
Start

Oracle® Documaker

Documaker
Administration Guide
version 12.0

Part number: E17552-01

October 2011

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.
Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE
Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)
The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.
Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.
Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.
Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

ix

Contents

Chapter 1, Introduction

2 System Overview

3 Rules Publishing Solution Overview

4 Document Automation Evolution

7 Document Automation Goals

8 System Benefits

Chapter 2, Understanding the System

11 Processing Overview

14 Processing Options

15 Using Banner Processing

22 Using Multiple step Processing

22 Creating Transaction Records

23 File Summary

24 Processing Transactions

25 Output Files for GenPrint

25 Output Files for GenWIP

25 Output Files for GenArc

26 File Summary

28 Creating Print Spool Files

29 File Summary

30 Sending Incomplete Transactions to WIP

31 File Summary

32 Archiving Transactions

33 File Summary

33 Rules Used in Multiple Step Processing

34 Restarting the GenData Program

36 Generating Batch Status Emails

38 Tracking Batch Page Statistics

x

38 Recipient Page Statistics

39 Batch Totals Summary File

40 Sample Log File

41 Default DFD Files

44 Controlling GenTrn Processing

46 Using Single Step Processing

46 Creating and Processing Transaction Records

47 System Settings and Resources

48 Creating Print Files

49 File Summary

50 Using the MultiFilePrint Callback Function

51 Mapping Fields with XPath

52 Running Archive in Single Step Processing

52 Running WIP in Single Step Processing

53 Rules Used in Single Step Processing

56 Single Step Processing Example

58 Using IDS to Run Documaker

59 Writing Unique Data into Recipient Batch Records

66 Using Class Recipients

68 Running Documaker Using XML Job Tickets

69 Handling 2-up Printing

70 Changing the INI File

72 Changing the Recipient Batch DFD File

73 Rules Used for 2-up Printing

75 Placing the 2-up Rules in the JDT File

76 2-up Processing Example

77 Running the GenData Program

80 Printing in Booklet Format

81 Booklet Printing Examples

85 Splitting Recipient Batch Print Streams

87 DeviceName

87 SetDeviceName

87 BreakBatch

88 UniqueString

88 Using DAL to Manipulate File Names

xi

89 FileDrive

89 FilePath

89 FileName

90 FileExt

90 FullFileName

91 Assigning Printer Types Per Logical Batch Printer

93 Controlling WIP Field Assignments

96 Generating Email Notifications from GenWIP

99 Using Multi-mail Processing

99 Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files

100 Setting Up the FSISYS.INI File for Multi-mail Processing

102 Using Addressee Records

102 Using Addressee Records in Batch Files

103 Using Address Records for Printing

104 Adding and Removing Pages

104 Using Custom Code

104 Using DAL Scripts

106 Using IDS

107 Adding Indexes and Tables of Contents

108 Using Run-Time Options

108 GenData Command Line Options

108 GenPrint Command Line Options

109 GenTrn Command Line Options

109 Debugging Options

111 Grouping Print Batches

112 Controlling Console Logging

112 Logging INI File Names and Options

113 Listing the Rules Executed

114 Analyzing DAL Performance

117 Handling Large Files on Windows, UNIX, and Linux

118 Handling Large Extract and NAFILE Files on z/OS

119 Controlling What is in the MultiFilePrint Log

121 Using INI Built-In Functions

125 Accessing WIP Fields

129 Defining Built-in Functions via Studio

xii

130 Outputting WIP Field Data Onto the XML Tree

131 Using Form Inclusion Information

133 Selecting the Display Language

133 Documaker Studio

133 Transall

134 Documaker Server

134 Documaker Add-In

135 Using XML Files

135 Handling Overflow

136 Triggering Forms and Sections

137 Using XPath

137 XPath Syntax

137 Axes

138 Symbols

138 Functions

139 Expressions

140 Using the XPath Testing Utility

140 Examples

Chapter 3, Implementing Your System

150 Using a Methodology

153 Gathering Information

153 Understanding Your Niche

153 Understanding Your Organization

154 Roles and Responsibilities

Chapter 4, Setting Recipients and Copy Counts

156 Concepts

157 Key Files

157 Transaction Trigger Table

157 Trigger Levels

157 Form Set Definition Table

xiii

158 Trigger Table Record Format

160 Specifying the Transaction Trigger Table

161 How Transaction Triggering Works

162 Section Level Triggers

165 Form Level Triggers

167 Master and Subordinate Sections

167 Marking Subordinate Sections

168 Marking Master Forms

169 Examples

170 Specifying Copy Counts and Sections

172 Using Transaction Codes

173 Setting Up Search Mask and Sections

175 Using the RECIPIF Rule

177 Using Automatic Overflow

179 Using Forced Overflow

180 Setting Search Masks and Recipients

181 Using the Set Recipient Table and Extract Files

182 Formatting Search Masks

185 Sorting Forms by Recipient

187 Summary

Chapter 5, Setting Up Error Messages and Log Files

190 Overview

190 Types of Error Codes

191 Configuring the Message System

191 Enabling and Disabling Messages

192 Logging INI Files and Options Used

192 Clearing Messages

192 Defining the Output Message Files

193 Initializing the Output Message Files

194 Turning Off Date Stamps

194 Controlling the Translation Process

195 DBLib Trace Messages

196 Overriding Error Behavior

xiv

197 Creating Messages

197 Using the RPErrorProc and RPLogProc Functions

198 Using Message Tokens

200 Setting Up Message Text

203 Using the Message Token File

Chapter 6, Archiving and Retrieving Information

208 Terminology

210 System Scenarios

212 Archive and Retrieval Features

213 Processing Overview

213 Files GenArc Uses

213 How the GenArc Program Works

216 Running GenArc

217 Command Line Options

219 Using the Restart Option

221 Using GenArc with Documanage

228 Using the Oracle ODBC Driver

230 Creating the Database and Tables

233 Resolving Errors

234 Viewing Archives in Documanage

235 Using Multiple Simultaneous ODBC Connections

237 Using WIP and the Archive Index File

238 Formatting Archive Fields

240 Retrieving Archived Forms

240 Files the Archive Module Uses

240 Using the Archive Module

241 Retrieval Options

243 Working with Documanage

244 Using Documanage Data Type Support

245 Setting Up Automatic Category Overrides

246 Mapping Documaker Archive Fields to Documanage Properties

248 Using Next/Retrieve Cursor

xv

249 Enhanced Documanage Document Extended Properties Support

Chapter 7, Setting Up Archive/Retrieval Configurations

258 DB2 Server on OS/390 —Windows Client

258 Configuring the Server

259 Setting Up the Windows 2000 Server (Middle Tier)

261 Installing and Configuring Microsoft’s SNA Server

262 Configuring SNA Server 4.0 SP3

264 Setting Up DB2 on a Windows 2000 Server

265 Installing and Configuring DB2 on a Windows 2000 Server

265 Setting Up Universal Database on Windows 2000

267 Updating TCP/IP-related Values on a Windows 2000 Server

267 Common DB2 Errors

267 Setting Up Clients

268 Setting Up the INI Options for the DB2 Driver

270 DB2 Server on Windows — Windows Client

270 Setting up a DB2 Database on the Server

271 Setting Up a Client for DB2 VERSION 6.1

273 Archiving to a Remote DB2 Database Using the Native DB2
Driver

275 DB2 Server and Client on Windows

275 Setting Up a DB2 Database

276 Archiving to a Local DB2 Database Using the Native DB2
Driver

279 SQL Server on Windows — ODBC Client on Windows

279 Setting Up a Client

281 IDS on Windows —DB2 Archive on z/OS

281 Setting Up the DB2 Archive on z/OS

282 Creating a z/OS Database

282 Updating TCP/IP Values on a Windows 2000 Server

Chapter 8, Optimizing Your System

286 Optimizing Performance on z/OS

xvi

287 Compile Options

287 Language Environment (LE) or c/370 Runtime Options

288 File Types and Characteristics

288 Extract Files

288 DEFLIB

289 SETRCPTB

289 FAPLIB

289 TRNFILE

289 NEWTRN

289 NAFILE

289 POLFILE

289 Recipient Batch Files

290 Pre-compiled Xerox Metacode Files (PMETLIB)

290 Print Files

290 Setting Your FSISYS INI Options

290 Caching Options

291 Logging Options

292 Debug Options

292 Other Options

293 Defining the Extract File as a VSAM KSDS

295 Moving DDT Files into a VSAM KSDS

297 Moving JDTs into a VSAM KSDS

299 Moving PMETs into a VSAM KSDS

301 Moving SETRCPTB to a VSAM KSDS

303 Creating NAFILEs and POLFILEs as VSAM KSDSs

304 Optimizing Performance on UNIX/Linux

304 Setting FSISYS INI Options

305 Logging Options

306 Debug Options

306 Run Options

307 Other Options

308 Optimizing Performance On Windows

308 Setting FSISYS INI Options

308 Caching Options

309 Logging Options

310 Debug Options

310 Run Options

xvii

310 Other Options

311 Uploading and Downloading Resources on z/OS

312 Transferring Files

313 Handling International Characters

314 Xerox Image, Font, and Form Files

314 Xerox Pre-compiled Metacode (PMET) Files

315 Moving Resource Files Between UNIX/Linux and Windows

315 Uploading a Library from PC to UNIX

315 Downloading Print Streams from UNIX to PC

Chapter 9, Uploading and Downloading Resource Files

318 Uploading and Downloading Resources on z/OS

319 Transferring Files

320 Handling International Characters

321 Xerox Image, Font, and Form Files

321 Xerox Pre-compiled Metacode (PMET) Files

322 Moving Resource Files Between UNIX/Linux and Windows

322 Uploading a Library from PC to UNIX

322 Downloading Print Streams from UNIX to PC

Appendix A, System Files

324 Overview

326 Types of Files

329 Resource Files

333 DFD File Format

336 Files Created by the GenTrn Program

337 Files Created by the GenData Program

339 Files Created by the GenPrint Program

340 Files Created by the GenWIP Program

341 Files Used by the GenArc Program

xviii

Glossary

343 00000001.DAT File

343 00000001.POL File

344 AFP

344 ARCHIVE.CAR File

344 ARCHIVE.DBF File

344 ARCHIVE.DFD File

344 .BCH Files

344 Batch Files

344 .CAR Files

344 DAL

345 .DAT Files

345 .DBF Files

345 DDT Files

345 .DFD Files

345 Distributed Resource Library

345 Duplex

345 ERRFILE.DAT

346 Error Batch

346 Error Files

346 Extract Files

346 .FAP Files

346 FDB.DBF File

346 fetype

346 Fixed Data

347 Font Manager

347 Form

347 Form Set

347 FSISYS.INI File

347 FSIUSER.INI File

348 .FXR Files

348 GenArc Program

348 GenData Program

348 GenPrint Program

348 GenTrn Program

348 GenWIP Program

xix

349 Graphics Manager

349 .INI Files

349 .JDT Files

349 Library Manager

349 Log Files

349 .LOG Files

349 MANUAL.BCH File

350 Master Resource Library

350 Metacode

350 .MDX Files

350 NAFILE.DAT File

350 NEWTRN.DAT File

350 Objects

350 Overflow

351 Page

351 PCL

351 POLFILE.DAT File

351 PostScript

351 Section

351 Simplex

351 System Releases

352 System Patches

352 Transaction List

352 .TRN Files

352 TRNDFDFL.DFD File

352 UNIQUE.DBF File

352 Variable Data

352 WIP.DBF File

352 WIP.MDX

353 xBase

355 Index

xx

1

Chapter 1

Introduction

Welcome to the Documaker rules-based publishing
solution. This product consists of a complete set of
tools which provide solutions for all your form and
document processing needs. The system includes these
major components:

• Documaker Studio

• Documaker Server

• Docupresentment

This manual serves as a reference to Documaker Server.
This chapter discusses the following topics:

• System Overview on page 2

• Rules Publishing Solution Overview on page 3

• Document Automation Evolution on page 4

• System Benefits on page 8

Chapter 1
Introduction

2

SYSTEM
OVERVIEW

Documaker Server is part of the Oracle Documaker rules publishing solution, which
also includes Documaker Studio, Docupresentment, and reusable resource libraries.

Documaker Server uses resources you create using Documaker Studio to process
information and forms. This processing includes merging external data onto forms,
processing data according to rules you set up, creating print-ready files, archiving data
and forms, and, if applicable, sending incomplete forms to Documaker for completion
by a user.

Forms can be completed using Documaker when user input is required or, if all of your
information can be extracted from external data sources, you can set up Documaker
Server to process forms without requiring user input.

Documaker Server can create print-ready files for a variety of printer languages
including, AFP, PostScript, PCL, and Xerox Metacode printers. In addition, using
Docupresentment, the system can produce output in Adobe Acrobat PDF format.

The following topic discusses the entire rules publishing solution, its purpose, its
underlying concepts and how it all works together to provide you with an enterprise-
level solution to meet your document creation, processing, and storage needs.

Rules Publishing Solution Overview

3

RULES
PUBLISHING
SOLUTION
OVERVIEW

Document automation is the basic concept underlying the system. An understanding of
document automation helps you understand the purpose of the rules publishing
solution.

Document automation replaces paper documents with electronic media. Generally,
document automation is an integrated process within enterprise information systems.

The greatest challenge that document intensive industries face is the efficient processing
of forms and documents. Moving toward the era of electronic information means
finding workable solutions for the paper-to-electronic media replacement process. New
business directions include developing ways to automate document handling processes,
which extend beyond simply creating electronic output or print.

Document automation is rapidly becoming an integral part of today's business
environment. The rules publishing solution creates a total business solution which lets
you automate both paper document processing and electronic document management.

Let's examine document automation outside the rules publishing solution to build a
knowledge base applicable to unique platforms. Then we can apply the basic concepts
to the rules publishing solution.

Chapter 1
Introduction

4

DOCUMENT
AUTOMATION

EVOLUTION

Through the years, document automation has moved in concert with technological
evolution. The technological evolution has progressed from initial ideas and
applications about forms processing, to the integrated management of electronic
documents. The distinction between merely automating paper production and
permanently integrating electronic processing and management is critical to
understanding the technological evolution. This table shows the progression of
document automation in the current environment.

Stage 1 - paper
automation

Paper automation, enabled by the advent of computers and laser printers, is the first
stage of the document automation evolution. Most people think of the processing and
assembly of business correspondence and forms by computers as document automation.
While the computer does perform some information processing, this stage of document
automation evolution is still very paper intensive. It does not extend to associated
automated document workflow and procedures.

Stage Type of Automation Components

1 Paper Automation Business correspondence

Forms processing

Document assembly

2 Workflow Automation Electronic mail

Electronic data interchange

Electronic funds transfer
Integrated facsimile

3 Paperless Information
Automation

Cooperative processing

Enterprise indexing
Integrated section processing

Multimedia

Document Automation Evolution

5

Stage 2 - workflow
automation

Workflow automation, enabled by the proliferation of personal computers,
communication standards, Local Area Networks (LANs), Wide Area Networks (WANs),
and integrated FAX machines, is the second stage in the document automation
evolution. Workflow automation goes beyond information processing to the transfer of
digitized information across telecommunication lines. It eliminates many manual
procedures, often clerical in nature, from the workflow process.

Chapter 1
Introduction

6

Stage 3 - paperless
information automation

Paperless information automation combines multiple technologies across multiple
organizations, enterprises, and government entities. Information elements from various
sources are shared and are readily available in flexible electronic formats. Paperless
information automation enables you to reuse the information contained in the
documents. Electronic documents are much easier to track, maintain, update, route, file,
and retrieve.

Cooperative
Processing

Enterprise
Indexing

Image
Processing Multimedia

Paperless Information
Automation

Document Automation Evolution

7

DOCUMENT AUTOMATION GOALS

Document automation combines many elements of the evolutionary stages previously
discussed to accomplish these primary objectives:

• Eliminate paper

Paper consumes enormous resources. Document automation decreases the costs
associated with paper documents, and decreases the requirements for both long
term and short term storage, retrieval, and document distribution.

• Automate manual procedures

Automating manual procedures associated with document automation increases
efficiency, increases accuracy, and reduces costs. Repetitive and unnecessary
procedures are identified and eliminated.

• Automate system interfaces

Interfaces which allow exchange of data between automated systems eliminate the
need to manually enter data. Automated system interfaces also eliminate the need
to supplement automated processes with manual functions. Automated system
interfaces reduce errors, increase efficiency, and simplify the workflow.

As you can see, document automation encompasses many different technologies which
merge in a variety of ways. In the current business environment, there are many single
technologies and partial solutions which mimic document automation at first glance.
Keep in mind, a single solution using one technology is not document automation.
Document automation involves multiple technologies which help you manage forms
and documents, workflow, procedures, and other electronic media, based on the needs
and requirements of each individual organization or enterprise.

Chapter 1
Introduction

8

SYSTEM
BENEFITS

The system's cohesive design results in many benefits to the user. The system provides a
seamless interface to your existing systems by integrating document automation
technology with your current systems, and by offering you a customized computer
system with reusable resources. You can select modules to meet your specifications.

The system also provides you with the following advantages in your document
automation processing:

• Functional - The system's configuration meets a wide variety of document
processing needs. The system's expandable architecture utilizes technological
innovations to meet changing processing needs.

• Portable - The system's architecture allows core processing modules to operate on
multiple hardware platforms and in multiple operating environments. This design
gives the user control of the system configuration in order to meet individual needs.

• Modular - The system's configuration lets you select modules to customize your
system. The modular design eases maintenance by segregating functions in
independent modules. A change in one module does not necessitate multiple
changes throughout the system. This modular design also improves performance by
eliminating unnecessary processing.

• Reusable - The biggest advantage in using the system is the reusability of resources.
Libraries are composed of customizable resource units such as sections (sections)
and rules, which can be reused. Reusing resources increases efficiency and promotes
consistency throughout your system and product.

• Easy to use - System components have a graphical user interface common to all
components. The system's seamless system interface provides transparent print and
data merge capabilities.

9

Chapter 2

Understanding the
System

In Chapter 1, you were introduced to the system as a
whole. This chapter provides an overview of
Documaker Server.

As you review this chapter you will learn about the
programs that make up Documaker Server. Following
the overview, you will learn about the files used and
created by the system programs in both the multiple
and single step processes.

This chapter contains the following topics:

• Processing Overview on page 11

• Processing Options on page 14

• Using Banner Processing on page 15

• Using Multiple step Processing on page 22

• Restarting the GenData Program on page 34

• Tracking Batch Page Statistics on page 38

• Generating Batch Status Emails on page 36

• Controlling GenTrn Processing on page 44

• Using Single Step Processing on page 46

• Using IDS to Run Documaker on page 58

• Writing Unique Data into Recipient Batch
Records on page 59

• Using Class Recipients on page 66

• Running Documaker Using XML Job Tickets on
page 68

• Handling 2-up Printing on page 69

Chapter 2
Understanding the System

10

• Printing in Booklet Format on page 80

• Splitting Recipient Batch Print Streams on page 85

• Assigning Printer Types Per Logical Batch Printer on page 91

• Controlling WIP Field Assignments on page 93

• Generating Email Notifications from GenWIP on page 96

• Using Multi-mail Processing on page 99

• Adding and Removing Pages on page 104

• Adding Indexes and Tables of Contents on page 107

• Using Run-Time Options on page 108

• Controlling What is in the MultiFilePrint Log on page 119

• Using INI Built-In Functions on page 121

• Outputting WIP Field Data Onto the XML Tree on page 130

• Using Form Inclusion Information on page 131

• Selecting the Display Language on page 133

• Using XML Files on page 135

• Using XPath on page 137

Processing Overview

11

PROCESSING
OVERVIEW

Documaker Server is designed to gather source data, process that data by applying rules
you define, merge the data onto pre-designed forms, and print the result. In addition,
Documaker Server can automatically check for incomplete data and send that data to
Documaker for completion. Documaker Server can also automatically archive
completed transactions which you can later view as needed.

The following illustration shows a high level view of Documaker Server:

NOTE:This illustration and the other illustrations in this chapter show a typical,
workstation-based system flow. Your system may be set up differently.
Furthermore, the system can be customized in many ways and can run on a
variety of platforms. For instance, if your source data is properly formatted, you
can bypass the GenTrn program. Or, you may choose to run the GenTrn,
GenData, and GenPrint programs on a host machine and then download the
information and use a system utility (FIXOFFS) to prepare it for use by the
GenWIP and GenArc programs running on a workstation. You could also run
the GenArc program on the host and only run the GenWIP program on a
workstation.

This illustration shows the main programs which make up Documaker Server and an
overall view of the processing cycle.

• GenTrn. The GenTrn program reads source data and uses system settings to create
transaction records. The source data is stored in extract files. Depending on the
operating system you use, this program has various names such as
GENTNW32.EXE for 32-bit Windows environments.

• GenData. The GenData program takes the transaction records created by the
GenTrn program and uses system settings and resources to apply processing rules
to those transactions.

Chapter 2
Understanding the System

12

The GenData program creates output files the GenPrint program can use. It also
creates files with incomplete transactions which the GenWIP program can use. The
GenWIP program creates from these files, output you can display and complete
using the WIP module of Documaker Workstation.

The output from the GenData program is also used by the GenArc program to
archive data. Depending on the operating system you use, this program has various
names such as GENDAW32.EXE for 32-bit Windows environments.

NOTE:The illustration on the preceding page and this overview discuss the standard
or multiple step processing flow of the system. By using specific rules you can have
the GenData program execute both the functions of GenTrn and GenPrint.
This is called single step processing and can improve performance. To learn more,
see Using Single Step Processing on page 46.

• GenPrint. The GenPrint program takes information produced by the GenData
program and creates printer spool files for use with PCL, AFP, Metacode, and
PostScript compatible printers. In addition, the GenPrint program can also
produce a Portable Document File or PDF (Acrobat) output. Depending on the
operating system, this program has various names such as GENPTW32.EXE for
32-bit Windows environments.

NOTE:You can also use the GenPrint rule to add all of the functionality of running
the GenPrint program. Anything you can do with the GenPrint program can be
done using this rule. See the Rules Reference for more information.

• GenWIP. The GenWIP program receives information about incomplete
transactions from the GenData program and processes that information so you can
use the WIP module of Documaker to display the form and fill in the missing
information. Once completed, you can print, archive, print and archive, delete, or
change the status of form sets using Documaker. Depending on the operating
system, this program has various names such as GENWPW32.EXE for 32-bit
Windows environments.

NOTE:When using Documaker Server, a transaction may be placed in WIP for
completion by a data entry operator. In these cases, you would first complete
the transaction before it is archived.

• GenArc. The GenArc program archives data so you can store the information
efficiently and retrieve it quickly. This program receives information from the
GenData program. Depending on the operating system, this program has various
names such as GENACW32.EXE for 32-bit Windows environments.

The previous illustration showed a high level view of Documaker Server which shows
you the main programs in the system and its processing cycle. These programs create
and use several types of files as they process information. The following illustration
shows this processing flow in greater detail, though not every possible system file is
included.

Processing Overview

13

Understanding how the information flows from one program to another and which files
are used and created is key to understanding Documaker Server. Here you can see all of
the files the system uses and creates during its processing cycle.

You can find information about all these files and programs in the Glossary. You can
also find examples of certain files in Appendix B, System Files on page 425. Let’s first
look at the GenTrn program and the files it uses and creates.

NOTE:You can run the GenData and GenPrint programs on z/OS using resources
retrieved from Documanage (on a Windows server) via Library manager. For
information on setting up the library in Documanage and setting the INI
options on z/OS to access this library, refer to the Documaker Studio User
Guide. See Using Documanage in Chapter 9, Managing Resources.

Chapter 2
Understanding the System

14

PROCESSING
OPTIONS

You can run Documaker Server as a multiple or single step process. Variations of these
processes provide additional options such as AFP 2-up printing and multi-mail sorting.

This chapter begins with a general overview of the system. From this point forward, we
will review specific processing options. The following topic discusses running the system
using the multiple step process. This topic is followed by a discussion of running the
system using the single step processes. The remainder of the chapter provides brief
explanations of 2-up and multi-mail printing.

NOTE:To gain a complete understanding of the different features of the multiple and
single step processes, it is important to read through both sections. Certain
information that is common to both processes is only described in the multiple
step section.

To help determine which option is best suited for a particular need, a brief description
of the run-time options and related processes are provided in the table below:

Process Description

2-Up Printing Two-up printing is a two-step process which passes input through GenData
three (3) times with a different JDT file each pass. This process is similar to
the single step process in that GenData performs the work, but the three
passes through GenData actually represent two steps of the multiple step
process: processing the transactions and printing the transactions. Two-up
printing is AFP printer-specific. For more information, see Handling 2-up
Printing on page 69.

Banner The system lets you process banners at several points in the processing cycle.
Doing this involves using a simplified AFGJOB.JDT file. For more
information, see Using Banner Processing on page 15.

Multi-mail GenData groups transactions with the same multi-mail code into selected
print batches to be sorted and delivered to the same location. For more
information, see Using Multi-mail Processing on page 99.

Multiple step The system programs, GenTrn, GenData and GenPrint, each perform a set of
steps to read data, create output files and print. GenWIP and GenArc are
optional programs to complete incomplete transactions and archive data for
retrieval. For more information, see Using Multiple step Processing on page
22.

Restarting the
system

You can set up the GenData program to restart itself at a particular
transaction if it encounters a failure. For more information, see Restarting
the GenData Program on page 34.

Single step To enhance system performance, the steps of the GenTrn, GenData and
GenPrint programs are performed in one step by GenData. The GenWIP and
GenArc programs function the same as in the multiple step process. For more
information, see Using Single Step Processing on page 46.

Using Banner Processing

15

USING BANNER
PROCESSING

The system includes support for banner processing. Banner processing is supported at
these points in the processing cycle:

• Beginning of a batch

Before a transaction is processed

After a transaction is processed

• End of a batch

Banner processing is optional at each point. Banner processing can optionally include
FAP forms processing and DAL script processing.

You specify the FAP forms for banner processing in this manner:

;key1;key2;form name;

The forms must appear in the FOR file in DefLib. The associated sections (images) for
those forms and must reside in FormLib.

You can set up banner forms and scripts at a global level so they can be used by all print
batches. Individual recipient print batches can specify local forms or scripts to override
the global forms and scripts.

Keep in mind these limitations:

• Only the standard printer drivers, such as AFP, Metacode, PCL, and Postscript,
support batch banner processing. Avoid batch banner processing if you are using
another print driver.

• Banner pages are printed at the group level. As a result, this bypasses the custom
callback function named in the CallbackFunc option of the Print control group
since it is a form set-level callback.

NOTE:Version 10.1 added batch-level banner processing to multiple step mode.
Version 10.2 added batch-level banner processing to single step processing —
printing via GenData using the PrintFormset rule.

The method of banner processing discussed here only affects the GenPrint
program. Documaker Workstation has a separate banner handling method, and
does not support this method of banner processing.

Enabling banner
processing

For performance reasons banner processing is, by default, disabled. You must enable it
using one or both of these INI options:

< Printer >

EnableTransBanner = True

EnableBatchBanner = True

Omitting either option disables the associated level of batch banner processing. Once
enabled, banner processing is in effect for the entire GenPrint run. You can, however,
disable banner processing for individual batches by specifying forms and scripts with
blank names.

Specifying banner
forms and scripts

You can globally specify forms and scripts for all batches, or locally for specific batches.
Use these INI options to specify global batch forms and scripts:

Chapter 2
Understanding the System

16

< Printer >

BatchBannerBeginForm = form name

BatchBannerBeginScript = script name

BatchBannerEndForm = form name

BatchBannerEndScript = script name

TransBannerBeginForm = form name

TransBannerBeginScript = script name

TransBannerEndForm = form name

TransBannerEndScript = script name

Specify form names as follows:

;KEY1;KEY2;Form name;

The sections (FAP files) for the forms are specified in the form lines in the FOR file.
You must include these FAP files in FormLib.

Store the banner forms in a separate and unique banner form group, defined by a
combination of Key1 and Key2. You can use the AddForm DAL function in a DAL script
to insert additional forms for banner processing. Place these additional forms and
sections in the same group as the initial banner form. Each form is printed separately
and after all banner forms are printed, the entire banner group is removed from the
document set. For these reasons, it is critical that you isolate the banner forms from the
rest of the transaction document set by specifying a Key1/Key2 combination that does
not otherwise occur within the document.

The FAP files assigned to the form must have the recipient BANNER with a copy count
of at least one. When banner forms are printed, only sections assigned to the recipient
BANNER with a non-zero copy count are printed.

Specify the DAL script names without a path or extension. For best results, store the
DAL scripts in your DAL libraries because they are easier to maintain. The system
automatically loads DAL libraries if you include these INI options:

< DALLibraries >

LIB = library1

LIB = library2

The DAL script libraries or files must reside in DefLib.

You can specify forms and scripts at the recipient batch level to override the global
specification. Here is an example of how you do this:

< Print_Batches >

BATCH1 = BATCH1.BCH

BATCH2 = BATCH2.BCH

< Batch1 >

BatchBannerBeginForm = form name

BatchBannerBeginScript = script name

BatchBannerEndForm = form name

BatchBannerEndScript = script name

TransBannerBeginForm = form name

TransBannerBeginScript = script name

TransBannerEndForm = form name

TransBannerEndScript = script name

You can specify some, none, or all of the forms and scripts for local override of the
default global forms and scripts.

Using Banner Processing

17

An individual batch can completely or partially disable banner processing if the forms,
script names, or both are blank, as shown here:

< Batch1 >

BatchBannerBeginForm =

BatchBannerBeginScript =

BatchBannerEndForm =

BatchBannerEndScript =

TransBannerBeginForm =

TransBannerBeginScript =

TransBannerEndForm =

TransBannerEndScript =

Banner form
processing and

multifile print

Use the RetainTransBeginForm option to make pre-transaction transaction banner
form processing compatible with multifile printing. Banner forms print separately from
the rest of the document. When using multifile printing with print drivers such as PDF
or RTF, banner forms do not appear in the output file. This options lets the banner
form appear in the same print file.

Banner pages are, by design, not considered part of the form set. A pre-transaction
banner page is designed to print separately, using data from the form set, but as if it were
not physically part of the form set. For that reason, when printing to a single-file-per-
transaction format such as PDF, RTF, XML, or HTML, and using the MultiFile print
callback method to produce separate files, the banner output is not included in the
output file.

It is possible to use pre-transaction banner forms as a way of producing a mailer sheet
for a form set. This works for true printed output, but if you are producing a PDF file,
for example, the banner (mailer page) does not appear within the PDF.

If, however, you use the RetainTransBeginForm option to retain the pre-transaction
banner form, the banner process proceeds as before, but the printing of the banner is
initially suppressed. The banner page is retained and remains inside the form set, as the
first form in the form set. When the form set is processed by the PDF driver to produce
the PDF file, the pre-transaction banner form (or mailer sheet) is then included in the
resulting PDF file.

Keep in mind however that the document is only temporarily modified during the print
step. The banner form is not included with the actual, intelligent form set when it is
archived. For instance, if the intelligent document format is used for archiving, the
mailer sheet does not appear as part of the form set, and will not print if retrieved from
archive. If, however, you archive the PDF output, then the mailer sheet will appear in
the PDF file.

You can place the RetainTransBeginForm option in the Printer control group as a global
setting or you can place it at the recipient batch level. A setting at the recipient batch
level overrides a setting in the Printer control group.

Here is an example of how you could set a global or default setting in the Printer control
group and override that setting for a particular recipient batch:

< Printer >

RetainTransBeginForm = Yes

... (other applicable options omitted - see the following note)

< Print_Batches >

Chapter 2
Understanding the System

18

Batch1 = BATCH1.BCH

Batch2 = BATCH2.BCH

< Batch1 >

RetainTransBeginForm = No

... (other applicable options omitted - see the following note)

NOTE:There are additional INI settings required for single- and multiple step
processing. For more information about single step processing, see the
discussion of the PrintFormset rule in the Rules Reference.

For more information about multiple step processing, see the discussion of the
MultiFilePrint callback function in the Using the PDF Print Driver.

Processing logic Banner processing functions are part of the base system and are primarily located in
GenLib. The GenPrint program, however, first routes the processing to CusLib. This lets
you use the exit points in CusLib to create additional customized processing before,
after, or in place of, the calls to GenLib routines.

The processing sequence for banner processing (at any level) is as follows:

1 If a banner form is specified, it is created in the form set and the FAP files are
loaded.

2 If a banner DAL script is specified, it is executed.

3 For any banner form specified in step 1 or created during step 2, the following steps
take place:

Any variable fields in the banner form that are still empty are updated, first
from matching GVM (global variable member) variables, such as fields in the
recipient batch record, then from matching DAL variables.

The form is printed.

4 If there were banner forms to process, after updating the fields and printing the
forms, the entire banner form group is removed from the form set.

Option Description

RetainTransBeginForm Enter Yes if you want the system to include the transaction banner
form in the form set. The default it No.

If you are using the PDF, RTF, XML, or HTML print driver, this
means the banner pages will be included in each transaction’s print
file.

Using Banner Processing

19

NOTE:You can suppress the printing of the banner page by using the SuppressBanner
DAL function. This is useful when you need to combine several transactions
within the same transaction banner pages.

If there are registered comment record functions, each banner form in the form
group receives its own set of comment records. If the additional forms should
not receive their own comment records, add the sections for those forms to the
original form—do not add them as separate forms.

DAL functions You can also use these DAL functions with banner processing. See the DAL Reference
for more information.

• RecipName. Returns the name, such as INSURED, AGENT, COMPANY, and so
on, of the recipient batch record of the transaction currently being printed.

• RecipBatch. Returns the name, such as BATCH1, BATCH2, ERROR, MANUAL,
and so on, of the recipient batch file being processed.

• SuppressBanner. Suppresses the current banner from printing. You can use this
function when you want to combine several transactions inside one set of banner
pages, based on a flag that the DAL script checks.

Banner processing
example

Assume you have these FAP files in your forms library (FormLib).

• btchbannr

• btctrail

• trnbannr

• trntrail

Here is an excerpt from the FSISYS.INI file:

< Printer >

 PrtType = PCL

 EnableTransBanner = TRUE

 EnableBatchBanner = TRUE

 BatchBannerBeginScript = PreBatch

 TransBannerBeginScript = PreTrans

 BatchBannerEndScript = PstBatch

 TransBannerEndScript = PstTrans

 BatchBannerBeginForm = ;BANNER;BATCH;BATCH BANNER;

 BatchBannerEndForm = ;BANNER;BATCH;BATCH TRAILER;

 TransBannerBeginForm = ;BANNER;TRANSACTION;TRANS HEADER;

 TransBannerEndForm = ;BANNER;TRANSACTION;TRANS TRAILER;

< DALLibraries >

 LIB = Banner

Here is an excerpt from the FORM.DAT file:

;BANNER;BATCH;Batch Banner;Batch Banner (Job\
Ticker);N;;btcbannr|D<BANNER(1)>;

;BANNER;BATCH;Batch Trailer;Batch Trailer (End\
Ticket);N;;btctrail|<BANNER(1)>;

Chapter 2
Understanding the System

20

;BANNER;TRANSACTION;Trans Trailer;Transaction Trailer (End\
Ticket);N;;trntrail|D<BANNER(1)>;

;BANNER;TRANSACTION;Trans Header;Transaction Banner\
Page;N;;trnbannr|D<BANNER(1)>;

Here is an example of the BANNER.DAL file in DefLib:

BeginSub PreBatch

#batch += 1

#trans = 0

rb = RecipBatch()

rn = RecipName()

EndSub

BeginSub PreTrans

#trans += 1

rb = RecipBatch()

rn = RecipName()

EndSub

These additions to the FORM.DAT and FSISYS.INI files plus file additions to the
FormLib and DefLib sub-directory would cause the following pages to be added to each
batch:

Using Banner Processing

21

 Batch Banner Page

 Transaction Banner Page

Company: Sampco

LOB: LB1

Policy: 1234567
Recip name: Insured

Recip batch: Batch1

Batch no.: 1
Trans no.: 1

Pages associated with the
transaction

Transaction Trailer

Repeat of the previous pages—
from Transaction Banner page
through the Transaction Trailer
page

Batch Trailer

(ending job ticket)

Chapter 2
Understanding the System

22

USING
MULTIPLE STEP

PROCESSING

This topic describes the standard, multiple step approach to processing. In a multiple
step processing scenario, the system takes these steps:

• Create the transaction records

• Process the transactions

• Create print spool files

• Send incomplete transactions to work-in-progress (WIP)

• Archive transactions

NOTE:Be sure to carefully read this topic even if you are using single step processing.

CREATING TRANSACTION RECORDS

This illustration shows the files used and created by the GenTrn program as it creates
transaction records:

The GenTrn program takes the source data, which is stored in extract files, and creates
a list of the transactions, which is stored in the TRNFILE, or transaction file. This
transaction list is then used by the GenData program as it processes the transactions.

The GenTrn program uses settings in the FSISYS.INI and TRNDFDFL.DFD files to
determine how to process the transactions. These files provide the GenTrn program with
information about the format and structure of the extract file, such as how to determine
where each new record starts.

Using Multiple step Processing

23

The GenTrn program also produces a log file of its activities, a message file, and an error
file which you can use to resolve any errors that occur.

File Summary
This table summarizes the files used to supply information (input) and the files created
by (output) the GenTrn program:

NOTE:You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File Name
or Type

Default
Extension

File
Format Description

Input Extract files .DAT text Contains the data you want to process.

FSISYS .INI text Initialization file which includes system
settings.

TRNDFDFL .DFD text Defines the attributes of the variable fields in
the TRNFILE.DAT file.

Output

TRNFILE .DAT text Serves as an index to the individual
transactions. Used by the GenData program as
it processes the source data in the extract file.

Log file .DAT text Serves as a processing log for the GenTrn
program. The system records the information
by transaction.

Error file .DAT text Notes any errors and warnings encountered by
the GenTrn program as it created the
TRNFILE.DAT file. The system records the
information by transaction.

Message file .DAT text Contains errors and warnings.

Chapter 2
Understanding the System

24

PROCESSING TRANSACTIONS

The following illustration shows the files used and created by the GenData program as
it processes transactions:

The GenData program uses the transaction list (TRNFILE) created by the GenTrn
program as it processes the source data stored in the extract files. The FSISYS.INI file
provides system setting information, such as whether or not it should stop processing if
it encounters errors, how to identify key fields in extract files, whether or not it should
check the output data size against the defined field length, and so on.

The files listed under System resources provide additional information such as:

• How to read the transaction file (TRNDFDFL.DFD)

• The forms, graphics, and other resources to use when creating the form sets
(RESLIB)

• What forms to use (FORM.DAT)

• Who to send the forms to (SETRCPTB.DAT)

• What processing rules to apply to the data

• What processing rules to apply to this job (JDT files)

• How the batch files are defined (RCBDFDFL.DFD)

Using Multiple step Processing

25

NOTE:You can learn more about these files in Appendix B, System Files on page 425.

Output Files for GenPrint
The output files created by the GenData program include three types of files used by the
GenPrint program: Batch files, NAFILEs, and POLFILEs. Batch files list the transactions
which should be included in each batch print job. NAFILEs store section and variable
field information. POLFILEs define the form set the GenPrint program should use for
each transaction it processes.

Output Files for GenWIP
The GenWIP program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenData program creates
manual batch files specifically for the GenWIP program.

The GenData program creates manual batch files if it is unable to complete the
processing of a form set. Typically, this occurs if the form set is missing information.
The GenWIP program uses this file to create separate transactions which can then be
completed manually using the Entry module of Documaker Workstation. The data for
the separate transactions are stored in files with the extension DAT, such as
00000001.DAT, 00000002.DAT, and so on.

Output Files for GenArc
The GenArc program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenArc program uses the
NEWTRN files to tell it where to find data in the NAFILEs and which forms to use in
the POLFILEs.

Chapter 2
Understanding the System

26

File Summary
This table summarizes the files used to supply information (input) and the files created
by (output) the GenData program:

NOTE:You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name or
Type

Default
Extension

File
Format Description

Input Extract files text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNFILE DAT text Used as an index to the individual
transactions stored in the extract file.

TRNDFDFL DFD text Tells GenData how to read the TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the variable fields
in a batch file.

Resources (various) (various) Includes graphics (.LOG), font cross
reference files (.FXR), sections (.FAP), and
so on.

Output Batch files BCH text Indicates which transactions should be
included in a given batch job. Used by the
GenPrint program.

NAFILE DAT text Contains section and variable field
information. Used by the GenPrint,
GenWIP, and GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.
Used by the GenPrint, GenWIP, and
GenArc programs.

Using Multiple step Processing

27

NEWTRN DAT text Tells the GenArc program where to find
data in the NAFILE and which forms to use
in the POLFILE.

Manual
batch files

BCH text Created if the form is incomplete. Used by
GenWIP to allow an operator to complete
the form in the Entry module of
Documaker.

Error batch
files

.BCH text Created if the system spots an error, such as
if the system spots an error and the form is
marked as host required. In contrast to
manual batch files, you cannot correct these
errors using the GenWIP program. Instead,
you must correct the error in the extract file,
change the flag to operator required, or
change the FAP file and then process the
transaction again.

ARCHIVE DFD text Tells the GenArc program how to store
archived data.

Log file DAT text Serves as a processing log. Created by the
GenTrn program, the GenData program
adds information to this file.

Error file DAT text Notes any errors encountered by the
GenData program. Created by the GenTrn
program, the GenData program adds
information to this file (as do the GenPrint,
GenWIP, and GenArc programs).

Message file .DAT text Contains errors and warnings.

File name or
Type

Default
Extension

File
Format Description

Chapter 2
Understanding the System

28

CREATING PRINT SPOOL FILES

The following illustration shows the files used and created by the GenPrint program as
it creates print-ready files:

The GenPrint program receives batch files from the GenData program which tell it what
transactions to print, NAFILEs which tell it what data to print, and POLFILEs which
tell it which forms to print.

With this information, the GenPrint program creates print-ready files for AFP, Xerox
Metacode, PCL, or PostScript compatible printers. The GenPrint program serves as the
print engine for the system.

NOTE:In addition, the GenPrint program can also create PDF (Acrobat) if you have
purchased the PDF Print Driver. For more information about this product,
contact your sales representative.

Using Multiple step Processing

29

File Summary
This table summarizes the files used to supply information (input) and the files created
by (output) the GenPrint program:

NOTE:You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name
or Type

Default
Extension

File
Format Description

Input Batch files BCH text Indicates which transactions should be
printed in a given batch. Used as trigger
files by the GenPrint program.

NAFILE DAT text Contains section and variable field
information.

POLFILE DAT text Defines the forms to use for each batch.

RCBDFDFL DFD text Defines the attributes of the variable
fields in a batch file.

Output Print-ready
files

AFP, PCL,
XER, PST,
PDF

AFP, PCL,
MetaCode,
PostScript,
or PDF

Printer spool files which can be printed
on the printer of your choice.

Chapter 2
Understanding the System

30

SENDING INCOMPLETE TRANSACTIONS TO WIP
The following illustration shows the files used and created by the GenWIP program as
it processes incomplete transactions:

The GenWIP program receives information from the GenData program about
incomplete transactions the GenData program found during its processing cycle. With
this information, the GenWIP program creates files the WIP module of Documaker can
read. Through the WIP module, data entry operators can complete the transactions by
entering the missing information.

The manual batch file tells the GenWIP program which transactions are incomplete and
should be included in work-in-progress (WIP).

Using the information in the manual batch files, the GenWIP program extracts the
information it needs from the NAFILE and POLFILE. With this information, it then
creates individual NA and POL files for each incomplete transaction. The GenWIP also
creates a WIP.DBF (database) file which contains information about the incomplete
transactions. The WIP.MDX file serves as an index to this file. Both the WIP.DBF and
WIP.MDX files are used by the WIP module of Documaker Workstation.

Using Multiple step Processing

31

File Summary
This table summarizes the files used to supply information (input) and the files created
by (output) the GenWIP program:

NOTE:You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File Name
or Type

Default
Extensio
n

File
Format Description

Input NAFILE DAT text Contains section and variable field
information.

POLFILE DAT text Defines the forms to use for each batch.

RCBDFDFL DFD text Defines the attributes of the variable fields in
the batch files.

Manual
batch

BCH text Indicates which transactions should be
included.

Output WIP DBF Contains information about the incomplete
transactions extracted from the NAFILE and
POLFILE.

WIP MDX Serves as an index to the WIP.DBF file.

NA Files DAT text Contains the data (section and variable field
information) for a specific transaction. These
files are named numerically and each file has
a corresponding POL file.

POL Files POL text Defines the forms to use for a specific
transaction. These files are named
numerically and each file has a corresponding
NA file.

Chapter 2
Understanding the System

32

ARCHIVING TRANSACTIONS

The following illustration shows the files used and created by the GenArc program as it
archives completed transactions:

The GenArc program receives information from the GenData program, using many of
the same files used by the GenWIP and GenPrint programs, such as the NAFILE and
POLFILE. These two files identify the data to archive. The NEWTRN file tells the
GenArc program where to find data in the NAFILE, which is created by the GenArc
program.

In addition, the GenArc program also uses the ARCHIVE.DFD file which tells it how
to store the data.

With this information, the GenArc program creates DBF and CAR files. The DBF files
serve as an index to the CAR files, where the archived information is actually stored.
You can have multiple CAR files.

Using Multiple step Processing

33

File Summary
This table summarizes the files used to supply information (input) and the files created
by (output) the GenArc program:

NOTE:You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

RULES USED IN MULTIPLE STEP PROCESSING

Several rules are used to execute the programs of the multiple step process. For a
complete listing and description of these and other rules, see the Rules Reference.

File Name
or Type

Default
Extensio
n

File
Format Description

Input NAFILE DAT text Contains section and variable field
information.

POLFILE DAT text Defines the forms to use for each batch.

NEWTRN DAT text Tells the GenArc program where to find data in
the NAFILE and which forms to use in the
POLFILE.

APPIDX DFD text Tells the GenArc program how to store the
data.

Output DBF files DBF text Serves as an index to the archived data in the
CAR files.

ARCHIVE CAR CAR Contains the archived forms.

Chapter 2
Understanding the System

34

RESTARTING
THE GENDATA

PROGRAM

You can set up the GenData program to restart itself at a particular transaction if it
encounters a failure. To accomplish this, the system uses a restart file. You use INI
options to set up the restart file.

NOTE:This feature does not apply if you are using single step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it isolates
the transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of
a GenData run, the system assumes a restart is necessary and will open and read the file.
The checkpoint information lets the system set internal pointers and output files in such
a way that it can begin at that transaction.

These rules are used to handle restarting the GenData program:

• RULCheckTransaction

• RestartJob

RULCheckTransaction
rule

The RULCheckTransaction rule is always the first base form set rule. It saves the
EXTRFILE offset, TRNFILE offset, NEWTRN offset, NAFILE offset, POLFILE offset,
and batch file offsets into a restart (RSTFILE) file.

These offsets are updated in the post process after a specific number of transactions. You
specify the number of transactions using the CheckCount option. You define the
Restart file and the and check count in the Restart control group:

< Restart >

RstFile =

CheckCount =

Here is an example:

;RULCheckTransaction;2;Always the first form set rule;

Option Description

RstFile Enter the name of the restart file. If you omit this option, the system uses
RSTFILE.RST (DD:RSTFILE for MVS) as the file name.

The system uses the DataPath option in the Data control group to determine
where to create the restart file. The default location is the current working
directory.

CheckCount Enter a number to specify the number of transactions to process before
updating the offsets. For instance, if you specify two hundred (200), the system
processes two hundred transactions, updates the offsets, processes two hundred
more transactions, and so on. The default is 100.

You can also use the /cnt command line option with the GenData program to
override the CheckCount option. Here is an example:

gendaw32 /cnt=10

Restarting the GenData Program

35

RestartJob rule The RestartJob is always the first base rule. This rule opens the restart file (RSTFILE) and
resets the EXTRFILE, TRNFILE, NEWTRN, NAFILE, POLFILE, and batch files at the
broken transaction if the restart file exists. If the restart file does not exist, the RestartJob
rule is skipped.

NOTE:For more information on these rules, see the Rules Reference. You can also set
up the GenArc program to restart itself. For more information, see Using the
Restart Option on page 219.

Here is an example:

;RestartJob;1;Always the first base rule;

INI options To use the restart feature, you should also set the following INI options:

< GenDataStopOn >

BaseErrors = Yes

TransactionErrors = Yes

ImageErrors = Yes

FieldErrors = Yes

Chapter 2
Understanding the System

36

GENERATING
BATCH STATUS

EMAILS

You can set up the GenData program to check recipient batches and notify the print
operator via email as to when to expect output print files.

You use INI options to have the JobInit1 rule notify batch recipients about batch file
information. On Windows, Microsoft mail and the SMTP mail type is supported. On
UNIX, only the SMTP mail type is supported.

With the INI settings shown below, the GenData program can...

• Notify a user that a batch is not empty. For example, the GenData program can
send email notification if there are transactions in the error or manual batches or
both.

• Notify a user that a batch is empty. For example, it can send an email to the print
operator telling the operator not to expect a print file for processing.

• The notifications above can be skipped on per batch basis. For example, you can
have the GenData program skip batches that do not produce print files or produce
files that do not need to be printed.

• For each notification email you can specify a send to address, reply to address,
message body, optional attachment, and message subject.

• To each email you can optionally attach a recipient batch file.

• The notification email message can include variable data which comes from GVM
(global variable member) variables.

To use this feature, make sure you have your INI files set up as shown here. The new
control groups and options appear in bold and are documented in the following table.

< Print_Batches >

Batch1 = batch1.bch

Batch2 = batch2.bch

Batch2 = batch3.bch

Manual = manual.bch

Error = error.bch

< Batch1 >

Printer = Printer1

Notify = BchRecip1

...

< BatchNotify:BchRecip1 >

Empty = Yes

MailType = MSM

AttachBatchFile = Yes

SendTo = John Formaker

Subject = Batch 1 is empty

BodyTemplate = email.txt

...

< Mail >

MailType = MSM

; MailType = SMTP

< MailType:MSM >

Module = MSMW32

MailFunc = MSMMail

ReplyTo = replyto@docucorp.com

UserID = test

SuppressDlg = Yes

Generating Batch Status Emails

37

HiddenMsgSupport = Yes

Name = MS Exchange Settings

Recipient = test@oracle.com

Option Description

Batch1 control group

Notify Enter the name of INI control group where the notification options are
specified. In the example above, the control group name would be
BatchNotify:BchRecip1.

BatchNotify:BchRecip1 control group

Empty Enter Yes if you want the system to notify you if this batch is empty or
missing.

Enter No if you want the system to notify you if the batch is not empty.

MailType Enter MSM to specify the mail type as Microsoft mail.
Enter SMTP to specify the mail type as SMTP. SMTP is the only option for
UNIX.

AttachBatchFile Enter Yes to attach the batch file if it exists and is not empty.

Enter No if you do not want the system to attach it.

SendTo Enter the name of the recipient or his or her email address.

Subject Enter the text you want the system to place in the email subject line. For
instance, you could enter Batch 1 is empty.

BodyTemplate Here you can specify a template file, such as email.txt, to use when creating
an email message. It has format:

data for item one <% //test1,%s %> and trailing data

Chapter 2
Understanding the System

38

TRACKING
BATCH PAGE
STATISTICS

The system lets you track job statistics that show you...

• Total pages

• Pages not including copy counts

• Printed sheets

• Sheets by tray (1 through 9)

You can compile these statistics by batch, recipient within each batch, and job totals.
You can also have the system write the totals to a recipient detail file, a batch summary
file, and the log file. Totals are written to the log file by default.

You can add recipient totals to the recipient batch records by adding the appropriate
global variables (GVMs) to the recipient batch file's Data Format Definition (DFD) file.
If you create the optional batch summary file, the batch page statistics will be available
to the GenPrint program via the batch total GVMs.

RECIPIENT PAGE STATISTICS

These statistics are captured for each recipient batch record written to the batch file:

Statistic GVM Description

Recipient RCB_NAME The current recipient name

Total Pages RCB_TOTAL The total recipient pages including non-print
(display only) pages

Total Pages -
No Copy

RCB_TOTAL_
NC

The total recipient pages not including copy counts.
Non-print (display-only) pages are included.

Total Sheets RCB_SHEETS The total printed sheets for the transaction (omits
display-only pages)

Total Tray 1 RCB_TRAY1 The total printed sheets for Tray 1

Total Tray 2 RCB_TRAY2 The total printed sheets for Tray 2

Total Tray 3 RCB_TRAY3 The total printed sheets for Tray 3

Total Tray 4 RCB_TRAY4 The total printed sheets for Tray 4

Total Tray 5 RCB_TRAY5 The total printed sheets for Tray 5

Total Tray 6 RCB_TRAY6 The total printed sheets for Tray 6

Total Tray 7 RCB_TRAY7 The total printed sheets for Tray 7

Total Tray 8 RCB_TRAY8 The total printed sheets for Tray 8

Total Tray 9 RCB_TRAY9 The total printed sheets for Tray 9

Tracking Batch Page Statistics

39

BATCH TOTALS SUMMARY FILE

The system can write a summary record for each recipient within each batch and a total
summary record to the optional Batch Totals Summary file. To have the system create
this file, include the RCBStatsTot option in the Data control group and specify a file
name.

You can modify the summary total file layout using a custom DFD. Specify the name
of the custom DFD in the RCBStatsTotDFD option in the Data control group. If you
omit the RCBStatsTotDFD option, the default DFD file is used (see Default DFD Files
on page 41).

If there are more that one recipient for a given batch file, a Total record is written. The
BATCH_RCB_NAME value is set to *** Total *** for the total file record. If a total
record exists, the total record is loaded by the GenPrint program.

Accessing totals in
GenPrint

If you set the RCBStats option in the RunMode control group to Yes and RCBStatsTot
option in the Data control group has a value, the GenPrint program loads the total
values for each batch. These values will then be available as GVM variables.

INI Options You use the following INI options to record statistics:

< RunMode >

RCBStats =

RCBTotals =

 < Data >

RCBStatDtlDFD =

RCBStatsTotDFD =

RCBStatsDtl =

RCBStatsTot =

Option Description

RCBStats Enter No if you do not want to execute statistics processing.
The default is Yes, unless the system is running under IDS. If IDS is running
Documaker Server, the default is No.

RCBTotals Enter No if you do not want the system to write recipient totals to the log
file. The default is Yes.

Option Description

RCBStatDtlDFD Enter a name for the RCB Statistics Detail File DFD. The system
defaults to an internal DFD entry.

RCBStatsTotDFD Enter a name for the RCB Statistics Total File DFD. The system
defaults to an internal DFD entry.

RCBStatsDtl Enter the name and path you want assigned to the detail log file. The
system will create this file if you include a value for this option.

RCBStatsTot Enter the name and path you want assigned to the total log file. The
system will create this file if you include a value for this option.

Chapter 2
Understanding the System

40

SAMPLE LOG FILE

Here is an example of a log file:

Batch Page Statistics

Batch(BATCH1):

- Total for Recipient(AGENT) in Batch(BATCH1):

 Pages : 9

 Pages(nc): 9

 Sheets : 6

 Tray1 : 2

 Tray2 : 2

 Tray3 : 0

 Tray4 : 2

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

- Total for Recipient(COMPANY) in Batch(BATCH1):

 Pages : 21

 Pages(nc): 21

 Sheets : 16

 Tray1 : 3

 Tray2 : 2

 Tray3 : 9

 Tray4 : 2

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

- Total for Recipient(INSURED) in Batch(BATCH1):

 Pages : 44

 Pages(nc): 44

 Sheets : 28

 Tray1 : 6

 Tray2 : 11

 Tray3 : 9

 Tray4 : 2

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

- Total for Batch(BATCH1):

 Pages : 74

 Pages(nc): 74

 Sheets : 50

 Tray1 : 11

 Tray2 : 15

 Tray3 : 18

 Tray4 : 6

 Tray5 : 0

Tracking Batch Page Statistics

41

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

Job Page Statistics:

 Pages : 74

 Pages(nc): 74

 Sheets : 50

 Tray1 : 11

 Tray2 : 15

 Tray3 : 18

 Tray4 : 6

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

DEFAULT DFD FILES

Here are examples of the DFD files:

RCBStatsDtlDFD < FIELDS >

 FIELDNAME = RCB_BATCH

 FIELDNAME = RCB_NAME

 FIELDNAME = RCB_TRANS

 FIELDNAME = RCB_TOTAL

 FIELDNAME = RCB_TOTAL_NC

 FIELDNAME = RCB_SHEETS

 FIELDNAME = RCB_TRAY1

 FIELDNAME = RCB_TRAY2

 FIELDNAME = RCB_TRAY3

 FIELDNAME = RCB_TRAY4

 FIELDNAME = RCB_TRAY5

 FIELDNAME = RCB_TRAY6

 FIELDNAME = RCB_TRAY7

 FIELDNAME = RCB_TRAY8

 FIELDNAME = RCB_TRAY9

< FIELD:RCB_BATCH >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 21

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 20

 KEY = Y

 REQUIRED = Y

< FIELD: RCB_NAME>

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 21

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 20

 KEY = Y

 REQUIRED = Y

< FIELD:RCB_TRANS >

 INT_TYPE = CHAR_ARRAY

Chapter 2
Understanding the System

42

 INT_LENGTH = 31

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 30

 KEY = N

 REQUIRED = N

< FIELD:RCB_TOTAL >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TOTAL_NC >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY1 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY2 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY3 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY4 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY5 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY6 >

Tracking Batch Page Statistics

43

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY7 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY8 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY9 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

RCBStatsTotDFD < FIELDS >

 FIELDNAME = BATCH_NAME

 FIELDNAME = BATCH_RCB_NAME

 FIELDNAME = BATCH_TOTAL

 FIELDNAME = BATCH_TOTAL_NC

 FIELDNAME = BATCH_SHEETS

 FIELDNAME = BATCH_TRAY1

 FIELDNAME = BATCH_TRAY2

 FIELDNAME = BATCH_TRAY3

 FIELDNAME = BATCH_TRAY4

 FIELDNAME = BATCH_TRAY5

 FIELDNAME = BATCH_TRAY6

 FIELDNAME = BATCH_TRAY7

 FIELDNAME = BATCH_TRAY8

 FIELDNAME = BATCH_TRAY9

Chapter 2
Understanding the System

44

CONTROLLING
GENTRN

PROCESSING

Include the following control group and option in the FSISYS.INI file when you want
the GenTrn program to continue processing transactions when errors occur. By default,
the GenTrn program halts when it encounters an error.

NOTE:This control group and option is typically used if you are using XML extract
files and you do not want the GenTrn program to stop every time it encounters
an error. For any type of extract file, using this option detects missing Key1 and
Key2 information.

Here is an example of the control group and option:

< GenTranStopOn >

TransactionErrors = Parameter1;Parameter2;Parameter3;

Separate the parameters with semicolons (;).

The system records all errors and warnings it encounters during a processing run in the
ERRORFILE.DAT file. In addition, it writes the extract file records of the transaction
in error to the file you specify in Parameter2. This lets you inspect those transactions
and determine the best way to proceed.

Here are some examples. This option:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;No;

Is the same as:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;;

Both let the GenTrn program continue processing subsequent transactions when errors
occur. These options tell the GenTrn program to write the error transaction to a file
named ERRORTRANSACTION.DAT, stored in the \Extracts directory.

TransactionErrors = No; ErrorTransaction.dat;Yes;

Parameter Description

Parameter1 Enter No to turn the GenTranStopOn option off. The default is Yes.

Parameter2 Enter the name of the transaction file. To write out the error transaction, enter
the name of the file where you want the extract file records written.
If you omit the path, the system uses the DataPath option in the Data control
group in the FSISYS.INI file to determine where to locate this file.

Parameter3 The system only looks at this parameter if you entered a file name for
Parameter2.
Enter Yes to tell the system to append the error transactions accumulated
during this processing run to the file created in a prior run.

Enter No to tell the system to overwrite any existing file. If Parameter2 exists
and you omit this parameter, the system defaults to No.

If you enter Yes, you must remove the file when necessary. Keep in mind that
over a series of processing runs, this file will expand in size.

Controlling GenTrn Processing

45

This option lets the GenTrn program continue processing subsequent transactions when
errors occur. Since the path of the error transaction file was omitted, the system uses the
DataPath option in the Data control group in the FSISYS.INI file to find the file so it
can append any error transactions to the existing error transaction file.

TransactionErrors = No;;;

This option lets the GenTrn program continue processing subsequent transactions when
errors occur. It does not, however, write out error transactions.

When using this option, you may encounter these errors:

• Problem in loading the XML file. Syntax error.

GenTrn

Transaction Error Report - System timestamp: Mon Dec 16 13:42:27 2002

DM12041: Error: FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

 code1:<48>, code2:<0>

 msg:<XML Parse Error: The 15 chars before error=< <Key1>Comp1<>,
the 8 chars starting at error=</Key1c>

>>.

DM12041: Error : FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

 code1:<48>, code2:<0>

 msg:<mismatched tag at line 3 column 16>.

DM10293: Error: Error in <BuildTranRecs>: Unable to
<DXMLoadXMLRecs()>.

 Skip Transaction# <2>.

Warning: the specific info you see may not be the info for the error
transaction. It may be the info on the last complete transaction.

==> Warning count: 0

==> Error count: 3

• No problem in loading the file, however, Key1 is omitted in the transaction.

GenTrn

Transaction Error Report - System timestamp: Fri Dec 13 13:52:13 2002

DM1002: Error: Required INI definition omitted.

Cannot locate INI group <Key1Table> with value = defined.

DM15062: Error in BuildTrnRecs(): Unable to GENGetDocSetNames(pRPS).

Skip Transaction# <3>.

==> Warning count: 0

==> Error count: 2

Chapter 2
Understanding the System

46

USING SINGLE
STEP

PROCESSING

The single step process improves the performance of your system by combining the
functions of GenTrn, GenData and GenPrint into one step performed by GenData. This
process is used when no intermediate steps are necessary.

The GenWIP and GenArc options are performed the same as in the multiple step
process. See Sending Incomplete Transactions to WIP on page 30 and Archiving
Transactions on page 32 for more information on the functions of the GenWIP and
GenArc programs.

NOTE:When running in single step mode, you can only produce a single print stream.
For instance, the most common method of print batching is to batch by
recipient, in single step processing, however, you cannot produce separate print
streams for each recipient batch.

CREATING AND PROCESSING TRANSACTION RECORDS

In the multiple step process, the GenTrn program creates transaction records that are
sent to the GenData program for processing. In the single step process, the GenData
program performs both of these actions in one step.

Using Single Step Processing

47

As shown in the illustration above, the GenData program processes transaction records,
originated from the source data, and creates various output files for print, WIP or
GenArc. By combining the functions of GenTrn and GenPrint into GenData, you
reduce the number of times the system needs to open and close files, thus enhancing the
overall performance of your system.

System Settings and Resources
The FSISYS.INI and the FSIUSER.INI file provide system setting information, such as
whether or not it should stop processing if it encounters errors, how to identify key
fields in extract files, whether or not it should check the output data size against the
defined field length, and so on.

The files listed under system resources provide additional information such as:

• How to read the transaction file (TRNDFDFL.DFD)

• The forms, graphics, and other resources to use when creating the form sets
(RESLIB)

• What forms to use (FORM.DAT)

• Who to send the forms to (SETRCPTB.DAT)

• What processing rules to apply to the data

• What processing rules to apply to this job (JDT files)

• How the batch files are defined (RCBDFDFL.DFD)

NOTE:You can learn more about these files in Appendix B, System Files on page 425.

The advantage of single step processing is the improvement to performance The
disadvantage is that it is much more difficult to correct errors because the system does
not create batch files at the end of each step. These batch files tell you what occurred
and help you spot and correct errors.

Chapter 2
Understanding the System

48

CREATING PRINT FILES

With the placement of specific rules, you can make the GenData program perform the
functions of the GenTrn and GenPrint programs. In other words, when GenData is
processing transactions files, it is also producing the print-ready files necessary to print
on AFP, Metacode, PCL, or Postscript printers.

As in the multiple step process, the GenData program creates these types of files:

• Batch files - list the transactions which should be included in each batch print job

• NAFILEs - store section and variable field information

• POLFILEs - define the form set the GenPrint program should use for each
transaction it processes

NOTE:When using single step processing, you should clear all messages before each
processing run. For information on how to do this, see Clearing Messages on
page 192.

Using Single Step Processing

49

File Summary
This table summarizes the files used to supply information (input) and the files created
by (output) the GenData program:

NOTE:You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input files and all of the output files.

File name or
Type

Default
Extension

File
Format Description

Input Extract files text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNDFDFL DFD text Tells GenData how to read and write the
TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the variable fields
in a batch file.

Resources (various) (various) Includes graphics (LOG), font cross
reference files (FXR), sections (FAP), and so
on.

Output Batch files BCH text Indicates which transactions should be
included in a given batch job.

NAFILE DAT text Contains section and variable field
information. Used by the, GenWIP, and
GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.
Used by the GenWIP and GenArc programs.

NEWTRN DAT text Tells the GenArc program where to find
data in the NAFILE and which forms to use
in the POLFILE.

Chapter 2
Understanding the System

50

USING THE MULTIFILEPRINT CALLBACK FUNCTION

The system includes a MultiFilePrint callback function designed for running the
GenData program in single step mode. The log file is either a semicolon delimited text
file—the same as the file created by MultiFilePrint—or an XML file.

The layout of the XML file is as follows:

-

-

.\data\BATCH1.BCH

SAMPCO

LB1

1234567

T1

INSUREDS COPY

DATA\0rDcP7WxytE82ECp5jexhWXVqkjV840Vw_F-GykT_VMfd.PDF

-

.\data\BATCH2.BCH

SAMPCO

LB1

1234567

T1

Manual batch
files

BCH text Created if the form is incomplete. Used by
GenWIP to allow an operator to complete
the form in the Entry module.

Error batch
files

.BCH text Created if the system spots an error, such as
if the system spots an error and the form is
marked as host required. In contrast to
manual batch files, you cannot correct these
errors using the GenWIP program. Instead,
you must correct the error in the extract file,
change the flag to operator required, or
change the FAP file and then process the
transaction again.

ARCHIVE DFD text Tells the GenArc program how to store
archived data.

Log file DAT text Serves as a processing log. Created by the
GenData program in the single step process.

Error file DAT text Notes any errors encountered by the
GenData program. Created by the GenData
program in the single step process.

Message file .DAT text Intermediate file which contains log and
error messages. These messages are then
translated and written to either the
LOGFILE.DAT or ERRFILE.DAT files.

File name or
Type

Default
Extension

File
Format Description

Using Single Step Processing

51

COMPANY COPY

DATA\0v3l7pBdVqHceoRL5hf2xqjJ7WAMxiRVO9U70iFiXIcne.PDF

You can use the INI options in the DocSetNames control group to determine which
XML elements are created. The values are the same as those written to a recipient batch
or transaction file.

The MultiFilePrint callback function should only be used with the PDF, RTF, HTML,
and XML print drivers. See also Controlling What is in the MultiFilePrint Log on page
119.

NOTE:If you are using the PDF Print Driver, you must set the SpoolBatches INI
option to No.

MAPPING FIELDS WITH XPATH

The GenTrn program and the NoGenTrnTransactionProc rule let you use the
TRN_Fields control group to map all of your fields with XPath. To let the system know
you are using the XML file, set the XMLTrnFields option in the TRN_File control group
to Yes and also set the XMLExtract option in the RunMode control group to Yes.

Here is an example:

< RunMode >

XMLExtract = Yes

< TRN_File >

XMLTrnFields= Yes

< TRN_Fields >

Company = !/Forms/Key1

LOB = !/Forms/Key2

PolicyNum = !/Forms/PolicyNum

RunDate = !/Forms/RunDate;DM-4;D4

NOTE:Use this format for the Trn_Fields control group options:

(Field in the Transaction DFD File) = XPath;Field Format

Be sure to include the leading exclamation mark (!). This tells the system to use an XML
path search but is not part of the actual search routine. Do not specify whether a field
is a key. The system does not support multiple (search) keys with the XML
implementation.

If you are selectively excluding transactions in your exclude file, instead of an offset and
search mask, replace it with the XPath. Here is an example:

!/Forms[PolicyType="OLD"]

Chapter 2
Understanding the System

52

RUNNING ARCHIVE IN SINGLE STEP PROCESSING

Using rules developed for archiving via Docupresentment, you can run the GenArc
program as part of single step processing.

Use the InitArchive rule to check the INI options in the Trigger2Archive control group,
initialize the database, open the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Here is an example:

< Base Rules >

;InitArchive;1;;

< Base Form Set Rules >

;Archive;2;;

NOTE:For more information on these rules, see the Rules Reference.

RUNNING WIP IN SINGLE STEP PROCESSING

You can use the InitConvertWIP and ConvertWIP rules to run the GenWIP program in
single step mode.

Use the InitConvertWIP rule to perform the initialization necessary for the ConvertWIP
rule.

Use the ConvertWIP rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents
of the POLFILE.DAT and NAFILE.DAT files to new files with unique names.

You can then view these WIP records using Documaker Workstation or the WIP Edit
plug-in, which is part of the Docupresentment suite of products.

Here is an example:

< Base Rules >

;InitConvertWIP;1;;

< Base Form Set Rules >

;ConvertWIP;2;;

NOTE:For more information on these rules, see the Rules Reference.

Using Single Step Processing

53

RULES USED IN SINGLE STEP PROCESSING

Specific rules are used to combine the execution and functionality of the GenTrn,
GenData, and GenPrint programs into a single step. To begin familiarizing yourself with
these rules, an alphabetical listing and brief description follows. You can find more
information in the Rules Reference.

Archive Use this rule after the InitArchive rule to unload the current form set and convert field
data for archive using the INI options in the Trigger2Archive control group.

