to perform this one-time conversion. This class is
particularly useful if you want to prototype a standalone transactional application, and then
add in replication after the transactional application is working as desired.

The conversion process is one-way; once an environment directory is converted, the rules that
govern ReplicatedEnvironment apply. This means the environment can no longer be opened for
writes by a standalone Environment handle (however, it still can be opened by a standalone
Environment handle in read-only mode).

Note that DbEnableReplication only adds a minimum amount of replication metadata. The
conversion process is not in any way dependent on the size of the environment you are
converting.

The converted environment can be used to start a new replication group. After conversion,
the environment can be opened as a ReplicatedEnvironment. Additional nodes that join the
group are then populated with data from the converted environment.

For example:

// Create the first node using an existing environment
DbEnableReplication converter =

new DbEnableReplication(envDirMars, // env home dir
"UniversalRepGroup", // group name
"nodeMars", // node name
"mars:5001"); // node host,port

converter.convert();

ReplicatedEnvironment nodeMars =
new ReplicatedEnvironment(envDirMars, ...);

// Bring up additional nodes, which will be initialized from

// nodeMars.

ReplicationConfig repConfig = new ReplicationConfig();

try {
repConfig.setGroupName("UniversalRepGroup");
repConfig.setNodeName("nodeVenus");
repConfig.setNodeHostPort("venus:5008");
repConfig.setHelperHosts("mars:5001");

nodeVenus = new ReplicatedEnvironment(envDirVenus,
repConfig,
envConfig);

} catch (InsufficientLogException insufficientLogEx) {

31-Oct-2017

Using JE High Availability Page 62

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/UnsupportedOperationException.html
../java/com/sleepycat/je/rep/util/DbEnableReplication.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/Environment.html
../java/com/sleepycat/je/rep/util/DbEnableReplication.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html

Library Version 12.2.7.5

Utilities

// log files will be copied from another node in the group
NetworkRestore restore = new NetworkRestore();
restore.execute(insufficientLogEx, new NetworkRestoreConfig());

// try opening the node now

nodeVenus = new ReplicatedEnvironment(envDirVenus,
repConfig,
envConfig);

31-Oct-2017

Using JE High Availability Page 63

Chapter 5. Writing Monitor Nodes

So far in this book we have mostly discussed electable and secondary nodes, which are by
definition nodes that have access to a JE ReplicatedEnvironment. However, replication groups
can include any number of nodes that have no access to the JE replicated environment in use
by the replication group.

These type of nodes without environments are called monitor nodes. The point of a monitor
node is to allow a process to have some understanding of the replication group's structure such
as which node is the Master and what nodes belong to the group as Replicas. Monitor nodes
also have the ability to know when certain events have happened in the replication group,
such as when a new Master is elected or when new nodes are added to, or removed from, the
group.

There are many uses for Monitor nodes, starting with the ability to write processes that
monitor the current status of your HA application. But another, arguably more interesting, use
for Monitor nodes is for request routing. As we have explained earlier in this book, Replicas
can only service read-only requests; all write requests must occur on the Master. However,
Replicas are only capable of noticing that they have been asked to process a write request.

At most, out of the box, they can complain about it by throwing a ReplicaWriteException, and
then completely rejecting the request.

One way to handle this problem is by writing an request router that sits on your network
between the data nodes and your clients. This router can send write requests to the Master,
and read requests to the Replicas. A robust example of this sort of thing could also perform
load balancing across the various Replicas, so that no one Replica becomes swamped by too
many read requests.

Monitor Class

You implement Monitor nodes using the Monitor class. The Monitor class allows you to obtain
information about the replication group, such as its name, where the Master is, and other such
information. The Monitor class also allows you to run an event listener that can alert you to
changes in the composition of the replication group.

You instantiate a Monitor class object in much the same way as you instantiate a
ReplicatedEnvironment class object. It is necessary to give the node a hame, to indicate that
it is a Monitor node, to identify the node's host and port information, and to identify helper
hosts. You use a MonitorConfig object to do these things.

Once the Monitor object has been instantiated, it must be registered at least once with the
Master so that the replication group will know to keep the node informed about changes in
the group composition. (Subsequent attempts to register the node are simply ignored by the
Master.) You use the Monitor.register() method to register a Monitor node with a Master.

