ORACLE
INSURANCE

Oracle® Documaker

Internet Document
Server Guide

version 2.3

Part number: E17552-01
November 2011

ORACLE’

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ""AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE

Copyright (c) 1988-1997 Sam Leftler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS "*AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved
It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.

Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

Contents

Chapter 1, Processing Documents Using the Internet

2 Overview

5 Architectural Changes in Version 2.x

6 Required Components

6 Components Available from Oracle Insurance

Chapter 2, Using the Internet Document Server

11 Overview

13 Creating Front-End Solutions

13 Using JSP

14 Using the IDSJSP JavaBean

14

Using ASP

15 Using the IDSASP Object

17
19
22
26
26
28
30

Sending and Receiving Attachment Fields
Showing a PDF File

Using the HTTP Parsing and Uploading APIs
Using the XMLSession Rules

IDSASP Methods

IDSJSP Methods

XMLSession Rules

33 Using IDSXML

34
35
36
37
37
38
38
38
39
41
41

XMLTransformErrors
XMLTransformErrors2
XMLLoadINI
XMLLoadXML
XMLLoadXSL
XMLGetGroupOptionValue
XMLGetValue
XMLGetGroup
XMLUpdateGroup
XMLBuffer
XMLLoadProcessor

46

50

51

54
55

60

62
71

74

93

41 XMLAddParameterToXSL

42 XMLTransformWithXSL

43 XMLProcessWithXSL

43 XMLUpdateFormset

44 XMLProcessFormset
Using Multiple Servers

47 Determining if Your Transactions are CPU or I/O Intensive
48 Performance Measurements when Using Multiple Servers

49 Setting Up Additional Servers
Setting Up a Windows NT Service

Handling Multi-threaded Requests
53 Using the Java Test Utility

Using Rules Written in Other Scripting Languages

Using IDS as a Client to Another IDS
56 Using the IDSClientRule

Monitoring IDS with SNMP Tools

61 Monitoring Requests
Managing IDS Instances

Sending Results and Receiving Requests in Multiple Formats
72 Configuring and Deploying Marshallers

Logging and Tracing

77 Naming Logging Messages

80 Using Logging Categories

83 Logging Information about Requests

87 Querying Transaction Information
88 getMetaData
89 QueryTranLogs

90 Monitoring Performance Statistics
91 Generating a Logging Configuration File

91 Using Logging Categories to Access the Internal Format of Requests

Configuring IDS

94 Running IDSConfig

94 Creating New Files

94 Adding Nodes

94 Adding Nodes with Text

95
95
95
95
96
96
96
96
97

97
97
97
98
99

Editing Nodes

Copying Nodes

Moving Nodes

Adding Attributes

Adding Comments

Adding Text

Adding a Request or Function
Adding an IDS Function

Converting DOCSERV.INI or DOCCLIENT.INI Files into
XML Format

Adding a Section or Entry

Locating Text

Importing Configuration Information
Configuring MQSeries Buffer Sizes

Testing File Transmission

100 Referencing Attachment Variables

101 Using Unicode in Attachment Variables

102 Using the Message Queues

102
103
104
104

Choosing the Right Queuing Options
Understanding the Router Process
How HTTP Queues are Handled
Using the Router Section

106 Using Multiple Queuing Systems

108 Using the Java Message Service (JMS)
108 Setting up JMS

111 Using WebSphere MQ_
112 Setting Up WebSphere MQ

118
119
119
120

120
121
122

113

Using MSMQ

Using Security Exits

Using Client Connection Definition Tables

Using SSL Connections

Using the ReplyToQueueName and ReplyToQueueManagerName

Properties

Suppressing Queue Error Messages

Persisting Queue messages

Purging Cached Files

124 Using HTTP

xi

128

130

131

132

141

147

161

169

Using Multiple Bridges
Submitting Batch Requests
Printing in Duplex Mode to PCL Printers

Using IDS to Distribute Email

132 Modifying the docserv.xml Configuration File
133 Modifying the DAP.INI File

135 Attachment Variables Used by Email Rules

136 Using Email Rules

138 Using the Email Bus

Attaching Documents to Documaker Transactions

141 File with the Name and Type in IDS Attachment Variables

142 File Sent to IDS in the Message
142 File Accessible by Documaker Bridge
143 Document in the Documanage Repository
144 Error Messages
144 Specifying Duplex Options for the Attached Form
145 Debugging
Using IDS to Run Documaker

148 Setting Up IDS
149 Setting up Multiple Internet Document Servers
149 Controlling Documaker

152 Setting Up Documaker
154 Naming Conventions for Output Files

155 Creating DPW Files
156 Accessing IDS Attachment Variables in GenData
156 Using TCP/IP Communications

158 Customizing the Execution of Documaker

Using the XML Messaging System
163 Client Request Messages
166 Server XML Response Messages
167 Using XML SOAP Outside of Messaging Systems

Connecting to an SQL Database
170 Differences between Microsoft’s ADO and IDSSQL
170 Setting up IDSSQL

170 IDSSQL Classes
170 IDSSQL.ADO

171 IDSSQL.IDSRC
171 Example Script

174 Using the Thin Client Forms Publisher

175 Pausing IDS

175 DSIQueryStatus
176 DSISetStatus

178 Executing Request Types at Run Time
180 Publishing Your Forms on the Web
181 Formatting Text with XML Markup
182 Encrypting and Decrypting Data Files

183 Using Multiple Attachment Values with the Same Name
185 getEntries

186 Converting XML Files Using a Template
190 Customizing Your System

193 Handling Security Issues
193 Using Firewalls
193 Implementing Security for Web Applications

195 Using LDAP Support
196 Using Default Time-outs for DSILIB-Based Client Applications
198 Running Timed Requests

199 In-Process Rendering for DPAView
199 DRLGetConfig

200 Using DAL Functions for WIP Column Access
202 Using Enterprise Web Processing Services

203 Determining the Patch Level

Chapter 3, Creating Output Files

206 Creating PDF Files
207 Creating HTML Files

208 Creating XML Output

xiii

Chapter 4, Using Docucorp Publishing Services

212 DPS Object Properties
218 Setting Default Parameters
220 Sample VB Code

221 Sample C Code

223 Sample Java Code

225 Setting Up IDS

227 Setting Up Documaker

Chapter 5, Customizing iDocumaker, iPPS, and WIP Edit

230 Setting Up a Favorites List for iDocumaker

232 Attaching Files to Transactions as Forms

232 Specifying the File Name and Type in IDS Attachment
Variables

233 Sending the File to IDS in a Message

233 Storing the File on a Disk Accessible to Documaker Bridge
234 Storing the File in a Documanage Repository

235 Error Messages

235 Specifying Duplex Options for the Attached Form

236 Debugging

238 Designating Read-Only Multiline Text Field Paragraphs
239 Printing on Your Workstation Printer

240 Preventing the Session from Expiring

241 Passing WIP Record IDs to the MergeWIP Rule

242 Automatically Updating iDocumaker
242 Configuring IDS to Update iDocumaker

243 On the Client Side
244 Additional Utilities

244 Checking Version Information
246 Using the WIP Edit Plug-in
250 Controlling the Interface

258 Setting Up Custom Functions

Xiv

259
259
260
261
261
263

Chapter 6,

Changing the User Associated with a Document
Sending Passwords

Requesting a Dictionary

Trapping Events

Tracking Session Information

Setting Up Printers

Using the DP.DLL ActiveX Interface

268

269

271

272

Requirements

Setting Up the Configuration File

Properties

Methods

273
273
273
274
274
274
274
275
275
275
276
276
277
277
277
278
278
278
279
279
279
279

AddNameValuePair
Bin2Unicode
CleanCache

FileExists

GetMsg
GetUniqueString
Initialize
InitializeDefaults
ProcessTrn

PutMsg
ReadIniOptions
RequestValue
ResultValue

SetGUID
SOAPAddAttachment
SOAPGetAttachment
SOAPGetAttachmentAsBuffer
SOAPLoadAttachment
SOAPUnloadAttachment
Terminate

Trace

Unicode2Bin

XV

280 WoriteBinFile
280 WriteToLog

281 Examples

Appendix A, System Files

286 IDS Configuration Files

289 Sample Output Files

Appendix B, Error Messages

296 Displaying Error Messages

300 AFP Error Messages

302 Error Message Listing

Appendix C, Choosing a Paper Size

332 US Standard Sizes

333 ISO Sizes

336 Japanese Standard Sizes

337 Printer Support for Paper Sizes
341 Paper Sizes for AFP Printers

343 Index

XVi

Chapter 1

Processing Documents
Using the Internet

Oracle Insurance offers a comprehensive range of
scalable high-performance products for every step in the
life cycle of a document. These include...

* Creation Solutions to capture data and create forms

* Publishing Solutions to volume produce
personalized documents

¢ Archival Solutions to intelligently store and retrieve
documents

* Management Solutions to control and network
documents

* Development Tools to customize your Oracle
Insurance solutions

Oracle Insurance’s Management Solutions give you the
ability to move and view your documents across the
enterprise. In addition to advanced document
networking communication products, Oracle Insurance
has Internet solutions for managing your documents.
Docupresentment’s Internet Document Server (IDS)
helps manage the flow of your documents.

IDS lets you access your documents with a web browser
from your intranet or the Internet. The standard web
browser interface includes security features, document
database lookup, and document viewing in PDF format
using the Adobe Acrobat Reader.

This chapter provides an overview of IDS, its concepts,
what it can offer you, as well as how it fits into the Oracle
Insurance’s family of solutions.

Chapter 1

Processing Documents Using the Internet

OVERVIEW

For many years Oracle Insurance has been creating document solutions capable of
handling the high-volume, automated assembly needs of customers like you.

Through products such as Documaker and Documerge, Oracle Insurance has provided
clients in industries as diverse as insurance, finance, and utilities, with high-volume
document creation, processing, printing, and archiving solutions.

These solutions have typically concentrated on printed output although the real focus has
always been to deliver the high quality documents in the most cost-effective manner, and
to eliminate paper where ever possible.

The rapid acceptance of the Internet and in-house intranets has created a new and cost-
effective way to provide the timely, on-demand delivery of critical documents to remote
end-users equipped with only a minimum of standard software.

To address the need for Internet document processing, as well as other new technologies,
Oracle Insurance developed a line of products which support distributed documents. These
new products are collectively called Document Management Solutions and include
interfaces to document storage and retrieval systems, as well as WYSIWYG document
publishing and delivery via the Internet or your in-house intranet.

The foundation for document publishing and delivery, is Docupresentment’s Internet
Document Server. The server works with front-end thin clients via the Internet (or an
intranet) and executes back-end document processing applications.

Internet

Docupresentment’s
Internet Document

Server

Docupresentment

bridges, rules,

runtimes, and R Network File Server
templates t

Docupresentment supports several installable components, called bridges. These bridges
provide the software, interface document templates, and runtimes, necessary to process,
store, publish, and deliver your documents.

Overview

Currently, Oracle Insurance has released several bridges, such as the one to the
Documaker archive and the one to Documanage. These bridges provide retrieval and
PDF publishing of archived Documaker document sets and a bridge to Metacode and
AFP print streams.

In addition, Oracle Insurance also provides a way to distribute documents produced by
the GenPrint program, the print component of the Documaker system. With the PDF
Print Driver, Oracle Insurance gives Documaker users several ways to distribute
documents via the Internet:

e From Documaker’s archive component (the GenArc program)
e From Documaker’s print component (the GenPrint program)

The Internet Document Server and the bridges to Documaker and Documanage are the
first in a series of new products from Oracle Insurance. Over time, new product offerings
from Oracle Insurance will provide additional solutions in these areas.

* Internet and intranet-based document processing

* Client-server processing

¢ Workflow management

* Integration with existing document management and storage subsystems

...as well as other specialized applications that integrate with Windows and Microsoft’s
BackOffice.

The product architecture uses a layered hierarchy that provides for backward
compatibility to existing systems, while positioning for future product offerings.

Management

Solutions Internet Document Processing Future products
Bridges Bridge Bridge Bridge

Existing applications | Documanage Documaker Other products

* Management Solutions. Some components will provide totally new stand-alone
systems and capabilities, while others focus on leveraging and extending existing
Oracle Insurance applications. Internet Document Processing is an example of a new
component that can be used to leverage existing applications and data with extended
functionality.

* Docupresentment Bridges. These components are designed for use with existing
applications or other custom built interfaces. Oracle Insurance offers a wide range of
technical and professional services for designing and building custom bridges.

* Existing applications. These components cover a wide range of new and existing
products and applications from Oracle Insurance’s various divisions, as well as other
in-house or legacy systems.

Chapter 1

Processing Documents Using the Internet

HTML vs. PDF

The standard underlying delivery mechanism of the Internet and the World Wide Web is
HTML documents delivered via HTTP. HTML (Hyper-text Markup Language) files are
essentially simple text files, marked np with formatting commands which appear alongside
the text. The problem is that HTML focuses primarily on maintaining document content
and not the exact look-and-feel of the document.

The challenge for Oracle Insurance is to deliver a standardized solution in an area that is
Oracle Insurance’s strength—reproducing the exact look-and-feel of a document set, not
just the content, across multiple platforms.

In addition, another challenge is to provide a solution that supports the growing body of
thin client workstations attached to the Internet, requiring only a minimum of end-user
software.

To meet these and other challenges, Oracle Insurance stores and creates files in Portable
Document Format (PDF). the PDF file fomat is the industry standard, providing a
searchable, open format that maintains the look-and-feel of the original documents and
works across a variety of platforms.

In addition, using Adobe Software’s Acrobat Reader, a free application anyone can
download from the Internet, thin-client end users can easily view and print complete
document sets which are identical to the original documents.

NOTE:You can read more about Adobe’s Portable Document Format and download the
Adobe Acrobat Reader from Adobe’s web site at www.adobe.com.

http://www.adobe.com

Overview

ARCHITECTURAL CHANGES IN VERSION 2.X

The core architecture of Internet Document Server changed in version 2.0 to allow major
enhancements of current and future functionality. The single-tasking architecture of
Internet Document Server version 1.8 was replaced with a multitasking one that can
handle several tasks at once, allowing greater throughput and fewer pauses. Tasks now
handled concurrently include

* Handling of certain types of requests. Rules for requests that are written in a thread-
safe manner can be run at the same time in one instance of IDS.

e Purging of cached files that have expired. When processing requests, IDS can
produce temporary files, which are given a length of time to exist before they are
automatically deleted. IDS version 1.8 had to stop processing requests to periodically
purge these files; IDS version 2.x does not pause request processing to purge files.

* Receiving requests from a messaging queue.

* Sending results back to a different messaging queue.

* Handling multiple incoming and outgoing HTTP requests.

e Watching the running rules to see if they are taking too long.
* Looking for changes to the configuration file and restart IDS.

* Looking for changes to logging configuration and incorporate changes without
restarting IDS.

In addition to using HTTP as a transport of SOAP messages, IDS can respond to requests
formatted as a URL from a browser and display results in HTML. The XML result
produced by IDS is transformed by XSLT templates into HTML; there can be a different
XSLT template for each request, or a default will be used.

In addition to HTTP, WebSphere MQ and MSMQ, IDS version 2.x can use Java
Messaging Service (JMS) queues for sending and receiving messages. JMS is a standard for
messaging used by J2EE application servers, such as WebSphere, WebLogic and JBoss.

You can configure IDS version 2.x to handle requests from both message queues and
from HTTP in the same instance; version 1.8 could only do one or the other.

The format of requests coming in to IDS is configurable and extensible. If a third-party
application wants to send requests in formats other than SOAP, custom translators can
be installed in IDS. When IDS receives a request it will recognize the format and the result
will be sent back in the same format as it was received.

IDS can be monitored by the Simple Network Management Protocol (SNMP). This is the
standard protocol used by manufacturers of networking hardware (such as routers),
printers and computers to monitor uptime and usage statistics. IDS appears as another
piece of equipment to SNMP monitoring applications.

Version 2.xalso enhances IDS’s error logging and tracing capabilities. Logging messages
can be assigned a severity level (DEBUG, INFO, WARN, ERROR or FATAL) and
logging messages can be routed to multiple destinations including the console screen,
files, the Windows event logger, the UNIX syslog daemon, and email. Logging options
can be changed without restarting IDS, making the diagnosing of problems easier.

Details on these features can be found in this manual and in the SDK Reference.

Chapter 1

Processing Documents Using the Internet

REQUIRED
COMPONENTS

Provided by the end-
user

Provided by the Oracle
Insurance license-
holder

Internet Document
Server

To use Oracle Insurance’s Internet document processing solution, you need several
components. Some components are included in Oracle Insurance’s Internet Document
Server, while others are included in the various bridges. Other required components must
be provided by the end-user or the license-holder. The basic components are:

WEB BROWSER. An end-user workstation must have a working web browser that
supports Adobe Acrobat Reader version 7.0 or higher. Oracle Insurance has tested
successfully with Microsoft Internet Explorer 6.0 and higher. To download a copy of
Adobe Acrobat Reader, go to:

http://www.adobe.com

INTERNET ACCESS. An installed and working Internet (or intranet) connection,
including the necessary hardware and software, Internet provider account, modem, and
so on. The access should provide acceptable performance when downloading large files.

JAVA RUNTIME ENVIRONMENT. Java and the Java runtime environment (JRE) are
only required if you are using Java rules or a Java client. A Java Runtime Environment
(JRE) or the Java Software Development Kit (JDK), version 1.5 (‘Java 5°) is recquired.
You can download a free runtime environment at:

http://java.sun.com

To run certain rules, the Java Cryptography Extension is required. It is included in Java
runtimes version 1.5 and later.

SERVER. An installed and working server, such as Microsoft Windows (2000 or XP).

WEB SERVER. An installed and working web server, such as a web server with Windows
2000 Server or Windows 2003 Server and Microsoft Internet Information Server 5.0 (or
higher). While you can use Windows XP for development and testing purposes, do not
use it as a production web server.

NOTE: All of these components should be installed and working before you install IDS.
In general, end-users will be supported and trained on these applications by their
own experienced in-house Internet support group. Contact your Oracle
Insurance sales representative to inquire about the services and consulting
packages Oracle Insurance offers.

Components Available from Oracle Insurance

This component includes:
e Internet Document Server
e Sample programs written in Java and C++

e Sample programs, rules and ActiveX components written in Microsoft Visual Basic.

(Windows only)
e Sample Microsoft Active Server Page (Windows only)

e Sample Java Server Page programs

http://www.adobe.com
http://java.sun.com

Documaker Bridge

Documanage Bridge
(only for Windows)

Docuflex Bridge

PDF print driver

HTML print driver

DSI SDK Package

Required Components

* Documentation (see Using the Internet Document Server, beginning on page 9)

This optional component includes:

e The bridge PDF generator

* Subset Documaker runtime to support archive/retrieve rules
* Rules to support Documerge Metacode and AFP output

* Utility for creating graphics files

» Utilities for creating and checking fonts

* Documentation (see the separate manual entitled, Using the Documaker Bridge)

This optional component includes:
e The bridge PDF generator

* Documentation (see the separate Documanage manuals entitled, General Reference for
the Documanage Bridge and Rules Reference for the Doucmanage Bridge)

This optional component includes:
e An IDS rule DLL (DFLXRULE.DLL)

* Documentation (see the separate manual entitled, Using the Docuflex Bridge)

This component includes tools which let you convert output from Documaker’s
GenPrint program into PDF files, which can be viewed using an Internet browser. For
more information, see Creating PDF Files, beginning on page 206.

This component lets you create HTML files by simply printing to the HTML print driver.
For more information, see Creating HTML Files on page 207.

This component includes:
* Software Developer Kit for the various bridges
* Source code to archive retrieval rules

e API documentation and technical reference for writing custom rules, Visual Basic
programs, Active X components and ASP components (see Using the Internet Document
Server SDK in the SDK Reference).

Users and customers need to be aware that due to the varying nature of browsers and
their continuously changing levels of support for the evolving HTML language, the use
of certain HTML tags in the templates and dialogs might limit the ability of users to
display certain aspects of the customized pages.

Chapter 1

Processing Documents Using the Internet

Chapter 2

Using the Internet
Document Server

This chapter provides information on the capabilities of

the Internet Document Server and its architecture. This
chapter also tells you how to set up the Internet
Document Server.

NOTE:For information on installing IDS, see the IDS

Installation Guide.

You’ll find this information:

Overview on page 11

Using Multiple Servers on page 46

Setting Up a Windows NT Service on page 50
Handling Multi-threaded Requests on page 51

Using Rules Written in Other Scripting Languages
on page 54

Using IDS as a Client to Another IDS on page 55
Monitoring IDS with SNMP Tools on page 60
Managing IDS Instances on page 62

Sending Results and Receiving Requests in
Multiple Formats on page 71

Logging and Tracing on page 74

Configuring IDS on page 93

Referencing Attachment Variables on page 100
Using the Message Queues on page 102

Using the Java Message Service (JMS) on page 108

Chapter 2

Using the Internet Document Server

10

Using WebSphere MQ on page 111

Using HTTP on page 124

Using Multiple Bridges on page 128

Submitting Batch Requests on page 130

Printing in Duplex Mode to PCL Printers on page 131

Using IDS to Distribute Email on page 132

Attaching Documents to Documaker Transactions on page 141
Using IDS to Run Documaker on page 147

Using the XML Messaging System on page 161

Connecting to an SQL Database on page 169

Using the Thin Client Forms Publisher on page 174

Pausing IDS on page 175

Executing Request Types at Run Time on page 178

Publishing Your Forms on the Web on page 180

Formatting Text with XML Markup on page 181

Encrypting and Decrypting Data Files on page 182

Using Multiple Attachment Values with the Same Name on page 183
Converting XML Files Using a Template on page 186
Customizing Your System on page 190

Handling Security Issues on page 193

Using LDAP Support on page 195

Using Default Time-outs for DSILIB-Based Client Applications on page 196
Running Timed Requests on page 198

In-Process Rendering for DPAView on page 199

Using DAL Functions for WIP Column Access on page 200
Using Enterprise Web Processing Services on page 202

Determining the Patch Level on page 203

OVERVIEW

Overview

The Internet Document Server lets users connect to the server via the Internet. Executing
back-end applications, however, requires additional components. These additional
components are called bridges. These bridges provide bridge components, software rules,
document templates, and other files necessary to process documents.

The Internet Document Server lets users communicate via standard Internet methods
using a standard web browser. No other specialized client software is required to use the
Internet Document Server; however, additional bridge components may require
additional browser plug-ins, such as Adobe’s Acrobat Reader. The Internet Document
Server runs on a Microsoft Windows or Sun Solaris server running a web server package.

NOTE:See Processing Documents Using the Internet on page 1 for more information
on Oracle Insurance’s related products.

Keep in mind, as you read through the following examples, that XML standards as
defined by the W3C require you to substitute text characters that are not in XML tags (for
example, between <entry> and </entry> tags) as escape sequences. The characters that
require substitution are listed in the following table. If you cut and paste an XML example
from this or other Docupresentment documentation into an XML configuration file, you
will have to manually make these substitutions.

For this character Use this escape sequence
< (less than) <

> (greater than) >

& (ampersand) &

' (apostrophe) '

“ (quotation mark) "

The following diagram shows you how the system operates.

11

Chapter 2

Using the Internet Document Server

Distributed Clients World Wide
Web Client \ x f Batch Client

¢

| Front-End (Client) Components |

Front-end components talk
to IDS via the DSI APL Custom Client Java-based

These components provide Module Custom Client
Module

ActiveX-based
Custom Client
Module (Windows)

communications and an
interface which gather client
requests, translate those
requests for IDS, and then Java Server Pages
translate the results for the (JSP) Custom

client’s use. Client Module

Active Server
Pages (ASP)
Custom Client
Module (Windows)

Internet DSI API
Document
Server

Document Processing Server

y 4
DSI API

v 4

! Back-End Components |

Back-end components
include the bridges to other Bridges Processing Data, Document
applications, rules which Rules
process the data, the data or
archives being processed,
and document sets. These

Sets or Archives

components communicate

with IDS via the DSI APL

12

Overview

CREATING FRONT-END SOLUTIONS

You can use either JSP (Java server pages) or ASP (active server page) to create front-end

solutions, as shown in the previous illustration.

NOTE:Keep in mind ASP is a Microsoft product and is not available on Solaris.

Y

InternetInformation
Interntgce?voeiument - C AP > Server (IIS)
Internet Doctiment JSP-enabled application
v - (s ———

server (such as Tomcat
UsiNg JSP

or WebSphere)

With JSP, the HTML content is included in the JSP page. There is no separate template.

To help you more quickly create your front end solutions, we provide the DSI JavaBean

to communicate with Internet Document Server. This bean is in IDSJSP.jar.

Browser
Browser I Browser

\ /

Application server with JSP support
(such as Tomcat, WebLogic, or
WebSphere)

]

JSP

AddRequest ClearRequest ProcessRequest The DSI JavaBean
(IDSJSP.jar)

i }

Internet Document Server

13

Chapter 2

Using the Internet Document Server

UsING THE IDSJSP JAVABEAN

As shown in this illustration, the IDSJSP bean collects requests and results. The bean has
the following properties and methods.

Properties
Property Description
waittime The time in between tries for ProcessRequests.
timeout The total time to wait for the ProcessRequest.
Methods
Method Description
AddRequest AddRequest(Object key, Object value)

Adds name/value fields to the record to send to the IDS rule.

AddAllIRequest AddAlIRequest(javax.servlet.ServletResponse request)

Adds all name/value fields from the request objects to the records to send
to the IDS rule.

ProcessRequest ProcessRequest()

Sends all the name/value and request types to IDS rules. Processes the
IDS rule and gets return records from the IDS rule and returns them as
type HashMap.

GetResult GetResult(Object key)

Gets the return record value from the IDS rule index using the key from
the internal result.

ClearRequest ClearRequest()

Clears attachment variables out of the request. Use after ProcessRequest
and before the next set of AddRequest calls.

ClearResult ClearResult()
Clears the result.

Using ASP

With ASP, the HTML page is included with the ASP page. There is no separate template.
Furthermore, the processing is done in each ASP page instead of in DCLTW32.EXE. On
the other hand, ASP also requires more coding effort.

To help you more quickly create your front end solutions, we created IDSASP

(IDSASP.DLL).
Internet
Internet Document Information Server
i > (IDsasp)= (AsP (s)

With IDSASP, you can use the ASP Session Collector and ProcessQ or you can bypass
the Session Collector using ProcessRQ, as shown in the following illustration.

14

Properties

Overview

Browser

Browser I Browser

/

Internet Information Server (IIS)

]

ASP
Session Collector

ProcessQ ProcessRQ

L

AddReq ClearReq ClearRes

A, i The IDSASP Object
(IDSASP.DLL)

Call AddToQueue/GetQueueRec

Internet Document Server

UsSING THE IDSASP OBJECT

As shown in this illustration, the IDSASP object collects requests and results. To
communicate with IDS using ASP through DSIAPI, the system includes an ActiveX
DSO named IDSASP.DLL. This DSO has the following properties and methods.

Property Description
hlInstance Type: Long
DSI Instance Handle is created by InitSession() in IDSASP.
oDSI Type: DSICoAPI
DSI Handle.
Request Type: Collection
Request Collection in IDSASP.
Result Type: Collection
Result Collection in IDSASP.
ShowAtt Type: Boolean

When set to True, the system prints the request and result when you call the
ProcessQ or ProcessRq method. Use this property for debugging.

15

Chapter 2

Using the Internet Document Server

Property

WaitTime

TimeOut

Description

Type: Long
Retry time in the processing queue. The default is 1000 milliseconds.

Type: Long

Time-out in milliseconds. The default 1s 15000 milliseconds.

Methods
Method

Description

AddReq

ClearReq

ClearRes

OnEndPage
OnStartPage

ProcessQ_

ProcessRq

ReadBinFile

Syntax: AddReq (ByVal Name As String, ByVal Value As String)
Call this method to add a request to IDSASP request collection.

Syntax: ClearReq()
Call this method to clear the IDSASP request collection.

Syntax: ClearRes()
Call this method to clear the IDSASP result collection.

Called by ASP when the object is instantiated.
Called by ASP when the object is released.

Syntax: ProcessQ()
Call this method to...

- Retrieve the name/value pair from the ASP session collection and add it to
the queue.

- Release the record into the queue for IDS to process.

- Read back the result from IDS. Retry time and time-out are defined in the
WaitTime and TimeOut properties.

- Store the results in the ASP session collection.

Syntax: ProcessRq()
Call this method to...

- Retrieve the name/value pair from the IDSASP request collection and add it
to the queue.

- Release the record into the queue for IDS to process.

- Read back the result from IDS. Retry time and time-out are defined in the
WaitTime and TimeOut properties.

- Store the results in the IDSASP result collection.

Syntax: ReadBinFile(ByVal bFileName As String)

Call this method to read the binary file from the local hard disk and store as a
binary array.

16

Overview

Sending and Receiving Attachment Fields

The IDSASP.DLL provides two ways to send and receive attachment fields to and from
DSIAPI: using the ProcessQ method and using the ProcessRq method.

Using the ProcessQ Here is an example of using session collection with the ProcessQ method:

method
<

o°

CrLf = Chr(13) + Chr(10)
set DSI = Server.CreateObject ("IDSASP.DSI") 'create DSI handle
session.Abandon 'Clear Session

for i=1 to Request.Form.Count'Read Attachment and Create session
Collection

session (Request.Form.Key (i))=Request.Form(i)
next
DSI.ProcessQ 'Execute Request From Attachment

o°
\%

A
o°

'Loop To display all of the records.
For i1=1 to session ("RECORDS")
alink = "recips.asp"

alink = alink & "?USERID=" &
Server.URLEncode (session ("USERID"))

alink = alink & "&ArcKey=" & Server.URLEncode (session ("RECORDS"
& cstr(i) & ".ArcKey"))

alink = alink & "&REQTYPE=RCP"

alink = alink & "&CONFIG=" &
Server.URLEncode (session ("CONFIG"))

alink = alink & "&COMPANY=" &
Server .URLEncode (session ("RECORDS" & i & ".Company"))

alink = alink & "&LOB=" & Server.URLEncode (session ("RECORDS" &
cstr(i) & ".Lob"))

alink = alink & "&POLICYNUM=" &
Server .URLEncode (session ("RECORDS" & cstr(i) & ".PolicyNum"))

alink = alink & "&RUNDATE=" &
Server .URLEncode (session ("RECORDS" & cstr(i) & ".RunDate"))

Response.Write "<TR><TD>"

Response.Write "" & session("RECORDS" &
i & ".Company") & "</TD>"

Response.Write "<TD>" & session ("RECORDS" & cstr(i) & ".Lob")
& Il</TD>Il

Response.Write "<TD>" & session ("RECORDS" & cstr(i) &
" PolicyNum") & "</TD>"

Response.Write "<TD>" & session ("RECORDS" & cstr(i) &
" RunDate") & "</TD>"

Response.Write "</TR>" & CrLf
next

%>

Using the ProcessRq Here is an example of using the IDSASP.DLL request and result collection properties
method with the ProcessRq method.

<

o°

CrLf = Chr(13) + Chr(10)

set DSI = Server.CreateObject ("IDSASP.DSI") 'create DSI handle
'Read Input Parameter from INPUT FORM and send request to DSI
for i=1 to Request.Form.Count

17

Chapter 2

Using the Internet Document Server

DSI.AddReqg Request.Form.Key (i) ,Request.Form(i)
next
DSI.ProcessRg 'Execute Request

o°
\%

A
o°

'Loop display Response Pair
for i=1 to DSI.Result ("RECORDS") .Value
alink = "recips.asp"
alink = alink & "?USERID=" &
Server .URLEncode (DSI.Result ("USERID") .value)

alink = alink & "&ArcKey=" &
Server.URLEncode (DSI.Result.Item("RECORDS" & cstr (i) &
" . ArcKey") .value)

alink = alink & "&REQTYPE=RCP"

alink = alink & "&CONFIG=" &
Server.URLEncode (DSI.Result ("CONFIG") .value)

alink = alink & "&COMPANY=" &

Server .URLEncode (DSI.Result ("RECORDS" & i & ".Company") .value)
alink = alink & "&LOB=" &

Server.URLEncode (DSI.Result.Item("RECORDS" & cstr(i) &

".Lob") .value)

alink = alink & "&POLICYNUM=" &
Server .URLEncode (DSI.Result.Item("RECORDS" & cstr (i) &
".PolicyNum") .value)

alink = alink & "&RUNDATE=" &
Server.URLEncode (DSI.Result.Item("RECORDS" & cstr(i) &
".RunDate") .value)

Response.Write "<TR><TD>"

Response.Write "" & DSI.Result ("RECORDS"
& 1 & ".Company") .value & "</TD>"

Response.Write "<TD>" & DSI.Result.Item("RECORDS" & cstr(i) &
".Lob") .value & "</TD>"

Response.Write "<TD>" & DSI.Result.Item("RECORDS" & cstr(i) &
" . PolicyNum") .value & "</TD>"

Mh=Left (DSI.Result.Item("RECORDS" & cstr(i) &
" .RunDate") .value,2)

Dt=Mid (DSI.Result.Item("RECORDS" & cstr(i) &
" .RunDate") .value, 3,2)

Yr=Right (DSI.Result.Item("RECORDS" & cstr(i) &
".RunDate") .value, 2)

Dat=Cdate(Mh & "/" & Dt & "/" & Yr)
Response.Write "<TD>" & FormatDateTime (Dat,1l) & "</TD>"
Response.Write "</TR>" & CrLf

next

%>
Sample Pages Here are some sample pages:

Page 1 This page sends a request from the browser with two file attachments.

18

Overview

<form name="form" enctype="multipart/form-data" action="test.asp" method="post">
<table>

<tr><input name="keyl" value="12345678" /></tr>

<tr><input name="key2" value="456" /></tr>

<tr><input name="key3" value="789"/></tr>

<tr><input name="empty" value=""/></tr>

<tr><input name="filel" type="file"/></tr>

<tr><input name="file2" type="file"/></tr>

<tr><input name="submit" type="submit"/></tr>

</table>

Page 2 This page receives an HTTP request from page 1, parses the request, and uploads the files.

A
o}

'create an instance of the object which calls parseData
set o = server.CreateObject ("IDSASP.DSI")

'o.bDebug = true

o.parseData ()

'write the element count in the request collection
response.write "count=" & o.request.count & "

"

'indicate if the request is a multipart request
response.write "Multipart=" & o.bMultipart & "
"

'taverse through the request collection and write the name / value pairs
for i = 1 to o.request.count

name = o.request.Item (i) .Name

value = o.getRequest (name)

response.write " (" & name & ") = (" & value & ")
"
next

'if the request is a multipart request, then process the attachments
if o.bMultipart = true then
for each attachment in o.attachments
if IsObject (attachment) then
name = attachment.name
response.write "attachment name=" &name & "
"
file = attachment.file
response.write "file name=" & file & "
"
ftype = attachment.ftype
response.write "file type=" & ftype & "
"
encoding = attachment.encoding
response.write "encoding=" & encoding & "
"
buffer = attachment.buffer
response.write "buffer length=" & Len (buffer) & "
"
'write attachment to disk
path = o.upLoad(name, "c:\inetpub")
response.write "path returned by upLoad api = " & path & "
"

Showing a PDF File

ASP provides two ways to show a PDF file: using the Response.Redirect method and
using the Read ReadBinFile method.

19

Chapter 2
Using the Internet Document Server

Using the Here is an example of showing a PDF file using the Response.Redirect method. You must
Response.Redirect enter a URL.

method
<%@ Language=VBScript %>
<

o°

Set DSI = Server.CreateObject ("IDSASP.DSI") 'create DSI handle
session.Abandon 'Clear Session

For i=1 to Request.Form.Count'Read Attachment and Create session
Collection

session (Request.Form.Key (i))=Request.Form (i)
Next

DSI.ProcessQ 'Execute Request From Attachment

HostAddr=Request.ServerVariables ("HTTP_HOST") 'Get Host Name

PrintFile=session ("REMOTEPRINTFILE") 'Get Full Printed Filename
with Path

StartPoint=instr (1,PrintFile,"\") 'Look for \ sign
NameWidth=len (PrintFile) -StartPoint'Filename Length
FileName=Mid (PrintFile, StartPoint+1, NameWidth) 'Get Filename
Url="http://" & HostAddr & "/doc-html/" & Filename'Construct

URL
Set DSI = nothing
If instr(l,Request.ServerVariables ("HTTP_USER_AGENT"), "IE")<>0
then
'Check IE Browser
%>
<HTML>

<BODY leftmargin=0 topmargin=0 scroll=no>

<embed width=100% height=100% fullscreen=yes src="<%=Url%>">
</BODY>
</HTML>
<%

Else

Response.Redirect Url
End If

o°
\%

20

Overview

Using the Read Here is an example of showing a PDF file using the Read ReadBinFile method in the
ReadBinFile method IDSASP.DLL file, you must enter the local path.

<%@ Language=VBScript %>

<

o°

\%

A

o°

o°

%
o
%

Dim Stream
set DSI = Server.CreateObject ("IDSASP.DSI") 'create DSI handle
'Attach Input Parameter from INPUT FORM
for i=1 to Request.Form.Count
DSI.AddReqg Request.Form.Key (i) ,Request.Form(i)
next
DSI.ProcessRg 'Send Queue to DSI

Response.Buffer=True
Pth=Request.ServerVariables ("PATH_ TRANSLATED")

DsiPath=left (pth, instr (4,pth,"\")) 'Get Path of Docserv
PrintFile=DsiPath & DSI.Result ("REMOTEPRINTFILE") .Value
Response.ContentType = "application/pdf"

Stream = DSI.ReadBinFile(PrintFile)
Response.BinaryWrite (Stream)

Response.End

set DSI = nothing

21

Chapter 2

Using the Internet Document Server

22

parseData

Parameters

Returns

getRequest

Parameters

Returns

Using the HTTP Parsing and Uploading APIs

The following APIs in IDSASP let you parse HTTP requests into separate request and
attachments collections and provide a way to process multipart/form-data form requests.

e parseData

e getRequest

e getAttachment
o getBuffer

e upLoad

Multiple file attachments are parsed into attachments collections in IDSASP. Files can
then be uploaded (written to disk) to the web server via the upLoad APL

Attachment objects can also be retrieved from the attachments collection via the
getAttachment API. Attachment objects contain properties for each attachment as well
as an attachment buffer that contains the actual file attachment contents.

You can also retrieve file attachment contents as buffers from the attachments collection
via the getBuffer APIL The parseData API can also parse non multipart/form-data HTTP
requests. Use the getRequest API to retrieve name/value pairs from the request
collection.

In addition, you can also see Sample Pages on page 21.

Use this API to parse HTTP requests into separate request and attachments collections.
Regular name/value pairs in an HTTP request are parsed into request collection. File
attachments are parsed into an attachments collection. The parseData API can parse
multipart/form-data HTTP requests as well as non multipart/form-data requests. Call

this API at the beginning of an ASP script to parse the HTTP request from a submitted
form.

None

Nothing

Use this API to retrieve name/value pairs from the request collection instead of the
Request.Form API calls.

Parameter Description

name A string value that represents the name of a key in the request collection.

A string value with the value in request collection for key name.

getAttachment

Parameters

Returns

getBuffer

Parameters

Returns

Overview

Use this API to return an attachment object from the attachments collection. This API
retrieves not only the file attachment contents, but also its properties. The attachment
object returned contains these properties:

Property Description

name This is the actual name of the attachment in the HTTP request. Its value
corresponds to the value of the file form tag used to submit the attachment in the
HTTP request.

File A string value that contains the file name and extension of the attachment. Its
value corresponds to the file name of the File form tag used to submit the
attachment.

Ftype A string value that contains the extension (file type) of the attachment.

Buffer A string buffer holding the file attachment contents.

Encoding The actual encoding type used by the browser when the file attachment was
submitted.

Parameter Description

name A string value that represents the name of a key in the attachments collection.

An attachment object containing the file attachment contents as well as properties for the

attachment.

Use this API to retrieve attachments as buffers.

Parameter

Description

name

A string value that represents the name of the attachment in the Attachment
object within the attachments collection. This value should be the same as that of
the file form tag name used to send an attachment in an HTTP request.

A string buffer containing the contents of the file attachment in the attachments

collection.

23

Chapter 2

Using the Internet Document Server

upLoad Use this API to write an attachment object's buffer contents from the attachments
collection to disk. This API lets you upload file attachments to disk on the web server.

Parameters

Parameter Description

name A string value that represents the name of the attachment in the attachment object
within the attachments collection. This name is the same as the file form tag used
to send the attachment from the browser in an HTTP request.

Path A string value that specifies the full path where you want the attachment written.

Returns The full path and file name of the file uploaded, if successful.

Sample Pages Here are some sample pages:

Page 1 This page sends a request from the browser with two file attachments.

<form name="form" enctype="multipart/form-data" action="test.asp" method="post">
<table>

<tr><input name="keyl" value="12345678" /></tr>

<tr><input name="key2" value="456" /></tr>

<tr><input name="key3" value="789"/></tr>

<tr><input name="empty" value=""/></tr>

<tr><input name="filel" type="file"/></tr>

<tr><input name="file2" type="file"/></tr>

<tr><input name="submit" type="submit"/></tr>

</table>

24

Overview

Page 2 This page receives an HTTP request from page 1, parses the request, and uploads the files.

A
09|

'create an instance of the object which calls parseData
set o = server.CreateObject ("IDSASP.DSI")

'o.bDebug = true

o.parseData ()

'write the element count in the request collection
response.write "count=" & o.request.count & "

"

'indicate if the request is a multipart request
response.write "Multipart=" & o.bMultipart & "
"

'taverse through the request collection and write the name / value pairs

for i = 1 to o.request.count

name = o.request.Item(i) .Name

value = o.getRequest (name)

response.write " (" & name & ") = (" & value & ")
"
next

'if the request is a multipart request, then process the attachments
if o.bMultipart = true then
for each attachment in o.attachments
if IsObject (attachment) then
name = attachment.name
response.write "attachment name=" &name & "
"
file = attachment.file
response.write "file name=" & file & "
"
ftype = attachment.ftype
response.write "file type=" & ftype & "
"
encoding = attachment.encoding
response.write "encoding=" & encoding & "
"
buffer = attachment.buffer
response.write "buffer length=" & Len(buffer) & "
"
'write attachment to disk
path = o.upLoad (name, "c:\inetpub")

response.write "path returned by upLoad api = " & path & "
"

25

Chapter 2

Using the Internet Document Server

26

addSessionVar

getSessionVar

removeSessionVar

Using the XMLSession Rules

Use the XMLSession rules to save state information across multiple IDS servers and
across multiple web servers. Session information for each client session is saved as an
XML file on the server side. This also increases security as session information no longer
resides on the web server.

You can store, retrieve, and save files using the XMLSession rules. You can retrieve the
session information as rowset on the client side and it is also accessible using session
methods available in IDSASP and IDSJSP.

For more information about these methods and rules, see
e IDSASP Methods on page 29
e IDSJSP Methods on page 31

e XMLSession Rules on page 33

IDSASP Methods
Here are the IDSASP methods:

Use this method to add a name/value pair to the session collection. You can include these
parameters:

Parameter Description

name The name of the name/value pair to add to the session.

Value The value of the name/value pair to add to the session.

Here is an example:

dsi.addSessionvar "USERID", "FORMAKER"

Use this method to return a string containing the value of name in the session collection.
You can include these parameters:

Parameter Description

name The name of the name/value pair to retrieve from the session.

Here is an example:

userid = dsi.getSessionVar ("USERID")

Use this method to remove a name/value pair from the session collection. You can
include these parameters:

Parameter Description

name The name of the name/value pair to remove from the session.

Here is an example:

Overview

dsi.removeSessionvar "USERID"

addSessionObject Use this method to add a binary or text buffer to hold the contents for a file to the session
collection. You can include these parameters:

Parameter Description

name The name of the object name to add to the session.

Buffer A binary or text buffer holding the contents of a file to add to the session.

Here is an example:

dsi.addSessionObject "FILE1l", buffer

getSessionObject Use this method to retrieve a buffer that holds the contents of a file from the session
collection. You can include these parameters:

Parameter Description

name The name of the object to retrieve from the session.

Opt An integer value that indicates whether the object should be retrieved as a binary
or text buffer (1=text, 2=binary)

Here is an example:

buffer = dsi.getSessionObject ("FILE1", 1)
binBuf = dsi.getSessionObject ("FILE2", 2)

removeSessionObject Use this method to remove an object from the session collection. You can include these
parameters:

Parameter Description

name The name of the object to remove from the session.

Here is an example:

dsi.removeSessionObject "FILEL"

27

Chapter 2

Using the Internet Document Server

addSessionVar

removeSessionVar

getSessionVar

28

IDSJSP Methods
Here are the IDSJSP methods:

Use this method to add a name/value pair to the session map. You can include these
parameters:

Parameter Description

name Enter a string that contains the name of the name/value pair to add to the session
map.

Value Enter a string that contains the value of the name/value pair to add to the session
map.

This method has no return value. Here is an example:

dsimsg.addSessionVar ("USERID", "FORMAKER") ;

Use this method to remove a name/value pair from the session map. You can include
these parameters:

Parameter Description

name Enter a string that contains the name of the name/value pair to remove from the
session map.

This method has no return value. Here is an example:

dsimsg.removeSessionVar ("USERID") ;

Use this method to retrieve a name/value pair from the session map. You can include
these parameters:

Parameter Description

name Enter a string that contains the name of the name/value pair to retrieve from the
session map.

This method returns a string containing the value of the name/value pair in the session
map. Here is an example:

String userid = dsimsg.getSessionVar ("USERID") ;

Overview

addSessionObject Use this method to add a file buffer to the to the session map. You can include these
parameters:

Parameter Description

name Enter a string that contains the name of the file buffer to add to the session map.

Buffer A byte array holding the contents of a file.

This method has no return value. Here is an example:

dsimsg.addSessionObject ("FILE1", bufferl);

removeSessionObject Use this method to remove a file buffer from the session map. You can include these
parameters:

Parameter Description

name Enter a string that contains the name of the file buffer to remove from the session
map.

This method has no return value. Here is an example:

dsimsg.removeSessionObject ("FILEL") ;

getSessionObject Use this method to retrieve a file buffer from the session map. You can include these
parameters:

Parameter Description

name Enter a string that contains the name of the file buffer to retrieve from the session
map.

This method returns a byte[] array containing the buffer retrieved from the session map.
Here is an example:

byte[] buff = dsimsg.getSessionObject ("FILE1") ;

29

Chapter 2

Using the Internet Document Server

initSession

Input variables

Output variables

termSession

Input variables

Output variables

30

XMLSession Rules

Here are the XMLSession rules:

Use this rule to initialize a session. This rule generates a unique session ID and generates
a session file with unique ID. If a SESSION rowset is present in the request, the rule also

adds the rowset to the session file. If the SESSION rowset is missing in the request, a
blank unique session rowset is generated and added to the session file.

The SESSION rowset is returned in the result.

Variable Description

XMLSESSION (Optional) This variable contains a unique identifier for the
session. If present, it is used to generate a new session. Otherwise,
the rule generates a unique identifier for the new session.

XMLSESSIONTIMEOUT (Optional) Specifies the session timeout in seconds. The default is
1800 seconds.

Use this INT option to specify a global share for multiple IDS processes:

< GlobalbData >

Path =
Variable Description
XMLSESSION This variable contains the unique identifier for the session if the session is
valid. Otherwise, the value will be INT~ALID.
RESULTS Success or failure

Use this rule to terminate a session. This rule removes the session file associated with the
unique ID.

Variable Description

XMLSESSION This variable contains the unique ID for the session to be removed.

Use this INT option to specify a global share for multiple IDS processes:

< GlobalData >
Path =

Variable Description

XMLSESSION This variable contains the unique identifier for the session. This
attachment variable contains REMOV/ED if the session was terminated
successfully. Otherwise, the value will be INTZALID.

updateSession

Input variables

Output variables

purgeXMLSessions

Input variables

Output variables

Overview

Variable Description

RESULTS Success or failure

Use this rule to update the unique session file with the SESSION rowset in the request
message and return the updated rowset in the result.

Variable Description
XMLSESSION This variable contains the unique ID for the session to be
updated.

XMLSESSIONTIMEOUT (Optional) Specifies the session timeout in seconds.The default is
1800 seconds.

Use this INT option to specify a global share for multiple IDS processes:

< Globalbata >
Path =

Variable Description

XMLSESSION This variable contains the unique identifier for the session if the session is
valid. Otherwise, the value will be EXPIRED if the session has expired, or
INTALID if the session is no longer valid.

RESULTS Success or failure

Use this rule to remove expired sessions.

None. Use this INI option to specify a global share for multiple IDS processes:

< GlobalData >
Path =

Variable Description

RESULTS Success or failure.

31

Chapter 2

Using the Internet Document Server

saveFile Use this rule to save the contents of an XML node from a session file as a new file to disk
and to add an attachment variable to the result message with the full path and file name

of the file saved.

Input variables

Variable Description

XMLSESSION This variable contains the unique identifier for the session.

INPUTVAR The name of the SESSION rowset variable containing the data that is to be
saved to disk.

OUTPUTVAR The name of the attachment variable to add to the output message
indicating the full path and file name of the file saved.

PRINTPATH (Optional) Specifies the output path for the output file. If omitted, the
output file is written to the current IDS directory.

FILETYPE (Optional) Specifies the file type for the output file. If omitted, the default
extension DAT is used.

Use this INT option to specify a global share for multiple IDS processes:

< GlobalData >
Path =

Output variables

Variable Description

(variable) An attachment variable whose name is specified by OUTPUTVAR input
attachment variable - will hold a String value indicating the full path and file
name of the file saved to disk.

XMLSESSION This variable contains the unique identifier for the session if the session is
valid. Otherwise, the value will be will be EXPIRED if the session has
expired, or INI/ALID if the session is no longer valid.

RESULTS Success or failure

32

Properties

Methods

Overview

UsING IDSXML

You can use IDSXML as a guide to processing the errors.xml file in a Microsoft ASP
environment.

NOTE:IDSXML is not a COM+ component so do not register it under the Component
Services Microsoft Management Console snap-in. The component should only
be registered under the current IDS directory on the IDS client (the web server).

Keep in mind IDSXML requires Microsoft XML parser 4.0 (MSXML 4.0). Please
make sure you have this before you use IDSXML.

IDSXML is a Win32 COM component. IDSXML provides XML parsing and XSL
processing APIs for ASP. Here is a description of the properties and APIs provided by
this component:

This table shows you the properties:

Name Type Description See also
Formset collection A collection of form objects XMLProcessFormset
FormsetSelectionList string A comma-delimited string of =~ XMLUpdateFormset

options selected from a form
set. These values are expected:
- form

- form.copycount.recipient

- form.image

- form.image.copycount.
recipient

Here is an example:

DEC PAGE,DEC PAGE.1.AGENT,DEC PAGE.1l.COMPANY,
DEC PAGE.1l.INSURED,DEC PAGE.glsnam,DEC PAGE.glmdcl,DEC
PAGE.qglmdc?2,DEC PAGE.glmdc3, DEC PAGE.glmdc3.1.INSURED

IDSXML includes these methods:

e XMLTransformErrors on page 37

e XMLTransformErrors2 on page 38

* XMLLoadINI on page 39

e XMLLoadXML on page 40

* XMLLoadXSL on page 40

* XMLGetGroupOptionValue on page 41
e XMLGetValue on page 41

e XMLGetGroup on page 41

e XMLUpdateGroup on page 42

33

Chapter 2
Using the Internet Document Server

e XMLBuffer on page 44

e XMLLoadProcessor on page 44

e XMLAddParameterToXSL on page 44
¢ XMLTransformWithXSL on page 45
e XMLProcessWithXSL on page 46

¢ XMLUpdateFormset on page 47

e XMLProcessFormset on page 47

XMLTransformErrors

Use this method to transform a result message into useful HTML output. This method
takes an XML buffer from a result message that contains errors, an errors XML file that
contains error descriptions, and an XSL template which is used to transform the XML
message into HTML output that describes errors returned by IDS.

Syntax XMLTransformErrors xmlbuf, xmlFile, xslFile

Parameter Description

xmlBuf Enter the name of the XML buffer that contains the message returned by IDS.
This message contains errors returned by IDS.

xmlFile Enter the name of the errors file that contains all error codes recognized by IDS.
This file is produced by IDS and contains additional information, causes, and
resolutions for each error.

The errors file is used by this method to transform the message returned by IDS
into useful HTML output. This is a file that ships with IDS (errors.xml).

xslFile Enter the name of the XSL template you want the method to use to transform
the XML buffer and errors XML file into HTML information about errors
returned by IDS.

This is a template that ships with IDS (errors.xsl).

Example In this example, page one detects an error, captures the buffer that contains the error, and
redirects to the error processing page, which is page 2.

Pagel: processRequest.asp

<
set DSI = server.CreateObject ("IDSASP.DSI")

o°

For i=1 to Request.Form.Count

DSI.AddReq Request.Form.Key (i), Request.Form(i)
Next
On Error Resume Next

DSI.ProcessRg

If Err.Number <> 0 Then
Err.Clear

34

Overview

End if

path = Request.ServerVariables ("APPL_PHYSICAL_ PATH")

results = DSI.Result ("RESULTS") .Value
errors = DSI.Result ("ERRORS") .Value

If Len(results) = 0 OR results <> "SUCCESS" OR CInt(errors) > 0 then
Session ("xmlbuf") = DSI.GetSOAPMessage
set dsi = nothing
Response.Redirect "error.asp"

End if

Set DSI = Nothing

%>
Page2: error.asp

)
<%

set o = Server.CreateObject ("IDSXML.XML")

xmlbuf = Session ("xmlbuf")
xmlFile = Server.MapPath ("xml\errors.xml")
xslFile = Server.MapPath("xsl\errors.xsl")

o.XMLTransformErrors xmlbuf, xmlFile, xslFile
>

o°

XNMLTransformErrors2

Use this method to transform a result message into useful HTML output. This method
takes as input an XML buffer from a result message from IDS that contains errors and an
XSL template which is used to transform the XML message into HTML output that
describes the errors returned.

Syntax XMLTransformErrors2 xmlbuf, xslfile
Parameter Description
xmlBuf Enter the name of the XML buffer that contains the message returned by IDS.

This message contains errors returned by IDS.

xs|File Enter the name of the XSL template you want the method to use to transform
the XML buffer into HTML information that contains the errors returned by
IDS.

This is a template that ships with IDS (default.xsl).

Example In this example, page one detects an error, captures the buffer that contains the error, and
redirects to the error processing page, which is page 2.

Pagel: processRequest.asp

<

o°

35

Chapter 2

Using the Internet Document Server

set DSI = server.CreateObject ("IDSASP.DSI")

For i=1 to Request.Form.Count

DSI.AddReqg Request.Form.Key (i), Request.Form(i)

Next

On Error Resume Next

DSI.ProcessRg

If Err.Number <> 0 Then

Err.Clear
End 1if

path = Request.ServerVariables ("APPL_PHYSICAL_PATH")

results = DSI.Result ("RESULTS") .Value
errors = DSI.Result ("ERRORS") .Value

If Len(results) = 0 OR results <> "SUCCESS" OR CInt (errors)
Session ("xmlbuf") = DSI.GetSOAPMessage

set dsi = nothing
Response.Redirect "error.asp"
End 1if

Set DSI = Nothing

%>
Page2: error.asp

[
<%

set o = Server.CreateObject ("IDSXML.XML")

xmlbuf = Session("xmlbuf")

xslFile = Server.MapPath("xsl\default.xsl")

o.XMLTransformErrors2 xmlbuf, xslFile
>

o°

XMLLoadINI

Use this method to load an XML INI file into memory. Use this method before calling
other methods that retrieve information from an XML document.

Syntax XMLLoadINI sIni

Parameter Description

sINI Enter the full path and file name of the XML document you want to load. This
can also be a buffer that contains an XML document.

Here is an example of the format of the XML document:

<GROUPS>

36

Overview

<GROUP NAME="MQSERIES">
<QUEUEMANAGER>QALAB1</QUEUEMANAGER>
<CLIENT>YES</CLIENT>
<REQUESTQ>REQUESTQ</REQUESTQ>
<RESULTQ>RESULTQ</RESULTQ>
</GROUP>
<GROUP NAME="PRINTOPTIONS">
<ALLRECIPIENTS></ALLRECIPIENTS>
<PRTDOWNLOADFONTS></PRTDOWNLOADFONTS>
<PRTTYPE>PDF</PRTTYPE>
<PRTSENDCOLOR></PRTSENDCOLOR>
<PRTPAGENUMBERS></PRTPAGENUMBERS>
<PRTPRINTVIEWONLY></PRTPRINTVIEWONLY>
<PRTTEMPLATEFIELDS></PRTTEMPLATEFIELDS>
</GROUP>
<GROUP NAME="TEST">
<policy>
<num>1</num>

</policy>
</GROUP>

</GROUPS>

Example Here is an example:

set o = Server.CreateObject ("IDSXML.XML")
sIni = Server.MapPath ("ini.xml")
0.XMLLoadIni (sIni)

XMLLoad XML

Use this method to load an XML document into memory before an XSL transformation
occurs.

Syntax XMLLoadXML sXML

Parameter Description

sXML Enter the full path and file name of the XML document you want to load. This
can also be a buffer that contains an XML document.

Example Here is an example:

sXML = Server.MapPath ("xml\test.xml")
0 .XMLLoadXML (sXML)

XMLLoadXSL

Use this method to load an XSL template into memory before an XSL transformation
occurs.

Syntax XMLLoadXSL sXSL

Parameter Description

sXSL Enter the full path and file name of the XSL template you want to load. This can
also be a buffer that contains an XSL template.

37

Chapter 2

Using the Internet Document Server

Example

Syntax

Example

Syntax

Example

Syntax

38

Here is an example:

sXSL = Server.MapPath("xsl\test.xsl")
0.XMLLoadXSL (sXSL)

XMLGetGroupOptionValue

Use this method to return a value from an XML node. Use the XMLLoadINI method
before you use this method.

XMLGetGroupOptionValue sGroup, sOption

Parameter Description

sGroup Enter the group name to use for retrieving a value.

sOption Enter the option name to use for retrieving a value.

Here is an example:

set o = Server.CreateObject ("IDSXML.XML")

sIni = Server.MapPath("ini.xml")

0.XMLLoadINI (sIni)

val = o0.XMLGetGroupOptionValue ("MQSERIES", "CLIENT")
set o = nothing

XMLGetValue

Use this method to return a value from a node in an XML tree using xPath. Use the
XMLLoadINI method before you use this method.

XMLGetValue xPath

Parameter Description

xPath Enter a fully qualified xPath value to the node in the XML document tree.

Here is an example:

set o = Server.CreateObject ("IDSXML.XML")

sIni = Server.MapPath("ini.xml")

0.XMLLoadINI (sIni)
val=o.XMLGetValue ("//GROUP [@NAME="'TEST'] /policy/num")
set o = nothing

XMLGetGroup

Use this method to return an INI group as a buffer, as an object, or as a new file. Use the
XMLLoadINI method before you use this method.

XMLGetGroup sGroup, iOption, sDir

Parameter Description

sGroup Enter the name of the INI group you want returned.

Example

Syntax

Overview

Parameter Description

iOption Choose one of these options:
1 - Return the INI group as a buffer.
2 - Return the INI group as an object.
3 - Save the INI group as a new file.

sDir Only include this parameter if you entered three (3) for the iOption parameter.
Enter the name of the directory in which you want the system to save the new
XML file.

Here is an example:

<%

set o = server.createobject ("IDSXML.XML")
sIni = Server.MapPath("ini.xml")
0.XMLLoadINI (sIni)

'return MQSeries group as buffer
Buffer = o.XMLGetGroup ("MQSERIES", 1, "")

'return MQSeries group as object
Set MQSeriesGroup = o.XMLGetGroup ("MQSERIES", 2, "")
'traverse through the group object and print all pairs
For 1 = 1 to MQSeriesGroup.Count
name = MQSeriesGroup (i) .name
value = MQSeriesGroup (i) .Value
response.write name & "=" & value & "
"
Next
'access a particular value
val = MQSeriesGroup ("CLIENT") .Value

'write the MQSeries group as a new file into cache directory
0.XMLGetGroup "MQSERIES", 3, "Cache"

'cleanup
set MQSeriesGroup = nothing
set o = nothing

%>

XMLUpdateGroup

Use this method to update a group in an XML document via a Group Object parameter.
This method reads the group object's properties and updates the XML document's
matching group with the object's properties. The method then returns the updated XML
document as a buffer or saves it to disk. Use the XMLLoadINI method before you use
this method.

XMLUpdateGroup sGroup, oGroup, iOption, sOut

39

Chapter 2

Using the Internet Document Server

Parameter

Description

sGroup

oGroup

iOption

sOut

Enter the name of the group you want to update.

Enter the name of the group object you want to use to update a matching group
in an XML document.

Choose one of these options to indicate what you want done with the updated
file:

1 - Return the updated XML INI file as a buffer.
2 - Save the updated XML INI file as a file.

3 - Return only the updated group as a buffer.

4 - Save only the updated group as a file.

Only use this parameter if the iOption parameter is set to two (2) or four (4).
Enter the full path and file name for saving the XML document.

Example

<

o°

Set o

sIni =

Here is an example:

Server.CreateObject ("IDSXML.XML")

Server.MapPath ("ini.xml")

0.XMLLoadINI (sIni)

Set PrtOpt = o.XMLGetGroup ("PRINTOPTIONS", 2, "")

PrtOpt ("ALLRECIPIENTS") .Value = "YES"
PrtOpt ("PRTDOWNLOADFONTS") .Value = "YES"
PrtOpt ("PRTTYPE") .Value = "XML"

PrtOpt ("PRTSENDCOLOR") .Value = "NO"
PrtOpt ("PRTPAGENUMBERS") .Value = "NO"
PrtOpt ("PRTPRINTVIEWONLY") .Value = "NO"
PrtOpt ("PRTTEMPLATEFIELDS") .Value = "YES"

'update the xml ini file and return the updated file as a buffer

Buffer

o.XMLUpdateGroup ("PRINTOPTIONS", PrtOpt, 1, "")

'update the xml ini file and save it to disk

o.XMLUpdateGroup "PRINTOPTIONS",

PrtOpt, 2, "POpt.xml"

'update the group and return the updated group as a buffer

Buffer2

= o.XMLUpdateGroup ("PRINTOPTIONS", PrtOpt, 3, "")

'update the group and save the updated group as a new file

o.XMLUpdateGroup "PRINTOPTIONS",

PrtOpt, 4, "newPOpt.xml"

'cleanup
Set PrtOpt = Nothing

Set o

o°
\2

40

Nothing

Syntax

Example

Syntax

Example

Syntax

Overview

XMLBuffer

Use this method to return a buffer for an XML document. Use XMLLoadINI method
before you use this method.

XMLBuffer sFile

Parameter Description

sFile Enter the full path and file name of the XML document.

Here is an example:

<%

set o = Server.CreateObject ("IDSXML.XML")

InputFormset = Server.MapPath ("xml\OriginalFormset.xml")
Buffer = o.XMLBuffer (InputFormset)

Response.write Buffer

set o = nothing

o
%>

XMLLoadProcessor

Use this method to load an XSL template into memory and to load the XSL processor based
on that template. Use this method before you call the XMLAddParameterToXSL or
XMLProcessWithXSL methods.

XMLLoadProcessor sXSL

Parameter Description

sXSL Enter the full path and file name to an XSL template or a buffer that contains an
XSL template.

Here is an example:

set o = gerver.createobject ("IDSXML.XML")
template = Server.MapPath ("xsl\test.xsl")
o.XMLLoadProcessor (template)

XMLAddParameterToXSL

Use this method to add a parameter to internal XSL processor. For instance, you can use
this method to add parameters before processing with an XSL template that expects
parameters. Use the XMLLoadProcessor method before you call this method.

XMLAddParameter2XL name, value

Parameter Description

name Enter the name of the parameter to add to the XSL template.

41

Chapter 2
Using the Internet Document Server

Parameter Description

value Enter the value of the parameter to add to the XSL template.

Example Here is an example:

<

o°

set o = Server.Createobject ("IDSXML.XML")
sXML = Server.MapPath ("xml\test.xml")
sXSL = Server.MapPath("xsl\test.xsl")

0 .XMLLoadXML (sXML)
o.XMLLoadProcessor (sXSL)
o.XMLAddParameterToXSL "color", "blue"

o.XMLProcessWithXsL 1 , ""

set o = nothing

o°
\%

XMLTransformWithXSL

Use this method to transform an XML document with an XSL template. Use the
XMLLoadXML and XMLLoadXSL methods before you call this method. Use this
method to process XML documents with XSL templates that do not expect parameters.

Syntax XMLTransformwithXSL Option, sPath

Parameter Description

Option Choose one of these options:
1 - Return the transformation result as a string and write the result to the screen.
2 - Return the transformation result as a string.

3 - Write the transformation result to disk using the path specified by sPath
parameter. This also returns the transformation result as a string.

sPath Only include this parameter if you entered three (3) for the Option parameter.
Enter the full path and file name of the file you want to use for writing the
transformation result to disk.

Example Here is an example:

<

o°

set o = Server.Createobject ("IDSXML.XML")
sXML = Server.MapPath ("xml\test.xml")
sXSL = Server.MapPath("xsl\test.xsl")

0.XMLLoadXML (sXML)

42

Overview

o.XMLLoadXSL (sXSL)
o.XMLTransformwithXsL 1, ""

set o = nothing

o°
\%

XMLProcessWithXSL

Use this method to transform an XML document using an XSL template that expects
parameters. You should use the XMLAddParameterToXSL method to add the
parameters expected by the style sheet before you call this method. Also use the
XMLLoadProcessor method before you call this method.

Syntax XMLProcessWithXSL Option, sPath

Parameter Description

Option Choose one of these options:
1-Return the transformation result as a string and write the result to the screen.
2 - Return the transformation results as a string.

3 - Write the transformation result to disk using the path specified by sPath
parameter. This also returns the transformation result as a string.

sPath If you set the Option parameter to three (3), enter the full path and file name of
the file you want to use for writing the transformation result to disk.

Example Here is an example:

<

o°

set o = Server.Createobject ("IDSXML.XML")
sXML = Server.MapPath ("xml\test.xml")
sXSL = Server.MapPath ("xsl\test.xsl")

o .XMLLoadXML (sXML)
o.XMLLoadProcessor (sXSL)
o.XMLAddParameterToXSL "color", "blue"

o.XMLProcessWithxXxsL 1 , "

set o = nothing

o°
\%

XMLUpdateFormset

Use this method to update an XML form set. This method takes as input a buffer that
contains an XML form set or a string that specifies the full path and file name for an
XML form set. The method uses the FormsetSelectionList property, which contains a
comma-delimited string of forms, images, and recipients, to modify the form set.

43

Chapter 2

Using the Internet Document Server

44

Syntax

Example

Syntax

Example

This method generates a unique name for the updated form set and saves it as a new
XML document. It returns the full path and name of the new XML document.

XMLUpdateFormset sXML

Parameter Description

sXML Enter the full path and file name of an XML form set or a buffer that contains an

XML form set.

sDir Enter the name of a directory into which you want to save the updated form set.

Here is an example:

<
set o = Server.CreateObject ("IDSXML.XML")
InputFormset = Server.MapPath("original.xml")

o°

o.FormsetSelectionList = "DEC PAGE,DEC PAGE.1.AGENT,DEC
PAGE.1.COMPANY,DEC PAGE.1l.INSURED,DEC PAGE.glsnam,DEC
PAGE.glmdcl,DEC PAGE.glmdc2,DEC PAGE.glmdc3"

OutFormset = o.XMLUpdateFormset (InputFormset, "Cache")
set o = nothing

o
%>

XMLProcessFormset

Use this method to process a form set. This method takes as input a buffer that contains
an XML form set or a string that specifies the full path and file name of an XML form
set. The method parses the XML form set and converts it into a public form set collection
property. The form set collection contains form objects and each form object contains
images and recipients.

XMLProcessFormset xmlBuffer

Parameter Description

xmlBuffer Enter the full path and file name of an XML form set or a buffer that contains

the XML form set you want loaded and returned as a collection.

