
Start

Oracle® Documaker

Rules Reference
version 12.0

Part number: E17552-01

October 2011

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.
Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE
Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)
The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.
Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.
Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.
Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

ix

Contents

Chapter 1, Introduction

2 Rules Overview

3 Types of Rules

Chapter 2, Adding Job and Form Set Rules

6 Using the Job Definition Table

6 Multi-Step Processing

7 Single-Step Processing

9 GenData WIP Transaction Processing

11 Writing Unique Data Into Recipient Batch Records

17 Sample AFGJOB.JDT Files and INI Options

22 Processing Import Files

25 Rules Used in Single-Step Processing

27 Rules Used for 2-up Printing

Chapter 3, Job and Form Set Rules Reference

30 JDT Rules Reference

39 AddLine

40 AddTextLabel

42 AllocDebug

43 AppendGblToExtr

44 Archive

45 AssignBatWithTbl

46 AssignToBatch

48 BatchByPageCount

50 BatchingByPageCountINI

56 BatchingByPageCountPerRecipINI

59 INI File Examples

x

69 BatchingByRecipINI

72 BuildExcludeList

73 BuildFormList

74 BuildMasterFormList

75 CheckZeroFontID

76 ConvertWIP

77 CreateGlbVar

78 CreateRecordList

79 DelExtRecords

80 Dictionary

81 DocumentExport

81 Defining Export Options

81 Defining the Export Record

83 Format Flags

84 Defining the Export Record Header

84 Date Formats

87 Freeform Formats

89 Using Locale Information

89 Format Specification Flags

91 DumpExtList

92 DumpExtractListToFile

93 ErrorHandler

94 Ext2GVM

95 FilterForm

97 FilterRecip

99 ForceNoImages

100 FormDescription

104 GenPrint

106 GetCo

107 GetLOB

108 GetRCBRec

109 GetRunDate

110 GVM2GVM

111 IfRecipUsed

112 ImageMapImportData

114 ImportExtract

119 ImportFile

xi

124 ImportNAPOLExtract

129 ImportNAPOLFile

133 ImportXMLExtract

137 ImportXMLFile

139 Using the TF Option

139 Using the File Option

140 Using the INI Option

140 Using the SCH Option

141 Using the GVM Option

142 XML File Format

144 InitArchive

145 InitConvertWIP

146 InitMerge

147 InitOvFlw

148 InitPageBatchedJob

149 InitPrint

150 InitSetRecipCache

151 InlineImagesAndBitmaps

152 InsNaHdr

153 InstallCommentLineCallback

154 JobInit1

155 LoadDDTDefs

156 LoadExtractData

157 LoadFormsetFromArchive

159 LoadListFromTable

160 LoadRcpTbl

161 LoadTblFiles

162 LoadTextTbl

163 MergeAFP

164 MergeRecipsFromForm

165 MergeWIP

169 MultipleDataDictionaryFiles

171 NoGenTrnTransactionProc

172 OMRMarks

176 PageBatchStage1InitTerm

177 PaginateAndPropagate

xii

179 ParseComment

180 PostTransDAL

182 PreTransDAL

184 PrintData

185 PrintFormset

187 ProcessQueue

188 ProcessRecord

189 ProcessTriggers

190 PXCandidateList

190 INI Options

192 PXTrigger

194 Input Tables

195 The Policy Xpress FED Processing Flow

197 RegionalDateProcess

200 ReplaceNoOpFunc

201 RequiredFieldCheck

202 ResetDocSetNames

203 ResetOvFlw

204 RestartJob

205 RULCheckTransaction

206 RULNestedOverFlowProc

210 RULStandardFieldProc

211 RULStandardImageProc

212 RULStandardJobProc

213 RULStandardTransactionProc

214 RULTestTransaction

215 RunSetRcpTbl

216 RunTriggers

217 RunUser

218 ServerFilterFormRecipient

220 ServerJobProc

223 SetErrHdr

224 SetOutputFromExtrFile

227 SetOverflowPaperTray

230 SetOvFlwSym

231 SetRecipCopyCount

xiii

232 SetRecipCopyCount2

233 SortBatches

233 Specifying Key fields

234 Sorting with a Single Key

234 Sorting with Multiple Keys

235 INI Options

236 Replacement Strings

239 StandardFieldProc

240 StandardImageProc

241 TicketJobProc

242 TranslateErrors

243 UpdatePOLFile

244 UseXMLExtract

245 Mapping Fields

246 Overflow in XML

247 WIPFieldProc

248 WIPImageProc

249 WIPTransactions

251 WriteNAFile

252 WriteOutput

253 WriteRCBFiles

254 WriteRCBWithPageCount

256 XMLFileExtract

257 Mapping Fields

258 Overflow in XML

Chapter 4, Adding Section and Field Rules

260 Storing Rule Information

261 Formatting Data

261 Using Pre-defined Date Formats

265 Using Pre-defined Numeric Formats

266 Setting Up Format Arguments

269 Field Format Types (fetypes)

271 Formatting Data with the = Operator

273 Search Criteria

xiv

274 Overflow and User Functions

Chapter 5, Section Rules Reference

276 Section Rules Summary

279 AddMultiPageBitmap

282 Using the File Option

283 Using the DAL Option

284 Using the SRCH Option

284 Using the GVM Option

284 Using the Type Option

286 Using the Scale Option

287 Using the Crop Option

288 AddMultiPageTIFF

290 Using the File Option

291 Using the DAL Option

292 Using the SCH Option

292 Using the GVM Option

292 Using the Type Option

295 CanSplitImage

298 CheckImageLoaded

300 ConnectFields

302 CreateChartSeries

303 CreateSubExtractList

304 DeleteDefaultSeriesData

305 DelImageOccur

306 DontPrintAlone

307 Field2GVM

308 FieldVarsToChartSeries

309 GroupBegin

309 Using the Box Function

310 Using the GroupPagination Function

311 Using the List Function

312 Using the StayTogether Function

312 Using the Column Function

316 GroupEnd

317 IncOvSym

xv

318 MoveMeToPage

319 PaginateBeforeThisImage

320 PostImageDAL

321 PreImageDAL

322 PurgeChartSeries

323 RemoveWhiteSpace

324 ResetImageDimensions

326 ResetOvSym

327 SetCpyTo

328 SetCustChartAxisLabels

329 SetGroupOptions

330 SetImageDimensions

331 SetOrigin

333 SetOriginI

335 SetOriginM

337 SetRecipFromImage

338 SpanAndFill

339 TextMergeParagraph

Chapter 6, Field Rules Reference

342 Field Rules Summary

347 AccumulateVariableTotal

349 AnyToAny

352 BldGrpList

355 CompBin

357 ConCat

358 DAL

359 DateDiff

361 DateFmt

363 EjectPage

364 FfSysDte

365 FmtDate

366 FmtNum

367 GlobalFld

xvi

369 HardExst

371 If

374 JustFld

377 KickToWip

378 LookUp

379 MapFromImportData

381 Master

382 MessageFromExtr

382 Creating Messages

385 Using the Record Dictionary

389 Mk_Hard

390 MNumExt

392 Move_It

396 MoveDate

397 MoveExt

398 MoveNum

405 MoveSum

406 MovTbl

407 NoOpFunc

408 OvActPrint

409 OvPrint

410 PowType

411 PrintIf

412 PrtIfNum

414 RunDate

416 SAPMove_It

417 SetAddr

418 SetAddr2

419 SetAddr3

421 SetState

422 StrngFmt

423 SysDate

425 TblLkUp

427 TblText

428 TerSubstitute

429 UnderlineField

xvii

430 XDB

433 XDD

Appendix A, Using Condition Tables and the Record Dictionary

438 Using Condition Tables

438 Setting Up the INI Files

438 Using a Record Dictionary File

439 Creating a Conditions File

440 Occurrence Counting

441 Using the Record Dictionary

441 Setting Up the Record Dictionary

441 Record Dictionary File

443 RPN Function

445 Record Dictionary Rules

445 Base_FromDataDictToGVM

445 FromDataDict

445 FromDataDictToGVM

445 Image_FromDataDictToGVM

446 IncDataDictRecPtr

446 PosDataDictRecPtr

446 PostIncDataDictRecPtr

446 PostPosDataDictRecPtr

446 PreIncDataDictRecPt

447 PrePosDataDictRecPtr

447 ResetDataDictRecPtr

449 Index

xviii

1

Chapter 1

Introduction

Welcome to the Rules Reference for Oracle Documaker.
This guide serves as a reference to the various rules you
can use to control how the system handles jobs, form
sets, sections (images), and fields.

This chapter discusses the following topics:

• Rules Overview on page 2

• Types of Rules on page 3

Chapter 1
Introduction

2

RULES
OVERVIEW

You can use rules to control how information is merged onto forms, how that
information is then processed, and how the information and those forms are output.
This guide serves as a reference to those rules.

Documaker Server uses resources you create using Documaker Studio or the older tool,
Image Editor, to process information and forms. This processing includes merging
external data onto forms, processing data according to rules you set up, creating print-
ready files, archiving data and forms, and, if applicable, sending incomplete forms to
Documaker Workstation for completion by a user.

Forms can be completed using Documaker Workstation when user input is required or,
if all of your information can be extracted from external data sources, Documaker Server
can be set up to process forms without requiring user input.

Documaker Server can create print-ready files for a variety of printer languages
including AFP, PostScript, PCL, and Xerox Metacode printers. In addition, the system
can also produce output in Adobe Acrobat PDF format.

NOTE:With the release of version 12.0, support for Image Editor and other legacy
development tools ended.

Types of Rules

3

TYPES OF
RULES

The GenData program processes these types of rules, based on this hierarchy:

• Job level rules

These rules define actions the system should perform for each job or work activity,
such as producing a complete form set. Job level rules are global rules used to apply
procedures and rules to all jobs, form sets, and forms. Most of these rules are
designed to initialize, open, and close section (FAP) files, bitmap files, and data files;
however, some specialized functions do exist.

Job level rules are stored in the Job Definition Table (AFGJOB.JDT). For more
information on job level rules, see Adding Job and Form Set Rules on page 5.

• Form set level rules

These rules let you construct and manipulate forms into form sets. Form set level
rules affect the form set as a whole, not the individual components which make up
the form set.

Form set level rules are stored in the Job Definition Table (AFGJOB.JDT). For more
information on job level rules, see Adding Job and Form Set Rules on page 5.

• Section level rules

These rules define actions to perform on single sections within a form, based on a
specific transaction. Form or section (image) level rules affect the section as a whole,
not the individual fields and objects which make up the section or form.

For more information on section level rules, see Section Rules Reference on page
275.

• Field level rules

These rules define actions to perform on the variable fields in a section. Field level
rules provide mapping, masking, and formatting information for each variable field
on a form.

For more information on field level rules, see Field Rules Reference on page 341.

NOTE:Only memory limits the number of rules you can add to a section, however,
having a large number of forms associated with a single section can be difficult
to maintain.

Chapter 1
Introduction

4

5

Chapter 2

Adding Job and Form Set
Rules

Job and form set rules help you control how a
processing job is run and how the system processes the
various form sets.

The rules which apply to the job and form set are stored
in the AFGJOB.JDT file, which is called the job definition
table, or JDT file. You add these rules directly into that
file using a text editor.

In this chapter you will find information about:

• Using the Job Definition Table on page 6

• Multi-Step Processing on page 6

• Single-Step Processing on page 7

• GenData WIP Transaction Processing on page 9

• Processing Import Files on page 22

• Rules Used in Single-Step Processing on page 25

• Rules Used for 2-up Printing on page 27

For reference information on individual rules, see Job
and Form Set Rules Reference on page 29

Chapter 2
Adding Job and Form Set Rules

6

USING THE JOB
DEFINITION

TABLE

The rules which apply to the job and form set are stored in the job definition table, which
is called the AFGJOB.JDT or JDT file. You edit this file using a text editor. When editing
the AFGJOB.JDT file, you can use these types of delimiters:

The base system uses the rules in the JDT file when you run the main batch system
programs (GenTrn, GenData, GenPrint, GenWIP, and GenArc). You can run these
programs several ways:

• Multi-step processing

• Single-step processing

• WIP transaction processing

For multi-step processing, you run each program separately. With single-step processing,
you run the GenData program using rules to perform the tasks handled by the GenTrn
and GenPrint programs. The AFGJOB.JDT files differ for each approach. Examples of
each approach follow.

WIP transaction processing lets you add or merge WIP transactions manually approved
or rejected into a GenData processing run. These transactions can be processed as new
transactions or appended to an master resource library (MRL) already processed by the
GenData program.

MULTI-STEP PROCESSING

Multi-step processing lets you run each batch system program in turn and check the log
and error messages after each step. You can learn more about the system flow and the
input and output files for each processing step in Chapter 2 of the Documaker
Administration Guide.

Multi-step processing
AFGJOB.JDT file

<Base Rules>

 ;RULStandardJobProc;1;Always the first job level rule;

 ;SetErrHdr;;*:;

 ;SetErrHdr;;*:--;

 ;SetErrHdr;;*: FormMaker Data Generation (Base);

 ;SetErrHdr;;*: ;

 ;SetErrHdr;;***: Transaction: ***PolicyNum***;

 ;SetErrHdr;;***: Symbol: ***Symbol***;

 ;SetErrHdr;;***: Module: ***Module***;

 ;SetErrHdr;;***: State: ***State***;

 ;SetErrHdr;;***: Company Name (after INI conversion):
Company;

 ;SetErrHdr;;***: Line of Business (after INI conversion):
Lob;

 ;SetErrHdr;;***: Trans Type: ***TransactionType***;

Use this delimiter… To…

backslash and asterisk (/*) Denote comments

comma (,) Separates the data that comprises a parameter

semi-colon (;) Separates parameters

Using the Job Definition Table

7

 ;SetErrHdr;;***: Run Date: ***RunDate***;

 ;SetErrHdr;;*:--;

 ;CreateGlbVar;;TXTLst,PVOID;

 ;CreateGlbVar;;TblLstH,PVOID;

 ;JobInit1;;;

 ;LoadDDTDefs;;;

 ;InitOvFlw;;;

 ;LoadTextTbl;;;

 ;LoadTblFiles;;;

 ;SetOvFlwSym;;CGDECBDOVF,QGDCBD,1;

 ;BuildMasterFormList;;4;

Every form set in the base system uses these form set level rules:

<Base Form Set Rules>

 ;RULStandardTransactionProc;;Always the first transaction level
rule;

 ;LoadExtractData;;;

 ;GetCo;;11,HEADERREC 35,3;

 ;GetLOB;;11,HEADERREC 40,3;

 ;ResetOvFlw;;;

 ;IfRecipUsed;;BATCH1=INSURED;

 ;IfRecipUsed;;BATCH2=COMPANY;

 ;IfRecipUsed;;BATCH3=AGENT;

 ;BuildFormList;;;

 ;LoadRcpTbl;;;

 ;UpdatePOLFile;;;

 ;RunSetRcpTbl;;;

Every section in the base system uses these section level rules:

<Base Image Rules>

 ;RULStandardImageProc;;Always the first section level rule;

 ;InsNAHdr;;;

Every field in the base system uses this field rule:

<Base Field Rules>

 ;RULStandardFieldProc;;Always the first field level rule;

SINGLE-STEP PROCESSING

To enhance performance, you can combine the execution and functionality of the
GenTrn and GenData steps into a single step. Combining these steps enhances
performance by reducing the number of times files have to be opened and closed during
processing. For more information, see Chapter 2 of the Documaker Administration
Guide.

To combine the GenTrn and GenData steps, you place the NoGenTrnTransactionProc
rule in under the <Base Form Set Rules> header in your AFGJOB.JDT file, along with
several other rules. To then combine the GenData and GenPrint steps, add the following
rule under the <Base Rules> header in your AFGJOB.JDT file:

;InitPrint;;;

and add this rule below the <Base Form Set Rules> header in your AFGJOB.JDT file:

;PrintFormset;;;

Chapter 2
Adding Job and Form Set Rules

8

To use single-step processing, change the TrnFile option in the FSISYS.INI file to NUL,
as shown below:

< Data >

TrnFile = NUL

Once you have added the rules to your AFGJOB.JDT file and FSISYS.INI file, run the
GenData program as you normally would and it will execute the GenTrn and GenPrint
processing steps.

For more information on these rules, see InitPrint on page 149, PrintFormset on page 185,
and NoGenTrnTransactionProc on page 171.

Single-step processing
AFGJOB.JDT file

When you use single-step processing, where the GenData program runs the GenTrn and
GenPrint processes as a single step, you use the following AFGJOB.JDT file. This file is
also called the performance mode JDT file:

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;;*:--;

;SetErrHdr;;*: FormMaker Data Generation (Base);

;SetErrHdr;;*: ;

;SetErrHdr;;***: Transaction: ***ACCOUNTNUM***;

;SetErrHdr;;***: Company Name (after ini conversion): ***Company***;

;SetErrHdr;;***: Line of Business (after ini conversion): ***LOB***;

;SetErrHdr;;***: Run Date: ***RunDate***;

;SetErrHdr;;*:--;

;JobInit1;;;

;CreateGlbVar;;TXTLst,PVOID;

;CreateGlbVar;;TblLstH,PVOID;

;InitOvFlw;;;

;SetOvFlwSym;;SUBGROUPOVF,SUBGROUP,5;

;BuildMasterFormList;;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

/* the following is required to run GenData/GenPrint as single
step.*/

;InitPrint;;;

Every form set in the base system uses these form set level rules:

<Base Form Set Rules>

;NoGenTrnTransactionProc;;First transaction level rule when omitting
GenTrn;

;ResetOvFlw;;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

/* the following is required to run GenData/GenPrint as single
step.*/

;PrintFormset;;;

;WriteOutput;;;

;WriteNaFile;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;;

;BatchingByRecipINI;;;

Using the Job Definition Table

9

Every section in the base system uses this section level rule:

<Base Image Rules>

;StandardImageProc;;Always the first section level rule;

Every field in the base system uses this field level rule:

<Base Field Rules>

;StandardFieldProc;;Always the first field level rule;

GENDATA WIP TRANSACTION PROCESSING

GenData WIP Transaction Processing lets you process WIP transactions based on their
status code. The transactions are created by one of these processes:

• Executing the GenWIP program after the GenData program to process the
transactions in the manual batch. Then using Documaker Workstation to:

Manually view a transaction and update any required data. Then use the WIP,
Save option to save the transaction with a status code such as: Approved or
Accepted.

Manually view a transaction and then use the WIP, Save option to save the
transaction with a status code of Rejected.

Manually view a transaction, update any required data, and save the transaction
using the File, Complete, Batch Print option. This assigns a Batch Print status
code to the transaction.

• Creating a new transaction using Documaker Workstation and then using the WIP,
Save or File, Complete, Batch Print option to save it with a status code such as
Approved, Accepted, or Rejected.

You can then process these transactions as:

• New transactions

• Transactions appended to an existing MRL recipient batch, NewTrn, NA, and POL
files created by a prior run of the GenData program

GenData WIP Transaction Processing creates new recipient batch, NewTrn, NA, and
POL files which you can print, archive, or both using the GenPrint and/or GenArc
programs.

To do this, you execute the GenData program using a simplified AFGJOB.JDT file that
contains rules to replace the existing form set, section, and field rules. In addition, you
must add two rules.

Here is a list of the rules used for GenData WIP Transaction Processing. All of these rules
are required in the simplified AFGJOB.JDT file.

Rule Description

MergeWIP on page
165

This job level rule initializes WIP Transaction Processing and specifies
the status codes for the transactions added or appended to a newly-
created NA and POL list.

Chapter 2
Adding Job and Form Set Rules

10

NOTE:All WIP file transactions added to the transaction memory list by the MergeWIP
rule are deleted from the WIP file after processing. You can remove specific
transaction types, such as Rejected, by including the status code in the
parameters for the MergeWIP rule and omitting it in the parameters for the
WIPTransactions rule.

WIPTransactions
on page 249

This form set level rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rule in the AFGJOB.JDT file and starts
form set processing.

It also identifies the status codes for transactions to be processed. The
status codes specified in this rule’s parameters can include any or all of
the status codes specified for the MergeWIP rule.

GVM2GVM on
page 110

This form set rule to copies GVM variable data from the WIP.DBF file
into GVM variables needed by the GenData program. Use the
Trigger2WIP control group options to define GVM variable names

WIPImageProc on
page 248

This section level rule replaces the RULStandardImageProc or
StandardImageProc rule in the AFGJOB.JDT file and tells the GenData
program to bypass section data processing.

WIPFieldProc on
page 247

This field level rule replaces the RULStandardFieldProc or
StandardFieldProc rule in the AFGJOB.JDT file and tells the GenData
program to bypass field data processing.

Rule Description

Using the Job Definition Table

11

WRITING UNIQUE DATA INTO RECIPIENT BATCH RECORDS

The GenData program lets you add unique data to recipient batch records before they are
written to the recipient batch files. The recipient batch record data and format is defined
by the GVM variable definitions in the RCBDFDFL.DAT file.

You can use this capability if you need to add...

• Address information or other field level information to the batch record, which is
typically unique for each recipient.

• Recipient information that is not handled by normal field mapping from the
transaction DFD to the recipient batch DFD.

• Cumulative or calculated information not available until the document is nearly
completed.

NOTE:Before the ability to add data to recipient batch records was added in version 10.2,
the recipient batch records were identical except for the recipient code field
which contains a unique identifier assigned to a given recipient. If additional
recipient data was required, you had to write a custom rule.

Use the options in the RecipMap2GVM control group to set up this capability. Data that
can be added to the recipient batch record can be:

• Contents of a variable field on the specified section or form/section

• Constant value

• Data from an existing INI built-in functions, such as ~DALRun

• Data from a custom written INI function

Here is an example of the RecipMap2GVM control group:

< RecipMap2GVM >

Form =

Image =

Req =

Opt =

Option Description

Form (Optional) Enter the name of the form.

Image Enter the name of the section. You can also enter a section name root.

A section name root is the first part of a name. For instance, MAILER is the root
name for sections with names such as MAILER A, MAILER_B, or MAILERS.

Req * A semicolon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information

- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

Chapter 2
Adding Job and Form Set Rules

12

Suppressing
RCBMapFromINI
function warning

messages

Use the WarnOnLocate option to suppress the following warning message from the
RCBMapFromINI function:

Cannot locate image root named/image

Here is an example:

< RecipMap2GVM >

WarnOnLocate = No

Optional formatting
information

You can add optional formatting information as a parameter of the Opt INI option.
This formatting information is comprised of four items separated by commas.

Here are some formatting examples:

d,”1/4”, d, “4/4”

This converts an input date, mmddyyyy, into month name dd, yyyy, such as February 17,
2009.

n, nCAD, nUSD, “$zzz,zz9.99”

This converts an input numeric value in Canadian French format into a value in United
States format.

Opt * A semicolon delimited string that contains one of the following:

- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

* = Repeat for each GVM variable you are setting up.

Option Description

Option Description

WarnOnLocate Enter No if you want to suppress this warning message from the
RCBMapFromINI function:

Cannot locate image root named/image

The default is Yes.

Item Description

Input fetypes D or d = date

N or n = number

Input format mask Date - see the FmtDate rule in the Rules Reference.
Number – see the FmtNum rule in the Rules Reference.

Output fetypes D or d = date

N or n = number

Output format mask Date - see the FmtDate rule in the Rules Reference.

Number – see the FmtNum rule in the Rules Reference.

Using the Job Definition Table

13

Keep in mind...

• For the Req option, if the data is missing an error occurs and the transaction is send
to the error batch.

• For the Opt option, if the data is missing the system stores an empty string in the
GVM variable.

• A RCB GVM variable cannot be restored to its original or default value after it has
been changed using this method.

• Any RCB GVM variable not assigned using this method retains the value originally
set during the transaction processing.

• Some RCB GVM variables should never be changed using this mapping technique.
These include:

TRN_Offset

NA_Offset

POL_Offset

• If the section defined in the Image option in the RecipMap2GVM control group
does not name a section, the feature is disabled for all transactions.

• If the section defined in the Image option is missing from the form set being
processed, the GVM data is not changed. Depending on where the GVM data is
mapped, this could mean data from the prior transaction will still be in the GVM
variables.

• If there are multiple sections with the same name in the form set, the form specified
in the Form option is used to identify the section to use. If the Form option is
omitted, the first section found in the current form set is used.

• The system assumes the specified section contains all of the unique data except for a
constant value or data gathered from an INI built-in function.

• If more than one recipient is assigned to the section, all recipient batch records
receive the same added data.

Chapter 2
Adding Job and Form Set Rules

14

Example This example creates a mailer cover page for each insured, agent, and/or company
recipient per transaction. The cover page is created using banner page processing which
occurs during GenPrint processing. Examples of the three different mailer cover pages
are as follows.

This example assumes that the:

• Agent and company recipient batch files are sorted (agent number and company
name, respectively) before the GenPrint program runs. This sorting allows for the
creation of only one mailer cover page per unique agent and company.

• Unique information is contained on the form/image, Dec Page/Q1MDC1.

Jill Smith
11111 Oak Circle
Suite 999
Smryna, FL 12345

Suzy Smith
Morris Fanelli
99934 Oak Circle
Suite 999
Smartburg, WI 99999

Insureds

Jill Smith

Martin Short Agent
963 Atlantic
Boulevard
Suite 1250
Miami, FL 30202

Suzy Smith

David Miller Agent
999 Green Dolphin
Street
Suite 1200
Miami, FL 30202

Suzy Smith

Company

Jill Smith

Awtrey Inc.
316 N.E. 3rd Avenue
Pompano Beach, FL
33333

Agents

Using the Job Definition Table

15

• The FSIUSER.INI file includes these control groups and options:

< RecipMap2GVM >

 Form = Dec Page

 Image = Q1MDC1

 Opt = Name1;Insured Name;

 Opt = Name2;Insured Name2;

 Opt = Address1;Address Line1;

 Opt = Address2;Address Line2;

 Opt = CityCounty;prtvalue;

 Opt = AgentName;Agent Name;

 Opt = AgentID; Agent ID;

 Opt = OfficeAddress;Office Address;

 Opt = TownandState;Town And State;

< Printer >

 PrtType = PCL

 EnableTransBanner = True

 EnableBatchBanner = False

 TransBannerBeginScript= PreTrans

 TransBannerEndScript= PstTrans

 TransBannerBeginForm= ;BANNER;TRANSACTION;TRANS HEADER;

 TransBannerEndForm = ;BANNER;TRANSACTION;TRANS TRAILER;

< DALLibraries >

 LIB = Banner

BANNER.DAL The DefLib directory contains this DAL script:

* This script obtains the required unique data from the recipient

* batch record and stores it on the mailer form.