For example:

// Initialize the monitor node config
MonitorConfig config = new MonitorConfig();
config.setGroupName("MyRepGroupName");

31-Oct-2017

Using JE High Availability Page 64

../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/ReplicaWriteException.html
../java/com/sleepycat/je/rep/monitor/Monitor.html
../java/com/sleepycat/je/rep/ReplicatedEnvironment.html
../java/com/sleepycat/je/rep/monitor/MonitorConfig.html
../java/com/sleepycat/je/rep/monitor/Monitor.html#register()

Library Version 12.2.7.5 Writing Monitor Nodes

config.setNodeName("monl");
config.setNodeHostPort("monhostl.acme.com:7000");
config.setHelperHosts("nodel.acme.com:5000,node2.acme.com:5000");

Monitor monitor = new Monitor(config);

// If the monitor has not been registered as a member of the
// group, register it now. register() returns the current node
// that is the master.

ReplicationNode currentMaster = monitor.register();

Listening for Events

One of the things the Monitor class allows you to do is to listen for certain events that occur
in the composition of the replication group. Your Monitor can be notified of these events by
running an event listener using Monitor.startListener(). For example:

Monitor.startListener() takes a single argument, and that is an instance of
MonitorChangeListener. MonitorChangelListener is an interface that you implement for the
purpose of handling replication group events.

There are four events that the change listener can be notified of. Each of these are

represented by a unique class:
1. GroupChangeEvent

A new instance of this event is generated each time an electable or monitor node, but not
a secondary node, is added or removed from the replication group.

2. NewMasterEvent
A new instance of this event is generated each time a new Master is elected.
3. JoinGroupEvent

A new instance of this event is generated each time an electable or secondary node, but
not a monitor node, joins a group. The event is generated on a "best effort” basis. It may
not be generated, for example, if the joining node was unable to communicate with the
monitor due to a network problem. The application must be resilient in the face of such
missing events.

4. LeaveGroupEvent

A new instance of this event is generated each time an electable or secondary node,
but not a monitor node, node leaves the group. The event is generated on a "best
effort” basis. It may not be generated if the node leaving the group dies (for example,
it was killed) before it has a chance to generate the event, or if the node was unable
to communicate with the monitor due to a network problem. The application must be
resilient in the face of such missing events.

For example, an implementation of the MonitorChangelListener interface might be:

31-Oct-2017

Using JE High Availability Page 65

../java/com/sleepycat/je/rep/monitor/Monitor.html
../java/com/sleepycat/je/rep/monitor/Monitor.html#startListener(com.sleepycat.je.rep.monitor.MonitorChangeListener)
../java/com/sleepycat/je/rep/monitor/MonitorChangeListener.html
../java/com/sleepycat/je/rep/monitor/GroupChangeEvent.html
../java/com/sleepycat/je/rep/monitor/NewMasterEvent.html
../java/com/sleepycat/je/rep/monitor/JoinGroupEvent.html
../java/com/sleepycat/je/rep/monitor/LeaveGroupEvent.html
../java/com/sleepycat/je/rep/monitor/MonitorChangeListener.html

Library Version 12.2.7.5 Writing Monitor Nodes

class MyChangelListener implements MonitorChangelListener {
public void notify(NewMasterEvent newMasterEvent) {
String newNodeName = newMasterEvent.getNodeName();

InetSocketAddress newMasterAddr =
newMasterEvent.getSocketAddress();

String newMasterHostName = newMasterAddr.getHostName();

int newMasterPort = newMasterAddr.getPort();

// Do something with this information here.

}

public void notify(GroupChangeEvent groupChangeEvent) {
ReplicationGroup repGroup = groupChangeEvent.getRepGroup();

// Do something with the new ReplicationGroup composition here.

}

}

You can then start the Monitor listener as follows:

// Initialize the monitor node config
ReplicationConfig config =
new ReplicationConfig("MyRepGroupName",
"monl",
"monhostl.acme.com:7000");
config.setNodeType(NodeType.MONITOR);
config.setHelperHosts("nodel.acme.com:5000,node2.acme.com:5000");

Monitor monitor = new Monitor(config);

// If the monitor has not been registered as a member of the
// group, register it now. register() returns the current node
// that is the master.