Here is an example:

set o = Server.CreateObject ("IDSXML.XML")

InputFormset = Server.MapPath ("xml\OriginalFormset.xml")
Buffer = o.XMLBuffer (InputFormset)

o.XMLProcessFormset Buffer

For i = 1 To o.Formset.Count
formName = o.Formset.Item(i) .NAME
formID = Pad (formName)

html = "<input type=checkbox name=SELECTION value=" & formID & __
" onclick='FormSelect (this);'>" & formName
form = "FORM." & CStr (i)

oTree.Add "root", form, html, bExpand, "page.gif"

Overview

html = "Recipients"
FRPCS = "FRECIPIENTS" & CStr (i)
oTree.Add form, FRPCS, html, bExpand, "mydoc.gif"

For k = 1 To o.Formset.Item(i) .Recipients.Count
recipientName = o.Formset.Item(i).Recipients.Item (k) .NAME
recipientCnt = o.Formset.Item(i).Recipients.Item(k) .CopyCount
recipientID = formID & "." & recipientCnt & "." & recipientName

html = "<input type=checkbox name=SELECTION value=" &
recipientID & _

">" & recipientName

recipient = "RECIPIENT" & "." & CStr(i) & "." & CStr (k)
oTree.Add FRPCS, recipient, html, bExpand, "n.gif"
Next
For j = 1 To o.Formset.Item(i).Images.Count
imageName = o.Formset.Item(i).Images.Item(j) .NAME
imageID = formID & "." & imageName
html = "<input type=checkbox name=SELECTION value=" & imageID

& "> g
"" & imageName & ""
image = "IMAGE." & CStr(i) & "." & CStr(j)
oTree.Add form, image, html, bExpand, "help_page.gif"

For k = 1 To o.Formset.Item(i).Images.Item(j) .Recipients.Count

recipientName =
o.Formset.Item(i).Images.Item(j) .Recipients.Item(k) .NAME
recipientCnt =
o.Formset.Item(i).Images.Item(j) .Recipients.Item (k) .CopyCount
recipientID = formID & "." & imageName & "." & recipientCnt
& "." & recipientName
html = "<input type=checkbox name=SELECTION value=" &
recipientID & ">" & _
recipientName
recipient = "RECIPIENT" & "." & CStr(i) & "." & CStr(j)
& "." & CStr(k)
oTree.Add image, recipientID, html, bExpand, "n.gif"
Next
Next
Next

45

Chapter 2

Using the Internet Document Server

USING To further increase performance, you can set up multiple servers. Each server you set up
helps process client requests. You can set up additional servers in a variety of ways, as this
MULTIPLE

diagram shows:
SERVERS

IDS Server
With this server setup, a single IDS Server
processes requests from the queue. Both are
physically located on the same computer.

Computer

IDS Server
IDS Server
\ /- With this server setup, a multiple IDS Servers

processes requests from the queue. Both the
servers and the queue are physically located on

the same computer.
Queue

IDS Server With this server setup,
a multiple IDS Servers
\ IDS Server on multiple computers

process requests from
the queue. IDS Server

Queue

Computer Computer

To determine which server setup will work best for you, first determine if your
transactions are CPU or I/O (input/output) intensive. Then take a look at the test results
we have compiled.

46

Using Multiple Servers

Determining if Your Transactions are CPU or I/O Intensive

To determine if the transactions the server is processing are CPU or I/O intensive, look
at the Windows Task Manager:

e If the CPU gauge shows around 100% CPU usage with no other applications
running, the transactions are CPU intensive.

e If the CPU gauge shows less than 80% CPU usage, the transactions are, most likely,
1/ O intensive (this includes network 1/O).

Here are some scenarios and recommendations:

Scenatio

Recommended Server Setup

Low transaction
volume. Each
transaction takes a few
seconds to process.

High transaction
volume. Each
transaction takes a few
seconds to process.

Any volume. Each
transaction takes a few
minutes to process.
Mostly I/O intensive.

Any volume. Each
transaction takes zinutes
to process. Mostly CPU
intensive.

No changes in configuration are required. One server should be able
to process all of the requests within reasonable period of time.

If clients are getting the zime-out waiting for Server error message, increase
the time-out value for the clients. To do this, set TimeOut INI option
in the ReqType:XXX control group. You can set this option for each
request type. This lets you set it to a higher value for requests which
take longer to process. The default time-out for each request type is
60 seconds.

To increase total throughput, try adding a second server. Keep in
mind that adding a second server does not let you process twice as
many transactions. You will probably see a performance increase of
around 10-20 percent.

You may see this scenario when the rules have to retrieve data from a
mainframe computer via ODBC or DB2, or when the rules have to do
a lot of file processing.”1

In this situation, try adding additional servers on the same computer
as the original server.

You may see this scenario if you use a lot of calculation-intensive
rules. In this scenario, the best solution is to add a second server on a
separate computer. If you want to add more servers, add them on
separate computers so you end up with a computer for each server.

*1 The number of ODBC connections to MVS is limited by MVS and ODBC drivers. You

cannot exceed this limit.

47

Chapter 2

Using the Internet Document Server

48

Performance Measurements when Using Multiple Servers

To help you choose the right server setup for your needs, here are some test results
compiled from multiple server runs.

These tests were run with a specified number of servers and clients. The servers were
started from the command line, so there is no built-in web server overhead or limitations.
For these tests, all clients ran at the same time. In typical implementations, you seldom
have all users working on the server at the same time.

Clients Number of servers Number of transactions per hour

Short transactions, each takes about 1 second or less

20 1 1680
20 2 1825
20 3 1583 (note the performance degradation)
40 1 1211

Not CPU intensive transactions, each takes about 40 seconds
- 1 77
- 3 263

CPU intensive transactions (100% CPU usage in the NT task manager), each takes about 10
seconds

- 1 372
- 2 (same PC) 372 (no difference)
- 2 (different PC) 754

Specifying the INI file
to use

Using Multiple Servers

Setting Up Additional Servers

You can start multiple instances of IDS by default. Running multiple instances of IDS is
generally required for performance reasons.

You control the number of instances IDS starts using this Configuration option:

<gection name="DocumentServer”>
<entry name=”Instances”>2</entry>
</section>

The default is two (2). You can enter a number from 1 to 10.

You can specify the name and location of the DAP.INI file you want to use in the
DPRInit rule as shown here:

<gection name="REQTYPE:INI”>

<entry name=”function”>dprw32->DPRInit,500,d:\docserv\dap.ini</
entry>

</section>

Separate parameters with commas.

The first parameter specifies the file cache. The default FAP file cache is 1000. The second
parameter specifies where to find the INI file. DAP.INT is the default file name.

NOTE:This approach does not work with the DPRCoLogin rule. Use the DPRLogin
rule instead.

49

Chapter 2

Using the Internet Document Server

50

SETTING UP A
WINDOWS NT
SERVICE

You can configure the Internet Document Server to run as a Windows service.

NOTE: Do not install the Internet Document Server and Internet Document Master
Server as a Windows NT service until you have checked to make sure the system
was properly installed.

To set up the Internet Document Server as a Windows service, go to the directory where
it 1s installed and run the batch file, DS-SERVICE.BAT. This will install IDS as a service
called Docupresentment Server.

To uninstall Internet Document Server as a Windows service, go to the directory where
it is installed and run the batch file, DS-SERVICE-UNINSTALL.BAT.

When running as a service, messages usually written to the console's standard output are
written to a text file named WATCHDOG-STDOUT.TXT. The messages usually written
to the console's standard error are written to a text file named WATCHDOG-
STDERR.TXT.

HANDLING

MULTI-
THREADED
REQUESTS

Handling Multi-threaded Requests

IDS can run multiple requests at the same time in separate threads of execution. If the
requests run are safe to run in multiple threads and are mixed between I/O-based and
computation-based, then running some requests in multiple threads can be an alternative
to running multiple instances of IDS.

An instance of IDS has a main thread that initializes global data and is the default for
running all requests. You can configure IDS to start extra threads to run some requests.
This is done in the docserv.xml configuration file, in the ‘BusinessLogicProcessor’
section:

<entry name="RequestProcessors”>1</entry>

Entry Description

RequestProcessors Indicates how many extra threads to set up to run requests. If the entry is
set to zero (0), no extra threads are set up and all requests are run serially.

To specify that a request can be run in an extra thread, in the docserv.xml configuration
file, create a 'MultiThreadedRequests' subsection in the 'BusinessLogicProcessor' section:

<gection name="MultiThreadedRequests">
<entry name="Request">FTPSEND</entry>
</section>

All requests mentioned in this section will be run in multiple threads if the
'RequestProcessors' entry is set up.

Each thread has its own separate input and output state to keep track of message variables
and attachments per request being run, so code in rules that read or change message
variables or attachments will not interfere with other requests running at the same time.
This includes calls to:

e DSIMessage.getMsgVar, DSIMessage.setMsgVar, and so on in the Java and scripting
rules.

¢ DSIJQueue.LocateAttachVar, DSIJQueue.AddAttachVar, and so on in the IDS
version 1.x Java rules.

¢ DSILocateAttachVar, DSIAddAttachVar, and so on in the C rules.

This does not mean all rules are safe to run in multiple threads, just that calls to the DSI
API code do not prevent rules from being run in multiple threads. For example,
Documaker code is not safe to run in multiple threads. If you need to run multiple
Documaker-related requests at the same time, you must run multiple instances of IDS.

51

Chapter 2

Using the Internet Document Server

INI vs. THREADINI
control sections

Threads and Inter-Rule

52

data in C rules

IDS version 1.x has a INI control section where global data is created and destroyed.
Since IDS version 2.x can have multiple threads, you need a way to create and destroy data
needed by each thread. This is done with the THREADINI control section. The
THREADINI control section is run once for each thread as it is started and once for each
thread when it is stopped. An example of code needing this is COM setup in Windows;
every thread in Windows that will be running COM code needs to initialize COM for that
thread. Here is a sample INI and THREADINI control section:

<gection name="ReqType:INI">
<entry name="function">irlw32->;IRLInit</entry>
<entry name="function">dprw32->;DPRInit</entry>
</section>
<gection name="ReqType:THREADINI">
<entry name="function">DSICoRul->;Init</entry>
</section>

IDS rules written in C use the functions DSICreateValue, DSILocateValue, and
DSIDestroyValue to create data in one part of code to use in other parts of code.

A common usage of these functions is to allocate data in the DSI_MSGINIT part of a
function, use it in the DSI_MSGRUNF and DSI_MSGRUNR parts of a function, and
free the data in the DSI_MSGTERM part of a function. All this is done inside a single
request.

A less common usage is to set up data in the INI request used for the entire runtime of
IDS. Rules in the INI request type have their DSI_MSGINIT code run when IDS starts
and their DSI_MSGTERM code run when IDS shuts down. This means data allocated
with DSICreateValue in the DSI_MSGINIT part of a INT request rule function is
available for all other requests run by IDS. This data is usually read-only, for example
configuration information from the DAP.INI file and MRLs set up by the DPRInit
function.

Since IDS can run requests in multiple threads simultaneously, each thread needs it's own
set of data for running requests plus access to the global configuration information. And,
at the same time, each thread needs to remain compatible with C rules using the
DSICreateValue, DSILocateValue and DSIDestroyValue functions. This is done by
having two data contexts for data: globa/ and thread-local.

Global context is when IDS is running rules in the INI request type. The INI rules are
run with DSI_ MSGINIT before the other rule threads are created, and the rules are run
with DSI_MSGTERM after the other threads are destroyed. Thread-local context is when
all other requests are run.

When the functions DSICreateValue and DSIDestroyValue are called during global
context the values are put in global data; in thread-local context the values are put in
thread-local data.

When DSILocateValue 1s called in thread-local context, the thread-local data 1s first
checked to see if has the data. If the value is in thread-local data, it is returned. If not, then
global data is checked, and returned if it is there. Only if the value is missing in both places
will DSILocateValue indicate that the data 1s not found.

This allows C rules using DSICreateValue, DSILocateValue, and DSIDestroyValue to run
in multiple threads but remain compatible with previous versions of IDS.

Threads and Inter-Rule
data in Java and
scripting rules

Handling Multi-threaded Requests

Since Java rules are based on objects that have their own state, this use of the C DSI-Value
functions is not required. When Java rules are used with transaction scope, an instance of
the class will remain for the run of the request, so data can be put in member variables
and will remain. There are functions available that do the same thing for passing data from
one rule to another or for use in one rule if it is run in static scope.

The RequestState object passed in to a Java rule has the methods putObject, getObject,
and removeObject. Since each thread has its own RequestState object, you can use these
functions to keep track of data for each request. These functions let you store any type of
object, not just byte arrays like the C functions.

To pass data between C and Java rules, use the RequestState methods createVar,
locateVar, and destroyVar. These correspond to the C functions DSICreateValue,
DSILocateValue, and DSIDestroyValue, so they can only use byte arrays for passing data.
The data context setup is also the same as for these C functions.

To set up and use Java global data, use the GlobalVarStorage class from the
DocuCorpUtil library.

USING THE JAVA TEST UTILITY

IDS includes a Java threads test utility you can run to send requests to IDS using single or
multiple threads. It also supports attachments and rowsets. You can also feed it a debug
message file, such as a receive.msg file generated by IDS (see the ReceiveMessage log4;
category in the logconf.xml file under the docserv directory) which can contain more than
one transaction that was previously processed. This can be useful in recreating or
duplicating a set of transactions for testing.

You can invoke the test utility via the threads script shipped with IDS.

NOTE:Ifyou invoke the test utilitywithout any arguments, it displays usage information.
For more information, see the HTML documentation for the
com.docucorp.test.threads class that is included with Java SDK.

You must have Java version 5 or later installed to use this test utility.

53

Chapter 2

Using the Internet Document Server

USING RULES
WRITTEN IN
OTHER
SCRIPTING
LANGUAGES

54

IDS can run rules written in scripting languages. In addition to rules written in Java, C,
and Visual Basic, IDS adds rules written in scripting languages (Java Script, Python, and
so on) for debugging, fast prototyping, or rarely run rules.

In a REQTYPE section, add a rule entry such as:
<entry name="function">script;test.py;runRule</entry>

This rule entry uses the runRule function in the Jython script file (TEST.PY).

The following example programs do the same thing. The first is in JavaScript, the second
in Jython, a dialect of Python that runs under Java Virtual Machines. You can find
information about which languages are available and where to get them at:

http://jakarta.apache.org/bsf/index.html

Here is a JavaScript example rule:

function runRule (requestState, idsArgs, idsMessage) {

switch (idsMessage) {
case IDSConstants.init
break;
case IDSConstants.runForward
break;
case IDSConstants.runReverse
text = requestState.getOutput () .getMsgVar ("LANGUAGE") ;

if (text == null) {
text = "JavaScript";
} else {

text = text + " and JavaScript";
}
requestState.getOutput () .setMsgVar ("LANGUAGE", text);
break;
case IDSConstants.terminate
break;

return IDSConstants.success;

}
Here is a Jython example rule:

def runRule(requestState, idsArgs, idsMessage):

if idsMessage == IDSConstants.runReverse:
text = requestState.getOutput () .getMsgVar ("LANGUAGE")
if text is None:
text = "Jython"
else:
text = text + " and Jython"
requestState.getOutput () .setMsgVar ("LANGUAGE", text)

return IDSConstants.success

http://jakarta.apache.org/bsf/index.html

USING IDS AS A
CLIENT TO
ANOTHER IDS

IDS
Client

The archive process

Using IDS as a Client to Another IDS

You can set up an IDS installation running under Linux and use the RunRP rules to
archive data from Documaker output into a Documanage archive stored on a Windows
NT computer. To do this, you must set up your system as explained below.

NOTE:This solution can also be used for other situations, such as when you need to
execute rules across platforms.

Queues Documaker

Server 1
(Set 1) (multiple instances) (GenData)

IDS Archive

Server 2 (Documanage)
(multiple instances)

Windows NT

The IDS client submits an XML extract file to IDS (IDS Server 1). On this request IDS
Server 1 executes the RunRP rules. After Documaker executes and prior to this
transaction being complete, IDS Server 1 has access to NA file, POL file, and NEWTRN
file. These files are attached to the request to IDS Server 2 (on Windows NT).

IDS Server 2 archives data into Documanage and returns the error code. IDS Server 1
receives the return code from IDS Server 2, adds all the attachment variables from IDS
Server 2 to the output attachment, and replies to the IDS client. IDS Server 2 does not
use GenArc or single-step GenData to archive, which reduces the number of resource
and setup files needed on Windows NT.

55

Chapter 2

Using the Internet Document Server

The retrieval process

56

Syntax

The IDS client submits the request to retrieve data to IDS Server 1. IDS Server 1 submits
the request to get the DPA file to IDS Server 2. The IDS Server 2 gets the DPA file from
Documanage, attaches it to the SOAP message and sends the reply to IDS Server 1. IDS
Server 1 receives the Documaker file, runs rules to produce a PDF file and sends the PDF
file to the client (this can be done as a file on disk or attached to the SOAP message).

Keep in mind:
e MQSeries is used as a queuing system in both places

e Java rules are used to send messages from IDS Server 1 to IDS Server 2 so JVM has
to be available on Linux platform to execute Java rules.

¢ Some of the Documaker resources (like DFD files, INT files) must be available to
both IDS implementations and must be kept in sync. One way to synchronize
resources is by using mounted volumes from Windows NT to Linux to IDS Server
2 on Windows NT has access to the same physical files as IDS Server 1 on Linux.

* You use the IDSClientRule to make IDS act as a client to another implementation of
IDS. This rule is explained below:

Using the IDSClientRule

Use this rule to have IDS act as an IDS client to send a request to a second IDS. You can
set communications parameters to talk to the second IDS and request parameters to set
up request types and other attachment variables to send to the second IDS.

The attachment variables and files you want to send can be hard-coded or retrieved as
attachment variables from the first IDS. Attachment variables returning from the second
IDS can be put in the input or output queue of the first IDS.

If the second IDS returns files in its result, the files can be written to disk with unique
names and cached. The unique names of the files are stored in attachment variables for
use by other rules. The rule can be run on the run forward or run reverse message.

Keep in mind that only MQSeries setups are supported. This rule has transaction scope
and the method in the Java class is ca//Reguest. The syntax of the function line in a request
is shown here:

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
IDSClientRule;CALL; transaction;callRequest;ARG,MESSAGEFILE=call.propert
1es&REQUESTFILE=call.txt&TIMEOUTSEC=15&RUN=RUNF&DEBUG=Y&DESTINATION=0OUT
PUT

Parameter Description

MESSAGEFILE This parameter points to the file that holds the settings for communicating
with the second copy of IDS.

REQUESTFILE This parameter points to the file that holds attachment variables and files
that are sent as a request to the second IDS.

TIMEOUTSEC Indicates the number of seconds to wait for a reply from the second IDS.

RUN Indicates the request message during which the rule will run. This
parameter is either RUNF for the run forward message or RUNR for the
run reverse message.

Using IDS as a Client to Another IDS

Parameter Description

DEBUG Determines if debugging messages are put in the Java rule log file. The
default is No.

DESTINATION This parameter says which queue will get the results back from the second
copy of IDS. The default is OUTPUT.

You can set communications parameters to talk to the second IDS. This is done by setting
up the file referenced in the MESSAGEFILE rule parameter.

Here is a sample IDSClientRule communications properties file. Parameters are explained
by comment lines above the parameters:

This indicates the class that implements queuing, in this case MQSeries:

queuefactory.class=com.docucorp.messaging.mgseries.DSIMQMessageQueu
eFactory

This indicates the class that formats the DSIMessage to send to IDS. Uncomment this

line to communicate with IDS version 1.6, leave it commented for subsequent versions:

#marshaller.class=com.docucorp.messaging.data.marshaller.LegacyByte
ArrayDSIMessageMarshaller

The following are sample MQSeries parameters. This is the queue manager for system
hosting MQSeries:
mg.queue.manager=QM pdtest

This specifies the MQSeries channel the messaging client and IDS use to communicate:

mg.queue.channel=SCC_pdtest

The MQSeries communication can be either in bindings mode (the program is running on
the same machine as the MQSeries server) or in ¢/ent mode (the program is running on a
different machine and communicates with the MQSeries server through TCP/IP). If the
setting mq.tpip.host is defined, the system uses client mode, otherwise it uses bindings
mode:

mg.tcpip.host=10.10.10.10
This specifies the TCP/IP port the MQSeries server is listening to. 7474 is most
commonly used.

mg. tcpip.port=1414
A client program sends requests out and gets results in:

mg.outputqueue.name=requestqg
mg.inputqueue.name=resultqg

This determines how long, in seconds, the MQSeries server keeps a message in the queue
if a program does not get it.

mg.outputqueue.expiry=120
Here is the complete example:

queuefactory.class=com.docucorp.messaging.mgseries.DSIMQMessageQueu
eFactory

#marshaller.class=com.docucorp.messaging.data.marshaller.LegacyByte
ArrayDSIMessageMarshaller

mg.queue.manager=QM pdtest
mg.queue.channel=SCC_pdtest

57

Chapter 2

Using the Internet Document Server

58

mg.tcpip.host=10.10.10.10
mg.tcpip.port=1414
mg.outputqueue.name=requestqg
mg.inputqueue.name=resultqg
mg.outputqueue.expiry=120

Attachment variables and files to send can be hard coded or retrieved as attachment
variables from the first IDS. This is done in the file mentioned in the REQUESTFILE
parameter. The file can have these sections:

[MESSAGES] for attachment variables in name=value pairs
[TEXTFILES] for sending text files
e [BINARYFILES] for sending binary files

[

RECEIVEDFILES] for the handling of files returned from the second IDS

[TEXTFILES] and [BINARYFILES] have file ID=file location pairs, listing the name that
the file data can be identified by and where to get the file's information. Here is a sample

REQUESTFILE:

[MESSAGES]
REQTYPE=CUSTOMREQUEST
USERID=GUEST

[TEXTFILES]
TEXT1=/home/fap/textl.txt
TEXT2=/home/fap/text2.txt

[BINARYFILES]
BINl=/home/fap/binaryl.bin
BIN2=/home/fap/binary2.bin

You can use attachment variables from the current running state of IDS as values in any
of the above sections. For example:

~GetAttach VARIABLENAME, INPUT
will use an attachment variable from the input queue
~GetAttach VARIABLENAME, OUTPUT

will use an attachment variable from the output queue. If instead of the name of an
attachment variable, you use an asterisk (*), every attachment variable from that queue will
be sent. Here is an example

~GetAttachment *,INPUT

This tells the system to ignore the attachment variable name. If you use an asterisk (*), the
request type of the request to send is not changed. An explicit REQTYPE is required in
the REQUESTFILE file.

For the [RECEIVEDFILES] section, the string to the left of the equals sign (=) is the
name of the file coming back from the second IDS. To the right of the equals sign is the
name of the attachment variable that contains the unique name and path of the generated
file, the directory where the file will be stored, and, optionally, the number of seconds to
cache the file. The default cache is 3600. For text files, the system appends .#x. For binary
files, it appends .4:n.

Here is a complete example of a request file:

[MESSAGES]
REQTYPE=CUSTOMREQUEST

Using IDS as a Client to Another IDS

DUMMY = ~GetAttach *, INPUT
[TEXTFILES]

TEXT1l=c:\fap\textl

[BINARYFILES]

BIN1l= ~GetAttach BINFILE, OUTPUT
[RECEIVEDFILES]

77ZT=MYTEXT, ., 1800

7.77B=MYBIN, c:\fap, 600

In this example after the run, if the current directory is c:\docserv, then the file sent in

ZZ77T would be stored in

c:\docserv\1729530022133082002. txt

That file name would be stored in the attachment variable MYTEXT and the file sent in
777B would be stored in:

c:\fap\6229680022133082002.bin

That file name would be stored in the attachment variable MYBIN. The text file,
(c:\docserv\1729530022133082002.txt) would be cached by IDS for 1800 seconds. The
binary file (c:\fap\6229680022133082002.bin) would be cached by IDS for 600 seconds.

59

Chapter 2

Using the Internet Document Server

MONITORING You can connect IDS to SNMP agents (SNMP server programs) so performance data can

IDS WITH
SNMP TooLs

be viewed by SNMP monitors (SNMP client programs). The connection is done with the
SNMP AgentX protocol, so you can use any SNMP agent program that supports AgentX.

If an AgentX-enabled SNMP agent is not available for a particular platform, IDS includes

a Java-based SNMP agent application you can use. This version includes a Management
Information Base (MIB) file, that can be used by SNMP monitor programs to map text
names and data types to the MIB number addresses for SNMP objects.

The primary server reports the number of instances of IDS that are running. Each
instance will report:

e The amount of time since it started running.

¢ The amount of time since the last restart.

¢ The number of successful transactions.

¢ The number of transactions that caused errors.

¢ The number of times the instance has been restarted.

¢ The amount of time needed to run the last transaction.

e The request type of the last transaction.

e The amount of time needed to run the longest transaction so far.

e The request type of the longest transaction so far.

¢ The number of transactions that have occurred in the last minute.

¢ The number of transactions that have occurred in the ten last minutes.

¢ The number of transactions that have occurred in the last hour.

To monitor IDS with SNMP tools, in the docserv.xml configuration file, create an SNMP
subsection under the DocumentServer, messaging subsection, as shown here:

<gection name="DocumentServer">
<gsection name="SNMP">

<entry name="Enabled">yes</entry>
<entry name="MasterAddress">10.1.10.100</entry>
<entry name="MasterProtocol">UDP</entry>

<entry name="MasterPort">705</entry>

</section>
</section>
Entry Description
Enabled Determines whether or not SNMP support is enabled. The default is No.
MasterAddress Is the IP address of where the master SNMP agent program is running. The
default is localhost.
MasterProtocol Is the communications protocol for communicating with the SNMP agent

60

program. You can enter UDP for communicating with IDS's included agent
or TCP for communicating with other AgentX-based SNMP agent
programs, such as netsnmp. The default is UDP.

Entry

MasterPort

Monitoring IDS with SNMP Tools

Description

Is the port the master SNMP agent program uses for the AgentX protocol.
The default is 705.

MONITORING REQUESTS

The SNMP monitoring capabilities in IDS allow the monitoring of extra requests and
rules by performance monitoring applications, such as LoadRunner.

You can have up to five statistics monitors to measure performance by SNMP. Each
monitor measures either an entire request or an individual rule in a request. For each

monitor, the time it takes to execute each message part (initialization, run forward, run

reverse, and terminate) as well as the total time for execution is available.

NOTE:The MIB file can use these monitors, but it is not required.

To enable the statistics monitors, in the docserv.xml configuration file, in the

DocumentServer section, add a StatisticsMonitors subsection, as shown here:

<gection name="DocumentServer">

<gection name="StatisticsMonitors">

<entry name="Monitor">SCH</entry>

<entry name="Monitor">RCP</entry>

<entry name="Monitor">PRT</entry>
<entry name="Monitor">PRT/7</entry>
<entry name="Monitor">PRT/8</entry>

</section>

</section>

Each Monitor entry can be the name of a request or the name of a request followed by a
slash (/) and a number. The number is the number of the active entry in the request
section. For example, for this request type...

<gsection name="ReqType:PRT">

<entry name="function">atcw32->ATCLogTransaction</entry>
<entry name="function">atcw32->ATCLoadAttachment</entry>
<!-- This comment line is skipped -->
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRTermDB</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRRetrieveFormset</entry>
<entry name="function">dprw32->DPRPrint</entry>
<entry name="function">dprw32->DPRProcessTemplates</entry>
<l-- -->

</section>

The monitor entry PRT/7 would refer to the DPRRetrieveFormset rule and PRT/8
would refer to the DPRPrint rule.

61

Chapter 2

Using the Internet Document Server

MANAGING |DS Youcan use the Watchdog process to manage and monitor IDS instances. The Watchdog
I process is started, stopped, and configured as a service. It is then responsible for
NSTANCES managing and monitoring the IDS instances.

The Watchdog process monitors the health of each instance and restarts it or stops it
when needed. You can also configure the Watchdog process through log4j to send email
notifications when an instance encounters a fatal or mission-critical error.

The Watchdog process also monitors the idle time for each instance and starts
additional ones when all running instances are under load. You have these options:

NOTE: Define these options in the DocumentServer section of the docserv.xml file. Do
not confuse these options with similar options for the HTTP router process in
the same file. The router is a different process and it does not support load
balancing.

Options Description

Instances (Optional) The number of IDS instances Watchdog
should start at startup. The default is two (2).

UseLoadBalancing (Optional) This option controls whether Watchdog
checks the idle time of the instances that are running and
starts additional ones when all of them are busy.

Instances are considered busy when their idle time is less
than the value provided in the MinIdleTimeSeconds
option. Watchdog uses the value provided in the
IdleTimeChecks option to determine the number of idle
time checks to run before it starts additional instances.

When additional instances are started for load balancing
purposes, they are shut down by Watchdog if their idle
time exceeds the value in the MaxIdleTimeSeconds
option.

The maximum number of instances running is the value
for the MaxInstances option (including the instances
configured in the Instances option). Watchdog checks the
idle time of the current instances at the interval specified
in the IdleTimeCheckIntervalSeconds and if all are busy,
it starts an additional number of instances equal to the
value provided in the IncrementCount option.

Please note that Watchdog does not start checking the
busy time of the current instances until the time provided
in the IdleTimeCheckDelaySeconds option is reached.
Make sure the value for the delay is ample enough to
provide for all instances to start and reach an idle time
equal to or greater than the value provided for the
MinldleTimeSeconds option.

You can enter Yes (or True) or No (or False). The default
1s Yes.

MaxInstances (Optional) This option controls the maximum number of
instances that can run when the UseLoadBalancing option
is enabled. The default is the number of processors times
two.

62

Options

IncrementCount

IdleTimeCheckIntervalSeconds

IdleTimeCheckDelaySeconds

IdleTimeChecks

MinldleTimeSeconds

MaxIdleTimeSeconds

MaxTransactions

MaxReportlntervalSeconds

MaxUpTimeSeconds

Managing IDS Instances

Description

(Optional) This option controls how many additional
instances are started during the current check when all
instances running are busy and the UseLoadBalancing
option is enabled. The default is two (2).

(Optional) This option controls how often Watchdog
checks the idle time of the instances that are running to
determine if they are busy so it can start additional ones
when the UseLoadBalancing option is enabled. The
default is 60 seconds.

(Optional) This option controls the initial delay before the
first idle time check is performed by Watchdog when the
UseLoadBalancing option is enabled. This time should be
ample enough to allow all instances to start and reach an
idle time equal to or greater than the value provided for the
MinldleTimeSeconds option. The default is 120 seconds.

(Optional) This option defines the number of consecutive
Idle time checks that must fail, meaning all instances were
busy during each check, before more instances are started
when the UseLoadBalancing option is enabled. Each
check takes place at the IdleTimeCheckIntervalSeconds
interval. The default is two (2).

(Optional) Thisoption controls the minimum idle time for
each instance. The idle time represents how long it has

been since an IDS instance processed the last request. If
Watchdog detects an instance has an idle time less than the
value provided for this option, it considers it busy for the
purpose of load balancing. The default is five (5) seconds.

(Optional) This option controls the maximum idle time
for an additional instance. The idle time represents how
long it has been since an IDS instance processed the last
request. If Watchdog detects an instance which was
started for the purpose of load balancing has reached an
idle time greater than the value provided for this option, it
sends the instance a shutdown request. The default is 120
seconds.

(Optional) This option controls the maximum number of
transactions an instance can process before it is restarted
by Watchdog. Enter -1 to disable this option. The default
1s 10000.

(Optional) This option controls the maximum time
interval that can elapse without an instance reporting back
to Watchdog before it is restarted. The default is 120
seconds.

(Optional) This option controls the maximum time
interval an instance can run before it is restarted by
Watchdog. Enter -1 to disable this option. The default is
28800 seconds (8 hours).

63

Chapter 2

Using the Internet Document Server

Options

MaxRestarts

RestartIntervalSeconds

MaxMemoryUsagePercent

MemoryChecks

CheckIntervalSeconds

UseJMX

64

Description

(Optional) This option controls the maximum number of
restart attempts that can occur within a time interval
specified by the RestartIntervalSeconds option before
Watchdog shuts down.

Use this option to prevent Watchdog from attempting to
restart instances infinite times when they cannot be started
due to configuration errors and so on. The default is five
restarts.

(Optional) This option controls the interval used with the
MaxRestarts option to determine if Watchdog is having a
problem starting instances and to prevent continuous or
infinite restart attempts. The default is 60 seconds.

(Optional) This option controls the maximum percentage
of the total JVM memory that can be used by an instance
before Watchdog will restart it.

Note that the total memory used in this calculation does
not include any memory used by native code. This option

is used with the MemoryChecks option. The default is 95.

(Optional) This option controls the total count of
consecutive memory checks that must be present, where
the memory usage by an instance exceeds the value
provided for the MaxMemoryUsagePercent option for
each check, at which point Watchdog will restart it.

The interval for each memory check is controlled by the
CheckIntervalSeconds option. The default is -1, which
disables this option.

(Optional) This option controls the time interval used by
Watchdog to check the health of each instance. The
default is one (1) second.

(Optional) This option controls whether JMX is used to
monitor additional health metrics for each instance.
Enabling this option lets Watchdog also monitor class
loading, memory usage, garbage collection, and deadlocks
in Java code for each instance.

Note that enabling this option requires an additional and
separate TCP/IP port for each instance so that it can be
started with a JMX agent.

You can enter Yes (or True) or No (or False). The default
is No.

Only use this option for debugging or testing purposes.
Do not use this option in production mode because it
causes extra overhead and it requires additional ports be
used.

Options

JMXPort

JMXCheckIntervalSeconds

JMXMemoryChecks

JMXVerboseMemory

JMXVerboseClassLoader

WaitForShutdownSeconds

OrderedRestartIntervalSeconds

Managing IDS Instances

Description

(Optional) This option controls the starting JMX port to
use when starting each instance with a JMX agent if the
UseJMX option is enabled.

Note that the starting port value should consider that each
additional instance that is started will try to use a
continuous/incremental port number. Thedefaultstarting
port value is 49163.

(Optional) This option controls the time interval used to
run JMX checks for each instance when the UseJMX
option is enabled. The default is 60 seconds.

(Optional) This option controls the total count of
consecutive JMX memory checks that must be present,
where the memory usage by an instance exceeds the value
provided for the MaxMemoryUsagePercent option for
each check, at which point Watchdog will restart it.

The interval for each check is controlled by the
JMXCheckIntervalSeconds option. The default is -1,
which disables this option.

(Optional) This option controls whether Watchdog turns
on verbose memory to output GC statistics for each IDS
instance when the UseJMX option is enabled. You can
enter Yes (or True) or No (or False). The default is No.

(Optional) This option controls whether Watchdog turns
on verbose class loading for each IDS instance when the
UseJMX option is enabled. You can enter Yes (or True) or
No (or False). The default is No.

(Optional) This option controls how long Watchdog waits
for an instance to shut down after it issues a shutdown
command and before it terminates the instance. The
default is 20 seconds.

(Optional) This option controls the interval used for
restarting each of the IDS instances in a sequential/
ordered manner when the MaxTransactions or
MaxUpTime options are used.

Watchdog restarts one instance at a time and waits for an
amount of time equal to the value specified for this option
before it restarts the next one and so on until it has
restarted all of them.

If you set this option to less than 60 seconds, you can
negatively affect performance. The default is 60 seconds.

65

Chapter 2

Using the Internet Document Server

Determining the

instance number of a

66

server

Categories and
appenders used by
Watchdog

You can determine the exact instance number of the (IDS) server the rule is running on.
For instance, you can use this to determine which TCP/IP port to use when IDS has to
talk to the GenData process. This DSI variable can be accessed from an IDS rule:

IDSINSTANCE

The value is a character array of a zero-based value. For example, on the primary IDS the
value will be zero (0), on first secondary instance it will be one (1), and so on. To get the
value, the rule has to call DSILocateValue().

Here are the Log4] categories and appenders used by Watchdog (see logconf.xml file
included in the docserv directory):

These mail categories and appenders are used to send email notifications during
mission critical errors, such as when IDS has a fatal exception:

<!--Used by Watchdog to send email notifications.-->
<category name="EMAIL" additivity="false">

<priority value="ERROR"/>

<appender-ref ref="EMAIL"/>

</category>

<appender class="org.apache.log4j.net.SMTPAppender" name="EMAIL">
<param value="1" name="BufferSize"/>
<param value="10.1.20.148" name="SMTPHost"/>

<!--Comment out the SMTPUsername and SMTPPassword parameters to skip
authentication.-->

<!--
<param value="" name="SMTPUsername" />
<param value="" name="SMTPPassword"/>

- >
<param value="support@acme.com" name="From"/>

<!--Use a comma delimited string of email addresses for To, cc and
bcc.-->

<param value="user@acme.com,user@acme.com" name="To"/>

<param value="user@acme.com,user@acme.com" name="cc"/>

<param value="user@acme.com,user@acme.com" name="bcc"/>
<param value="Error Message" name="Subject"/>

<param value="ERROR" name="threshold"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d- [%t]-%m\n"/>

</layout>

</appender>

This category is used to log informational output by Watchdog:

<!--Used to log Watchdog informational output.-->
<category name="Watchdog.output" additivity="false">
<priority value="INFO"/>

<appender-ref ref="watchdog-stdout"/>

<appender-ref ref="watchdog-allroll"/>

</category>

These categories and appenders are used to log debug and error messages by
Watchdog. Change the Priority value to 'DEBUG' to log debug messages.

<!--Used to log Watchdog debug and error messages.-->
<category name="com.docucorp.watchdog.Watchdog" additivity="false">

Managing IDS Instances

<priority value="ERROR"/>
<appender-ref ref="watchdog-stdout"/>
<appender-ref ref="watchdog-allroll"/>
</category>

<!--Logs Watchdog messages to stdout.-->

<appender name="watchdog-stdout"
class="com.docucorp.util.logging.IDSConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d- [%t] -%m\n"/>
</layout>

</appender>

<!--Watchdog Appender.-->

<appender name="watchdog-allroll"
class="com.docucorp.util.logging.IDSFileAppender">

<param name="Append" value="true"/>

<param name="File" value="watchdog.log"/>

<param name="Encoding" value="ISO-8859-1"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d- [%t] -%m\n"/>
</layout>

</appender>

e These categories and appenders are used by each Watchdog instance monitor thread
to log information for each instance monitored separately. Change the Priority
value to 'DEBUG' to log debug messages.

<l--Used to log each thread's Instance Monitor debug and error
messages. - ->

<category name="com.docucorp.watchdog.monitor.InstanceMonitor"
additivity="false">

<priority value="ERROR"/>
<appender-ref ref="instance-stdout"/>
<appender-ref ref="instance-allroll"/>
</category>

<!--Logs Instance Monitor thread messages to stdout.-->

<appender name="instance-stdout"
class="com.docucorp.util.logging.IDSConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d- [%t] -%m\n"/>
</layout>

</appender>

<!--Logs Instance Monitor thread messages to separate file(s).-->

<appender name="instance-allroll"
class="com.docucorp.watchdog.util.WatchdogFileAppender">

<param name="Append" value="true"/>

<param name="File" value="~THREADID.log"/>

<param name="Encoding" value="IS0-8859-1"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d- [%t] -%m\n"/>
</layout>

</appender>

67

Chapter 2

Using the Internet Document Server

e These categories and appenders are used to log debug and error information for IPC

(Inter-Process Communication) messages between Watchdog and the instances.
Change the Priority value to 'DEBUG' to log debug messages.

<!--Used to log IPCConnector debug and error messages.-->

<category name="com.docucorp.watchdog.ipc.IPCConnector"
additivity="false">

<priority value="ERROR"/>

<appender-ref ref="connector-stdout"/>
<appender-ref ref="connector-allroll"/>
</category>

<!--Logs IPCConnector debug and error messages to stdout.-->

<appender name="connector-stdout"
class="com.docucorp.util.logging.IDSConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d- [%t]-%m\n"/>
</layout>

</appender>

<!--Logs IPCConnector debug and error messages to a file.-->

<appender name="connector-allroll"
class="com.docucorp.watchdog.util.WatchdogFileAppender">

<param name="Append" value="true"/>

<param name="File" value="~THREADID.log"/>

<param name="Encoding" value="IS0-8859-1"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d- [%t]-%m\n"/>
</layout>

</appender>

A watchdog configuration file can contain multiple sections, each with its own set of
options. Here are some examples:

Watchdog section Here is an example of the Watchdog section:

<configuration>

<gection name="Watchdog">
<entry name="UseJMX">No</entry>
<entry name="JMXCheckIntervalSeconds">60</entry>
<entry name="JMXMemoryChecks">3</entry>
<entry name="JMXVerboseMemory">Yes</entry>
<entry name="JMXVerboseClassLoader">Yes</entry>

</section>

<section version="2.3" name="DocumentServer">
<entry name="StartCommand">java</entry>

<entry name="StartArguments">-Djava.endorsed.dirs=1ib/
endorsed -Xmx256m -Ddsimessage.debug=N -Dmarshaller.output=N -cp
.;lib/DocucorpStartup.jar -Dids.configuration=docserv.xml -
Dlogging.configuration=logconf.xml com.docucorp.startup.Startup
com.docucorp.ids.DocumentServer</entry>

<entry name="StartDirectory">.</entry>

<entry name="Instances">2</entry>

<entry name="UseLoadBalancing">Yes</entry>

<entry name="MaxInstances">10</entry>

<entry name="IncrementCount">2</entry>

<entry name="IdleTimeCheckIntervalSeconds">60</entry>
<entry name="IdleTimeCheckDelaySeconds">120</entry>

68

Scenario 1

Scenario 2

Managing IDS Instances

<entry name="IdleTimeChecks">2</entry>
<entry name="MinIdleTimeSeconds">5</entry>
<entry name="MaxIdleTimeSeconds">120</entry>
<entry name="MaxTransactions">10000</entry>
<entry name="MaxReportIntervalSeconds">60</entry>
<entry name="MaxUptimeSeconds">28800</entry>
<entry name="MaxRestarts">5</entry>
<entry name="RestartIntervalSeconds">60</entry>
<entry name="MaxMemoryUsagePercent">95</entry>
<entry name="MemoryChecks">3</entry>
<entry name="CheckIntervalSeconds">1</entry>
<entry name="UseJMX">No</entry>
<entry name="JMXPort">49163</entry>
<entry name="JMXCheckIntervalSeconds">60</entry>
<entry name="JMXMemoryChecks">3</entry>
<entry name="JMXVerboseMemory">Yes</entry>
<entry name="JMXVerboseClassLoader">Yes</entry>
<entry name="WaitForShutdownSeconds">20</entry>
<entry name="OrderedRestartIntervalSeconds">60</entry>
</section>
</configuration>

These JVM options are supported:

Option Description

-Dwatchdog.configuration (Optional) The name of the XML configuration file for watchdog.
The default is docserv.xml.

-Dlog4j.configuration (Optional) The name of the XML configuration file for LOG4J.
The default is logconf.xml.

-Dwatchdog.prefix (Optional) A unique string that should be used as the prefix for all
Watchdog files/locks generated on disk.

Use this option when running more than one Watchdog instance
from the same directory.

Here are some examples:

A platform contains a single CPU and the default values are used for the Instances option
and for load balancing.

In this case, the default value of Instances will be two (2) and the default value of
MaxInstances will also be two (2) so no load balancing will occur.

A platform contains four CPUs and the default values are used for the Instances option
and for load balancing.

In this case the default value of Instances is two (2) and the default value of MaxInstances
is 8. The default increment count will be two (2), the default minimum idle time will be 5
seconds, and the default maximum idle time will be 120 seconds.

Load balancing will occur and Watchdog will check the idle time of any running instances
every 60 seconds. If each of the instances running has an idle time that is less than 5
seconds, Watchdog deems them all busy and starts two additional instances. Watchdog
then continues on to the next check interval.

69

Chapter 2

Using the Internet Document Server

70

Scenario 3

These steps are repeated during each check interval until the total number of instances
running reaches eight. If any of the running instances were started for the purpose of load
balancing and reach an idle time greater than 120 seconds, they are shut down by
Watchdog.

A platform contains four CPUs and the value for the Instances option is set to 20 and the
default values are used for load balancing.

In this case the value for MaxInstances will be eight but the value for the instances will be
greater than the value for the maximum instances that can be reached during load
balancing so no load balancing will occur.

SENDING
RESULTS AND
RECEIVING
REQUESTS IN
MULTIPLE
FORMATS

Sending Results and Receiving Requests in Multiple Formats

The HTTP-based and queue-based messaging systems in IDS can accept messages in
multiple formats and will return results in the same format as the request. This is done so
IDS can communicate with third-party products that would find it difficult to produce
messages in current IDS-compatible formats.

The translation is done by marshaller code that translates a foreign message format into the
message format used internally by IDS (com.docucorp.messaging.data. DS IMessage).

Marshallers are Java objects that implement the interface
com.docucorp.messaging.data.marshaller. DS IMessageMarshaller, which is documented in the
SDK Reference.

Objects of the DSIMessage class hold the message variables and attachments passed in as
input to IDS and the output message variables and attachments produced by processing
requests in IDS.

The most important functions for marshallers are shown here:

Marshaller Takes

marshall A DSIMessage as an input and produces an object that is suitable for sending to
a client application via messaging.

unmarshall An object from a client application and a DSIMessage, and uses the Object to fill
in data in the DSIMessage.

1sType An object from a client application and determines if it is in the format of the
marshaller.

The messaging systems, both HTTP-based and queue-based, keep a list of marshallers for
formats that they recognize. When a message comes in from a client application, a
messaging system compares the message's format against the formats will recognizes
using the isType function for each marshaller.

If there is a match the incoming data is translated into a DSIMessage with the marshallers
unmarshall function and the DSIMessage, holding the request to be processed, is used as
input into the main request processing in IDS. This produces an output DSIMessage
holding message variables and attachments. The output DSIMessage is translated into the
same format as the input message and sent back to the client application.

As a default, the HTTP-based messaging system understands the SOAP with MIME
Attachments format. (See Using HTTP on page 125 for more information.) The default
marshallers for the queue-based messaging system understand the SOAP with MIME
Attachments format and the binary format used by IDS version 1.6 and earlier.

The queue-based messaging system currently works with WebSphere MQ, formerly
known as MQSeries, and Java Message Service based queues. Both queuing systems can
deliver messages as text (a Java string) and binary (a Java array of bytes), so marshallers
can work with either format. The HTTP-based messaging system only recognizes text
with HTTP headers, such as Content-length, so marshallers written to work with HTTP
must work within these limitations.

71

Chapter 2

Using the Internet Document Server

Using the DSIMessage

72

marshaller class

Configuring and Deploying Marshallers

To configure IDS to recognize custom marshallers, you can add a marshallers section to
either of these sections:

e 'BusinessLogicProcessor', subsection 'messaging', subsection 'queue’
e 'BusinessLogicProcessor', subsection 'messaging', subsection 'http'

For example, in the docserv.xml configuration file, in section 'BusinessLogicProcessor’,
subsection 'messaging', subsection 'queue' create a 'marshallers' section and add these
entries:

<gsection name="marshallers">

<entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.Lega
cyByteArrayDSIMessageMarshaller</entry>

<entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.SOAP
MIMEDSIMessageMarshaller</entry>

</marshallers>

This sets up the queuing system to use these two formats for receiving and sending
requests. If no entries are specified then IDS defaults to SOAP with attachments and
legacy IDS byte format.

NOTE:If a custom marshaller list is added to the configuration file, the default
marshallers are not automatically added to the list. This allows greater
customization. If you want to also use the default marshallers in messaging, you
must add them to the marshallers list in addition to the custom marshallers.

To deploy your marshaller code, package the Java class files in a JAR file and put it in the
/lib subdirectory under where IDS was installed. The next time IDS starts your custom
marshallers will be available.

IDS version 2.1 added the DSIMessage marshaller class called
XSLT TemplateDSIMessageMarshaller.

For marshalling, the marshaller starts with the usual SOAP/XML format of a
DSIMessage, then uses that as the source of a XSLT transformation to convert the SOAP
message to a third-party XML format.

For unmarshalling, the marshaller starts with a third-party XML format and the XSLT
transformation converts it to the Docupresentment SOAP/XML format, which is then
unmarshalled into a DSIMessage object.

In addition to the usual marshalling methods, the marshaller adds methods to pass in the
files holding the XSLT templates, or the text of the XSLT template directly.

NOTE:This marshaller is mainly used in IDS rules, so there is no configuration-based
setup of XSLT templates for marshalling and unmarshalling. You set up the
XSLT with Java methods in the XSLTTemplateDSIMessageMarshaller class.

These methods set up XSLT templates for the marshaller:

Sending Results and Receiving Requests in Multiple Formats

public void setMarshallerText(String text)

This method sets the XSLT text for marshalling messages (converting to a foreign
format).

public void setMarshallerFilename(String filename)

This method sets the file that holds the XSLT for marshalling messages (converting
to a foreign format). The file is loaded into the marshaller filter.

public void setUnmarshallerText(String text)

This method sets the XSLT text for unmarshalling messages (converting from a
foreign format).

public void setUnmarshallerFilename(String filename)

This method sets the file that holds the XSLT for unmarshalling messages
(converting from a foreign format). The file is loaded into the unmarshaller filter.

73

Chapter 2

Using the Internet Document Server

74

LOGGING AND
TRACING

Severity levels

Logging categories

There are several ways you can configure IDS to log messages. For instance, you can
configure IDS to:

* Log only events based on their severity, from debug messages to fatal errors.

e Control where logging messages are sent, whether they go to files, the Windows
event logger, into emails, and so on.

¢ Include and format the relevant information, such as time of day, elapsed time since
IDS was started, where the message came from, which thread the code is currently
running in, and so on.

Logging in IDS is based on the Log4j logging library. A complete description of Log4j's
capabilities is available at

http://jakarta.apache.org/log4j

IDS logging is configured by the file specified in the Java system property
'logging.configuration'. If this property is not set, the default is to look for the logconf.xml
file in the current directory. This file is checked periodically for changes by IDS when it
is running, so it is possible to change logging options while IDS is running. IDS does not
need to restart when a logging change is made.

Logging messages have a severity level assigned to them. This is used to determine if and
when a logging message is written. From least to most severe, the severity levels are:

« DEBUG
 INFO

e WARN
e ERROR
e FATAL

When setting up logging you can decide what kind of messages to receive by picking a
severity level. Any messages at that severity level and those more severe are output. For
example, if you choose a severity level of WARN, only WARN, ERROR, or FATAL
messages are sent, while DEBUG and INFO messages are suppressed. For diagnosing
problems, the severity level would be set to DEBUG to produce more messages.

What messages to log and where to log them is determined by logging categories or /ggers.
Categories are based on a hierarchy of names or words separated by periods. As an
example, DocumentServer would be a parent category to DocumentServer.ontpnt and
DocumentServer.error. When a parent category is assigned a severity level, all children
categories inherit it as their default. Children categories can override these defaults.

For example, if the DocumentServer category's severity level is set to WARN and the
DocumentServer.ontput category's severity is set to INFO, then only DocumentServer and
DocumentServer.error will use WARN.

http://jakarta.apache.org/log4j

Logging appenders

Logging formats

Logging example

Logging and Tracing

The DocumentServer.ontput category is where normal runtime messages for IDS are sent,
such as the startup message and how many transactions were completed at shutdown or
restart time. Common errors encountered during configuration and rule setup are sent to
the DocumentServer.error category. Since these messages are in logging categories, they can
be sent to multiple places in addition to being printed on the console. There are other
categories that have debugging messages and you may be asked to activate these by
Support.

NOTE:For additional information, see Using Logging Categories to Access the Internal
Format of Requests on page 94.

The destinations for logging messages are known as appenders, since new logging messages
are appended to the end of the file, event log, and so on. The most common appenders
are for the console and for files.

A category can send messages to multiple appenders. Like severity levels, appenders
inherit from parent categories, but unlike severity levels, appenders are added to the
parent appenders and do not override the parent category's settings. This inheritance can
be turned off, as shown in the logging example.

In addition to the logging message itself, other information can be configured to be
output with the logging message, such as the date and time the logging occurred, the
severity level of the message, and so on. In Log4j the formatting strings are called conversion
patterns, which you will see in the logging example. You can arrange the formatting
commands in any order. Text not part of a formatting command is sent verbatim, so you
can use commas, dashes, and other characters to separate the formatted text.

You may want to set up conversion patterns for different appenders. For example, you
may want to include the date and time on a message going to a file but excluding it from
a message going to the Windows Event Log, since the message's date and time are logged
by the Event Logger.

Here are some of the common formatting commands:

Parameter Description

%m The actual message being logged.

%n A system-dependent newline character.

%c The category of the message.

%d Date and time, down to the millisecond, when the message was generated.
Y%r Elapsed time, in milliseconds, since the application was started.

%p Severity level (priority) of the message generated.

%t The name of the Java thread that generated the message.

This is an example logging configuration file. This table shows how the various categories
output messages:

75

Chapter 2
Using the Internet Document Server

Category Outputs messages

DocumentServer With a WARN security level or higher

DocumentServer.output With an INFO security level or higher

DocumentServer.output That go to the console

DocumentServer.error That go to the console, a logging file, and to the Windows Event
Logger.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="false">

<!-- An appender that writes messages to a file. -->

<appender name="rollfile"
class="org.apache.log4j.RollingFileAppender">

<param name="Append" value="true" />

<param name="File" value="docserver.log" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"

value="%-5p [%t] %r: %c{l} - %m\n"/>
</layout>
</appender>
<!-- An appender that writes messages to the console. -->

<appender name="stdout"
class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value=" %d %-5p [%t]: %c{l}
%m\n" />
</layout>
</appender>

<!-- An appender that writes messages to the Windows Event Log. -->

<appender name="ntevent"
class="org.apache.log4j.nt.NTEventLogAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value=" Docupresentment
Server: %m\n"/>

</layout>
</appender>
<!-- The parent category for outputs and errors. -->

<category name="DocumentServer">
<priority value="WARN" />
<appender-ref ref="stdout" />
<appender-ref ref="rollfile" />

<appender-ref ref="ntevent" />

</category>

76

Logging and Tracing

<!-- The "standard output" for DocumentServer - where regular
messages go. -->

<category name="DocumentServer.output" additivity="false">
<priority value="INFO" />
<appender-ref ref="stdout" />

</category>

<!-- A debugging category, will be turned on and off. -->
<category name="com.docucorp">

<priority value="WARN" />

<appender-ref ref="stdout" />

</category>

<root>
</root>

</log4j:configuration>

NAMING LOGGING VMIESSAGES

IDS includes a Log4j Appender class lets you control the naming of the files logging
messages are written to. The full name of the class is:

com.docucorp.ids.serverutils.IDSFileAppender

When this class is used as part of the logging setup, you can use IDS-specific variables.
The IDS-specific variables are:

Variable Description

~INSTANCE The instance number of the server being run. A primary server has an
instance number of zero (0) and secondary instances are numbered
starting at one (1). For example, running three instances of IDS, one
primary and two secondary, the instances are numbered 0, 1, and 2.

~SERVERGUID A IDS GUID identifier unique to each IDS instance but not recycled
upon restart. When IDS is started, the primary instance and any
secondary instances are assigned a unique identifying string. These
strings are assigned to the same instance of IDS if it is shut down and
restarted. The GUID strings remain the same until the number of
instances is changed in the docserv.xml configuration file.

~THREADID Each thread in IDS is given a name. You can use this name as part of the
file name. Since the same code may run in different threads during the
lifetime of an IDS session, and since the thread ID can be printed during
a logging message, you would seldom need to use this option.

An exception is for debugging the HTTP subsystem of IDS, where each
HTTP message is run in a pool of threads.

~UPTIME The date and time of when the instance of IDS was started.
~LASTRESTART The date and time of the most recent restart of this instance of IDS.
~CURRENTTIME The current date and time. The time can be measured down to the

millisecond so this option is handy for debugging time-critical and
performance issues.

77

Chapter 2

Using the Internet Document Server

78

The ~UPTIME, ~LASTRESTART, and ~CURRENTTIME options are followed by a
formatting parameter which ends with a semicolon (;). The formatting options are based
on Java's SimpleDateFormat class. You can find full documentation for these formatting

options at:

The formatting characters are:

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

Symbol Meaning Presentation Example
G era designator Text AD

y year Number 1996

M month in year Text & Number July & 07
d day in month Number 10

h hour in am/pm (1~12) Number 12

H hour in day (0~23) Number 0

m minute in hour Number 30

s second in minute Number 55

S millisecond Number 978

E day in week Text Tuesday
D day in year Number 189

F day of week in month Number 2 (2nd Wed in July)
w week in year Number 27

W week in month Number 2

a am/pm marker Text PM

k hour in day (1~24) Number) 24

K hour in am/pm (0~11) Number 0

z time zone Text Pacific Standard Time
' escape for text Delimiter

" single quote Literal '

Here are some sample formats:

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

Logging and Tracing

Sample Explanation

MM-dd-yyyy Two digits for the month, two digits for the day, and four digits for
the year.

MMMM-dd-yyyy The month spelled out, two digits for the day, and four digits for
the year.

yyyyMMddHHmmssSSSS A 4-digit year, 2-digit month, 2-digit day, 2-digit hours in day, 2-
digit minutes in day, 2-digits seconds in a minute, and 4-digit
milliseconds in a second.

In this format, sorting alphabetically is the same as sorting by date.

As a Log4j Appender, the IDSFileAppender has several parameters that are set in the
logging configuration file, usually named /geonfxml. The parameters are:

Parameter Description

File The name of the file to write. This can be a static file name or a dynamic file name
created using the above options.

Append If True, the next logging message is appended to the end of the file. If false, the
file is first erased. The default is True.

Close If True, the file is closed after the message is written. This can be useful if you
want to edit, move, or delete the file while IDS is still running. The default is
False.

If the name of a file changes between two logging calls, for example if you are using
~LASTRESTART and IDS is restarted, or if you are using ~CURRENTTIME and the
time changes by a sufficient amount, the old file is automatically closed.

Using combinations of Append and Close can produce different effects. With Append as
False and Close as True, only one logging message will be in the file at any time. This can
be handy when debugging messages passed in and out of IDS.

If Append is True and Close is False, the file acts like a regular FileAppender. In fact, if
you are running only one instance of IDS and you do not want to change the file name,
use the regular FileAppender since it is slightly faster than the IDSFileAppender.
IDSFileAppender has to re-evaluate the file name for each logging message. Setting
Append to True and Close to True gives you an ever-growing file that you can move,
delete, edit, and so on.

Here are some examples:
The IDSFileAppender is used in the appender elements in the logging configuration.

<appender name="multiinstance"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="true" />

<param name="File" value="server-~INSTANCE .log" />
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"

value="%-5p [%t] %r: %c{l} - %m\n"/>

</layout>

</appender>

79

Chapter 2

Using the Internet Document Server

80

This produces a separate log file for each instance of IDS. If there are a total of three
instances running, a primary and two secondaries, these log files are created:

e server0.log
e server-l.log
e server2.log

<appender name="everyhour"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="true" />

<param name="File" value="server-~CURRENTTIME MMddHH;.log" />
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern"

value="%-5p [%t] %r: %c{l} - Sm\n"/>

</layout>

</appender>

This produces a log file and which is written to until the hour changes. The system then
starts writing to a new file. The date/time formatting is for the month, day, and hour, so
on October 15, from noon until 1 pm, logging entries are written to the server-107512./ng
file. From 1 pm to 2 pm, logging entries are written to the server-101513./pg file, and so on.

USING LOGGING CATEGORIES

To make it easier to debug problems in IDS, you can use logging categories to sort
messages IDS receives from client programs and messages it sends to client programs.
You can have the system treat all messages the same or distinguish between messages
from message queues (WebSphere MQ or JMS) and messages from HTTP.

Combining the use of the message categories with options in the IDSFileAppender
provides the same functionality as the send.msg and receive.msg message debugging of IDS
version 1.8, but also allows other options.

The categories are as follows:
* SendMessage.queue

* ReceiveMessage.queue

e SendMessage.http

* ReceiveMessage.http

As with other Log4j categories, the categories are hierarchical, so using category names
SendMessage and ReceiveMessage will use the same category for both queue and HTTP-based
messages.

Since the messages are handled as Log4j categories, they can have all the destinations of
other categories, such as files, the NT Event logger, email, and so on.

Here are some examples. When looking at the examples, remember that for each request,
a message is first received by IDS then a message is sent.

Logging and Tracing

This combination of categories and appenders gives the same behavior as in IDS version
1.8. When the categories are set to DEBUG, any received messages are placed in the

receive.msg file. Any sent messages are placed in the send.msg file. When new messages
are processed, either by queues or HTTP, they are placed in the receive.msg and send.msg

files.

<appender name="receivemessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="receive.msg" />
<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%m"/>
</layout>

</appender>

<appender name="sendmessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="send.msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%m"/>
</layout>

</appender>

<category name="ReceiveMessage'">
<priority value="DEBUG" />
<appender-ref ref="receivemessage" />

</category>

<category name="SendMessage">
<priority value="DEBUG" />
<appender-ref ref="sendmessage" />

</category>

This set of categories and appenders puts the received messages and sent messages in the
same file, with one file for each instance of IDS that is running. Since Append is False for
receiving and Append is True for sending, this file is overwritten for each receive/send
pair. The header Received: is added in front of the received message and Sent is placed in
front of the sent message.

<appender name="receivecombined"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="combined-~INSTANCE .msg" />
<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="Received:%n%m%n"/>
</layout>

</appender>

<appender name="sendcombined"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="true" />

81

Chapter 2

Using the Internet Document Server

82

<param name="File" value="combined-~INSTANCE.msg" />
<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="Sent:%n%m"/>
</layout>

</appender>

<category name="ReceiveMessage">
<priority value="DEBUG" />
<appender-ref ref="receivecombined" />

</category>

<category name="SendMessage">
<priority value="DEBUG" />
<appender-ref ref="sendcombined" />

</category>

In this example you distinguish between messages handled by the queues and messages
handled by HTTP. The queue messages are placed in receive.msg and send.msg, but since
the HTTP messages are handled simultaneously by multiple threads, the HTTP messages
include the thread ID in the file names.

The system also notes the categories and sub-categories. In the categories with HTTP,
additivity is set to False, meaning the HTTP categories should not use appenders from the
SendMessage and ReceiveMessage categories.

<appender name="receivemessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="receive.msg" />
<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%m"/>
</layout>

</appender>

<appender name="sendmessage"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="send.msg" />

<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%m"/>
</layout>

</appender>

<appender name="receivehttp"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="receive-~THREADID .msg" />
<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%m"/>
</layout>

</appender>

Logging and Tracing

<appender name="sendhttp"
class="com.docucorp.ids.serverutils.IDSFileAppender">

<param name="Append" value="false" />

<param name="File" value="send-~THREADID .msg" />
<param name="Close" value="true" />

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%m"/>
</layout>

</appender>

<category name="ReceiveMessage'">
<priority value="DEBUG" />
<appender-ref ref="receivemessage" />

</category>

<category name="SendMessage">
<priority value="DEBUG" />
<appender-ref ref="sendmessage" />

</category>

<category name="ReceiveMessage.http" additivity="false">
<priority value="DEBUG" />
<appender-ref ref="receivehttp" />

</category>

<category name="SendMessage.http" additivity="false">
<priority value="DEBUG" />
<appender-ref ref="sendhttp" />

</category>

LOGGING INFORMATION ABOUT REQUESTS

IDS lets you store information about a request in a database for later viewing or
processing. IDS logs information about a request (transaction) in any Java Database
Connectivity (JDBC) compliant database. You can find additional information about

JDBC at
http://java.sun.com/products/jdbc/

On Windows computers, Open Database Connectivity (ODBC) is available, and Java has
built-in drivers to ODBC connections.

Request logging automatically rolls over and starts new database tables on a daily or
weekly basis and you can configure IDS to automatically delete old database tables. The
configuration file can specify how many days or weeks of log tables to keep when purging

old tables.

83

http://java.sun.com/products/jdbc/

Chapter 2

Using the Internet Document Server

NOTE:Set up a separate database for IDS transaction logs. When purging old tables, 2/
tables that do not qualify as the most recent transaction logs are deleted from the
database.

IDS lets you use a browser to display request logs and sort and filter the requests. You can
display logs from just a single database table or from multiple tables.

When IDS sends result messages back to client programs, it includes these message
variables:

Variable Description

IDSHOSTNAME Contains the host name of the machine running IDS.

IDSGUID Contains the unique ID for the running instance of IDS.

With this information you can track a message back to a particular instance of IDS
running on a particular machine, even if all messages are logged to a common place.

Request logging To add this capability, go to the DOCSERV.XML configuration file and find the
configuration BusinessLogicProcessor section. Then create a TransactionLogDatabase subsection, as
shown here:

<gection name="TransactionLogDatabase">

<entry name="class">sun.jdbc.odbc.JdbcOdbcDriver</entry>

<entry name="URL">jdbc:odbc:TRAN_LOG</entry>

<entry name="userid">sa</entry>

<entry name="password"></entry>

<entry name="time.type">weekly</entry>

<entry name="time.count">2</entry>

<entry name="time.startofweek">monday</entry>

<entry name="close.database">N</entry>

<section name="columns">
<entry name="Regtype">REQTYPE</entry>
<entry name="UserID">USERID</entry>
<entry name="Password">PASSWORD</entry>

</section>
</section>
Parameter Description
class The JDBC Java class that connects to the database. In this example, we are

using Java's built in ODBC connectivity in Windows.

URL The JDBC-based name of the database that tables will be written into. This
will vary for different JDBC drivers, but somewhere will include the
database name, in this case TRAN_LOG. Consult your JDBC driver
documentation on setting up this URL.

userid The user name for logging in to the database.

password The password for the specified user name.

84

Logging and Tracing

Parameter Description

time.type Either dazly or weekly, specifying how often to roll over into a new database
table.

time.count How many of the most recent tables in the database to keep when deleting

old tables. This will be either the most recent days or weeks worth of
information, depending on the time.type setting.

time.startofweek When time.type is weekly, this specifies what day of the week to start a new
database table.

close.database Whether or not to close the database after writing a transaction to the
transaction database. Setting this to Y or N will depend on how many
database connections are available to the database and how often
transactions are logged.

columns This subsection holds any number of entries specifying the column names
in the database. The entry name is the name of the column that will be
used in the database. The entry value is the name of the message variable
in the output that will be written in the column.

Accessing the IDS includes requests and HTML pages to let a user view the transaction log database
transaction database from a browser. To begin, start a web browser and go to this URL

through IDS
http://localhost:49152/request?REQTYPE=LOGMETADATA

localhost-49152 refers to the IP address and port that IDS is set up for HTTP messaging.
You will see a screen similar to this:

Q-0 HRNLreREE LA

DocuCorp IDS Server DOCUCORP .

INTERNATIONAL

Transactions Log Database

Transaction Log ,__— VWiew All Log
P003-05-09 e al
Field Filter Order By
@ | TRANSACTIONTIME |[1 7 # |[Dasc 7[|[1=
v | Regtype 1x |SSS H = =i
[~ |UserlD 0
[7 | Restilts il - | Like =| || ™
[v | ServerTimeSpent 1x | Like x| || I
v [ServerTimeSpentMs| |1 x | Like x| | [T
raset
I~ | select 4l 10 I~ |Select 4l
submit
Sep 9, 2003 2:55:18 PM

The Transaction Log Date field specifies which day's worth of records that results will be
pulled from. Use the calendar button next to this field to pick another date. If data is being
collected in weekly mode, you can check the View All Log Entries field to select data from
all the records in a week's database table, not just the data for one day.

85

Chapter 2

Using the Internet Document Server

86

Accessing the
transaction database
directly

The Field column lists all the data fields you can display. You can choose individual fields
or select them all. The numeric drop-down box next to each field name can be used to
select the display priority. The first fields to display will have a display priority of 1, then
all fields with a display priority of 2, and so on.

The Filter field lets you filter each field by a value. Enter a value for filtering, then choose
an operation to perform on the filter.

Use the Order By column to sort a column's information, ascending or descending. The
numeric drop-down box picks the ordering priority, with 1 having the highest priority.

After you pick the settings and click Submit, a screen similar to this one appears:
QO HRAG

DocuCorp IDS Server DOCUCORP |

INTERNATIONAL

Akee|s =0 oy -c

TRANSACTIONTIME REQTYPE| RESULTS| SERYERTIMESPENT| SERYERTIMESPENTMS
2003/09/09: 14:41: 29,668 E=S SUCCESS 0.000 i}
2003/09/09:14:41: 29,636 E55 SUCCESS 0.000 o
2003/09/09:14:41,29.605 855 SUCCESS 0.000 o
2003/09/09:14:41: 29,556 E55 SUCCESS 0.000 a
2003/09/09:14:41: 29,527 E55 SUCCESS 0.016 16
2003/09/09:14:41: 29,406 558 SUCCESS 0.016 16
2003/09/09: 14:41: 29,464 E55 SUCCESS 0.000 o
2003/09/09:14:41;29.214 855 SUCCESS 0.000 o
2003/09/09:14:41:29.027 E55 SUCCESS 0.031 31
2003/09/09:14:41: 28,933 E55 SUCCESS 0.015 15

Sep 9, 2003 3:03:26 PM
Previous Next
Retum To Query

All the previously selected columns appear. Use the Previous and Next buttons to move
through the selected records. Click Return to Query to return to the selection page.

Since the transaction database is a regular JDBC compliant database it can be accessed
through any database program that uses JDBC or the database's native format. This
section explains the naming and data format conventions used in the transaction database.

The database name is just the name of the database set up by you or your database
administrator.

The names of tables in the database will all start with the string TRANI.OG followed by
the date that data is first written into the table. The format is shown here:

TRANLOGyyyymmdd

Parameter Description

TRANLO All tables start with this string.

G
Vyyy Year
mm Month (01 - 12)

Logging and Tracing

Parameter Description

dd Day of the month (01 - 31)

For example, a table starting on September 1, 2003 would be named:
TRANLOG20030901

Each row in the database table begins with a column named TRANSACTIONTIME, a
23-character string that is the key for the row. In SQL, this is known as a CHAR(23). The
string is the time of the transaction, to millisecond precision, formatted in a way that

sorting the table on the column sorts the logs by date and time recorded. The format is:

yyyy/mm/dd:hh:nn:ss.xxx

Parameter Description

yyyy Year

mm Month (01 - 12)

dd Day of the month (01 - 31)

hh Hour in the day (00 - 23)

nn Minute in hour (00 - 59)

ss Second in minute (00 - 59)

XXX Millisecond in second (000 - 999)

The names of the other columns in the table row are generated from the IDS
configuration, and each column type is a variable-length string, known in SQL as a
IZARCHAR (255).