BatchingByRecipINI Use this rule to send transactions to a batch you specify based on data in the extract file.
To use this rule, you must include the BatchingByRecip control group in your
FSISYS.INI file with options similar to those shown below:

< BatchingByRecip >

Batch_Recip_Def = default;"ERROR"

Batch_Recip_Def = 4,1234567;"BATCH1";INSURED

Batch_Recip_Def = true;"BATCH2";INSURED

Batch_Recip_Def = True;"BATCH3";COMPANY | true;”BATCH2”;AGENT

You must also add the TWOUP control group and CounterTbl option to the
FSISYS.INI file.

BatchByPageCount Use this rule to send a transaction to a specific batch based on the number of pages
produced by processing the transaction. The batch used is determined by the PageRange
option in the Batch control group.

In the example below; transactions that produce 1 to 7 pages are send to Batch1.
Transactions that produce 8 to 25 pages are send to Batch2. In addition, you must add
the TWOUP control group and CounterTbl option to the FSISYS.INI file.

< Batches >

Batch1 = .\data\Batch1

Batch2 = .\data\Batch2

Batch3 = .\data\Batch3

Error = .\data\Error

Manual = .\data\Manual

< Batch1 >

Printer = Batch1_PTR

...

PageRange = 1,7

< Batch2 >

Printer = Batch2_PTR

...

PageRange = 8,25

< TWOUP >

CounterTbl = .\data\counter.tbl

BuildMasterFormList Use this rule to load the FORM.DAT file into an internal linked list within the GenData
program. You must include this rule in the AFGJOB.JDT file because the RunSetRcpTbl
rule is dependent on the list this rule creates.

Chapter 2
Understanding the System

54

ConvertWIP Use this rule to see if the current transaction is assigned to the MANUAL.BCH file. If
it is, the rule adds the record to WIP and unloads the contents of the POLFILE.DAT
and NAFILE.DAT files to new files with unique names. You can then view these WIP
records using Documaker Workstation or the WIP Edit plug-in.

InitArchive Use this rule to check the INI options in the Trigger2Archive control group, initialize
the database, open the APPIDX.DFD and CAR files, and perform other steps to
initialize archive.

InitConvertWIP Use this rule to perform the initialization necessary for the ConvertWIP rule.

InitPrint Use this rule to load printer and recipient batch information. This rule sets up PRTLIB
data, initializes print options, and loads a table which contains page totals for recipient
batch files.

InitSetRecipCache Use this rule to set the amount of cache the system uses to store recipient information
in memory. With this rule you can tell the system the amount of memory to set aside
and use for storing information in the Key1 and Key2 fields, often used to store the
company, line of business, and transaction codes. You can use this rule to improve
processing performance for complex forms. This rule has no affect on the processing
speed for static forms.

NOTE:If you omit this rule, the system does not set aside memory for the Key1 and
Key2 fields.

NoGenTrnTransaction
Proc

Use this rule when you use the GenData program by itself to execute the GenTrn and
GenData steps. In the single step processing environment, this rule processes the extract
file and creates the information normally created in both the GenTrn and GenData
steps. When combined with the InitPrint and PrintFormset rules, it creates the output
files normally created during the GenPrint step.

NOTE:Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes (multiple step processing).

PageBatchStage1Init
Term

Use this rule to create and populate a list of records which contain page ranges and total
page counts for each recipient batch file.

This rule is typically used for handling 2-up printing for AFP and compatible printers.

This rule creates a list (populated in another rule) to contain the recipient batch records
for a multi-mail transaction set. The rule then writes out the recipient records for the
final multi-mail transaction set and writes out the total page counts for each recipient
batch. You must add the TWOUP control group and CounterTbl option to the
FSISYS.INI file, as shown here:

< TwoUp >

CounterTbl = .\data\counter.tbl

PaginateAndPropogate Use this rule to paginate the form set and merge in or propagate field data.

Using Single Step Processing

55

PrintFormset Use this rule when you run the GenData program by itself to execute GenTrn and
GenPrint processes. In the single step processing environment, this rule, when combined
with the InitPrint rule, prints form sets.

NOTE:Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes (multiple step processing).

ProcessQueue Use this rule to process the queue you specify. This rule loops through the list of
functions for the queue you specify and then frees the queue when finished.

StandardFieldProc This rule is a field level rule which you must include in the AFGJOB.JDT file. This rule
is used when you are using the performance mode JDT and should be the first field level
rule. This rule tells the system to process each field on all of the sections triggered by the
SETRCPTB.DAT file. If you use the StandardFieldProc rule in your JDT, you must also
include the WriteNAFile rule.

StandardImageProc This rule is a section level rule which you must include in the AFGJOB.JDT file. This
rule is used when you are using the performance mode JDT and should be the first
section level rule. This rule tells the system to process each section triggered by the
SETRCPTB.DAT file.

WriteNAFile Use this rule to append the NAFILE.DAT file data records for the current form set into
an existing NAFILE.DAT file. When you use the NoGenTrnTransactionProc rule, which
replaces the RULStandardProc rule, you must include the WriteNAFile rule to cause
data (records) to be written to the NAFILE during the GenData processing step. In
addition, you must also include the WriteOutput rule to cause data (records) to be
written to the POLFILE.DAT and NEWTRN.DAT files during the GenData processing
step.

WriteOutput Use this rule to append the POLFILE.DAT file data records for the current form set into
an existing POLFILE.DAT file.

You also use this rule when you are using the GenData program by itself to execute the
GenTrn, GenData, and GenPrint processing steps.

If you use this rule, do not use the UpdatePOLFile rule.

WriteRCBWithPage
Count

Use this rule to write page counts for each recipient. This rule is typically used for
handling 2-up printing on AFP and compatible printers. To use this rule, you must
update the RCBDFDFL.DFD file with the following items:

< Fields >

FieldName = CurPage

FieldName = TotPage

FieldName = AccumPage

FieldName = MMFIELD

< FIELD:CurPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = No

Required = No

Chapter 2
Understanding the System

56

< FIELD:TotPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = No

Required = No

< FIELD:AccumPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = No

Required = No

< FIELD:MMFIELD >

INT_Type = CHAR_ARRAY

INT_Length = 7

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 6

Key = No

Required = No

SINGLE STEP PROCESSING EXAMPLE

As stated earlier, the single step process is performed by combining the execution and
functionality of the GenTrn, GenData, and GenPrint programs. This is done by placing
certain rules into a specialized JDT. The earlier illustration shows the input and output
files used by GenData to process transactions and print output files in one step. The
following file describes the JDT used to process the job and an example of the rules used
to combine the GenTrn, GenData, and GenPrint functions.

To make this happen, the NoGenTrnTransactionProc rule, along with other rules, are
placed in the JDT file as seen in the following sample file. You can find a sample file in
the DMS1 sample library.

Base rules The following base rules are designed for the performance mode.

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;1;***:--;

;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1;***:;

;SetErrHdr;1;***: Transaction: ***ACCOUNTNUM***;

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: Line of Business: ***LOB***;

;SetErrHdr;1;***: Run Date: ***RunDate***;

;SetErrHdr;1;***:--
;JobInit1;;;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;InitOvFlw;1;;

;SetOvFlwSym;1;SUBGROUPOVF,SUBGROUP,5;

;BuildMasterFormList;;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

The following rule is required to execute GenData and GenPrint as a single step.

;InitPrint;;;

Using Single Step Processing

57

Base form set rules The following base form set rules cause GenTrn and GenData to be combined into a
single step.

;NoGenTrnTransactionProc;;;

;ResetOvFlw;2;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

The following rules are required to execute GenData and GenPrint as a single step.

;PrintFormset;;;

;WriteOutput;;;

;WriteNaFile;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropogate;;;

;BatchingByRecipINI;;;

Base image rules The following base image rules apply to every section in this base.

;StandardImageProc;3;Always the 1st image level rule;

Base field rules The following base field rules apply to every field in this base.

;StandardFieldProc;4;Always the 1st field level rule;

Chapter 2
Understanding the System

58

USING IDS TO
RUN

DOCUMAKER

You can set up the Internet Document Server (IDS) to run Documaker as a subordinate
process. Web clients communicate with IDS using queues. IDS communicates with
Documaker via XML files called job tickets and job logs.

This diagram illustrates the process:

IDS can start or stop Documaker Server as needed, without user interaction. One IDS
session controls one Documaker process. You can, however, implement multiple IDS
sessions and have multiple Documaker Server processes as well.

Keep in mind these limitations:

• You can only run Documaker in single step mode.

• You must run Documaker on Windows 2000 or higher.

• Different resource setups for Documaker are supported, but Documaker processing
restarts if resources are changed, eliminating the performance benefits. This should
not be a problem because it is unlikely multiple Documaker Server setups will be
used with a single IDS implementation. You can, however, experience problems
testing a system with multiple setups.

• During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

For more information, see the Internet Document Server Guide and the SDK Reference.

Web
Client IDS

Documaker
Server

(GenData)

VB\COM\
Java Client

XML Job
Ticket

XML
Job Log

Writing Unique Data into Recipient Batch Records

59

WRITING
UNIQUE DATA

INTO RECIPIENT
BATCH

RECORDS

The GenData program lets you add unique data to each recipient batch record before it
is written to the recipient batch files. The recipient batch record data and format is
defined by the GVM variable definitions in the RCBDFDFL.DAT file.

You can use this capability if you need to add...

• Address information or other field level information to the batch record, which is
typically unique for each recipient.

• Recipient information that is not handled by normal field mapping from the
transaction DFD to the recipient batch DFD.

• Cumulative or calculated information not available until the document is nearly
completed.

NOTE:Before this feature was implemented in version 10.2, the recipient batch records
were identical except for the recipient code field which contains a unique
identifier assigned to a given recipient. If additional recipient data was required,
you had to write a custom rule.

Use the options in the RecipMap2GVM control group to set up this capability. Data
that can be added to the recipient batch record can be:

• Contents of a variable field on the specified section or form/section

• Constant value

• Data from an existing INI built-in functions, such as ~DALRun

• Data from a custom written INI function

Here is an example of the RecipMap2GVM control group:

< RecipMap2GVM >

Form =

Image =

Req =

Opt =

Option Description

Form (Optional) Enter the name of the form.

Image Enter the name of the section (image). You can also enter a section name root.

A section name root is the first part of a name. For instance, MAILER is the root
name for sections with names such as MAILER A, MAILER_B, or MAILERS.

Chapter 2
Understanding the System

60

Optional formatting
information

You can add optional formatting information as a parameter of the Opt INI option.
This formatting information is comprised of four items separated by commas.

Here are some formatting examples:

d,”1/4”, d, “4/4”

This converts an input date, mmddyyyy, into month name dd, yyyy, such as February 17,
2012.

n, nCAD, nUSD, “$zzz,zz9.99”

This converts an input numeric value in Canadian French format into a value in United
States format.

Keep in mind...

• For the Req option, if the data is missing an error occurs and the transaction is send
to the error batch.

• For the Opt option, if the data is missing the system stores an empty string in the
GVM variable.

• A RCB GVM variable cannot be restored to its original or default value after it has
been changed using this method.

• Any RCB GVM variable not assigned using this method retains the value originally
set during the transaction processing.

Req * A semicolon delimited string that contains one of the following:

- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

Opt * A semicolon delimited string that contains one of the following:

- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

* = Repeat for each GVM variable you are setting up.

Option Description

Item Description

Input fetypes D or d = date

N or n = number

Input format
mask

Date - see the FmtDate rule in the Rules Reference.

Number – see the FmtNum rule in the Rules Reference.

Output fetypes D or d = date
N or n = number

Output format
mask

Date - see the FmtDate rule in the Rules Reference.

Number – see the FmtNum rule in the Rules Reference.

Writing Unique Data into Recipient Batch Records

61

• Some RCB GVM variables should never be changed using this mapping technique.
These include:

TRN_Offset

NA_Offset

POL_Offset

• If the section defined in the Image option in the RecipMap2GVM control group
does not name a section, the feature is disabled for all transactions.

• If the section defined in the Image option is missing from the form set being
processed, the GVM data is not changed. Depending on where the GVM data is
mapped, this could mean data from the prior transaction will still be in the GVM
variables.

• If there are multiple sections with the same name in the form set, the form specified
in the Form option is used to identify the section to use. If the Form option is
omitted, the first section found in the current form set is used.

• The system assumes the specified section contains all of the unique data except for
a constant value or data gathered from an INI built-in function.

• If more than one recipient is assigned to the section, all recipient batch records
receive the same added data.

Example This example creates a mailer cover page for each insured, agent, and/or company
recipient per transaction. The cover page is created using banner page processing which
occurs during GenPrint processing. Examples of the three different mailer cover pages
are as follows.

Chapter 2
Understanding the System

62

Jill Smith
11111 Oak Circle
Suite 999
Smryna, FL 12345

Suzy Smith
Morris Farmer
99934 Oak Circle
Suite 999
Smartburg, WI 99999

Insureds

Jill Smith

Martin Short Agent
963 Atlantic
Boulevard
Suite 1250
Miami, FL 30202

Suzy Smith

David Miller Agent
999 Green Dolphin
Street
Suite 1200
Miami, FL 30202

Suzy Smith

Company

Jill Smith

Sampco, Inc.
316 N.E. 3rd Avenue
Pompano Beach, FL
33333

Agents

Writing Unique Data into Recipient Batch Records

63

This example assumes that the:

• Agent and company recipient batch files are sorted (agent number and company
name, respectively) before the GenPrint program runs. This sorting allows for the
creation of only one mailer cover page per unique agent and company.

• Unique information is contained on the form/section, Dec Page/Q1MDC1.

• The FSIUSER.INI file includes these control groups and options:

< RecipMap2GVM >

Form = Dec Page

Image = Q1MDC1

Opt = Name1;Insured Name;

Opt = Name2;Insured Name2;

Opt = Address1;Address Line1;

Opt = Address2;Address Line2;

Opt = CityCounty;prtvalue;

Opt = AgentName;Agent Name;

Opt = AgentID; Agent ID;

Opt = OfficeAddress;Office Address;

Opt = TownandState;Town And State;

< Printer >

PrtType = PCL

EnableTransBanner = True

EnableBatchBanner = False

TransBannerBeginScript= PreTrans

TransBannerEndScript = PstTrans

TransBannerBeginForm = ;BANNER;TRANSACTION;TRANS HEADER;

TransBannerEndForm = ;BANNER;TRANSACTION;TRANS TRAILER;

< DALLibraries >

LIB = Banner

BANNER.DAL The DefLib directory contains this DAL script:

* This script obtains the required unique data from the recipient

* batch record and stores it on the mailer form.

BeginSub PreTrans

blank_gvm = Pad(" ",41," ")

SetGVM("NameA" ,blank_gvm,,"C",41)

SetGVM("NameB" ,blank_gvm,,"C",41)

SetGVM("AddressA" ,blank_gvm,,"C",41)

SetGVM("AddressB" ,blank_gvm,,"C",41)

SetGVM("CityCounty1" ,blank_gvm,,"C",41)

If Trim(RecipName()) = "INSURED" Then

 SetGVM("NameA" ,GVM("Name1") ,,"C",41)

 SetGVM("NameB" ,GVM("Name2") ,,"C",41)

 SetGVM("AddressA" ,GVM("Address1") ,,"C",41)

 SetGVM("AddressB" ,GVM("Address2") ,,"C",41)

 SetGVM("CityCounty1" ,GVM("CityCounty"),,"C",41)

 GoTo exit:

End

last_agent_id = last_agent_id

If Trim(RecipName()) = "AGENT" Then

Chapter 2
Understanding the System

64

 If last_agent_id != Trim(GVM("AgentID")) Then

 last_agent_id = Trim(GVM("AgentID"))

 SetGVM("NameA" ,GVM("AgentName") ,,"C",41)

 SetGVM("NameB" ,GVM("OfficeAddress") ,,"C",41)

 SetGVM("AddressA" ,GVM("TownandState") ,,"C",41)

 GoTo exit:

 Else

 SuppressBanner()

 GoTo exit :

 End

End

last_company_name = last_company_name

If Trim(RecipName()) = "COMPANY" Then

 If Trim(GVM("Company")) != last_company_name Then

 last_company_name = Trim(GVM("Company"))

 If Trim(GVM("Company")) = "SAMPCO" Then;

 SetGVM("NameA" ,"Sampco, Inc." ,,"C",41)

 SetGVM("NameB" ,"316 N.E. 3rd Avenue" ,,"C",41)

 SetGVM("AddressA" ,"Pompano Beach, FL 33333" ,,"C",41)

 GoTo exit:

 ElseIf Trim(GVM("Company")) = "FSI"

 SetGVM("NameA" ,"FSI Inc." ,,"C",41)

 SetGVM("NameB" ,"222 Newbury St." ,,"C",41)

 SetGVM("AddressA" ,"Northwest City, FL 99999" ,,"C",41)

 GoTo exit:

 End

 Else

 SuppressBanner()

 GoTo exit:

 End

End

exit:

EndSub

BeginSub PstTrans

EndSub

The RCBDFDFL.DAT file contains the following GVM variable definitions which are
defined in the RecipMap2GVM control group:

• Name1

• Name2

• Address1

• Address2

• CityCounty

• AgentName

• AgentID

• OfficeAddress

• TownAndState

Writing Unique Data into Recipient Batch Records

65

Here are two recipient batch records from this example:

SAMPCOLB12234567SCOM1FLT1 B2199802232234567890 0 22560
******001 3724 452Jill Smith Morris
11111 Oak Circle Suite 999 Smyrna,
FL 12345 Martin Short Agent 963 Main Street,
Suite 1250 Miami, FL 30202

FSI CPP4234567FSIM1WIT1 B3199802234234567890 0 30360
******001 4667 565Suzy Smith Morris
99934 Oak Circle Suite 999 SmartBurg,
WI 99999 David Miller Agent 999 Main Street,
Suite 1200 Miami, FL 30202

Chapter 2
Understanding the System

66

USING CLASS
RECIPIENTS

A class recipient identifies a recipient that represents one or more persons or entities. For
instance, in an insurance implementation, you might have a policy that has a several
recipients declared as an Additional Interest. Instead of declaring each as a separate
recipient with separate triggering logic, it is more convenient to declare a single recipient
name that represents all those of the same type or class. All members of this class receive
virtually identical copies of the document.

In this scenario, you do not have to do anything special to declare a class recipient in
your form definitions. Merely determine the appropriate title for this class of recipients
and define that name as you would a normal recipient that represents a single entity.

If you want all members of the class to receive identical copies of the document, use the
trigger for the recipient to assign a copy count to each form or section — where the count
equals the number of members in the class.

There are some limitations to using form copy counts to provide recipient copies. For
instance, this does not let you print unique information about each member of the class
recipient, as would be necessary on a mailer page, for instance.

NOTE:It is possible to handle this using trigger overflow processing to physically
trigger multiple copies of each form — one for each member, but a disadvantage
of this approach is that each item (form or section) triggered is physically
duplicated in the form set and therefore each requires data processing. This
means that if there are a large number of these duplicate recipients, the
throughput performance of transactions could be affected.

To handle this situation, the RecipMap2GVM feature can write additional batch records
for each member of a class recipient. The RecipMap2GVM feature lets you write unique
recipient information to each batch record.

With this method, only a minimal amount of additional processing occurs in the form
set mapping. Yet, because a separate batch record is written for each member, the system
prints a separate copy of the document for each member and you can use the unique
information saved in each batch record to provide a unique banner page, such as a
mailer, for each member in the print output.

To use the RecipMap2GVM feature, follow these steps:

1 Add a section to your form set definition and assign this section the name of your
class recipient. Normally, you would also flag this section as hidden, since you would
not want it to display or print. This purpose of this section is to hold the unique
information for each member of the class recipient.

2 Define a trigger for the section that uses overflow to generate as many copies of the
section as there are members in the data. The idea is to trigger an instance of the
section for each member recipient. Be sure to also declare and create the appropriate
overflow variable in the AFGJOB.JDT file you will use during data mapping.

3 Create the section and add fields that map the data to be written to the batch record
for each member. Be sure to use the appropriate overflow variable for this section
in your rule mapping definitions. Also remember to assign the appropriate section
level rule to increment the overflow symbol after processing each section.

Using Class Recipients

67

4 Set up your RecipMap2GVM INI control group and modify your
RCBDFDFL.DFD (Recipient Table DFD) file to include your unique data fields for
the recipient batch records. Specify the new section as the section required in the
RecipMap2GVM control group and set up each of the fields to map into your
RCBDFDFL.DFD file layout.

NOTE:See Writing Unique Data into Recipient Batch Records on page 59 for more
information on the RecipMap2GVM control group.

When you run the GenData program, your new section will trigger once for each
member recipient. During normal processing, the fields on each section will map (using
overflow variables) the unique data for each member. Because you have multiple copies
of the section triggered, the RecipMap2GVM feature creates a separate batch record for
each instance of the section. Therefore, you receive a separate record representing each
individual member of your class recipient.

When the GenPrint program runs, having a separate record for each class recipient in
the batch causes that transaction to print once for each member. And by using banner
page processing, you can take the unique information written into each batch record
and map that information to a mailer page, making the final output unique to each
member of the class.

Chapter 2
Understanding the System

68

RUNNING
DOCUMAKER
USING XML
JOB TICKETS

You can run Documaker from another application using an XML job ticket. You receive
results in an XML job log file.

The layout of these files is the same as those used by IDS for running Documaker. See
Using IDS to Run Documaker on page 58 for more information.

The name of the job ticket is passed to the GenData program on the command line as

/jticket= parameter

The default name is JOBTICKET.XML.

To set this up replace the StandardJobProc rule with the TicketJobProc rule. Keep in
mind you must run Documaker in single step mode, since only the GenData program
is executed. See Using Single Step Processing on page 46 for more information.

You can specify the name of the resulting job log file using this command line
parameter:

/jlog=

The default is JOBLOG.XML.

Handling 2-up Printing

69

HANDLING 2-UP
PRINTING

Two-up printing lets you print two transactions on the same page of single and multiple
page forms. 2-up printing is a two-step process which passes input through GenData
three (3) times, using a different JDT file each time.

This process is similar to the single step process in that GenData performs the work, but
the three passes through GenData actually represent two steps of the multiple step
process: processing the transactions and printing the transactions.

For more information and to see example JDT files, see Single Step Processing Example
on page 56.

NOTE:2-up printing is only available for AFP printers.

There are several scenarios in which 2-up printing applies:

• 2-up printing with single page forms

• 2-up printing with multiple page forms

The following illustrations describe these scenarios.

2-up printing with
single page forms

This illustration shows how 2-up printing works when you use single page forms, such
as some types of bills and statements.

In this scenario, the system merges the data for the first transaction onto the form and
then prints the form.

Batch file

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 5

Transaction 6

BIll
100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

BIllBIll

BIll

BIllBIll

BIllBIll

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

Chapter 2
Understanding the System

70

2-up printing with
multiple page forms

This illustration shows how 2-up printing works when you use multiple page forms.

Changing the INI File
You must make the following changes in your FSISYS.INI file.

NOTE:Changes to the error and manual recipient batch control groups are not
necessary.

• You must include a Printer option in the recipient batch control groups for each
print file created. These printers must also be defined in the FSISYS.INI file.

• The recipient batch groups must have a FinalPrinter option. This option specifies
the printer to use for the final, merged file. This printer must also be defined in the
FSISYS.INI file.

page 2

Transaction 1

Transaction 1

Transaction 1

Transaction 2

Transaction 2

Transaction 2

BIllBIll

page 2

page 3 page 3

page 2

BIll BIll

page 2

page 1

page 2

page3

page 1

page 2

Batch file

page 3 page 3

page 3

Transaction 3

Transaction 3

Transaction 3

Transaction 4

Transaction 4

Transaction 4

page 1

page 2

page3

page 1

page 2

page 3

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

100.00
100.00
100.00
100.00
100.00

Services rendered
Services rendered
Services rendered
Services rendered
Services rendered

Handling 2-up Printing

71

• The recipient batch groups must have a PageRange option for page count batching.
You specify this option as shown below:

PageRange = [min],[max]

If you do not specify min, the system uses zero (0). If you omit max, the system uses
(unsigned)-1 (all bits on). The min and max values are inclusive.

• You can also include in the recipient batch control groups a TwoUpStart option,
which can have any of these values (case is irrelevant):

L

Left

R

Right

This option specifies whether the merge process should associate the first Printer
option with the left or the right side of the page. The system only checks this option
when there are multiple Printer options present in the control group. If you omit
this option, the file specified in the first Printer option is used for the left side of
the page.

Here is an example of a recipient batch control group:

< Batch1 >

Printer = Printer1

Printer = Printer2

FinalPrinter = Printer3

PageRange = ,1

TwoUpStart = R

This splits single page transactions evenly between the files specified in the Printer1 and
Printer2 control groups. The files specified in the Printer1 and Printer2 control groups
will then be merged into the file specified in the Printer3 control group. The file
specified in the Printer1 control group is used for the right page.

Creating the TWOUP
control group

You must create the TwoUp control group. This control group must contain the
CounterTbl option, which specifies the file name for the table that contains recipient
batch page counts.

The TwoUp control group can optionally contain the CounterDFD option, which
specifies the name of a DFD file. See the Rules Reference for information about this
DFD.

The TwoUp control group can optionally contain the LMargin, LShift, and RShift
options. Records on the left page will be shifted to the right by LShift - LMargin, and
records on the right page will be shifted to the right by RShift - RMargin. Amounts are
in FAP units (2400 per inch). If you omit these options, the system uses these defaults:

LMargin = 600

LShift = 1200

RShift = 16800

< TwoUp >

CounterTbl = data\counter.tbl

CounterDFD = deflib\counter.dfd

Chapter 2
Understanding the System

72

LMargin = 300

LShift = 600

RShift = 15000

The first two options define the location of the files shown above.

The LMargin=300 option sets the left margin to 1/4 inch. The LShift=600 option shifts
the left page 1/2 inch from the left edge of the paper (1/4 inch beyond the left margin).
The RShift=15000 option shifts the right page 6 1/2 inches the left edge of the paper (6
inches from the left margin).

Creating the
Added_Fonts control

group

You can optionally create the Added_Fonts control group. The options in this group
specify additional fonts to add to the AFP output file for text label records which may
be added during the merge process. Each option takes the form:

FontName =

Here is an example:

< Added_Fonts >

FontName = X0FATIN0

FontName = X0FAUNN8

This tells the system to include the fonts X0FATIN0 and X0FAUNN8 in the final
output file, regardless of whether they are present in the input files.

Changing the Recipient Batch DFD File
The recipient batch DFD file (RCBDFDFL.DAT) must have the following fields with
the given types. You can modify the field lengths—just make sure you set the
EXT_LENGTH option large enough to represent all of the pages in a multi-mail
transaction set. Also make sure you set the INT_LENGTH option larger by one than
the EXT_LENGTH option.

Note that the field name is case sensitive. Also, for each of these fields, be sure to add a
FIELDNAME= line to the <FIELDS> line in the DFD file.

< FIELD:CurPage >

INT_Type = CHAR_ARRAY

INT_Length = 5

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 4

Key = N

Required = N

< FIELD:TotPage >

INT_Type = CHAR_ARRAY

INT_Length = 5

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 4

Key = N

Required = N

< FIELD:AccumPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

Handling 2-up Printing

73

RULES USED FOR 2-UP PRINTING

The following descriptions will help familiarize you with the rules that are required to
perform the 2-up printing process. All of the rules listed in the topic, Rules Used in
Single Step Processing on page 53 are required for 2-up printing, plus these additional
rules:

NOTE:You can find more information in the Rules Reference.

AddLine Use this rule to add a line record, such as for OMR marks, to the AFP record list built
by the MergeAFP rule.

AddTextLabel Use this rule to add a text label record to the AFP record list built by the MergeAFP rule.

ForceNoImages Use this rule to return the msgNO_MORE_IMAGES message. This prevents errors if
you have no section level rules.

GetRCBRec Use this rule to set the current recipient batch file. This rule initializes the current
recipient batch file, if necessary.

This rule also sets the first printer for current batch to be the current printer and
retrieves the next record from the current recipient batch file.

InitMerge Use this rule to create a list of printers, batches, and buffers for the comment (RCB)
records. This rule also creates a list to hold AFP records and AFP fonts. After the system
finishes running the rule, it deletes everything the rule created.

NOTE:The recipient batch files are not used at this stage. The batch list must be created
beforehand so the system will know which print files belong together. The
skipping batch message is an artifact of the batch file loading process.

InitPageBatchedJob Use this rule to open NA and POL files. This rule installs the section level callback
function for inserting recipient batch records into the AFP print stream as AFP
comment records.

When finished, this rule restores the original callback function and closes the NA and
POL files.

Chapter 2
Understanding the System

74

MergeAFP Use this rule to initialize input files. This rule populates the AFP record list, retrieves
comment (RCB) records, and terminates the input files.

This rule also initializes output files, and writes out the AFP record list, adding end page
and end document records as necessary. The rule then terminates these output files.

ParseComment
Example

Use this rule to parse comment records into the GVM variable.

PrintData Use this rule to print the form set. This rule is used for handling 2-up printing on AFP
and compatible printers.

NOTE:The section handler installed by the InitPageBatchedJob rule is called during the
printing stage. If you want to make any modifications to the recipient batch
record, you must do so before this point.

ProcessRecord Use this rule to switch between print files as necessary when printing 2-up forms on an
AFP printer. This rule updates the page count for current print file and loads and merges
the form set.

Handling 2-up Printing

75

Placing the 2-up Rules in the JDT File
When you use the rules listed at the beginning of this topic to handle 2-up printing, you
must place them in the correct places and order in the AFGJOB.JDT file. Use the
following table as a guide to where to place these rules. You can insert other rules before,
between, or after the 2-up rules—just keep the 2-up rules in the order indicated below
with respect to one another.

Stage 1

Job level Insert the PageBatchStage1InitTerm rule after the
RULStandardJobProc and JobInit1 rules

Form set
level

List the form set level rules in this order:
WriteOutput

CreateRecordList

BatchByPageCount
PaginateAndPropogate

Place these rules after the RULStandardTransactionProc rule and
make sure any rule which changes page count appears before these
rules.

Stage 2

Job level Include these rules in this order:

InitPrint
InitPageBatchedJob

SetErrHdr

Do not include the RULStandardJobProc or JobInit1 rules in this
stage.

Form set
level

Include these rules in this order:

GetRCBRec

ProcessRecord
PrintData

Do not include the RULStandardTransactionProc rule in this stage.

Section
(image)
level

There are no regulations on the order in which you can place rules in
this stage. Remember, however, that if there are no section level rules,
you must include the ForceNoImages rule to avoid errors.

Stage 3

Job level Place the InitMerge rule anywhere after the RULStandardJobProc rule.

Form set
level

Make sure the MergeAFP rule is the first rule called. Place rules which
add records or determine whether a page pair should be printed after
the MergeAFP rule.

Section
level

There are no stipulations on the order in which you must place rules
in this stage. Remember, however, that if there are no section level
rules, you must include the ForceNoImages rule to avoid errors.

Chapter 2
Understanding the System

76

2-UP PROCESSING EXAMPLE

As stated earlier, 2-up printing is a two-step process which calls GenData three times with
different JDT files. These file excerpts show how to set up your batch and INI files:

2upbycnt.bat You can set up this batch file as follows:

@Echo Off

SetLocal

Echo Y|Del Data*.* >NUL

GenDaW32.Exe -INI=2upstep1.ini

If Not ErrorLevel 5 GoTo Step1NoError

 Echo "2Up Printing Failed in Step 1."

 GoTo Exit

:Step1NoError

GenDaW32.Exe -INI=2upstep2.ini

If Not ErrorLevel 5 GoTo Step2NoError

 Echo "2Up Printing Failed in Step 2."

 GoTo Exit

:Step2NoError

GenDaW32.Exe -INI=2upstep3.ini

If Not ErrorLevel 5 GoTo Step3NoError

 Echo "2Up Printing Failed in Step 3."

:Step3NoError

EndLocal

:Exit

2upstep1.ini You can set up this INI file as follows:

< Data >

 AfgJobFile = .\Def\AfgJob1.jdt

< Environment >

 FSISYSINI = .\fsisys.ini

2upstep2.ini You can set up this INI file as follows:

< Data >

 AfgJobFile = .\Def\AfgJob2.jdt

< Environment >

 FSISYSINI = .\fsisys.ini

2upstep3.ini You can set up this INI file as follows:

< Data >

 AfgJobFile = .\Def\AfgJob3.jdt

< Environment >

 FSISYSINI = .\fsisys.ini

Handling 2-up Printing

77

RUNNING THE GENDATA PROGRAM

The following pages provide illustrations and an example files for each time the
GenData program is run.

Step 1 - Using the
AFGJOB1.JDT file

The first execution of GenData uses the AFGJOB1.JDT file with the base and form set
rules shown in this example to create output files shown in the illustration.

<Base Rules>

;RULStandardJobProc;1;;

;SetErrHdr;1;***:--;

;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1;***:;

;SetErrHdr;1;***: Transaction: ***ACCOUNTNUM***;

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: Line of Business: ***LOB***;

;SetErrHdr;1;***: Run Date: ***RunDate***;

;SetErrHdr;1;***:--
;

;JobInit1;;;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;InitOvFlw;1;;

;SetOvFlwSym;1;SUBGROUPOVF,SUBGROUP,5;

;BuildMasterFormList;;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

Chapter 2
Understanding the System

78

;ResetOvFlw;2;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

;WriteNaFile;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;WriteOutput;;;

;CreateRecordList;;

;BatchByPageCount;;

;PaginateAndPropogate;;;

<Base Image Rules>

;StandardImageProc;3;Always the 1st image level rule;

<Base Field Rules>

;StandardFieldProc;4;Always the 1st field level rule;

Step 2 - Using the
AFGJOB2.JDT file

The second execution of GenData uses the AFGJOB2.JDT file. This JDT file uses the
base and form set rules shown in this example to process the intermediate print files.

<Base Rules>

;InitPrint;;;

;InitPageBatchedJob;;;

;SetErrHdr;1;***:--
;SetErrHdr;1;***: BillPrint Data Generation (Base) ;

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: SubCompany:***SubCompany***;

;SetErrHdr;1;***: Account #: ***AC-KY-BA***;

;SetErrHdr;1;***:--

Handling 2-up Printing

79

<Base Form Set Rules>

;GetRCBRec;;;

;ProcessRecord;;;

;PrintData;;;

<Base Image Rules>

;ForceNoImages;;;

Step 3 - Using the
AFGJOB3.JDT file

The third execution of GenData uses the AFGJOB3.JDT file. This JDT file uses base and
form set rules shown in this example to merge data intermediate print-ready files into a
print-ready file for an AFP printer.

<Base Rules>

;RULStandardJobProc;;;

;SetErrHdr;1;***:--;

;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: SubCompany: ***SubCompany***;

;SetErrHdr;1;***: Account #: ***AC-KY-BA***;

;SetErrHdr;1;***:--;

;InitMerge;;;

<Base Form Set Rules>

;MergeAFP;;;

<Base Image Rules>

;ForceNoImages;;;

Chapter 2
Understanding the System

80

PRINTING IN
BOOKLET
FORMAT

You can use Documaker Server to print booklets. A booklet is a 2-up duplex print format
that can be stapled in the middle and folded to form a small book. Although the system
does not impose a size limit, there is a practical limit on the number of pages that can
be affixed in this manner. The system lets you customize the paper size, cover sheets, a
custom blank page, and different size and tray selections for the cover sheet and booklet
pages.

NOTE:In Documaker Server version 11.5, the ability to output in booklet format is
provided in the GenPrint program and the GenData PrintFormset rule.

Include these INI options to set up your system for booklet printing:

< Print >

Booklet =

< Booklets >

Booklet =

< Booklet:NameOfBooklet >

BookletPapersize =

BookletTray =

RightGutter =

BlankPage =

CoverSheet =

CoverFrontOut =

CoverFrontIn =

CoverBackOut =

CoverBackIn =

CoverTray =

Option Description

Print control group

Booklet Enter the name of the booklet.

Booklets control group

Booklet Enter the name of the booklet. Your entry must match the name in the
Booklet field in the Print control group and must remain consistent
throughout the INI file.

Booklet:NameOfBooklet control group

BookletPapersize Enter the paper size. The default is 11 x 17.

BookletTray Enter the tray code. The default is one (1).

RightGutter Specify the right shift past mid-point, in FAP units (2400 per inch). This
right shift accommodates booklet thickness as pages are added.

As pages are added, then stapled, the margins of inner pages may be
covered by the fold in the booklet. this option tells the system to shift
the sections on the pages in small increments so all sections appear to
have the same margins.

You can leave this option blank for short booklets.

Printing in Booklet Format

81

NOTE:The system reformats the page, but it does not reformat or re-flow any of the
sections on the page. You must create sections in the appropriate dimensions to
fit on the booklet pages.

Keep in mind...

• You can only have one front and back cover page per print batch. So you can have
multiple booklets in a batch but they will share the same front and back cover.

• The FAP files you specify for the front cover, front inside cover, back cover, and
back inside cover can have no data mapping. These files simply display and print.

• To include a mailing address for the booklet, insert a transaction banner/mailer
page.

Booklet Printing Examples
Here is an example of the INI options for printing a booklet named Renewal_Package.

< Booklet:Renewal_Package >

BlankPage = BlankPage
BookletPaperSize = US Letter
BookletTray = 1
CoverBackIn = qb_in
CoverBackOut = qb_cvr
CoverFrontIn = qf_in
CoverFrontOut = qf_cvr
CoverSheet = No
CoverTray = 1
RightGutter =

< Booklets >
Booklet = Renewal_Package

< Print >

Booklet = Renewal_Package

BlankPage Enter the name of the FAP file you want to use as a blank page.

The system inserts blank pages as needed. This option just lets you
specify a FAP file you want to be used in place of a blank page. For
instance, you could specify a FAP file that simply said:

This page deliberately left blank.

CoverSheet Enter Yes if you want to include a cover sheet. The default is No.

CoverFrontOut Enter the name of the FAP file you want to use as the outside front cover.

CoverFrontIn Enter the name of the FAP file you want to use as the inside front cover.

CoverBackOut Enter the name of the FAP file you want to use as the outside back cover.

CoverBackIn Enter the name of the FAP file you want to use as the inset back cover.

CoverTray Enter the tray ID for the cover sheet. The default is one (1).

Option Description

Chapter 2
Understanding the System

82

Here is an example of a 16-page Renewal_Package booklet, with cover:

Printing in Booklet Format

83

Back
Front

Page
16

Page
1

Page
15

Page
2

Back
Front

Back
Cover

Front
Cover

Inside
Back

Inside
Front

(blank)

Here is the front/back
layout for the booklet
cover.

Here is the front/back
layout for the interior
booklet pages.

Back
Front

Page
14

Page
3

Page
13

Page
4

(blank)

Back
Front

Page
12

Page
5

Page
11

Page
6

Back
Front

Page
10

Page
7

Page
9

Page
8

Chapter 2
Understanding the System

84

Here is an example of how to set up multiple booklet templates. This example shows
two booklet templates. All booklets going to Printer1 use the Renewal_Package template
(rfcov, rfcovin, and so on). All booklets going to Printer2 use the NewPolicy template
(nfcov, nfcovin, and so on).

< Booklets >

Booklet = Renewal_Package

Booklet = NewPolicy

< Printer1 >

Booklet = Renewal_Package

Port = data\renew01.pdf

< Printer2 >

Booklet = NewPolicy

< Booklet:Renewal_Package >

BookletPaperSize = US Letter

BookletTray = 2

RightGutter =

BlankPage =

CoverSheet = Yes

CoverFrontOut = rfcov

CoverFrontIn = rfcovin

CoverBackOut = rbcov

CoverBackIn = rbcovin

CoverTray = 2

< Booklet:NewPolicy >

BookletPaperSize = US Letter

BookletTray = 1

RightGutter =

BlankPage =

CoverSheet = Yes

CoverFrontOut = nfcov

CoverFrontIn = nfcovin

CoverBackOut = nbcov

CoverBackIn = nbcovin

CoverTray = 1

Splitting Recipient Batch Print Streams

85

SPLITTING
RECIPIENT

BATCH PRINT
STREAMS

The GenPrint program and the PrintFormset rule (when running in single step mode)
are designed to produce one print stream output file for each recipient batch. This print
stream output file includes all of the transactions in the recipient batch.

Sometimes, however, you may want to split the print stream output into multiple print
stream output files. For instance, you can use this feature to split your batches into files
that reflect the amount of paper you can load into your printer at one time.

You can use DAL scripts to set up criteria for splitting the output file to reflect almost
any scenario. For example, it can be based on a certain number of transactions, a
maximum number of sheets of paper, or on changes in variables in the recipient batch.

NOTE:Some types of print streams require one file per transaction, such as RTF, PDF,
and HTML. The typical way of handling this is via the multi-file print callback
method, but this feature provides an alternate method which gives you greater
control over the naming of the output file.

To do this you use the PrintFormset rule and these DAL functions:

• DeviceName

• SetDeviceName

• BreakBatch

• UniqueString

This rule and these DAL functions let you:

• Split recipient batches into multiple print stream files

• Assign names to those print stream files

For example, here are some things you can do:

Splitting batches by
sheet count

You can use these functions to split a batch based on the sheet count during the
GenPrint process. Once a batch reaches a certain number of sheets, you can tell the
system to:

• Finish processing the current transaction

• End the current print file. (If you are using a post-transaction or post batch banner
page, it will print before the file is closed.)

• Repeat this process when the next print file reaches the specified number of sheets

You can use virtually any logic to decide when to break the batch. For instance, to break
based on sheet count, use the TotalSheets function to get the number of sheets to
maintain a counter across the transactions.

NOTE:Be sure to reset the sheet count variable in the pre-batch banner DAL script.

Chapter 2
Understanding the System

86

Here is an example of DAL script logic that might appear in a post-transaction banner
DAL script:

IF TotalSheets() > 16000

#COUNTER += 1

CurFile = DeviceName()

Drive = FileDrive(CurFile)

Path = FilePath(CurFile)

Ext = FileExt(CurFile)

RecipBatch = RecipBatch()

NewFile = FullFileName(Drive,Path,RecipBatch & #COUNTER,Ext)

SetDeviceName(NewFile)

BreakBatch()

END

NOTE:See Using DAL to Manipulate File Names on page 88 for information on using
DAL functions to manipulate file names.

Creating PDF output You can also modify the above script to unconditionally break the batch after each
transaction. Assuming you used the SetDeviceName function to assign a proper file
name, each recipient printed would receive a separate output file.

This is particularly useful for output types such as PDF, which require a separate file for
each transaction.

NOTE:You can also use the multi-file print callback method in GenPrint to get separate
files. Similarly, the single step processing mode currently uses this INI option:

< PrintFormset >

MultiFilePrint = Yes

to tell the system to generate separate files for each transaction. Single step mode
automatically generates a unique file name and offers no way to override that
name. By using the BreakBatch and SetDeviceName functions, however, you
can control the names assigned to the files in single step mode. To emulate the
action of the current code, use the UniqueString function.

DAL functions Here is a summary of the DAL functions you would use. Keep in mind...

• These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

• These print drivers are not supported: EPT, MDR, and GDI.

• All platforms are supported, but note that while UniqueString is supported on z/
OS, z/OS does not support long file names.

• Both multiple step and single step processing are supported.

Splitting Recipient Batch Print Streams

87

The only DAL function actually involved in splitting the print stream is BreakBatch.
The others make it easier to implement this functionality. For example, since you need
to name the new print stream, you use the SetDeviceName procedure. To find the name
of the current device, you use the DeviceName function. If you need to create unique
file names, you can use the UniqueString function.

NOTE:While you can call all of these DAL functions in the Rules Processor or Entry,
the BreakBatch and SetDeviceName functions are not applicable in Entry since
it does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and the Rules Processor.

DeviceName
Use this function to return the current output device file name, such as the name of the
current print stream output file.

Syntax DeviceName()

SetDeviceName
Use this procedure to set a new output device file name which will be used the next time
the output device is opened, assuming nothing overrides the name prior to that.

Syntax SetDeviceName(Device)

BreakBatch
Use this procedure to tell the Rules Processor to break the output print stream file for
the current recipient batch after processing the current recipient, including post
transaction banner processing.

Syntax BreakBatch()

The procedure is typically called in the transaction banner DAL script. You must use the
SetDeviceName function to specify a new device name. Otherwise, the new file has the
same name as the old file and overwrites its contents.

After the GenPrint program finishes processing the current transaction, it closes the
current output device file. This includes executing any post-batch banner processes. It
then continues processing the recipient batch.

If you have assigned a new output device file name using the SetDeviceName function,
the system will create and start writing to a new print stream file with that name. The
best place to call the BreakBatch function is in the post-transaction banner DAL script.

Chapter 2
Understanding the System

88

UniqueString
Use this function to return a 45-character globally unique string.

Syntax UniqueString()

Here is an example:

DataPath = GetINIString(,"Data","DataPath")

Drive = FileDrive(DataPath)

Path = FilePath(DataPath)

UniqueID = UniqueString()

Outputname = FullFileName(Drive,Path,UniqueID,".PDF")

SetDeviceName(Outputname)

USING DAL TO MANIPULATE FILE NAMES

Since you can use DAL functions to read tables and to set device names for output print
stream files, this feature further extends DAL functionality by letting you manipulate
file names.

For instance, you can get the components of a file name (drive, path, name, and
extension) and combine those into a full file name. For example, for computers running
Windows file names look like this:

For computers running z/OS, file names look like this:

In this z/OS example, the drive and extension are omitted, because they are not
applicable on z/OS and the parentheses enclosing member are part of the path.

To do this you use these DAL functions:

• FileDrive

• FilePath

• FileName

• FileExt

• FullFileName

All platforms are supported and both the Rules Processor and the Entry system are
supported.

d: \mypath\ myfile .ext

Drive
Path Name

Extension

 DD:DEFLIB(member)

Drive
Path Name

Extension

Splitting Recipient Batch Print Streams

89

Each platform will use platform specific logic to extract or assemble the components.
For example, UNIX uses forward slashes and z/OS uses DD names or partitioned dataset
names for the path and member names for name.

Here are descriptions of these functions:

FileDrive
Use this function to get the drive component of a file name.

Syntax FileDrive(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the drive component of that file name.

Here is an example:

MYDRIVE = FileDrive("d:\mypath\myfile.ext")

In this example, MYDRIVE would contain:

“d:”

FilePath
Use this function to get the path component of a file name.

Syntax FilePath(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the path component of that file name.

Here is an example:

MYPATH = FilePath("d:\mypath\myfile.ext")

In this example, MYPATH would contain:

“\mypath\”

FileName
Use this function to get the name component of a file name.

Syntax FileName(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the name component of that file name.

Here is an example:

MYNAME = FileName("d:\mypath\myfile.ext")

In this example, MYNAME would contain:

“myfile”

Chapter 2
Understanding the System

90

FileExt
Use this function to get the extension component of a file name.

Syntax FileExt(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the extension component of that file name.

Here is an example:

MYEXT = FileExt("d:\mypath\myfile.ext")

In this example MYEXT would contain:

“.ext”

FullFileName
Use this function to make the full file name.

Syntax FullFileName(“Drive”,”Path”,”Name”,”Ext”)

This function accepts a string containing the drive, path, name, and extension
components of a fully qualified file name, assembles them, and returns a string that
contains the full file name.

Here is an example:

MYFILENAME = FullFileName("d:","\mypath\","myfile",".ext")

In this example, MYFILENAME would contain:

“d:\mypath\myfile.ext”

NOTE:If, in this example, \mypath had no trailing slash, the FullFileName function
would have added it for you.

Here is a z/OS example:

FullFileName(,”DD:DEFLIB()”,”MEMBER”)

In this example, the result would be:

DD:DEFLIB(MEMBER)

Assigning Printer Types Per Logical Batch Printer

91

ASSIGNING
PRINTER TYPES

PER LOGICAL
BATCH PRINTER

Recipient batches often need to be sent to different types of printers. For example, you
could have a situation where you want to generate PDF files with one batch, email
another batch, and send the rest of the batches to a Metacode printer.

In addition, logical printers may also need different callback functions. For example,
one batch might print Metacode and need OMR marks created in a callback function
while another batch may need to be split by transaction using the MultiFilePrint
callback function.

NOTE:Before version 11.1, the print system only supported one type of printer and
only one type of callback per run. You made this assignment using the PrtType
option in the Printer control group.

You can optionally define for each logical printer a printer type and a callback function.
For instance, now the PrtType option in the Printer control group defines the default
type of printer while the CallbackFunc option defines the default callback function you
want to use.

Here is an example:

< Printer >

PrtType = XER ; Default

< Printers >

Printer = Printer1

Printer = Printer2

< Insured >

Printer = Printer1

< Agent >

Printer = Printer2

< Printer1 >

Port = Output1.XER

< Printer2 >

Port = Output2.PDF

CallbackFunc = RULMultiFilePrint

PrtType = PDF

When you define a callback function, such as shown below, you are defining the default
callback function for all defined logical printers:

< Print >

CallbackFunc = Mycallback

If, however, you do not want a specific logical printer to have a callback function, you
can disable the callback for that logical printer by leaving blank the CallbackFunc
option for that logical printer, as shown here:

< MyPrinter >

CallbackFunc =

To disable the default callback, define an empty callback name. Otherwise, the system
uses the default callback function.

Chapter 2
Understanding the System

92

You can also set these INI options using Documaker Studio’s Manage, System, Settings
option. Here is an example:

Keep in mind this applies to...

• A batch of transactions. Each transaction within that batch will print to a single
type of printer.

• Both single and multiple step processing of transaction batches.

Single step processing has limitations as compared to multiple step processing and this
feature does not remove those limitations. Single step processing optimizes the
processing of transactions that do not require recipient batching. Single step processing
is, therefore, intended for use with a single input batch of transactions for a single
recipient or a single transaction with one or more recipients, such as in real-time
processing.

While you can specify multiple printers and associate a different printer per recipient
batch, single step processing can still only process a single recipient batch at a time.
Therefore, it is not possible to do the same type of multi-batch processing in single step
as is done in multiple step processing. A given set of transactions can specify a single
recipient and you can map that recipient to a different type of printer.

Real-time transaction processing of single transactions may also benefit from this by
using the multi-file callback method to split output files, along with necessary logic to
create unique file names for each output file. When used in this manner, single step
processing of a single, real-time transaction can call a different driver for each recipient
in the transaction.

Controlling WIP Field Assignments

93

CONTROLLING
WIP FIELD

ASSIGNMENTS

You can use options in the Trigger2WIP control group to set almost all of the WIP
record fields for each transaction.

NOTE:Do not try to set the ModifyTime, InUse, or the FormSetID fields of the WIP
record. The ModifyTime field is assigned by the system when a WIP record is
added or updated. If you need to save a date and time for the transaction, store
that information in the CreateTime field, using the hextime X format for the
destination as shown in one of the examples.

The InUse field is used internally to prevent multiple people from editing the
same transaction. Let the system manage this column.

The FormSetID is assigned by the system when a new WIP transaction is created.
Let the system handle this.

The Trigger2WIP control group defines which recipient batch (RCB) transaction fields
from the manual batch (those kicked to WIP) are mapped to the corresponding WIP
transaction record fields.

The options under the Trigger2WIP control group define the mappings as shown here:

RCBField represents one of the fields defined by the batch transaction record definition
(RCBDFDFL.DFD). WIPField represents a field defined in the WIP database.

NOTE:There may be an external WIP.DFD file that identifies the fields in a WIP
record. An external DFD file is not required if you are using the default WIP
database layout.

Note, although the normal mapping technique is to name a RCB field on the left side,
the left side can name any defined GVM (global variable member). Typically, the only
GVMs that exist during GenWIP processing are those defined in the RCB DFD file, but
custom applications or single step WIP systems may have additional GVMs.

The changes in this release support this INI definition and also let you convert data or
define a constant value you want to map to a WIP field. For a data conversion, define
your INI options as shown here:

< Trigger2WIP >

RCBField = WIPField; input format ; output format;

The conversion information must appear on the right side of the INI option, after the
WIPField name definition. Separate it from the named variable with a semicolon. Here
is an example:

RunDate = CREATETIME;DD4;X

The contents of
this field...

...is copied into
this field< Trigger2WIP >

RCBField 1 = WIPField 1

RCBField 2 = WIPField 2

...

Chapter 2
Understanding the System

94

The first semicolon denotes the input format of the data. The second separates the
desired output format. In this example, the input format of DD4 means the source data
is a date field in the format D4, which is YYYYMMDD.

The output format X indicates you want to convert the date value to the internal
HEXTIME format used in the WIP CreateTime field.

NOTE:For more information selecting from the pre-defined date formats or defining
your own, see the Rules Reference.

Although conversions are often used to change date formats, you can also use them to
do additional formatting. The system supports a simple C style sprintf (%s) and
constant text formatting, like %s, %10.10s, %-38.38s, and so on. The system does not
support any of the other C style formats flags that assume non-text data or asterisk
(variable width) designations.

Here is an example:

EFFVALUE = APPData; ;(%s%%)

Suppose in this example, that EFFVALUE contains the text 10, the resulting value
mapped into the APPData field will read (10%).

NOTE:You must use two percent signs (%%) to represent a single percent sign in the
output. The system only supports a string %s type format. It does not support
numeric data formats of any type.

Normally, the left side of the INI option names a field from the RCB file definition.
You can also enter NULL as a keyword to mean there is no corresponding RCB data
field to associate with the WIP field. This lets you assign the constant data to the WIP
field, as shown here:

NULL = DESC; ;ABC123 HERE WE GO

This example shows how to assign the constant text ABC123 HERE WE GO into the
DESC field of the WIP record. NULL indicates there is no source variable to associate
with this destination field.

You can also use INI built-in functions to provide a constant value to map to the field.
For example:

NULL = CURRUSER; ;~GETENV USERNAME

INI built-in functions are preceded with a tilde (~). This example executes the GETENV
built-in INI function, which gets the environment variable USERNAME. If you assume
the variable contained the text TOM, the WIP variable CURRUSER would be assigned
TOM after execution of the built-in function.

These options show the defaults used if the Trigger2WIP control group does not
override the variables:

< AFG2WIP >

StatusCode = WIP

RecordType = NEW

UserID = DOCUCORP

Controlling WIP Field Assignments

95

The StatusCode option defines which INI option in the Status_CD control group to use
as the default WIP StatusCD field. Suppose you have the following Status_CD control
group defined.

< Status_CD

WIP =W

Assign =A

Quote =Q

BatchPrint =W

Archive =AR

Printed =P

This means a W would be assigned to the WIP StatusCD field (usually meaning a normal
WIP transaction).

The RecordType option defines which INI option to locate in the Record_Type control
group as the default setting for WIP RecType. Suppose you have these options defined:

< Record_Type >

New =00

Assign =01

Partial =02

New is the normal default for the AFG2WIP control group and would therefore map 00
into the WIP RecType field.

The UserID option defines which user should be assigned the WIP transactions in the
CURRUSER field. Unless this option is changed or the CURRUSER field assigned
from the Trigger2WIP control group, the system defaults this value to DOCUCORP.
DOCUCORP is one of the default users created in a default user database.

You would normally want to add an option to the AFG2WIP control group to name a
valid user in your company, otherwise, users will have to log in as DOCUCORP and
reassign the WIP to valid users later.

Chapter 2
Understanding the System

96

GENERATING
EMAIL

NOTIFICATIONS
FROM GENWIP

You can enable the GenWIP program to send email. The GenWIP program will generate
an email message by processing a message body template against variable data in the
manual batch. It then sends the message when the document is added to WIP.

NOTE:See also the Printers Reference.

Email-specific data can be in the recipient batch read by the GenWIP program or in the
INI file. The system checks the recipient batch first. If the field is not present or blank,
the system then checks the INI option.

Below is a list of the fields the GenWIP program looks at to get email information. If
you want to include other fields, you can use the INI built-in function to accomplish
this.

Email is enabled in the GenWIP program when there is both a send-to email address and
a subject or message body. The message body is expected to be in a separate file. Email
attachment files are also supported and are processed as template files the same as the
message body. You use these INI options to enable email processing:

< GenWIPEmail >

EnableEmailNotification=

MailMessageBody =

MailID =

MailSubject =

MailAttachment =

These field names to go into the RCBDFDFILE:

FIELDNAME = MAILID

FIELDNAME = MAILATTACHMENT_IN

FIELDNAME = MAILATTACHMENT_OUT

FIELDNAME = MAILSUBJECT

FIELDNAME = MAILIDFROMADDRESS

FIELDNAME = MAILMESSAGEBODY

Group: < FIELD:MAILID > entries:

INT_Type = CHAR_ARRAY

INT_Length = 51

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 50

Option Description

EnableEmailNotification Enter Yes.

MailMessageBody Enter the path and file name for the email template.

MailID The email address to send. This is optional if the MAILID is
omitted, you can send using this address.

MailSubject If the MAILSUBJECT is missing or blank, the system will use the
text you enter here as the Subject.

MailAttachment The name of the file to attach.

Generating Email Notifications from GenWIP

97

Key = No

Required = Yes

Group: < FIELD:MAILATTACHMENT_IN > entries:

INT_Type = CHAR_ARRAY

INT_Length = 129

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 128

Key = No

Required = Yes

Group: < FIELD:MAILATTACHMENT_OUT > entries:

INT_Type = CHAR_ARRAY

INT_Length = 129

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 128

Key = No

Required = Yes

Group: < FIELD:MAILMESSAGEBODY > entries:

INT_Type = CHAR_ARRAY

INT_Length = 129

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 128

Key = No

Required = Yes

Group: < FIELD:MAILSUBJECT > entries:

INT_Type = CHAR_ARRAY

INT_Length = 129

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 128

Key = No

Required = Yes

Errors Here are the error messages that can appear:

Error Description

11226 Error in GENCreateEmail(): Unable to get <&Name&> does it exist in rcb dfd
file?\n

11227 Error in GENCreateEmail(): Unable to process template check file
<&filename&> for valid markup syntax\n

11228 Error in GENCreateEmail(): Unable to open file <&Name&>\n

11229 Error in GENCreateEmail(): Unable to QueryAPI <&apiname&> check for valid
path to DLL <&dllname&>\n

11230 Error in GENCreateEmail(): Unable to Logon to email server\n

Chapter 2
Understanding the System

98

11231 Error in GENCreateEmail(): Unable to set <&data&> check INI file for valid
<&inigroup&> <&inioption&>\n

11232 Error in GENCreateEmail(): Unable to get <&data&> check INI file for
<&inigroup&> <&inioption&>\n

11233 Error in GENCreateEmail(): failed to send e-mail <&userid&>
<&emailaddress&>\n

Error Description

Using Multi-mail Processing

99

USING MULTI-
MAIL

PROCESSING

Multi-mail processing groups the transactions with the same multi-mail code into
selected print batches based on the number of pages defined in the PageRange INI
option. Multi-mail can only be handled as a 2-up process. In the INI example below, all
transactions with the same multi-mail will be stored in a batch category:

batch1-less than five pages

batch2-five to nine pages

batch3-10 or more pages

The MM_FIELD option in the TRN_Field control group identifies position, length,
type of data and where the multi-mail code is located in the transaction record.

NOTE:The parameter has been named MM_FIELD in the above explanation, however
it can be given any name.

The BatchByPageCount rule in the AFGJOB.JDT file identifies the name in the
TRN_Field control group, as shown here:

BatchByPageCount;;MMFIELD=MM_FIELD;

Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
You must make the following changes to the RCPDFDFL.DAT and TRNDFDFL.DAT
files for multi-mail processing:

< Fields >

 ::::::

FIELD:MMField

< FIELD:MMFIeld >

INT_Type = CHAR_ARRAY

INT_Length = 7

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 6

Key = N

Required = N

Chapter 2
Understanding the System

100

Setting Up the FSISYS.INI File for Multi-mail Processing
Here is an example of how the relevant control groups and options in your FSISYS.INI
file should look:

< Print_Batches >

P_Batch1 = .\data\Batch1

P_Batch2 = .\data\Batch2

P_Batch3 = .\data\Batch3

Error = .\data\Error

Manual = .\data\Manual

< P_Batch1 >

Printer = Batch1_PTR_1

Printer = Batch1_PTR_2

FinalPrinter = Batch1_PTR_F

PageRange = ,4 (controls which batch is used)

TwoUpStart = L

< P_Batch2 >

Printer = Batch2_PTR_1

Printer = Batch2_PTR_2

FinalPrinter = Batch2_PTR_F

PageRange = 5,9 (controls which batch is used)

TwoUpStart = L

< P_Batch3 >

Printer = Batch3_PTR_1

Printer = Batch3_PTR_2

FinalPrinter = Batch3_PTR_F

PageRange = 10,99 (controls which batch is used)

TwoUpStart = L

< TRN_FIELDS >

...

MM_Field = 326,6,N (defines where the multi-mail code

is found in each transaction)

The order of the page output on the final print file will produce 2-up printing
depending on how many intermediate printer files are specified. The output will look
as follows:

< P_Batch2 >

Printer = Batch2_PTR_1 intermediate printer file

Printer = Batch2_PTR_2 intermediate printer file

FinalPrinter = Batch2_PTR_F intermediate printer file

PageRange = 5,9

TwoUpStart = L

transaction #1 mmcode 111 page 1transaction n mmcode 555 page 1

transaction #1 mmcode 111 page 2transaction n mmcode 555 page 2

transaction #1 mmcode 111 page ntransaction n mmcode 555 page 3

transaction #2 mmcode 126 page 1transaction n mmcode 555 page 4

transaction #2 mmcode 126 page 2transaction n mmcode 555 page 5

transaction #2 mmcode 126 page ntransaction n mmcode 555 page n

transaction #3 mmcode 222 page 1transaction x mmcode 865 page 1

transaction #3 mmcode 222 page 1transaction x mmcode 865 page 2

transaction #3 mmcode 222 page ntransaction x mmcode 865 page n

Using Multi-mail Processing

101

If you define only one printer and a final printer for a batch, the 2-up printing would
look as follows:

< P_Batch2 >

Printer = Batch2_PTR_1

FinalPrinter = Batch2_PTR_F

PageRange = 5,9

TwoUpStart = L

transaction #1 mmcode 111 page 1transaction # 1 mmcode 111 page 2

transaction #1 mmcode 111 page 3transaction # 1 mmcode 111 page 4

transaction #1 mmcode 111 page ntransaction # 2 mmcode 555 page 1

transaction #2 mmcode 555 page 2transaction # 2 mmcode 555 page 3

transaction #2 mmcode 555 page 4transaction # 2 mmcode 555 page n

transaction #3 mmcode 126 page 1transaction # 3 mmcode 126 page 2

transaction #3 mmcode 126 page 2transaction # 3 mmcode 126 page n

transaction #4 mmcode 222 page 1transaction # 4 mmcode 222 page 2

Chapter 2
Understanding the System

102

USING
ADDRESSEE

RECORDS

Addressee records support class recipients and individual addressee-based processing.
Each addressee is written to batch files as a separate record for subsequent printing or
processing. This lets you uniquely distribute documents for a given recipient type to a
specific address, such as a mailing address, email address, or fax number.

USING ADDRESSEE RECORDS IN BATCH FILES

Correspondence applications often need to send copies of a recipient document set to
multiple addressees. You may want to have each addressee produce a separate batch
record when multiple addressees are included for a given recipient. Such records can be
further processed or ultimately printed.

NOTE:To activate the use of Addressee records in the extract dictionary, see the
Documaker Studio User Guide.

Once enabled, Documaker Server (GenPrint and single step processing) can then assign
the addressee index and a new batch record for each addressee recipient (CC recipient).
The system uses your entries in the ADR_Index control group in the recipient DFD file
(RCBDFDFL.DFD). Set up these INI options as shown here:

< Fields >

FieldName = ADR_Index

< Field:ADR_Index >

INT_Type = Long

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

The ADR_Index contains the sequence index of the CC addressee specified for that
batch record. In addition, you can include other information from the addressee
mapped data in the recipient batch record. To do this, prefix the name of the addressee
variable names with ADR_, such as ADR_NAME.

This takes the Name member from the addressee mapped information and includes it in
the associated batch record member. This ADR_Index record is then present in the
batch record definition file.

Option Description

Fields List control group

FieldName Enter ADR_Index.

Field:ADR_Index control group

INT_Type Specify the internal type as Long.

EXT_Type Specify the external type as CHAR_ARRAY_NO_NULL_TERM

EXT_Length Specify the length as 10.

Using Addressee Records

103

Using Address Records for Printing
Correspondence applications often need to send copies of a recipient document set to
multiple addressees. When writing addressee information into batch records, the system
makes sure only specified addressees print for a given recipient.

Once you enable addressee records, Documaker Server (GenPrint and single step
processing) can then assign the addressee index and a batch record for each addressee
recipient (CC recipient). The system uses your entries in the ADR_Index control group
in the recipient DFD file (RCBDFDFL.DFD). Set up these INI options as shown here:

< Fields >

FieldName = ADR_Index

< Field:ADR_Index >

INT_Type = Long

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

These entries make sure the ADR_Index record is present in the batch record definition
file. When the batch record for a recipient is read by the GenPrint program, and the
ADR_Index member has a value other than zero (0), only that recipient addressee/CC
prints. If the value is zero (0), all found addressee records print.

Option Description

Fields List control group

FieldName Enter ADR_Index.

Field:ADR_Index control group

INT_Type Specify the internal type as Long.

EXT_Type Specify the external type as CHAR_ARRAY_NO_NULL_TERM

EXT_Length Specify the length as 10.

Chapter 2
Understanding the System

104

ADDING AND
REMOVING

PAGES

You can add and remove blank pages or a FAP file to a form set. Typically, you would
add these pages so each printed page has a front and back.

This lets you change a simplex or mixed plex form set into a fully duplexed form set.
For instance, you can use this feature to create PDF files for mixed plex form sets that
print in a similar fashion to printers that support mixed plex.

You can access this functionality several ways:

• Using custom code

• Using DAL scripts

• Using Docupresentment rules (version 1.6 and higher)

NOTE:Typically, you use this feature to add blank pages just before the print step.
These additional pages are not actually part of the saved document.

If, however, if you added the blank pages before the batch steps that save
document information to the NA/POL files, the blank pages would become a
permanent part of the document layout.

USING CUSTOM CODE

Adding pages Use this API to call custom code to add blank pages:

DWORD _VMMAPI FAPAddBlankPages(

 VMMHANDLE objectH, /* form set or form handle */

 char FAR * sectionname) /* if NULL, "Blank Page" */

If the section name is NULL, a blank page is created when a dummy page is needed. If
the section name is not NULL, the section name is loaded when a dummy page is
needed. Omit the path and file extension when you enter sectionname.

Removing pages Use this API to call custom code to remove blank pages:

DWORD _VMMAPI FAPDelBlankPages(VMMHANDLE objectH)

/* formset or form handle */

USING DAL SCRIPTS

Adding pages Use this DAL function to add blank pages:

AddBlankPages()

or

AddBlankPages('FAPFile')

For example, you can use this function with the banner processing feature. First, specify
a DAL script that runs at the start of each transaction. The DAL script calls the
AddBlankPages function. This tells the system to convert each transaction to a fully
duplexed form set with blank pages added as needed.

Here is an example of the INI settings you would need:

Adding and Removing Pages

105

< Printer >

EnableTransBanner = True

TransBannerBeginScript = PreBatch

< DALLibraries >

Lib = BANNER

Here is an example of the BANNER.DAL script:

BeginSub PreBatch

AddBlankPages()

EndSub

Removing pages Use this DAL function to remove a page from a form set:

DelBlankPages()

For example, you can use this function with the banner processing feature. First, specify
a DAL script that runs at the start of each transaction. The DAL script calls the
DelBlankPages function. This tells the system to remove blank pages from each
transaction.

< Printer >

EnableTransBanner = True

TransBannerBeginScript = PreBatch

< DALLibraries >

Lib = BANNER

Here is an example of the BANNER.DAL script:

BeginSub PreBatch

DelBlankPages()

EndSub

Chapter 2
Understanding the System

106

USING IDS
For more information on the rules listed below see Using the Documaker Bridge.

Adding pages Use this IDS rule to add blank pages:

function = dpros2->DPRAddBlankPages

This IDS rule assumes the form set being used has been loaded by the Documaker Bridge
into the DSI variable, DPRFORMSET. If you are using this rule with a different bridge,
you may need to specify a different DSI variable that contains the form set.

To specify a FAP file to use for the dummy pages, add the name of that FAP file after
the form set variable name when you specify the IDS rule. Here is an example:

function = dpros2->DPRAddBlankPages,DPRFORMSET,FAPFile

Removing pages Use this IDS rule to remove blank pages:

function = dpros2->DPRDelBlankPages

This IDS rule assumes that the form set has been loaded by the Documaker Bridge into
the DSI variable, DPRFORMSET. If you are using this rule with a different bridge, you
may need to specify a different DSI variable.

To specify the FAP file being used for dummy pages, add the FAP file name after the
form set variable name when you specify the IDS rule. Omit the path and extension.
Here is an example:

function = dpros2->DPRAddBlankPages,MTCFORMSET

Adding Indexes and Tables of Contents

107

ADDING
INDEXES AND

TABLES OF
CONTENTS

Using Documaker Studio, you can insert tables of contents, lists of figures or indexes to
your form sets. This makes it easier for users to navigate through the various forms.

To use this feature, all sections must be loaded before the print operation executes.
Otherwise, the system will not have all the content available and will not be able to create
a complete table of contents, list of figures, or index. Since some print drivers do not
force the loading of all sections until necessary, this means you may have to include an
additional INI option.

For Documaker Server (GenPrint), you would include this option:

< RunMode >

DownloadFAP = Yes

Chapter 2
Understanding the System

108

USING RUN-
TIME OPTIONS

The system offers several ways you can customize the way it runs. The following topics
discuss these options.

GENDATA COMMAND LINE OPTIONS

The GenData program accepts several command line options. Command line options
are prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dms1\gendaw32 /ini=my.ini

The command line options are explained below:

GENPRINT COMMAND LINE OPTIONS

The GenPrint program accepts several command line options. Command line options
begin with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dms1\genptw32 /ini=my.ini

The command line options are explained below:

Option Description

CNT Overrides the number of transactions specified in the CheckCount option in the
Restart control group. This count specifies the frequency of updating offsets for
GenData restart processing.