ReplicationNode currentMaster = monitor.register();

// Start up the listener, so that it can be used to track changes
// in the master node, or group composition.
monitor.startListener(new MyChangeListener());

31-Oct-2017

Using JE High Availability Page 66

Chapter 6. Replication Examples

JE HA provides three different example programs that illustrate the concepts discussed in this
manual. You can find them in your JE distribution in the <JE HOME>/examples/je/rep/quote
directory, where <JE HOME> is the directory where you installed your JE distribution.

The examples provided for you are each based on a mock stock ticker application which stores
stock values in a replicated JE environment. The differences in the three examples have to

do with how each example handles requests for database access; in particular, database write
requests.

Briefly, each of the examples are:

» StockQuotes: Illustrates the most basic demonstration of a replicated application. It is
intended to help you gain an understanding of basic HA concepts. It demonstrates use of the
HA APIs to create a replicated environment and issue read and write transactions.

For this example, no attempt is made to route or forward write requests. Instead, the
application blindly attempts any write requests that are made at the node. If the node is in
the Replica state, a ReplicaWriteException is raised by the underlying HA code. The example
then informs you of the problem by way of rejecting the operation.

« RouterDrivenStockQuotes and HARouter: Illustrates how a software load balancer might be
integrated with JE HA, where HARouter plays the role of the load balancer for purposes of
the example. It does this by using the Monitor class to direct application requests to the
appropriate node. Read-only requests are sent to Replicas, while read-write requests are
sent to the replication group's Master.

» UpdateForwardingStockQuotes and SimpleRouter: Illustrates the use of an HA unaware
router that load balances read and write requests across the nodes in a replication group.
The router is implemented in SimpleRouter, and is meant to illustrate how a load balancer
appliance might fit into the JE HA architecture.

This example is based on RouterDrivenStockQuotes.

Usage of each of these examples is described in the Javadoc page for each example.

31-Oct-2017

Using JE High Availability Page 67

../examples/je/rep/quote/StockQuotes.html
../java/com/sleepycat/je/rep/ReplicaWriteException.html
../examples/je/rep/quote/RouterDrivenStockQuotes.html
../examples/je/rep/quote/HARouter.html
../examples/je/rep/quote/HARouter.html
../java/com/sleepycat/je/rep/monitor/Monitor.html
../examples/je/rep/quote/UpdateForwardingStockQuotes.html
../examples/je/rep/quote/SimpleRouter.html
../examples/je/rep/quote/SimpleRouter.html
../examples/je/rep/quote/RouterDrivenStockQuotes.html

Chapter 7. Administration

Hardware

This chapter describes issues pertaining to running a JE replication application. The topics
discussed here have to do with hardware configuration, backups, node configuration, and
other management issues that exist once the application has been placed into production.

A JE replicated application should run well on typical commodity multi-core hardware,
although greater hardware requirements than this may be driven by the architecture of your
particular application. Check with the software developers who wrote your JE replicated
application for any additional requirements they may have over and above typical multi-core
hardware.

That said, keep the following in mind when putting a JE replication application into
production:

« Examine the hardware you intend to use, and review it for common points of failure
between nodes in the replication groups, such as shared power supplies, routers and so
forth.

» The hardware that you use does not have to be identical across the entire production
hardware. However, it is important to ensure that the least capable electable node has the
resources to function as the Master.

The Master is typically the node where demand for machine resources is the greatest. It
needs to supply the replication streams for each active Replica, in addition to servicing the
transaction load.

Note that JE requires Monitor nodes to have minimal resource consumption (although,

again, your application developers may have written your Monitor nodes such that they need
resources over and above what JE requires), because Monitor nodes only listen for changes
in the replication group.

« Finally, your network is a critical part of your hardware requirements. It is critical that your
network be capable of delivering adequate throughput under peak expected production
work loads.

Remember that your replicated application can consume quite a lot of network resources
when a Replica starts up for the first time, or starts up after being shutdown for a long
time. This is because the Replica must obtain all the data that it needs to operate.
Essentially, this is a duplicate of the data contained by the Master node. So however much
data the Master node holds, that much data will be transmitted across your network per
node every time you start a new node.

For restarting nodes, the amount of data that will cross your network is equal to the delta
between the time the Replica last shutdown and the state of your Master node at the time
that the Replica is starting up again. If the Replica has been down for a long time (days or
weeks), this can be quite a lot of data, depending on your Master node's workload.