QUERYING TRANSACTION INFORMATION

You can use the getMetaData and the QueryTranLogs Java rules to query transaction
information. These rules let you monitor information such as the amount of server time
spent for each request, the requests that failed, user IDs, and passwords.

These rules use the TransactionLogDatabase section in the docserv.xml file to build a
connection to the log database.

NOTE:See Logging Information about Requests on page 86 for information on how to
set up the transaction log database.

You can use the logmetadata and logrecords XSL templates with the version 2.x HTTP
server to query transaction information from the log database. Information can be found
by matching a table name based on the date specified in the web user interface, the time
type (daily or weekly) for the table, and the starting day for the table.

Here is an example of a URL that uses the web interface:

87

Chapter 2

Using the Internet Document Server

Input attachments

Output attachments

88

http://localhost:49152/request?regtype=logmetadata

getMetaData

This rule displays meta-data about the log database. The rule returns the field count,

which is the number of fields available in each table. This information is set up in the
TransactionLogDatabase section of the docserv.xml file. The rule also returns each of the
field names that correspond to the field count and the TransactionLogDatabase section.

Field names are returned as attachment variables field 7 through fields, where 7 is the field
count. The getMetaData rule also returns the table time type being used for the
transaction log database which can be daily or weekly.

This information is set up in the TransactionLogDatabase section of the XML file. The
rule also returns a table count which corresponds to the number of tables currently
present in the log database. Furthermore, the rule also returns each table name as
attachment variables table7 through tables, where 7 corresponds to the table count value.

Variable Description

REQTYPE = LOGMETADATA

Variable Description

FIELDCOUNT The number of fields in each table within the transaction log database.

FIELD1...FIELDn The name of each field in the transaction log database tables, where 7
corresponds to FIELDCOUNT.

TABLETIMETYPE The table time type, a setting in the TransactionLogDatabase section of
the docserv.xml file.

TABLECOUNT The number of tables present in the transaction log database.

TABLEL..TABLEn The name of each table present in the log database, where 7 corresponds
to TABLECOUNT.

NOTE: Use this rule with the logmetadata xslt template and the HTTP server that comes
with version 2.x. Keep in mind you must first set up logging (see Logging
Information about Requests on page 86) before you can use this rule.

Here is a sample URL:

http://localhost:49152/request?regtype=logmetadata
Here is a sample request type:

<gection name="ReqType:LOGMETADATA">
<entry name="function">atcw32->;ATCLogTransaction</entry>

<entry name="function">java;com.docucorp.ids.rules.
IDSTransactionRule;;static;reportTimes; INCLUDEMS</entry>

<entry name="function">atcw32->;ATCLoadAttachment</entry>

Logging and Tracing

<entry name="function">irlw32->; IRLCopyAttachment</entry>

<entry name="function">java;com.docucorp.ids.rules.
TransactionLogRSRule; ; transaction;getMetaData;</entry>

</section>

QueryTranLogs

Use this rule to query the transaction log database and return a recordset of transactions.

NOTE:See Logging and Tracing on page 77 for information on how to set up the

Input attachments

transaction log database.

Variable Description

REQTYPE The request type that contains the QueryTranLogs rule. This should
be LOGRECORDS when you are using the logrecords.xsl
template.

SQLCMD (Optional) An SQL select statement for the query.

SQLTABLENAME (Optional) The table name of the database log that is to be queried,
such as TRANLOG20030121.

SQLFIELDS (Optional) A comma delimited list of selection fields to use for to
the query. Here is an example:

reqgtype, results,userid, password
SQLWHERE (Optional) The filters specified for the query. Here is an example:
regtype like 'sss%' and userid = 'FORMAKER'
and password <> 'I'

SQLORDERBY (Optional) The sort order criteria to use in the query, such as:

regtype asc, password desc, userid asc

SQLTIMEOUT (Optional) The SQL connection time-out, specified in seconds. The
default is 300 seconds.

SQLABSOLUTEPAGE (Optional) The current page to display for the query. This is used in
recordset paging. The default is one (1).

SQLPAGESIZE (Optional) The number of records to return for a query. The default
1s 10.

SQLEXACTMATCH (Optional) Enter Yes if the system should only display the records
for the date specified. Enter No if you want it to display all the
records in the current table.

Output attachments
Variable Description
SQLCMD The generated SQL query string.

89

Chapter 2

Using the Internet Document Server

90

Variable Description

SQLPAGESIZE The number of records returned for the query.

FIRSTPAGE Returns True if the records returned for the query are the first page.
Otherwise, the system returns False.

LASTPAGE Returns True if the records returned for the query are the last page.
Otherwise, the system returns False.

SQLSELECTION The number of fields used in the query.

FIELDCOUNT

SELECTIONFIELDS A rowset containing the names of each of the fields returned by the
query.

RECORDI...RECORDn Rowsets for each record returned in the query, where n is the last
record returned in the query. (this value should be equal to that of
SQLPAGESIZE if LASTPAGE is False)

NOTE: Use this rule with the logrecords xslt template and the HTTP server that comes
with version 2.0 or higher.

By default the rule tries to use the SQLCMD input attachment. If it is not found or its
value is omitted, the rule then tries to build a select statement using the
SQLTABLENAME, SQLFIELDS, SQLWHERE, and SQLORDERBY input

attachment variables.

Here is a sample request type:

<gection name="ReqType:LOGRECORDS">
<entry name="function">atcw32->;ATCLogTransaction</entry>

<entry name="function">java;com.docucorp.ids.rules.
IDSTransactionRule; ;static;reportTimes; INCLUDEMS</entry>

<entry name="function">atcw32->;ATCLoadAttachment</entry>
<entry name="function">irlw32->;IRLCopyAttachment</entry>

<entry name="function">java;com.docucorp.ids.rules.
TransactionLogRSRule; ; transaction;QueryTranLogs;</entry>

</section>

MONITORING PERFORMANCE STATISTICS

IDS lets you use Java Management Extensions (JMX) to monitor performance data. This
lets external JMX monitoring applications track performance data and is similar to SNMP
support.

JMX support is built-in to Java versions 1.5 and higher, but IDS includes JMX libraries
that let you monitor IDS with Java 1.4 versions. For Java 1.4 versions, IDS uses the JMX
Message Protocol JMXMP), based on Sun's Reference Implementation of the JMX
Remote APIL

In the docserv.xml configuration file, in the DocumentServer section, create a JMX
subsection, as shown here:

Windows

UNIX

Logging and Tracing

<gection name="DocumentServer">
<gsection name="JMX">
<entry name="Enabled">yes</entry>
<entry name="JMXMPPort">9875</entry>
</section>
</section>

The Enabled entry determines whether JMX support is enabled. The default is No.

The JMXMP entry is the TCP/IP port where the JMX Messaging Protocol (JMXMP) will
be supported. Each instance of IDS will have its own JMXMP port starting with this
number. If you omit this entry, JMXMP support is not enabled.

In addition to compiling application-wide statistics automatically, IDS can also track
performance times for a specific request or for a specific function in a request. You can
set this up in the configuration. In the DocumentServer section, create a
StatisticsMonitors subsection, as shown here:

<section name="StatisticsMonitors">
<entry name="Monitor">SSS</entry>
<entry name="Monitor">SSS/5</entry>
</section>

To monitor an entire request, enter the request's name, such as $.5.5. To monitor a specific
function within a request, specify the request's name, a slash (/), and the line number of
the function inside the request, such as S55/5.

For each monitor you list, IDS tracks the most recent timings for the Initialize, Run
Forward, Run Reverse, and Terminate messages, and the total time for all messages run.

For general information about JMX, see:

http://java.sun.com/products/JavaManagement/

GENERATING A LOGGING CONFIGURATION FILE

IDS includes a LogConfConvert.xsl template which you can use to generate a logconf.xml
file from the docserv.xml file.

The template takes into account the XMLMessage, XMLMessageAppend,
TransactionTime, and RuleTime options in the Debug section of the docserv.xml file
during the generation of the logconf.xml file.

A logconfcovert script file is also included in the docserv directory which you can use to
run the command necessary for the conversion process, as shown here:

java -cp .;.\lib\DocucorpUtil.jar com.docucorp.util.XslTransformer
source=docserv.xml template=LogConfConvert.xsl output=logconf.xml

java -cp .:./lib/DocucorpUtil.jar com.docucorp.util.XslTransformer
source=docserv.xml template=LogConfConvert.xsl output=logconf.xml

USING LOGGING CATEGORIES TO ACCESS THE INTERNAL

91

http://java.sun.com/products/JavaManagement/

Chapter 2

Using the Internet Document Server

FORMAT OF REQUESTS

To make it easier to debug problems which can occur when translating requests and
results, the system includes logging categories you can use to see the internal data format
of received requests and sent results. The categories are as follows:

¢ DSIMessage.ReceiveMessage.queue
e DSIMessage.SendMessage.queue

e DSIMessage.ReceiveMessage.http

¢ DSIMessage.SendMessage.http

As with other Log4j categories, the categories are hierarchical so using category names
DSIMessage.SendMessage and DSIMessage.ReceiveMessage will use the same category
for both queue and HTTP-based messages.

Since the messages are handled as Log4j categories, they can have all the destinations of
other categories, such as files, the NT Event logger, email, and so on.

A combination of categories and appenders will add the internal data format of messages
to the end of receive.msg and send.msg files, adding useful information about how the
messages are translated.

Use the following Log4j appenders to add the internal data information to the receive.msg
and send.msg files:

<appender class="com.docucorp.ids.serverutils.IDSFileAppender"
name="dsireceivemessage">

<param value="true" name="Append"/>

<param value="receive.msg" name="File"/>
<param value="true" name="Close"/>

<layout class="org.apache.log4j.PatternLayout">
<param value="%m" name="ConversionPattern"/>
</layout>

</appender>

<appender class="com.docucorp.ids.serverutils.IDSFileAppender"
name="dsisendmessage">

<param value="true" name="Append"/>

<param value="send.msg" name="File"/>

<param value="true" name="Close"/>

<layout class="org.apache.log4j.PatternLayout">
<param value="%m" name="ConversionPattern"/>
</layout>

</appender>

Use these appenders with the following Log4j categories:

<category name="DSIMessage.ReceiveMessage.queue">
<priority value="DEBUG"/>

<appender-ref ref="dsireceivemessage"/>
</category>

<category name="DSIMessage.SendMessage.queue'">
<priority value="DEBUG"/>

<appender-ref ref="dsisendmessage"/>

</category>

92

CONFIGURING
IDS

Configuring IDS

The IDSConfig program lets you perform the following tasks to make it easier to
configure IDS:

* Running IDSConfig on page 97

* Creating New Files on page 97

* Adding Nodes on page 97

* Adding Nodes with Text on page 97
* Editing Nodes on page 98

* Copying Nodes on page 98

* Moving Nodes on page 98

* Adding Attributes on page 98

¢ Adding Comments on page 99

* Adding Text on page 99

* Adding a Request or Function on page 99
* Adding an IDS Function on page 99

* Converting DOCSERV.INI or DOCCLIENT.INI Files into XML Format on page
100

* Adding a Section or Entry on page 100

* Locating Text on page 100

* Importing Configuration Information on page 100
* Configuring MQSeries Buffer Sizes on page 101

* Testing File Transmission on page 102

93

Chapter 2

Using the Internet Document Server

94

Running IDSConfig
To run the IDSConfig program, use the syntax shown below:

java -classpath <path to xerces.jar>;<path to xalan.jar>;<path to
DocuCorpUtil.jar>;<path to idsconfig.jar>
com.docucorp.idsconfig.idsconfig

Here is an example:

java.exe -classpath
d:\jars\xerces.jar;d:\jars\xalan.jar;d:\jars\DocuCorpUtil.jar;
d:\jars\idsconfig.jar; com.docucorp.idsconfig.idsconfig

NOTE:To run IDSConfig, you must have idsconfig.xml and idsrules.xml stored in the
working directory.

Creating New Files

To create a new file, follow these steps:

1 Select the File, New option.

2 Select the appropriate type of configuration file: client or server.

Depending on the type of configuration you chose, the system creates a new XML file
base or template file named either docservtp.xml or docclienttp.xml.

Adding Nodes

Follow these steps to add a node:

1 Choose one of these options:
Right click the parent node to which you want to add a child node.
Select the parent node, then choose the Edit, Add Node option.
Select the parent node, then click the Add Node button.
Select the parent node, then press INSERT.

2 Enter the name you want to assign to the node and click Ok.

3 Enter Texz if you want to create a Text node. Otherwise, leave it blank.

Adding Nodes with Text

Follow these steps to add a node with text:

1 Choose one of these options:
Right click the parent node to which you want to add a child node.
Select the parent node, then choose the Edit, Add Node option.

Select the parent node, then click the Add Node button.

Move as a child node

Move as previous node

Configuring IDS

Select the parent node, then press INSERT.

2 Enter the name you want to assign to the node and click Ok.

3 Enter Text and click Ok.

Editing Nodes

Follow these steps to edit a node:

1 Click once to select the node. The system highlights the node.
2 Press F2 or click again to edit the node.

3 Press ENTER when finished or press ESC at any time to cancel editing.

Copying Nodes
Follow these steps to copy a node:
1 Click to select the node you want to copy.

2 DPress and hold the CTRL key while dragging the source node onto the destination
node. Drop the source node by releasing the mouse button.

The system copies the source node and adds it as a child of the destination node.

Moving Nodes

There are two ways to move nodes:

1 Select the node you want to move.
2 Drag and drop the source node onto the destination node.

The system adds the source node as a child of destination node.

1 Select the node you want to move.

2 DPress and hold the SHIFT key, then drag and drop the source node onto the
destination node.

The system inserts the source node before the destination node.

Adding Attributes

Follow these steps to add attributes:
1 Right click the attribute header.
2 Select the Add Attribute option.

3 Enter the value of the attribute and press ENTER.

95

Chapter 2

Using the Internet Document Server

Adding Comments
Follow these steps to add comments:

1 Choose one of these options:

Right click the node to which you want to add a comment and choose Add
comment from the popup menu

Select the node, then click the Add comment button.
Select the node, then press CTRL+M.

2 Enter your comment and click Ok when you are finished.

Adding Text

Follow these steps to add text:
1 Right click the node to which you want to add text.
2 Select the Add Text option.

3 Enter the text. Press ENTER when finished or ESC to cancel.

Adding a Request or Function

The IDSConfig program provides a quick way to add request types and functions. Follow
these steps:

1 Right click on the Configuration and select the Add Request option.

2 Enter the name of the request type and click Ok.

3 Right click on the section name you just added and select the Add Function option.
4 Type in the name of the function you want to add and press ENTER.

The new function is added to the request type node.

Adding an IDS Function
The IDSConfig program provides a quick way to add an IDS function.

NOTE:Be sure to store the functions you add in the idsrules.xml. file.

1 Right click on the node to which you want to add functions and select Add
IDSFunction. The Add IDS Function window appears.

2 Use the SHIFT and CTRL keys to select multiple functions in the Basic Functions area.
Once you have selected the functions you want to add, drag them into the
Destination area or click the >> button.

96

Configuring IDS

NOTE:You can rearrange the order of the functions in Destination area using your
mouse.

3 Click Ok when you are finished.

Converting DOCSERV.INI or DOCCLIENT.INI Files into XML
Format

You can use IDSConfig to convert a DOCSERV.INI or DOCCLIENT.INI file into an
XML format file.

1 Select the File, Convert INI file option.
2 Enter the following information:
The name of the INI file you want to convert
The name you want assigned to the XML output file

The name of the XSL file (DocumentClientConvert.xsl or
DocumentServerConvert.xsl) and the MQ Series Server if it exists

3 Click Start to start the conversion. Click Close when it finishes.

Adding a Section or Entry
Follow these steps to add a section or entry
1 Right click the node to which you want to add a section or entry.

2 Select the Add Section or Add Entry option.

If you are adding a section, enter the section name
If you are adding an entry, enter the entry name and text

3 Click Ok when you are finished.

Locating Text
You can use Find and Find Next to locate text.
1 Click to select the beginning searching node.

2 DPress CTRL+F, then enter the text and click Find to start searching. The system
locates the matching text.

You can continue searching the same text by pressing F3.

Importing Configuration Information

You can import configuration information into your main configuration file. IDS lets you
import configuration information into either the older IDS version 1.x INI configuration
files or the newer IDS version 2.x XML configuration files.

97

Chapter 2

Using the Internet Document Server

98

Most control groups (INI) or sections (XML) of the imported configurations are added
to the end of the main configuration file. This means that if there are control groups or
sections with the same name in both the main configuration and in the imported
configurations, the entries in the control group or section in the main configuration takes
precedence. These control groups and sections, however, are exceptions to this rule:

e ReqType:INI
¢ ReqType:THREADINI
¢ ReqType:SAR

If these control groups or sections exist in the imported configurations, the entries in the
imported control groups and sections are merged into the corresponding control groups
or sections in the main configuration file — so in this case the entries in the imported file
take precedence.

Here is an example section from an XML-based configuration file:

<gection name="configuration-imports">
<entry name="import">documanage_ requests.ini</entry>
<entry name="import">ipps_requests.ini</entry>
</section>

NOTE:In version 2.1 and later, IDS detect changes to imported configurations via the
INTFiles or configuration-imports sections in the docserv.xml file and reload
them into memory when there is a change.

Configuring MQSeries Buffer Sizes

You can increase the default buffer size of MQSeries messages and make the buffer size
a setting you can maintain with a configuration entry.

¢ In server configuration files, the entry is put in the "BusinessLogicProcessor"
section, "messaging" subsection, "queue" subsection.

¢ In client configuration files, the entry is put in the "DocumentClient" section,
"messaging" subsection, "queue" subsection.

The entry is:
<entry name="mqg.inputqueue.starting.buffer.size">131072</entry>
This setting indicates the initial size of the buffer allocated to hold an incoming message.

If the message is larger than this size, a buffer is allocated that is large enough to hold the
message and the application tries again. The default is 131072 (128K).

If you know that most of your messages will be smaller than 128k, you can decrease the
buffer size for lower overhead for memory allocation. If, however, the majority of your
messages will be larger, increase the buffer size to avoid situations where it takes multiple
getMessage calls to get a message.

Configuring IDS

Testing File Transmission

Use the DSITEST utility to test the transfer of files to and from IDS. For more
information about this utility, see the Utilities Reference.

99

Chapter 2

Using the Internet Document Server

REFERENCING

ATTACHMENT

100

V ARIABLES

IDS lets you reference the attachment variable from an INI file. You can use this

technique with the DAP.INI, CONFIG.INI and DOCSERV.XML files.

NOTE:This capability was previously added for the ATCSendFile and ATCReceiveFile
rules. With version 2.x, this capability should work for all requests and rules in
DOCSERV.XML, as well as the other sections imported from a DOCSERV.INI
file.

Here is an example of how you reference an attachment variable via an INT option:

< Group >
Option = ~GetAttach VARNAME, QUEUE

To reference a message variable in a configuration XML file use the following syntax:

<gection name="Group">
<entry name="Option">~GetAttach VARNAME, QUEUE</entry>
</section>

The VARNAME is the name of the variable. QUEUE specifies which queue to search
for this value. For example, assume the attachment variable PRINTERTYPE specifies
the printer type to use for output. IDS rules use this configuration XML option to
determine the printer type (<Print>, PrtType =). In this case, you can modify the XML
file as shown here:

<gection name="Print">
<entry name="PrtType">~GetAttach PRINTERTYPE, INPUT</entry>
</section>

So when the rule gets a configuration option, the value will equal the value of the input
queue variable PRINTERTYPE. When the rule gets a configuration XML option, the
value equals the value of attachment variable PRINTERTYPE.

NOTE:If ~GetAttach does not find the attachment variable it returns an empty string.

You can also use this to dynamically specify the file extension for the file created by
ATCReceiveFile rule when you want to import that file into Documanage. You can do

this as shown here in the DOCSERV. XML file:

<entry name="function">atcw32->ATCReceiveFile, IMPORTFILE,V2IMP, *.
~GetAttach FILETYPE, INPUT, KEEP</entry>

The ATCReceiveFile rule finds the attachment variable FILETYPE and uses its value as
the file extension of the generated file name. Note that there are no spaces between the
asterisk and period (*.) and the tilde (~) prefacing GetAttach. If you include a space there,
it will also be in the file extension.

Referencing Attachment Variables

NOTE:The IDS attachment variable contains the printer value for each recipient. Here
is an example:

AGENT_OUTPUT=PRINTER1

The client code should be able to find URLPRINTERT1 to determine the output
file name.

USING UNICODE IN ATTACHMENT VARIABLES

IDS supports Unicode, via UTF-8 encoding, in the setting and retrieving of values from
attachment variables. The support is implemented via functions and defined constants in
the DSILIB library. These functions are:

DSTAddAttachVarEx
DSTIAddToAttachRecEx
DSILocateAttachVarEx
DSIAttachVarLengthEx
DSIAttachCursorFirstEx
DSTAttachCursorNextEx
DSIAttachCursorPrevEx
DSTIAttachCursorLastEx
DSIAttachCursorvValueEx
DSIAttachCursorValueLengthEx
DSIEncryptvValueEx

These functions are similar to the base versions of the functions, but have an extra
encoding parameter that you can set to either DSIENCODING_SINGLE_BYTE or
DSIENCODING_UTE_S8.

For example, when adding an attachment variable you can use...

DSIAddAttachvVar (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue);

or

DSIAddAttachVarEx (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_SINGLE_BYTE) ;

or

DSIAddAttachVarEx (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_UTF_S8) ;
When using the base versions of these functions, the default encoding is
DSIENCODING _SINGLE_BYTE, so the first two function calls would do the same

thing.

DSIENCODING_SINGLE_BYTE uses Codepage 1252 encoding, which has a one-to-
one mapping between bytes and Unicode characters between 32 and 255, except from 128
to 159, which maps some Unicode characters down into this range. For example, the
Unicode character for the Euro symbol (hex 20ac) is converted to a 128 (hex 80) and vice
versa. This makes IDS compatible with how Documaker handles the Euro symbol.

DSIENCODING_UTF_8 uses UTF-8 encoding, which is a way to translate Unicode
multibyte characters into a format compatible with null-terminated C language strings
while retaining all the character information.

101

Chapter 2

Using the Internet Document Server

102

USING THE
MESSAGE
QUEUES

Docupresentment lets you use a queueing system that is based on an in-memory
operation. This eliminates the need to use MQSeries in low volume production systems.

Choosing the Right Queuing Options

Choosing the right queueing options for your company can be a difficult process. There
are several scenarios, as this table shows:

Installation Function

Single PCwith a Used for demos and development. Not recommended for production use,
single server even with low volumes.

Single PC with Here, multiple Docupresentment servers are set up on a single PC. This is

multiple servers recommended for low volume production systems. IDS cannot be a single
point of failure because if one instance stops responding, the other
instances pick up the work.

Multiple PCs Here, multiple Docupresentment servers are installed on multiple PCs. This
with multiple is recommended for high volume production systems.
servers

To evaluate your system, answer these questions:
1 Isitaproduction system?
If yes, go to step 5.
If no, go to step 2.
2 Do you intend to use this system for performance testing?
If yes, go to step 5.
If no, go to step 3.
3 How many users will your system be servicing?
If more than one, go to step 5.
If only one, go to step 4.

4 Your system is demo or development system and you can use a single PC with a
single server. You can use HTTP. You can also use JMS or MQSeries, as they are a step up
from HTTP queues.

5 Your system requires multiple servers. Go to step 6.

6 How many simultaneous users does your system need to handle? The common way
to determine this is calculate 5% of the maximum number of users.

If your system must handle more than five simultaneous users, go to step 8.
If it only needs to handle less than five simultaneous users, go to step 7.

7 Your system is a low volume production system and can be set up as a single PC with
multiple servers. For this scenario use JMS or MQSeries.

Using the Message Queues

8 Your system is a high volume production system and should be set up as multiple
PCs with multiple servers. Use JMS or MQSeries.

This table summarizes the recommended queuing options:

PCs Servers Use this queue

Single Single HTTP. You can also use JMS or MQSeries, as they are a step up
from HTTP queues.

Single Multiple JMS or MQSeries. HTTP can be used.

Multiple Multiple JMS or MQSeries. The use of HTTP queues is not recommended.

NOTE:The default message queue handler for IDS 2.xis differs from that used for prior
versions. In prior versions, IDS used xBase queues which placed messages in a
physical file on disk. In version 2.0 or later, IDS uses a messaging system based

on HTTP.

You do not have to do anything for the message queue system to work. All queue
setup options have default values. Furthermore, any attempt to communicate
with IDS will cause IDS to start if it has not already been started. It is, however,
possible default port values may conflict with an application already in use, so you
may have to make modifications in some cases.

Understanding the Router Process

You can use the HTTP router application to enable the client to communicate with
multiple IDS servers. This application controls IDS processes and starts them as needed.
The client can start this process if it fails to connect to IDS. The router is a Java
application that can be started manually with the file idsrouter.bat (idsrouter.sh on UNIX
platforms).

Middleware queuing systems usually have the option to save messages that are not
successfully delivered to their destination. The IDS router application also has the option
to do this. Any messages it receives can be stored in a JDBC compliant database and they
are automatically removed when they are sent to an instance of IDS. If the IDS router is
stopped, any undelivered messages that are stored will be sent to IDS when the IDS router
is started up again. The HTTP connections to client programs would be severed at this
point, but the messages would still be processed by IDS (for example, to ensure archiving
operations are done).

The default database settings for the IDS router uses a file-based database, so no database
administration or startup of external processes are required. If you are going to use a
different database, you will need to obtain the JDBC drivers for the database from your
database administrator (usually in the form of JAR or ZIP files) and add these files in the
/ib subdirectory under your IDS installation directory.

Under Windows platforms, the router process will have its own DOS window. If you
press CTRL+C inside this DOS window, the router terminates and shuts down any
instances of IDS it has started.

103

Chapter 2

Using the Internet Document Server

104

Under Unix platforms, the router process will write its process ID to a file named router-
pid. Sending a SIGINT (signal 2) to this process ID will cause the router to terminate and
shut down any instances of IDS it has started. This is usually done with the 'kill' command
in a separate terminal.

How HTTP Queues are Handled
Here is an overview of how the queues work by default:

1 When client tries to send a message it attempts to get a TCP/IP connection. If the
connection fails, the client tries to start the router.

N

The router starts IDS instances if necessary. Two IDS instances are started by

default.
The client program sends the message to the router process.
The router process gets the message and sends it to one of the instances of IDS.

IDS returns the response back to router.

o a b~ W

The router process returns the message back to the client that initiated the
transaction.

Here is an overview of how the system typically gets an IP address and port number. Keep
in mind the HTTP queue system, by default, needs ports from 49152 to 49154 and all
default IP addresses are localhost.

1 The client tries to talk to the router process on port 49152.
When the client starts the router process, it passes port 49152 to it.
The router process listens on port 49152.

When router starts the first instance of IDS, it passes port 49153 to it.

G A~ W N

The primary IDS listens on port 49153 as it was passed as a parameter from the
router.

o

The primary IDS starts the next IDS and passes port 49154 (incrementing its own
port address by one).

7 The secondary IDS listens on port 49154,

Using the Router Section

In the DOCSERV.XML file, the router program uses the same settings in
DOCSERV.XML as IDS, as much as possible, to simplify setup. The settings used by
both IDS and the router include the http port to listen to, the arguments for starting
instances of IDS, and the number of instances to start.

There is an additional Router section in the configuration file for enabling and setting up
the JDBC database that stores undelivered messages. This example shows the defaults:

<section name="Router" requires="//
section [@name='BusinessLogicProcessor']/section[@name="'messaging']/
section[@name="http'] ">
<entry name="StartCommand">"INSTALLDIR/jre/bin/idsrouter.exe"</
entry>

Using the Message Queues

<entry name="StartArguments">-Drouter -Xmx256m -cp lib/
DocucorpStartup.jar -Djava.endorsed.dirs=1lib/endorsed -
Dids.configuration=docserv.xml -Dlogging.configuration=logconf.xml
com.docucorp.startup.Startup com.docucorp.ids.router.IDSRouter</

entry>

<entry name="StartDirectory">.</entry>

<entry name="ReplyWaitSeconds">30</entry>
<entry name="MaxMsgLength">4194304</entry>
<entry name="MaxConnectionAttempts">2</entry>
<entry name="Address">127.0.0.l<entry>

<gection name="database">

<entry name="enabled">no</entry>
<entry name="class">org.apache.derby.jdbc.EmbeddedDriver</
entry>
<entry name="URL">jdbc:derby:global/router-db;create=true</
entry>
<entry name="table">DOCUCORPROUTER</entry>
<entry name="userid"></entry>
<entry name="password"></entry>
</section>
</section>
Option Definition
StartCommand Specifies the command Watchdog uses to start the router.
StartArguments Specifies the arguments Watchdog uses when starting the router.
StartDirectory Specifies the directory in which the router will start.
ReplyWaitSeconds Defines how long the router waits for a reply from
Docupresentment before it closes the connection. The default is 30
seconds.
MaxMsgLength Lets you limit the message size of incoming messages. This helps

prevent DOS attacks with large files. The default is 4194304 (bytes).

MaxConnectionAttempts Limits the number of connection attempts to Docupresentment

Address

enabled

class

when Docupresentment keeps dropping the connection. This is
useful when a message the router sends to Docupresentment causes
Docupresentment to fail and drop the connection. This option
prevents the indefinite resending of problematic messages. The
default is two (2).

Lets you bind the router to a specific network device IP address.
This is useful when there are multiple network interfaces available
on the machine where Docupresentment is running. The router will
bind to all local devices if this option is not provided.

Determines whether the undelivered messages will be stored in a
database for delivery at a later time.

The JDBC Database driver class for the database being used. If the

default database is not used, contact your database administrator to
get the driver files.

105

Chapter 2

Using the Internet Document Server

106

Option Definition

URL The JDBC locator for the database being used. If the default
database is not used, contact your database administrator for the
proper locator string for the database.

table The name of the table where you want the undelivered messages
stored.

userid The user ID used to access the database.

password The password for the user ID used to access the database.

USING MULTIPLE QUEUING SYSTEMS

Prior to version 2.1, IDS would process requests that came in from HTTP and from one
queuing system, such as MQSeries or JMS. With version 2.1 or later, IDS lets you use
multiple queuing systems for processing messages, for example MQSeries and JMS
queues can both be used in one instance of IDS.

To enable this, you must add queue sections to the BusinessLogicProcessor and
messaging sections in the docserv.xml configuration file. Each queue section is processed
and used to open a new set of input and output queues for requests and results.

Here is an excerpt from a configuration with multiple queuing systems enabled:

<gection name="BusinessLogicProcessor">
<gection name="messaging">
<gection name="queue">
<section name="marshallers">

<entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.SOAP
MIMEDSIMessageMarshaller</entry>

</section>

<entry
name="queuefactory.class">com.docucorp.messaging.mgseries.DSIMQMess
ageQueueFactory</entry>

<entry name="ReceiveRequestIntervalMillis">1000</entry>
<entry name="mqg.queue.manager">queuel .manager</entry>
<entry name="mg.inputqueue.name">reqg</entry>

<entry name="mqg.inputqueue.maxwaitseconds">5</entry>
<entry name="mg.outputqueue.name">res</entry>

<entry name="mg.outputqueue.expiry">600</entry>

<entry name="mqg.tcpip.host">10.1.10.123</entry>

<entry name="mqg.queue.channel">SCC queuel.atl3nt03</
entry>

<entry name="mqg.tcpip.port">1415</entry>
<entry name="mgseries.tracing">0</entry>
</section>
<gection name="gueue">
<section name="marshallers">

<entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.Seri
alizationDSIMessageMarshaller</entry>

</section>
<entry name="mg.queue.manager'">queue2.manager</entry>

entry>

</section>

<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry

name="mqg.
name="mqg.
name="mg.
name="mqg.
name="mqg.
name="mq.
name="mq.

Using the Message Queues

inputqueue.name">requestg</entry>
inputqueue.maxwaitseconds">5</entry>
outputqueue.name">resultg</entry>
outputqueue.expiry">60</entry>
tepip.host">10.1.10.234</entry>
queue.channel">SYSTEM.DEF . SVRCONN</

tecpip.port">1414</entry>

name="mgseries.tracing">0</entry>

107

Chapter 2

Using the Internet Document Server

USING THE
JAVA MESSAGE
SERVICE (JMS)

108

The Java Message Service API is a standard programming interface for sending and

receiving messages across applications. JMS itself is not a product — it is a standard that
implementers (businesses or open-source groups) develop their products for. Since it is a
standard, any JMS implementation can be used by IDS merely by changing configuration
information. No coding changes are required. You can find general information about

JMS at:
http://java.sun.com/products/jms/

JMS is part of the J2EE standard. This means that any J2EE-compliant application server,
such as WebSphere or WebLogic, has an implementation of JMS as part of the application
server. Other companies provide stand-alone implementations. You can find a partial list
of vendors at:

http://java.sun.com/products/jms/licensees.html

Use an enterprise queuing system, such as a JMS implementation or WebSphere MQ, if
your implementation has a high volume of use.

SETTING uP JMS

The JMS resources needed for IDS to communicate with client programs are called JMS
administered objects. The necessary administered objects are a queue ConnectionFactory and
two queues, one for requests (messages from clients to IDS) and one for results (messages
from IDS to clients.

Different vendors implement the JMS in different ways so you will have to refer to the
specific vendor’s documentation for setting up the queues and factory.

Since different vendors implement the JMS in different ways, there has to be a standard
way to access the location of the queues and factory. This is done by another Java
standard, the Java Naming and Directory Interface (JNDI). JNDI support is built into
IDS and clients but there are some names of resources that the JMS system administrator
will have to provide to you, such as...

e Initial Context Factory - This is a name of vendor-specific Java programming code
used to find the JMS administered objects.

e Provider URL - The location of the JMS administered objects.

e Security Principal (Optional) - The user ID, if required, needed to access the JMS
administered objects.

e Security Credentials (Optional) - The password, if required, needed to access the
JMS administered objects.

* Queue ConnectionFactory Name - The name of the queue ConnectionFactory
created during setup. The JMS implementation may have only one Queue
ConnectionFactory that it set up itself.

¢ Request and Result Queue Name - The names of the queues created for IDS
communication.

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Using the Java Message Service (JMS)

For IDS, you must add these values to the docserv.xml file, in the
BusinessLogicProcessor section, messaging subsection, queue subsection. Here is an
example:

<gection name="BusinessLogicProcessor">

<gection name="messaging">
<gection name="queue">

<entry
name="queuefactory.class">com.docucorp.messaging.jms.DSIJMSINDIMess
ageQueueFactory</entry>

<entry
name="jms.initial.context.factory">com.sun.jndi.fscontext.RefFSCont

extFactory</entry>
<entry name="jms.provider.URL">file:///C:/docserv/jndi/jms/
IDS2</entry>
<entry name="jms.security.principal">userid</entry>
<entry name="jms.security.credentials">password</entry>
<entry name="jms.gcf.name">IDS2QCF</entry>
<entry name="jms.inputqueue.connectstring">jmsrequestg</entry>
<entry name="jms.outputqueue.connectstring">jmsresultg</entry>

The entry guenefactory.class tells IDS you’ll be using a JMS queuing system. The next four
entries are for the standard JNDI entries. jms.gcf-name is for the name of the JMS Queue
ConnectionFactory. jms.inputquene.connectstring and jms.outputquene.connectstring are for the
names of the queues for communication. Since this is the server, it receives requests as
input and sends results as output.

Client programs use the file docclient.xml to store configuration information. Queue
information would go in the DocumentClient section, messaging subsection, queue
subsection. A client program that would use the same queues as this server would have
this setup:

<gection name="DocumentClient">
<gection name="messaging">
<gection name="queue">

<entry name="queuefactory.class">com.docucorp.messaging.jms.
DSIJMSJNDIMessageQueueFactory</entry>
<!-- Settings for JNDI JMS connection -->
<entry name="jms.initial.context.factory">com.sun.jndi.
fscontext.RefFSContextFactory</entry>
<entry name="jms.provider.URL">file:///C:/docserv/jndi/jms/
IDS2</entry>
<entry name="jms.security.principal">userid</entry>
<entry name="jms.security.credentials">password</entry>
<entry name="jms.gcf.name">IDS2QCF</entry>
<entry name="jms.inputqueue.connectstring">jmsresultg</entry>
<entry name="jms.outputqueue.connectstring">jmsrequestqg</

entry>
</section>
<!-- gueue section -->

</section>

<!-- messaging section -->
</section>
<!-- DocumentClient -->

109

Chapter 2

Using the Internet Document Server

110

For example, consider SwiftMQ, a JMS system that uses JNDI to let users find queues.
To add this capability go to the DOCSERV. XML configuration file and find the
BusinessLogicProcessor section. In the Messaging subsection, under the Queue
subsection, you would have these entries:

<gection name="queue">

<entry
name="queuefactory.class">com.docucorp.messaging.jms.DSIJMSINDIMess
ageQueueFactory</entry>

<!-- SwiftMQ -->

<entry
name="jms.initial.context.factory">com.swiftmg.jndi.InitialContextF
actoryImpl</entry>

<entry name="jms.provider.URL">smgp://docserv:docserv@server:4001</
entry>

<entry name="jms.security.principal">userid</entry>

<entry name="jms.security.credentials">password</entry>

<entry name="jms.gcf.name">plainsocket@docservrouter</entry>

<entry name="jms.inputqueue.connectstring">requestg@docservrouter</

entry>

<entry name="jms.outputqueue.connectstring">resultgedocservrouter</

entry>

</section> <!-- queue section -->
Entry Description
queuefactory.class Specifies the IDS class that sets up JMS using JNDI.
jms.initial.context.factory Indicates the name of the Java class that interfaces a particular

vendor's JMS implementation.

jms.provider.URL Specifies how to connect to the vendor's JMS implementation.
jms.security.principal (Optional) Indicates the JMS term for a user ID.
jms.security.principal (Optional) Indicates the JMS term for a password.
jms.qcf.name Indicates the name of the vendor's guene connection factory, a JMS

term for how to find JMS queues.

jms.inputqueue.connectstring Indicates the name of the JMS input queue that will hold
requests.

jms.outputqueue.connectstring Indicates the name of the JMS output queue that will hold
results.

USING
WEBSPHERE
MQ

Using WebSphere MQ

WebSphere MQ, formerly known as MQSeries, is an IBM product you can use to send
and receive messages across applications. You can find general information about

WebSphere MQ at:
http://www.ibm.com/software/integration/wmgq/

Use an enterprise queuing system, such as a JMS implementation or WebSphere MQ, if
your implementation has a high volume of use.

For Windows and UNIX platforms, you can use the RUNMQSC tool to create queues
and queue managers. You can use the WebSphere MQ Explorer GUI tool on Windows
to create queues and queue managers on the local Windows and remote UNIX, Linux, or
Windows WebSphere MQ servers when configured for remote administration. When
WebSphere MQ installs on Windows, a queue manager is created if you select the option
to install default configuration.

Java support for WebSphere MQ is included in version 5.3 and later. The Java libraries
for WebSphere MQ can be used in either client mode (via TCP/IP) or in bindings mode
(where the Java application runs on the same machine as the MQSeries server), with the
exception of OS/390 which must be run in bindings mode.

NOTE: All queues are under a queue manager and there will be a queue manager for each
machine that uses WebSphere MQ Server. The queue managers communicate
with each another and pass the messages to the appropriate queue underneath.

When adding machines to the cluster, you can use a wizard through the WebSphere MQ_
Explorer to set up the cluster. Even though the WebSphere MQ installation program
creates a default cluster that uses the network domain name, it does not create the cluster
sender channels needed to communicate between the repository machines.

http://www.ibm.com/software/integration/wmq/

Chapter 2

Using the Internet Document Server

SETTING UP WEBSPHERE MQ

The WebSphere MQ resources needed for IDS to communicate with client programs are
two WebSphere MQ queues, one for requests (messages from clients to IDS) and one for
results (messages from IDS to clients).

For IDS, add these values to the docserv.xml file, in the BusinessLogicProcessor section,
messaging subsection, queue subsection. Here is an example:

<gection name="BusinessLogicProcessor">

<gection name="messaging">
<gection name="queue">

<entry name="queuefactory.class">
com.docucorp.messaging.mgseries.DSIMQMessageQueueFactory</entry>

<entry name="mg.queue.manager">queue.manager</entry>
<entry name="mqg.inputqueue.name">requestg</entry>
<entry name="mg.inputqueue.maxwaitseconds">5</entry>
<entry name="mg.outputqueue.name">resultg</entry>
<entry name="mqg.tcpip.host">10.1.10.1</entry>

<entry name="mqg.queue.channel">SCC_channel</entry>
<entry name="mqg.tcpip.port">1414</entry>

The entry guenefactory.class tells IDS you’ll be using a WebSphere MQ queuing system. The
following are names of WebSphere MQ objects required for communication:

* mgq.queue.manager
* mgq.inputqueue.name

Client programs use the docclient.xml file to store configuration information. Queue
information would go in the DocumentClient section, messaging subsection, queue
subsection. A client program that would use the same queues as this server would have
this setup:

<section name="DocumentClient">
<gection name="messaging">
<gection name="queue">

<entry
name="queuefactory.class">com.docucorp.messaging.mgseries.DSIMQMess
ageQueueFactory</entry>

<entry name="mg.queue.manager">queue.manager</entry>
<entry name="mqg.inputgqueue.name">resultg</entry>
<entry name="mqg.inputqueue.maxwaitseconds">5</entry>
<entry name="mg.outputqueue.name">requestg</entry>
<entry name="mqg.tcpip.host">10.1.10.1</entry>

<entry name="mg.queue.channel">SCC_channel</entry>
<entry name="mqg.tcpip.port">1414</entry>

</section>
<!-- queue section -->
</section>
<!-- messaging section -->
</section>
<!-- DocumentClient -->

Property settings

Using WebSphere MQ

Using MSMQ

Use the DSIMSMQMessageQueue and DSIMSMQMessageQueueFactory classes to
communicate via asynchronous messages through MSMQ on Windows platforms.
Support is provided for path names and direct format names. These platforms are
supported:

* Windows 2000
* Windows XP
¢ Windows 2003 and later Windows operating systems

To enable MSMQ messaging, change the queue factory class in the configuration file to:

com.docucorp.messaging.msmg.DSIMSMQMessageQueueFactory

Please refer to the HTML documentation shipped with the Java SDK for a description of
the properties supported for the MSMQ message bus. In particular, see a description of
the setProperties method in the com/docucorp/messaging/msmgq,/
DSIMSMQMessageQueueFactory class.

Here is an example of the docserv.xml file:

<gection name="gqueue">

<entry name="queuefactory.class">com.docucorp.messaging.msmqg.
DSIMSMQMessageQueueFactory</entry>

<entry name="ReceiveRequestIntervalMillis">1000</entry>

<!-- Settings for MSMQ connection -->

<entry name="msmg.server.name">jr</entry>

<entry name="msmg.inputqueue.name">DIRECT=0S:jr\private$
\requestg</entry>

<entry name="msmqg.outputqueue.name">DIRECT=0S:jr\private$
\resultg</entry>

<entry name="msmqg.timeout">10000</entry>

</section>
Here is an example of the docclient.xml file:

<gection name="gueue">
<entry name="queuefactory.class">com.docucorp.messaging.msmg.
DSIMSMQMessageQueueFactory</entry>
<!-- Settings for MSMQ connection -->
<entry name="msmg.server.name">jr</entry>
<entry name="msmg.inputgqueue.name">DIRECT=0S:jr\private$
\resultg</entry>
<entry name="msmqg.outputgqueue.name">DIRECT=0S:jr\private$
\requestg</entry>
<entry name="msmqg.timeout">10000</entry>
</section>

Here is an example of the dsimessage.properties file:

queuefactory.class=com.docucorp.messaging.msmg.DSIMSMOMessageQueueF
actory
MSMQ for windows
msmg.server.name=jr
msmg.inputqueue.name=private$\resultg
msmg.outputqueue.name=private$\requestqg
msmg. timeout=10000

Chapter 2

Using the Internet Document Server

Using correlation IDs

Using the

ReceiveByCorrelationID

114

API

Generating the
message ID

These components are required:

e DocucorpMsg.jar

* msmgqlib.dll

Be sure to include the MSMQLIB.DLL in the system path so it is found at run time.

NOTE:Testing has shown that when using direct format names to private queues, the
queue used to read messages should be a local queue. This improves performance
significantly (about 10 times) and avoids the generation of unnecessary TCP
socket connections that is incurred when reading messages from a remote private
queue.

If the IDS client and IDS server components reside on separate boxes, configure
the client to read messages from a local private result queue. Configure the server
to read messages from a local private request queue.

IDS supports WebSphere MQ/JMS client applications that specify a correlation ID or a
message ID in a request.

Client applications can specify a correlation ID in a request and retrieve a response with
the same correlation ID. Client applications can also use the conventional method of
correlating a response with a request by specifying a message ID in a request and
retrieving a response with a correlation ID matching the message ID of the request.

IDS supports MSMQ 3.0 client applications that want to retrieve messages via the
ReceiveByCorrelationID API using the message ID property of the request message as
the parameter.

On the server side, IDS sets the Correlation ID property of a response message equal to
the value of the Message ID property of the request message when the UNIQUE_ID
value of the request message is blank. For this reason, client side applications that want to
retrieve a message by correlation ID, should make sure the UNIQUE_ID value of the
request message is blank.

The message buses for IDS can generate the message ID for client applications during a
request. A message bus generates the message ID when the putMessage method of the
output queue provides a value of null or a blank value for the messageID argument.

The message ID generated by the message bus can then be retrieved through the
getMessagelD method of the output queue and used as the ID argument in the
getMessage method of the input queue to retrieve a matching reply.

If a messagelD value is provided to the putMessage method, then that value is used
instead, with one exception — the MSMQ message bus only supports message bus
generated message IDs.

Here is a Java example that lets the message bus generate the messagelD for a client
request:

outputQueue.putMessage (null, reqgObj) ;
String unique = outputQueue.getMessagelID() ;
Object resObj = inputQueue.getMessage (unique, timeOutMillis, 3);

Using MSMQ direct
format queue names

Using WebSphere MQ

Here is a Java example that lets a client application define the message ID for a request:

UniqueStringGenerator usg = new UniqueStringGenerator () ;

String messageID = usg.generateUniqueString(32) ;
outputQueue.putMessage (messageID, reqObj) ;

Object resObj = inputQueue.getMessage (messagelID, timeOutMillis, 3);

These message buses support this functionality:
e Java: HTTP, JMS, MSMQ, MQSeries, and Mail

The IDSJSP package (Java) also supports this feature when used with the
DSIJavaMsg and DocucorpMsg packages. Use the setUniqueld method of a dsi or
dsimsg bean to set the unique ID to null or a blank value to indicate you want the
message bus to generate the message ID during a client request.

e Csharp: HTTP, MSMQ, and MQSeries

The DSIInterface class in the DocucorpDSI assembly (Csharp) also supports this
feature when used with the DocucorpMsg assembly. Use the setUniqueld method of
the DSIInterface class to set the unique ID to null or a blank value to indicate you
want the message bus to generate the message ID during a client request.

You can set up the MSMQ_FileConvert control group to recognize path names, format
names, and direct format names.

NOTE:Before version 2.0, only path names were supported in the INI file and were
converted into format names by the MSMQ API
MQPathNameToFormatName().

The system recognizes when you specify a format name in the INI file and skips the API
call to MQPathNameToFormatName. For example, private queues cannot be accessed
unless the direct name is used. So, if you are using a private queue but the IDS client and
server are on different PCs, you must use direct format names.

Here is an example of the INT options you would set:

< DBTable:RequestQ >
DBHandler = MSMQ

< DBTable:ResultQ >
DBHandler = MSMQ

< MSMQ_FileConvert >
;requestqg = FSINTSRV0O8\JRREQQ
;resultg = FSINTSRVO8\JRRESQ
requestg = DIRECT=TCP:10.8.10.137\PRIVATE$\JRREQQ
resultqg = DIRECT=TCP:10.8.10.137\PRIVATE$\JRRESQ
;requestqg = DIRECT=0S:JDOE\PRIVATE$\JRREQQ
;resultg = DIRECT=0S:JDOE\PRIVATE$\JRRESQ
;requestqg = PUBLIC=dc7b9469-dbae-11d6-ae6c-00104bd359cl
;resultg = PUBLIC=dc7b946c-dbae-11d6-ae6c-00104bd359¢cl
;requestg = .\private$\JRREQQ
;resultg = .\private$\JRRESQ

;requestq = PRIVATE=cdbl9274-6146-4ab9-8679 -
6e998943a938\00000016

;resultq = PRIVATE=cdb19274-6146-4ab9-8679-6e998943a938\00000017

Chapter 2

Using the Internet Document Server

116

< RequestQ >

Name = requestqg
< RESULTQ >

Name = resultg

Keep in mind these definitions:

FORMAT NAMES. A format name is a unique name generated by MSMQ. The
MQPathNameToFormatName API normally converts a path name specified in the INI
file into a format name by looking up the format name in the MSMQ MQIS. The format
name is then used by the MQOpenQueue API to open a queue.

To avoid conversion of the path name into a format name, you can specify a format name
in the INI file. Here are some examples:

PUBLIC=dc7b9469-dbae-11d6-ae6c-00104bd359cl
PRIVATE=cdb19274-6146-4ab9-8679-6e998943a938\00000016

DIRECT FORMAT NAMES. You can also specify a direct format name to avoid the path name
to format name conversion and to skip the connection to the MQIS altogether. This, in
essence, generates a One-HOP direct connection from one MSMQ box to another, which
can be useful when you are connecting to a remote box that hosts private queues in an
MSMQ workgroup configuration. Here are some examples:

DIRECT=TCP:10.8.10.137\PRIVATE$\JRREQQ
DIRECT=0S:JDOE\PRIVATE$\JRREQQ

In the first example, the protocol specified is TCP and the IP address of the box hosting
the private queues is specified.

In the second example, OS indicates that the native protocol of the operating system
where the private queues reside should be used and the NetBIOS name is specified
instead of the IP address of the box hosting the queues. All connection information is
contained within the direct format names to avoid a connection to the MQIS.

NOTE:Direct format names are only supported in Windows NT 4.0 Service Pack 6a or
later.

QUEUE PATH NAMES. MQLIB also supports specifying normal queue path names in the
INI file by calling the MQPathNameToFormatName API to convert them into the
proper format name before calling the MQOpenQueue API. Here are some examples:

FSINTSRV08\JRREQQ
.\private$\JRREQQ

Queue pooling

Using WebSphere MQ

When setting up the messaging parameters in a Java application to talk to IDS, you can
specify that the message queues should be kept in a poo/ of queues and reused throughout
the life of the application. If a pooled connection is not used after 30 seconds, it may be
removed from the pool and the queue is closed automatically. You can also close pooled
connections manually.

Message pooling has these advantages:

* Reusingan existing, previously opened queue can be faster than opening a new queue
connection for every communication with IDS.

* In an application there can be more threads of execution than there are available
queue connections on the queuing server. Threads are automatically blocked until a
connection to a queue is available. This keeps you from having to limit the number
of threads to the number of available connections or creating some kind of multi-
threaded blocking.

This functionality is most useful in application servers, such as WebSphere, that host
long-running, multi-threaded Java clients such as JSPs or servlets. No extra configuration
is necessary on the web application, such as WebSphere.

To use queue connection pooling, you must make the following changes in your the client
configuration file. This can be a properties file such as dsimsgclient.properties, if you are
upgrading from IDS 1.x or a XML-based configuration file such as docclient.xml.

NOTE:IDS version 2.x detects which kind of configuration you have and loads it
automatically.

In both the DSIJavaMsg and DocucorpMsg libraries, the settings for queue connections
are passed to the libraries by Java properties objects. To enable and set up pooling, use
these options:

Option Description

pooling.enabled Set to Y to enable pooling. The default is N.
pooling.input.pool.size Number of input queue connections to pool. The default is 10.
pooling.output.pool.size Number of output queue connections to pool. The default is 10.

Here is an example of a client properties file that would enable an input and output pool
of 20 MQSeries connections. This file would normally be named dsimsgclient.properties.

pooling.enabled=Y
pooling.input.pool.size=20
pooling.output.pool.size=20

queuefactory.class=com.docucorp.messaging.mgseries.DSIMQMessageQueu
eFactory

mg.queue.manager=venus.queue.manager
mg. inputqueue.name=RESULTQ
mg.outputqueue.name=REQUESTQ
mg.outputqueue.expiry=120
mg.tcpip.host=10.1.10.1
mg.queue.channel=SYSTEM.DEF . SVRCONN

Chapter 2

Using the Internet Document Server

118

mg.tcpip.port=1414

You must also make the following API changes if your implementation talks directly to
the DocucorpMsg library, whether it’s in Java or JSP, to use queue connection pooling.

If you are using the DocucorpMsg library, pooled connections can only be obtained
through the static method DocucorpMsgUtil.getQueueFactory(Properties props). This
method returns a DSIMessageQueueFactory that may be pooled, but is used in the same
manner as the previously unpooled DSIMessageQueueFactory objects.

If you are creating a multi-threaded command line program, any outstanding pooled
connection can be closed with the static method
DocucorpMsgUTtil.closePooledConnections(Properties props).

NOTE:No code changes are needed for users of the DSIJavaMsg library.

USING SECURITY EXITS

You can attach custom security exits to WebSphere MQ queues. Security exits are external
libraries of code that can be installed and run in WebSphere MQ queues. For IDS, security
exits consist of a Java class in a .jar file, with an optional native component.

To have a security exit installed and run, you need to know the name of the Java class for
the security exit and the name of the .jar file that has the security exit.

In the docserv.xml configuration file, set up a queue section for WebSphere MQ queues.
In that section, add an entry similar to the one shown here:

<entry name="mg.customsecurityexit.classname">com.customer.
securityClassName<entry>

Substitute the name of the your security exit Java class name for:
mg.customsecurityexit.classname

You must load the .jar file that has the custom security exit code. For application servers
running Docupresentment client code, refer to the application server's documentation for
information on modifying the classpath for the web application or for including a .jar file
in a particular directory.

For Docupresentment server, you can either...
e Dut the .jar file in the server's lib directory, or
¢ Modify how Docupresentment server is run by adding the System property

com.skywiresoftware.extraClasspath

with a reference to any .jar files needed to run the security exit.

For example, for the docserver.bat file, you could add an entry like the one shown here:

-Dcom. skywiresoftware.extraClasspath=/path/to/security.exit.jar

Using WebSphere MQ

USING CLIENT CONNECTION DEFINITION TABLES

The WebSphere message bus can read connection information from Client Connection
Definition Table (CCDT) files. The code can then use any queue manager listed in the
CCDT file to establish a connection.

NOTE: Support for CCDT files in Java requires WebSphere MQ, version 6.0 or later.
Refer to the WebSphere MQ documentation for information about Client
Connection Definition Tables.

For additional information, see the description of the mq.ccdt.url property in the HTML
documentation for the

com.docucorp.messaging.mqseries. DSIMQMessageQueueFactory class. This
information is included with the Java SDK.

USING SSL CONNECTIONS

To use SSL connections the queue manager and server connection channel must be
configured to use SSL. SSL connections are only supported in MQ client mode (version
5.3 or later).

See the security guide for your version of WebSphere MQ for information on how to
configure a queue manager and server connection channel for SSL communication. A
Java key store must be available to IDS and it must contain a personal certificate issued
by a trusted Certificate Authority (CA). This trusted CA must be present in the key
repository used by the queue manager. The CA certificate must be part of the trusted
certificates in the key repository used by the queue manager.

Also, the same CA certificate must be present in the Java keystore. If the personal
certificate used by the queue manager was issued by another CA, then the CA certificate
for it must also be present in the Java key store so the SSL handshake can be negotiated
between the MQ Client (IDS) and the MQ Server (the queue manager).

If the server connection channel is configured to authenticate client certificates or to
verify the Distinguished Name of client certificates via the SSLPeer property, the personal
certificate in the Java key store must also contain the private key. The entry type in the
Java key store for the personal certificate should be 'keyEnsry' instead of 'trustedCertEntry
in this case.

See the HTML documentation for the DSIMQSeriesMessageQueueFactory class, which
is shipped with the IDS DSI Java SDK, for additional information on the MQ SSL
properties. In particular, see the description of the setProperties method.

Here is an example of these configuration properties:

<entry name="mqg.ssl.cipherspec">RC4_MD5_US</entry>
<entry name="mg.ssl.keyrepository">c:\ibm\mg\ssl\key</entry>

<entry name="mg.ssl.peername">CN=ssl_gmgr, C=US, S=GA, L=Atlanta,
O=Docucorp International, OU=PD</entry>

<entry name="mqg.ssl.socketFactory.class">
com.docucorp.messaging.mgseries.DSIMQSSLSocketFactory</entry>

<entry name="mg.ssl.protocol">SSLv3</entry>

Chapter 2

Using the Internet Document Server

120

<entry name="mqg.ssl.keystore">c:/docserv/keystore/
java_certificate_store</entry>

<entry name="mg.ssl.keystore.type">JKS</entry>
<entry name="mqg.ssl.keystore.manager.type">SunX509</entry>
<entry name="mqg.ssl.keystore.pwd">changeit</entry>

<entry name="mqg.ssl.truststore">c:/docserv/keystore/
java_certificate_store</entry>

<entry name="mqg.ssl.truststore.type">JKS</entry>

<entry name="mqg.ssl.truststore.manager.type">SunX509</entry>
<entry name="mqg.ssl.truststore.pwd">changeit</entry>

<entry name="mqg.ssl.debug">true</entry>

USING THE REPLYTOQUEUENAME AND
REPLYTOQUEUEMANAGERNAME PROPERTIES

IDS checks for these MQ message properties during MQGET calls issued by IDS:
¢ replyToQueueManagerName
e replyToQueueName

If the properties are defined in the message, they are used to reply to a specific queue
manager and queue — MQPUT1 calls are used instead of MQPUT calls in this case. In
addition, if you are using the SOAP marshaller, reply messages will contain the
REPLYTOQUEUEMANAGER and REPLYTOQUEUE elements in the control
block.

If the replyToQueueName property is not defined in the message received by IDS, the
system uses the value defined in the mq.outputqueue.name property in the docserv.xml
configuration file.

To use this functionality, client applications submitting requests to IDS should make sure
the replyToQueueManagerName and replyToQueueName message properties are set.

SUPPRESSING QUEUE ERROR MIESSAGES

Docupresentment can suppress queue error messages for a period of time. This helps you
prevent unnecessary logging when a queue receiver or sender fails to connect to the
queues because the message bus is down. These configuration options are supported at
the queue section level in the docserv.xml file:

Option Description

MaxErrors Specifies the maximum number of consecutive errors a
queue receiver or sender can have before error messages are
suppressed. The default is 10.

SuppressErrorsintervalSeconds Specifies how long error messages should be suppressed.
The default is 1800 seconds.

Here is an example:

Using WebSphere MQ

<gection name="gqueue">

<entry

name="queuefactory.class">com.docucorp.messaging.mgseries.DSIMQMess
ageQueueFactory</entry>
<entry name="ReceiveRequestIntervalMillis">1000</entry>
<entry name="mg.qgueue.manager'">queue_manager3</entry>
<entry name="mqg.inputqueue.name">REQUESTQ</entry>
<entry name="mg.inputqueue.maxwaitseconds">5</entry>
<entry name="mg.outputqueue.name">RESULTQ</entry>
<entry name="mqg.tcpip.host">127.0.0.1</entry>
<entry name="mqg.queue.channel">CHANNEL1</entry>
<entry name="mqg.tcpip.port">1416</entry>
<entry name="MaxErrors">3</entry>
<entry name="SuppressErrorsIntervalSeconds">60</entry>

</section>

PERSISTING QUEUE MESSAGES

Docupresentment can persist request and response messages during processing which
lets you recover previously unprocessed messages during a restart.

NOTE::This topic does not pertain to HTTP queues.

The following docserv.xml file configuration options at the queue section level control

the persistence behavior:

Option Description
Persistent Turns the persistence logic on or off. The default is False.
PersistentClassName The name of the implementation class that implements the

com.docucorp.ids.persistence.PersistentAdapter interface. The default
is com.docucorp.ids.persistence.io.FilePersistentAdapter.

The FilePersistentAdapter class will serialize and deserialize queue
messages to and from the disk. This directory location is used for
serialized messages:
global/DocumentServer/
DocupresentmentInstanceName/
ReceiverOrSenderName/guid.message

Here are some examples:

global/DocumentServer/IDS-1-RequestReceiver#l/
AD7397A4-E546-8230-3341-5307040150E0 .message
global/DocumentServer/IDS-1-ResultSender#l/
AD7397A4-E546-8230-3341-5307040150E0 .message

Here is an example:

121

Chapter 2

Using the Internet Document Server

122

<gection name="queue">

<entry
name="queuefactory.class">com.docucorp.messaging.mgseries.DSIMQMess
ageQueueFactory</entry>

<entry name="mg.queue.manager">queue_manager2</entry>

<entry name="mg.inputqueue.name">REQUESTQ</entry>

<entry name="mqg.inputqueue.maxwaitseconds">5</entry>

<entry name="mg.outputqueue.name">RESULTQ</entry>

<entry name="mqg.tcpip.host">127.0.0.1</entry>

<entry name="mqg.queue.channel">CHANNEL1</entry>

<entry name="mqg.tcpip.port">1415</entry>

<entry name="Persistent">true</entry>

<entry
name="PersistentClassName">com.docucorp.ids.persistence.io.FilePers
istentAdapter</entry>
</section>

PURGING CACHED FILES

Docupresentment uses a file cache to determine when temporary files generated
throughout different rules should be removed from disk.

Temporary files cached for removal are placed as entries in a properties file. Each entry
contains the full path of the cached file and a time stamp that indicates when the file
expires.

Cleanup is run on a separate thread that periodically looks up the entries in the file cache
and determines if they have expired. When an entry expires, the system removes it from
the cache and deletes the file associated with it.

NOTE:The determination of when a temporary file expires depends on the expiration
time or timeout value each rule uses when caching a file for removal. This means
you can specify individual values for different rules when caching a file for
removal. Furthermore, any rule that caches a temporary file for removal can also
have its own INI values for determining the expiration value.

Here is a list of the file caching INI options used by the various Docupresentment rules
(these INT options should be placed in the INI file that matches the CONFIG attachment
variable being used for the Docupresentment request type being invoked):

The CacheTime option is used by the RunRP rule to cache temporary files.

< RPRun >

CacheTime = 60 ; (default, value specified in minutes)
These options are used by the RunRP rule to cache temporary PDF and text files.

< IDSServer >
PrintFileCacheTime = 1800 ; (default, value specified in seconds)
TextFileCacheTime = 1800 ; (default, value specified in seconds)

The Timeout option is used by several Docupresentment rules to cache temporary XML

files:
< HTMLFileCache >
Timeout = 7200 ; (default, value specified in seconds)

The Timeout option is used by the DPRPrint rule to cache temporary PDF files

Using WebSphere MQ

< PDFFileCache >
Timeout = 7200 ; (default, value specified in seconds)

The Timeout option is used by EWPS rules to cache temporary output files

< EWPSFileCache >
Timeout = 7200 ; (default, value specified in seconds)

The following file caching configuration options are supported in the DocumentServer
section of the docserv.xml file.

Option Description

FilePurgeList Specifies the name of the file cache to use. This file holds entries that
correspond to files cached for removal and their expiration time
stamp. The default is filecache.properties.

If there is more than one Docupresentment instance running, the
first instance uses the file cache name specified in FilePurgeList
configuration option. Instances that follow use
fileCacheName.instanceNumber, where fileCacheName is the name
specified by the FilePurgeList configuration option and
instanceNumber is the number of the instance (instance numbers are
zero-based). Here is an example:

If Docupresentment is using the Instances configuration property in
docserv.xml file with a value of three (3) and the default file cache
name of filecache.properties is used, then instance one will use the
filecache.properties file name, instance two will use the
filecache.properties.1 file name, and instance three will use the
filecache.properties.2 file name.

FilePurgeTimeSeconds ~ Specifies how often the thread that cleans up cached entries runs.
The default is 3600.

FileWriteThreshold Determines how many file cache entries can be held in memory
before they are written to the file cache on disk. The default is zero

(0).

123

Chapter 2

Using the Internet Document Server

124

USING HTTP

Setting up HTTP

In addition to processing requests received from enterprise queuing systems (WebSphere
MQ and JMS), IDS can receive requests through HTTP. You can configure IDS to use
HTTP-based messaging, queue-based messaging, or both.

HTTP messaging replaces the file-based xBase queues from earlier versions of IDS (prior
to 2.0) as the low-volume messaging system. Like the xBase queues from earlier versions,
there is no setup of an extra program to run the messaging system, plus HTTP messaging
does not have the 64K limit of xBase queues.

Although you can use HTTP-based messaging for lower-volume installations, an
enterprise-ready queuing system is recommended for higher-volume installations and in
situations where requests should not be lost if IDS or IDS clients are halted.

The default format of messages sent to HTTP-based messaging is the SOAP with
Attachments format. The request type and message variables are in an XML message
embedded into a SOAP envelope, and attachments are added in MIME format to the
message. For more information, see Using the XML Messaging System on page 152. You
can find more information about SOAP and attachments at:

http://www.w3.0org/TR/SOAP/
http://www.w3.0org/TR/SOAP-attachments

The combination of HTTP messaging and the SOAP format means that IDS can act as a
Web Services server for IDS requests. Web Services clients can send messages to IDS via
HTTP using the SOAP and SOAP With Attachments format. IDS processes the request
and sends the result back to the Web Services client in SOAP format. A Java sample
program, JAXMClient, is provided for testing and as a source code template so you can
create your own Web Services clients using Sun's Java API for XML Messaging. You can
find more information about the Java API for XML Message at:

http://java.sun.com/xml/jaxm/index.html

NOTE: No particular version of the SOAP protocol is required. In IDS version 1.8 and
version 2.x the system does manual XML parsing to extract information, so
versions are essentially ignored. No WSDL file is needed for a .NET client.

For IDS, add these values to the docserv.xml file, in the BusinessLogicProcessor section,
messaging subsection, http subsection:

<gection name="BusinessLogicProcessor">

<gection name="messaging">

<gection name="http">
<entry name="port">49152</entry>
<entry name="WaitForResultMillis">30000</entry>
<entry name="HttpProcessors">15</entry>
<entry name="RequestPath">xslPath</entry>
<entry name="HtmlPath">htmlPath</entry>
<entry name="Address">127.0.0.1</entry>

</section>

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP-attachments
http://java.sun.com/xml/jaxm/index.html

Responding to URL
requests

Using HTTP

Entry Description

port Indicates the http port that the first instance of IDS will be accessible
from. If more than one instance is running they will use subsequent
ports, starting with this one.

WaitForResultMillis Indicates how long, in milliseconds, to wait for the request to be
processed before timing out.

HttpProcessors Indicates how many extra threads will be set up to accept http requests
from clients.

RequestPath Indicates where IDS will find customization XSL style sheets.
HtmlPath Indicates where IDS will find extra HTML-based information.
Address Allows binding the HTTP servers to a specific network interface

address on the machine where Docupresentment is running. The
HTTP servers will bind to all local devices if this option is not used.

Client programs use the file docclient.xml to store configuration information. Queue
information would go in the DocumentClient section, messaging subsection, queue
subsection. A client program that would use the same queues as this server would have
this setup:

<gsection name="DocumentClient">
<gection name="messaging">
<gection name="gqueue">

<entry name="queuefactory.class">com.docucorp.messaging.http.
DSIHTTPMessageQueueFactory</entry>

<entry name="http.url">http://localhost:49152</entry>
</section>
<!-- queue section -->
</section>
<!-- messaging section -->
</section>
<!-- DocumentClient -->

The entry guenefactory.class tells the client program to use HTTP to communicate. hz#p.ur/
gives the name of the server machine and TCP/IP port to use.

NOTE:The http subsection is also used by IDS when it processes ordinary requests via
HTTP messaging. See Using IDS to respond to requests via a browser on page
127 for more information.

IDS can respond to requests formatted as a URL from a browser and display results in
HTML. You can customize the display for a particular request or use a default display
which shows message variables, rowsets, and any errors encountered. An example URL is

http://localhost:49152/
request?REQTYPE=SSS&USERID=USERID&PASSWORD=PASSWORD

Where /ocalbost is the IP address to contact, and 49752 is the port number at the IP address
that IDS is using.

125

Chapter 2

Using the Internet Document Server

Using IDS to respond

126

to requests via a
browser

You can add any number of message variables to the URL but attachments are not
supported.

To use this capability you must make changes in the DOCSERV.XML configuration file.
First, find the BusinessLogicProcessor section, then locate the Messaging subsection. In
this subsection, create an HTTP subsection, as shown here:

<gection name="http">

<entry name="port">49152</entry>

<entry name="WaitForResultMillis">30000</entry>
<entry name="HttpProcessors">15</entry>

<entry name="RequestPath">xslPath</entry>
<entry name="HtmlPath">htmlPath</entry>

</section>

Entry Description

port Indicates the http port that the first instance of IDS will be accessible
from. If more than one instance is running they will use subsequent
ports, starting with this one.

WaitForResultMillis Indicates how long, in milliseconds, to wait for the request to be
processed before timing out.