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
current directory.

JDT Tells the program to use the specified AFGJOB.JDT file instead of the one defined
in the FSIUSER.INI or FSISYS.INI files.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

Option Description

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
current directory.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

Using Run-Time Options

109

GENTRN COMMAND LINE OPTIONS

The GenTrn program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dms1\genTnw32 /ini=my.ini

The command line options are explained below:

DEBUGGING OPTIONS

You can use the following options in the Debug_Switches control group to turn on or
off debugging options.

< Debug_Switches >

Debug_If_Rule = Yes

Enable_Debug_Options = Yes

Show_Debug_Options = Yes

LoadListFromTable = Yes

Option Description

B Tells the program to build only the transaction file.

F Tells the program to build only the filter extract file.

FB Tells the program to build only the filter extract and transaction files.

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
current directory.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

Option Description

Debug_If_Rule Set to Yes if you want to turn on the debug options for the IF and
DAL rules. The system places the debug data in the
LOGFILE.DAT file. Setting this option to Yes slows performance.

Enable_Debug_Options Set this option to Yes to turn on all debug options.

Show_Debug_Options Set this option to Yes to make the
GEN_DEBUG_DebugSwitchSet function log the state (on or off)
of all debug options.

LoadListFromTable Set this option to Yes to make the
Gen_TabUtil_LoadListFromTable function log the contents of
any ASCII table it loads.

Chapter 2
Understanding the System

110

Noting font IDs of zero You can use the CheckZeroFontID option to tell the system to display a warning or
error message if the field being processed contains a font ID equal to zero (0).

Typically, this means no font was assigned during the mapping. Since the merging of
FAP and DDT files in version 11.0, the field definition should be complete at the time
of processing. So if you encounter a field with no font ID assigned, it probably means
some unusual situation has occurred — like the field was defined via an import method
but not actually defined on the FAP file where it resides.

Here is an example of the CheckZeroFontID option:

< RunMode>

CheckZeroFontID =

Suppressing elapsed
runtime messages

You can suppress the elapsed runtime message by setting the ElapsedTimeStamp option
to No. This turns off the elapsed runtime message for the error, log, and trace files. Here
is an example:

< Control >

ElapsedTimeStamp = No

NOTE:You can use the existing ErrorFileDateStamp and LogFileDateStamp options to
turn off the time stamp in the error and log files. The new ElapsedTimeStamp
option controls the elapsed runtime message.

Option Description

CheckZeroFontID Enter Yes (or Error) to have the system to issue an error message if it
encounters a font ID set to zero (0). If you enter Yes (or Error) and the
system encounters a font ID of zero, you get a message similar to this:

DM30046: Error: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.

Enter Warn if you want the system to issue a warning message if it
encounters a font ID set to zero. If you enter Warn and the system
encounters a font ID of zero, you will get a message similar to this:

DM30046: Warning: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.

In either message, FLDNAME and IMGNAME are reflect the
appropriate field name and section (image) name.
The default is No, which means nothing is checked and no message is
issued.

Option Description

ElapsedTimeStamp Enter No to suppress the elapsed runtime message for the error, log,
and trace files. The default is Yes.

Using Run-Time Options

111

GROUPING PRINT BATCHES

If you want to group all of your print batches (BCH files) in one file, follow these steps:

1 Add two options to the FSISYS.INI file. In the RunMode control group, set the
AliasPrintBatches option to Yes. In the Data control group, add the BatchTable
option. Set this option as shown below:

BatchTable = <tablename>

If you omit the path, the system uses your entry in the DataPath option of the Data
control group.

2 Add a key to the RCBDFDFL.DFD file. In the Fields control group, add the
following option:

FieldName = BatchName

Add the option exactly as shown here. Do not substitute the desired batch name,
here or in any of the following steps.

3 Add a corresponding FIELD:BatchName control group. Note that the lengths you
specify in this group must be sufficient to hold the batch name (the option side of
the equations in the Print_Batches control group). In the Keys control group, add
the following option:

Key = BatchName

and add a corresponding KEY:BatchName control group, with these options:

FieldList = BatchName

Expression = BatchName

If you are using ASCII for the print batch, after you run the GenData program you must
sort the batch file using the BatchName field as the key. If you are using xBase or DB2,
you should be able to run the GenPrint program without this step.

NOTE:If you are using ASCII for the print batches, be sure to place the BatchName
field directly before the NA_Offset field in the RCBDFDFL.DFD file. And
when sorting, use the BatchName and NA_Offset fields together as the key.

This will help make sure the print output is identical to that produced with
multiple batches. If you are using xBase or DB2, you do not need these
additional instructions.

Chapter 2
Understanding the System

112

CONTROLLING CONSOLE LOGGING

When processing a large number of transactions, you can see how far along you are
without affecting performance by using the LogToConsole option. This option lets you
control how often the console is updated with progress information.

Using the LogToConsole option, you specify the number of transactions that should be
processed before that information is logged on the console. For instance, if your
processing run consisted of 10,000 transactions, you could set the option to log progress
on the console after every 1000 transactions are processed. Here is an example:

< Control >

LogToConsole = 1000

LOGGING INI FILE NAMES AND OPTIONS

You can log INI file names and options in the TRACE file during GenTrn, GenData,
GenPrint, GenArc, and Documaker Studio processing.

To turn on the logging of INI file names and options, include these INI options:

< Debug_Switches >

Enable_Debug_Options = Yes

INILib = Yes

For the GenTrn, GenData, GenPrint, and GenArc programs, you can include the /L
command line parameter to log these file names and options in the TRACE file.

NOTE:Logging the INI file names and options in the TRACE file replaces the writing
of the INI file names and options to the LOGFILE as was done prior to version
11.1, patch 02.

Option Description

LogToConsole Enter the number of transactions you want the system to process before it
logs its progress on the console. For instance, enter 1000 to have the system
tell you each time it processes 1000 transactions.

If you leave this option blank or enter Yes, the system logs the processing of
each transaction on the console. If you enter a number, such as 1000, the
system will send a log message to the console each time it processes that
number of transactions.

Keep in mind that logging information to the console affects performance.
The more often the system logs information to the console, the greater the
affect.

Consider how many transactions you will process in the run and use that
number to determine appropriate progress benchmarks.

If you enter No, the system will not notify you of its progress.

Using Run-Time Options

113

LISTING THE RULES EXECUTED

Use the following INI options to tell the system to create a list of the Documaker Server
rules executed and the amount of time (in milliseconds) spent for each execution:.

< Debug_Switches >

Enable_Debug_Options = Yes

BaseRuleTime = Yes

FormSetRuleTime = Yes

ImageRuleTime = Yes

ImageFuncTime = Yes

FieldFuncTime = Yes

The rule timings are written to a standard debug trace file. Individual records are tab-
delimited with the following fields:

Turn off the time stamp associated with the rule timing options listed above, set the
PrintTimeStamp option to No.

< Debug_Switches >

PrintTimeStamp = No

Option Description

Enable_Debug_Options Enter Yes to turn on the logging service.

BaseRuleTime Enter Yes to report base or job-level (level 1) rules.

FormSetRuleTime Enter Yes to report form set-level (level 2) rules.

ImageRuleTime Enter Yes to report image-level (level 3) rules.

ImageFuncTime Enter Yes to report image functions.

FieldFuncTime Enter Yes to report field functions.

Field Description

Standard Log Trace
info

This field tells you the log entries data, time, and process ID. You can
omit this information using the PrintTimeStamp option (see below).

Rule Type This field provides information like: Base Rule Forward, Base Rule
Reverse, and so on.

Time Spent Label The comment label for the Time Spent field:

Time Spent (sec)

Time Spent The time, in milliseconds, spent executing the rule.

Rule Name The name of the rule. Image functions use this format:

"Image Name"."Rule Name"

Field functions use this format:

"Image Name"."Field Name"."Rulename"

Chapter 2
Understanding the System

114

ANALYZING DAL PERFORMANCE

In addition to DAL profile information which includes the time spent per function
(DAL subroutine), the system places information into the TRACE file about the total
time spent in each function and number of times each function is called.

An example of this information is shown below. This example is from a GenData run
which processed 600 transactions. The total processing time was 23 seconds. Only the
beginning of the log is shown because of space considerations.

The log is sorted by the cumulative time spent in each script with longest running scripts
at the top. The log information appears in the trace file and is written out when the
program terminates.

You will find this information appears in the log:

Some scripts look like they are listed twice, but are not. For instance, in the example
below PostTrans_Prod() and PostTrans_Prod actually are the script that had a call to
PostTrans_Prod (all it had was “PostTrans_Prod()”) and the actual PostTrans_Prod DAL
subroutine.

When you analyze the log, keep these things in mind:

• The scripts you need to review are usually the scripts at the top of the log.

• Review any scripts that are executed more times than number of transactions in the
run. You can probably modify your implementation so the script is run no more
than once per transaction or once per job.

• Review the scripts that run the longest and see if they can be optimized. For
example, move assignment of variables outside the loop. Consider parts that can be
executed only when needed.

• Typically, scripts that take longer to run or receive a higher number of calls are
good candidates for review of either the script itself or the implementation.

• Clock resolution is set at one millisecond. If a script executes in less than one
millisecond, the time spent equals zero (0). Scripts that show a high number of calls,
even if the time is shown as zero (0), or a relatively small number are good
candidates for optimization.

Item Description

Executed XXX The number of times script was executed.

Cumulative
run time
X.XXX

The time in seconds dot milliseconds spent in this script and all scripts/code
that was executed from this script.

Compiled or
Non-compiled

Whether or not the script was compiled.

Name The name of the script or the actual script if it was not in an external file.

Using Run-Time Options

115

NOTE:The extra logging does affect total time spent executing the program being
analyzed and should not be turned on in a production environment or left on
when not needed.

Executed 600 times Cumulative run time 2.840 Non-compiled Script
PostTrans_Prod()

Executed 600 times Cumulative run time 2.824 Compiled Script
PostTrans_Prod

Executed 600 times Cumulative run time 2.451 Non-compiled Script
PREFILL_VARS()

Executed 600 times Cumulative run time 2.420 Compiled Script
PREFILL_VARS

Executed 600 times Cumulative run time 1.954 Compiled Script
DEFLIB\BarCode.DAL

Executed 534 times Cumulative run time 0.792 Compiled Script
DEFLIB\Delete_Images.DAL

Executed 1150 times Cumulative run time 0.784 Non-compiled Script
CALL("SERVPHONENUM")

Executed 1150 times Cumulative run time 0.737 Compiled Script
DEFLIB\SERVPHONENUM.DAL

Executed 600 times Cumulative run time 0.372 Non-compiled Script
COPYCOUNT()

Executed 1813 times Cumulative run time 0.359 Non-compiled Script
call("INSUREDNAME1")

Executed 1813 times Cumulative run time 0.312 Compiled Script
DEFLIB\INSUREDNAME1.DAL

Executed 600 times Cumulative run time 0.295 Compiled Script
COPYCOUNT

Executed 1180 times Cumulative run time 0.234 Non-compiled Script
call("INSUREDNAME2")

Executed 1200 times Cumulative run time 0.205 Non-compiled Script
call("BROKERNAMELIT")

Executed 1180 times Cumulative run time 0.203 Compiled Script
DEFLIB\INSUREDNAME2.DAL

Executed 567 times Cumulative run time 0.186 Non-compiled Script
Return ((?("POL.NUM.LIT")) & " " & (?("INS.POL.NUM")) &
(?("INS.POL.YREFF")))

Executed 1200 times Cumulative run time 0.186 Non-compiled Script
Call("DMGMERGESETID")

Executed 1137 times Cumulative run time 0.173 Non-compiled Script
call("POLEFFDATE")

Executed 534 times Cumulative run time 0.159 Non-compiled Script
MSGB03A()

Executed 534 times Cumulative run time 0.158 Non-compiled Script
MSGD12A1()

Executed 600 times Cumulative run time 0.158 Non-compiled Script
CALL("SERVADDR1DAL")

Executed 534 times Cumulative run time 0.142 Non-compiled Script
MSGS04A()

Executed 534 times Cumulative run time 0.141 Non-compiled Script
MSGB07B()

Executed 1137 times Cumulative run time 0.139 Non-compiled Script
call("POLEXPDATE")

Executed 534 times Cumulative run time 0.126 Non-compiled Script
MSGS09B()

Executed 1149 times Cumulative run time 0.126 Non-compiled Script
call("DUEDATE")

Chapter 2
Understanding the System

116

Executed 534 times Cumulative run time 0.126 Non-compiled Script
MSGB11A()

Executed 550 times Cumulative run time 0.126 Compiled Script
DEFLIB\UPDATESCANABLE.DAL

Executed 600 times Cumulative run time 0.125 Non-compiled Script
CALL("SERVADDR3DAL")

Executed 534 times Cumulative run time 0.125 Compiled Script
DEFLIB\WITHDRBILLDAY2.DAL

Executed 534 times Cumulative run time 0.125 Non-compiled Script
CALL("WITHDRBILLDAY2")

Executed 534 times Cumulative run time 0.125 Non-compiled Script
MSGM11A()

Executed 534 times Cumulative run time 0.124 Non-compiled Script
MSGD12A3()

Executed 1200 times Cumulative run time 0.124 Compiled Script
DEFLIB\DMGMERGESETID.DAL

Executed 534 times Cumulative run time 0.124 Non-compiled Script
MSGS08A()

Executed 1137 times Cumulative run time 0.123 Compiled Script
DEFLIB\POLEXPDATE.DAL

Executed 534 times Cumulative run time 0.111 Non-compiled Script
MSGC01A()

Executed 534 times Cumulative run time 0.111 Compiled Script MSGB03A

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGM07A()

Executed 570 times Cumulative run time 0.110 Non-compiled Script
call("COMPANYNAMELIT")

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGD10C()

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGM02A()

Executed 600 times Cumulative run time 0.110 Non-compiled Script
CALL("SERVADDR2DAL")

Executed 534 times Cumulative run time 0.110 Compiled Script MSGD12A1

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGD10G()

Executed 600 times Cumulative run time 0.109 Non-compiled Script
CALL("DMGTOTALSHEETS")

Using Run-Time Options

117

Handling Large Extract and NAFILE Files
Prior to version 11.5, during processing the system stored records which contained
offsets back into the originating transaction record. This offset was stored as a 32-bit
integer (a 32-bit LONG, where a LONG integer can have a value of less than 2 gigabytes).
Because the value of these offset references to the input was limited to less than 2
gigabytes (GB), the maximum size of the input data that could be stored and processed
was also limited to less than 2 GB. The system would warn you with one of these
messages if it was approaching the limit:

NOTE:Prior to version 11.5, you would divide the input into multiple files to work
around this limitation.

This limitation was removed in version 11.5, which lets you process input files that
exceed 2 GB. The solution differs, depending on the platform you run on. The following
topics describe the solution for the various platforms.

Handling Large Files on Windows, UNIX, and Linux
On the Windows, UNIX, and Linux platforms, the system uses a 64-bit integer value to
allow for larger offset values to be written to the TRNFILE, NEWTRN, and Recipient
Batch output files. To process input files larger than 2 GB, you must update the
TRNDFDFL.DFD and RCBDFDFL.DFD files to reflect these larger file offsets.

NOTE:The TRNDFDFL.DFD and RCBDFDFL.DFD files are usually stored in the
DEFLIB directory.

Change the following fields in the TRNDFDFL.DFD and RCBDFDFL.DFD files from
a data type of LONG to a data type of LONG_LONG and expand the length from 10
to 19 characters.

Here is an example of the changes you would make:

< Field:X_Offset >

INT_Type = LONG_LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 19

Key = No

Required = No

< Field:NA_Offset >

INT_Type = LONG_LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

Program Message

GenTrn DM15065: Error in BuildTrnRecs(): Offset for extract file is approaching 2GB
limit.

GenData DM30049: Error in <RULLoadXtrRecs>(): Offset for extract file is approaching
2GB limit.

Chapter 2
Understanding the System

118

EXT_Length = 19

Key = No

Required = No

< Field:POL_Offset >

INT_Type = LONG_LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 19

Key = No

Required = No

Using the
AutoIncreaseOffset

Lengths option

The AutoIncreaseOffsetLengths INI option lets you prevent the automatic increasing of
the X_Offset, NA_Offset, and POL_Offset field lengths from 10 bytes to 19 bytes.

< Control >

AutoIncreaseOffsetLengths =

Handling Large Extract and NAFILE Files on z/OS
On z/OS, files larger than 2 gigabytes in size are processed as Virtual Storage Access
Method (VSAM) Key Sequenced Data Set (KSDS) files. See the following topics in the
Documaker Installation Guide for information on setting up the extract file and the
NAFILE/POLFILE pair as VSAM KSDS files:

• Defining the Extract file as a VSAM KSDS

• Creating NAFILEs and POLFILEs as VSAM KSDSs

NOTE:The capability to define the extract file as a VSAM KSDS was added in version
11.5. The capability to create the NAFILE and POLFILE as VSAM KSDS files
was added in version 9.7.

Option Description

AutoIncreaseOffsetLengths Before the release of version 11.5, the maximum size of the
extract, NAFILE, and POLFILE files was 2.2 gigabytes. Offsets
into these files took 10 digits to represent, for example
2,200,000,000. Version 11.5 added support for files larger than
2.2 gigabytes and to accommodate the larger files, the X_Offset,
NA_Offset, and POL_Offset fields were automatically increased
from the value (usually 10) in the DFD file to 19.
To begin reading and writing of files over 2.2 gigabytes, you did
not have to change your DFD files, but, the automatic increasing
of the length of these fields causes the record length of the
TRNFILE, NEWTRN, and recipient batch files, which contain
these fields, to be increased.

If you do not want the record length for these files to be changed,
set this option to No. The default is Yes.

Controlling What is in the MultiFilePrint Log

119

CONTROLLING
WHAT IS IN THE
MULTIFILEPRINT

LOG

Use the MultiFileLogRecord option to control the content of the log file produced
during multi-file printing. For certain print drivers (PDF, RTF, XML, or HTML), you
must generate a separate print file for every transaction in a batch.

During this process, the system creates a log file to keep track of the print files it creates.
The MultiFileLogRecord option lets you control the contents of the log file produced.

For multiple step processing using the multi-file callback function, you must change the
FSISYS.INI file as shown below:

< Print >

CallbackFunc = MultiFilePrint

MultiFileLog = {log file name and path}

MultiFileLogRecord = ~DALRUN MyScript.DAL

The system first looks for MultiFileLog option in the logical printer control group first,
such as Printer1, Printer2, Printer3, and so on. If not found, it then looks for this option
in the Print control group.

To control the information written to the MultiFileLog file, specify the name of the
DAL script, such as MyScript.DAL, in the MultiFileLogRecord option. The system will
then execute this script whenever a new output file needs to be created. If a string is
returned, the string is used instead of building the log record as a set of semicolon
delimited fields. If an empty string is returned, the current log record format is
produced.

NOTE:A linefeed is appended to the string before it is written to the log file.

The DAL script could be as simple as one that returns the string from the DAL function,
DeviceName. Here is an example:

RETURN(DeviceName())

NOTE:For more information about multiple step processing, see Using Multiple step
Processing on page 22 and the discussion of the MultiFilePrint callback function
in Using the PDF Print Driver.

For this processing mode You set the

Multiple step processing
(GenTrn, GenData, and GenPrint)

CallbackFunc option in the Print control group to
MultiFilePrint

Single step processing
(GenData)

MultiFilePrint option in the PrintFormset control
group to Yes

Chapter 2
Understanding the System

120

In single step processing (GenData), use the MultiFilePrint option in the PrintFormset
control group, as shown here:

< PrintFormset >

MultiFilePrint = Yes

LogFileType =

LogFile = {log file name and path}

MultiFileLogRecord = ~DALRUN MyScript.DAL

... (other applicable options omitted - see the following note)

The PrintFormset rule checks for the MultiFileLogRecord option and if a string is
returned, it uses the string instead of building the log record as a set of semicolon
delimited fields. If an empty string is returned, the current log record format is
produced.

If you set the LogFileType option to XML, the system generates a log file using XML
and ignores the MultiFileLogRecord option.

NOTE:There are additional INI settings required for single- and multiple step
processing. For more information about single step processing, see the
discussion of the PrintFormset rule in the Rules Reference.

Using INI Built-In Functions

121

USING INI
BUILT-IN

FUNCTIONS

You can use these INI built-in functions when running the system:

There are also several functions you can use to retrieve information from WIP records.
See Accessing WIP Fields on page 125 for more information.

And, see Defining Built-in Functions via Studio on page 129 for information on how
you can use Documaker Studio to define built-in functions.

Built-in function Form more information, see

~GetEnv ~GetEnv on page 122

~GVM ~GVM on page 122

~Platform ~Platform on page 123

~OS ~OS on page 123

~DALRUN ~DALRUN ~DALVAR on page 123

~DALVAR ~DALRUN ~DALVAR on page 123

~Encrypted ~Encrypted on page 124

~ProcessID ~ProcessID on page 124

~WIPField ~WIPField on page 125

Chapter 2
Understanding the System

122

~GetEnv Here are examples which show how you can use the GetEnv function.

< MasterResource >

DefLib = ~Getenv MYDRIVE \mstrres\deflib\

This INI function recognizes a value that begins with a tilde (~). It then parses out the
next word and looks to see if a built-in function has been registered with that name, such
as getenv in the above example.

Once found, the function is called. It then parses the first word to get the environment
variable, such as MYDRIVE. Leave a space before and after the environment variable.

Finally, the function puts together the result of the environment data with the
remainder of the data line, as in \mstrres\deflib\.

So, if MYDRIVE=G:\APPS you would see G:\APPS\mstrres\deflib\.

NOTE:Before executing an application whose INI contains the GetEnv function, you
must initialize the operating system environment variables. For Windows 32-
bit, you enter on a command line:

Set EnvironmentVariable = Value

Here are some examples:

Set MyDrive=G:\APPS

Set UserID=MVF

Be sure to leave a space before and after the environment variable.

For this example, assume the environment contains USERID=(INITIALS) and the INI
contains:

< SignOn >

UserID = ~GetEnv USERID

The logon process picks up your user ID from an environment variable.

This method results in a very generic built-in function that does not assume what the
data represents. However, if you were using it to build file names, the environment
variables would have to be consistent in terms of whether they contained the final
backslash or not. In this example, MYDRIVE=G:\APPS\ produces an invalid path
because a double backslash would occur.

~GVM Use the ~GVM (global variable member) function to tell the system to use a global
variable to get the value. Here is an example:

< NYAAMVA>

Ins_Key = ~GVM MyGVMName

NOTE:You can only use the ~GVM function in batch processing. This function is not
available to Documaker Workstation.

Using INI Built-In Functions

123

~Platform Use the ~Platform function to create multi-platform INI files. The possible return
values are: PC, and MVS. This lets you set up INI control groups and options that work
on either a PC or MVS platform. When the system executes this function, it replaces
~Platform with either PC or MVS, depending on the platform. Here is an example:

< Print_Batches >

P_Batch1 = < Config:~Platform > P_Batch1

P_Batch2 = < Config:~Platform > P_Batch2

P_Batch3 = < Config:~Platform > P_Batch3

Error = < Config:~Platform > Error

Manual = < Config:~Platform > Manual

< CONFIG:PC >

P_Batch1 = .\data\Batch1

P_Batch2 = .\data\Batch2

P_Batch3 = .\data\Batch3

Error = .\data\Error

Manual = .\data\Manual

< CONFIG:MVS >

P_Batch1 = DD:Batch1

P_Batch2 = DD:Batch2

P_Batch3 = DD:Batch3

Error = DD:Error

Manual = DD:Manual

NOTE:You can also use the File option in the INIFiles control group to load multiple
INI files. Place this control group and option in your FSIUSER.INI file. Here
is an example:

< INIFiles >

File = PC.INI

File = MVS.INI

You can assign any name as long as you include the INI extension. You can have
as many File options as needed. You can customize these files based on the
platform you are using.

~OS Use the ~OS function to determine the current operating system environment. The
possible return values are: WIN32, HPUX, AIX, MVS, Sun, and OS1100.

Here is an example of the functions usage in the INI file. Be sure to include the space
after ~OS.

< DBHandler:DB2 >

BindFile = <DB2:~OS > bindfile =

< DB2:WIN32 >

BindFile = w32bin\DB2LIB.BND

This setup allows for the different bindfiles being specified for different operating
systems — compare with the ~Platform function which returns PC for Win32.

~DALRUN
~DALVAR

Use the DALRUN and DALVAR built-in functions to execute DAL scripts or get DAL
variable information you can use to complete INI options. For instance, you can use
this to map unique recipient information into batch records.

Chapter 2
Understanding the System

124

These functions are automatically registered when DAL is initialized. Several programs
can initialize DAL, such as the GenData and GenPrint programs, the AFEMAIN
program (including RACLIB/RACCO), Documaker Studio, and various utilities such
as ARCRET, ARCSPLIT, and DALRUN.

NOTE:If you try to use these functions in systems that do not initialize DAL, an
incorrect INI value is returned.

Here is an example:

< INIGroup >

Option1 = ~DALRUN MY.DAL

Option2 = ~DALVAL XYZ_VAL

If the program requests Option1, the script MY.DAL is executed and the resulting
option is assigned.

If the program requests Option2, the DAL variable XYZ_VAL is located and its contents
are assigned to the INI option.

~Encrypted Use this built-in function to place encrypted values in an INI file. To get the encrypted
value, you can execute the CRYRU utility. Here is an example of how you could use this
utility on Windows:

cryruw32.exe user1

The result would be something like this:

Encrypted string (2yz76tCkk0BRiPqLJLG00)

You then paste the value (2yz76tCkk0BRiPqLJLG00) into an INI file and use the
~ENCRYPTED INI function, as shown in this example:

< SignOn >

UserID = ~ENCRYPTED 2yz76tCkk0BRiPqLJLG00

When Documaker Server or IDS runs and gets the value of the UserID option in the
SignOn control group, it will get the real value USER1.

NOTE:The encryption method used is proprietary.

Keep in mind these limitations:

• Only Windows and UNIX platforms are supported.

• This feature has nothing to do with secure PDF or PDF encryption.

• Almost any INI option can be encrypted.

~ProcessID The ProcessID INI built-in function (~ProcessID) provides separate trace files for
different instances of Documaker Server/Documaker Bridge. This makes it easier to find
performance problems and to separate multiple instances.

Here is an example of how you would set up your INI files in Documaker Server or
Documaker Bridge to use the ProcessID built-in INI function:

Using INI Built-In Functions

125

< Data >

TraceFile = dprtrc~PROCESSID .log

Here is an example of an output trace file:

1. Tue May 25 21:27:26.489 2006 pid=00003896 SQInstallHandler: Info
from SQLGetInfo, DBName=<>, DBMS=<Oracle>, DBMS Version=<09.02.0010>

2. Tue May 25 21:27:26.489 2006 pid=00003896 SQInstallHandler: Info
from SQLGetInfo, DriverName=<SQORA32.DLL>, DriverVer=<09.02.0000>,
DriverODBCVer=<03.51>

3. Tue May 25 21:27:26.677 2006 pid=00003896 SQHandler (LOCATEREC):
ENTER

4. Tue May 25 21:27:26.677 2006 pid=00003896 SQBindParamData: calling
_SQLBindParameter, len = <10>, <JOB_ID> = <DEF_JOB_ID>

5. Tue May 25 21:27:26.677 2006 pid=00003896 select
STATUS,JOB_ID,COMM_RECS,LASTREC from SJSRPX1_ORA_RESTART where
JOB_ID = ?

6. Tue May 25 21:27:26.693 2006 pid=00003896 SQHandler (LOCATEREC):
SQLocate returned a row.

~WIPField Use this built-in INI function to tell the system to substitute a value in the INI file with
a value from the WIP record. This works with either Documaker Workstation
(AFEMAIN) or the WIP Edit plug-in.

For example, if you want the UserDict value to equal the value for ORIGUSER in the
current WIP record, you would set up the following option:

< Spell >

UserDict = ~WIPFIELD ORIGUSER

ACCESSING WIP FIELDS

You can access most standard WIP fields using the following built-in INI functions. For
instance, if you want to create an export file and a PDF file and have the names for these
files be identical except for the extension, you could use these function to create a
unique name for a file that does not depend on the current time, but rather on a time
that does not change, such as the create or modify time.

Function Returns the

~Key1 WIP Key1 field

~Key2 WIP Key2 field

~KeyID WIP KeyID field

~ORIGUSER Original WIP User ID field (the ID used to create the WIP)

~CREATETIME WIP Create Time field. You can format this option.

~MODIFYTIME WIP Modify Time field. You can format this option.

~ORIGFSID Original WIP form set ID.

Keep in mind when routing messages, the original form set ID is not
necessarily the same as the current form set ID.

~TRANCODE WIP Transaction Code field.

Chapter 2
Understanding the System

126

NOTE:You can access all of the WIP fields via DAL using the WIPFld function. And,
since DAL can be accessed via the ~DALRUN function (see page 123), you have
another method you can use to get those fields.

The system retrieves the Modify Time and Create Time from the WIP record. You can
use the ~DATE function to get the current date value. You can also include a parameter
to tell the system to format the date.

Keep in mind that if you are trying to use the value as part of a file name, you should
only include characters that are valid in file names.

Here is an example of how to specify a date format:

~MODIFYTIME ;%m-%d-%Y;

Semicolons (:) begin and end the string that defines the date format. If you omit a
semicolon, you get the hexadecimal value of the date for ~MODIFYTIME and
~CREATETIME. For the ~DATE function, you get the format specified by the
DateFormat option in the Formats control group. This option defaults to:

%m/%d/%y

If you include the semicolon, but omit the format information after the semicolon, for
~MODIFYTIME and ~CREATETIME you get the format specified by the DateFormat
option in the Formats control group. This option defaults to:

%m/%d/%y.

Formatting arguments Format arguments consists of one or more codes. Begin each code with a percent sign
(%). Characters that do not begin with a percent sign are copied unchanged to the
output buffer.

Any character following a percent sign that is not recognized as a format code is copied
to the destination—so you can enter %% to include a percent sign in the resulting output
string.

You can choose from these format codes:

~DESC WIP Description field.

~DATE The current date value.

~USERID Currently logged in user ID.

~FIELD A field value from the form set.

Function Returns the

Code Description

%d Day of month as decimal number (01 - 31)

%H Hour in 24-hour format (00 - 23)

%I Hour in 12-hour format (01 - 12)

Using INI Built-In Functions

127

Here are some examples:

Here are some additional format attributes for certain codes:

%m Month as decimal number (01 - 12)

%M Minute as decimal number (00 - 59)

%p Current locale's AM/PM indicator for 12-hour clock

%S Second as decimal number (00 - 59)

%y Year without century, as decimal number (00 - 99)

%Y Year with century, as decimal number

%A Weekday name, such as Tuesday

%b Abbreviated month name, such as Mar

%B Full month name, such as March

%j Day of year as decimal number (001 - 366)

%w Weekday as decimal number (0-6, with Sunday as 0)

%@xxx Specify language locale (where xxx is a 3-letter code that identifies one of the
supported languages. For example. A format of %@CAD%A might produce
mardi, the French word for Tuesday.

This format Will result in

%m-%d-%Y 01-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 01/01/09 at 11:57 PM

Code Description

Chapter 2
Understanding the System

128

Specifying locales When you use %@xxx in the format string, the xxx represents a three-letter code that
identifies one of the supported language locales.

Until a locale format code is encountered in the format string, the default locale
(typically USD which is US English) is used. Once a locale format code is found, the
locale specified remains in effect until another locale code is encountered.

For example, suppose the input date is 03-01-2009. This table shows the output from
various formats:

Using the ~Field
function

The ~Field function lets you use a quoted parameter string to name the specific field to
locate within the form set. The definition of the field can name a specific section, form,
and group (Key2 or Line of Business), separated by semicolons, that contains the field
requested. This lets you make sure you are retrieving a specific field occurrence within
the document.

Code Description

Tells the system to suppress leading zeros for the following format codes. This flag
only affects these format codes:

%#d, %#H, %#I, %#j, %#m, %#M, %#S, %#w

For example, if %d outputs 01, using %#d will produce 1. Subsequent codes are not
affected unless they also have this flag.

> Tells the system to uppercase the resulting text. This flag only affects these format
codes:

%>p, %>A, %>b, %>B

For example, if %A results in Tuesday, using %>A will produce TUESDAY.
Subsequent codes are not affected unless they also have this flag.

< Tells the system to lowercase the resulting text. This flag affects only these codes:

%<p, %<A, %<b, %<B

For example, if %b results in Mar, using %<b will produce mar. Subsequent codes are
not affected unless they also have this flag.

<> Tells the system to capitalize the first letter of the resulting text. This flag affects only
these codes:

%<>p, %<>A, %<>b, %<>B

For example, if %p results in AM, using %<>p will produce Am. Subsequent codes
are not affected unless they also have this flag.

This format Will result in

 “ %A, %B %d” “Monday, March 01”.

 “%@CAD%A %@CAD%A, %B %d” “lundi, mars 01”

“%A, %@CAD%B %d” “Monday, mars 01”

“%@CAD%A, %@USD%B %d” “lundi, March 01”

Using INI Built-In Functions

129

Because object names, like fields, sections, forms, and groups, can sometimes contain
spaces or other special characters, you should enclose the entire definition in quotation
marks (“). You cannot quote individual elements of the search.

Here are some examples:

This is a valid definition for the ~Field function:

option = ~FIELD "Field;Section;Form;Group"

This is not a valid definition for the ~Field function:

option = ~FIELD "Field";"Section";"Form";"Group"

DEFINING BUILT-IN FUNCTIONS VIA STUDIO

In addition to using INI files to define built-in INI functions, you can implement the
following built-in functions via Documaker Studio:

For example, to use Studio to tell the system to print the current date in the footer
section of a page, you would first create a field in the footer section at the location where
you want it to appear. Then name this field as shown here:

No other rules or script calculations are required. During print processing, each time
the section that contains this field prints, the system will assign a date value.

Field Description

~HEXTIME A generated eight-character hexidecimal time value.

~DATE The current date.

~DALRUN (script) Tells the system to execute the named DAL script which is expected to
return a value.

Enter ~DATE in the Name
field

Chapter 2
Understanding the System

130

OUTPUTTING
WIP FIELD

DATA ONTO
THE XML TREE

Documaker can export these WIP-related transaction fields onto the XML tree:

The XML print driver (print type XMP) includes WIP field data in the output when it
is generated from GenData's PrintFormset rule or the GenPrint program. You use the
Trigger2WIP control group to map the field information. This WIP field information
is included in the resulting XML tree under the DOCSET tag.

NOTE:The transaction batch record is defined by the DFD which is defined via the
RCBDFDFL setting. The mapped WIP fields must be defined in the WIP DFD
file or the internal WIP definition if an external DFD is not used.

Here is an example of the Trigger2WIP control group set up for field mapping:

< Trigger2WIP >

Company = Key1

LOB = Key2

PolicyNum = KeyID

TransactionType= TranCode

The output XML tree should have this format:

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT TYPE="RPWIP" VERSION="11.2">

<DOCSET NAME="">

<LIBRARY NAME="" CONFIG="Batch Processing">Batch
Processing</LIBRARY>

<ARCEFFECTIVEDATE>20061115</ ARCEFFECTIVEDATE>

<KEY1 NAME="COMPANY">SAMPCO</KEY1>

<KEY2 NAME="LOB">LB1</KEY2>

<KEYID NAME="PolicyNum">1234567</KEYID>

<TRANCODE NAME="TRANSACTIONTYPE">T1</TRANCODE>

<STATUSCODE NAME="STATUSCODE"/>

<DESC NAME="DESC"/>

. . .

</DOCSET>

</DOCUMENT>

Key1 Key2 KeyID

TranCode StatusCode Desc

GuidKey TrnName LocID

SubLocID Jurisdictn QueueID

Using Form Inclusion Information

131

USING FORM
INCLUSION

INFORMATION

Documaker writes form inclusion information into output files. This means triggers are
retained in the resulting transaction set for groups, forms, and sections. This can help
you determine which events led to the resulting document set.

In NAFILE output, additional records hold the trigger information. An example of the
layout is shown here:

\TRIG=;TriggerName; ObjectTypeNumber; Name; SecondName; ThirdName;
TransactionCodes; Recipients; SearchMask; RequiredFlags; CopyCount;
ConditionalMask; FunctionName; RuleData; ItemsTriggered;
TriggerDescription;

The trigger's name is included at the start of the line. For instance, you will see Manual
if it is a non-DAL trigger (the legacy SetRecip trigger rule).

The system distinguishes between the group, form, and section trigger records by
including a name in the record, as this table shows:

In the XML output (exported or printed) the trigger information is output in the same
way it is stored in regular resources except the < TRIGCOUNT > node indicates the
number of items included by the trigger.

Here is an example of a group trigger entry in the NA file using DAL triggers:

\TRIG=;ALWAYS;3;FSI;GL;;;;;1;1;;DALTRIGGER;ALWAYS;1;This is my
trigger description;

\TRIG=;ALWAYS;3;FSI;GL;Extra;;;;1;1;;DALTRIGGER;ALWAYS;1;;

Here is an example of the form entry:

\TRIG=;Manual;4;FCG 0001 04
93;;;T1;INSURED,COMPANY;11,HEADERREC,98,~0;0;1;;;;1;;

Here is an example of the section entry:

\TRIG=;ALWAYS;6;q1snam;;;;AGENT(1),COMPANY(1),INSURED(1);;1;1;;DALT
RIGGER;ALWAYS;1;;

Here is an example of a form entry in the NA file for a SetRecip (manual) trigger:

\TRIG=;Manual;4;MEDICAL HISTORY USING
MEDBODY1;;;;;;0;0;10,TREATMENT;;;1;;

Here is an example of a section entry for a SetRecip trigger:

\TRIG=;Manual;6;MEDBODY1;;;;AGENT,HOMEOFFICE,INSURED;10,TREATMENT;1
;1;;;;35;;

Record type Placement in NA Format

Group Top of file, after
any addressee
records

\TRIG=;TriggerName;3;GroupName1;GroupName2;Gr
oupName3;

Form Before the first
section of the
form

\TRIG=;TriggerName;4;FormName; ; ;

Section After the section
\NA header line

\TRIG=;TriggerName;6;SectionName; ; ;

Chapter 2
Understanding the System

132

NOTE:To produce form inclusion records, you must have an MRL created in Studio.
You must also include the RunTriggers rule in your AFGJOB.JDT file.

Selecting the Display Language

133

SELECTING THE
DISPLAY

LANGUAGE

Documaker Studio, Documaker Document Factory, and other Documaker products
provide user interfaces and online help that you can translate into your preferred
language. This includes producing error messages based on your default language setting
and supplying log file messages that are translatable.

This topic outlines how to select the language you want to use in a product once the
translation of the language and help files has been completed.

Documaker Studio
In Documaker Studio, use the Settings Manager to change the Configuration Options.
In the Language field, select the language to be used in the Documaker Studio interface
and the content of the online help:

Keep in mind that messages often contain dynamic content such as file names that will
not be translated with the product.

Certain Microsoft Windows managed items will continue to display according to your
Windows setup and will not be altered based upon the language you choose for our
application display. For instance, file browsing in Windows will remain under Windows
control even if offered from a Documaker application configured to another language.
And simple message dialogs that might offer buttons of OK, Cancel, Yes and No will
also display according to the Windows configuration and not in your Documaker
product language setting.

Transall
The Transall Editor checks the default language for the current user according to
Windows and then look for this resource DLL:

TranResDllXX.dll

where XX is the Oracle language abbreviation

The Transall Engine looks for the Oracle NLS_LANG environment variable to
determine the name of the Oracle message file to use. The Transall message file name
uses this naming convention:

transall##.msb

where ## is the language abbreviation.

Chapter 2
Understanding the System

134

Documaker Server
Documaker Server looks for the Oracle NLS_LANG environment variable to determine
the name of the Oracle message file to use. The Documaker Server message file name
uses the following naming convention: “xlt##.msb” where ## is the language
abbreviation.

Documaker Server
Error Handling

If the Documaker message file (xltus.msb) cannot be found by the Documaker Server,
you will see messages like this:

Warning: Unable to locate message file in directory C:\PATH\Lang

Unable to find message number 15068

Documaker Add-In
You can select the desired language by starting Word and selecting a list of enabled
editing languages and a primary editing language. The primary editing language is the
default Add-In text language and is the controlling language for Add-In forms, menus,
boxes, ribbons, on-line help, and any other visual items within the Add-In.

The Add-In will pick up the preferred language based on the language setting in Word,
assuming the resource for that language is available.

Please note that certain system dialogs (like Open File, Save File) are localized based on
regional settings of the Windows system itself and thus may show a different language
than the one you specify.

Documaker Add-In
Error Handling

The Documaker Add-In defaults to English if the specific language resource DLL is not
found.

Using XML Files

135

USING XML
FILES

You can use these rules to create an alternative data search method so you can do direct
XML mapping within Documaker Server:

NOTE:For more information on these rules, see the Rules Reference.

The extract list and the XML tree are separate. Once the XML tree is loaded, it remains
loaded and can be searched by subsequent rules — just like any extract list.

The system supports a mix of these search methods:

• An XDB token reference such as ?TOKEN looked up in the XDB to get the actual
search text

• The legacy Offset,Mask method such as 10,HEADERREC)

• An XML search text, such as !/descendant::Item

In most cases, the XBD token reference will be the preferred method.

An XDB entry can return either a legacy offset/length search mask or an XML search
path. XML search masks must begin with an exclamation mark (!). The leading
exclamation mark is not actually sent to the search routine.

You can use text movement and formatting rules, like Move_It, MoveNum, FmtDate,
and FmtNumber, to do simple operations, but keep in mind some of the more
complicated options may not work.

For instance, Move_It supports a same record flag. This does not work in XML searches.
Likewise, Move_Num supports several binary input data types like BCD and you cannot
include those in XML at present.

More complicated rules that have multiple search criteria like SetAddr, SubExtractList,
and Concat do not work with XML files.

HANDLING OVERFLOW

The XML search infrastructure has position support.

/descendant::Forms/child::form[position()=2]/child::field1

The 2 in this case indicates you want the second form child. Since you would not want
to write the search to work with every explicit number, you must indicate where the
overflow variable fits into the equation, as shown here:

/descendant::Forms/child::form[position()=****]/child::field1

Rule Description

UseXMLExtract Uses the extract list loaded by the transaction as the source of the XML tree.

XMLFileExtract Assumes that the extract list contains the name of an external file which is
the source of the XML tree.

Chapter 2
Understanding the System

136

The system first scans the search to see if a replacement is needed for the overflow value.
In this case, it would insert the 2 (taken from the overflow variable value) and then do
the actual XML search.

You can also handle overflow within overflow by specifying an overflow variable name
in the search. For instance, suppose you have multiple cars and each car can have
multiple drivers.

<car>

<driver>Tom<driver/>

<driver>Tim<driver/>

<car/>

<car>

<driver>Sally<driver/>

<car/>

If you had two overflow variables, one working for car and one for driver, you could create
a search like this:

/descendant::car[**carvar**]/child::driver[**drivevar**]

Where the system gets two overflow variables and insert them into the search text.

TRIGGERING FORMS AND SECTIONS

You can do simple triggering based upon the existence of a node. For example, this

/child::car

would trigger a form if car is a child of the root node. Referring back to the earlier
example, you could make it trigger two of the same forms because there are two cars.

The system supports value matching. So you can do the following:

/child::car[child::driver="Tom"]

Or, you can use the RecipIf rule to trigger a section with custom rule parameters, as
shown in this example:

A={!/child::car/child::driver 1,7}::if
(A='Tom')::return("^1^")::end::;

If there is such a value in that element in the XML file, the section would trigger. For
this to work, define the offset of the variable attribute as 1 and the length of the data
you want to compare.

You can also use XML search strings such as these:

This string Finds

!descendant::PolicyNumber The PolicyNumber value

!descendant::Forms/child::Form All forms

Using XPath

137

USING XPATH XML path locator (XPath) complies with the standard syntax specifications (W3C
standards) found in the XML Path Language, but differs in some regards because it was
developed to support Documaker applications. Because this version of XPath has some
limitations, you should check the syntax using the XPATHW32 utility.

XPATH SYNTAX

Here are examples of the valid axes, function calls, signs, and operators to help you
understand and use the XPath syntax.

Axes
You have these axes:

When used, an axis is always followed by a context node name separated by two colons
(::). For example, the syntax descendant::para locates all para descendants of the current
context node.

Name Used to locate the

ancestor Ancestors of the current context node

ancestor-or-self Ancestors of the current context node and itself

parent Parents of the current context node

descendant Descendants of the current context node

descendant-or-self Descendants of the current context node and itself

attribute Attributes of the current context node

child Children of the current context node

following-sibling Following siblings of the current context node

following Context nodes that follow the current node

preceding-sibling Preceding siblings of the current context node

preceding Context nodes that precede the current node

self Self context node

Chapter 2
Understanding the System

138

Symbols
You can use these calculation operators:

Where !=, <, >, + can be used as calculation operators in function position(), such as,
[position()=2], [position()!=2], [3+i], [position()<5], and so on. The equals sign (=) is also
used for evaluations such as @Name=’Auto’.

You can use these symbols in a valid XPath:

Where the pair of brackets ([]) enclose a condition for evaluation, the at symbol (@)
is an abbreviation of the attribute, the asterisk (*) is used for a wild card search, and
others are used in a valid XPath, as shown below.

Functions
You can use these functions:

= != < > + -

/ // * :: [] @

Function Returns

concat(string, string, string… The concatenation of the strings.

contains(string, string) The data of the string. Here are some examples:
contains("tattoo","t")

contains("tattoo","tatt")

ends-with(string, string) The data of the string. Here are some examples:
ends-with("tattoo","tattoo")

ends-with("tattoo","atto")

last() The last element in the selection.

name() The name of the selected elements. Here is an example:
name(/FirstLevel/SecondLevel)

node() The node names.

position() The position of selected elements.

text() The text of selected elements.

These functions comply with W3C XPath 2.0 specifications.

Using XPath

139

Expressions
You can use abbreviated syntax with XPath. Here are the valid expressions:

starts-with(string, string) The data of the string. Here are some examples:
starts-with("tattoo","tat")

starts-with("tattoo","tatt")

string(object) The string from the context node. Here is an example:
String("tattoo")

xml() The output buffer containing all descendents of the specified
element.

Abbreviated syntax Full syntax

* child::*

para child::para

chapter/para child::chapter/child::para

para[1] child::para[position()=1]

/chapter/para[last()] /child::chapter/child::para[position()=last()]

text() child::text()

node() child::node()

para[@type] child::para[attribute::type]

para[@type="warning"] child::para[attribute::type="warning"]

para[@type="warning"][2+i] child::para[attribute::type="warning"][position()#2+i]

chapter[title] child::chapter[child::title]

chapter[title=’Introduction’] child::chapter[child::title="Introduction"]

doc//para child::doc/descendant-or-self::node()/child::para

@* attribute::*

@type attribute::type

[@name=’warning’] [attribute::name=’warning’]

//para /descendant-or-self::node()/child::para

. self::node()

Function Returns

These functions comply with W3C XPath 2.0 specifications.

Chapter 2
Understanding the System

140

USING THE XPATH TESTING UTILITY

Here is the syntax of the XPATHW32 testing utility:

xpathw32 /f= xml file /e=starting node /x= search path

The /e parameter specifies the node where the search of the XPath starts. You can omit
this parameter if you want the search to start from the beginning. A pair of double
quotes is required to enclose the search mask. Here is an example:

xpathw32 /f=“d:\test\test.xml” /x=“Forms/Form/Car[@Name=’Car1’]/
text()”

This example searches the node Car with the attribute Name=“Car1”. It then retrieves its
text and returns a text string similar to this one:

Text string = Car 1 is Toyota

Examples
The following examples illustrate some search paths most frequently used in Documaker
applications. Run the testing tool yourself for the answer.

Example XML file Here is an example XML file (TEST.XML):

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample XML file generated by XML Spy v4.2 U (http://
www.xmlspy.com)-->

<Forms>

<Form>

<Car Name=" Car1">Car 1 is Toyata

<Model>Toyota</Model>

<Coverage>Cover 1</Coverage>

<Coverage>Cover 2</Coverage>

<Coverage>Cover 3</Coverage>

</Car>

<Car Name=" Car2">Car 2 is Honda

<Model>Honda</Model>

<Coverage>Cover 4</Coverage>

<Coverage>Cover 5</Coverage>

<Coverage>Cover 6</Coverage>

</Car>

<Car Name="Car3">Car 3 is Nissan

<Model>Nissan</Model>

<Coverage>Cover 7</Coverage>

<Coverage>Cover 8</Coverage>

<Coverage>Cover 9</Coverage>

.//para self::node/descendant-or-self::node()/child::para

.. parent::node()

../chapter parent::node()/child::chapter

../@type parent::node()/attribute::type

Abbreviated syntax Full syntax

Using XPath

141

</Car>

</Form>

</Forms>

Chapter 2
Understanding the System

142

Example 1 These examples search for a list of nodes with or without conditions. Keep in mind a
condition is always placed within brackets, as shown here: [condition].

Example 2 These examples search for the path for a single element:

Example 3 These examples search for a list of attributes:

This Returns

Forms/Form/Car A list of the Car nodes

Forms/Form/
Car[@*][position()<3]

The first two nodes in the Car node list

Forms/Form/
Car[@Name][position()>1]

A list of the Car nodes above the first element

Forms/Form/
Car[text()][position()!=2]

A list of the Car nodes, excluding the second one

Forms/Form/Car[Model] A list of Car nodes that have a child named Model

Forms/Form/Car/node() A list of children nodes under the Car nodes

Forms/Form/Car/Coverage[1] A list of first child Coverage under the Car nodes

Forms/Form/
Car[@Name=’Car1’]/Coverage

A list of nodes Coverage under Car1

This Produces

Forms/Form/Car[@*][1] The first node of the Car list with any attributes

Forms/Form/Car[@Name][last()] The last node of the Car list with the attribute Name

Forms/Form/Car[@Name=’Car1’] The Car node with attribute name Car1

Forms/Form/
Car[Model=’Toyota’]

The Car node with a child Model that has a text string of
Toyota.

Forms/Form/
Car[Mode=’Nissan’]/Coverage[3]

The third child node of Coverage under the parent node
Car that has a child named Model with a text string of
Nissan

This Produces

Forms/Form/
Car[Model=’Nissan’]/@*

A list of attributes of the Car node that have a Child
node named Model with a value of Nissan

Forms/Form/Car/@Name A list of the attribute Name that has a parent node of Car

Using XPath

143

Example 4 These examples search for a single attribute:

Example 5 These examples search for a list of text strings:

Example 6 These examples search for a single text string:

NOTE:There are three types of returned lists: elements, attributes, and text. When a list
includes only one element, the structure returns a single element instead of a
list.

Example 7 These examples search for the name of elements:

This Produces

Forms/Form/
Car[Model=’Honda’]/@*[1]

The first attribute of the Car node that has a child named
Model with a value of Honda

Forms/Form/Car
Model=’Honda’]/@Name

The attribute Name of the Car node that has a child
named Model with a value of Honda

Forms/Form/Car[1]/@Name The attribute Name of first Car node

This Produces

Forms/Form/Car/text() A list of text strings of Car nodes

Forms/Form/Car[Model]/text() A list of text strings of Car nodes which have children
named Model

This Produces

Forms/Form/
Car[Model=’Toyota’]/text()

The text string of the Car node which has a child name
Model with a value of Toyota

Forms/Form/
Car[Model='Honda']/parent/text()

The text string of the node Form which has a child
named Car that, in turn, has a child named Model with
a value of Honda

This Returns

//*[name()=’Car’] “Car” nodes

Forms/Form/*[name()=’Car’][2]/
text()

A text string of second “Car” nodes

Chapter 2
Understanding the System

144

Example 8 These examples concatenate text strings:

Example 9 These examples search for strings:

Example 10 This example returns a buffer that contains all descendants of the specified element:

Note that the XPath must point to a single element, such as Car[2] in the example.

Example 11 Here are some additional examples, based on this XML tree:

<FirstLevel>

<SecondLevel>

<Third NAME="JDOE" />

<Third>EFG123</Third>

<Third>ABC456</Third>

</SecondLevel>

</FirstLevel>

This Returns

concat('Car1', 'and', 'Car2')" A string “Car1 and Car2”

concat(//Car[@Name='Car1'],
'and',//Car[@Name='Car3'], 'are
imported cars.'))

A string “Toyata and Nissan are imported cars.”

This Returns

string(‘ 12345’) The string “ 12345”

string(//Car[2]/*[1]) The string of the first child of the second Car node

This Produces

xpathw32 /f=cars.xml /x="//Car[2]/xml() <Car Name=" Car2">Car 2 is Honda
<Model>Honda</Model>

<Coverage>Cover 4</Coverage>

<Coverage>Cover 5</Coverage>

<Coverage>Cover 6</Coverage>
</Car>

This Results in

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[starts-with(.,'ABC')]"

Element name = Third

Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[starts-with(@NAME,'JY')]"

Element name = Third

Attribute: NAME = JDOE

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[starts-with(text(),'EFG')]"

Element name = Third
Text string = EFG123

Using XPath

145

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[starts-with(string(),'ABC')]"

Element name = Third

Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(.,'ABC')"

Boolean starts-with() = false
Boolean starts-with() = false

Boolean starts-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(@NAME,'JY')"

Boolean starts-with() = true

Boolean starts-with() = false
Boolean starts-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(text(),'EFG')"

Boolean starts-with() = false

Boolean starts-with() = true

Boolean starts-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(string(),'ABC')"

Boolean starts-with() = false
Boolean starts-with() = false

Boolean starts-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(.,'123')]"

Element name = Third

Text string = EFG123

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(@NAME,'YL')]"

Element name = Third

Attribute: NAME = JDOE

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(text(),'456')]"

Element name = Third
Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(string(),'456')]"

Element name = Third

Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(.,'123')"

Boolean ends-with() = false

Boolean ends-with() = true
Boolean ends-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(@NAME,'YL')"

Boolean ends-with() = true

Boolean ends-with() = false

Boolean ends-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(text(),'456')"

Boolean ends-with() = false
Boolean ends-with() = false

Boolean ends-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(string(),'456')"

Boolean ends-with() = false

Boolean ends-with() = false
Boolean ends-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[contains(.,'G1')]"

Element name = Third

Text string = EFG123

This Results in

Chapter 2
Understanding the System

146

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[starts-with(string(),'ABC')]"

Element name = Third

Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(.,'ABC')"

Boolean starts-with() = false
Boolean starts-with() = false

Boolean starts-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(@NAME,'JY')"

Boolean starts-with() = true

Boolean starts-with() = false
Boolean starts-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(text(),'EFG')"

Boolean starts-with() = false

Boolean starts-with() = true

Boolean starts-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(string(),'ABC')"

Boolean starts-with() = false
Boolean starts-with() = false

Boolean starts-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(.,'123')]"

Element name = Third

Text string = EFG123

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(@NAME,'YL')]"

Element name = Third

Attribute: NAME = JDOE

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(text(),'456')]"

Element name = Third
Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(string(),'456')]"

Element name = Third

Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(.,'123')"

Boolean ends-with() = false

Boolean ends-with() = true
Boolean ends-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(@NAME,'YL')"

Boolean ends-with() = true

Boolean ends-with() = false

Boolean ends-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(text(),'456')"

Boolean ends-with() = false
Boolean ends-with() = false

Boolean ends-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(string(),'456')"

Boolean ends-with() = false

Boolean ends-with() = false
Boolean ends-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[contains(.,'G1')]"

Element name = Third

Text string = EFG123

This Results in

Using XPath

147

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[starts-with(string(),'ABC')]"

Element name = Third

Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(.,'ABC')"

Boolean starts-with() = false
Boolean starts-with() = false

Boolean starts-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(@NAME,'JY')"

Boolean starts-with() = true

Boolean starts-with() = false
Boolean starts-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(text(),'EFG')"

Boolean starts-with() = false

Boolean starts-with() = true

Boolean starts-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
starts-with(string(),'ABC')"

Boolean starts-with() = false
Boolean starts-with() = false

Boolean starts-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(.,'123')]"

Element name = Third

Text string = EFG123

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(@NAME,'YL')]"

Element name = Third

Attribute: NAME = JDOE

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(text(),'456')]"

Element name = Third
Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third[ends-
with(string(),'456')]"

Element name = Third

Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(.,'123')"

Boolean ends-with() = false

Boolean ends-with() = true
Boolean ends-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(@NAME,'YL')"

Boolean ends-with() = true

Boolean ends-with() = false

Boolean ends-with() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(text(),'456')"

Boolean ends-with() = false
Boolean ends-with() = false

Boolean ends-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
ends-with(string(),'456')"

Boolean ends-with() = false

Boolean ends-with() = false
Boolean ends-with() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[contains(.,'G1')]"

Element name = Third

Text string = EFG123

This Results in

Chapter 2
Understanding the System

148

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[contains(@NAME,'Y')]"

Element name = Third

Attribute: NAME = JDOE

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[contains(text(),'C4')]"

Element name = Third
Text string = ABC456

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/
Third[contains(string(),'G1')]"

Element name = Third

Text string = EFG123

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
contains(.,'G1')"

Boolean contains() = false

Boolean contains() = true
Boolean contains() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
contains(@NAME,'Y')"

Boolean contains() = false

Boolean contains() = false

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
contains(text(),'C4')"

Boolean contains() = false

Boolean contains() = false
Boolean contains() = true

xpathw32 /f=test.xml /x="/FirstLevel/SecondLevel/Third/
contains(string(),'J1')"

Boolean contains() = false

Boolean contains() = false

Boolean contains() = false

This Results in

149

Chapter 3

Implementing Your
System

This chapter provides an overview of how a system is
implemented. Although implementations may be
handled by Professional Services and each
implementation differs, you can make your
implementation run more smoothly by understanding
the procedures and methodologies outlined here.

In general terms, a system implementation is a set of
structured procedures and processes our Business
Analysts follow to design, develop, and set up a
customized system for a particular client.

This chapter discusses...

• Using a Methodology on page 150

• Gathering Information on page 153

• Roles and Responsibilities on page 154

Chapter 3
Implementing Your System

150

USING A
METHODOLOGY

When each system implementation is so unique and so configurable, why use a
methodology?

Because, a methodology allows for consistent handling of each specific implementation.
Consistency promotes efficiency. The smoother and more efficient a system
implementation is, the more satisfied you will be. Furthermore, it will be easier to
maintain and, if necessary, easier to modify the implemented system should your needs
change.

The system Implementation methodology is followed for each implementation project.
The methodology is designed to allow for project flexibility to accommodate the various
system customizations.

The System Implementation Methodology is comprised of these phases:

Phase 1 - Define Requirements

Phase 2 - Create Detail Forms Requirements

Phase 3 - Build the Master Resource Library

Phase 4 - Install and Configure the System

Phase 5 - Test the System

Phase 6 - Go Live

The methodology phases are cyclical. After completing Phase 6, Phase 1 begins again, to
continually evaluate the system and to incorporate product maintenance.

Using a Methodology

151

Because each system implementation is different, the time frame for completing each
phase varies. Here is a summary of the phases and the related tasks:

Phase 1 - Define the
requirements

Defining the requirements is the planning and definition phase of an implementation.
In this phase, your processing needs are defined. Your input is very important in
accurately identifying your needs.

The primary output of this phase is the Requirements Definition Documentation. This
document includes the project scope and schedule, information regarding the technical
and functional areas targeted for document automation, and the steps outlining how
the implementation will proceed.

Phase 2 - Create the
detail forms

requirements

Creating the detail forms requirements involves specifying all forms to be converted
from paper to electronic forms, and determining how to automate the transferal of data
to the forms. Determining how to automate data transfer includes defining how the data
will be mapped, defining the data transfers from the source file to the forms, and the
form data format. This process requires mapping data in hierarchical succession: form
set, form, section, fields, field attributes, and field sequencing and navigation logic.

Documaker Studio is often used during this phase. You can learn more about this tool
in the Documaker Studio User Guide.

Phase 3 - Build the
Master Resource

Library

Building the Master Resource Library involves organizing and setting up the resources
to be used by your system. Here a complete library of reusable resources is set up. Your
users will select from these resources to complete their work activities.

1

Define
Requirements

2
Create Detail

Forms
Requirements

6

Go Live

3

Build Master
Resource Library

5

Test the System

4

Install and
Configure System

Chapter 3
Implementing Your System

152

A resource library is divided into these libraries: Section Library, Variable Data
Dictionary Library, and Rules Library. Each of these libraries contains files that store
different resource components. Depending on your system configuration and location,
you may have separate Distributed Resource Libraries, as a subset of the Master Resource
Library.

In addition to setting up the resources, this phase involves configuring forms sets, the
rules used for processing forms, and the system initialization files that determine how
your system operates. During this phase the base system is customized to meet your
needs. Customization can range from changing system functions to changing the system
interface.

Phase 4 - Install and
configure the system

During this phase, the various system modules are installed. After installing the
components, you test various aspects and functions of the system, such as printing and
archiving, using test scenarios and sample data. Adjustments are made if required to the
configuration files. If available, you should use real data for these initial tests.

Phase 5 - Test the
system

In Phase 5, system testing begins. Detailed test matrices are created, which are used to
test the entire system using real data. A test matrix is a listing of the functions,
conditions, and exceptions of the system you want to test. It’s important to have plenty
of real data you can use for testing purposes during this phase.

Phase 6 - Go live In Phase 6, the system is now ready for full production. The support personnel assigned
to the project will assist you with start up procedures and training.

Gathering Information

153

GATHERING
INFORMATION

At the beginning of any implementation, it is important to gather as much relevant
information as possible. This information helps ensure requirements are correctly
defined, future goals are taken into consideration, and the solution meets your needs
exactly.

UNDERSTANDING YOUR NICHE

Understanding your current and future industry positioning is integral in successfully
implementing a customized system. The system must suit your needs now, and expand
as your company grows. Knowing where you expect to take the company in the future
is important for defining a system.

The implemented system must be set up so it can grow as your company grows. The
system must also serve the your current needs. To define your current and future needs,
you will be asked questions about the your company’s goals, industry trends, and
company projections, such as:

• Do you expect a significant growth in revenue over the next five years? What is your
vision for the future?

• Do you expect to experience a reduction or increase in number of employees?

• Do you envision growth into other related or non-related industries?

• How far has the company grown (or downsized) in the past few years? Can you
detect industry trends based on past revenues, and financial status?

One of the greatest benefits of a system is its flexibility. Determining where you are and
where you expect to be in the future helps to make sure your system solves your business
problems today and tomorrow.

UNDERSTANDING YOUR ORGANIZATION

Understanding your organization is also important in fulfilling your needs. It helps to
understand the chain of command, and the responsibilities associated with each role in
your organization. To gather information about your organization, you will be asked
questions such as:

• Have you had previous experience with document automation? How would you
describe that experience positive?

• How many data entry operators do you have, and who and where are they?

• What percentage of total time do employees at each level spend on the system?

• Is there a specific organizational hierarchy or chain of command within the
company?

• What is your corporate culture? Is there a discreet division of labor at all levels, or
is there cross-training and information sharing?

You may also have documentation about your company, future company directions,
system flows and workflows, and other information which is important in mapping an
implementation strategy. This background information is important in defining the
best solution for your company.

Chapter 3
Implementing Your System

154

ROLES AND
RESPONSIBILITIES

There are many people involved in a system implementation project. A system
implementation project team is comprised of both Documaker Professional Services
personnel and personnel from your company. The team's goal is to provide a seamless
integrated solution for the your document automation needs.

You are an integral member of the system implementation team. With your knowledge
of your business needs, you can often be the navigator or guide during the
implementation process.

Documaker Professional Services personnel include:

BUSINESS ANALYST. Throughout the project the Business Analyst is responsible for
coordinating the project, creating the phase deliverables, and keeping apprised of the
status of all processes and subprocesses within the project.

PROJECT MANAGER. The project manager is involved in initial project analysis and
planning, and sizing of the system component development process. The project
manager is also responsible for creating the project schedule.

SYSTEM DEVELOPERS. The developers are primarily responsible for coding the system
components. Additionally, the programmers may provide analysis, and planning input
during the initial phases. Professional Services personnel are involved in customization
projects.

155

Chapter 4

Setting Recipients and
Copy Counts

This chapter describes how you can specify recipients
for the individual forms that comprise your form sets
and how you can specify the number of copies each
recipient will receive.

In this chapter you will find information about:

• Concepts on page 156

• Key Files on page 157

• Trigger Table Record Format on page 158

• Specifying the Transaction Trigger Table on page
160

• How Transaction Triggering Works on page 161

• Form Level Triggers on page 165

• Master and Subordinate Sections on page 167

• Examples on page 169

• Summary on page 187

Chapter 4
Setting Recipients and Copy Counts

156

CONCEPTS In a manual form system, a data entry operator selects the forms that make up a
document set. Some forms may be mandatory and are always included. Others are
optional and must be specified by the operator.

The operator chooses forms by examining the data at hand and considering certain
conditions pertaining to that data. For instance, if the operator is creating insurance
policies, he or she would have to know:

• What company is this for?

• What line of business?

• What type of transaction is this?

• Does the agent need a copy?

• How many copies?

• What about the home office copy?

And so on. The answer to each question affects the makeup of the document set you will
assemble.

Documaker Server automates the tasks and selection decisions that an operator makes.
The set of forms to be printed, and the recipients of those forms, are selected by
executing a series of business rules that test the supplied data to see if certain conditions
are met.

As matching conditions are found in the data for a transaction, a form set can be
constructed, form by form, with all the proper recipients designated. This is the first step
in the assembly of a document set. Later, once the set of forms has been determined,
other business rules for each form and variable field can be executed to begin to
construct the output data, field by field, within each form.

NOTE:Documaker Studio includes a Form manager which you can use to select
recipients and specify how many copies those recipients should receive. This
chapter explains how the underlying files and settings work. You can change
these settings using Studio. You can find more information in the Documaker
Studio User Guide.

Key Files

157

KEY FILES Here is a discussion of the key files which the system uses to determine who gets what
form and how many copies it should print. You’ll also find information about
important concepts, such as form and section (image) level triggers.

TRANSACTION TRIGGER TABLE

The transaction trigger table (also known as the SETRECIP table, or SETRCPTB.DAT
file) is a text file used by Documaker Server to define the conditions under which certain
forms are included in form sets, and which recipients are to receive the forms. Each
record in the transaction trigger table defines a triggering condition for a form or
section and is referred to as a trigger record, or, more simply, a trigger.

Trigger Levels
There are two levels of trigger records: form level triggers which trigger forms, and section level
triggers which trigger sections within a form. section level triggers are optional, since some
forms automatically include all necessary sections. Also, form level triggers can be
optional, since a form can also be triggered by a section level trigger.

NOTE:sections are defined by FAP files and are maintained using Documaker Studio. A
section may be an entire page, or a page segment. Forms can be made up of many
pages, each containing one or more sections.

FORM SET DEFINITION TABLE

The transaction trigger table works with the form set definition table (also known as the
FORM.DAT file) to define the required form set. Together they define many complex
inter-relationships and rules, and a number of powerful options by which forms and
sections can be triggered, and recipients defined.

In this chapter we will discuss the...

• Purpose of the transaction trigger table.

• Record layout of the transaction trigger table.

• Runtime setup options for the transaction trigger table.

• Rules under which the transaction trigger table program logic operates.

In addition, this chapter discusses several scenarios to illustrate many of the options and
variations used to trigger forms and sections.

Chapter 4
Setting Recipients and Copy Counts

158

TRIGGER TABLE
RECORD
FORMAT

The transaction trigger table is a semi-colon delimited text file. Each record in the table
defines a form level or section level trigger condition. Each record contains the
following fields:

;GroupName1 (Company)

;GroupName2 (Line of Business)

;Form name

;Image name

;Transaction codes

;Recipient list

;Search mask 1 (Counter)

;Overflow field 1 (Occurrence flag)

;Overflow field 2 (Records per overflow image)

;Overflow field 3 (Records per first image)

;Recipient Copy count

;Search mask 2 (True/False)

;Custom rule;

NOTE:Semicolons are required as field separators, or placeholders. When values are
omitted from optional fields, one or more consecutive semicolons may appear.

The table describes each field.

Field Description

GroupName1 Matches the GroupName1 field in the form set definition table. In an
insurance industry application, this would typically contain the
Company code. <Key1Table> in the FSISYS.INI file.

GroupName2 Matches the GroupName2 field in the form set definition table. In an
insurance industry application, this would typically contain the “line of
business” code. <Key2Table> in the FSISYS.INI file.

Form name The name of the form, as specified in the form set definition table.
Note: Form names are descriptive, and do not correlate to any physical
file name.

Image name The name of a section (image) within a form, as specified in the form
set definition table. This name also correlates to a physical section file
(.FAP file).

Note: A section level trigger record requires an entry in this key field; a
form level trigger record must omit any value in this field.

Trigger Table Record Format

159

Transaction codes By including one or more transaction codes in this field, a form is
triggered only if the extract file record includes that transaction code.
If no transaction code value is mapped from the extract data for a
transaction, the system considers all triggers eligible, regardless of
whether they specify a transaction code list.
Conversely, if a transaction code value is mapped from the data, the
system only considers those triggers that have the same value to be
eligible for evaluation.

Recipient list Lets you optionally specify certain recipients.

Search mask 1
(Counter)

Defines the criteria to determine when a form belongs in a form set (or
a section within a form). The criteria lets Documaker Server get specific
data from the extract file. One form (or section) is added for every
occurrence of the Search Mask per Transaction when the overflow flag
is set.

Occurrence
(overflow) Flag

Indicates the need to calculate overflow conditions. Enter zero (0) for
no overflow or 1 for overflow.

Also used for Master and Subordinate form and section level flags. You
can enter:

M=master (used on form level triggers)

S=subordinate (used on section level triggers)

F=tells the system to override any previous copy count settings and use
the copy count settings in this trigger file (used on form level triggers).
In essence, this flag tells the system that if this form is already triggered,
don't trigger it again—just modify the previously triggered copy.