BeginSub PreTrans

blank_gvm = Pad(" ",41," ")

SetGVM("NameA" ,blank_gvm,,"C",41)

SetGVM("NameB" ,blank_gvm,,"C",41)

SetGVM("AddressA" ,blank_gvm,,"C",41)

SetGVM("AddressB" ,blank_gvm,,"C",41)

SetGVM("CityCounty1" ,blank_gvm,,"C",41)

If Trim(RecipName()) = "INSURED" Then

 SetGVM("NameA" ,GVM("Name1") ,,"C",41)

 SetGVM("NameB" ,GVM("Name2") ,,"C",41)

 SetGVM("AddressA" ,GVM("Address1") ,,"C",41)

 SetGVM("AddressB" ,GVM("Address2") ,,"C",41)

 SetGVM("CityCounty1" ,GVM("CityCounty"),,"C",41)

 GoTo exit:

End

last_agent_id = last_agent_id

If Trim(RecipName()) = "AGENT" Then

 If last_agent_id != Trim(GVM("AgentID")) Then

 last_agent_id = Trim(GVM("AgentID"))

 SetGVM("NameA" ,GVM("AgentName") ,,"C",41)

 SetGVM("NameB" ,GVM("OfficeAddress") ,,"C",41)

 SetGVM("AddressA" ,GVM("TownandState") ,,"C",41)

 GoTo exit:

 Else

Chapter 2
Adding Job and Form Set Rules

16

 SuppressBanner()

 GoTo exit :

 End

End

last_company_name = last_company_name

If Trim(RecipName()) = "COMPANY" Then

 If Trim(GVM("Company")) != last_company_name Then

 last_company_name = Trim(GVM("Company"))

 If Trim(GVM("Company")) = "SAMPCO" Then;

 SetGVM("NameA" ,"Sampco, Inc." ,,"C",41)

 SetGVM("NameB" ,"316 N.E. 3rd Avenue" ,,"C",41)

 SetGVM("AddressA" ,"Pompano Beach, FL 33333" ,,"C",41)

 GoTo exit:

 ElseIf Trim(GVM("Company")) = "FSI"

 SetGVM("NameA" ,"FSI Inc." ,,"C",41)

 SetGVM("NameB" ,"222 Newbury St." ,,"C",41)

 SetGVM("AddressA" ,"Northwest City, FL 99999" ,,"C",41)

 GoTo exit:

 End

 Else

 SuppressBanner()

 GoTo exit:

 End

End

exit:

EndSub

BeginSub PstTrans

EndSub

Using the Job Definition Table

17

The RCBDFDFL.DAT file contains the following GVM variable definitions which are
defined in the RecipMap2GVM control group:

• Name1

• Name2

• Address1

• Address2

• CityCounty

• AgentName

• AgentID

• OfficeAddress

• TownAndState

Here are two recipient batch records from this example:

SAMPCOLB12234567SCOM1FLT1 B2199802232234567890 0 22560
******001 3724 452Jill Smith Morris
11111 Oak Circle Suite 999 Smyrna,
FL 12345 Martin Short Agent 963 Main Street,
Suite 1250 Miami, FL 30202

FSI CPP4234567FSIM1WIT1 B3199802234234567890 0 30360
******001 4667 565Suzy Smith Morris
99934 Oak Circle Suite 999 SmartBurg,
WI 99999 David Miller Agent 999 Main Street,
Suite 1200 Miami, FL 30202

Sample AFGJOB.JDT Files and INI Options
Shown below are examples of simplified AFGJOB.JDT files and the INI options you use
to process WIP transactions for specified recipients using these rules:

• IfRecipUsed on page 111

• BatchingByRecipINI on page 69

• BatchingByPageCountINI on page 50

Assume each example has these INI options:

< Status_CD >

Approved = AP

BatchPrint = BP

Rejected = RJ

Also assume the first two examples have the following INI options defined in the
FSISYS.INI or FSIUSER INI file.

These options define the recipient batch names:

< Print_Batches >

Insured = .\batch\Insured

Agent = .\batch\Agent

Company = .\batch\Company

Chapter 2
Adding Job and Form Set Rules

18

These options define the output printer names:

< PrinterInfo >

Printer = InsuredPrt

Printer = AgentPrt

Printer = CompanyPrt

These options define the output printer names for each recipient batch. You must have a
control group for each recipient batch.

< Insured >

Printer = InsuredPrt

< Agent >

Printer = AgentPrt

< Company >

Printer = CompanyPrt

These options define the print-ready output file name for each recipient name:

< InsuredPrt >

Port = .\Print\Insured.PCL

< AgentPrt >

Port = .\Print\Agent.PCL

< CompanyPrt >

Port = .\Print\Company.PCL

Using the IfRecipUsed
rule

You run the GenData program using a simplified AFGJOB.JDT file which contains an
IfRecipUsed rule for each recipient. This example places print-ready output for each
recipient in the following files:

Transactions with status codes defined in the WIPTransactions rule are appended to an
existing MRL recipient batch, NewTrn, NA, and POL files or are appended to newly-
created recipient batch, NewTrn, NA, and POL files. These files can be printed, archived,
or both using the GenPrint and GenArc programs.

All transactions with a Rejected or an Approved status code are deleted from the WIP file.
Here is an example of the AFGJOB.JDT file. Note that the Rejected status code is
omitted from the WIPTransactions rule.

<Base Rules>

;RulStandardJobProc;;;

;MergeWIP;;Approved,Rejected;

;JobInit1;;;

<Base Form Set Rules>

;WIPTransactions;;Approved;

;GVM2GVM;;Trigger2WIP;

;IfRecipUsed;;Batch1=Insured;

;IfRecipUsed;;Batch2=Company;

;IfRecipUsed;;Batch3=Agent;

Recipient Output file

Insured INSURE.PCL

Agent AGENT.PCL

Company COMPANY.PCL

Using the Job Definition Table

19

;UpdatePOLFile;;;

<Base Image Rules>

;WIPImageProc;;;

<Base Field Rules>

;WIPFieldProc;;;

Using the
BatchingByRecipINI

rule

You run the GenData program using a simplified AFGJOB.JDT file which contains the
BatchingByRecipINI rule. The BatchingByRecip control group contains an option for
each recipient. Define this control group in the FSISYS.INI or FSIUSER.INI file. This
example places print-ready output for each recipient in the following files:

Transactions with status codes defined in the WIPTransactions rule are appended to an
existing MRL recipient batch, NewTrn, NA, and POL files or are appended to newly-
created recipient batch, NewTrn, NA, and POL files. These files can be printed, archived,
or both using the GenPrint and GenArc programs.

All transactions with a Rejected or Batch Print status code are deleted from the WIP file.
Here is an example of the AFGJOB.JDT file. Note that the Rejected status code is
omitted from the WIPTransactions rule.

<Base Rules>

;RULStandardJobProc;1;;;

;JobInit1;;;

;MergeWIP;;BatchPrint,Rejected;

;InitSetrecipCache;;;

<Base Form Set Rules>

;WIPTransactions;;BatchPrint;

;WriteOutput;;;

;WriteNaFile;;;

;BatchingByRecipINI;;;

<Base Image Rules>

;WIPImageProc;;;

<Base Field Rules>

;WIPFieldProc;;;

Using the
BatchingByPageCountI

NI rule

You run the GenData program using a simplified AFGJOB.JDT file which contains the
BatchingByPageCountINI rule. The BatchingByRecip control group contains an option
for each recipient. Define this control group in the FSISYS.INI or FSIUSER.INI file.

This example places print-ready output for each recipient into the following files based
on the number of pages in each transaction processed.

Recipient Output file

Insured INSURE.PCL

Agent AGENT.PCL

Company COMPANY.PCL

File Description

INSOVER3.PCL Insured with more than three pages

Chapter 2
Adding Job and Form Set Rules

20

Transactions with status codes defined in the WIPTransactions rule are appended to an
existing MRL recipient batch, NewTrn, NA, and POL files or are appended to newly-
created recipient batch, NewTrn, NA, and POL files. These files can be printed, archived,
or both using the GenPrint and GenArc programs.

All transactions with a Rejected or Batch Print status code are deleted from the WIP file.
Here is an example of the AFGJOB.JDT file. Note that the Rejected status code is
omitted from the WIPTransactions rule.

<Base Rules>

;RulStandardJobProc;;;

JobInit1;;;

;MergeWIP;;BatchPrint,Rejected;

;InitSetrecipCache;;;

<Base Form Set Rules>

;WIPTransactions;;BatchPrint;

;GVM2GVM;;Trigger2WIP;

;WriteOutput;;;

;WriteNaFile;;;

;BatchingByPageCountINI;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;;

<Base Image Rules>

;WIPImageProc;;;

<Base Field Rules>

;WIPFieldProc;;;

Here are the INI options used with the BatchingByPageCountINI rule:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def= True;"InsOver3";Insured

Batch_Recip_Def= True;"InsUndr4";Insured

Batch_Recip_Def= True;"AgiOver3";AddLinsd

Batch_Recip_Def= True;"AgiUndr4";AddLinsd

Batch_Recip_Def= True;"CtrOver3";CertHld

Batch_Recip_Def= True;"CrtUndr4";CertHld

< Print_Batches >

InsOver3 = .\batch\InsOver3

InsUndr4 = .\batch\InsUndr4

AgiOver3 = .\batch\AgiOver3

AgiUndr4 = .\batch\AgiUndr4

INSUNDR4.PCL Insured with less than three pages

AGIOVER3.PCL Agent with more than three pages

AGIUNDR4.PCL Agent with less than three pages

CTROVER3.PCL Company with more than three pages

CTRUNDR3.PCL Company with less than three pages

File Description

Using the Job Definition Table

21

CtrOver3 = .\batch\CtrOver3

CtrUndr3 = .\batch\CtrUndr4

Default = .\batch\Default

< PrinterInfo >

Printer = InsOver3Prt

Printer = InsUndr4Prt

Printer = AgiOver3Prt

Printer = AgiUndr4Prt

Printer = CtrOver3Prt

Printer = CrtUndr4Prt

Printer = DefaultPrt

< InsOver3 >

Printer = InsOver3Prt

PageRange = 4,999

 < InsUndr4 >

Printer = InsUndr4Prt

PageRange = 1,3

< AgiOver3 >

Printer = AgiOver3Prt

PageRange = 4,999

< AgiUndr4 >

Printer = AgiUndr4Prt

PageRange = 1,3

< CtrOver3 >

Printer = CtrOver3Prt

PageRange = 4,999

< CrtUndr4 >

Printer = CrtUndr4Prt

PageRange = 1,3

< Default >

Printer = DefaultPrt

< InsOver3Prt >

Port = .\Print\InsOver3.PCL

< InsUndr4Prt >

Port = .\Print\InsUndr4.PCL

< AgiOver3Prt >

Port = .\Print\AgiOver3.PCL

< AgiUndr4Prt >

Port = .\Print\AgiUndr4.PCL

< CtrOver3Prt >

Port = .\Print\CtrOver3.PCL

< CrtUndr4Prt >

Port = .\Print\CrtUndr4.PCL

< DefaultPrt >

Port = .\Print\Default.PCL

Chapter 2
Adding Job and Form Set Rules

22

PROCESSING
IMPORT FILES

The GenData program can import and process these types of export files created by
Documaker Workstation:

• Standard export

• WIP/NA/POL export

• XML export

The transactions exported to a file can be created by:

• Executing the GenWIP program after the GenData program to process any
transactions in the manual batch. You then use Documaker Workstation to view the
transaction and update any required data. Finally, you use the File, Complete, Export
Data option to create the export file.

• Creating a transaction using Documaker Workstation. You then use the File,
Complete, Export Data option to create the export file.

• Creating a transaction using iPPS.

You can then process the export files as a:

• Single transaction using the appropriate import file rule in a simplified
AFGJOB.JDT. For instance, you would use one of these rules:

ImportFile on page 119

ImportNAPOLFile on page 129

ImportXMLFile on page 137

• Multiple transactions (one or more export files appended in a single file) using the
appropriate import extract rule in a simplified AFGJOB.JDT.

ImportExtract on page 114

ImportNAPOLExtract on page 124

ImportXMLExtract on page 133

NOTE:Create a separate AFGJOB.JDT file for this process, instead of updating an
existing one by commenting out rules and adding new one.

Processing Import Files

23

Here are some GenData import file processing scenarios:

Using Documaker
Server

You run the GenData program using an extract file and then execute the GenWIP
program to process any transactions in manual batch. These transactions are then added
to the WIP file.

NOTE:Transactions in the manual batch file were placed there because they were
flagged to go to manual batch, missing required field data, or were flagged as
KickToWIP.

You then open the WIP transactions using Documaker Workstation, make necessary
changes, and use the File, Complete, Export File option to create the export file.

After you finish, you run GenData Import File Processing using simplified
AFGJOB.JDT and INI files. Using the export file as an import file, the GenData
program then creates new recipient batch, NewTrn, NA, and POL files which you can
print, archive, or both using the GenPrint and GenArc programs.

GenData GenWIP

GenData

GenPrint GenArc

Extract
file

 WIP

Export
file

Documaker
Workstation

Chapter 2
Adding Job and Form Set Rules

24

Using Documaker
Workstation

You create new transactions using Documaker Workstation and then use the File,
Complete, Export File option to create the export file.

You then use GenData Import File Processing to create new recipient batch, NewTrn,
NA, and POL files. These files can be printed, archived, or both using the GenPrint and
GenArc programs.

NOTE:For information on setting up Documaker Workstation, see the Documaker
Workstation Administration Guide.

Using iPPS You create a transaction using iPPS that is then processed by GenData Import File
Processing to produce PDF files. These files can be viewed on-line and printed.

Export
file GenData

GenPrint GenArc

Documaker
Workstation

Export
file GenData

GenPrint GenArc

iPPS

Rules Used in Single-Step Processing

25

RULES USED IN
SINGLE-STEP
PROCESSING

Specific rules are used to combine the execution and functionality of the GenTrn,
GenData, and GenPrint programs into a single step. These rules are listed below, with a
brief description.

NOTE:You can find more information, including a detailed description of how
processing occurs, in Chapter 2 of the Documaker Administration Guide.

Here’s a list of the rules required for single-step processing.

Rule Description

BatchingByRecipINI on
page 69

Use this rule to send transactions to a batch you specify using
INI options.

BatchByPageCount on page
48

Use this rule to send a transaction’s form set to a specified print
batch based on the number of printed pages plus the multi-mail
code defined in the transaction.

BatchingByPageCountINI
on page 50

Use this rule to send a transaction’s form set to a specified batch
based on the number of printed pages created when the system
processes the transaction.

BuildMasterFormList on
page 74

Use this rule to load the FORM.DAT file into an internal
linked list within the GenData program. You must include this
rule in the AFGJOB.JDT file because the RunSetRcpTbl rule is
dependent on the list this rule creates.

InitPrint on page 149 Use this rule to load printer and recipient batch information.
This rule sets up PRTLIB data, initializes print options, and
loads a table which contains page totals for recipient batch files.

Use this rule when you run the GenData program by itself to
execute GenTrn and GenPrint processes. This rule, when
combined with the PrintFormset rule, prints form sets.

InitSetRecipCache on page
150

Use this rule to set the cache the system uses to store recipient
information in memory. With this rule you can tell the system
the amount of memory to set aside and use for storing
information in the Key1 and Key2 fields, often used to store the
company and line of business.

NoGenTrnTransactionProc
on page 171

Use this rule when you use the GenData program by itself to
execute the GenTrn and GenData steps. When combined with
the InitPrint and PrintFormset rules, it creates the output files
created during the GenPrint step.

PageBatchStage1InitTerm
on page 176

Use this rule to create and populate a list of records which
contain page ranges and total page counts for each recipient
batch file.

PaginateAndPropagate on
page 177

Use this rule to paginate the form set and merge in or propagate
field data.

PrintFormset on page 185 Use this rule when you run the GenData program by itself to
execute GenTrn and GenPrint processes. This rule, when
combined with the InitPrint rule, prints form sets.

Chapter 2
Adding Job and Form Set Rules

26

ProcessQueue on page 187 Use this rule to process the queue you specify. This rule loops
through the list of functions for the queue you specify and then
frees the queue when finished.

StandardFieldProc on page
239

This rule tells the system to process each field on all of the
sections triggered by the SETRCPTB.DAT file. If you use the
StandardFieldProc rule is in your JDT, you must also include
the WriteNAFile rule.

StandardImageProc on page
240

This rule tells the system to process each section triggered by the
SETRCPTB.DAT file.

WriteNAFile on page 251 Use this rule to append the NAFILE.DAT file data records for
the current form set into an existing NAFILE.DAT file.

WriteOutput on page 252 Use this rule to create the POLFILE.DAT file.

WriteRCBWithPageCount
on page 254

Use this rule to write page counts for each recipient.

Rule Description

Rules Used for 2-up Printing

27

RULES USED
FOR 2-UP
PRINTING

The following descriptions will help familiarize you with the rules that are required to
perform the 2-up printing process. All of the rules listed in the topic, Rules Used in
Single-Step Processing on page 25 are required for 2-up printing, plus the additional
rules listed below.

NOTE:You can find more information, including a detailed description of how
processing occurs, in Chapter 2 of the Documaker Administration Guide.

Here’s a list of the additional rules you can use for 2-up printing.

Rule Description

AddLine on page 39 (Optional) Use this form set level rule to add a line record, such as
for OMR marks, to the AFP record list built by the MergeAFP rule.

AddTextLabel on page 40 (Optional) Use this form set level rule to add a text label record to
the AFP record list built by the MergeAFP rule.

GetRCBRec on page 108 Use this form set level rule to set the current recipient batch file.
This rule initializes the current recipient batch file, if necessary.

InitMerge on page 146 Use this job level rule to create a list of printers, batches, and
buffers for the comment (RCB) records. This rule also creates a list
to hold AFP records and AFP fonts.

InitPageBatchedJob on
page 148

Use this job level rule to open NA and POL files.

MergeAFP on page 163 Use this form set level rule to initialize input files. This rule
populates the AFP record list, retrieves comment (RCB) records,
and terminates the input files.

OMRMarks on page 172 (Optional) Use this job level rule to generate OMR marks on 2-up
documents printed on any AFP printer that supports 2-up
printing.

ParseComment on page
179

(Optional) Use this form set level rule to parse comment records
into the GVM variable.

PrintData on page 184 Use this form set rule to print the form set. This rule is used for
handling 2-up printing on AFP and compatible printers.

ProcessRecord on page
188

Use this form set rule to switch between print files as necessary
when printing 2-up forms on an AFP printer. This rule updates the
page count for current print file and loads and merges the form set.

Chapter 2
Adding Job and Form Set Rules

28

29

Chapter 3

Job and Form Set Rules
Reference

Job and form set rules help you control how a
processing job is run and how the system processes the
various form sets.

The rules which apply to the job and form set are stored
in the AFGJOB.JDT file, which is called the job definition
table, or JDT file. You add these rules directly into that
file using a text editor.

NOTE:This chapter serves as a reference to job and
form set rules. For information on the rules
which apply to sections and fields, see Section
Rules Summary on page 276 or Field Rules
Summary on page 342.

This chapter discusses rules included in the base system
and supported by the support group. For information on
custom rules, contact your Professional Services
representative.

In this chapter you will find information about:

• JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

30

JDT RULES
REFERENCE

The following pages list and explain the various job and form set rules you can use. The
rules are discussed in alphabetical order on the pages following this table.

The following table lists the rules by function in the first column. The Level column
indicates whether the rule is a job level rule (1) or a form set level rule (2) in the
AFGJOB.JDT file.

The Overflow column indicates the rules which support the overflow feature. The
overflow features allow extract data to flow onto an additional page if needed.

To… Level Use this rule Overflow

Add a form set to a recipient
batch

2 IfRecipUsed on page 111 na

Add a line record, such as for
OMR marks, to the AFP record
list

2 AddLine on page 39 na

Add a text label record to the
AFP record list

2 AddTextLabel on page 40 na

Add data from the extract list
into global variables

2 Ext2GVM on page 94 na

Add OMR marks on 1-up or
on 2-up documents

1 OMRMarks on page 172 na

Add all of the functionality of
running the GenPrint program

1 GenPrint on page 104 na

Append a global variable to an
extract file

2 AppendGblToExtr on page 43 na

Append the NAFILE.DAT file
data records for the current
form set into an existing
NAFILE.DAT file

2 WriteNAFile on page 251 na

Assign form sets to specific
batches

2 AssignToBatch on page 46 na

Assign the recipients from a
specific form to the other
forms in a form set

2 MergeRecipsFromForm on
page 164

na

Build a form candidate list 2 PXCandidateList on page 190 na

Build a form list by loading the
FORM.DAT file into an
internal linked list within the
GenData program

1 BuildMasterFormList on page
74

na

Bypass all section processing 2 ForceNoImages on page 99 na

31

Change the printer tray during
processing.

2 SetOverflowPaperTray on page
227

na

Check a field’s value against
another value for transactions
currently in the generic linked
list of objects

2 BatchByPageCount on page 48 na

Check for zero font IDs 2 CheckZeroFontID on page 75 na

Copy NA_Offset and
POL_Offset into GVM
variables

2 CreateRecordList on page 78 na

Copy the data from a given
GVM variable into another
GVM variable

2 GVM2GVM on page 110 na

Create a global variable 1 CreateGlbVar on page 77 na

Create a print file that contains
a set of forms filtered by form
name, form description, or
recipient name

2 ServerFilterFormRecipient on
page 218

na

Create a list of printers,
batches, and buffers for the
comment (RCB) records

1 InitMerge on page 146 na

Create a POL file when doing
2-up printing

2 WriteOutput on page 252 na

Create and populate a list of
records which contain page
ranges and total page counts
for each recipient batch file

1 PageBatchStage1InitTerm on
page 176

na

Create the recipient batches
when running in two-step
mode

2 WriteRCBFiles on page 253 na

Define an overflow variable 1 SetOvFlwSym on page 230 yes

Delete records from an extract
list

2 DelExtRecords on page 79 na

Dump an extract list to a file 2 DumpExtList on page 91 na

Dump an extract list to a file by
transaction

2 DumpExtractListToFile on
page 92

na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

32

Exclude transactions from
being processed in one- and
two-step mode processing

1 BuildExcludeList on page 72 na

Execute a DAL script 2 PostTransDAL on page 180 na

Execute a DAL script 2 PreTransDAL on page 182 na

Execute a DAL script if certain
conditions are met

2 PXTrigger on page 192 na

Execute a user function 1 RunUser on page 217 na

Execute specific transactions
for testing purposes

2 RULTestTransaction on page
214

na

Execute regional date
processing (RDP) rules on
forms.

2 RegionalDateProcess on page
197

na

Extract a form set from a DAP
archive using an extract file.

2 LoadFormsetFromArchive on
page 157

na

Get a print batch name from
an extract file

2 SetOutputFromExtrFile on
page 224

na

Get memory allocation
information

1, 2 AllocDebug on page 42 na

Get the company (Key1 field)
from the extract data

2 GetCo on page 106 na

Get the current date and use it
as the run date

2 GetRunDate on page 109 na

Get the line of business (Key2
field) from the extract data

2 GetLOB on page 107 na

Import a single transaction
from a combined NA/POL file

2 ImportNAPOLFile on page
129

na

Import a single transaction
from a standard import file

2 ImportFile on page 119 na

Import an extract file 2 ImportExtract on page 114 na

Import an XML extract file 2 ImportXMLExtract on page
133

na

To… Level Use this rule Overflow

33

Import an XML file 2 ImportXMLFile on page 137 na

Import multiple transactions
from a combined NAPOL
extract file

2 ImportNAPOLExtract on
page 124

na

Initialize input files for AFP
printers

2 MergeAFP on page 163 na

Initialize resources such as
input and output files

1 JobInit1 on page 154 na

Initialize the overflow feature 1 InitOvFlw on page 147 yes

Initialize the system for using
the ConvertWIP rule

1 InitConvertWIP on page 145 na

Load a table into a link list 1 LoadListFromTable on page
159

na

Load and initialize all forms 2 BuildFormList on page 73 na

Load entries from the
SETRCPTB.DAT file based on
the Key fields and transaction
type

2 LoadRcpTbl on page 160 na

Load extract data into memory
for each transaction

2 LoadExtractData on page 156 na

Load printer and recipient
batch information

1 InitPrint on page 149 na

Load text tables into the text
table list

1 LoadTextTbl on page 162 na

Load the field rules from the
MASTER.DDT file into an
internal linked list

2 LoadDDTDefs on page 155 na

Load the table files listed in the
tables list file

1 LoadTblFiles on page 161 na

Maintain the exact data printed
without Library Manager

2 InlineImagesAndBitmaps on
page 151

na

Map data you are importing 2 ImageMapImportData on page
112

na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

34

Nest overflow within overflow 2 RULNestedOverFlowProc on
page 206

yes

Open NA and POL files 1 InitPageBatchedJob on page
148

na

Paginate the form set and
merge field data, page ranges,
and total pages

2 PaginateAndPropagate on page
177

na

Parse comment records into
the GVM variable field data

2 ParseComment on page 179 na

Print form sets—for multi-step
processing

2 PrintData on page 184 na

Print form sets—for single-step
processing

2 PrintFormset on page 185 na

Process a queue 1 ProcessQueue on page 187 na

Process each field triggered by
the SETRCPTB.DAT file—for
multi-step processing

1 RULStandardFieldProc on page
210

na

Process each field triggered by
the SETRCPTB.DAT file—for
single-step processing

2 StandardFieldProc on page 239 na

Process each field triggered by
the SETRCPTB.DAT file—for
WIP Transaction Processing

2 WIPFieldProc on page 247 na

Process each section triggered
by the SETRCPTB.DAT file—
for multi-step processing

1 RULStandardImageProc on
page 211

na

Process each section triggered
by the SETRCPTB.DAT file—
for single-step processing

1 StandardImageProc on page
240

na

Process each section triggered
by the SETRCPTB.DAT file—
for WIP Transaction
Processing

1 WIPImageProc on page 248 na

Process each transaction listed
in the extract file

2 RULStandardTransactionProc
on page 213

na

To… Level Use this rule Overflow

35

Process the extract file and
create information created in
both the GenTrn and GenData
steps

2 NoGenTrnTransactionProc on
page 171

na

Process the groups (Key1, Key2
combinations) that exist in the
form set, as opposed to only a
single set of keys specified in
the TRNFILE.DAT file

2 ProcessTriggers on page 189 na

Process WIP transactions
manually approved or rejected
in Documaker Workstation

2 WIPTransactions on page 249 na

Register the
MapFromImportData rule
which the system then uses
instead of the NoOpFunc rule

2 ReplaceNoOpFunc on page 200 na

Remove forms from form sets 2 FilterForm on page 95 na

Remove forms from form sets
based on recipients

2 FilterRecip on page 97 na

Replace the LoadRcpTbl and
RunSetRcpTbl rules in
implementations created by
Documaker Studio

2 RunTriggers on page 216 na

Replace the
RULStandardBaseProc rule
when you use IDS to run
Documaker

1 ServerJobProc on page 220 na

Reset the overflow feature 2 ResetOvFlw on page 203 yes

Reset the pRPS structure after
the GVM variables have been
remapped.

2 ResetDocSetNames on page 202 na

Restart the GenData program 1 RestartJob on page 204 na

Restart the GenData program 2 RULCheckTransaction on page
205

na

Run a user function 1 RunUser on page 217 yes

Run Documaker Server from
another application via an
XML job ticket

1 TicketJobProc on page 241 na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

36

Run specified entries in the set
recipient table

2 RunSetRcpTbl on page 215 na

Run the GenArc program as
part of single-step processing

2 Archive on page 44 na

Run the GenArc program as
part of single-step processing

1 InitArchive on page 144 na

Run the GenWIP process to
transfer transactions into WIP

2 ConvertWIP on page 76 na

Send a transaction to a batch
based on the number of pages
the system generates when it
processes the transaction

2 BatchingByPageCountINI on
page 50

na

Send transactions to a batch
based on data in the extract file

2 BatchingByRecipINI on page
69

na

Send a transaction to a specific
print batch based on the
number of page count for each
recipient of all form sets the
system generates when it
processes the transaction

2 BatchingByPageCountPerRecip
INI on page 56

na

Send a transaction to the
manual batch when specified
field errors occur

1 ErrorHandler on page 93 na

Send a transaction to WIP
when the system sees that a
field designated as Required
does not contain data

2 RequiredFieldCheck on page
201

na

Set the amount of memory you
want the system to use to store
the information in Key fields
(speed processing of complex
forms)

1 InitSetRecipCache on page 150 na

Set the copy count for all forms
except those listed

2 SetRecipCopyCount2 on page
232

na

Set the copy count for all forms
specified

2 SetRecipCopyCount on page
231

na

Set the current recipient batch
file

2 GetRCBRec on page 108 na

To… Level Use this rule Overflow

37

Sort RCB batches before they
are printed (so you can call a
sort program to rearrange the
order of the RCB files)

1 SortBatches on page 233 na

Specify a job definition file 1 StandardFieldProc on page 239 na

Specify a print batch file for all
recipients

2 AssignBatWithTbl on page 45 na

Specify multiple XDBs to use
across multiple key
combinations

2 MultipleDataDictionaryFiles
on page 169

na

Specify the codes the system
should look for in WIP
Transaction Processing

1 MergeWIP on page 165 na

Specify the text in the header of
the error file

1 SetErrHdr on page 223 na

Switch between print files when
doing 2-up printing

2 ProcessRecord on page 188 na

Terminate an XDB instance
and free memory

1 Dictionary on page 80 na

Translate error information 1 TranslateErrors on page 242 na

Use an XML extract file 2 UseXMLExtract on page 244 na

Use an XML extract file 2 XMLFileExtract on page 256 na

Write out forms which contain
descriptions of the other forms
in the form set

2 FormDescription on page 100 na

Write transactional
information into each page of
the print stream

1 InstallCommentLineCallback
on page 153

na

Write out full NA and POL
information as well as certain
export field information

2 DocumentExport on page 81 na

Write the page count for each
recipient when doing 2-up
printing

2 WriteRCBWithPageCount on
page 254

na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

38

Write the POL set to the
POLFILE.DAT file

2 UpdatePOLFile on page 243 na

To… Level Use this rule Overflow

AddLine

39

 AddLine
Use this form set level rule to add a line record, such as for OMR marks, to the AFP
record list built by the MergeAFP rule.