31-Oct-2017

Using JE High Availability Page 68

Library Version 12.2.7.5 Administration

Be aware, however, that restarting nodes do not have to get their data from the Master
node. It is possible for them to catch up, or nearly catch up, using data obtained from some
other currently running Replica. See Restoring Log Files (page 59) for more information.

Good application performance also depends on the latency of network connections used
by electable and monitor nodes to perform elections, report election results, and obtain
acknowledgments. Consider deploying secondary nodes on machines with higher latency
connections to the other members of the replication group, keeping in mind that these
nodes still have the same throughput requirements as electable nodes.

Time Synchronization

For best results, you are strongly recommended to synchronize the clocks on all the machines
hosting your production replication group. Running a time synchronization daemon like NTPD
is a simple way to keep time synchronized across your replication machines. Once the clocks
are set, they are maintained by ntpd so that they rarely stray more than 128ms away from one
another.

Be aware the JE checks for clock skew between the Master and a starting Replica node, when
the Replica node performs its startup handshake with the Master. (See Replica Startup (page
10) for information on the startup handshake.) If the clock skew between the two nodes is too
large, the handshake is aborted and JE throws an EnvironmentFailureException.

Also, well-synchronized clocks are required for a proper implementation of a time consistency
policy (see Time Consistency Policies (page 37)). It is also required for correct internal booking
by JE.

Finally, synchronized system clocks make it easier to correlate events in the logging output
from different nodes in the group.

Node Configuration

When you place a node into service, there is a set of information that you must provide which
will be unique to each and every node. The application development team may or may not
have provided defaults for some or all of these values, so you should check with them to see
exactly what you need to override.

This information can be provided to the application in two different ways. One is by using
JE API calls. Typically you will pass the information to those calls using command line
parameters. Again, how you do this is specific to your application.

In addition, you can provide this information to the application using the je.properties
file. Note that the information provided in this file is handled as if it is a default setting.
Therefore, if you also provide conflicting information using the JE APIs (again, usually passed
to a production application using command line parameters), then the information provided
directly to the APIs takes priority over whatever might be found in the je.properties file.

No matter how it is done, there are three pieces of information that you must provide every
JE replicated application:

e Group Name

31-Oct-2017

Using JE High Availability Page 69

http://www.ntp.org/
../java/com/sleepycat/je/EnvironmentFailureException.html

Library Version 12.2.7.5 Administration

This is the replication’s group name. This value must be the same for every node in a given
replication group. This name must be made up of alpha numeric characters and must not be
zero length.

JE developers can provide this information to the application using the
ReplicationConfig.GROUP_NAME field. In the je.properties file, it is defined using the
je.rep.group.name parameter.

Node Name

This is the name of the node. This name must be unique within the group. This name
combined with the group name uniquely identifies the node.

JE developers can provide this information to the application using the
ReplicationConfig.NODE_NAME field. In the je.properties file, it is defined using the
je.rep.node.name parameter.

Node Host

This is the hostname and port pair that is used by other nodes in the replication group to
communicate with this node. The node uses this property to establish a TCP/IP socket for

communication with other members of the group.

The string that you provide to this property takes the form:

hostname[:port]

The hostname provided to this property must be reachable by the other nodes in the
replication group.

The port number is optional for this property because a default port can be defined using
the je.properties file (you use the je.rep.defaultPort property to do this). However, if
a port is provided explicitly to this property, then je.rep.defaultPort is ignored.

Be careful to ensure that the port you identify for the node does not conflict with ports
used by other applications (including other nodes, if any) currently running on the local
machine.

Note that monitor nodes will use the socket identified by this property so that they can be
kept informed of the results of elections, and so they can keep track of changes in group
composition.

Electable nodes use this socket to:

» Hold elections

e Supply commit acknowledgements

Both electable and secondary nodes use this socket to:

« Establish replication streams between the Master and its Replicas

31-Oct-2017

Using JE High Availability Page 70

Library Version 12.2.7.5 Administration

» Support network-based JE HA utility services, such as JE's network restore utility. (See
Restoring Log Files (page 59) for details on this utility.)

Note

You can change the hostname and/or port number for an existing

electable or monitor node using the DbGroupAdmin.updateAddress() or
ReplicationGroupAdmin.updateAddress() methods. Hostnames and port numbers for
secondary nodes can be changed by restarting the nodes with the desired values.