Records per
overflow image

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on the specified overflow form.

Records per first
image

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on a specific form before overflowing
to a new form.

Recipient copy
count

Specifies the number of copies a recipient receives.

Search Mask 2
(True/False)

Similar to Search Mask 1, but only one form will be triggered, regardless
of how many occurrences of the condition exists.

Custom Rule Available field for use with custom rules or search masks. Most
common custom rule is RECIPIF.

Field Description

Chapter 4
Setting Recipients and Copy Counts

160

SPECIFYING THE
TRANSACTION

TRIGGER TABLE

You specify the file name of the transaction trigger table (also known as the SETRECIP
table) in the FSISYS.INI file. For example:

< Data >

SetRcpTb = SETRCPTB.DAT

< MasterResource >

FormsetTrigger = SETRCPTB.DAT

The form set definition table is also specified in the FSISYS.INI file, in the following
control group:

< MasterResource >

FormDef = FORM.DAT

There are two form set level rules that relate to the transaction trigger table in the
AFGJOB.JDT file:

<Base Form Set Rules>

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

The LoadRcpTbl rule loads the entries from the SETRCPTB.DAT file for the current
GroupName1, GroupName2, and Transaction code. The RunSetRcpTbl rule runs all
entries in the transaction trigger table that pertain to the current GroupName1,
GroupName2, and Transaction code to generate the form set for the current transaction.

For more information on these and other rules, see the Rules Reference.

How Transaction Triggering Works

161

HOW
TRANSACTION

TRIGGERING
WORKS

The transaction trigger table works with the extract file, TRN file (usually TRNFILE),
and the form set definition file (usually FORM.DAT). The TRNFILE contains a record
for each transaction passed to Documaker Server.

The record format for the TRNFILE varies by implementation; the format is specified
by a DFD (Data Format Definition) file. Each TRNFILE record contains a series of
offsets used when processing the transaction.

Offsets in a TRNFILE record define the location where:

• The transaction begins in the extract file

• Data for the transaction is stored in the NAFILE

• The form set for the transaction is stored in the POLFILE

• The TRN record itself begins (this offset is stored in the BCH file, so the entire
TRNFILE is not needed)

The form set definition file (FORM.DAT) defines the organization of sections within
forms and the organization of forms within form sets. The FORM.DAT is a semi-colon
delimited file; its format includes information about…

• Company

• Line of business

• Forms (form options)

• Sections (section options)

• Recipients

• Recipient section copy counts

The recipient table, also known as the transaction trigger table (usually
SETRCPTB.DAT), defines when to include a particular form section or recipient of a
form section in a form set. The recipient table contains information necessary to
determine if a condition exists to include a form. Conditions may be defined by a
combination of transaction types and search masks for the extract file as defined above.

Three of the first five transaction trigger fields (GroupName1, GroupName2, and
Transaction Code) must match some records within the extract file in order for the
trigger conditions to be evaluated. For example, if there are no records with the
transaction code specified in the trigger, that trigger will be skipped. If extract records
exist that match these three fields, the remaining fields of that trigger are evaluated.

It is not required to use all of the available fields in a transaction trigger record, but if
it is necessary to use multiple search masks and/or a custom rule, the following logic
applies when evaluating whether to trigger that form or section.

Chapter 4
Setting Recipients and Copy Counts

162

SECTION LEVEL TRIGGERS

Here are some examples of how the system evaluates triggers:

The system evaluates search mask 2 first. When this evaluation is performed, the system
also takes the copy count into consideration.

If the copy count is zero (0):

• If search mask 2 is true, evaluate search mask 1. If search mask 1 is true, turn on
the section based on the copy count (for instance, if the copy count is zero (0), then
turn on nothing). If false, turn off the section.

• If search mask 2 is false, then do nothing.

If the copy count is not zero:

• If search mask 2 is true, then evaluate search mask 1. If search mask 1 is true, turn
on the section based on the copy count (for instance, if the copy count is zero (0),
then turn on nothing). If false, turn off the section.

• If search mask 2 is false, turn off the section.

With these settings:

With these settings:

Copy Count Search Mask 1 Search Mask 2 The result is:

0 T T Turn off

0 T F Do nothing

0 F F Do nothing

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

Copy Count Search Mask 1 Custom Rule The result is

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

How Transaction Triggering Works

163

When search mask 1 and custom rule are specified, the system uses the custom rule only.
When the custom rule is evaluated:

• If true, turn on the section based on the copy count (for instance, if the copy count
is zero (0), then turn on nothing)

• If false, do not turn on the section.

With these settings:

The system evaluates search mask 2 first. When this evaluation is performed, the system
also takes the copy count into consideration.

If the copy count is zero (0):

• If search mask 2 is True, evaluate the custom rule. If the custom rule is True, turn
on the section based on the copy count (for instance, if the copy count is zero (0),
then turn on nothing). If false, turn off the section.

• If search mask 2 is false, then do nothing. The custom rule will be ignored. Leave
the section as is.

If the copy count is not zero:

Non 0 T T Turn On

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn on

Copy Count Search Mask 2 Custom Rule The result is

0 T T Turn off

0 T F Turn off

0 F F Do nothing

0 F T Do nothing

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

Copy Count Search Mask 1 Custom Rule The result is

Chapter 4
Setting Recipients and Copy Counts

164

• If search mask 2 is true, then evaluate the custom rule. If the custom rule is true,
turn on the section based on the copy count (for instance, if the copy count is zero
(0), then turn on nothing). If false, turn off the section.

• If search mask 2 is false, turn off the section.

Form Level Triggers

165

FORM LEVEL
TRIGGERS

Here are some examples. With these settings:

At the form level, search mask 2 is evaluated first. It is unlike the section level in that
the copy count is not considered.

If search mask 2 is true, search mask 1 is evaluated:

• If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

• If false, do not trigger the form.

With these settings:

When search mask 1 and custom rule are specified, the system uses the custom rule only.
When the custom rule is evaluated:

Copy Count Search Mask 1 Search Mask 2 The result is:

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

Copy Count Search Mask 1 Custom Rule The result is:

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn on

Chapter 4
Setting Recipients and Copy Counts

166

• If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

• If false, do not trigger the form.

With these settings:

At the form level, search mask 2 is evaluated first. It is unlike the section level in that
the copy count is not considered. If search mask 2 is true, the custom rule is evaluated:

• If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

• If false, do not trigger the form.

If search mask 2 is false, do not trigger the form.

When a transaction trigger table entry is evaluated to be true or false, the effect varies
depending on the type of trigger. The following table explains the effects of form and
section level triggers:

Copy Count Search Mask 1 Custom Rule The result is:

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

Logic Form Level Trigger Section Level Trigger

True Turns on all sections in the form for
selected recipients with the copy
count specified in the copy count
field in the transaction trigger table
entry.

Turns on sections in the form for
non-selected recipients only if those
sections have a copy count of at least
1 in the form set definition table.

Turns on the specified section for the
selected recipients with the copy count
specified in the copy count field in the
transaction trigger table entry.
Turns on other sections in the form with
the same recipients with a copy count of
at least 1 in the form set definition table.

False Does not turn on any images for any
recipients.

Turns off the specified image by setting
the copy count to zero (0) for the
selected recipients or does nothing.

Master and Subordinate Sections

167

MASTER AND
SUBORDINATE

SECTIONS

The set recipient table contains both form and section (image) level triggers to handle
cases of conditional sections on forms. There are two flag options you can use in the set
recipient table (SETRECIP) for transaction triggering. These two flags, S and M, are used
to regulate the evaluation of section level triggers and are placed in the Occurrence
(overflow) flag field of form or section level triggers.

NOTE:When you are using master and subordinate triggering, keep in mind you
cannot evaluate multiple form level triggers. The system limits you to a single
form level trigger for a given group of sections. You can repeat the same sections
for another form level trigger.

MARKING SUBORDINATE SECTIONS

The S flag, called the subordinate flag, identifies the section as subordinate to the parent
or master form. The subordinate flag is enabled when you place an uppercase S in the
Occurrence flag field (which is the 8th semi-colon delimited field of each table entry),
and may be separated from the overflow flag (0 or 1) by a comma. As long as there is an
uppercase S character in the flags field, the section will be treated as a subordinate. The
S flag makes the section level trigger dependent on the successful triggering of its parent
form by the form level trigger for that form. If the parent form was not triggered on its
own account, such as if it was added because of an underlying non-subordinate section
being triggered, then all subordinate sections triggers are still ignored.

The intended use of this flag is to eliminate redundant conditional logic at both the
section and form level, as well as to maintain a hierarchy of form and section with
respect to the inclusion of these entities into a form set. A subordinate section cannot
cause the inclusion of the parent form because if the form was not triggered then the
subordinate section triggers are never processed. The use of subordinate sections lends
itself largely to situations where you want to trigger a form based on some condition,
and then conditionally add sections to that form.

If the form was not triggered then all underlying section triggers can be ignored, which
eliminates unnecessary processing. The subordinate flag also eliminates processing the
same conditional logic over and over again since the logic is only performed once at the
form level.

Subordinate sections are subordinate to the master (or parent) form level trigger being
true or false, and not actually to the form being triggered. Therefore, it is probably not
a good idea to mix subordinate and non-subordinate sections under the same parent
form. If the form was triggered by a non-subordinate section, and not by its own
conditional, then all subordinate sections for that parent form will still be ignored,
despite the fact the form was triggered.

Chapter 4
Setting Recipients and Copy Counts

168

MARKING MASTER FORMS

The master form flag, uppercase M, works in a similar manner but on the form level.
The M flag is used only with form level triggers and is ignored if used with a section
level trigger. The M flag is used to signify a master form level trigger, causing all of the
section level triggers beneath the master form level trigger to be treated as if they were
subordinate section level triggers.

When you use the M flag with a form level trigger, it does not matter whether the
underlying section level triggers have the S flag—they will all be treated as if they did. If
effect, if the logic in a master form level trigger fails, the form does not trigger and all
of the form’s section level triggers are ignored. The next section illustrates transaction
triggering logic through specific examples.

Examples

169

EXAMPLES The transaction trigger table works with the form set definition table. The transaction
trigger table is usually named SETRCPTB.DAT and the form set definition table is
usually named FORM.DAT.

The FORM.DAT file defines which sections make up a form. There are many possible
combinations of sections that can constitute a form. A form can be comprised of a
single section or multiple sections. The FORM.DAT file also specifies which recipients
get which sections. It is possible to have a single form that is composed of four sections,
three of which are constant for all recipients, and one section that varies depending on
recipient.

Recipient and copy count information contained in the FORM.DAT is also included
in the SETRCPTB.DAT transaction trigger table, so it is important to understand how
these two tables work together. Designing the two tables independently can often cause
undesired results because one table is overriding the other in a manner that the user did
not anticipate. But if the two tables are designed to work together, many complex forms
with conditional sections and copy counts can be implemented.

In this topic, numerous examples of form set definition files and transaction trigger
tables are shown to illustrate some basic relationships between the form set definition
table file and the transaction trigger table file.

In each example, the FORM.DAT and SETRCPTB.DAT tables are shown along with the
resulting POL file generated by the GenData program. The POL file shows the final
form sets created by the GenData program and is used as an input file by the GenPrint
program (along with the NA file) to generate printed output.

You will find examples which discuss:

• Specifying Copy Counts and Sections on page 170

• Using Transaction Codes on page 172

• Setting Up Search Mask and Sections on page 173

• Using the RECIPIF Rule on page 175

• Using Automatic Overflow on page 177

• Using Forced Overflow on page 179

• Setting Search Masks and Recipients on page 180

• Using the Set Recipient Table and Extract Files on page 181

• Formatting Search Masks on page 182

• Sorting Forms by Recipient on page 185

Chapter 4
Setting Recipients and Copy Counts

170

SPECIFYING COPY COUNTS AND SECTIONS

One of the fields that is shared by both the transaction trigger table and the form set
definition table is the copy count. The copy count specifies the number of copies of a
section to be printed for a given recipient.

In the FORM.DAT file, there can be multiple copy counts—one for each recipient for
each section that makes up a form. However, in the SETRCPTB.DAT file, there is only
one copy count field for each entry. A single SETRCPTB.DAT entry can reference
multiple recipients however, so that one copy count field can be applied to more than
one recipient.

NOTE:You can also use GVM or DAL variables to set the copy count for a recipient.
For more information see the Documaker Studio User Guide.

The copy count is a typical interaction between the FORM.DAT and the
SETRCPTB.DAT. In this example, note from the FORM.DAT that the form DECPAGE
is made up of the sections PRUNAME, COMDEC1, COMDEC2, and COMDEC3. The
other form in the FORM.DAT is VARFLD, which is made up of one section
VARFIELD.

All the sections that make up DECPAGE and VARFLD have individual copy counts
associated with each recipient. Note that the sections COMDEC2 and VARFIELD have
their copy counts set to zero (0) for each recipient. This means that the default copy
counts for these sections is zero (0), and if these forms are included in a form set, these
sections will not print for any of the listed recipients unless their copy counts are
changed by the SETRCPTB.DAT table.

Now looking at the SETRCPTB.DAT file, the first entry causes the form DECPAGE to
be loaded, provided the search mask criteria is true (which it is in this case). This first
entry is known as a form level trigger because the section name field has been left blank.
While the first SETRCPTB.DAT entry references only INSURED and AGENT in the
recipient list field, the form is also triggered for COMPANY as well because COMPANY
is listed in the FORM.DAT with a copy count of 1 for all sections that make up DEC
PAGE except COMDEC2. COMDEC2 is included in DEC PAGE for recipients
INSURED and AGENT because they are in the form level SETRCPTB.DAT entry
recipients list field.

The second SETRCPTB.DAT line is a section level entry, referencing the section
COMDEC2 in the form DECPAGE. The purpose of this section level entry is to set the
copy count of the section COMDEC2 (which defaults to zero (0) in the FORM.DAT)
so that it will be included in or excluded from the DEC PAGE if the conditions in its
SETRCPTB.DAT entry are true (more on this in Example 3).

In this example, COMDEC2 has already been included for INSURED and AGENT by
the previous form level entry. If the conditions of this section level entry are true, the
section COMDEC2 will be included for recipient AGENT with a copy count of 1
(which in this case is redundant since the previous form level entry already did this).
However, since the section level entry conditions are false, the copy count of
COMDEC2 for AGENT is set to zero (0). Looking at the POL file, COMDEC 2 only
printed for INSURED, because the copy count for AGENT was set to zero (0).

Examples

171

The final three SETRCPTB.DAT entries are all form level entries for VARFLD. Note
that in the FORM.DAT, VARFLD, which is composed of one section, VARFIELD has
two recipients, INSURED and COMPANY, both of which have copy counts of zero (0).
The three SETRCPTB.DAT entries for VARFLD each reference a different recipient in
the recipient list field and assign them copy counts. COMPANY gets 1 copy, INSURED
gets 2 copies, and AGENT gets 3 copies. However, looking at the POL file, VARFLD
printed once for COMPANY and twice for INSURED, but it did not print at all for
AGENT. This is because, even though AGENT was included in the SETRCPTB.DAT
entry, AGENT was never an original recipient for VARFLD in the FORM.DAT.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|D<INSURED(0),COMPANY(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;T1;INSURED,AGENT;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;DEC
PAGE;COMDEC2;T1;AGENT;11,HEADERREC,11,SPCIALREC,25,Special;0;0;0;1;
;;;

;SAMPCO;LB1;VARFLD;;T1;COMPANY;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;VARFLD;;T1;INSURED;11,HEADERREC,96,~O;0;0;0;2;;;;

;SAMPCO;LB1;VARFLD;;T1;AGENT;11,HEADERREC,96,~O;0;0;0;3;;;;

POL file ;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 3234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 5234567

Chapter 4
Setting Recipients and Copy Counts

172

USING TRANSACTION CODES

In this example, the same environment as in the first example, Specifying Copy Counts
and Sections, is used. In this case, however, the second entry in the SETRCPTB.DAT has
been slightly modified. The transaction code field has been changed from T1 to T2 to
illustrate that not having the proper transaction code will cause that entry to be skipped.

In this example, the SETRCPTB.DAT section level entry that references COMDEC2 is
not being evaluated because the transaction code field does not match the data
contained in the extract file. The result of skipping this entry is, unlike the previous
example, where COMDEC2 did not print for AGENT, in this example COMDEC2
prints for both AGENT and INSURED.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|D<INSURED(0),COMPANY(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;T1;INSURED,AGENT;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;DEC
PAGE;COMDEC2;T2;AGENT;11,HEADERREC,11,SPCIALREC,25,Special;0;0;0;1;
;;;

;SAMPCO;LB1;VARFLD;;T1;COMPANY;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;VARFLD;;T1;INSURED;11,HEADERREC,96,~O;0;0;0;2;;;;

;SAMPCO;LB1;VARFLD;;T1;AGENT;11,HEADERREC,96,~O;0;0;0;3;;;;

POL file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 3234567

;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 5234567

Examples

173

SETTING UP SEARCH MASK AND SECTIONS

There are two search mask fields in the SETRCPTB.DAT table structure. The first search
mask is known as the counter search mask because it works with the overflow counters that
immediately follow it in the transaction trigger table format, provided that the overflow
flag is set.

The second search mask is known as the true/false search mask. Both search masks can be
used to set conditions to evaluate whether a set recipient entry should be executed. In
this example, the second SETRCBTP.DAT entry that references COMDEC2 has a
multiple condition counter search mask.

NOTE:If you want the system to stop searching after it finds the first match, use the
true\false search mask instead of the counter search mask. If you place the
search mask in the counter search mask field, the system finds the first match
and then looks for multiple occurrences.

The first entry in the SETRCPTB.DAT table causes the form DEC PAGE to be triggered
for recipients INSURED and AGENT. All sections that make up DEC PAGE and have
INSURED and/or AGENT as recipients (from the FORM.DAT file) are triggered with
a copy count of 1 for each recipient. The second SETRCPTB.DAT entry is a section level
entry that references COMDEC2.

The search mask in this entry will obviously fail because the first condition looks for
HEADERREC at offset 11 and the second condition also looks at offset 11, but for
SPCIALREC. Both conditions cannot be true at the same time, so the search mask fails.
The result of this section level search mask failing is to set the copy count for the
recipients in the recipient list field, in this case AGENT, to zero (0).

Were the search mask true, AGENT would have been set to a copy count of 1 (which
would be no change, since AGENT already had a copy count of 1 for COMDEC2).

Looking at the POL file, COMDEC2 was printed only for INSURED because the copy
count of COMDEC2 for AGENT was set to zero (0) when the section level entry in the
SETRCPTB.DAT file failed.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|D<INSURED(0),COMPANY(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;T1;INSURED,AGENT;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;DEC
PAGE;COMDEC2;T1;AGENT;11,HEADERREC,11,SPCIALREC,25,Special;0;0;0;1;
;;;

;SAMPCO;LB1;VARFLD;;T1;COMPANY;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;VARFLD;;T1;INSURED;11,HEADERREC,96,~O;0;0;0;2;;;;

Chapter 4
Setting Recipients and Copy Counts

174

;SAMPCO;LB1;VARFLD;;T1;AGENT;11,HEADERREC,96,~O;0;0;0;3;;;;

POL File ;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 3234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 5234567

Examples

175

USING THE RECIPIF RULE

The RECIPIF rule is the primary rule used in the custom rule field. There are other rules
which have been written for specific implementations that have been used in this field,
but the RECIPIF rule is a part of base. The RECIPIF rule allows for customized search
mask evaluations.

In this example, the RECIPIF rule is being used to evaluate two different conditions:

• does ‘1995’ exist beginning at offset 51 in records with HEADERREC beginning at
offset 11

• does ‘T1’ exist at offset 45 in records with FRMLSTREC beginning at offset 11

Looking at the entry in the SETRCPTB.DAT, notice that there are no search masks -
only the RECIPIF rule is being used. Following the Search Mask 2 field, the rule name
appears, and the rule itself appears in the following field. Each element of the rule is
separated by double colons (::).

The first RECIPIF statements assign variables to the search criteria. In this case, A is
assigned to the information appearing in the four characters beginning at offset 51 in
records with HEADERREC beginning at offset 11. And B is assigned to the information
appearing in the two characters beginning at offset 45 in records with FRMLSTREC
beginning at offset 11.

The next RECIPIF statement sets up the evaluation logic for the rule. What should A
equal? What should B equal? Should both conditions be true, or just one? In this case,
A should be ‘1995’ and B should be ‘T1’, and both need to be those values for the rule
to be evaluated as true. An OR condition could have been used, which would have been
true if either A or B matched their desired values.

The next RECIPIF statements set the return values. In this case, if A=‘1995’ and B=‘T1’,
then a ‘1’ is returned (note that the boolean ‘1’ is enclosed both in quotes and carats,
such as “^1^”). If those conditions are not met, then return a Boolean zero (0). These
return values can be reversed to return a zero (0) when the RECIPIF criteria is true and
a one (1) when false, should the need arise in a particular implementation. The last
RECIPIF entry is the END statement. Here is an example of the RECIPIF rule syntax:

;recipif;var1={offset,value offset,length}::var2={offset,value
offset,length} ::if((var1=‘var1value’) boolean
(var2=‘var2value’))::return(“^#^”)::else::return(“^#^”)::end::;

NOTE:There is a space between offset,value and offset,length.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC1|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(0),COMPANY(0),AGENT(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;;INSURED,AGENT;;0;0;0;1;;recipif;A={11,HEADERREC
51,4}::B={11,FRMLSTREC 45,2}::if((A='1995') AND
(B='T1'))::return("^1^")::else::return("^0^")::end::;

Chapter 4
Setting Recipients and Copy Counts

176

POL file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,AGENT>/
COMDEC1|DS<INSURED,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,AGENT>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,AGENT>/
COMDEC1|DS<INSURED,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,AGENT>;

\ENDDOCSET\ 2234567

Examples

177

USING AUTOMATIC OVERFLOW

In some cases, there is information on a form that will repeat an unknown number of
times. For example, an auto insurance policy may contain a form that lists the vehicles
owned by the insured. The number of vehicles will vary from one insured to another,
so there is no way to know in advance how many lines will be needed on a form to list
the vehicles. Overflow exists to handle these situations.

There are two types of overflow in the transaction trigger table, forced and automatic.
In this example, automatic overflow is used. In automatic overflow, the system
automatically determines how many entries exist and inserts them in the form.

Looking at the SETRCPTB.DAT, there is only one section level entry, referencing the
section cgdcbd. Looking at the FORM.DAT, section cgdcbd has a default copy count of
zero (0), while all the other sections have a default copy count of one (1) for all
recipients. So, triggering the section cgdcbd will trigger the remaining sections that make
up the form CGDEC.

The SETRCPTB.DAT entry has a simple counter search mask and has the overflow field
(occurrence flag) set. The next two overflow-related fields are set to zero (0), so we know
that this is an automatic overflow situation.

When this SETRCPTB.DAT entry is executed, it will keep track of the number of records
that exist in the extract file that meet this criteria and automatically insert that number
of cgdcbd sections into the form CGDEC. Looking at the POL file in this example,
many cdgcbd sections were inserted into the form to reflect the number of entries in the
extract file that met the specified transaction trigger search criteria.

FORM.DAT file ;FSI;GL;CGDEC;General Liability
Declarations;RD;;cgdctp|FDSOX<INSURED(1),COMPANY(1)>/
cgdcbd|RDS<INSURED(0),COMPANY(0)>/
cgdcbt|RDS<INSURED(1),COMPANY(1)>/
cgdcft|RDSOY<INSURED(1),COMPANY(1)>;

SETRCPTB.DAT file ;FSI;GL;CGDEC;cgdcbd;T1;INSURED,COMPANY;11,CLSSCDREC;1;0;0;1;;;;

POL file ;FSI;GL;CGDEC;General Liability
Declarations;RD;;cgdctp|FDSOX<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|\

RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RD\

S<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<\

INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcft|RDSOY<INSURED,COMPANY>/cgdctp|RDSOX<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RD\

Chapter 4
Setting Recipients and Copy Counts

178

S<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<\

INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbt|RDS<INSURED,COMPANY>/cgdcft|RDSOY<INSURED,COMPANY>;

\ENDDOCSET\ 5234567

Examples

179

USING FORCED OVERFLOW

In this example, forced overflow is used. Forced overflow differs from automatic
overflow in that there are a set number of overflow entries that can be placed on a given
form.

For example, if a form is designed to list all the vehicles owned by an insured, the form
designer might have a section that has room to list up to two vehicles. For insureds with
two or less vehicles, only that one section is needed. However, for insureds with more
than two vehicles, the designer has a separate add-on section to list the remaining
vehicles. Forced overflow is used in situations such as this.

In this example, there are two sections in the FORM.DAT that make up the form FCP
DEC. The first section, FCPDEC, is the main section, and the second section,
FCPDEC2, is the overflow section. Both sections have copy counts of zero (0), allowing
the SETRCPTB.DAT entries to control the copy counts.

The first SETRCPTB.DAT entry triggers the form for all recipients (in this case
INSURED), leaving the copy counts set to zero (0). The next entry sets FCPDEC’s copy
count to 1 if the search mask is true. The final SETRCPTB.DAT entry is the forced
overflow entry. The same search criteria is used, but the overflow (occurrence) flag is set.

The next two overflow fields specify how many entries are to be split among the two
sections. The records per overflow section (6 in this example), specifies how many
records will fit on the FCPDEC2 overflow section. The next field, records per first
section, specifies how many records will fit on the primary section FCPDEC (2 in this
example). So, FCPDEC2 will only be triggered if the search mask criteria is true and
there are more than 2 occurrences of this record type.

Looking at the POL file, FCPDEC2 was triggered twice, so there must have been at least
9 overflow records. The first two went on the first section FCPDEC, the next six on the
first FCPDEC2 section, and the remaining on the second FCPDEC2 section.

FORM.DAT file ;FSI;CPP;FCP DEC;FCPDEC OVERFLOW;RO;;FCPDEC|D<INSURED(0)>/
FCPDEC2|D<INSURED(0)>;

SETRCPTB.DAT file ;FSI;CPP;FCP DEC;;T1;INSURED;11,PREMLCREC;0;0;0;0;;;;

;FSI;CPP;FCP DEC;FCPDEC;T1;INSURED;11,PREMLCREC;0;0;0;1;;;;

;FSI;CPP;FCP DEC;FCPDEC2;T1;INSURED;11,PREMLCREC;1;6;2;1;;;;

POL file ;FSI;CPP;FCP DEC;FCPDEC OVERFLOW;RO;;FCPDEC|D<INSURED>/
FCPDEC2|D<INSURED>/FCPDEC2|D<INSURED>;

\ENDDOCSET\ 4234557

Chapter 4
Setting Recipients and Copy Counts

180

SETTING SEARCH MASKS AND RECIPIENTS

In this example, two transaction trigger table concepts are illustrated. First, notice that
there are two search masks in the SETRCPTB.DAT entries. Both the counter and true/
false search masks are being used. Also, in the recipient selection from the
SETRCPTB.DAT is used.

The FORM.DAT consists of a single form, OP654, made up of a single section, addr.
section addr is defined for three recipients, INSURED, COMPANY, and AGENT, all
with default copy counts of zero (0). In the SETRCPTB.DAT, there are two form level
entries. In the first entry, we are looking for ‘1995’ at offset 51 in records with
HEADERREC at offset 11 and 0 at position 20 in records with FRMLSTREC at offset
11.

If both of these conditions are true, OP654 is triggered for INSURED with a copy count
of 1. In the second entry, the same conditions apply for AGENT, with the exception of
looking for ‘1996’ in the counter search mask (rather than ‘1995’).

Notice in the POL file that form OP654 was triggered for INSURED only, indicating
that the second SETRCPTB.DAT entry failed. The second entry failed because ‘1996’ did
not appear at offset 51 in records with HEADERREC at offset 11. This example
illustrates that the two search masks work with a logical AND condition, since the true/
false search mask is true in both entries.

This example also illustrates letting the SETRCPTB.DAT control the copy counts for a
form. When the section OP654 was triggered for INSURED in the first entry, it was
triggered for all recipients. Since the default copy count for all recipients is zero (0), and
only INSURED was set to a copy count of 1 in the SETRCPTB.DAT entry, OP654 was
only printed for INSURED.

FORM.DAT file ;SAMPCO;LB2;OP654;First
Letter;RD;;addr|DS<INSURED(0),COMPANY(0),AGENT(0)>;

SETRCPTB.DAT file ;SAMPCO;LB2;OP654;;T1;INSURED;11,HEADERREC,51,1995;0;0;0;1;11;FRMLS
TREC,20,0;

;SAMPCO;LB2;OP654;;T1;AGENT;11,HEADERREC,51,1996;0;0;0;1;11,FRMLSTR
EC,20,0;

POL file ;SAMPCO;LB2;OP654;First Letter;RD;;addr|DS<INSURED,>;

\ENDDOCSET\ 6SAMPCO

;SAMPCO;LB2;OP654;First Letter;RD;;addr|DS<INSURED,>;

\ENDDOCSET\ 8SAMPCO

Examples

181

USING THE SET RECIPIENT TABLE AND EXTRACT FILES

Here are some hints on how to best use the set recipient table (SETRCPTB.DAT) and
extract files:

• Fewer triggers equals better performance. Each trigger is like a condition statement
for the system to evaluate. The more conditions the system has to evaluate, the
slower the processing cycle.

• Use the master (M) and subordinate (S) flags to avoid repetition.

The set recipient table contains both form and section level triggers to handle cases
of conditional sections on forms. A section level trigger can be used to trigger a
form. This is beneficial in situations where a conditional section can trigger header
and footer sections. If, however, you use it improperly, you will add redundant
conditional logic at both section and form level—which slows performance.

There are two flags (S and M) which you can use to control the evaluation of section
level triggers and to maintain a hierarchy of form and section with respect to the
inclusion of these entities into a form set. The S flag, called the subordinate flag,
identifies the section as subordinate to the parent or master form level trigger. If
the form is not triggered, all underlying section triggers can be ignored, which
eliminates unnecessary processing. The subordinate flag also eliminates processing
the same conditional logic over and over again since the logic is only performed
once at the form level.

The master form flag (M) works in a similar manner but at the form level. When
you use the M flag with a form level trigger, it does not matter whether the
underlying section level triggers have an S flag—all will be treated as if they did. If
the logic in a master form level trigger fails, the form does not trigger and all of the
form’s section level triggers are ignored.

• Limit your use of the RecipIf rule.

The RecipIf rule is just like the IF rule except it is used in the SETRCPTB.DAT file.
The more conditions the system has to evaluate, the slower the processing cycle.
Avoiding the RecipIf rule often depends on the structure of the extract file.

The ideal situation is to trigger a form or section based on one search criteria. If
you want to trigger a form or section based on more than one search criteria, you
may need to use the RecipIf rule. The more conditions you have, the more
complicated the RecipIf rule will be. If the system has to look for a value in a given
range of data instead of at an exact location, you have to add a long and
complicated recipif. There is a price to pay for flexibility and it’s paid in
performance.

• Structure the data in your extract file to be read in the order that it will be processed.
This improves performance since the system will find the next piece of data to
process faster.

Chapter 4
Setting Recipients and Copy Counts

182

FORMATTING SEARCH MASKS

Here are some tips to keep in mind when formatting a search mask.

Spaces • You cannot have a space in any part of the search mask after the comma following
an offset unless you intend to search for that space in the extract file. For example,

"10,DATA"

is not the same as

"10, DATA"

In the second mask, the space is considered part of the search string.

• You cannot have spaces following DATA that you do not want to include in the
search. For example,

"10,DATA,20,DATA"

is not the same as

"10,DATA ,20,DATA"

In the latter, the space following the first word DATA is considered part of the
search text.

• You can have space following the numerical offset value. For example, “10 ,DATA”
is interpreted the same as “10,DATA”.

Commas You cannot search for data which contains a comma. For instance, you cannot have a
search mask of

"10,A,B"

where you expect to find

"A,B"

in your extract row.

You can, however, write the search mask to exclude every other possible character that
might occur between A at offset 10 and B at offset 12. For instance, you could create
this search mask:

"10,A,12,B,11,~+,11,~="

assuming that the only other possible combinations are A+B and A=B.

Examples

183

Tildes The tilde (~) represents a logical NOT of the search operation. The tilde must
immediately follow the comma—but remember that any space after the comma is
considered part of the search text.

For example, a search mask of

"10,~DATA"

is only true if “DATA” does not occur starting at offset 10.

To search for text that beings with a tilde, include two tildes in a sequence. For example,
“10,~~DATA” tells the system to search for “~DATA” beginning at offset 10.

If, however, the tilde is not the first character in the search text, you do not duplicate
the character. For instance, “10,DATA~” is all you have to enter to find “DATA~”
starting at offset 10.

If a space is what you want to compare, add a comma after the space in the search mask.
For example, a search mask of

"10,~ ,"

is true if a space does not occur starting at offset 10.

Parentheses There is no way to search for text that begins with an open parenthesis. For instance, if
you use a search mask like

"10,(,20,DATA"

assuming that the open paren character would be at offset 10, you will not get the results
you want.

Using the OR condition The OR condition is defined as OFFSET,(DATA,DATA,DATA). You must include a
comma between the offset value and the open parenthesis. In addition, you cannot
include spaces between the comma and open parenthesis or the calculation will be
mishandled.

You can have any number of search text items inside the parenthesis as long as they are
separated by commas. Having only one search text inside the parenthesis is no different
than not using the OR condition. For example, “10,DATA” is the same as
“10,(DATA)” and “10,DATA,20,(MORE)” is the same as “10,DATA,20,MORE”.

Using the NOT
condition

You cannot use the tilde (NOT conditions) with OR condition data in any fashion. It
cannot be used outside the parentheses, as shown here

OFFSET,~(MORE,DATA)

nor can you include it inside the parentheses, as shown here

OFFSET,(~MORE,DATA)

The NOT condition is not supported with the OR search criteria.

Chapter 4
Setting Recipients and Copy Counts

184

Using AND and OR
conditions

You can include a mix of AND and OR conditions, but the result is an AND operation.
In other words, each individual search mask operation must evaluate to TRUE before
the result is assumed TRUE. Here is an example:

10,DATA,20,(MORE,DATA),

This statement will only be TRUE when “DATA” occurs starting at offset 10 and
“MORE” or “DATA” occur at offset 20.

Here are some additional examples:

10,(MORE),10,(DATA)

will never be TRUE since the text at offset 10 cannot be both “MORE” and “DATA”.

10,(MORE,DATA),10(SOME,DATA)

will only be TRUE when “DATA” occurs at offset 10. If the word “SOME” or “MORE”
occurs at offset 10, the other part of the condition would return FALSE and the result
of the entire statement would be FALSE. So, you can rewrite this statement simply as
“10,DATA”.

Examples

185

SORTING FORMS BY RECIPIENT

Use the SortFormsForRecip callback function to sort forms in a different order,
depending on recipient. This function reads the given sort table and sorts the forms by
recipient. A form identifier called a Document Type Number (DTN) tells the system
how to sort the forms. The DTN resides in the form description of the FORM.DAT file
and begins with a tilde (~).

Here is an example of how you can use Form Set Manager to specify a DTN in the
FORM.DAT file.

Keep in mind:

• This feature does not support running with the MultiFilePrint callback function.

• Use the DTN to identify the category of the form and to specify the assembly order
of the form.

• Form sets with identical DTNs are sorted and printed in the order that they are
triggered.

• When running in single step mode, to preserve the order of the original forms being
triggered and the NA data being written, these rules must be set in this order in the
AFGJOB.JDT file:

;PrintFormset;;

;WriteOutput;;

;WriteNaFile;;

Otherwise, the POLFILE.DAT and NAFILE.DAT files will be out of sync.

• If a form should print for a particular recipient and it is omitted from the sort table,
the system warns you. For example, suppose Form1 with a DTN of 10 should be
printed for RECIPIENT1 but this form was not specified in the sort table. Here is
an example of the warning you would see in the error file:

Warning: Document <FORM1>, Description <One~10>

Recipient <RECIPIENT1> has no matching recipient codes in sort table.

Although these error messages do not stop the processing, the result will not be
sorted correctly.

The Form Description reads:
ABC~10.
The DTN is 10.

Chapter 4
Setting Recipients and Copy Counts

186

INI files Here is how you set up your INI file:

< Print >

 CallBackFunc= SortFormsForRecip

< Sort_Forms >

 TableName = ..\MstrRes\Table\sort.tbl

This tells the system to use a sort table called SORT.TBL.

Keep in mind, when using the SortFormsForRecip rule on UNIX platforms, you have
to enter the extract path with forward slashes, as shown here:

< Sort_Forms>

TableName = /mstrres/table/sort.tbl

Sort tables Here is an example of a sort table called SORT.TBL:

;*;10,20,30;

;CUSTOMER;10,30,20;

;AGENT,OFFICE;20,30,10;

The first line in the sort table defines the default sort order for all recipients not defined
in the sort table. The second and third lines are sort records. You set up a sort record
for each different sort order.

To set up a sort record, begin with a semicolon (;), followed by the recipient names
separated with commas (,). End the list of recipients with a semicolon (;). Here is an
example:

;Recipient1,Recipient2,Recipient3;

Next, and on the same line, list the DTNs associated with the form sets. Separate the
DTNs with commas (,) and end the list with a semicolon (;). Here is an example of a
sort record:

;Recipient1,Recipient2,Recipient3;10,20,30;

Based on the form sets and the SORT.TBL file shown above, here is an excerpt from the
resulting POLFILE.DAT file:

;SAMPCO;SMP;FORM1;One~10;R;;ImageA|D<CUSTOMER,AGENT,OFFICE>;

;SAMPCO;SMP;FORM1.1;Two~10;R;;IMAGEA2|D<CUSTOMER,AGENT,OFFICE>;

;SAMPCO;SMP;FORM2;Three~20;R;;IMAGEB|DS<CUSTOMER,AGENT,OFFICE>;

;SAMPCO;SMP;FORM3;Four~30;R;;IMAGEC|D<CUSTOMER,AGENT,OFFICE>;

\ENDDOCSET\ 1234567890

The print file for CUSTOMER will be in this order:

;SAMPCO;SMP;FORM1;One~10;R;;ImageA

;SAMPCO;SMP;FORM1.1;Two~10;R;;IMAGEA2

;SAMPCO;SMP;FORM3;Four~30;R;;IMAGEC

;SAMPCO;SMP;FORM2;Three~20;R;;IMAGEB

The print file for AGENT and OFFICE will be in this order:

;SAMPCO;SMP;FORM2;Three~20;R;;IMAGEB

;SAMPCO;SMP;FORM3;Four~30;R;;IMAGEC

;SAMPCO;SMP;FORM1;One~10;R;;ImageA

;SAMPCO;SMP;FORM1.1;Two~10;R;;IMAGEA2

Summary

187

SUMMARY This chapter explains the major principles illustrated in the previous examples and
reviews the triggering logic used by the transaction trigger table. Keep in mind that the
transaction trigger table cannot be viewed in isolation; it works with the form set
definition table, and both must be examined to predict triggering behavior. The form
set definition table defines the default recipients and copy counts for form sections. The
transaction trigger table may override some or all of the form set definition table
settings.

In the case of the copy count, the form set definition table defines a default copy count
for each recipient of each form section. A transaction trigger table entry defines a copy
count for one or more recipients. This transaction trigger table copy count may be the
same or different from that already defined in the form set definition table. When
evaluated, a transaction trigger table entry’s copy count will override the one already
defined for those recipients in the form set definition table for that form section.

A similar relationship exists between the form set definition table and the transaction
trigger table for recipients. The form set definition table defines the default recipients
for a form section. The transaction trigger table can be used to change the copy count
for those recipients. And if a transaction trigger table entry sets the copy count to zero
(0) for a particular recipient, it has the effect of removing that form section for that
recipient. Keep in mind that a recipient may not be included in a transaction trigger
entry unless that recipient has already been included for that form section in the form
set definition table.

For a transaction trigger table entry to be evaluated, three of the first five transaction
trigger fields (GroupName 1, GroupName 2, and Transaction Code) must match some
records within the extract file. For example, if there are no records with the transaction
code specified in the trigger, that trigger will be skipped. If extract records exist that
match these three fields, the remaining fields of that trigger are evaluated. A blank
transaction code field is treated as a wildcard, accepting any transaction code for the
trigger.

Of the two transaction trigger table search masks, the true/false mask is evaluated first.
Once an extract file record has been found that meets the true/false search mask criteria,
the counter search mask is evaluated next, if one is present. The counter and true/false
search masks work the same way when the overflow flag is not set. But when the overflow
flag is set, the counter search mask criteria search does not stop at the first matching
extract file record - the system will continue to search for all matching extract file
records.

When the system evaluates the counter or true/false mask, the system searches through
all the records in the extract file for the specified transaction. If any of the transactions
match the search criteria, the condition is considered true. If there are multiple records
with the same search criteria, the system will evaluate all of them. If any of these records
match the search criteria, the trigger condition is considered true.

For example, if Search Mask 2 is specified as 11,SPECIAL,20,5 and there are two records
containing SPECIAL at offset 11, the first one an A at offset 20 and the second one with
a 5 at offset 20, the system will evaluate both records and finding the second meets the
search criteria, the trigger condition is considered true. The system will stop searching
once a True condition is found, except in overflow situations. For overflow situations,
the system will not stop searching. Rather, it will keep searching and counting the
number of True conditions. The system will then trigger the number of sections or
forms based on that count.

Chapter 4
Setting Recipients and Copy Counts

188

When the custom rule RECIPIF is evaluated, the search is different than that used for
Search Masks 1 and 2 in that when the system only evaluates the first found record
which matches the search criteria. For example, if the custom rule is specified as follows:

;Recipif;A={11,SPECIAL
51,4}::if(A=’1995’)::return(“^1^”)::else::return(“^0^”)::end::

There are two records in the extract file containing SPECIAL at offset 11. The first one
has 1994 at offset 51, and the other has 1995 at offset 51. When the system stops
searching once it finds the first record which matches the search criteria. In this case, it
evaluates the record contains 1994 and determines that the trigger condition is false.

When the overflow flag is set, the next two transaction trigger table entry fields, records
per overflow section and records per first section, are examined. If both of these fields
are set to zero (0), the system will automatically handle the overflow. If these fields are
used, they specify how many entries are to be split among the two sections. The records
per overflow section specifies how many records will fit on the overflow section. The
next field, records per first section, specifies how many records will fit on the primary
section.

At a minimum, a transaction trigger table entry must contain a GroupName1 value, a
GroupName2 value, a Form Name value, and a Copy Count value. A section level
trigger must also contain a section Name value. At a minimum, the three overflow fields
must be set to zero (0). A blank Transaction Code field acts as a wildcard, accepting any
transaction code. A blank Recipient List field will default to the recipients named in the
form set definition table. And the two Search Mask fields and the Custom Rule field
may be used as needed to produce the desired triggering results.

189

Chapter 5

Setting Up Error
Messages and Log Files

This chapter discusses the how the system creates error
and log messages and describes how you can customize
these messages to meet your company’s needs.

In this chapter, you will find information about...

• Overview on page 190

• Configuring the Message System on page 191

• Creating Messages on page 197

• Using the Message Token File on page 203

Chapter 5
Setting Up Error Messages and Log Files

190

OVERVIEW The message system is enabled by default. Without making any modifications, it is fully
functional. Each executed system program (GenTrn, GenData, GenPrint, and so on)
appends output messages to the appropriate log or error file.

When an error or log message occurs, the system writes the information to a token file
named MSGFILE.DAT. A second step converts or translates the output into log and
error files, which are typically named LOGFILE.DAT and ERRFILE.DAT.

By default, this translation step occurs before each program’s termination so the system
is compatible with earlier versions. You can, however, delay this step and execute it
manually using the TRANSLAT utility (see the Utilities Reference for more
information). This lets you translate the message and error information after all system
programs have completed their processing cycle for a given batch run.

NOTE:Typically, you will want to use system defaults as you implement your system.
This lets you spot errors after each processing step. Once your system is
implemented and is running without error, you may want to delay the translation
process to improve performance. See Controlling the Translation Process on
page 194 for more information.

Delaying the translation process can sometimes improve throughput performance—
especially in batch implementations that typically run without errors.

This translation process, delayed or not, gives you flexibility in the type of options you can
use; increases the amount of information that can be generated; and lets you control
message formatting and language.

TYPES OF ERROR CODES

The system returns the following types of messages:

NOTE:Version 11.5, added the Critical Error. Previously, the system only emitted
Warnings and Errors.

The difference between an Error and a Critical Error is that a critical error always causes
the program to stop processing, even if you set the GenDataStopOn, GenTranStopOn,
or GenArcStopOn control group options to No.

Type Code Description

Warning **04** Warning message

Error **08** Error message

Critical Error **12** Critical error message

Configuring the Message System

191

CONFIGURING
THE MESSAGE

SYSTEM

As with most system features, you can configure the messaging system. Typically you use
INI options in the FSISYS.INI file (or whatever your INI file is named) to configure the
message system.

For example, you can turn off or on the log and error files, assign different output file
names or directories, and so on. As mentioned earlier, you can also configure the
message translation process to occur during normal system processing or as a final,
separate step.

The system automatically prefixes an error code before each error message. Each code
begins with the two-character identifier. Here is an example:

DM10825: Warning in TextMergeParagraph(): Rule used in image that
does not have any text areas. Image name is <q1snam>. Processing will
continue

ENABLING AND DISABLING MESSAGES

Messages output from system programs fall into two categories—log and error messages.
Unless specifically turned off via INI options, the message system produces both error
and log files.

Error messages contain information about the problems encountered during the
execution of the program. The generation of error information cannot be disabled. It is
possible to not translate the results into an actual error file, instead the informational
tokens output by the programs are written to a message token file named MSGFILE.DAT.

Log messages are a different matter. This type of message is informational, but not
generally tied to the success or failure of the job. In general, these messages are
transactional in nature—meaning that they provide information about each transaction
as it proceeds through the processing cycle.

You can suppress the log information output by the programs. The LogTransactions
option enables or disables the generation of log messages:

< Control >

LogTransactions = Yes

The LogTransactions options defaults to Yes. To disable the logging of messages, set it
to No. By disabling this option, you suppress the informational tokens written to the
intermediate file and prevent the translation of the log file.

When you set the LogTransactions option to No, system programs do not output the
informational tokens, so you cannot generate the log file even if you use the TRANSLAT
utility.

NOTE:For more information on the TRANSLAT utility, see the Utilities Reference.

Chapter 5
Setting Up Error Messages and Log Files

192

Logging INI Files and Options Used
By default, the GenTrn, GenData, GenPrint, and GenArc programs log the INI files
being used. This tells you which files were used and if they were opened successfully. For
more information, see Logging INI File Names and Options on page 112.

CLEARING MESSAGES

If you are using single step processing, you can use the following INI option to delete
all MSGFILE.DAT, ERRFILE.DAT, and LOGFILE.DAT files before the system begins
the single step process.

< GenData >

ClearMsgFile = Yes

The default is No.

DEFINING THE OUTPUT MESSAGE FILES

Several files are used by the message system. You identify the output files and their
locations with these INI options:

< Data >

ERRFile = errfile.dat

LOGFile = logfile.dat

MSGFile = msgfile.dat

TranslationFile = translat.ini

NOTE:The TRANSLAT.INI file was designed to let you to translate output messages.
Beginning with version 11.5, this file is being migrated to work through the
Oracle national language support (NLS) interface. As a part of this migration,
the TRANSLAT.INI file is now replaced with an Oracle message file (.MSG)
which is compiled into a binary file (.MSB) and stored in the \Lang
subdirectory of your executables directory. The English US translation is in the
XLTUS.MSB file. As demand warrants, output messages will be translated into
additional languages and compiled into additional .MSB files.

Message binary (.MSB) files are used on the Windows and UNIX platforms but
the TRANSLAT.INI file is still used on mainframe platforms, such as on z/OS.

The expected format of NLS messages differs slightly from the format of
messages within the TRANSLAT.INI file. To complete the interface, the
TRANSLAT.MMP file is used to internally map the message parameters.

The values for the LOGFile and ERRFile options are probably already set correctly if you
are upgrading your system from an earlier version.

The values you specify for each option identify the file name for that option. You can also
specify a directory path for each file. If you omit the path and include only the file name,
the setting for the DataPath option is used as the default location for these files.

Configuring the Message System

193

Initializing the Output Message Files
In a standard implementation, the GenTrn program is the first program run in the batch
process. As the first program, it re-initializes the data files by first deleting the existing data
files.

If your implementation does not use the GenTrn program, you ether have to set up the
implementation to manually delete these files or you must include an additional INI
option.

The ErrorFileOpenMode option lets you tell system programs to delete old message files
before beginning its processing cycle. Here is an example of this option:

< Control >

ErrorFileOpenMode = Create

If you set this option to Create, the system deletes existing files and creates new ones for
the processing run. If you leave this option blank or enter any other value, the system
appends information onto existing files.

Option Description

ERRFile Identifies the file which contains the error messages.

LOGFile Identifies the file which contains the log messages.

MSGFile Identifies the message token file the system programs produce.

TranslationFile Contains the message text. Normally defaults to TRANSLAT.INI. Use this
option to specify the file name and location.

Unlike the other files, the TRANSLAT.INI file is static—it does not change
during the batch process and is not considered a data file. This file’s location
does not default to DataPath option as do the other files.

In the MVS environment, the DefLib option identifies the TRANSLAT.INI
file’s default location if you do not specify a path in the TranslationFile
option.

Chapter 5
Setting Up Error Messages and Log Files

194

Turning Off Date Stamps
You can turn off date stamps in batch processing error and log files using these INI
options:

< Control >

ErrorFileDateStamp = No

LogFileDateStamp = No

Entering No to turn off these options can be of use when regression testing.

Use this option to disable date stamps in the batch trace file:

< Debug_Switches >

PrintTimeStamp = No

Controlling the Translation Process
By default, the GenTrn program deletes the old message file at the beginning of its
execution and starts a new file with output information. All other programs, such as
GenData, GenWIP, and so on, append information to the end of the message file created
by the GenTrn program.

The default translation options are set so the log and error files are created after each
system program executes. You can, however, set the ImmediateTranslate option to No to
delay the translation process until all system programs finish processing—at the end of
the batch process.

Here is an example:

< Control >

ImmediateTranslate = No

Once processing stops, you can then use the TRANSLAT utility to translate the
messages. By delaying the translation process and only executing it once per batch cycle,
you can reduce job throughput times.

NOTE:If you set the ImmediateTranslate option to No, the system will not create the
ERRFILE.DAT file.

Option Description

ErrorFileDateStamp Enter No to disable date stamps in error files. The default is Yes.

LogFileDateStamp Enter No to disable the date stamp in log files. The default is Yes.

Option Description

PrintTimeStamp Enter No to disable date stamps in the batch trace file. The default is Yes.

Configuring the Message System

195

DBLib Trace Messages
DBLib-related trace (or log) messages are written to the trace file. The name of this file
defaults to trace but you can set it to another file name using the TraceFile option:

< Data >

TraceFile = xxxxx

We recommend you use the default name of trace.

NOTE:Before version 11.0, DBLib-related logging messages were written to the file
indicated by this option:

< Data >

DBLogFile = (file name)

The default was DBLOGFLE.DAT.

Keep in mind, all types of tracing, including DBLib tracing, slow performance. You
should only activate DBLib tracing during development and testing or if requested by
Documaker support personnel.

In the Rules Processor, the trace file for DBLIB log messages is the default logging file.
You can activate DBLib tracing by specifying these INI options in the FSISYS.INI file:

< Debug_Switches >

Enable_Debug_Options = Yes

DBLib = Yes

In IDS, the default logging file is the DPRTRC.LOG file DBLIB log messages. You can
enter the INI options in the DAP.INI file or the MRL-specific INI file.

Chapter 5
Setting Up Error Messages and Log Files

196

Overriding Error Behavior
Use the ErrorCodeOverride control group to tell the system how you want it to handle
specific errors. Your entries override how the system would normally process errors.

Here is how to set up the ErrorCodeOverride control group options:

< ErrorCodeOverride >

(ErrorNumber) = Warning

(ErrorNumber) = Critical

(ErrorNumber) = Error

For example, the DM10836 code tells you the system cannot locate a specific chart object.
Normally when this occurs, the system generates a warning and continues processing. If,
however, you make the following entry, the system treats DM10836 as a critical error and
stops processing the transaction.

< ErrorCodeOverride >

10836 = Critical

Option Description

ErrorNumber For each error code you enter, select from these options to tell the system how
you want it to handle the situation:
•Warning
•Error
•Critical (stops all processing)

Creating Messages

197

CREATING
MESSAGES

System messages fall into these categories:

• Log messages

• Error messages

Log messages record information about the processing run. These messages are
informative rather than diagnostic. Types of information that fall into this category
include transaction IDs that are processed; the start, ending and elapsed time of the run;
transaction counts and statistics; and the program description that is producing the
information.

Error messages are also informative, but usually help diagnose problems encountered
during the processing run. These messages include such things as invalid data recognition;
improper options; input/output errors; and resource validation.

The way these messages are produced is exactly the same. In general, the only real
distinction between these two message classes is the destination file to which each is
written.

USING THE RPERRORPROC AND RPLOGPROC FUNCTIONS

Use these two functions when you specify information to be output to the log or error
files. You can use these functions to install the custom error and log procedures called
from within these functions. The system lets the calling function provide the details of a
message without having to specify the exact formatted text.

Here is an example:

RPErrorProc(pRPS, (WORD)EMIT_WARNING, (DWORD)10012,

"OutBuff", pRPS->OutBuff,

"Image", IMAGENAME(pRPS->CurrentFapImageH),

LASTERRORTOKEN);

RPLogProc(pRPS, (WORD)EMIT_MESSAGE, (DWORD)10775,

LASTERRORTOKEN);

Each parameter is discussed below:

RP Struct The first parameter represents the pointer to the RP Struct active during the run.

Message Types The second parameter identifies the type of message being reported. There are these
classes of messages:

Class Description

EMIT_MESSAGE Indicates the resulting information is simply a message.

EMIT_WARNING Indicates the information is a warning to the user.

EMIT_ERROR Indicates an error has been encountered by the program.

EMIT_CRITICAL Indicates a critical error has been encountered that will stop all
processing.

Chapter 5
Setting Up Error Messages and Log Files

198

The message system recognizes the type of message if you use one of the above defines.
Use the EMIT_??? keywords for this parameter and do not rely upon the underlying
numeric value. This lets you later change these values or add new values and recompile
without invalidating the meaning of a particular message.

Message Number Use this parameter to specify the message number to associate with the output data.

Message numbers are associated with the TRANSLAT.INI file. This file contains all the
static text for each message. The static text is later merged with the variable information
to produce the messages written into the log or error files. This table shows the message
number ranges:

Assigning numbers to
custom messages

The range 50000 and higher is for customization messages, which are generally added
when you customize your system. Although you can use previously defined messages, it
is better to assign an unused number within the custom range for each message you add.

This makes sure the intended meaning of an existing message is not changed in case
someone modifies the text of the assumed custom message in the external file. In
addition, if you develop a numbering system for the custom range, you can provide
additional debugging information through the message number.

You can add custom messages into the TRANSLAT.INI file, as in previous releases
(version 11.5 and prior releases). The system searches for messages in the Oracle message
file first and if not found, the system searches for messages in the TRANSLAT.INI file.

USING MESSAGE TOKENS

The remaining parameters passed to the RPErrorProc or RPLogProc functions are
variables which represent token-data pairs used to define the content of the message.

In this example, there are two pairs of token-data.

RPErrorProc(pRPS, (WORD)EMIT_WARNING, (DWORD)10012,

"OutBuff", pRPS->OutBuff,

"Image", IMAGENAME(pRPS->CurrentFapImageH),

LASTERRORTOKEN);

Range Description

0 to 49999 Reserved range for Documaker base system messages.

50000 and higher Can be used for custom messages. The maximum message number in an
Oracle message (.MSG) file is 65535.

Creating Messages

199

There are several points to remember about tokens which will become apparent as you
examine the TRANSLAT.INI file—the file that contains the rest of the message text.

• The message text from the TRANSLAT.INI file does not have to use all, or for that
matter any, of the tokens output from a particular function. This means you can
output more information (in token-data format) than would normally be required in
the message. This information, however, might prove useful to a programmer during
closer examination of the message file.

• Token names live forever. This means that a token logged earlier in the session can
be referenced by messages that occur later. For instance, if an early message outputs
a token (with a value) named ID, any message text translated after that point may
refer to ID and receive that same value.

• Token names are reusable. You should reuse token names whenever it makes sense.
For instance, each time a function is required to emit the section (image) name, use
the same token name. This conserves space in the token list (because a new entry
does not have to be created) and if subsequent messages rely upon the last known
value of a given token, it is more likely to be correct.

• Tokens are not case sensitive. A token named Image can be referred to as IMAGE,
Image, image, ImageE, and so on.

Also note, that the example refers to one-word tokens. Although, this is the most efficient
use of space, tokens can be longer and include spaces. The only character you cannot use
in a token is the ampersand (&)—ampersands are used in defining the static message text.
For instance, you can define a token such as One A Day, but you cannot define a token
such as Will Not&Work.

Token Description

OutBuff Represents a token name. The data for that token is defined in pRPS-
>OutBuff.

Image A second token name, with appropriate data text following. Token
and data must be character text. Therefore, if the data to be
represented is anything other than text, it must be converted before
you call the message function.

LASTERRORTOKEN Not really a single token, but rather is a macro that contains several
token-data pairs. These pairs identify the source module name and
the line number of the statement being compiled. The last
component of LASTERRORTOKEN is a NULL pointer used by the
internal message formatter to recognize the end of the Token-Data
pairs.

LASTERRORTOKEN must be the last variable passed to both the
RPErrorProc and RPLogProc functions.

Chapter 5
Setting Up Error Messages and Log Files

200

NOTE:Legacy systems expected the fourth parameter to be a string representing a
format. This format string might be the complete message or contain flags
indicating where subsequent variables will be substituted—such as %d, %s, %X,
and so on.

The RPErrorProc or RPLogProc functions distinguish how these remaining
parameters are handled (legacy or new) by first determining if the Message Type
and Message Number parameters are values expected by the new functionality.

The new use of the functions does not require a format string. Instead, the
variables represent token-data pairs until the LASTERRORTOKEN is
encountered.

SETTING UP MESSAGE TEXT

Message output from system programs is typically destination bound to the error or log
files. All static message text is isolated into an external file for easy maintenance. The static
portion of all messages is contained in the XLTUS.MSG file on Windows and UNIX or
the TRANSLAT.INI file.on z/OS.

NOTE:The INI designation is one of convenience, since the TRANSLAT.INI file is not
intended to be used like a conventional INI file. INI references intended for
other program functionality do not work when placed in this file. Likewise, you
cannot add static message text intended for the log or error files into the
FSISYS.INI or FSIUSER.INI files.

All messages must have a unique message number. You must make sure the proper
message number is referenced in the code.

Creating Messages

201

Message examples Here are some examples from the XLTUS.MSG file:

10529, 42, "%1: %2 in RunDate(): Unable to GENFmtDate(<%3>,,)."

10536, 42, "%1: %2 in LookUp(): Missing Key offset in LookUp."

20261, 42, "\nProcessing Batch:<%1> File:<%2> Port:<%3>\n"

Here are the corresponding examples from the TRANSLAT.INI file:

10529 = &E&: &MTYPE& in RunDate(): Unable to GENFmtDate(<&RunDate&>,,).

10536 = &E&: &MTYPE& in LookUp(): Missing Key offset in LookUp.

20261 = \nProcessing Batch:<&Name&> File:<&File&> Port:<&Print&>

There are several points to note in these messages.

• Each line specifies a unique message number and associates the static text portion of
the message with that number.

• In the XLTUS.MSG file, %1, %2, %3, and so on, are token placeholders for value
replacement. In the TRANSLAT.INI file, the words bounded on each end with an
ampersand (&) are token placeholders for value replacement.

This is where the token-data pairs passed to the RPErrorProc and RPLogProc
functions are matched and substituted into the static text. For example, assume the
following statement is in the code of one of the system programs.

RPErrorProc(pRPS, (WORD)EMIT_ERROR, (DWORD)10529,

"RunDate", “April 1, 1999”,

LASTERRORTOKEN);

This would cause message number 10529, shown above, to print this text in the log
file.

Error in rundate(): Unable to GENFmtDate(<April 1, 1999>,,).

• Since token names are identified between ampersand characters, two ampersand
characters together (&&) signals that the output text is to contain a single ampersand
character.

Undefined tokens Notice there are three substitution variables in the 10529 message but only one
substitution pair is passed to the RPErrorProc function.

The TRANSLAT.MMP file contains three substitution variables (%1, %2, %3) for
message 10529.

10529:E,MTYPE,RunDate,

E and MTYPE in the TRANSLAT.MMP file (or &E& and &MTYPE& in the
TRANSLAT.INI file on z/OS) are substitution variables that are automatically handled
by the RPErrorProc function.

A warning message is generated when EMIT_MESSAGE is passed as the second
parameter to RPErrorProc and the MTYPE substitution variable is replaced with the
string, Warning.

An error message is generated when EMIT_ERROR is passed as the second parameter
to RPErrorProc and the MTYPE substitution variable is replaced with the string, Error.

An error message is also generated when EMIT_CRITICAL is passed as the second
parameter to RPErrorProc and the MTYPE substitution variable is replaced with the
string, Critical Error.

Chapter 5
Setting Up Error Messages and Log Files

202

Messages can have any number of token replacements. If, however, a token is undefined
when the messages are translated, the token name is left in the text. So, if you view the log
or error file and find a message which includes a word bounded by ampersands, it means
one of these things:

• The token is misspelled in the message file.

• The token is misspelled in the code that called the RPLogProc or RPErrorProc
function.

• The token and data was not included in the parameters to the message functions.

• This is not a token and was intended to print in this manner. Either it is data
associated with a token or two ampersands were included at each end of the word in
the static message text.

The first place to begin diagnosing this type of result is by examining the text included for
the message in the XLTUS.MSG or TRANSLAT.INI file.

Adding a new line In message number 20261, you can see the use of another format convention. The \n in
the text is translated as a new line character. This causes the following text to print on the
next line. The layout of the XLTUS.MSG or TRANSLAT.INI file requires that all of the
text for each message must fit onto a single line. Using \n in text expands your formatting
possibilities.

Determining where the
message originated

Examine message number 20246. This message does not contain any tokens. Therefore
there is no variable text that is required to print within this message.

The fact that the message does not contain any tokens does not mean that no tokens were
output from the system program when the RPErrorProc function was called. In fact,
there are at least two tokens associated with this message.

LASTERRORTOKEN is the last required parameter to calls to the RPErrorProc and
RPLogProc functions. This macro defines the FSIFileName and FSILineNumber tokens. If
you include the FSIFileName token in the message text, the name of the module that
contained the code calling the RPErrorProc or RPLogProc function is substituted into
the message. Likewise, FSILineNumber is substituted with the source line number of the
statement calling the RPLogProc or RPErrorProc function.

This information can be quite useful if you are trying to determine what code is issuing a
particular message. All you have to do is edit the message and include &FSILFileName&
and &FSILineNumber& into the message text defined in the XLTUS.MSG or
TRANSLAT.INI file.

Using the Message Token File

203

USING THE
MESSAGE

TOKEN FILE

While a system program is running and emitting information, the token-data pairs are
written to the message file (MSGFILE.DAT). Typically, you do not have to examine the
message file. The translation process that produces the error file and log file will do that
for you and will make the final text more readable.

On occasion, however, examining the file reveals more information than is provided by
the translation process. For instance, if you see a particular message in the error file and
want to know where in the code this message originated, you can do one of two things.

You could edit the XLTUS.MSG or TRANSLAT.INI file to add the FSILineNumber and
FSIFileName tokens to the message. Then, by rerunning the translation process, you
would get the additional message information. (See Determining where the message
originated on page 202 for more information)

Or, if you know what you are looking for, you could peek into the message file and locate
the information more readily. Here is an excerpt from a message token file.

T DestField/PREM PAY INCEPTION

T Image/qmdc2

T FSIFileName/..\C\rulbsfl.c

T FSILineNumber/364

E 10010

T FSIFileName/..\C\rcbbatpr.c

T FSILineNumber/418

E 13027

T FSIFileName/..\C\rulbsfs.c

T FSILineNumber/185

L 10775

T ID/3234567

T GrpName1/SAMPCO

T GrpName2/LB1

T GrpName3/

T Buff/T1

T FSIFileName/..\C\gentrans.c

T FSILineNumber/1187

L 11190

The first character on the line is a letter code which designates the meaning of the line.
Valid codes are shown here:

The token-data pairs for a given message will occur in the file on lines before the E or L
lines. Knowing this, you can see that the excerpt from the message file shown above
contains the information for four different messages.

Code Description

E Followed by a message number bound for the error file. (error or warning)

L Followed by a message number bound for the log file. (informational)

T Followed by a token-data pair, separated by a forward slash (/).

Chapter 5
Setting Up Error Messages and Log Files

204

The first message number occurs at the line that contains E 10010. This is a message
bound for the error file. Four tokens are defined before translation:

• DestField

• Image

• FSIFileName

• FSILineNumber

This means that if the message text for 10010 contains any of these tokens the appropriate
data will be substituted. Remember, however, if the message refers to a token that has not
been defined prior to this point, the token will be left in the output text to indicate a
problem might have occurred.

The next message number occurs at the line that contains E 13027. This too is a message
bound for the error file. Notice that two tokens occur between the location of the first
and second message—FSIFileName and FSILineNumber. These use the same token names
used before, however, now their data values are different.

Also note that although only two additional token (changes) occurred before message
13027, four tokens are defined. If you could look into the program memory at this
moment, you would see that the token list has these values:

All tokens remain active after they have been translated. Tokens that are reused are
updated with new values, but no tokens are removed until the translation process is
complete.

Therefore, it is permissible (but at this point not likely) that a message can use tokens
output by a prior message. This is why it is important to reuse token names when it makes
sense, such as when all references to a section’s (image) name should use the same token.

Continuing with the examination of the message file excerpt, the next message is
identified via the line that reads, L 10775. This is a message bound for the log file, not the
error file. It too redefines the FSIFileName and FSILineNumber tokens, as do all messages
that use LASTERRORTOKEN.

Token Value

DestField PREM PAY INCEPTION

Image qmdc2

FSIFileName ..\C\rcbbatpr.c

FSILineNumber 418

Using the Message Token File

205

The last message in this example is defined by the line, L 11190. Five new tokens were
introduced before this message. Peeking into program memory again, the token list now
looks something like this:

Note that the most recent values for FSIFileName and FSILineNumber are reflected. Also
note that the tokens previously defined still exist. Finally, note that one of the tokens
appears to have no data (GrpName3) and is therefore blank. This is permissible.

Token Value

Buff T1

DestField PREM PAY INCEPTION

GrpName1 SAMPCO

GrpName2 LB1

GrpName3

ID 3234567

Image qmdc2

FSIFileName ..\C\gentrans.c

FSILineNumber 1187

Chapter 5
Setting Up Error Messages and Log Files

206

207

Chapter 6

Archiving and Retrieving
Information

The GenArc program lets you store completed form
sets for later retrieval. The GenArc program can be run
as an independent program or from within the
Documaker system using the archive and retrieval
options.

When you run the archive module, the information the
system uses to compose the form sets is compressed and
stored in an archive file along with certain indexing
information.

Once the form set information has been archived, those
form sets can be regenerated by retrieving the form set
information from the archive file. The archive index
file is used to aid in the retrieval of particular form set
information through the use of keys. These keys can be
set to meaningful search criteria such as policy or
account numbers, claim or invoice numbers, company
names, customer names, and so on.

This chapter includes information on the following
topics:

• Terminology on page 208

• System Scenarios on page 210

• Archive and Retrieval Features on page 212

• Processing Overview on page 213

• Running GenArc on page 216

• Using WIP and the Archive Index File on page 237

• Retrieving Archived Forms on page 240

• Working with Documanage on page 243

Chapter 6
Archiving and Retrieving Information

208

TERMINOLOGY The GenData program creates the NEWTRN file (which contains one record for every
transaction to be processed), the NAFILE (which contains section and variable field
information and possibly some in-line data), the POLFILE (which contains form and
section inclusion information) and the recipient batch files, such as BATCH1,
BATCH2, and so on (which look similar to the NEWTRN file).

The GenArc process accepts as input the NEWTRN, NAFILE and POLFILE files and
archives this data. Here are some terms you need to be familiar with:

Files and tables The term file refers to a non-database data structure, such as a flat file, while the term
table refers to data structures within some database management system, such as DB2,
SQL Server, and so on. However, the terms file and table might be used interchangeably
in this chapter.

Commit The term commit is a database term which means to make table changes permanent. As data
is written to tables, the data is not really made permanent until a commit is performed.
Before performing a commit, if you determine that you really don’t want to make the
changes to the table, you can perform a rollback which will undo any table changes you
have made since the last commit point. The GenArc program performs periodic
commits based on an INI value you set.

Rollback The term rollback is a database term which means to undo any table changes that have
been made since the last commit point. As table rows are inserted, deleted and updated,
these changes do not become permanent until a commit is performed.

GenArc The program name for the process which performs batch archive. The program names
vary slightly, depending on the operating system you are running. For example, the
GenArc program on Windows is called GENACW32.EXE.

AFEMAIN The program name for the Processing System. The AFEMAIN program contains a
graphical user interface. It lets you enter key information and retrieve a list of archived
form sets you can display. The program name may vary slightly, depending on the
operating system platform you are using. For example, on Windows it is called
AFEMNW32.EXE.

CARFILE Compressed Archive File. The CARFILE may also be referred to as the ARCHIVE file. The
GenArc program compresses the NAFILE/POLFILE data for each transaction and
writes archives this data to the CARFILE. The GenArc program writes one or more
records to the CARFILE for each transaction it archives.