HttpProcessors Indicates how many extra threads will be set up to accept http requests
from clients.

RequestPath Indicates where IDS will find customization XSL style sheets.

HtmlPath Indicates where IDS will find extra HTML-based information.

IDS can respond to requests directly from a web browser and display the results
formatted as HTML. A web server is not needed for the display. This is useful for
debugging purposes. You can customize the formatting for each request type, otherwise
a default page appears showing any message variables and error messages for the request.

After a request is processed, the results are formatted in the SOAP with MIME
Attachments format. See Setting up HTTP on page 125 for more information. IDS looks
for an XSL style sheet named:

REQTYPE.xs1
where REQTYPE corresponds to the request type of the request. If this file is found, it
is used to transform the SOAP XML. If there is no XSL style sheet for that request, a
default style sheet is used. The default style sheet displays the message variables name/
value pairs in a table then lists any rowsets.

To have a request displayed in your browser, build a URL similar to:

http://localhost:49152/
request?REQTYPE=SSS&USERID=USERID&PASSWORD=PASSWORD

localhost and 49152 are the TCP/IP address and port number where IDS is running.
Message variables are entered as NAME=VALUE pairs, separated by an ampersand (&).
The only required variable is REQTYPE. Any number of message variables can be added
to the URL but attachments are not supported.

Here is an example:

-2 -QR G DEBI B

Using HTTP

I»Ii

DocuCorp IDS Server DOCUCORP

The request type is 888

Message variables

‘ Name ‘ Value
[ERRCRCOUNT o

ILASTRESTART Tun 23, 2004 35352 PM EDT
IRESTARTCOUNT o

[RESULTS SUCCESS
|SERVERTIMESPENT [0.015

|SUCCESSCOTNT I

[UPTIME [fun 23, 2004 3:5352 PM EDT
Rowset LIBRARTES

1
VERSION =400.110.020
TIME = 1%:55:37
MNAME = ARC
DATE =Tun 5 2004

Configuring IDS to In the docserv.xml configuration file, in section 'BusinessLogicProcessor', subsection
handle HTTP requests 'messaging' create an http subsection:

<gection name="http">
<entry name="port">49152</entry>
<entry name="WaitForResultMillis">30000</entry>
<entry name="HttpProcessors">15</entry>
<entry name="RequestPath">xslPath</entry>
<entry name="HtmlPath">htmlPath</entry>

</section>

Parameter Description

port The HTTP port you access IDS from.

WaitForResultMillis How long, in milliseconds, to wait for the request to be processed before
timing out

HttpProcessors The number of extra threads to set up to process HI'TP requests from
clients.

RequestPath Where IDS can find customization XSL style sheets. If you use a relative

path, keep in mind the current directory is where IDS was installed.

HtmlPath Where IDS can find extra HTML-based information. If you use a
relative path, keep in mind the current directory is where IDS was
installed.

The http subsection is also used by IDS when it processes ordinary requests via HTTP
messaging. See Using HTTP on page 125 for more information.

127

Chapter 2

Using the Internet Document Server

128

USING
MULTIPLE
BRIDGES

You can set up multiple bridges to use a single server. These bridges include Documaker
Bridge, the Documanage Bridge, and the Docuflex Bridge. There are two ways to do this:

e Thesimplest way is to combine all of the required INI options into the DAP.INT file,
which is loaded by the DPRInit rule.

e The more advanced and recommended way is to use the DPRSetConfig rule and
multiple INI files. This lets you set INI options specifically for each bridge (different
values for the same INI option for different bridges).

NOTE:The system expects to globally apply the values it finds in an INI file. You
handle this by switching the context based on the attachment variable
CONFIG, using the DPRSetConfig rule.

In the DAP.INI file, you specify which INI files should be used for each of the CONFIG

values, for example:

< Config:TIFF >
INIFile = tiff.ini

< Config:DAPARC >
INIFile = daparc.ini

The system supports multiple INI files, such as:

< Config:TIFF >
INIFile = tiff.ini
INIFile = myownini.ini

In the case of the usage of the DPRSetConfig rule and the appropriate INI values, for
example if the DAP.INI file includes this setting:

< Config:TIFF >
INIFile = tiff.ini

The actual INT context used in the rules and bridges, will include the INI values from the
TIFF.INI and DAP.INI files. When using multiple INI files with the same INI options,
but different values, the first INI value — the value from the first INI file — is returned
when the rules ask for the INI value.

The only thing you have to watch out for is when the system expects multiple INI values.
For example, Documaker Bridge rules look for multiple INI values for the Appldx
options in the ArcRet control group. In this case, the system gets all of the matching
values from the first INI file (TIFF.INT in this example) and then gets all of the matching
INI values from the DAP.INI file.

Request types and
multiple bridges

Using Multiple Bridges

Here’s another example:

Assume IDS is installed with the Documanage and Documaker bridges. You create two
CONFIG values: TIFF and META. The DAP.INI file will include these options:

< Config:TIFF >

INIFile = tiff2pdf.ini
< Config:META >

INIFile = metal2pdf.ini

The Documaker-related INT options for each bridge should go into each of these INI
files. You can optionally place common INI options in the DAP.INI file. You should
use the DPRSetConfig rule in any rule list which includes request types and that intend
to use DPR, TPD, or MTC rules.

The DPRSetConfig rule is located in DPRW32.DLL and runs on MSG_RUNF. Here is
the example (from the DOCSERV.INI file of the rule list with this rule. This rule must
run before any other rules which use Documaker code and expect Documaker-related

INI options.

< ReqType:MTC >
function = atcw32->ATCLogTransaction
function = atcw32->ATCLoadAttachment
function = dprw32->DPRSetConfig
function = atcw32->ATCUnloadAttachment
function = mtcw32->MTCLoadFormset
function = dprw32->DPRRotateFormsetPages
function = mtcw32->MTCPrintFormset

NOTE:The TPDInitRule rule should be in the list after DPRInit rule.

When you install one bridge over another or develop a new bridge, keep in mind that
some of the request types listed in the DOCSERV.INI or DOCCLNT.INT files may
already be in use by another application or bridge.

If this happens, change your bridge or application to use an unused request type. The
length of the request type string is not limited to three characters. You can enter up to 19
characters. Do not include any special characters, instead limit it to alphanumeric
characters and underscores.

For example, suppose you are trying to use request type LGN, but it is already taken and
the list of rules in the DOCSERV.INI file for this request type is not the same as you
need.

In this situation, you could define your own request type, such as MYLGN and add the
rules you need to DOCSERV.INI file under the ReqType:MYLGN control group. Be
sure to change your application to use the MYLGN request type instead of LGN.

129

Chapter 2
Using the Internet Document Server

You can use the FILE2IDS utility to read a text file which contains a series of requests
SUBMITTING ty 1
B and submit those requests to an IDS server. Each line of the text file equals one request.
ATCH You specify the request type on the command line and the attachment variables are

REQUESTS created from each line in the input file in this manner:

e Each line is broken into 1000 byte chunks (1000 is the default size, you can set the
size using the /L parameter)

¢ Each chunk 1s added as attachment variable RECORDLINEXX, where XX is the
sequence number of the chunk.

The attachment variable RECORDPARTS specifies how many chunks are added.

NOTE:The FILE2IDS is a Visual Basic program. You must have a VB runtime installed
to run this program. You can click the Help button when you run FILE2IDS to
see a summary of the various parameters. For more information about this
utility, see the Utilities Reference.

130

PRINTING IN
DUPLEX MODE
TO PCL
PRINTERS

Printing in Duplex Mode to PCL Printers

Windows does not let you print files that are a mixture of simplex and duplex pages from
Acrobat. The whole document has to be printed the same way. IDS, however, lets you
print a file to a local PCL printer which preserves the file’s duplex information. There are
two ways to do this:

By inserting blank pages into a PDF file for the pages in simplex mode. This requires
the system to create two PDF files, one for printing and one for viewing.

By creating the PCL file, compressing the file, downloading the file, and then
decompressing it for printing.

IDS can create compressed PCL files several ways:

Using the IDS print rules. If you use the print rules, use the Compression attachment
variable to create a compressed file. When used by Print Preview, you must also pass
the Compression attachment variable to the DPRPrint rule. See the SDK Reference
for more information about these rules.

Using Documaker. If you create the file via Documaker, you set INI options to create
the file. The PRTZCompressOutPutFunc function is called to compress the output
files. To use this function to compress an output file such as a PCL print batch file,
add these INI options:

< PrtType:PCL >
OutputMod = PRTW32
OutputFunc = PRTZCompressOutputFunc

Using a Java application which can decompress the file and send it to a local printer.
The application is provided in the WindowsRawPrinter.jar file and it requires that
you install the DSIJWP.DLL file.

NOTE:The output is compressed, regardless of the file’s extension. You must

decompress the file before you can print it.

131

Chapter 2

Using the Internet Document Server

USING IDS 10

132

DISTRIBUTE
EMAIL

You can use the Internet Document Server to distribute email. The following illustration
shows how it works with the GenData program, which is part of Documaker:

GenData
program

Email
Service

Recipient batch File2IDS

used for email

NOTE:Because the File2IDS utility is a Visual Basic program, the above scenario is only
available for Windows environments.

The following scenario, which is available for both Windows and UNIX environments,
shows how it works if you are using Documaker Bridge, but not the GenData program:

Email
Service

email
request

For either approach, to use the Internet Document Server to distribute email, you must

modify these files:
¢ DOCSERV.XML
e DAP.INI

MODIFYING THE DOCSERV.XML CONFIGURATION FILE

This configuration file must contain the following section. These rules are used to take
messages sent to IDS and send formatted email messages to an email server such SMTP.
The system supports text-based templates or HTML templates that can be sent as an
attachment or used as the message body.

<gection name="ReqType:EMATIL">
<entry name="function">atcw32->;ATCLogTransaction</entry>
<entry name="function">atcw32->;ATCLoadAttachment</entry>
<entry name="function">dprw32->;DPRParseRecord</entry>

EmailDFD control
group

Email2IDS control
group

XML2Body control
group

Using IDS to Distribute Email

<entry name="function">dprw32->;DPRFindTemplate</entry>

<entry name="function">dprw32->;DPRAdd2Attachment</entry>

<entry name="function">dprw32->;DPRCreateEMailAttachment</entry>

<entry name="function">dprw32->;DPRMail</entry>

<entry name="function">atcw32->;ATCUnloadAttachment</entry>
</section>

Modifying the DAP.INI File

This INI file must contain the following control groups and options.

The DFD file specified by this option is used by the DPRParseRecord rule. The system
expects to receive the email data from the client in fixed-length records defined by this
DFD. Using a DFD to define the record layout increases flexibility. This DFD can be
identical to a batch recipient DFD, where the system is taking an output from the
GenData program and using it as input to the email server.

< EmailDFD >
File = .\dfd\attchdfd.dfd

This group is also used by the DPRParseRecord rule. The option (on the left) must match
a field name in the DFD defined under the EmailDFD group. The DPRParseRecord rule
copies the data to attachment variables used by other email rules (see the section on
attachment variables). This lets you take fields defined in the DFD whatever they are
named, and transfer the data to attachment variables that are used by other email rules.

< Email2IDS >
EmailAdd = ADDRESS
PullCode = REQTYPE

This control group is used by the DPRFindTemplate rule. Templates are used to
predefine text for the body of an email, while variable data is inserted at indicated places
within the body of text. The XML2Body control group defines which template files are
used for the message body.

The options in the example below, such as €301, €302, and so on, are the values of the
ReqType used by the IDS. This value can come directly from the message the IDS
receives or from the DPRParseRecord rule. The system must have the ReqType either in
the ATTCHDFD.DEFD file or set up in the Email2IDS control group.

< XML2Body >

e301 = .\tmpl\e301.txt
e302 = .\tmpl\e302.txt
e303 = .\tmpl\e303.txt
e304 = .\tmpl\e304.txt
e305 = .\tmpl\e305.txt
e306 = .\tmpl\e306.txt
e307 = .\tmpl\e307.txt
e308 = .\tmpl\e308.txt
e309 = .\tmpl\e309.txt
e310 = .\tmpl\e310.txt
e311 = .\tmpl\e31ll.txt
e312 = .\tmpl\e312.txt

133

Chapter 2

Using the Internet Document Server

XML2Attach control
group

EmailAdd2Attachment
control group

Mail and MailType
control groups

134

This control group is used when you need to use template processing to produce an
attachment. This group functions just like the XML2Body control group except the
output of the template processing is sent as an attachment.

< XML2Attach >

e301 = .\tmpl\e301.txt
e302 = .\tmpl\e302.txt
e303 = .\tmpl\e303.txt
e304 = .\tmpl\e304.txt
e305 = .\tmpl\e305.txt
e306 = .\tmpl\e306.txt
e307 = .\tmpl\e307.txt
e308 = .\tmpl\e308.txt
e309 = .\tmpl\e309.txt
e310 = .\tmpl\e310.txt
e311 = .\tmpl\e31l.txt
e312 = .\tmpl\e312.txt

The control group is used by the DPRAdd2Attachment rule to take values from the INI
file for the email rules (see section on predefined attachment variable names).

< EmailAdd2Attachment >
default = SUBJECT, Important notice

These control groups are used by the DPRMail rule to define the email protocol. See the
Documaker Workstation Administration Guide for information on setting up email
support.

These options are identical to the ones set up in the FSTUSER.INT or FSISYS.INI files
for a Documaker Workstation.

< Mail >
MailType = SMTP
< MailType:SMTP >
Name = Send Mail
Module = SMMW32.DLL
MailFunc = SMMSendSMTP
ReplyTo = someone@docucorp.com
From = JoedJones@docucorp.com
AltFrom = Joe Jones
Port = 25
Server = 10.8.10.216
Debug = Yes

Option Description

Name Name of the system (identifies the system on internal dialogs).
Module Name of the Documaker DSO that supports the email system.
MailFunc Exported DSO function name of the email handler.

Option

ReplyTo

From

AltFrom

Port
Server

Debug

Using IDS to Distribute Email

Description

For SMTP, this option lets you specify a reply-to address.

The system also lets you specify a different reply-to email address for each IDS
transaction. Use this built-in function to specify an attachment variable which
contains the value for the ReplyTo option:

< MailType:SMTP >
ReplyTo = ~GetAttach REPLYTO, INPUT

The value for the ReplyTo option is replaced by the value of the attachment
variable in the input attachment with the name REPLYTO.

The first parameter is the name of the attachment variable, the second is the

INPUT or OUTPUT, specifying which attachment is used.

You can use the built-in INT function in the DAP.INI file or in a particular
configuration INI file. You cannot use it in the DOCSERV.INI or DSLINI files.

For SMTP, this option lets you specify who the email was from.

For SMTP, this option lets you specify an alternative from address, indicating
where the email was from.

Enter the port.
Enter the address of the server.

Enter Yes to turn on debugging.

ATTACHMENT VARIABLES USED BY EMAIL RULES

Messages sent to the IDS are contain attachment variables. Attachment variables can also
be used to send information from one rule to another. Some INI options refer to
attachment variables. The attachment variables listed below are used by the email rules.
For more information on attachments and the email rules, see the SDK Reference.

Variable

Description

XMLTEMPLATTACH The DPRCreateEMailAttachment rule uses this variable to know

which file to open as the template for the attachment. This variable
is usually created by the DPRFindTemplate rule.

XMLTEMPLBODY The DPRCreateEMailAttachment rule uses this variable to know

which file to open as a template for the message body. This variable
is usually created by the DPRFindTemplate rule.

HTMLATTACHFILE The file name that contains the output from the template processing

used for the attachment. This variable is created by the
DPRCreateEMailAttachment rule and contains a path to a file
name—not the actual data.

HTMLBODYFILE The file name that contains the output from the template processing

used for the message body. This variable is created by the
DPRCreateEMailAttachment rule and contains a path to a file
name—not the actually data.

135

Chapter 2

Using the Internet Document Server

136

DPRParseRecord

DPRFindTemplate

Variable

RECORDLINE(##)

RECORDPARTS

REQTYPE

ADDRESS
MSGBODY
SUBJECT

ATTACHMENT

Description

The variable that contains raw data sent to IDS from the client. The
format of the data is defined by the DFD specified by the Path
option in the EmailDFD control group. There can be any number
of these variables but no variable can contain more than 1024 bytes
of data. The variables must be defined as follows:
(RECORDLINEOO RECORDLINE(1..RECORDLINE99)

These variables must be created by the client program. These
variables are processed by the DPRParseRecord rule.

The number of RECORDLINE variables. Processed by the
DPRParseRecord rule.

The transaction identifier code. Used by the DPRFindTemplate and
DPRAdd2Attachment rules to determine which template to use for
a particular message.

The email address. Serves as input for the DPRMail rule.

The body of email. Serves as input for the DPRMail rule.

The subject of the email.

A file attached to the email-no template processing.

UsSING EMAIL RULES

You can use the following rules when working with email. For more information, see the

SDK Reference.

Use this rule to assemble an attachment into a record and then convert to an XML tree.
This rule expects the RECORDLINE## and RECORDPARTS attachment variables in
the message it receives. The rule performs the following operations.

1 Takes the data from each of the RECORDLINE## variables and appends them
together into one record.

2 The data from this record is converted into an XML tree with variable names in the
ATTCHDEFD.DEFED file used as the variable names for the XML tree.

3 The data from the DFD variables can be transferred to attachment variables.
Therefore you can use any variable defined in the DFD to set any of the specific
attachment variables listed in the previous section. The Email2IDS control group
maps the DFD variable names to the attachment variable names. So you have two
groups of variables; the attachment variables and the XML tree variables.

< Email2IDS >
DFD VARIABLE

= ATTACHMENT VARIABLE

Use this rule to specify the template file. It expects a REQTYPE variable name to in the
attachment. So the DPRParseRecord rule must be executed first to set the REQTYPE
variable. It uses the XML2Body control group to define the templates to create the
message body and the XML2Attach control group to set up email attachments.

DPRAdd2Attachment

DPRCreateEMailAttach
ment

DPRMail

Using IDS to Distribute Email

Use this rule to set attachment variables from the INI file. It uses the
EmailAdd2Attachment control group in the INI file to set the variable names. It can use
a default setting in the INI file or it can use a specific request type, or multiple request
types.
< EmailAdd2Attachment >

e301 = SUBJECT, Warning Notice

e301 = ATTACHMENT, d:\ticket.doc

default = SUBJECT, Important notice

Use this rule to perform template processing. This rule can be used for the message body
as well an attachment. Template processing uses a text or HTML file to define constant
data. Variable data is then inserted at indicated places within the text.

Here is an example of a template text file. You must define the CurrentDate and

AcctName fields in the ATTCHDFD.DED file.
<%descendant: : COLUMN [ATTRIBUTE: : NAME="CurrentDate"] , %>

Dear <%descendant::COLUMN [ATTRIBUTE: :NAME="AcctName"],b %>,

Thank you for opening a certificate of deposit with DeepGreen Bank.
You will receive documents pertaining to your account in the mail
shortly. If you have any questions, please email us at
accountinquiry@deepgreenbank.com or contact our Customer Care
Center at 1-888-888-8888.

Sincerely,
DeepGreen Bank

E301

Whether the template is used for the message body or an attachment depends on whether
the request type was listed under the XML2Body or the XML2Attach control group. This
is determined when the DPRFindTemplate rule is executed.

Use this rule to transfer the data from the attachment variables to the email server. IDS
acts as a client to an email server such as Microsoft Exchange. The following attachment
variables should be considered as input to this rule.

 ADDRESS
* MSGBODY
e SUBJECT

e ATTACHMENT
e HTMLATTACHFILE
e HTMLBODYFILE

137

Chapter 2

Using the Internet Document Server

138

DPRLog

Use this rule to confirm whether an email was sent by IDS. This rule stores information
in a log file from either the attachment variables or the XML document created by the
DPRParseRecord rule. The DPRMail rule puts the RESULTS attachment variable into
the output queue. If no RESULTS variable exists, then the DPRMail rule was not
executed and no mail was sent.

USING THE EMAIL Bus

IDS includes an email message bus you can use to receive request messages with or
without file attachments from an email inbox. Replies can be emailed asynchronously
with or without file attachments to the originators of the request messages.

You can also configure a reply email box as the default reply queue in the server or client
configuration files, in which case test utilities or client applications using DSILIB or
DocucorpMsg Java package can also communicate with IDS via the email message bus.

The main body part of a request should be formatted in plain text and should contain
the XML that should be used as the main body part of the MIME message. Here is an
example:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">
<SOAP-ENV:Body>
<DSIMSG VERSION="100.020.0">
<CTLBLOCK>
<REQTYPE>SSS</REQTYPE>
<UNIQUE_ID>f9db68clblc67998662b6cee85a5bdd2</UNIQUE_ID>
</CTLBLOCK>
<MSGVARS>
<VAR NAME="REQTYPE">SSS</VAR>
<VAR NAME="MAIL.MARSHALLER.XSL.TEMPLATE">sss.xsl1</VAR>
</MSGVARS>
</DSIMSG>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
The content of the main body part of a reply message can be formatted via an XSL
template that is accessible to IDS and that is supplied via input message variable
MAILMARSHALLER XSL.TEMPLATE. If an XSL template is not provided, IDS
returns XML of a format similar to that in the example shown above for a request
message.

Malformed email requests are logged in a bad-soap.log file along with a reference ID and
IDS will change the request type to EML and send a response along with the same
reference ID back to the end user detailing the nature of the error.

For information on these properties, please see the HTML documentation shipped with
IDS. You will find this documentation in the following directory:

dsi_sdk\java\docs\com\docucorp\messaging\mail\DSIMailMessageQueueFa
ctory.html

Be sure to specify the MailDSIMessageMarshaller and the
DSIMailMessageQueueFactory classes for the marshaller and queue.factory properties.

Here is an example of a queue configuration section for IDS (docserv.xml):

Using IDS to Distribute Email

<gection name="gqueue">
<gection name="marshallers">

<entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.Mail
DSIMessageMarshaller</entry>

</section>
<!-- input options -->
<entry

name="queuefactory.class">com.docucorp.messaging.mail.DSIMailMessag
eQueueFactory</entry>

<entry name="mail.input.server">pop.gmail.com</entry>
<entry name="mail.input.port">995</entry>

<entry name="mail.input.user">requestg</entry>

<entry name="mail.input.password">pdtestl23</entry>
<entry name="mail.input.protocol">pop3</entry>

<entry name="mail.input.gqueue">requestgegmail.com</entry>
<entry name="mail.input.use.authentication">no</entry>

<entry name="mail.input.use.ssl">yes</entry>

<entry
name="mail.input.ssl.socketFactory.class">com.docucorp.messaging.ma
il.ssl.input.DSIMailSSLSocketFactory</entry>

<entry name="mail.input.ssl.socketFactory.fallback">false</
entry>

<entry name="mail.input.ssl.protocol">SSLv3</entry>

<entry name="mail.input.ssl.keystore">c:/docserv/keystore/
cacerts</entry>

<entry name="mail.input.ssl.keystore.type">JKS</entry>

<entry name="mail.input.ssl.keystore.manager.type">Sunx509</
entry>

<entry name="mail.input.ssl.keystore.pwd">changeit</entry>

<entry name="mail.input.ssl.truststore">c:/docserv/keystore/
cacerts</entry>

<entry name="mail.input.ssl.truststore.type">JKS</entry>

<entry name="mail.input.ssl.truststore.manager.type">SunXx509</
entry>

<entry name="mail.input.ssl.truststore.pwd">changeit</entry>

<!-- output options -->

<entry name="mail.output.server">smtp.gmail.com</entry>
<entry name="mail.output.port">465</entry>

<entry name="mail.output.user">resultg@gmail.com</entry>
<entry name="mail.output.password">pdtestl23</entry>
<entry name="mail.output.protocol">smtp</entry>

<entry name="mail.output.queue">resultgegmail.com</entry>
<entry name="mail.output.use.authentication">yes</entry>

<entry name="mail.output.use.ssl">yes</entry>

<entry
name="mail.output.ssl.socketFactory.class">com.docucorp.messaging.m
ail.ssl.output.DSIMailSSLSocketFactory</entry>

<entry name="mail.output.ssl.socketFactory.fallback">false</
entry>

<entry name="mail.output.ssl.protocol">SSLv3</entry>

<entry name="mail.output.ssl.keystore">c:/docserv/keystore/
cacerts</entry>

<entry name="mail.output.ssl.keystore.type">JKS</entry>

139

Chapter 2

Using the Internet Document Server

<entry name="mail.output.ssl.keystore.manager.type">Sunx509</
entry>

<entry name="mail.output.ssl.keystore.pwd">changeit</entry>

<entry name="mail.output.ssl.truststore">c:/docserv/keystore/
cacerts</entry>

<entry name="mail.output.ssl.truststore.type">JKS</entry>

<entry name="mail.output.ssl.truststore.manager.type">SunX509</
entry>

<entry name="mail.output.ssl.truststore.pwd">changeit</entry>
<!-- common mail options -->

<entry name="mail.debug">yes</entry>
</section>

140

ATTACHING
DOCUMENTS TO
DOCUMAKER
TRANSACTIONS

Attaching Documents to Documaker Transactions

The system lets you attach documents to Documaker transactions as TIFF, JPG, RTF,
and PDF files, as well as other bitmap formats supported by Documaker. Once attached,
the document becomes an embedded bitmap in the Documaker transaction. The
attachment form has an option to indicate it is an attachment (letter A in form options).

NOTE:This shared object feature was implemented for iDocumaker integration and
usage. The Documaker bridge rules DPRUpdateFormsetFromXML and
DPRLoadImportFile were enhanced to support attachment forms.

You can specify the document you want to attach several ways. For instance, the
document can be a...

* File on disk with its name and type stored in IDS attachment variables
* File sent to IDS in the message

* File on disk accessible by Documaker Bridge

* Document in a Documanage repository

In all cases the information needed to find the file is located in the form metadata.
Special metadata tag names are reserved for each case.

File with the Name and Type in IDS Attachment Variables

These tags in the form metadata specify how to locate the file name:

Tag Description

DPR_ATTACHVAR The name of the DSI attachment variable where the file name is stored.
NAME

DPR_FILETYPE (Optional) The system looks at this value to determine the file type. If
it is missing, the system checks the file extension. The default is TIFF.

DPR_FILETYPEVAR (Optional) The name of DSI attachment variable with the file type.
The system looks at this value to determine the file type. If it is
missing, the system checks the file extension. The default is TIFF. If
DPR_FILETYPE is present, this variable is ignored.

At least one of the file type values is required.

Here is an excerpt of an XML import file with this information. The actual file name is
located in DSI variable named DPRFILE and its type is in DSI variable DPRTYPE.

<?xml version="1.0" encoding="UTF-8"?>

<FORM NAME="Test form name" OPTIONS="RA">

<INFO NAME="DPR_ATTACHVARNAME">DPRFILE</INFO>

<INFO NAME="DPR_FILETYPEVAR">DPRTYPE</INFO>
<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

141

Chapter 2

Using the Internet Document Server

File Sent to IDS in the Message

These tags in form metadata specify how to locate the file data.

Tag Description

DPR_ATTACH Specifies the name of the DSI attachment in which the file was sent, such
NAME as by the use of SendFile API.

DPR_FILETYPE (Optional) Specifies the file type. The system looks at this value to
determine the file type. If it is missing, the system checks the file extension.
The default is TIFF.

DPR_FILETYPE (Optional) Specifies the name of DSI attachment variable with file type.

VAR The system looks at this value to determine the file type. If it is missing,
the system checks the file extension. The default is TIFF. If
DPR_FILETYPE is present, this variable is ignored.

At least one of the file type values is required.

Here is an excerpt of an XML import file with this information. The file was sent to IDS
inside the message. The name of the attachment used to send it was SENTFILE. The type
of file is in DSI variable DPRTYPE.

<?xml version="1.0" encoding="UTF-8"?>

<FORM NAME="Test with DSI message" OPTIONS="RA">

<INFO NAME="DPR_ATTACHNAME">SENTFILE</INFO>

<INFO NAME="DPR_FILETYPE">TIF</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

File Accessible by Documaker Bridge

These tags in form metadata specify how to locate the file.

Tag Description

DPR_FILENAME Specifies the physical file name.

DPR_FILETYPE (Optional) Specifies the file type. The system looks at this value to
determine the file type. If it is missing, the system checks the file
extension. The default is TIFF.

DPR_FILETYPEVAR Specifies the name of DSI attachment variable with file type. The
system looks at this value to determine the file type. If it is missing,
the system checks the file extension. The default is TIFF. If
DPR_FILETYPE is present, this variable is ignored.

At least one of the file type values is required.

Here is an excerpt of an XML import file with this information.

<?xml version="1.0" encoding="UTF-8"?>
<FORM NAME="Test with filename" OPTIONS="RA">

142

Attaching Documents to Documaker Transactions

<INFO NAME="DPR_FILENAME">c:\docs\Image_0001.jpg</INFO>
<INFO NAME="DPR_FILETYPE">JPG</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

NOTE:If you are using a relative path in the file name it has to be relative to the
directory where Docupresentment is running.

Document in the Documanage Repository

These tags in the form metadata specify how to locate the file. All of these tags are
required.

Tag Description

DMG_CABINET Specifies the name of Documanage cabinet.

DMG_DOCID Specifies the value of Documanage DOCID.
DMG_VERSION Specifies the major version of the document.
DMG_REVISION Specifies the minor version of the document.

DMG_VERS Specifies the minor and major version of the document. The format is

minor.major, such as 1.0 or 2.5. If this value is present, the values for
DMG_VERSION and DMG_REVISION are ignored.

Here is an excerpt of an XML import file with this information.

<FORM NAME="Test with Documanage" OPTIONS="RA">

<INFO NAME="DMG_CABINET">DOCCDEMO</INFO>

<INFO NAME="DMG_DOCID">22401</INFO>

<INFO NAME="DMG_VERSION">1</INFO>

<INFO NAME="DMG_REVISION">0</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Here is another example with the DOC_VERS value:

<FORM NAME="Test with Documanage" OPTIONS="RA">

<INFO NAME="DMG_CABINET">DOCCDEMO</INFO>

<INFO NAME="DMG_DOCID">22401</INFO>

<INFO NAME="DMG_VERS”>1.0</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

143

Chapter 2

Using the Internet Document Server

144

Note that to use the file in Documanage, the Documanage Bridge must be available on
the Docupresentment server. The Documaker Bridge will execute the following
Documanage Bridge rules automatically when it encounters the form with the metadata
(no configuration changes needed):

¢ DmgBrsCopyAttachment
¢ DmgBrsValidateSession
¢ DmgBrsCacheContentsFile

The type of the file does not need to be provided in this case, the Documanage
document type will be used instead.

Error Messages

These error messages could be produced by the DPR rules if the attachment form did
not work or was specified incorrectly.

Error Text

DPR0097 Attachment form <FORM> metadata specified DSI attachment variable
<VARIABLE> but this variable was not found. File will not be loaded.

DPR0098 Attachment form <FORM> metadata specified DSI file attachment with
delimiter KVARIABLE> but this file was not attached to DSI message. File will
not be loaded.

DPR0099 Attachment form <FORM> metadata is missing required value <INFO> . File
will not be loaded.

DPR0100 Failed to load attached file specified by attachment form <FORM>. File name
<FILE> of type <TYPE>.

DPRO0101 Failed to load dynamic link library <LIBRARY>

DPR0102 Cannot locate variable VARIABLE> in the attachment list after executing
Documanage bridge rules. Examine Documanage bridge errors.

Specifying Duplex Options for the Attached Form

If the attached document contains multiple pages, it might have to be printed in duplex
mode. You specify the duplex options you want on each section using Documaker
Studio so the duplex information will be on the XML representation of the form. You
have these choices:

e F-front
e B -back
e T - short bind

The system defaults to simplex.

At the end of the options you must specify “#1” to indicate it is a dummy image. Here
is an example:

Start on back page bind
example

Short bind example

Attaching Documents to Documaker Transactions

OPTIONS="S#1"

The name of the section is ignored.

Here are a few examples:

<FORM NAME="Test with PDF filename" OPTIONS="RA">
<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>
<DESCRIPTION>Test of TIFF form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>

<PAGE>

<SECTION NAME="TESTSECTION" OPTIONS="B#1"/>
</PAGE>

</SHEET>

</FORM>

Long bind example:

<FORM NAME="Test with PDF filename" OPTIONS="RA">
<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>
<DESCRIPTION>Test of TIFF form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>

<PAGE>

<SECTION NAME="TESTSECTION" OPTIONS="F#1"/>
</PAGE>

</SHEET>

</FORM>

<FORM NAME="Test with PDF filename" OPTIONS="RA">
<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>
<DESCRIPTION>Test of TIFF form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>

<PAGE>

<SECTION NAME="TESTSECTION" OPTIONS="T#1"/>
</PAGE>

</SHEET>

</FORM>

Debugging
Include this INT option in your config or DAP INI files to debug this functionality.

< Debug >
DPRProcessFormsetAttachments = Yes

The default is No.

When this option is set to Yes, the NA and POL files are unloaded with the names
dprattach.dat and dprattach.pol and the log file (trace file or dprtrc.log) will contain
information similar to this example:

DPRProcessFormsetAttachments: DMG_CABINET=<DOCCDEMO> Form <Test with
Documanage>. Adding CABINET attachment variable

145

Chapter 2

Using the Internet Document Server

DPRProcessFormsetAttachments: DMG_DOCID=<22401> Form <Test with
Documanage>. Adding DOC_ID attachment variable

DPRProcessFormsetAttachments: DMG_VERSION=<1> Form <Test with
Documanage>. Adding DOC_MAJORVERSION attachment variable

DPRProcessFormsetAttachments: DMG_REVISION=<(0> Form <Test with
Documanage>. Adding DOC_MINORVERSION attachment variable

DMG Rule DmgBrsCopyAttachment (DSI_MSGINIT) Time spent: 0.000
DMG Rule DmgBrsValidateSession (DSI_MSGINIT) Time spent: 0.000
DMG Rule DmgBrsCacheContentsFile (DSI_MSGINIT) Time spent: 0.000
DMG Rule DmgBrsCopyAttachment (DSI_MSGRUNF) Time spent: 0.078
DMG Rule DmgBrsValidateSession (DSI_MSGRUNF) Time spent: 0.109
DMG Rule DmgBrsCacheContentsFile (DSI_MSGRUNF) Time spent: 0.094

DPRProcessFormsetAttachments: found Documanage bridge attachment
variables CONTENTS_DECOMPRESSED_PATH=<cache\22401f0v1x0.tif> and
CONTENTS_DECOMPRESSED_TYPE=<TIF>

DMG Rule DmgBrsCacheContentsFile (DSI_MSGRUNR) Time spent: 0.016
DMG Rule DmgBrsValidateSession (DSI_MSGRUNR) Time spent: 0.000
DMG Rule DmgBrsCopyAttachment (DSI_MSGRUNR) Time spent: 0.000
DMG Rule DmgBrsCacheContentsFile (DSI_MSGTERM) Time spent: 0.000
DMG Rule DmgBrsValidateSession (DSI_MSGTERM) Time spent: 0.000
DMG Rule DmgBrsCopyAttachment (DSI_MSGTERM) Time spent: 0.000

146

USING IDS TO
RUN
DOCUMAKER

Using IDS to Run Documaker

You can set up IDS to run Documaker as a subordinate process, as shown below. Web
clients communicate with IDS using queues. IDS communicates with Documaker via
XML files called job tickets and job logs.

This diagram illustrates the process:

XML]Job
Ticket

Documaker
—_—
IDS
(GenData)

—

XML
Job Log

IDS can start or stop Documaker as needed, without user interaction. One IDS session
controls one Documaker process. You can, however, implement multiple IDS sessions
and have multiple Documaker processes as well.

Keep in mind these limitations:

* You can only run Documaker in single step mode. Consult the Documaker
Administration Guide for more information on single step processing.

* Different resource setups for Documaker are supported, but Documaker processing
restarts if resources are changed, eliminating the performance benefits. This should
not be a problem because it is unlikely multiple Documaker setups will be used with
a single IDS implementation. You can, however, experience problems testing a
system with multiple setups.

* During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

* IDS and Documaker must exist on the same node/server machine.

147

Chapter 2

Using the Internet Document Server

SETTING UP IDS

To set up IDS to run Documaker, make these changes in the following configuration

files:

docserv.xml file Make these changes in the docserv.xml file, or the configuration file the IDS is
configured to use. Here is an example of how to add a request type for Documaker:

<gection name="ReqType:RPD">

<entry name="function">atcw32->;ATCLogTransaction</entry>
<entry name="function">atcw32->;ATCLoadAttachment</entry>
<entry name="function">atcw32->;ATCUnloadAttachment</entry>
<entry name="function">dprw32->;DPRSetConfig</entry>

<entry name="function">rpdw32->;RPDCheckRPRun</entry>
<entry name="function">rpdw32->;RPDCreateJob</entry>

<entry name="function">rpdw32->;RPDProcessJob</entry>
</section>

If necessary, add two more request types, one to check if Documaker is running and one
to stop Documaker. Here is an example:

<gection name="ReqType:CHECK">

<entry name="function">atcw32->;ATCLogTransaction</entry>
<entry name="function">atcw32->;ATCLoadAttachment</entry>
<entry name="function">atcw32->;ATCUnloadAttachment</entry>
<entry name="function">dprw32->;DPRSetConfig</entry>

<entry name="function">rpdw32->;RPDCheckRPRun</entry>
</section>

<gection name="ReqType:STOP">

<entry name="function">atcw32->;ATCLogTransaction</entry>
<entry name="function">atcw32->;ATCLoadAttachment</entry>
<entry name="function">atcw32->;ATCUnloadAttachment</entry>
<entry name="function">dprw32->;DPRSetConfig</entry>

<entry name="function">rpdw32->;RPDStopRPRun</entry>
</section>

Also add the following IDS rule to the ReqType:INI section:

<entry name="function">rpdw32->;RPDStopRPRun</entry>

DAP.INI file Add a configuration option for a the master resource library you will use. Here is an
example which is based on the RPEX1 master resource library:

< Configurations >

CONFIG = RPEX1
< Config:RPEX1 >
INIFile = RPEX1.INI

RPEX1.INI file Make these changes in the RPEX1.INI file (or the INI file you are using for your
configuration):

< IDSServer >

ExtrPath = e:\fap\mstrres\rpexl\extract\
PrintPath = e:\fap\mstrres\rpexl\data\
WaitForStart = 60

SleepingTime = 500

MaxWaitTime = 120

GENSemaphoreName = gendata

148

Using IDS to Run Documaker

RPDSemaphoreName = rpdrunrp
PrintFileCacheTime = 7200
TextFileCacheTime = 7200
< RPDRunRP >
Executable = e:\rell0l\shipw32\gendaw32.exe

Directory e:\fap\mstrres\rpexl\
UserINI = e:\fap\mstrres\rpexl\fsiuser.ini
BaseLocation = http://10.8.10.69/fap/mstrres/rpexl/data/
< Printer >
PrtType = PDF
< Debug >

RPDProcessJob = Yes

Setting up Multiple Internet Document Servers

The semaphores used by IDS and Documaker are global for a computer, so if you need
multiple IDS processes on the same computer, each IDS process and subordinate
Documaker process should use different semaphore names.

Semaphore names are generated automatically by IDS for each instance. These names
are passed to Documaker as command line parameters. No user intervention is needed.

To specify naming conventions for these semaphores, change these INI options:

< IDSServer >
GENSemaphoreName

RPDSemaphoreName =

Keep in mind the names must be unique for a computer, so two IDS servers will have
to use two different INI files specifying semaphore names.

Controlling Documaker

To control Documaker via IDS, use these IDS rules:

e RPDCheckRPRun - Makes sure Documaker is running. If Documaker is not
running, this rule starts it.

* RPDCreateJob - Finds the attachment variables for each of the values in the job
ticket and adds them to the XML tree. The XML tree is added to the RPDJobTicket
variable so the next rule can use it.

* RPDProcessJob - Gets the XML tree from the RPDJobTicket variable and writes it
to a file. This file is used as the job ticket which triggers the Documaker process.

* RPDStopRPRun - Receives the current process ID from the RPDRunProcess
variable and then terminates Documaker.

For more information about these rules, see the SDK Reference.

149

Chapter 2

Using the Internet Document Server

If a critical error is IDS restarts Documaker Server (GenData) if it encounters a critical error and resubmits
encountered the transaction being processed when the error occurred. This helps you handle
situations where you have sporadic memory access problems in custom or 3rd-party
code.

NOTE:Before the release of version 11.2 shared objects, when the GenData program
started, the RPDProcessJob rule communicated with GenData via TCP/IP,
sending the job ticket message to GenData and receiving a job log response. If
the TCP/IP communication failed, the RPDProcessJob rule forced GenData to
stop. This would prepare IDS for the next request.

Version 11.2 shared objects added the ability to automatically restart GenData
after the process described above. After it confirms that GenData has been
stopped, the RPDProcessJob rule calls the RPDCheckRPRun rule to restart
GenData and then calls itself to communicate with GenData and send the same
job ticket.

To keep a copy of each transaction, an eight-digit index number is added to the job ticket
and job log file names when they are downloaded for information in debug modes.

Also, the system includes these error messages which can appear if there is a TCP/IP
failure:

Message Description

RPD0011 Unexpected program termination of GenData.
RPD0012 Socket connection failure.

RPD0013 Can not unload job ticket to the msg buffer.
RPD0014 Can not load the msg buffer to the job log.
RPDO0016 Socket time-out.

RPD0017 Time exceeded the MaxWaitForStart specification.

RPD0018 GenData failure.

The system includes additional information in the log trace file in case of failure. This
includes the job ticket, the input attachment variables, and error messages. On the IDS
side, this file is named dpr#re.log. On the GenData side, this file is the trace file.

150

Error file processing

Returning record IDs

Using IDS to Run Documaker

You can use INI options to turn on or off the recording of error information when
using IDS to run Documaker. This can help in debugging.

To create an error file and write errors into the error file, include these options in the
Debug control group:

< Debug >
RPDCheckRPRun = Yes
RPDCreateJob = Yes
RPDProcessJob = Yes
RPDErrFile = rpderr.dat

Option Description

RPDCheckRPRun Enter Yes if you want to record any errors encountered when running this
rule. If you enter No, errors produced while this rule is run are not
recorded.

RPDCreateJob Enter Yes if you want to record any errors encountered when running this
rule. If you enter No, errors produced while this rule is run are not
recorded. Be sure to set this option to Yes to record GenData errors.

RPDProcessJob Enter Yes if you want to record any errors encountered when running this
rule. If you enter No, errors produced while this rule is run are not
recorded.

RPDErrFile Enter the name of the error file. The system does not create an error file

if you do not enter a name in this field.

When you use IDS to run Documaker with WIP and archive rules, the WIP and archived
record IDs are written to the print log (PrtLog) file. Furthermore, the first WIP record
ID and the first archived record ID are sent to a job log (JobLog) file and are also output
as the following attachment variables.

Variable Description
WIPRECORDID The first WIP record ID.
ARCRECORDID The first archived record ID.

These XML elements are added to both the PrtLog and JobLog files:

<WIPRECORDID>12345</WIPRECORDID>
<ARCRECORDID>12345</ARCRECORDID>

151

Chapter 2

Using the Internet Document Server

152

FSISYS.INI or
FSIUSER.INI file

SETTING UP DOCUMAKER

The first step is to set up Documaker to run in a single step mode. See the Documaker
Administration Guide for more information.

Keep in mind these considerations...

If the Documaker programs and DSOs are located on the network, the start time
for Documaker can be significant. Keep in mind, however, that the start time only
affects the first transaction. Subsequent transactions will process much more
quickly. If the start time exceeds 10 seconds, consider changing the WaitForStart
option to a higher value.

All of the standard Documaker performance-related INI options are available even
when IDS runs Documaker as a subordinate process. For best results, optimize
Documaker’s performance before using it with IDS.

Documaker will run fastest if the resource files for Documaker, as well as input and
output files, are physically located on the computer where IDS and Documaker are
running,.

Documaker (GenData) automatically creates the XML export file from the
transaction and returns the name as XMLOUTPUT and URLXMLOUTPUT.

In addition, you will need to make changes to your FSISYS.INI or FSIUSER.INI files
and to your AFGJOB.JDT file.

Be sure to turn off all Documaker stop options, as shown here:

< GenDataStopOn >

BaseErrors = No
TransactionErrors = No
ImageErrors = No
FieldErrors = No

< GenData >

ClearMsgFile = Yes
< PrintFormSet >
MultiFilePrint = Yes
LogFileType = XML
LogFile = .\data\printlog.xml

Option Description

GenDataStopOn control group

BaseErrors Enter No to prevent the system from stopping on base-level errors.

TransactionErrors Enter No to prevent the system from stopping on transaction-level errors.

ImageErrors Enter No to prevent the system from stopping on image-level errors.

FieldErrors Enter No to prevent the system from stopping on field-level errors.

GenData control group

ClearMsgFile Enter Yes to clear the message file (MsgFile) before a job process starts.

This prevents the previous job’s information from being reused and is
necessary when running in single-step mode. The default is No.

Option
PrintFormSet control

MultiFilePrint

LogFileType

LogFile

Using IDS to Run Documaker

Description
group

Enter Yes to generate multiple print files which have a 46-byte unique
name.

To identify which recipients are in which print batch, enter No or omit
this option. This causes the PrintFormSet rule to save the printer for the
print batch along with its recipient information.

The MultiFilePrint option should only be used with the PDF, RTF,
HTML, and XML print drivers.

Specify the type of the log file, such as XML or TEXT.

Specify the name and path of the log file, such as

\data\printlog.xml

If you omit the extension, the system uses the LogFileType option to
determine the extension.

These INI options are optional:

< IDSServer >

SleepingTime = 500
GENSemaphoreName = gendata
RPDSemaphoreName = rpdrunrp
< Debug >
RULServerJobProc = Yes
Option Description

IDSServer control gro

SleepingTime

up

Enter the amount of time in milliseconds you want the system to wait
before it checks for a job ticket. The default is 1000 (1 second).

GENSemaphoreName Semaphore names are generated by IDS for each instance and are

RPDSemaphoreName

Debug control group

RULServerJobProc

passed to Documaker as command line parameters. Use this option
to specify naming conventions for semaphore names. The default is
gendata.

Keep in mind semaphore names must be unique for a computer, so
two IDS servers will have to use two different INI files specifying
semaphore names.

Semaphore names are generated by IDS for each instance and are
passed to Documaker as command line parameters. Use this option
to specify naming conventions for semaphore names. The default is
rpdruntp.

Keep in mind semaphore names must be unique for a computer, so
two IDS servers will have to use two different INI files specifying
semaphore names.

Enter Yes to get a copy of the job ticket file before the system
removes it.

153

Chapter 2

Using the Internet Document Server

154

AFGJOB.JDT file

Prior to the release of version 11.1, you had to change the base rule from
RULStandardBaseProc, as shown here:

<Base Rules>
; ServerBaseProc;1l;;

The ServerBaseProc rule replaced the RULStandardJobProc rule and let IDS run
Documaker as a separate, stay alive process. This meant Documaker only had to start once
and IDS could continue even if Documaker failed. For more information on the
ServerBaseProc rule, see the Rules Reference.

NOTE:If you are running Documaker version 11.1 or higher, you do not have to
substitute ServerBaseProc for RULStandardBaseProc.

Naming Conventions for Output Files

The output files from Documaker use the names generated by the IDS rules and
submitted to Documaker in the job ticket file. If you need different names, provide them
in the IDS request. In this case, you must make sure the names are unique or else they
will be overwritten. The names generated by IDS can consist of up to 45 characters and
are similar to the names generated by the DPRPrint rule in IDS.

The directory where the output files are created is determined in this manner:
e If the file name and path was provided, the system uses that information.

e If the file name was provided, but the path was omitted, the system looks for the
path in the PRINTPATH attachment variable.

e If the path is not in the PRINTPATH attachment variable, the system looks for the
PrintPath option in the DSIServer control group.

e If no path was specified in the PrintPath option, the system places the output file
in the current directory.

The extension of the output files is determined in this manner:

¢ If the name and extension was provided in the attachment, the system uses that
information.

e If the name and extension were omitted, the system generates a name and uses the
printer type as the extension for the print output files. For other files, the system
looks for the FileExt option in the IDSServer control group to find the extension.
The default is DAT.

Using IDS to Run Documaker

CREATING DPW FILES

You can generate a DPW file from GenData or from an import file using IDS. The code
is structured as a print driver so setting it up is virtually the same as with print drivers.

The DPW library supports the INI2XML, WIP2DPW, and File2DPW control groups
used by the WIP Edit plug-in. To generate a DPW file from Documaker, include these
INI options:

< Printers >
PrtType = DPW
< Printer >

PrtType = DPW

< PrtType:DPW >
PrintFunc = DPWPrint
Module = DPWW32
Debug = No

Set the Debug option to Yes to capture additional debug information to the trace log.

The PrtType:DPW group can also contain variable names that correspond to index
element names in the DPW file. The values specified can be one of these formats:

name = val
The value will be used as provided, where »a/is the actual value provided.

name = ~GVM gvmname
If the DPW library is run under the GenData program, the value of the GVM variable
matching the name provided is used, where gomname stands for the name provided.
name = ~GetAttach attachname
If the DPW library is run under IDS, the value of the attachment variable matching the

name provided will be used, where attachname stands for the name provided.

The system checks the index of the DPW file for the presence of any variables specified
in the PrtType:DPW control group and, if present, it updates their values with those
specified in the INI file.

155

Chapter 2

Using the Internet Document Server

On the IDS side

On the Documaker side

156

In IDS

ACCESSING IDS ATTACHMENT VARIABLES IN GENDATA

There are times when the GenData program needs access to data passed from IDS which
is not in the extract file. To meet this need, the GenData program can access IDS
attachment variables as GVM variables. If a GVM variable with the same name already
exists, its value does not change.

Here is how it works:

The RPDCreateJob rule adds any input attachment variables to the XML tree (job ticket)
besides the existing variables, such as MsgFile, ErrFile, ExtrFile, LogFile, DbLogFile,
NaFile, PolFile, NewTrn, PrtLog, PrtType, ExtrPath, PrintPath, PrintBatches, BatchFiles,
IniOptions, EWPSRequest, EWPSResults, ShowErrors, WIPRECORDID,
XMLOUTPUT, and so on.

For example, if an attachment variable called RPDTEST is located and it has a value of
This is a test, it 1s added to the XML tree as shown here:

<DOCUMENT>
<JOBTICKET>

<RPDTEST>This is a test</RPDTEST>
</JOBTICKET>
</DOCUMENT>

After the ServerJobProc rule receives the XML tree (job ticket), its child elements are used
to update INT values or create GVM variables or both.

UsING TCP/IP COMMUNICATIONS
IDS and GenData use TCP/IP (socket) to replace the job ticket/job log file I/O

communication.

The RPDCheckRPRun rule sets up the host name and the port number for a GenData
configuration by checking the HOST name and PORT number from these INT options:

< IDSServer >
MaxConfigAllowed = 10
Host = localhost
Port = 49300

Option Description

MaxConfigAllowed Enter the maximum number of configurations you want to allow. The
default is 10.

Host Enter the host name. The default is localhost.

Port Enter the base IP port number. The default is 49300.

If you have multiple GenData configurations running over multiple IDS instances, the
port number is generated based on the IDS instance number and the base IP port
number, so you must decide the base IP port number and the range of IP port numbers.
Note that the total number of IP port numbers is decided by:

In GenData

Using IDS to Run Documaker

instances (IDS instance number) x MaxConfigAllowed (allowed to open GenDatas)

If the current configuration differs from the previous configuration, the current
configuration starts a GenData process with the assigned IP port number. Both the host
name and port number are saved in the configuration structure and are appended to the
configuration list. If the configuration exists, the configuration element is extracted and
uses the saved host and port number as current.

NOTE:TCP/IP communication is for shared objects 11.1 and above and can not be
used with early versions.This rule checks the version to decide whether TCP/IP
or file I/O communication should be used before it starts a GenData process.

The RPDProcessJob rule uses the host name and port number to establish
communication with GenData and sends a message that contains the XML document
(job ticket) to the server (GenData) when it detects that GenData has started. You can
set the maximum time to wait for GenData to start using this INT option:

< IDSServer >
WaitForStart = 30

Option Description

WaitForStart Enter the maximum time to wait for GenData to start in seconds. The default
1s 30 seconds.

After IDS detects that GenData has started, it sends a message in XML format (the job
ticket) and waits for GenData to finish and send back a response in XML format (the
job log file). You can set the maximum time to wait for GenData to respond using this
INI option:

< IDSServer >
MaxWaitTime = 30

Option Description

WaitForStart ~ Enter the maximum time to wait for GenData to respond in seconds. The
default is 30 seconds.

If GenData does not start before the waiting time elapses, IDS displays this error message
on the IDS side:

Unexpected Program Termination of GenData
As soon as GenData starts, it initiates the communication between IDS and GenData
using the IP port number retrieved from the command line argument. It receives the job

ticket document sent by IDS and continues the GenData process. You can set the
maximum time to wait to receive a job ticket using this INI option:

< IDSServer >
MaxWaitTime = 30

157

Chapter 2

Using the Internet Document Server

158

Option Description

MaxWaitTime Enter the maximum time to wait to receive a job ticket in seconds. The default
is 30 seconds.

After GenData finishes, the JOBLOG tree is unloaded into a message buffer and is sent
to client side as a response message.

You can use options in the Debug control group to determine whether to unload the
job ticket and job log files for reference purposes. On the IDS side, set this option to
Yes to keep a copy of the job ticket:

< Debug >
RPDProcessJob = Yes

On GenData side, set this option to Yes to keep a copy of the job log:

< Debug >
RULServerJobProc = Yes

CUSTOMIZING THE EXECUTION OF DOCUMAKER

When IDS runs Documaker in multiple step mode, you can introduce special steps
which occur between the GenTrn, GenData, and GenPrint steps. You can use these steps,
for instance, to

e Sort the TRNFILE or recipient batches

¢ Copy files to different locations

* Send files to the printer

* Notify an operator that steps were completed

The RPDRunRP rule can run a custom executable after each step in the process. Use
these INI options to define the custom executable name and path:

< RPRun >
PostGenTrnExecutable =

PostGenDataExecutable

PostGenPrintExecutable

Option Description

PostGenTrnExecutable Enter the name and path of the custom executable, such as a batch
file or shell script, you want the system to run after it completes the
GenTrn step.

PostGenDataExecutable Enter the name and path of the custom executable, such as a batch
file or shell script, you want the system to run after it completes the
GenData step.

PostGenPrintExecutable Enter the name and path of the custom executable, such as a batch
file or shell script, you want the system to run after it completes the
GenPrint step.

By default, the following information is passed as parameters to each executable:

Using IDS to Run Documaker

GenTrn - INI file, trnfile
GenData - INIfile, recipient batches
GenPrint - INI file, print file

These INT options are read from the FSIUSER.INI file to create the parameter list. The
FSIUSER.INI file is created by the RPDRunRP rule. This INI file is passed to
Documaker for each step. Internally, the RPDRunRP rule loads the FSTUSER.INI file
and gets parameter information from it.

GenT'rn parameters

< Data >
TrnFile = (parameter trnfile)

GenData parameters

The system reads all of the options under the Print_Batches control group to determine
the recipient batches:

< Print_Batches >
Batch# = (paramter receipient batches)

GenPrint parameters

The system reads all of the print batches to determine the printer used and passes the
port value for the printer as the parameter.

< Print_Batches >
Batchl = (value ignored)
< Batchl >
Printer = Printerl
< Printerl >
Port = (parameter print file)

If any of the INI options are missing, the system logs an error. It will, however, try to
run the post process without the missing parameter. Memory and list allocation errors
result in failure and the system will not attempt to execute the outside process. Here is
a list of the potential errors:

Error Severity
Could not get INT option <Data> TrnFile GenTrn step non-fatal
Could not create VMM list GenTrn step fatal
Could not load INT file GenTrn step fatal
Could not get INI context GenTrn step fatal
Could not create VMM list GenData step fatal
Could not load INI file GenData step fatal
Could not get INI context GenData step fatal
Could not create VMM list GenPrint step fatal
Could not load INT file GenPrint step fatal
Could not get INI context GenPrint step fatal

159

Chapter 2

Using the Internet Document Server

160

Error Severity
Could not get INI option GenData step <group> <option> non-fatal
Could not start process: [executable name and command line] fatal
Memory re-allocation failed fatal
Memory allocation failed fatal
PROCStartProcess failed: [command line]

PROCWaitProcess failed: [executable name and command line] non fatal
PROCExitCodeProcess failed: [executable name and command line] non fatal

USING THE
XML
MESSAGING
SYSTEM

Using the XML Messaging System

The XML messaging system is an open and documented queue control message format
based on XML and the evolving SOAP standard. The XML message format is supported
by the JMS, WebSphere MQ, and HTTP messaging systems.

You can find more information on the XML and SOAP on the W3C WEB site:
http://www.w3.org/

You can also find information about SOAP messages with attachments at:
http://www.w3.o0rg/tr/soap-attachments

For information on using SOAP without a messaging system, see Using XML SOAP
Outside of Messaging Systems on page 158.

NOTE: Oracle Insurance will follow the evolving standards of SOAP and UDDI and
move toward universal messaging. The first version of the DSI message format
is based on XML and complies with many of the initial standards for SOAP

message envelopes. Later versions will move transactions and servers toward
fuller SOAP and UDDI compliance.

Oracle Insurance has used message queuing as a means of serializing requests
and responses between loosely coupled clients and servers without requiring
one-to-one connections.

Docupresentment includes the client and server sides of the DSI (document server
interface) system and of the Oracle Insurance Messaging Library system. These interface
layers help manage connections between multiple simultaneous clients and multiple
simultaneous servers.

The Oracle Insurance Messaging Library provides a logical abstract layer over the
physical process of accessing the queue, so one implementation can support and switch
between multiple queueing systems.

The DSI system provides a logical abstract layer over the physical process of assembling,
delivering, and parsing of a message, so the initiator of the message does not have to
know the physical format of the message, and is insulated from internal software
changes to the message format between product versions.

For instance, you can use the DSI messaging client with Documaker Workstation so
Documaker Workstation can...

* Interface with external systems via messaging middleware.
e Interface with IDS as a bridge to a legacy system to retrieve data for import.

The first ability means second is optional. You can also use your own internal programs
and interface using messaging middleware.

The advantage of having a logical abstract layer is that it lets you deploy applications for
different message queuing systems without requiring program changes. Only minimal
setup changes are required to test or deploy the same application with a different
queuing system.

161

http://www.w3.org/
http://www.w3.org/TR/SOAP-attachments

Chapter 2

Using the Internet Document Server

By abstracting the message format, applications are insulated from internal changes to
the message format and can use the Oracle Insurance APIs to correctly assemble or
disassemble messages.

The disadvantage of message format abstraction is that non-Oracle Insurance
applications might be required to use Oracle Insurance APIs to communicate with
Oracle Insurance applications. On some platforms, it may not be practical to invoke
these APIs. The proprietary nature of the original message format further complicates
the issue.

If you are integrating with IDS as the server, the message format documentation is not
necessary. If, however, you are integrating with another application, the message format
may be needed if you do not use IDS APIs.

The following topics outline the XML message file format.

The XML-based DSI The DSI message format complies with the following XML-based structure:

message format ,)
<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP - ENV : Body>
<DSIMSG VERSION="100.017.0">
<CTLBLOCK>
<UNIQUE ID> { guid hex string } </UNIQUE_ID> (required)
<REQTYPE> { message request type } </REQTYPE> (required)
<USERID> { user ID }</USERID> (optional)

<RESULTQMGR> { remote gqueue manager } </RESULTQMGR>
(optional)

<RESULTQ> { remote queue name } </RESULTQ> (optional)
<ATTACHMENT TYPE="TEXT or BINARY"> (optional)

<DELIMITER> { tag delimiter } </DELIMITER> (required
for ATTACHMENT)

</ATTACHMENT>
</CTLBLOCK>
<MSGVARS> (required)
<VAR NAME="VAR NAME 1"> { MSG VAR CONTENT 1 } </VAR>
<VAR NAME="VAR NAME 2"> { MSG VAR CONTENT 2 } </VAR>
<VAR NAME="VAR NAME 3"> { MSG VAR CONTENT 3 } </VAR>
</MSGVARS>
</DSIMSG>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

MIME headers
Optional attached text data
Example: a flat text extract file
Example: an XML data file
... Example: a base64 (MIME) text encoded binary file
MIME headers

162

Without attachments

Using the XML Messaging System

Please note:

* The essential component of the message format is the DSIMSG structure, which is
encoded inside SOAP-ENV envelope and body structures.

¢ The indentation of the elements is intended to make it easier to read. Actual
messages are not indented.)

* The message can contain attached files. Attached files are encoded inside a tagged
structure outside the SOAP-ENV structure. Note that once tagged outside of the
primary structure in this fashion, the message file itself is no longer well-formed
XML and cannot be viewed with some XML viewers. While it is not well-formed
XML, it is a valid SOAP with attachments format.

The DSI system manages the separation of the attached files from the message. Each
ATTACHMENT structure describes the controlling attributes of the attached files.
The TYPE attribute specifies the type and format of the attached file, either as
TEXT (the default) or BINARY (MIME format). The DELIMETER element
specifies a unique tag name, which is required to be inside the beginning and
ending tag brackets to delimit the file data.

* Request and response messages have identical formats. The current specification
does not require a distinction between reguests sent by the client and responses
returned by the server.

* The client initiating the request generates the UNIQUE_ID. The server echoes the
same unique identifier in the response.

* The type of request is identified by the REQTYPE element. Client and server
applications must understand and agree on the identifier for the request, the nature
of the work to be performed as a result, and the response to be generated.

* The RESULTQMGR and RESULTQ elements are optional, but will appear based

on certain types of queue configurations.

* The MSGVARS structure provides the DSI attachment variables which would
previously have been encoded using the DSIAddAttachVar rule in the IDS SDK.

Client Request Messages

Here are several example client request messages in XML format:

Here is an example of a client request message in XML format which does not include
attachments

Content-Type: text/xml
Content-Transfer-Encoding: 8bit

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.017.0">

<CTLBLOCK>

<UNIQUE ID>a9ae6c91-1d1b-11d2-b21la-00c04fa357fa</UNIQUE_ID>
<REQTYPE>CLAIMS DATA</REQTYPE>

<USERID>JOHN DOE</USERID>

163

Chapter 2

Using the Internet Document Server

</CTLBLOCK>

<MSGVARS>

<VAR NAME="CONFIG">FFIC</VAR>

<VAR NAME="KEY1">AUTO BI/UM</VAR>
<VAR NAME="KEY2">CONTACT</VAR>
<VAR NAME="KEYID">123 98 678245</VAR>
<VAR NAME="RUNDATE">20010908</VAR>
<VAR NAME="USERID">JOHN DOE</VAR>
</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

With attachments Here is an example of a client request message in XML format which does include
attachments:

Content-Type: multipart/related; boundary=IDSMessage

--IDSMessage
Content-Type: text/xml
Content-Transfer-Encoding: 8bit

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.017.0">
<CTLBLOCK>
<UNIQUE_ID>a9ae6c91-1d1lb-11d2-b21la-00c04fa357fa</UNIQUE_ID>
<REQTYPE>CLAIMS DATA</REQTYPE>
<USERID>JOHN DOE</USERID>
<ATTACHMENT>
<DELIMITER>CLAIMS-DATA</DELIMITER>
</ATTACHMENT>

</CTLBLOCK>

<MSGVARS>

<VAR NAME="CONFIG">FFIC</VAR>

<VAR NAME="KEY1">AUTO BI/UM</VAR>
<VAR NAME="KEY2">CONTACT</VAR>
<VAR NAME="KEYID">123 98 678245</VAR>
<VAR NAME="RUNDATE">20010908</VAR>
<VAR NAME="USERID">JOHN DOE</VAR>
</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--IDSMessage

Content-Type: application/ids
Content-Transfer-Encoding: 7bit
Content-ID: CLAIMS-DATA

{..data in a structured COBOL record appears here ..}

- -IDSMessage- -

164

With multiple
attachments

Using the XML Messaging System

Please note:

* The client initiates the request and generates the UNIQUE_ID. The server echoes
back the same unique identifier in the response.

* The MSGVAR structure in this example provides the key fields necessary to access
the claims data and create the exported data to be delivered to the client. A server
application can receive more variables than are needed and should be set up to
ignore those not applicable.

* The ATTACHMENT structure provides the delimiter element, which is used to
specify the delimiting string pattern that frames a data record passed as an attached
file as a part of the message.

Here is an example of a client request message in XML format which has multiple
attachments:

Content-Type: multipart/related; boundary=IDSMessage
(Please note that this new line must be included.)
- -IDSMessage
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
(Please note that this new line must be included.)
<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>
<DSIMSG VERSION="100.017.0">
<CTLBLOCK>
<UNIQUE_ ID>a9aebc91-1d1b-11d2-b21la-00c04fa357fa</UNIQUE_ID>
<REQTYPE>CLAIMS DATA</REQTYPE>
<USERID>JOHN DOE</USERID>
<ATTACHMENT>
<DELIMITER>CLAIMS-DATA</DELIMITER>
</ATTACHMENT>
<ATTACHMENT TYPE="BINARY">
<DELIMITER>CLAIMS-BINARY</DELIMITER>
</ATTACHMENT>
</CTLBLOCK>
<MSGVARS>
<VAR NAME="CONFIG">FFIC</VAR>
<VAR NAME="KEY1">AUTO BI/UM</VAR>
<VAR NAME="KEY2">CONTACT</VAR>
<VAR NAME="KEYID">123 98 678245</VAR>
<VAR NAME="RUNDATE">20010908</VAR>
<VAR NAME="USERID">JOHN DOE</VAR>
</MSGVARS>
</DSIMSG>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

(Please note that this new line must be included.)
- -IDSMessage
Content-Type: application/ids
Content-Transfer-Encoding: 7bit
Content-ID: CLAIMS-DATA

{..data in a structured COBOL record appears here ..}

165

Chapter 2

Using the Internet Document Server

166

--IDSMessage

Content-Type: application/ids
Content-Transfer-Encoding: base64
Content-ID: CLAIMS-BINARY
(Please note that this new line must be included.)
{..data in a base64 encoding form appears here ..}

- -IDSMessage- -

Server XML Response Messages

Here is an example of the XML response message from the server:

Content-Type: multipart/related; boundary=IDSMessage
(Please note that this new line must be included.)
- -IDSMessage
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
(Please note that this new line must be included.)
<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>
<DSIMSG>
<CTLBLOCK>
<UNIQUE_ID>a9%aebc91-1dlb-11d2-b2la-00c04fa357fa</UNIQUE_ID>
<REQTYPE>CLAIMS DATA</REQTYPE>
<USERID>JOHN DOE</USERID>
<ATTACHMENT>
<DELIMITER>DOCC-XML</DELIMITER>
</ATTACHMENT>
</CTLBLOCK>
<MSGVARS>
<VAR NAME="RESULTS">SUCCESS</VAR>
</MSGVARS>
</DSIMSG>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
(Please note that this new line must be included.)
- -IDSMessage
Content-Type: application/ids
Content-Transfer-Encoding: 7bit
Content-ID: DOCC-XML
(Please note that this new line must be included.)
<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT TYPE="RPWIP" VERSION="10.1">
<DOCSET>
<GROUP NAME1="AUTO BI/UM" NAME2="CONTACT">
<FORM NAME="DEC PAGE">
<DESCRIPTION>Common Policy Declarations</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>

Using the XML Messaging System

<PAGE>

<SECTION NAME="CPDEC~1">

<FIELD NAME="DELIVERY">DELIVERY NOTE</FIELD>

<FIELD NAME="ON_ARRIVAL">ON ARRIVAL NOTE</FIELD>
<FIELD NAME="CLAIMANT NAME">SUSAN FRIEDEN</FIELD>
<FIELD NAME="CLAIMANT ADDRESS">ADDRESS HERE</FIELD>
<FIELD NAME="POLICY_NUMBER">POLICY NUM 22222</FIELD>
<FIELD NAME="SALUTATION">SALUTATION FIELD</FIELD>
<FIELD NAME="INSURING COMPANY">INSURING COMPANY N</FIELD>
<FIELD NAME="TAG_LINE">TAG LINE FOR THE IN</FIELD>
</SECTION>

</PAGE>

</SHEET>

</FORM>

</GROUP>

</DOCSET>

</DOCUMENT>

--IDSMessage- -

Please note:

The client generated UNIQUE_ID is echoed back in the response.

The ATTACHMENT structure specifies the delimiter for the embedded XML
export file. In this example, the file is called DOCC-XML..

The MSGVAR structure specifies the returned attachment variables, which include
the results from the requested operation, returned in the variable named
RESULTS. In this example, the result is SUCCESS. If there is an error, the result
is an error code and, typically, no XML export data is included.

If you are transmitting messages between dissimilar platforms, say an EBCIDIC
platform such as an MVS-based server application which is submitting messages to
an ASCII platform such as a PC, you must set the message format attribute in the
message descriptor to szring (text). This lets the MQ Series channel sender/receiver
perform the EBCDIC-to-ASCII translation. Likewise, the QSRLIB layer of the
Oracle Insurance system sets the request message format to s#ng so the ASCII-to-
EBCDIC translation takes place. As a result, client and server applications are able
to see the message data in the proper format and do not have to perform the
translation themselves.