The properties discussed here are simply the bare-bones minimum properties required to
configure a JE node. For a complete description of all the replication properties available to a
JE application, see the ReplicationConfig and ReplicationMutableConfig class descriptions.

Running Backups

Because JE replication causes a current copy of your environment to be available at every
data node in the group, the need for frequent backups is greatly reduced. Basically, every
time a change is made on the Master, that change is backed up to every Replica node currently
running. The result is that for each write operation you get a real-time incremental backup

to n-1 nodes, where n are the total number of data nodes (including the Master) currently
running in your replication group.

For this reason, JE does not currently support formal incremental backups of replicated
environments. An application based upon the DbBackup utility class can be written to allow
administrators to create full backups. This is useful for creating a backup to be stored on
offline media, if your data strategy calls for that level of protection.

Remember that when performing a full backup, you should obtain the backup from a
node that is current. Either use the Master node itself, or use a Replica node that must
acknowledge a transaction commit before the commit operation can complete on the Master.

Note that DbBackup has some functionality that is specifically useful for replicated
environments. See Backing up a Replicated Application (page 61) for details.

Adding and Removing Nodes

As described in Adding and Removing Nodes from the Group (page 57), a node is added to the
replication group simply by starting it up and allowing it to perform its start-up handshake
with the Master. Once an electable node has been added to the replication group, it belongs
to the replication group forever, or until you explicitly remove it. Also, the node is uniquely
identified within the replication group by a name that you must give it when you start up the
process.

This is worth remembering, because if you have electable nodes that have been added to the
replication group, but which you then shutdown for a long period of time, your replication
group might not be able to perform a lot of tasks, such as:

1. Elect a Master.

31-Oct-2017

Using JE High Availability Page 71

../java/com/sleepycat/je/rep/util/DbGroupAdmin.html#updateAddress(java.lang.String, java.lang.String, int)
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#updateAddress(java.lang.String, java.lang.String, int)
../java/com/sleepycat/je/rep/ReplicationConfig.html
../java/com/sleepycat/je/rep/ReplicationMutableConfig.html
../java/com/sleepycat/je/util/DbBackup.html
../java/com/sleepycat/je/util/DbBackup.html

Library Version 12.2.7.5 Administration

2. Add a new node to the replicated group.
3. Delete a node from the replication group.

4. Successfully commit a transaction (this depends on the durability guarantees in place for
your application).

All of these actions might be adversely affected by a series of unavailable electable nodes
because in order to do these things the Master must be in contact with a majority of the
electable nodes belonging to the replication group (Monitor and Secondary nodes do not
count). So if too many electable nodes are either shutdown or unavailable due to a network
partition event, then these functions can become delayed or even completely unavailable.

For this reason, if you have electable nodes that you want to shutdown for a long time, then
you should remove those nodes from the replication group. JE provides a utility class that
allows for node removal, so your application developer should have provided you with a tool
of some kind that allows you to do this as a normal administrative function.

When removing an electable node from the replication group, remember that:
o for best results, shut down the node first.

« a majority of the nodes must currently be in contact with the Master in order to
acknowledge the node removal.

If at some later time you want to restart the node and have it join the replication group, you
can do this using the normal procedure that your application uses when starting a node for
the first time. Be aware, however, that you cannot reuse the unique name that the node was
using when you removed it from the group as an electable node. Instead, give the node a
completely new unique name before having it rejoin the replication group.

Upgrading a JE Replication Group

After deploying a BDB JE HA application, you may later want to upgrade to a new version.
Berkeley DB JE supports hot upgrade of a replication group, by allowing mixed version
operation. That is, replication nodes running the newer software version can inter-operate
with older version nodes and both can be available for user operations. However, in some
cases, there are certain constraints to performing such a hot upgrade.

Upgrade Process

Each release of Berkeley DB JE is tied to a given log file on-disk format. Log file formats do
not necessarily change every release. The Change Log for each release specifies whether
the log file format has changed or not. There are no restrictions on upgrades across releases
that use the same log file format. For best performance and to take advantage of bug fixes,
ensure all nodes in a replication group run with the same BDB JE version during normal
operations. Occasionally, a new release of Berkeley DB JE includes a log file format change.
The constraints that apply to upgrades which introduce new log file formats are explained in
this section.