APPIDX Application Index. The GenArc program archives indexing information to the APPIDX
file. The GenArc program writes one record to the APPIDX file for each transaction it
archives.

TEMPIDX Temporary Application Index. The TEMPIDX file is used as a temporary storage for records
to be added to the Application Index file. The TEMPIDX file is used only when the
GenArc program is archiving to a DBASE IV database. TEMPIDX is not used by the
GenArc program when archiving to DB2, SQL Server, Oracle, or other databases.

Terminology

209

CATALOG Refers to the CATALOG file. As the GenArc program archives data to the CARFILE
and the APPIDX, it connects the CARFILE and APPIDX files with a key (by default
called ARCKEY). Part of this key is a field called the CATALOGID. The GenArc
program generates a unique CATALOGID (timestamp) each time it runs and writes this
CATALOGID to the CATALOG file. The GenArc program writes one record to the
CATALOG file for each GenArc run.

RESTART The Restart table. The Restart table describes whether a GenArc run was successful or if
the run failed. The GenArc program writes one record to the Restart table for each
distinct GenArc run. GenArc runs are made distinct by passing the GenArc program a
parameter called JOBID.

DFD Data Format Definition. A DFD file is used to describe the fields a file’s records are
composed of. DFD files have a particular format and are frequently used to map the
layout of system-related data files. The archive-related files defined above all have default
DFD files that describe their layout.

Chapter 6
Archiving and Retrieving Information

210

SYSTEM
SCENARIOS

You can run the batch archive GenArc program, on a variety of platforms. This program
creates and indexes the archived copy of the form set and its corresponding data.

You use Documaker’s Archive module to retrieve, display, and print archived form sets
from their workstations. The Archive module runs under various Windows 32-bit
operating systems such as Windows 2000 and Windows XP. The following tables
describe the various platforms and types of archives you can create and access.

NOTE:If your company has needs not covered below, contact your sales representative.

Scenarios for OS/390
(MVS)

Scenarios for Windows
32-bit

Server

Operating system OS/390 OS/390

Database DB2 8.1 Oracle 8.1.7 or higher

Communications SNA 6.2 SNA 6.2

Client

Operating system Windows 32-bit Windows 32-bit

Database DB2 for Windows 7.2 na

Product SNA Server 6.2 SNA Server 6.2

Communications DDCS 2.3.2 DDCS 2.3.2

Archive (Documaker Workstation) Yes Yes

Server

Operating system Windows Windows Windows Windows Windows

Database DB2 8.1 xBase SQL Server 7.0 Sybase Oracle
8.1.7

Communications na na ODBC ODBC ODBC

Client

Operating system Windows Windows Windows Windows Windows

Database DB2 8.1 xBase SQL Server 7.0. Sybase Oracle
8.1.7

Communications ODBC na ODBC ODBC ODBC

Archive (Documaker
Workstation)

Yes Yes Yes Yes Yes

System Scenarios

211

Scenarios for UNIX

The DB2 database uses DB2LIB on if you are running the UNIX version of the GenArc
program. If you are archiving to UNIX from the Windows version of the GenArc
program, the system uses ODBC as the database communications layer.

You can also retrieve to Windows using DB2LIB or ODBC from tables created from the
UNIX version of the GenArc program.

For Oracle databases, the UNIX processes use ORALIB as the communications client to
the Oracle database server so the UNIX version of the GenArc program uses ORALIB.
The Oracle database server can reside on UNIX/Linux or on Windows and you can set
up ORALIB to communicate with the Oracle database server.

After the tables are populated by the UNIX version of the GenArc program, Windows
applications such as AFEMAIN can retrieve archived form sets using ODBC as the
Oracle database client communication layer.

Server

Operating system AIX version 5 or higher Linux (x86) Kernel
version 2.4.21

Solaris 9 or higher

Database DB2 8.1 or higher

Oracle 8.1.7 or higher
xBase

DB2 8.1 or higher

xBase

DB2 8.1 or higher

Oracle 8.1.7 or higher
xBase

Communications na na no

Client

Operating system Windows Windows Windows

Database DB2 8.1 DB2 8.1

Oracle

Communications ODBC see below ODBC

Archive
(Documaker
Workstation)

Yes see below Yes

Chapter 6
Archiving and Retrieving Information

212

ARCHIVE AND
RETRIEVAL
FEATURES

Regardless of the platform being used, the system has many features, including:

• Multiple media support

The archive and index files can be automatically or manually divided into separate
files which may be stored on multiple storage devices. This allows for the
segregation of archive data chronologically to improve search and retrieval
performance. Also, as archive files grow in size, they are not limited by the physical
space available on a single drive. This feature also lets you easily copy older archive
files to long-term media for storage without inhibiting the retrieval capabilities.

• Stability and redundancy

The archive files are designed to be reliable. Indexing information is stored
redundantly in separate files so that the index can be regenerated independently in
the event of index corruption. There are a variety of archive utilities you can use to
repair archive files damaged by user error or hardware failure.

• Flexible indexing

The archive index can be configured to use certain field keys within the data,
allowing for retrieval based on the specified keys. This lets you design your archive
system to store information for later retrieval using the most relevant data fields.

• Network-ready

The system lets you use both local and network drives for storing of archive files.
The archive files are independent, so archive files can be split up over combinations
of local and network drives. The system keeps track of where specific files are stored,
so users do not need to know the physical or logical file storage locations.

• Unattended operation

If configured to do so, the archive module can be executed as part of the batch
process. This allows data to be archived automatically.

• Restarting the archival process

Should the archive process get interrupted, you can easily restart the GenArc program
and have it automatically begin where it was interrupted. You can also use command
line options to process a specified range of transactions or a specific job if you are
running the GenArc program on multiple computers simultaneously.

Processing Overview

213

PROCESSING
OVERVIEW

The GenArc program can archive form set data to files and/or Database Management
Systems (DBMS). By default (if the INI file is not configured otherwise), the GenArc
program archives form set data to a DBASE IV DBMS (actually a combination –
APPIDX is DBASE IV file and CARFILE is a flat file). Below is a list containing some
of the DBMS systems the GenArc program can archive to.

NOTE:For information on the various INI option settings, see the appropriate
installation manual for your operating system and the technical
documentation.

DBASE IV The APPIDX, TEMPIDX and CATALOG files are created as DBASE IV files. This results
in the GenArc program creating DBF and MDX database files for the APPIDX,
TEMPIDX and CATALOG and a CAR file (non-DBASE IV) for the CARFILE. The
restart option is not available for DBASE IV archive.

DB2 The APPIDX, ARCHIVE, CATALOG and RESTART files are all created as DB2 tables.
GenArc communication to DB2 can be done through either the DB2’s native API or
DB2’s ODBC interface. The restart option is available for DB2 archive.

SQL server The APPIDX, ARCHIVE, CATALOG and RESTART files are all created as SQL Server
tables. SQL Server is an ODBC-compliant DBMS. The restart option is available for
SQL Server archive.

Oracle The APPIDX, ARCHIVE, CATALOG, and RESTART files are all created as Oracle
tables. Oracle is an ODBC-compliant DBMS. The restart option is available for Oracle
archive.

FILES GENARC USES

Input files • NEWTRN file

• NAFILE file

• POLFILE file

Output files • Compressed Archive (CAR) file

• Application Index file

• Catalog file

• Restart file

HOW THE GENARC PROGRAM WORKS

Below is a brief description of how GenArc processing is performed. Most of the restart
information has been omitted but is covered in Using the Restart Option on page 219.

1 Store the command line parameters, load INI files, and check and update the
Restart table.

Chapter 6
Archiving and Retrieving Information

214

the GenArc program parses and stores any command line parameters passed to it.
INI files are read and loaded. The Status column of the Restart table is checked (if
archiving to a DBMS, not DBASE IV) to determine if the previous GenArc run by
this JOBID (DEFAULT_JOB_ID by default) was successful or whether it failed. If
the last GenArc run was successful the Status column of the Restart row is
initialized to Failed.

2 Get a CATALOGID and then check and update the CATALOG table.

the GenArc program gets a timestamp from the system and constructs a 10-
character CATALOGID. The CATALOG table is checked to make sure this
CATALOGID is not already in the table. If the CATALOGID is already in the table,
the GenArc program gets additional timestamps, until it finds one that is not
already in the table. Once it has a unique CATALOGID, the GenArc program
constructs a row containing this CATALOGID (CATALOGID column) and writes
this row to the CATALOG table so future runs of the GenArc program will not be
able to use this CATALOGID.

3 Read the NEWTRN file, get form set data from the NAFILE and POLFILE, then
combine and compress the information.

The NEWTRN file is opened and the first record (transaction) is read. The
NEWTRN record contains offset values into the NAFILE and POLFILE for the
transaction. The GenArc program uses these offset values to retrieve the NAFILE
data and POLFILE data for the transaction and it then combines and compresses
this data.

4 Construct the ARCKEY, construct and archive the rows to the ARCHIVE table.

An eight-character sequential number (which will be incremented for each
transaction) is appended with the 10-character CATALOGID to form an 18-
character ARCKEY. This ARCKEY will be unique for each transaction. A record
(or row) is constructed to be written to the ARCHIVE table. This row (whose
columns are described by the CARFILE DFD file) contains the ARCKEY and the
combined and compressed NAFILE/POLFILE data (CARDATA column). If the
CARDATA is too large to fit on a single row, additional rows are constructed—each
row will have the same ARCKEY but will have an incremented Sequence Number
(SEQ_NUM column). The constructed rows are archived to the ARCHIVE table.

5 Construct and archive the rows to the APPIDX table.

The index information for the transaction is gathered and a row is constructed to
be written to the APPIDX table. This row (whose columns are described by the
APPIDX DFD file) contains the ARCKEY used to construct the row for the
ARCHIVE table above, as well as other information, such as Company, Line of
Business, PolicyNumber, and so on (columns identified in the INI group
Trigger2Archive). Once this APPIDX row is constructed it is archived to the
APPIDX table. Only one record is written to the APPIDX table for each transaction.

6 Repeat the process, update the Restart table, issue messages, and terminate
processing.

Processing Overview

215

Steps 3 through 5 are repeated until all the NEWTRN records have been read. Once
all the NEWTRN records have been read and the archiving is complete for all
transactions, the Status column of the Restart table row, which was set to failed in
step 1, is updated to reflect that the GenArc run was successful. The GenArc
program issues console messages indicating how may transactions were read, archived,
in error, and rolled back. The GenArc program then terminates processing.

Chapter 6
Archiving and Retrieving Information

216

RUNNING
GENARC

The name of the GenArc program and how you run it varies somewhat depending on
the operating system you are using. The concepts are the same, though, for all operating
systems. For our example let’s assume you are running the GenArc program on
Windows 2000. To run the GenArc program on Windows 2000, you enter a command
like this:

C:FAP\MSTRRES\DMS1\genacw32

Notice the command includes the program name (GENACW32) and it’s full path—from
the DMS1 master resources directory. This command starts the GENACW32 program
(GENACW32.EXE) and attempts to locate a FSIUSER.INI file in the
c:\fap\mstrres\dms1 directory.

The GenArc program messages will look something like the sample below if you have
the LogToConsole option set as shown here:

< Control >

LogToConsole = Yes

Here are the sample messages:

--- GenArc ---

==> Processing: TransactionId-GroupName1-GroupName2-GroupName3-
TransactionType

==> Processing: 1234567-SAMPCO-LB1--T1

==> Processing: 2234567-SAMPCO-LB1--T1

==> Processing: 5SAMPCO-SAMPCO-LB2--T1

==> Processing: 6SAMPCO-SAMPCO-LB2--T1

==> Processing: 7SAMPCO-SAMPCO-LB2--T1

==> Processing: 8SAMPCO-SAMPCO-LB2--T1

==> Processing: 9SAMPCO-SAMPCO-LB2--T1

==> Processing: 4234567-FSI-CPP--T1

==> Processing: 5234567-FSI-GL--T1

==> Transactions Read : 9

==> Transactions Archived : 9

==> Transactions In Error : 0

==> Transactions Rolled Back: 0

==> Warning count: 0

==> Error count: 0

Elapsed Time: 2 seconds

--- GenArc Completed ---

Logging archived
transactions

If you want the GenArc program to produce a log of the archived transactions, include
the following INI option in the ArcRet control group:

< ArcRet >

ExportIndex = <file name>.

Be sure to include the full path and file name of the log file. If you omit the ExportIndex
option, the system does not create the log file.

Archiving to a database The system lets you archive information to a database, such as DB2, as an alternative to
archiving to flat files (CAR files). You use the ArchiveMem option in the FSISYS.INI
file to enable database archiving, as shown here:

< Archival >

ArchiveMem = Yes

Running GenArc

217

NOTE:When running on z/OS, the GenArc program sets the ArchiveMem option to
Yes if it was not in the FSISYS file and produces a warning. This prevents an
error (running with non-VSAM NA and POL files) or an abend (running with
VSAM NA and POL files) which will occur if the ArchiveMem option is set to
No.

Sorting records in a
database

Use the DefaultTag option to specify the default tag in ODBC and DB2. This tag is then
used by the ORDER BY clause in the SQL database to sort records.

< DBTable:MYTABLE >

DefaultTag =

For the DefaultTag option, enter the name of the key from the DFD file.

Keep in mind this only works with ODBC and DB2. It does not work with xBase files.

Preparing SQL Add the AlwaysSQLPrepare option to make sure the ODBC driver always performs the
_SQLPrepare() function. Here is an example:

< DBHandler:ODBC >

AlwaysSQLPrepare = Yes

Omitting this option can the S1010 0 [Oracle][ODBC]Function sequence error.

COMMAND LINE OPTIONS

The GenArc program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example of starting the
GenArc program with command line options:

C:FAP\MSTRRES\DMS1\genacw32 /ini=my.ini /jobid=tuesday1

The command line options are explained below:

INI Use the INI command line option to tell the GenArc program to open and read a
FSIUSER.INI file other than the one in the current directory.

JOBID (Abbreviation: J)

Use the JOBID command line option to associate a Job Identifier with this particular
run of the GenArc program. By default the GenArc program associates a run with the
identifier, DEF_JOB_ID. This identifier (either the default identifier or the identifier
specified with the JOBID option) is used when the Restart row in the Restart table is
searched for and/or updated. Using JOBID allows for concurrent runs of the GenArc
program.

DPASSWD (Abbreviation: DP)

Use the DPASSWD command line option to indicate the password to be used when
connecting to a DB2 database management system (DBMS). Use this option along with
the DUSERID option. You can also specify the DPASSWD option in the INI file as
shown below:

< DBHandler:DB2 >

Chapter 6
Archiving and Retrieving Information

218

Passwd = xxxxxxxx

DUSERID (Abbreviation: DU)

Use the DUSERID command line option to indicate the User ID to use when
connecting to a DB2 database management system. Use this option along with the
DPASSWD option. You can also specify the DUSERID option in the INI file as shown
below:

< DBHandler:DB2 >

UserID = xxxxxxxx

OPASSWD (Abbreviation: OP)

Use the OPASSWD command line option to indicate the password to be used when
connecting to an ODBC-compliant database management system. Use this option along
with the OUSERID option. You can also specify the OPASSWD option in the INI file
as shown below:

< DBHandler:ODBC >

Passwd = xxxxxxxx

OUSERID (Abbreviation: OU)

Use the OUSERID command line option to indicate the password to be used when
connecting to an ODBC-compliant database management system. Use this option along
with the OPASSWD option. You can also specify the OPASSWD option in the INI file
as shown below:

< DBHandler:ODBC >

UserID = xxxxxxxx

RESTART (Abbreviation: R)

Use the RESTART command line option to tell the GenArc program to start processing
with the n’th record in the NEWTRN file. The GenArc program will skip n-1 NEWTRN
records and begin with the n’th record. When you use the RESTART command line
option you are explicitly restarting the GenArc program.

SQLID (Abbreviation: SQL)

Use the SQLID command line option to tell the GenArc program to perform a SET
CURRENTSQLID=SQLID at initialization time. You can also specify the SQLID
option in the INI file as shown below:

< DBHandler:DB2 >

CurrentSQLID = xxxxxxxx

STOPREC (Abbreviation: S)

Use the STOPREC command line option to tell the GenArc program to stop processing
on the n’th NEWTRN record.

Running GenArc

219

Using the Restart Option
The Restart option is only available if you are archiving both APPIDX and ARCHIVE
data into a database management system. The Restart option is not available if you are
using DBASE IV, which is the default archive method.

If the GenArc program detects an error during its processing, it can skip the transaction
in error and continue processing with the next transaction in the NEWTRN.DAT file.
The INI option listed below tells the GenArc program whether it should terminate
processing when it encounters errors:

< GenArcStopOn >

DBErrors = No

The default value for the DBErrors option is Yes, which means the GenArc program
stops processing when it receives an error. If you set the DBErrors option to No, the
GenArc program tries to skip the transaction in error and then continues with the next
transaction in the NEWTRN.DAT file.

Below is a brief description of how the GenArc program performs restart processing.
The description below does not include all of the information provided in How the
GenArc Program Works on page 213 but all of that information applies to restart
processing as well.

1 Check the command line for parameters, load INI files, and then check and update
the Restart table.

The GenArc program parses and stores any command line parameters passed to it.
INI files are read and loaded. If the JOBID parameter was passed, the GenArc
program will attempt to locate a row in the Restart table whose JOB_ID column
equals the JOBID value. If the GenArc program cannot locate a row whose JOB_ID
column matches the JOBID value passed in, the GenArc program issues an error
message and terminates.

If the RESTART parameter was passed, this is an explicit restart, meaning we are
supposed to restart on the n’th record of the NEWTRN.DAT file (skipping the first
n-1 records).

If the RESTART parameter was not passed, either the prior run of the GenArc
program was successful (and there is no need to try to restart) or the prior run was
unsuccessful but the operator made some change since encountering the error that
should allow the GenArc program to continue where it left off (implicit restart).

2 Determine the restart point and check the Restart table.

If this is an explicit restart, the GenArc program simply skips the first n-1 records of
the NEWTRN file and reads the n’th record. It begins the archiving process with
that record.

If this is either a no restart or an implicit restart, the GenArc program first locates the
appropriate row of the Restart table (based on the JOBID described in Step 1). The
GenArc program then checks the Status column of the Restart table to determine
if the previous GenArc run by this JOBID was successful or whether it failed. If the
last GenArc run was successful the Status column of the Restart row is initialized
to Failed.

Chapter 6
Archiving and Retrieving Information

220

If the last GenArc run failed, the COMM_RECS column is checked to see how may
transactions were committed during the prior GenArc run. The GenArc program
also retrieves the value of the LASTREC column – this column contains the actual
NEWTRN record for the last successful transaction. If the value of COMM_RECS
is, for example, X, the GenArc program then skips to the x’th record in the
NEWTRN.DAT file and compares the NEWTRN record with the value of the
LASTREC column – if the values do not match, the GenArc program issues an error
message indicating there is a consistency problem and terminates processing. If the
values of the x’th NEWTRN record and the LASTREC column do match, the
GenArc program positions itself to the x+1’th NEWTRN record and will begin the
archiving process with that record.

3 Archive form sets and then perform regular commits.

Before beginning the actual archive processing of the NEWTRN records, the
GenArc program checks the INI file to determine how often to perform commits to
the DBMS tables. The GenArc program checks the INI option listed below:

< ArcRet >

CommitEvery = 10

The default value for the CommitEvery option is 10. This value tells the GenArc
program to perform a commit every 10 transactions.

Once the GenArc program is positioned to the appropriate NEWTRN record where
it is to begin processing, it processes each NEWTRN record. Processing means the
NAFILE and POLFILE data are combined and compressed and archived to the
ARCHIVE table, an index record is constructed and is archived to the APPIDX
table.

Also, the Restart table is updated: the COMM_RECS column receives the
NEWTRN record number—the record number of the most recently archived
NEWTRN transaction—and the LASTREC column receives a full copy of the actual
NEWTRN record itself. If at any time GenArc processing fails, a rollback is
performed which will restore all the GenArc tables to the last point of consistency,
which is the last commit point.

4 Finish processing the NEWTRN.DAT file and then update the Restart table.

The archiving and committing process described in step 3 is performed until all of
the NEWTRN records have been processed. When the final NEWTRN record is
processed, the Status column of the Restart table is updated from F (failed) to S
(successful) and a final commit is performed to make the last few table changes
permanent.

The GenArc program issues messages indicating how many transactions were read
from the NEWTRN.DAT file, how may transactions were skipped (if this was a
restart), how many transactions were successfully archived, how may transactions
were in error and how many transactions were rolled back. The sum of the number
of transactions skipped, archived, in error and rolled back should equal the number
of transactions read.

Running GenArc

221

USING GENARC WITH DOCUMANAGE

You can use Documanage to archive files created from the GenArc program. This is
done using the PO Handler. Set up the Documanage Administrator in this order:

• Map to database

• Business tables

• Cabinets

• Document types

• Authorities

The user-defined table contains a record for each folder in the cabinet. The OT_Docs
table includes one record for each document in the folder.

What happens when a transaction is archived:

1 The PO Handler searches the cabinet for a folder that matches the transaction data.
The FolderBy option in the Cabinet control group defines the fields used to
identify the correct folder.

2 If the folder exists, the data needed to create the document is checked into the
folder. A folder is created if a matching folder was not found. Creating the folder
adds a record to the table that defines the cabinet. Adding the document adds a
record to the OT_Docs table. The document is named by the fields defined in the
NameDocBy INI option. The document appears by this name in Documanage.

When you display a transaction using the Entry system:

1 Folders are searched based on the fields defined in the FolderBy option. If a folder
exists, the documents in the folder that match the type are searched. If no
documents match, the folder is ignored. The document type is defined in the
FileType option in the Cabinet control group. The system then creates a row in the
Formset Selection window for each document where the folder has matching
properties and document types.

2 When you select a document, the body of the document (CARDATA) is extracted
into a temporary file. The data is then retrieved into the ARCHIVE record and the
form set is displayed.

Cabinet

Folder A

Folder B

Document A

Document B

Defined in a user-defined table

Defined in the OT_Docs table

Chapter 6
Archiving and Retrieving Information

222

Here are examples of the INI options you use. These options set all archive tables to use
the PO Handler:

< DBTable:APPIDX >

DBHandler = PO

< DBTable:ARCHIVE >

DBHandler = PO

These options set up the PO Handler:

< DBHandler:PO >

UserID = EZPOWER

Password = EZPOWER

Cabinet = ARCCAB

Domain = FSI

The Cabinet option contains all of the fields in all tables. You would use the Domain
option if you are executing Documaker Workstation or the GenArc program in a
different domain than the server machine.

Here are the options for the cabinet:

< PO:ARCCAB >

FileType = dap

FolderBy = KEY1,KEY2,KEYID

NameDocBy = KEY1,KEYID,TRANCODE

Use this control group to map the DFD fields to the OT_Docs fields. For instance, this
example assumes that the AddedOn option is in the OT_Docs table:

< POField2Document >

AddedOn = CreateTime

Use this control group to map the OT_Docs fields to the DFD fields:

< PODocument2Field >

CreateTime = AddedOn

This control group is required for the GenArc program. The Restart table is not
supported by Documanage:

< Archival >

ArchiveMem = Yes

UseRestartTable = No

Option Description

FileType Use this option to define the file types that can be placed in the folder.

FolderBy Use this option to define the fields you want the system to use to sort the
document into the various folders. For instance, if you enter
Key1,Key2,KeyID, the system places documents which have the same data in
these fields in the same folder.

NameDocBy Use this option to tell the system which field contains the document name. If
you omit this field, the systems uses ARCKEY.

Running GenArc

223

These field names are reserved in the Documanage/PO Handler environment:

Other fields are associated with the folder unless you specify otherwise in the
PODocument2Field or POField2Document control group.

Here are samples of the FSIUSER.INI, APPIDX.DFD, and CARFILE.DFD files:

NOTE:Make sure you use upper- and lowercase correctly in DFD and INI files.

Forcing folder updates You can now use the ForceFolderUpdate option to force folder updates when the folder
already exists. This lets Documanage Folder Update Authorities, when set to No, prevent
duplicate archive entries from being sent to the Documanage archive repository.

Here is an example of the ForceFolderUpdate option:

< PO:Prod >

FileType = PROD

FolderBy = DOC_TYPE_CODE,DOC_NUM,DOC_REV_NUM

NameDocBy = DOC_TYPE_CODE,DOC_NUM,DOC_REV_NUM

ForceFolderUpdate = Yes

The default is No.

FSIUSER.INI sample < Archival >

 ArchiveMem = Yes

 UseRestartTable = No

< ArcRet >

 AppIdx = ARC\APPIDX

 AppIdxDFD = DefLib\AppIdx.Dfd

 ArcPath = [CONFIG:Batch Processing] ARCPath =

 Arrangement = Stack

 CARFile = ARCHIVE

 CARFileDFD = .\DEFLIB\ODBC\carfile.dfd

 CARPath = [CONFIG:Batch Processing] CARPath =

 Catalog = ARC\CATALOG

 ExactMatch = No

 Key1 = Company

 Key2 = Lob

 KeyID = Policynum

Field Description

CARData This field must be present in the CARFILE DFD file. Never folder on this field.
Should never be in the DB table under Documanage only in the DFD. Must be
defined in the CARFILE.DFD as a BLOB. Always associated with the document.

ARCKey This field is the archive key. It must be in both the APPIDX.DFD and
CARFILE.DFD files. Required in the table under Documanage.

DESC (Optional) The document description. By default, this field is associated with
document.

RunDate (Optional) The document’s run date. By default, this field is associated with
document.

Chapter 6
Archiving and Retrieving Information

224

 LBLimit = 500

 TempIdx = ARC\Temp

< Config:Batch Processing >

 ARCPath = ARC\

 BaseDef =

 CARPath = arc\

 CompLib = COMPLIB\

 DALFile =

 DefLib = DEFLIB\

 FntFile = REL95SM.fnt

 FontLib = ..\fmres\deflib\

 Form7x =

 FormDef = FORM.DAT

 FormFile =

 FormLib = FORMS\

 FormsetTrigger = SETRCPTB.DAT

 HelpLib = help\

 LogoFile =

 TableLib = table\

 WIPPath = wip\

 XrfFile = REL95SM

< Configurations >

 Config = Batch Processing

< Control >

 XrfExt = .FXR

< DBHandler:PO >

 Cabinet = DMS1

 Domain = FSI

 PassWord = astros3

 UserID = erm

< DBTable:APPIDX >

 DBHandler = PO

< DBTable:ARCHIVE >

 DBHandler = PO

< DefaultTextArea >

 Chars = 10

 Font = 16010

 Lines = 2

< DefaultVarField >

 Font = 12010

 Length = 1

 Type = x

< Environment >

 FSISYSINI = .\FSISYS.INI

 FSITemp = TEMP

< MasterResource >

 BaseDef = [CONFIG:Batch Processing] BaseDef =

 CompLib = [CONFIG:Batch Processing] CompLib =

 DalFile = <CONFIG:Batch Processing> DalFile =

 DDTFile = [CONFIG:Batch Processing] DDTFile =

 DDTLib = [CONFIG:Batch Processing] DDTLib =

 DefLib = [CONFIG:Batch Processing] DefLib =

 DictionaryFile = [CONFIG:Batch Processing] DictionaryFile =

 FieldBaseFile = [CONFIG:Batch Processing] FieldBaseFile =

 FntFile = [CONFIG:Batch Processing] FntFile =

Running GenArc

225

 FontLib = [CONFIG:Batch Processing] FontLib =

 Form7x = [CONFIG:Batch Processing] Form7x =

 FormDef = [CONFIG:Batch Processing] FormDef =

 FormFile = [CONFIG:Batch Processing] FormFile =

 FormLib = [CONFIG:Batch Processing] FormLib =

 FormsetTrigger = [CONFIG:Batch Processing] FormsetTrigger =

 HelpLib = [CONFIG:Batch Processing] HelpLib =

 LbyLib = [CONFIG:Batch Processing] LbyLib =

LogoLib = [CONFIG:Batch Processing] LogoLib =

 LogoFile = [CONFIG:Batch Processing] LogoFile =

 TableLib = [CONFIG:Batch Processing] TableLib =

 XrfFile = [CONFIG:Batch Processing] XrfFile =

> PO:DMS1 >

 FileType = DAP

 FolderBy = Company,Lob,Policynum

 NameDocBy = ARCKEY

< PODocument2Field >

 CreateTime = AddedOn

< POField2Document >

 AddedOn = CreateTime

< SignOn >

 UserID = FORMAKER

< WIPData >

 File = Wip\Wip

 Path = [CONFIG:Batch Processing] WIPPath =

APPIDX.DFD sample < FIELDS >

 FIELDNAME = UNIQUE_ID

 FIELDNAME = Company

 FIELDNAME = Lob

 FIELDNAME = Policynum

 FIELDNAME = RunDate

; FIELDNAME = InvFlag

; FIELDNAME = ClaimFl

 FIELDNAME = ARCKEY

 FIELDNAME = FormsetId

 FIELDNAME = RECNUM

 FIELDNAME = CONFIG

< FIELD:UNIQUE_ID >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 26

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 26

 KEY = Y

 REQUIRED = Y

< FIELD:Company >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 6

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 6

 KEY = Y

 REQUIRED = Y

< FIELD:Lob >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 3

Chapter 6
Archiving and Retrieving Information

226

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 3

 KEY = Y

 REQUIRED = Y

< FIELD:Policynum >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 7

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 7

 KEY = Y

 REQUIRED = Y

< FIELD:RunDate >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 8

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 8

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:InvFlag >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 1

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 1

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:ClaimFl >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 1

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 1

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:ARCKEY >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 18

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 18

 INT_PRECISION = 0

 KEY = Y

 REQUIRED = Y

< FIELD:FormsetId >

 EXT_TYPE = NOT_PRESENT

 EXT_LENGTH = 0

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 8

 INT_PRECISION = 0

 KEY = N

Running GenArc

227

 REQUIRED = Y

< FIELD:RECNUM >

 EXT_TYPE = NOT_PRESENT

 EXT_LENGTH = 0

 EXT_PRECISION = 0

 INT_TYPE = LONG

 INT_LENGTH = 4

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:CONFIG >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 10

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 10

 INT_PRECISION = 0

 KEY = Y

 REQUIRED = Y

< KEYS >

 KEYNAME = UNIQUE_ID

 KEYNAME = Company

 KEYNAME = Lob

 KEYNAME = Policynum

< KEY:Company >

 EXPRESSION = Company

 FIELDLIST = Company

< KEY:Lob >

 EXPRESSION = Lob

 FIELDLIST = Lob

< KEY:PolicyNum >

 EXPRESSION = Policynum

 FIELDLIST = Policynum

< KEY:UNIQUE_ID >

 EXPRESSION = UNIQUE_ID

 FIELDLIST = UNIQUE_ID

CARFILE.DFD sample < FIELDS >

 FIELDNAME = ARCKEY

 FIELDNAME = SEQ_NUM

 FIELDNAME = CONT_FLAG

 FIELDNAME = TOTAL_SIZE

 FIELDNAME = CARDATA

< FIELD:ARCKEY >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 18

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 18

 KEY = N

 REQUIRED = N

< FIELD:SEQ_NUM >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 5

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 5

Chapter 6
Archiving and Retrieving Information

228

 KEY = N

 REQUIRED = N

< FIELD:CONT_FLAG >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 1

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 1

 KEY = N

 REQUIRED = N

< FIELD:Total_Size >

 INT_Type = LONG

 INT_Length = 4

 EXT_Type = LONG

 EXT_Length = 4

 Key = N

 Required = N

< FIELD:CARData >

 INT_Type = BLOB

 INT_Length = 8

 EXT_Type = BLOB

 EXT_Length = 8

 Key = N

 Required = N

< Keys >

 KeyName = ARCKEY

 KeyName = SEQ_NUM

 KeyName = CAR_KEY

< KEY:ARCKey >

 Expression = ARCKEY+SEQ_NUM

 FieldList = ARCKEY,SEQ_NUM

< KEY:SEQ_NUM >

 Expression = SEQ_NUM

 FieldList = SEQ_NUM

< KEY:CAR_Key >

 Expression = ARCKEY

 FieldList = ARCKEY

Using the Oracle ODBC Driver
The Oracle ODBC driver is supported on all Windows platforms. The DFD and INI
files shown on previous pages require special consideration when using the Oracle
driver. Here are samples of CARFILE.DFD and FSIUSER.INI files.

CARFILE DFD To use a library using the Oracle ODBC driver, you must use an Oracle Insurance-
supplied CARFILE DFD file that differs from the standard (internal) DFD definition.
The supplied CARFILE.DFD file is located in the sample DMS1 resources in the
directory:

..\DEFLIB\ODBC_ORA\CARFILE.DFD

The contents of the CARFILE.DFD are listed below:

; CARFILE.DFD - this DFD is to be used when referencing a library or
; archive with the Oracle ODBC driver.

< FIELDS >

FIELDNAME = ARCKEY

Running GenArc

229

FIELDNAME = SEQ_NUM

FIELDNAME = CONT_FLAG

FIELDNAME = TOTAL_SIZE

FIELDNAME = CARDATA

< FIELD:ARCKEY >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 18

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 18

KEY = N

REQUIRED = N

< FIELD:SEQ_NUM >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 5

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 5

KEY = N

REQUIRED = N

< FIELD:CONT_FLAG >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 1

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 1

KEY = N

REQUIRED = N

< FIELD:TOTAL_SIZE >

INT_TYPE = LONG

INT_LENGTH = 4

EXT_TYPE = DOUBLE

EXT_LENGTH = 4

KEY = N

REQUIRED = N

< FIELD:CARDATA >

INT_TYPE = BLOB

INT_LENGTH = 252

EXT_TYPE = BLOB

EXT_LENGTH = 252

KEY = N

REQUIRED = N

< KEYS >

KEYNAME = ARCKEY

KEYNAME = SEQ_NUM

KEYNAME = CAR_KEY

< KEY:ARCKEY >

EXPRESSION = ARCKEY+SEQ_NUM

FIELDLIST = ARCKEY,SEQ_NUM

< KEY:SEQ_NUM >

EXPRESSION = SEQ_NUM

FIELDLIST = SEQ_NUM

< KEY:CAR_KEY >

EXPRESSION = ARCKEY

FIELDLIST = ARCKEY

To use the supplied CARFILE.DFD file, do the following:

Chapter 6
Archiving and Retrieving Information

230

1 Copy the CARFILE.DFD file into the directory where you store other DFD files,
such as the \DefLib directory.

2 Make the system use the CARFILE.DFD file by adding this entry into the INI file:

 < ArcRet >

 CARFileDFD = ..\DEFLIB\CARFILE.DFD

Creating the Database and Tables
Use these INI options to tell Library Manager to create a library using the Oracle ODBC
driver and to load resources from that library:

< MasterResource >

DALFile = LBYI

DDTFile = LBYI

FormFile = LBYI

LOGOFile = LBYI

< LibraryManager >

LBYLOGFile = LBYLOG

< Library:LBYI >

DBTable = LBYD

< DBTable:LBYI >

DBHandler = ODBC

< DBTable:LBYD >

DBHandler = ODBC

UniqueTag = ARCKEY+SEQ_NUM

< DBTable:LBYLOG >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

UniqueTag = CATALOGID

< DBHandler:ODBC >

Server = LBYSQL

Qualifier = LBYSQL

CreateTable = Yes

CreateIndex = No

UserID = userid

Passwd = password

Debug = No

< ODBC_FileConvert >

LBYI = DAP102_LBYI

LBYD = DAP102_LBYD

LBYLOG = DAP102_LBYLOG

A description of the above INI options follows:

Running GenArc

231

Option Description

MasterResource control group

DALFile Enter the name of the library from which you want the system to retrieve DAL
scripts and DAL script libraries.

DDTFile Enter the name of the library from which you want the system to retrieve DDT
files.
If you define this option, the system expects to find all DDT files there,
including the MASTER.DDT file. You can use the following option to exclude
the MASTER.DDT file from being located in the library:

< RunMode >

MasterDDTNotInLibrary = Yes

The only advantage to having an external MASTER.DDT file is if your setup
creates the MASTER.DDT file on the fly, before a transaction is run. If that is
the case, it is easier to manipulate if it is outside of the library.

FormFile Enter the name of the library from which you want the system to retrieve FAP
files.

LOGOFile Enter the name of the library from which you want the system to retrieve
graphics (LOG) files.

LibraryManager control group

LBYLOGFile Enter the name of the library log file. The library log contains information
about resources that are added to, deleted from, or updated in the library. The
LBYLOGFile does not have to use the same type of DB handler as the library
index and data portions.

Library:LBYI control group

DBTable Enter the name of the data component of the library. In this example, the
names LBYI and LBYD are used to emphasize that one table, LBYI, represents
the library index and one table, LBYD represents the library data. You can use
up to eight characters to give these tables any name you like. See the
ODBC_FileConvert control group if you need to map these eight-character
names to longer table names.

DBTable:LBYI control group

DBHandler Tells the system to access the LBYI table using the data base handler named
ODBC. Because of this INI value, the system expects to find an INI control
group named DBHandler:ODBC. Microsoft's SQL Server is an ODBC-
compliant database.

DBTable:LBYD control group

DBHandler Tells the system to access the LBYD table using the data base handler named
ODBC. Because of this INI value, the system expects to find an INI control
group named DBHandler:ODBC.

Chapter 6
Archiving and Retrieving Information

232

UniqueTag In this example, ARCKEY+SEQ_NUM specifies that the columns ARCKEY
and SEQ_NUM can be combined to represent a unique tag for the table. This
unique tag is only used for internal purposes. If you do not specify a unique
tag for this table, and a column with the name UNIQUE_ID does not exist
within the table, you receive warning messages indicating that there is no
unique tag defined.

DBTable:LBYLOG control group

DBHandler Tells the system to access the LBYLOG table using the data base handler
named ODBC. Because of this INI value, the system expects to find an INI
control group named DBHandler:ODBC.

DBTable:CATALOG control group

DBHandler Tells the system to access the CATALOG table using the data base handler
named ODBC. The CATALOG table is used to temporarily store
CATALOGID values used to construct an ARCKEY.

UniqueTag This specifies that the column CATALOGID represents a unique tag for this
table. This unique tag is only used for internal purposes. If you do not specify
a unique tag for this table, and a column with the name UNIQUE_ID does
not exist within the table, you receive warning messages indicating that there
is no unique tag defined.

DBHandler:ODBC control group

Server Specifies the name of the ODBC data source for this database handler, such
as LBYSQL. You must also define an ODBC data source with this name.

Qualifier Specifies the name of the database for this database handler, such as
LBYDBASE. If you omit this option, the database set up as the default
database for the LBYSQL ODBC data source is used.

CreateTable Specifies the system should create any tables Library Manager needs, that do
not already exist, at run time.

CreateIndex Specifies the system should create any database indexes it needs, that do not
already exist. Always set this option to No.

UserID Enter the user ID to use when connecting to the data base management
system.

Passwd Enter the password to use when connecting to the data base management
system.

Debug Enter Yes to turn on tracing for the Documaker ODBC DB handler. Enter No
or omit this option except in troubleshooting situations.

ODBC_FileConvert control group

This INI control group lets you map table names of eight characters or less to table names
longer than eight characters. The table names you specify must follow the table naming
conventions for the data base management system.

Option Description

Running GenArc

233

Resolving Errors
If the GenArc program produces an error similar to the following example, it indicates
the INT_Length or EXT_Length (or both) options in the CARData control group have
not been set in the CARFILE.DFD file:

Error:

====

GenArc

Transaction Error Report - System timestamp: Fri Sep 07 02:07:33 2001

-->Transaction: 1234567

Error in RPFAPErrorNotify(): FAP library error:
area:<..\C\dxmerror.c

Jun 16 2001 12:44:04

400.101.002

DXMSetLastError>, code:<2>, code:<2>, msg<Invalid object handle was
passed>.

An example of the correct INI settings is shown in the FSIUSER.INI sample on page
223.

LBYI Specifies the name of the table referenced in several INI locations as LBYI on
the data base management system.

LBYD Specifies the name of the table referenced in several INI locations as LBYD on
the data base management system.

LBYLOG Specifies the name of the table referenced in several INI locations as LBYLOG
on the data base management system.

Option Description

Chapter 6
Archiving and Retrieving Information

234

VIEWING ARCHIVES IN DOCUMANAGE

You can use the ARCVIEW utility to view Documaker archive files checked into the
Documanage archive system. This utility only runs under 32-bit Windows.

To use this utility, follow these steps:

1 Register the Documanage file extension (DPA) in Windows so the operating system
will automatically use the ARCVIEW utility to view these files.

2 Set the FSIPATH environment variable to point to the directory where the INI file
for the AFEMAIN program is stored. Here is an example:

FSIPath = d:\dms1

NOTE:The AFEMAIN program is the executable file for Documaker Workstation.

3 Place a menu file, similar to the MEN.RES file used by Documaker Workstation,
be in the directory specified by the FSIPath option. The name of the menu file
should be ARCVIEW.RES.

NOTE:You can edit this file to remove functionality you do not want to include.

4 Edit the FILETYPES.INI file on the computer where the Documanage server runs.
Add the DPA file extension to the list of file types to view with the ARCVIEW.EXE
program. This causes the Documanage client to use the viewer registered in
Windows instead of the default Documanage viewer.

You can now click on Documaker archive files in Windows Explorer to display them.

Running GenArc

235

USING MULTIPLE SIMULTANEOUS ODBC CONNECTIONS

The system supports multiple simultaneous ODBC connections via different ODBC
drivers. This will, for instance, let you connect at the same time to multiple:

• Databases on an SQL server

• Databases on an SQL server and Excel spreadsheet databases

• Access databases and Excel spreadsheet databases

• Access databases

• Excel spreadsheet databases

• Databases for which you have an ODBC-compliant driver

The system does not support multiple different DB2 databases using native DB2 drivers.
Support is limited to ODBC-compliant data bases.

NOTE:Keep in mind the ODBC_FileConvert and ODBC_FieldConvert control
groups are global and affect all of the handlers.

For example, to access a database on a SQL Server and in a Microsoft Excel spreadsheet
simultaneously, you first set up the ODBC Data Sources Administrator panel as
illustrated and these INI options:

< DBHandler:DBSQL >

Class = ODBC

Server = SQL Server

< DBHandler:DBEXCEL >

Class = ODBC

Server = MS Excel

The database handler name is limited to 22 characters.

Chapter 6
Archiving and Retrieving Information

236

For the table you want to open using the appropriate handler add this INI option:

< DBTable:MYTABLE >

DBHandler = DBSQL

Debug INI option can be specified under each of the DBHandler:XXX control group.

If you use the name of the ODBC handler in the appropriate DAL function, you can
omit the DBTable:XXX control group. For more information on DAL functions and
setting up database handlers for Excel databases, see the DAL Reference.

Using WIP and the Archive Index File

237

USING WIP AND
THE ARCHIVE

INDEX FILE

Since the Archive module supports custom application archive index files, you must
create an application archive index record from a WIP record. The following example
shows a standard application archive index file.

The Archive option in the AFEProcedures control group defines the DLL and the
function name to call when converting a WIP record into an archive record. The
standard DLL is AFEW32 and the standard function is called AFEWip2ArchiveRecord.
Here is an example of the standard DLL and function:

< AFEProcedures >

Archive = AFEW32-> AFEWip2ArchiveRecord

The AFEWip2ArchiveRecord function uses options in the AFEWip2ArchiveRecord
control group. Options in the AFEWip2ArchiveRecord control group are:

Archive Field Name = WIP Field Name

Where ARCHIVE FIELD NAME is the actual field name from archive DFD file and
WIP FIELD NAME is the field name from WIP file. This means that data from WIP
record field WIP FIELD NAME would be copied into archive record field ARCHIVE
FIELD NAME.

For a base application archive index file, this control group and options are as follows:

< AFEWIP2ArchiveRecord >

 KEY1 = KEY1

 KEY2 = KEY2

 KEYID = KEYID

 RECTYPE = RECTYPE

 CREATETIME = CREATETIME

 ORIGUSER = ORIGUSER

 CURRUSER = CURRUSER

 MODIFYTIME = MODIFYTIME

 FORMSETI = FORMSETID

 TRANCODE = TRANCODE

 STATUSCODE = STATUSCODE

 FROMUSER = FROMUSER

 FROMTIME = FROMTIME

 TOUSER = TOUSER

 TOTIME = TOTIME

 DESC = DESC

 INUSE = INUSE

 ARCKEY = ARCKEY

 APPDATA = APPDATA

 RECNUM = RECNUM

 RUNDATE = RUNDATE

 INVFLAG = INVFLAG

 CLAIMFL = CLAIMFL

Chapter 6
Archiving and Retrieving Information

238

FORMATTING
ARCHIVE FIELDS

The system lets you format data values that will be mapped to the archive index record
from the Trigger2Archive control group. Normally, this group is defined like this:

< Trigger2Archive >

Key1 = Company

Key2 = LOB

KeyID = TransID

RunDate = RunDate

NOTE:These same options in the ArcRet control group are used for searching the key
fields in the archive index file.

Where the value on the left of the equals sign designates an archive index field (defined
in APPIDX.DFD) and the value on the right represents a GVM variable normally
associated with the NEWTRN record (defined by the TRNDFDFL.DFD). These options
are used by the GenArc program to add the Key1, Key2, and KeyID information to the
archive index file.

You can have the system format these archive fields in several ways:

• Preserving the case of values in the key fields

• Formatting dates

• Storing a constant value

Converting the case of
key fields

By default, the system converts the case of information in the Key1, Key2, and KeyID
fields to uppercase when it archives a record. It does this to reduce the amount of time
it takes to find a record during a search. You can, however, use the CaseSensitiveKeys
option to preserve the case of the Key1, Key2, and KeyID values as entered. For example,
this option

< Archival >

CaseSensitiveKeys = Yes

Tells the system to preserve the case of the Key1, Key2, and KeyID fields as entered. If
you enter No or omit the CaseSensitiveKeys option, the system convert the values for
these options to uppercase before it archives the record.

Reformatting dates You can do optional date reformatting and assign a constant data value not associated
with a GVM. Here is an example of date reformatting:

RUNDATE = TRANDATE;D1-4;D4

You still are associating the archive index field with a GVM variable normally loaded
from the NEWTRN record. Separated by a semicolon, you can define the date format
of the input variable and specify a different format for the final value after the second
semicolon.

In this example, the RUNDATE field is to be set from the TRANDATE field from the
NEWTRN record. Note the first D that follows the semicolon indicates you want a date
conversion. This example converts the data from format 1-4 (MM-DD-YYYY) to format
D4 (YYYYMMDD) before storing it in the RUNDATE field of the archive index.

Formatting Archive Fields

239

NOTE:Always use YYYYMMDD to store your run date in the archive.

Storing a constant
value

Here is an example of how you store a constant value instead of associating the field
with a GVM variable from the NEWTRN record.

USERID = NULL; ;TOM

Keep in mind that NULL is a keyword and is not interpreted as the name of a GVM
variable associated with any record. When using NULL, the system skips to the final
destination format section (the second semicolon) and places whatever value is defined
there in the resulting archive index field. In this case, that value is TOM.

Since this method assumes there will be a constant text value defined after the second
semicolon, you can also use INI built-in functions to provide this value. For instance,
consider this example.

USERID = NULL; ; ~GETENV USERNAME

This is similar to the previous example except it uses the GetEnv (Get Environment
Variable) INI function to get the value associated with USERNAME from the
environment to supply the field value.

Chapter 6
Archiving and Retrieving Information

240

RETRIEVING
ARCHIVED

FORMS

Once the form set information has been archived, you can re-create those form sets by
retrieving the form set information from the archive file, as long as you have access to
the resource library which contains the forms. You do this using the Archive module of
Documaker.

NOTE:The Archive module of Documaker can also archive form sets. For more
information, see the Documaker Workstation User Guide. The following
information is provided here so you can have a basic understanding of the
retrieval process.

FILES THE ARCHIVE MODULE USES

The Archive module (the AFEMAIN program) uses the archive index file to aid in the
retrieval of form set information through the use of keys. You can define these keys to
provide meaningful search criteria such as account or policy numbers, company names,
or customer names.

Input files • Compressed Archive (CAR) file

• Application Index file

• Catalog file

• Restart file

• Resource file such as FAPLIB, DEFLIB, and so on

Output files None.

USING THE ARCHIVE MODULE

To retrieve a document from archive using the Archive module, you select the Retrieve,
Formset option. The Retrieve Document window appears.

You can configure the Retrieve Document window using these FSISYS.INI settings:

Retrieving Archived Forms

241

< Group1 >

Title1 = Company

Title2 = Line of Business

Title3 = Policy #

Title4 = Run Date

Title5 = Invoice Only

Title6 = Claim Only

Title7 = Policy # Date St Tr Description

NOTE:Title5 and Title6 are not used in the base Documaker Workstation system, but
are available if you choose to customize your installation. If you remove these
options from the FSISYS.INI file, the system does not display those fields.

Retrieval Options
If you click the Options button on the Retrieve Document window, the Retrieval
Options window appears, as shown below.

This window is shown with default text. If you want to change these default values, add
values to DlgTitles and ArcRet control groups as follows:

Beside this DlgTitles option Enter the title for the…

RetOptionsDlgTitle window (Retrieve options in this example)

RetrOptionsPrintOnly Print only field

RetrOptionsOnlyEntry Display only field

RetrOptionsStackOnly Stack only mode field

Chapter 6
Archiving and Retrieving Information

242

The options in the ArcRet control group define only the default settings for fields users
can change actual values by checking or unchecking the fields on the window.

For this ArcRet option Enter…

Arrangement StackOnly. If StackOnly mode is on, the system shows one form
at a time and the Stack, Tile, and Cascade options are available. In
this mode DisplayPrintOnly is set to Yes DisplayOnlyEntry is set
to No and cannot be changed.

DisplayPrintOnly Yes. This setting displays only the forms in the form set defined
as Print Only, along with variable data forms included in the form
set. These forms do not contain manually-entered data.

DisplayOnlyEntry No. This setting displays only forms containing variable data. The
system will omit reference forms.

Working with Documanage

243

WORKING WITH
DOCUMANAGE

If you use Documanage as part of your archiving solution, you may want to use
Documanage data types when mapping archive index data. You may also want to
categorize the documents you archive.

These topics discuss how to do these tasks.

• Using Documanage Data Type Support on page 244

• Setting Up Automatic Category Overrides on page 245

• Mapping Documaker Archive Fields to Documanage Properties on page 246

• Using Next/Retrieve Cursor on page 248

• Enhanced Documanage Document Extended Properties Support on page 249

Chapter 6
Archiving and Retrieving Information

244

USING DOCUMANAGE DATA TYPE SUPPORT

Pulling Documaker archive documents (DPA files) into Documanage lets you use
Documanage-supported data types when mapping the Documaker archive index data
into the Documanage folder and document properties tables.

This lets you search, query, and present the data through Documanage clients such as
Documanage Workstation and Documanage Bridge-based clients. For example, you can
store Documaker date/time data as Documanange date/time data types and enable the
use of date ranges and calendar functionality in web page design and for sorting and
searching Documaker archive documents. Data mining and reporting can also benefit
from better data representation and storage.

The DMIA DBHandler (DMILIB module: [DBHandler:DMIA]) used with the GenArc
program and other Documaker Server archive processes lets you use additional
Documanage Data Types in Documanage Folder fields instead of only supporting the
varchar or char data types.

Keep in mind...

• The date/time data types must be in either a Documaker D4 string format:

 YYYYMMDDHHMMSS

The hours, minutes, and seconds (HHMMSS) are optional. For example, the
D4 format can be sent in as:

20070131 (Jan. 31, 2007)

2007013113 (Jan. 31, 2007 1PM)

200701311330 (Jan. 31, 2007 1:30PM)

20070131133055 (Jan. 31, 2007 1:30:55 PM)

Or in a Documanage client-supported string format:

YYYY-MM-DD HH:MM:SS.msec

The hours, minutes, seconds and milliseconds (HH:MM:SS.msec) are optional.
For example, the Documanage format can be sent in as:

2007-01-31

2007-01-31 13

2007-01-31 13:30

2007-01-31 13:30:55

2007-01-31 13:30:55.800

• Documaker’s Archive Application Index Data Format Definition file
(APPIDX.DFD) fields must remain as CHAR_ARRAY for the INT_TYPE and
EXT_TYPE with the appropriate INT_LENGTH and EXT_LENGTH values for
representing the data in string format.

Working with Documanage

245

SETTING UP AUTOMATIC CATEGORY OVERRIDES

You can categorize DPA documents from Documaker Server Archive into Documanage.
This makes it easier to do searches and queries when retrieving via Documanage Bridge.
It also provides more flexibility in using Extended Document Properties (XDPs), which
allows for different XDPs in the different document categories so transactions can store
different relative data in the XDPs.

You can use input data to set the Documanage document's Category property during
archival via the Documaker Server Archive interface (DMIA). The default value for this
property comes from the FileType INI option during archival, but you can also
dynamically override the default with input data using this INI option:

< POField2Document >

ObjectClass = AppIdx_Field

During retrieval, the Category Document property can be loaded into the Documaker
AppIdx_Field using this INI option:

< PODocument2Field >

AppIdx_Field = ObjectClass

Extended Document Properties (XDPs) are based on the Category value set during
ingestion. Mappings to XDPs only occur if the XDP for the Document Category exists
by name. Otherwise, they are ignored and no error is generated. This allows different
data to be populated into the XDPs based on the category used.

Here is an example of how you would override the default document category of DPA
with the APPIDX.DFD field value of the field FormSet:

< DMIA:RPEX2ARC >

; FileType is the default Category/ObjectClass value

FileType = DAP

< PODocument2Field >

; Category/ObjectClass is overridden by the value in the AppIdx

; field FormSet

FormSet = ObjectClass

< POField2Document >

; Category/ObjectClass is overridden by the value in the AppIdx

; field FormSet

ObjectClass = FormSet

Keep in mind the APPIDX.DFD field used to override the document Category in the
INI options POField2Document and PODocument2Field can not be used to also set
other folder or document properties. For instance, in the example another entry for
FormSet can not be used to map FormSet to another folder or document or XDP field.

Chapter 6
Archiving and Retrieving Information

246

MAPPING DOCUMAKER ARCHIVE FIELDS TO DOCUMANAGE
PROPERTIES

When mapping Documaker archive field names to Documanage Folder and Extended
Document Properties, you can use DB Field Name values. This lets you modify the
Folder Property Name and Extended Document Property Name values in Documanage
Server to effect changes to applications that use these values for input field/control
labels without requiring reconfiguring your Documaker to Documanage interface setup.

You can map Documaker archive index data to either the Documanage Folder Property
Name field and the Documanage Extended Document Property Name field (default
behavior as previously provided) or to the Documanage DB Field Name, which is the
database column name, based on the MapByDBName option.

< DMIA:cabinetname >

MapByDBName =

You can also use these new control groups for even more control over mapping:

• DMIA_FieldConvert_cabinetname

• DMIA_FieldConvert

NOTE:The DMIA_FieldConvert_cabinetname control group overrides any entries in the
DMIA_FieldConvert control group.

Also, all filter and order by syntax generated and submitted to the Documanage Server
and used in SQL statements now uses qualified column names instead of the
Documanage Folder Property and Extended Document Property names to avoid
requiring the DB column name to be the same as the Property Name.

Here are some examples:

Example 1 The Documaker archive index (AppIdx) fields QTY and PreTaxAmt are mapped to
Documanage Field or Extended Document Property name Quantity and Pretax
Amount. All other Documaker archive index fields map to the same named Field and
Extended Document Property names with a test for the name with spaces as they exist
and then for spaces replaced with underscores (case-insensitive):

< DMIA:RPEX2ARC >

MayByDBName = No

< DMIA_FieldConvert >

QTY = Quantity

PreTaxAmt = Pretax Amount

Option Description

MapByDBName Enter Yes to map to Documanage DB Field Names values for both Folder
Properties and Extended Document Properties. The default is No, which
instead maps them to the Folder Property Names and Extended
Document Property Names (Display Names).

Working with Documanage

247

Example 2 The Documaker archive index fields QTY and PreTaxAmount are mapped to
Documanage DB Field Name Quantity and PreTax_Amount. All other Documaker
archive index fields map to the same named DB Field Name (case-insensitive):

< DMIA:RPEX2ARC >

MayByDBName = Yes

< DMIA_FieldConvert >

QTY = Quantity

PreTaxAmt = Pretax Amount

Chapter 6
Archiving and Retrieving Information

248

USING NEXT/RETRIEVE CURSOR

Documanage supports a next/retrieve cursor for use by the ARCRET utility when accessing
data from Documanage.

The ARCRET utility lets you retrieve records from archive and produce files. You can
then send these files to plug-in functions to print or migrate the archive records or to
test the archive retrieval results.

NOTE:The ARCRET utility’s /REV parameter is only applicable to an archive stored
in xBase.

This eliminates the need to use the /BQ option for a Documanage archive. The previous
(before version 11.3) interface to Documanage did not support retrieving documents
while sequentially reading the index. The /BQ option told the system to queue batches
of records into memory before attempting to retrieve each associated documents. This
could be memory intensive and affected performance. With version 11.3 and higher, the
system can retrieve the associated document while reading the index rows.

Working with Documanage

249

ENHANCED DOCUMANAGE DOCUMENT EXTENDED
PROPERTIES SUPPORT

You can populate Documanage Extended Document Properties (XDPs) using
Documaker Server archive indexed data. There are no limits to the number, sizes, and
data types you can use at the document level. This lets you use XDPs when you are
directly archiving to Documanage.

NOTE:Before version 11.1, only Documanage Basic Document Properties could only
be used for user data and the number, size and type of data available was
limited.

To use this feature, you must...

• Create the extended document properties in Documanage in the proper document
categories

• Set up the GenArc program to map to them.

• Add the names you use for the XDP fields into GenArc's application index file
(APPIDX.DFD).

• Set up Documaker Server to capture extract data to populate into the XDP fields.

The fields are propagated during GenTrn processing from the XML extract file to the
TRNFILE. During GenData processing, the fields are populated from the TRNFILE to
the NEWTRN file. Then, during GenArc processing, the fields are populated from the
NEWTRN file to the APPIDX structure and into the Documanage XDP fields.

The field names added to the APPIDX.DFD file must have the exact same names as those
set up in Documanage's Category Extended Properties. Here are some examples:

• PolicyDate

• PolicyType

• FormSet

• Number

• FinalDate

• Amount

• PreTaxAmt

• QTY

• Percentage

• Ratio

• Overage

• Specifier

Chapter 6
Archiving and Retrieving Information

250

For the appropriate fields to end up in the structure mapped by GenArc's APPIDX.DFD
file, those fields must be propagated from the NEWTRN.DAT file. This file is created
during GenData processing and is mapped using the TRNDFDFL.DFD file.

For the appropriate fields to exist in the NEWTRN file, those fields must be propagated
from the TRNFILE. This file is created during GenTrn processing and is mapped by the
TRNDFDFL.DFD file.

The TRNFILE is populated with data which is usually retrieved from the extract file.
This data is mapped using the INI options in the Trn_Fields control group or by using
the Ext2GVM rule in the AFGJOB.JDT file.

NOTE:Documanage Extended Document Properties is not supported by Docusave so
the Stacked DPA feature will not propagate the XML header data in the DPA
files into Documanage's XDP fields.

To handle the propagation of these fields, you must include additional information in
these files:

• FSISYS.INI file or the AFGJOB.JDT file or both

• TRNDFDFL.DFD file

• APPIDX.DFD file

• Extract file

Here are some examples of the additional information required in these files:

FSISYS.INI file Here is an excerpt from the FSISYS.INI file:

< Trn_Fields >

SYM = 1,3,N

POL = 4,7,N

EffectiveDate = 25,6,N;DB;D4

Module = 38,2,N

State = 43,2,N

Trn_Type = 45,2,N

Company = 35,3,N

LOB = 40,3,N

SentToManualBatch = 47,2,N

Branch = 49,2,N

RunDate = 51,14,N

DueDate = 100,8,N

Cust_Num = 87,10,N

PKG_Offset = 97,10,N

TRN_Offset = 107,10,N

X_Offset = 117,10,N

NA_Offset = 127,10,N

POL_Offset = 137,10,N

TokenLen = 118,316,N

; PolicyDate = 51,14,N

PolicyType = 45,2,N

FormSet = 38,2,N

< Trigger2Archive >

Working with Documanage

251

Key1 = COMPANY

Key2 = LOB

KeyID = POL

Customer = customer

RunDate = RUNDATE

DueDate = DueDate

TokenLen = TOKENLEN

PolicyDate = PolicyDate

PolicyType = PolicyType

FormSet = FormSet

Number = Number

FinalDate = FinalDate

Amount = Amount

PreTaxAmt = PreTaxAmt

Qty = QTY

Percentage = Percentage

Ratio = Ratio

Overage = Overage

Specifier = Specifier

< Trn_File >

MaxExtRecLen = 750

BinaryExt = N

TRNDFDFL.DFD file Here is an excerpt from the TRNDFDFL.DFD file:

< FIELDS >

FIELDNAME = sym

FIELDNAME = pol

FIELDNAME = EffectiveDate

FIELDNAME = module

FIELDNAME = state

FIELDNAME = trn_type

FIELDNAME = company

FIELDNAME = lob

FIELDNAME = SentToManualBatch

FIELDNAME = branch

FIELDNAME = RunDate

FIELDNAME = DueDate

FIELDNAME = cust_num

FIELDNAME = customer

FIELDNAME = PKG_Offset

FIELDNAME = TRN_Offset

FIELDNAME = X_Offset

FIELDNAME = NA_Offset

FIELDNAME = POL_Offset

FIELDNAME = TOKENLEN

FIELDNAME = PolicyDate

FIELDNAME = PolicyType

FIELDNAME = FormSet

FIELDNAME = Number

FIELDNAME = FinalDate

FIELDNAME = Amount

FIELDNAME = PreTaxAmt

FIELDNAME = QTY

FIELDNAME = Percentage

FIELDNAME = Ratio

Chapter 6
Archiving and Retrieving Information

252

FIELDNAME = Overage

FIELDNAME = Specifier

< FIELD:PolicyDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 23

KEY = N

REQUIRED = Y

< FIELD:PolicyType >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 31

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 30

KEY = N

REQUIRED = Y

< FIELD:FormSet >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 41

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 40

KEY = N

REQUIRED = Y

< FIELD:Number >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 11

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:FinalDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 23

KEY = N

REQUIRED = N

< FIELD:Amount >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 16

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:PreTaxAmt >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 16

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

Working with Documanage

253

EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:QTY >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 6

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 5

KEY = N

REQUIRED = N

< FIELD:Percentage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 9

KEY = N

REQUIRED = N

< FIELD:Ratio >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 9

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 8

KEY = N

REQUIRED = N

< FIELD:Overage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 11

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:Specifier >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 2

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 1

KEY = N

APPIDX.DFD file Here is an excerpt from the APPIDX.DFD file:

[FIELDS]

FIELDNAME=KEY1

FIELDNAME=KEY2

FIELDNAME=KEYID

FIELDNAME=customer

FIELDNAME=RUNDATE

FIELDNAME=DueDate

FIELDNAME=INVFLAG

FIELDNAME=CLAIMFL

FIELDNAME=ARCKEY

FIELDNAME=FORMSETID

Chapter 6
Archiving and Retrieving Information

254

FIELDNAME=TOKENLEN

FIELDNAME = PolicyDate

FIELDNAME = PolicyType

FIELDNAME = FormSet

FIELDNAME = Number

FIELDNAME = FinalDate

FIELDNAME = Amount

FIELDNAME = PreTaxAmt

FIELDNAME = QTY

FIELDNAME = Percentage

FIELDNAME = Ratio

FIELDNAME = Overage

FIELDNAME = Specifier

< FIELD:PolicyDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 24

KEY = N

REQUIRED = Y

< FIELD:PolicyType >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 30

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 30

KEY = N

REQUIRED = Y

< FIELD:FormSet >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 40

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 40

KEY = N

REQUIRED = Y

< FIELD:Number >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:FinalDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 24

KEY = N

REQUIRED = N

< FIELD:Amount >

Working with Documanage

255

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 15

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:PreTaxAmt >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 15

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:QTY >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 5

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 5

KEY = N

REQUIRED = N

< FIELD:Percentage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 9

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 9

KEY = N

REQUIRED = N

< FIELD:Ratio >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 8

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 8

KEY = N

REQUIRED = N

< FIELD:Overage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:Specifier >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 1

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 1

KEY = N

REQUIRED = N

Chapter 6
Archiving and Retrieving Information

256

NOTE:DATE type data must be passed in a format that is accepted by Documanage
Server or in a Documaker Server D4 format (YYYYMMDD).

AFGJOB.JDT file Here is an excerpt from the AFGJOB.JDT file:

;Ext2Gvm;2;11,TOTAL1REC 147,4,Number;

;Ext2Gvm;2;11,TOTAL1REC 25,24,PolicyDate;

;Ext2Gvm;2;11,TOTAL1REC 49,23,FinalDate;

;Ext2Gvm;2;11,TOTAL1REC 143,15,Amount;

;Ext2Gvm;2;11,TOTAL1REC 158,10,PreTaxAmt;

;Ext2Gvm;2;11,TOTAL1REC 168,4,QTY;

;Ext2Gvm;2;11,TOTAL1REC 172,3,Percentage;

;Ext2Gvm;2;11,TOTAL1REC 175,8,Ratio;

;Ext2Gvm;2;11,TOTAL1REC 183,6,Overage;

;Ext2Gvm;2;11,TOTAL1REC 189,1,Specifier;

Extract file Here is an excerpt from a single record in a flat extract file:

SCOREMOVEDHEADERREC00000030194 SCOM1FP GAT1I1B119950123 804-345-8789
041594 REMOVEDOOO 20000223 MAMTEST TOKEN LENGTH TEST TOKEN LENGTH
TEST TOKEN LENGTH TEST TOKEN LENGTH TEST TOKEN LENGTH ARCCAB DAP
SubTypeTest1 TitleTest1 TEST DESCRIPTION 1 19950124 Complete
UserFlag1Test1 UserFlag2Test1 Keyword1Test1 Keyword2Test1 X

SCOREMOVEDTOTAL1RECP00002005-01-01 12:00:00.001 2006-01-01
12:00:00.999 Comprehensive FullLine 1000000.00 1228.98 2 1001.1 98.76
B X

257

Chapter 7

Setting Up Archive/
Retrieval Configurations

This chapter outlines several commonly-used archive/
retrieval scenarios. Click on a scenario to quickly go to
that discussion:

• DB2 Server on OS/390 —Windows Client on page
258

• DB2 Server on Windows — Windows Client on
page 270

• DB2 Server and Client on Windows on page 275

• SQL Server on Windows — ODBC Client on
Windows on page 279

• IDS on Windows —DB2 Archive on z/OS on page
281

• Creating a z/OS Database on page 282

NOTE:Windows refers to 32-bit Windows operating
systems, such as Windows 2000 or Windows
XP.

We recommend that you only use uppercase
for table and column names when storing
information in a database. For instance, avoid
CustomerName, Customername, or
customername and instead use
CUSTOMERNAME.

Database management systems (DBMS) vary in
how they handle case issues so it is best to
standardize on uppercase. With version 11.2,
all column names must be in uppercase.

Chapter 7
Setting Up Archive/Retrieval Configurations

258

DB2 SERVER
ON OS/390 —

WINDOWS
CLIENT

For this scenario, assume you are running DB2 version 6.1 on OS/390 version 2. For
the DB2 client, assume you are running Windows 2000 or Windows XP.

The DB2 Distributed Data Facility is an optional part of the DB2 product on OS/390.
The Distributed Data Facility must be configured and running for the DB2 client (on
32-bit Windows) to communicate with the DB2 Server (on OS/390).

CONFIGURING THE SERVER

Getting the DB2
location name and

LUNAME

You can use the PRTLOGMP DB2 utility to print a report that lists the communication
record of the DB2 Bootstrap Dataset. In the communication record you can find the
DB2 location and LU name for that DB2 subsystem. The location and LU name are
needed when configuring the SNA Server and DB2 on the 2000 Server.

Here is an example of the JCL used to run PRTLOGMP is shown follows, along with
the communication record portion of the output from the PRTLOGMP utility.

//* COPY JOBCARD HERE …

//*

//S1 EXEC PGM=DSNJU004

//SYSUT1 DD DSN=TDB1.BSDS01,DISP=SHR

//SYSPRINT DD SYSOUT=*

**** DISTRIBUTED DATA FACILITY ****

COMMUNICATION RECORD

15:35:33 OCTOBER 12, 1999

LOCATION=USFSIMVSTDB1 LUNAME=DB2TDB1 PASSWORD=(NULL)

DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED

DB2 Client

DB2 Client

DB2 Client

Windows 2000 Server

OS/390
Host

DB2 version 6.1 on
OS/390 version 2

DB2 Server on OS/390 —Windows Client

259

SUCCESSFULLY

Defining the SNA
server’s APPC LU in

VTAM

The following Switched Major Node (SNA) is contained in SYS1.VTAMLST(SW0E40C):

* *

*

* VTAM SWITCHED MAJOR NODE

* FOR MICROSOFT SNA SERVER COMMUNICATIONS

*

* *

*

SW0E40C VBUILD TYPE=SWNET,MAXGRP=3,MAXNO=30

*

CP00010 PU ADDR=40,CPNAME=CL00010, X

DISCNT=NO,MAXDATA=16384,USSTAB=USSFSIS, X

MAXPATH=1,MAXOUT=7,PASSLIM=7, X

VPACING=7,PACING=7,SSCPFM=USSSCS

*

CL00010 LU LOCADDR=0.