Syntax ;AddLine;;Top,Bottom,Left,Right;

NOTE:The parameter values are all in absolute FAP coordinates. No shifting is done,
which lets you place the marks anywhere on the printable area of the paper.

Example ;AddLine;;600,1200,600,1000;

This example tells the system to draw a line ¼ inch from the left edge of the page, down
¼ inch from the top of the page, for a length of ½ inch, with a width of a ¼ inch.

See also MergeAFP on page 163

JDT Rules Reference on page 30

Parameter Description

Top location of the top edge of the line

Bottom location of the bottom edge of the line

Left location of the left edge of the line

Right location of the right edge of the line

Chapter 3
Job and Form Set Rules Reference

40

 AddTextLabel
Use this form set level rule to add a text label record to the AFP record list built by the
MergeAFP rule. This rule is used in 2-up printing.

Syntax ;AddTextLabel;;Text,XPos,YPos,Orientation,Font;

NOTE:Enter the XPos and YPos values in absolute FAP coordinates. No shifting
occurs, which lets you place the marks anywhere on the printable area of the
paper.

Example ;AddTextLabel;;Preliminary,600,600,90,X0DACOBF;

This example tells the system to write the text, Preliminary, on each page beginning ¼ inch
down from top of page and ¼ inch in from the left page edge. The system rotates the
text 90 degrees and uses Courier bold 16 pitch as the font.

Here is another example:

;AddTextLabel;;=DAL("page_1.dal"),5740,4500,0,X0DATIN9;

;AddTextLabel;;=DAL("page_1_barcode"),1800,35200,90,X0BC4N9P;

This example includes this DAL script:

BeginSub Page_1

#page_cnt = #page_cnt

page_number = "*8080000001A00000" & #page_cnt & "S*"

#page_cnt += 1

Return(page_number)

EndSub

These rules tell the system to execute the DAL script named page_1 to get the dynamic
data that will be placed on each page beginning 4500 FAP units down from top of the
page and 5740 FAP units in from the left page edge using the Times Roman 9 pitch font.

Here is another example:

;AddTextLabel;;=DAL("page_1_barcode"),1800,35200,90,X0BC4N9P;

This example includes this DAL script:

Parameter Description

Text The text to be added.

XPos The x coordinate of the text.

YPos The y coordinate of the text.

Orientation The optional text rotation (0, 90, 180, or 270 degrees).

Font The AFP code font file name of the font to be used.

Make sure the font has been defined in the font cross-reference (FXR) file and
the font has already been used in a field, text label, or text area on that form set.

In some situations, you may want to add a hidden field which uses the font
you specify in this parameter of the AddTextLabel rule.

AddTextLabel

41

BeginSub Page_1_barcode

Return(new_barcode_left)

EndSub

This rule tells the system to execute the DAL script named page_1_barcode to get the data
will be placed on each page beginning 35200 FAP units down from top of the page and
1800 FAP units in from the left page edge rotated down 90 degrees. The dynamic data
will be displayed as a 3x9 bar code.

See also MergeAFP on page 163

Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

42

 AllocDebug
Use this rule to get information on the number of memory bytes allocated and freed
each time there is new maximum value of allocates not being freed. This rule outputs
its error messages to the LOGFILE.DAT file instead of the ERRFILE.DAT file. You can
use this rule to find cumulative memory allocations not reported as leaks.

The AllocDebug rule is unique in that you can use it at any level in the AFGJOB.JDT
file because it is designed to run in all three processing states during rule Pre- and Post-
processing.

You can place this rule in the <Base Rules>, <Base Form Set Rules>, <Base Image
Rules>, and <Base Field Rules> sections in the AFGJOB.JDT file.

Syntax ;AllocDebug;;;

Example ;AllocDebug;;;

See also JDT Rules Reference on page 30

AppendGblToExtr

43

 AppendGblToExtr
Use this form set level rule to append a global variable to the extract file. You can use
this rule to place selected fields in the trigger file into an extract file.

Syntax ;MYW32->AppendGblToExtr;2;ExtractFile_Key,GBL_Var GBL_Var
...GBL_Var;

In the data field, enter the name of the key the extract record should append to and the
names of all global variables you want to appended to it.

You define the maximum length of the extract file record using this INI option:

< TRN_File >

MaxExtRecLen =

If you are appending multiple GVM variables and are using an extract file key, the
accumulated length should not exceed the maximum extract record length defined in
the MaxExtRecLen option.

NOTE:If you enter the string NOHEADER as the ExtractFile_Key, the system
appends global variables to the extract list without a header key.

If the accumulated length exceeds MaxExtRecLen, the rule fails and issues the following
error:

Error in AppendGblToExtr(): Global variable <> exceeds maximum
length. Check MaxExtRecLen in INI group <TRN_FILE>

Example ;AppendGblToExtr;;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

44

 Archive
Use this form set level rule along with the InitArchive rule, to run the GenArc program
as part of single-step processing.

The InitArchive rule checks the INI options in the Trigger2Archive control group,
initializes the database, opens the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Syntax ;Archive;2;;

Example Here is an example:

< Base Form Set Rules >

;Archive;2;;

See also InitArchive on page 144

JDT Rules Reference on page 30

AssignBatWithTbl

45

 AssignBatWithTbl
Use this form set level rule to specify the print batch file for all recipients based on data
found in the extract list.

Syntax ;MYW32->AssignBatWithTbl;2;ASSNBTCH.TBL,1,XYZ (D) (I,B,S1,H);;

In the data field, enter the name of the file which contains the batch assignment table.
Entering the full path is optional.

After the file name, specify the search mask which if found tells the system to add the
recipients (D) to the batch. If no record is found that matches the mask, recipients I,B,S1
and H are added to the batch.

The first set of parentheses contains the recipient list of draft recipients, the second set
contains all other recipients the implementation uses.

The syntax for the batch assignment table is as follows. This is a small example with
three entries, you can include more.

;BATCH2;*;;

;BATCH1;1,123;;

;BATCH3;1,456;;

(more lines could follow)

There are three semicolon-delimited fields, the first is a batch name, the second is a
search mask which will be run against the extract data list for a possible match. The
search mask field consists of one or more offset,data pairs. If there is data from different
records, delimit the search masks by entering a pipe symbol (|).

Example ;BATCH1;1,123|1,546,18,XXX;HO,I,B1,B2;

The first record who’s search mask matches a record in the extract data, moving from
top to bottom through the list, will be used to determine the batch name for the
processing of that transaction.

There must always be an entry which has an asterisk (*) as its search mask. This is the
default batch the system uses if no matches are found. You must specify a default batch.

In the third field you can enter a set of recipient codes delimited by commas. If you
enter this information, the system will only print forms for the recipients you specify.
Note that the printed recipients will be a subset of the recipients specified.

NOTE:This rule can produce errors if it is run before the form set is created. You must
place this rule after any rule which is used to build the form set. Normally, you
would use the BuildFormList rule to build the form set.

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

46

 AssignToBatch
Use this form set level rule to identify form sets from a particular source and place those
form sets into a special batch for review purposes. For instance, you can use this rule to
identify policies from a particular agent, operator, or branch and place those policies
into a special batch.

NOTE:You can insert several AssignToBatch rules in the base rules file (AFGJPB.JDT).
All that return true will be placed in the appropriate recipient batch.

Syntax ;AssignToBatch;;(parameters);

This table explains the order in which rules are assigned to recipient batches:

Example Here is an excerpt from an AFGJOB.JDT file:

<Base Rules>

;RULStandardJobProc;;;

…

…

<Base Form Set Rules>

;RulStandardTransactionProc;;;

…

…

;AssignToBatch;;Manual=1,Patch399,31,GVM,190,AssignToBatch;

;IfRecipUsed;2;Batch1=Customer;

…

Parameter Description

Name The recipient batch name to which the transaction should be assigned.

Delimiter An equal sign (=). This is required.

Search mask One or more pairs of offsets and data (search criteria) in a comma delimited
list. Here is an example:

;AssignToBatch;;Manual=1,Patch399,31,AssignToBatch;

This example searches the records of each transaction for the string Patch399
at offset 1 and the string AssignToBatch at offset 31. If a match is found then
this transaction will be assigned to the Manual batch.

Batch Order of precedence

Error If an error occurs that causes the batch assignment of the transaction.

Manual If the POWType rule exists in any triggered section.

Manual If the KickToWIP rule exists and its condition are met.

xxxxxx AssignToBatch rule assignment if the rule exists and its search criteria is met.

xxxxxx Base form set rules such as: IfRecipUsed, BatchingByPageCountINI,
BatchingByRecipINI, and so on.

AssignToBatch

47

…

Any transaction that has a record that matches the search criteria (character strings:
'Patch399' at offset 1, 'GVM' at offset 31 and ' AssignToBatch' at offset 190) will be
assigned to the Manual batch.

See also IfRecipUsed on page 111

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

48

 BatchByPageCount
Use this form set level rule to check the value of a field supplied for processing against
that for transactions currently in the linked list of objects. These transactions are
populated by the CreateRecordList rule. This rule is also used with multi-mail
processing.

If the field has changed, the system writes the records to the recipient batch file, based
on the total page count for all recipients of all form sets in the set of transactions. If you
omit the parameter, the system writes records in the generic linked list of objects to the
appropriate recipient batch files, based on the page count for the individual records.

If you are using multi-mail, the system updates the TotPage field of the recipient batch
record to reflect the total page count for all recipients of all transactions in the multi-
mail transaction set.

NOTE:Keep in mind this rule calculates the page count at the transaction level, not the
recipient level.

Syntax ;BatchByPageCount;;(MMField);

NOTE:If you use this rule, you must also use the PageBatchStage1InitTerm,
CreateRecordList, and WriteRCBWithPageCount rules.

Example ;BatchByPageCount;;MMField=MM_Field;

In this example, the system uses the multi-mail code defined in each transaction for
batching purposes. The system checks the value in each transaction against that for
transactions currently a VMMList, which is populated by CreateRecordList rule.

If the field has changed, the records are written to the recipient batch based on the total
page count for all recipients for all form sets in the entire set of transactions.

NOTE:Because the end of a multi-mail transaction set is not known until after the
following transaction, each multi-mail transaction set (or each transaction, in
the non multi-mail situation) is written out during processing of the following
transaction.

See also Rules Used for 2-up Printing on page 27

BatchingByPageCountINI on page 50

BatchingByPageCountPerRecipINI on page 56

Parameter Description

MMField (Optional) Name of the INI option in the Trn_Fields control group which
defines where the multi-mail code will be found in each transaction.

BatchByPageCount

49

BatchingByRecipINI on page 69

CreateRecordList on page 78

PageBatchStage1InitTerm on page 176

PrintFormset on page 185

WriteRCBWithPageCount on page 254

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

50

 BatchingByPageCountINI
Use this form set level rule to send a transaction to a specific print batch based on the
number of pages the system generates when it processes the transaction.

NOTE:The BatchingByPageCountINI rule uses the total page count regardless of
recipient and not a specific recipient page count.

Syntax ;BatchingByPageCountINI;;;

You specify which transactions are assigned to the print batch using INI options in these
control groups:

You must have these control groups in your FSISYS.INI or FSIUSER.INI file.

BatchingByRecip
control group

This control group must contain these INI options:

< BatchingByRecip >

DefaultBatch = DefaultOutput

Batch_Recip_Def =

Use the DefaultBatch option to assign a name to the default batch, such as DefaultOutput.
Do not enclose the name in quotation marks.

Use the Batch_Recip_Def option to define the conditions the system will use to
determine which batch it should choose for each transaction. The syntax for the
Batch_Recip_Def option is shown here:

Condition; ”BatchName”; Recipient

You can define a series of these options to specify all of the conditions necessary to
determine the desired batching for your transactions.

NOTE:For a complete description of error and manual batches, see the Documaker
Administration Guide.

Control Group Description

BatchingByRecip The name is defined by the system, as shown here.

Print_Batches The name is defined by the system, as shown here.

PrinterInfo The name is defined by the system, as shown here.

Batch File Name You define the name of this control group.

Printed Output File You define the name of this control group.

BatchingByPageCountINI

51

The system processes the information in this order:

1 If the conditions are met, the print batch you specified is used as the batch for the
form set, provided the form set’s recipients are specified in the recipient list for the
batch. In addition, the system writes the batch record for the form set to the batches
for the specified recipients.

2 If a transaction does not meet the condition for the first Batch_Recip_Def option,
the system continues through the series of Batch_Recip_Def options until the
condition for a Batch_Recip_Def option is met.

Parameter Description

Condition This lets you specify a condition that must be satisfied before the transaction is
assigned to the print batch and recipients. You can use the True keyword to set
the condition:
True - Enter this keyword to specify that the condition must always be true. This
tells the system to send the form set to the specified print batch if the recipient
is specified in the recipient list for the batch.
You can also use these user-defined options instead of the keyword:

Search mask – the search mask consists of one or more offset, data pairs. See
Search Criteria on page 273.
Error - if the error batch flag is set by another rule, send the form set to the
specified print batch (if the form’s recipient is specified in the recipient list for
the batch). For example, an error occurs if the Host Required field is set on a
Move_It rule and the data is missing.

Manual - if the manual batch flag is set by another rule, send the form set to the
specified print batch (if the recipient is specified in the recipient list for the
batch). You could also use the KickToWip rule.

Condition name - a condition name defined in the condition table. See Using
Condition Tables and the Record Dictionary on page 437.

Batch
Name

You can specify the batch name by specifying the recipient name, the batch
name, or using a batch name defined in the Record Dictionary.

Recipient name - use one of the names contained in the Recip_Names control
group as batch name. Enclose this name in quotes, such as “customer”.

Batch name - a batch name extract from the extract file. The format is a comma-
delimited field: a search mask followed by a blank space and then an offset,
followed by the length of name to use.

Dict() – a batch name defined in the Record Dictionary. Enclose this name in
quotes, such as “batch1”.

Use the pipe symbol (|) to indicate separate items concatenated together, such
as print1|print2.

Recipients You can specify recipients using a keyword (All) or you can list specific
recipients.

All - Enter this keyword to tell the system to use all recipients in the
Recip_Names control group.
list - a list of recipient names. If you list the names, separate each recipient with
a comma or space, such as customer,agent.

Chapter 3
Job and Form Set Rules Reference

52

3 If a transaction does not meet any of the Batch_Recip_Def criteria, the transaction
is placed in the batch specified in the DefaultBatch option. If the DefaultBatch
option is not defined, an error occurs. The order in which you list the
Batch_Recip_Def options determines how the system determines recipient batches.
Put the most likely batches first. Use the All keyword rather than listing all
recipients when appropriate.

Print_Batches control
group

This control group must include at least one entry for each unique batch name in the
BatchingByRecip control group.

< Print_Batches >

Batch name = .\batch\page1

PrinterInfo control
group

This control group must include an entry for each unique batch file name listed in the
Print_Batches control group. This control group has the following option:

< PrinterInfo >

Printer = Page1Prt

BatchFileName control
group

You define the name for this control group, such as Page1. You must have a
BatchFileName control group for each batch name option defined in the Print_Batches
control group. This control group must include at least two options. The options are
shown here:

< Page1 >

Printer = (file name)

PageRange = 1,3

PrintedOutputFile
control group

You define the name for this control group, such as Page1Prt. This control group must
include as a minimum one option. There must be a PrintedOutputFile control group
for each printer option defined in each BatchFileName control group, as shown here:

< Page1Prt >

Port = .\print\page1prt.pcl

Option Description

Batch name You define the name and path for each batch file, such as .\batch\page1.

Option Description

Printer You define the name for each batch file listed in the Print_Batches control
group, such as Page1Prt.

Option Description

Printer You define the name for the printed output file, such as Page1Prt.

PageRange The minimum and maximum number of pages, separated by a comma. The
example above show one as the minimum with three as the maximum.

Option Description

Port You define the name and path for the printed output file, such as
print\page1prt.pcl.

BatchingByPageCountINI

53

Example This single-step processing example sends transactions to print batches based on the
number of printed pages the system generated as it processed each transaction. The
following INI settings and JDT rules tell the system to place the transaction form sets it
generates into specific print batches and printed output files based on the page counts.

Here is an example of the AFGJOB.JDT file:

/* JDT Rules showing use of BatchingByPageCountINI rule */

<Base Rules>

;RULStandardJobProc;;Always the first job level rule;

….

…

;InitSetrecipCache;;;

;InitPrint;;; required to execute GenData/GenPrint as single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;first transaction level rule when not
using GenTrn;

…

…

;PrintFormset;;; required to execute GenData/GenPrint as single step;

;WriteOutput;;;

;WriteNaFile;;;

;CreateRecordList;;;

;WriteRCBWithPageCount;2;;

;BatchingByPageCountINI;2;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;;

…

…

Here are examples of the FSISYS.INI file control groups and options:

< BatchingByRecip >

DefaultBatch = DefautOutput

Batch_Recip_Def= True;"Page1";All

Batch_Recip_Def= True;"Pages2";All

Batch_Recip_Def= True;"Pages4";All

< Print_Batches >

DefaultOutput = .\Batch\DefaultOutput

Page1 = .\Batch\Page1

Pages2 = .\Batch\Pages2

Pages4 = .\Batch\Pages4

< PrinterInfo >

Printer = DefaultOutputPrt

If the transaction has... Print_Batches Printed Output File

 1 page .\Batch\Page1 .\Print\Page1Prt.pcl

 2 to 3 pages .\Batch\Pages2 .\Print\Pages2Prt.pcl

 4 to 10 pages .\Batch\Pages4 .\Print\Pages4Prt.pcl

more the 10 pages .\Batch\DefaultOutput .\Print\Default.pcl

Chapter 3
Job and Form Set Rules Reference

54

Printer = Page1Prt

Printer = Pages2Prt

Printer = Pages4Prt

< DefaultOutput >

Printer = DefaultOutputPrt

< Page1 >

Printer = Page1Prt

PageRange = 1,1

< Pages2 >

Printer = Pages2Prt

PageRange = 2,3

< Pages4 >

Printer = Pages4Prt

PageRange = 4,10

< DefaultOutputPrt >

Port = .\Print\DefaultOutputprt.pcl

< Page1Prt >

Port = .\Print\Page1Prt.pcl

< Pages2Prt >

Port = .\Print\Pages2Prt.pcl

< Pages4Prt >

Port = .\Print\Pages4Prt.pcl

In addition to selecting by page count, this rule also has all of the functionality of
BatchingByRecipINI rule. Here is an example of how you set it up:

< BatchingByRecip >

Batch_Recip_Def= 30,5;"BATCH1";ALL

Batch_Recip_Def= 51,1;"BATCH2";ALL

Batch_Recip_Def= 30,2;"BATCH3";ALL

Batch_Recip_Def= True;"BATCH4";ALL

Batch_Recip_Def= True;"BATCH5";ALL

< Batch1 >

Printer = Printer1

PageRange = 1,9999

< Batch2 >

Printer = Printer2

PageRange = 1,9999

< Batch3 >

Printer = Printer3

PageRange = 1,9999

< Batch4 >

Printer = Printer4

PageRange = 1,6

< Batch5 >

Printer = Printer5

PageRange = 7,9999

The first Batch_Recip_Def option tells the system to place into BATCH1 all recipients
which have a 5 at offset 31. If a transaction does not meet the first condition, processing
continues through the INI list. Processing stops once the appropriate batch is found.

Therefore, if no condition is met by the third option, the transaction is assigned to
BATCH4 or BATCH5 based on the page count. If the page count is less than seven, it
is assigned to BATCH4. If the page count is sever or greater, it is assigned to BATCH5.

BatchingByPageCountINI

55

The order in which you list the Batch_Recip_Def options determines how the system
determines recipient batches. Put the most likely batches first. Use All rather listing all
recipients when appropriate.

Keep in mind that when using this rule in this manner you should always include the
PageRange parameter in each group, even if the batch is not associated with page counts.

See also Rules Used for 2-up Printing on page 27

BatchByPageCount on page 48

BatchingByRecipINI on page 69

KickToWip on page 377

Move_It on page 392

WriteRCBWithPageCount on page 254

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

56

 BatchingByPageCountPerRecipINI
Use this form set level rule to send a transaction to a specific print batch based on the
number of page count for each recipient of all form sets the system generates when it
processes the transaction.

Syntax ;BatchingByPageCountPerRecipINI;;;

You specify which transactions are assigned to the print batch using INI options in these
control groups:

• BatchingByRecip

• Print_Batches

• PrinterInfo

• BatchFileName (You can define the name of this control group.)

• PrintedOutputFile (You can define the name of this control group.)

You must have these control groups in your FSISYS.INI or FSIUSER.INI file.

BatchingByRecip
control group

This control group must contain these INI options:

< BatchingByRecip >

DefaultBatch = DefaultOutput

Batch_Recip_Def=

Use the DefaultBatch option to assign a name to the default batch, such as
DefaultOutput. Do not enclose the name in quotation marks.

Use the Batch_Recip_Def option to define the conditions the system should use to
determine which batch it should choose for each transaction. The syntax for the
Batch_Recip_Def option is shown here:

Condition; "BatchName"; Recipient

You can define a series of these options to specify all of the conditions necessary to
determine the desired batching for your transactions.

BatchingByPageCountPerRecipINI

57

The system processes the information in this order:

Parameter Description

Condition This lets you specify a condition that must be satisfied before the transaction
is assigned to the print batch and recipients. You can use the True keyword
to set the condition:
True - Enter this keyword to specify that the condition must always be
true.This tells the system to send the form set to the specified print batch if
the recipient is specified in the recipient list for the batch.
You can also use these user-defined options instead of the keyword:

Search mask - The search mask consists of one or more offset, data pairs.

Error - If the error batch flag is set by another rule, send the form set to the
specified print batch (if the form's recipient is specified in the recipient list
for the batch). For example, an error occurs if the Host Required field is set
on a Move_It rule and the data is missing.
Manual - If the manual batch flag is set by another rule, send the form set to
the specified print batch (if the recipient is specified in the recipient list for
the batch). You could also use the KickToWIP rule.
Condition name - a condition name defined in the condition table.

?XDB token - a token name that equates to a named item in the XDB.

=GVM (expression) - returns the value of a GVM symbol named in the
expression.

=DAL (expression) - returns the value of a DAL script named in the expression.

=(expression) - returns the value of a DAL symbol represented in the
expression.

BatchName You can specify the batch name by specifying the recipient name, the batch
name, or using a batch name defined in the Record Dictionary.

Recipient name - use one of the names contained in the Recip_Names control
group as batch name. Enclose this name in quotes, as shown here:

“customer”

Batch name - a batch name extract from the extract file. The format is a comma-
delimited field: a search mask followed by a blank space and then an offset,
followed by the length of name to use.
Dict() - a batch name defined in the Record Dictionary. Enclose this name in
quotes, as shown here:

“batch1”

Use the pipe symbol (|) to indicate separate items concatenated together, as
shown here:

print1|print2

Recipients You can specify recipients by using a keyword (All) or by listing specific
recipients.

All - Enter this keyword to tell the system to use all recipients in the
Recip_Names control group.

list - a list of recipient names. If you list the names, separate each recipient
with a comma or space, such as customer, agent.

Chapter 3
Job and Form Set Rules Reference

58

1 If the conditions are met, the print batch you specified is used as the batch for the
form set, provided the form set's recipients are specified in the recipient list for the
batch. In addition, the system writes the batch record for the form set to the batches
for the specified recipients.

2 If a transaction does not meet the condition for the first Batch_Recip_Def option,
the system continues through the series of Batch_Recip_Def options until the
condition for a Batch_Recip_Def option is met.

3 If a transaction does not meet any of the Batch_Recip_Def criteria, the transaction
is placed in the batch specified in the DefaultBatch option. If the DefaultBatch
option is not defined, an error occurs. The order in which you list the
Batch_Recip_Def options determines how the system determines recipient batches.
Put the most likely batches first. Use the All keyword rather than listing all recipients
when appropriate.

Print_Batches control
group

This control group must include at least one entry for each unique batch name in the
BatchingByRecip control group.

< Print_Batches >

Batch name = ..\batch\AllOnePageBatch.bch

PrinterInfo control
group

This control group must include an entry for each unique batch file name listed in the
Print_Batches control group.

< PrinterInfo >

Printer = Printer1

BatchFileName control
group

You define the name for this control group, such as AllOnePageBatch. You must have a
BatchFileName control group for each batch name option defined in the Print_Batches
control group. This control group must include at least these two options. The options
are shown here:

< AllOnePageBatch >

Printer = (file name)

PageRange = 1,1

Option Description

Batch name You define the name and path for each batch file, such as
..\batch\AllOnePageBatch.bch

Option Description

Printer You define the name for each batch file listed in the Print_Batches control
group, such as Printer1.

Option Description

Printer You define the name for the printed output file, such as Printer1.

PageRange Enter the minimum and maximum number of pages, separated by a comma.
The example above shows one as the minimum and the maximum.