In a replication group, the Master transmits log records that must be read by the replicas. If a
group is operating with mixed version nodes, the Master must be running a version of JE that

31-Oct-2017 Using JE High Availability Page 72

Library Version 12.2.7.5 Administration

is older than, equal to, or (by default) no more than one version greater than the replicas.
This is required so that the Master can supply the replicas with a version of the replication
stream that they can understand.

Note that some releases may support online upgrades with replicas running versions that
are more than one log file format version different from each other. But any such additional
flexibility will be called out in the release notes.

To support the versioning requirement, make sure to upgrade all nodes to the version with
the next log file format before upgrading any nodes to a still later log file format. If you
cannot meet this restriction, then a hot upgrade should be performed. Instead, all nodes in
the replication group should be taken offline and upgraded before any are restarted.

The recommended steps for upgrading Berkeley DB JE HA when log file formats have changed
are as follows:

1. Determine if the upgrade skips any log file format versions. If it has, and it is not possible
to upgrade to the intermediate versions, then plan to perform an offline upgrade.

2. Bring all Replicas up to date with the Master. That is, all Replicas must have
the same environment content as the Master. You can ascertain this by using
the DbGroupAdmin.dumpGroup() utility, or programmatically using the
ReplicaConsistencyPolicy.

3. Perform the following upgrade procedures on each of the environments that are part of
the replication group.

« Shut down the old version of the application.
« Install the new BDB JE jar file.
« Restart the application.

Upgrade each individual data node, both Replicas and the Master, and restart them to join
the replication group.

Things To Remember While Upgrading

During a hot replication upgrade:

» Upgrading BDB JE 4.0 directly to BDB JE 5 and higher versions is prohibited. Upgrade BDB
JE 4.0 to BDB JE 4.1 first, and then upgrade BDB JE 4.1 to higher versions. There is no
constraint if you upgrade from BDB JE 4.1 or later versions to a higher BDB JE version.

Handling Problems While Upgrading

There are exceptions that you may run into during the upgrade process. The following
exceptions may be thrown when a replication group node is restarted during the upgrade, and
a ReplicatedEnvironment object is instantiated:

 RollbackException

31-Oct-2017

Using JE High Availability Page 73

../java/com/sleepycat/je/rep/util/DbGroupAdmin.html#dumpGroup()(com.sleepycat.je.rep.util.DbGroupAdmin)
../java/com/sleepycat/je/ReplicaConsistencyPolicy.html
../java/com/sleepycat/je/rep/RollbackException.html

Library Version 12.2.7.5 Administration

This exception can be thrown by a Replica when its log is ahead of the current Master and
the Replica is unable to rollback without a recovery. As a consequence, one or more of the
most recently committed transactions may need to be rolled back, before the Replica can
synchronize its state with that of the current Master. This exception can also be thrown if
the current Master crashes. To solve this exception restart the ReplicatedEnvironment with
the new JE version.

RollbackProhibitedException

During synchronization, a Replica that has a newer log, may have to roll back a number of
committed tranactions. If the number of rolled back transactions exceeds the limit defined
by TXN_ROLLBACK_LIMIT, the Replica throws a RollbackProhibitedException. To solve this
exception you may have to truncate logs manually by using DbTruncatelLog and restart the
ReplicatedEnvironment with the new JE version.

EnvironmentFailureException

EnvironmentFailureException is thrown due to log version incompatibility between the
Master and the Replica. This exception is thrown with the message:

"Incompatible log versions. Feeder log version: xxxx, Feeder JE version: xxxx, Replica log
version: xxxx, Replica JE version: xxxx".

To solve this exception restart the ReplicatedEnvironment with the new JE version.

Resetting a Replication Group

Under some circumstances it is useful to reset a group. Resetting a group means taking a node
from an existing group and using it to form a brand new group of size 1. You can then grow the
new group as normal by adding additional nodes to it. In this way, you can create an additional
group that has the exact same data as the original group.

This functionality is useful when a copy of an existing group needs to be made for use at some
other site.

To reset a group, use the DbResetRepGroup utility.