Defining the DB2
Application Major Node

in VTAM

The following Application Major Node is contained in SYS1.VTAMLST(DB2TDB1A):

* *

*

* VTAM APPLICATION NODE FOR DB2

*

* *

DB2TDB1A VBUILD TYPE=APPL

DB2TDB1 APPL APPC=YES, X

ATNLOSS=ALL, X

AUTH=(ACQ), X

AUTOSES=1, X

DMINWNL=25,X

DMINWNR=25, X

DSESLIM=50, X

MODETAB=, X

SECACPT=ALREADYV, X

SRBEXIT=YES, X

SYNCLVL=SYNCPT, X

VERIFY=NONE, X

VPACING=2

Setting Up the Windows 2000 Server (Middle Tier)

Installing and
configuring Microsoft’s

SNA Server

To set up the middle tier, first install Microsoft SNA Server version 4,with Service Pack
3 applied, onto a server running Windows 2000 Server. Then Install SNA Server into its
own domain called USR04SNA.

Here are the steps for installing the SNA Server:

1 Insert the install CD into CD drive. Select Start, Run and enter this command:

e:\sna40\i386\setup.exe

Go through the normal set up process. Enter this server domain information:

Chapter 7
Setting Up Archive/Retrieval Configurations

260

Click Ok when finished.

2 Choose Primary Configuration Server. Then choose Named Pipe, TCP/IP, IPX/SPX.

3 Choose IPX/SPX Directory Service. Then choose Bindery (Netware 3.x, 4.x, 5.x or 6.x)
and SNA Server Subdomain (USR04SNA).

4 Next, use the Microsoft SNA Server Manager to make the following definitions. To
start this tool select Start, Programs, Microsoft SNA Server (Common), Manager.
Then right click the SNA Server you created in the first three steps. Choose Insert,
Link Services. From the Insert Link Services window select your adapter and
protocol (DLC 802.2 Link Service).

5 Select and right click the SNA Server you configured (USRSRV04). Select
Properties.

The control point configured here is for incoming connections only and is not used
for this outgoing connection to OS/390. You should, however, configure it. Use the
Network Name (P390) and Control Point name (CL00010). Accept the defaults on
the Server Configuration tab.

NOTE:The network name matches the value of the NETID parameter in the VTAM
startup parameters in SYS1. VTAMLST(ATCSTR00). The control point name
(CL00010) here matches the value of the CPNAME parameter of the VTAM
Switched Major Node on OS/390, in SYS1.VTAMLST(SW0E40C).

6 Select and right click on Connections under the SNA Server you configured. Move
to APPC and select Local LU. The Local LU Alias can be whatever you want but in
this scenario it’s the same as the LU Name (CL00010).

Enter the network name (P390). Enter an LU Name that matches the control point
name used above (CL00010). Click the Advanced tab. Check Member Of Outgoing
Local APPC LU Pool. Make sure that the LU 6.2 Type is set to Independent then
click Ok.

7 Select and right click on Connections under the SNA Server you configured. Move
to APPC and select Remote LU. Use the Connection List to select your connection
(ETH2MVS). The LU Alias can be whatever you want but in this scenario it’s the
same as the LU Name (DB2TDB1) — remember this is the remote LU Name.

In this field Enter

Domain your domain name

Account your account user name

Password (leave blank)

Confirm Password (leave blank)

DB2 Server on OS/390 —Windows Client

261

Enter the network name (P390) and LU Name (DB2TDB1) and uninterpreted name
(DB2TDB1). Click the Option tab. Accept the defaults. The PLU for DB2 | OS/
390 is independent to support parallel sessions. Click Ok.

NOTE:Remote LU Name here should match the APPL name of the DB2 application
major node in SYS1.VTAMLST(DB2TDB1A). Note that the member name
(DB2TDB1A) cannot be the same as the APPL name (DB2TDB1) within it.

8 Move to Configured Users, right click, select Insert, and click on User. Highlight
Everyone and click Add. Go back to the SNA Manager window where you should
now see Everyone under Configured Users. Right click on Everyone, choose Properties
and then click the APPC Defaults tab.

Click the list for Local APPC LU and choose (CL00010). Click the list for the
Remote APPC LU and choose (DB2TDB1).

9 Move down to APPC Modes, right click, select Insert, APPC, and click on Mode
Definition. Enter the mode name (IBMRDB). Click the Limits tab. Enter the
Parallel Session Limit (10), Minimum Contention Winner Limit (3), Partner
Minimum Contention Winner Limit (3), and Automatic Activation Limit (2).
Accept the defaults on the Characteristics tab and click Ok.

10 Move to CPIC Symbolic Names, right click, select Insert, APPC. Click on CPIC
Symbolic Name. This name can be anything you want but it must later match
something in DB2 on Windows 2000. This name is case sensitive.

For this scenario, use DB2CPIC (in all caps). Choose Conversation Security (Same),
Mode Name (IBMRDB). Click the Partner Information tab. In the Partner TP
Name area click SNA Service TP (in hex) and enter 07F6C4C2. In the Partner LU
Name area click Alias and enter Partner LU alias (DB2TDB1). Click Ok.

The CPIC Symbolic Name (DB2CPIC) must match the destination name when you
define the node entry in DB2 on the Windows 2000 Server (see the following
section).

Installing and Configuring Microsoft’s SNA Server
For this scenario, you should install Microsoft SNA Server version 4, with Service Pack
3 applied, onto a Server running Windows 2000 Server. Install SNA Server into its own
domain and call the domain USR04SNA.

Follow these steps to install SNA Server 4.0 SP3:

1 Insert the install CD into CD-ROM drive. Go to Start, Run and enter:

e:\sna40\i386\setup.exe

Then click Ok. Go through the normal set up process.

2 Choose Primary Configuration Server. Then choose Named Pipe, TCP/IP, IPX/
SPX.

3 Choose IPX/SPX Directory Service. Then choose Bindery (Netware 3.x, 4.x, 5.x or 6.x).

Chapter 7
Setting Up Archive/Retrieval Configurations

262

4 Choose SNA Server Subdomain (USR04SNA).

5 Next, set up this server domain information:

Click Ok.

Configuring SNA Server 4.0 SP3
The following definitions are made using the Microsoft SNA Server Manager tool. To
start this tool select Start, Programs, Microsoft SNA Server, Manager.

1 Right click the server you created. Choose Insert, Link Services. From the Insert
Link Services window select your adapter and protocol (DLC 802.2 Link Service).
Click Add. The properties window for that protocol appears. Click Ok.

2 Expand the server. Right click on SNA Service and choose Properties. The control
point configured here is for incoming connections only and is not used for this
outgoing connection to OS/390.

You should, however, configure it. Enter the network name (P390) and control
point name (DL00010). The comment field is optional. Click Ok.

NOTE:The network name matches the value of the NETID parameter in the VTAM
startup parameters in SYS1.VTAMLST(ATCSTR00). The control point name
(DL00010) matches the value of the CPNAME parameter of the VTAM
Switched Major Node on OS/390, in SYS1.VTAMLST(SW0E40D).

3 Highlight SNA Service and on the right hand side of the screen click the
Connections tab. Right click the Connections tab. Choose Insert, APPC, Local LU.
The Local LU Alias can be set to is whatever you want but for this scenario set it to
the LU Name (DL00010). Enter the LU Alias (DL00010). If you tab to the next field
the network name and LU name automatically appear in those fields. If this
information does not appear, enter P390 as the network name and DL00010 as the
LU Name. The comment is optional. Click the Advanced tab. Check Member of
Default Outgoing Local APPC LU Pool. Make sure Independent is selected for the
section LU 6.2 type. Click Ok.

4 Right click the Connections tab and choose Insert, Connection, 802.2.

Field Enter

Domain your domain name

Account your account user name

Password (leave blank)

Confirm Password (leave blank)

DB2 Server on OS/390 —Windows Client

263

5 On the General tab, enter a name for your connection, such as ETH2MVS. Choose
SNADLC1 (or whatever the option may be) for the link service. The Comment is
optional. In the Remote End section, choose Host System. In the Allowed Directions
section, choose Outgoing Calls. In the Activation section choose On Server Startup.

6 On the Address tab, enter your remote network address, such as 10005A6EA879. Set
the Remote SAP Address to 0x04.

7 On the System Identification tab, make sure the following information is filled in.
In the Local Node Name section, the network name should be P390, the control
point name should be DL00010, and the local node ID should be 05D FFFFF. In
the XID Type section, Format 3 should be selected.

In the Remote Node Name section, the network name should be P390 and the
control point name should be USS3270. Make no changes on the 802.2 DLC tab.
Click Ok.

NOTE:The Remote LU Name should match the APPL name of the DB2 application
major node in SYS1.VTAMLST(DB2TDB1A). Note that the member name
(DB2TDB1A) cannot be the same as the APPL name (DB2TDB1) within it.

8 Right click on APPC Modes. Choose Insert, APPC, Mode Definition. On the
General tab, enter a mode name, such as IBMRDB. The Comment field is optional.
On the Limits tab, enter 10 for the parallel session Limit. Enter 3 for the minimum
contention winner limit. Enter 3 for the partner minimum contention winner
limit. Enter 2 for the automatic activation limit. Leave the Characteristics, Partners,
and Compression tabs as is. Click Ok.

9 Highlight SNA Service. Right click the Connections tab on the right side of your
screen. Choose Insert, APPC, Remote LU. On the General tab, choose ETH2MVS.
The LU alias can be whatever you want but in this scenario it’s DB2TDB1. Make
sure the following information is in these fields:

On the Options tab, choose IBMRDB for the implicit incoming mode. Leave
everything else as is. Click Ok.

10 Move to Configured Users, right click, select Insert, and click on User. Highlight
Everyone and click Add. Everyone appears in the Add Names box. Click Ok. Go to
the SNA Manager Window where you should now see Everyone under Configured
Users. Right click on Everyone, choose Properties, and then click the APPC Defaults
tab. Choose DL0010 as the local APPC LU. Then choose DB2TDB1 as the remote
APPC LU. Click Ok.

Field Entry

Network Name P390

LU Name same as your alias DB2TDB1

Uninterpreted Name same as your alias DB2TDB1

Comment optional

Chapter 7
Setting Up Archive/Retrieval Configurations

264

11 Move to CPIC Symbolic Names, right click, select Insert, select APPC, and click
CPIC Symbolic Name. This name must match something in DB2 on the Windows
2000 server and is case sensitive. For this scenario, enter DB2CPIC.

12 Choose Same as the Conversation Security and IBMRDB as the mode name. The
Comment field is optional. Click the Partner Information tab. In the Partner TP
Name area, click SNA Service TP (in hex) and enter 07F6C4C2. In the Partner LU
Name area, click Alias and enter Partner LU alias (DB2TDB1). Click Ok.

NOTE:The CPIC symbolic name (DB2CPIC) must match the destination name when
you define the node entry in DB2 on the Windows 2000 Server. This is discussed
further in the following topic.

Setting Up DB2 on a Windows 2000 Server
On the Windows 2000 Server, this scenario assumes DB2 version 8.1 for Windows is
installed with version 2.3.2 of the Distributed Database Connection Services.

Installing DB2 on a
Windows 2000 Server

Follow these steps:

1 Insert the installation CD and go to Start, Run. Then enter the following command,
substituting the appropriate drive letter for the CD drive:

e:\setup /I=LANGUAGE

Where LANGUAGE represents the two-character country code for your language
(for example, EN for English).

Click Ok.

2 The installation routine asks if you would like to view the read me file. If not, click
Next.

3 Check IBM Database 2, select the Server option, and check Distribution Database
Connection Services (DDCS). Then select the Multi-User gateway option. Click
Next.

4 Choose Try and Buy Only for both options then click Next.

5 Choose Full installation and click Next. Accept the default destination directory
and drive letter and click Install. The installation routine asks if you want to reboot:

Yes, reboot

OR

No, wait to reboot

Choose one of these options and click Finish.

All of the following definition descriptions were performed using DB2’s Database
Director. To start this tool choose Start, Programs, DB2 For Windows, Database
Director.

Configure the DB2
instance

Click the plus sign (+) to the left of the Database Managers icon to expand it. Then right
click on the DB2 icon and choose Configure. On the Protocols tab, enter db2inst1 in
the Service Name field. Click Ok.

DB2 Server on OS/390 —Windows Client

265

Defining an OS/390
node

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign
to the left of the Directories icon to expand it. Double-click the Node Directory icon,
then choose Directory Entry, Catalog.

Enter a Node Name (OS/390), an optional comment, choose the protocol type (APPC)
and the destination name (DB2CPIC), and then choose the security type (Program).
Click Ok.

Defining a system
database entry

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign
to the left of the Directories icon to expand it. Double-click the System Database
Directory icon, then choose Directory Entry, Catalog.

On the General tab, choose Type for the Remote radio button. Click the Remote tab
and enter the database name (ARCDB) and alias (ARCDB). Choose Node from the list
(OS/390). Do not click the box labeled DDCS or Back level Database. Click Ok.

Updating TCP/IP values
on the Windows 2000

server

The next step is to update TCP/IP-related values on the Windows 2000 server. For
information on how to do this, see Updating TCP/IP values on the Windows 2000
server on page 265.

Defining a database
connection services

entry

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign
to the left of the Directories icon to expand it. Double-click the Database Connection
Services Directory icon, then choose Directory Entry, Catalog.

Choose Database (ARCDB). For Target Database, enter the location name for the DB2
subsystem on OS/390.

Installing and Configuring DB2 on a Windows 2000 Server
This scenario assumes DB2 for Windows was installed and DB2 Server was at version
8.1.

All of the following definition descriptions were performed using DB2’s Control Center
tool. To start this tool choose Start, Programs, DB2 for Windows, Administration Tools,
Control Center.

Defining an OS/390
system

Right click on Systems and choose Add. On the Add System window, click the drop
down arrow for the operating system. Choose MVS/ESA, and enter P390 for the
system name. Click Apply. A confirmation message appears. Click Close.

Defining a DB2
instance

Expand the Host System (P390) you created in the previous topic. Right click on
Instances and choose Add. Enter names such as DB2TDB1 as a remote instance and DB2
as a destination name. Choose APPC as the protocol. In the Security Section of this
window, choose Same and click Apply. A confirmation message appears. Click Close.

Defining an OS/390
database

Expand out the newly created Instance from the previous section (DB2TDB1). Right
click on Databases and choose Add. Enter a database name and alias, such as ARCDB,
and click Apply. A confirmation message appears. Click Close.

Setting Up Universal Database on Windows 2000

Installing Universal
Database

This involves installing Universal Database (UDB) version 6.1 EE:

Chapter 7
Setting Up Archive/Retrieval Configurations

266

1 On the Welcome window, click Next. Then select the DB2 Enterprise Edition
option and click Next. Then click Custom.

2 Select the components you need. Make sure the Destination folder is correct and
click Next. The Configure DB2 Services window appears.

3 Make sure there is a DB2 instance (DB2) and an Administration Server
(DB2DAS00) then click Next.

4 Check the user name and password for the Administration Server.

username = dbadmin

password = (password)

Click Next.

5 On the Start Configuring Files window, click Next. Then decide if you want to
restart your computer and click Finish.

Configuring Universal
Database

Follow these steps to configure UDB version 6.1 EE:

1 Choose Start, Programs, DB2 for Windows, Client Configuration Assistant.

2 Click Add Database if you have just installed. Click Add to add databases if you
have already created databases. The Add Database Smart Guide appears.

3 On the Source tab (step 1), choose the Manually Configure a Connection to a DB2
Database option and click Next.

4 On the Protocol tab (step 2), choose TCP/IP as the protocol. Select OS/390 as the
target operating system. Click Next.

5 On the TCP/IP tab (step 3), set the following fields:

Click Next.

6 On the Database tab (step 4), set the following fields:

Click Next.

In this field Enter

Host Name os390

Port Number 446

Service Name (leave blank)

In this field Enter

Location Name USDCIOS39DSN1

Database Alias ARCDB

Comment (Optional)

DB2 Server on OS/390 —Windows Client

267

7 On the ODBC tab (step 5), check the Register this Database for ODBC option.
Then select the appropriate data source. Click Done.

Updating TCP/IP-related Values on a Windows 2000 Server
Follow these steps to update TCP/IP values on a Windows 2000 Server.

1 Enter these lines into the services file (c:\winnt\system32\drivers\etc\services):

db2inst1 3702/tcp # db2 port

db2insti 3703/tcp # db2 port interrupt

2 Go to Programs, Start, Settings, Control Panel, System and choose the Environment
tab. Enter a system variable called DB2COMM and set its value to APPC, TCP/
IP.

This indicates the communication protocols DB2 will use — APPC talks to the OS/
390 Host and TCP/IP talks to the Windows clients.

3 Add a system variable called DB2CODEPAGE and set its value to 850.

4 Reboot your system to apply these changes.

COMMON DB2 ERRORS

Here is a list of some common DB2 errors:

SETTING UP CLIENTS

This scenario assumes DB2 for Windows version 8.1 is installed and the Distributed
Database Connection Services is at version 2.3.2.

Error Description

SQL30073 “119C”

Parameter value “” is not
Supported

This is a problem with CCSID or code page. Select Start,
Control Panel, System, and click the Environments tab.
Enter a system variable called DB2CODEPAGE and set the
value to 850.

You must reboot for the change to take affect.

SQL30081N A communication
error has been detected

This problem is related to the SNA Connectivity parameters.

Protocol specific error 9 First look at the CPIC symbolic destination name and make
sure everything is correct. Also check the Partner LU and
Local LU definitions. If you change any of these parameters
only a stop and restart of SNA Server is required.

Protocol specific error 1 The first thing to look at is the Link. Make sure it has started
and you have a valid connection to the host.

Protocol specific error 2 Look at your LU definitions for both the Local LU and
Partner LU. Make sure they are correctly defined.

Chapter 7
Setting Up Archive/Retrieval Configurations

268

All of the following definition descriptions were performed using DB2’s Database
Director. To start this tool choose Start, Programs, DB2 For Windows, Database
Director.

Defining a DB2/2000
node

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign
to the left of the Directories icon to expand it. Double-click the Nodes Directory icon,
then choose Directory Entry, Catalog.

Enter a node name (NT04), an optional comment, and choose the protocol type (TCP/
IP). For the host name, enter your server name and for the service name enter
DB2INST1. Click Ok.

Defining a system
database entry

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign
to the left of the Directories icon to expand it. Double-click the System Database
Directory icon, then choose Directory Entry, Catalog.

On the General tab, choose Remote for Type. Click the Remote tab and enter the
database name (ARCDB) and alias (ARCDB). Choose Node from the list (NT04).

Do not click the boxes labeled DDCS or Back Level Database. Click Ok.

Updating TCP/IP-
related values on a

Windows client

Follow these steps so the system can update TCP/IP related values on a Windows client:

1 So the system can find the host name (see Configuring SNA Server 4.0 SP3 on page
262), make this entry in the hosts file (c:\windows\system32\drivers\etc\hosts):

10.8.10.211 USRSRV04

The left indicates the IP address of the server and right indicates the host name.

2 Enter these lines in the services file (c:\windows\system32\drivers\etc\services):

db2inst1 3702/tcp # db2 port

db2insti 3703/tcp # db2 port interrupt

3 Go to Programs, Settings, Control Panel, System, and click the Environment tab.
Enter a system variable called DB2COMM and set its value to TCP/IP. This
indicates the communication protocols DB2 will use (TCP/IP) to talk to the
Windows Server. Also add a system variable called DB2CODEPAGE and set its
value to 850. Reboot your system to apply these changes.

Setting Up the INI Options for the DB2 Driver
Here are the INI options for the DB2 driver:

< Archival >

ArchiveMem = Yes

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

< DBHandler:DB2 >

BindFile = c:\rel10\fap400\w32bin\db2lib.bnd

Database = ARCDB

DB2 Server on OS/390 —Windows Client

269

CreateTable = Yes

CreateIndex = No

UserID = (OS/390 user ID)

PassWd = (OS/390 password)

< DBTable:APPIDX >

DBHandler = DB2

< DBTable:ARCHIVE >

DBHandler = DB2

< DBTable:CATALOG >

DBHandler = DB2

< DBTable:RESTART >

DBHandler = DB2

< DB2_FileConvert >

APPIDX = DAP102_APP_R1

Archive = DAP102_ARC_R1

Catalog = DAP102_CAT_R1

Restart = DAP102_RES_R1

< Trigger2Archive >

Company = Company

LOB = Lob

PolicyNum = PolicyNum

RunDate = RunDate

These table names are examples of the names you can use.

Chapter 7
Setting Up Archive/Retrieval Configurations

270

DB2 SERVER
ON WINDOWS
— WINDOWS

CLIENT

For this scenario, assume you have a DB2 (version 6.1) Universal Database set up on a
Windows 2000 server.

SETTING UP A DB2 DATABASE ON THE SERVER

Follow these steps to set up a DB2 Database on the server.

1 Go to Start, Programs, DB2 for Windows, Administration Tools, Control Center.
The Control Center window appears. Expand Systems and you should see a server
name such as ARCDB6.

If so, go to step 3. If the server name is not listed, go to step 2.

2 Right click on Systems and choose Add. The Add System window appears. This is
where you set up the system information DB2 uses to find the location of the
database you are going to archive to.

Go to the Protocol field and select Named Pipe. The Protocol Parameters area
changes, now displaying a Computer Name field. Click Refresh to retrieve
information about the local system. The server name appears under the System
Name field. If you click on that name the system places it in the System Name field.
Fill in other pertinent information. The Comment field is optional. Click Apply
when finished.

A confirmation message appears. Click Close. This should take you back to the
Control Center window. The server name should now be listed under Systems. Go
to step 3.

Windows Client

Windows Client

Windows Client

DB2 Universal Database
(version 6.1)

Windows 2000
Server

DB2 Server on Windows — Windows Client

271

3 Expand the system name. You will now see Instances listed. Right click on Instances
and choose Add. Click Refresh. This retrieves a list of instances on the server.

Choose DB2. Enter DB2 in the Instance Name field. The Comment field is
optional. Click Apply. A confirmation message appears. Click Close. This should
take you back to the Control Center window. The DB2 instance should now be
listed under Instances.

4 Expand DB2. You will see Databases listed, right click on Databases and choose
Create, New. The Create Database Smartguide window appears.

5 Enter the name of the new database (such as ARCDB6) in the Database Name field
and the Database Alias field. The Comment field is optional. Click Done. This
takes you back to the Control Center window. The newly created database will be
listed under Databases.

Setting Up a Client for DB2 VERSION 6.1
This topic discusses archiving to a DB2 version 6.1 database (Universal Database) on a
Window 2000 Server using an ODBC driver and the native DB2 driver.

Archiving to a remote
DB2 database using an

ODBC driver

Follow these steps to set up a DB2 remote database on Windows 2000 Server:

1 Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
The Control Center window appears. Right click on Systems, then choose Add.

2 An Add System window appears. This is where you set up the system information
DB2 uses to find the location of the database (Windows 2000 Server). Click Refresh
and the server name should appear in the box below the System Name field. Click
the server name and the server information appears in the fields. Click Apply. A
confirmation message appears. Click Close.

3 You are now back to the Control Center window again. Make sure the new system
name appears when you expand Systems. If the new system name is listed under
Systems then expand that out also. You should then find Instances listed under
your system name. Right click on Instances and choose Add.

4 An Add Instance window will appear. Click Refresh. This will retrieve a list of
instances on your local system. Choose DB2 if it is not already in the Remote
Instance field. Click Apply. A confirmation message appears. Click Close.

5 Expand Instances and expand DB2. There will be Databases listed under the DB2
instance, right click and choose Add.

6 An Add Database window appears. Click Refresh to retrieve the names of databases
currently set up on the server. Choose the correct database from the list, such as
ARCDB6. Enter the name of the database in the Alias field. The Comment field is
optional. Click Apply. A confirmation message appears. Click Close. Expand
Databases and make sure the new database appears.

Setting up an ODBC
data source

Follow these steps to set up an ODBC data source using Windows 2000:

1 Go to Start, Settings, Control Panel, ODBC. You are now viewing User Data
Sources.

Chapter 7
Setting Up Archive/Retrieval Configurations

272

2 Click Add to add an IBM DB2 ODBC driver. The Create New Data Source window
appears.

3 Choose IBM DB2 ODBC Driver. Click Finish. The ODBC IBM DB2 Driver – Add
window appears.

4 Click the down arrow in the Data Source Name field, choose the correct database
name, such as ARCDB6. The Description field is optional, but it should be there
if you specified it when you created the database. Click Ok. The User Data Sources
tab of the ODBC Data Source Administrator window appears. Make sure your new
data source is there, along with its corresponding driver, then click Ok.

Setting up INI options
for the ODBC driver

Follow these steps to set up the INI options specific to the ODBC driver:

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:ODBC >

CreateTable = Yes

CreateIndex = No

Debug = No

Server = (such as ARCDB6–the newly-created data source name.)

BLOBSupportForDB2ODBC =

UserID = (Windows user ID)

Passwd = (Windows password)

Use the BLOBSupportForDB2ODBC option to tell the Archive/Retrieval
programs the version of DB2 being accessed can support BLOB (Binary Large
Object) data types. This INI option, along with specifying BLOB as the data type
for the CARData field in the CARFILE.DFD file, tells the Archive/Retrieval
programs to process the field as a BLOB. If you omit this option or set it to No,
the Archive/Retrieval programs translate any CARFILE.DFD data type request of
BLOB to LONG VARCHAR.

2 The DBTable:XXX control groups determine what tables are used by looking at the
ArcRet control group. The ArcRet control group should look like the one shown
here:

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

ExactMatch = No

Key1 = Company

Key2 = Lob

KeyID = PolicyNum

3 For all the tables listed above, add these control groups:

< DBTable:APPIDX >

DBHandler = ODBC

< DBTable:ARCHIVE >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

DB2 Server on Windows — Windows Client

273

< DBTable:RESTART >

DBHandler = ODBC

4 The ODBC_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >

APPIDX = FSIV100_APPIDX

Archive = FSIV100_ARCHIVE

Catalog = FSIV100_CATALOG

Restart = FSIV100_RESTART

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

Archiving to a Remote DB2 Database Using the Native DB2
Driver
Follow these steps to archive to a remote DB2 database using DB2’s native driver. These
steps assume you are using Windows 2000.

Setting up a DB2
database

First set up a DB2 database:

1 Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center appears, right click on Systems, then choose Add. An Add
System window appears.

2 On the Add System window you set up system information DB2 uses to find the
location of the database (Windows 2000 Server). Click Refresh and the server name
should appear below the System Name field. Click the server name and the server
information appears in the fields. Click Apply. A confirmation message appears.
Click Close. You return to the Control Center window.

3 Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that out also. You should find
Instances listed under your system name. Right click on Instances and choose Add.
An Add Instance window will appear.

4 Click Refresh to retrieve a list of instances on your local system. Choose DB2 if it
is not already in the Remote Instance field. Click Apply. A confirmation message
appears. Click Close.

5 Expand Instances and expand DB2.There will be Databases listed under the DB2
instance, right click and choose Add. An Add Database window appears.

6 Click Refresh to retrieve the names of databases are currently set up on the server.
Choose the correct database from the list, such as ARCDB6. Enter the name of the
database in the Alias field. The Comment field is optional. Click Apply. A
confirmation message appears. Click Close. Expand Databases to make sure the new
database appears.

Setting up the INI
options for the DB2

driver

Follow these steps to add the INI setting the native DB2 driver will use:

1 Set up the DBHandler:DB2 control group as shown below.

Chapter 7
Setting Up Archive/Retrieval Configurations

274

< DBHandler:DB2 >

BindFile = c:\rel10\fap400\w32bin\db2lib.bnd

CreateTable = Yes

CreateIndex = No

Database = (such as ARCDB6, a remote database name)

UserID = (Windows 2000 user ID)

Passwd = (Windows 2000 password)

2 The DBTable:XXX control groups determine what tables are used by looking at the
ArcRet control group, which should look like the following.

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

3 For all the tables listed above, add the following control groups:

< DBTable:RESTART >

DBHandler = DB2

< DBTable:CATALOG >

DBHandler = DB2

< DBTable:APPIDX >

DBHandler = DB2

< DBTable:ARCHIVE >

DBHandler = DB2

4 Make sure the DB2_FileConvert control group contains the table names of each
table to be created. Here is an example, your table names may differ:

< DB2_FileConvert >

APPIDX = DAP102_APP_R1

Archive = DAP102_ARC_R1

Catalog = DAP102_CAT_R1

Restart = DAP102_RES_R1

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

DB2 Server and Client on Windows

275

DB2 SERVER
AND CLIENT ON

WINDOWS

This topic discusses archiving to a local DB2 version 6.1 database using an ODBC driver
and the native DB2 driver.

SETTING UP A DB2 DATABASE

This scenario shows how to archive to a DB2 database using an ODBC driver on
Windows 2000.

1 Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center appears, right click on Systems, then choose Add. An Add
System window appears.

2 On the Add System window you set up system information DB2 uses to find the
location of the database (local Windows 2000). Go to the Protocol field and click
the down arrow, select Named Pipe. The Protocol Parameters area changes, displaying
the Computer Name field. Type in the computer’s network name here and click
Retrieve.

The program retrieves information about the local system. Once that information
is retrieved you will see names in the System Name and Remote Instance fields.
Click Apply. A confirmation message appears. Click Close. You return to the
Control Center window.

3 Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that also. You should then find
Instances listed under your system name. Right click Instances and choose Add.

4 An Add Instance window will appear. Click Refresh. You will see a list of instances
on your local system. Choose DB2 and click Apply. A confirmation message
appears. Click Close.

5 Expand Instances and expand DB2. You will see Databases listed, right click and
choose Add. The Add Database window appears.

6 Enter the name of the new database, such as ARCDBL, in the Database Name field
and the Alias field. The Comment Field is optional. Click Apply. A confirmation
message appears. Click Close. Expand Databases and make sure that the new
database appears.

Setting up an ODBC
data source

This scenario uses Windows 2000.

1 Choose Start, Settings, Control Panel, ODBC. You are now viewing User Data
Sources. Click Add to add an IBM DB2 DBC driver. The Create New Data Source
window appears

2 Choose IBM DB2 ODBC Driver. Click Finish. The ODBC IBM DB2 Driver - Add
window appears.

3 Click the down arrow in the Data Source Name field and choose the correct
database name. The Description field is optional, but should appear if you specified
it when you created the database. Click Ok. The User Data Sources tab of the
ODBC Data Source Administrator window appears. Make sure that your newly
created data source is there and its corresponding driver is correct then click Ok.

Chapter 7
Setting Up Archive/Retrieval Configurations

276

Setting up INI options
for ODBC

Follow these steps to set up the INI options specific to ODBC:

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:ODBC >

CreateTable = Yes

CreateIndex = No

Debug = No

Server = (such as ARCDBL – The data source name)

BLOBSupportForDB2ODBC =

UserID = (Windows user ID)

Passwd = (Windows password)

Use the BLOBSupportForDB2ODBC option to tell the Archive/Retrieval
programs the version of DB2 being accessed can support BLOB (Binary Large
Object) data types. This INI option, along with specifying BLOB as the data type
for the CARData field in the CARFILE.DFD file, tells the Archive/Retrieval
programs to process the field as a BLOB. If you omit this option or set it to No,
the Archive/Retrieval programs translate any CARFILE.DFD data type request of
BLOB to LONG VARCHAR.

2 Use the DBTable:XXX control groups to determine what tables are used by looking
at the ArcRet control group. Here is an example:

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CarPath =

Catalog = CATALOG

RestartTable = RESTART

3 For all the tables listed above, add these control groups:

< DBTable:APPIDX >

DBHandler = ODBC

< DBTable:ARCHIVE >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

< DBTable:RESTART >

DBHandler = ODBC

4 Use the ODBC_FileConvert control group to list the table names of each table to
be created. Here is an example, your table names may differ:

< ODBC_FileConvert >

APPIDX = FSIV100_APPIDX

Archive = FSIV100_ARCHIVE

Catalog = FSIV100_CATALOG

Restart = FSIV100_RESTART

5 Set the Archival control group as shown here.

< Archival >

ArchiveMem = Yes

Archiving to a Local DB2 Database Using the Native DB2

DB2 Server and Client on Windows

277

Driver

Setting up the DB2
database

This scenario uses Windows 2000.

1 Select Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center window appears, right click on Systems, then choose Add.
The Add System window appears.

2 On the Add System window you set up system information DB2 uses to find the
location of the database (local Windows 2000). Go to the Protocol field and click
the down arrow, select Named Pipe. The Protocol Parameters area then displays a
Computer Name field. Enter the computer’s network name and click Retrieve.

The program retrieves information about the local system. Once that information
appears, you see names in the System Name and Remote Instance fields. Click
Apply. A confirmation message appears. Click Close. The Control Center window
appears.

3 Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that also. You should then find
Instances listed under your system name. Right click Instances and choose Add. The
Add Instance window appears.

4 Click Refresh to retrieve a list of instances on your local system. Choose DB2 and
click Apply. A confirmation message appears. Click Close.

5 Expand Instances and expand DB2. You will see Databases listed, right click and
choose Create, New. The Create Database Smartguide window appears.

6 Enter the name of the new database (ARCDBL) in the New Database Name field
and the Database Alias field. The Comment Field is optional. Click Done.

This should take you back to the Control Center window. Expand Databases if it
is not already. Your new database should be listed.

Setting up the INI
options for the DB2

driver

Be sure to set up the following INI options for the native DB2 driver.

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:DB2 >

BindFile = d:\rel10\fap400\w32bin\db2lib.bnd

CreateTable = Yes

CreateIndex = No

Debug = No

Database = (such as ARCDBL – Local database name)

UserID = (Windows user ID)

Passwd = (Windows password)

2 Use the DBTable:XXX control groups to determine what tables are used by looking
at the ArcRet control group, which should look like the following.

< ArcRet >

AppIdxDFD = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

Chapter 7
Setting Up Archive/Retrieval Configurations

278

RestartTable = RESTART

3 For all the tables listed above, add the following control groups:

< DBTable:CATALOG >

DBHandler = DB2

< DBTable:APPIDX >

DBHandler = DB2

< DBTable:ARCHIVE >

DBHandler = DB2

< DBTable:RESTART >

DBHandler = DB2

4 The DB2_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< DB2_FileConvert >

APPIDX = DAP102_APP_R1

Archive = DAP102_ARC_R1

Catalog = DAP102_CAT_R1

Restart = DAP102_RES_R1

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

SQL Server on Windows — ODBC Client on Windows

279

SQL SERVER
ON WINDOWS

— ODBC
CLIENT ON
WINDOWS

This scenario sets up a database in SQL Server using Microsoft SQL Server version 7.0.

1 Go to Start, Programs, Microsoft SQL Server 7.0 SQL Enterprise Manager. The
Server Manager window appears, SQL 7.0 should already be expanded and there will
be server names that appear below, choose the correct server and expand it.

2 Highlight the Databases folder, right click and choose New Database. Type in the
database name, such as ARCDB7, and select a data device. There is a size specified
to the right of this field and the device should have a size greater than zero. Click
the Create Now button.

3 If no login has been defined, highlight the Logins folder under the server and right
click. Choose New Login. Type in a login name and a password. Click the Permit
field next to the database you would like the login to default to. Then click Add.
Confirm your password and click Ok.

SETTING UP A CLIENT

Follow these instructions to set up a Windows client and an ODBC data source using
Windows 2000.

1 Select Start, Settings, Control Panel, ODBC. The User Data Sources window
appears. Click Add to add a new SQL Server data source. The Create New Data
Source window appears.

2 Choose SQL Server. Click Finish. The ODBC SQL Server Setup window appears.
Enter the following information:

3 Click Options and enter the database name, such as ARCDB7, you will be archiving
to in the Database Name field. Click Ok. The Data Sources window appears.

4 Make sure the new data source name appears with the correct driver specified. If all
is correct, click Ok.

Setting up the INI
options for ODBC

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:ODBC >

CreateTable = Yes

CreateIndex = No

Debug = No

Server = (such as ARCDB7 - This is the data source name)

UserID = (SQL Server user ID)

Passwd = (SQL Server password)

The user ID and password must be set up in SQL Server. For more information see
SQL Server on Windows — ODBC Client on Windows on page 279.

In this field Enter

Data Source Name This is your database name.)

Description (Optional)

Server (This will drop down and the server should be listed.)

Chapter 7
Setting Up Archive/Retrieval Configurations

280

2 In the DBTable:XXX control groups, determine what tables are used by looking at
the ArcRet control group, which should look like the one shown here:

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

For all the tables listed above, add the following control groups:

< DBTable:APPIDX >

DBHandler = ODBC

< DBTable:ARCHIVE >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

< DBTable:RESTART >

DBHandler = ODBC

3 Add these INI options for DFD files for these tables:

< ArcRet >

CARFileDFD = carfile.dfd

RestartDFD = restart.dfd

DFD files can specify the full file name, otherwise they are located in the directory
specified in the DefLib option:

< MasterResource >

DefLib = subdirectory

4 The ODBC_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >

APPIDX = FSIV100_APPIDX

Archive = FSIV100_ARCHIVE

Catalog = FSIV100_CATALOG

Restart = FSIV100_RESTART

These table names are examples of the names you can use.

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

IDS on Windows —DB2 Archive on z/OS

281

IDS ON
WINDOWS —

DB2 ARCHIVE
ON Z/OS

This scenario features Docupresentment’s Internet Document Server (IDS) running on
a Windows 32-bit computer and communicating with a DB2 archive residing on a z/OS
machine.

To illustrate this scenario, you should download the setup executable to install
Docupresentment 10.2 (IDS version 1.8). You can do this from the Oracle support site:

http://metalink.oracle.com

Follow these steps:

1 From the Support site, register, log in, and then click on product installations.

2 Select the current version for Windows 32-bit operating systems.

Refer to these documents for installation and configuration information:

Internet Document Server Guide

Docupresentment Installation Guide

SDK Reference

SETTING UP THE DB2 ARCHIVE ON Z/OS
Refer to this document and the Documaker Installation Guide for information on
configuring a DB2 archive on z/OS:

https://metalink.oracle.com

Chapter 7
Setting Up Archive/Retrieval Configurations

282

CREATING A Z/
OS DATABASE

To create a database, you must be an administrator on the machine you are creating the
database on. Follow these instructions:

1 Click Add Database once you enter into the Client Configuration Assistant. On
Tab 1 (Source), choose the Manually Configure a Connection to a DB2 Database
option. Click Next.

2 On Tab 2 (Protocol), choose TCP/IP as the protocol and z/OS as the target
operating system. Click Next.

3 On Tab 3 (TCP/IP), enter os390 in the Hostname field. The Port number defaults
to 446. Enter db2ins 1 in the Service Name field. Click Next.

4 On Tab 4 (Target Database), enter the database name, such as USDCIOS39DSN1,
in the Location Name field. Click Next.

5 On Tab 5 (Alias), enter ARCDB (or your database name on the mainframe) in the
DBAlias field. The DBAlias field gets the first part of the location name from the
previous tab. The Description field is optional. Click Next.

6 On Tab 6 (ODBC), check the Register this Database for ODBC field. Then select
the data source. Click Done.

7 The system asks if you want to test your connection, click the Test Connection
button. Then enter your user ID and password and click Ok. A window should
appear with a message similar to this one:

The Connection test was successful.

Database product= DB2 OS/390 7.0

SQL authorization ID= akb

Database alias = ARCDB

To close this window and proceed, click OK.

Click Add to add another database or click Close to exit the Client Configuration
Assistant.

Updating TCP/IP Values on a Windows 2000 Server
Follow these steps to update TCP/IP-related values on a Windows 2000 server:

1 So that the host name you entered can be found, add this entry in the host file

(c:\winnt \system32 \drivers \etc \hosts):

10.8.10.210 WIN2000A_1

The value on the left is the IP address of the Windows 2000 Server. The value on
the right is the host name for that Windows 2000 Server.

2 Add these lines in the services file (c:\winnt\system32\drivers\etc\services):

db2inst1 446/tcp #db2 port

db2insti 447/tcp #db2 port interrupt

3 Go to Start, Settings, Control Panel, System, and choose the Environment tab.
Enter a system variable called DB2COMM and set its value to:

APPC,TCP/IP

Creating a z/OS Database

283

This specifies the communication protocols DB2 will use —APPC to talk to the z/
OS host and TCP/IP to talk to Windows 2000 clients.

Also add a system variable called DB2CODEPAGE and set its value to:

850

4 Reboot Windows 2000 for the system variable to take effect.

Chapter 7
Setting Up Archive/Retrieval Configurations

284

285

Chapter 8

Optimizing Your System

This chapter outlines several steps you can take to
optimize how your Documaker system performs. The
following topics discuss optimization for each
platform:

• Optimizing Performance on z/OS on page 286

• Optimizing Performance on UNIX/Linux on page
304

• Optimizing Performance On Windows on page
308

• Uploading and Downloading Resources on z/OS
on page 311

• Moving Resource Files Between UNIX/Linux and
Windows on page 315

Chapter 8
Optimizing Your System

286

OPTIMIZING
PERFORMANCE

ON Z/OS

This topic will help you configure your system for optimum performance. To gather the
following recommendations, we first created benchmarks on a test system. Then, by
changing different parameters of that system, we measured performance gains or losses.
Here are some of the terms we used during this exercise:

CPU TIME. The amount of time that a program, such as GenTrn, GenData, or
GenPrint, uses the CPU. In a multi-tasking operating system like z/OS, there are many
tasks competing for use of the CPU.

EXCPS. Execute Channel Programs. We have used these counts as basic measurements
of I/O activity.

WALL CLOCK TIME. The elapsed time, as measured from the time a program begins to
the time that the program ends. This wall clock time can vary significantly from one run
to another.

BATCH WINDOW. Most installations have specific times of the day or night when large
batch processes, like this system, are scheduled to run. The time frame in which these
processes run is sometimes referred to as the batch window. A batch window is measured
in wall clock time, such as from 10:00 pm to 5:00 am. Your system installation should run
fast enough to complete its processing within the batch window.

Most, but not all, of the following recommendations are the result of many tests and
subsequent improvements designed for a hypothetical user. The characteristics of
Documaker Server implemented for this hypothetical user are as follows:

• Extract file with large record length (approximately 25,000 bytes/record).

• Form sets composed with large number of individual images.

• Large number of different recipients (approximately 300).

• Moderate number of transactions (approximately 4,000)

Optimizing Performance on z/OS

287

COMPILE OPTIONS

If your license included source code, use the following information when compiling
your system for best results.

OPTIMIZE Use the highest level of C optimization by passing the following option to the compiler:

NOVALIDATEHANDLE Specify NOVALIDATEHANDLE by passing the following option to the compiler:

DEF(NOVALIDATEHANDLE)

INLINE The INLINE option can produce performance gains but there are other activities
required for it to work.

LANGUAGE ENVIRONMENT (LE) OR C/370 RUNTIME
OPTIONS

Use the following runtime options:

REPORT You can use the REPORT option to gather information on various values reached when
you run a particular program, such as GenData or GenPrint. There is overhead involved
in running with this option.

Do not use the REPORT option in production runs. Use the REPORT option during
testing to report runtime values, then use these values to assess the need to run with
additional runtime options such as HEAP.

HEAP Based on the values received from running with the REPORT option, you may choose
to specify the HEAP run-time option, modifying the initial and incremental heap
allocations as the values from REPORT would recommend. You would then want to
remove the REPORT option.

If time permits, set HEAP values based on the values received from running with the
REPORT option.

Use If you are using

OPT(1) C/C++ For MVS/ESA, 1 is the highest level

OPT(2) either of the other C/370 compilers

Chapter 8
Optimizing Your System

288

FILE TYPES AND CHARACTERISTICS

Block sizes Best results have been achieved by specifying large block sizes. In general, try to use half-
track block size—that is, if you are creating files on a 3380-type device (which has a track
size of 47,476 bytes), specify a block size around 23,500. A half-track block size for a
3390-type device (which has a track size of 56,664 bytes) would be around 28,000.

Specify half-track block sizes for all files.

Record formats FB stands for the fixed block record format and FBS stands for the Fixed Block Standard
record format. The record format is specified on the JCL DD statement when a
particular file is defined. The C function, fseek, appears to be able to seek more quickly
to a location in a file if that file is defined with a record format of FBS instead of FB.

The standard keyword guarantees that all the blocks of a file will be of the stated block
size length and that there will be no short blocks.

If you are choosing between record formats of FB and FBS for any of these files, choose
FBS: EXTRACT, TRNFILE.DAT, NEWTRN.DAT, NAFILE.DAT, and POLFILE.DAT.

As for the size of record blocks, the larger the record length, the fewer records per block.
For FBS, this results in additional EXCPs and slower performance.

Number of files As mentioned earlier, the total run-time, or wall clock time of a job is increased as more
files are created, opened, and closed. An additional 10 or 20 files may have no significant
affect on the wall time but if your system has to create, open and close hundreds of files,
the wall time will lengthen significantly.

Design your system with a minimal number of recipient batch and print files. For
instance, try to keep the number of recipient files to less than 20 or so. See also the
AliasPrintBatches option on page 292.

Extract Files
The standard extract file is usually defined with a record format of fixed block standard
(FBS) with a half-track block size.

Defining the extract file as
a VSAM ESDS

You may choose to define the extract file to be a VSAM Entry Sequenced Data Set
(ESDS). See Defining the Extract File as a VSAM KSDS on page 293 for more
information.

DEFLIB
The standard DEFLIB is created as a Partitioned Data Set (PDS), or as a Partitioned Data
Set Extended (PDS/E). The best performance results have been achieved with DEFLIB
defined with a Variable Blocked (VB) record format.

Placing DDT files into a
VSAM KSDS

DEFLIB contains DDT files, DFD files, SETRCPTB, FORMDAT, various tables, and so
on. You can move the DDT files into a VSAM KSDS by running the program
PDS2VSAM. See Moving DDT Files into a VSAM KSDS on page 295 for more
information.

Optimizing Performance on z/OS

289

SETRCPTB

Moving the SETRCPTB
member into a VSAM

KSDS

You can move the set recipient table member, SETRCPTB, into a VSAM KSDS by
running the RCP2VSAM utility. See Moving SETRCPTB to a VSAM KSDS on page 301
for more information.

FAPLIB
Define the FAPLIB file as variable blocked (VB) with a half-track block size.

TRNFILE
Define the transaction trigger file (TRNFILE) file as fixed block standard (FBS) with a
half-track block size.

NEWTRN
Define the updated transaction trigger file (NEWTRN) file as fixed block standard (FBS)
with a half-track block size.

NAFILE
Define the NAFILE file as fixed block standard (FBS) with a half-track block size or use
VSAM to create and read from the NAFILE as outlined below.

Creating a NAFILE as a
VSAM file

The NAFILE can be created in the GenData step as a VSAM key sequenced data set
(KSDS), then read in the GenPrint step. Actually, NAFILE and POLFILE function as a
pair so that they must both be either VSAM or non-VSAM. See Creating NAFILEs and
POLFILEs as VSAM KSDSs on page 303 for the steps required to create the NAFILE/
POLFILE files as VSAM files.

POLFILE
Define the POLFILE file as fixed block standard (FBS) with a half-track block size or use
VSAM to create and read from the POLFILE as outlined in the section below.

Creating a POLFILE as a
VSAM file

The POLFILE can be created in the GenData step as a VSAM key sequenced data set
(KSDS), then read in the GenPrint step. See Creating NAFILEs and POLFILEs as VSAM
KSDSs on page 303 for the steps required to create the NAFILE.DAT and
POLFILE.DAT files as VSAM files.

Recipient Batch Files
As mentioned earlier, the fewer recipient batch files you have the better the performance.
Define the recipient batch files as fixed block standard (FBS) with a half-track block size. A
rule of thumb is to try to keep the number of recipient batch files under 20. If it is
necessary to design the system as having many recipient batch files you may consolidate
these logical groupings into a single physical recipient batch file. See AliasPrintBatches
option on page 292 for more information.

Chapter 8
Optimizing Your System

290

Pre-compiled Xerox Metacode Files (PMETLIB)
The standard PMETLIB is created as a PDS or PDS/E. If you are using a PDS or PDS/
E, define PMETLIB with a record format of VB and with a half-track block size.

Placing PMETs into a
VSAM KSDS

You can move the PMETs into a VSAM KSDS by running the program PDS2VSAM. See
Moving PMETs into a VSAM KSDS on page 299 for the steps to accomplish this task.

Print Files
Define the print files as Variable Blocked Machine (VBM) control codes, with a record
length near 255 for Xerox or 8205 for AFP, and a half-track block size.

SETTING YOUR FSISYS INI OPTIONS

Caching Options
The following options attempt to minimize the repeated opening and closing of
frequently used files (actually, PDS members in MVS) by retaining, or caching, file
handles and file data. In many cases the defaults are sufficient but for specific cases,
where many different Images are used, these caching values may be increased to improve
performance.

Caching FAP files In some cases, FAP files (image definitions) are loaded from the FORMLIB or FAPLIB
PDS during GenData processing. The cache feature keeps frequently used FAP members
available for re-use. Here is an example of how you set up the cache feature:

< Control >

CacheFAPFiles = 100

The default is 100. Accept the default value unless you are loading FAP files in GenData
using the CompileInStream FSISYS INI option (set to Yes) and you are using more than
100 FAP files and/or logo files.

DDT files Data definition table (DDT) members are loaded from the DDTLIB or DEFLIB PDS
during GenData processing. The cache feature keeps frequently used DDT members
available for re-use. Here is an example of how you set up the cache feature:

< Control >

RuleFilePool = 100

The default is 100. Accept the default value unless you are using more than 100 DDT
files.

NOTE:With the release of Documaker Studio, DDT files are no longer used. Support
for Image Editor ended in version 11.5.

Optimizing Performance on z/OS

291

Using/Caching Xerox
PMET files

MET files contain pre-compiled Xerox Metacode information produced by the
FAP2MET utility. The GenPrint program loads MET members from the PMETLIB
PDS. The cache option keeps frequently used MET members available for re-use. Here
is an example of how you set up the cache feature:

< PrtType:XER >

CacheFiles = 100

CompileInstream= No

The default is 100. Accept the default unless you are using pre-compiled FAP files you are
using more than 100 FAP files and/or logo files.

Using AFP Overlays For best performance, you should run the FAP2OVL utility, compiling FAP files into
AFP overlays. Tell the system to use the overlays by specifying:

< PrtType:AFP >

SendOverlays = Yes

LOGGING OPTIONS

LogTransactions option The GenTrn, GenData, and GenPrint programs optionally place transaction
information into a LOG file. In most situations, this information is not needed. The
LogTransactions option is specified in:

< Control >

LogTransactions = No

The default is Yes.

For optimum performance, specify No.

LogToConsole option The GenTrn, GenData, and GenPrint programs optionally place transaction
information in the SYSPRINT DD statement you specified in the job’s JCL. In most
situations, this information is not needed. The LogToConsole option is specified in:

< Control >

LogToConsole = No

The default is Yes.

For optimum performance, specify No.

Chapter 8
Optimizing Your System

292

DEBUG OPTIONS

If_Rule control group < If_Rule >

Debug_if = No

The default is Yes.

For optimum performance, specify No.

RunMode control group For these run options:

< RunMode >

DownloadFAP = No

LoadCordFAP = No

CompiledFAP = Yes

The defaults are...

DownloadFAP = No

LoadCordFAP = No

CompiledFAP = Yes

Set the DownloadFAP option to No, the LoadCordFAP option to No, and the
CompileFAP option to Yes for the best performance.

OTHER OPTIONS

MaxRecsPerTransaction
option

< ExtractFile >

MaxRecsPerTransaction = nn

The default is zero (0) and there is no maximum. Be careful using this option. You might
want to use this option if you know that each record in the extract file corresponds to a
transaction.

AliasPrintBatches option < ExtractFile >

AliasPrintBatches = Yes

The default is No. Use the default.

Optimizing Performance on z/OS

293

DEFINING THE EXTRACT FILE AS A VSAM KSDS
The extract file is generally defined as a Fixed Blocked Standard (FBS) file, with the
record length depending on the particular implementation. When the extract file is
defined as an FBS file, Documaker is unable to process it if it is greater than 2GB in size.
If your extract file is larger than 2GB, follow these steps to copy the extract file to a
VSAM KSDS and set up Documaker to process this file.

Once the extract file has been copied to a VSAM KSDS, Documaker can process it, even
if it exceeds 2GB.

1 Execute the job in member SEQ2KSDX in the JCLLIB dataset. Modify the member
as appropriate for your site. The SEQ2KSDX job first uses the IBM program
IDCAMS to delete and re-define the VSAM KSDS extract file and then it uses
Documaker’s SEQ2KSDS utility to copy the (non-VSAM) extract file to the VSAM
KSDS extract file. This job should receive a condition code of 00 in each step.

2 Since the name of the VSAM KSDS extract file probably differs from the name of
the non-VSAM extract file, change the DAP procedure in PROCLIB (or the
GENTRNX and GENDATAX JCLLIB members if you are using those jobs) to
reference the new name of the extract file. There should be a reference to the extract
file in both the GenTran and GenData steps of the DAP procedure.

3 Modify the FSISYS INI file as follows:

< VSAM >

VSAMEXT = Yes

Here is an example of the SEQ2KSDX member of JCLLIB:

//* COPY JOBCARD HERE ...

//*

//***

//* JOB PERFORMS 2 STEPS :

//*

//* 1. DELETES / RE-DEFINES OUTFILE KSDS.

//* 2. RUNS SEQ2KSDS PROGRAM TO COPY SEQUENTIAL FILE TO

//* VSAM KSDS. CHANGE FILE NAMES APPROPRIATELY.

//*

//

//*

//IDCAMS EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 DELETE &HLQ..&RES..EXTRACT.KSDS CLUSTER

 DEFINE CLUSTER(NAME(&HLQ..&RES..EXTRACT.KSDS) +

 CYL(5 1) +

 KEY(4 0) +

 REUSE) +

 DATA(NAME(&HLQ..&RES..EXTRACT.KSDS.DATA) +

 RECORDSIZE(2048 2048)) +

 INDEX(NAME(&HLQ..&RES..EXTRACT.KSDS.INDEX))

Chapter 8
Optimizing Your System

294

 IF LASTCC = 00 THEN SET MAXCC = 00

//*

//SEQ2KSDS EXEC PGM=SEQ2KSDS

//STEPLIB DD DISP=SHR,DSN=&HLQ..LINKLIB

// DD DISP=SHR,DSN=CEE.SCEERUN

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//INFILE DD DSN=&HLQ..&RES..EXTRACT,DISP=SHR

//OUTFILE DD DSN=&HLQ..&RES..EXTRACT.KSDS,DISP=SHR

Internal format of the
VSAM KSDS file

The SEQ2KSDS utility writes both an index portion and a data portion to the VSAM
KSDS file. The index portion consists of four bytes (and is related to the Key value
specified in the IDCAMS job above). The index for the first record is zero (0) and is
incremented by a value of one for each record in the VSAM KSDS extract file. This index
value is the offset that is written to the TRNFILE and NEWTRN files. Because this offset
grows very slowly, it is unlikely to approach the limit of 2GB.

Here is a screen shot from an ISPF browser session, with HEX turned on, which shows
the values of the index (0000, 0001, 0002) for the first three records of an extract file.
This extract file was generated by running the IDCAMS REPRO utility to copy the
VSAM KSDS to a non-VSAM file for viewing purposes.

 Menu Utilities Compilers Help

 WASD JCRTR FSI.V115.DMS1.EXTRACT.KSDS.VB

 Command ===>

********************************* Top of Data *****

 --

....SCO1234567HEADERREC00000030198 SCOM1FP GAT1I

0000ECDFFFFFFFCCCCCDDCCFFFFFFFFFFF4444ECDDFCD4CCEFC

000023612345678514599530000003019800002364167071319

 --

....SCO1234567FRMLSTREC0000010110 SCO FP T1

0000ECDFFFFFFFCDDDEEDCCFFFFFFFFFF44444ECD44CD444EF4

000123612345676943239530000010110000002360067000310

 --

....SCO1234567PRODNMREC00000David Miller 000

0000ECDFFFFFFFDDDCDDDCCFFFFFC8A884D8998944444444FFF

000223612345677964549530000041594049335900000000000

 --

Optimizing Performance on z/OS

295

MOVING DDT FILES INTO A VSAM KSDS
DDT files normally reside as members in the DDTLIB or DEFLIB PDS. The DEFLIB
PDS also contains other types of members, such as SETRCPTB, FORMDAT, FXR,
FSISYS and various tables. These other types of members should not be copied to the
VSAM KSDS, but it probably will not hurt anything if they are copied — so step 1 is
optional.

Follow the steps below to move the DDT files in DEFLIB to a VSAM KSDS.

1 You can use the ALLOCDDT job in JCLLIB to define a “DDTLIB PDS” (to contain
only DDT files) and to copy the DDT files for the sample resource from DEFLIB
into this new PDS. Once you have all the DDT files in a separate (non-VSAM) PDS,
proceed to step 2.

If you are moving your own resources (not the sample resources), copy your DDT
files into this DDTLIB.

2 Execute the PDS2VSDX job that resides in the JCLLIB PDS. The job consists of
these steps:

The IDCAMS step deletes/re-defines the VSAM KSDS that the DDT files will
be copied into.

The PDS2VSAM step reads the DDTLIB PDS created in step 1 and copies the
DDT files to the VSAM KSDS defined in the IDCAMS step.

The PDS2VSDX job is shown below:

//* COPY JOBCARD HERE

//* *

//* JOB PERFORMS 2 STEPS :

//*

//* 1. DELETES / RE-DEFINES DDTVSAM KSDS.

//* 2. RUNS PDS2VSAM PROGRAM TO COPY DDT MEMBERS INTO

//* DDTVSAM

//*

//* PRIOR TO RUNNING THIS JOB YOU SHOULD HAVE RUN

//* THE JOB IN THE "ALLOCDDT" MEMBER OF JCLLIB TO

//* ALLOCATE A NON-VSAM DDTLIB AND COPY THE DDT'S

//* FROM DEFLIB INTO IT.

//*

//* NOTE: THE &HLQ AND &RES WITHIN INSTREAM JCL WILL NOT

//* WORK. PLEASE REPLACE THE &HLQ AND &RES WITH

//* THEIR RESPECTIVE VALUES.

//*

//* *

//*

//IDCAMS EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 DELETE &HLQ..&RES..DDTVSAM CLUSTER

 DEFINE CLUSTER -

 (NAME(&HLQ..&RES..DDTVSAM) -

Chapter 8
Optimizing Your System

296

 CYL(25 5) -

 REUSE -

 SHAREOPTIONS(2 3)) -

 DATA -

 (NAME(&HLQ..&RES..DDTVSAM.DATA) -

 RECORDSIZE(2048 2048) -

 CONTROLINTERVALSIZE(4096) -

 FREESPACE(0 10) -

 KEYS(16 0)) -

 INDEX -

 (NAME(&HLQ..&RES..DDTVSAM.INDEX))

 IF LASTCC = 00 THEN SET MAXCC = 00

//*

//PDS2VSAM EXEC PGM=PDS2VSAM

//STEPLIB DD DISP=SHR,DSN=&HLQ..LINKLIB

// DD DISP=SHR,DSN=SYS1.SCEERUN

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//PDSIN DD DSN=&HLQ..&RES..DDTLIB,DISP=SHR

//VSAMOUT DD DSN=&HLQ..&RES..DDTVSAM,DISP=SHR

3 Add this option to the FSISYS INI file:

< VSAM >

DDTVSAM = DD:DDTVSAM

The DD name you use to associate with the VSAM DDT file is up to you. This INI
option tells the system to open and read the DDT file using VSAM.

4 Modify the JCL for the GenData step so the DDTVSAM DD statement is in that
step and references the VSAM KSDS created for the DDT files in step 2. If you are
using the DAP procedure in PROCLIB, add the appropriate DD statement to that
procedure.

If, you are executing each step as a separate job, add the DD statement to the
GenDataX job.

Optimizing Performance on z/OS

297

MOVING JDTS INTO A VSAM KSDS
The Job Definition Table (JDT) normally resides as member AFGJOB in the DEFLIB
PDS. You can move this member (and other JDT members if you have several) into its
own VSAM KSDS, similar to the VSAM KSDS used for DDT files.

Follow these steps to move the JDT files in DEFLIB to a VSAM KSDS.

1 You can use the ALLOCJDT job in JCLLIB to define a JDTLIB PDS (to contain
only JDT files) and to copy the JDT files for the sample resource from DEFLIB into
this new PDS. Once you have all the JDTs in a separate (non-VSAM) PDS proceed
to step 2.

If you are moving your own resources (not the sample resources), copy your JDT
files into this JDTLIB.

2 Execute the PDS2VSJX job that resides in the JCLLIB PDS. The job consists of these
steps:

The IDCAMS step deletes/re-defines the VSAM KSDS that the JDT files will
be copied into.

The PDS2VSAM step reads the JDTLIB PDS created in step 1 and copies the
JDTs to the VSAM KSDS defined in the IDCAMS step.

The PDS2VSJX job is shown below:

//* COPY JOBCARD HERE

//* *

//* JOB PERFORMS 2 STEPS :

//*

//* 1. DELETES / RE-DEFINES JDTVSAM KSDS.

//* 2. RUNS PDS2VSAM PROGRAM TO COPY JDT MEMBERS INTO

//* JDTVSAM

//*

//* PRIOR TO RUNNING THIS JOB YOU SHOULD HAVE RUN THE

//* JOB IN MEMBER "ALLOCJDT" OF JCLLIB TO ALLOCATE A

//* NON-VSAM JDTLIB AND COPY THE JDT MEMBER(S) INTO IT.

//*

//* NOTE: THE &HLQ AND &RES WITHIN INSTREAM JCL WILL NOT

//* WORK. PLEASE REPLACE THE &HLQ AND &RES WITH

//* THEIR RESPECTIVE VALUES.

//*

//* *

//*

//IDCAMS EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 DELETE &HLQ..&RES..JDTVSAM CLUSTER

 DEFINE CLUSTER -

 (NAME(&HLQ..&RES..JDTVSAM) -

 CYL(25 5) -

 REUSE -

 SHAREOPTIONS(2 3)) -

Chapter 8
Optimizing Your System

298

 DATA -

 (NAME(&HLQ..&RES..JDTVSAM.DATA) -

 RECORDSIZE(2048 2048) -

 CONTROLINTERVALSIZE(4096) -

 FREESPACE(0 10) -

 KEYS(16 0)) -

 INDEX -

 (NAME(&HLQ..&RES..JDTVSAM.INDEX))

 IF LASTCC = 00 THEN SET MAXCC = 00

//*

//PDS2VSAM EXEC PGM=PDS2VSAM

//STEPLIB DD DISP=SHR,DSN=&HLQ..LINKLIB

// DD DISP=SHR,DSN=SYS1.SCEERUN

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//PDSIN DD DSN=&HLQ..&RES..JDTLIB,DISP=SHR

//VSAMOUT DD DSN=&HLQ..&RES..JDTVSAM,DISP=SHR

3 Add this option to the FSISYS INI file:

< VSAM >

JDTVSAM = DD:JDTVSAM

The DD name you associate with the VSAM JDT file is up to you. This INI option
tells the system to open and read the JDT file using VSAM.

4 Modify the JCL for the GenData step so that the JDTVSAM DD statement is in
that step and references the VSAM KSDS that was created for the JDT files in step
2. If you are using the DAP procedure in PROCLIB add the appropriate DD
statement to that procedure. If, on the other hand, you are executing each step as a
separate job, add the DD statement to the GenDataX job.

Optimizing Performance on z/OS

299

MOVING PMETS INTO A VSAM KSDS
Pre-compiled Metacode files normally reside as members in the PMETLIB PDS. Follow
the steps below to move the PMETs in PMETLIB to a VSAM KSDS.

1 Execute the following PDS2VSPX job, changing any necessary values to fit your
environment. This job resides in the JCLLIB PDS and consists of these steps:

The IDCAMS step deletes/re-defines the VSAM KSDS the PMETs will be
copied into.

The PDS2VSAM step reads the PMETLIB PDS and copies the PMET members
to the VSAM KSDS defined in the previous step.

//* COPY JOBCARD HERE

//* *

//* JOB PERFORMS 2 STEPS :

//*

//* 1. DELETES / RE-DEFINES PMETVSAM KSDS.

//* 2. RUNS PDS2VSAM PROGRAM TO COPY PMET MEMBERS INTO

//* PMETVSAM

//* 3. THE DEFAULT INPUT / OUTPUT DD NAMES ARE "PDSIN" AND

//* "VSAMOUT", RESPECTIVELY. IF YOU WISH TO OVERRIDE

//* THESE NAMES PASS THE EXECUTE PARAMETER :

//* PARM='/ /I=DD:INPUTDD /O=DD:OUTPUTDD'

//*

//* NOTE: THE &HLQ AND &RES WITHIN INSTREAM JCL WILL NOT

//* WORK. PLEASE REPLACE THE &HLQ AND &RES WITH

//* THEIR RESPECTIVE VALUES.

//*

//* *

//*

//IDCAMS EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 DELETE &HLQ..&RES..PMETVSAM CLUSTER

 DEFINE CLUSTER -

 (NAME(&HLQ..&RES..PMETVSAM) -

 CYL(25 25) -

 REUSE -

 SHAREOPTIONS(2 3)) -

 DATA -

 (NAME(&HLQ..&RES..PMETVSAM.DATA) -

 RECORDSIZE(2048 2048) -

 CONTROLINTERVALSIZE(4096) -

 FREESPACE(0 10) -

 KEYS(16 0)) -

 INDEX -

 (NAME(&HLQ..&RES..PMETVSAM.INDEX))

 IF LASTCC = 00 THEN SET MAXCC = 00

//*

Chapter 8
Optimizing Your System

300

//*

//PDS2VSAM EXEC PGM=PDS2VSAM

//STEPLIB DD DISP=SHR,DSN=&HLQ..LINKLIB

// DD DISP=SHR,DSN=SYS1.SCEERUN

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//PDSIN DD DSN=&HLQ..&RES..PMETLIB,DISP=SHR

//VSAMOUT DD DSN=&HLQ..&RES..PMETVSAM,DISP=SHR

2 Add this option to the FSISYS INI file:

< VSAM >

METVSAM = DD:PMETVSAM

The DD name you associate with the VSAM PMET file is up to you. This INI
option tells the system to open and read the PMET file using VSAM.

3 Modify the JCL for the GenPrint step so the PMETVSAM DD statement is in that
step and it references the VSAM KSDS created for the PMETs in step 1. If you are
using the DAP procedure in PROCLIB, add the appropriate DD statement to that
procedure. If you are executing each step as a separate job, add the DD statement
to the GenPrtX job.

Optimizing Performance on z/OS

301

MOVING SETRCPTB TO A VSAM KSDS
Follow the steps below to move the SETRCPTB member from DEFLIB to a VSAM
KSDS.

NOTE:Before you run this, please make sure that there are no blank lines at the end of
your extract file. Blank lines can cause the following error:

DM1002: Error: Required INI definition omitted.

Cannot locate INI group <Key1Table> with value = defined.

The error appears when you run Documaker Server.

1 Execute the following RCP2VSMX job, changing any necessary values to fit your
installation. This job resides in the JCLLIB PDS and consists of these steps:

The IDCAMS step deletes/re-defines the VSAM KSDS that the SETRCPTB will
be copied into.

The RCP2VSAM step reads the DEFLIB PDS and copies the SETRCPTB
member to the VSAM KSDS defined in the previous step.

//* COPY JOBCARD HERE

//* *

//* JOB PERFORMS 2 STEPS :

//*

//* 1. DELETES / RE-DEFINES SETRCPVS KSDS.

//* 2. RUNS RCP2VSAM PROGRAM TO COPY SETRCPTB TO

//* SETRCPVS KSDS.

//*

//* DEFAULT INPUT / OUTPUT DD NAMES ARE SETRCPTB AND

//* SETRCPVS, RESPECTIVELY. YOU CAN OVERRIDE BY

//* PASSING THE PARM : PARM='/ /I=DD:DDIN /O=DD:DDOUT'

//*

//* NOTE: THE &HLQ AND &RES WITHIN INSTREAM JCL WILL NOT

//* WORK. PLEASE REPLACE THE &HLQ AND &RES WITH

//* THEIR RESPECTIVE VALUES.

//*

//* *

//*

//DEFINE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 DELETE &HLQ..&RES..SETRCPVS CLUSTER

 DEFINE CLUSTER -

 (NAME(&HLQ..&RES..SETRCPVS) -

 RECORDSIZE(500 1000) -

 KEYS(152 0) -

 REUSE -

 SHAREOPTIONS(2 3)) -

 DATA -

 (NAME(&HLQ..&RES..SETRCPVS.DATA) -

Chapter 8
Optimizing Your System

302

 CONTROLINTERVALSIZE(4096) -

 RECORDS(1000 1000) -

 FREESPACE(0 5)) -

 INDEX -

 (NAME(&HLQ..&RES..SETRCPVS.INDEX) -

 RECORDS(100 50))

 IF LASTCC = 00 THEN SET MAXCC = 00

//*

//RCP2VSAM EXEC PGM=RCP2VSAM

//STEPLIB DD DISP=SHR,DSN=&HLQ..LINKLIB

// DD DISP=SHR,DSN=SYS1.SCEERUN

//SETRCPTB DD DISP=SHR,DSN=&HLQ..&RES..DEFLIB(SETRCPTB)

//SETRCPVS DD DISP=SHR,DSN=&HLQ..&RES..SETRCPVS

//SYSPRINT DD SYSOUT=*

2 Add this option to the FSISYS INI file:

< VSAM >

 VSAMRCPTB = DD:SETRCPVS

The DD name you associate with the VSAM SETRCPTB file is up to you. This INI
option tells the system to open and read the SETRCPTB file using VSAM.

3 Modify the JCL for the GenData step so the SETRCPVS DD statement is in that
step and it references the VSAM KSDS created for the SETRCPTB in step 1. If you
are using the DAP procedure in PROCLIB, add the appropriate DD statement to
that procedure. If you are executing each step as a separate job, add the DD
statement to the GenDataX job.