BatchingByPageCountPerRecipINI

59

PrintedOutputFile
control group

You define the name for this control group, such as Printer1. This control group must
include as a minimum one option. There must be a PrintedOutputFile control group
for each printer option defined in each BatchFileName control group, as shown here:

< Printer1 >

Port = ..\PrintFiles\AllOnePageBatch.PCL

INI File Examples
Here are examples of the FSISYS.INI file control groups and options for several different
scenarios

Scenario 1 In this scenario, we will be showing how to set up a True condition. This tells the system
to send the form set to the specified print batch if the recipient is specified in the
recipient list for the batch. Here is an example from the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = True;"INSURED1PAGE";INSURED

Batch_Recip_Def = True;"COMPANY1PAGE";COMPANY

Batch_Recip_Def = True;"AGENT1PAGE";AGENT

Batch_Recip_Def = True;"INSUREDMULTIPAGE";INSURED

Batch_Recip_Def = True;"COMPANYMULTIPAGE";COMPANY

Batch_Recip_Def = True;"AGENTMULTIPAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

For each recipient, all one-page form sets go into one batch as shown here:

< Insured1Page >

Printer = Printer1

PageRange = 1,1

< Company1Page >

Printer = Printer2

PageRange = 1,1

< Agent1Page >

Printer = Printer3

PageRange = 1,1

All forms sets with two or more pages for each recipient go into a different batch, as
shown here:

< InsuredMultipage >

Printer = Printer4

PageRange = 2,99999

< CompanyMultipage >

Printer = Printer5

PageRange = 2,99999

< AgentMultipage >

Printer = Printer6

PageRange = 2,99999

< Default >

Option Description

Port You define the name and path for the printed output file, such as
..\PrintFiles\AllOnePageBatch.PCL

Chapter 3
Job and Form Set Rules Reference

60

Printer = PDefault

Form sets that need to go into WIP are in the manual batch:

< Manual >

Printer = Printer7

PageRange = 1,99999

Form sets with errors go into the error batch:

< Error >

Printer = Printer8

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

Insured1Page = insured1page.bch

Company1Page = company1page.bch

Agent1Page = agent1page.bch

InsuredMultipage = insuredmultipage.bch

CompanyMultipage = companymultipage.bch

AgentMultipage = agentmultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\insured1page.pcl

< Printer2 >

Port = data\company1page.pcl

< Printer3 >

Port = data\agent1page.pcl

< Printer4 >

Port = data\insuredmultipage.pcl

< Printer5 >

Port = data\companymultipage.pcl

< Printer6 >

Port = data\agentmultipage.pcl

 < Printer7 >

Port = data\manual.pcl

< Printer8 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = Printer5

Printer = Printer6

Printer = Printer7

Printer = Printer8

Printer = PDEFAULT

BatchingByPageCountPerRecipINI

61

Scenario 2 This scenario defines two simple conditions in a condition table based on information
in the data dictionary. In the condition table two conditions are set which define the
two company types, representing the two different company transactions in the extract
file. Condition 1 (Cond1) searches for an S for Sampco company transactions.
Condition 2 (Cond2) searches for an F for FSI company transactions. This scenario
creates batches for recipients by company and page count. The data dictionary and
condition table for this scenario are shown below:

From the data dictionary:

<Records>

Header = Search(11,HEADERREC)

<Variables>

CompanyType = Record(Header) Offset(1) Length(1) Type(Char)

From the condition table:

< Conditions >

Cond1 : CompanyType = "S"

Cond2 : CompanyType = "F"

From the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = COND(Cond1);"SAMPCO1PAGE";INSURED

Batch_Recip_Def = COND(Cond1);"SAMPCOMULTIPAGE";INSURED

Batch_Recip_Def = COND(Cond2);"FSI1PAGE";INSURED

Batch_Recip_Def = COND(Cond2);"FSIMULTIPAGE";INSURED

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

< Default >

Printer = PDefault

For each recipient, all one-page form sets for each company go into a separate batch as
shown here:

< Sampco1Page >

Printer = Printer1

PageRange = 1,1

< FSI1Page >

Printer = Printer3

PageRange = 1,1

For each recipient, all form sets with two or more pages go into a separate batch for each
company as shown here:

< SampcoMultipage >

Printer = Printer2

PageRange = 2,99999

< FSIMultipage >

Printer = Printer4

PageRange = 2,99999

Form sets that go to WIP are put into the manual batch:

< Manual >

Printer = Printer5

PageRange = 1,99999

Chapter 3
Job and Form Set Rules Reference

62

Form sets with errors go into the error batch:

< Error >

Printer = Printer6

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

Sampco1Page = sampco1page.bch

SampcoMultipage = sampcomultipage.bch

FSI1Page = fsi1page.bch

FSIMultipage = fsimultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\sampco1page.pcl

< Printer2 >

Port = data\sampcomultipage.pcl

< Printer3 >

Port = data\fsi1page.pcl

< Printer4 >

Port = data\fsimultipage.pcl

< Printer5 >

Port = data\manual.pcl

< Printer6 >

Port = data\error.pcl

< PDEFAULT >

Port = data\pdefault

< PrinterInfo >

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = Printer5

Printer = Printer6

Printer = PDefault

< Tables >

Path = .\tables\

Recipient = reciptbl.dat

Conditions = condition.tbl

< DataDictionary >

Name = datadict.tbl

< SymLookup >

MaxCache = 1000

LeastFrequent = Yes

BatchingByPageCountPerRecipINI

63

Scenario 3 This scenario looks for a token from the XDB to send form sets to agent batches. Here
is an excerpt from the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = ?AGENT NAME;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = ?AGENT NAME;"AGENTNAMEMULTIPAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

If the token is not found, the system sends form sets to the Default batch:

< Default >

Printer = PDefault

If a token is found, the system sends all one-page transactions to an Agent batch
specifically for one-page form sets:

< AgentName1Page >

Printer = Printer1

PageRange = 1,1

If a token is found, the system sends all transactions that are more than one page to an
Agent batch designed to hold forms sets that consist of two or more pages:

< AgentNameMultipage >

Printer = Printer2

PageRange = 2,99999

Form sets that go to WIP are put into the manual batch:

< Manual >

Printer = Printer3

PageRange = 1,99999

Form sets with errors go into the error batch:

< Error >

Printer = Printer4

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

AgentName1Page = agentname1page.bch

AgentNameMultipage = agentnamemultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\agentname1page.pcl

< Printer2 >

Port = data\agentnamemultipage.pcl

< Printer3 >

Port = data\manual.pcl

< Printer4 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

Chapter 3
Job and Form Set Rules Reference

64

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = PDefault

Scenario 4 Like the previous scenario, this scenario sends form sets to agent batches depending on
the number of pages. This scenario, however, uses a GVM variable as the condition and
an XML extract file. In the AFGJOB.JDT, you must first create the global variable you
are going to use for the condition. In this scenario, it is called AGT1. To create it, use
the CreateGlbVar rule. Then, use the Ext2GVM rule to map the data to the GVM
variable named AGT1. This rule is placed after the LoadExtractData rule in the
AGFJOB.JDT file. If the GVM variable (AGT1) holds a value, the condition is
considered true and the transaction is written to the appropriate batch by the page
count. If the GVM variable (AGT1) does not hold a value, the condition is considered
false and the transaction will be written to the Default batch. Here is an example:

/* This base (this implementation) uses these rules. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;1;*:;

;SetErrHdr;1;*:--;

;SetErrHdr;1;*: FormMaker Data Generation (Base);

;SetErrHdr;1;*: ;

;SetErrHdr;1;***: Transaction: ***PolicyNum***;

;SetErrHdr;1;***: Symbol: ***Symbol***;

;SetErrHdr;1;***: Module: ***Module***;

;SetErrHdr;1;***: State: ***State***;

;SetErrHdr;1;***: Company Name (after ini conversion):
Company;

;SetErrHdr;1;***: Line of Business (after ini conversion):
Lob;

;SetErrHdr;1;***: Trans Type: ***TransactionType***;

;SetErrHdr;1;***: Run Date: ***Rundate***;

;SetErrHdr;1;*:--;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;CreateGlbVar;1;AGT1,CHAR_ARRAY,15;

;JobInit1;1;;

;LoadDDTDefs;1;;

;InitOvFlw;1;;

;LoadTextTbl;1;;

;LoadTblFiles;1;;

;SetOvFlwSym;1;CGDECBDOVF,Q1GDBD,5;

;BuildMasterFormList;1;4;

<Base Form Set Rules>

;RULStandardTransactionProc;2;Always the first transaction level
rule;

;LoadExtractData;2;;

;GetCo;2;11,HEADERREC 35,3;

;GetLOB;2;11,HEADERREC 40,3;

;Ext2Gvm;2;!/COMPANY/FORMS/FORM/SECTION/FIELDS/AGENTNAME 1,15,AGT1;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;UpdatePOLFile;2;;

BatchingByPageCountPerRecipINI

65

;RunSetRcpTbl;2;;

;BatchingByPageCountPerRecipINI;;;

Here is an example of the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = =GVM("AGT1"),;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = =GVM("AGT1"),;"AGENTNAMEMULTIPAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

< Default >

Printer = PDefault

If the GVM variable holds a value, the system sends all one-page transactions to an Agent
batch specifically for one-page form sets:

< AgenName1Page >

Printer = Printer1

PageRange = 1,1

If the GVM variable holds a value, the system sends all transactions that are more than
one page to an Agent batch designed to hold form sets that consist of two or more pages:

< AgentNameMultipage >

Printer = Printer2

PageRange = 2,99999

Form sets that go into WIP are put in the manual batch:

< Manual >

Printer = Printer3

PageRange = 1,99999

Form sets with errors go into the error batch:

< Error >

Printer = Printer4

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

AgentName1Page = agentname1page.bch

AgentNameMultipage = agentnamemultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\agentname1page.pcl

< Printer2 >

Port = data\agentnamemultipage.pcl

< Printer3 >

Port = data\manual.pcl

< Printer4 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

Printer = Printer1

Chapter 3
Job and Form Set Rules Reference

66

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = PDefault

Scenario 5 Like scenario 4, this scenario sends form sets to agent batches depending on the number
of pages. This scenario, however, uses a DAL script called agent.dal to set the condition
along with using an XML extract file. In the AFGJOB.JDT, we must use a PreTransDAL
to call the DAL script to set the condition. In this scenario, it is called AGT1. This rule
is placed after the RunSetRcpTbl rule in the AGFJOB.JDT file. Once the DAL script set
a value to the DAL variable, the condition is considered true and the transaction is
written to the respective batch for the Batch_Recip_Def condition by page count. If the
DAL script does not set a value to the DAL variable, the condition is considered false
and the transaction is written to the Default batch instead. Here is an example:

/* This base (this implementation) uses these rules. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;1;*:;

;SetErrHdr;1;*:--;

;SetErrHdr;1;*: FormMaker Data Generation (Base);

;SetErrHdr;1;*: ;

;SetErrHdr;1;***: Transaction: ***PolicyNum***;

;SetErrHdr;1;***: Symbol: ***Symbol***;

;SetErrHdr;1;***: Module: ***Module***;

;SetErrHdr;1;***: State: ***State***;

;SetErrHdr;1;***: Company Name (after ini conversion):
Company;

;SetErrHdr;1;***: Line of Business (after ini conversion):
Lob;

;SetErrHdr;1;***: Trans Type: ***TransactionType***;

;SetErrHdr;1;***: Run Date: ***Rundate***;

;SetErrHdr;1;*:--;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;JobInit1;1;;

;LoadDDTDefs;1;;

;InitOvFlw;1;;

;LoadTextTbl;1;;

;LoadTblFiles;1;;

;SetOvFlwSym;1;CGDECBDOVF,Q1GDBD,5;

;BuildMasterFormList;1;4;

<Base Form Set Rules>

;RULStandardTransactionProc;2;Always the first transaction level
rule;

;LoadExtractData;2;;

;GetCo;2;11,HEADERREC 35,3;

;GetLOB;2;11,HEADERREC 40,3;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;UpdatePOLFile;2;;

;RunSetRcpTbl;2;;

;PreTransDAL;;Call("agent.dal");

;BatchingByPageCountPerRecipINI;;;

BatchingByPageCountPerRecipINI

67

Here is an example of the FSISYS.INI file:

< BatchingByRecip >

Batch_Recip_Def = =DAL("AGT1"),;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = =DAL("AGT1"),;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

DefaultBatch = Default

If the DAL variable holds a value, the system sends all one-page transactions to an Agent
batch specifically for one-page form sets:

< AgentName1Page >

Printer = Printer1

PageRange = 1,1

If the DAL variable holds a value, the system sends all transactions that are more than
one page to an Agent batch designed to hold form sets that consist of two or more pages:

< AgentNameMultipage >

Printer = Printer2

PageRange = 2,99999

If the DAL variable does NOT hold a value, the condition is considered false and the
transaction is sent to the Default batch.

< Default >

Printer = PDefault

Form sets that go into WIP are put in the manual batch:

< Manual >

Printer = Printer3

PageRange = 1,99999

Form sets with errors go into the error batch:

< Error >

Printer = Printer4

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

AgentName1Page = agentname1page.bch

AgentNameMultipage = agentnamemultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\agentname1page.pcl

< Printer2 >

Port = data\agentnamemultipage.pcl

< Printer3 >

Port = data\manual.pcl

< Printer4 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

Chapter 3
Job and Form Set Rules Reference

68

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = PDefault

See also JDT Rules Reference on page 30

BatchingByRecipINI

69

 BatchingByRecipINI
Use this form set level rule to send transactions to a batch you specify based on data in
the extract file and conditions and recipients specified using INI options.

Syntax ;BatchingByRecipINI;;;

You pass parameters for this rule using the BatchingByRecip control group in your
FSISYS.INI or FSIUSER.INI file. Make sure this control group is in the INI file and
includes these options:

• DefaultBatch

• Batch_Recip_Def

The DefaultBatch option has only one parameter, a literal name such as Default. Do not
enclose it in quotation marks.

The syntax for the Batch_Recip_Def option is shown here:

Condition; ”BatchName”; Recipient

Parameter Description

Condition You can use these keywords:
COND
A condition name defined in the condition table.

Error
If the error batch flag is set by another rule, send the form set to the specified
batch (if the form’s recipient is specified in the recipient list for the batch). For
example, an error occurs if the Host Required field is set on a Move_It rule
and the data is missing.

Manual
If the manual batch flag is set by another rule; send the form set to the specified
batch (if the recipient is specified in the recipient list for the batch). An
example of another rule you could use is the KickToWip rule.

True
The condition is always true; send the form set to the specified batch (if the
recipient is specified in the recipient list for the batch).

Search mask
The search mask consists of one or more offset,data pairs.

Batch name Batch name from the extract file. The format is a comma-delimited field: a search
mask followed by a blank space and then an offset, followed by the length of
name to use. Keep in mind the batch name is limited to eight characters. You
can use these keywords:
Recip_Name means to use the names contained in the Recip_Names control
group as batch names

Dict() – The batch name defined in the Record Dictionary. Enclose this name
in quotes, such as “Batch1”.
Use the pipe symbol (|) to indicate separate items concatenated together.

Recipients Enter All for all recipients or list the recipient names. If you list the names,
separate each recipient with a comma or space.

Chapter 3
Job and Form Set Rules Reference

70

If the conditions are met, the batch you specified is used as the batch for the form set,
provided the form set’s recipients are specified in the recipient list for the batch. In
addition, the system writes the batch record for the form set to the batches for the
specified recipients.

If a transaction does not meet the first condition, processing continues through the INI
list. Processing stops once the appropriate batch is found.

If a transaction does not meet one of the Batch_Recip_Def criteria, the system places it
in the default batch. If you do not define the DefaultBatch option, an error occurs.

The order in which you list the Batch_Recip_Def options determines how the system
determines recipient batches. Put the most likely batches first. Use All rather than listing
all recipients when appropriate.

Example For this example, assume you have this rule in the AFGJOB.JDT file:

;BatchingByRecipINI;;;

And these INI options:

< BatchingByRecip >

 DefaultBatch = default

 Batch_Recip_Def = 4,1234567;"BATCH1";INSURED

 Batch_Recip_Def = true;"BATCH2";INSURED

 Batch_Recip_Def = true;"BATCH5";COMPANY AGENT

The DefaultBatch option tells the system that any output which has not already been
sent to a batch by one of the Batch_Recip_Def options should be placed in the default
batch:

DefaultBatch = default

You must set up the batch name under the Print_Batches control group.

The first Batch_Recip_Def option tells the system to place into BATCH1 any output
which goes to the INSURED recipient and has 1234567 beginning at position 4 in the
extract file:

Batch_Recip_Def = 4,1234567;"BATCH1";INSURED

The next Batch_Recip_Def option tells the system to place all recipients named
INSURED into BATCH2:

Batch_Recip_Def = 4, 1234567; “BATCH1”; INSURED

You must set up the recipient
under RECIP_NAMES

You must set up the batch name
under Print_Batches

The data in the extract file you
want the system to search for

The position in the extract file at
which the search begins

BatchingByRecipINI

71

Batch_Recip_Def = true;"BATCH2";INSURED

This Batch_Recip_Def option follows the same syntax as the earlier examples, but shows
how you can use the pipe symbol to place two segments on one line:

Batch_Recip_Def = true;”BATCH”|”5”;COMPANY AGENT

The last Batch_Recip_Def option tells the system to place all recipients named
COMPANY and AGENT into the concatenated name BATCH5.

As shown earlier, you have to specify the batch name under Print_Batches and the
recipient name under RECIP_NAMES.

See also BatchByPageCount on page 48

BatchingByPageCountINI on page 50

PrintFormset on page 185

SetOutputFromExtrFile on page 224

Search Criteria on page 273

Using Condition Tables on page 438

Using the Record Dictionary on page 441

JDT Rules Reference on page 30

Batch_Recip_Def = true; “BATCH2”; INSURED

You must set up the recipient under
RECIP_NAMES

You must set up the batch name under
Print_Batches

Put all recipients named INSURED into
BATCH2

Chapter 3
Job and Form Set Rules Reference

72

 BuildExcludeList
Use this job level rule to selectively exclude transactions from being processed in one-
and two-step mode processing.

You must include this rule in the AFGJOB.JDT file because neither one- nor two-step
mode executes the GenTran program which processes transactions during multi-step
processing.

NOTE:You must define the transactions to be excluded in a file specified by the
Exclude option in the Data control group. In addition, this rule does not
remove excluded transactions from the extract file as would occur in multi-step
processing.

Syntax ;BuildExcludeList;;;

Example Assume your master resource library has the following items defined. Your
FSIUSER.INI file looks like this:

< Data >

Exclude = Exclude.dat

You have a file named JONES.DAT in DefLib. This file contains:

30,Jones

Your AFGJOB.JDT file looks like this:

<Base Rules>

;RulStandardJobProc;;;

;JobInit1;;;

;BuildMasterFormList;;4;

;BuildExcludeList;;;

…

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

…

Your extract file looks like this:

RG1001 HEADER CWNGCIS 030201 Roberts J

…

RG1002 HEADER CWNGCIS 030201 Brown T

…

RG1003 HEADER CWNGCIS 030201 Jones M

…

RG1004 HEADER CWNGCIS 030201 Smiths K

…

RG1005 HEADER CWNGCIS 030201 Jones L

…

In this example the system processes all of the transactions except RG1003 and RG1005.
These transactions are excluded because the search mask criteria (35,Jones) defined in
the EXCLUDE.DAT file was found in both transactions.

See also JDT Rules Reference on page 30

BuildFormList

73

 BuildFormList
Use this form set level rule to load and initialize all forms that the processing of extract
data could possibly produce.

NOTE:You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

Syntax ;BuildFormList;;;

There are no parameters for this rule.

This rule loads the entire form set into a master form set list and creates the duplicate
list which is altered during processing. The system only creates the master form set list
the first time it executes this rule. Subsequent calls to this rule delete the existing
duplicate form set (in the working form set) and recreate it from the master form set list.

This rule makes sure the extract data exists and resets all form recipient copy counts to
zero (0). It also loads the set recipient table data from file into a list. This file is defined
in the SetRcpTb option in the Data control group.

NOTE:This rule erases the list of data from the SETRCPTB file.

Example ;BuildFormList;;;

See also LoadFormsetFromArchive on page 157

LoadRcpTbl on page 160

RunSetRcpTbl on page 215

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

74

 BuildMasterFormList
Use this job level rule to load the FORM.DAT file into an internal linked list used by
the GenData program.

You must include this rule in the AFGJOB.JDT file because the RunSetRcpTbl rule is
dependent on the list this rule creates.

Syntax ;BuildMasterFormList;;KeyCount;FORM.DAT

Example ;BuildMasterFormList;1;4;

The KeyCount parameter determines the number of items in the FORM.DAT line
considered part of the form set key. The system organizes the form set list based on the
number of items specified by the KeyCount parameter, minus one.

For example, the RPEX1 FORM.DAT file contains as its first two lines:

;SAMPCO;LB1;DEC PAGE;;R;;qsname|...

;SAMPCO;LB1;LETTER;;RD;;qsname|D...

This rule compares the lines to determine if an item is already in the list after finding
the 4th (KeyCount) semicolon in each line and comparing up to the lesser position.
These lines would be compared up to the following point:

;SAMPCO;LB1;DEC PAG;

;SAMPCO;LB1;LETTER;

NOTE:The KeyCount parameter should be one more than the number of keys in the
FORM.DAT file to allow for the leading semicolon. Do not change the
KeyCount parameter unless the library uses a different number of keys.

See also RunSetRcpTbl on page 215

JDT Rules Reference on page 30

Parameter Description

KeyCount This is a required integer that must be set to 4.

FORM.DAT List the FORM.DAT files you want the system to load. This lets you load
multiple FORM.DAT files and have them appear in memory as if they came
from one large FORM.DAT file.

If you do not specify the FORM.DAT file name, the system looks for the master
resource library settings to find the correct file to load.

CheckZeroFontID

75

 CheckZeroFontID
Use this form set level rule to see if the form set has any fields with a zero font ID. The
rule will produce an error or warning for any fields it finds which have font IDs equal
to zero. You can then correct the font ID problems and restart the processing cycle.

Syntax ;;CheckZeroFontID;;Message;

Example This example produces error messages:

;CheckZeroFontID;;E;

This example produces warning messages:

;CheckZeroFontID;;;

The error or warning message includes information about the form, section, and field:

See also JDT Rules Reference on page 30

Parameter Description

Message Enter E if you want to see error messages. Leave this parameter blank if you want
to see warning messages.

Message Description

DM30059 <Error> in CheckZeroFontID: zero font ID: form <PXWORKSHT> image
<PXPOLICY> field <ESTFONTID>

DM30059 <Warning> in CheckZeroFontID: zero font ID: form <PXWORKSHT> image
<PXPOLICY> field <TESTFONTID>

Chapter 3
Job and Form Set Rules Reference

76

 ConvertWIP
Use this form set level rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents
of the POLFILE.DAT and NAFILE.DAT files into new files with unique names.

The system generates unique form set IDs using a globally unique identifier (GUID) for
the new files. This helps to make sure form set IDs created for WIP records do not clash
even if multiple applications are generating WIP records, such as if you had multiple
IDS servers generating WIP.

You can then view these WIP records using Documaker Workstation or Print Preview,
which is part of the Internet Document Server (IDS).

Using this rule eliminates the need to run the separate GenWIP process to transfer
transactions into WIP.

NOTE:You must have separate licenses to run Documaker Workstation and IDS.
Contact your sales representative for more information.

Syntax ;ConvertWIP;;;

Example ;ConvertWIP;2;;

The order in which you place the ConvertWIP rule is important. Place it in front of the
PrintFormset, WriteOutput, and WriteNAFile rules, as shown here:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;ConvertWIP;2;;

;PrintFormset;2;;

;WriteOutput;2;;

;WriteNAFile;2;;

The PrintFormset rule is required to combine the GenData and GenPrint processes into
a single step.

See also InitConvertWIP on page 145

JDT Rules Reference on page 30

CreateGlbVar

77

 CreateGlbVar
Use this job level rule to create a global variable which can be used by all code in the
system. You specify the type and size of the variable. List all instances of this rule at the
beginning of the AFGJOB.JDT file.

Syntax ;CreateGlbVar;;;

NOTE:This rule resets the global variable created during pre-processing.

Example ;CreateGlbVar;;VARIABLENAME, VARTYPE, VARSIZE;

You can create each global variable as shown below. VARIABLENAME is an arbitrary
name of the variable which will be created, VARTYPE is the type of variable to create,
and VARSIZE is an optional size of the variable to create.

The variable types are:

• SHORT

• LONG

• DOUBLE

• FLOAT

• LONG DOUBLE

• CHAR_ARRAY

• PVOID

The following example creates a character array of 20 bytes named MYCHARARRAY.
Remember that the array should be large enough to include the null terminating
character if it contains strings.

;CreateGLBVar;1;MYCHARARRAY,CHAR_ARRAY,20;

The next example creates a variable named MYLONGVAR that is a LONG:

;CreateGlbVar;1;MYLONGVAR,LONG;

Notice that no size was included so the variable size will be a single long value.

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

78

 CreateRecordList
Use this form set level rule to copy the NA_Offset and POL_Offset into global variables.

This rule calculates page counts for each recipient and sends transactions to error,
manual, and previously assigned (such as Braille) batches, as necessary. This rule also
appends RCB comment records for all other transactions into a generic linked list of
objects.

This rule writes out the recipient batch records for error, manual, and previously
assigned batches.

NOTE:If the current record will be appended to the generic linked list of objects, this
rule takes care of filling in a number of fields in the recipient batch record.
These fields would normally be filled in by a call to the RULUpdateRecips
function. The RULUpdateRecips function is inappropriate for page count
batching, which is why the fields are filled in manually.

Syntax ;CreateRecordList;;;

Example ;CreateRecordList;;;

See also JDT Rules Reference on page 30

DelExtRecords

79

 DelExtRecords
Use this form set level rule to search the extract data list and delete all data records which
match the search mask you specify.

For instance, you can use this rule to remove data records that are confidential, out of
date, or should never be processed on the form.

To use this rule, you must add it to the AFGJOB.JDT file after the extract data is loaded
but before the extract data is used for mapping or other purposes.

Syntax ;DelExtRecords;;;

Example This example deletes all extract records which contain the text RECTYPE1 at offset 1,
and KEY1 at offset 50.

;DelExtRecords;;1,RECTYPE1,50,KEY1;

NOTE:Be sure that the search mask is specific enough to avoid deleting more records
than intended.

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

80

 Dictionary
Use this job level rule to terminate an XDB instance and free memory. You only include
this rule if you also used the GlobalFld rule.

Syntax ;Dictionary;;;

Example Here is an example of how you would use this rule:

/* JDT Rules for One Step Batching By Recipient */

/*
*/

<Base Rules>

;RULStandardJobProc;;;

;SetErrHdr;;***:--;

;SetErrHdr;;***: Oracle Insurance

;SetErrHdr;;***: Company Name: ***Company***;

;SetErrHdr;;***: Application: ***Application***;

;SetErrHdr;;***: Account #: ***Account_Number***;

;SetErrHdr;;***:--;

;JobInit1;;;

;CreateGlbVar;;RCBBatchName,CHAR_ARRAY,32;

;InitOvFlw;;;

;SetOvFlwSym;;MTROVF,qaIMTROV,1;

;SetOvFlwSym;;RTEOVF,qaIRTEOV,1;

;Dictionary;;;

;BuildMasterFormList;1;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

;InitPrint;;required to execute gendata/genprint as single step;

See also GlobalFld on page 367

JDT Rules Reference on page 30

DocumentExport

81

 DocumentExport
Use this form set level rule to write full NA and POL information as well as certain
export field information. You can control how the export information the rule generates
is formatted and you can specify which fields should be included.

Syntax ;DocumentExport;;;

Defining Export Options
You use these options in the ImpExpCombined control group to control this rule:

< ImpExpCombined >

File =

Path =

Ext =

AppendedExport =

Defining the Export Record
You must know the format of the record you intend to export. This includes having a
list of all the fields that comprise the record and the lengths and formats of those fields.

If you omit fields from the ImpExpCombined control group, the export record will
contain the information specified for the Trigger2WIP control group in the order it is
listed. The default layout is a fixed record length. If the fields are omitted from both the
ImpExpCombined and Trigger2WIP control groups, an error occurs.

Surround each field element within the export record with field separators. This helps
input systems parse the field information. The default field separators are quotation
marks (“), as shown here:

WIP = “data”“data”“data”

Fixed or variable record
lengths

Fixed length records are always the same. In a fixed length record, all field data has a
known (output) size that must be generated. Adding all the field lengths together,
generally equals the fixed record length. (Remember to add two separator strings for
each field to determine the actual length.)

Option Description

File Enter the name you want to assign to the file. If you omit this name, the
user must specify it.

Path Enter a path to indicate where the file should be written. The default is
the current working directory. If you include the File option and the file
name contains a path, that path overrides this option.

Ext Enter the extension you want to use. The default is DS. If you include the
File option and the file name includes an extension, that extension
overrides this option.

AppendedExport If you enter Yes, the data on the current form set data is appended to the
existing file. The default is No.

Chapter 3
Job and Form Set Rules Reference

82

Variable record length output typically means that some or all of the data element will
not adhere to a fixed size.

With variable length records, you often need a marker that identifies where each field
element begins and ends. These elements are typically constant —meaning each field
begins and ends with the same value. This is the purpose of the field separator
mentioned previously. The field separator defaults to a quotation mark (“), but you can
specify any string of up to 39 characters.

Delimiting the fields is often necessary because the importing program needs to
recognize where fields begin and end within the variable record. Although a fixed length
record may not always require field separators, there is no harm caused by using them.

Listing the field source,
length, and format

Build a table with this information:

• Each field that will be contained within each record

• Any length requirements of the field data

• Any special formatting requirements for writing the data to the output record.

With a fixed length record layout, each field has a specific length. In variable length
records, a field may have no specific length requirement or may have a minimum or a
maximum length requirement or both. Note the length requirements for each field.