UsING XML SOAP OuTSIDE OF MEESSAGING SYSTEMS

Using the DSIGetSOAPMessage and DSIGetSOAPMessageSize functions, you can code
IDS client applications with common APIs using XML DOM of the IDS SOAP XML
message. See the SDK Reference for more information on these functions.

These APIs let client applications access the DSI XML message as a buffer in memory.
Access to IDS XML message is provided as a buffer in memory because of possible issues
with the version of the DOM or XML parser the client application may be using.

Keep in mind the XML returned is a byte array using UTF-8 encoding.

167

Chapter 2

Using the Internet Document Server

NOTE:The GetSOAPMessage is also available for the COM and Java APIs. (DSICO,
IDSASP and DSIJava).

168

CONNECTING TO
AN SQL
DATABASE

Connecting to an SQL Database

IDSSQL is a set of ActiveX® DSOs (IDSSQL.DLL and IDSSQLRL.DLL) which you can
use as a Microsoft ActiveX Data Objects (ADO) programming model.

These DSOs let you send SQL commands and receive records back from an SQL
database. Instead of communicating directly with the database as an object, the IDSSQL
DLLs go through an IDS rule. This illustration shows how it works:

Application
(Could be a Visnal Basic or ASP application)

i

IDSSQL.DLL

DSI API

IDS

IDSSQLRL.DLL

i

SQL

Database

169

Chapter 2

Using the Internet Document Server

Differences between Microsoft’s ADO and IDSSQL
Keep in mind these differences between ADO and IDSSQL:
e IDSSQL does not implement all features of Microsoft’s ADO and record set.

e The connection between IDSSQL and the SQL database automatically opens and
closes on each execute.

e The new record insert into the database is made using the SQL insert command
instead of the insert and update method in the ADO record set.

e Errors are returned through IDS record sets. So it good to have a record set even if
the SQL command did not return any records.

Setting up IDSSQL
Follow these steps to set up IDSSQL:
1 Add these options to your DOCSERV.INI file:

< ReqType:IDSSQL >
Function = atcw32->ATCLoadAttachment
Function = DSICoRul->Invoke, IDSSQLRL.IDS->SQL
Function = atcw32->ATCUnloadAttachment

2 Set up the ODBC Data source name.

IDSSQL CLASSES
Here are the properties and methods for IDSSQL.ADO and IDSSQL.IDSRC:

IDSSQL.ADO
Here are the properties and methods for IDSSQL.ADO:
Properties
Property Description
AbsolutePage The ordinal position of the current page. The default is zero (0).

If zero (0), all records queried by the SQLcommand are returned.

If set to something other than zero, only those records on the page are
returned. The number of records on the page are determined by the
PageSize property.

CommandTimeOut The number of seconds to wait when executing a command before
terminating the attempt and returning an error. If you set this property
to zero, ADO will simply wait until the execution is complete. The
default is 30 seconds.

DSN The ODBC data source name or the information used to create a
connection to data source.

PageSize The number of records on a page. The default is 10.

170

Methods

Properties

Methods

Connecting to an SQL Database

Property Description

Password The password used to connect to the database. A password is required
if the DSN connection is not a trusted SQL Server connection.

SQLCommand The SQL statement.

User The user ID used to connect to the database. The user ID is required if
the DSN connection is not a trusted SQL Server connection.

Method Description

Execute Process SQL command.

Returns the record set requested by SQLCommand.
IDSSQL.IDSRC

Here are the properties and methods for IDSSQL.IDSRC, the IDS record set.

Property Description

BOF True if the current record position is before the first record.

EOF True if the current record position is after the last record.

Errors Errors collection.

Field Each field of the current record.

Fields Fields information collection.

RecordCount The number of records currently in the record set.

Method Description

MoveFirst Move to the first record in the record set and make that the current record.
MoveLast Move to the last record in the record set and make that the current record.
MoveNext Move to the next record in the record set and make that the current record.
MovePrevious Move to the previous record in the record set and makes that the current

record.

EXAMPLE SCRIPT

Here is an example in ASP:

<%@ Language=VBScript %>

<HTML>
<HEAD>

171

Chapter 2

Using the Internet Document Server

172

Fields

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
</HEAD>
<BODY>
<

o°

CrLf = Chr(13) & Chr(10)
set sgl = Server.CreateObject ("idssgl.ado") 'Create IDS ADO Object
set rc = Server.CreateObject ("idssgl.idsrc") 'Create IDS record set

ShowAllActivateAccount ()

Sub ShowAllActivateAccount ()

sgl.DSN = "COB_TEST"'ODBC Data source name

sgl.SQLCommand = "Select * from subscriberdata where ebppstatus =
|A| n

Set rc = sqgl.Execute() ‘Execute Command

If rc.Errors.Count <> 0 Then’Check for error

Response.write "Error source = " & rc.Errors(l).Source & "
"
Response.write "Error Description = " & rc.Errors (1) .Description
& "
"
Else

%>
<TABLE BORDER=1>
<TR>
<TH>RCH#</TH>
<TH>Account#</TH>
<TH>Name</TH>
</TR>

A
o°

‘Loop through all the return records and display the fields
For i = 1 To rc.RecordCount
Response.write "<TR>" & Crlf
Response.write "<TD>" & i & "</TD>"
Response.Write "<TD>" & rc.Field("Accountnumber") & "</TD>"
Response.Write "<TD>" & rc.Field("SubscriberFirstName") & " '
Response.Write rc.Field("SubscriberMiddleName") & " "
Response.Write rc.Field("SubscriberLastName") & " "
Response.Write "</TD>" & Crlf
Response.write "</TR>" & Crlf
rc.MoveNext ‘Move to next record
Next

o°
\%

</TABLE>
<

End If

o°

End Sub
%>

<pP> </P>

</BODY>
</HTML>

Here is an example of how you can access the name and data in the field of each record:

Connecting to an SQL Database

For i = 1 To rc.RecordCount ‘Loop through all return record
set

Response.Write "========="
Response.Write "Record " & i
Response.Write "=========1"
For j = 1 To rc.Fields.Count’Loop through all the fields in
that record
Response.Write rc.Fields(j) & ":" ‘Display field name
Response.Write rc.Field(j) ‘Display data in the field
Next
Next

You can access the data in the field using the name or index, such as:

Re.Field(1) or Re.Field(“SubscriberlD”)

173

Chapter 2

Using the Internet Document Server

USING THE THIN
CLIENT FORMS

174

PUBLISHER

The Thin Client Forms Publisher lets web clients enter a user ID, password, and other
information at login. Depending on how you set it up, IDS then returns a list of
groupl/group2 combinations for the form set.

The web client can then choose a groupl/group2 combination and submit it to IDS
along with an effective date. The DPRSetConfig rule sets the effective date for use with
Library Manager.

IDS then returns a new XML form set (through the result queue) based on the groupl/
group2 submittal. The Thin Client Forms Publisher loads the XML form set returned
by IDS and generates an HTML tree view.

The web client can then select the forms, images, recipients, and print options and
submit a request to print the form set. Once submitted, the Thin Client Forms Publisher
generates a new XML form set and sends it to IDS.

IDS retrieves the new XML form set, converts it into a FAP form set and prints it. IDS
then sends the final output file to the Thin Client Forms Publisher through the queues.
The Thin Client Forms Publisher supports these print options: PDF, XML, PCL, AFP,
MET, and HTML.

Look at these examples for more information:

Example Uses

/formpub dp018.dll which you can use on Windows 2000 without IDS DLL files

/formpubnt idsasp.dll for standard messaging and dp018.dll for XML processing

These virtual directories are included in the IDS sample resources. Use FORMAKER for
the user ID and password when viewing the examples.

PAUSING IDS

Syntax

Pausing IDS

When necessary, you can pause IDS processing and then restart it. For instance, suppose
you are running a system with multiple instances of IDS, each running its own
Documanage Bridge, with each Documanage Bridge logging into a separate
Documanage system.

In this scenario, you want IDS to become passive (stop processing requests) when the
Documanage system becomes unavailable and to become active again when the
Documanage system becomes available again.

This fail-over strategy avoids situations where IDS is processing requests which are
failing because the bridge is having a problem with Documanage server.

To handle this scenario, you use a C or Java DSI API. This API lets a rule request that
IDS go into pause mode. While in pause mode IDS will not receive requests from a queue
and will execute only one request type PAUSE. The frequency of this request is defined
using this option in the configuration file:

<gection name="BusinessLogicProcessor">
<gection name="messaging">
<gection name="timed">

<entry name="PauseCheckIntervalSeconds">10</entry>
</section>

The entry PauseCheckIntervalSeconds is the interval that IDS will send PAUSE requests
to itself when it is paused.

The Documanage Bridge calls the API and places IDS in pause mode when Documanage
server becomes unavailable. The rule registered on the PAUSE request type checks to see
if the Documanage server is available calls an API to resume the IDS operation.

You use these DSI APIs:

DSIQueryStatus

This API returns DSI specific status options via DSISTATUS_* flags. Use it to determine
if IDS is in a paused mode. Here is a list of the available flags:

Flag Description
DSISTATUS_PAUSE Pause the server
DSISTATUS_STOP Stop the server and exit the process

DSISTATUS_RESTART Restart the server

DSISTATUS_RESUME Resume the server after a pause

NOTE:Setting the status to DSISTATUS_STOP is non-recoverable action. Once the
server exits, no other actions are possible.

DSIQueryStatus ()

175

Chapter 2

Using the Internet Document Server

Parameter Description
hdsi handle to instance returned by DSIInitInstance
plOptions pointer to a long for returning the DSISTATUS_* values.

Returns DSIERR_SUCCESS or an error code.

Errors

Message Description

DSIERR_INVPARM Invalid DSI instance handle or plOptions is NULL

DSIERR_INTERNAL Internal error

Example Here is an example:

long 1Opt;

if (DSIQueryStatus (hInstance, &10pt) != DSIERR_SUCCESS) {
. display error message

}

if (10pt & DSISTATUS_PAUSE)

{

printf ("Server is currently paused\n") ;

}

if (1lOpt & DSISTATUS_STOP)

{

printf ("Server is currently stopping\n");

}

DSISetStatus

This API sets DSI specific status options via DSISTATUS_* flags. Use it to pause IDS.
Here is a list of the available flags:

Flag Description
DSISTATUS_PAUSE Pause the server
DSISTATUS_STOP. Stop the server and exit the process

DSISTATUS_RESTART Restart the server

DSISTATUS_RESUME Resume the server after a pause

NOTE:Setting the status to DSISTATUS_STOP is non-recoverable action. Once the
server exits, no other actions are possible.

Syntax DSISetStatus ()

176

Pausing IDS

Parameter Description
hdsi handle to instance returned by DSIInitInstance
plOptions pointer to a long for returning the DSISTATUS_* values.

Return values DSIERR_SUCCESS or an error code.

Errors

Message Description

DSIERR_INVPARM Invalid DSI instance handle

DSIERR_INTERNAL Internal error

Example Here is an example:

if (DSISetStatus (hInstance,DSISTATUS_PAUSE) != DSIERR_SUCCESS) {
. display error message
}

printf ("Server is currently paused\n")

When running a Java rule, the RequestState parameter has methods for pausing and
resuming IDS as well as to check to see if it is currently paused.

Method Description

isRequestProcessorPaused Returns true if IDS is currently paused, false otherwise.

pauseRequestProcessor Tells IDS to pause and stop processing requests from queues
and so on.

resumeRequestProcessor Tells IDS to resume processing requests from queues and so
on.

177

Chapter 2

Using the Internet Document Server

EXECUTING
REQUEST TYPES
AT RUN TIME

Example configuration
file

Example data file

Example dynamic.htm
page

178

IDS lets you execute request types composed at run time. Client programs can specify
their own XML configuration file with a set of request types to process. Multiple client
programs can have request types with the same name but with a different set of rules to
run. Request types no longer have to be present in the IDS configuration file.

To execute request types at run time, specify an attachment variable named DYNAMIC-
CONFIGURATION-FILE with a full path and file name for a configuration file
accessible to IDS.

Here is an example:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<gection name="ReqType:POC-RUNRP-HTM">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>

<entry name="function">atcw32->ATCSendFile,
RPOUTPUT, INSURED, BINARY</entry>

<entry name="function">atcw32->ATCReceiveFile,
EXTRACTFILE, EXTRFILE, c:\docserv\data*.xml, KEEP</entry>

<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">RPDW32->RPDCheckRPRun</entry>
<entry name="function">RPDW32->RPDCreateJob</entry>
<entry name="function">RPDW32->RPDProcessJob</entry>
</section>
</configuration>

<?xml version="1.0" encoding="UTF-8"?>
<message>
<data>
<var name="CONFIG">POC</var>
<var name="BATCHFILES">3</var>
<var name="INIOptions">1</var>
<var name="INIOptionsl.Group">Printer</var>
<var name="INIOptionsl.Option">PrtType</var>
<var name="INIOptionsl.Value">HTM</var>
<var name="QUTPUTTYPE">HTM</var>
<var name="PRINTBATCHES">3</var>
<var name="SHOWERRORS">YES</var>
<var name="REQTYPE">POC-RUNRP-HTM</var>

<var name="DYNAMIC-CONFIGURATION-FILE">c:\docserv\runrp-poc-htm-
config.xml</var>

</data>
<attachments>
<file name="EXTRACTFILE">C:\msgclient\extract\poc.xml</file>
</attachments>
</message>

<html>
<head>
<h2>dynamic config test</h2>
<body>

<form action="dynamic2.asp" enctype="multipart/form-data"
method="post">

<table>
<tr>

<td>*Enter an xml message with name/value pairs to process</td>

Example dynamic.asp
page

<td><a
message"

</tr>
</table>

<input
</form>

A
o°

Executing Request Types at Run Time

href="data.xml">example</td><td><input name="xml -
type="file"/></td>

type="submit" name="" value="submit">

set parser = server.CreateObject ("IDSASP.DSI")

parser.parseData ()

message = parser.getBuffer ("xml-message")

'***process the message file

processMessageFile message

parser.showAtt = 1

parser.ProcessRg

function processMessageFile (buffer)

set xml = Server.CreateObject ("MSXML2.DOMDocument.4.0")
xml.loadxml (buffer)

set msgVars = xml.selectNodes ("message/data/var")

for each var in msgVars

name = var.getAttribute ("name")
value = var.text
parser.addReq name, value

next

set Attachments = xml.selectNodes ("message/attachments/file")
for each attach in Attachments

name = attach.getAttribute ("name")
value = attach.text
parser.SendFile name, value

next

end function

o°
\%

179

Chapter 2

Using the Internet Document Server

180

PUBLISHING
YOUR FORMS
ON THE WEB

The system provides tools you can use to create one HTML file and a number of PDF
files (one per FAP file). You can then publish these HTML and PDF files on your web

server.

The HTML file lists all of the company, line of business (LOB), form, and section
combinations. This file has links to PDF files which are created for each image.

To publish your form library, you have to put these HTML and PDF files in a web server
contents directory. Once you have the HTML and PDF files in a contents directory, you
can use your browser to open the HTML page and view the images.

NOTE:The one PDF file per image concept does not work well in an environment

which has a lot of small images. This concept works better with full page FAP
files.

Use the following tools to publish your forms on the web:

* FORMPUB - This program provides a graphical interface from which you can run
the FD2HTW32 and PTFMDW?32 utilities.

e FD2HTW32 - This utility converts a FORM.DAT file into an HTML page. You can
run this utility as a stand-alone program or from the FORMPUB tool.

e PTEMDWS32 - This utility creates a PDF file for each FAP file defined in the
FORM.DAT file. You can run this utility as a stand-alone program or from the
FORMPUB tool.

e FAP2HTML - This utility lets you convert FAP files into HTML format for use with
iPPS as data entry screens.

NOTE:For more information about these utilities, see the Utilities Reference.

FORMATTING
TEXT WITH
XML MARKuUP

Formatting Text with XML Markup

iPPS and other Documaker clients can format multiline text fields in XML files. The
ML import loader and export unloader, which are the same for Documaker and IDS,
support these formatting attributes:

Italic: <I>
Bold:
Underline: <U>

Font

Attributes:

SIZE=99 (point size)

FACE= (font family name)

COLOR= (hex color value, such as #FFFFFF)

Paragraph: <P> or

Attributes: ALIGN="CENTER" or "RIGHT"

If you omit the alignment, the system left justifies the text. Empty paragraphs use a

 element instead of <P>.

Here is an example multiline field input or output XML:

<P ALIGHN="CENTER">
This is bold 15 points size
font

<I><U>This is italic size 10 point
font with underline</U></I>
</p>

If the font does not exist, the font locator looks for the best match based on font family
name, point size, style, and weight.

If you omit the font information from the import file, the system uses the default font
for the text area.

181

Chapter 2

Using the Internet Document Server

ENCRYPTING

AND
DECRYPTING
DATA FILES

182

IDS includes a utility you can use to encrypt and decrypt data files. The program is a
Java class in the DocuCorpUrtiljar library. To run it, enter a command similar to the
one shown here:

java -cp DocuCorpUtil.jar com.docucorp.util.DataCrypt

Here is a summary of the parameters:

Parameter Description

-1 Treat the text argument as a file name instead of text to encrypt/decrypt.

text The text to encrypt/unencrypt or the name of a file if the -1 parameter is included.
The input file is overwritten with the new information.

-u Include this parameter if you want to decrypt the text or file instead of encrypting
it. Encrypting is the default behavior for this utility.

If you omit all of the parameters, a usage message appears.

NOTE:For more information about this utility, see the Utilities Reference.

USING
MULTIPLE
ATTACHMENT
VALUES WITH
THE SAME
NAME

Using Multiple Attachment Values with the Same Name

IDSASP and IDSJSP let you send and receive messages with multiple attachment
variables which have the same name. To enable support for multiple attachment
variables, set the ProcessAll property to True at the beginning of an ASP or JSP page See
the example pages below.

In ASP you can simply traverse through the Request and Result collections as before to
retrieve all entries for a message. In JSP you can use the getEntries() API to return a list
of MsgVarEntry objects.

Here is an example ASP page:

<

o°

dsi

o°
\%

set dsi = server.createobject ("IDSASP.DSI")

dsi.ProcessAll = True

dsi.addReqg "USERID", "DOCUCORP"
dsi.addReqg "USERID", "FORMAKER"
dsi.addReq "USERID", "DEMO1"
dsi.addReq "USERID", "DEMO"
dsi.addReqg "PASSWORD", "P1"
dsi.addReqg "PASSWORD", "pP2"
dsi.addReqg "REQTYPE", "TEST MVARS"
For I = 1 To dsi.Request.count

Response.Write "Request " & I & ": "
Response.Write dsi.Request (i) .NAME & " = " &

.Request (i) .Value

Response.Write "
"
Next

dsi.processRg

For I = 1 To dsi.Result.count
Response.Write "Result " & I & ": "
Response.Write dsi.Result (i) .NAME & " = " & dsi.Result(i) .Value
Response.Write "
"
Next

183

Chapter 2
Using the Internet Document Server

Here is an example JSP page:

<%@ page language="java" import="java.util.*,
java.net.*,
java.io.*,
com.docucorp.messaging.data.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>

<

o°

int _OUTPUTQUEUE = 1;
int _INPUTQUEUE = 2;
List entries = null;

dsi.setTimeout (30000) ;
//dsi.debugOn (response) ;

dsi.ProcessAll = true;

dsi.addRequest ("USERID", "DOCUCORP") ;
dsi.addRequest ("USERID", "FORMAKER") ;
dsi.addRequest ("USERID", "DEMO1l") ;
dsi.addRequest ("USERID", "DEMO") ;
dsi.addRequest ("PASSWORD", "P1");
dsi.addRequest ("PASSWORD", "P2");
dsi.addRequest ("REQTYPE", "TEST MVARS");

entries = dsi.getEntries (_OUTPUTQUEUE) ;

for (int I =0; I <entries.size(); i++){
String k = MsgVarEntry.getName (entries, 1i);
String v = MsgVarEntry.getValue(entries, 1i);

out.println("Request: " + k + "=" + v + "
");

dsi.ProcessRequest () ;

entries = dsi.getEntries (_INPUTQUEUE) ;

for (int I =0; I <entries.size(); i++){
String k = MsgVarEntry.getName (entries, 1);
String v = MsgVarEntry.getValue(entries, 1i);

out.println("Response: " + k + "=" + v + "
");

o°
\2

184

Using Multiple Attachment Values with the Same Name

getEntries

Use this API to return a list of MsgVarEntry objects. Each MsgVarEntry object contains
a name and value property.

Parameters
Parameter Description

queue An integer value that indicates which queue the entries should be returned for: 1
= Output queue, 2 = Input queue.

Returns A list of MsgVarEntry objects (see the JSP example page).

185

Chapter 2

Using the Internet Document Server

186

CONVERTING
XML FILES
USING A
TEMPLATE

You can use the XsltTransformRule rule to transform input into the desired output
based on an xsl template. For instance, you can transform an XML extract file located
using the EXTRFILE input attachment variable into a new output file or a set of XML
files located in the path specified by the XMLPATH input attachment variable,
appending the results from each one to the end of the file. You can also transform a
single XML file located by the XMLFILE or SOURCE input attachment variables.

This rule can also transform the result XML message in the queue. The output depends
on the xsl template provided.

This rule takes an argument of name RUNMSG which can have a value of 1-4 to specify
whether the rule should be run in the INIT (1), TERM (2), RUNF (3), or RUNR (4)
message. The default is RUNF (3) message if no RUNMSG argument is specified. This
is useful when the rule that outputs the XML source does not run in the default RUNF
message.

This rule also supports transformations with XSL parameters.

Variable Description

XMLPATH (Optional) Specifies a path for multiple XML source files to be
processed. The rule appends the transformation output for each source
file to the end of the output file.

EXTRFILE (Optional) Specifies the full path and name of the XML extract file to
be transformed. If this variable is present, the rule transforms the
extract file and replaces the EXTRFILE input attachment variable with
the value of the new output file.

XMLFILE (Optional) Specifies the full path and name of an XML file to use as the
source of the transformation.

XSLTFILE Specifies the full path and name of the xsl template to use for the
transformation.

PRINTPATH (Optional) Specifies the path where the output file will be written.

OUTFILE (Optional) Specifies the output file name. If this variable is missing the

rule generates a unique file name for the output file.

DOCTYPE (Optional) Specifies the extension and file type of the output file. The
default is .dat.

XSLPARAMETERS (Optional) An XML rowset which contains the name/value pairs for

parameters to use in the xs| transformation.

OUTPUTVAR (Optional) Defines the name of an additional attachment variable that
holds the full path and name of the output file.

This is useful when running other rules after this rule that expect an
attachment variable with a name other than the default of
XSLOUTPUT.

Variable

SOURCE

Converting XML Files Using a Template

Description

(Optional) Defines the name of an attachment variable in the output
message that contains the full path and name of the XML source to be
used for the transformation.

This is useful when running other rules prior to this rule which might
output the XML source that needs to be transformed to a variable other
than the expected variables (XMLFILE or EXTRFILE).

In addition, you can use this variable to indicate the source for the
transformation should be the output XML message in the result queue
instead of an XML file — set SOURCE equal to the value of RESULT
in this case.

Here is an example of a request message:

<MSGVARS>

<VAR
<VAR
<VAR
<VAR
<VAR

NAME="doctype">htm</VAR>
NAME="REQTYPE">TRANSFORM2</VAR>
NAME="SOURCE">RESULT</VAR>
NAME="XSLTFILE">X:\\XSL\transforml.xsl</VAR>
NAME="XVALUE">2</VAR>

<ROWSET NAME="XSLPARAMETERS">
<ROW NUM="1">

<VAR NAME="y">2</VAR>
<VAR NAME="x">LOOKUPVAR.XVALUE</VAR>

</ROW>
</ROWSET>
</MSGVARS>

In addition, each row of parameters for a transformation can contain a value of the

format:

LOOKUPVAR . ATTACHVARNAME

Where ATTACHVARNAME is the name of an attachment variable in the output
message. The rule then retrieves the value for the ATTACHVARNAME variable and uses

it as the value for the

parameter in the transformation. This is useful when you do not

know the value of a parameter until run-time.

Here are example request types for the DOCSERV.INI file used in IDS 1.8:

[REQTYPE : TRANSFORM]

function =
function =
function =
function =

atcw32->ATCLogTransaction
atcw32->ATCLoadAttachment
atcw32->ATCUnloadAttachment
dsijrule->JavaRunRule, ;com/docucorp/ids/rules/

XsltTransformRule; XSLTTRANSFORMER; transaction; transform;

function =
function =
function =

dprw32->DPRSetConfig
atcw32->ATCSendFile, XSLOUTPUT, XSLOUTPUT, BINARY
irlw32->IRLCopyAttachment

Here is a sample JSP page:

<%@ page language="java" import="java.util.,

java.net.,
java.io." %>

<jsp:useBean id='dsi' scope='page'
class='com.docucorp.ids.jsp.dsimsg'/>

187

Chapter 2

Using the Internet Document Server

A
o°

dsi.setTimeOut (30000) ;
dsi.debug_on (response) ;

dsi.addRequest ("REQTYPE", "TRANSFORM") ;
dsi.addRequest ("XMLFILE", "X:\\input\\data.xml") ;
dsi.addRequest ("XSLTFILE", "X:\\XSL\\transforml.xsl");
dsi.addRequest ("doctype", "htm") ;
String record = "XSLPARAMETERS";
String rec = dsi.addAttachRec (record) ;
if (rec != null) {
dsi.addToAttachRec (rec, "x", "1");
dsi.addToAttachRec (rec, "y", "1");

dsi.processRequest () ;

byte buf[] = dsi.receiveFileAsBuffer ("XSLOUTPUT") ;
if (buf != null) {
out.println(new String(buf)) ;
%>
Here is a sample ASP page:

<%@ Language=VBScript %>
<

o°

Set DSI = server.CreateObject ("IDSASP.DSI")

DSI.clearReq

DSI.WaitTime = 250 ' Polling interval
DSI.Timeout = 1000000

DSI.ShowAtt = 1

DSI.AddReq "REQTYPE", "TRANSFORM"

DSI.AddReq "XMLFILE", "X:\\input\\data.xml"
DSI.AddReq "XSLTFILE", "X:\\XSL\transforml.xsl"
DSI.AddReq "doctype", "htm"

record = DSI.AddAttachRec ("XSLPARAMETERS")
DSI.AddToAttachRec record, "x", "1"
DSI.AddToAttachRec record, "y", "2"

'On Error Resume Next
DSI.ProcessRg

'ITf Err <> 0 then
'Err.Clear

188

o°

'End if

Converting XML Files Using a Template

result = DSI.Result ("RESULTS") .Value

Set DSI = Nothing
Response.Write ("result:
Response.End

& result & "
")

189

Chapter 2

Using the Internet Document Server

CUSTOMIZING
YOUR SYSTEM

190

IDS includes several bridges and example applications. These applications typically
include windows or dialogs based on HTML and either JSP or ASP. Some dialogs present
query result sets for subsequent user selection. The result sets are typically returned as
attachment variables, accessible via DSI (or DSICo) API calls. Custom rules and request
types can create other query results, and custom HTML dialogs and scripts can
implement custom user dialog presentations of the information.

IDS version 1.7 enhanced the internal message format to an XML format based on
evolving SOAP standards. You can use this XML format and bypass the DSI API layer,
or you can continue to use the DSI APIs.

To help you build alternative dialogs to replace the standard dialogs in the bridges and
applications and create new dialogs for other custom applications, the system returns
query result sets as structured data in XML format.

The system creates elements inside the <DSIMSG> structure to contain the results of a
search as descendants <ROWSET> tag. Each record (ROW) in the result set is stored in
a <ROW> XML element, as a child of the <ROWSET> element. Please see the following
example.

For many situations, you can use a non-hierarchical (single level) SQL-like ROW to
represent hierarchically structured data by flattening the columns into a single ROW. If]
however, the resulting XML needs the multilevel hierarchy, send the XML as an
attachment. For example, if a result set represented a Documaker form set (a list of
available forms and images), this could be returned as an Oracle Insurance standard
XML file attached to the message.

You can use DSI C APIs, Java, and COM to manipulate the XML result set. Java and VB
return the XML from the <ROWSET> element as a string to be loaded into a DOM
object by the client. The main reason the row set is returned as XML string or buffer and
not as a DOM object is the versioning of DOM objects and XML parsers—IDS does not
know what parser and what DOM object will be used by the client application. The C
APIs will allow the calling application to get first/next values from a ROWSET,
including the name, instance number, data value, and so on.

The existing APIs that access the attachment variables by their old concatenated names
still work for backward compatibility, so you do not have to change existing client code
unless you want to take advantage of the newer methods.

The results of SSS (server statistics request) are shown in the example below in SOAP-
XML format, using both the original and the newer XML message layout for the result
set. The number of rows in the LIBRARIES row set is reduced to two for a smaller
sample.

Here is an example of the original XML layout:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.018.0">

<CTLBLOCK>
<UNIQUE_ID>4C6482AC643F4B91A9EA347977B8E186</UNIQUE ID>
<REQTYPE>SSS</REQTYPE>

<USERID>DSICOTB</USERID>
<RESULTQMGR>vaf.at13nt03</RESULTQMGR>

Customizing Your System

</CTLBLOCK>

<MSGVARS>

<VAR NAME="ALLOCCOUNT">5750</VAR>

<VAR NAME="ERRORCOUNT">1</VAR>

<VAR NAME="FREECOUNT">2828</VAR>

<VAR NAME="LASTRESTART">Tue Jul 02 09:49:07 2002</VAR>
<VAR NAME="LIBRARIES">2</VAR>

<VAR NAME="LIBRARIES1.DATE">Jul 1 2002</VAR>
<VAR NAME="LIBRARIES1.NAME">ATC</VAR>

<VAR NAME="LIBRARIES1.TIME">07:40:37</VAR>

<VAR NAME="LIBRARIES1.VERSION">100.018.001</VAR>
<VAR NAME="LIBRARIES2.DATE">Jul 1 2002</VAR>
<VAR NAME="LIBRARIES2.NAME">DCB</VAR>

<VAR NAME="LIBRARIES2.TIME">07:35:16</VAR>

<VAR NAME="LIBRARIES2.VERSION">100.018.001</VAR>
<VAR NAME="RESTARTCOUNT">1</VAR>

<VAR NAME="RESULTS">SUCCESS</VAR>

<VAR NAME="SERVERTIMESPENT">0.015</VAR>

<VAR NAME="SUCCESSCOUNT">1</VAR>

<VAR NAME="UPTIME">Tue Jul 02 09:48:59 2002</VAR>
</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Here is an example of the newer XML layout:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV: Body>

<DSIMSG VERSION="100.018.0">
<CTLBLOCK>
<UNIQUE_ID>4C6482AC643F4B91A9EA347977B8E186</UNIQUE_ID>
<REQTYPE>SSS</REQTYPE>
<USERID>DSICOTB</USERID>
<RESULTQMGR>vaf.atl3nt03</RESULTQMGR>
</CTLBLOCK>

<MSGVARS>

<VAR NAME="ALLOCCOUNT">5750</VAR>
<VAR NAME="ERRORCOUNT">1</VAR>

<VAR NAME="FREECOUNT">2828</VAR>

<VAR NAME="LASTRESTART">Tue Jul 02 09:49:07 2002</VAR>
<ROWSET NAME="LIBRARIES">

<ROW NUM="1">

<VAR NAME="DATE">Jul 1 2002</VAR>
<VAR NAME="NAME">ATC</VAR>

<VAR NAME="TIME">07:40:37</VAR>

<VAR NAME="VERSION">100.018.001</VAR>
</ROW>

<ROW NUM="2">

<VAR NAME="DATE">Jul 1 2002</VAR>
<VAR NAME="NAME">DCB</VAR>

<VAR NAME="TIME">07:35:16</VAR>

<VAR NAME="VERSION">100.018.001</VAR>
</ROW>

</ROWSET>

191

Chapter 2

Using the Internet Document Server

<VAR NAME="RESTARTCOUNT">1</VAR>

<VAR NAME="RESULTS">SUCCESS</VAR>

<VAR NAME="SERVERTIMESPENT">0.015</VAR>

<VAR NAME="SUCCESSCOUNT">1</VAR>

<VAR NAME="UPTIME">Tue Jul 02 09:48:59 2002</VAR>
</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The sample below corresponds to the row set shown above in the XML layout:

<?xml version="1.0" encoding="UTF-8"?>
<ROWSET NAME="LIBRARIES">

<ROW NUM="1">

<VAR NAME="DATE">Jul 1 2002</VAR>
<VAR NAME="NAME">ATC</VAR>

<VAR NAME="TIME">07:40:37</VAR>

<VAR NAME="VERSION">100.018.001</VAR>
</ROW>

<ROW NUM="2">

<VAR NAME="DATE">Jul 1 2002</VAR>
<VAR NAME="NAME">DCB</VAR>

<VAR NAME="TIME">07:35:16</VAR>

<VAR NAME="VERSION">100.018.001</VAR>
</ROW>

</ROWSET>

You can use these API functions to support row sets:

Function Description

DSIRowset2XML Use this rule to get a row set back as XML in memory.

DSIRowset2XMLSize ~ Use this rule to get a size of row set back as XML in memory.

The GetRowsetXML function was also added to COM and Java APIs (DSICO, IDSASP
and DSIJava). You can learn more about these functions in the SDK Reference.

192

HANDLING
SECURITY
ISSUES

Handling Security Issues

THere are several security issues to consider as you set up the Internet Document Server
and build your applications. These include

* Using firewalls

* Implementing security for web applications

USING FIREWALLS

Typically, you will use the Internet Document Server with some kind of firewall between
the web server and the NT server where the Internet Document Server is installed. This
lets you give the Internet Document Server access to archives and other sensitive data
without permitting the same access to anyone with an Internet connection.

The Internet Document Server (IDS) sample setup included on the installation CD
assumes no firewall exists. As you set up the Internet Document Server and your web
server with a firewall between the two, keep these points in mind:

¢ The messaging system can use either WebSphere MQ, JMS, or HTTP. All of these
messaging systems communicate with other computers via TCP/IP. The firewall
must be configured to open the TCP/IP ports for a messaging system. Read your
messaging system's manuals and firewall manuals to find out which ports are used
and how to set it up.

e If you are using NT servers, those servers running the Internet Document Server
should have TCP/IP networking installed.

e The web server should have an FTP (file transfer protocol) service configured and
started.

¢ TFile communications from the web server to the Internet Document Server must
use FTP.

e For the FTP rules to work, your TCP/IP networking must be installed on the
computer where the Internet Document Server is installed.

* Be sure to configure FIP server access with the appropriate user ID and passwords.

The Internet Document Server includes several rules for use with firewalls, such as the
IRLFileFTP and IRLInitFTP (Windows) or the FTPRule (Windows and UNIX) rules. For

more information on these rules, refer to the SDK Reference.

IMPLEMENTING SECURITY FOR WEB APPLICATIONS

Some ASP customers use the ASP IDS and a web server for hot-key applications. The
system builds an URL with, for example, the account number and bill date. When this
URL is executed, it returns a PDF or HTML bill presented in a browser window.

A potential security problem is if the user changes the account number on the URL and
retrieve someone else's bill or document. The system, however, can encrypt parts of the
URL to make it more difficult to see someone else's documents.

The COM object DSIEncr lets VB or an ASP page encrypt a value. The ASP syntax is as
follows:

<%@ Language=VBScript %>

193

Chapter 2

Using the Internet Document Server

194

A
o°

Response.Buffer=True
Set DSI = Server.CreateObject ("DSI.DSIEncrypt")

val = "abc"
DSI.Encrypt val

Response.Write "Encrypted: abc as " + val + "
"
DSI.Decrypt val

Response.Write "Decrypted as " + val
Response.End
Set DSI

nothing

%>
The COM object is created by Server.CreateObject() method.

Two methods are available in this COM object, Decrypt and Encrypt. The Decrypt
method is provided for testing purposes.

A simple implementation includes an ASP page which encrypts the account number on

the URL before redirecting the user to the presentment web site.

Here is a sample URL without the encryption:
http://webaddress/present.asp?ACCT_NO=1032714&BILLDATE=20020415

Here is a sample URL with encryption:

http://webaddress/
present.asp?ACCT_NO=0zJxWr96vmlZkniK7CpOn&BILLDATE=20020415

The result of the encryption is a safe string for the URL so no additional encoding is
required. There will be no special characters.
On the IDS side, you can use the DPRDecryptValue rule to decrypt the value before

executing a search in the database. Here is an example of how you use this rule:

function = dprw32->DPRDecryptValue,ACCT_NO

After this rule is executed on the RUNF message, the ACCT_NO in the attachment is
replaced by the real value.

NOTE:The encryption algorithm is proprietary.

USING LDAP
SUPPORT

Searching a Directory
Information Tree

Using LDAP Support

IDS supports the use of Lightweight Directory Access Protocol (LDAP), an application
protocol for querying and modifying directory services running over TCP/IP.

IDS includes an LDAP API for Java. The JAVA DocucorpUtil package includes an LDAP
class which you can use to query an LDAP server for group information for a user.

For more information please see the LDAP.html documentation that ships with IDS
located in the dsi_sdk\java\docs\com\docucorp\util directory and see the IdapTest class
example which ships with IDS and is located in the dsi_sdk\java\samples\ldap
directory.

NOTE:If you are using JVM version 1.3, you must replace the jsse.jar file with the one
from JVM version 1.4, which you can find at this location:

JAVA_HOME\jre\lib\ext

IDS also includes an LDAP API for C that you can use to query an LDAP server for
group information for a user. These functions are supported in the API:

e LDAPInit

e LDAPTerm

e LDAPSearchDirectory
¢ LDAPGetErrorCode

e LDAPGetErrorMessage

For more information, see the SDK Reference.

You can search a Directory Information Tree (DIT) in an LDAP server. IDS includes the
following rules for conducting LDAP queries to determine a user ID group or role
membership:

e DPRSearchLDAP (C)
e search (Java)

These rules will look for all configuration options in rule arguments, a properties file,
INT options, and input attachment variables, in that order. Option values found in
more than one source override the previous value.

e For information on the DPRSearchLDAP rule, see Using the Documaker Bridge.

* For information on the Java rule search, refer to the dsidocs/com/Docucorp/DSI/
util/DSIJession.html documentation shipped with the Java SDK.

195

Chapter 2

Using the Internet Document Server

USING DEFAULT
TIME-OUTS FOR
DSILIB-BASED
CLIENT
APPLICATIONS

196

You can set default time-outs for DSILIB-based client applications. You set these defaults
using these configuration entries in the docclient.xml file:

¢ DefaultTimeoutSeconds
¢ MaxTimeoutSeconds

¢ MinTimeoutSeconds

NOTE:Examples of client-based applications that benefit from this feature are ASP
pages using IDSASP.DLL, JSP pages using IDSJSP.jar, and the test programs
DSICOTB.EXE, DSITEST.EXE, and DSIEX.EXE.

For instance, suppose you have hundreds of web applications installed on a single IIS
or Java server and all of these applications are talking to the same IDS setup. Suppose
some of these web applications have large time-out values which are not suitable for
production mode, such as values longer than a few minutes. In this scenario, a
transaction that takes a long time can tie up one thread on the web server. Since the total
number of threads in the web server is limited, this can affect other applications.

Using these options, the system administrator can make sure that no matter what was
specified as the time-out value, the actual time-out period is what the system
administrator thinks it should be.

These entries go under the DocumentClient section in the docclient.xml file. Here is an
example:

<section name="DocumentClient">
<entry name="DefaultTimeoutSeconds">45</entry>
<entry name="MaxTimeoutSeconds">60</entry>
<entry name="MinTimeoutSeconds">30</entry>

Entry Description

DefaultTimeoutSeconds Use this entry when DSILIB-based client applications, such as
dsiex, dsitest, and dsicotb test programs, provide a time-out value
of zero (0) to DSIGetQueueRec calls to wait for a response
message.

The default is 15 seconds.

MaxTimeoutSeconds Use this entry to set the upper limit for the time-out value when
waiting for a response message. If a time-out value is specified for
DSIGetQueueRec calls and it is greater than
MaxTimeoutSecondsvalue, the MaxTimeoutSeconds is used
instead.

There 1s no default.

MinTimeoutSeconds Use this entry to set the lower limit for the time-out value when
waiting for a response message. If a time-out value is specified for
DSIGetQueueRec calls and it is less than MinTimeoutSeconds
value, the MinTimeoutSeconds is used instead.

There 1s no default.

Using Default Time-outs for DSILIB-Based Client Applications

NOTE:It is possible that Microsoft Server script execution time-out limits could be set
lower than the values specified for this feature. In those instances, the values of
the Microsoft Server script execution time-out limits would be used. Please
consult your Microsoft documentation for more information.

197

Chapter 2

Using the Internet Document Server

RUNNING TIMED Youcan run timed requests repeatedly or just in the primary instance. Use the following
entry attributes for a timed request entry under the Timers section in docserv.xml file:
REQUESTS

Entry attribute Description

Repeatlnterval Enter true or yes (case sensitive) to tell IDS to convert the text
value provided for the entry into seconds and run the timed
entry at each interval specified. Here are some few examples.

This timed section runs every 120 seconds:

<entry RepeatInterval="yes"
name="SSS">00:01:60</entry>

This timed section runs every 3720 seconds:

<entry RepeatInterval="yes"
name="SSS">01:01:60</entry>

This timed section runs every 90 seconds:

<entry RepeatInterval="yes"
name="SSS">90</entry>
If more than one IDS instance is running, any timed sections
configured with the RepeatInterval attribute are run at a
random interval using the interval seconds as the seed. Making
sure they are not run at the same time by all IDS instances,
allows other processing to take place.

The default lower bound is 60 seconds, meaning any timed
section that is configured to use a time interval of less than 60
seconds will instead use the default value.

RunOnPrimarylnstanceOnly Enter yes or true (case sensitive) to make sure only the primary
instance runs the timed section. For instance, you might want
to do this when a timed section runs a synchronization rule
that updates resources for a master resource library. This type
of request would only need to be run once.

If you omit this attribute, all IDS instances will run each timed
section. Here is an example:

<entry RunOnPrimaryInstanceOnly="Yes"
name="SSS">00:01:60</entry>

198

IN-PROCESS
RENDERING FOR
DPAVIEW

Syntax

Parameters

Returns

See also

In-Process Rendering for DPAView

With version 11.3 Shared Objects, you can create a bitmap representations of a DPA
document without creating another instance of IDS. Before version 11.3, you had to
have an additional dedicated instance of IDS to create the bitmaps.

DRLLIB detects whether it is running inside an instance of IDS or inside an external
process. If DRLLIB detects that it is running inside IDS, it will use its own instance of
IDS to render the bitmap.

DPAView lets you create bitmaps from archived transactions in Documanage for display
in Documanage Workstation. To do this, you have to have the following items set up:

* Documaker Server (publishing engine)

e An MRL set up to archive into Documanage (DBHandler:DMIA)
* Documanage version 6.5 and higher

* Documanage Bridge version 3.3

The DPA archives created by Documaker Server through the GenArc program must have
been archived into Documanage.

You can enable additional tracing by setting the environment variable DRLDEBUG.
This feature also adds the DRLGetConfig APL

DRLGetConfig

Use this API to retrieve the CONFIG name for the DPA file processed by
DRLProcessDPAFile. You must call this API after running DRLProcessDPAFile.

These APIs are not supported in-process.
e DRLProcessPageDC
e DRLProcessPageBuffer

DRLGetConfig (hInstance) (config) (len)

Parameter Description

hlnstance The instance handle returned by DRLInitInstance call.
config The parameter to hold the config.

len The maximum size the config parameter may hold.

DRLERR_* value

DRLProcessDPAFile

199

Chapter 2

Using the Internet Document Server

UsING DAL

FUNCTIONS FOR
WIP COLUMN

200

ACCESS

You can use the following DAL functions to set or retrieve WIP field data when
Docupresentment processes WIP or archived transactions:

Function

Enhancement

WIPKEY1

WIPKEY2

WIPKEYID

WIPFLD

SETWIPFLD

Returns the value of the Keyl WIP field. Requires no input parameters. Here
is an example:

Val=WIPKEY1 ()
Returns the value of the Key2 WIP field. Requires no input parameters. Here
is an example:

Val=WIPKEY2 ()
Returns the value of the KeyID WIP field. Requires no input parameters. Here
is an example:

Val=WIPKEYID ()
Returns the value of the specified WIP field data. This field must be defined in

the WIP.DFD file. Requires one input parameter to indicate which key value
to return. Here is an example:

Val=WIPFLD (“TranCode”)

Sets the value of the specified WIP field key and keeps it in memory until the
job finishes. For example, this DAL script sets/changes CURRUSER to
DEMOI and returns it:

SETWIPFLD (“CURRUSER", "DEMO1") ;
Val=WIPFLD ("CURRUSER") ;
Return Val;

There are several ways to run the DAL script, here are two examples:

* Using the ~DALRUN built-in INI function following a DAL script file, as shown
in this example:

~DALRUN wipkey.dal

¢ Using the DPRExecuteDAL rule, as shown in the following request type:

[RegType:i_WipTest]
function = atcw32->ATCLogTransaction
function = atcw32->ATCLoadAttachment
function = dprw32->DPRSetConfig
function = atcw32->ATCUnloadAttachment
function = dprw32->DPRGetWipFormset
function = dprW32->DPRExecuteDAL,wipkey.dal, RUNF

You can also use the following built-in INI functions to retrieve WIP field data when
Docupresentment processes WIP or archived transactions:

» ~KEY1
e ~KEY2
« ~KEYID

¢ ~ORIGUSER

Using DAL Functions for WIP Column Access

~CREATETIME
e ~MODIFYTIME
* ~FORMSETID

* ~ORIGFSID

e ~TRANCODE
e ~DESC

e ~WIPFIELD

All of these built-in functions except WIPFIELD do not require input parameters.

The WIPFLD function requires an input parameter that indicates the field data to
return. Here is an example:

~WIPFLD FORMSETID
In this example, FORMSETID is the input parameter that specifies the field name.

201

Chapter 2

Using the Internet Document Server

202

USING
ENTERPRISE
WEB
PROCESSING
SERVICES

Enterprise Web Processing Services (EWPS) make it easier to integrate applications,
providing a set of web services for accessing the Documaker forms library and initiating
real-time publishing operations. This helps you deliver the information requested by
your clients, prospects, employees, and business partners.

Via EWPS you can use a number of essential mechanisms, such as WS-I SOAP interfaces
for application integration, JSON for Ul integration, or prepackaged business parts for
design-time integration, to create a solution that uniquely meets your business needs.

Typical EWPS-enabled solutions include:

e Selfsservice publishing solutions

¢ Document search utilities

¢ Composition and workflow systems

e Systems that embed publishing artifacts into web pages

* Applications that help users create documents and forms
EWPS supports these protocols:

e SOAP (Simple Object Access Protocol).

* JSON (JavaScript Object Notation)

In addition, the EWPS Jmeter test script provides a set of examples for each service
request operation. These examples can help you more quickly implement your system.

For more information on EWPS, see Introduction to Enterprise Web Processing
Services.

NOTE:EWPS is not available on the UNIX platforms.

openfile ewps_book.pdf
openfile ewps_book.pdf

Determining the Patch Level

DETERMINING Docupresentment contains both .DLL files and Java .jar files. As changes are made to
the product, both of these types of files are patched with program fixes.
THE PATCH
L EVEL You can determine which patches have been applied to these files by running the
FSIVER and PatchReporter utilities.

This utility Determines which patches have been applied to Docupresentment's

FSIVER dll files

PatchReporter jar files

NOTE:For more information on these utilities, see the Utilities Reference.

FSIVER To run the FSIVER utility, navigate to the directory where the Docupresentment .DLL
files are located and run this command:
c:\docserv\> fsivrw32 /i=*.* > fsivrw32.txt
fsivrw32.1xt 1s the name of an output file you want the utility to create.
PatchReporter

To run the PatchReporter utility, go to the directory where the Docupresentment .jar
files are located and run this command:

C:\docserv\1lib> java -jar PatchReporter.jar -f "*.jar" >
patchreporter. txt

patchreporter.txt is the name of an output file you want the utility to create.

203

Chapter 2

Using the Internet Document Server

204

Chapter 3
Creating Output Files

This chapter discusses the types of output you can
create, such as PDF or HTML files. If you are unsure as
to which type of file you want to produce, see HTML
vs. PDF on page 4.

For more information on creating these files, see these
topics:

e Creating PDF Files on page 206
¢ Creating HTML Files on page 207
* Creating XML Output on page 208

For more information about the various paper sizes the
system supports, see Choosing a Paper Size on page 331.

205

Chapter 3
Creating Output Files

CREATING PDF The PDF Print Driver creates Adobe Port.able Document Format (PDF) files from
FILES output from the Rules Processor’s GenPrint program.

PDF is a document language developed by Adobe Systems, Inc., that allows formatting
and graphics information to be stored along with text. Using PDF files, you can make sure
form sets viewed and printed match originals created by the GenPrint program.

A document stored in PDF format can be transmitted to and viewed on many types of
systems. There are PDF viewer applications available for many platforms, both as stand-
alone programs and as add-ons for existing applications (such as word processors and
Internet web browsers). You can download Acrobat Reader from Adobe Systems’ web
site (www.adobe.com).

Print output directed to the PDF Print Driver is stored in one or more files. You can then
view these files using the Acrobat Reader.

For more information, see the Printers Reference and the Fonts Reference.

206

http://www.adobe.com
http://www.adobe.com

CREATING
HTML FILES

Creating HTML Files

You can create HTML files by simply printing to the HTML print driver. The HTML
print driver includes support for:

Boxes - solid and shaded colors only

Bar codes

Charts

Vectors - solid and shaded colors only
Logos - converted to JPG files by the driver

Lines - solid and shaded colors only. Dashed lines are supported but do not take the
line characteristics as specified. The spacing and length of dashed lines are defaulted
by the HTML 4 specification.

Shaded areas - solid and shaded colors only
Text areas
Text

Variable fields

NOTE:For more information on setting up the HTML print driver, see the Printers

Reference.

207

Chapter 3

Creating Output Files

CREATING XML

208

OuTPUT

The XMPLIB library lets you use IDS and Documaker to create Oracle Insurance
standard XML output. This lets you unload Oracle Insurance standard XML output from
the GenPrint or GenData programs (using the PrintFormset rule).

Here is an example of the INI setup this feature requires:

< Printers >
PrtType = XMP

< PrtType:XMP >
Module = XMPW32
PrintFunc = XMPPrint

When using with Documaker, be sure to use the MultiFilePrint functionality to create a
separate XML file per transaction. If multiple XML files are written into the same file, the
file will not load in an XML parser, browser, or editor.

NOTE:For more information on the Oracle Insurance standard XML format, see
Working with XML.

Chapter 4

Using Docucorp
Publishing Services

Docucorp Publishing Services (DPS) for print and
archive are a set of objects you can use to interface VB,
C#, or Java with Documaker to execute print or archive
through Docupresentment (IDS). You can run IDS on a
local or remote system.

Only one transaction can be processed per API
invocation. The return file types can be PCL, PDF, or
XML. For print requests, the input file (attachment)
contains data representing a single transaction. For
archive retrieval requests, the first transaction that
matches the search criteria is returned.

Docucorp Publishing Services (DPS) consists of:
* An action object. (DPSPrint, DPSArchive)

This object passes a group of variables (properties)
that define input parameters for performing the
specific action.

* An interface object. (DPSIDS)

This object parses or constructs the request
variables based on the input object properties and
interfaces with IDS to send the request variables
and receive the result variables.

« IDS

IDS performs the task based on the request. There
are two groups of the requests: remote and local. If
IDS is local, it is running on the same machine as
the client and shares the same physical hard drive
— 50 it is not necessary to send the output file back
to the client since it is on the same machine. If IDS
is remote, the output file needs to be sent from the
machine that is running IDS to the client machine.

209

Chapter 4

Using Docucorp Publishing Services

Here is a summary of the DLL and class files for DPS:

Required By File name Description

IDS IDSRules.jar com/docucorp/ids/rules/dps

VB API DPSClient.dll DPSPrint, DPSArchive, DPSIDS objects.

C# API Docucorp.DPS.dll ~ DPSPrint, DPSArchive, DPSIDS objects.
Docucorp.IDS.dIl

Java API dps.jar DPSPrint, DPSArchive, DPSIDS objects.

The following illustration shows how this works on a local IDS setup, with IDS running

on the same machine:

Action object

DPSPrint object
DPSArchive
object

Interface object

DPSIDS object n mumm

210

Request type for a
local IDS server

L~ DPSPrt

- EE=
IDS
~
DPSArc

e

Local hard

disk

This illustration shows how it works with IDS running on a different machine:

Action object Interface object Request type for a

remote IDS server
DPSPrint object -
-
DPSIDS object kn
~—
DPSArchive =~
object

DPSPrtRM

DPSArcRM

IDS server
hard disk

Local hard

disk

211

Chapter 4

Using Docucorp Publishing Services

DPS OBJECT The following tables describe the properties of these objects:

PROPERTIES + DPSPrint
e DPSArchive

DPSPrint object =~ The DPSPrint object has these properties:

Property Name I/0 Type Description
VB ApplicationName I/O String (Optional) Use to pass application-specific data
to the APIL
C# ApplicationName /O
Java setapplicationName Input
getapplicationName Output
VB ConfigurationName I/O String Use to set the DAP configuration.

C# ConfigurationName I/O

Java setconfigurationName Input
getconfigurationName Output

VB DestinationName I/O String (Optional) Use to pass application-specific data
to the API.
C# DestinationName I/O
Java setdestinationName Input
getdestinationName Output
VB EffectiveDate! I/O String (Optional) Specifies the effective date of this
transaction in YYYYMMDD format.
C# EffectiveDate! I/O
Java geteffectiveDate! Input
geteffectiveDate! Otpa
VB FormDescription I/O String (Optional) Specifies the form description to be
processed for this transaction.
C# FormDescription I/O Leave this property blank to tell the system to
o process all requested forms. You can pass
Java setformDescrI.ptl'on Input multiple form descriptions by entering the
getformDescription Output form names separated by commas.

I Not yet implemented.

212

CH#

Java

C#

Java

C#

Java

C#

Java

CH#

Java

CH#

Java

Property Name

FormName
FormName
setformName
getformName
InputFile
InputFile

setinputFile
getinputFile

Keyl, Key2, Key3, and

KeyID

Keyl, Key2, Key3, and

KeyID

setkeyl, setkey2,

setkey3, and setkeyID

getkeyl, getkey2,

getkey3, and getkeyID

OutputFile
OutputFile
setoutputFile
getoutputFile
OutputPath
OutputPath

setoutputPath
getoutputPath

Password
Password

setpassword
getpassword

' Not yet implemented.

I/0 Type
I/O String
/O

Input

Output

I/O String
/O

Input

Output

/O String

1/0

Input

Output

/O String
I/O

Input
Output

/O String
/O

Input

Output

/O String
/O

Input
Output

DPS Obiject Properties

Description

(Optional) Specifies the form name to be
processed for this transaction. Leave this
property blank to tell the system to process all
requested forms. You can pass multiple forms
by entering the form names separated by
commas.

Specifies the name of the attached input data
file, which is usually an extract data file for the
transaction, such as an XML extract file or an
import file name.

(Optional) Specifies transactional keys or
application-specific values.

(Optional) Specifies a string that contains the
name of the returned output file. If the buffer
contains no input value (blank or empty) the
Documaker system generates this output file

name. Use the OutputFile property to get the
generated file name.

(Optional) Specifies the desired location of the
returned output files. If you leave this property
blank, the system uses the current directory
from which the client was executed.

(Optional) Specifies the password if one is
required by the request.

213

Chapter 4

Using Docucorp Publishing Services

214

VB
C#

Java

VB
C#

Java

VB
C#

Java

C#

Java

C#

Java

C#

Java

Property Name

PrinterType
PrinterType
setprinterType
getprinterType
Priority1
Priority!
setpriority1
getpriority1
RecipientName
RecipientName

setrecipientName
getrecipientName

ReturnCode
ReturnCode
setreturnCode

getreturnCode

RunDate!
RunDate!

setrunDate!
getrunDate1
SourceName
SourceName

setsourceName
getsourceName

I'Not yet implemented.

1/0
1/0
1/0

Input
Output

I/O
I/O
Input
Output
I/O
I/O

Input
Output

1/0
1/0

Input
Output

I/O
I/0
Input
Output
I/O
I/O

Input
Output

Type

String

Priorities
DPS_IM

MEDIAT
E

DPS_DE
FERRED

String

String

String

String

Description

(Optional) Specifies the type of output, such as
PCL, PDF, or XML. Future versions may
support additional output types.

Specifies immediate processing, deferred
(batch) processing of the transaction, or end-
of-day/end-of-period transaction. The default
is DPS_IMMEDIATE.

(Optional) Specifies the recipient name to be
processed for this transaction. Leave this
property blank if you do not want recipient
filtering performed. You can specify a list of
recipients, using commas to separate the
recipient names.

Set to DPS0000 if the transaction was
processed successfully. Otherwise, it will
contain an error code set by the DPS interface.
This error code can be an error returned from
the Documaker system or Docupresentment or

a failure of the DPS API.

(Optional) Specifies the run date of this
transaction in YYYYMMDD format.

(Optional) Use to pass application-specific data
to the API.

CH#

Java

C#

Java

C#

Java

Property Name

TrnCode!
TrnCode!

settrnCode!
gettrnCode!
UserID
UserID

setuserID
getuserID

WaitForResult
WaitForResult

setwaitForResult
getwaitForResult

I/0 Type
I/O String

1/0

Input
Output

/O String
I/O

Input

Output

I/O Boolean
I/O

Input
Output

DPS Obiject Properties

Description

(Optional) Specifies a transaction code or other
application-specific value.

(Optional) Specifies a user ID if one is required
by the request.

Specifies whether the invoking application
expects to receive results. The default is True.

' Not yet implemented.

DPSArchive object

The DPSArchive object has these properties:

Property Name I/0 Type Description
VB ConfigurationName /O String Use to set the DAP configuration.
C# ConfigurationName /O
Java setconfigurationName Input
getconfigurationName Output
VB FormDescription I/O String (Optional) Specifies the form description to be
processed for this transaction. Leave this
C# FormDescription I/0 property blank to tell the system to process all
requested forms. You can pass multiple form
Java setformDescription Input descriptions using commas to separate the
getformDescription Output form names.
VB FormKey1 I/O String (Optional) Specifies the form set filtering
Keyl.
C# FormKeyl /O
Java setformKeyl Input
getformKey1 Output

I Not yet implemented.

215

Chapter 4

Using Docucorp Publishing Services

C#

Java

C#

Java

CH#

Java

CH#

Java

C#

Java

CH#

Java

216

Property Name

FormKey2
FormKey2

setformKey2
getformKey2

FormName
FormName

setformName
getformName

Key1, Key2, Key3, and
KeyID

Keyl, Key2, Key3, and
KeyID

setkeyl, setkey2,
setkey3, and setkeyID
getkeyl, getkey2,
getkey3, and getkeyID
OutputFile
OutputFile
setoutputFile
getoutputFile
OutputPath

OutputPath

setoutputPath
getoutputPath

Password
Password
setpassword

getpassword

I'Not yet implemented.

I/0

1/0
1/0

Input
Output

1/0
1/0

Input
Output

1/0

1/0

Input

Output

1/0
1/0

Input
Output

1/0
1/0

Input
Output

1/0
1/0

Input
Output

Type

String

String

String

String

String

String

Description

(Optional) Specifies the form set filtering
Key2.

(Optional) Specifies the forms to be processed
for this transaction. Leave this property blank
to tell the system to process all requested
forms. You can pass multiple forms using
commas to separate the form names.

(Optional) Specifies the columnsinapplication
index file you want to use in the query

(Optional) Specifies a string that contains the
name of the returned output file. If the buffer
contains no input value (blank or empty) the
Documaker system generates this output file
name. Use the outputFile property to get the
generated file name.

(Optional) Specifies the desired location of the
returned output files. If you leave this property
blank, the Docucorp publishing system (such
as Documaker) uses its own INI options to
determine the locations of the returned output
files and the caller will have to know to retrieve
the files from that location.

Specify password required to retrieve from the
database.

VB
CH#

Java

C#

Java

C#

Java

C#

Java

C#

Java

Property Name

PrinterType
PrinterType

setprinterType
getprinterType

RecipientName!
RecipientName'

setrecipientName!

getrecipientName

ReturnCode
ReturnCode

setreturnCode
getreturnCode

UserID
UserID

setuser]D
getuserID

WaitForResult

WaitForResult

setwaitForResult
getwaitForResult

I'Not yet implemented.

1/0
1/0
1/0

Input
Output

1/0
1/0

Input
Output

1/0
1/0

Input
Output

1/0
1/0

Input
Output

1/0
1/0

Input
Output

Type

String

String

String

String

Boolean

DPS Obiject Properties

Description

(Optional) Specifies the type of output, such as
PDF or XML. Future versions may support
additional output types.

(Optional) Specifies the recipients to be
processed for this transaction. Leave this
property blank if you do not want recipient
filtering performed. You can specify a list of
recipients, using semicolons to separate the
recipient names.

Set to DPS0000 if transaction was processed
successfully. Otherwise it contains an error
code set by the DPS interface. This error code
can be an error returned from the Documaker
or Docupresentment system or a failure of the

DPS APL

Specifies the user ID required to access the
database.

Specifies if the invoking application expects to
receive results. The default is True

DPSIDS object

The DPSPrint object has these methods:

Methods

Description

C#

Java

Send(actionObject as Variant)

Send(DpsPrint dpsPrintObject)

Send(DpsArchive dpsArchiveObject)

send(DPSPrint oDPSPrint)
send(DPSArchive oDPSArchive)

Call to parse an action object’s properties to request
variables and send the request variables to the IDS
Server to perform the function specified by the

requestType.

217

Chapter 4

Using Docucorp Publishing Services

SETTING Use the DPSINLXML file to set default parameters. The system looks for the file in the

current directory. If it is not found, it looks in the Windows system directory, such as

DEFAULT c:\winnt\system32.
PARAMETERS Here is an example of the DPSINL.XML file:

<?xml version='1.0'?>
<DPS>
<DPSIDS>
<RemoteIDS>Yes</RemoteIDS>
<PathSeparator>\</PathSeparator>
</DPSIDS>
<DPSPrint>
<RequestType>DPSPRT</RequestType>
<RequestTypeRM>DPSPRTRM</RequestTypeRM>
<OutputAttachName>DPSPRTOUTPUT</OutputAttachName>
<InputAttachName>DPSPRTINPUT</InputAttachName>
</DPSPrint>
<DPSArchive>
<RequestType>DPSARC</RequestType>
<RequestTypeRM>DPSARCRM</RequestTypeRM>
<PartialMatch>Yes</PartialMatch>
<CaseSensitivity>No</CaseSensitivity>
<MaxRecords>1</MaxRecords>
<OutputAttachName>DPSARCOUTPUT</OutputAttachName>

</DPSArchive>
</DPS>
DPSIDS section
Parameter Description
RemoteIDS This parameter determines the location of the IDS Server, local or remote.
PathSeparator
DPSPrint section
Parameter Description
RequestType This is the request type when RemotelDS is set to No. The default is
DPSPRT.
RequestTypeRM This is the request type when RemotelDS is set to Yes. The default is
DPSPRTRM.

OutputAttachname This is the AttachName used by the IDS Server to send a file to the
client when RemotelDS is set to Yes. The default is DPSPRTOUTPUT.

InputAttachName This is the AttachName used by the client to send an input extract file
to the IDS Server when RemoteIDS is set to Yes. The default is
DPSPRTINPUT.
DPSArchive section
Parameter Description
RequestType The request type when RemoteIDS is set to No. The default is
DPSARC.

218

Parameter

RequestTypeRM

OutputAttachname

PartialMatch
CaseSensitivity

Maxrecords

Setting Default Parameters

Description

The request type when RemoteIDS is set to No. The default is
DPSARCRM.

The AttachName used by the IDS Server to send a file to the client when
RemoteIDS is set to Yes. The default is DPSARCOUTPUT.

The search condition uses a partial match.
If set to Yes, the search is case sensitive. The default 1s No

The maximum number of records to return. It must be set to one (1).

219

Chapter 4

Using Docucorp Publishing Services

SAMPLE VB Here are examples of Visual Basic code for print and archive:

CODE
Print Private Sub CmdPrint_Click ()
Dim oDPSVar As New DPSPrint
Dim oDPSIDS As New DPSIDS
oDPSVar.inputFile = “D:\MRL\TEST\EXTRACTS\ExtrFile.dat”
oDPSVar.configurationName = “DPS”
oDPSVar.outputFile = “PrintOutput”
oDPSVar.outputPath = “D:\MRL\TEST\PrintFile.PCL”
oDPSVar.printerType = “PCL”"
oDPSIDS.send oDPSVar
if oDPSVar.ReturnCode = “DPS0000” Then
FinalOutput.Text = oDPSVar.outputPath + oDPSVar.outputFile
End If
End Sub
Archive Private Sub CmdArchive_ Click()

Dim oDPSVar As New DPSArchive
Dim oDPSIDS As New DPSIDS
FinalOutputA.Text = ""

oDPSVar.configurationName = "DPS"
oDPSVar.userID = “UserID”
oDPSVar.password = “Password”

oDPSVar.outputFile = FldOutputFileA.Text
oDPSVar.outputPath = FldOutputPathA.Text

oDPSVar.keyl = "SAMPCO"
oDPSVar.printerType = “PDF”
oDPSIDS.send oDPSVar
if oDPSVar.ReturnCode = “DPS0000” Then
FinalOutputA.Text = oDPSVar.outputPath + oDPSVar.outputFile
End If
End Sub

NOTE:The DPSClient.dll file must be referenced before you can use the DPSPrint,
DPSArchive, and DPSIDS objects.

220

Sample C Code

Here 1s some sample C# code:

SAMPLE C
CODE using System;

using Docucorp.DPS;

privatevoidprintButton_ Click (object sender, System.EventArgs e)
{
DpsPrint dpsVarObject = new DpsPrint () ;
DpsIds dpsIdsObject = new DpsIds () ;
dpsVarObject.InputFile = inputFile.Text;
dpsVarObject.ConfigurationName = config.Text;
dpsVarObject.OutputFile = outputFile.Text;
dpsVarObject.OutputPath = outputPath.Text;
dpsVarObject.PrinterType = printerType.Text;
dpsVarObject.FormName = formName.Text;
dpsVarObject.FormDescription = formDescription.Text;
dpsVarObject.RecipientName = recipientName.Text;

try

{
dpsIdsObject.Send (dpsVarObject) ;
finalOutput.Text = dpsVarObject.OutputPath +
dpsVarObject.OutputFile;
}

catch (Exception ex)

{
Console.Out.WriteLine(ex.ToString()) ;

privatevoidarchiveButton_Click (object sender, System.EventArgse)
{
DpsArchive dspVarObject = new DpsArchive() ;
DpsIds dpsIdsObject = new DpsIds () ;

finalOutputA.Text = "";
dspVarObject.WaitForResult = true;
dspVarObject.UserID = userID.Text;
dspVarObject.Password = password.Text;
dspVarObject.ConfigurationName = "DPS";
dspVarObject.OutputFile = outputFileA.Text;
dspVarObject.OutputPath = outputPathA.Text;
dspVarObject.Keyl = "SAMPCO";
dspVarObject.PrinterType = printerTypeA.Text;
dspVarObject.FormName = formNameA.Text;

try

{
dpsIdsObject.Send (dpsVarObject) ;
finalOutputA.Text = dpsVarObject.OutputPath +
dpsVarObject.OutputFile;
}

catch (Exception ex)

{
Console.Out.WriteLine (ex.ToString()) ;

221

Chapter 4

Using Docucorp Publishing Services

NOTE:You must install the Docucorp.IDS.dII file in GAC and the Docucorp.DPS.dII
file must be referenced before you can use the DPSPrint, DPSArchive, and
DPSIDS objects.