Optimizing Performance on z/OS

303

CREATING NAFILES AND POLFILES AS VSAM KSDSS

Normally, the NAFILE and POLFILE, which are created and written to during the
GenData step, are defined as sequential files with a record format of FBS. You can,
however, create them as VSAM KSDSs. The member, NAPOLVS, in JCLLIB provides the
JCL for the additional IDCAMS job step you will need. This JCL is also listed below:

//NAPOLVS EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE &HLQ..&RES..GENDATA.NAFILE.KSDS PURGE

 DELETE &HLQ..&RES..GENDATA.POLFILE.KSDS PURGE

 DEFINE CLUSTER(NAME(&HLQ..&RES..GENDATA.NAFILE.KSDS) +

 CYL(5 1) +

 KEY(4 0) +

 REUSE) +

 DATA(NAME(&HLQ..&RES..GENDATA.NAFILE.KSDS.DATA) +

 RECORDSIZE(2048 2048)) +

 INDEX(NAME(&HLQ..&RES..GENDATA.NAFILE.KSDS.INDEX))

 DEFINE CLUSTER(NAME(&HLQ..&RES..GENDATA.POLFILE.KSDS) +

 CYL(5 1) +

 KEY(4 0) +

 REUSE) +

 DATA(NAME(&HLQ..&RES..GENDATA.POLFILE.KSDS.DATA) +

 RECORDSIZE(2048 2048)) +

 INDEX(NAME(&HLQ..&RES..GENDATA.POLFILE.KSDS.INDEX))

To use VSAM for the NAFILE and POLFILE follow these steps:

1 Insert the NAPOLVS JCL step listed above into the GenData step prior to the
GenData execution step, changing any file names or other values to conform to
your environment.

2 Make sure the NAFILE and POLFILE file names in the GenData and GenPrint
steps (GenDataX and GenPrtX if you are executing each step as a separate job)
reflect the name of the VSAM files created in the IDCAMS step.

3 Add this option to the FSISYS INI file:

< VSAM >

VSAMNA = DD:NAFILE

The DD name you associate with the VSAM NAFILE file is up to you. This INI
option tells the system to open and read both the NAFILE and the POLFILE using
VSAM.

Chapter 8
Optimizing Your System

304

OPTIMIZING
PERFORMANCE

ON UNIX/LINUX

This topic will help you configure your system for optimum performance. To gather the
following recommendations, we first created benchmarks on a test system. Then, by
changing different parameters of that system, we measured performance gains or losses.
in our benchmark testing. Here are some of the terms we used during this exercise:

CPU Time The amount of time that a program, such as GenTrn, GenData, or GenPrint, uses the
CPU.

EXCPs Execute Channel Programs. We have used these counts as basic measurements of I/O
activity.

Wall Clock Time The elapsed time, as measured from the time a program begins to the time that the
program ends. This wall clock time can vary significantly from one run to another.

Batch Window Most installations have specific times of the day or night when large batch processes,
like this system, are scheduled to run, such as through cron. The time frame in which
these processes run is sometimes referred to as the batch window.

A batch window is measured in wall clock time, such as from 10:00 pm to 5:00 am. Your
system installation should run fast enough to complete its processing within the batch
window.

Most, but not all, of the following recommendations are the result of many tests and
subsequent improvements designed for a hypothetical user. The characteristics of
Documaker Server implemented for this hypothetical user are as follows:

• Extract file with large record length (approximately 25,000 bytes/record).

• Form sets composed with large number of individual images.

• Large number of different recipients (approximately 300).

• Moderate number of transactions (approximately 4,000)

SETTING FSISYS INI OPTIONS

The following options attempt to minimize the repeated opening and closing of
frequently used files by retaining, or caching, file handles and file data. In many cases
the defaults are sufficient but for specific cases, where many different images are used,
these caching values may be increased to improve performance.

Caching FAP files In some cases, FAP files (images) are loaded as the GenData program runs. The cache
feature keeps frequently used FAP files available for re-use. The CacheFAPFiles option
is specified in:

< Control >

CacheFAPFiles = 100

The default is 100.

Accept the default value unless you are loading FAP files in GenData using the
CompileInstream option, you are using more than 100 FAP files or graphics, or both.

Optimizing Performance on UNIX/Linux

305

DDT files Data definition table (DDT) files are loaded during as the GenData program runs. The
cache feature keeps frequently used DDT file available for re-use. The RuleFilePool
option is specified in:

< Control >

RuleFilePool = 100

The default is 100.

Accept the default value unless you are using more than 100 DDT files.

NOTE:With the release of Documaker Studio, DDT files are no longer used. Support
for Image Editor ended in version 11.5.

Caching Xerox PMET files MET files contain pre-compiled Xerox Metacode information produced by the
FAP2MET utility. The GenPrint program loads MET files as necessary. The cache option
keeps frequently used MET files available for re-use. The CacheFiles option is specified
in:

< PrtType:XER >

CacheFiles = 100

CompileInstream= No

The default is 100.

Accept the default value unless you are using pre-compiled FAP files, more than 100 FAP
files or logos, or both.

Using AFP Overlays For best performance, you should run the FAP2OVL utility program to compile FAP
files into AFP overlays. Tell the system to use the overlays by specifying:

< PrtType:AFP >

SendOverlays =Yes

Use the PSF librarian to add printer resources to the printer.

LOGGING OPTIONS

LogTransactions option The GenTrn, GenData, and GenPrint programs optionally place transaction
information into a LOG file. In most situations, this information is not needed. The
LogTransactions option is specified in:

< Control >

LogTransactions = No

The default is Yes. For optimum performance, specify No.

LogToConsole option The GenTrn, GenData, and GenPrint programs optionally store transaction
information. In most situations, this information is not needed. The LogToConsole
option is specified in:

< Control >

LogToConsole = No

The default is Yes. For optimum performance, specify No.

Chapter 8
Optimizing Your System

306

DEBUG OPTIONS

In the If_Rule control group, the Debug_If option helps you solve problems when using
the IF rule:

< If_Rule >

Debug_If = No

The default is Yes. For optimum performance, specify No.

RUN OPTIONS

In the RunMode control group, you have these run time options:

< RunMode >

Download FAP = No

LoadCordFAP = No

CompiledFAP = No

The defaults are shown above.

For optimal performance, set the DownloadFAP option to No, the LoadCordFAP
option to No, and the CompileFAP option to Yes.

You can learn more about these options in the Documaker Administration Guide.

Optimizing Performance on UNIX/Linux

307

OTHER OPTIONS

MaxRecsPerTransaction
option

< ExtractFile >

MaxRecsPerTransaction = nn

The default is zero (0) and there is no maximum. Be careful using this option. You might
want to use this option if you are sure each record in the extract file corresponds to a
transaction.

AliasPrintBatches option < ExtractFile >

AliasPrintBatches = Yes

The default is No. Use the default.

Chapter 8
Optimizing Your System

308

OPTIMIZING
PERFORMANCE
ON WINDOWS

This topic will help you configure your system for optimum performance. To gather the
following recommendations, we first created benchmarks on a test system. Then, by
changing different parameters of that system, we measured performance gains or losses.
in our benchmark testing. Here are some of the terms we used during this exercise:

CPU TIME. The amount of time that a program, such as GenTrn, GenData, or
GenPrint, uses the CPU.

EXCPS. Execute Channel Programs. We have used these counts as basic measurements
of I/O activity.

WALL CLOCK TIME. The elapsed time, as measured from the time a program begins to
the time that the program ends. This wall clock time can vary significantly from one run
to another.

BATCH WINDOW. Most installations have specific times of the day or night when large
batch processes, like this system, are scheduled to run. The time frame in which these
processes run is sometimes referred to as the batch window. A batch window is measured
in wall clock time, such as from 10:00 pm to 5:00 am. Your system installation should run
fast enough to complete its processing within the batch window.

Most, but not all, of the following recommendations are the result of many tests and
subsequent improvements designed for a hypothetical user. The characteristics of
Documaker Server implemented for this hypothetical user are as follows:

• Extract file with large record length (approximately 25,000 bytes/record).

• Form sets composed with large number of individual images.

• Large number of different recipients (approximately 300).

• Moderate number of transactions (approximately 4,000)

SETTING FSISYS INI OPTIONS

Caching Options
The following options attempt to minimize the repeated opening and closing of
frequently used files by retaining, or caching, file handles and file data. In many cases
the defaults are sufficient but for specific cases, where many different images are used,
these caching values may be increased to improve performance.

Caching FAP files In some cases, FAP files (images) are loaded as the GenData program runs. The cache
feature keeps frequently used FAP files available for re-use. The CacheFAPFiles option
is specified in:

< Control >

CacheFAPFiles = 100

The default is 100.

Accept the default value unless you are loading FAP files in GenData using the
CompileInstream option (set to Yes), you are using more than 100 FAP files or logos,
or both.

Optimizing Performance On Windows

309

DDT files Data definition table (DDT) files are loaded during as the GenData program runs. The
cache feature keeps frequently used DDT file available for re-use. The RuleFilePool
option is specified in:

< Control >

RuleFilePool = 100

The default is 100. Accept the default value unless you are using more than 100 DDT
files.

NOTE:With the release of Documaker Studio, DDT files are no longer used. Support
for Image Editor ended in version 11.5.

Using/Caching Xerox
PMET files

MET files contain pre-compiled Xerox Metacode information produced by the
FAP2MET utility. The GenPrint program loads MET files as necessary. The CacheFiles
option keeps frequently used MET files available for re-use. The CacheFiles option is
specified in:

< PrtType:XER >

CacheFiles = 100

CompileInstream= No

The default for the CacheFiles option is 100. Accept the default value unless you are using
pre-compiled FAP files and more than 100 FAP files or logos or both.

Using AFP Overlays For best performance, you should run the FAP2OVL utility program, compiling FAP
files into AFP overlays. Tell the system to use the overlays by specifying:

< PrtType:AFP >

SendOverlays = Yes

Use the PSF librarian to add printer resources to the printer.

LOGGING OPTIONS

LogTransactions option The GenTrn, GenData, and GenPrint programs optionally place transaction
information into a LOG file. In most situations, this information is not needed. The
LogTransactions option is specified in:

< Control >

LogTransactions = No

The default is Yes. For optimum performance, specify No.

LogToConsole option The GenTrn, GenData, and GenPrint programs optionally store transaction
information. In most situations, this information is not needed. The LogToConsole
option is specified in:

< Control >

LogToConsole = No

The default is Yes. For optimum performance, specify No.

Chapter 8
Optimizing Your System

310

DEBUG OPTIONS

If_Rule control group < If_Rule >

Debug_if = No

The default is Yes. For optimum performance, specify No.

RUN OPTIONS

RunMode control group You have these runtime options:

< RunMode >

Download FAP = No

LoadCordFAP = No

CompiledFAP = Yes

The defaults are...

DownloadFAP = No

LoadCordFAP = No

CompiledFAP = No

Set the DownloadFAP option to No, the LoadCordFAP option to No, and the
CompileFAP option to Yes for the best performance.

OTHER OPTIONS

MaxRecsPerTransaction
option

< ExtractFile >

MaxRecsPerTransaction = nn

The default is zero (0) and there is no maximum. Be careful using this option. You might
want to use this option if you know that each record in the extract file corresponds to a
transaction.

AliasPrintBatches option < ExtractFile >

AliasPrintBatches = Yes

The default is No. Use the default.

Uploading and Downloading Resources on z/OS

311

UPLOADING
AND

DOWNLOADING
RESOURCES ON

Z/OS

The standard location for the DMS1 resources on the PC is in:

\fap\mstrres\DMS1

These resources exist on the PC as text files and are sometimes referred to as ASCII files
(COMPLIB is an exception and will be explained shortly). The resources are generally
uploaded into files as follows:

Text files on a PC are represented using the ASCII character set. Text files on a z/OS
system are represented using the EBCDIC character set. As these text files are uploaded
from the PC to a z/OS system, each text character must be translated from ASCII to
EBCDIC. The program that provides the communications between your PC and the z/
OS system (3270 Emulator) generally includes a file transfer feature. Included in the file
transfer feature is an option to translate files from ASCII to EBCDIC as the files are
uploaded.

COMPLIB stands for Compiled Resources Library. FAP files can be parsed, or compiled,
before you run the system, and placed into the COMPLIB. The utilities you can use to
compile FAP files are: FAP2CFA and FDT2CFA.

This compilation improves performance since the text-oriented FAP files do not have to
be parsed again during the print assembly process.

NOTE:You must, however, run the utility using the same version and on the same
platform on which you will run the system—you cannot compile the FAP files on
the PC and upload the resulting CFA files onto a z/OS system. You must run
the FAP2CFA or FDT2CFA utilities on your z/OS system.

PC directory z/OS file name z/OS file type

DEFLIB*.* &HLQ..&RES..DEFLIB(*) PDS

DDTLIB*.* &HLQ..&RES..DDTLIB(*) PDS

FORMS*.* &HLQ..&RES..FAPLIB(*) PDS

EXTRACT*.* &HLQ..&RES..EXTRACT Sequential file

Chapter 8
Optimizing Your System

312

TRANSFERRING FILES

Your 3270 emulation program may include features which let you transfer files from the
PC to the z/OS system (upload) and from the z/OS system to the PC (download). Part
of this capability will probably be an option to transfer a binary file or a text file.
Generally, when a 3270 emulator uploads a binary file, it does not translate characters
as the file is uploaded—it uploads the file as is. What’s more, any carriage return and line
feed (CRLF) characters are also uploaded as is.

Conversely, when a 3270 emulation program uploads a file designated as text, it
translates each character as it uploads it and removes any CRLF characters from the file.
Characters between the CRLFs are assumed to be the records and are placed into the file
on z/OS. You will almost always upload your resources to the z/OS as text files (see the
following topic, Handling International Characters on page 313, for an exception).

Your 3270 emulation program may also let you upload a file from the PC to z/OS using
the DOS Command Line interface. The upload program is usually called SEND and the
download program is called RECEIVE.

For example, to upload the PC file “myfap fap” in the c:\dms1\forms directory to the
z/OS PDS “DOC.FAPLIB” you could enter the following command in a DOS window:

SEND c:\dms1\forms\myfap.fap 'doc.faplib(myfap)' ASCII CRLF

This SEND command includes the exact file name and full path name of the PC file,
followed by a space and the name of the host file ('doc.faplib(myfap)'). In this case, the
host file is a PDS (Partioned Data Set) so you must indicate what member to place the
file into.

The ASCII parameter tells the system to translate the PC file from ASCII to EBCDIC
as it is uploaded. The CRLF parameter tells the system to remove the carriage return and
line feed characters as it is uploaded.

Using the ASCII and CRLF parameters tells the SEND command to treat the file as a
text file. If you omitted the ASCII and CRLF parameters, the SEND command would
treat the file as a binary file. There are some situations where you might want to use just
the ASCII parameter or just the CRLF parameter, but these situations are rare (see
Handling International Characters on page 313, for an example) and you will generally
use either both of them or neither of them.

Uploading and Downloading Resources on z/OS

313

HANDLING INTERNATIONAL CHARACTERS

Docucorp uses the Windows ANSI code page (1004) for files residing on the PC and the
EBCDIC code page 37 for files residing on a z/OS system. There are, however, characters
in code page 1004 which are not in code page 37—mainly desktop publishing characters
from code point 128 to 159.

To support these characters, the system uses undefined code points in code page 37 (code
points below 64). For maximum portability, avoid using characters which are not
defined in code page 37.

If you have resource files, such as extract or FAP files, on the PC which contain
international characters you will need to translate those characters into the correct code
point when you upload them from the PC to a z/OS system.

Depending on your 3270 emulation program, you might be able to tell it to translate
the file during the upload. If your 3270 emulation program does not let you specify the
code page to translate from and to during the upload, or if your resource files on the
PC use some of the undefined code points in code page 37, use the CPCNV utility.

The CPCNV utility converts text files from one code page to another. You can run the
CPCNV utility either on the PC or on a z/OS system. Below are examples of how you
would convert a FAP file named french1.fap, on a PC or on a z/OS system:

Running CPCNV on a PC Follow these steps to run the CPCNV utility on a personal computer:

1 Run the CPCNV program on the FAP files as follows:

cpcnv /i=french1 /s=1004 /d=37

2 Upload the FAP files as follows:

SEND french1.fap 'doc.faplib(french1)' CRLF

Note that this is one of the cases in which you use the CRLF parameter but do not
use the ASCII parameter. You do not use the ASCII parameter because you have
already translated the text characters in french1.fap from ANSI code page 1004
(ASCII) to EBCDIC code page 37. You still use CRLF however, because you want
the upload process to remove the carriage return and line feed characters from the
file as it is uploaded.

Running CPCNV on
z/OS

Follow these steps to run the CPCNV utility on z/OS:

1 Upload the FAP file as follows:

SEND french1.fap 'doc.faplib.unconv(french1)' CRLF

Again, note that you do not use ASCII, but you do use CRLF. In this case, you do
not want the 3270 Emulator program to translate from ASCII to EBCDIC because
you are going to let the CPCNV utility on a z/OS system perform the translation.
Also, note that the file name on the z/OS system of 'doc.faplib.unconv' denotes that
the resources in this PDS are not converted.

2 Run the CPCNV utility on the FAP file using, as an example, the JCL provided in
member CPCNVX of JCLLIB. Just as on the PC, the source code page will be 1004
and the destination code page will be 37.

Chapter 8
Optimizing Your System

314

XEROX IMAGE, FONT, AND FORM FILES

You can use the XERDNLD utility to send a resource to the Xerox printer and save it
on the printer’s disk drive. Some of the Xerox resources you might want to save to the
printer are Xerox images (IMG), fonts (FNT) and forms (FRM). Each of these resources
must first be created on the PC and then uploaded to the z/OS system without ASCII or
CRLF.

To get a Xerox resource from the PC up to the z/OS system and then to a Xerox printer,
follow these steps:

1 Define a PDS on the z/OS system to upload into. Define the PDS with the DCB
characteristics as shown in the XERLOGOS job in JCLLIB, such as RECFM=VBM,
LRECL=512, BLKSIZE=23000.

2 Upload the Xerox resource from the PC to the z/OS system without ASCII or CRLF.

3 Run the XERDNLD utility against this resource. There is a sample job in JCLLIB
called XERDNLDX which runs XERDNLD. Note the output PDS is again defined
with the characteristics RECFM=VBM, LRECL=512, and BLKSIZE=23000.

4 Run the GENERXER job in JCLLIB. Change the SYSUT1 DD statement so it
points to the output from the XERDNLD utility, as discussed in step 3.

Change the SYSUT2 DD statement's SYSOUT class to the correct class for the Xerox
printer. The GENERXER job will copy the resource into this SYSOUT class and the
resource will be saved onto the Xerox printer's disk drive. Before you send the
resource to the printer, start the Xerox printer in the same manner you currently
start it (or intend to start) to print Documaker Server output.

XEROX PRE-COMPILED METACODE (PMET) FILES

Currently, you cannot upload Xerox pre-compiled Metacode (PMET) files generated on
the PC onto a z/OS system. You must run the FAP2MET utility on a z/OS system and
convert the FAP files into PMETs on your z/OS system.

Moving Resource Files Between UNIX/Linux and Windows

315

MOVING
RESOURCE

FILES BETWEEN
UNIX/LINUX

AND WINDOWS

You can use FTP to transfer files from Windows to UNIX and from UNIX to Windows.
The important thing to remember is to use the correct mode (binary or ASCII) for the
files.

Other options to transfer files between these platforms are available such as using
mapped network drive resources such as NFS and SaMBa. This method lets you map a
directory on UNIX directly to a Windows workstation. When using this method, the
transfer mode is always binary by default.

Uploading a Library from PC to UNIX
Text files such as INI, DFD, and FAP should be uploaded in ASCII mode if using FTP.
Compiled files should be loaded in binary mode. For example, FRM files for Xerox must
be uploaded in binary mode after they are compiled using the FAP2FRM utility on a PC.

Overlays for PCL and PostScript can be compiled by the OVLCOMP utility on a PC
and then uploaded to UNIX in binary mode or they can be produced directly on UNIX/
Linux with the OVLCOMP executable.

NOTE:MET and CFA files are platform dependent, therefore they must be compiled
on UNIX. Be sure to also use the same version of the system to compile and use
these files.

Downloading Print Streams from UNIX to PC
All types of print streams (PCL, PST, AFP, and Xerox) from the GenPrint program
should be downloaded to PC in binary mode if you are going to print from a Windows
workstation.

PCL print stream files, once transferred to a Windows workstation, can be printed to a
local or network printer using this command:

copy /b pclbat1 lpt1

PST print stream files, after successful transfer to a Windows workstation, can be printed
to a local or network printer using the following command if the DownloadFonts
option in the PrtType:PST control group is set to No:

copy /b rel121sm.pst+ pstbat1 lpt1

You can send an AFP print stream to an AFP printer through PSF/2 from an OS/2
workstation.

Xerox print stream can be sent to Xerox printer through a connected workstation
running BARR software.

Chapter 8
Optimizing Your System

316

317

Chapter 9

Uploading and
Downloading Resource
Files

This chapter outlines how to move resource files from
one platform to another. This discussion includes these
topics:

• Uploading and Downloading Resources on z/OS
on page 318

• Moving Resource Files Between UNIX/Linux and
Windows on page 322

Chapter 9
Uploading and Downloading Resource Files

318

UPLOADING
AND

DOWNLOADING
RESOURCES ON

Z/OS

The standard location for the DMS1 resources on the PC is in:

\fap\mstrres\DMS1

These resources exist on the PC as text files and are sometimes referred to as ASCII files
(COMPLIB is an exception and will be explained shortly). The resources are generally
uploaded into files as follows:

Text files on a PC are represented using the ASCII character set. Text files on a z/OS
system are represented using the EBCDIC character set. As these text files are uploaded
from the PC to a z/OS system, each text character must be translated from ASCII to
EBCDIC. The program that provides the communications between your PC and the z/
OS system (3270 Emulator) generally includes a file transfer feature. Included in the file
transfer feature is an option to translate files from ASCII to EBCDIC as the files are
uploaded.

COMPLIB stands for Compiled Resources Library. FAP files can be parsed, or compiled,
before you run the system, and placed into the COMPLIB. The utilities you can use to
compile FAP files are: FAP2CFA and FDT2CFA.

This compilation improves performance since the text-oriented FAP files do not have to
be parsed again during the print assembly process.

NOTE:You must, however, run the utility using the same version and on the same
platform on which you will run the system—you cannot compile the FAP files on
the PC and upload the resulting CFA files onto a z/OS system. You must run
the FAP2CFA or FDT2CFA utilities on your z/OS system.

PC directory z/OS file name z/OS file type

DEFLIB*.* &HLQ..&RES..DEFLIB(*) PDS

DDTLIB*.* &HLQ..&RES..DDTLIB(*) PDS

FORMS*.* &HLQ..&RES..FAPLIB(*) PDS

EXTRACT*.* &HLQ..&RES..EXTRACT Sequential file

Uploading and Downloading Resources on z/OS

319

TRANSFERRING FILES

Your 3270 emulation program may include features which let you transfer files from the
PC to the z/OS system (upload) and from the z/OS system to the PC (download). Part
of this capability will probably be an option to transfer a binary file or a text file.
Generally, when a 3270 emulator uploads a binary file, it does not translate characters
as the file is uploaded—it uploads the file as is. What’s more, any carriage return and line
feed (CRLF) characters are also uploaded as is.

Conversely, when a 3270 emulation program uploads a file designated as text, it
translates each character as it uploads it and removes any CRLF characters from the file.
Characters between the CRLFs are assumed to be the records and are placed into the file
on z/OS. You will almost always upload your resources to the z/OS as text files (see the
following topic, Handling International Characters on page 320, for an exception).

Your 3270 emulation program may also let you upload a file from the PC to z/OS using
the DOS Command Line interface. The upload program is usually called SEND and the
download program is called RECEIVE.

For example, to upload the PC file “myfap fap” in the c:\dms1\forms directory to the
z/OS PDS “DOC.FAPLIB” you could enter the following command in a DOS window:

SEND c:\dms1\forms\myfap.fap 'doc.faplib(myfap)' ASCII CRLF

This SEND command includes the exact file name and full path name of the PC file,
followed by a space and the name of the host file ('doc.faplib(myfap)'). In this case, the
host file is a PDS (Partitioned Data Set) so you must indicate what member to place the
file into.

The ASCII parameter tells the system to translate the PC file from ASCII to EBCDIC
as it is uploaded. The CRLF parameter tells the system to remove the carriage return and
line feed characters as it is uploaded.

Using the ASCII and CRLF parameters tells the SEND command to treat the file as a
text file. If you omitted the ASCII and CRLF parameters, the SEND command would
treat the file as a binary file. There are some situations where you might want to use just
the ASCII parameter or just the CRLF parameter, but these situations are rare (see
Handling International Characters on page 320, for an example) and you will generally
use either both of them or neither of them.

Chapter 9
Uploading and Downloading Resource Files

320

HANDLING INTERNATIONAL CHARACTERS

Docucorp uses the Windows ANSI code page (1004) for files residing on the PC and the
EBCDIC code page 37 for files residing on a z/OS system. There are, however, characters
in code page 1004 which are not in code page 37—mainly desktop publishing characters
from code point 128 to 159.

To support these characters, the system uses undefined code points in code page 37 (code
points below 64). For maximum portability, avoid using characters which are not
defined in code page 37.

If you have resource files, such as extract or FAP files, on the PC which contain
international characters you will need to translate those characters into the correct code
point when you upload them from the PC to a z/OS system.

Depending on your 3270 emulation program, you might be able to tell it to translate
the file during the upload. If your 3270 emulation program does not let you specify the
code page to translate from and to during the upload, or if your resource files on the
PC use some of the undefined code points in code page 37, use the CPCNV utility.

The CPCNV utility converts text files from one code page to another. You can run the
CPCNV utility either on the PC or on a z/OS system. Below are examples of how you
would convert a FAP file named french1.fap, on a PC or on a z/OS system:

Running CPCNV on a PC Follow these steps to run the CPCNV utility on a personal computer:

1 Run the CPCNV program on the FAP files as follows:

cpcnv /i=french1 /s=1004 /d=37

2 Upload the FAP files as follows:

SEND french1.fap 'doc.faplib(french1)' CRLF

Note that this is one of the cases in which you use the CRLF parameter but do not
use the ASCII parameter. You do not use the ASCII parameter because you have
already translated the text characters in french1.fap from ANSI code page 1004
(ASCII) to EBCDIC code page 37. You still use CRLF however, because you want
the upload process to remove the carriage return and line feed characters from the
file as it is uploaded.

Running CPCNV on
z/OS

Follow these steps to run the CPCNV utility on z/OS:

1 Upload the FAP file as follows:

SEND french1.fap 'doc.faplib.unconv(french1)' CRLF

Again, note that you do not use ASCII, but you do use CRLF. In this case, you do
not want the 3270 Emulator program to translate from ASCII to EBCDIC because
you are going to let the CPCNV utility on a z/OS system perform the translation.
Also, note that the file name on the z/OS system of 'doc.faplib.unconv' denotes that
the resources in this PDS are not converted.

2 Run the CPCNV utility on the FAP file using, as an example, the JCL provided in
member CPCNVX of JCLLIB. Just as on the PC, the source code page will be 1004
and the destination code page will be 37.

Uploading and Downloading Resources on z/OS

321

XEROX IMAGE, FONT, AND FORM FILES

You can use the XERDNLD utility to send a resource to the Xerox printer and save it
on the printer’s disk drive. Some of the Xerox resources you might want to save to the
printer are Xerox images (IMG), fonts (FNT) and forms (FRM). Each of these resources
must first be created on the PC and then uploaded to the z/OS system without ASCII or
CRLF.

To get a Xerox resource from the PC up to the z/OS system and then to a Xerox printer,
follow these steps:

1 Define a PDS on the z/OS system to upload into. Define the PDS with the DCB
characteristics as shown in the XERLOGOS job in JCLLIB, such as RECFM=VBM,
LRECL=512, BLKSIZE=23000.

2 Upload the Xerox resource from the PC to the z/OS system without ASCII or CRLF.

3 Run the XERDNLD utility against this resource. There is a sample job in JCLLIB
called XERDNLDX which runs XERDNLD. Note the output PDS is again defined
with the characteristics RECFM=VBM, LRECL=512, and BLKSIZE=23000.

4 Run the GENERXER job in JCLLIB. Change the SYSUT1 DD statement so it
points to the output from the XERDNLD utility, as discussed in step 3.

Change the SYSUT2 DD statement's SYSOUT class to the correct class for the Xerox
printer. The GENERXER job will copy the resource into this SYSOUT class and the
resource will be saved onto the Xerox printer's disk drive. Before you send the
resource to the printer, start the Xerox printer in the same manner you currently
start it (or intend to start) to print Documaker Server output.

XEROX PRE-COMPILED METACODE (PMET) FILES

Currently, you cannot upload Xerox pre-compiled Metacode (PMET) files generated on
the PC onto a z/OS system. You must run the FAP2MET utility on a z/OS system and
convert the FAP files into PMET files on your z/OS system.

Chapter 9
Uploading and Downloading Resource Files

322

MOVING
RESOURCE

FILES BETWEEN
UNIX/LINUX

AND WINDOWS

You can use FTP to transfer files from Windows to UNIX and from UNIX to Windows.
The important thing to remember is to use the correct mode (binary or ASCII) for the
files.

Other options to transfer files between these platforms are available such as using
mapped network drive resources such as NFS and SaMBa. This method lets you map a
directory on UNIX directly to a Windows workstation. When using this method, the
transfer mode is always binary by default.

Uploading a Library from PC to UNIX
Text files such as INI, DFD, and FAP files should be uploaded in ASCII mode if using
FTP. Compiled files should be loaded in binary mode. For example, FRM files for Xerox
must be uploaded in binary mode after they are compiled using the FAP2FRM utility
on a PC.

Overlays for PCL and PostScript can be compiled by the OVLCOMP utility on a PC
and then uploaded to UNIX in binary mode or they can be produced directly on UNIX/
Linux with the OVLCOMP executable.

NOTE:MET and CFA files are platform dependent, therefore they must be compiled
on UNIX. Be sure to also use the same version of the system to compile and use
these files.

Downloading Print Streams from UNIX to PC
All types of print streams (PCL, PST, AFP, and Xerox) from the GenPrint program
should be downloaded to PC in binary mode if you are going to print from a Windows
workstation.

PCL print stream files, once transferred to a Windows workstation, can be printed to a
local or network printer using this command:

copy /b pclbat1 lbt1

PST print stream files, after successful transfer to a Windows workstation, can be printed
to a local or network printer using the following command if the DownloadFonts
option in the PrtType:PST control group is set to No:

copy /b rel121sm.pst+ pstbat1 lpt1

You can send an AFP print stream to an AFP printer through PSF/2 from an OS/2
workstation.

Xerox print stream can be sent to Xerox printer through a connected workstation
running BARR software.

323

Appendix A

System Files

This appendix includes samples of the various files used
by and created by the system. For each file you will find
a definition, including information on the tools you
can use to modify the files, and a sample of the files.

The sample files are based on the base system. If you or
Oracle Insurance’s staff have customized your system,
your files may differ.

For information on file formats, consult the technical
documentation, which is located on your distribution
CD and on Oracle Insurance’s web site.

This appendix discusses these topics:

• Overview on page 324

• Types of Files on page 326

• Resource Files on page 329

• Files Created by the GenTrn Program on page 336

• Files Created by the GenData Program on page 337

• Files Created by the GenPrint Program on page
339

• Files Created by the GenWIP Program on page 340

• Files Used by the GenArc Program on page 341

Appendix A
System Files

324

OVERVIEW The files discussed in this appendix are arranged in the following order:

Types of files:

• BCH files

• DAT files

• DBF files

• DFD files

• Error files

• Initialization (INI) files

• JDT files

• Log files

• LOG files

• MDX files

• Transaction files

Resource files

• FSISYS.INI

• FSIUSER.INI

• DFD files

• JDT files

• Extract files

Files created by the GenTrn program as it gathers information:

• TRNFILE.DAT

• LOGFILE.DAT

• ERRFILE.DAT

• MSGFILE.DAT

Files created by the GenData program to make print-ready files:

• NAFILE.DAT

• POLFILE.DAT

• NEWTRN.DAT

• Batch files (*.bch)

• MANUAL.BCH

• Updated log and error files

• Spool files

Overview

325

• MSGFILE.DAT

Files used by the GenWIP program for processing incomplete transactions

• WIP DBF

• WIP.MDX

• 00000001.DAT

• 00000001.POL

Files used by and created by the GenArc program for archiving information:

• APPIDX.DBF

• ARCHIVE.CAR

• APPIDX.MDX

• APPIDX.DFD

Appendix A
System Files

326

TYPES OF FILES There are several types of files used in the system. These file types are defined below.

BCH files The GenData program creates files with the extension BCH, called batch files, which list
the transactions to be included in each batch, as specified in your FSISYS.INI file
settings. Batch files are used as trigger files by the GenPrint and GenWIP programs.
Batch files indicate which transactions should be printed in a given batch job. The
GenPrint program uses batch files to print completed forms. The GenData program also
creates manual batch files which record incomplete transactions. These manual batch
files are used by the GenWIP program.

CAR files The GenArc program creates compressed archive (CAR) files in which it stores
NAFILEs, POLFILEs, and archived forms and data. An example of a generated CAR file
is ARCHIVE.CAR. You can have multiple CAR files. The GenArc program also creates
the APPIDX.DBF file which serves as an index to the archived information stored in the
CAR file.

DAT files Data table (DAT) files define various information the system uses as it processes
information.

The NAFILE.DAT file contains the variable data generated by the GenData program.
This file, along with the POLFILE.DAT file, tell the GenPrint program what to print.
This file also tells the GenWIP and GenArc programs what to place into WIP and what
to archive.

The GenWIP program also creates DAT files for each incomplete transaction it must
process. These files are numbered sequentially and for each file there is a corresponding
POL file which contains information about the forms to use.

DBF files Database files (DBF) are used in several places in the system. For each DBF file, there is
a corresponding MDX file which serves as its index. Examples of DBF files are
FDB.DBF, which is created by the Field Database Editor; ARCHIVE.DBF, which is
created by the GenArc program; and WIP.DBF, which is created by the GenWIP
program.

NOTE:The UNIQUE.DBF file contains the last number for WIP file that was created.
Whenever a WIP file is created, a number is generated to uniquely identify it to
make sure no WIP file is overwritten.

DDT files Before version 11.0, the data definition table (DDT) file told the GenData program,
what rules it should use as it processes the data.

NOTE:With the release of Documaker Studio, DDT files are no longer used. Support
for Image Editor ended in version 11.5.

Types of Files

327

DFD files Data format definition (DFD) files define to the system the database file formats of the
files generated by the system. Many common system files are stored in database format.
For example, the transaction file, the new transaction, application index, and recipient
batch files are all stored in database format. These database files can be in a variety of
formats, including Xbase, DB/2, ODBC, and standard sequential files, such as flat text
files. The record structure defined in the DFDs remains independent, regardless of the
type of database being used—although there are occasionally exceptions for some
database specific records.

The GenData program uses TRNDFDFL.DFD to read the TRNFILE which contains the
actual transactions GenTrn creates.

Error files The GenTrn program produces an error file to note any transactions it could not process
correctly. The other programs, such as GenData, GenPrint, GenWIP, and GenArc,
update this file as they perform their processing activities. This file will help you
discover and correct any processing errors you may encounter. Errors may be caused by
incorrect or missing data. The system records the error information by transaction. You
can view this file using a text editor.

The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required so the transaction will be added to the manual batch file, or change the FAP
file and then process the transaction again.

Extract files Extract files are typically text files which contain the data the system processes. Extract
files are created by another program, typically a database program, in a format the
system can read. The text file format provides a standard interface into the system. For
example, your data may be stored in a DB/2 or VSAM database from which you extract
the data you want the system to process.

You can customize the system to read almost any type of file layout. The GenTrn
program first reads the extract file and, using that extract data and TRNDFDFL.DFD
file, creates transaction files (TRN files) the GenData program can use as it applies the
processing rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE:For use on an z/OS platform, the extract file must be converted to EBCDIC
format if the file contains international characters. See the Fonts Reference for
more information on international characters.

You can use the OpSystem option to specify the origination platform of an extract file:

< RunMode >

OpSystem =

If you enter OS400, the system loads an EBCDIC conversion table which handles binary
number conversions for source extract files originating from an IBM AS/400 system.

FAP files The information which defines each section (image) is stored in a FAP file. FAP files are
text files with the extension FAP. You can edit FAP files using a text editor, but they are
most commonly created and edited using Documaker Studio. The FAP file defines the
section while the FOR file defines the sections which comprise a form and form set.

Appendix A
System Files

328

Initialization files Initialization (INI) files are used by the system to set system parameters and to enable
or disable system features. Some examples of system INI files are: FSISYS.INI and
FSIUSER.INI. For example, the FSISYS.INI file contains information the GenTrn
program uses to determine when a new record starts and other information about the
extract files the GenTrn program processes. The FSIUSER.INI file contains information
specific to each user, such as the location of files and so on.

JDT files The job definition table (JDT) file is a text file which tells the system which rules to use
as it processes a specific job. Rules defined in the JDT file are run before the system runs
rules assigned to specific fields. An example of a JDT file is the AFGJOB.JDT file.

Log files When you run GenTrn, the program creates log files which record, by transaction, each
transaction the program processes. These files have a DAT extension. You can review
these log files using any text editor.

LOG files Graphics, such as scanned signatures or logos, are stored as LOG files in the system. You
use Documaker Studio to view, manage, and manipulate LOG files.

MDX files The various system programs create MDX files which serve as indexes to the database
files (.DBF files). For example, the GenWIP program creates the WIP.DBF file and the
corresponding WIP.MDX file to record the incomplete transactions which were not
printed.

The Field Database editor creates the FDB.MDX file to serve as an index to the
FDB.DBF file which contains common variable field definitions.

Transaction files The GenTrn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This
format is defined in the TRNDFDFL.DFD file. The GenData program uses the
TRNDFDFL.DFD file to read the information in the TRN file as it processes the
information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define
the location of the transaction data. For instance, the offsets in a TRN file tell the
GenData program where the transaction begins in the extract file, where the data for the
transaction is stored in the NAFILE.DAT file, and where the form set for the transaction
is stored in the POLFILE.DAT file.

Resource Files

329

RESOURCE
FILES

Resource files are used by the various programs which comprise Documaker Server.
These files provide information these programs use to know how to read extract files,
how to create print-ready files, which rules to apply, which recipients receive copies of
which forms, and so on.

The resource files include:

• FSISYS.INI

• FSIUSER.INI

• FAPCOMP.INI

• DFD files

• JDT files

• Extract files

FSISYS.INI file The FSISYS.INI file is one of the initialization (INI) files used by the system to set
parameters and to enable or disable features. For example, the FSISYS.INI file contains
information the GenTrn program uses to determine when a new record starts and other
information about the extract files the GenTrn program processes. You can see examples
of this file in the DMS1 sample resources.

FSIUSER.INI file The FSIUSER.INI file is one of the initialization (INI) files used by the system to set
system parameters. For example, the FSIUSER.INI file contains information specific to
each user, such as the location of files and so on. If there are common settings in the
FSISYS.INI and FSIUSER.INI files, the system looks at both, but uses the settings in the
FSIUSER.INI file. You can see examples of this file in the DMS1 sample resources.

DFD files There are several database files, meaning that these files are written and read via calls to
Oracle Insurance’s DBLIB database software library. These database files can be in
several formats, including Xbase (dBase), DB/2, and flat text. Not all database files
require a corresponding DFD file because their record structure is coded in the software
modules that access them. For instance, here is a list of Oracle Insurance’s database files:

• transaction files

• new transaction files

• recipient batch files

• manual batch files

• application index files

• WIP files

• help files

• table files

Only these files require an external DFD file:

• transaction files

• new transaction files

Appendix A
System Files

330

• recipient batch files

• manual batch files

• application index files

The WIP file may optionally have an external DFD. If there is no external WIP DFD file,
the internal record structure as coded in the program is used. The help and table files do
not support the use of external DFD files.

Of the database files that require external DFD files, only three actual DFD files are
needed:

• a transaction file DFD (TRNDFDFL.DFD)

• a recipient batch file DFD (RCBDFDFL.DFD)

• an application index file DFD (APPIDX.DFD)

The transaction file DFD is used by both the transaction file and the new transaction file.
The recipient batch file DFD is used by both the recipient batch files and the manual
batch files. The application index file DFD is used by the application index file. You can
see examples of all these files in the DMS1 sample resources.

TRNDFDFL.DFD file The TRNDFDFL.DFD file tells the GenData program how to read the TRN file. If
necessary, you can edit this text file in a text editor. The TRNDFDFL, is used by the
GenTrn, GenData, GenArc, and GenWIP programs.

The GenTrn program writes out the transaction file using the TRNDFDFL. The
GenData program reads the transaction file and writes out the new transaction file using
the TRNDFDFL file. And the GenArc and GenWIP programs read the new transaction
file using the TRNDFDFL file.

You can define the name of the TRNDFDFL file in the Data control group of the
FSISYS.INI file, as shown below:

< Data >

TrnDfdFile = trndfdfl.dfd

RCBDFDFL.DFD file The RCBDFDFL.DFD file, or recipient batch file DFD, is used by the GenData,
GenPrint, and GenWIP programs. If necessary, you can edit this text file in a text editor.

The GenData program writes the recipient and manual batch files using the
RCBDFDFL.DFD file. The GenPrint program reads the recipient batch files using the
RCBDFDFL.DFD file. The GenWIP program reads the manual batch files using the
RCBDFDFL.DFD file.

You can set the name of the RCBDFDFL.DFD file in the Data control group of the
FSISYS.INI file, as shown below:

< Data >

RcbDfdFile = rcbdfdfl.dfd

APPIDX.DFD The APPIDX.DFD file, or application index file, is used by the GenArc program and the
Archive module of Documaker Workstation. The GenArc program writes out the
application index file using the APPIDX.DFD. While Documaker Workstation’s Entry
module reads the application index file using APPIDX.DFD. If necessary, you can edit
this text file in a text editor.

Resource Files

331

You can set the name of the APPIDX.DFD file in the ArcRet control group in the
FSIUSER.INI file, as shown below:

< ArcRet >

 AppIdxDfd = appidx.dfd

However, the APPIDX.DFD name does not have to be set as shown above, provided the
system is running in a Windows environment. If the APPIDX.DFD name is not
specified as shown, the system automatically appends a DFD extension to the APPIDX
name specified in the same group, as shown below:

< ArcRet >

AppIdx = AppIdx

This will not work in an environment that does not support file name extensions, such
as z/OS.

.DDT files The Data Definition Table (DDT) were used to map data from a source record to fields
in a form before the release of Documaker Studio. DDT files told the GenData program
what rules it should use as it processes the data.

NOTE:With the release of Documaker Studio, DDT files are no longer used. Support
for Image Editor, which created DDT files, ended in version 11.5.

.JDT files The job definition table (JDT) file is a text file which tells the system which rules to use
as it processes a specific job. Rules defined in the JDT file are run before the system runs
rules assigned to specific fields.

An example of a JDT file is the AFGJOB.JDT file, which you can see in the DMS1 sample
resources. You can also see examples of JDT files, including the performance JDT file
used with single step processing in the topic, Single Step Processing Example on page 56.

Extract files Extract files are typically text files which contain the data the system processes. Extract
files are created by another program, typically a database program, in a format the system
can read. The text file format provides a standard interface into the system. For example,
your data may be stored in a DB/2 or VSAM database from which you extract the data
you want to process in the system in text format.

You can customize the system to read almost any type of file layout. The GenTrn program
first reads the extract file and, using that extract data and TRNDFDFL.DFD file, creates
transaction files (TRN files) the GenData program can use as it applies the processing
rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE:For use on a z/OS platform, the extract file must be converted to EBCDIC
format if the file contains international characters. See the Fonts Reference for
more information on international characters.

Appendix A
System Files

332

Extract data can be in the form of a flat file, a VSAM file, or it can come directly from a
database. The important thing is that the data is organized and presented in a manner that
makes it efficient to process. While the system is very flexible, there are things you can do
to minimize the need for customizations and to maximize the speed at which the system
identifies and processes the data.

Here are some general guidelines to follow when you design an extract file:

• The basic entity of the data is the transaction. Data for transactions is stored in
multiple rows.

• To speed the identification of a transaction entity, make the first record for each
transaction a general information row.

• Each record should have a standard key structure. Here is an example of a minimum
key structure:

Sequence numbers are not required. In some cases they are nice to have to keep track
of which occurrence has been passed. It is, however, not a requirement that you
sequence repeating records.

• To make testing easier, use a flat ASCII or EBCDIC extract file. By eliminating
packed data fields, you can more easily view the contents of an extract file using
standard text editors.

• Speed processing by keeping the extract file as small as possible—minimize the
occurrence of repeated information in subsequent records.

• When possible, structure the data in the extract file so the system can read it in the
order it should be processed. The less the system has to search for data, the faster it
will process the data.

• Keep all related information in one record if possible, to minimize complexity of
rules. For example, the layout should look something like this:

• When information occurs multiple times (occurs clauses) in records, structure the
extract file to contain one record for each occurrence. For example, when multiple
forms are present on a policy or multiple meters are present on a bill, structure the
information into individual records per entity (form, meter, and so on). This
increases the likelihood that you can use base system overflow and mapping features
to process the data.

Include this key Which is

Transaction Identifier unique to each transaction

Record Type Identifier for each record type

Record Counter a sequence number

Record Name Layout

GENERALINFO account number, type transaction

ADDRESSINFO client name, address, phone

Resource Files

333

NOTE:For overflow, the system first determines the maximum number of lines it can
print on a page. When this number is exceeded, the system automatically inserts
overflow pages as necessary. If overflow is dependent upon custom conditions
to determine line counts, you will need custom code.

• Design records that will recur or overflow to have specific identifiers to sequence the
records and to have key identifiers for overflow requirements within one record. This
helps to minimize processing time and rule complexity. This is not a requirement, but
may ease custom rule complexity with a point of reference.

• It is a good idea to have a header record which contains all global identifiers for a
transaction, such as COMPANY, LINE OF BUSINESS, and TRANSACTION. You
can then use this header record as the trigger to each transaction and as the basis
for building the correct form set.

• When you build a header record, place all of the key fields for WIP, Archive, and
the batch sorting fields in this record. This makes it easier for the system to perform
searches and simplifies the building of the DFD records used to define the key
architecture.

• Where possible, place all conditional data triggers for a form in one record. This
may eliminate the need for the RECIPIF rule in the SETRCPTB.DAT file when
triggering records. By reducing usage of this rule, you can improve system
performance.

NOTE:You can find additional performance considerations for MVS systems in the
Installation Guide.

• To maximize performance, provide sub totals and totals for groups of information
in the extract data. This eliminates the need for system calculations via DAL scripts
or custom rules and speeds performance.

• Provide any data in the extract file that would require the use of the TblLkUp,
LookUp, SetState rules. This also improves performance and simplifies your master
resource libraries.

• For Year 2000 compliance, make sure all date fields in the extract file are in 4-digit
year format, preferably in YYYYMMDD format. (For the Archive application index
file, APPIDX.DFD, the rundate field retrieved from the extract file must be in this
format).

DFD File Format
The DFD file contains two control groups. The Fields control group lists all the fields
in the record structures and the order those fields appear in the storage media. The fields
are automatically stored internally in the same order they appear externally. The second
group describes each field. This description includes an external and internal definition
of the field where applicable.

Fields Group The Fields control group appears as follows:

Appendix A
System Files

334

< Fields >

FIELDNAME =

FIELDNAME =

FIELDNAME =

...where FIELDNAME lists the name of the field. This is the name used by applications
to reference data in a DFD record. The order of the FIELDNAME options dictates the
order these fields are in, where applicable, on the storage media and how are they are
stored in memory.

FIELDNAME has a maximum length of 26 characters, except when using xBase. Using
xBase, the maximum length is 10 characters.

Field Description Group The Field Description control group has the following format:

< xxxxxx >

 EXT_TYPE=

 EXT_LENGTH=

 EXT_PRECISION=

 INT_TYPE=

 INT_LENGTH=

 INT_PRECISION=

 KEY=

 REQUIRED=

...where xxxxxx is name of field as listed in the Fields control group.

EXT_TYPE Data format of field on storage media Possible formats are:

NOT_PRESENT not present in this record

SIGNED_CHAR a signed char

CHAR char

CHAR_ARRAY NULL terminated string

CHAR_ARRAY_NO_NULL_TERM character array not NULL
terminated

SHORT 16-bit signed integer

UNSIGNED_SHORT 16-bit unsigned integer

LONG 32-bit signed integer

UNSIGNED_LONG 32-bit unsigned integer

FLOAT float single precision

DOUBLE double precision

LONG_DOUBLE long double precision

DATESTAMP a FSI date/time field

Resource Files

335

The external record definition must match the actual records written to or read from the
database. The internal record definition is provided for easier programming use.

The options can appear in any order. The system records any errors encountered while
loading a field in the log file.

TIMESTAMP a FSI time stamp

VARCHAR variable length character
array

Item Description

EXT_LENGTH: Length of field on storage media. Valid for data types CHAR_ARRAY
and CHAR_ARRAY_NO_NULL_TERM only. Ignored for all other
data types.

EXT_PRECISION: Number of digits after decimal point. Valid for data types FLOAT,
DOUBLE, and LONG_DOUBLE only. It is ignored for all other data
types.

INT_TYPE: Same as EXT_TYPE.

INT_LENGTH: Same as EXT_LENGTH except one additional byte is added to length
to store null termination byte.

INT_PRECISION: Same as EXT_PRECISION.

KEY: Indicates if this field is a key field. Y indicates it is a key field. All
other values, or if field is not present, indicates field is not a key field.
This field is only used for DB/2 and indicates that the field is
required.

REQUIRED: Indicates if this field is required in order for a record to be stored on
or retrieved from a storage media. Y indicates it is required. All other
values, or if field is not present, indicates field is not required. If
KEY=Y, the field is required regardless of the value of this option.

Appendix A
System Files

336

FILES CREATED
BY THE GENTRN

PROGRAM

The GenTrn program reads data in an extract file and creates transaction records which
in turn are processed by the GenData program. The main file created by the GenTrn
program is the TRN file which, along with the TRNDFDFL.DFD file, tells the GenData
program which transactions to process.

The GenTrn program creates these files as it reads in the extract file and uses the resource
files:

• Transaction files

• Error files

• Log files

Transaction files The GenTrn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This format
is defined in the TRNDFDFL.DFD file. The GenData program uses the
TRNDFDFL.DFD file to read the information in the TRN file as it processes the
information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define the
location of the transaction data. For instance, the offsets in a TRN file tell the GenData
program where the transaction begins in the extract file, where the data for the transaction
is stored in the NAFILE.DAT file, and where the form set for the transaction is stored in
the POLFILE.DAT file.

Error files The GenTrn program produces this file to note any transactions it could not process
correctly. This file will help you discover and correct any processing errors you may
encounter. The most common errors are caused by incorrect or missing data. The
information is recorded by transaction. You can view this file using a text editor. You can
see examples of this file in the DMS1 sample resources.

Log files When you run GenTrn, the program creates log files which record by transaction each
transaction the program processes. You can review these log files using any text editor.
You can see examples of this file in the sample resources.

Files Created by the GenData Program

337

FILES CREATED
BY THE

GENDATA
PROGRAM

The GenData program takes information created by the GenTrn program and applies
processing rules to those transactions and data. The GenData program creates batch files,
the NAFILE.DAT, and the POLFILE.DAT file for the GenPrint program. It also creates
a manual batch file (MANUAL.BCH) for the GenWIP program. The output from the
GenData program is also used by the GenArc program to archive forms and data.

The GenData program creates the following files:

• NAFILE.DAT

• POLFILE.DAT

• NEWTRN.DAT

• Batch files (*.bch)

• MANUAL.BCH

• Updated error and log files

NAFILE.DAT file The GenData program creates an NAFILE.DAT file, commonly referred to as the NA
file, in which it stores section and variable field information. The GenPrint program uses
this file, along with the POLFILE.DAT file, which is also produced by the GenData
program to print the forms.

If the data is incomplete and GenData cannot complete the form, it creates a manual
batch file. The GenWIP program then creates separate DAT and POL files for each
incomplete transaction. These files provide the entry system with the information it needs
to open the form so a data entry operator can add the missing data. This is a semi-colon-
delimited text file. You can see examples of this file in the DMS1 sample resources.

POLFILE.DAT file The POLFILE.DAT file, commonly referred to as the POL file, defines the form set used
for a specific transaction. The GenData program creates this file which is used by the
GenPrint, GenWIP, and GenArc programs. For instance, if the data is complete,
GenData creates an NA file and a POL file. These files are used by GenPrint, along with
the batch files, to produce the print-ready file.

If the data is incomplete and GenData cannot prepare the form for printing, it creates a
manual batch file. The GenWIP program then creates separate files for each transaction
to provide the entry system with the information it needs to open the form so a data entry
operator can add the missing data. This is a semi-colon-delimited text file. You can see
examples of this file in the DMS1 sample resources.

NOTE:You can use the MaxPolLineLength option to control the output line length
when writing out POL file records. The default is 255. You can set it to shorter
lengths when testing to more easily view the file in a text editor.

< Control >

MaxPolLineLength = 80

Choose a length between 40 to 4000 bytes.

Appendix A
System Files

338

NEWTRN.DAT file The GenData program creates the NEWTRN.DAT file. This file tells the GenArc
program where to find data in the NAFILE.DAT file and which forms to use in the
POLFILE.DAT file. You can see examples of this file in the DMS1 sample resources.

Batch files The GenData program creates files with the extension BCH, called batch files, list the
transactions to be included in each batch, as specified in your FSISYS.INI file settings.
Batch files are used as trigger files by the GenPrint and GenWIP programs. Batch files
indicate which transactions should be printed in a given batch job. The GenPrint program
uses batch files to print completed forms. The GenData program also creates manual
batch files which record incomplete transactions. These manual batch files are used by the
GenWIP program.

MANUAL.BCH file The GenData program creates this file if it is unable to complete the processing of a form
set. Typically, this occurs because the forms are missing information. This file is then used
by the GenWIP program so a data entry operator can manually complete the form and
resubmit it for processing.

Error batch The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required, or change the FAP file and then process the transaction again.

Updated log, error, and
message files

As the GenData program processes information, it updates the log, error, and message
files. You can review these files in a text editor to review when transactions were
processed or to resolve errors.

Files Created by the GenPrint Program

339

FILES CREATED
BY THE

GENPRINT
PROGRAM

The GenPrint program takes information produced by the GenData program and creates
a printer spool file for use with PCL, AFP, Metacode, and PostScript printers. Specifically,
the GenData program produces batch files, an NAFILE.DAT, and a POLFILE.DAT file
which the GenPrint program uses to create printed forms

The GenPrint program creates the following files:

• Spool files

• Updated log and error files

Spool files The spool files are print-ready files the GenPrint program creates from information
received from the GenData program and from resource files.

Updated log and error
files

As the GenPrint program processes information, it updates the log and error files. You
can review these files in a text editor to review when transactions were processed or to
resolve errors.

Appendix A
System Files

340

FILES CREATED
BY THE GENWIP

PROGRAM

The GenWIP program receives information about incomplete transactions from the
GenData program. This information is stored in manual batch (MANUAL.BCH) files.
The GenWIP program then creates separate files for each incomplete transaction. The
data for these incomplete transactions is stored in a file with the extension DAT, such as
00000001.DAT. The corresponding form set information is stored in a file with the
extension POL, such as 00000001.POL.

The GenWIP program also creates the WIP.DBF file, a database file which contains
records of all the incomplete transactions extracted from the NAFILE.DAT file
produced by the GenData program. The WIP.MDX file, also created by the GenWIP
program serves as an index to the WIP.DBF file.

This gives the entry program the information it needs to display the form so you can fill
in the missing information and complete the form in Documaker Workstation. Once
completed, you can resubmit the form for processing by the GenData program.

The GenWIP program uses these files as it prepares incomplete transactions for further
processing with the entry system.

• WIP DBF

• WIP.MDX

• 00000001.DAT files

• 00000001.POL files

• UNIQUE.DBF

WIP.DBF file The WIP.DBF file contains information about the incomplete transactions which the
GenWIP program extracted from the NAFILE.DAT and POLFILE.DAT file created by
the GenData program. The WIP.MDX file serves as an index to this file.

WIP.MDX file This file serves as an index to the WIP.DBF file.

00000001.DAT file Using the MANUAL.BCH file produced by the GenData program. The GenWIP
program creates from the NAFILE.DAT file, a separate data file for each incomplete
transaction. These files are numbered and have the extension DAT. In essence, they are
like the NAFILE.DAT except there is only one transaction per file.

00000001.POL file Using the MANUAL.BCH file produced by the GenData program, the GenWIP program
creates from the POLFILE.DAT file, a separate POL file for each incomplete transaction.
These files are numbered to correspond with their matching data file and contain
information about the form set on which the system should place the data. In essence,
they are like the POLFILE.DAT except there is only one form set per file.

UNIQUE.DBF file The UNIQUE.DBF file contains the last number for WIP file that was created. Whenever
a WIP file is created, a number is generated to uniquely identify it to make sure no WIP
file is overwritten. You should not modify, rename, or delete this file. The highest number
it will generate for WIP files is FFFFFFFF, which is 4,294,967,295. After this number, the
counter resets to 00000001.

The GenWIP program uses this information to create separate data and form information
files for the incomplete transaction information it receives from the GenData program.

Files Used by the GenArc Program

341

FILES USED BY
THE GENARC

PROGRAM

The GenArc program archives forms and data so you can store the information efficiently
and retrieve it quickly. This program receives information stored in the APPIDX.DFD.
Using this information, the GenArc program creates CAR files to store the information
and forms and a DBF files which serves as an index to the data in the CAR files. The
GenArc program can create multiple CAR files, as needed.

The GenArc program uses and creates these files as if archives information:

• APPIDX.DBF

• APPIDX.DFD

• ARCHIVE.CAR

• APPIDX.MDX

APPIDX.DBF file The APPIDX.DBF file is created by the GenArc program and contains records about the
archive information stored in the ARCHIVE.CAR file.

APPIDX.DFD file The GenData program creates this file to tell the GenArc program how to store data and
forms to be archived. The actual information is stored in ARCHIVE.CAR files.

ARCHIVE.CAR file The GenArc program creates CAR files in which it stores archived forms and data. An
example of a generated CAR file is ARCHIVE.CAR. You can have multiple CAR files.

APPIDX.MDX file This file serves as an index to the APPIDX.DBF file.

APPIDX.DFD file The APPIDX.DFD file, or application index file, is used by the GenArc program and the
Entry module. The GenArc program writes out the application index file using the
APPIDX.DFD. While the entry module reads the application index file using the
APPIDX.DFD file.

You can set the name of the APPIDX.DFD file in the ArcRet control group in the
FSIUSER.INI file, as shown below:

< ArcRet >

 AppIdxDfd = AppIdx.Dfd

However, the APPIDX.DFD name does not have to be set as shown above, provided the
system is running in a Windows environment. If the APPIDX.DFD name is not specified
as shown, the system automatically appends a DFD extension to the APPIDX name
specified in the same group, as shown below:

< ArcRet >

AppIdx = AppIdx

This will not work in an environment that does not support file name extensions, such as
z/OS systems.

Appendix A
System Files

342

343

Glossary

All components of the system use specific terminology.
We suggest you familiarize yourself with these terms
before you begin using the system. The following terms
include definitions of system tools and files as well as
commonly-used terms.

NOTE:The Data control group in the FSISYS.INI file
lets you specify many of the file names you
want to use. For instance, by modifying the
settings in this group, you can change the name
of the error file (ERRFILE.DAT) to any file
name you want. In this manual, we refer to the
default names for these files.

00000001.DAT File Using the MANUAL.BCH file produced by the
GenData program, the GenWIP program creates from
the NAFILE.DAT file, a separate data file for each
incomplete transaction. These files are numbered and
have the extension DAT. In essence, they are like the
NAFILE.DAT except there is only one transaction per
file.

See also 0000001.POL and the GenWIP Program on
page 348.

00000001.POL File Using the MANUAL.BCH file produced by the
GenData program, the GenWIP program creates from
the POLFILE.DAT file, a separate POL file for each
incomplete transaction. These files are numbered to
correspond with their matching data file and contain
information about the form set on which the system
should place the data. In essence, they are like the
POLFILE.DAT except there is only one form set per
file.

See also 0000001.DAT and the GenWIP Program on
page 348.

Glossary

344

AFP Advanced Function Printing (AFP), developed by IBM, is a print server language that
generates data streams of objects. The data streams merge with print controls and system
commands to generate Intelligent Printer Data Stream (IPDS). Your system then sends
the IPDS to the AFP printer for printing. The GenPrint program can create spool files
for AFP printers.

ARCHIVE.CAR File See .CAR Files on page 344.

ARCHIVE.DBF File The ARCHIVE.DBF file is created by the GenArc program and contains records about
the archive information stored in the ARCHIVE.CAR file.

ARCHIVE.DFD File The GenData program creates this file to tell the GenArc program how to store data and
forms to be archived. The actual information is stored in ARCHIVE.CAR files.

.BCH Files The GenData program creates files with the extension BCH, called batch files, which list
the transactions to be included in each batch. Batches are specified in your FSISYS.INI
file settings. Batch files are used as trigger files by the GenPrint and GenWIP programs.
Batch files indicate which transactions should be printed in a given batch job. The
GenPrint program uses batch files to print completed forms. The GenData program also
creates manual batch files which record incomplete transactions. These manual batch
files are used by the GenWIP program. Error batch files contain transactions which
cannot be processed by the system. Batch files are comma-delimited TEXT files.

See also MANUAL.BCH File on page 349.

Batch Files See .BCH Files on page 344.

.CAR Files The GenArc program creates CAR files in which it stores archived forms and data. An
example of a generated CAR file is ARCHIVE.CAR. You can have multiple CAR files.
The GenArc program also creates DBF files which serve as an index to the archived
information stored in the CAR file.

DAL Document Automation Language (DAL) is the language you use when you tell the
system how to calculate variable fields. This calculation is also called a script. When you
select calculation options for a variable field, you can choose one of the following:

DAL CALC. Recalculates the value of all fields each time a user tabs to a new field in
the section.

DAL SCRIPT. Recalculates the value of the fields to which you assign the script only
when a user tabs out of that field

NOTE:You can find detailed information about DAL in the DAL Reference.

345

.DAT Files Data table (DAT) files define various information the system uses as it processes
information. All DAT are text files which have the extension DAT. Some DAT files are
comma-delimited text files.

The NAFILE.DAT file contains the variable data generated by the GenData program.
This file, along with the POLFILE.DAT file, tell the GenPrint program what to print.
This file also tells the GenWIP and GenArc programs what to place into WIP and what
to archive. These files can only be edited with a text editor.

The GenWIP program also creates DAT files for each incomplete transaction it must
process. These files are numbered sequentially and for each file there is a corresponding
POL file which contains information about the forms to use.

.DBF Files Database files (DBF) are used in several places in the system. For each DBF file, there is
a corresponding MDX file which serves as its index. Examples of DBF files are
FDB.DBF, ARCHIVE.DBF, which is created by the GenArc program; and WIP.DBF,
which is created by the GenWIP program.

DDT Files In legacy implementations, the data definition table (DDT) file told the GenData program
what rules it should use as it processes the data.

.DFD Files Data field definition (DFD) files define to the system the file formats of the files
generated by the system.

An example of a DFD file is the TRNDFDFL file which the GenTrn program creates.
The GenData program uses this file to read the TRNFILE which contains the actual
transactions GenTrn creates.

Distributed Resource
Library

A Distributed Resource Library provides a decentralized repository into which you can place
compiled items you select from your master resource library. A distributed resource
library provides a unique and customized library of reusable resources for specific users
at various locations in your organization. A distributed resource library contains a
section (image) library, a variable data dictionary library, a rules library, and a system
library.

See also Master Resource Library on page 350.

Duplex A form printed on both the front and back sides of a sheet of paper is printed in duplex
mode.

See also Simplex on page 351.

ERRFILE.DAT The GenTrn program creates this file to note any transactions it could not process
correctly. The other programs, such as GenData, GenPrint, GenWIP, and GenArc,
update this file as they perform their processing activities. This file will help you
discover and correct any processing errors you may encounter. Common errors are
caused by incorrect or missing data. The system records error information by
transaction. You can view this file using a text editor.

Glossary

346

Error Batch The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required, or change the FAP file and then process the transaction again.

Error Files See ERRFILE.DAT on page 345.

Extract Files Extract files are typically text files which contain the data the system processes. Extract
files are created by another program, typically a database program, in a format the
system can read. The text file format provides a standard interface into the system. For
example, your data may be stored in a DB/2 or VSAM database from which you extract
the data you want to process in the system in text format.

You can customize the system to read almost any type of file layout. The GenTrn
program first reads the extract file and, using that extract data and TRNDFDFL.DFD
file, creates transaction files (TRN files) the GenData program can use as it applies the
processing rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE:For use on an z/OS platform, the extract file must be converted to EBCDIC
format if the file contains international characters.

The system includes a base extract file, called EXTRFILE.DAT, which serves as an
example of the type of file the base system can read. You can use this file to experiment
with the base system and determine how you want to set up your system.

.FAP Files The information which defines each section is stored in a FAP file. FAP files are text
files with the extension FAP. You can edit FAP files using a text editor, but they are most
commonly created and edited using Documaker Studio or the Documaker Add-In for
Word.

FDB.DBF File The FDB.DBF file is a database file which contains a record for each unique variable
field you create in Documaker Studio. You can add records (variable fields) using
Studio. The FDB.MDX file serves as an index to this file.

fetype An fetype defines the field format type. You can have an input and an output fetype. For
example, an input fetype with the FmtNum rule tells the system where the decimal goes
in the number. The output fetype tells the system how to format the output amount.
An fetype can consist of either one or four characters. For more information, see the
Rules Reference.

Fixed Data Fixed data is the same on every copy of the form. This includes items such as logos,
headers and titles. This information remains constant regardless of the data entry.

347

Font Manager Documaker Studio’s Font manager is used to organize fonts and font sets. A font is a
collection of letters, symbols, and numbers that share a particular design. A font set is
a collection of fonts you choose to group together for your section and printing needs.
The font set information is stored in the font cross reference file (FXR file) which is
created by Font manager. Font manager lets you make sure your documents print the
same way on different printers.

A well organized font set makes section creation quick and efficient. Forms composers
need a variety of fonts for text and field creation. Studio does not change the actual
printer fonts. This tool is used for defining the appropriate characteristics (bold, size,
and so on) about the font so the fonts used to create a particular form set are consistent
and easily accessible to the forms composers.

Form A form is a single document containing one or more pages or sections. Most forms
contain multiple pages that are usually printed on both sides of a single sheet (duplex).
Some forms are printed only on one side (simplex). Typical forms include insurance
policies, tax returns, and mortgage documents.

A form includes two types of data: fixed and variable.

• Fixed data is the same on every copy of the form. This includes items such as logos,
headers and titles. This information remains constant regardless of the data entry.

• Variable data may differ from form to form. This includes items such as
individuals' names, addresses, and policy numbers. This information relates to the
specific data processed on each form.

Form Set A form set is a group of logically related forms required to process a single transaction.
A form set may contain one or many forms. You can group forms any way you want as
you create form sets.

FSISYS.INI File The FSISYS.INI file is a one of the initialization (INI) files used by the system to set
system parameters and to enable or disable system features. For example, the FSISYS.INI
file contains information the GenTrn program uses to determine when a new record
starts and other information about the extract files the GenTrn program processes.

NOTE:The Data control group in the FSISYS.INI file lets you specify many of the file
names you want to use in Documaker Server. For instance, by modifying the
settings in this group, you can change the name of the error file
(ERRFILE.DAT) to any file name you want. In this manual, we refer to the
default names for these files.

FSIUSER.INI File The FSIUSER.INI file is one of the initialization (INI) files used by the system to set
system parameters. For example, the FSIUSER.INI file contains information specific to
each user, such as the location of files and so on.

Glossary

348

.FXR Files Font cross-reference (FXR) files are used by the system so you can make sure your
documents print the same way, regardless of which printer you choose. These files
contain information about the various fonts you use and their equivalents on various
printers.

The system includes several font cross-reference files. You can edit and create font cross-
reference files using Studio’s Font manager.

GenArc Program The GenArc program archives forms and data so you can store the information
efficiently and retrieve it quickly. This program receives information stored in the
APPIDX.DFD file from the GenData program. Using this information, the GenArc
program creates CAR files to store the information and forms and DBF files which serve
as an index to the data in the CAR files. The GenArc program can create multiple CAR
files, as needed.

Depending on the operating system you use, this program has various names such as
genacw32.exe for 32-bit Windows environments.

GenData Program The GenData program takes information created by the GenTrn program and applies
processing rules to those transactions and data. The GenData program creates batch
files, the NAFILE.DAT, and the POLFILE.DAT file for the GenPrint program. It also
creates a manual batch file for the GenWIP program. The output from the GenData
program is also used by the GenArc program to archive forms and data.

Depending on the operating system you use, this program has various names such as
gendaw32.exe for 32-bit Windows environments.

GenPrint Program The GenPrint program takes information produced by the GenData program and
creates a printer spool file for use with PCL, AFP, Metacode, and PostScript printers.
Specifically, the GenData program produces batch files, an NAFILE.DAT, and a
POLFILE.DAT file which the GenPrint program uses to create printed forms.

Depending on the operating system you use, this program has various names such as
genptw32.exe for 32-bit Windows environments.

GenTrn Program The GenTrn program reads data in an extract file and creates transaction records which
in turn are processed by the GenData program. The main file created by the GenTrn
program is the TRN file which, along with the TRNDFDFL.DFD file, tells the GenData
program which transactions to process.

Depending on the operating system you use, this program has various names such as
gentnw32.exe for 32-bit Windows environments.

GenWIP Program The GenWIP program receives information about incomplete transactions from the
GenData program. This information is stored in manual batch files. The GenWIP
program then creates separate files for each incomplete transaction. The data for these
incomplete transactions is stored in a file with the extension DAT, such as
00000001.DAT. The corresponding form set information is stored in a file with the
extension POL, such as 00000001.POL.