Finally, note any special formatting requirements for each field. When composing this
information, keep in mind that the manner in which the data is formatted within the
export record may be different that the export record requirement. This would include
information such as the following:

• Should the data be left or right justified in the output?

• For date fields, what format should be used (such as Month/Day/Year or Year/
Month/Day)?

• For numeric data, should values include or not include commas, dollar signs, and
so on?

• Should a decimal number be converted to integers (should 41.1 written as 41)?

• Should integers be written as decimals (41 becomes 41.00)?

• Is there constant or filler data that should be written for a given export record field
that will not be derived from a form set field? For example, you might want to write
a given value into all records for a certain field because the importing program
requires such a value.

Defining the export
fields and formats

Once you have identified the fields that comprise the export record, you have to define
these fields and the formats required to build the defined record layout.

The record layout for the record must be defined in the INI file, in this control group:

< ImpExpCombined >

For each field that should be exported to the export record line, you must include a line
in the INI file. You may export as many fields as necessary. Each line must begin with
the FIELD= statement and has the following syntax.

FIELD = GVM Fieldname;formatstring

DocumentExport

83

You can omit the GVM Fieldname from any record location that must contain constant
or filler information not derived from the actual export record. See Format Specification
Flags on page 89 for more information.

The formatstring is optional. If you include it, be sure to precede it with a semicolon.
Whatever occurs after the semicolon is used to modify the field data in a specific
manner. You can use format string flags to increase or decrease the data to a
predetermined size or convert the data from one value format to another.

If a named export field is not followed by the format string, the format is derived
internally by querying the GVM definition and will yield a constant string length result.

Specifying the format If the output record area for a definition is a filler area — meaning that the output data
is predetermined and not part of the export data — you can omit the field name. If you
omit the field name in this manner, you must specify a format or nothing is written to
the output record.

Constant data is often used to write header or trailer information to variable length
records to help the importing system recognize where the record begins and ends. Also,
you can use this method to write additional characters or data between fields such as,
for example, if you need to include a comma between each field data element of a
variable length record. Here are some examples:

FIELD = Key1;%-3.3s

FIELD = ;,

FIELD = KeyID;%-10.10s

In the first case, the value from Key1 is formatted as three characters in the output data.
This constant text value of a comma is written next, followed by 10 characters from
KeyID. If you assume Key1 contains BOB and KeyID contains 123456789, the result is
as follows:

WIP = “BOB”“,”“123456789 ”

Notice that each field, whether constant or not, contains field separators. Also notice
that the data for KeyID was padded to 10 characters even though the actual value only
contained nine characters.

Converting dates Date format conversions are specified using the D as the first character. The D is
followed by the input format specifier for the data, a semicolon, and the format
specification for output. Here is an example:

FIELD=CREATETIME;DX;D4

This example names the field CREATETIME. The D following the semicolon tells the
system to retrieve this field and convert it from the format defined as X into the output
format, D4. X represents the hexadecimal character format. D4 is a standard
YYYYMMDD format without separators.

Format Flags
If you are familiar with C programming, the data conversions provided with format
flags will be familiar. Essentially, the printf function format definitions for %s, %f, and
%d are supported with some limitations.

Chapter 3
Job and Form Set Rules Reference

84

Remember that most export record data and other internal data is usually text.
Therefore, to convert to a numerical format of %f or %d, the form set data must be
deformatted internally and then converted into the required format.

The output written to the exported record is formatted as text. Here are some examples:

FIELD = DESC;%d

FIELD = ORIGUSER;%-32.32s

FIELD = APPDATA;%8.2f

These examples use format flags. The first example retrieves the value of the field DESC
(the description) then converts that value into an integer (losing any decimal portion it
might have had) and outputs it as an integer value. If the data was not a number, the
result is zero (0).

The second example writes exactly 32 characters for the value taken from ORIGUSER.
If the field value does not contain 32 characters, it is padded with spaces. Note also the
use of the dash (-) indicator. This tells the system to left justify the field. If you omit the
dash, the system pads the data with spaces on the left, right justifying it.

The last example demonstrates a floating point output with two decimal places. The
field value is converted into a floating point number. The system then applies the format
you specify and rounds the value if it contained more than two decimal places.

Defining the Export Record Header
The export record header occurs at the beginning of each export record output.

< ImpExpCombined >

WIPHeader = WIP=

Separator = ”

Date Formats

Standard date format You can enter dates in a variety of formats. The date format has three possible
components or characters. The first character specifies the order of the date. The second
character specifies the type of separator character for the date. The third character
specifies the length of the year.

Date order The first character in the date format indicates the order of the date and whether the
month should be numeric or alphabetic. The first character must be a digit from 1 to 9
or an alphabetic character. The default order is format 1. The following table lists your
options:

Option Description

WIPHeader Enter the text for the header. You can enter as much text as you like, but
avoid exceeding 1024 characters in the entire export record line. The default
is WIP.

Separator Enter the text value used to separate fields. The default is a quotation mark
(“). If a variable record layout is being used for WIP information, field
separators are essential. You can enter up to 39 characters. Choose a separator
that is not likely to appear in any of the data you intend to output.

DocumentExport

85

Format Date order Description

1 MM/DD/YY Month-Day-Year with leading zeros

(02/17/2009)

2 DD/MM/YY Day-Month-Year with leading zeros

17/02/2009

3 YY/MM/DD Year-Month-Day with leading zeros
2009/02/17

4 Month D, Yr Month name-Day-Year without leading zeros (February 17,
2009)

5 bM/bD/YY Month-Day-Year with leading zeros replaced with spaces
(2/17/2009)

6 bD/bM/YY Day-Month-Year with leading zeros replaced with spaces
(17/ 2/2009)

7 YY/bM/bD Year-Month-Day with leading zeros replaced with spaces
(2009/ 2/17)

8 M/D/YY Month-Day-Year with leading zeros suppressed
(12/8/2009)

9 D/M/YY Day-Month-Year with leading zeros suppressed
(17/2/2009)

A YY/M/D Year-Month-Day with leading zeros suppressed
(2009/8/9)

B MMDDYY Month-Day-Year with no separators

(02172009)

C DDMMYY Day-Month-Year with no separators

(17022009)

D YYMMDD Year-Month-Day with no separators
(20090217)

E MonDDYY Month name abbreviated-Day-Year with leading zeros
(Feb072009)

F DDMonYY Day-Month name abbreviated-Year with leading zeros
(07Feb2009)

G YYMonDD Year-Month name abbreviated-Day with leading zeros
(2009Feb07)

H day/YY Day of year (counting consecutively from January 1)-Year

(48/2009)

I YY/day Year-Day of Year (counting consecutively from January 1)

(often called the Julian date format) (2009/48)

Chapter 3
Job and Form Set Rules Reference

86

Separators The second character in the date format indicates the separator to use in the date. If you
omit the separator character, the system includes a forward slash (/). You can choose
from these separator characters:

You specify the separator character by including it as the second character in the date
format. For example, if you enter 5-, you specify date format 5 with a dash as a separator
character. The date appears as 02-17-2009. If you enter 5b, you specify date format 5 with
blanks or spaces as a separator. Your date appears as 02 17 2009.

Year length The third character in the date format specifies the year length. The year must appear as
either two or four digits. Enter 2 for a two digit year or 4 for a four digit year.

You can omit the year length character from a date format. If you do not specify the
year length, the system uses the length of the original entry. For example, if you enter a
date as 10/30/09 and do not specify a length, the system retains 05. If you enter 10/30/
2009, the system retains 2009.

If you enter 5-2, you specify date format 5, a dash (-) as a separator character and a two-
digit year. Your date appears as _9-11-09. If you enter 5-4, your date appears as _9-11-
2009.

J D, Month Yr Day- Month name-Year without leading zeros (7, February
2009)

K Yr, Month D Year-Month name-Day without leading zeros (2009 January 5)

L Mon-DD-YY Month name abbreviated-Day-Year with leading zeros (Feb-17-
2009)

M DD-Mon-YY Day-Month name abbreviated-Year with leading zeros (02-Feb-
2009)

N YY-Mon-DD Year-Month name abbreviated-Day with leading zeros (2009-
Feb-17)

X XXXXXXXX An eight-character hexadecimal representation

Format Date order Description

Character Example

/ 02/17/2009

- 02-17-2009

. 02.17.2009

, 02,17,2009

b (blank) 02 17 2009

DocumentExport

87

NOTE:If you do not enter a separator character the year length specification is the
second digit in the date format. For example, if you enter 54, you specify date
format 5 and a four-digit year. Since the separator character is not specified the
default character (/) applies. Your date appears as _9/11/2009.

Avoid two-digit year representations. For example, if you enter 5/2, you specify
date format 5 and a two-digit year. Your date appears as 9/11/09.

Freeform Formats
The format argument consists of one or more codes; each formatting code is preceded
by a percent sign (%). Characters not prefixed with a percent sign copied unchanged to
the output buffer. Any character following a percent sign is not recognized as a valid
format code is copied unchanged to the destination. Therefore, you can enter %% to
include the percent sign in the resulting output string.

You can use these format codes:

Here are some examples:

Code Description

%d Day of month as decimal number (01 – 31)

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01 – 12)

%m Month as decimal number (01 – 12)

%M Minute as decimal number (00 – 59)

%p Current locale's AM/PM indicator for 12-hour clock

%S Second as decimal number (00 – 59)

%y Year without century, as decimal number (00 – 99)

%Y Year with century, as decimal number

%A Weekday name, such as Tuesday

%b Abbreviated month name, such as Mar

%B Full month name, such as March

%j Day of year as decimal number, such as 001–366

%w Weekday as decimal number, such as 1 – 7 with Sunday as 1

%@xxx Specify language locale (Where xxx identifies one of the supported languages. For
example. A format of %@CAD%A might produce mardi, the French word for
Tuesday.)

Chapter 3
Job and Form Set Rules Reference

88

Additional format
attributes

An octothorp (#) tells the system to suppress leading zeros for the following format
codes. This flag is recognized on these formats and is ignored on all other format codes
not listed here.

%#d, %#H, %#I, %#j, %#m, %#M, %#S, %#w

For example, if %d outputs 01, using %#d the output will become 1.

NOTE:This flag only affects the format code that specifies it. Any subsequent codes
that are numeric are not affected unless they also specify the flag.

Enter a greater than symbol (>) to uppercase the resulting text. This flag is only
recognized on these format codes:

%>p, %>A, %>b, %>B

For example, if %A results in Tuesday, %>A produces TUESDAY.

NOTE:This flag only affects the format code that specifies it. Any subsequent codes
that have text are not affected unless those also specify the flag.

Enter a less than symbol (<) to lowercase the resulting text. This flag is valid for the
following codes and ignored on all others:

%<p, %<A, %<b, %<B

For example, if %b results in Mar, %<b produces mar.

NOTE:This flag only affects the format code that specifies it. Any subsequent codes
that have text are not affected unless they also specify the flag.

Enter <> to capitalize the first letter of the resulting text. This flag is valid for the
following codes and ignored on all others:

%<>p, %<>A, %<>b, %<>B

For example, if %p results in AM, %<>p produces Am.

NOTE:This flag only affects the format code that specifies it. Any subsequent codes
that have text are not affected unless they also specify the flag.

Format Output

%m-%d-%Y 01-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 01/01/09 at 11:57 PM

DocumentExport

89

Using Locale Information
When you use the %@xxx in the format string, the xxx represents a code that identifies
one of our supported language locales.

Until a locale format code is encountered in the format string, the default locale
(typically USD which is US English) is in effect. Once a locale format code is found, the
locale specified remains in effect until another locale indicator is encountered.

For example: suppose the input date is 03-01-2009 (USD). This table shows the output
from various formats:

Format Specification Flags
The format specification, which consists of optional and required fields, is shown here:

%[Flags][Width][.Precision]Type

Each field of the format specification is a character or a number which specifies a format
option. The simplest format specification contains only the percent sign and a type
character, such as: %s. If a percent sign is followed by a character that has no meaning
as a format field, that character is simply copied to the output. For example, to print a
percent sign, enter %%.

The optional fields, which appear before the Type character, control other aspects of the
formatting, as follows:

Type Enter s, f, or d for this export function.

Flags Use these flags to control justification of the output and the printing of signs, blanks,
decimal points, and octal and hexadecimal prefixes. More than one flag can appear in a
format specification.

Enter To output

 “ %A, %B %d” “Monday, March 01”.

 “%@CAD%A %@CAD%A, %B %d” “lundi, mars 01”

“%A, %@CAD%B %d” “Monday, mars 01”

“%@CAD%A, %@USD%B %d” “lundi, March 01”

Flag Description Default

– Left aligns the result within the given field width. Right align.

+ Prefixes the output value with a sign (+ or –) if the
output value is of a signed type.

Sign appears only for
negative signed values (–).

0 Adds zeros until the minimum width is reached.
If a zero and a minus appear (-0), the system
ignores the zero. If you include a zero with an
integer format (d), the system ignores the zero
flag.

No padding.

Chapter 3
Job and Form Set Rules Reference

90

Width Here you can control the minimum number of characters printed. If the number of
characters in the output value is less than the width you specify, the system adds blanks
to the left or the right of the values — depending on whether the flag for left alignment
is specified — until the minimum width is reached. If you prefix the width with a zero
(0), the system adds zeros until the minimum width is reached (not useful for left-
aligned numbers).

Your entry for width never causes a value to be truncated. If the number of characters
in the output value is greater than the width you specify, or if you omit the width, all
characters of the value are printed (subject to the .Precision specification).

.Precision This optional number specifies the maximum number of characters printed for all or
part of the output field, or the minimum number of digits printed for integer values.

For format s, the precision specifies the maximum number of characters to print.
Characters in excess of precision are not printed. Characters are printed until a null
character is encountered.

For format f, the precision specifies the number of digits after the decimal point. If a
decimal point appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits. The default precision is six (6); if the precision is zero (0),
or if a period (.) appears without a number following it, no decimal point is printed.

For format d, the precision specifies the minimum number of digits to be printed. If the
number of digits in the argument is less than the precision value, the output value is
padded on the left with zeros. The value is not truncated when the number of digits
exceeds the precision. The default precision is one (1).

See also JDT Rules Reference on page 30

blank (' ') Prefixes the output value with a blank if the
output value is signed and positive; the blank is
ignored if both the blank and + flags appear.

No blank appears.

When used with the f format, the # flag forces the
output value to contain a decimal point in all
cases.

Decimal point appears
only if digits follow it.

Flag Description Default

DumpExtList

91

 DumpExtList
Use this form set level rule to dump the extract list to a file. The result provides
information about the generic linked list of objects, such as its handles and the
information contained in each element.

The file the system creates is a flat text file which shows only text values—binary data is
written as spaces to preserve placement.

Syntax ;DumpExtList;;(Name);

NOTE:Only use this rule for test purposes, so you can inspect the contents of the
extract data list. The use of this rule slows processing in proportion to the size
of the extract data list.

Example ;DumpExtList;;ExtrListDump.txt;

See also JDT Rules Reference on page 30

Parameter Description

Name Name of the file to which the extract records will be written.

Chapter 3
Job and Form Set Rules Reference

92

 DumpExtractListToFile
Use this form set level rule to dump the extract list to a file. This rule is helpful if you
are debugging and you want to see what is currently in the extract list.

Syntax ;DumpExtractListToFile;;(parameters);

Example ;DumpExtractListToFile;;ExtrDump.txt,Y;

For each transaction in the extract file, the system appends to the EXTRDUMP.TXT file
a transaction header plus the contents of each record in the transaction. Here is an
example of this file:

==> Extract data for:

 TransactionId:<Patch399>

 GroupName1:<CWNG>

 GroupName2:<CIS>

 GroupName3:<>

 External Form Name:<>

 Transaction Type:<>

**

Patch399 HEADER CWNGCIS Patch # …

Patch399 GVM1 Morris Sandra …

…

…

**

==> Extract data for:

 TransactionId:<Patch400>

 GroupName1:<CWNG>

 GroupName2:<CIS>

 GroupName3:<>

 External Form Name:<>

 Transaction Type:<>

**

Patch400 HEADER CWNGCIS Patch # …

Patch400 GVM1 Bob Jane …

…

…

NOTE:The Y option can create a very large file, depending on the size of the extract file.

See also JDT Rules Reference on page 30

Parameter Description

Name Name of the file to which the extract records will be written.

Flag The append flag. Enter Y to append the records for each transaction to the file
plus a header. Enter N to only create a dump file for the last transaction.

ErrorHandler

93

 ErrorHandler
Use this job level rule to send transactions to the manual batch when specified field
errors occur. This lets normal processing continue if errors occur.

Syntax ;ErrorHandler;;;

Use the following INI option to identify the field errors which cause a transaction to be
sent to the manual batch:

< Error2Manual >

(CurrentError) = (NextError1),..,(NextErrorN),(M)

Errors Here is a sample set of error messages which would appear if a field error occurred:

Example Here is an example of the FSISYS.INI file:

< Error2Manual >

10513 = 12051, 12048, 12083, 12074

< GenDataStopOn >

FieldErrors = No

Add this rule to the < Base Rules > section in the AFGJOB.JDT file:

;ErrorHandler;;;

If field error DM10513 occurs, it will cause these errors: DM12051, DM12048, DM1283,
and DM12074. This function sends these transactions to the manual batch for user-
entry, continues processing, and then creates a blank field in the NAFILE.DAT file.

See also JDT Rules Reference on page 30

Parameter Description

CurrentError The error that just occurred.

NextError1 The error caused by the CurrentError failure. This continues through the list
of errors until the last one.

M This tells the system to send the transaction to the manual batch.

Error Description

DM10513 Error in SetAddr(): Empty RuleParms for SetAddr.

DM12051 Error in RPProcessOneField(): Unable to <SETADDR>().

DM12048 Error in RPProcessFields(): Unable to RPProcessOneField(pRPS) <ADDR3>.
Processing will NOT continue for image <q1addr>. See INI group:<
GenDataStopOn > option: FieldErrors.

DM12083 Error in RPProcessOneImage(): Unable to RPProcessFields(pRPS).

DM12074 Error in RPProcessImages(): Unable to RPProcessOneImage(pRPS) <q1addr>.
Skipping the rest of the Images for this form. See INI group:< GenDataStopOn
> option:ImageErrors.

Chapter 3
Job and Form Set Rules Reference

94

 Ext2GVM
Use this form set level rule to add data from the extract list into previously defined
global variables. To use the rule, you must add it to the AFGJOB.JDT file after the
extract data is loaded.

You can also use this rule to get data into the NEWTRN.DAT file during GenData
processing instead of using Trn_Fields. To do this you define a field for the data to be
mapped in the TRNDFDFL.DFD file and then use the Ext2GVM rule to map the data
from extract file to the NEWTRN.DAT file.

Syntax ;Ext2GVM;;(parameters);

You can use these parameters with this rule:

Example The following example locates the extract record that matches the search mask (1, D1)
and moves the value found at position 21 for a length of 5 to the global variable TestVar.
In addition, it suppresses the error messages if the search mask is not found in the
transaction.

<Base Rules>

... ...

... ...

;CreateGlbVar;;TestVar,CHAR_ARRAY,5;

... ...

<Base Form Set Rules>

... ...

;Ext2GVM;;1,D1 21,5,TestVar,S;

... ...

See also JDT Rules Reference on page 30

NOTE:Refer to the DAL Reference for information on these related DAL functions:
GVM, HaveGVM, and SetGVM.

Parameter Description

SearchMask One or more pairs of offsets and data (search criteria) in a comma-delimited
list.

DataLocation The offset and length of the data in the extract record.

GVMName The name of the GVM variable where the data will be stored.

SuppressFlag Enter S to suppress error messages if the search mask is not found in a
transaction. The default is blank, which tells the system not to suppress error
messages.

FilterForm

95

 FilterForm
Use this form set level rule to remove all forms from a form set except those that match
the filter criteria you specify.

See also ;FilterForm;;;

You can use these INI options with this rule:

< FilterForms >

Form =

FilterByForm =

Here is an example of how you can use the Form option:

Form = 1,HEADER 20,8 (Offset,Match Offset,Length)

In the following example, assume you have this INI setting:

< FilterForm >

Form = !/transaction/PrintForm

And this transaction data:

<transaction>

…

<PrintFrom>FormA</PrintForm>

<PrintForm>FormB</PrintForm>

…

</transaction>

Only forms FormA and FormB will remain in the form set after the filtering process is
complete.

Example Here is an example AFGJOB.JDT file:

/* JDT Rules for Single-Step Processing Batching By Recipient. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;JobInit1;1;;

;InitPrint;1;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;2;;

;LoadFormsetFromArchive;2;;

;PrintFormset;2;;

;WriteOutput;2;;

Option Description

Form Use this option to specify the search location for form filter criteria. All
occurrences of the data specified in the data are used for filtering. You can
specify the search location as an XML search string or as a flat file search
mask.

FilterByForm (Optional) Use this option to turn the rule on or off by transaction. If you
specify this option, the rule looks for a value of TRUE at that specified
search location. If TRUE is not found, the filter logic is not executed. If you
omit this option, the rule is always executed.

Chapter 3
Job and Form Set Rules Reference

96

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;FilterForm;2;;

/* Every section in this base uses these rules. */

<Base Image Rules>

;WIPImageProc;;

/* Every field in this base uses these rules. */

<Base Field Rules>

;RULWIPFieldProc;;

See also FilterRecip on page 97

JDT Rules Reference on page 30

FilterRecip

97

 FilterRecip
Use this form set level rule to remove all forms from a form set except those that match
the recipient filter criteria you specify.

Syntax ;FilterRecip;;;

You can use these INI options with this rule:

< FilterRecip >

Recip =

FilterByRecip =

Here is an example of how you can use the Recip option:

Recip = 1,HEADER 20,8 (Offset,Match Offset,Length)

Filtering is performed using all data that matches the search criteria. Assume you have
this INI setting:

< FilterRecip >

Recip = !/transaction/PrintRecip

And this transaction data:

<transaction>

…

<PrintRecip>Insured</PrintRecip>

<PrintRecip>Agent</PrintRecip>

…

</transaction>

Only recipients Insured and Agent will remain in the form set after the filtering process
is complete.

Example Here is an example AFGJOB.JDT file:

/* JDT Rules for Single-Step Processing Batching By Recipient. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;JobInit1;1;;

;InitPrint;1;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;2;;

;LoadFormsetFromArchive;2;;

;PrintFormset;2;;

Option Description

Recip Use this option to specify the search location for the Recip filter criteria. All
occurrences of the data specified in the data are used for filtering. You can
specify the search location as an XML search string or as a flat file search
mask.

FilterByRecip (Optional) Use this option to turn the rule on or off by transaction. If you
include this option, the rule looks for a value of TRUE at the specified search
location. If TRUE is not found, the filter logic is not executed. If you omit
this option, the rule is always executed.

Chapter 3
Job and Form Set Rules Reference

98

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;FilterRecip;2;;

/* Every section in this base uses these rules. */

<Base Image Rules>

;WIPImageProc;;

/* Every field in this base uses these rules. */

<Base Field Rules>

;RULWIPFieldProc;;

See also FilterForm on page 95

JDT Rules Reference on page 30

ForceNoImages

99

 ForceNoImages
Place this rule in your AFGJOB.JDT file to bypass all section processing. This rule
prevents any section level rules from executing.

For instance, you could use this rule if the form set for each transaction is created and
mapped by a higher level rule which removes the necessity for executing section or field
level rules.

You can also use this rule in 2-up printing to return the msgNO_MORE_IMAGES
message.

Syntax ;ForceNoImages()

 There are no parameters for this rule.

This rule prevents errors if you have no section level rules.

Example < Base Image Rules >

;ForceNoImages;;

See also ImportNAPOLExtract on page 124

Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

100

 FormDescription
Use this form set level rule to write out a form or several forms, which contain
descriptions of the other forms included in the form set. You can also specify a DAL
script you want the system to execute to get the actual descriptions to use.

NOTE:This capability exists in Documaker Workstation. This rule provides the
capability to Documaker Server.

Syntax ;FormDescription;;NoOverflow;

Keep in mind...

• Place this rule after the UpdatePOLFile rule if you are running in multi-step mode.
For single- and two-step mode, place the rule after the PaginateAndPropagate rule.

• The names of Form Description Line variable fields must begin with FORM DESC
LINE. You can include multiple lines of these fields on a form by varying the
field’s name, such as FORM DESC LINE #002, FORM DESC LINE #003, and so
on.

• For each form in a form set (and optionally for each Key2 grouping), the system
will assign to a Form Description Line field a text description of that form. Only
one text description is assigned to each From Description Line field.

• Form description lines do not wrap the description to succeeding lines. If a text is
longer than the field’s representation, the text can extend beyond page boundaries
or into undesirable areas. Make sure the Form Description Line fields can contain
the longest description. Smaller fonts generally allow more characters per line.

• Any form can contain Form Description Line fields. You can place form
description lines on separate forms. You can also place forms with these fields
among other fields, graphics, and so on.

• The placement of the form in the FORM.DAT file is important. Only those forms
placed after the first form which contains a FORM DESC LINE field will be
included in the listed forms. Please note the first form, which contains the form
description lines, is not included in the list.

INI options You can use these INI options to tell the system how to represent form group lines on
form description lines.

< FormDescTable >

IncludeKey2 = No

BoldKey2 = No

Key2Prefix =

Parameter Description

NoOverflow (Optional) This parameter tells the system not to overflow the form
description line section if there are not enough Form Description Line fields
to include the maximum number of selected forms. Keep in mind that if this
parameter is turned on and there are more forms than there are Form
Description Line fields, some of the descriptive information may be lost. The
default is the system will overflow to accommodate all selected forms.

FormDescription

101

Key2PostInc = 0

IncludeDuplicateForms = No

IncludeFormName = No

StartFromFirstForm =

ColumnFormat = No

ExludedForm =

IncludeFormDesc =

< FormDescription >

Script =

Option Description

FormDescTable control group

IncludeKey2 Enter Yes to enable Key2 descriptions. By default, the form
description lines only contain descriptions of the forms.
Optionally, you can include descriptions for form groups, such as
lines of business. These form groups are called Key2s.

BoldKey2 Use this option to present Key2 descriptions in a bold font. The
system determines which font to use by querying the font defined
on the field and selecting its bold equivalent. The fonts of normal
Form Description Lines fields (not assigned a Key2 name) are
changed to their non-bold counterparts.

Key2Prefix Enter the text you want to appear before each Key2 description
line. The system automatically adds a single space after the text. By
default, this option is blank and does not affect the description
lines.

For instance, if you enter Form Applicable – the system prefixes all
Key2 descriptions with that text. The output might look like this:

Form Applicable — General Liability Coverage

Key2PostInc Use this option to add blank lines between Key2 descriptions the
form descriptions. For example, if you include Key2 descriptions,
and set this option to one, you out put might look like this:

Form Applicable – General Liability Coverage

Form 1Automobile Coverage

Form 2Homeowner Coverage

IncludeDuplicateForms If you want the system to include duplicate forms, set this option
to Yes. The system excludes the duplicate forms from the form
description lines as a default.

IncludeFormName Enter No if you want to suppress the form name from the form
description lines. By default, the system includes the form names.

StartFromFirstForm Enter Yes if you want the system to include forms starting from
the first form. By default, only forms placed after the first form
that contains a FORM DESC LINE field are included in the list
of forms.
Note that the form that contains the form description lines is not
included in the list unless this option is turned on.

Chapter 3
Job and Form Set Rules Reference

102

ColumnFormat By default, the system writes out the form description lines in a
columnar format with the form name on the left and pads the text
based on the longest form name. To have the system write out the
form description lines in a non-columnar format, set this option
to No. If set to No, the system adds the form description to the
end of the form name, separated by two spaces.