222

Sample Java Code

SAMPLE JAVA Here 1s some sample Java code:

CODE import com.docucorp.dps.*;

void BtnPrint_actionPerformed (ActionEvent e) {
DPSPrint oDPSVar = new DPSPrint () ;
try {
DPSIDS oDPSIDS = new DPSIDS() ;
oDPSVar.setinputFile (F1dInputFile.getText ()) ;
oDPSVar.setconfigurationName (FldConfig.getText ()) ;
oDPSVar.setoutputFile (F1dOutputFile.getText()) ;
oDPSVar.setoutputPath (F1dOutputPath.getText ()) ;
oDPSVar.setprinterType (F1ldPrinterType.getText ()) ;
oDPSVar.setformName (F1dFormName.getText ()) ;
oDPSVar.setformDescription (F1dFormDescription.getText ()) ;
oDPSVar.setrecipientName (F1dRecipientName.getText ()) ;
oDPSIDS. send (oDPSVar) ;

FldFinalOutput.setText (oDPSVar.getoutputPath () +
oDPSVar.getoutputFile()) ;

FldReturnCode.setText (oDPSVar.getreturnCode()) ;

} catch (DPSJException ex) {
FldReturnCodeA.setText (0oDPSVar.getreturnCode ()) ;
ex.printStackTrace() ;

} catch (DSIJException ex) {
FldReturnCodeA.setText (oDPSVar.getreturnCode()) ;
ex.printStackTrace () ;

} catch (Exception ex) {

FldReturnCodeA.setText (0DPSVar.getreturnCode ()) ;
ex.printStackTrace() ;

void BtnArchive actionPerformed (ActionEvent e) {

DPSArchive oDPSVar = new DPSArchive() ;

try {
DPSIDS oDPSIDS = new DPSIDS();
oDPSVar.setuserID (F1ldUserID.getText ()) ;
oDPSVar.setpassword (FldPassword.getText ()) ;
oDPSVar.setconfigurationName (F1dConfigA.getText ()) ;
oDPSVar.setoutputFile (FldOutputFileA.getText ()) ;
oDPSVar.setoutputPath (F1ldOutputPathA.getText ()) ;
oDPSVar.setformName (F1dFormNameA.getText ()) ;
oDPSVar.setprinterType (F1dPrinterTypeA.getText ()) ;
oDPSIDS. send (oDPSVar) ;

FldFinalOutputA.setText (oDPSVar.getoutputPath () +
oDPSVar.getoutputFile()) ;

FldReturnCodeA.setText (oDPSVar.getreturnCode()) ;

} catch (DPSJException ex) {
FldReturnCodeA.setText (0DPSVar.getreturnCode ()) ;
ex.printStackTrace() ;

} catch (DSIJException ex) {
FldReturnCodeA.setText (0DPSVar.getreturnCode ()) ;
ex.printStackTrace () ;

} catch (Exception ex) {

223

Chapter 4

Using Docucorp Publishing Services

FldReturnCodeA.setText (oDPSVar.getreturnCode()) ;
ex.printStackTrace() ;

224

Setting Up IDS

SETTING UPp Add the following request types to the DOCSERV.INI file to set up IDS:

|DS [ReqType:DPSARC]
function = atcw32->ATCLogTransaction
function = atcw32->ATCLoadAttachment
function = dprw32->DPRLocateOneRecord
function = dprw32->DPRInitLby
function = atcw32->ATCUnloadAttachment

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,REMOTEPRINTFILE, O, ARCOUTPUTFILE,
(¢}

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV, SENDBACKPAGE, O, ARCOUTPUTFILE, O

function = dprw32->DPRRetrieveFormset
function = dprw32->DPRFilterFormsetForms
function = dprw32->DPRPrint
function = dprw32->DPRProcessTemplates

[ReqType:DPSARCRM]
function = atcw32->ATCLogTransaction
function = atcw32->ATCLoadAttachment
function = dprw32->DPRSetConfig
function = dprw32->DPRLocateOneRecord
function = dprw32->DPRInitLby
function = atcw32->ATCUnloadAttachment
function = dprw32->DPRRetrieveFormset
function = dprw32->DPRFilterFormsetForms
function = atcw32->ATCSendFile, DPSARCOUTPUT, OUTPUTFILE, Binary

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,OQUTPUTFILE, O, ARCOUTPUTFILE, O

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,REMOTEPRINTFILE, O, OUTPUTFILE, O

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV, SENDBACKPAGE, O, OUTPUTFILE, O

function = dprw32->DPRPrint

function = dprw32->DPRProcessTemplates
[ReqType:DPSPRT]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,PRINTER], O, PRINTOUTPUTFILE, O

function = rpdw32->RPDCheckRPRun
function = rpdw32->RPDCreatedob
function = rpdw32->RPDProcessJob

[ReqType:DPSPRTRM]
function = atcw32->ATCLogTransaction
function = atcw32->ATCLoadAttachment
function = atcw32->ATCUnloadAttachment

function = atcw32-
>ATCReceiveFile, DPSPRTINPUT, EXTRFILE,d: \temp*.dat, KEEP

function = dprw32->DPRSetConfig
function = atcw32->ATCSendFile, DPSPRTOUTPUT, PRINTERL, Binary

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,PRINTER1, O, PRINTOUTPUTFILE, O

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,PRINTER],O, OUTPUTFILE, O

function = rpdw32->RPDCheckRPRun

225

Chapter 4

Using Docucorp Publishing Services

226

function =
function =

rpdw32->RPDCreatedob
rpdw32->RPDProcessJob

Add these control groups and options to the DAP.INI file:

< Config:DPS >

INIFile = DPS.INI
< Configurations >
DPS

Config =

Here is a sample DPS.INI file:

< MasterResource >

XRFFile
DefLib
FormLib
LbyLib
FontLib
FormDef

< RPDRunRP >
Executabl
Directory

; UserINI
UserINI
Debug

e

rell02
D:\MRL\DEMO\MstrRes\Def\
D:\MRL\DEMO\MstrRes\FAP\
D:\MRL\DEMO\MstrRes\FAP\
D:\FONTS\

form.dat

= d:\rellll\rps100\w32bin\GENDAW32.EXE
= D:\MRL\DEMO\MstrRes

= D:\MRL\DEMO\RunBatch\fsiuser.s.ini

= D:\MRL\DEMO\RunBatch\FSIUSER.PCL.INI
= Yes

< RPDCheckRPRun >

Debug

< IDSServer >
BaseLocation = http://10.1.10.209/doc-data/

PrintPath

= Yes

= d:\MRL\DEMO\PrintFiles

GENSemaphoreName = GenData
RPDSemaphoreName = RPDRuUnRP

< Debug >

RULServerJobProc = Yes
RPDProcessJob = Yes

< ARCRet >

; path to CAR files

CARPath
CARFile =

D: \MRL\DEMO\ARC\
ARCHIVE

; full file name for application index
D:\MRL\DEMO\ARC\APPIDX

APPIDX =
; full file
TempIDX=D
; full file
Catalog =
APPIDXDFD
< Control >
XrfExt
ImageEXT
DateForma

t

name for temporary index
\MRL\DEMO\ARC\TEMP
name for CAR files catalog
D: \MRL\DEMO\ARC\CATALOG
= D:\MRL\DEMO\mstrres\def\appidx.dfd

= .fxr
= .fap
= 24%

< PrtType:PDF >
LanguageLevel= Level2

Module
PrintFunc
Linearize

= PDFOS2
= PDFPrint
= No

SETTING UP
DOCUMAKER

Setting Up Documaker

Set up Documaker to run in single-step mode. Please note in the following sample
AFGJOB.JDT file that the RULServerJobProc rule is required to run in the IDS
environment and the ServerFilterFormRecipient rule is required for DPS to run properly.

Here is a sample AFGJOB.JDT file:

/* This base (this implementation) uses these rules. */

<Base Rules>

;RULServerJobProc;1l;Always the first job level rule;
/*;RULStandardJobProc; ;Always the first job level rule;
;JobInitl;;;

;BuildMasterFormList;1;4;

;InitPrint;;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc; ;required to combine gentrn/gendata into
single step;

;BuildFormList;;;

;LoadRcpTbl; ; ;

;ServerFilterFormRecipient;;;

;RunSetRcpTbl; ; ;

;PrintFormset; ;required to combine gendata/genprint into single
step;

;WriteOutput;;;required to combine gentrn/gendata into single step;
;WriteNaFile;;;required to combine gentrn/gendata into single step;
;BatchingByPageCountINI;; ;

;ProcessQueue; ; PostPaginationQueue;
;PaginateAndPropogate; ; FooterMode (2) Debug;

/* Every image in this base uses these rules. */
<Base Image Rules>
;RULStandardImageProc; ;Always the first image level rule;

/* Every field in this base uses these rules. */

<Base Field Rules>
;RULStandardFieldProc; ;Always the first field level rule;

227

Chapter 4

Using Docucorp Publishing Services

228

Chapter 5

Customizing iDocumaker,
iPPS, and WIP Edit

This appendix describes how you can customize how
iDocumaker, iPPS, and the WIP Edit plug-in work with
IDS.

In this appendix, you will find the following topics:

* Setting Up a Favorites List for iDocumaker on
page 230

e Attaching Files to Transactions as Forms on page
232

¢ Designating Read-Only Multiline Text Field
Paragraphs on page 238

e Printing on Your Workstation Printer on page 239
* Preventing the Session from Expiring on page 240

e DPassing WIP Record IDs to the MergeWIP Rule on
page 241

e Automatically Updating iDocumaker on page 242
* Using the WIP Edit Plug-in on page 246

229

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

SETTING UP A
FAVORITES LIST

230

FOR
IDOCUMAKER

You can create a favorstes list — a list of frequently used forms — for use in iDocumaker.
This increases your ability to get MRL information from IDS via XML and is similar to
Documaker Workstation feature that lets you set up personal forms lists.

For example, if your company has a large number of forms, each user can set up a
favorites list to more quickly find the forms he or she typically works with. Keep in mind
that users can still select any available form, you are not limited to just those forms on
your favorites list.

To understand this feature you need to understand how iDocumaker uses the
1_GetMRLResource request type to get a list of the groups and forms an MRL supports.

First, iDocumaker requests a list of groups by running the i_GetMRLResource request
without submitting any XML. A list of groups is returned to iDocumaker in an XML
attachment called DOCUMENTSTREAM.

If this feature is enabled, one of the groups is identified as the favorites group. Either the
user or iDocumaker can then select one or more of these groups to get a forms list.

You get a forms list by sending the list of desired groups in the XMLIMPORT XML
attachment to the i_GetMRLResource rule. The i_GetMRLResource request type returns
an XML attachment that contains forms, form descriptions, and recipient data for all of
the requested groups, including the favorites group if you enabled favorites and one of
the submitted groups contains the attribute FAVORITES=TRUE.

You can store one favorites list per configuration. The list is stored in this location:

Config\UserID\profile.xml

For example, if the user ORACLE has a favorites list for the configuration SAMPCO, the
favorites list will be stored in the following location:

SAMPCO\ORACLE\profile.xml
Here is an example of the XML file that contains the favorites list:

<DOCSET>
<GROUP NAME1="FAVORITES" NAME2="FAVORITES" NAME3="">
<FORM NAME="FIL 1010 04 92"/>
<FORM NAME="FIM 0100 11 92"/>
<FORM NAME="FCG 0010 11 92"/>
<FORM NAME="Barcode Samples"/>
<FORM NAME="DAL Locale"/>
<FORM NAME="Auto Increment Names"/>
<FORM NAME="A128">
</FORM>
</GROUP>
</DOCSET>

You can use these INI options in your MRL INI file to control the favorites list:

< Favorites >
Enabled = Yes

Path = z:\sharedir
Namel = Favorites
Name?2 = Favorites

Setting Up a Favorites List for iDocumaker

Option Description

Enabled Enter Yes to turn on the use of favorites. The default is No.

Path Enter the name of the path into which you want the favorites list saved. For
instance, if your user ID is Oracle and you enter...
z:\sharedir

The favorites list will be stored in this directory:
z:\sharedir\oracle\profile.xml

Ifyou have IDS installed on multiple PCs, set the Path option to point to the same
location.

If you only have IDS installed on a single PC, you can omit this option.
Namel Enter the name of the first favorites group.

Name2 Enter the name of the second favorites group.

NOTE:When you select a form from the favorites list, the Keyl/Key2 in WIP is set to
whatever is in the Name options in your Favorites control group (Favorites in the
preceding example).

231

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

ATTACHING
FILES TO
TRANSACTIONS
AS FORMS

232

Using the Documaker Bridge, you can now attach external files as forms to Documaker
transactions. These external files can be in the following formats: TIFF, JPG, PDF, and
other bitmap formats supported by Documaker.

You can also attach RTF files. The RTF import is limited to the same level of support
here as it has in other places in the system. For instance, if something will not work in
Studio, it will not work here either.

When you attach one of these types of files, it becomes an embedded bitmap in a form in
the Documaker transaction. The attached form has an option to indicate it is an
attachment (the letter .4 in form options).

NOTE: This feature was implemented for use with iDocumaker. The Documaker Bridge
rules DPRUpdateFormsetFromXML and DPRLoadImportFile were enhanced
to support attachment forms.

You can attach a file by:

e DPlacing it on disk and specifying its name and type in IDS attachment variables.
¢ Sending the file to IDS in a message.

¢ DPlacing the file on a disk accessible to the Documaker Bridge.

e DPlacing the file in a Documanage repository.

In all cases, the information needed to find the file is located in the form metadata. Special
metadata tag names are reserved for each case.

Specifying the File Name and Type in IDS Attachment
Variables

Use these tags in the form’s metadata specify how to locate the file name.

Tag Description

DPR_ATTACHVARNAME The name of the DSI attachment variable where the file name
is stored.

DPR_FILETYPE (Optional) The file type. The file type is determined by the

program by looking at this value. If missing, the file extension
is checked. If the extension is missing, the default is TIFF.

DPR_FILETYPEVAR (Optional) The name of the DSI attachment variable with the
file type. The file type is determined by the program by looking
at this value. If missing, the file extension is checked. If the
extension is missing, the default is TIFF. If the
DPR_FILETYPE variable is present, this variable is ignored.

Here is an example fragment of an XML import file with this information. The file name
is located in a DSI variable named DPRFILE and its type is in the DSI variable
DPRTYPE.

<FORM NAME="Test form name" OPTIONS="RA">

Attaching Files to Transactions as Forms

<INFO NAME="DPR_ATTACHVARNAME">DPRFILE</INFO>

<INFO NAME="DPR_FILETYPEVAR">DPRTYPE</INFO>
<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Sending the File to IDS in a Message

The following tags in form metadata specify how to locate the file data.

Tag Description

DPR_ATTACHNAME The name of the DSI attachment in which the file was sent, such as
via the SendFile APIL

DPR_FILETYPE (Optional) The file type. The file type is determined by the program
by looking at this value. If missing, the file extension is checked. If
the extension is missing, the default is TIFF.

DPR_FILETYPEVAR (Optional) The name of the DSI attachment variable with the file
type (optional). The file type is determined by the program by
looking at this value. If missing, the file extension is checked. If the
extension is missing, the default is TIFE. If the DPR_FILETYPE
variable is present, this variable is ignored.

At least one of the file type values is required even though both are listed as optional.

Here is an example fragment of an XML import file with this information. The file is sent
to IDS inside the message and the name of the attachment used to send it is SENTFILE.
The type of file is in the DSI variable DPRTYPE.

<FORM NAME="Test with DSI message" OPTIONS="RA">

<INFO NAME="DPR_ATTACHNAME">SENTFILE</INFO>

<INFO NAME="DPR_FILETYPE">TIF</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Storing the File on a Disk Accessible to Documaker Bridge

Use these tags in the form’s metadata to tell Documaker Bridge how to locate the file.

Tag Description
DPR_FILENAME The name of the file.
DPR_FILETYPE (Optional) The file type. The file type is determined by the program

by looking at this value. If missing, the file extension is checked. If
the extension is missing, the default is TIFF.

233

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

Tag Description

DPR_FILETYPEVAR Optional) The name of the DSI attachment variable with the file
type. The file type is determined by the program by looking at this
value. If missing, the file extension is checked. If the extension is
missing, the default is TIFF. If the DPR_FILETYPE variable is
present, this variable is ignored.

Here is an example fragment of an XML import file with this information.

<FORM NAME="Test with filename" OPTIONS="RA">

<INFO NAME="DPR_FILENAME">c:\docs\Image_0001.jpg</INFO>
<INFO NAME="DPR_FILETYPE">JPG</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

NOTE:If you are using relative paths in the file name, the path has to be relative to the
directory where Docupresentment is running.

Storing the File in a Documanage Repository

Include these tags in the form’s metadata to specify how to locate the file:

Tag Description

DMG_CABINET The name of the Documanage cabinet.
DMG_DOCID The value of the Documanage DOCID.
DMG_VERSION The major version of the document.
DMG_REVISION The minor version of the document.

DMG_VERS The minor and major version of the document. The format is
minor.major, such as 1.0 or 2.5. If this value is present, the values of
DMG_VERSION and DMG_REVISION are ignored.

Here is an example fragment of an XML import file with this information.

<FORM NAME="Test with Documanage" OPTIONS="RA">

<INFO NAME="DMG_CABINET">DOCCDEMO</INFO>

<INFO NAME="DMG_DOCID">22401</INFO>

<INFO NAME="DMG_VERSION">1</INFO>

<INFO NAME="DMG_REVISION">0</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Here is another example with the DOC_VERS value:

<FORM NAME="Test with Documanage" OPTIONS="RA">

234

Attaching Files to Transactions as Forms

<INFO NAME="DMG_CABINET">DOCCDEMO</INFO>

<INFO NAME="DMG_DOCID">22401</INFO>

<INFO NAME="DMG_VERS”>1.0</INFO>

<DESCRIPTION>Test description of the form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>

</FORM>

Note that to use the file in Documanage, the Documanage Bridge must be available on
the same Docupresentment server. The Documaker Bridge executes these Documanage
Bridge rules when it encounters the form with the metadata. No configuration changes
are needed:

¢ DmgBrsCopyAttachment
* DmgBrsValidateSession
* DmgBrsCacheContentsFile

You do not have to specify the file type in this case, the Documanage document type is
used instead.

Error Messages

These error messages can be produced by the DPR rules listed above if the attached form
did not work or was specified incorrectly.

Message Description

DPR0097 Attachment form <FORM> metadata specified the DSI attachment variable
<VARIABLE> but this variable was not found. The file will not be loaded.

DPR0098 Attachment form <FORM> metadata specified the DSI file attachment with the
delimiter <VARIABLE> but this file was not attached to the DSI message. The
file will not be loaded.

DPR0099 Attachment form <FORM>metadata is missing the required value <INFO>. The
file will not be loaded.

DPR0100 Failed to load the attached file specified by the attachment form <FORM>. File
name <FILE> of type <TYPE>.

DPR0101 Failed to load the dynamic link library <LIBRARY>.

DPRO0102 Cannot locate variable <VARIABLE> in the attachment list after executing the
Documanage Bridge rules. Examine the Documanage Bridge errors.

Specifying Duplex Options for the Attached Form

When it contains multiple pages, the attached form might have to be printed in duplex
mode. The duplex options in Documaker are specified on sections (images), so to provide
the duplex information the form in XML must specify a section and section duplex
options.

Your choices are:

235

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

e T -front
e B -back
e T - short bind

If there are no options or no section is specified, the rule assumes simplex mode. At the
end of the options you must to specify #7 to indicate it is a dummy image. Here is an
example:

(OPTIONS="S#1")

The name of the section is ignored. Here are a few examples:

Start on back page bind <FORM NAME="Test with PDF filename" OPTIONS="RA">
example <INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>

<DESCRIPTION>Test of TIFF form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTION NAME="TESTSECTION" OPTIONS="B#1"/>
</PAGE>
</SHEET>
</FORM>

Long bind example <FORM NAME="Test with PDF filename" OPTIONS="RA">
<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>
<DESCRIPTION>Test of TIFF form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTION NAME="TESTSECTION" OPTIONS="F#1"/>
</PAGE>
</SHEET>
</FORM>

Short bind example <FORM NAME="Test with PDF filename" OPTIONS="RA">
<INFO NAME="DPR_FILENAME"> mytifftest.tif</INFO>
<DESCRIPTION>Test of TIFF form</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTION NAME="TESTSECTION" OPTIONS="T#1"/>
</PAGE>
</SHEET>
</FORM>

Debugging
Include this INI option in the DAP INI files to help you resolve any problems.

< Debug >
DPRProcessFormsetAttachments = Yes

236

Attaching Files to Transactions as Forms

The default is No. If you enter Yes, the NA and POL files are unloaded with the names
dprattach.dat and dprattach.pol. Here is an example of the log file (dprtrc.log) the system
produces:

DPRProcessFormsetAttachments: DMG_CABINET=<DOCCDEMO> Form <Test with
Documanage>. Adding CABINET attachment variable

DPRProcessFormsetAttachments: DMG_DOCID=<22401> Form <Test with
Documanage>. Adding DOC_ID attachment variable

DPRProcessFormsetAttachments: DMG_VERSION=<1> Form <Test with
Documanage>. Adding DOC_MAJORVERSION attachment variable

DPRProcessFormsetAttachments: DMG_REVISION=<0> Form <Test with
Documanage>. Adding DOC_MINORVERSION attachment variable

DMG Rule DmgBrsCopyAttachment (DSI_MSGINIT) Time spent: 0.000
DMG Rule DmgBrsValidateSession (DSI_MSGINIT) Time spent: 0.000
DMG Rule DmgBrsCacheContentsFile (DSI_MSGINIT) Time spent: 0.000
DMG Rule DmgBrsCopyAttachment (DSI_MSGRUNF) Time spent: 0.078
DMG Rule DmgBrsValidateSession (DSI_MSGRUNF) Time spent: 0.109
DMG Rule DmgBrsCacheContentsFile (DSI_MSGRUNF) Time spent: 0.094

DPRProcessFormsetAttachments: found Documanage bridge attachment
variables CONTENTS_DECOMPRESSED_PATH=<cache\22401f0v1lx0.tif> and
CONTENTS_DECOMPRESSED_TYPE=<TIF>

DMG Rule DmgBrsCacheContentsFile (DSI_MSGRUNR) Time spent: 0.016
DMG Rule DmgBrsValidateSession (DSI_MSGRUNR) Time spent: 0.000
DMG Rule DmgBrsCopyAttachment (DSI_MSGRUNR) Time spent: 0.000
DMG Rule DmgBrsCacheContentsFile (DSI_MSGTERM) Time spent: 0.000
DMG Rule DmgBrsValidateSession (DSI_MSGTERM) Time spent: 0.000
DMG Rule DmgBrsCopyAttachment (DSI_MSGTERM) Time spent: 0.000

237

Chapter 5
Customizing iDocumaker, iPPS, and WIP Edit

DESIGNATING Thle follc;vs.lli.ng attrib{utleds are inclu}clled in the XML export file on the <P> tag for read-
tiline text field paragraphs:
READ-ONLY ™

MULTILINE TEXT

FIELD These attributes are used by iPPS and iDocumaker TERSUB functionality to prevent a
PARAGRAPHS user from selecting or modifying the paragraphs.

Here is an example:

contenteditable="false"
unselectable="on"

<P contenteditable="false" unselectable="yes" />

238

Printing on Your Workstation Printer

PRINTING ON When using iPPS or iDocumaker, you can send print files to workstation printers. The
YOUR print files are created on the server, downloaded, and then printed on your workstation’s

printer.
WORKSTATION The system displays the Printer window so you can select the printer you want to use or
PRINTER cancel the print job. The printer you select must support either PCL or PostScript.

The print files have a DPP file extension and will be in PCL or PostScript format. This
DPP file is generated by IDS via a request from iPPS or iDocumaker. There are no
changes on the client side (plug-in) you need to make.

NOTE:When you install or update iPPS or iDocumaker, the installation process creates
the necessary file association.

239

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

PREVENTING
THE SESSION
FROM EXPIRING

240

You can prevent the web server session from timing out when you are working on
documents in iDocumaker. The time-out occurs if you leave the document open in
iDocumaker for an interval longer than the time the web server allows a session to remain
active. For instance, when a session times out, a save request will fail.

The session is kept current by telling iDocumaker to contact the web server when you
change the current page. To do this, set this INI option in the CONFIG.INI file:

< INI2XML >
RefreshScript = iwipl8/test.htm

NOTE:The value of the RefreshScript option is specfic to your installation. The value
shown above is only an example.

By default, iDocumaker will not contact the web server if it has done so in the last five
minutes. You can change this interval using this INI option in the WIPEDIT.INI file.

< WIPEdit >
RefreshSessionTime = 600

Specify the interval in seconds. The example above specifies an interval of 600 seconds,
or 10 minutes.

PASSING WIP
RECORD IDs TO
THE MERGEWIP

RULE

Passing WIP Record IDs to the MergeWIP Rule

iDocumaker can designate a single WIP transaction to be processed by Documaker. IDS
then passes the WIP record ID to Documaker so the MergeWIP rule will process that
record.

This table describes how it works:

On the... This happens

IDS side The RPDCreateJob rule checks the WIPRECORDID input attachment variable
and adds the XML element <WIPRECORDID> to the job ticket.

Keep in mind that the WIPRECORDID input attachment variable is required

when the RPD request is submitted. This requirement is in addition to the
normal requirements for running Documaker as a subordinate process of IDS.

Documaker The ServerJobProc rule receives the job ticket and looks for the

Server side WIPRECORDID variable. If WIPRECORDID is found, the rule creates the
WIPRECORDID GVM. The MergeWIP rule uses the WIPRECORDID GVM
to retrieve the WIP record for batch processing by Documaker.

NOTE:This only affects Documaker when you are running Documaker via IDS.

For more information about the MergeWIP rule, see the Rules Reference. For more
information about running Documaker Server as a subordinate process of IDS, see
Using IDS to Run Documaker on page 147.

241

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

AUTOMATICALLY

242

UPDATING
IDOCUMAKER

You can use IDS to update a user’s workstation with a new version of the iDocumaker
executables. Users are notified of an update when a document is opened if a new version
has been made available by the administrator.

NOTE:You must be using version 11.2 or higher of iDocumaker to use the automatic

update feature.

The user can then begin the installation by clicking the Begin Installation button. If the
user clicks Exit, the update is skipped until he or she opens the next document.

CONFIGURING IDS TO UPDATE IDOCUMAKER

To configure IDS to update iDocumaker, follow these steps:

1

Select the location where the iDocumaker executables will be kept under IDS. This
example shows the default location if IDS is running from the \docserv directory.

Docserv\data\CONFIG\wipedit

If you need to change this you can set the following INI option in the configuration-
specific INT file:

< WIPEdit >
ExecDir = d:\docserv\data\sampco\wipedit

Option Description

ExecDir This option tells the update utility (VERSUPD) where the executables are
located.

Copy the executables for iDocumaker into this directory.

IDS keeps a file that contains version information for these executables. The
contents of this file are included inside the DPW file. The presence of this file
determines whether the update process occurs. Here is the default path for this file:

Docserv\data\CONFIG\CONFIG.wipedit

If this is not an acceptable location you must set the following INI option in the
CONFIG.INI file to the appropriate location:

< WIPEdit >
VersionFile = d:\docserv\data\sampco

The update program needs to know the location of the installation file from the web
server so you must set up the following INI options. To set up these options, you
must know the web site address and the relative path to the installation file within the
web site.

< INI2XML >

DownloadURL = localhost
DownloadScript = doc-prog/data/sampco/wipedit.dpi
DownloadUserID = (user ID)
DownloadPassword = (password)

4

Automatically Updating iDocumaker

Option Description

DownloadURL You can enter the web site address or a machine name on the
network. For example, you could enter localhost,
pd.docucorp.com, www.docucorp.com, or an IP address. The
exact value is specific to your implementation. This option is
similar to the PUTURL option which may already be in the
INI2XML control group.

DownloadScript This is the part of the URL which points to the location within the
host for the installation file. It should contain the name of the
installation file. This is similar to the SCRIPT option which
usually points to the wipsave.asp or wipsave.jsp file for
1Documaker Workstation. The exact value is specific to your

implementation.

DownloadUserID Enter the user ID for authentication purposes. This entry may be
encrypted.

DownloadPassword Enter the password for authentication purposes. This entry may

be encrypted.

Here is an example of how you can use the CRYRUW32 utility at a command prompt
to encrypt the data:

C:\docservl.8>cryruw32 password
Encrypted string (2XAUnkxUY1x7i5AnQ4m4EIm00)

Next, use the VERSUPD utility to build the installation file and version file.

NOTE:For more information about these utilities, see the Utilities Reference.

ON THE CLIENT SIDE

When iDocumaker is installed the version information is stored in registry. When
iDocumaker parses the DPW file, it finds the most current version according to IDS. It
then compares the version stored under IDS and the local version. If there is a
discrepancy, iDocumaker’s installation tool starts.

The installation tool performs these steps:

Downloads the archived file of iDocumaker executables.

Backs up the current iDocumaker executable directory.

Makes sure you have write access to all of the program files for iDocumaker.
Erases all of the files in iDocumaker's executable directory.

Installs the new executables.

Updates the local version information in the registry.

243

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

244

Once you have set up IDS to automatically update iDocumaker, those computers with
version 11.2 or higher of iDocumaker display the following window when you open a
document.

ﬂ,— Update Plugin Software B3

g_égin Installatio_d

Install Docucorp Flugin
Exit |

Click the Begin Installation button to update iDocumaker. Click Exit to skip the
update. The next time the user tries to open a document, IDS will again prompt the user
to update iDocumaker.

Additional Utilities

You can also use these additional utilities:

e The VERS2REG utility gets the local version information and updates the registry.
This utility executes on the workstation side from a command prompt. Typically, it
is only executed during the original installation of iDocumaker. You can, however,
start it from a command prompt.

e The UPDWDT utility gets the iDocumaker installation file from the IDS and then
updates iDocumaker.

NOTE:For more information about these utilities, see the Utilities Reference.

CHECKING VERSION INFORMATION

You can use the WDTValidateDPI API to check the version information for iDocumaker
from a menu. Place this API function in the WIPEDIT.RES file. When you use this
function, these tests are performed:

1 Make sure local version information has been created. This identifies whether the
VERS2REG utility has been run during the install process. If the version information
does not exist, this message appears:

Local version information does not exist for plug-in

2 Make sure the server version information has been updated. This indicates that server
information was created and downloaded in the DPW file. If the version information
cannot be found, this message appears:

Version information does not exist on the server for plug-in

3 Compare server side information with local version information. If the version
information matches, this message appears:

You are running the correct version of the plug-in

Automatically Updating iDocumaker

If the versions do not match, this message appears:
Incorrect version of the plug-in - please update

4 Make sure the compressed file can be downloaded from the web server based on the
download information in the registry. If it cannot, this message appears:

Not able to locate the installation file on the web server - (followed
by web address attempted)

5 Check the format of the installation file. If there is a problem, this message appears:
Plug-in installation file is corrupt contact server administrator

If everything is Ok, you will see at least two messages. If tests 1, 2, and 3 pass the following
message appears.

You are running the correct version of the plug-in
If tests 1, 2, and 3 fail but tests 4 and 5 pass, this message appears:

Installation file can be accessed successfully

245

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

USING THE WIP

246

EDIT PLUG-IN

The WIP Edit plug-in lets you present WIP information inside a browser. The plug-in is
an Active Document Server application, which means it can run inside Internet Explorer
whenever it opens a DPW file. The document is opened inside the browser. The browser

menu is not replaced and you can access it by right clicking inside the document.

NOTE:The WIP Edit plug-in only runs inside Microsoft’s Internet Explorer. It will work

with other browsers, but it will not run inside other browsers.

The WIP Edit plug-in dynamically requests the downloading of the following resources
from IDS. The DPRGetResource rule looks in your INI options to locate any resources

requested.

e FAP files (The default location is your FormLib directory)

e DAL scripts (The default location is your DefLib directory)

e Tables (The default location is your TableLib directory)

e Help files (The default location is your HelpLib directory)

You must include this request type in the DOCSERV.INI file to dynamically download

resources:

[ReqType : GETRESOURCE]

function
function
function
function
function
function
function
function
function

You can add entries to WIP by including this request type in the DOCSERV.INI file. This

atcw32->ATCLogTransaction
atcw32->ATCLoadAttachment
atcw32->ATCUnloadAttachment

dprw32->DPRSetConfig

dprw32->DPRDecryptLogin

dprw32->DPRDefaultLogin

dprw32->DPRCheckLogin

atcw32->ATCSendFile, RETURNFILE, RETURNFILE, Binary
dprw32->DPRGetResource, RETURNFILE

request type creates a DPW file that triggers the Form Selection window.

[ReqType: GETEMPTYWIP]

function
function
function
function
function
function
function
function
function

function =

function

atcw32->ATCLogTransaction
atcw32->ATCLoadAttachment
atcw32->ATCUnloadAttachment
dprw32->DPRSetConfig
dprw32->DPRDecryptLogin
dprw32->DPRDefaultLogin
dprw32->DPRCheckLogin
atcw32->ATCSendFile, RETURNFILE, RETURNFILE, Binary
dprw32->DPRCreateEmptyWipXML, RETURNFILE
dprw32->DPRFile2Dpw, RETURNFILE
dprw32->DPRIni2XML

Set this request type to determine if a policy number is already being used.

[ReqType :WFIND]

function
function
function

atcw32->ATCLogTransaction
atcw32->ATCLoadAttachment
atcw32->ATCUnloadAttachment

Using the WIP Edit Plug-in

function = dprw32->DPRSetConfig
function = dprw32->DPRDecryptLogin
function = dprw32->DPRDefaultLogin
function = dprw32->DPRCheckLogin
function = dprw32->DPRFindWipRecords

Here are examples of entries in the INI2XML control group:

< INI2XML >

PolicyScript = doc-prog/iwip/sampco/wipfound.asp
GetScript = doc-prog/iwip/sampco/wipdownload.asp
Keyl = FORMMAKER PACKAGE
Key2 = PROPERTY; INLAND MARINE

Option Description

PolicyScript ~ This is a script to run on the web server to check for duplicate policy numbers.

GetScript This is a script to run on the web server to get resources dynamically.

Keyl If a transaction is created, this sets the Keyl value on the Form Selection
window.

Key2 If a transaction is created, this sets the Key2 value on the Form Selection
window.

The WIPCTL.DLL file lets you control the document through an ASP page. The
WIPCTL.DLL file contains the WIP Edit interface. This lets custom web applications
send messages to the WIP Edit plug-in to do things like zoom in or out, advance to the
next page or form, and so on. You must register this component with regsvr32.

This component supports these methods:

cmd (int cmd) ;

GotoForm (BSTR formname, int formno,int pageno) ;
Save (void) ;
FitTowidth(void) ;
FitToWindow (void) ;
ZoomIn (void) ;
ZoomOut (void) ;
ZoomNormal (void) ;
FormPrevious (void) ;
FormNext (void) ;
FormSelect (void) ;
Refresh(void);
FieldTemplat (void) ;
AutoFocus (void) ;
Information(void) ;
FixedEdit (void) ;
FixedPrompt (void) ;
Cascade(void) ;
Tile(void);

Stack (void) ;
StackOnly (void) ;
HelpContents (void) ;
HelpHowTo (void) ;

247

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

Turning on debugging

Automatically sending
the WIPEDIT.FXR file

Saving documents with
invalid certificates

Running the plug-in
outside the browser

248

HelpGlossary (void) ;
UsingHelp (void) ;
PagePrevious (void) ;
PageNext (void) ;
SelectSection(void) ;
ProductionInformation(void) ;
HelpShortcuts (void) ;

Here is a example of ASP code for wipctl:

Function Save
set aspobj = CreateObject ("Wipctl.WipEd.1"
aspobj.Save

set aspobj Nothing

End Function
Here are some things to keep in mind as you use the WIP Edit plug-in:
You can use the Debug option to turn on debugging. This lets you turn on debugging

without having to individually set the environment variable on client machines running
the WIP Edit plug-in.

To turn on debugging using the Debug option, include this option in the wipedit.ini file:

< WIPEdit >
Debug = Yes

The IDS rules that create the DPW file can automatically send the WIPEDIT.EXR file to
the WIP Edit plug-in when these conditions are met in the INI file:

¢ The Download DPWFonts option in the WIP2DPW control group is set to No.
¢ The XRFToken option is not set in the File2DPW control group.

In the sampco.ini file, comment out the XRFToken option, as shown in this example:

< File2DPW >
; XRFToken = mstrres\sampco\deflib\rell02sm.fxr

NOTE:You can only have one installation of the WIP Edit plug-in on a PC.

The WIP Edit plug-in ignores invalid web certificates, such as when the web certificate
has expired. If the certificate is invalid, the system can save the document from the WIP
Edit plug-in with the following INT options:

To begin, download an INI file to the WIP Edit plug-in. For this example, use the
USER.INTI file. Add the following to the configuration specific INI:

< File2DPW>
INIToken = user.ini

The USER.INI file should contain the following.
< ICMLib>

IgnoreInvalidCertificate = Yes

You can run the WIP Edit plug-in in its own window (outside the browser) by changing
the content type header in the WIPEDIT.ASP or WIPEDIT.JSP web page.

Registering the plug-in

Changing values in the
WIP index

Changing the WIP
index field

Using the WIP Edit Plug-in

To run Change the content type header to

Inside the browser Response.ContentType ="application/octet-stream"

Outside the browser Response.ContentType ="application/dpw"

When you run it outside the browser, you must delete the file type setup by registering the
program and manually setting the file type and association.

The installation routine should register the plug-in for you, but if for some reason you
need to register the plug-in, simply run the WIPEDW32 program with no parameters.

Use the UpdateDpwIndex INI option to change values in the WIP index based on session
variables created in the wipedit.jsp or wipedit.asp page. This option will probably always
be used with a customization to the web page to update the WIP index with data from an
external source.

If you need to change a WIP index field with a value that originates in the ASP/JSP page,
you can use the UpdateDPWIndex option to modify the WIP record when the document
is saved. For example, you can use this option to track some other user ID than the login
ID the page prompts for.

The following lines are in the wipedit.asp page. A session variable is created called
SETORIGUSER. This information is passed to IDS in the form of an attachment
variable by the DSI.ProcessQ:

session ("SETORIGUSER") = "testchange"
On Error Resume Next
DSI.ProcessQ 'Execute Request From Attachment

The configuration specific INI must have the following UpdateDpwIndex option:

< UpdateDPWIndex >
OrigUser = #SETORIGUSER

The # character tells the system to get the data from the attachment variable named

SETORIGUSER. Without the #, the WIP index is updated with the text in the INI file.

The DPRIndex2Xml rule reads the UpdateDpwlndex control group and makes changes
in the index portion of the DPW file. When the DPW file is saved, the DPRDpw2Wip
rule updates the WIP index with the change.

You can change the WIP index field in a document from the web page while the
document is being edited by the WIP Edit plug-in. This is mainly used with iDocumaker.
These methods let you change and retrieve the WIP index fields from the current
document:

o SetWipField
* GetWipField
e GetWiplndex

This Visual Basic script sets the DESC field in the WIP index and retrieves it with both
methods.

Dim wvaluel

249

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

Running multiple

instances of the WIP

Edit plug-in

Using WIP Edit with

250

SiteMinder®

Dim wvalue2

set aspobj = CreateObject ("Wipctl.WipEd.1")
aspobj.SetWipField "DESC", "testvalue"

wvaluel = aspobj.GetWipIndex ("DESC")
MsgBox (wvaluel)
aspobj.GetWipField "DESC", wvalue2
MsgBox (wvalue2)

You can have multiple browser windows open, all running the WIP Edit plug-in. Note,
however, that if the web application is not designed for multiple browser access by the
same user, you will still experience problems.

You can get related debugging information when running multiple instances of the WIP
Edit plug-in by setting this environment variable:

WIPCTLDEBUG=Y

The debugging information is placed in the wipctl.log file in the system’s TMP directory
or the directory specified by WIPEDITTMP.

NOTE:While this is not an issue for iDocumaker, some implementations in which
iDocumaker is integrated with other web applications can be affected.

You can use the WIP Edit plug-in with web sites protected by SiteMinder® and with web
sites that use clustered web servers. SiteMinder stores security information in a cookie.
The WIP Edit plug-in looks for this cookie and attaches the cookie information to
requests for resources and the saving of documents.

CONTROLLING THE INTERFACE

The WIPCTL program (WIPCTL.DLL) contains the WIP Edit interface which lets
custom web applications send messages to WIP Edit to do things like zoom in or zoom
out, advance to the next page or form, and so on. This component must be registered with
regsvr32.

NOTE:This information is intended for someone writing ASP or JSP scripts.

The WIPCTL.DLL also includes the CmdWithMessage method which lets someone
writing a script receive a response from the WIP Edit plug-in in that script. The following
table documents the WIPCTL methods and options:

To... Use...

Anchor the data entry area at the top of your screen, instead of ~ FixedEdit(void)
having it move as you move through the various fields.

Anchor the data entry area at the top of your screen, instead of ~ FixedPrompt(void)
having it move as you move through the various fields.

To...

Change data within the form set.

See cmdSetFormsetField on page 256 for more information.

Change the form being edited. The parameters include:
* formname - Name of the form in the form set.

e formno - Instance of the form. This is because a form set
may have multiple forms with the same name.

e pageno - Page within the form.

Change the WIP index field for the current document.

See Changing the WIP index field on page 249 for more
information.

Check required fields.

See BSTR getRequiredFieldName() on page 257 for additional
information.

Decrease the magnification of your form display.

Display additional information about the variable fields in an
image.

Display how to perform specific functions using the various
options, commands, and system tools.

Display multiple form or image windows in layers. The system
stacks the forms one behind another so you see the complete
form set and the name or title of each form.

Display multiple form or image windows on your screen. If
you tile a form set, each window displays the first image of each
form in that form set.

Display multiple form or image windows stacked on top of one
another. You close each top layer display window to reveal

underlying windows.

Display retrieved form sets in Stack mode. Stack Only is the
default display when you retrieve archived form sets.

Display the entire image in the active window. You see the
complete image on one window.

Display the full width of the image in the active window. You
see a complete horizontal display.

Display window for product information.

Document the shortcuts.

Using the WIP Edit Plug-in

Use...

cmdSetFormsetField
(VARIANT fieldName,
VARIANT newValue

GotoForm(BSTR

formname,int formno,int
pageno);

SetWipField

BSTR checkRequiredField()

ZoomOut(void)

Information(void)

HelpHowTo(void)

Cascade(void)

Tile(void)

Stack(void)

StackOnly(void)

FitToWindow(void)

FitToWidth(void)

ProductionInformation(void)

HelpShortcuts(void)

251

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

252

To...

Change data within the form set.

See cmdSetFormsetField on page 256 for more information.

Change the form being edited. The parameters include:
e formname - Name of the form in the form set.

e formno - Instance of the form. This is because a form set
may have multiple forms with the same name.

e pageno - Page within the form.

Change the WIP index field for the current document.

See Changing the WIP index field on page 249 for more
information.

Check required fields.

See BSTR getRequiredFieldName() on page 257 for additional
information.

Decrease the magnification of your form display.

Display additional information about the variable fields in an
image.

Display how to perform specific functions using the various
options, commands, and system tools.

Display multiple form or image windows in layers. The system
stacks the forms one behind another so you see the complete
form set and the name or title of each form.

Display multiple form or image windows on your screen. If
you tile a form set, each window displays the first image of each
form in that form set.

Display multiple form or image windows stacked on top of one
another. You close each top layer display window to reveal

underlying windows.

Display retrieved form sets in Stack mode. Stack Only is the
default display when you retrieve archived form sets.

Display the entire image in the active window. You see the
complete image on one window.

Display the full width of the image in the active window. You
see a complete horizontal display.

Display window for product information.

Document the shortcuts.

Use...

cmdSetFormsetField
(VARIANT fieldName,
VARIANT newValue

GotoForm(BSTR
formname,int formno,int

pageno);

SetWipField

BSTR checkRequiredField()

ZoomOut(void)

Information(void)

HelpHowTo(void)

Cascade(void)

Tile(void)

Stack(void)

StackOnly(void)

FitToWindow(void)

FitToWidth(void)

ProductionInformation(void)

HelpShortcuts(void)

To...

Change data within the form set.

See cmdSetFormsetField on page 256 for more information.

Change the form being edited. The parameters include:
* formname - Name of the form in the form set.

e formno - Instance of the form. This is because a form set
may have multiple forms with the same name.

e pageno - Page within the form.

Change the WIP index field for the current document.

See Changing the WIP index field on page 249 for more
information.

Check required fields.

See BSTR getRequiredFieldName() on page 257 for additional
information.

Decrease the magnification of your form display.

Display additional information about the variable fields in an
image.

Display how to perform specific functions using the various
options, commands, and system tools.

Display multiple form or image windows in layers. The system
stacks the forms one behind another so you see the complete
form set and the name or title of each form.

Display multiple form or image windows on your screen. If
you tile a form set, each window displays the first image of each
form in that form set.

Display multiple form or image windows stacked on top of one
another. You close each top layer display window to reveal

underlying windows.

Display retrieved form sets in Stack mode. Stack Only is the
default display when you retrieve archived form sets.

Display the entire image in the active window. You see the
complete image on one window.

Display the full width of the image in the active window. You
see a complete horizontal display.

Display window for product information.

Document the shortcuts.

Using the WIP Edit Plug-in

Use...

cmdSetFormsetField
(VARIANT fieldName,
VARIANT newValue

GotoForm(BSTR

formname,int formno,int
pageno);

SetWipField

BSTR checkRequiredField()

ZoomOut(void)

Information(void)

HelpHowTo(void)

Cascade(void)

Tile(void)

Stack(void)

StackOnly(void)

FitToWindow(void)

FitToWidth(void)

ProductionInformation(void)

HelpShortcuts(void)

253

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

254

To...

Use...

Execute functions defined in WIPEDIT.RES. WIPEDIT.RES
1s the file that defines the menu for the WIP Edit plug-in. This
is similar to the MEN.RES for AFEMAIN.

Each function has a number that identifies the function. This
is the number that should be used in cmd.

Find out whether a save command was successful from a Java
script.

See cmdGetResponse on page 257 for more information.
Get an overview of the system.

Have the system scroll the form as you move through the fields
on the form. The current field always stays in view. With this
option turned off, it is possible for the field your cursor is in to
not appear on your screen.

Increase the magnification of your form display.

Learn how to use help.

Let someone writing the script receive a message back from the
WIP Edit plug-in in the script. The WIPEDIT.RES function
must provide a response to return. A MEN.RES function must

be written to handle this situation. An example is
RACCheckRequiredFields.

RACCheckRequiredFields checks to see if a function has been
installed that will set up a response to be returned in the
rsptoasp.

This method only works with Visual Basic scripts.

Look up definitions of terms used throughout the system.
Move to the next form.

Move to the next page.

Move to the previous form.

Move to the previous page.

Pass a parameter to a function defined in the wipedit.res file.

See cmdGetResponseWithParm on page 256 for more
information.

Redraw or redisplay your form after making changes.

Retrieve the WIP index field for the current document.

See Changing the WIP index field on page 249 for more
information.

cmd(int cmd);

cmdGetResponse

HelpContents(void)

AutoFocus(void)

ZoomlIn(void)

UsingHelp(void)

cmdWithMessage(int cmd)

HelpGlossary(void)
FormNext(void)
PageNext(void)
FormPrevious(void)

PagePrevious(void)

cmdGetResponseWithParm
(LONG cmd, VARIANT

FieldName)

Refresh(void)

GetWipField

To...

Retrieve the WIP index field for the current document. Works
just like the GetWipField method except it returns the value of
the field instead of setting a parameter.

See Changing the WIP index field on page 249 for more
information.

Return the name of the field that needs data if the result of
checkRequiredFields was False.

See BSTR getRequiredFieldName() on page 257 for more
information.

Return your form to 100% display size.

Return WIP Edit plug-in version information.

See GetVersion on page 257 for more information.

Save the document. This sends the copy of the document back
to the server but it does not close the document.

Select the form in a form set you want to view. This option is
helpful when you are viewing a stacked form set.

Select which page you want to view. This option is helpful
when you are viewing a stacked form set.

View the size and location of variable fields on a form.

Using the WIP Edit Plug-in

Use...

GetWipIndex

BSTR
getRequiredFieldName()

ZoomNormal(void)

GetVersion

Save(void)

FormSelect(void)

SelectSection(void)

FieldTemplat(void)

NOTE:WIPCTL also includes a Terminate method. Do not use this method. The
Terminate method was only included to be consistent with the existing interface.

255

Chapter 5
Customizing iDocumaker, iPPS, and WIP Edit

Example ASP code Here is example ASP code for WIPCTL.

Function Save
set aspobj = CreateObject ("Wipctl.WipEd.1l")
aspobj.Save
set aspobj = Nothing

End Function

Example Visual Basic Here is an example Visual Basic script:

script)
Dim rspmsg

set aspobj = CreateObject ("Wipctl.WipEd.1l"
aspobj.cmdWithMessage 263, rspmsg

set aspobj = Nothing

MsgBox (rspmsg)

cmdGetResponseWith Use this method to pass a parameter to a function defined in the wipedit.res file.
Parm
cmdGetResponseWithParm (LONG cmd, VARIANT FieldName)

This is a generic method that is used with a wipedit.res function.

Parameter Description

cmd The command ID in the wipedit.res file.

Fieldname The name of the field in the form set.

In this example the cmdGetReponseWithParm method is used to get the value of a form
set field and return it to a Java script. First, in the wipedit.res file, add this line:

MENUITEM "RACGetFormField" 263 "racw32->RACGetFieldData"
Here is an example:

{

var rsp;

aspobj = new ActiveXObject ("Wipctl.WipEd.1l") ;

rsp = aspobj.cmdGetResponseWithParm(263, "COMM PROP PREM") ;
alert (rsp) ;

}

cmdSetFormsetField Use this method to change data within the form set.

cmdSetFormsetField (VARIANT fieldName, VARIANT newValue

Parameter Description

fieldName Then name of the field in the form set

newValue The value to change the field to.

This method returns the previous value of the field.

NOTE:If there are multiple fields in the form set with the same name, the system changes
all of the matching names in the form set.

256

Using the WIP Edit Plug-in

Here is an example:

{

var rsp;
aspobj = new ActiveXObject ("Wipctl.WipEd.1l");
rsp = aspobj.SetFormsetField ("COMM PROP PREM", "44");

alert (rsp) ;
}

GetVersion Use this method to return the current WIP Edit plug-in version information in the
following format (a null terminated string separated with semi-colons):

dap-patch;3rdparty patch;accumulated CRC;version
There are no parameters for this method. Here is an example:

<gcript language="JavaScript">

{

aspobj = new ActiveXObject ("Wipctl.WipEd.1") ;
version = aspobj.GetVersion() ;

alert (version) ;

}

</script>

cmdGetResponse The WIP Edit plug-in can send a response back to Java script that indicates the success
or failure of a save operation initiated from the web page. This method lets you find out
whether a save command was successful from a Java script. Here is an example of the
cmdGetResponse method:

function CheckRequiredFields () {
aspobj = new ActiveXObject ("Wipctl.WipEd.1l") ;
var rspmsg = "";
rspmsg = aspobj.cmdGetResponse (262) ;
alert (rspmsg) ;
rspmsg = ""

BSTR If the results of checkRequiredFields was False, use this method to return the name of the

getRequiredFieldName(field that needs data. Here is an example:
)

function CheckFields() {
aspobj = new ActiveXObject ("Wipctl.WipEd.1") ;
var rspmsg = aspobj.checkRequiredField() ;
if (rspmsg == "false")
{

rspmsg = aspobj.getRequiredFieldName () ;
alert (rspmsg) ;

}

else

{
alert("all required fields have data");

257

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

SETTING UP CusSTOM FUNCTIONS

Custom functions let you send a message back to IDS by selecting a menu item. To use a
custom function, you must set them up consistently in several places:

¢ Decide the node name for the custom function. This is used to map the transaction
from the customer INI file and the WIPEDIT.RES file. In this example,
CUSTFUNC is the node name.

e Specify the node name in the INI2XML control group in the customer INI file, as
shown here

< INI2XML >
MakeNode = CUSTFUNC

¢ The information sent back to the IDS is defined as shown here:

< INI2XML:CUSTFUNC >

ReqType = WSTATUS
NewWIP1l.StatusCode = AP

ReqType = WSTATUS
WIPS1.RecordID = #RECNUM

WIPS =1

WIPS1l.Status =W

Config = #CONFIG
GoChange = Yes

PutURL = LOCALHOST
EncryptedLogin = #ENCRYPTEDLOGIN
UserID = #ENCRYPTEDLOGIN
SaveDPWFile = Yes

Script = /doc-prog/iwip/sampco/wipsave.asp

You must define ReqType in the DOCSERV.INI file.

* Make sure the WIPEDIT.RES menu file for the program references the custom
function. The last parameter must match the node name, as shown here:

MENUITEM "&CUSTOMFUNC" 9910 "racw32->RACtoIDS" CUSTOMFUNC"
[ReqType:WSTATUS]

function atcw32->ATCLogTransaction
atcw32->ATCLoadAttachment
function = atcw32->ATCUnloadAttachment
function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

; function = Atcw32->ATCReceiveFile,RF_POSTFILE,RF_POSTFILE, *
function = dprw32->DPRUpdateWipRecords

258

Using the WIP Edit Plug-in

CHANGING THE USER ASSOCIATED WITH A DOCUMENT

You can use the AFEAssignDpw API function to change the user associated with a
document through the WIP Edit plug-in.

When the user selects the assign option, a list of the users that can be assigned to the
document appears. Select the appropriate user and click Ok. The document is saved and
the user ID is assigned.

Here’s how to set up this APIL:

1 Modify the WIPEDIT.RES file, to include the following function. The number 261
can vary, just make sure the number you use is not taken by another line in the

WIPEDIT.RES file:
MENUITEM "sAsssign® 261 "AFEOS2->AFEAssignDpw" "Assign®
2 Modify the DOCSERV.INI file to include these request types:

< ReqgType:WLGNINFO >
function = atcw32->ATCLogTransaction
function = atcw32->ATCLoadAttachment
function = atcw32->ATCUnloadAttachment
function = dprw32->DPRSetConfig
function = dprw32->DPRDecryptLogin
function = dprw32->DPRDefaultLogin
function = dprw32->DPRCheckLogin
function = dprw32->DPRGetNewLogin

3 Modify the configuration specific INI to include the following options. The values
for these INI options vary, based on your implementation.

< INI2XML >
ReLoginScript= doc-prog/iwip/sampco/wiprelogin.asp
< File2DPW >
DBF = D:\docservl\userinfo\USERINFO.DBF
MDX = D:\docservl\userinfo\userinfo.mdx

SENDING PASSWORDS

IDS can use the DPRIni2Xml rule to pass an encrypted password to the WIP Edit plug-
in to provide authentication when saving data back to IDS.

< INI2XML >
HTTPUserID
HTTPPassword = encryptedpassword

encrypteduserID

You can also use the cryruw32 program to create an encrypted value that can be
understood by the WIP Edit plug-in. This lets you avoid putting passwords in the INI file
where they can easily be read. For instance, if you enter this from the command line:

cryruw32.exe password
you will see the output similar to the following:

Encrypted string (2XAUnkxUY1x7i5AnQ4m4EIm00)

259

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

260

Specifying the user
dictionary

REQUESTING A DICTIONARY

The WIP Edit plug-in can request a user spelling dictionary from IDS when running a
spell check.

Use the DPRINI2XML rule to calculate a CRC (Cyclic Redundancy Check) that will be
stored in the DPW file. This line will calculate the CRC of a spelling dictionary specified
by the user ID:

< INI2XML >
CalcCRC = d:\docservl\spell\#USERID.tlx!TLX

To update the spelling dictionary if the WIP Edit plug-in has changed it, use the
DPRPutResource rule:

[RegType:PUTRESOURCE]
function = atcw32->ATCLogTransaction
function = atcw32->ATCLoadAttachment
function = atcw32->ATCUnloadAttachment
function = dprw32->DPRSetConfig
function = dprw32->DPRDecryptLogin
function = dprw32->DPRDefaultLogin
function = dprw32->DPRCheckLogin
function = dprw32->DPRPutResource

Use the UserDict option to specify the name of the dictionary file you want to use in the
WIP Edit spell check process. If you omit this option, the spell dictionary file name is
based on the user ID.

To begin, download an INI file to the WIP Edit plug-in. For this example, use USER.INI.
Add the following to the configuration-specific INI file:

< File2DPW >
INIToken = user.ini
< Spell >
UserDict = dictionary.tlx

Using the WIP Edit Plug-in

TRAPPING EVENTS

The options to control the trapping of events were implemented because web pages that
use anchor tags cause WIP Edit to exit prematurely. If your web page contains anchor tags
you may need these options.

These INT options are in the INI file downloaded to WIP Edit, usually named
WIPEDIT.INI The INI file is specified in the INIToken option, as shown below:

< INI2XML >

INIToken = wipedit.ini
< WIPEdit >
DisableRightClick =
TrapEvents =
TrapOnlyQuitEvent =
Option Description

DisableRightClick Enter Yes to turn off the right-click menu. The default is No.

TrapEvents Enter No to turn off event trapping. This makes it easier to integrate
with iPPS and iDocumaker. The default is Yes.

TrapOnlyQuitEvent Enter Yes to tell the WIP Edit plug-in to ask the user to save the
document when closing the browser, but not when navigating to
another page. The default is No.

If you set the TrapEvents option to Yes, the TrapOnlyQuitEvent
option has no affect.

NOTE:Whether the document is saved or whether you are prompted to save the
document depends on the following options in the WIPEDIT.INI file. If you set
the OverridePrompt option to Yes, you are not prompted when the plug-in
closes. The default is No.

< WIPSave >

OverridePrompt =
If you want WIP Edit to automatically save the document. Set the
OverridePrompt option to Yes and set the SaveOnExit option to Yes.
< WIPSave >

SaveOnExit =

The default for the SaveOnExit option is No.

TRACKING SESSION INFORMATION

The WIP Edit plug-in will let a web application specify data that will be sent back to the
web server when a document is saved. This lets iPPS or iDocumaker send session
information to the web server/IDS when saving data or getting resources.

The DPRPrintDpw rule looks for groups of attachment variables to add information to
the DPW file. This information is used by WIP Edit to add data to the GETRESOURCE
and WIPSAVE request.

261

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

Use HTTPFORMDATA variables to add multiform post data:

Variable Description

HTTPFORMDATA The number of variables to add multiform post data
HTTPFORMDATA#.NAME The name of the variable.

HTTPFORMDATA#.VALUE The value of the variable.

Use HTTPQUERYSTRING variables to add the query string:

Variable Description
HTTPQUERYSTRING The number of variables to add to the query string
HTTPQUERYSTRING#.NAME The name of the variable.

HTTPQUERYSTRING#.VALUE The value of the variable.

Use the HTTPHEADER variables to add the HTTP header:

Variable Description
HTTPHEADER The number of variables to add to the HTTP header
HTTPHEADER#.NAME The name of the variable.

HTTPHEADER#.VALUE The value of the variable.

Use the HTTPCOOKIE variables to add the cookie header:

Variable Description
HTTPCOOKIE The number of variables to add to the cookie header
HTTPCOOKIE#.NAME The name of the variable.

HTTPCOOKIE#.VALUE The value of the variable.

Examples Here are some examples:

To add multipart form data to the HTTP request the following attachment variables were
added to the request that creates the DPW file:

HTTPFORMDATA = 1
HTTPFORMDATAL .NAME = nameformdatal
HTTPFORMDATAL.VALUE = valueformdatal

The resulting line in the HTTP request would look like this:

----------------------------- 7d32£01b1003de
Content-Disposition:form-data; name="nameformdatal"

262

Using the WIP Edit Plug-in

valueformdatal

To add data to the query string for the HTTP request these attachment variables were
added to the request that creates the DPW file.

HTTPQUERYSTRING 1
HTTPQUERYSTRING1.NAME = SESSIONID
HTTPQUERYSTRINGL.VALUE = 8010e572-001b-43e3-98f4-elb0e0116933

In the resulting line in the HTTP request, HTTPQUERYSTRING adds the following
information to the URL. Here is an example:

/doc-prog/iwip/sampco/wipsave.asp?SESSIONID= 8010e572-001b-43e3-
98f4-e1b0e0116933 HTTP/1.1
To create a header for the HTTP request these attachment variables were added to the
request that creates the DPW file:

HTTPHEADER = 1
HTTPHEADER1.NAME = someheaderl
HTTPHEADER1.VALUE = someVALUE1l

In the resulting line in the HTTP request, HTTPHEADER adds information to the
HTTP header. The following example is from a save request:

someheaderl: someVALUEL

To add data to the cookie header the HTTP request the following attachment variables
were added to the request that creates the DPW file:

HTTPCOOKIE = "1"
HTTPCOOKIE1l.NAME = "cookie"

HTTPCOOKIELl.VALUE "Toolfloat=false; Toolbottom=false;
IX=%E9%C4%92%

08%C9%D3x0%D9%2D%AF%D3%A0%AC%26%15%7ESFA%23M%01%DI%FDt%23%A2%13%7E%
CAN%95%80%B2%

E5cC%0Enj%E7%1E%E4; ASPSESSIONIDACRTQSCA=EGPPLAECPNDMGOIIMANOAPPB"

Th

o

resulting cookie header in the HTTP request would look like this:

Cookie: Toolfloat=false; Toolbottom=false;
IX=%E9%C4%92%08%CO9%D3x0%DI%2D%AF%D3%A0%AC%26%15%7TESFA%23M%01%DI9%FDt
%23%A2%13%7TESCAN%95%80%B2%E5cC%0ENj%E7%1E%E4 ;
ASPSESSIONIDACRTQSCA=EGPPLAECPNDMGOIIMANOAPPB;
ASPSESSIONIDQSBCQTCA=JHCKEELAANHOGDGAPMABIHDL

SETTING UP PRINTERS

This topic tells you how to set up printers for the WIP Edit plug-in. The WIP Edit plug-
in gets the fonts it needs from Docupresentment, using the GETRESOURCE request.
This helps insure better fidelity of printed copies by using PCL or PostScript printers.

To use set up printers, make sure...

e The WIPEDIT.RES file includes the print option.

e The WIPEDIT.INI file has the print types set up in the same manner as those in
Documaker Workstation or PPS.

263

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

264

NOTE:The INITOKEN option in the File2Dpw control group of the CONFIG.INI file

must be set before options in the WIPEDIT.INI file can take effect.

The GETRESOURCE type is in the docserv.xml or DOCSERV.INI file.

The FontLib option in the MasterResource control group is set in the CONFIG.INI
file.

Here is an example of the WIPEDIT.RES file:

POPUP "&Print" 1070 "Print"

BEGIN

MENUITEM "Pri&nt Formset..." 1065 "NULL" "NULL"
MENUITEM "&Form..." 1066 "NULL" "NULL"
MENUITEM "Pa&ge..." 1067 "NULL" "NULL"

END

Here are examples for the WIPEDIT.INI file:

:PostScript examples.

< PrtType:PST >
DownloadFonts = Yes,Enabled
Module = PSTW32
PrintFunc = PSTPrint
Resolution = 300

; SendOverlays = Yes,Enabled
SendOverlays = No,Disabled

< PrtType:PXL >
DownloadFonts = Yes,Enabled
Module = PXLW32
PageNumbers = Yes
PrintFunc = PXLPrint
SendOverlays = No, Enabled

< PXL >
Device = \\Atl1ldcO1l\YEL_HP8000_A
DownloadFonts = Yes
Module = PXLW32
PrintFunc = PXLPrint

< PrtType:PCL >
DownloadFonts = Yes,Enabled
Module = PCLW32
MultipleCopies = Yes
PrintFunc = PCLPrint
SendOverlays = No,Enabled

Here is an example the docserv.xml file:

<section name="ReqType:GETRESOURCE">

<entry name="function">atcw32->ATCLogTransaction</entry>
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>

<!-- entry name="function">dprw32->DPRDecryptLogin</entry -->
<!-- entry name="function">dprw32->DPRDefaultlLogin</entry -->
<!-- entry name="function">dprw32->DPRCheckLogin</entry -->

Using the WIP Edit Plug-in

<entry name="function">atcw32-
>ATCSendFile, RETURNFILE, RETURNFILE, Binary</entry>

<entry name="function"<dprw32->DPRGetResource,RETURNFILE</entry>
<l-- -->

</section>
Here is an example of the DOCSERV.INI file:

[ReqgType : GETRESOURCE]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = atcw32->ATCSendFile, RETURNFILE,RETURNFILE, Binary
function = dprw32->DPRGetResource, RETURNFILE

Here is an example of how you would set the FontLib option:

< MasterResource >
FontLib = mstrres\sampco\fmres

For more information on setting printing options, see the Documaker Administration
Guide or the Documaker Workstation Administration Guide.

265

Chapter 5

Customizing iDocumaker, iPPS, and WIP Edit

266

Chapter 6

Using the DP.DLL
ActiveX Interface

DP.DLL is a COM object that can be used by ASP client
applications to communicate with IDS via SOAP
messages and the MQSeries message bus without an
IDS client. It supports the same SOAP message format
as IDS, including rowsets and file attachments.

Connection information can come from an
MQSERVER environment variable, a Client
Connection Definition Table (CCDT), or from
properties in an XML configuration file.

You can use DP.DLL as a standalone client DLL to
communicate with a remote IDS via MQSeries and
SOAP attachments using the Microsoft IMessage
interface. This is supported on Microsoft Windows 2000
and later platforms.

NOTE:The DP.DLL COM object is not distributed
with IDS. To receive this additional feature,
contact your sales representative.

This appendix includes information on the following
topics:

* Requirements on page 268

* Setting Up the Configuration File on page 269
* Properties on page 271

* Methods on page 272

* Examples on page 281

267

Chapter 6

Using the DP.DLL ActiveX Interface

REQUIREMENTS

268

To use the DP.DLL ActiveX Interface, you must have the following:

SOAP Toolkit version 2.0 (MSSMO.dIl)

MSXML version 4.0

CDO for Windows 2000 or later

¢ MQSeries. Client installation (version 5.3 or later is required for SSL connections)
You must have these default directories under the virtual directory:

e Cache (used to write all input and output files)

e Debug (used to write all debug files)

SETTING UP THE
CONFIGURATION
FILE

Setting Up the Configuration File

You must have an XML configuration file called INLXML. Place this file under the virtual
directory. It can contain these properties:

Property

Description

QUEUEMANAGER

RESULTQ

REQUESTQ

CHANNEL

CONNECTION

MSGLEN

SSLCIPHERSPEC

SSLPEERNAME

SSLCLIENTAUTH

The name of the queue manager.
The name of the input queue.
The name of the output queue.

The channel name, should correspond to the name of a server
connection channel, used to create a matching client connection
channel at run time.

The IP address and port number of the box hosting the queue
manager and server connection channel.

The maximum message length of a message. Be sure to configure the
queue manager and server connection to support the same message
length. This property is optional. The default max message size is
4MB.

The cipher specification (encryption and hashing algorithm) that
should be used in SSL connections. Should correspond to the
Cipherspec chosen for the server connection channel when SSL
connections were enabled for it. This property is only required when
establishing connections to a queue manager configured for SSL.

The DN (Distinguished Name) of the subject in the SSL certificate
used by the queue manager. Used to verify the client application is
connecting to the correct queue manager. This property is only
required when establishing connections to a queue manager
configured for SSL and when client applications desire to verify the
DN of the certificate used by the queue manager - enabling this option
forces the queue manager to send its certificate to the client for
verification of the DN as part of the SSL handshake.

This property is only required when establishing connections to a
queue manager configured for SSL and when client applications desire
to verify the certificate used by queue manager - enabling this option
forces the queue manager to send its certificate to the client for
verification of the DN as part of the SSL handshake.

269

Chapter 6

Using the DP.DLL ActiveX Interface

Here is an example of a configuration file:

<?xml version="1.0" encoding="UTF-8" ?>
<GROUPS>

<GROUP NAME="MQSERIES">
<QUEUEMANAGER>queue_manager</QUEUEMANAGER>
<REQUESTQ>REQUESTQ</REQUESTQ>
<RESULTQ>RESULTQ</RESULTQ>
<CHANNEL>SSLCHANNEL1</CHANNEL>
<CONNECTION>X.X.X.X(1414)</CONNECTION>
<MSGLEN></MSGLEN>

<SSLCIPHERSPEC>RC4_MD5_US</SSLCIPHERSPEC>

<SSLPEERNAME>CN=ssl_gmgr, C=US, S=GA, L=Atlanta, O=Acme, Co.,
OU=PD</SSLPEERNAME>

<SSLCLIENTAUTH>Y</SSLCLIENTAUTH>
</GROUP>
</GROUPS>

NOTE: If the MQSERVER or MQCHLLIB and MQCHLTAB system environment
variables are specified, the system uses them to derive the connection
information instead of using the property values in the XML configuration file.

Keep in mind...
e SSL is only supported in MQSeries version 5.3 or later.

e When using SSL, be sure to first give the IIS account read permission to the key.sto
file (the SSL key repository).

e The IIS account must have access to the following registry keys to send the client
certificate to the queue manager when the following SSL options are enabled in the
server connection channel. Otherwise, WebSphere MQ issues error code 2193
complaining the client application did not send the certificate to the queue manager
for verification:

Registry Keys:

HKEY_USERS\ .Default\Microsoft\Software\SystemCertificates\Root
HKEY_ USERS\.Default\Microsoft\Software\SystemCertificates\trust
HKEY_USERS\ .Default\Microsoft\Software\SystemCertificates\CA
HKEY_USERS\ .Default\Microsoft\Software\SystemCertificates\my

The easiest thing to do is to configure IIS Out-Of-Process Applications under
'Component Services' mmc snap/in to run under an identity that has permissions to
these keys and restart IIS. Alternatively, the two options specified below can be
disabled in the server connection channel to avoid requiring client applications send
their certificate for verification as part of the SSL handshake.

Server Connection Channel Options:

Only Accept Certificates with Distinguished Names matching these values.’
Always Authenticate parties initiating connections to this channel definition.’

270

Properties

PROPERTIES The DP.DLL ActiveX interface includes these properties:

Property

Description

Request

Result

ErrMsg

RC

bDebug

Expires

TimeOut

ShowAtt

GUID

CleanUplnterval

OutputBuffer

InputBuffer

Type: Collection

Contains request name/value pairs for a transaction.

Type: Collection

Contains result name/value pairs for a transaction

Type: String

Contains an error description of the last error encountered in the MQSeries
APIs.

Type: Integer

Can return either zero (0) for success or one (1) for failure for the last

MQSeries API Call in DP.DLL.

Type: Boolean

Can be set to one (1) or True or zero (0) or False. Used to write the inbound
and outbound SOAP attachments and XML form sets to disk. Also used to
enable tracing throughout DP.dIL. Tracing output goes to trace.txt file
located on the root context of the web application.