31-Oct-2017

Using JE High Availability Page 74

../java/com/sleepycat/je/rep/RollbackProhibitedException.html
../java/com/sleepycat/je/rep/ReplicationConfig.html#TXN_ROLLBACK_LIMIT
../java/com/sleepycat/je/EnvironmentFailureException.html
../java/com/sleepycat/je/rep/util/DbResetRepGroup.html

Appendix A. Managing a Failure of
the Majority

Normal operation of JE HA requires that at least a simple majority of electable nodes be
available to form a quorum for election of a new Master, or when committing a transaction
with default durability requirements. The number of electable nodes (the Electable Group
Size) is obtained from persistent internal metadata that is stored in the environment and
replicated across all members. See Replication Group Life Cycle (page 7) for details.

Under exceptional circumstances, a simple majority of electable nodes may become
unavailable for some period of time. With only a minority of electable nodes available, the
overall availability of the group can be adversely affected. For example, the group may be
unavailable for writes because a master cannot be elected. Also, the Master may be unable
to satisfy the durability requirements for a transaction commit. The group may also be
unavailable for reads, because the absence of a Master might cause a Replica to be unable to
meet consistency requirements.

To deal with this exceptional circumstance — especially if the situation is likely to persist for
an unacceptably long period of time — JE HA provides a mechanism by which you can modify
the way in which the number of electable nodes, and consequently the quorum requirements
for elections and commit acknowledgments, is calculated. The escape mechanism provides

a way to override the normal computation of the Electable Group Size. The override is
accomplished by specifying the size using the mutable replication configuration parameter
ELECTABLE_GROUP_SIZE_OVERRIDE.

Note

You should use this parameter sparingly, if at all. Overriding your Electable Group Size
can have the consequence of allowing your replication group's election participants to
elect two Masters simultaneously. This is especially likely to occur if a majority of the
nodes are unavailable due to a network partition event, and so all nodes are running
but are simply not communicating with one another.

Be very cautious when using this configuration option.

Overriding the Electable Group Size

When you set ELECTABLE_GROUP_SIZE_OVERRIDE to a non-zero value, the number that

you provide identifies the number of electable nodes that are required to meet quorum
requirements. This means that the internally stored Electable Group Size value is ignored
(but not changed) when this option is non-zero. By setting ELECTABLE_GROUP_SIZE_OVERRIDE
to the number of electable nodes known to be available, the remaining replication group
participants can make forward progress, both in terms of electing a new Master (if this is
required) and in terms of meeting durability and consistency requirements.

When this option is zero (0), then the node will behave normally, and the internal Electable
Group Size is honored by the node. This is the default value and behavior.

31-Oct-2017

Using JE High Availability Page 75

../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE
../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE
../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE

Library Version 12.2.7.5 Managing a Failure of the Majority

Setting the Override

To override the internal Electable Group Size value:

1. Verify that the simple majority of electable nodes are in fact down and cannot elect their
own independent Master.

2. Set ELECTABLE_GROUP_SIZE_OVERRIDE to the number of electable nodes known to be
available. For best results, set this override on all available electable nodes.

It might be sufficient to set ELECTABLE_GROUP_SIZE_OVERRIDE on just one electable
node in order to hold an election, because the proposer at that one node can conclude
the election. However, if the election results in Master that is not configured with this
override, it might result in InsufficientAcksExceptions at the Master. So, again, set the
override on all available electable nodes.

Having set the override, the available electable members of the replication group can now
meet quorum requirements.

Restoring the Default State

Having restored the group to a functioning state by use of the
ELECTABLE_GROUP_SIZE_OVERRIDE override, it is desirable to return the group to its normal
state as soon as possible. The normal operating state is one where the Electable Group Size is
maintained by JE HA, and the override is no longer used.

To restore the group to its normal operational state, do one of the following:

« Remove from the group any electable nodes that you know will be down for an extended
period of time. Remove the nodes using the ReplicationGroupAdmin.removeMember() API.

» Bring up electable nodes as they once again come on line, so that they can join the
functioning group. This must be done carefully one node at a time in order to avoid the
small possibility that a majority of the downed nodes hold an election amongst themselves
and elect a second Master.

» Perform some combination of node removal and bringing up nodes which were previously
down.

As soon as there is a sufficient number of electable nodes up and running that election
quorum requirements can be met in the absence of the override, the override can be
removed, and normal HA operations resumed.

Override Example

Consider a group consisting of 5 electable nodes: n1-n5. Suppose a simple majority of the
nodes (n3-n5) have become unavailable.