ExcludedForm To exclude a certain form from the form description lines, enter
the name of the form you want to exclude. Here is an example:

ExludedForm = Form Applicable

To exclude multiple forms, include a separate ExcludedForm
option for each form, as shown here:

ExludedForm = Form1

ExludedForm = Form2

ExludedForm = Form3

IncludeFormDesc Set this option to No if you want to suppress the description from
the form description lines. The system includes the form
description by default.

Do not set this option and the IncludeFormName option to No.
If you do, the system writes the form description without the form
name

FormDescription control group

Script The name of DAL script you want the system to execute.

Option Description

FormDescription

103

Example This example shows how you can call a DAL script to customize the description placed
in the Form Description Line fields. To use this functionality, make sure you have the
Script option set up in the FormDescription control group:

< FormDescription >

Script = AddDate.DAL

Now suppose you want to add (11/10) to the end of each description line. You would
set up the Script option to call the DAL script that contains the logic to do so. Here is
an example of the DAL script:

FName = FormName()

FDesc = FormDesc()

return(FName & " " & FDesc & " (11/10)");

Below is an example of the description lines generated without calling DAL script.

DEC Page Common Policy Declarations

END Page Endorsement Page

CG DEC General Liability Declarations

Here is an example of the output when you call the DAL script:

DEC Page Common Policy Declarations (11/10)

END Page Endorsement Page (11/10)

CG DEC General Liability Declarations (11/10)

See also PaginateAndPropagate on page 177

UpdatePOLFile on page 243

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

104

 GenPrint
Use this job level rule to add all of the functionality of running the GenPrint program.
Anything you can do with the GenPrint program can be done using this rule. For
instance, you can use this rule to print the same recipient batch multiple times while
running in single-step mode, giving you the same recipient batch processing capabilities
available in multi-step mode. For instance, this rule lets run in single-step mode and
print the same batch in multiple formats, such as a PDF batch for electronic delivery
and a Metacode batch for mail.

Syntax GenPrint ()

There are no parameters for this rule.

NOTE:The PrintFormset rule works differently from the GenPrint program, while the
GenPrint rule offers the same functionality. To use the GenPrint rule, add it to
the AFGJOB.JDT file instead of the PrintFormset rule.

Keep in mind...

• You cannot use the RestartJob rule with the GenPrint rule.

• You cannot use the DelayFileWrite option with the MergeWIP rule.

Example Here is an example:

<Base Rules>

;RULStandardJobProc;;Always the first job level rule;

;SetErrHdr;;***:--;

;SetErrHdr;;***: Feature 1931 - GenPrint rule example ;

;SetErrHdr;;***:--;

;JobInit1;;;

;GenPrint;;;

Always place the GenPrint rule immediately after the JobInit1 rule in your AFGJOB.JDT
file.

Creating multiple print
batches

You can assign a recipient batch to multiple print batch files during GenPrint
processing. This lets you print the same batch in multiple formats, such as in PDF and
Metacode format. Here is an example:

< Print_Batches >

BATCH1 = Batch1.bch

BATCH2 = batch2.bch

BATCH3 = Batch1.bch

In this example, Batch1.bch will be printed by both print BATCH1 and print BATCH3.

Setting up banner
processing

This rule also supports transaction and batch banner processing. To set up banner
processing, you must set the appropriate GVMs before each instance of the class
recipient is printed. Use the RecipMap2GVM control group to set the GVMs. See
Writing Unique Data Into Recipient Batch Records on page 11 for more information.

GenPrint

105

Processing under IDS To support IDS processing, the system lets you hold the batch, NA, and POL files in a
list until the GenPrint rule has executed. To tell the system to hold the batch, NA, and
POL files, include the following INI option:

< RunMode >

DelayedFileWrite = Yes

See also MergeWIP on page 165

PrintFormset on page 185

RestartJob on page 204

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

106

 GetCo
Use this form set level rule to get the company code (Key1 field) from the extract data,
and get its equivalent value from the INI file for use by the system.

Syntax ;GetCo;;;

This rule gets the company code (Key1 field) from the extract data using the GetRecord
search criteria specified in the data field. This rule also sets the company—stored in the
master transaction set—to the value defined in the INI file. In the INI file, this value is
stored in the Key1Table control group under the option name which equals the value
returned by GetRecord.

Example ;GetCo;;17,PMSP0200 125,3;

In this example, the system searches the extract data for the first record that meets the
GetRecord search criteria of having PMSP0200 at offset 17. From this record, the system
extracts three characters at position 125, and uses those characters to look up the
company in the INI file. It is this equivalent value from the INI file that should be used
in files such as the form set definition file, as well as the set recipient table file.

These files are defined in the Data control group with the names FORMDAT and
SETRCPTB respectively. For example, if the three characters at position 125 were ABC,
the associated line in the Key1Table control group would look something like:

< Key1Table >

ABC = THE ABC FRUIT COMPANY

See also GetLOB on page 107

Search Criteria on page 273

JDT Rules Reference on page 30

GetLOB

107

 GetLOB
Use this form set level rule to get the line of business (from the Key2 field) code from
the extract data, and to get its equivalent value from the INI file for use by the system.

Syntax ;GetLOB;;;

This rule gets the line of business (Key2 field) code from the extract data using the
GetRecord search criteria specified in the data field. This rule also sets the line of
business—stored in the master transaction set—to the value defined in the INI file. In the
INI file, this value is stored in the Key2Table control group under the option name
which equals the value returned by GetRecord.

Example ;GetLOB;;17,PMSP0200 100,3;

In this example the system searches the extract data for the first record which meets the
GetRecord search criteria of having PMSP0200 at offset 17. From this record, the system
extracts three characters at position 100, and uses those characters to look up the line of
business in the INI file. It is this value in the FSISYS.INI file which should be used in
files such as the FORM.DAT file, as well as the set recipient table.

These files are defined in the Data control group with the names FORMDAT and
SETRCPTB respectively. For example, if in the FSISYS.INI file the three characters at
position 100 were CFR, the associated line in the Key2Table control group would look
something like:

< Key2Table >

CFR = COMMERCIAL FIRE

See also GetCo on page 106

Search Criteria on page 273

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

108

 GetRCBRec
Use this form set level rule to set the current recipient batch file. This rule initializes the
current recipient batch file, if necessary.

This rule also sets the first printer for the current batch to be the current printer and
retrieves the next record from the current recipient batch file.

Syntax ;GetRCBRec;;;

Example ;GetRCBRec;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

GetRunDate

109

 GetRunDate
Use this form set level rule when there is no value in the transaction extract lines that
can be used as the run date. This rule gets the current date and treats it as the run date.
It then reformats the date based on the format you specify in the format mask.

The rule assumes the GVM variable RunDate is the name of the variable where the date
is stored. The RunDate variable is created if it does not exist. GVM variables are
automatically created from the fields defined in your TRNDFDFL.DFD file, or by using
the rule that explicitly creates GVM variables. If you omit the variable from being
created in one of these methods, this rule creates it for you.

Syntax ;GetRunDate;;;

The parameters you can include are the various date formats supported by FmtDate rule.
The default format is D4 (YYYYMMDD).

NOTE:There are two types of format masks, pre-defined types 1-9 and A-Q and user-
defined format arguments. If the pre-defined formats meet your needs, use
them, otherwise, create a user-defined format. For information on using pre-
defined format types, see Using Pre-defined Date Formats on page 261.

User-defined format arguments consist of one or more codes, each preceded by
a percent sign (%). For more information on user-defined format masks, see
Setting Up Format Arguments on page 266.

There is no limit to the length of the mask you create.

On success, msgSUCCESS is returned. If the system encounters a fatal error, msgFAIL
is returned.

Example Here are some examples:

;GetRunDate;;J;

If the system date is 20090217, the date format returned will be 17 February, 2009.

;GetRunDate;;;

If the system date is 20090217, the date format returned will be 20090217.

;GetRunDate;;;

If the system date is 2-17-2009, the date format returned will be 20090217.

;GetRunDate;;J;

If the system date is 2-17-2009, the date format returned will be 17 February, 2009.

See also FmtDate on page 365

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

110

 GVM2GVM
Use this form set level rule to copy the data from one GVM variable to another GVM
variable. You specify the two variables using INI options, as shown in this example:

Syntax ;GVM2GVM;;ControlGroup;

NOTE:Although this rule was created for use with GenData WIP Transaction
Processing, you can also use it to map a group of GVM variables from one name
to another name.

For GenData WIP Transaction Processing, this rule copies GVM data from the
WIP.DBF file into GVM variables for GenData execution. You define the GVM variables
in the Trigger2WIP control group.

Assume the FSISYS.INI or FSIUSER.INI file has these options:

< Trigger2WIP >

Company = Key1

LOB = Key2

Example Here is an example:

;GVM2GVM;;Trigger2WIP;

This example copies the contents of the Key1 and Key2 GVM variables found in the
WIP.DBF file into the GenData Company and LOB GVM variables.

See also MergeWIP on page 165

WIPFieldProc on page 247

WIPImageProc on page 248

WIPTransactions on page 249

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

The contents of
this variable...

...is copied into
this variable< Trigger2WIP >

Company = Key1

LOB = Key2

Parameter Description

ControlGroup Specify the name of the control group in the INI file that defines the
variables.

IfRecipUsed

111

 IfRecipUsed
Use this form set level rule to place a form set in a recipient batch if the recipient name
matches the one you specify with this rule. For instance, if the form is triggered and the
recipients are set to receive a copy of those sections, a copy of the sections that make up
the form are copied to the specified batches.

Syntax ;IfRecipUsed;;;

There are no parameters for this rule.

Example ;IfRecipUsed;;BATCH1=INSURED;

If the recipient name placed in the data area (such as INSURED) is used in this form
set, the system assigns this form set to the recipient batch named in the data area (such
as BATCH1).

You can place multiple AssignToBatch rules in the AFGJOB.JDT file. All that return
true will be placed in the appropriate recipient batch. You can assign several recipients
to a single batch. This is useful if the recipients receive very few forms or you only want
to manage a small number of batch files.

You must place this rule in the AFGJOB.JDT file before the BuildFormList rule.

NOTE:Powertyping takes precedence over all AssignToBatch assignments, and errors
take precedence over powertyping.

See also AssignToBatch on page 46

BuildFormList on page 73

SetOutputFromExtrFile on page 224

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

112

 ImageMapImportData
Use this form set level rule with the ImportFile or ImportExtract rule to map the data
you are importing. You can also use this rule with any other rule, such as a custom rule,
that fills in field dictionary values (like the standard V2 import methods).

Normally, when you use this type of import, you would replace the NoOpFunc rule to
do mapping via the DDT files, or you would use the MapFromImportData rule on each
field in the DDT file.

If, however, you have two environments — one that does imports and one that does
regular batch processing — you may not want to maintain two sets of DDT files.
Therefore, you could use this rule if you do not plan to execute any field level rules.

Syntax ;ImageMapImportData;;;

This rule loads the section and tries to get the data dictionary value of each field created
during the import. If you do not want the field level rules to execute in the DDT file,
use the JDT rule that skips field processing. Here is an example:

<Base Image Rules>

;StandardImageProc;3;;

;ImageMapImportData;3;;

<Base Field Rules>

;WIPFieldProc;4;No field processing;

NOTE:While the assumption is that you use this rule when you want to skip normal
field processing, there is no requirement that you do so. If you omit the
WIPFieldProc rule, the field level rules will execute. Depending on the rules you
have assigned to your fields, this may cause errors, or may override the data that
was actually imported.

Standard data importing can supply field data at various levels, such as: form set global,
form global, and image local.

Each occurrence of a field with the same name and declared using the form set global
scope will normally have the same value. Form global scope applies to similarly defined
fields only within a given form. Image local scope means the field is specific to that
section.

Import files sometimes specify all field data at the section level and do not separate out
form set or form global data. This rule first tries to get each field's data at the dictionary
scope level defined in the FAP file. If a form set or form global value cannot be found
for a field, a second search is done at the section level.

NOTE:This approach supports both types of import files — those that specify all data
at the section level and those that separate out data at the appropriately defined
scope levels.

See also ImportExtract on page 114

ImportFile on page 119

ImageMapImportData

113

WIPFieldProc on page 247

MapFromImportData on page 379

NoOpFunc on page 407

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

114

 ImportExtract
Use this form set level rule to import an extract file into GenData that is comprised of:

• Typical transactions in an extract file which have one or more Documaker
Workstation export files embedded in each transaction. This illustration shows
transactions with embedded export files:

• One or more appended Documaker Workstation export files. This illustration
shows an extract file comprised of export files appended to one another:

Syntax ;ImportExtract;;;

Although there are no parameters for this rule. Keep in mind:

• Specify the extract file name to be imported via the Data control group using the
ExtrFile option.

• In the Trn_File control group, set MaxExtRecLen option to the length of the
longest record in extract file.

• Only use the SearchMask option in the ExtractKeyField control group; do not use
the Key option.

Transaction 1
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

Export file 1 containing data associated with transaction 1.

Transaction 1 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

Transaction 2
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

Export file 2 containing data associated with transaction 2.

Transaction 2 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

Export file 2.

Export file 1.

Export file 3.

Export file 4.

Export file 5.

ImportExtract

115

• To create minimum information, such as Key1, Key2, Key ID, and so on, in the
TRNFILE.DAT file for each transaction, you must define for each information
item, the field name, offset, and length in the Trn_Fields control group. This
definition associates the option fields in the Trn_Fields control group to the
corresponding entries in the transaction DFD file (TRNDFDFL.DFD).

• For each field that comprises a section (whose data comes from the export data),
you must create or have a DDT record whose field rule is set to one of the following
field rules

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the export data,
you must insert the ReplaceNoOpFunc rule in the <Base Rules> section of the
AFGJOB.JDT file.

• You must place the ImportExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a
form set.

• If the import extract file consists of only Documaker Workstation export files; do
not include the LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules in your
AFGJOB.JDT file.

• If the import extract file is comprised of normal transaction data records plus one
or more embedded Documaker Workstation export files; you must include the
LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules in your AFGJOB.JDT
file.

Example Here are some examples which show how this rule works:

Extract file made up of
transactions with

embedded export files

In this example, the extract file is made up of normal transactions with embedded export
files. This example imports information from an extract file named IMPORT.DAT
which is comprised of typical transactions and embedded export files. Using this
information, the system creates GenData files which are input to GenPrint. The
GenPrint program then creates the print output files. Keep in mind:

• The ReplaceNoOpFunc rule is not required in the AFGJOB.JDT file because no
fields in the sample DDT file use the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the transaction
data

• The LoadRcpTbl and RunSetRcpTbl rules are required to load and run the recipient
table

Chapter 3
Job and Form Set Rules Reference

116

Here is a sample extract file:

SCO1234567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO1234567FRMLSTREC0000010110 SCO FP T1 89999987
041598… SCO1234567PRODNMREC00000David Miller
000666666600000444...

SCO1234567PRODADREC00000100 Main Street, Suite 1200 Miami,
FL 30202…

…

;SAMPCO;LB1;EXPORT FILE # 1;NB;P ;associated w Transaction # 1;

\NA=\;SAMPCO;LB1;LETTER2;

\NA=q1snam\

\NA=q1fl2a\

DATE\October 12, 2000

LESSEE_NAME\Morris Sander

LESSEE_addr\3200 Windy Hill Road

LESSEE_city\Atlanta, GA 30339

\NA=q1b302\

\NA=q1ba36\

\NA=q1ba32\

\NA=q1sal1\

SCO1234567COVERGREC00000SPC 25000 250 Coverage Item 2…

SCO1234567GENRALREC000001 1 3 1 0
Liability1Liability2Liability3Libility4 …

…

;SAMPCO;LB1;EXPORT FILE # 2;NB;P ;associated w Transaction # 1;

\NA=\;SAMPCO;LB1;CHARTS;

\NA=q1cht\

…

SCO999567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO9994567FRMLSTREC0000010110 SCO FP T1 89999987
041598…

…

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportExtract;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

…

ImportExtract

117

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 1,SCO

< Trn_Fields >

Key1 = 1,3,N

Key2 = 40,2,N

KeyID = 4,7,N

< Trn_File >

BinaryExt = N

MaxExtRecLen = 120

Extract file made up of
appended export files

In this example, the extract file is made up of one or more appended export files. This
example imports information from an extract file named IMPORT.DAT which is
comprised of one or more appended export files. Using that information, the system
then creates GenData files which are input to GenPrint. The GenPrint program then
creates the print output files. Keep in mind:

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT uses the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the export data

• The LoadRcpTbl and RunSetRcpTbl rules not required

Here is a sample extract file:

;CWNG;CIS;1;NB;Export File # 1 ;;

\NA=\;CWNG;CIS;CWFBILL;

\NA=QAIBANCD\

BANNER CODE\001

BANNER CODE TXT\CWNG Company A

\NA=QAIGRAPH\

ACTUAL GJ 1\Nov

\NA=\;CWNG;CIS;CWFCRD3;

\NA=CWFCRD3\

…

;CWNG;CIS;1;NB;Export File # 2 ;;

\NA=\;CWNG;CIS;CWFBILL;

\NA=QAIBANCD\

BANNER CODE\002

BANNER CODE TXT\CWNG Company B

\NA=QAIGRAPH\

ACTUAL GJ 1\Nov

\NA=\;CWNG;CIS;CWFCRD3;

\NA=CWFCRD3\

 …

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Banner Code;75;3;Banner
Code;0;3;;MapFromImportData;31,ACCTNUM;…

;0;0;Banner Code Txt;0;11;Banner Code Txt;0;11;;noopfunc;31,Banner
Code;…

Chapter 3
Job and Form Set Rules Reference

118

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportExtract;;;

…

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 2,CWNG

< Trn_Fields >

Key1 = 2,4,N

Key2 = 7,3,N

KeyID = 16,20,N

< Trn_File >

BinaryExt = N

MaxExtRecLen = 120

See also MapFromImportData on page 379

NoOpFunc on page 407

ReplaceNoOpFunc on page 200

ImportFile on page 119

ImportNAPOLExtract on page 124

JDT Rules Reference on page 30

ImportFile

119

 ImportFile
Use this form set level rule to import transactions (via a standard export file) from
Documaker Workstation into GenData. This rule outputs the transaction to an
NAFILE.DAT file which can then be used by the GenData program.

NOTE:You can import multiple export files if you use the SCH option.

Syntax ImportFile;;option;

There are several ways to specify the import file in the option parameter:

The INI and FILE options normally import the same file for each transaction. The SCH
and GVM options let you import a different file for each transaction.

Keep in mind:

• For each field that comprises a section (whose data comes from the combined
standard export file), you must create or have a DDT record with the field rule set
to one of these field rules:

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the standard export
file, you must insert the ReplaceNoOpFunc rule in the <Base Rules> section of the
AFGJOB.JDT file.

• Place the ImportFile rule in the <Base Form Set Rules> section of the AFGJOB.JDT
file after the BuildFormList rule or any custom rule that creates a form set.

• Do not include the LoadRcpTbl, RunSetRcpTbl, GetCo, or GetLOB rules in your
AFGJOB.JDT file.

Option Description

FILE = file name Enter the name and path of the import file.

INI = INI control group, option Enter the INI control group and option in which the
import file is defined.

SCH = offsetofmask,
<searchmask> offsetofdata,
lengthofdata

This indicates the file name is contained in a record of the
extract file. The offsetofmask is the offset of the search
mask, offsetofdata is the offset where the file name starts,
and lengthofdata is the length of the file name.

GVM = GlobalVariableName GlobalVariableName defines the GVM that contains the
file name and path information.

Chapter 3
Job and Form Set Rules Reference

120

Assume you have the following items defined in your master resource library. Keep in
mind:

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT uses the NoOpFunc rule.

• Trn_Fields control group options are based on items in the first record of the
combined WIP/NA/POL Export data file.

• The LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules are not required
if this information was assigned from the imported file. It may, however, be
necessary to use other rules, such as the Field2GVM rule, to move data from the
imported form set fields to relevant GVM variables.

Here is a sample import file named IMPORT.DAT file:

;SAMPCO;LB1;EXPORT FILE # 1;NB;P ;;

\NA=\;SAMPCO;LB1;LETTER2;

\NA=q1snam\

\NA=q1fl2a\

DATE\October 12, 2000

LESSEE_NAME\Morris Sander

LESSEE_addr\3200 Windy Hill Road

LESSEE_city\Atlanta, GA 30339

\NA=q1b302\

\NA=q1ba36\

\NA=q1ba32\

\NA=q1sal1\

Here is a sample DDT file:

;0;0;Date;0;0;Date;0;25;; NoOpFunc;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here are sample INI settings:

< TRN_Fields >

Key1 = 2,6,N

Key2 = 32,2,N

KeyID = 13,18,N

< TRN_File >

BinaryExt = N

MaxExtRecLen= 120

< ExtractKeyField >

SearchMask = 2,SAMPCO

< Data >

ExtrFile = xxxxx (see the import file example above)

ImportFile

121

Example The following examples illustrate the different ways you can define the import file when
you use this rule.

Using the File option This example imports information from a file named IMPORT.DAT in the \import
directory and uses that information to create the GenData files which the GenPrint
program uses to create the print output files.

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;;File=.\Import\Import.dat;

…

Using the INI option This example imports information based on the Import_File option in the Import_Data
control group. Using this information, the GenData program creates the files the
GenPrint program uses to create the print output files.

Here are the sample INI settings:

< Import_Data >

Import_File = .\Import\Import.dat\

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;;INI=Import_Data,Import_File;

…

Chapter 3
Job and Form Set Rules Reference

122

Using the SCH option This example imports multiple Documaker Workstation export files based on the
content of a line in the extract file. Using this information, the GenData program
creates the files the GenPrint program uses to create the print output files.

Here is an excerpt from a sample extract file named EXTRFILE.DAT:

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt1file.dat

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt2file.dat

…

For this example, use these INI options:

< Data >

ExtrFile= extrfile.dat

< TRN_Fields >

Key1 = 2,4,N

Key2 = 7,3,N

KeyID = 35,22,N

< ExtractKeyField >

SearchMask= 2,CWNG

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;2;SCH=30,TXT 35,21;

…

ImportFile

123

Using the GVM option This example imports data from an import file based on a GVM variable called
Import_File. Using this information, the GenData program creates the files the GenPrint
program uses to create the print output files. Any valid GVM variable can be used no
matter how it is created or assigned.

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

....

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;;GVM=Import_File;

…

See also MapFromImportData on page 379

ReplaceNoOpFunc on page 200

RULNestedOverFlowProc on page 206

ImportNAPOLExtract on page 124

ImportNAPOLFile on page 129

ImportExtract on page 114

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

124

 ImportNAPOLExtract
Use this form set level rule to import an extract file into the GenData program that is
made up of:

• Typical transactions with one or more combined WIP/NA/POL export files from
Documaker Workstation embedded into each transaction This illustration shows
transactions with embedded WIP/NA/POL export files:

One or more appended WIP/NA/POL export data files from Documaker Workstation.
This illustration shows an extract file comprised of WIP/NA/POL files appended to one
another:

Syntax ;ImportNAPOLExtract;;;

Although there are no parameters for this rule. Keep in mind:

• Specify the extract file name, which contains the import information for each
transaction, in the ExtrFile option of the Data control group. This is the normal
way to define the name of the extract file.

• Only use the SearchMask option in the ExtractKeyField control group; do not use
the Key option.

Transaction 1
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

WIP/NA/POL export file containing data associated with transaction 1.

Transaction 1 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

Transaction 2
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

WIP/NA/POL export file containing data associated with transaction 2.

Transaction 2 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

WIP/NA/POL export file 2

WIP/NA/POL export file 1

WIP/NA/POL export file 3

WIP/NA/POL export file 4

WIP/NA/POL export file 5

ImportNAPOLExtract

125

• For each field that comprises a section (whose data comes from the combined WIP/
NA/POL export data), you must create or have a DDT record whose field rule is set
to one of the following field rules

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the WIP/NA/POL
export data, you must insert the ReplaceNoOpFunc rule in the <Base Rules>
section of the AFGJOB.JDT file.

• You must place the ImportNAPOLExtract rule in the <Base Form Set Rules>
section of the AFGJOB.JDT file after the BuildFormList rule or any custom rule
that creates a form set.

• If the import extract file is comprised of normal transaction data records plus one
or more embedded Documaker Workstation combined WIP/NA/POL export files;
you can include the LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules
in your AFGJOB.JDT file. You may need to use other rules, like Field2GVM, to
move data from the imported form set fields to relevant GVM variables.

• To process without using DDT files, substitute the ForceNoImages rule for the
RULStandardImageProc rule.

Example Here are some examples which show how this rule works:

Extract file made up of
transactions with

embedded WIP/NA/
POL files

In this example, the extract file is made up of normal transactions with embedded WIP/
NA/POL export files. This example imports information from an extract file named
IMPORT.DAT which is comprised of transactions with embedded WIP/NA/POL
export files. Using this information, the system creates standard GenData files which are
input to the GenPrint program. The GenPrint program then creates the print output
files. Keep in mind:

• The ReplaceNoOpFunc rule is not required in the AFGJOB.JDT file because no
fields in the sample DDT file use the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the first record
of the typical transaction data

• The LoadRcpTbl and RunSetRcpTbl rules are required to load and run the recipient
table

Here is a sample extract file:

SCO1234567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO1234567FRMLSTREC0000010110 SCO FP T1 89999987
041598… SCO1234567PRODNMREC00000David Miller
000666666600000444...

SCO1234567PRODADREC00000100 Main Street, Suite 1200 Miami,
FL 30202…

…

WIP="SAMPCO ""LB1 ""NAPOL FILE # 1 ""NB ""P" associated w
Transaction # 1"

;SAMPCO;LB1;LETTER2;Second Letter;RD;;q1snam|D3<Insured>/
q1fl2a|D3S<Insured>/q1b302|D3S<Insured>/q1ba36…;

\ENDDOCSET\

\NA=q1snam,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=0,PA=1,OPT=D3\

Chapter 3
Job and Form Set Rules Reference

126

\ENDIMAGE\

\NA=q1fl2a,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=3360,PA=1,OPT=D3S\

FDate;235;3913;12012;;;\January 1, 2000

FLessee_NAME;235;4806;12012;G;;\Morris Sander

FLessee_addr;235;5212;12012;G;;\3200 Windy Hill Road

FLessee_city;235;5636;12012;G;;\Atlanta, GA 30339

\ENDIMAGE\

…

\ENDFORM\

\ENDDOCSET\

SCO1234567COVERGREC00000SPC 25000 250 Coverage Item 2…

SCO1234567GENRALREC000001 1 3 1 0
Liability1Liability2Liability3Libility4 …

…

WIP="SAMPCO ""LB1 ""NAPOL FILE # 2 ""NB ""P" associated w
Transaction # 1"

;SAMPCO;LB1;CHARTS;Form q1cht;RD;;q1cht|D5<Insured>;

\ENDDOCSET\

\NA=q1cht,LN=1,DUP=OFF,SIZE=L,TRAY=U,X=0,Y=0,PA=1,OPT=D5\

FFORMSET PAGE NUM;17656;25740;16008;PF;;\

FFORMSET PAGE NUM OF;18408;25740;16008;PF;;\

\ENDFORM\

\ENDDOCSET\

…

SCO999567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO9994567FRMLSTREC0000010110 SCO FP T1 89999987
041598…

…

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLExtract;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

…

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 1,SCO

< Trn_Fields >

ImportNAPOLExtract

127

Key1 = 1,3,N

Key2 = 40,2,N

KeyID = 4,7,N

< Trn_File >

BinaryExt = N

MaxExtRecLen= 120

Extract file made up of
appended WIP/NA/POL

files

In this example, the extract file is made up of one or more appended WIP/NA/POL
export files. This example imports information from an extract file named
IMPORT.DAT which is comprised of one or more appended WIP/NA/POL export data
files. Using that information, the system then creates GenData files which are input to
GenPrint. The GenPrint program then creates the print output files. Keep in mind:

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT file uses the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the first record
of the WIP/NA/POL export file

• The LoadRcpTbl and RunSetRcpTbl rules not required

Here is a sample extract file:

WIP="SAMPCO ""LB1 ""NAPOL FILE # 1 ""NB ""P"

;SAMPCO;LB1;LETTER2;Second Letter;RD;;q1snam|D3<Insured>/
q1fl2a|D3S<Insured>/q1b302|D3S<Insured>/q1ba36…;

\ENDDOCSET\

\NA=q1snam,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=0,PA=1,OPT=D3\

\ENDIMAGE\

\NA=q1fl2a,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=3360,PA=1,OPT=D3S\

FDate;235;3913;12012;;;\January 1, 2000

FLessee_NAME;235;4806;12012;G;;\Morris Sander

FLessee_addr;235;5212;12012;G;;\3200 Windy Hill Road

FLessee_city;235;5636;12012;G;;\Atlanta, GA 30339

\ENDIMAGE\

…

\ENDFORM\

\ENDDOCSET\

WIP="SAMPCO ""LB1 ""NAPOL FILE # 2 ""NB ""P"

;SAMPCO;LB1;CHARTS;Form q1cht;RD;;q1cht|D5<Insured>;

\ENDDOCSET\

\NA=q1cht,LN=1,DUP=OFF,SIZE=L,TRAY=U,X=0,Y=0,PA=1,OPT=D5\

FFORMSET PAGE NUM;17656;25740;16008;PF;;\

FFORMSET PAGE NUM OF;18408;25740;16008;PF;;\

\ENDFORM\

\ENDDOCSET\

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; NoOpFunce;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

Chapter 3
Job and Form Set Rules Reference

128

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLExtract;;;

…

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 1,WIP

< Trn_Fields >

Key1 = 1,3,N

Key2 = 6,6,N

KeyID = 26,20,N

< Trn_File >

BinaryExt = N

MaxExtRecLen= 120

See also MapFromImportData on page 379

NoOpFunc on page 407

ReplaceNoOpFunc on page 200

ImportFile on page 119

ForceNoImages on page 99

RULNestedOverFlowProc on page 206

JDT Rules Reference on page 30

ImportNAPOLFile

129

 ImportNAPOLFile
Use this form set level rule to import a single transaction, stored in a WIP/NA/POL
export file, from Documaker Workstation into the GenData program.