Type: Long

Used to set the time in minutes a message will exist in the queue before it is

removed by MQSeries.

Type: Long
Used to set the time the MQSeries MQGet API will wait for a message
when attempting to retrieve a message from the queue.

Type: Boolean

Can be one (1) or True or zero (0) or False. Used to display the request and
result collections on an ASP page for debugging purposes.

Type: String
Contains the unique message identifier for a SOAP message. Used in
putMsg and getMsg calls in order to match a request to a response.

Type: Long
Contains the clean up interval of the cache. Always set to three or four times

the session expiration time in order to avoid a conflict. Set the time in
minutes.

Type: String
Contains the outgoing SOAP attachment before calling putMsg.

Type: String
Contains the incoming SOAP attachment retrieved by getMsg call.

271

Chapter 6

Using the DP.DLL ActiveX Interface

272

METHODS

The DP.DLL ActiveX Interface includes these methods:

AddNameValuePair on page 273
Bin2Unicode on page 273
CleanCache on page 273

GetMsg on page 274
GetUniqueString on page 274
Initialize on page 274
InitializeDefaults on page 275
ProcessTrn on page 275

PutMsg on page 275
ReadIniOptions on page 276
RequestValue on page 276
ResultValue on page 277

SetGUID on page 277
SOAPAddAttachment on page 277
SOAPGetAttachment on page 278
SOAPGetAttachmentAsBuffer on page 278
SOAPLoadAttachment on page 278
SOAPUnloadAttachment on page 279
Terminate on page 279

Trace on page 279

Trace on page 279

WriteBinFile on page 280
WriteToLog on page 280

Syntax

Parameters

Syntax

Parameters

Syntax

Methods

ADDNAMEVALUEPAIR

Use this method to add name/value pairs from a Session, Form, or QueryString
Collection to the request collection.

AddNameValuePair (Name, Value)

Parameter Description

Name The index name of the name/value pair.

Value The value of the name/value pair.

See Example 1 on page 281 and Example 2 on page 283.

BIN2UNICODE

Use this method to convert a binary string into a Unicode string.

Bin2Unicode (sABSTR)

Parameter Description

sABSTR A binary string.

CLEANCACHE

Use this method to read every record in the random access file:
APPI,_PHYSICAL PATH & "log.db"

and compare its date and time stamp to the CleanUplnterval property.

CleanCache

If the time difference exceeds the interval, the method deletes the record from the log,
removes the file from the cache, and marks the record as deleted so the same record can
be used again by the WriteToLog method.

273

Chapter 6

Using the DP.DLL ActiveX Interface

274

Syntax

Parameters:

Syntax

Syntax

Syntax

FILEEXISTS

Use this method to see if a file exists.

FileExists (FileName)

This method returns True if the file exists, otherwise False.

Parameter Description

FileName Enter the full file name of the file to check.

See Example 1 on page 281.

GETMSG

Use this method to retrieve a SOAP message from the result queue into the InputBuffer
property.

GetMsg

This method expects the TimeOut and GUID properties to be set. This method call is

only necessary when processing a transaction by calling the individual methods instead of
calling the ProcessTrn method. This method returns zero (0) for success or one (1) for

failure.

See Example 2 on page 283.

GETUNIQUESTRING

Use this method to return a unique identifier string.

GetUniqueString

See Example 2 on page 283.

INITIALIZE

Use this method to connect to the queue manager and open the input and output queues.

Initialize

Make sure the InitializeDefaults and ReadIniOptions methods are called first to set the
default MQ objects and connection properties. This method call is only necessary when
you are processing a transaction by calling the individual methods instead of calling the
ProcessTrn method.

This method returns zero (0) for success or one (1) for failure.

See Example 2 on page 283.

Syntax

Syntax

Syntax

Methods

INITIALIZEDEFAULTS
Use this method to initialize the MQSeries defaults.

InitializeDefaults

Call this method before any other method calls. It is only required if processing a
transaction by calling the individual methods instead of calling the ProcessTrn method.

See Example 2 on page 283.

PROCESSTRN

Use this method to:

* Initialize the MQSeries default settings.

* Read all connection properties from the INLXML file.

* Initialize the MQSeries connection and open the queues for input and output.
* Generate a message ID to correlate a request with a response message.

* Generate the SOAP request message from the request collection.

e Put the SOAP request message in the request queue by message ID.

e Retrieve the result SOAP message from the result queue by message ID.
¢ Unload the result SOAP message into the result collection.

* Close the queues and disconnect the queue manager.

ProcessTrn

See Example 1 on page 281.

PutMsaG

Use this method to place a SOAP message in the request queue.

PutMsg

This method expects the GUID and OutputBuffer properties to be set. This method call
is only necessary when you are processing a transaction by calling the individual methods
instead of calling the ProcessTrn method. This method returns zero (0) for success or one
(1) for failure.

See Example 2 on page 283.

275

Chapter 6

Using the DP.DLL ActiveX Interface

276

Syntax

Syntax

Parameters

READINIOPTIONS

Use this method to read these options from the INLXML file located in the root context
of the web application:

« QUEUEMANAGER
« RESULTQ REQUESTQ
« CHANNEL

+ CONNECTION

« MSGLEN

+ SSLCIPHERSPEC

+ SSLPEERNAME

« SSLCLIENTAUTH

ReadIniOptions

Always call this method immediately after InitializeDefaults method to set the connection
properties before you call the Initialize method. This method call is only necessary when
you are processing a transaction by calling the individual methods instead of calling the
ProcessTrn method.

See Setting Up the Configuration File on page 269 for a description of each property.
See Example 2 on page 283.

REQUESTVALUE

Use this method to return a value in the request collection name/value pair, found by
Namelndex.

RequestValue (NameIndex)

This method returns an empty string if the name/value pair is not found.

Parameter Description

Namelndex The name index of the name/value pair in the request collection.

See Example 1 on page 281.

Syntax

Parameters

Syntax

Syntax

Parameters

Methods

RESULTVALUE

Use this method to returns a value in the result collection name/value pair, found by the
Namelndex parameter.

ResultValue (NameIndex)

This method returns an empty string if the name/value pair is not found.

Parameter Description

Namelndex The name index of the name/value pair in the result collection.

See Example 1 on page 281.

SETGUID

Use this method to set the message ID that should be used for a request/response
transaction.

SetGUID

This method call is only necessary when you are processing a transaction by calling the
individual methods instead of calling the ProcessTrn method.

See Example 2 on page 283.

SOAPADDATTACHMENT

Use this method to add a file as a SOAP attachment to the request message.

SOAPAddAttachment (FileName, ID, Type)

Parameter Description

FileName The full file name of the file to add as an attachment.

ID The unique identifier for the file attachment.
Type The media type and transfer encoding type for the attachment. You can choose
from TEXT or BINARY

Always call the SOAPAddAttachment method before calling the SOAPLoadAttachment
method.

See Example 1 on page 281.

277

Chapter 6

Using the DP.DLL ActiveX Interface

Syntax

Parameters

Syntax

Parameters

Syntax

278

SOAPGETATTACHMENT

Use this method to retrieve a SOAP attachment from the result message as a file written

to disk.

SOAPGetAttachment (FileName, ID)

Parameter Description

FileName The full file name of the file that will be unloaded.

ID The unique identifier for the file attachment in the SOAP message.

This method returns True if the attachment was found, otherwise, False.

See Example 1 on page 281.

SOAPGETATTACHMENTASBUFFER

Use this method to return a buffer containing the attachment or an empty string if the
attachment was not found.

SOAPGetAttachmentAsBuffer (ID)

The method returns a SOAP attachment as a string buffer.

Parameter Description

ID The unique identifier for the file attachment in the SOAP message.

SOAPLOADATTACHMENT

Use this method to convert the request collection into a SOAP message.

SOAPLoadAttachment

This method expects the request collection to be set through AddNameValuePair method
calls. The method expects file attachments to be set through the SOAPAddAttachment
method calls. This method sets the OutputBuffer property.

This method call is only necessary when you are processing a transaction by calling the
individual methods instead of calling the ProcessTrn method.

See Example 2 on page 283.

Methods

SOAPUNLOADATTACHMENT
Use this method to extract the SOAP message from the InputBuffer property and set the

result collection.

Syntax SOAPUnloadAttachment

This method call is only necessary when you are processing a transaction by calling the
individual methods instead of calling the ProcessTrn method.

See Example 2 on page 283.

TERMINATE
Use this method to close the input and output queues and disconnect from the queue

manager.

Syntax Terminate

This method call is only necessary when processing a transaction by calling the individual
method instead of calling the ProcessTrn method. This method returns zero (0) for
success or one (1) for failure.

See Example 2 on page 283.

TRACE

Use this method to write the date/time stamp, including milliseconds along with the
contents of a buffer to a trace log location defined as:

ASP.Server.MapPath ("trace.txt")
Syntax Trace (Buffer)

Parameters

Parameter Description

Buffer A string buffer that contains the information you want written to the log.

UNICODE2BIN

Use this method to convert a Unicode string into a binary string.
Syntax Unicode2Bin (str)

Parameters

Parameter Description

str A Unicode string.

279

Chapter 6

Using the DP.DLL ActiveX Interface

Syntax

Parameters

Syntax

Parameters

280

WRITEBINFILE

Use this method to write the contents of a file to a browser.

WriteBinFile (FileName)

Parameter Description

FileName The full file name of the binary file to write to the browser.

See Example 2 on page 283.

WRITETOLOG

Use this method to write entries into the cleanup log.

WriteToLog (FileName)

Each entry contains the full path and file name of a file written to the cache directory. The
path and name of the log file is:

APPL_PHYSICAL PATH & "log.db"

Each entry contains the date and time stamp and a deleted flag initially set to False. The
system uses the first record marked as deleted in the log as the record place for the new
record to save space.

Parameter Description

FileName Full file name of the file to write to the cleanup log.

See also the CleanCache method and CleanUplnterval property.

Examples

EXAMPLES Here are some examples that show you how to use the DP.DLL ActiveX Interface
methods.

Example 1 This example uses the ProcessTrn method to send and receive a request and reply to and
from IDS:

1 This HTML page submits a request to an ASP page:

<html>

<head>

</head>

<body>

<form name=submitReq action="ProcessTrn_Example.asp" method=post>
<input name="GROUP1" value="GENERAL LIABILITY" type=hidden>
<input name="GROUP2" value="APPLICATION" type=hidden>

<input name="CONFIG" value="AMERGEN" type=hidden>

<input name="USERID" value="DOCUCORP" type=hidden>

<input name="PASSWORD" value="DOCUCORP" type="hidden">
<input name="PASSWORDENCRYPTED" type=hidden value="NO">
<input name="ARCEFFECTIVEDATE" wvalue="20020819" type=hidden>
<input name="PRINTPATH" type=hidden value="Output\">

<input name="PRTTYPE" value="PDF">

<input name="REQTYPE" value="FRMPBPRTTEST">

<input type=submit name="btnSubmit" value="submit">

</form>

2 This ASP page calls the ProcessTrn method to send/receive a request/response to/
from IDS:

<

o°

Set DP = gerver.CreateObject ("DP.IDSMessage")
DP.ShowAtt = 0
DP.bDebug = 1

For i=1 to Request.Form.Count
DP.AddNameValuePair Request.Form.Key (i), Request.Form(i)

Next

VirtualPath = Request.ServerVariables ("APPL_PHYSICAL_PATH") &
"Cache\"

OutputFormset = VirtualPath & "OutputFormset.xml"
DP.SOAPAddAttachment OutputFormset, "ATC XMLFORMSET", "BINARY"

DP.ProcessTrn ()

File = getFilename (DP.ResultValue ("PRINTFILE"), "\")
FullFileName = VirtualPath & File

If (DP.SOAPGetAttachment (FullFileName, "OUTFILE")) Then

Set DP = Nothing
Session("File") = FullFileName
Response.Redirect "Print.asp"
Else
Response.Write "Error encountered retrieving file!™"

281

Chapter 6

Using the DP.DLL ActiveX Interface

Set DP = Nothing
End 1if

function getFileName (sFile, delimiter)

getFileName = Mid(sFile, InstrRev(sFile, delimiter,
len(sFile))

end function

%>

3 Then, this ASP print page appears:

<

o°

File = Session("File")

set DP = Server.CreateObject ("DP.IDSMessage")

DP.WriteBinFile (File)

set DP = Nothing

o°
\%

282

-1)+1,

Examples

This example shows how to use the individual APIs to send and receive requests and

replies to and from IDS:

1 This HTML page sends a request to an ASP page:

<html>
<head>
</head>
<body>

<form name=submitReq action="APIs_FExample.asp" method=post>
<input name="GROUP1" value="GENERAL LIABILITY" type=hidden>

<input name="GROUP2" value="APPLICATION" type=hidden>
<input name="CONFIG" value="AMERGEN" type=hidden>
<input name="USERID" value="DOCUCORP" type=hidden>

<input name="ARCEFFECTIVEDATE" value="20020819" type=hidden>

<input name="PRINTPATH" type=hidden value="Output\">
<input name="PRTTYPE" value="PDF">

<input name="REQTYPE" value="FRMPBPRTTEST">

<input type=submit name="btnSubmit" value="submit">
</form>

2 This ASP page calls the individual functions to send and receive requests and

responses to and from IDS:

<

o°

Set DP = Server.CreateObject ("DP.IDSMessage")
DP.ShowAtt = 0

DP.bDebug = 1

DP.Expires = 300

DP.TimeOut 60

For i=1 to Request.Form.Count

DP.AddNameValuePair Request.Form.Key (i), Request.Form(i)

Next

DP.InitializeDefaults
DP.ReadINIOptions
DP.Initialize

if DP.RC <> 0 then
Response.Write DP.ErrMsg

end if

GUID = DP.GetUniqueString
DP.SetGUID (GUID)

VirtualPath = Request.ServerVariables ("APPL_PHYSICAL_PATH") &
"Cache\"
OutputFormset = VirtualPath & "OutputFormset.xml"

283

Chapter 6

Using the DP.DLL ActiveX Interface

DP.SOAPAddAttachment OutputFormset, "ATC XMLFORMSET", "BINARY"
DP.SOAPLoadAttachment

DP.PutMsg

DP.GetMsg

DP.SOAPUnloadAttachment

DP.Terminate

File = getFilename (DP.ResultValue ("PRINTFILE"), "\")
FullFileName = VirtualPath & File

If (DP.SOAPGetAttachment (FullFileName, "OUTFILE")) Then
Set DP = Nothing
Session ("File") = FullFileName

Response.Redirect "Print.asp"

Else

Response.Write "Error encountered retrieving file!™"
Set DP = Nothing

End 1if

function getFileName (sFile, delimiter)

getFileName = Mid(sFile, InstrRev(sFile, delimiter, -1)+1,
len(sFile))

end function

o°
\%

2.3Asp print page:

<

o°

File = Session("File")

set DP = Server.CreateObject ("DP.IDSMessage")

DP.WriteBinFile (File)

set DP = Nothing

o°
\2

284

Appendix A
System Files

The following pages list and explain the various files
which comprise the Internet Document Server. These
are the files installed on your computer when you install
the Internet Document Server and its various bridges.

This includes information about the following:
* IDS Configuration Files on page 286
* Sample Output Files on page 289

285

Appendix A

System Files

IDS
CONFIGURATION
FILES

Docserv.xml file format

286

The Internet Document Server and its bridges use the following INI files:

File Used for

fapcomp.ini System tools, such as the Font Manager

docserv.xml Internet Document Server settings

docclient.xml IDS client settings

dsi.ini custom client programs written using VB, Java, and so on, which call DSI
APILs.

dap.ini the various bridges

(resonrce).ini the various libraries

Since the server must start before a client can begin processing, the docserv.xml file is read
first.

The same option can be defined in both the DAP.INI file and in the various INI files for
your resources. When this happens, the settings in the resource INI files take precedence
over those in the DAP.INI file.

Prior to IDS version 2.0, the configuration file was a simple INI file (docserv.ini). For IDS
2.0, the format changed to an XML file. This gives you more control over configuration
options.

In the INI format, you could only have one level of control groups (sections), with entries
under each group or section. Using the XML format, you can now have multiple levels of
subsections under a section for better grouping. Options relevant to the passing of
messages can be, for example, grouped under a messaging subsection.

The general format of the docserv.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<gection name="DocumentServer">
<entry name="FileWatchTimeMillis">10001</entry>
<entry name="FilePurgeTimeSeconds">3600</entry>
<entry name="FilePurgeList">purgeme.properties</entry>
</section> <!-- DocumentServer -->
<gection name="BusinessLogicProcessor">
<gection name="MultiThreadedRequests">
<entry name="Request">ECH</entry>
</section> <!-- MultiThreadedRequests section -->
<gection name="messaging">
<gection name="http">
<entry name="port">49152</entry>
</section> <!-- http section -->
<section name="timed">
<entry name="AutoRunIntervalSeconds">3600</entry>
<gection name="Timers">
<entry name="XYZ">Tue 3:27:01 PM</entry>
</section>
</section> <!-- timed section -->

IDS Configuration Files

<gection name="gqueue">

<entry
name="queuefactory.class">com.docucorp.messaging.mgseries.DSIMQMess
ageQueueFactory</entry>

<!-- Settings for MQSeries connection -->

<entry name="mg.queue.manager">queue.manager</entry>
<entry name="mqg.inputqueue.name">requestg</entry>
<entry name="mg.inputqueue.maxwaitseconds">5</entry>
<entry name="mg.outputqueue.name">resultg</entry>
<entry name="mqg.tcpip.host">10.1.10.1</entry>
<entry name="mg.queue.channel">queue_channel</entry>
<entry name="mqg.tcpip.port">1414</entry>

</section> <!-- qgueue section -->
</section> <!-- messaging section -->
</section> <!-- BusinessLogicProcessor -->

<gection name="ReqType:INI">
<entry name="function">irlw32->;IRLInit</entry>
<entry name="function">dprw32->;DPRInit</entry>

<!-- Following rule now initted in THREADINI -->
<!-- entry name="function">DSICoRul->;Init</entry -->
<!-- entry name="function">pobrs->;POWInit</entry -->

<entry name="function">Tpdw32->;TPDInitRule</entry>
</section>
<gection name="ReqType:THREADINI">
<entry name="function">atcw32->;ATCLoadAttachment</entry>
<entry name="function">atcw32->;ATCUnloadAttachment</entry>
<entry name="function">DSICoRul->;Init</entry>

<entry name="function">DSICoRul -
>; Invoke,DocuCorp_IDS_DPRCo.DPR->;DPRCoLoginInit</entry>

</section>
<gection name="ReqType:ECH">

<entry
name="function">java;com.docucorp.ids.rules.EchoTest;;transaction;e
cho;</entry>
</section>
</configuration>

The file begins with the line indicating it’s an XML file. Under that is the configuration
element, the root element of the XML. Inside the configuration element are several section
elements, each with a name attribute to identify the section. Some section names, such as
REQTYPE:INT are the same as in IDS version 1.

A section may just have several enry elements inside it. Each entry has a name attribute to
identify it, and the text in between the <entry> and </entry> tags is the value of the
entry.

A section may also have other section elements inside of it, for example the

BusinessLogicProcessor section. The BusinessLogicProcessor section has subsections
pertaining to getting requests to process and sending results back to clients.

In this document any configuration settings will list the section, and optionally any
subsections, that an entry belongs to.

287

Appendix A
System Files

This line indicates it is an XML file
This is the configuration \<?Xm1 version="1.0" encoding="UTF-8"?>
element — s <configuration>
<gection name="DocumentServer">
Here, a section is defined — <entry name="FileWatchTimeMillis">10001</entry>
<entry name="FilePurgeTimeSeconds">3600</entry>
Here are the entries for a <entry name="FilePurgeList">purgeme.properties</entry>
section </section> <!-- DocumentServer -->
<gection name="BusinessLogicProcessor">
<gection name="MultiThreadedRequests">
<entry name="Request">ECH</entry>
</section> <!-- MultiThreadedRequests section -->
<gection name="messaging">
<gection name="http">
<entry name="port">49152</entry>

Docclient.xml format Similar to IDS 2.0, most IDS client programs now use an XML-based configuration file.

The general format of the docclient.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<gection name="DocumentClient">
<section name="messaging">
<gection name="queue">

<entry name="queuefactory.class">com.docucorp.messaging.
mgseries.DSIMQMessageQueueFactory</entry>

<!-- Settings for MQSeries connection -->

<entry name="mg.queue.manager">queue.manager</entry>

<entry name="mg.inputqueue.name">requestg</entry>
<entry name="mqg.inputgqueue.maxwaitseconds">5</entry>
<entry name="mg.outputqueue.name">resultg</entry>
<entry name="mqg.tcpip.host">10.1.10.1</entry>

<entry name="mg.queue.channel">queue_channel</entry>
<entry name="mg.tcpip.port">1414</entry>

</section> <!-- gqueue section -->
</section> <!-- messaging section -->
</section> <!-- DocumentClient -->
</configuration>

The overall structure is similar to docserv.xml. The main difference is that the messaging
arameters are under a "DocumentClient" section. This makes it possible for client

1% p

applications and IDS use the same configuration file, with client settings under the

"DocumentClient" section and IDS settings under the "DocumentServer" and

"BusinessLogicProcessor" sections.

288

SAMPLE
OuUTPUT FILES

DSIEXW32.EXE

Sample Output Files

Here are printouts of the sample output files you should receive when you check your

server installation.

The output comes from these functions:

* DSIEXW32.EXE

e DSICOTB.EXE, option ESS

e DSICOTB.EXE, option Roll Your Own
* DSICOTB.EXE, option RSS

* DSICOTB.EXE, option SSS

Here is the output you should see when you execute DSIEXW32.EXE. You will see

similar results when you execute DSICoEx.

Name = ALLOCCOUNT Value = 3073

Name = ERRORCOUNT Value = 0

Name = FREECOUNT Value = 391

Name = LASTRESTART Value = Wed Aug 12 16:31:14 1998
Name = LIBRARIES Value = 11

Name = LIBRARIES1.DATE Value = Jun 30 1998
Name LIBRARIES1.NAME Value = IRL

Name LIBRARIES1.TIME Value = 11:31:06

Name LIBRARIES1.VERSION Value = 100.013.001
Name LIBRARIES10.DATE Value = Jun 30 1998
Name LIBRARIES10.NAME Value = DPR

Name LIBRARIES10.TIME Value = 11:48:16

Name LIBRARIES10.VERSION Value = 400.098.001
Name LIBRARIES11.DATE Value = Aug 5 1998
Name LIBRARIES11.NAME Value = PDF

Name LIBRARIES11.TIME Value = 16:02:25

Name LIBRARIES11.VERSION Value = 400.098.010
Name LIBRARIES2.DATE Value = Jun 26 1998
Name LIBRARIES2.NAME Value = IRP

Name LIBRARIES2.TIME Value = 18:10:35

Name LIBRARIES2.VERSION Value = 100.013.001
Name LIBRARIES3.DATE Value = Jun 26 1998
Name LIBRARIES3.NAME Value = DQM

Name LIBRARIES3.TIME Value = 18:11:31

Name LIBRARIES3.VERSION Value = 100.013.001
Name LIBRARIES4.DATE Value = Jun 26 1998
Name LIBRARIES4 .NAME Value = IBASE

Name LIBRARIES4.TIME Value = 18:01:12

Name LIBRARIES4.VERSION Value = 100.013.001
Name LIBRARIESS5.DATE Value = Jun 26 1998
Name LIBRARIES5.NAME Value = DCB

Name LIBRARIES5.TIME Value = 18:06:22

Name LIBRARIES5.VERSION Value = 100.013.001
Name LIBRARIES6.DATE Value = Jun 30 1998
Name LIBRARIES6.NAME Value = ATC

Name LIBRARIES6.TIME Value = 11:29:22

Name LIBRARIES6.VERSION Value = 100.013.001
Name LIBRARIES7.DATE Value = Jun 29 1998
Name LIBRARIES7 .NAME Value = DSIJ

289

Appendix A

System Files

Name = LIBRARIES7.TIME Value = 17:50:06

Name = LIBRARIES7.VERSION Value = 100.013.001
Name = LIBRARIES8.DATE Value = Jun 26 1998
Name = LIBRARIES8.NAME Value = WFX

Name = LIBRARIES8.TIME Value = 17:52:36

Name = LIBRARIES8.VERSION Value = 100.013.001
Name = LIBRARIESY.DATE Value = Jun 30 1998
Name = LIBRARIESY9.NAME Value = DSI

Name = LIBRARIES9.TIME Value = 11:36:19

Name = LIBRARIESY9.VERSION Value = 100.013.001
Name = RESTARTCOUNT Value = 0

Name = RESULTS Value = SUCCESS

Name = SUCCESSCOUNT Value = 1

Name = UPTIME Value = Wed Aug 12 16:31:14 1998

DSICoTB, option ESS Here is the output you should see when you execute the Visual Basic program,
DSICoTB.EXE, option ESS.

LOG

InitSession
Submit: ESS
GetQueueRec
Term

OUTPUT

ALLOCCOUNT9477

ERRORCOUNTO

FREECOUNT6791

LASTRESTARTWed Aug 12 16:48:37 1998
LIBRARIES11

LIBRARIES1.DATEJun 30 1998
LIBRARIES1.NAMEIRL
LIBRARIES1.TIME11:31:06
LIBRARIES1.VERSION100.013.001
LIBRARIES10.DATEJun 30 1998
LIBRARIES10.NAMEDPR
LIBRARIES10.TIME11:48:16
LIBRARIES10.VERSION400.098.001
LIBRARIES11.DATEAug 5 1998
LIBRARIES11.NAMEPDF
LIBRARIES11.TIME16:02:25
LIBRARIES11.VERSION400.098.010
LIBRARIES2.DATEJun 26 1998
LIBRARIES2.NAMEIRP
LIBRARIES2.TIME18:10:35
LIBRARIES2.VERSION100.013.001
LIBRARIES3.DATEJun 26 1998
LIBRARIES3 .NAMEDQM
LIBRARIES3.TIME18:11:31
LIBRARIES3.VERSION100.013.001
LIBRARIES4.DATEJun 26 1998
LIBRARIES4 .NAMEIBASE
LIBRARIES4.TIME18:01:12

290

DSICoTB, option Roll
Your Own

LIBRARIES4.VERSION100.013.001
LIBRARIESS5.DATEJun 26 1998
LIBRARIESS5.NAMEDCB
LIBRARIES5.TIME18:06:22
LIBRARIES5.VERSION100.013.001
LIBRARIES6.DATEJun 30 1998
LIBRARIES6 .NAMEATC
LIBRARIES6.TIME11:29:22
LIBRARIES6.VERSION100.013.001
LIBRARIES7.DATEJun 29 1998
LIBRARIES7.NAMEDSIJ
LIBRARIES7.TIME17:50:06
LIBRARIES7.VERSION100.013.001
LIBRARIES8.DATEJun 26 1998
LIBRARIESS8.NAMEWFX
LIBRARIES8.TIME17:52:36
LIBRARIES8.VERSION100.013.001
LIBRARIESY .DATEJun 30 1998
LIBRARIESY9 .NAMEDSI
LIBRARIESY9.TIME11:36:19
LIBRARIESY .VERSION100.013.001
MESSAGESMSG0002

RESTARTCOUNT1

RESULTSSUCCESS

SUCCESSCOUNT7

UPTIMEWed Aug 12 16:44:15 1998

Sample Output Files

Here is the output you should see when you execute the Visual Basic

program, DSICoOTB.EXE,

LOG (left hand side)

InitSession

Submit

USERID USERID
PASSWORDPASSWORD
CONFIG INSURE
GetQueueRecord
GetAttachmentAll

OUTPUT (right hand side)

CONFIGINSURE
PASSWORDPASSWORD
REPORTTOFORMAKER
RESULTSSUCCESS

RIGHTSS
SECURITY

USERIDUSERID

USRMESSAGE

option Roll Your Own.

291

Appendix A

System Files

DSICoTB, option RSS Here is the output you should see when you execute the Visual Basic program,
DSICoTB.EXE, option RSS.

LOG (left side of window)

InitSession
Submit: RSS
GetQueueRec
Term

OUTPUT (right side of window)

ALLOCCOUNT12542

ERRORCOUNTO

FREECOUNT9867

LASTRESTARTWed Aug 12 16:48:37 1998
LIBRARIES11
LIBRARIES1.DATEJun 30 1998
LIBRARIES1.NAMEIRL
LIBRARIES1.TIME11:31:06
LIBRARIES1.VERSION100.013.001
LIBRARIES10.DATEJun 30 1998
LIBRARIES10.NAMEDPR
LIBRARIES10.TIME11:48:16
LIBRARIES10.VERSION400.098.001
LIBRARIES11.DATEAug 5 1998
LIBRARIES11.NAMEPDF
LIBRARIES11.TIME16:02:25
LIBRARIES11.VERSION400.098.010
LIBRARIES2.DATEJun 26 1998
LIBRARIES2.NAMEIRP
LIBRARIES2.TIME18:10:35
LIBRARIES2.VERSION100.013.001
LIBRARIES3.DATEJun 26 1998
LIBRARIES3 .NAMEDQM
LIBRARIES3.TIME18:11:31
LIBRARIES3.VERSION100.013.001
LIBRARIES4.DATEJun 26 1998
LIBRARIES4 .NAMEIBASE
LIBRARIES4.TIME18:01:12
LIBRARIES4.VERSION100.013.001
LIBRARIESS5.DATEJun 26 1998
LIBRARIESS5.NAMEDCB
LIBRARIESS5.TIME18:06:22
LIBRARIESS5.VERSION100.013.001
LIBRARIES6.DATEJun 30 1998
LIBRARIES6 .NAMEATC
LIBRARIES6.TIME11:29:22
LIBRARIES6.VERSION100.013.001
LIBRARIES7.DATEJun 29 1998
LIBRARIES7 .NAMEDSIJ
LIBRARIES7.TIME17:50:06
LIBRARIES7.VERSION100.013.001

292

Sample Output Files

LIBRARIES8.DATEJun 26 1998
LIBRARIESS8.NAMEWFX
LIBRARIES8.TIME17:52:36
LIBRARIES8.VERSION100.013.001
LIBRARIESY .DATEJun 30 1998
LIBRARIESY .NAMEDSTI
LIBRARIES9.TIME11:36:19
LIBRARIESY .VERSION100.013.001
MESSAGESMSGO0001

RESTARTCOUNT2

RESULTSSUCCESS

SUCCESSCOUNT7

UPTIMEWed Aug 12 16:44:15 1998

DSICoTB, option SSS Here is the output you should see when you execute the Visual Basic program,
DSICoTB.EXE, option SSS.

LOG (left side of window)

InitSession
Submit: SSS
GetQueueRec
Term

OUTPUT (right side of window)

ALLOCCOUNT9397

ERRORCOUNTO

FREECOUNT6720

LASTRESTARTWed Aug 12 16:48:37 1998
LIBRARIES11

LIBRARIES1.DATEJun 30 1998
LIBRARIES1.NAMEIRL
LIBRARIES1.TIME11:31:06
LIBRARIES1.VERSION100.013.001
LIBRARIES10.DATEJun 30 1998
LIBRARIES10.NAMEDPR
LIBRARIES10.TIME11:48:16
LIBRARIES10.VERSION400.098.001
LIBRARIES11.DATEAug 5 1998
LIBRARIES11.NAMEPDF
LIBRARIES11.TIME16:02:25
LIBRARIES11.VERSION400.098.010
LIBRARIES2.DATEJun 26 1998
LIBRARIES2.NAMEIRP
LIBRARIES2.TIME18:10:35
LIBRARIES2.VERSION100.013.001
LIBRARIES3.DATEJun 26 1998
LIBRARIES3 .NAMEDQM
LIBRARIES3.TIME18:11:31
LIBRARIES3.VERSION100.013.001
LIBRARIES4.DATEJun 26 1998
LIBRARIES4 .NAMEIBASE

293

Appendix A

System Files

294

LIBRARIES4.TIME18:01:12
LIBRARIES4.VERSION100.013.001
LIBRARIESS5.DATEJun 26 1998
LIBRARIESS5.NAMEDCB
LIBRARIES5.TIME18:06:22
LIBRARIESS5.VERSION100.013.001
LIBRARIES6.DATEJun 30 1998
LIBRARIES6 .NAMEATC
LIBRARIES6.TIME11:29:22
LIBRARIES6.VERSION100.013.001
LIBRARIES7.DATEJun 29 1998
LIBRARIES7 .NAMEDSIJ
LIBRARIES7.TIME17:50:06
LIBRARIES7.VERSION100.013.001
LIBRARIES8.DATEJun 26 1998
LIBRARIESS8.NAMEWFX
LIBRARIES8.TIME17:52:36
LIBRARIES8.VERSION100.013.001
LIBRARIESY .DATEJun 30 1998
LIBRARIESY .NAMEDSI
LIBRARIES9.TIME11:36:19
LIBRARIESY.VERSION100.013.001
RESTARTCOUNT1

RESULTSSUCCESS

SUCCESSCOUNT6

UPTIMEWed Aug 12 16:44:15 1998
Visited: http://

Appendix B
Error Messages

This appendix describes how you can customize the

error messages you may receive while using IDS. For
more information, see Displaying Error Messages on
page 296.

This appendix also lists and explains error messages you
may receive while using the Internet Document Server
and any of the various bridges.

The messages are grouped in these categories:
e AFP Error Messages on page 300
e Error Message Listing on page 302

295

Appendix B

Error Messages

296

DISPLAYING
ERROR
MESSAGES

XML layout

The system includes an XML file which provides a template for all server and base rule
error messages. You can customize this file if you use custom rules or if you want to
modify the description of the problem. The file includes error descriptions, possible
causes, and remedies in US English.

You can find examples of how to use this XML file in the Docupresentment samples for
ASP and JSP pages.

Here is an example of the XML file:

<?xml version="1.0" encoding="UTF-8"?>

<ERRORCODES>

<CODE VALUE="ATCO0001">

<PARAMETERS>

<VARIABLE/>

</PARAMETERS>

<SEVERITY>Error</SEVERITY>

<CATEGORY>Server configuration</CATEGORY>

<DESCRIPTION>Can not add variable <PARAMETER NAME="VARIABLE">
//ROWSET [@NAME="ATC0001"] //VAR [@NAME="VARIABLE"] </PARAMETER>
to the attachment</DESCRIPTION>

<CAUSE>Attachment size is larger than supported by queuing system

<REMEDY>Reduce the size of the attachment. Example, if search request
returns too many matches redefine search criteria so number of
matches is reduced.

</REMEDY>
</CAUSE>
<CAUSE>Server is running low on memory

<REMEDY>Restart server. If problem persists, report it to tech
support</REMEDY>

</CAUSE>

<CAUSE>Memory was corrupted by ill-behaved rule

<REMEDY>If problem persists, report it to tech support</REMEDY>
</CAUSE>

</CODE>

<CODE VALUE="ATCO0002">

<PARAMETERS>

<APINAME/>

</PARAMETERS>

<SEVERITY>Error</SEVERITY>

<DESCRIPTION>The virtual memory management API <PARAMETER
NAME="APINAME">

//ROWSET [@NAME="ATC0002"] //VAR [@NAME="APINAME"] </PARAMETER>
failed</DESCRIPTION>

<CAUSE>Memory corruption on the server due to ill-behaved rules.
<REMEDY>If problem persists, report it to tech support</REMEDY>
</CAUSE>

</CODE>

<CODE VALUE="DPROQOOQO9">

<PARAMETERS/>

<SEVERITY>Warning</SEVERITY>

<CATEGORY>User error</CATEGORY>

<DESCRIPTION>No matches were found for the specified search
criteria</DESCRIPTION>

<CAUSE>Search criteria specified by the user resulted in no matches
found

<REMEDY>Specify different search criteria</REMEDY>

Displaying Error Messages

</CAUSE>
</CODE>
</ERRORCODES>

Keep in mind...

All error codes are attributes of the CODE children of the ERRORCODES root

element.

The PARAMETERS child of the CODE element defines the parameters in the error
message. In example above, the ATC0001 error code parameter passed with the
error message is named VARIABLE.

In the attachment variable name sense, the following attachment variables will be
present with ATC0001 error: ATC0001 and ATC00011.VARIABLE. The second
number one indicates a row set. You must insert the value of the VARIABLE into
the placeholder specified in XML file.

The ATCO0001 is a row set in DSI SOAP XML message, so it can also be accessed as
an element on the ROWSET XML tree. The placeholder is indicated with the XML
element PARAMETER and the text of this element is an xPath you can use to pull
the parameter value from the IDS XML SOAP message. See the following sample
IDS message.

The SEVERITY element defines the severity level such as: error, warning, or info.

The CATEGORY element defines where the error was generated and the most likely
cause, such as: server configuration, bridge configuration, or user error.

The DESCRIPTION element defines the information displayed to the end user
with the parameter placeholders replaced by actual parameter values.

The CAUSE element defines the probable cause of this error. Since it is possible to
have multiple causes, the application should display multiple CAUSE elements.

The REMEDY element, which is a child of the CAUSE element, provides an
explanation how you can correct the problem.

297

Appendix B

Error Messages

Client error handling

298

Usually the client submits a request to IDS and gets results. One of the attachment
variables returned is RESULTS. This value contains the value SUCCESS or the error
code.

Since you can have multiple errors, be sure to check RESULTS for the value SUCCESS.
If it 1s not SUCCESS, the client code should examine the returned results for all error
messages, not just the code provided in RESULTS attachment variable. In other words,
the attachment variable RESULTS should be considered as a binary indication of
successful transaction — whether it was successful or not.

Here is a sample IDS message with an error. This layout shows row set changes, available
in IDS 1.8 and higher. Do not compare this layout with messages created by the older
versions of IDS.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope">

<SOAP-ENV:Body>

<DSIMSG VERSION="100.018.0">
<CTLBLOCK>
<UNIQUE_ID>9F2AE2BB6609450887779A836D90D390</UNIQUE ID>
<REQTYPE>RPD</REQTYPE>
<USERID>USERNAME</USERID>
</CTLBLOCK>

<MSGVARS>

<ROWSET NAME="ERRORS">

<ROW NUM="1">

<VAR NAME="CODE">ATC0001</VAR>
</ROW>

</ROWSET>

<ROWSET NAME="ATC0001">

<ROW NUM="1">

<VAR NAME="VARIABLE">FILENAME</VAR>
</ROW>

</ROWSET>

<VAR NAME="RESULTS">ATC0001</VAR>
</MSGVARS>

</DSIMSG>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Displaying Error Messages

Error reporting for C The reporting of C exceptions while running a rule has includes the following
exceptions information:

* Before the restart, IDS reports the type of C Exception and the rule that triggered
the exception. This is reported through normal IDS logging techniques. Here is an
example:

ERROR [BLP-0]: 2005-06-30 14:54:23,703 BusinessLogicProcessor The
thread tried to read from or write to a virtual address for which it
does not have the appropriate access.

ERROR [BLP-0]: 2005-06-30 14:54:23,718 RequestDescription Rule
'tstw32.d11->TSTTestBlowUP' had an exception in Run Forward message.

e After IDS restarts, it sends a message to the client program through the queues to
report there was a problem. This is reported via the rowset/error message way of
reporting errors. Here is an example:

Result returned back from server

Message variables
RESULTS=SRV0004

Rowsets
ERRORS

Row 1
CODE=SRV0004
SRV0004

Row 1

CURMSG=Server failed to process the request <TSTLIB> due to a fatal
error.

299

Appendix B

Error Messages

AFP ERROR
MESSAGES

Character set

XXXXXXXX not found...

Error opening overlay:

300

XXXXXXXX

The following information describes how to handle error messages you may encounter
while using the Documaker Bridge and AFP print streams.

If you receive this error message, the AFP print stream uses a character set and code page
file name instead of coded font file name to specify an AFP font to be used. In this case,
you will need to create an additional file called IBMXREF.TBL to provide additional
AFP font information. IBMXREF.TBL is a text file that contains pairs of coded font
names and character set names. This file should be placed in the directory specified by
the FORMLIB INT setting.

What you are doing is specifying the coded font file name to use when a reference to
the character set file is encountered in the AFP print stream. The system searches in the
FXR file for the coded font file name to determine font information it needs during the
PDF conversion.

When entering the coded font and character set names in IBMXREF.TBL, do not use
the first two letters (X0, X1, CO0, C1, and so on). The coded font and character set names
need to be written in UPPER CASE and separated by at least one space. Each pair of
coded font and character set names should be written on separate lines. For example, if
you recelve an error stating...

Character set COAR111 not found..

Add a line of coded font and character set names to the IBMXREFE.TBL. If a coded font
file named X0.4R71P contained a reference to the character set file CO.4R777, you
would add the following line to IBMXREF.TBL:

AR11P AR111

Notice the first two letters of X0.AR77P and C0.AR7177 are omitted from the line added
to IBMXREF.TBL. You should have inserted the coded font file, X0.4R77P, into the
FXR file previously.

If you have character set files but do not have any coded font files, you can insert a
character file into the FXR. However, you must edit the font inserted into the FXR and
specify a coded font file name on the Printers page. In this case, use the character set
name as the coded font name and change the first letter from C to X. In this case, the
pair of names stored in the IBMXREF.TBL will be the same.

If you have a character set file that is used by more than one code page file, you can map
each character set/code page file combination to a coded font file named in the FXR.
To do this, add a third column to the IBMXREE.TBL. The third column contains the
name of code page file. For example, to map the coded font file, X0.4AR77P, to the
character set and code page files, C0.4R771, and T7IS1121, you would add this line to
IBMXREF.TBL:

AR11P AR111 T1ISI121

Notice the first two letters of X0.AR77P and CO.AR717 are omitted from the line added
to IBMXREE.TBL but the full name of the code page file, T7151721, is used.

If you receive this error message, the AFP print stream uses an overlay that the system
could not find. Notice the path and file extension of the overlay specified in the error
message. Make sure your AFP overlay is stored in the proper directory and contains the
expected file extension.

AFP Error Messages

Error opening page If you receive this error message, the AFP print stream uses a page segment that the
segment: XXXXxXxxX system could not find. Notice the path and file extension of the page segment specified
in the error message. Make sure your AFP page segment is stored in the proper directory
and contains the expected file extension.

Error opening logo: If you receive this error message, it is likely that the AFP print stream uses a page
XXXXXXXX segment that the system could not find. If so, you would have received an error message
for the missing page segment as well. Correct the problem with the missing page segment
and this error should disappear as well.

301

Appendix B

Error Messages

ERROR MESSAGE LISTING

Severity: Category

Code Message text Cause / Remedy
ATCO0001 Error: Server Configuration The attachment size is larger than what is supported by
queuing system. Reduce the size of the attachment. For
Can not add variable // example, if the search request returns too many matches,
ROWSET[@NAME="ATC0001"]// redefine the search criteria so the number of matches is
VAR[@NAME="VARIABLE"] to the attachment. reduced. Server is running low on memory. Restart server.
If the problem persists, report it to Support.
Memory was corrupted. If the problem persists, report it
to Support.
ATC0002 Error: Server Configuration Memory corruption on the server. If the problem persists,
report it to Support.
The virtual memory management API //
ROWSET[@NAME="ATC0002"]//
VAR[@NAME="APINAME"] failed.
ATCO0003 Error: User Error The attachment variable was not included in the request.
Add the attachment variable to the request.
The attachment Varlak’le // . The attachment variable was misspelled or omitted from
ROWSET[@NA'ME= ATCO()P?’ v/ the request. Include or correct the spelling of the
VAR[@NAME="VARNAME"] could not be located. attachment variable in the request.
DPR0001 Error: User Error The attachment variable was not included in the request.
Add the attachment variable to the request.
Cannot locate varlabae // . The attachment variable was misspelled in the request.
ROWSET[@NAME= DPROOO! v/ . Correct the spelling of the attachment variable in the
VAR[@NAME="VARIABLE"] in the attachment list. request.
DPR0002 Error: User Error Fields attachment variable contains no fields specified for
the search criteria. Add search fields to the fields variable
No search criteria was specified. The attachment in the request.
variable //ROWSET[@NAME="DPR0002"]//
VAR[@NAME="FIELDS'"] is empty.
DPR0003 Error: Bridge Configuration The database does not exist. Make sure the database
exists.The path or name specified for the database are
The user information database, // incorrect. Make sure the path and name specified for the
ROWSET[@NAME="DPR0003"]// database are correct.The database is corrupt. Restore the
VAR[@NAME="FILENAME"] could not be opened. database from backup.
DPR0004 Error: User Error The user ID provided in the request does not exist in the
user database. Provide a correct user ID.
The user ID //ROWSET[@NAME="DPR0004"]//
VAR[@NAME="USERID"] is invalid.
DPR0005 Error: User Error The password provided does not match the user ID

302

The password specified for //
ROWSET[@NAME="DPR0005"]//
VAR[@NAME="USERID"] is incorrect.

password. Make sure the password spelling and casing is
correct.

Code

DPR0006

DPR0007

DPR0008

DPR0009

DPR0010

DPRO011

DPR0012

DRP0013

Severity: Category

Message text
Error: Bridge Configuration

The virtual memory management API //
ROWSET[@NAME="DPR0006"])//
VAR[@NAME="APINAME"] failed.

Error: Bridge Configuration

The ini option //ROWSET[@NAME="DPR0007"]//
VAR[@NAME="INIOPTION"] could not be located in
the group //ROWSET[@NAME="DPR0007"]//
VAR[@NAME="INIGROUP".

Error: Bridge Configuration

The database API //ROWSET[@NAME="DPR0008"|//
VAR[@NAME="APINAME"] failed accessing the table
//ROWSET[@NAME="DPR0008"]//
VAR[@NAME="TABLENAME"].

Woarning: User Error
No matches were found for the specified search criteria.
Error: Bridge Configuration

The system encountered an internal error of unknown
type. The call by //ROWSET[@NAME="DPR0010"]//
VAR[@NAME="LOCATION"] to //
ROWSET[@NAME="DPR0010"]//
VAR[@NAME="APINAME"] failed.

Error: User Error

The attachment field //
ROWSET[@NAME="DPR0011"]//
VAR[@NAME="VARIABLE"] does not contain valid
data.

Error: Bridge Configuration

The database API //ROWSET[@NAME="DPR0012"]//
VAR[@NAME="APINAME"] cannot locate the table /
/ROWSET[@NAME="DPR0012"]//
VAR[@NAME="TABLENAME"].

Error: Bridge Configuration

The initialization file //
ROWSET[@NAME="DPR0013"]//
VAR[@NAME="FILENAME"| could not be loaded.

AFP Error Messages

Cause / Remedy

Memory is running low on the server. Restart the server.
If the error persists, report it to Support. Memory
corruption on the server. If the error persists, report it to
Support.

The INI option does not exist in the INI control group.
Add the INI option to the INI control group.

The table specified does not exist in the database specified.
Make sure the table specified exists in the database
specified.Invalid database connection. Make sure the
connection to the database is valid.

Search criteria specified by the user resulted in no matches
found. Specify different search criteria.

Unknown internal error. If the problem persists, report
the error to Support.

The data specified for the attachment variable is incorrect.
Provide proper data to the attachment variable in the
request.The data was corrupted. Restart the server. If the
error persists, report it to Support.

The table does not exist in the database specified. Make
sure the table exists in the database specified. The path or
name for the database containing the table are incorrect.
Make sure the path and name for the database are
correct.The name of the table is incorrect. Make sure the
name of the table is correct.The table is corrupted or the
table format is not correct. Make sure the table is not
corrupted and the table format is correct.The connection
to the database is invalid. Make sure the connection to the
database is valid.

The initialization file specified does not exist. Make sure
the initialization file specified exists.The path or name for
the initialization file specified are incorrect. Make sure the
path and name for the initialization file are correct

303

Appendix B

Error Messages

Code

DPR0014

DPRO015

DPRO0016

DPR0017

DPR0018

DPR0019

304

Severity: Category
Message text

Error: Platform Error

Platform error. Area: //
ROWSET[@NAME="DPR0014"]//
VAR[@NAME="AREA"], Code: //
ROWSET[@NAME="DPR0014"]//
VAR[@NAME="CODE"], Code2: //
ROWSET[@NAME="DPR0014"]//
VAR[@NAME="CODE2"], Message: //
ROWSET[@NAME="DPR0014"]//
VAR[@NAME="MESSAGE"].

Error: Bridge Configuration

FAP Version is not in sync. //
ROWSET[@NAME="DPR0015"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to unload template //
ROWSET[@NAME="DPR0016"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Cannot locate variable //
ROWSET[@NAME="DPR0017"]//
VAR[@NAME="VARIABLE"].

Error: Bridge Configuration

Cannot load font cross reference file //
ROWSET[@NAME="DPR0018"]//
VAR[@NAME="PATH"]\//
ROWSET[@NAME="DPR0018"]//
VAR[@NAME="FILE"]//
ROWSET[@NAME="DPR0018"]//
VAR[@NAME="EXTENSION"].

Error: Bridge Configuration

Cannot retrieve data into the //
ROWSET[@NAME="DPR0019"]//
VAR[@NAME="FILE"] file. ARCRetrieveDoc API
failed. CATALOGKEY=//
ROWSET[@NAME="DPR0019"]//
VAR[@NAME="CATALOGKEY"], CARID=//
ROWSET[@NAME="DPR0019"]//
VAR[@NAME="CARID"].//
ROWSET[@NAME="DPR0019"]//
VAR[@NAME="PATH"]\//
ROWSET[@NAME="DPR0019"]//
VAR[@NAME="FILE"]//
ROWSET[@NAME="DPR0019"]//
VAR[@NAME="EXTENSION"].

Cause / Remedy

Internal error. The code and message provide more
detailed information. If the problem persists, report the
error to Support.

The installation of the server is not in sync with DLL
versions. Possibly a manual DLL installation was done
incorrectly.

Either reinstall the server and bridges or replace the
offending DLL files with the appropriate version ones.

The HTML template could not be unloaded. Check that
the path specified exists and there is available space on the

disk.

Some or all of the rules prior to the rule reporting this
error failed. Examine the other error messages for the
cause and correct it. The rules in the request type did not
save the variable specified prior to its call. Make sure all
the required rules are specified in the request type.

The path, file name or extension are incorrect. Make sure
the path, file name and extension specified are correct.The
font cross reference file does not exist at the specified
location. Make sure the font cross reference file exists at
the specified location.

Invalid path, file name or extension specified. Make sure
the path, file name and extension provided are
correct.Archive file does not exist. Make sure the archive
file provided exists.Invalid CATALOGKEY or CARID.
Make sure the CATALOGKEY and CARID provided
exist.Invalid Archive Index file or corrupted database.
Make sure the Archive Index file and database are not
invalid or corrupted. Restore from backup if needed.

Code

DPR0020

DPR0021

DPR0022

DPR0023

DPR0024

DPR0025

DPR0026

DPR0027

DPR0028

Severity: Category
Message text

Error: Bridge Configuration

DSLoadFormList API failed on file //
ROWSET[@NAME="DPR0020"])//
VAR[@NAME="FILE"].

Error: Bridge Configuration

DSLoadNAFormset API failed on file //
ROWSET[@NAME="DPR0021"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Cannot add variable //
ROWSET[@NAME="DPR0022"]//
VAR[@NAME="VARIABLE"] to the attachment list.

Error: Bridge Configuration

Failed to get current record ID in //
ROWSET[@NAME="DPR0023"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Cannot create DSI variable //
ROWSET[@NAME="DPR0024"]//
VAR[@NAME="VARIABLE"].

Error: Bridge Configuration

Cannot add variable //
ROWSET[@NAME="DPR0025"]//
VAR[@NAME="VARIABLE"] to the attachment record
//ROWSET[@NAME="DPR0025"]//
VAR[@NAME="RECORD"].

Error: Bridge Configuration
Cannot load the import file //

ROWSET[@NAME="DPR0026"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Cannot load the form set definition file //
ROWSET[@NAME="DPR0027"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration
Cannot load FAP File for image //

ROWSET[@NAME="DPR0028"]//
VAR[@NAME="IMAGE"].

AFP Error Messages

Cause / Remedy

Invalid path or file name. Make sure the path and file
name specified are correct.The file does not exist. Make
sure the file specified exists.

Invalid path or file name. Make sure the path and file
name specified are correct.The file does not exist. Make
sure the file specified exists.

The max size of the queue message was reached. Reduce
the size of the message. For instance, if the message is too
large due to too many matches found using the search
criteria, consider refining the search criteria. Use a more
advanced queueing system. Internal error If the problem
persists report it to Support.

The record does not exist. Check records in the database.

Memory is running low on the server. Restart the server.
If the error persists, report it to Support.Memory was
corrupted. If the problem persists, report it to Support.

The max size of the queue message was reached. Reduce
the size of the message. For instance. if the message is too
large due to too many matches found using the search
criteria, consider refining the search criteria. Use a more
advanced queueing system. Internal error If the problem
persists report it to Support.

Invalid path or import file name. Make sure the path and
file name for the import file are correct.Import file
variable not specified. Make sure the import file variable
is specified in the request.

Invalid path or form set file name specified. Verify the
path and form set file name specified correct.The form set
file does not exist. Make sure the form set file exists at the
specified location.

FAP file cannot be loaded from library. Make sure
DPRSetConfig rule is called in the request type prior to
attempting to load the FAP file.FAP file not found. Make
sure the path and name of the FAP file are valid.

305

Appendix B

Error Messages

Code

DPR0029

DPR0030

DPR0031

DPR0032

DPR0033

DPR0034

DPR0035

306

Severity: Category
Message text

Warning: Bridge Configuration

Loading of the provided import file resulted in an
empty formset.

Error: Bridge Configuration

The combination of group names(//
ROWSET[@NAME="DPR0030"]//
VAR[@NAME="GROUPNAME1"]) and (//
ROWSET[@NAME="DPR0030"]//
VAR[@NAME="GROUPNAME2"]) and the form
name (//ROWSET[@NAME="DPR0030"]//
VAR[@NAME="FORMNAME"]) does not exist in the

form definition file. Invalid import data.
Error: Bridge Configuration

Cannot open import file //
ROWSET[@NAME="DPR0031"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration
No form name provided in the import file.
Error: Bridge Configuration

Cannot parse import file. Line //
ROWSET[@NAME="DPR0031"]//
VAR[@NAME="LINEDATA"].

Error: Bridge Configuration

The combination of group names (//
ROWSET[@NAME="DPR0034"]//
VAR[@NAME="GROUPNAME1"]) and (//
ROWSET[@NAME="DPR0034"]//
VAR[@NAME="GROUPNAME?2"]) and the form
name (//ROWSET[@NAME="DPR0034"]//
VAR[@NAME="FORMNAME"]) and image name (//
ROWSET[@NAME="DPR0034"]//
VAR[@NAME="LINEDATA"]) does not exist in the

form definition file. Invalid import data.
Error: Bridge Configuration

Cannot open the export file //
ROWSET[@NAME="DPR0035"]//
VAR[@NAME="FILENAME"]. Error reported by OS /
/ROWSET[@NAME="DPR0035"]//
VAR[@NAME="ERRORNOQO"].

Cause / Remedy

Invalid import file. Make sure the import file is valid.
Possibly the group or form specified does not exist.

Group name 1, group name 2, or the form name specified
in the import file are incorrect. Specify the correct
information

Invalid path or name for import file. Make sure the path
and name of the import file are valid.The import file
specified does not exist. Make sure the import file exists.

The form names specified in the import file are incorrect
or missing. Specify the correct information

Import file is not well formed. Verify that the import file
1s well formed.

Invalid Group 1, Group2, form name, or image name
specified. Make sure the import file is valid for the current
configuration and that the groupl, group2, form name
and image name specified are valid.

Invalid path or file name specified. Verify the path and file
name are valid.The system encountered an error when
opening the export file. Look up additional
documentation for the operating system error code

Code

DPR0036

DPR0037

DPR0038

DPR0039

DPR0040

DPR0041

DPR0042

DPR0043

Severity: Category

Message text
Error: Bridge Configuration

DSI variable //ROWSET[@NAME="DPR0036"]//

VAR[@NAME="VARIABLE"] does not contain a valid

FAP form set.

Error: Bridge Configuration

The attachment variable //
ROWSET[@NAME="DPR0037"]//
VAR[@NAME="VARIABLE"] with value //
ROWSET[@NAME="DPR0037")//
VAR[@NAME="VALUE"] is not a valid encrypted
string.

Error: Bridge Configuration

The rule parameters //
ROWSET[@NAME="DPR0038"])//
VAR[@NAME="PARAMETERS"] for the rule //
ROWSET[@NAME="DPR0038"]//
VAR[@NAME="RULE"] are not correct or empty.

Error: Bridge Configuration

The call by //ROWSET[@NAME="DPR0039"]//
VAR[@NAME="LOCATION"] to API //
ROWSET[@NAME="DPR0039"]//
VAR[@NAME="APINAME"] failed.

Error: Bridge Configuration

DSI variable //ROWSET[@NAME="DPR0040"]//

VAR[@NAME="VARIABLE"] does not contain valid

data.

Error: Bridge Configuration

The record is locked by another user.
Warning: Bridge Configuration

The record is locked by another user.
Error: Bridge Configuration

Failed to DBQueryFormatInfo from //

ROWSET[@NAME="DPR0043"]//
VAR[@NAME="FILE"].

AFP Error Messages

Cause / Remedy

Rules executed prior to this one on the request type failed.
Examine the other error messages and correct the
problem. An invalid form set was saved to the DSI
variable.

Make sure the rules in the request type are saving the form
set prior to its usage.

Check the description of the rules in the SDK.The form
set has been corrupted. Restart the server. If the problem
persists, contact Support.

The client requests an non-existing document. Correct the
client request. The request expects an encrypted string but
a properly encrypted string was not provided.

Make sure the request is being passed the appropriate
parameters and that the appropriate rules are being used
in the request.

Check the description of the rules and their input and
output parameters in the SDK.

The parameters are incorrect or empty for the rule. Verify
the parameters expected by the rule are valid.

The parameters passed to the API are invalid. Verify all
expected parameters by the API are valid.An internal
server error occurred. If the error persists, contact Support

The data saved to the variable was invalid. Make sure the
appropriate rules are being used in the request type. Hint.
lookup a description of the rules in the SDK.The data for
DSI variable was corrupted. If the error persists, contact
Support.

Another user locked the record. Make sure the record is
not locked or use a USERID that matches the ID for the
locked record.

Another user locked the record. Make sure the record is
not locked or use a USERID that matches the ID for the

locked record.

Invalid path or DFD file name. Make sure the path and
DED file name are correct.

307

Appendix B

Error Messages

Code

DPR0044

DPR0045

DPR0046

DPR0047

DPR0048

DPR0049

DPR0050

DPRO0051

DPRO0052

308

Severity: Category
Message text

Error: Bridge Configuration

Failed to DBInitializeFile //
ROWSET[@NAME="DPR0044"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Failed to DBOpen //
ROWSET[@NAME="DPR0045"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Failed to UTLLockARC //
ROWSET[@NAME="DPR0046"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Call to ARClInit API failed. File: //
ROWSET[@NAME="DPR0047")//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Failed to ArcArchiveDataFile //
ROWSET[@NAME="DPR0048"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Failed to create XML document in //
ROWSET[@NAME="DPR0049"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to export the form set to XML in //
ROWSET[@NAME="DPR0050"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to unload the XML file //
ROWSET[@NAME="DPR0051"]//
VAR[@NAME="FILE"] in //
ROWSET[@NAME="DPR0051"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to decrypt the attachment variable //
ROWSET[@NAME="DPR0052"]//

VAR[@NAME="VARIABLE"] in the wild card search.

Cause / Remedy

Invalid database name. Make sure the path and database
file name are correct for file based databases. Make sure
the database name and setup are correct for network based
databases.

Invalid database name. Make sure the path and database
file name are correct for file based databases. Make sure
the database name and setup are correct for network based
databases.

Invalid path or file name. Make sure the path and file
name are valid.

Invalid path or file name. Make sure the path and file
name are valid.The archive data or index is corrupt.
Restore from backup. If the problem persists contact
Support

Invalid path or file name. Make sure the path and file
name are valid.The archive data or index is corrupt.
Restore from backup. If the problem persists contact
Support

Invalid path. Make sure the path exists and the server has
access rights to it.

Invalid path. Make sure the path exists and the server has
access rights to it.

Invalid path or file name. Verify the path and file name
are valid.

One of the matching wildcard search variables cannot be
decrypted. Refine the wildcard specification which
variables needs to be decrypted

Code

DPR0053

DPR0054

DPRO0055

DPR0056

DPR0057

DPRO0058

Severity: Category

Message text
Error: Bridge Configuration

Unable to get random seed value in //
ROWSET[@NAME="DPR0053")//
VAR[@NAME="LOCATION"].

Error: User Error

Invalid Login.

Error: Bridge Configuration

Unable to DSIGlobalDataCreate in //
ROWSET[@NAME="DPR0055"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

The ini option //ROWSET[@NAME="DPR0056"]//
VAR[@NAME="INIOPTION"] in ini group //
ROWSET[@NAME="DPR0056"]//
VAR[@NAME="INIGROUP"| does not contain a valid

value.
Error: Bridge Configuration

The Filename specified at location //
ROWSET[@NAME="DPR0057"]//

VAR[@NAME="FILENAME"] is not properity present.

Error: Bridge Configuration

The call by //ROWSET[@NAME="DPR0058"]//
VAR[@NAME="LOCATION"] to //
ROWSET[@NAME="DPR0058"]//
VAR[@NAME="APINAME"] failed.

AFP Error Messages

Cause / Remedy

The global data setup is incorrect. Make sure the global
data setup is correct in the initialization file.The request
type has not been configured correctly in the initialization
file. Make sure the request type is configured correctly.
Check the description of the rules in the SDK.The name/
value pairs in the request are incorrect or missing. Make
sure the name/value pairs in the request are correct, and
that all expected name/value pairs have been provided to
the rules in the request type.

Invalid user ID or password Specify the correct user ID
and password. The Request expects an encrypted user ID
but one was not provided. Make sure the request type is
properly configured.The global data setup is incorrect.
Make sure the global data setup is correct in the
initialization file. Check the global data setup in the SDK
and in the IDS documentation.

The request type has not been configured correctly in the
initialization file. Make sure the request type is configured
correctly. Check the description of the rules in the SDK.
The name/value pairs in the request are incorrect or
missing. Make sure the name/value pairs in the request are
correct, and that all expected name/value pairs have been
provided to the rules in the request type.

The global data setup is incorrect. Verify the setup in the

INI file for the global data is correct. Check the global data
setup in the SDK and IDS documentation.

The INI option is set up incorrectly. Verify the INI option
used is valid.

The location for the file specified in the INI file is
incorrect. Verify that the location specified is correct.

The status code has been changed by another user. Make
sure no one else is updating the current record.

309

Appendix B

Error Messages

Code

DPR0059

DPR0060

DPRO0061

DPRO0062

DPR0063

DPR0064

DPRO0065

DPRO0066

310

Severity: Category
Message text

Error: Bridge Configuration

Failed to unload //ROWSET[@NAME="DPR0059"]//
VAR[@NAME="FILE'"] at location //
ROWSET[@NAME="DPR0059"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Cannot open file //ROWSET[@NAME="DPR0060"]//
VAR[@NAME="FILE"] at location //
ROWSET[@NAME="DPR0060"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to WIPFind the record //
ROWSET[@NAME="DPR0061"]//
VAR[@NAME="RECORDID"].

Error: Bridge Configuration

Unable to WIPDelete the record //
ROWSET[@NAME="DPR0062"]//
VAR[@NAME="RECORID"].

Error: Bridge Configuration

Failed to load XML file //
ROWSET[@NAME="DPR0063"]//
VAR[@NAME="FILE"] at location //
ROWSET[@NAME="DPR0063"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to execute DAL script //
ROWSET[@NAME="DPR0064"]//
VAR[@NAME="NAME"].

Error: Bridge Configuration

Cannot locate printer driver //
ROWSET[@NAME="DPR0065"]//
VAR[@NAME="VARIABLE"].

Error: Bridge Configuration

Can not locate field //
ROWSET[@NAME="DPR0066"]//
VAR[@NAME="VARIABLE"] in the //
ROWSET[@NAME="DPR0066"]//
VAR[@NAME="LOCATION"] DED.

Cause / Remedy

The location for the file specified is incorrect. Verify that
the location specified is correct.The API that unloads the
file failed. Verify the API that generates the file runs
successfully. Contact Support.

The file specified does not exist. Make sure the file
specified exists. If the file is generated by another rule,
make sure that rule ran successfully.

There is no matching record in the WIP file for the record
ID provided.

Make sure there is a matching record in the WIP file for
the record ID provided.

There is no matching record in the WIP file for the record
ID provided.

Make sure there is a matching record in the WIP file for
the record ID provided.

The XML file specified does not exist. Verify the file
exists.The rule or API that generates the file failed. Verify
the rule or API that generates the file run successfully -
contact Support.

The script does not exist at the specified location. Make
sure the specified location is correct.The script contains
one Or more errors.

Make sure the script is valid. The GenData program is not
configured correctly to run the script successfully. Test the
GenData program and the script independently to make
sure there are no errors.

The printer driver is not configured correctly in the INI
file. Verify the configuration.There was no print driver
specified for the request. Specify a print driver.There is no
library for the printer driver specified. Make sure the
library is present for the printer driver specified.

The field does not exist in the DFD. Make sure the field
exists in the DFD.

Code

DPR0067

DPRO0068

DPR0069

DPR0070

DPR0071

DPR0072

DPR0073

DPR0074

Severity: Category

Message text
Error: Bridge Configuration

The INI Group //ROWSET[@NAME="DPR0067"]//
VAR[@NAME="INIGROUP"| was not found in the
INI file.

Error: Bridge Configuration

The INI Group //ROWSET[@NAME="DPR0068"]//
VAR[@NAME="INIGROUP"] in the INI file is not
configured correctly.

Error: Bridge Configuration

No search criteria specified.

Error: Bridge Configuration

The variable //ROWSET[@NAME="DPR0070"]//
VAR[@NAME="VAR"] for the //
ROWSET[@NAME="DPR0070"]//
VAR[@NAME="LOCATION"] DFD is not configured

correctly.
Error: User Error

The attachment variable //
ROWSET[@NAME="DPR0071")//
VAR[@NAME="VAR"| does not contain valid data.
The value //ROWSET[@NAME="DPR0071"]//
VAR[@NAME="VALUE"] is invalid.

Error: User Error
Failed to update the wip record in //

ROWSET[@NAME="DPR0072"]//
VAR[@NAME="LOCATION"].

Error: User Error
Failed to retrieve field information for DED //

ROWSET[@NAME="DPR0073"]//
VAR[@NAME="DFD".

Error: User Error
Failed to create a formset handle in //

ROWSET|[@NAME="DPR0074")//
VAR[@NAME="LOCATION"].

AFP Error Messages

Cause / Remedy

The INI file is missing the INT group specified. Make sure
the INI file includes the INT group specified.

The INI group specified is not configured correctly. Make
sure the INT group specified is configured correctly for the
rules in the request type.

The request specified contains one or more rules that
search a database but no search criteria was specified.
Make sure the rules for the request type contain any input
attachment variables or rule arguments required. If the
search criteria is optional, this may be just a warning
indicating all records will be returned.

The internal or external lengths for the field are not set
correctly in the DFD or the value specified has a length
that exceeds one or more lengths specified. Make sure the
length of the value specified does not exceed the lengths in
the DFD.

Invalid data was submitted in the attachment variable.
Specify the correct data in the attachment variable.

Fields defined in DED may not be consistent. Check DFD
file and records in the database.

Maybe invalid path or DFD file name Make sure the path
and DFD file name are correct.

311

Appendix B

Error Messages

Code

DPR0075

DPRO0076

DPR0077

DPRO0078

DPR0079

DPR0080

DPR0081

DPR0082

312

Severity: Category
Message text

Error: User Error

Unable to find the wip record for the user ID //
ROWSET[@NAME="DPR0075"]//
VAR[@NAME="KEY"] in //
ROWSET[@NAME="DPR0075"]//
VAR[@NAME="LOCATION"].

Error: User Error

Unable to get an unique file name in //
ROWSET[@NAME="DPR0076"]//
VAR[@NAME="LOCATION"].

Error: User Error

Failed to add a wip record in //
ROWSET[@NAME="DPR0077")//
VAR[@NAME="LOCATION"].

Error: User Error

Unable to add RECORDID (UNIQUE_ID or
RECNUM) to output attachment in //
ROWSET[@NAME="DPR0078"]//
VAR[@NAME="LOCATION"].

Error: User Error

Unable to get an unique string in //
ROWSET[@NAME="DPR0079"]//
VAR[@NAME="LOCATION"].

Error: User Error

Unable to get field value //
ROWSET[@NAME="DPR0080"]//
VAR[@NAME="FIELD'"] in //
ROWSET[@NAME="DPR0080"]//
VAR[@NAME="LOCATION"].

Error: User Error
Cannot open WIP table //

ROWSET[@NAME="DPR0081"]//
VAR[@NAME="WIPTABLE'"].

Error: User Error
Unable to retrieve the stored wip record and file handle

in //ROWSET[@NAME="DPR0082"]//
VAR[@NAME="LOCATION"].

Cause / Remedy

There is no matching record in the WIP file for the user
ID. Check records in the WIP file for the specified user ID.

The form set ID maybe missing. Check the FormSetID
field in the WIP DFD and data file.