If one of the nodes in n3-n5 was the Master, then nodes n1 and n2 will try to hold an election,
and fail due to the lack of a quorum. We now carry out the steps described, above:

1. Verify that n3-n5 are down.

31-Oct-2017

Using JE High Availability Page 76

../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE
../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE
../java/com/sleepycat/je/rep/InsufficientAcksException.html
../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE
../java/com/sleepycat/je/rep/util/ReplicationGroupAdmin.html#removeMember(java.lang.String)

Library Version 12.2.7.5 Managing a Failure of the Majority

2. Set ELECTABLE_GROUP_SIZE_OVERRIDE to 2. Do this at both n1 and n2. You can do this
dynamically using JConsole, or by setting the property in the je.properties file and
restarting the node.

3. nland n2 will choose a new Master, say, nl. nl can now process write operations, and n2
can acknowledge transaction commits.

4. Suppose that n3 is now repaired. You can bring it back online and it will automatically
locate the new Master and join the group. As is normal, it will catch up to n1 and n2 in
the replication stream, and then begin acknowledging commits as requested by n1.

5. We now have three electable nodes that are operational. Because we have
a true simple majority of electable nodes available, we can now reset
ELECTABLE_GROUP_SIZE_OVERRIDE to 0 (do this on n1 and n2), which causes the
replication group to resume normal operations. Note that n1 remains the Master.

If n2 was the Master at the time of the failure, then the situation is similar, except that an
election is not held. In this case, n2 will continue to remain the Master throughout the entire
process described above. However, n2 might not be able to meet quorum requirements for
transaction commits until step 2 (above) is performed.

31-Oct-2017 Using JE High Availability Page 77

../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE
../java/com/sleepycat/je/rep/ReplicationMutableConfig.html#ELECTABLE_GROUP_SIZE_OVERRIDE

	Getting Started with Berkeley DB, Java Edition High Availability Applications
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Introduction
	Overview
	Replication Group Members
	Replicated Environments
	Selecting a Master
	Replication Streams

	Managing Data Guarantees
	Durability
	Managing Data Consistency

	Replication Group Life Cycle
	Terminology
	Node States
	New Replication Group Startup
	Subsequent Startups
	Replica Startup
	Master Failover
	Two Node Groups

	Chapter 2. Replication API First Steps
	Using Replicated Environments
	Configuring Replicated Environments

	HA Exceptions
	Master-Specific HA Exceptions
	Replica-Specific HA Exceptions
	Replicated Environment Handle-Specific Exceptions

	Opening a Replicated Environment
	Managing Write Requests at a Replica
	Using the StateChangeListener
	Catching ReplicaWriteException

	Secondary Nodes
	Time Synchronization
	Configuring Two-Node Groups

	Chapter 3. Transaction Management
	Managing Durability
	Durability Controls
	Commit File Synchronization
	Managing Acknowledgements
	Managing Acknowledgement Timeouts

	Managing Consistency
	Setting Consistency Policies
	Time Consistency Policies
	Commit Point Consistency Policies

	Availability
	Write Availability
	Read Availability

	Consistency and Durability Use Cases
	Out on the Town
	Reading Reviews
	Writing Reviews
	Updating Events and Restaurant Listings
	Updating Account Profiles

	Bio Labs, Inc
	Logging Sampling Results
	Monitoring the Production Stream

	Managing Transaction Rollbacks
	Example Run Transaction Class
	RunTransaction Class
	Using RunTransaction

	Chapter 4. Utilities
	Administering the Replication Group
	Listing Group Members
	Locating the Current Master
	Adding and Removing Nodes from the Group

	Restoring Log Files
	Reclaiming Log Files
	Suspending Writes Due to Disk Thresholds

	Backing up a Replicated Application
	Converting Existing Environments for Replication

	Chapter 5. Writing Monitor Nodes
	Monitor Class
	Listening for Events

	Chapter 6. Replication Examples
	Chapter 7. Administration
	Hardware
	Time Synchronization
	Node Configuration
	Running Backups
	Adding and Removing Nodes
	Upgrading a JE Replication Group
	Upgrade Process
	Things To Remember While Upgrading
	Handling Problems While Upgrading

	Resetting a Replication Group

	Appendix A. Managing a Failure of the Majority
	Overriding the Electable Group Size
	Setting the Override
	Restoring the Default State
	Override Example