349

The GenWIP program also creates the WIP.DBF file, a database file which contains
records of all the incomplete transactions extracted from the NAFILE.DAT file
produced by the GenData program. The WIP.MDX file, also created by the GenWIP
program, serves as an index to the WIP.DBF file.

This gives the Entry module the information it needs to display the form so you can fill
in the missing information and complete the form. Once completed, you can resubmit
the form for processing by the GenData program.

Depending on the operating system you use, this program has various names such as
genwpw32.exe for 32-bit Windows environments.

Graphics Manager Once you create a graphic object such as a logo or a scanned signature, you can edit it
using Documaker Studio’s Graphics manager. This tool lets you resize, reverse, rotate,
crop, and otherwise manipulate a section to fit your needs. The system stores these
graphic files as LOG files.

.INI Files Initialization (INI) files are used by the system to set system parameters and to enable
or disable system features. Some examples of system INI files are: FSISYS.INI and
FSIUSER.INI. For example, the FSISYS.INI file contains information the GenTrn
program uses to determine when a new record starts and other information about the
extract files the GenTrn program processes. The FSIUSER.INI file contains information
specific to each user, such as the location of files and so on.

.JDT Files Job Definition Table (JDT) files tell the system which rules to use as it processes a
specific job. Rules defined in the JDT file are run before the system runs rules assigned
to specific fields. An example of a JDT file is the AFGJOB.JDT file.

Library Manager Documaker Studio’s Library manager lets you manage documents and logos while
maintaining the versions, revisions, and integrity of the sections you are developing. You
may want to set up a library for a specific client or form set. You can store all sections
and logos in a resource library. The storage consists of a listing of the section or logo,
as well as a snap shot of the section.

When you set up a library, you must define the locations of the library and storage files.
Entries made during library setup are automatically saved back to the FSIUSER.INI file
when you exit the setup window.

Log Files When you run GenTrn, the program creates log files which record by transaction each
transaction the program processes. You can review these log files using any editor.

.LOG Files Logos and other graphics, such as scanned signatures, are stored as LOG files in the
system. You use Documaker Studio to view, manage, and manipulate LOG files.

MANUAL.BCH File The GenData program creates this file if it is unable to complete the processing of a
form set. Typically, this occurs because the forms are missing information. This file is
then used by the GenWIP program so a data entry operator can manually complete the
form and resubmit it for processing.

Glossary

350

See also Batch Files on page 344 and the GenWIP Program on page 348.

Master Resource
Library

Master resource libraries provide a central repository into which you can place all
reusable resources such as sections, fonts, graphic files, data definitions, processing rules,
and processing procedures. A master resource library contains a section library, a
variable data dictionary library, a rules library, and a system library.

See also Distributed Resource Library on page 345.

Metacode A printer definition language developed by Xerox. Metacode is the native language of
Xerox’s Centralized Printing Systems. The GenPrint program can create spool files for
Metacode printers.

.MDX Files The various system programs create MDX files which serve as indexes to the database
files (.DBF files). For example, the GenWIP program creates the WIP.DBF file and the
corresponding WIP.MDX file to record the incomplete transactions which were not
printed.

The Field Database Editor creates the FDB.MDX file to serve as an index to the
FDB.DBF file which contains common variable field definitions.

NAFILE.DAT File The GenData program creates an NAFILE.DAT file, commonly referred to as the NA
file, in which it stores section and variable field information. The GenPrint program
uses this file, along with the POLFILE.DAT file, which is also produced by the GenData
program to print the forms.

If the data is incomplete and GenData cannot complete the form, it creates a manual
batch file. The GenWIP program then creates separate DAT and POL files for each
incomplete transaction. These files provide the entry system with the information it
needs to open the form so a data entry operator can add the missing data. This is a
comma-delimited text file.

NEWTRN.DAT File The GenData program creates the NEWTRN.DAT file. This file tells the GenArc and
GenWIP programs where to find data in the NAFILE.DAT file and which forms to use
in the POLFILE.DAT file. This is a comma-delimited text file.

Objects Objects are the individual items which comprise your section. Examples of objects are
boxes, bar codes, lines, graphics, and text. All objects have unique attributes within the
section. Attributes include items such as position, size, font type, and color. Documaker
Studio lets you easily create the various objects which comprise a section.

Overflow Overflow refers to a situation where there is not enough room on the form for all of the
data you need to enter. In this situation, you want to have the system automatically place
the additional data onto another form or another copy of the same form. The system
includes features which let you do this.

351

For instance, suppose you have a form which records automobiles and the drivers of the
automobiles. The form has room to record four different automobiles and drivers. In
most cases this will suffice but, in some situations, you need to include information
about additional automobiles and drivers. Using the overflow features, you can handle
this situation automatically.

Page Pages are the printed result of a section or a group of sections. You can have one section
per page, several sections per page, or even a section that spans several pages. You
determine the size of a page based on the size of your printed output. With Documaker
Studio, you can design forms for any size page your printer can print.

PCL PCL (Printer Control Language) is a printer definition language developed by the
Hewlett-Packard company. The GenPrint program can create spool files for PCL
printers.

POLFILE.DAT File The POLFILE.DAT file, commonly referred to as the POL file, defines the form set used
for a specific transaction. The GenData program creates this file which is used by the
GenPrint, GenWIP, and GenArc programs. For instance, if the data is complete,
GenData creates an NA file and a POL file. These files are used by GenPrint, along with
the batch files, to produce the print-ready file.

If the data is incomplete and GenData cannot prepare the form for printing, it creates
a manual batch file. The GenWIP program then creates separate files for each
transaction to provide the entry system with the information it needs to open the form
so a data entry operator can add the missing data. This is a semicolon-delimited text file.

PostScript PostScript is a printer definition language developed by Adobe Systems which you can
use on various printers. The GenPrint program can create spool files for PostScript
printers.

Section A section (formerly called an image) is a group of text or graphics or both that make up
a form or a section of a form. You create sections using Documaker Studio. Each section
is stored in a separate file, so you can reuse sections in several forms and form sets.
Multiple sections can comprise a single form. For instance, a three-page form with text
and graphics, printed on both sides of each page, could contain a total of six sections.
Some examples of sections include an insurance policy declaration page, the return
portion of a bill, and page one of a 1040 Federal tax return form.

You may choose to create a single page containing multiple sections, especially if you
develop a page with graphics.

Simplex A form printed on only one side of a sheet of paper is printed in simplex mode.

See also Duplex on page 345.

System Releases To continually improve and support the product, software enhancements and
corrections are organized into regularly scheduled system releases. Releases are noted
with a major and minor version number, such as 11.5 or 12.0.

Glossary

352

System Patches In certain situations, and on a case by case basis, a correction to the current system
release can be made available as a system patch. Corrections to the prior release are
handled on a case by case basis, and are made available only as system patches.

Transaction List The GenTrn program creates the transaction list which is used by the GenData program
as an index to the data in the extract file. The transaction list is stored in the TRN File.

.TRN Files The GenTrn program creates transaction or TRN files which contain a record for each
transaction. The record format for the TRN file can vary to meet your needs. This
format is defined in the TRNDFDFL.DFD file. The GenData program uses the
TRNDFDFL.DFD file to read the information in the TRN file as it processes the
information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define
the location of the transaction data. For instance, the offsets in a TRN file tell the
GenData program where the transaction begins in the extract file, where the data for the
transaction is stored in the NAFILE.DAT file, and where the form set for the transaction
is stored in the POLFILE.DAT file.

TRNDFDFL.DFD File The TRNDFDFL.DFD file tells the GenData program how to read the TRN file. If
necessary, you can edit this text file in a text editor.

UNIQUE.DBF File The UNIQUE.DBF file contains the last number for the WIP file that was created.
Whenever a WIP file is created, a number is generated to uniquely identify it to make
sure no WIP file is overwritten. You should not modify, rename, or delete this file. The
highest number it will generate for WIP files is FFFFFFFF, which is 4,294,967,295. After
this number, the counter resets to 00000001.

The GenWIP and GenArc programs use this information to create separate data and
form information files for the incomplete transactions received from the GenData
program and for the individual forms stored in archive.

See also 00000001.DAT File on page 343 and 00000001.POL File on page 343.

Variable Data Variable data may differ from form to form. This includes items such as individuals'
names, addresses, and policy numbers. This information relates to the specific data
processed on each form.

WIP.DBF File The WIP.DBF file contains information about the incomplete transactions which the
GenWIP and GenArc programs extracted from the NAFILE.DAT and POLFILE.DAT
file created by the GenData program. The WIP.MDX file serves as an index to this file.

See also the GenWIP Program on page 348.

WIP.MDX This file serves as an index to the WIP.DBF file.

353

xBase A generic term for industry-standard dBase IV file format.

Glossary

354

355

Index

Symbols

& (ampersand) 199

.BCH files 326

.CAR files 326

.DAT files 326

.DBF files 326

.DDT files 326, 331

.DFD files 327

.FAP files 327

.INI files 328

.JDT files 328, 331

.LOG files 328

.MDX files 328

~Encrypted 124

~GetEnv function 122

~OS function 123

~Platform function 123

~WIPField built-in function 125

Numerics

00000001.DAT file 340

00000001.POL file 340

2-up printing
overview 69
rule order 75

3270 emulator program 312, 319

Index

356

A

Access databases 235

AddBlankPages function 104

Added_Fonts control group 72

AddedOn option 222

AddForm function
banner forms 16

adding
tables of contents and indexes 107

AddLine rule 73

AddTextLabel rule 73

Adobe Acrobat 2

AFEMAIN program
defined 208
viewing archives 234

AfeProcedures control group 237

AFEW32 237

AFEWIP2ArchiveRecord 237

AfeWIP2ArchiveRecord control group 237

AFG2WIP control group 95

AFGJOB member 297

AFGJOB.JDT file 328, 331
and 2-up printing 75

AFP
comment records 73
record list and the AddTextLabel rule 73

AIX
archive/retrieval scenarios 211

AliasPrintBatches option 111, 292, 307, 310

ALLOCDDT job 295

ALLOCJDT job 297

AlwaysSQLPrepare option 217

ancestor 137

ANSI code page 313, 320

APPIDX file
defined 208

APPIDX.DBF file 341

APPIDX.DFD file 330, 341

APPIDX.MDX file 341

application index file 330

archive
features 210
field names 246
retrieval 240
transaction log 216

archive index file
and WIP 237

Archive rule 52, 53

ARCHIVE.CAR file 341

ArchiveMem option 216, 222

archiving
transactions 32

ArcRet control group 216, 241

ARCRET utility 248

ARCVIEW utility 234

ASCII files 311, 318

AutoIncreaseOffsetLengths option 118

B

banner form processing
multi-file print 17

banner forms
groups 16

banner processing
custom callback function 15
overview 15

BARR software 315, 322

BaseErrors option 35

BaseRuleTime option 113

Batch control group 53

batch files 338
and single step processing 47
grouping 111
page statistics 38

Batch window 286, 304, 308

BatchBannerBeginForm option 16

BatchBannerBeginScript option 16

BatchBannerEndForm option 16

BatchBannerEndScript option 16

357

BatchByPageCount rule 53

BatchingByRecip control group 53

BatchingByRecipINI rule 53

BatchTable option 111

BlankPage option 81

block sizes 288

Booklet option 80

booklet printing 80

BookletPapersize option 80

BookletTray option 80

BreakBatch function 87

BuildMasterFormList rule 53

built-in functions 121

C

Cabinet option 222

CacheFAPFiles option 304, 308

CacheFiles option 305, 309

caching options
for DDT files 290, 305, 309
for FAP files 290
summary 308

callback functions
InitPageBatchedJob rule 73

CallbackFunc option 91

CARData control group 233

CARFILE
defined 208

CARFILE.DFD file 229

carriage returns 312, 319

CaseSensitiveKeys option 238

CATALOG file
defined 209

CheckCount option 34

CheckZeroFontID option 110

child 137

Class option 235

class recipient 66

ClearMsgFile option 192

code page 1004 313, 320

code page 37 313, 320

column names 257

COMM_RECS column
restarting GenArc 220

commas
in search masks 182

comment records 19

commit
defined 208

CommitEvery option 220

compile options 287

COMPLIB 311, 318

concepts
setting recipients and copy counts 156

configuring
the message system 191
the system 150

console
logging information 112

controlling the message translation process 194

ConvertWIP rule 52, 54

copy counts
DAL and GVM variables 170
example 170
setting 155, 156

Counter field 159

counter search mask 173

CounterDFD option 71

CounterTbl option 53, 54, 71

CoverBackIn option 81

CoverBackOut option 81

CoverFrontIn option 81

CoverFrontOut option 81

CoverSheet option 81

CoverTray option 81

CPCNV utility 313, 320

CPU time 286, 304, 308

CreateIndex option 232

CreateTable option 232

CreateTime field 94

Index

358

CreateTime option 222

creating
print spool files (multiple step processing) 28
transaction records (multiple step processing) 22
transaction records (single step processing) 46

creating messages 197

Creating NAFILE and POLFILEs as VSAM KSDSs 303

Critical Error message 190

CRYRU utility 124

custom callback function in banner processing 15

Custom Rule field 159

D

DAL
analyzing performance 114

DAL functions
manipulating file names 88

DAL scripts
and extract files 333
banner processing 16
splitting print streams 85

DALFile option 231

DALLibraries control group 16, 105

DALRUN built-in function 123

DALVAR built-in function 123

Data control group
print batches 111

data definition table
defined 326
file format 331

data format definition files 327

data table files 326

database
archiving to 216

database files 326, 329

DataPath option 111
and message files 192
and the TRANSLAT.INI file 193

date stamps
turning off 194

DB Field Name values 246

DB2
databases 235

dBase 353

DBErrors option 219

DBHandler option 231, 232, 236

DBLib tracing 195

DBLogFile option 195

DBTable option 231

DDT files
caching 290, 305, 309

DDTFile option 231

DDTVSAM DD statement 296

DDTVSAM option 296

Debug option 232, 236

debug options 292, 306, 310

Debug_If_Rule option 109

Debug_Switches control group 109

DefaultTag option 217

defining
output message files 192

defining the extract file as a VSAM ESDS 293

DEFLIB 288

DefLib option
and the TRANSLAT.INI file 193

DEFLIB PDS 295, 297, 301

DelBlankPages function 105

descendant 137

DestField token 204

DeviceName function 87

DFD file
defined 209

DFD files 329
and 2-up printing 72
format 333

DlgTitles control group 241

DocSetNames control group 51

Documaker Add-In
selecting a language 134

359

Documaker Server
resource files 329
running via IDS 58
selecting a language 134
system benefits 8
system overview 2
understanding the system 9

Documaker Studio
selecting a language 133

Documanage
categorizing documents 245
data types 244
Extended Document Properties 249
mapping Documaker archive fields 246
Next/Retrieve cursor 248
using resources in GenData and GenPrint 13
using with GenArc 221
viewing archives 234

Document Type Number 185

Docupresentment 2

Docusave
retrieving form sets 240

DOS command line interface 312, 319

DownloadFAP option 107, 292, 306, 310

DownloadFonts option 315, 322

downloading
print streams 315, 322

downloading resources 311, 318

DPA files
viewing 234

DPASSWD command line option 217

DPRAddBlankPages rule 106

DPRDelBlankPages rule 106

duplex
adding and removing pages 104

DUSERID command line option 218

E

EBCDIC 327
code page 313, 320
uploading files 311, 318

ElapsedTimeStamp option 110

email
GenWIP 96

EMIT_CRITICAL type 197

EMIT_ERROR type 197

EMIT_MESSAGE type 197

EMIT_WARNING type 197

Enable_Debug_Options option 109, 112, 195

EnableEmailNotification option 96

EnableTransBanner option 105

encrypted values 124

ERRFile option 192

ERRFILE.DAT file 190
and the ImmediateTranslate option 194

error batch 338

error codes 191

error files 327, 336
turning off the date stamp 194

Error message 190

error messages
configuring 191
creating 197
defining the output file 192
delaying the translation process 194
determining where a message originates 203
disabling 191
formatting 202
initializing output files 193
message tokens 198
overview 190
setting up static text 200

ErrorCodeOverride control group 196

ErrorFileDateStamp option 110

ErrorFileOpenMode option 193

Index

360

errors
correcting 47
using GenArc with Documanage 233

examples
copy counts and sections 170
of form set definition files and transaction trigger

tables 169
RECIPIF rule 175
search mask and sections 173
setting search masks and recipients 180
transaction code 172

Excel spreadsheet databases 235

EXCPs 286, 304, 308

ExportIndex option 216

Expression option 111

EXT_Length option 72, 233

Extended Document Properties (XDPs) 245

extract files 288
defined 327
guidelines for 331
layout of 332
NoGenTrnTransactionProc rule 54
XML files 135

F

FAP files
adding and removing 104
caching 290
caching options 304, 308
compiled 311, 318
using pre-compiled 291, 305, 309

FAP2CFA utility 311, 318

FAP2MET utility 291, 305, 309, 314, 321

FAPAddBlankPages 104

FAPDelBlankPages 104

FAPLIB 289

FB 288

FBS 288, 303

FDT2CFA utility 311, 318

FIELD
BatchName control group 111

Field Description control group 334

FieldErrors option 35

FieldFuncTime option 113

FieldList option 111

fields
mapping with XPath 51

Fields control group 333
grouping print batches 111

file names
DAL functions 88

File option
INIFiles control group 123

file summary
GenArc program 33
GenData program (multiple step processing) 26
GenData program (single step processing) 49
GenPrint program (multiple step processing) 29
GenTrn program (multiple step processing) 23
GenWIP program (multiple step processing) 31

FileDrive function 88

FileExt function 88

FileName function 88

FilePath function 88

361

files
.CAR files 326
.DAT files 326
.DBF files 326
.DDT files 326, 331
.DFD files 327
.FAP files 327
.JDT files 328
.LOG files 328
.MDX files 328
00000001.DAT file 340
00000001.POL file 340
APPIDX.DBF file 341
APPIDX.DFD file 330, 341
APPIDX.MDX file 341
ARCHIVE.CAR file 341
batch files 338
BCH files 326
created by the GenData program 337
created by the GenTrn program 336
created by the GenWIP program 340
DFD file format 333
DFD files 329
error batch files 338
error files 327, 336
extract files 327, 331
FORM.DAT file 157
formats of 323
FSISYS.INI file 329
FSIUSER.INI file 329
initialization files 328
JDT files 331
log files 328, 336
MANUAL.BCH file 338
NAFILE.DAT file 337
NEWTRAN.DAT file 338
POLFILE.DAT file 337
RCBDFDFL.DFD file 330
recipient and copy count files 157
resource files 329
system files 323
transaction files 328, 336
transferring 311, 318

TRNDFDFL.DFD file 330
types and characteristics 288
types of 326
UNIQUE.DBF file 340
updated log and error files 338, 339
used by the GenArc program 341
WIP.DBF file 340
WIP.MDX file 340

FileType option 222

FinalPrinter option
and 2-up printing 70

FolderBy option 221

folders
updating 223

fonts
IDs equal to zero 110

FOR file
banner processing 15

ForceFolderUpdate option 223

ForceNoImages rule 73

form level triggers 157, 165

Form manager 156

Form name field 158

Form option 59

form set definition table 157
examples 169
summary 187

form sets
adding and removing pages 104
PrintFormset rule 55

FORM.DAT file 157
banner processing 19
examples 169
single step processing 53

format
DFD files 333
trigger table record 158

FormFile option 231

Index

362

forms
inclusion information 131
marking master forms 168
requirements 150
triggering in XML files 136

FormSetID field 93

FormSetRuleTime option 113

fseek 288

FSIFileName taken 202

FSIFileName token 204

FSILineNumber token 202, 204

FSIPATH environment variable 234

FSISYS
DDTVSAM option 296, 298
METVSAM option 300
options 304, 308
performance options 290
VSAMNA option 303
VSAMRCPTB option 302

FSISYS.INI file 329
and 2-up printing 70
banner processing 19, 20
grouping print batches 111
single step processing 47

FSIUSER.INI file 329
INIFiles control group 123
single step processing 47

FullFileName function 88

functions
built-in INI functions 121

G

GEN_DEBUG_DebugSwitchSet function 109

Gen_TabUtil_LoadListFromTable function 109

GenArc program
.CAR files 326
and Documanage 249
APPIDX.DBF file 341
APPIDX.DFD file 341
APPIDX.MDX file 341
ARCHIVE.CAR file 341
archiving transactions 32
command line options 217
description 12
file summary 33
files used 341
output files 25
running 216
single step processing 52
system scenarios 210
using with Documanage 221

GenData program
.BCH files 326
.DDT files 326
batch files 338
command line options 108
description 11
error batch files 327, 338
file summary (multiple step processing) 26
file summary (single step processing) 49
files created 337
MANUAL.BCH file 338
NAFILE.DAT file 326, 337
NEWTRAN.DAT file 338
processing transactions (multiple step processing) 24
restarting 34
TRNDFDFL.DFD file 330
updated log and error files 338, 339

GenDataStopOn control group 35

GenDataX job 296, 298

GenPrint program
accessing batch totals 39
banner processing 15
command line options 108
creating print spool files (multiple step processing)

363

28
description 12
file summary (multiple step processing) 29
output files from GenData (multiple step processing)

25

GenTranStopOn control group 44

GenTrn
controlling processing 44

GenTrn program
and single step processing 46
command line options 109
creating transaction records for multiple step

processing 22
description 11
error files 327, 336
file summary (multiple step processing) 23
files created 336
initializing message files 193
log files 328, 336
transaction files 328, 336
TRNDFDFL file 330

GenWIP program
.DAT files 326
00000001.DAT file 340
00000001.POL file 340
description 12
field assignments 93
file summary (multiple step processing) 31
files created 340
generating emails 96
output files from GenData (multiple step processing)

25
sending incomplete transactions to WIP 30
UNIQUE.DBF file 340
WIP.DBF file 340
WIP.MDX file 340

GETENV INI function 94

GetEnv INI function 239

GetRCBRec rule 73

going live 150

GroupName1 field 158

GroupName2 field 158

H

handling international characters 313, 320

header records
and extract files 333

HEAP option 287

HP-UX
archive/retrieval scenarios 211

I

IDCAMS job 303

IDS
running Documaker Server 58
trace file 195

IF_Rule control group 292, 306, 310

image level triggers 157, 162

Image Name field 158

Image option 59

ImageErrors option 35

ImageFuncTime option 113

ImageRuleTime option 113

ImmediateTranslate option 194
and ERRFILE.DAT 194

implementation methodologies 150

implementing your system 149

indexes
adding 107

INI built-in functions 121

INI command line option 217

INI files
changes for 2-up printing 70
using multiple 123

INIFiles control group 123

INIGroup control group 124

INILib option 112

InitArchive rule 52, 54

InitConvertWIP rule 52, 54

initialization files 328

Index

364

InitMerge rule 73

InitPageBatchedJob rule 73

InitPrint rule 54
and the NoGenTranTransactionProc rule 54

InitSetrecipCache rule 54

INLINE option 287

installing
the system 150

INT_LENGTH option 72

INT_Length option 233

international characters 313, 320

InUse field 93

J

JCLLIB PDS 295, 299, 301

JDTVSAM DD statement 298

JDTVSAM option 298

job definition table 328, 331

JOBID command line option 217

JOBID parameter
restarting GenArc 219

K

KEY
BatchName control group 111

key fields
and extract files 333

Key1
CaseSensitiveKeys option 238

KeyID
CaseSensitiveKeys option 238

L

languages
selecting 133

LASTERRORTOKEN token 199, 202

LASTREC column
restarting GenArc 220

LBYD option 233

LBYI option 233

LBYLOG option 233

LBYLOGFile option 231

line feeds 312, 319

lists of figures
adding 107

LoadListFromTable option 109

log files
configuring 191
creating log messages 197
defined 328
defining the output file 192
delaying the translation process 194
determining where a message originates 203
disabling 191
formatting 202
GenTrn program 336
initializing output files 193
message tokens 198
of archived transactions 216
overview 190
setting up static text 200
turning off the date stamp 194

LOGFile option 192

LOGFILE.DAT file 190

LogFileDateStamp option 110

logging messages 195

logging options 291, 305, 309

logical printers 91

LOGOFile option 231

LogToConsole option 112, 216, 291, 305, 309

LogTransactions option 191, 291, 305, 309

365

LookUp rule
and extract files 333

M

MailAttachment option 96

MailID option 96

MailMessageBody option 96

MailSubject option 96

MANUAL.BCH file 338

MapByDBName option 246

marking
master forms 168
subordinate sections 167

Master and Subordinate Sections 167

master flag
and performance 181

master forms
marking 168

master resource libraries
implementation 150

MasterDDTNotInLibrary option 231

MaxPolLineLength option 337

MaxRecsPerTransaction option 292, 307, 310

MergeAFP rule 74

message token file
using 203

message token files
defining the output file 192
overview 191

messages
assigning message numbers 198
clearing 192
configuring 191
creating 197
defining output message files 192
determining where the originated 202
formatting 202
initializing output message files 193
types 197
using tokens 198

Metacode
moving PMETs 299

methodologies for implementation 150

METVSAM option 300

ModifyTime field 93

moving
DDT files into a VSAM KSDS 295
JDT files into a VSAM KSDS 297
PMET files into a VSAM KSDS 299
SETRCPTB files to a VSAM KSDS 301

MSGFile option 192

MSGFILE.DAT file 190, 203

msgNO_MORE_IMAGES message 73

multi-file print callback method 85

MultiFileLogRecord option 119

MultiFilePrint callback function 50, 185

MultiFilePrint option
controlling the log 119

multi-mail transaction
and the EXT_LENGTH option 72

multi-mail transactions
PageBatchStage1InitTerm rule 54

multi-page forms
and 2-up printing 70

MVS
archive/retrieval scenarios 210
programs 311, 318

MVS file format 327

N

NAFILE 289, 303

NAFILE.DAT file 326, 337
and the WriteNAFile rule 55

NameDocBy INI option 221

NameDocBy option 222

NAPOLVS member 303

NEWTRAN.DAT file
defined 338

Index

366

NEWTRN.DAT file
and the WriteNAFile rule 55
optimizing performance 289
Restart option 218

next/retrieve cursor 248

NLS messages 192

NoGenTrnTransactionProc rule 54
and the WriteNAFile rule 55
mapping fields 51

NOT conditions
in search masks 183

NOVALIDATEHANDLE option 287

O

Occurrence flag 159

occurs clauses 332

ODBC
archive/retrieval scenarios 210
multiple connections 235

ODBC_FieldConvert control group 235

ODBC_FileConvert control group 235

OMR marks
and the AddLine rule 73

OPASSWD command line option 218

OpSystem option 327

Opt option 59, 60

Optimize option 287

optimizing performance 286, 304, 308

OR conditions
in search masks 183

Oracle
archive/retrieval scenarios 210, 211
ODBC driver 228

ORDER BY clause 217

OT_Docs table 221, 222

OUSERID command line option 218

OutBuff token 199

output files
for the GenArc program (Docusave) 25
for the GenPrint program (multiple step processing)

25
for the GenWIP program (multiple step processing)

25

overflow
and class recipients 66
defined 333
XML files 135

Overflow flag 159

P

PageBatchStage1InitTerm rule 54

PageRange option 53
and 2-up printing 71

pages
adding and removing 104
total 38

parent 137

parentheses
in search masks 183

Passwd option 232

PDF format 2

PDS2VSDX job 295

PDS2VSJX job 297

PDS2VSPX job 299

performance
INI options 304, 308
optimizing 286, 304, 308
reducing job throughput 194

platforms
multiple INI files 123

PMETLIB PDS 291, 299

PO Handler 221

PODocument2Field control group 223

POField2Document control group 223

POLFILE 289, 303

POLFILE.DAT file 337
and the WriteNAFile rule 55

367

pre-compiled Metacode files 290, 299, 314, 321

print batches
banner processing 15
grouping 111

print files 290

print spool files
creating (multiple step processing) 28

print streams
downloading 315, 322
splitting recipient batch 85

Print_Batches control group 111
banner forms 16

printer drivers
banner processing 15

Printer option
and 2-up printing 70, 71

PrintFormset rule 55, 130
and the NoGenTranTransactionProc rule 54
splitting recipient batch print streams 85

printing
2-up 69
PrintFormset rule 55

PrintTimeStamp option 113, 194

ProcessID built-in INI function 124

processing
transactions (multiple step processing) 24
transactions (single step processing) 46

processing overview 11

ProcessQueue rule 55

PRTLIB data 54

PrtType option 91

PSF/2 315, 322

Q

Qualifier option 232

queues
ProcessQueue rule 55

R

RCBDFDFL.DAT file
and 2-up printing 72

RCBDFDFL.DFD file 330
and the WriteRCBWithPageCount rule 55
grouping print batches 111

RCBStatDtlDFD option 39

RCBStats option 39

RCBStatsDtl option 39

RCBStatsTot option 39

RCBStatsTotDFD option 39

RCBTotals option 39

RCP2VSAM utility 289

RCP2VSMX job 301

Receive command 312, 319

RecipBatch function 19

recipient batch (RCB) transaction fields 93

recipient batch DFD file
and 2-up printing 72

recipient batch file 91, 330

recipient batch files 289

recipient batch records
PageBatchStage1InitTerm rule 54
unique data 59

Recipient copy count field 159

Recipient list field 159

recipients
class recipients 66
key files 157
mapping information 123
selecting 156
setting 155

RECIPIF rule
and extract files 333
and performance 181
example 175

RecipMap2GVM control group 59

RecipMap2GVM INI control group 67

RecipName function 19

record formats 288

Index

368

Records per first image field 159

Records per overflow image field 159

RecordType option 95

Report option 287

Req option 59, 60

requirements definition 150

resource files 329

resources
for single step processing 47

Restart control group 34

restart file 34

Restart option 218, 219

Restart table
defined 209

RestartJob rule 35

RetainTransBeginForm option 17, 18

Retrieval
options 241

Retrieval Options window 241

Retrieve Document window 240

RightGutter option 80

rollback
defined 208
restarting GenArc 220

RP Struct 197

RPErrorProc function 197

RPLogProc function 197

RstFile option 34

RULCheckTransaction rule 34

RuleFilePool option 305, 309

rules
for 2-up printing 73
for single step processing 53
listing those executed 113
order for 2-up printing 75
used in multiple step processing 33

Rules Processor
trace file 195

Rules Publishing Solution
system overview 3

RULStandardProc rule
and the WriteNAFile rule 55

RunMode control group 292, 306, 310
checking font IDs 110
DownloadFAP option 107
grouping print batches 111
mapping fields with XPath 51

RunSetRcpTbl rule
and the BuildMasterFormList rule 53

runtime options 287

S

Search Mask 1 field 159

Search Mask 2 field 159

search masks
and recipients 180
example 173
formatting 182
RECIPIF rule 175

section level triggers 157, 162

sections
marking subordinate sections 167
master and subordinate 167
tokens 199, 204
triggering in XML files 135, 136

self 137

Send command 312, 319

sequence numbers
and extract files 332

Server option 232, 235

set recipient table
and performance 181

SetDeviceName function 87

SETRCPTB
member 289, 301

SETRCPTB.DAT file
and the StandardFieldProc rule 55
and the StandardImageProc rule 55
examples 169

369

SETRECIP table
defined 157
specifying 160

SetState rule
and extract files 333

setting
FSISYS options 290
FSISYS.INI options 304, 308

setting up
error messages and log files 189
message text 200
recipients and copy counts 155
transaction trigger tables 160

Show_Debug_Options option 109

sibling 137

simplex
adding and removing pages 104

single step processing
clearing messages 192
example 56
overview 46
WriteOutput rule 55

single-page forms
and 2-up printing 69

skipping batch message 73

SortFormsForRecip callback function 185

sorting records 217

SQL Server
archive/retrieval scenarios 210

SQLID command line option 218

StandardFieldProc rule 55
and the WriteNAFile rule 55

StandardImageProc rule 55

StandardJobProc rule 68

statistics processing 39

Status column
restarting GenArc 219, 220

StatusCode option 95

STOPREC command line option 218

subordinate flags
and performance 181

subordinate sections
marking 167
overview 167

SuppressBanner function 19

Sybase
archive/retrieval scenarios 210

SYSPRINT
DD statement 291

system
resources on a PC 311, 318

system files 323

system implementation methodology 150

system overview 11

system scenarios
GenArc 210

system settings
multiple step processing 47

T

table names 257

tables
defined 208

TblLkUp rule
and extract files 333

TEMPIDX file
defined 208

testing
the system 150

text files 311, 318

TicketJobProc rule 68

tildes
in search masks 183

token-data pairs 198, 201, 203

trace files
ProcessID built-in INI function 124

TraceFile option 195

transaction codes
example 172

Transaction codes field 159

Index

370

transaction files 328, 336

transaction records
creating for multiple step processing 22
creating for single step processing 46

transaction trigger table
defined 157
examples 169
how it works 161
specifying 160
summary 187

TransactionErrors option 35
GenTrn processing 44

transactions
archiving 32
log of archived 216
logging 112
processing (multiple step processing) 24

Transall
selecting a language 133

TransBannerBeginForm option 16

TransBannerBeginScript option 16, 105

TransBannerEndForm option 16

TransBannerEndScript option 16

transferring files 312, 319

TRANSLAT utility 190, 194

TRANSLAT.INI file 203
defining the output message file 193
determining where messages originate 202
formatting messages 202
message numbers 198
message tokens 199
setting up message text 200

translating messages 194

TranslationFile option 192

TRIGCOUNT node 131

trigger levels
defined 157

trigger records
levels 157

Trigger Table Record Format 158

Trigger2Archive control group 52, 54, 238

Trigger2WIP control group 93, 130

triggering logic 187

triggers
and performance 181
form inclusion information 131
form level 165
section level 162

TRN files 328, 336

Trn_Fields control group 51

TRNDFDFL.DFD file 330

true/false search mask 173

TWOUP control group 53, 54

TwoUp control group 71

TwoUpStart option 71

U

unique data
adding 59

UNIQUE.DBF file 340

UniqueString function 88

UniqueTag option 232

UNIX
archive/retrieval scenarios 211

updated log and error files 338, 339

UpdatePOLFile rule
and the WriteOutput rule 55

uploading and downloading resources 311, 318

uppercase 257

UseRestartTable option 222

UserID option 95, 124, 232

UseXMLExtract rule 135

V

VSAMNA option 303

VSAMRCPTB option 302

371

W

wall clock time 286, 304, 308

Warning message 190

Windows
archive/retrieval scenarios 210

WIP
and the archive index file 237
transaction fields 130

WIP Edit plug-in
WIPField built-in function 125

WIP RecType field 95

WIP StatusCD field 95

WIP.DBF file 340

WIP.DFD files 93

WIP.MDX file 340

WriteNAFile rule
and the StandardFieldProc rule 55
described 55

WriteOutput rule 55

X

Xbase 353
archive/retrieval scenarios 210
DFD files 327, 329
maximum length 334

XDPs 249

XERDNLD utility 314, 321

Xerox
image, font, and form files 314, 321
pre-compiled Metacode files 314, 321

XLTUS.MSG file 200, 202, 203

XML 51
job tickets 68
path locator 137

XML files
as extract files 135

XML print driver 130

XMLExtract option 51

XMLFileExtract rule 135

XMLTrnFields option 51

XPath 137
mapping fields 51

XPATHW32 utility 137, 140

Y

Year 2000 compliance
and extract files 333

Index

372

	Start
	Notice
	Contents
	Introduction
	System Overview
	Rules Publishing Solution Overview
	Document Automation Evolution
	Stage 1 - paper automation
	Stage 2 - workflow automation
	Stage 3 - paperless information automation
	Document Automation Goals

	System Benefits

	Understanding the System
	Processing Overview
	Processing Options
	Using Banner Processing
	Enabling banner processing
	Specifying banner forms and scripts
	Banner form processing and multifile print
	Processing logic
	DAL functions
	Banner processing example

	Using Multiple step Processing
	Creating Transaction Records
	File Summary

	Processing Transactions
	Output Files for GenPrint
	Output Files for GenWIP
	Output Files for GenArc
	File Summary

	Creating Print Spool Files
	File Summary

	Sending Incomplete Transactions to WIP
	File Summary

	Archiving Transactions
	File Summary

	Rules Used in Multiple Step Processing

	Restarting the GenData Program
	RULCheckTransaction rule
	RestartJob rule
	INI options

	Generating Batch Status Emails
	Tracking Batch Page Statistics
	Recipient Page Statistics
	Batch Totals Summary File
	Accessing totals in GenPrint
	INI Options

	Sample Log File
	Default DFD Files
	RCBStatsDtlDFD
	RCBStatsTotDFD

	Controlling GenTrn Processing
	Using Single Step Processing
	Creating and Processing Transaction Records
	System Settings and Resources

	Creating Print Files
	File Summary

	Using the MultiFilePrint Callback Function
	Mapping Fields with XPath
	Running Archive in Single Step Processing
	Running WIP in Single Step Processing
	Rules Used in Single Step Processing
	Archive
	BatchingByRecipINI
	BatchByPageCount
	BuildMasterFormList
	ConvertWIP
	InitArchive
	InitConvertWIP
	InitPrint
	InitSetRecipCache
	NoGenTrnTransaction Proc
	PageBatchStage1Init Term
	PaginateAndPropogate
	PrintFormset
	ProcessQueue
	StandardFieldProc
	StandardImageProc
	WriteNAFile
	WriteOutput
	WriteRCBWithPage Count

	Single Step Processing Example
	Base rules
	Base form set rules
	Base image rules
	Base field rules

	Using IDS to Run Documaker
	Writing Unique Data into Recipient Batch Records
	Optional formatting information
	Example
	BANNER.DAL

	Using Class Recipients
	Running Documaker Using XML Job Tickets
	Handling 2-up Printing
	2-up printing with single page forms
	2-up printing with multiple page forms
	Changing the INI File
	Creating the TWOUP control group
	Creating the Added_Fonts control group

	Changing the Recipient Batch DFD File
	Rules Used for 2-up Printing
	AddLine
	AddTextLabel
	ForceNoImages
	GetRCBRec
	InitMerge
	InitPageBatchedJob
	MergeAFP
	ParseComment Example
	PrintData
	ProcessRecord
	Placing the 2-up Rules in the JDT File

	2-up Processing Example
	2upbycnt.bat
	2upstep1.ini
	2upstep2.ini
	2upstep3.ini

	Running the GenData Program
	Step 1 - Using the AFGJOB1.JDT file
	Step 2 - Using the AFGJOB2.JDT file
	Step 3 - Using the AFGJOB3.JDT file

	Printing in Booklet Format
	Booklet Printing Examples

	Splitting Recipient Batch Print Streams
	Splitting batches by sheet count
	Creating PDF output
	DAL functions
	DeviceName
	Syntax

	SetDeviceName
	Syntax

	BreakBatch
	Syntax

	UniqueString
	Syntax

	Using DAL to Manipulate File Names
	FileDrive
	Syntax

	FilePath
	Syntax

	FileName
	Syntax

	FileExt
	Syntax

	FullFileName
	Syntax

	Assigning Printer Types Per Logical Batch Printer
	Controlling WIP Field Assignments
	Generating Email Notifications from GenWIP
	Errors

	Using Multi- mail Processing
	Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
	Setting Up the FSISYS.INI File for Multi-mail Processing

	Using Addressee Records
	Using Addressee Records in Batch Files
	Using Address Records for Printing

	Adding and Removing Pages
	Using Custom Code
	Adding pages
	Removing pages

	Using DAL Scripts
	Adding pages
	Removing pages

	Using IDS
	Adding pages
	Removing pages

	Adding Indexes and Tables of Contents
	Using Run- Time Options
	GenData Command Line Options
	GenPrint Command Line Options
	GenTrn Command Line Options
	Debugging Options
	Noting font IDs of zero
	Suppressing elapsed runtime messages

	Grouping Print Batches
	Controlling Console Logging
	Logging INI File Names and Options
	Listing the Rules Executed
	Analyzing DAL Performance
	Handling Large Files on Windows, UNIX, and Linux
	Using the AutoIncreaseOffset Lengths option

	Handling Large Extract and NAFILE Files on z/OS

	Controlling What is in the MultiFilePrint Log
	Using INI Built-In Functions
	~GetEnv
	~GVM
	~Platform
	~OS
	~DALRUN ~DALVAR
	~Encrypted
	~ProcessID
	~WIPField
	Accessing WIP Fields
	Formatting arguments
	Specifying locales
	Using the ~Field function

	Defining Built-in Functions via Studio

	Outputting WIP Field Data Onto the XML Tree
	Using Form Inclusion Information
	Selecting the Display Language
	Documaker Studio
	Transall
	Documaker Server
	Documaker Server Error Handling

	Documaker Add-In
	Documaker Add-In Error Handling

	Using XML Files
	Handling Overflow
	Triggering Forms and Sections

	Using XPath
	XPath Syntax
	Axes
	Symbols
	Functions
	Expressions

	Using the XPath Testing Utility
	Examples
	Example XML file
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11

	Implementing Your System
	Using a Methodology
	Phase 1 - Define the requirements
	Phase 2 - Create the detail forms requirements
	Phase 3 - Build the Master Resource Library
	Phase 4 - Install and configure the system
	Phase 5 - Test the system
	Phase 6 - Go live

	Gathering Information
	Understanding Your Niche
	Understanding Your Organization

	Roles and Responsibilities

	Setting Recipients and Copy Counts
	Concepts
	Key Files
	Transaction Trigger Table
	Trigger Levels

	Form Set Definition Table

	Trigger Table Record Format
	Specifying the Transaction Trigger Table
	How Transaction Triggering Works
	Section Level Triggers

	Form Level Triggers
	Master and Subordinate Sections
	Marking Subordinate Sections
	Marking Master Forms

	Examples
	Specifying Copy Counts and Sections
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Transaction Codes
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Setting Up Search Mask and Sections
	FORM.DAT file
	SETRCPTB.DAT file
	POL File

	Using the RECIPIF Rule
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Automatic Overflow
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Forced Overflow
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Setting Search Masks and Recipients
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using the Set Recipient Table and Extract Files
	Formatting Search Masks
	Spaces
	Commas
	Tildes
	Parentheses
	Using the OR condition
	Using the NOT condition
	Using AND and OR conditions

	Sorting Forms by Recipient
	INI files
	Sort tables

	Summary

	Setting Up Error Messages and Log Files
	Overview
	Types of Error Codes

	Configuring the Message System
	Enabling and Disabling Messages
	Logging INI Files and Options Used

	Clearing Messages
	Defining the Output Message Files
	Initializing the Output Message Files
	Turning Off Date Stamps
	Controlling the Translation Process
	DBLib Trace Messages
	Overriding Error Behavior

	Creating Messages
	Using the RPErrorProc and RPLogProc Functions
	RP Struct
	Message Types
	Message Number
	Assigning numbers to custom messages

	Using Message Tokens
	Setting Up Message Text
	Message examples
	Undefined tokens
	Adding a new line
	Determining where the message originated

	Using the Message Token File

	Archiving and Retrieving Information
	Terminology
	Files and tables
	Commit
	Rollback
	GenArc
	AFEMAIN
	CARFILE
	APPIDX
	TEMPIDX
	CATALOG
	RESTART
	DFD

	System Scenarios
	Scenarios for OS/390 (MVS)
	Scenarios for Windows 32-bit
	Scenarios for UNIX

	Archive and Retrieval Features
	Processing Overview
	DBASE IV
	DB2
	SQL server
	Oracle
	Files GenArc Uses
	Input files
	Output files

	How the GenArc Program Works

	Running GenArc
	Logging archived transactions
	Archiving to a database
	Sorting records in a database
	Preparing SQL
	Command Line Options
	INI
	JOBID
	DPASSWD
	DUSERID
	OPASSWD
	OUSERID
	RESTART
	SQLID
	STOPREC
	Using the Restart Option

	Using GenArc with Documanage
	Forcing folder updates
	FSIUSER.INI sample
	APPIDX.DFD sample
	CARFILE.DFD sample
	Using the Oracle ODBC Driver
	CARFILE DFD

	Creating the Database and Tables
	Resolving Errors

	Viewing Archives in Documanage
	Using Multiple Simultaneous ODBC Connections

	Using WIP and the Archive Index File
	Formatting Archive Fields
	Converting the case of key fields
	Reformatting dates
	Storing a constant value

	Retrieving Archived Forms
	Files the Archive Module Uses
	Input files
	Output files

	Using the Archive Module
	Retrieval Options

	Working with Documanage
	Using Documanage Data Type Support
	Setting Up Automatic Category Overrides
	Mapping Documaker Archive Fields to Documanage Properties
	Example 1
	Example 2

	Using Next/Retrieve Cursor
	Enhanced Documanage Document Extended Properties Support
	FSISYS.INI file
	TRNDFDFL.DFD file
	APPIDX.DFD file
	AFGJOB.JDT file
	Extract file

	Setting Up Archive/ Retrieval Configurations
	DB2 Server on OS/390 - Windows Client
	Configuring the Server
	Getting the DB2 location name and LUNAME
	Defining the SNA server’s APPC LU in VTAM
	Defining the DB2 Application Major Node in VTAM
	Setting Up the Windows 2000 Server (Middle Tier)
	Installing and configuring Microsoft’s SNA Server

	Installing and Configuring Microsoft’s SNA Server
	Configuring SNA Server 4.0 SP3
	Setting Up DB2 on a Windows 2000 Server
	Installing DB2 on a Windows 2000 Server
	Configure the DB2 instance
	Defining an OS/390 node
	Defining a system database entry
	Updating TCP/IP values on the Windows 2000 server
	Defining a database connection services entry

	Installing and Configuring DB2 on a Windows 2000 Server
	Defining an OS/390 system
	Defining a DB2 instance
	Defining an OS/390 database

	Setting Up Universal Database on Windows 2000
	Installing Universal Database
	Configuring Universal Database

	Updating TCP/IP-related Values on a Windows 2000 Server

	Common DB2 Errors
	Setting Up Clients
	Defining a DB2/2000 node
	Defining a system database entry
	Updating TCP/IP- related values on a Windows client
	Setting Up the INI Options for the DB2 Driver

	DB2 Server on Windows - Windows Client
	Setting up a DB2 Database on the Server
	Setting Up a Client for DB2 VERSION 6.1
	Archiving to a remote DB2 database using an ODBC driver
	Setting up an ODBC data source
	Setting up INI options for the ODBC driver

	Archiving to a Remote DB2 Database Using the Native DB2 Driver
	Setting up a DB2 database
	Setting up the INI options for the DB2 driver

	DB2 Server and Client on Windows
	Setting Up a DB2 Database
	Setting up an ODBC data source
	Setting up INI options for ODBC
	Archiving to a Local DB2 Database Using the Native DB2 Driver
	Setting up the DB2 database
	Setting up the INI options for the DB2 driver

	SQL Server on Windows - ODBC Client on Windows
	Setting Up a Client
	Setting up the INI options for ODBC

	IDS on Windows - DB2 Archive on z/OS
	Setting Up the DB2 Archive on z/OS

	Creating a z/ OS Database
	Updating TCP/IP Values on a Windows 2000 Server

	Optimizing Your System
	Optimizing Performance on z/OS
	Compile Options
	OPTIMIZE
	NOVALIDATEHANDLE
	INLINE

	Language Environment (LE) or c/370 Runtime Options
	REPORT
	HEAP

	File Types and Characteristics
	Block sizes
	Record formats
	Number of files
	Extract Files
	Defining the extract file as a VSAM ESDS

	DEFLIB
	Placing DDT files into a VSAM KSDS

	SETRCPTB
	Moving the SETRCPTB member into a VSAM KSDS

	FAPLIB
	TRNFILE
	NEWTRN
	NAFILE
	Creating a NAFILE as a VSAM file

	POLFILE
	Creating a POLFILE as a VSAM file

	Recipient Batch Files
	Pre-compiled Xerox Metacode Files (PMETLIB)
	Placing PMETs into a VSAM KSDS

	Print Files

	Setting Your FSISYS INI Options
	Caching Options
	Caching FAP files
	DDT files
	Using/Caching Xerox PMET files
	Using AFP Overlays

	Logging Options
	LogTransactions option
	LogToConsole option

	Debug Options
	If_Rule control group
	RunMode control group

	Other Options
	MaxRecsPerTransaction option
	AliasPrintBatches option

	Defining the Extract File as a VSAM KSDS
	Internal format of the VSAM KSDS file

	Moving DDT Files into a VSAM KSDS
	Moving JDTs into a VSAM KSDS
	Moving PMETs into a VSAM KSDS
	Moving SETRCPTB to a VSAM KSDS
	Creating NAFILEs and POLFILEs as VSAM KSDSs

	Optimizing Performance on UNIX/Linux
	CPU Time
	EXCPs
	Wall Clock Time
	Batch Window
	Setting FSISYS INI Options
	Caching FAP files
	DDT files
	Caching Xerox PMET files
	Using AFP Overlays

	Logging Options
	LogTransactions option
	LogToConsole option

	Debug Options
	Run Options
	Other Options
	MaxRecsPerTransaction option
	AliasPrintBatches option

	Optimizing Performance On Windows
	Setting FSISYS INI Options
	Caching Options
	Caching FAP files
	DDT files
	Using/Caching Xerox PMET files
	Using AFP Overlays

	Logging Options
	LogTransactions option
	LogToConsole option

	Debug Options
	If_Rule control group

	Run Options
	RunMode control group

	Other Options
	MaxRecsPerTransaction option
	AliasPrintBatches option

	Uploading and Downloading Resources on z/OS
	Transferring Files
	Handling International Characters
	Running CPCNV on a PC
	Running CPCNV on z/OS

	Xerox Image, Font, and Form Files
	Xerox Pre-compiled Metacode (PMET) Files

	Moving Resource Files Between UNIX/Linux and Windows
	Uploading a Library from PC to UNIX
	Downloading Print Streams from UNIX to PC

	Uploading and Downloading Resource Files
	Uploading and Downloading Resources on z/OS
	Transferring Files
	Handling International Characters
	Running CPCNV on a PC
	Running CPCNV on z/OS

	Xerox Image, Font, and Form Files
	Xerox Pre-compiled Metacode (PMET) Files

	Moving Resource Files Between UNIX/Linux and Windows
	Uploading a Library from PC to UNIX
	Downloading Print Streams from UNIX to PC

	System Files
	Overview
	Types of Files
	BCH files
	CAR files
	DAT files
	DBF files
	DDT files
	DFD files
	Error files
	Extract files
	FAP files
	Initialization files
	JDT files
	Log files
	LOG files
	MDX files
	Transaction files

	Resource Files
	FSISYS.INI file
	FSIUSER.INI file
	DFD files
	TRNDFDFL.DFD file
	RCBDFDFL.DFD file
	APPIDX.DFD
	.DDT files
	.JDT files
	Extract files
	DFD File Format
	Fields Group
	Field Description Group

	Files Created by the GenTrn Program
	Transaction files
	Error files
	Log files

	Files Created by the GenData Program
	NAFILE.DAT file
	POLFILE.DAT file
	NEWTRN.DAT file
	Batch files
	MANUAL.BCH file
	Error batch
	Updated log, error, and message files

	Files Created by the GenPrint Program
	Spool files
	Updated log and error files

	Files Created by the GenWIP Program
	WIP.DBF file
	WIP.MDX file
	00000001.DAT file
	00000001.POL file
	UNIQUE.DBF file

	Files Used by the GenArc Program
	APPIDX.DBF file
	APPIDX.DFD file
	ARCHIVE.CAR file
	APPIDX.MDX file
	APPIDX.DFD file

	Glossary
	00000001.DAT File
	00000001.POL File
	AFP
	ARCHIVE.CAR File
	ARCHIVE.DBF File
	ARCHIVE.DFD File
	.BCH Files
	Batch Files
	.CAR Files
	DAL
	.DAT Files
	.DBF Files
	DDT Files
	.DFD Files
	Distributed Resource Library
	Duplex
	ERRFILE.DAT
	Error Batch
	Error Files
	Extract Files
	.FAP Files
	FDB.DBF File
	fetype
	Fixed Data
	Font Manager
	Form
	Form Set
	FSISYS.INI File
	FSIUSER.INI File
	.FXR Files
	GenArc Program
	GenData Program
	GenPrint Program
	GenTrn Program
	GenWIP Program
	Graphics Manager
	.INI Files
	.JDT Files
	Library Manager
	Log Files
	.LOG Files
	MANUAL.BCH File
	Master Resource Library
	Metacode
	.MDX Files
	NAFILE.DAT File
	NEWTRN.DAT File
	Objects
	Overflow
	Page
	PCL
	POLFILE.DAT File
	PostScript
	Section
	Simplex
	System Releases
	System Patches
	Transaction List
	.TRN Files
	TRNDFDFL.DFD File
	UNIQUE.DBF File
	Variable Data
	WIP.DBF File
	WIP.MDX
	xBase

	Index
	Symbols
	& (ampersand) 199
	.BCH files 326
	.CAR files 326
	.DAT files 326
	.DBF files 326
	.DDT files 326, 331
	.DFD files 327
	.FAP files 327
	.INI files 328
	.JDT files 328, 331
	.LOG files 328
	.MDX files 328
	~Encrypted 124
	~GetEnv function 122
	~OS function 123
	~Platform function 123
	~WIPField built-in function 125

	Numerics
	00000001.DAT file 340
	00000001.POL file 340
	2-up printing
	3270 emulator program 312, 319

	A
	Access databases 235
	AddBlankPages function 104
	Added_Fonts control group 72
	AddedOn option 222
	AddForm function
	adding
	AddLine rule 73
	AddTextLabel rule 73
	Adobe Acrobat 2
	AFEMAIN program
	AfeProcedures control group 237
	AFEW32 237
	AFEWIP2ArchiveRecord 237
	AfeWIP2ArchiveRecord control group 237
	AFG2WIP control group 95
	AFGJOB member 297
	AFGJOB.JDT file 328, 331
	AFP
	AIX
	AliasPrintBatches option 111, 292, 307, 310
	ALLOCDDT job 295
	ALLOCJDT job 297
	AlwaysSQLPrepare option 217
	ancestor 137
	ANSI code page 313, 320
	APPIDX file
	APPIDX.DBF file 341
	APPIDX.DFD file 330, 341
	APPIDX.MDX file 341
	application index file 330
	archive
	archive index file
	Archive rule 52, 53
	ARCHIVE.CAR file 341
	ArchiveMem option 216, 222
	archiving
	ArcRet control group 216, 241
	ARCRET utility 248
	ARCVIEW utility 234
	ASCII files 311, 318
	AutoIncreaseOffsetLengths option 118

	B
	banner form processing
	banner forms
	banner processing
	BARR software 315, 322
	BaseErrors option 35
	BaseRuleTime option 113
	Batch control group 53
	batch files 338
	Batch window 286, 304, 308
	BatchBannerBeginForm option 16
	BatchBannerBeginScript option 16
	BatchBannerEndForm option 16
	BatchBannerEndScript option 16
	BatchByPageCount rule 53
	BatchingByRecip control group 53
	BatchingByRecipINI rule 53
	BatchTable option 111
	BlankPage option 81
	block sizes 288
	Booklet option 80
	booklet printing 80
	BookletPapersize option 80
	BookletTray option 80
	BreakBatch function 87
	BuildMasterFormList rule 53
	built-in functions 121

	C
	Cabinet option 222
	CacheFAPFiles option 304, 308
	CacheFiles option 305, 309
	caching options
	callback functions
	CallbackFunc option 91
	CARData control group 233
	CARFILE
	CARFILE.DFD file 229
	carriage returns 312, 319
	CaseSensitiveKeys option 238
	CATALOG file
	CheckCount option 34
	CheckZeroFontID option 110
	child 137
	Class option 235
	class recipient 66
	ClearMsgFile option 192
	code page 1004 313, 320
	code page 37 313, 320
	column names 257
	COMM_RECS column
	commas
	comment records 19
	commit
	CommitEvery option 220
	compile options 287
	COMPLIB 311, 318
	concepts
	configuring
	console
	controlling the message translation process 194
	ConvertWIP rule 52, 54
	copy counts
	Counter field 159
	counter search mask 173
	CounterDFD option 71
	CounterTbl option 53, 54, 71
	CoverBackIn option 81
	CoverBackOut option 81
	CoverFrontIn option 81
	CoverFrontOut option 81
	CoverSheet option 81
	CoverTray option 81
	CPCNV utility 313, 320
	CPU time 286, 304, 308
	CreateIndex option 232
	CreateTable option 232
	CreateTime field 94
	CreateTime option 222
	creating
	creating messages 197
	Creating NAFILE and POLFILEs as VSAM KSDSs 303
	Critical Error message 190
	CRYRU utility 124
	custom callback function in banner processing 15
	Custom Rule field 159

	D
	DAL
	DAL functions
	DAL scripts
	DALFile option 231
	DALLibraries control group 16, 105
	DALRUN built-in function 123
	DALVAR built-in function 123
	Data control group
	data definition table
	data format definition files 327
	data table files 326
	database
	database files 326, 329
	DataPath option 111
	date stamps
	DB Field Name values 246
	DB2
	dBase 353
	DBErrors option 219
	DBHandler option 231, 232, 236
	DBLib tracing 195
	DBLogFile option 195
	DBTable option 231
	DDT files
	DDTFile option 231
	DDTVSAM DD statement 296
	DDTVSAM option 296
	Debug option 232, 236
	debug options 292, 306, 310
	Debug_If_Rule option 109
	Debug_Switches control group 109
	DefaultTag option 217
	defining
	defining the extract file as a VSAM ESDS 293
	DEFLIB 288
	DefLib option
	DEFLIB PDS 295, 297, 301
	DelBlankPages function 105
	descendant 137
	DestField token 204
	DeviceName function 87
	DFD file
	DFD files 329
	DlgTitles control group 241
	DocSetNames control group 51
	Documaker Add-In
	Documaker Server
	Documaker Studio
	Documanage
	Document Type Number 185
	Docupresentment 2
	Docusave
	DOS command line interface 312, 319
	DownloadFAP option 107, 292, 306, 310
	DownloadFonts option 315, 322
	downloading
	downloading resources 311, 318
	DPA files
	DPASSWD command line option 217
	DPRAddBlankPages rule 106
	DPRDelBlankPages rule 106
	duplex
	DUSERID command line option 218

	E
	EBCDIC 327
	ElapsedTimeStamp option 110
	email
	EMIT_CRITICAL type 197
	EMIT_ERROR type 197
	EMIT_MESSAGE type 197
	EMIT_WARNING type 197
	Enable_Debug_Options option 109, 112, 195
	EnableEmailNotification option 96
	EnableTransBanner option 105
	encrypted values 124
	ERRFile option 192
	ERRFILE.DAT file 190
	error batch 338
	error codes 191
	error files 327, 336
	Error message 190
	error messages
	ErrorCodeOverride control group 196
	ErrorFileDateStamp option 110
	ErrorFileOpenMode option 193
	errors
	examples
	Excel spreadsheet databases 235
	EXCPs 286, 304, 308
	ExportIndex option 216
	Expression option 111
	EXT_Length option 72, 233
	Extended Document Properties (XDPs) 245
	extract files 288

	F
	FAP files
	FAP2CFA utility 311, 318
	FAP2MET utility 291, 305, 309, 314, 321
	FAPAddBlankPages 104
	FAPDelBlankPages 104
	FAPLIB 289
	FB 288
	FBS 288, 303
	FDT2CFA utility 311, 318
	FIELD
	Field Description control group 334
	FieldErrors option 35
	FieldFuncTime option 113
	FieldList option 111
	fields
	Fields control group 333
	file names
	File option
	file summary
	FileDrive function 88
	FileExt function 88
	FileName function 88
	FilePath function 88
	files
	FileType option 222
	FinalPrinter option
	FolderBy option 221
	folders
	fonts
	FOR file
	ForceFolderUpdate option 223
	ForceNoImages rule 73
	form level triggers 157, 165
	Form manager 156
	Form name field 158
	Form option 59
	form set definition table 157
	form sets
	FORM.DAT file 157
	format
	FormFile option 231
	forms
	FormSetID field 93
	FormSetRuleTime option 113
	fseek 288
	FSIFileName taken 202
	FSIFileName token 204
	FSILineNumber token 202, 204
	FSIPATH environment variable 234
	FSISYS
	FSISYS.INI file 329
	FSIUSER.INI file 329
	FullFileName function 88
	functions

	G
	GEN_DEBUG_DebugSwitchSet function 109
	Gen_TabUtil_LoadListFromTable function 109
	GenArc program
	GenData program
	GenDataStopOn control group 35
	GenDataX job 296, 298
	GenPrint program
	GenTranStopOn control group 44
	GenTrn
	GenTrn program
	GenWIP program
	GETENV INI function 94
	GetEnv INI function 239
	GetRCBRec rule 73
	going live 150
	GroupName1 field 158
	GroupName2 field 158

	H
	handling international characters 313, 320
	header records
	HEAP option 287
	HP-UX

	I
	IDCAMS job 303
	IDS
	IF_Rule control group 292, 306, 310
	image level triggers 157, 162
	Image Name field 158
	Image option 59
	ImageErrors option 35
	ImageFuncTime option 113
	ImageRuleTime option 113
	ImmediateTranslate option 194
	implementation methodologies 150
	implementing your system 149
	indexes
	INI built-in functions 121
	INI command line option 217
	INI files
	INIFiles control group 123
	INIGroup control group 124
	INILib option 112
	InitArchive rule 52, 54
	InitConvertWIP rule 52, 54
	initialization files 328
	InitMerge rule 73
	InitPageBatchedJob rule 73
	InitPrint rule 54
	InitSetrecipCache rule 54
	INLINE option 287
	installing
	INT_LENGTH option 72
	INT_Length option 233
	international characters 313, 320
	InUse field 93

	J
	JCLLIB PDS 295, 299, 301
	JDTVSAM DD statement 298
	JDTVSAM option 298
	job definition table 328, 331
	JOBID command line option 217
	JOBID parameter

	K
	KEY
	key fields
	Key1
	KeyID

	L
	languages
	LASTERRORTOKEN token 199, 202
	LASTREC column
	LBYD option 233
	LBYI option 233
	LBYLOG option 233
	LBYLOGFile option 231
	line feeds 312, 319
	lists of figures
	LoadListFromTable option 109
	log files
	LOGFile option 192
	LOGFILE.DAT file 190
	LogFileDateStamp option 110
	logging messages 195
	logging options 291, 305, 309
	logical printers 91
	LOGOFile option 231
	LogToConsole option 112, 216, 291, 305, 309
	LogTransactions option 191, 291, 305, 309
	LookUp rule

	M
	MailAttachment option 96
	MailID option 96
	MailMessageBody option 96
	MailSubject option 96
	MANUAL.BCH file 338
	MapByDBName option 246
	marking
	Master and Subordinate Sections 167
	master flag
	master forms
	master resource libraries
	MasterDDTNotInLibrary option 231
	MaxPolLineLength option 337
	MaxRecsPerTransaction option 292, 307, 310
	MergeAFP rule 74
	message token file
	message token files
	messages
	Metacode
	methodologies for implementation 150
	METVSAM option 300
	ModifyTime field 93
	moving
	MSGFile option 192
	MSGFILE.DAT file 190, 203
	msgNO_MORE_IMAGES message 73
	multi-file print callback method 85
	MultiFileLogRecord option 119
	MultiFilePrint callback function 50, 185
	MultiFilePrint option
	multi-mail transaction
	multi-mail transactions
	multi-page forms
	MVS
	MVS file format 327

	N
	NAFILE 289, 303
	NAFILE.DAT file 326, 337
	NameDocBy INI option 221
	NameDocBy option 222
	NAPOLVS member 303
	NEWTRAN.DAT file
	NEWTRN.DAT file
	next/retrieve cursor 248
	NLS messages 192
	NoGenTrnTransactionProc rule 54
	NOT conditions
	NOVALIDATEHANDLE option 287

	O
	Occurrence flag 159
	occurs clauses 332
	ODBC
	ODBC_FieldConvert control group 235
	ODBC_FileConvert control group 235
	OMR marks
	OPASSWD command line option 218
	OpSystem option 327
	Opt option 59, 60
	Optimize option 287
	optimizing performance 286, 304, 308
	OR conditions
	Oracle
	ORDER BY clause 217
	OT_Docs table 221, 222
	OUSERID command line option 218
	OutBuff token 199
	output files
	overflow
	Overflow flag 159

	P
	PageBatchStage1InitTerm rule 54
	PageRange option 53
	pages
	parent 137
	parentheses
	Passwd option 232
	PDF format 2
	PDS2VSDX job 295
	PDS2VSJX job 297
	PDS2VSPX job 299
	performance
	platforms
	PMETLIB PDS 291, 299
	PO Handler 221
	PODocument2Field control group 223
	POField2Document control group 223
	POLFILE 289, 303
	POLFILE.DAT file 337
	pre-compiled Metacode files 290, 299, 314, 321
	print batches
	print files 290
	print spool files
	print streams
	Print_Batches control group 111
	printer drivers
	Printer option
	PrintFormset rule 55, 130
	printing
	PrintTimeStamp option 113, 194
	ProcessID built-in INI function 124
	processing
	processing overview 11
	ProcessQueue rule 55
	PRTLIB data 54
	PrtType option 91
	PSF/2 315, 322

	Q
	Qualifier option 232
	queues

	R
	RCBDFDFL.DAT file
	RCBDFDFL.DFD file 330
	RCBStatDtlDFD option 39
	RCBStats option 39
	RCBStatsDtl option 39
	RCBStatsTot option 39
	RCBStatsTotDFD option 39
	RCBTotals option 39
	RCP2VSAM utility 289
	RCP2VSMX job 301
	Receive command 312, 319
	RecipBatch function 19
	recipient batch (RCB) transaction fields 93
	recipient batch DFD file
	recipient batch file 91, 330
	recipient batch files 289
	recipient batch records
	Recipient copy count field 159
	Recipient list field 159
	recipients
	RECIPIF rule
	RecipMap2GVM control group 59
	RecipMap2GVM INI control group 67
	RecipName function 19
	record formats 288
	Records per first image field 159
	Records per overflow image field 159
	RecordType option 95
	Report option 287
	Req option 59, 60
	requirements definition 150
	resource files 329
	resources
	Restart control group 34
	restart file 34
	Restart option 218, 219
	Restart table
	RestartJob rule 35
	RetainTransBeginForm option 17, 18
	Retrieval
	Retrieval Options window 241
	Retrieve Document window 240
	RightGutter option 80
	rollback
	RP Struct 197
	RPErrorProc function 197
	RPLogProc function 197
	RstFile option 34
	RULCheckTransaction rule 34
	RuleFilePool option 305, 309
	rules
	Rules Processor
	Rules Publishing Solution
	RULStandardProc rule
	RunMode control group 292, 306, 310
	RunSetRcpTbl rule
	runtime options 287

	S
	Search Mask 1 field 159
	Search Mask 2 field 159
	search masks
	section level triggers 157, 162
	sections
	self 137
	Send command 312, 319
	sequence numbers
	Server option 232, 235
	set recipient table
	SetDeviceName function 87
	SETRCPTB
	SETRCPTB.DAT file
	SETRECIP table
	SetState rule
	setting
	setting up
	Show_Debug_Options option 109
	sibling 137
	simplex
	single step processing
	single-page forms
	skipping batch message 73
	SortFormsForRecip callback function 185
	sorting records 217
	SQL Server
	SQLID command line option 218
	StandardFieldProc rule 55
	StandardImageProc rule 55
	StandardJobProc rule 68
	statistics processing 39
	Status column
	StatusCode option 95
	STOPREC command line option 218
	subordinate flags
	subordinate sections
	SuppressBanner function 19
	Sybase
	SYSPRINT
	system
	system files 323
	system implementation methodology 150
	system overview 11
	system scenarios
	system settings

	T
	table names 257
	tables
	TblLkUp rule
	TEMPIDX file
	testing
	text files 311, 318
	TicketJobProc rule 68
	tildes
	token-data pairs 198, 201, 203
	trace files
	TraceFile option 195
	transaction codes
	Transaction codes field 159
	transaction files 328, 336
	transaction records
	transaction trigger table
	TransactionErrors option 35
	transactions
	Transall
	TransBannerBeginForm option 16
	TransBannerBeginScript option 16, 105
	TransBannerEndForm option 16
	TransBannerEndScript option 16
	transferring files 312, 319
	TRANSLAT utility 190, 194
	TRANSLAT.INI file 203
	translating messages 194
	TranslationFile option 192
	TRIGCOUNT node 131
	trigger levels
	trigger records
	Trigger Table Record Format 158
	Trigger2Archive control group 52, 54, 238
	Trigger2WIP control group 93, 130
	triggering logic 187
	triggers
	TRN files 328, 336
	Trn_Fields control group 51
	TRNDFDFL.DFD file 330
	true/false search mask 173
	TWOUP control group 53, 54
	TwoUp control group 71
	TwoUpStart option 71

	U
	unique data
	UNIQUE.DBF file 340
	UniqueString function 88
	UniqueTag option 232
	UNIX
	updated log and error files 338, 339
	UpdatePOLFile rule
	uploading and downloading resources 311, 318
	uppercase 257
	UseRestartTable option 222
	UserID option 95, 124, 232
	UseXMLExtract rule 135

	V
	VSAMNA option 303
	VSAMRCPTB option 302

	W
	wall clock time 286, 304, 308
	Warning message 190
	Windows
	WIP
	WIP Edit plug-in
	WIP RecType field 95
	WIP StatusCD field 95
	WIP.DBF file 340
	WIP.DFD files 93
	WIP.MDX file 340
	WriteNAFile rule
	WriteOutput rule 55

	X
	Xbase 353
	XDPs 249
	XERDNLD utility 314, 321
	Xerox
	XLTUS.MSG file 200, 202, 203
	XML 51
	XML files
	XML print driver 130
	XMLExtract option 51
	XMLFileExtract rule 135
	XMLTrnFields option 51
	XPath 137
	XPATHW32 utility 137, 140

	Y
	Year 2000 compliance

	Oracle Insurance
	Oracle Suppport
	Related Documents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