Maybe a invalid path or DED file. Make sure the path and
DED file name are correct.

Maybe a invalid path or DED file. Make sure the path and
DEFD file name are correct.

Field is not defined in DFD file or value does not exists in
WIP file. Check the existence of field in DFD file and
value in WIP file.

Used incorrect path or file name. Check WIP table file
path and name.

DED handle and record buffer are not located Verify if the
WIP record and file handle are ever stored.

Code

DPR0084

DPRO0085

DPR0086

DPRO0087

DPR0088

DPR0089

DPR0090

DPR0091

DPR0092

Severity: Category

Message text
Error: User Error

Failed to get current record //
ROWSET[@NAME="DPR0084")//
VAR[@NAME="RECORDID"] in //
ROWSET[@NAME="DPR0084"]//
VAR[@NAME="LOCATION"].

Error: User Error

Failed to get current record in //
ROWSET[@NAME="DPR0085"]//
VAR[@NAME="LOCATION"].

Error: User Error

Failed to load WIP Formset ID: //
ROWSET[@NAME="DPR0086"]//
VAR[@NAME="FORMSETID"] in //
ROWSET[@NAME="DPR0086"]//
VAR[@NAME="LOCATION"].

Error: User Error

Failed to Delete WIP Formset ID: //
ROWSET[@NAME="DPR0087"]//
VAR[@NAME="FORMSETID"] in //
ROWSET[@NAME="DPR0087"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration
Failed to intialize library(s) for configuration //

ROWSET[@NAME="DPR0088"]//
VAR[@NAME="CONFIG"].

Error: User Error
Unable to update user information //

ROWSET[@NAME="DPR0089")//
VAR[@NAME="USERID"] to user database.

Error: Internal Error

Unable to add //ROWSET[@NAME="DPR0090"]//
VAR[@NAME="USERID"| to user database.

Error: User Error

Cannot add user //ROWSET[@NAME="DPR0091")//
VAR[@NAME="USERID"] to user database.

Error: User Error

Unable to delete //ROWSET[@NAME="DPR0092"]//
VAR[@NAME="USERID"| from user database.

AFP Error Messages

Cause / Remedy

There is no matching record in the WIP file for the
provided record ID. Verify the record in the WIP file for
the record ID.

There is no matching record in the WIP file for the
provided record ID. Verify the record in the WIP file for
the record ID.

There is no matching WIP data for the provided form set

ID. Verify the WIP data for the form set ID.

An error was encountered deleting form set data for this
FormSetID. Review configuration and data source.

The library manager setup in the bridge initialization file
is incorrect. Check the setup of the library manager in
configuration INI file.

The user may not exist in the user database. Check the
USERINFO.DBEF file.

Unknown internal error. If the problem persists, report
the error to Support.

The user may already exist in the user database. Check the
USERINFO.DBE file.

The user may not exist in the user database. Check the
USERINFO.DBF file.

313

Appendix B

Error Messages

Code

DPR0093

DPR0097

DPR0098

DPR0099

DPR0100

DPR0101

DPR0102

DPR0103

314

Severity: Category
Message text

Error: User Error
Cannot modify user records.

Error: User Error

Attachment form //ROWSET[@NAME="DPR0097"]/
/VAR[@NAME="FORM"| metadata specifed DSI
attachment variable //
ROWSET[@NAME="DPR0097"]//
VAR[@NAME="VARIABLE"] but this variable was not
found. File will not be loaded.

Error: User Error

Attachment form //ROWSET[@NAME="DPR0098"]/
/VAR[@NAME="FORM"| metadata specifed DSI file
attachment with delimeter //
ROWSET[@NAME="DPR0098"]//
VAR[@NAME="VARIABLE"] but this file was not
attached to DSI message. File will not be loaded.

Error: User Error

Attachment form //ROWSET[@NAME="DPR0099"])/
/VAR[@NAME="FORM"| metadata is missing
required value //ROWSET[@NAME="DPR0099"]//
VAR[@NAME="INFQ"]. File will not be loaded.

Error: User Error

Failed to load attached file specified by attachment
form //ROWSET[@NAME="DPR0100"]//
VAR[@NAME="FORM"] File name //
ROWSET[@NAME="DPR0100"]//
VAR[@NAME="FILE'"] of type //
ROWSET[@NAME="DPR0100"]//
VAR[@NAME="TYPE"].

Error: Bridge Error
Failed to load dynamic link library //

ROWSET[@NAME="DPR0100"]//
VAR[@NAME="LIBRARY"].

Error: Bridge Error
Cannot locate variable //
ROWSET[@NAME="DPR0102"]//

VAR[@NAME="VARIABLE"] in the attachment list
after executing Documanage bridge rules.

Error: Bridge Error

Documaker (gendata) did not return EWPS publish
response.

Cause / Remedy

Missing action mode. Check the input attachment
variable ACTION.

XML form set specified DSI variable in form metadata but
DSI variable was not found. Check the input attachment
variables.

XML form set specified that file was attached to DSI
message in form metadata but DSI file was not found in
the message. Check the files attached to DSI message.

XML form set specified attachment form which is missing
required metadata. Check the XML form set and form
metadata

Failed to load file specified by attachment form Make sure
the file type was specified correctly. Make sure the file
exists. Make sure the file type is supported

Dynamic link library was not found or has unresolved
dependencies. Check that the specified library is installed.
Make sure the version of specified library matches the
installation of the bridge.

Documanage Bridge failed to retrieve specified file.
Examine the Documanage Bridge errors and correct
problems.

Documaker (GenData) failed to create EWPS publish
response. Check version and patch level of GenData and
make sure EWPS is supported in this version

Code

RPD0001

RPD0002

RPD0003

RPD0004

RPD0005

RPD0006

RPD0007

Severity: Category

Message text
Error: User Error

Can not locate variable //
ROWSET[@NAME="RPD0001")//
VAR[@NAME="VARIABLE"] in the attachment list at
//ROWSET[@NAME="RPD0001"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Can not Create //ROWSET[@NAME="RPD0002")//
VAR[@NAME="TAGNAME"] at //
ROWSET[@NAME="RPD0002"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Can not create DSI variable //
ROWSET[@NAME="RPD0003"]//
VAR[@NAME="VARIABLE"] at //
ROWSET[@NAME="RPD0003"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Can not add variable //
ROWSET[@NAME="RPD0004")//
VAR[@NAME="VARIABLE"] to attachment at //
ROWSET[@NAME="RPD0004"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Can not locate DSI variable //
ROWSET[@NAME="RPD0005"]//
VAR[@NAME="VARIABLE"] at //
ROWSET[@NAME="RPD0005")//
VAR[@NAME="LOCATION"].

Error: User Error

DSI variable //ROWSET[@NAME="RPD0006"]//
VAR[@NAME="VARIABLE'"] does not contain valid
data. Failed to //ROWSET[@NAME="RPD0006"]//
VAR[@NAME="LOCATION"].

Error: User Error

File //ROWSET[@NAME="RPD0007"]//
VAR[@NAME="FILENAME"]| does not exists. Failed
to //ROWSET[@NAME="RPD0007"]//
VAR[@NAME="LOCATION"].

AFP Error Messages

Cause / Remedy

Attachment variable wa misspelled or not included in the
request. Check the attachment variable in the request.

Invalid location or server access rights. Make sure the path
exists and server access rights.

Memory is running low on the server. Restart the server.
If the error persists, report it to Support.

The maximum size of the queue message was reached.
Reduce the size of the message. For instance, if the message
size is too large due to too many matches found using the
search criteria, consider refining the search criteria.

Specified variable was not created prior to this call. Make
sure all the required rules are specified in the request type.

The data specified for the attachment variable is incorrect.
Provide proper data to the attachment variable in the
request.The data was corrupted. Restart the server. If the
error persists, report it to Support.

GenData did not return results. Make sure the GenData
configuration is correct.GenData experienced errors
before it had a chance to return results. Test the GenData
program independently and make sure it runs without
errors.GenData is not configured to run under IDS. Make
sure the IDS configuration and AFGJOB files are
configured correctly.

315

Appendix B

Error Messages

Code

RPD0008

RPD0009

RPD0010

RPDO0011

RPD0012

RPD0013

RPD0014

RPD0015

316

Severity: Category
Message text

Error: Bridge Configuration

The call by //ROWSET[@NAME="RPD0008"]//
VAR[@NAME="LOCATION"] to API //
ROWSET[@NAME="RPD0008"]//
VAR[@NAME="APINAME"].

Error: Bridge Configuration

The INI option //ROWSET[@NAME="RPD0009"]//
VAR[@NAME="INIOPTION"] cound not be located
in the group //ROWSET[@NAME="RPD0009"]//
VAR[@NAME="INIGROUP"].

Error: Bridge Configuration

Can not create DSI variable //
ROWSET[@NAME="RPD0010"]//
VAR[@NAME="VARIABLE"].//
ROWSET[@NAME="RPD0010"]//
VAR[@NAME="LOCATION"] failed.

Error: Bridge Configuration

Unexpected Program Termination of GenData in //
ROWSET[@NAME="RPD0011"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Socket connection failure in //
ROWSET[@NAME="RPD0012"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Can not unload jobticket to msg buffer in //
ROWSET[@NAME="RPD0013"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Can not load msg buffer to joblog in //
ROWSET[@NAME="RPD0014"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Can not open RPD error file //
ROWSET[@NAME="RPD0015"]//
VAR[@NAME="FILENAME'] at //
ROWSET[@NAME="RPD0015"]//
VAR[@NAME="LOCATION"].

Cause / Remedy

The parameters passed to the API are invalid Verify all
expected parameters by the API are valid.An internal
server error occurred. If the error persists, contact Support

The INI option does not exist in the INI control group.
Add the INI option to the INI group.control

Memory is running low on the server. Restart the server.
If the error persists, report it to Support.

GenData stopped due to a fatal error. Correct the error
and resubmit. If the error persists, report it to Support.

Encountered a fatal error when IDS establishes the socket
connection to RP. Correct the error and resubmit. If the
error persists, report it to Support.

Unknown internal error. If the error persists, report it to
Support.

Unknown internal error. If the error persists, report it to
Support.

Unknown internal error. If the error persists, report it to
Support.

Code

RPD0016

RPD0017

RPD0018

RPD0020

IRL0001

IRL0002

IRL0003

IRL0004

IRL0005

IRL0006

Severity: Category

Message text
Error: Bridge Configuration

Socket time out in //ROWSET[@NAME="RPD0016"]/
/VAR[@NAME="LOCATION"].

Error: Bridge Configuration
Time exceeded MaxWaitForStart in //

ROWSET[@NAME="RPD0017"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Gendata failure in //ROWSET[@NAME="RPD0018"]/
/VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Show error: //ROWSET[@NAME="RPD0020"|//
VAR[@NAME="Error"].

Error: User Error
The required attachment variable //

ROWSET[@NAME="IRL0001"]//
VAR[@NAME="LOCATION"] could not be located.

Error: User Error

No search criteria was specified. The attachment
variable //ROWSET[@NAME="IRL0002"]//
VAR[@NAME="FIELDS"] is empty.

Error: User Error

The user information database, //
ROWSET[@NAME="IRL0003"])//
VAR[@NAME="FILENAME"] could not be opened.

Error: User Error

The user ID //ROWSET[@NAME="IRL0004"]//
VAR[@NAME="USERID"] is invalid.

Error: User Error

The password for user //
ROWSET[@NAME="IRL0005"]//
VAR[@NAME="USERID"]is incorrect.
Error: Server Configuration

The virtual memory management API //

ROWSET[@NAME="IRL0006"]//
VAR[@NAME="APINAME"] failed.

AFP Error Messages

Cause / Remedy

Possible GenData failure. If the error persists, report it to
Support.

Unexpected termination of GenData. Fix GenData errors
and try again.

GenData failed. Fix GenData errors and try again.

GenData failed. Fix GenData errors and try again.

The attachment variable was not included in the request.
Include the attachment variable in the request.The
attachment variable was misspelled in the request. Make
sure the attachment variable is properly spelled in the
request.

The Fields variable in the request is empty. Add the
appropriate search fields to the fields variable in the
request.

Invalid path or file name. Make sure the path and file
name are valid.The User Database does not exist Make
sure the user database exists at the specified location.

Make sure the user ID is valid.

Make sure the spelling and casing of the password are
correct.

Memory corruption on the server. If the error persists,
report it to Support.Server is running low on memory.
Restart the server. If the error persists, report it to Support.

317

Appendix B

Error Messages

Code

IRL0007

IRL0008

IRL0009

IRL0O010

IRLOO11

IRLO012

IRL0O013

318

Severity: Category
Message text

Error: Server Configuration

The ini option //ROWSET[@NAME="IRL0007"]//
VAR[@NAME="INIOPTION"] could not be located in
the group //ROWSET[@NAME="IRL0007")//
VAR[@NAME="INIGROUP"].

Error: Server Configuration

The database API //ROWSET[@NAME="IRL0008"|//
VAR[@NAME="APINAME"] failed accessing the table
//ROWSET[@NAME="IRL0008"]//
VAR[@NAME="TABLENAME"].

Warning: Server Configuration
No matches were found for the search criteria.
Error: Server Configuration

The system encountered an internal error of unknown
type. The call by //ROWSET[@NAME="IRL0010"]//
VAR[@NAME="LOCATION"] to API //
ROWSET[@NAME="IRL0010"]//
VAR[@NAME="APINAME"] failed.

Error: Server Configuration

The attachment field //
ROWSET[@NAME="IRL0011"]//
VAR[@NAME="VARIABLE"| does not contain valid
data.

Error: Bridge Configuration
The queue management API //

ROWSET[@NAME="IRL0012"]//
VAR[@NAME="APINAME"] failed.

Error: Server Configuration

The initialization file, //
ROWSET[@NAME="IRL0013"]//
VAR[@NAME="FILENAME"] could not be loaded.

Cause / Remedy

The INI option does not exists in the INI control group.
Add the INI option to the INI control group.

Invalid path, database name or table name. Make sure the
path, database name and table name are correct.The table
does not exist. Make sure the table specified exists in the
database specified.Invalid or corrupted table. Make sure
the table is valid.

The search criteria is incorrect. Provide valid search
criteria.

Internal error. If the error persists, report it to Support.

Invalid data specified for the attachment variable. Specify
the correct data for the attachment variable in the request.

The queue management system has not been setup
properly. Make sure the initialization settings for the
queue management system are correct and restart the web
server software and the internet document server.The
queue management system software has not been setup
properly. Verify the queue management system software is
setup properly, and that all queue names and objects are
named correctly.The internet account or local account
does not have sufficient rights. Make sure the internet
account and local account have sufficient rights.

Invalid path of file name. Verify the path and file name are
correct.The file does not exist. Make sure the file exists at
the specified location.

Code

IRL0O014

IRL0O015

IRL0016

IRL0017

IRL0022

IRL0023

IRL0025

Severity: Category

Message text
Error: Server Configuration

Platform error: Area //
ROWSET[@NAME="IRL0014")//
VAR[@NAME="AREA"], Code: //
ROWSET[@NAME="TRL0014"]//
VAR[@NAME="CODE"], Code2: //
ROWSET|[@NAME="IRL0014"]//
VAR[@NAME="CODE2"], Message: //
ROWSET[@NAME="IRL0014")//
VAR[@NAME="MESSAGE"].

Error: Server Configuration

The parameter //ROWSET[@NAME="IRL0015"]//
VAR[@NAME="PARAMETER"] is invalid.

Error: User Error

The value //ROWSET[@NAME="IRL0016"]//
VAR[@NAME="VALUE"] was not found for option //
ROWSET[@NAME="IRL0016"]//
VAR[@NAME="OPTION"] in group //
ROWSET[@NAME="IRL0016"]//
VAR[@NAME="GROUP"| group.

Error: Server Configuration

Cannot locate variable //
ROWSET[@NAME="IRL0017")//
VAR[@NAME="VARIABLE"].

Error: Server Configuration

Cannot add variable //
ROWSET[@NAME="TRL0022"]//
VAR[@NAME="VARIABLE'"] to the attachment list.

Error: Server Configuration

Cannot save changes to the file //
ROWSET[@NAME="IRL0023"]//
VAR[@NAME="FILE"].

Error: Server Configuration

Cannot add variable //
ROWSET[@NAME="TRL0025"]//
VAR[@NAME="VARIABLE"] to the attachment record
//ROWSET[@NAME="IRL0025"]//
VAR[@NAME="RECORD"].

AFP Error Messages

Cause / Remedy

Internal error. The code and message provide more
detailed information. If the problem persists, report the
error to Support.

Invalid rule parameter specified. Specify a valid parameter.

The value is missing from the option in the initialization
file group. Add the value to the option in the initialization
file group.

The attachment variable was not included in the request.
Add the attachment variable to the request.

The attachment variable was misspelled in the request.
Correct the spelling of the attachment variable in the
request.

The max size of the queue message was reached. Reduce
the size of the message, e.g. if the message size is too large
due to too many matches found using the search criteria,
consider refining the search criteria. Use a more advanced
queueing system.Server is running low on memory. Restart
the server. If the error persists, contact Support.

File has read-only attribute. Make sure the file does not
have read-only attribute.The account running IDS does
not have sufficient rights. Make sure the account running
the server has sufficient rights to the directory where the
file is being saved.

The max size of the queue message was reached. Reduce
the size of the message, e.g. if the message size is too large
due to too many matches found using the search criteria,
consider refining the search criteria. Use a more advanced
queueing system.Server is running low on memory. Restart
the server. If the error persists, contact Support.

319

Appendix B

Error Messages

Code

IRL0026

IRL0027

IRL0028

IRL0029

IRL0030

IRL0031

MTC0001

320

Severity: Category
Message text

Error: User Error

Cannot find the global variable //
ROWSET[@NAME="IRL0026"]//
VAR[@NAME="VARIABLE"]. Make sure the
IRLInitFTP rule is registered on INI request.

Error: User Error

Rule parameters for rule //
ROWSET[@NAME="TRL0027")//
VAR[@NAME="RULENAME"] are incorrect. The rule
is disabled.

Error: User Error

The FTP server is not specified in the attachment or in

the INI file. The FTP rule is disabled.
Error: User Error

FTP connection cannot be established. Make sure the
FTP rule is configured correctly.

Error: User Error

Cannot find variable //
ROWSET[@NAME="IRL0030"]//
VAR[@NAME="VARIABLE"] in the attachment. FTP
operation //ROWSET[@NAME="IRL0030"]//
VAR[@NAME="OPERATION"] will be skipped.

Error: User Error

Error //ROWSET[@NAME="IRL0031"]//
VAR[@NAME="ERRORCODE"]//
ROWSET[@NAME="TRL0031"]//
VAR[@NAME="ERRORDESCRIPTION"] on FTP
operation //ROWSET[@NAME="IRL0031"]//
VAR[@NAME="OPERATION"].

Error: User Error
The attachment variable //

ROWSET[@NAME="MTC0001"]//
VAR[@NAME="VARIABLE"] could not be located

Cause / Remedy

The request is trying to use the IRLFileFTP rule but the
rule IRLInitFTP was not registered on the init request.
Add the IRLInitFTP rule to the INT request on the server.
Hint, lookup a description of the rule in the SDK. The
IRLInitFTP rule is missing a parameter in the
initialization file. Add the parameter to the IRLInitFTP
rule in the initialization file. Hint, lookup a description of
the rule in the SDK.

The parameters supplied to the rule are invalid. Make sure
the parameters supplied to the rule are valid. Hint, lookup
a description of the rule FTP rules in the SDK.

An FTP server is not specified in the initialization file or
in the attachment. Add the FTP server to the initialization
file or the attachment.

The initialization file settings for the FTP rule are
incorrect. Make sure the initialization file settings are
correct.The FTP server has not been configured correctly.
Make sure the FTP Server has been configured
correctly.The FTP account specified in the initialization
file does not have sufficient rights. Make sure the account
has sufficient rights.

The variable specified in the initialization file is missing
in the attachment. Add the variable to the attachment.

The system encountered an error while attempting to
execute the FTP rule. Lookup additional documentation
for the operating system error code.

The attachment variable is missing. Add the attachment
variable in the request.

Code

MTC0010

MTCO0011

MTC0014

MTC0017

MTC0018

MTC0022

SRV0001

Severity: Category

Message text
Error: Bridge Configuration

The system encountered an internal error of unknown
type. The call by //ROWSET[@NAME="MTC0010"]//
VAR[@NAME="LOCATION"] to API //
ROWSET[@NAME="MTC0010"]//
VAR[@NAME="APINAME"] failed.

Error: User Error

The attachment variable //
ROWSET[@NAME="MTC0011"]//
VAR[@NAME="VARIABLE"]| does not contain valid
data.

Error: Platform Error

Platform error. Area //
ROWSET[@NAME="MTC0014"]//
VAR[@NAME="AREA"], Code: //
ROWSET[@NAME="MTC0014"]//
VAR[@NAME="CODE"], Code2: //
ROWSET[@NAME="MTC0014"]//
VAR[@NAME="CODE2"], Message: //
ROWSET[@NAME="MTC0014"]//
VAR[@NAME="MESSAGE"].

Error: Bridge Configuration

Cannot locate variable //
ROWSET[@NAME="MTC0017"]//
VAR[@NAME="VARIABLE"].

Error: User Error

Cannot load the font cross reference file //
ROWSET[@NAME="MTC0018"]//
VAR[@NAME="PATH"]\//
ROWSET|[@NAME="MTC0018"]//
VAR[@NAME="FILE"]\//
ROWSET[@NAME="MTC0018"]//
VAR[@NAME="EXTENSION"].

Error: Bridge Configuration
Cannot add variable //

ROWSET[@NAME="MTC0022"]//
VAR[@NAME="VARIABLE"] to the attachment list.

Error: Server Configuration
The rule processor failed while processing the messages

//ROWSET[@NAME="SRV0001"]//
VAR[@NAME="CURMSG"].

AFP Error Messages

Cause / Remedy

Unknown internal error. If the error persists, report it to
Support

Invalid data was submitted in the attachment variable.
Specify the correct data in the attachment variable.

Internal error. The code and message provide more
detailed information. If the problem persists, report the
error to Support.

The rules in the request type are not saving the variable
prior to its usage. Make sure the rules in the request type
are saving the variable prior to its usage. Hint, look up the
description of the rules in the SDK.Memory is running
low on the server. Restart the server. If the error persists,
report it to Support.

Invalid path, file name or extension. Make sure the path,
file name and extension are valid.The font cross reference
file does not exist at the specified location. Make sure the
font cross reference file exists at the specified location.

The max size of the queue message was reached. Reduce
the size of the message. For instance, if the message size is
too large due to too many matches found using the search
criteria, consider refining the search criteria. Use a more
advanced queueing system.Internal error If the problem
persists report it to Support.

The server is not configured for a particular request type.
Correct the server configuration

321

Appendix B

Error Messages

Code

SRV0002

SRV0003

SRV0004

SRV0005

TPD0001

TPD0002

TPD0003

TPD0004

TPD0005

322

Severity: Category
Message text

Error: Server Configuration

The server is not configured for the request type: //
ROWSET[@NAME="SRV0002"]//
VAR[@NAME="REQTYPE'|

Error: Server Configuration
The master server could not send the message to IDS.
Error: Bridge Configuration

Cannot locate the directory //
ROWSET[@NAME="SRV0004"]//
VAR[@NAME="DIR"| specified.

Error: Bridge Configuration

The parameter //ROWSET[@NAME="SRV0005"|//
VAR[@NAME="PARAM"| specified for //
ROWSET[@NAME="SRV0005"]//
VAR[@NAME="LOCATION"] is invalid!

Error: Bridge Configuration

Cannot DSILocateValue //
ROWSET[@NAME="TPD0001"]//
VAR[@NAME="NAME"]. Make sure TPDInit rule was

executed.

Error: Bridge Configuration

Call to API //ROWSET[@NAME="TPD0002"]//
VAR[@NAME="APINAME"] failed.

Error: Bridge Configuration

File //ROWSET[@NAME="TPD0003"]//
VAR[@NAME="TIFENAME"] could not be loaded.

Error: Bridge Configuration

Stem variable //ROWSET[@NAME="TPD0004"]//
VAR[@NAME="NAME"] could not be located.

Error: Bridge Configuration

Stem variable //ROWSET[@NAME="TPD0005"]//
VAR[@NAME="NAME"| has invalid value (0).

Cause / Remedy

The request type specified in the request is missing in the
initialization file. Add the request type to the initialization
file.The request type specified in the request does not have
the appropriate rules in the initialization file. Make sure
the request type is calling the appropriate rules for the
request.

The master server or the IDS server are not configured
correctly. Make sure the master server and the IDS server
are configured correctly.

The directory specified does not exist. Make sure the
directory specified exists.

The value for the specified parameter is not valid. Make
sure the value specified is valid for the rules executed.

The request is trying to use the TPD rules but the rule
TPDInit was not registered on the init request. Add the
TPDInit rule to the INI request on the server. Hint,
lookup a description of the rule in the SDK.

Internal error. Check additional errors for more info. If
the problem persists, report the error to Support.

Loader not initialized. Make sure the Loader is initialized
prior to loading the TIFF file.Invalid path or file name or
file does not exist. Make sure the path and file name are
valid.

Specific variable with the TIFF file name could not be
located. Make sure the TIFF names are provided in the
sequential “stem” variables.

Specific variable with the TIFF file name has invalid value.
Make sure the TIFF names are provided in the sequential
“stem” variables and have valid values.

Code

IPP0001

IPP0002

IPP0003

IPP0004

IPP0005

IPP0006

IPP0007

IPP0008

Severity: Category

Message text
Error: Bridge Configuration

Call to //ROWSET[@NAME="TPP0001"]//
VAR[@NAME="APINAME"] failed in //
ROWSET[@NAME="IPP0001"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0002"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0002"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0003"]//
VAR[@NAME="APINAME"] wip file in //
ROWSET[@NAME="IPP0003"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to //ROWSET[@NAME="IPP0004"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0004"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0005"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0005"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0006"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0006"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0007"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0007"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0008"]//
VAR[@NAME="APINAME"| POLFile in //
ROWSET[@NAME="IPP0008"]//
VAR[@NAME="LOCATION"].

AFP Error Messages

Cause / Remedy

Error in Wiplnit. Check file name and path. If the error
persists, contact Support

Error in virtual memory management. Restart the server.
If the error persists, report it to Support.

The file may not exist. Check the WIP files. If the error
persists, report it to Support.

The form set may not exist. Check the WIP KeyID. If the
error persists, report it to Support.

The form set may not exist. Check the WIP KeyID. If the
error persists, report it to Support.

Unable to append unique record. Record may already
exist.

Memory running low or memory corruption. >Restart. If
the error persists, report it to Support.

POLFile may not exist. Check file and path. If the error

persists, report it to Support.

323

Appendix B

Error Messages

Code

IPP0009

IPP0010

IPP0011

IPP0012

IPP0013

IPP0014

IPP0015

IPP0016

324

Severity: Category
Message text

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0009"]//
VAR[@NAME="APINAME"| NAFile in //
ROWSET[@NAME="IPP0009"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Internal API //ROWSET[@NAME="IPP0010"]//
VAR[@NAME="APINAME"] failure in //
ROWSET[@NAME="IPP0010"//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration
Unable to //ROWSET[@NAME="IPP0011"]//
VAR[@NAME="APINAME"| TrnDfd file in //

ROWSET[@NAME="IPP0011"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0012"]//

VAR[@NAME="APINAME"| new TrnDfd file in //

ROWSET[@NAME="IPP0012"//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Call to //ROWSET[@NAME="IPP0013"]//
VAR[@NAME="APINAME"] failed in //
ROWSET[@NAME="IPP0013"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration
Field list is empty.

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0015"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0015"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0016"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0016"]//
VAR[@NAME="LOCATION"].

Cause / Remedy

NAFile may not exist. Check file and path. If the error
persists, report it to Support.

Misconfiguration.

Check INI options. If the error persists, report it to
Support.

The TrnDfdFile may not exist. Check file and path. If the

error persists, report it to Support.

NewTrnDfdFile may not exist. Check file and path. If the
error persists, report it to Support.

NewTrnDfdFile may not exist. Check file and path. If the
error persists, report it to Support.

Search criteria. Add the appropriate search fields. If the
error persists, report it to Support.

Error in virtual memory management. Restart. If the error
persists, report it to Support.

Can not add field data. If the error persists, report it to
Support.

Code

IPP0017

IPP0018

IPP0020

IPP0021

IPP0022

IPP0023

1PP0024

IPP0026

Severity: Category

Message text
Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0017"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0017"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to load file //ROWSET[@NAME="IPP0018"]/
/VAR[@NAME="PATH"]\//
ROWSET[@NAME="TPP0018"]//
VAR[@NAME="FILE"]//
ROWSET[@NAME="IPP0018"]//
VAR[@NAME="EXTENTION"].

Error: Bridge Configuration

Failed to match records in IPPLocateMatches.
Error: Bridge Configuration

Unable to add attachment variable //
ROWSET[@NAME="IPP0021"]//
VAR[@NAME="VARIABLE"].

Error: Bridge Configuration

//ROWSET[@NAME="IPP0022"]//
VAR[@NAME="APINAME"] failed to locate
attachment variable in //
ROWSET[@NAME="IPP0022"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0023"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0023"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to add attachment variable//
ROWSET[@NAME="IPP0024"]//
VAR[@NAME="VARIABLE"| record //
ROWSET[@NAME="IPP0024"]//
VAR[@NAME="RECORD"].

Error: Bridge Configuration
Unable to read import file //

ROWSET[@NAME="IPP0026"]//
VAR[@NAME="IMPORTFILE"].

AFP Error Messages

Cause / Remedy

Can not add to TrnFile. If the error persists, report it to
Support.

File may not exist. Check file and path. If the error
persists, report it to Support.

Search Keys. Check search keys

If the error persists, report it to Support.

Internal error. If the error persists, report it to Support.

Internal error If the error persists, report it to Support.

File may not exist. Check file and path. If the error
persists, report it to Support.

325

Appendix B

Error Messages

Code

IPP0027

IPP0028

IPP0029

IPP0030

IPP0031

IPP0032

IPP0033

IPP0034

326

Severity: Category
Message text

Error: Bridge Configuration

Unable to load file //ROWSET[@NAME="IPP0027"]/
/VAR[@NAME="FILE"].

Error: Bridge Configuration

Unable to load FAP image //
ROWSET[@NAME="IPP0028"]//
VAR[@NAME="IMAGE"].

Error: Bridge Configuration

Loading of the submited import file resulted in empty
formset.

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0030"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0030"]//
VAR[@NAME="LOCATION".

Error: Bridge Configuration

Unable to open import file //
ROWSET[@NAME="IPP0031"]//
VAR[@NAME="IMPORTEFILE"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0032"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0032"]//
VAR[@NAME="LOCATION".

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0033"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0033"]//
VAR[@NAME="LOCATION".

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0034"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0034"]//
VAR[@NAME="LOCATION"].

Cause / Remedy

Form definition file may not exist. Check file and path. If
the error persists, report it to Support.

FAP Image may not exist. Check file and path. If the error
persists, report it to Support.

Impropriety import file. Check the import file. If the error

persists, report it to Support.

Internal error. If the error persists, report it to Support.

Import file may not exist. Check file and path. If the error
persists, report it to Support.

POLFile may not exist. Check file and path. If the error
persists, report it to Support.

NAFile may not exist. Check file and path. If the error
persists, report it to Support.

Internal error. If the error persists, report it to Support.

Code

IPP0035

IPP0036

IPP0037

IPP0038

IPP0039

IPP0040

IPP0041

IPP0042

Severity: Category
Message text

Error: Bridge Configuration

Could not update recipient //
ROWSET[@NAME="IPP0035"]//
VAR[@NAME="RECIPIENT"] count //
ROWSET[@NAME="TPP0035"]//
VAR[@NAME="COUNT"].

Error: User Error

Unable to locate INI option //
ROWSET[@NAME="IPP0036"]//
VAR[@NAME="INIOPTION"] in the group //
ROWSET[@NAME="IPP0036"]//
VAR[@NAME="INIGROUP"].

Error: Bridge Configuration

Unable to locate attachment variable hFormset.
Error: Bridge Configuration

Unable to locate attachment variable //

ROWSET[@NAME="IPP0038"]//
VAR[@NAME="VARIABLE"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0039"//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0039"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration
Unable to open export file //

ROWSET[@NAME="IPP0040"]//
VAR[@NAME="EXPORTFILE"].

Error: Bridge Configuration
Unable to //ROWSET[@NAME="IPP0041"]//
VAR[@NAME="APINAME"] file //

ROWSET[@NAME="IPP0041"]//
VAR[@NAME="TABLENAME"].

Error: Bridge Configuration

Failed to add form. //ROWSET[@NAME="IPP0042"]/

/VAR[@NAME="GROUP1"], //
ROWSET[@NAME="IPP0042"]//
VAR[@NAME="GROUP2"], //
ROWSET[@NAME="IPP0042"]//
VAR[@NAME="FORMNAME"].

AFP Error Messages

Cause / Remedy

Recipient may not on the list. Check recipient list. If the
error persists, report it to Support.

Missing INT options. Check INI options. If the error
persists, report it to Support.

Missing DSI Value DPRFormset. Valid DSI value
DPRFormset needed. If the error persists, report it to
Support.

Missing DSI Value DPRFormset. Valid DSI value
DPRFormset needed. If the error persists, report it to
Support.

Import file may not exist. Check file and path. If the error
persists, report it to Support.

Internal error. If the error persists, report it to Support.

Missing index file or/and DFD file. Check file and path.
If the error persists, report it to Support.

Incorrect form name. Make sure a correct form is
matched. If the error persists, report it to Support.

327

Appendix B

Error Messages

Code

IPP0043

IPP0044

IPP0045

IPP0050

IPP0051

IPP0052

IPP0054

IPP0056

328

Severity: Category
Message text

Error: Bridge Configuration
Form does not exist.
Error: Bridge Configuration

Failed to parse line data //
ROWSET[@NAME="TPP0044"]//
VAR[@NAME="LINEDATA"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0045"]//
VAR[@NAME="APINAME"] file //
ROWSET[@NAME="IPP0045"]//
VAR[@NAME="TABLENAME'"].

Error: Bridge Configuration

Call to //ROWSET[@NAME="IPP0050"]//
VAR[@NAME="APINAME"] failed in //
ROWSET[@NAME="IPP0050"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0051"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0051"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0052"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0052"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to retrieve records. //
ROWSET[@NAME="IPP0054"]//
VAR[@NAME="CATALOGKEY"], //
ROWSET[@NAME="IPP0054"]//
VAR[@NAME="CARID"], //
ROWSET[@NAME="IPP0054"]//
VAR[@NAME="FILE"].

Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0056"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0056"]//
VAR[@NAME="LOCATION".

Cause / Remedy

Incorrect form name. Make sure a form name is correct. If
the error persists, report it to Support.

Invalid data line. Make sure the data line is correct. If the
error persists, report it to Support.

Invalid search criteria. Make sure correct search keys are
used. If the error persists, report it to Support.

Internal error If the error persists, report it to Support.

Internal error. If the error persists, report it to Support.

Internal error. If the error persists, report it to Support.

Invalid CatalogKey, CarID or POLFile. Check
CatalogKey, CarID or POLFile. If the error persists, report
it to Support.

Invalid WipFile name or WipDfd file. Check WipFile
name and WipDfd file. If the error persists, report it to
Support.

Code

IPP0057

IPP0058

DSI0001

DSI10002

DSI0003

DSI10004

DSI0005

DSI0006

Severity: Category

Message text
Error: Bridge Configuration

Unable to //ROWSET[@NAME="IPP0057"]//
VAR[@NAME="APINAME"] in //
ROWSET[@NAME="IPP0057"]//
VAR[@NAME="LOCATION"].

Error: Bridge Configuration

Failed to create group. //
ROWSET[@NAME="IPP0058"]//
VAR[@NAME="GROUP1"], //
ROWSET[@NAME="TPP0058"]//
VAR[@NAME="GROUP2"].

Error: Server Configuration

No customer rule specification in line '//
ROWSET[@NAME="DSI0001"]//
VAR[@NAME="PARMS"]'.

Error: Server Configuration

Customer rule //ROWSET[@NAME="DS10002"]//
VAR[@NAME="RULE"] is not registered and //
ROWSET[@NAME="DSI0002"]//
VAR[@NAME="MODULE"]. DLL->DLLRegisterServer

not found.

Error: Server Configuration

Customer rule //ROWSET[@NAME="DSI0003"]//
VAR[@NAME="RULE"] is not registered; self-registry
of //ROWSET[@NAME="DSI0003"]//
VAR[@NAME="MODULE'] failed.

Error: Server Configuration

Customer rule //ROWSET[@NAME="DSI10004"]//
VAR[@NAME="RULE"] is not found in registry.

Error: Server Configuration

Customer rule //ROWSET[@NAME="DSI0005"]//
VAR[@NAME="RULE"] COM failure: no class factory
(//ROWSET[@NAME="DSI0005"]//
VAR[@NAME="HR"]).

Error: Server Configuration

Customer rule //ROWSET[@NAME="DSI0006"]//
VAR[@NAME="RULE"] COM failure: cannot create
instance (//ROWSET[@NAME="DSI0006"]//
VAR[@NAME="HR"]).

AFP Error Messages

Cause / Remedy

Invalid WipFile name or user list. Check WipFile name
and user list. If the error persists, report it to Support.

Internal error. If the error persists, report it to Support.

No method name after -> in parameter line Check the
spelling of the function line.

COM Rule DLL not registered. Stop IDS, register COM
DLL and restart IDS.

Problem with COM DLL registering itself. Check COM

source code for errors.

COM Rule DLL not registered. Stop IDS, register COM
DLL and restart IDS.

Problem with COM object. Check COM code for errors.

Problem with COM object. Check COM code for errors.

329

Appendix B

Error Messages

Code

DSI0007

DSI0008

DSI0009

Severity: Category
Message text

Error: Server Configuration

Customer rule //ROWSET[@NAME="DS10007"|//
VAR[@NAME="RULE"] COM failure: no IDispatch (/
/ROWSET[@NAME="DSI0007"]//
VAR[@NAME="HR")).

Error: Server Configuration

Customer rule //ROWSET[@NAME="DSI0008"]//
VAR[@NAME="RULE'] is missing method (//
ROWSET[@NAME="DSI0008"]//
VAR[@NAME="HR"]).

Error: Server Configuration

Fatal error (//ROWSET[@NAME="DSI0009"]//
VAR[@NAME="HR"]) in rule //
ROWSET[@NAME="DSI0009"]//
VAR[@NAME="RULE"].

Cause / Remedy

Problem with COM object. Check COM code for errors.

Problem with COM object. Check COM code for errors.

Problem with COM object. Check server logs for more
information.

330

Appendix C
Choosing a Paper Size

The system supports a wide variety of paper sizes
including US and international sizes. The following
tables show the paper sizes you can choose from:

e US Standard Sizes on page 332
e ISO Sizes on page 333
* Japanese Standard Sizes on page 336

You can also find the following related information in
this topic:

e Printer Support for Paper Sizes on page 337

® Paper Sizes for AFP Printers on page 341

331

Choosing a Paper Size

US STANDARD These paper sizes are commonly used in the United States and Canada. The height and

width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are

SIZES approximate.
Width x Height

Name Code FAP units Millimeters Inches (approximate)
US letter 0 20400 x 26400 216 % 279 82 x 11
US legal 1 20400 x 33600 216 % 356 82 x 14
US executive 3 17400 x 25200 190 x 254 7Y 10%2
US ledger 4 40800 x 26400 432 x 279 17 x 11
US tabloid 5 26400 x 40800 279 % 432 11x 17
US statement 6 13200 x 20400 140 x 216 52 x 812
US folio 7 20400 x 31200 216 x 330 82 x 13
US fanfold 8 35700 x 26400 378 x 279 147 s x 11
Custom 98 any x any any x any any x any

332

ISO SIZES

ISO A sizes

I1SO Sizes

The International Organization for Standardization (ISO) paper sizes, which are based on
the earlier Deutsche Industrie Norm (DIN) sizes, are used throughout the world except
in Canada, the United States, and Japan. There are three main series of paper sizes: A, B,

and C.

The A series of sizes are typically used for correspondence, books, brochures, and other
printed materials. This diagram shows most of the various A sizes. The height and width
are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are

approximate.
(roughly 49 inches)
Ao
A2 A1
Ay A3
A6 Asg

(roughly 66 inches)

Width x Height
Inches

Name Code FAP units Millimeters (approximate)
ISO A0 20 79464 x 112345 841 x 1189 337 8x 46Ya
ISO Al 21 56125 x 79464 594 x 841 23Y 8x33Y 8
ISO A2 22 39685 x 56125 420 x 594 16'2x 23¥ 8
ISO A3 23 28063 x 39685 297 x 420 11% x 16Y2
ISO A4 2 19842 x 28063 210 x 297 8Ys x 11%

333

Choosing a Paper Size

Width x Height

Inches
Name Code FAP units Millimeters (approximate)
ISO A5 25 13984 x 19842 148 x 210 57 8 x 8Ys
1SO A6 26 9921 x 13984 105 x 148 4Y 3x 57 8
1SO A7 27 6992 x 9921 74 x 105 27 sx4Y s
ISO A8 28 4913 x 6992 52x 74 2x27 s
I1SO A9 29 3496 x 4913 37 x 52 12 x 2
ISO A10 30 2457 x 3496 26 x 37 1x 1%
1SO 2A 32 112345 x 158927 1189 x 1682 46%1 x 664
ISO 4A 34 158927 x 224690 1682 x 2378 661 x 93Y 8

ISO B sizes The B series of sizes are designed primarily for posters, wall charts, and similar items

where the difference between each A size represents too large a jump. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are

approximate.
Width x Height

Inches
Name Code FAP units Millimeters (approximate)
ISO BO 40 94487 x 133605 1000 x 1414 39Y s x 55 8
ISO Bl 41 66802 x 94487 707 x 1000 277 §x39Y 8
ISO B2 42 47244 x 66802 500 x 707 197 8x 277 8
ISO B3 43 33354 x 47244 353 x 500 137 8x 197 8
ISO B4 44 23622 x 33354 250 x 353 97 8x 137 &
ISO B5 45 16630 x 23622 176 x 250 7x97 8
ISO B6 46 11811 x 16630 125 x 176 5x7
ISO B7 47 8315 x 11811 88 x 125 3%2x5
ISO B8 48 5858 x 8315 62 x 88 22 x 3%
ISO B9 49 4157 x 5858 44 x 62 1% x 2%
ISO B10 50 2929 x 4157 31x44 12 x 134
ISO 2B 52 133605 x 188974 1414 x 2000 55% x 78%
ISO 4B 54 188974 x 267209 2000 x 2828 78% x 111

334

ISO C sizes

I1SO Sizes

The C series of sizes are designed for making envelopes and folders to take the A series

of sizes. The height and width are in FAP units (2400 per inch), millimeters, and inches.
The inch dimensions are approximate.

Width x Height

Inches
Name Code FAP units Millimeters (approximate)
ISO Co 60 86645 x 122550 917 x 1297 36% 8x 51
ISO C1 61 61228 x 86645 648 x 917 25% x 36
ISO C2 62 43275 x 61228 458 x 648 18 x 25%
ISO C3 63 30614 x 43275 324 x 458 12%: x 18
ISO C4 64 21638 x 30614 229 x 324 9 x 12%
ISO G5 65 15307 x 21638 162 x 229 6Y 8x 9
ISO Ce 66 10772 x 15307 114 x 162 415 x 6Y 8
ISO C7 67 7653 x 10772 81x114 3Ys x 412
ISO C8 68 5386 x 7653 57 x 81 2Ya x 3Ya
ISO C9 69 3779 x 5386 40 x 57 17 8 x 2V
ISO C10 70 2646 x 3779 28 x40 1V 8x1¥ 8
ISO DL 71 10394 x 20787 110 x 220 4y 3x 87 3

The DL size is for a sheet 1/3 of the A4 size. This is the most common size of envelope.

3356

Choosing a Paper Size

336

JAPANESE
STANDARD
SIZES

Japan has its own standard paper sizes, called the Japan Industrial Standard (JIS). The JIS
A series is identical in size to the ISO A series. The JIS B series, however, does not match
the ISO B series. There is no equivalent to the ISO C series. This table shows the JIS paper
sizes. The height and width are in FAP units (2400 per inch), millimeters, and inches. The
inch dimensions are approximate.

Width x Height

Inches
Name Code FAP units Millimeters (approximate)
JIS BO 80 97322 x 137573 1030 x 1456 40%2 x 57Y4
JIS B1 81 68787 x 97322 728 x 1030 28%a x 40%2
JIS B2 82 48661 x 68787 515x 728 20Ys x 28%
JIS B3 83 34393 x 48661 364 x 515 14Y2 x 20Y4
JIS B4 84 24283 x 34393 257 x 364 10Y 8 x 14Ys
JIS B5 85 17197 x 24283 182 x 257 7Y x 10Y 8
JIS B6 86 12094 x 17197 128 x 182 5% 7Ya
JIS B7 87 8598 x 12094 91 x 128 3%2x5
JIS B8 88 6047 x 8598 64 x 91 22 x 3%
JISB 89 4252 x 6047 45 x 64 1% x 2%
JIS B10 90 3024 x 4252 32x45 12 x 134

Printer Support for Paper Sizes

PRINTER This table outlines the various paper sizes supported by the different print drivers. The
S table includes information for the PDF, RTF, HTML, Metacode, PCL 5, PCL 6, GDI,
UPPORT FOR PostScript, and AFP print drivers. The PDF, RTF, HTML, and Metacode print drivers

PAPER SIZES support all paper sizes.

PDF, RTF,

HTML, and
Paper size Metacode PxL! PCL? GDI? PST? AFP*
US letter X X X X X X
US Legal X X X X X X
US executive X X X X X X
US ledger X X X X X X
US tabloid X Y US letter X X X
US statement | X JIS B5 US executive X X X
US folio X US legal US legal X X X
US fanfold X US ledger US ledger X X X
ISO 4A X Y US letter US letter US letter C
ISO 2A X Y US letter US letter US letter C
ISO A0 X Y US letter US letter X C
ISO Al X Y US letter US letter X C
ISO A2 X Y US letter US letter X C
ISO A3 X X X X X X
ISO A4 X X X X X X

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INT option:

< PrtType:XXX >
PaperSizeMatching = Yes

! When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1IFMMST.DAT, See Paper Sizes for AFP Printers on page 341 for more information.

337

Choosing a Paper Size

PDF, RTF,
HTML, and
Paper size Metacode PX1.! PCL? GDI? PST? AFP*
ISO A5 X X X X X X
ISO A6 X X X X X X
ISO A7 X ISO A6 ISO G5 ISO A6 X C
ISO A8 X ISO A6 ISO G5 ISO A6 X C
ISO A9 X ISO A6 ISO G5 ISO A6 X C
ISO A10 X ISO A6 ISO G5 ISO A6 X C
ISO 4B X Y US letter US letter US letter C
ISO 2B X Y US letter US letter US letter C
ISO BO X Y US letter US letter X C
ISO B1 X Y US letter US letter X C
ISO B2 X Y US letter US letter X C
ISO B3 X Y US letter US letter X C
ISO B4 X JIS B4 US ledger X X X
ISO B5 X JIS B5 X X X X
ISO B6 X JIS B6 ISO C5 X X X
ISO B7 X ISO A6 ISO G5 ISO A6 X C
ISO B8 X ISO A6 ISO C5 ISO A6 X C
ISO B9 X ISO A6 ISO G5 ISO A6 X C

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INT option:

< PrtType:XXX >
PaperSizeMatching = Yes

1'When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
FIFMMST.DAT, See Paper Sizes for AFP Printers on page 341 for more information.

338

Printer Support for Paper Sizes

PDF, RTF,
HTML, and
Paper size Metacode PXL.! PCL? GDI? PST? AFP*
ISO B10 X ISO A6 ISO C5 ISO A6 X C
ISO Co X Y US letter US letter X C
ISO C1 X Y US letter US letter X C
ISO C2 X Y US letter US letter X C
ISO C3 X Y US letter X X C
ISO C4 X JIS B4 US ledger X X C
ISO G5 X X X X X C
ISO Cé6 X JIS B6 ISO C5 X X C
ISO C7 X ISO A6 ISO C5 ISO A6 X C
ISO C8 X ISO A6 ISO C5 ISO A6 US letter C
ISO C9 X ISO A6 ISO C5 ISO A6 US letter C
ISO C10 X ISO A6 ISO C5 ISO A6 US letter C
ISO DL X X X X X X
JIS BO X Y US letter US letter X C
JIS B1 X Y US letter US letter X C
JIS B2 X Y US letter US letter X C
JIS B3 X Y US letter US letter X C
JIS B4 X X X US fanfold X X

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INT option:

< PrtType:XXX >
PaperSizeMatching = Yes

! When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1IFMMST.DAT, See Paper Sizes for AFP Printers on page 341 for more information.

339

Choosing a Paper Size

PDF, RTF,
HTML, and

Paper size Metacode PXL! PCL? GDI? pST? AFP*
JIS B5 X X X X X X

JIS B6 X X X X X X

JIS B7 X ISOA6 ISOC5 ISO A6 X C

JIS B8 X ISOA6 ISOC5 ISO A6 X C

JIS B9 X ISOA6 ISOC5 ISO A6 X C

JIS B10 X ISOA6 ISOC5 ISO A6 X C

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.

Sizes that refer to another size substitute the referred size when paper size matching is turned on. If paper size
matching is not turned on, the behavior depends upon the specific driver. To turn on paper size matching,
use this INT option:

< PrtType:XXX >
PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.

2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper sizes

4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called

FIFMMST.DAT, See Paper Sizes for AFP Printers on page 341 for more information.

340

PAPER SIZES
FOR AFP
PRINTERS

Paper Sizes for AFP Printers

The AFP formdef source file (FIFMMST.DAT) contains support for the following paper
sizes, but since this file contains support for so many paper sizes, its size could affect
printer performance. To limit the effect, some of the paper sizes are commented out, as
shown in this table:

Size Commented out?
Letter No
Legal No
Executive No
Ledger Yes
Tabloid Yes
Statement Yes
Folio Yes
Fanfold Yes
ISO A3 Yes
ISO A4 No
ISO A5 Yes
ISO A6 Yes
ISO B4 Yes
ISO B5 Yes
ISO B6 Yes
ISO DL Yes
JIS B4 Yes
JIS B5 Yes
JIS B6 Yes

NOTE:The FIFMMST.DAT and FIFMMST.FDF files can be found in the FMRES
master resource library (MRL).

The commented source line begins with an asterisk (*). To add support for another paper
size, open the FIFMMST.DAT file and delete the asterisk at the beginning of each line
that references a paper size you want to add.

341

Choosing a Paper Size

342

Because the AFP formdef is composed on medium map names that specify page
orientation, paper size, tray selection, and duplex settings, there are 31 groups of medium
map settings. Each of these groups contains the 57 possible paper sizes. So, for each paper
size you add, there are 31 sources lines you must #ncomment to fully support a paper size
for all orientations, trays, and duplex settings.

After you uncomment the lines that reference the paper size you want to add, run the
AFPFMDEEF utility to rebuild your AFP formdef file with the new information. For more
information on this utility, see the Utilities Reference.

Index

A

AbsolutePage property 170
Acrobat

downloading Acrobat Reader 4
Active Server Pages 12, 171
ActiveX Data Objects 169
AddNameValuePair method 273
AddReq method 16
AFEAssignDpw API 259
AFGJOB.JDT file 154
AFP

error messages 300
AltFrom option 134, 135
Appldx INI option

multiple bridges 128
ArcRet control group

multiple bridges 128
ASP

IDSASP object 15

showing PDF files 19
ATCReceiveFile

referencing attachment variables 100
ATCSendFile

referencing attachment variables 100
attachment fields

sending and receiving 17
attachment variables

referencing 100

343

Index

attachments D
distributing email 134, 135
REPLYTO 135
ATTCHDED.DED file 133, 136, 137 DAP.INI file 143

distributing email 133
multiple bridges 128
B referencing attachment variables 100
DCLTW32 program 14

Debug control group 149

BaseErrors option 152 Debug option 248
batch requests MailType control group 134
submitting 130 DefaultTimeoutSeconds attribute 196
Bin2Unicode method 273 DFD VARIABLE option 136
bitmaps dialogs
embedded documents 141 customizing 190
BOF property 171 DisableRightClick option 261
bridges 2 distributed documents 2
using multiple 128 DOCCLNT.INI files

builtin functions request types 129

REPLYTO 135 DOCSERV.INI file
referencing attachment variables 100
request types 129
c docserv.xml file 148, 286

Documaker

CacheTime option 122 running via IDS 147

Certificate Authority 119 documents
CleanCache method 273
ClearMsgFile option 152

ClearReq method 16

attaching 141
Documerge 2
DownloadDPWFonts option 248

ClearRes method 16 DP.DLL 267
Client Connection Definition Table 119 DPP files 239
DPRAdd2Attachment rule

cmdGetResponseWithParm method 256
cmdSetFormsetField method 256
CmdWithMessage method 250
CommandTimeout property 170

distributing email 134, 136, 137
DPRCreateEMailAttachment rule

distributing email 135, 137
DPRDecryptValue rule 194
DPRFindTemplate rule

distributing email 133, 135, 136, 137
DPRLog rule

distributing mail 138

Compression attachment variable 131
CONFIG.INI file
referencing attachment variables 100

correlation IDs 114

344

DPRMail rule

and the DPRLog rule 138

distributing email 134, 136, 137
DPRParseRecord rule

and the DPRLog rule 138

distributing email 133, 136
DPRPrint rule 154
DPRSetConfig rule

multiple bridges 128
DPW files 155
DRLGetConfig 199
DSICoEx

sample output 289
DSICoTB

sample output 290, 291, 292, 293
DSIEncr COM object 193
DSIEXW32 program

sample output 289
DSIGetSOAPMessage 167
DSIGetSOAPMessageSize 167
DSIJWP.DLL file 131
DSILIB

default time-outs 196
DSIMessage class 72
DSIRowset2XML rule 192
DSIRowset2XMLSize rule 192
DSIServer control group 154
DSITEST utility 99
DSN property 170
duplex 131

email
distributing with IDS 132
message bus 138
Email2IDS control group 133, 136
EmailAdd option 133
EmailAdd2Attachment control group 134, 137
EmailDFD control group 133, 136

encrypting

URLs 193
Enterprise Web Processing Services (EWPS) 202
EOF property 171
eplyToQueueManagerName property 120
error messages 229, 295

AFP 300

displaying 296
Errors property 171
EWPS

Jmeter 202
Execute method 171

F

favorites list 230
FD2HTW32 utility 180
FieldErrors option 152
Fields property 171
File option

EmailDFD control group 133
FILE2IDS utility 130
FileExists method 274
FileExt option 154
FilePurgeList option 123
FilePurgeTimeSeconds option 123
files

sample output 289

system 285

testing the transfer of 99
FileWriteThreshold option 123
firewalls

using 193
fonts

AFP error messages 300

XML 181
forms

publishing on the web 180
frequently used forms 230
From option 134, 135

345

Index

ESISYS.INI file 152 IDSServer control group 148, 149, 154
FSIUSER.INI file 152 IDSSQL.ADO 170
FSIVER utility 203 IDSSQL.DLL 169
FTP IDSSQL.IDSRC 171
and firewalls 193 IDSSQLRULE.DLL 169
ImageErrors option 152
INI files

G list of 286

INTFile option
multiple bridges 128

GenDataStopOn control group 152
GENSemaphoreName option 149, 153
GetAttach 100

GetMsg method 274

GetUniqueString method 274
GetVersion method 255, 257

Initialize method 274
InitializeDefaults method 275
INIToken option 261
instance numbers 66
instances

Watchdog 62
internal message format 190
H Internet access 6

Internet Document Server

and Document Management Solutions 2

hlnstance property 15 illustration 12
HTML overview 11
and JSP 13 using the 9
print driver 207 intranet 2
vs. PDF 4 IRLFileFTP rule 193

IRLInitFTP rule 193

J

1_GetMRLResource rule 230

iDocumaker J2EE-compliant application servers 108
favorites list 230

Java

IDS Java Management Extensions (JMX) 90

pausing 175 Java Message Service (JMS) 108

running Documaker 147 Java Naming and Directory Interface (JNDI) 108
IDSASP server pages 13

creating front-end solutions 14 threads test utility 53

illustrated 15 WebSphere MQ 111
IDSINSTANCE variable 66 Jmeter 202
IDSJSP bean 14 JSON 202

IDSJSP.jar 13

346

L

LDAP 195
load balancing 70
log files

DPRLog rule 138

logging categories 92
LogConfConvert.xsl template 91
LogFile option 152
LogFileType option 152, 153
logos

error messages 301

Mail control group 134
MailFunc option 134
MailType control group 134
MailType option 134
Management Information Base (MIB) file 60
marshaller class 72
MaxErrors option 120
MaxTimeoutSeconds attribute 196
message format

internal 190
MinTimeoutSeconds attribute 196
Module option 134
MoveFirst method 171
MovelLast method 171
MoveNext method 171
MovePrevious method 171
MQSeries 111

DP.DLL COM object 267
MultiFilePrint option 152, 153
multiline text fields

in XML files 181
multiple bridges 128

multiple servers
measurements 48
using 46

MVS
ODBC connections 47

Name option 134

o

ODBC

connections to MVS 47
oDSI property 15
OnEndPage method 16
OnStartPage method 16
OutputFunc option 131
OutputMod option 131
overlays

error messages 300

OverridePrompt option 261

P

page segments

error messages 301
PageSize property 170
Password property 171
passwords

and firewalls 193
patches 203
PatchReporter utility 203
Path option 136
pausing IDS 175
PCL printing

mixing simplex and duplex 131

347

Index

PDF Converter 3
PDF files

showing 19

vs. HTML files 4
PDF Print Driver

overview 206
performance

measurements with multiple servers 47

using multiple servers 46
personal forms lists 230
Port option 134
Portable Document Format 206
PostGenDataExecutable option 158
PostGenPrintExecutable option 158
PostGenTrnExecutable option 158
Print Preview

compressed PCL files 131
PRINTPATH attachment variable 154
PrintPath option 154
processing

documents using the internet 1
ProcessQ method 16, 17
ProcessRq method 16, 17
ProcessTrn method 275, 281
PRTZCompressOutPutFunc function 131
publishing forms on the web 180
PullCode option 133
PutMsg method 275

348

Q

queues
~GetAttach variable 58, 100
client connection definition tables 119
default message queue handler 103
DESTINATION parameter 57
HTTP queues 104
IDSClientRule 56
logging categories 80
message queues 102
messaging systems 71
pausing IDS 175
pooling 117
ReplyToQueueName property 120
security exits 118
SOAP 161
SSL connections 119
transforming XML messages 186
using HTTP 124
using Java message service 108
using multiple 106
using WebSphere MQ 111
WaitTime property 16

ReadBinFile method 16, 21
ReadIniOptions method 276
ReceiveByCorrelationID API 114
RecordCount property 171
RepeatInterval attribute 198
ReplyTo option 134, 135
replyToQueueName property 120
REQTYPE

multiple servers 47
request

submitting batch requests 130

types 129
Request property 15

requests

monitoring 61

timed 198
RequestValue method 276
required

components 6
Response.Redirect method 20
Result property 15
ResultValue method 277
RPDCheckRPRun rule 149
RPDCreatejob rule 149
RPDJobTicket variable 149
RPDProcessJob rule 149
RPDRunProcess variable 149
RPDRunRP control group 149
RPDSemaphoreName option 149, 153
RPDStopRPRun rule 149
RPEX1.INI file 148
RULServerJobProc option 153
RULStandardBaseProc rule 154
RUNMOQSC tool 111
RunOnPrimarylnstanceOnly attribute 198

S

samples
output files 289
SaveOnExit option 261
security
URLs 193
security issues 193
semaphores 149
Server option 134
Server.CreateObject method 194
ServerBaseProc rule 154
servers
performance measurements 48
setting up additional 49
using multiple 46
SetGUID method 277

setting up

a Windows NT Service 50
ShowAtt property 15
simplex 131
SleepingTime option 153
SNMP server programs 60
SOAP 202

DP.DLL COM object 267

message format 161
SOAP standards 190
SOAPAddAttachment method 277
SOAPGetAttachment method 278
SOAPGetAttachmentAsBuffer method 278
SOAPLoadAttachment method 278
SOAPUnloadAttachment method 279
SQL

connecting to 169
SQLCommand property 171
SSL connections 119
SuppressErrorsIntervalSeconds option 120

system files 285

T

Terminate method 279
Thin Client Forms Publisher 174
thin clients 2
timed requests 198
TimeOut property 16
time-outs

DSILIB client applications 196
TPDInitRule rule

multiple bridges 129
Trace method 279
TransactionErrors option 152
TrapEvents option 261
TrapOnlyQuitEvent option 261

349

Index

U

UDDI compliance 161
Unicode2Bin method 279
URL

requests 125
URLs

encrypting 193
user IDs

and firewalls 193
User property 171
using

multiple bridges 128

the Internet Document Server 9

the PDF Print Driver 206

W

WaitForStart option 152
WaitTime property 16
WATCHDOG 50
Watchdog 66
Watchdog process 62
WATCHDOG-STDERR.TXT 50
WATCHDOG-STDOUT.TXT 50
web servers

and firewalls 193
WebLogic 108
WebSphere 108

CCDT files 119

correlation IDs 114

overview 111

security exits 118

setting up 112

SSL connections 119
Windows NT

setting up an NT Service 50
WindowsRawPrinter.jar file 131

350

WIP Edit plug-in
changing user assignments 259
cmdGetResponseWithParm method 254, 256
cmdSetFormsetField method 251, 252, 253, 256
DPW files 155
GetVersion method 255, 257

WIPCTL program 250

WriteBinFile method 280

WriteToLog method 280

X

XML
error message template 296
formatting text 181
internal message format 190
message format 161
XML2Attach control group 134, 136, 137
XML2Body control group 133, 136, 137
XRFToken option 248

Z

Security exits 118

	Start
	Notice
	Contents
	Processing Documents Using the Internet
	Overview
	Architectural Changes in Version 2.x

	Required Components
	Components Available from Oracle Insurance

	Using the Internet Document Server
	Overview
	Creating Front-End Solutions
	Using JSP
	Using the IDSJSP JavaBean
	Using ASP

	Using the IDSASP Object
	Sending and Receiving Attachment Fields
	Showing a PDF File
	Using the HTTP Parsing and Uploading APIs
	Using the XMLSession Rules
	IDSASP Methods
	IDSJSP Methods
	XMLSession Rules

	Using IDSXML
	XMLTransformErrors
	XMLTransformErrors2
	XMLLoadINI
	XMLLoadXML
	XMLLoadXSL
	XMLGetGroupOptionValue
	XMLGetValue
	XMLGetGroup
	XMLUpdateGroup
	XMLBuffer
	XMLLoadProcessor
	XMLAddParameterToXSL
	XMLTransformWithXSL
	XMLProcessWithXSL
	XMLUpdateFormset
	XMLProcessFormset

	Using Multiple Servers
	Determining if Your Transactions are CPU or I/O Intensive
	Performance Measurements when Using Multiple Servers
	Setting Up Additional Servers

	Setting Up a Windows NT Service
	Handling Multi- threaded Requests
	Using the Java Test Utility

	Using Rules Written in Other Scripting Languages
	Using IDS as a Client to Another IDS
	Using the IDSClientRule

	Monitoring IDS with SNMP Tools
	Monitoring Requests

	Managing IDS Instances
	Sending Results and Receiving Requests in Multiple Formats
	Configuring and Deploying Marshallers

	Logging and Tracing
	Naming Logging Messages
	Using Logging Categories
	Logging Information about Requests
	Querying Transaction Information
	getMetaData
	QueryTranLogs

	Monitoring Performance Statistics
	Generating a Logging Configuration File
	Using Logging Categories to Access the Internal Format of Requests

	Configuring IDS
	Running IDSConfig
	Creating New Files
	Adding Nodes
	Adding Nodes with Text
	Editing Nodes
	Copying Nodes
	Moving Nodes
	Adding Attributes
	Adding Comments
	Adding Text
	Adding a Request or Function
	Adding an IDS Function
	Converting DOCSERV.INI or DOCCLIENT.INI Files into XML Format
	Adding a Section or Entry
	Locating Text
	Importing Configuration Information
	Configuring MQSeries Buffer Sizes
	Testing File Transmission

	Referencing Attachment Variables
	Using Unicode in Attachment Variables

	Using the Message Queues
	Choosing the Right Queuing Options
	Understanding the Router Process
	How HTTP Queues are Handled
	Using the Router Section
	Using Multiple Queuing Systems

	Using the Java Message Service (JMS)
	Setting up JMS

	Using WebSphere MQ
	Setting Up WebSphere MQ
	Using MSMQ

	Using Security Exits
	Using Client Connection Definition Tables
	Using SSL Connections
	Using the ReplyToQueueName and ReplyToQueueManagerName Properties
	Suppressing Queue Error Messages
	Persisting Queue messages
	Purging Cached Files

	Using HTTP
	Using Multiple Bridges
	Submitting Batch Requests
	Printing in Duplex Mode to PCL Printers
	Using IDS to Distribute Email
	Modifying the docserv.xml Configuration File
	Modifying the DAP.INI File

	Attachment Variables Used by Email Rules
	Using Email Rules
	Using the Email Bus

	Attaching Documents to Documaker Transactions
	File with the Name and Type in IDS Attachment Variables
	File Sent to IDS in the Message
	File Accessible by Documaker Bridge
	Document in the Documanage Repository
	Error Messages
	Specifying Duplex Options for the Attached Form
	Debugging

	Using IDS to Run Documaker
	Setting Up IDS
	Setting up Multiple Internet Document Servers
	Controlling Documaker

	Setting Up Documaker
	Naming Conventions for Output Files

	Creating DPW Files
	Accessing IDS Attachment Variables in GenData
	Using TCP/IP Communications
	Customizing the Execution of Documaker

	Using the XML Messaging System
	Client Request Messages
	Server XML Response Messages
	Using XML SOAP Outside of Messaging Systems

	Connecting to an SQL Database
	Differences between Microsoft’s ADO and IDSSQL
	Setting up IDSSQL
	IDSSQL Classes
	IDSSQL.ADO
	IDSSQL.IDSRC

	Example Script

	Using the Thin Client Forms Publisher
	Pausing IDS
	DSIQueryStatus
	DSISetStatus

	Executing Request Types at Run Time
	Publishing Your Forms on the Web
	Formatting Text with XML Markup
	Encrypting and Decrypting Data Files
	Using Multiple Attachment Values with the Same Name
	getEntries

	Converting XML Files Using a Template
	Customizing Your System
	Handling Security Issues
	Using Firewalls
	Implementing Security for Web Applications

	Using LDAP Support
	Using Default Time-outs for DSILIB-Based Client Applications
	Running Timed Requests
	In-Process Rendering for DPAView
	DRLGetConfig

	Using DAL Functions for WIP Column Access
	Using Enterprise Web Processing Services
	Determining the Patch Level

	Creating Output Files
	Creating PDF Files
	Creating HTML Files
	Creating XML Output

	Using Docucorp Publishing Services
	DPS Object Properties
	Setting Default Parameters
	Sample VB Code
	Sample C Code
	Sample Java Code
	Setting Up IDS
	Setting Up Documaker

	Customizing iDocumaker, iPPS, and WIP Edit
	Setting Up a Favorites List for iDocumaker
	Attaching Files to Transactions as Forms
	Specifying the File Name and Type in IDS Attachment Variables
	Sending the File to IDS in a Message
	Storing the File on a Disk Accessible to Documaker Bridge
	Storing the File in a Documanage Repository
	Error Messages
	Specifying Duplex Options for the Attached Form
	Debugging

	Designating Read-Only Multiline Text Field Paragraphs
	Printing on Your Workstation Printer
	Preventing the Session from Expiring
	Passing WIP Record IDs to the MergeWIP Rule
	Automatically Updating iDocumaker
	Configuring IDS to Update iDocumaker
	On the Client Side
	Additional Utilities

	Checking Version Information

	Using the WIP Edit Plug-in
	Controlling the Interface
	Setting Up Custom Functions
	Changing the User Associated with a Document
	Sending Passwords
	Requesting a Dictionary
	Trapping Events
	Tracking Session Information
	Setting Up Printers

	Using the DP.DLL ActiveX Interface
	Requirements
	Setting Up the Configuration File
	Properties
	Methods
	AddNameValuePair
	Bin2Unicode
	CleanCache
	FileExists
	GetMsg
	GetUniqueString
	Initialize
	InitializeDefaults
	ProcessTrn
	PutMsg
	ReadIniOptions
	RequestValue
	ResultValue
	SetGUID
	SOAPAddAttachment
	SOAPGetAttachment
	SOAPGetAttachmentAsBuffer
	SOAPLoadAttachment
	SOAPUnloadAttachment
	Terminate
	Trace
	Unicode2Bin
	WriteBinFile
	WriteToLog

	Examples

	System Files
	IDS Configuration Files
	Sample Output Files

	Error Messages
	Displaying Error Messages
	AFP Error Messages
	Error Message Listing

	Choosing a Paper Size
	US Standard Sizes
	ISO Sizes
	Japanese Standard Sizes
	Printer Support for Paper Sizes
	Paper Sizes for AFP Printers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Z

	Oracle Insurance
	Oracle Suppport
	Related Documents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