NOTE:If you use the SCH option, you can import multiple Documaker Workstation
WIP/NA/POL export files.

Syntax ;ImportNAPOLFile;;option;

There are several ways to specify the import file in the option parameter:

The INI and FILE options normally import the same file for each transaction. The SCH
and GVM options let you import a different file for each transaction.

Keep in mind:

• For each field that comprises a section (whose data comes from the combined WIP/
NA/POL export data), you must create or have a DDT record with the field rule set
to one of these field rules:

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the combined WIP/
NA/POL export data, you must insert the ReplaceNoOpFunc rule in the <Base
Rules> section of the AFGJOB.JDT file.

• Place the ImportNAPOLFile rule in the <Base Form Set Rules> section of the
AFGJOB.JDT after the BuildFormList rule or any custom rule that creates a form
set.

• The LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules are not required
unless you use the SCH option.

Assume you have the following items defined in your master resource library. Keep in
mind:

Option Description

FILE = file name Enter the name and path of the import file.

INI = INI control group, option Enter the INI control group and option in which the
import file is defined.

SCH = offsetofmask,
<searchmask> offsetofdata,
lengthofdata

This indicates the file name is contained in a record of the
extract file. The offsetofmask is the offset of the search
mask, offsetofdata is the offset where the file name starts,
and lengthofdata is the length of the file name.

GVM = GlobalVariableName GlobalVariableName defines the GVM that contains the
file name and path information.

Chapter 3
Job and Form Set Rules Reference

130

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT uses the NoOpFunc rule.

• Trn_Fields control group options are based on items in the first record of the
combined WIP/NA/POL Export data file.

Here is a sample combined WIP/NA/POL import file named IMPORT.DAT:

WIP="SAMPCO ""LB1 ""NAPOL FILE # 1 ""NB ""P"

;SAMPCO;LB1;LETTER2;Second Letter;RD;;q1snam|D3<Insured>/
q1fl2a|D3S<Insured>/q1b302|D3S<Insured>/q1ba36…;

\ENDDOCSET\

\NA=q1snam,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=0,PA=1,OPT=D3\

\ENDIMAGE\

\NA=q1fl2a,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=3360,PA=1,OPT=D3S\

FDate;235;3913;12012;;;\January 1, 2000

FLessee_NAME;235;4806;12012;G;;\Morris Sander

FLessee_addr;235;5212;12012;G;;\3200 Windy Hill Road

FLessee_city;235;5636;12012;G;;\Atlanta, GA 30339

\ENDIMAGE\

…

\ENDFORM\

\ENDDOCSET\

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; NoOpFunc;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here are sample INI settings:

< TRN_Fields >

Key1 = 1,3,N

Key2 = 6,6,N

KeyID = 26,20,N

< TRN_File >

BinaryExt = N

MaxExtRecLen= 120

<ExtractKeyField>

SearchMask = 1,WIP=

< Data >

 ExtrFile = xxxxx

ImportNAPOLFile

131

Example The following examples illustrate the different ways you can define the import file when
you use this rule.

Using the File option This example imports information from the IMPORT1.DAT file in the \import
directory and uses that information to create the GenData files which the GenPrint
program uses to create the print output files.

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;File=.\Import\Import1.dat;

…

Using the INI option This example imports information based on the Import_File option in the Import_Data
control group. Using this information, the GenData program creates the files the
GenPrint program uses to create the print output files.

Here are the sample INI settings:

< Import_Data >

Import_File = .\Import\Import1.dat\

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;INI=Import_Data,Import_File;

…

Chapter 3
Job and Form Set Rules Reference

132

Using the SCH option This example imports multiple WIP/NA/POL export files based on the content of a line
in the extract file. Using this information, the GenData program creates the files the
GenPrint program uses to create the print output files.

Here is an excerpt from a sample extract file named EXTRFILE.DAT:

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt1file.dat

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt2file.dat

…

For this example, use these INI options:

< Data >

ExtrFile= extrfile.dat

< TRN_Fields >

Key1 = 2,4,N

Key2 = 7,3,N

KeyID = 35,22,N

< ExtractKeyField >

SearchMask = 2,CWNG

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;2;SCH=30,TXT 35,22;

Using the GVM option This example imports data from an import file based on a GVM variable called
Import_File. Using this information, the GenData program creates the files the GenPrint
program uses to create the print output files. Any valid GVM variable can be used no
matter how it is created or assigned. Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;GVM=Import_File;

See also ImportFile on page 119

ImportExtract on page 114

ImportNAPOLExtract on page 124

ImportNAPOLFile on page 129

JDT Rules Reference on page 30

ImportXMLExtract

133

 ImportXMLExtract
Use this form set rule to import a file which consists of one or more XML transactions
into the GenData program for processing. Using this file, the GenData program creates
the recipient batch, NAFile, POLFile, and NewTrn files that you can print, archive, or
both using the GenPrint and GenArc programs.

NOTE:If you are running Documaker from IDS, use the ImportXMLExtract rule to
bring in XML in standard Documaker XML format, such as from Documaker
Workstation or iDocumaker. Use the UseXMLExtract rule to convert a loaded
extract file into an XML tree, which you can then use to query data.

You append multiple export files to create the import XML file. The export files are
created using the Documaker Workstation XML Export option. This illustration shows
an example file comprised of export files appended to one another:

Chapter 3
Job and Form Set Rules Reference

134

Syntax ImportXMLExtract;;option;

NOTE:You can only use this rule for single-step processing.

Transaction 1
<?xml version="1.0"?>

<Document Type="Oracle Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Oracle Insurance"></Library>

<Key1 Name=”Company”>SkyInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1010j</TransactionID>

…

…

Transaction 2
<?xml version="1.0"?>

<Document Type="Oracle Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Oracle Insurance"></Library>

<Key1 Name=”Company”>SkyInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1110j</TransactionID>

…

…

Transaction 3
<?xml version="1.0"?>

<Document Type="Oracle Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Oracle Insurance"></Library>

<Key1 Name=”Company”>SkyInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1210j</TransactionID>

…

…

Option Description

SP Include the SP option to suppress the pagination portion of the import. This lets
you run rules and other form set manipulations before calling a rule to paginate
the form set, such as the PaginateAndPropogate rule.

ImportXMLExtract

135

Keep in mind...

• Create a simplified AFGJOB.JDT file when you use this rule and omit these rules:

LoadRcpTbl

LoadExtractData

RunSetRcpTbl

CreateGlbVar

LoadDDTDefs

InitOvFlw

SetOvFlwSym

ResetOvFlw

• Use the NoGenTrnTransactionProc rule because the XML file has no transaction
information on the first line.

• Place the ImportXMLExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any rule that creates a form set.

• In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

• In the TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing.

• If you load an XML or a V2 import file as the extract file, it must conform to the
extract file rules. This means that you must set the MaxExtRecLen and BinaryExt
INI options appropriately.

• Define the XMLTags2GVM control group in your FSISYS.INI file as shown here:

< XMLTags2GVM >

GVM = XMLTag, (Req/Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Req or Opt to specify whether it is required or optional. If it is
required and is omitted from the XML file, processing stops. Here is an example:

< XMLTags2GVM >

Key1 = Key1, Req

Key2 = Key2, Req

KeyID = TransactionID, Opt

Example Assume you have the following items defined in your master resource library. See XML
File Format on page 142 for an example of an import file in the standard XML file
format.

Here is an example of the INI options you need in your FSISYS.INI file:

< Data >

AFGJOBFile = .\deflib\afgjob.jdt

ExtrFile = .\extract\extrfile.xml

< ExtractKeyField >

Chapter 3
Job and Form Set Rules Reference

136

SearchMask = 1,<?xml

< Key1Table >

XML = XML

< Key2Table >

XML = XML

< KeyIDTable >

XML = XML

< Trigger2Archive >

Key1 = Key1

Key2 = Key2

KeyID = KeyID

RunDate = RunDate

< TRN_Fields >

Key1 = 3,3,N

Key2 = 3,3,N

KeyID = 3,3,N

< TRN_File >

BinaryExt = N

MaxExtRecLen= 175

< XMLTags2GVM >

Key1 = Key1,Req

Key2 = Key2,Req

KeyID = TransactionID,Opt

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLExtract;;;

…

…

See also ImportXMLFile on page 137

PaginateAndPropagate on page 177

Processing Import Files on page 22

JDT Rules Reference on page 30

ImportXMLFile

137

 ImportXMLFile
Use this form set rule to import an XML file into GenData for processing. Using this
file, the GenData program creates recipient batch, NAFile, POLFile, and NewTrn files
that you can print, archive, or both using the GenPrint and GenArc programs.

The export file to be used as import was created using the Documaker Workstation XML
Export function that produces a file in the Documaker Standard XML format.

Syntax ;ImportXMLFile;;option;

Keep in mind:

• Create a simplified AFGJOB.JDT file when you use this rule. For instance, omit
these rules:

LoadRcpTbl

LoadExtractData

RunSetRcpTbl

CreateGlbVar

LoadDDTDefs

InitOvFlw

Option Description

SP Include the SP option to suppress the pagination portion of the import. This lets
you run rules and other form set manipulations before calling a rule to paginate
the form set, such as the PaginateAndPropogate rule.

You must place this option before the FILE option. Here is an example:

;ImportXMLFile;;SP,SCH=11,FILENAME 20,20;

This example suppresses the pagination of the import of the file designated by this
search mask.

TF Enter TF to truncate fields to the field length defined by the FAP file. Make sure
you specify this parameter before FILE option.

FILE Enter the name and path of the import file.

INI Enter the INI control group and option in which the import file is defined.
Separate the control group and option with a comma.

SCH Enter the search criteria and the file name data, separated by a space.
The name of the file, including its path, that you want to import should be
contained in the record in the file indicated by the ExtrFile option in the Data
control group.
The search criteria are one or more comma delimited data pairs, offsets and
character string, used as the search mask for finding the record in the specified file.

The file name data is a comma delimited data pair that defines the offset and length
of the file name in the record defined by the search criteria parameter.

GVM Enter the global variable name (GVM) that contains the file name and path
information.

Chapter 3
Job and Form Set Rules Reference

138

SetOvFlwSym

ResetOvFlw

• Use the NoGenTrnTransactionProc rule because the XML file has no transaction
information on the first line.

• Place the ImportXMLExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a
form set.

• In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

• In the TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing.

• If you load an XML or a V2 import file as the extract file, it must conform to the
extract file rules. This means that you must set the MaxExtRecLen and BinaryExt
INI options appropriately.

• Define the XMLTags2GVM control group in your FSISYS.INI file as shown here:

< XMLTags2GVM >

GVM = XMLTag, (Req/Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Req or Opt to specify whether it is required or optional. If it is
required and is not present in the XML file, processing will terminate. Here is an
example:

< XMLTags2GVM >

Key1 = Key1, Req

Key2 = Key2, Req

KeyID = TransactionID, Opt

Example These examples show the different ways you can define the import file when you use this
rule. Assume you have the following items defined in your master resource library. For
an example of the standard XML file format, see XML File Format on page 142.

Here are sample INI settings in your FSISYS.INI file:

< Data >

 AFGJOBFile = .\deflib\afgjob.jdt

 ExtrFile = .\extract\dummy.dat

< ExtractKeyField >

 SearchMask = 1,XML_FILE_NAME

< Key1Table >

 XML = xml

< Key2Table >

 XML = xml

< KeyIDTable >

 XML = xml

< Trigger2Archive >

 Key1 = Key1

 Key2 = Key2

 KeyID = KeyID

 RunDate = RunDate

ImportXMLFile

139

< TRN_Fields >

 Key1 = 1,3,N

 Key2 = 5,5,N

 KeyID = 10,4,N

< TRN_File >

 BinaryExt = N

 MaxExtRecLen = 175

< XMLTags2GVM >

 Key1 = Key1,Req

 Key2 = Key2,Req

 KeyID = TransactionID,Opt

Here is a sample of the DUMMY.DAT file, pointed to by the ExtrFile option in the Data
control group in your FSISYS.INI file.

0 1

1 5

XML_FILE_NAME This is a dummy extract file.

Using the TF Option
Use the TF (Truncate Field) option to truncate fields to their FAP defined field length.
Make sure you specify this parameter before FILE option. Here are some examples:

This example will truncate the fields lengths:

;ImportXMLFile;;TF,SCH=1,XML_FILE_NAME 15,55;

These examples truncate fields and suppress pagination:

;ImportXMLFile;;SP,TF,SCH=1,XML_FILE_NAME 15,55;

;ImportXMLFile;;TF,SP,SCH=1,XML_FILE_NAME 15,55;

This example does not truncate fields or suppress pagination:

;ImportXMLFile;;SP

NOTE:No formatting is allowed on the multiline text field when you include the TF
option.

Using the File Option
This example imports the F_FILE.XML file from the \export directory. Using this file,
the GenData program creates the recipient batch, NA, POL, and NewTrn files needed
for GenPrint and GenArc processing.

Here is an excerpt from a sample AFGJOB.JDT file using the File option:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;;File=.\Export\F_File.xml;

…

Chapter 3
Job and Form Set Rules Reference

140

Using the INI Option
This example imports the F_INI.XML file from the \export directory. Using this file, the
GenData program creates the recipient batch, NA, POL, and NewTrn files needed for
GenPrint and GenArc processing.

In addition to the INI options defined previously, you must also include the this option:

< Import_Data >

Import_File = .\Export\F_File.xml\

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;INI=Import_Data,Import_File;

…

Using the SCH Option
This example imports XML files (F_SCH1.XML, F_SCH2.XML, and F_SCH3.XML)
based on the content of a line in the file pointed to by the ExtrFile option in the Data
control group. Using these files, the GenData program creates the recipient batch, NA,
POL, and NewTrn files needed for GenPrint and GenArc processing.

This INI option differs from the one defined in the assumed MRL definition:

< Data >

ExtrFile = .\extract\F_Sch.DAT

Here is an excerpt from the F_SCH.DAT file in the \extract directory which contains an
entry (path and file name) for each XML file to import:

XML_FILE_NAME .\export\F_SCH1.xml

XML_FILE_NAME .\export\F_SCH2.xml

XML_FILE_NAME .\export\F_SCH3.xml

…

NOTE:This option lets you import and process multiple XML files because of the way
the file name and path are specified—one file per entry in the file specified in the
ExtrFile option in the Data control group.

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;2;SCH=1,XML_FILE_Name 15,19

…

ImportXMLFile

141

Using the GVM Option
This example imports data from a XML file based on file name contained in the GVM
variable called Import_File. Using this file, the GenData program creates the recipient
batch, NA, POL, and NewTrn files needed for GenPrint and GenArc processing.

Any valid GVM variable can be used no matter how it is created or assigned.

This example creates the GVM variable, ImportXMLFile_GVM, by including this INI
option and adding its definition to the TRNDFDFL.DFD file:

< GentrnDummyFields >

ImportXMLFile_GVM = .\export\F_GVM.xml

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;;GVM=ImportXMLFile_GVM;

Chapter 3
Job and Form Set Rules Reference

142

XML FILE FORMAT

Here is an example of the format of the XML file the system creates:

Form set
global data

Group

Form

Multi-page section

Multi-line field

Form global
fields

Recipient
information

Page

Multi-page form

Section local
fields

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT TYPE="RPWIP" VERSION="10.2">

<DOCSET NAME="">
<FIELD NAME="POLICY NBR">P1234-1</FIELD>
<FIELD NAME="RENEWAL NBR">1234-2</FIELD>
<FIELD NAME="AGENT'S NBR">6789</FIELD>
<FIELD NAME="EFFECT DATE">10/1/02</FIELD>
<FIELD NAME="EXPIRE DATE">10/1/03</FIELD>
<FIELD NAME="INSURED NAME">John A. Doe</FIELD>
<FIELD NAME="ADDR1">2345 Anystreet</FIELD>
<FIELD NAME="CITY">Anytown</FIELD>
<FIELD NAME="STATE">GA</FIELD>
<FIELD NAME="ZIP CODE">30339</FIELD>
<FIELD NAME="BUSINESS DESC1">Business</FIELD>
<FIELD NAME="BUSINESS DESC2">Personal</FIELD>
<FIELD NAME="BUSINESS DESC3">Property</FIELD>
<FIELD NAME="DATE">09/27/02</FIELD>
<GROUP NAME="" NAME1="DOCUCORP PACKAGE"
NAME2="PROFESSIONAL INSURANCE">
<FORM NAME="Professional Dec">
<DESCRIPTION>Professional Declarations
</DESCRIPTION>

<FIELD NAME="FORM LINE1">Form Letter</FIELD>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTION NAME="profdec"/>

</PAGE>
</SHEET>

</FORM>
<FORM NAME="Form Letter">
<DESCRIPTION>Form Letter</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTION NAME="let~tbl">
<FIELD NAME="Coverage">Automobile</FIELD>
<FIELD NAME="Extra">
<P><FONT SIZE="12"
FACE="Univers ATT" COLOR="#FF0000">Text in
multiline variable field.
</P>

</FIELD>
</SECTION>

</PAGE>
<PAGE>
<SECTION NAME="let~tbl">
<DAPINSTANCE VALUE="2"/>
<DAPOPTIONS VALUE="M"/>

</SECTION>
</PAGE>

</SHEET>
</FORM>

</GROUP>
</DOCSET>

</DOCUMENT>

Indicates a
second page

ImportXMLFile

143

Keep in mind...

• DAPOPTIONS should have a value of M for multi-page sections (FAP files). There
are other section options, but only M is applicable in XML.

Use DAPINSTANCE to provide a page number for multi-page sections. If the
section does not span multiple pages, omit the DAPINSTANCE value.

• When you have multiple XML transactions within a single file, separate each
transaction with a line feed. This is a requirement of Documaker software, not the
XML parser.

• Although you do not have to include line feeds inside the XML for a transaction,
we suggest you add a line feed after each element tag. This makes it easier to read
the file and helps in debugging your XML. A message like

Line 255, column 8, syntax is incorrect

is easier to diagnose than

Line 1, column 156780, syntax is incorrect.

See also ImportXMLExtract on page 133

PaginateAndPropagate on page 177

Processing Import Files on page 22

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

144

 InitArchive
Use this job level rule along with the Archive rule, to run the GenArc program as part
of single-step processing.

The InitArchive rule checks the INI options in the Trigger2Archive control group,
initializes the database, opens the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Syntax ;InitArchive;2;;

Example Here is an example:

< Base Rules >

;InitArchive;1;;

See also Archive on page 44

JDT Rules Reference on page 30

InitConvertWIP

145

 InitConvertWIP
Use this job level rule to perform the initialization necessary for the ConvertWIP rule.
You use this rule when you want to include the GenWIP process in single-step mode.

Syntax ;InitConvertWIP;;;;

Example ;InitConvertWIP;1;;

See also ConvertWIP on page 76

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

146

 InitMerge
Use this job level rule to create a list of printers, batches, and buffers for the RCB
comment records. This rule also creates a list to hold AFP records and AFP fonts. After
the system finishes running the rule, it deletes everything the rule created.

Syntax ;InitMerge;;;

NOTE:The recipient batch files are not used at this stage. The batch list must be created
beforehand so the system will know which print files belong together. The
skipping batch message is an artifact of the batch file loading process.

Example ;InitMerge;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

InitOvFlw

147

 InitOvFlw
Use this job level rule to initialize the overflow feature. Overflow symbols are created to
keep track of the number of records processed. The overflow symbol is one of the
parameters that would be initialized.

Syntax ;InitOvFlw;;;

When processing an overflow form, the overflow count must be reset back to zero, if
not the processing will start with the second record in the extract.

When finished, this rule turns off the system’s overflow feature which frees resources
used when using the overflow feature and overflow variables.

Example ;InitOvFlw;;;

See also WriteOutput on page 252

ResetOvFlw on page 203

SetOvFlwSym on page 230

IncOvSym on page 317

OvActPrint on page 408

OvPrint on page 409

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

148

 InitPageBatchedJob
Use this job level rule to open NA and POL files. This rule installs the section level
callback function for inserting recipient batch records into the AFP print stream as AFP
comment records.

When finished, this rule restores the original callback function and closes the
NAFILE.DAT and POLFILE.DAT files.

Syntax ;InitPageBatchedJob;;;

Example ;InitPageBatchedJob;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

InitPrint

149

 InitPrint
Use this job level rule to load printer and recipient batch information. This rule sets up
PRTLIB data, initializes print options, and loads a table which contains page totals for
recipient batch files.

This rule also places a structure containing all of the above information into the GVM
variable RULPRT.

Syntax ;InitPrint;;;

When finished, this rule closes any open print files.

Example ;InitPrint;;;

See also PrintFormset on page 185

NoGenTrnTransactionProc on page 171

Rules Used for 2-up Printing on page 27

Rules Used in Single-Step Processing on page 25

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

150

 InitSetRecipCache
Use this job level rule to set the cache the system will use to store recipient information
in memory. With this rule you can tell the system the amount of memory to set aside
and use for storing information in the Key1 and Key2 fields, often used to store the
company and line of business.

You can use this rule to improve processing performance for complex forms. This rule
has no affect on the processing speed for static forms.

This rule is also used in multi-step processing to enhance performance.

NOTE:If you omit this rule, the system does not set aside memory for the Key1 and
Key2 fields. If this rule causes any problems with your implementation, you can
remove it from the AFGJOB.JDT file.

Syntax ;InitSetRecipCache;;Key1,Key2;

Example ;InitSetRecipCache;;10,15;

This example sets the cache for the Key1 field to 10 and sets the cache for the Key2 field
to 15.

See also JDT Rules Reference on page 30

Parameter Description

Key1
Key2

For Key1 and Key2, enter the amount of memory you want to set aside for
storing the information contained in those fields. These fields are typically used
to store information such as the company name and line of business.

You can enter any number from one (1) to 500. The default is five (5).

If you enter a zero (0), a negative number, or a number greater than 500, the
system ignores your entry and defaults to five.

InlineImagesAndBitmaps

151

 InlineImagesAndBitmaps
Use this form set level rule if you do not want to use Library Manager to maintain forms
and graphics but still need to retrieve the exact data that was printed. This rule lets you
inline all FAP files and embed graphics into the NA file.

NOTE:Keep in mind the size of the NA file and archive will grow significantly if you
use this rule. Furthermore, the performance of the GenData, GenPrint, and
GenArc programs will degrade significantly if you use this rule.

Syntax ;InlineImagesAndBitmaps;;;

Use this rule only when necessary and when performance and the size of the output are
not issues.

This rule loads all sections and graphics and ignores the LoadFAPBitmap and
LoadCordFAP INI options. There are no parameters for this rule.

The return values are: msgSUCCESS or msgFAIL.

Example Here is an example:

;InlineImagesAndBitmaps;;;

This rule must be placed (run) before the NAFILE.DAT and POLFILE.DAT files are
unloaded and after the pagination rules. Here are some examples of how you would set
up your AFGJOB.JDT file:

For single-step
execution

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

;PrintFormset;;;

;WriteOutput;;;

;WriteNaFile;;;

;InlineImagesAndBitmaps;;;

;BatchingByRecipINI;;;

;PaginateAndPropagate;;;

For multi-step
execution

<Base Form Set Rules>

;RULStandardTransactionProc;;;

;LoadExtractData;;;

;ResetOvFlw;2;;

;IfRecipUsed;;BATCH1=INSURED;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

;UpdatePOLFile;;;

;InlineImagesAndBitmaps;;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

152

 InsNaHdr
The InsNAHdr rule is a legacy rule that few installations would ever need to use. This
rule has no affect unless you also include this INI option:

 < RunMode >

NAUnload = No

NOTE:Do not set the NAUnload option to No unless you are specifically directed to do
so by Oracle Insurance services or support personnel.

The InsNaHdr rule and this option tells the system the NAFILE.DAT file will not be
unloaded in a single process. Instead, it will be unloaded a piece at a time. Specifically,
the system unloads the section header into the NAFILE.DAT file before the remainder
of the section is processed.

Using this rule implies that you will create the NAFILE.DAT file as the form set is being
processed, instead of waiting until after the process has completed and creating the
NAFILE.DAT file in one step.

Syntax InsNaHdr()

There are no parameters for this rule. This rule builds the NA header and appends it to
NAFILE.DAT file.

Example ;InsNaHdr;3;;

See also JDT Rules Reference on page 30

InstallCommentLineCallback

153

 InstallCommentLineCallback
Use this job level rule during the AFP printing process to write transactional
information into each page of the print stream. The information is written using AFP
comment records and contains the recipient batch record information — the same
information written into recipient batch files for each transaction.

Before adding the recipient batch record information as a comment record on each
page, this rule also calculates and updates several GVM variables and structures that can
be used by other rules which are executed during the print process. The values updated
include the number of pages in each batch and the current page within the print stream.

The CurPage and TotPage GVM variables must be declared within the recipient batch
record definition. Here is an example:

< FIELD:CurPage >

INT_TYPE = LONG

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

< FIELD:TotPage >

INT_TYPE = LONG

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

Normally, the CurPage variable reflects the current page number within the print
stream. This is not necessarily the same as the page number that might actually print on
the document. The TotPage variable reflects the total number of pages within a given
transaction. Depending the other rules in use during the process, the value or meaning
of these GVM variables can vary.

The comment information written into the print stream can serve multiple purposes,
such as to later facilitate 2-up printing. During a 2-up printing process, you sometimes
need to know whether the page on the left and the page on the right are from the same
or different transactions. By having the recipient batch record information written into
each page, it is possible to query that information and make the appropriate
determination. You can use the ParseComment rule during the 2-up printing process to
reconstruct the associated GVM variables in memory from the recipient batch record
information stored in these comment records.

Syntax ; InstallCommentLineCallback;1; ;

This rule has no parameters.

Example ; InstallCommentLineCallback;1; ;

See also ParseComment on page 179

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

154

 JobInit1
Use this job level rule to initialize resources such as input files, output files, and tables.

Syntax ;JobInit1;;;

This rule opens the log file, opens the extract file, creates the NA and POL files, opens
forms set file, and opens and initializes recipient batch files. When finished, this rule
closes the files it opened during the pre-processing stage.

Example ;JobInit1;;;

See also JDT Rules Reference on page 30

LoadDDTDefs

155

 LoadDDTDefs
Use this job level rule to load the field rules from the MASTER.DDT file into an
internal linked list. You must include this rule in the AFGJDT.JDT file if your field level
rules are defined in the MASTER.DDT file.

This rule is used with the Master field level rule.

Syntax ;LoadDDTDefs;;;

If you have variable fields that you use on most of your forms, such as Name and
Address fields, you can use the MASTER.DDT file to store these variable field mappings.

If you use the MASTER.DDT file, add the Master rule to all variable fields on the
section. The Master rule tells the system to look in the MASTER.DDT file for mapping
information for those variable fields.

Using the MASTER.DDT file is helpful if you need to make a change to the variable
field mapping because you only have to make changes once in the MASTER.DDT file.
It’s also helpful when you are setting up complicated rules since you only have to map
the fields once. Test your mappings in the MASTER.DDT file before you copy them to
other variable field mappings.

Example ;LoadDDTDefs;;;

See also Master on page 381

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

156

 LoadExtractData
Use this form set level rule to load extract data into memory for each transaction. You
must include this rule if any subsequent rules will search for or use extract data.

You must include this rule if:

• You are executing the GenTrn, GenData, and GenPrint programs as separate
processes (multi-step processing), and

• Subsequent rules will search for or use extract data

If you omit this rule from the AFGJOB.JDT for multi-step processing, you will receive
these error messages:

DM10702: Warning in BuildFormList(): No extract records.

VMMCountList(pRPS->ExtractListH) = 0. Processing will continue.

DM12018: Error in RPDoBaseFormsetRulesForward(): Unable to
<BUILDFORMLIST>().

NOTE:Do not include this rule if you are using the NoGenTrnTransactionProc rule.
Doing so will cause the GenData program to go into a processing loop.

Syntax ;LoadExtractData;;;

Example <Base Form Set Rules>

;RULStandardTransactionProc;;;

;LoadExtractData;;;

;ResetOvFlw;;;

;IfRecipUsed;;BATCH1=INSURED;

;IfRecipUsed;;BATCH2=COMPANY;

;IfRecipUsed;;BATCH3=AGENT;

;BuildFormList;;;

;LoadRcpTbl;;;

;UpdatePOLFile;;;

;RunSetRcpTbl;;;

;ProcessQueue;;PostPaginationQueue

See also NoGenTrnTransactionProc on page 171

JDT Rules Reference on page 30

LoadFormsetFromArchive

157

 LoadFormsetFromArchive
Use this form set level rule to extract a form set from a DAP archive based on archive
keys stored in a standard extract file.

NOTE:You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

Because the LoadFormsetFromArchive rule loads a complete form set, it is usually not
necessary to execute the section and field level rules. To skip section and field rule
processing it is necessary to specify the appropriate rules in the AFGJOB,JDT file. See
the example below. If required, the loaded form set can be modified using other
transaction level rules or DAL scripts.

Syntax ;LoadFormsetFromArchive;;;

There are no parameters for this rule, but you can use these INI options:

< LoadFormsetFromArchive >

Key =

DisplayFields =

TempFile =

Debug =

Option Description

Key Use this option to build the search request for the APPIDX. You can specify
multiple Key options if necessary. The first transaction that matches the
values for the fields is extracted from archive.

You can specify the Key search value as an XML or standard flat file search
mask, such as (1, HEADER). Here is another example:

Field(UNIQUEID) Search(!/Form/UNIQUEID) OFFSET(1)
Length(40)

If the keys are not unique, the extracted matching transaction can be arbitrary.

DisplayFields (Optional) Use this option to specify a list of archive index fields you want
printed to the log file and console as the system processes the transaction.

TempFile (Optional) Use this option for debugging purposes. If you include this
option, the system writes the NA and POL files to the temp file model name
you specify.

For example, if you specify TEMP.TXT, the NA and POL files are written to
TEMPNA.TXT and TEMPPOL.TXT, respectively.

Debug (Optional) Enter Yes to have the system write debug information into the log
file.

Chapter 3
Job and Form Set Rules Reference

158

Example Here is an example AFGJOB.JDT file:

/* JDT Rules for Single-Step Processing Batching By Recipient. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;JobInit1;1;;

;InitPrint;1;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;2;;

;LoadFormsetFromArchive;2;;

;PrintFormset;2;;

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

/* Every section in this base uses these rules. */

<Base Image Rules>

;WIPImageProc;;

/* Every field in this base uses these rules. */

<Base Field Rules>

;RULWIPFieldProc;;

See also BuildFormList on page 73

LoadRcpTbl on page 160

RunSetRcpTbl on page 215

JDT Rules Reference on page 30

LoadListFromTable

159

 LoadListFromTable
Use this job level rule to load a table specified in your FSISYS.INI file’s Data control
group into a link list and place the handle of the list into the GVM variable you specify.

Syntax ;LoadListFromTable;;;

This rule has these parameters:

Example ;LoadListFromTable;;POLTYPES FORM_SCHED_POL_TYPE *;

If your FSISYS.INI file has these settings:

< Data >

TablesPath = ..\MSTRRES\TABLES\

Form_Sched_POL_Type= POLTYPE.TBL

The LoadListFromTable rule loads the POLTYPE.TBL file into a list whose handle is
stored in a GVM variable named POLTYPES. Any line in the file that starts with an
asterisk (*) is omitted from the list.

See also JDT Rules Reference on page 30

Parameter Description

GVM_LISTNAME The name of the GVM variable in which the handle of the list
should be stored.

INI_TABLE_OPTION The name of the option in the Data control group in the INI
file you want the system to load. This option should specify
the name of the table.

COMMENT_CHARACTER A single character which indicates the comment character.
Lines beginning with this character are not loaded into the
link list.

Chapter 3
Job and Form Set Rules Reference

160

 LoadRcpTbl
Use this form set level rule to load entries from the SETRCPTB.DAT file based upon
the current Key1 field (such as company), Key2 field (such as line of business), and the
transaction type.

NOTE:You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

Only those entries in the SETRECPTB.DAT file that match the Key1, Key2, and
transaction type will be loaded and processed. By loading only those that match, the
processing becomes more efficient.

Syntax ;LoadRcpTbl;;;

Example ;LoadRcpTbl;;;

See also BuildFormList on page 73

LoadFormsetFromArchive on page 157

RunSetRcpTbl on page 215

JDT Rules Reference on page 30

LoadTblFiles

161

 LoadTblFiles
Use this job level rule to load one or more text tables listed in the tables list file, which
is defined in the FSISYS.INI file’s Data control group, in the TblFile option.

This rule lets you make available many table files for use by Documaker Server. These
table files can contain lists of codes, abbreviations, and addresses which might be hard
to maintain in a large extract file.

Syntax ;LoadTblFiles;;;

This rule frees memory resources used to store the tables. Here is an example of the
TblFile option:

< Data >

TblFile = .\deflib\TblFile.Dat

Example ;LoadTblFiles;;;

This example loads all the tables listed in the tables list file defined in the INI file. The
table data can then be accessed using the MovTbl rule.

See also MovTbl on page 406

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

162

 LoadTextTbl
Use this job level rule to load all specified text tables into the text table list for use by
field level rules. All text tables should be listed in the text table listing file, which is
defined in the FSISYS.INI file’s Data control group, in the TextTbl option.

This rule loads all defined tables and makes them available for use by Documaker Server.
These text files can contain paragraphs and messages which might be hard to maintain
in a large extract file.

Syntax ;LoadTextTbl;;;

When finished, this rule erases the text table list. Here is an example of the TextTbl
option:

< Data >

TextTbl = TextTbl.Dat

Example ;LoadTextTbl;;;

See also JDT Rules Reference on page 30

MergeAFP

163

 MergeAFP
Use this form set level rule to initialize input files. This rule populates the AFP record
list, retrieves RCB comment records, and terminates the input files.

This rule also initializes output files, and writes out the AFP record list, adding end page
and end document records as necessary. The rule then terminates these output files.

Syntax ;MergeAFP;;;

Example ;MergeAFP;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

164

 MergeRecipsFromForm
Use this form set level rule to assign the recipients from a specific form to the other
forms in a form set. This lets you reduce the number of recipient triggers when all
recipients receive the majority of the forms in the form set.

Syntax ;MergeRecipsFromForm;;FormName, Z flag;

Example ;MergeRecipsFromForm;;Mailer Form;

Assume that before processing, the recipients for this form set are set up as follows:

• Standard Form A - RECIPS=(Home Office)

• Standard Form B - RECIPS=(Home Office)

• Mailer Form - RECIPS=(Home Office, Agent 1)

After using this rule to process the form set, the recipients for each form are now set to:

• Standard Form A - RECIPS=(Home Office, Agent 1)

• Standard Form B - RECIPS=(Home Office, Agent 1)

• Mailer Form - RECIPS=(Home Office, Agent 1)

NOTE:If you want the system to copy recipients with a zero copy count, use the Z flag
(it’s not case sensitive). Here is an example:

;MergeRecipsFromForm;2;FormName,Z;.

The system ignores that recipient and does not copy it to the other forms in the
form set if the copy count is set to zero for a recipient and the Z flag is omitted.

See also JDT Rules Reference on page 30

Parameter Description

FormName The name of the form from which the recipient names are copied. The other
forms in that form set are assigned these recipients, if they're not already
there.

The form name you specify can occur multiple times in the form set and the
unique recipient names from all copies are assigned to the remaining forms
in the form set.

Z flag If you want the system to copy recipients with a zero copy count, enter the
character Z (or z). The default is blank.

MergeWIP

165

 MergeWIP
Use this job level rule to initialize GenData WIP Transaction Processing. This rule
creates a transaction memory list to which it adds transactions from the WIP file that
have status codes which match those in the rule’s parameters.

The status codes identified by this rule do not have to be identified by the
WIPTransactions rule. You can include status codes for transactions that you want to
delete from the WIP file. Transactions with status codes not including in this rule’s
parameters remain in the WIP file when processing finishes.

These other rules are also used when you run WIP Transaction Processing:

• WIPTransactions – This rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rules in the AFGJOB.JDT file. This rule starts GenData
WIP Transaction Processing at the form set level. It also identifies the status codes
for the transactions in the WIP file that are processed. The status codes can be a
subset or all of the status codes identified on the MergeWIP rule or none.

• GVM2GVM - This rule copies GenData execution data from the Trigger2WIP INI
control group.

• WIPImageProc – This rule replaces the RULStandardImageProc or
StandardImageProc rule.

• WIPFieldProc – This rule replaces the RULStandardFieldProc or StandardFieldProc
rule.

Using these rules in a simplified AFGJOB.JDT file and with appropriate INI files,
GenData WIP Transaction Processing adds the transactions from a WIP file to a
transaction memory list. It then processes the transactions from the memory list,
appending the data from the WIP file to the MRL recipient batch, NewTrn, NA, and
POL files. If these files do no exist, it creates them. Each transaction in the memory list
is deleted from the WIP file after it is processed.

NOTE:If you are using the MergeWIP rule with the BatchingByRecipINI rule, be sure
to use the =DAL and =GVM operators. For more information, see Formatting
Data with the = Operator on page 271. The MergeWIP rule gets all of its data
from WIP, not an extract file.

Syntax ;MergeWIP;;StatusCode1,StatusCode2,...;

Parameter Description

StatusCode Use the StatusCode parameters to define the status codes of the transactions
in the WIP file you want to add to the memory list. Identify the status codes
you want to included in the Status_CD control group. Here is an example:

< Status_CD >

Accepted = AC

Approved = AP

BatchPrint = BP

Rejected = RJ

Chapter 3
Job and Form Set Rules Reference

166

WIP selection
performance during

batch processing

The system automatically limits the result sets queried from DBMS systems by the
MergeWIP rule to the rule's parameters for the STATUSCODEs to significantly improve
query speeds when this rule is run against large WIP index tables.

When the WIP index table is in a DBMS, the appropriate WHERE clause for the
STATUSCODE is added to the query automatically. A separate query for each
STATUSCODE provided to the MergeWIP rule is used to retrieve the WIP list.

To improve performance on very large WIP tables, add an index on the DBMS WIP
index table on the STATUSCODE column to avoid full table scans. An index on the
WIP index table on the CURRUSER and STATUSCODE columns can also improve the
performance of other queries to the WIP index table when the query to build a WIP list
for a specific user is performed.

Using dates to select
transactions

The MergeWIP rule can check a date field in the WIP index to determine whether to
insert the WIP record into the batch. By default the field name is ScheduleDate. You can
use this INI option to change the name of the field that is used:

< MergeWIP >

ScheduleDateFieldName = ScheduleDate

If the data in the field is eight bytes, the system assumes the date is in YYYYMMDDD
format. If the data in the field is 14 bytes, the system assumes a YYYYMMDDhhmmss
format. You can change the format the MergeWIP rule expects for the date using this
INI option:

< MergeWIP >

ScheduleDateFieldFormat = D4%1

You can combine date and time formats into one string separated by percent signs (%).
This table shows the date formats:

Enter For this format

1 MM/DD/YY 99/99/99 (default)

2 DD/MM/YY 99/99/99

3 YY/MM/DD 99/99/99

4 Month DD, YY Month DD, YYYY

5 MM/DD/YY ZZ/ZZ/ZZ

6 DD/MM/YY ZZ/ZZ/ZZ

7 YY/MM/DD ZZ/ZZ/ZZ

8 MM/DD/YY LZ/LZ/LZ

9 DD/MM/YY LZ/LZ/LZ

A YY/MM/DD LZ/LZ/LZ

B MMDDYY ZZZZZZ

C DDMMYY ZZZZZZ

MergeWIP

167

This table shows the time formats:

Returning a warning
message

Instead of returning an error if it comes across an empty WIP list when merging WIP,
the system can issue a warning. To have the system issue a warning instead of an error,
set the WIPWarnOnEmpty option to Yes, as shown here:

< RunMode >

WIPWarnOnEmpty = Yes

D YYMMDD ZZZZZZ

E MonDDYY MonZZZZ

F DDMonYY ZZMonZZ

G YYMonDD ZZMonZZ

H DOY/YY ZZZ/ZZ

I YY/DOY ZZ/ZZZ

J DD Month, YY DD Month, YYYY

K YY, Month DD YYYY, Month DD

L Mon-DD-YY Mon-ZZ-ZZ

M DD-Mon-YY ZZ-Mon-ZZ

N YY-Mon-DD ZZ-Mon-ZZ

O Mon DD, YY Mon DD, YYYY

P DD Mon, YY DD Mon, YYYY

Q YY, Mon DD YYYY, Mon DD

R Month Month

Enter For this format

1 HH:MM:SS 99:99:99(default)(24 hour)

2 HH:MM:SS XM 99:99:99 XM (12 hour)

3 HH:MM 99:99 (24 hour)

4 HH:MM XM 99:99 (12 hour)

Enter For this format

Chapter 3
Job and Form Set Rules Reference

168

Changing the WIP
Status

You can tell the system not to delete WIP records and files during the MergeWIP/
WIPTransactions process if an error occurs, but instead change the WIP status to
something you define.

This way, if an error occurs during batch processing, the WIP will still exist in its normal
place. But since its status has changed, the system will not include it in the next batch
run. You can then examine the transaction to determine what caused the error.

Use the following INI option to set up the transaction error code you want to use:

< Status_CD >

TransErrCode = E

Example Here is an example:

;MergeWIP;; Approved, Accepted, Rejected;

This example adds to the memory list the transactions in the WIP file which have these
status codes: Approved, Accepted, and Rejected. Those codes must be specified in the
Status_CD control group.

See also GVM2GVM on page 110

WIPFieldProc on page 247

WIPImageProc on page 248

WIPTransactions on page 249

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

Option Description

TransErrCode You can enter up to two characters, numbers or both for the transaction error
code.

MultipleDataDictionaryFiles

169

 MultipleDataDictionaryFiles
Use this form set level rule to specify multiple data dictionaries (XDBs) to use across
multiple Key1/Key2 combinations. You can specify which item (Key1, Key2) or
combination of items determines the switch. If the database is not found in the list of
possibilities, the system loads the default XDB, as specified by the original INI option.

Syntax ;MultipleDataDictionaryFiles;2;parameters;

You specify the parameters based on which key tells the system when to switch from one
data dictionary to another. You can use the keys individually or in any combination.

Example Here are some examples:

You specify XDB files using the MultiDataDict control group. For each XDB file, use
an INI option similar to the one shown here:

< MultiDataDict >

File = FileName;IDFormat

Based on the first example, assume Key2 has these possible values:

CAR, BOAT, and MISC

with corresponding XDBs of:

CARXDB.DBF, BOATXDB.DBF, and MISCXDB.DBF

The AFGJOB.DAT file would contain:

;MultipleDataDictionaryFiles;2;Key2;

The INI file would contain:

< MultiDataDict >

File = CARXDB.DBF;CAR

File = BOATXDB.DBF;BOAT

File = MISCXDB.DBF;MISC

Thus whenever the Key2 ID changed to one of these values, the appropriate XDB would
be loaded.

Based on the second example, assume Key1 has these possible values:

LIFE and VEHICLE

Example This tells the system to switch XDBs

;MultipleDataDictionaryFiles;2;Key2; Based on the Key2 field

;MultipleDataDictionaryFiles;2;Key1,Key2; Based on the Key1, Key2 combination

Option Description

File For FileName, include the full file name and path followed by a semicolon. The
IDFormat is based on the parameters you supplied to the rule.

Note: In the first example below, the IDFormat would be Key2Value, for the second
example, it would be Key1Value;Key2Value.

Chapter 3
Job and Form Set Rules Reference

170

Assume Key2 has these possible values:

The AFGJOB.DAT file would contain:

;MultipleDataDictionaryFiles;2;Key1,Key2;

The INI file would contain:

< MultiDataDict >

File = CARXDB.DBF;VEHICLE;CAR

File = BOATXDB.DBF;VEHICLE;BOAT

File = MISCXDB.DBF;VEHICLE;MISC

File = SINGXDB.DBF;LIFE;SINGLE

File = MARRXDB.DBF;LIFE;MARRIED

Whenever the Key1 and Key2 combination changed to one of these values, the system
would load the appropriate XDB.

See also JDT Rules Reference on page 30

Under the VEHICLE Key1 CAR, BOAT, MISC

Under the LIFE Key1 SINGLE, MARRIED

NoGenTrnTransactionProc

171

 NoGenTrnTransactionProc
Use this form set level rule when you use the GenData program by itself to execute the
GenTrn and GenData steps. In that processing environment, this rule, processes the
extract file and creates the information normally created in both the GenTrn and
GenData steps.

When combined with the InitPrint and PrintFormset rules, it creates the output files
created during the GenPrint step.

NOTE:Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes. Do not use this rule with the LoadExtractData
rule. Doing so will cause the GenData program to go into a processing loop.

This rule replaces the RULStandardTransactionProc rule in a single-step
implementation.

Syntax ;NoGenTrnTransactionProc;;;

This rule loads extract file records for the current transaction into memory. To use this
rule, you must add the following options in your FSISYS.INI or FSIUSER.INI file:

< Data >

TrnFile = <CONFIG:~Platform > TrnFile

< CONFIG:PC >

TrnFile = NUL

...or else include a TRNFILE.DAT file, which you can leave empty.

Example ;NoGenTrnTransactionProc;;;

See also RULStandardTransactionProc on page 213

InitPrint on page 149

PrintFormset on page 185

LoadExtractData on page 156

StandardFieldProc on page 239

StandardImageProc on page 240

Rules Used in Single-Step Processing on page 25

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

172

 OMRMarks
Use this job level rule to generate OMR marks on 1-up documents printed on any
supported base system printer or on 2-up documents printed on any AFP printer that
supports 2-up printing.

OMR marks are used to indicate ZIP code change, demand feed, inserts and so on. OMR
marks are solid boxes placed on a page.

The rule loops through the pages of the form set and creates special sections for each
page with the required OMR marks. The OMR marks are based on special settings in
your FSISYS.INI or FSIUSER.INI file. The INI file settings use special global variable
names, rule names, and conditions to trigger specific OMR marks.

Syntax ;OMRMarks;;Cond(LetterOMR);

Place this rule after the WriteNAFile rule in the AFGJOB.JDT file.

NOTE:Keep in mind the OMRMarks rule is a post process rule. This means that
pagination and propagation takes place before the rule is called. So, this rule
goes back through the form set after the forms have been created and places a
mark on each page.

You must include the PaginateAndPropagate rule after the OMRMarks rule
because, during post processing, the system executes the rules in the JDT file
from bottom to top.

Example Here is an example from the Condition table (CONDTBL):

< Conditions >

LetterOMR: LetterCode = "0006" or LetterCode = "0039" or

 LetterCode = "0040"

Here is an example from the record dictionary definition:

< Variables >

LetterCode = GVM(CD-LTR-TYPE) Length(4) Type(Char)

LetterCode is a global variable with the name, CD-LTR-TYPE. This variable has a type of
Char (character) and a length of four. In this example, any time the condition is true,
the system prints OMR marks on the page created for the transaction it is processing.

You must update your FSISYS.INI or FSIUSER INI files as follows.

Parameter Description

Cond (Optional) Indicates special conditions exist for printing OMR marks.

LetterOMR (Optional) Refers to the data in the Condition table (CONDTBL). The true or
false for this condition triggers the printing of the set of OMR marks for
particular transaction.

OMRMarks

173

Enter the path for your table files in the MasterResource control group. Use the
TablePath option to define the table file’s path.

< MasterResource >

TablePath = \deflib\

Enter the file name of your Condition table in the Tables control group. Use the
Conditions option to define the Condition table’s file name.

< Tables >

Conditions = CondTbl

Create the OMR_Params control group with all necessary options in your FSISYS.INI
or FSIUSER INI file.

Here is an example of INI settings for 1-up printing:

< OMR_Params >

Mark = Cord(2100, 2140, 300, 1000), RuleParms(INSERT2),

 Rule(FlagFromGVM), When(All)

Mark = Cord(4200, 4240, 300, 1000), Rule(Always), When(All)

Mark = Cord(2100, 2140, 700, 1300), Rule(Always), When(All)

Mark = Cord(6300, 6340, 700, 1300), RuleParms(A-AND-C),

 Rule(Always), When(All), Cond(ac)

Here is an example of INI settings for 2-up printing:

< OMR_Params >

Mark =
Cord(Left(2100,2140,300,1000),Right(2100,2140,32500,33200)),

 RuleParms(Insert2),Rule(FlagFromGVM),Page(B), When(All)

Mark = Cord(Left(4200,4240,300,1000),

 Right(4200,4240,32500,33200)), Rule(Always),Page(B), When(All)

Mark = Cord(Left(2100, 2140, 700, 1300), Right(2100, 2140, 32500,

 33200)), Rule(Always),Page(B), When(All)

Parameter Description

Mark Definition for each OMR mark. You need a definition for each OMR
mark that can be generated on a page. For instance if eight is the
maximum number of OMR marks per page, you need eight mark
definitions in this control group.

Cord(t,b,l,r) Top, bottom, left, and right coordinates for the page in FAP units (1 inch
= 2400 FAP units) for 1-up printing.

Cord(Left(t,b,l,r),
Right(t,b,l,r))

Top, bottom, left, and right coordinates for the page in FAP units (1 inch
= 2400 FAP units) for 2-up printing. Left is for the left side and right is for
the right side of the 2-up paper.

Page() Indicates which sides to print: Both or B = both left and right; Left or L =
left side only; Right or R = right side only.

Rule() The name of the OMR rule to execute.

RuleParms() The Input parameter to the rule, as specified in the Rule() parameter.

Chapter 3
Job and Form Set Rules Reference

174

The OMR rules are:

< TwoUp >

CounterTbl = Counter.tbl

LMargin = 0

LShift = -240

RShift = 16560

DivertOpt = No

DivertOMR = OMR20

PageSize = 40800

OMR marks are not supported in these situations:

• In 1-up printing when you have multiple copies of the same form

• In 2-up printing when you are printing duplex

See also PaginateAndPropagate on page 177

Rules Used in Single-Step Processing on page 25

Rules Used for 2-up Printing on page 27

When(All) When to print on pages:

All - print on all pages of the transaction output.
FirstOnly – only print on the first page of transaction output.

LastOnly – only print on the last page of the transaction output.

ExceptFirst - print on all pages except the first page.
ExceptLast - print on all pages except the last page.

Cond() Condition, if true, then print OMR mark.

Rule Description

Always Always generate the OMR mark.

Cond() You can use condition logic for one OMR mark or for the whole set. Here
is an example: Cond(ac)

DivertPage Generates the OMR mark only for a special divert page. This only applies
to 2-up printing. If you use this rule, you must also define the DivertOpt
and DivertOMR options in the TwoUp control group.

FlagFromGVM Generates the OMR mark if the GVM variable defined in the RuleParms
is set to zero (0) or one (1).

You control generation based on data in an extract record (using the
Ext2GVM or Field2GVM rules) or based on a DAL script which uses the
SetGVM function.

The GVM variable must be in the RCBDFDFL and TRNDDFDFL files.

ZipCodeChange Generates the OMR mark only when the ZIP code has changed. You must
define the parameter associated with this rule as a global variable or else
define it in the RCBDFDFL.DAT file.

Parameter Description

OMRMarks

175

JDT Rules Reference on page 30

Using Condition Tables on page 438

Chapter 3
Job and Form Set Rules Reference

176

 PageBatchStage1InitTerm
Use this job level rule to create and populate a list of records which contain page ranges
and total page counts for each recipient batch file.

This rule is typically used for handling 2-up printing for AFP and compatible printers.
This rule is also used with multi-mail processing.

This rule creates a list (populated in another rule) to contain the recipient batch records
for a multi-mail transaction set. The rule then writes out the recipient records for the
final multi-mail transaction set and writes out the total page counts for each recipient
batch.

• Fields must be added to the RCBDFDFL.DFD file for the file containing the total
page counts for the recipient batches. Do not remove or change the BatchName and
RecordCount fields.

• The name of the file containing page counts should be specified in the CounterTbl
option of the TwoUp control group.

• Because the end of a multi-mail set is not signaled until the following transaction,
you must write out the recipient records for the final transaction set at the job level.

Syntax ;PageBatchStage1InitTerm;;(MMField);

NOTE:If you use this rule, you must also use the BatchByPageCount and
WriteRCBWithPageCount rules.

Example If you omit the MMField parameter, the system uses standard batching by page count,
as shown below:

;PageBatchStage1InitTerm;;;

If you include the MMField parameter, the system uses batching by multi-mail
processing, as shown below:

;PageBatchStage1InitTerm;;MMField=MM_Field

See also Rules Used for 2-up Printing on page 27

BatchByPageCount on page 48

WriteRCBWithPageCount on page 254

JDT Rules Reference on page 30

Parameter Description

MMField (Optional) Name of the INI option in the Trn_Fields control group which
defines where the multi-mail code will be found in each transaction.

PaginateAndPropagate

177

 PaginateAndPropagate
Use this form set level rule to paginate the form set and merge in or propagate field data.

Syntax ;PaginateAndPropagate;Debug FooterMode;

Normally this rule is placed in the Base Form Set Rules section of the AFGJOB.JDT file
at or near the end of the rule list. This location is important because you want the rule
to execute as one of the first steps of transaction post-processing. Place this rule after the
PrintFormset rule in the Base Form Set Rules section of the AFGJOB.JDT file when
running in single-step mode.

This rule is a post-process rule, meaning that initial pagination and propagation takes
place before the rule is called. This rule then goes back through the form set.

Example Here are some examples:

;PaginateAndPropagate;;

;PaginateAndPropagate;2,Debug FooterMode(2);

;PaginateAndPropagate;2,FooterMode(1);

NOTE:The PaginateAndPropagate rule looks for the CanSplitImage indicator. If
missing, sections are paginated in the standard method.

Footer modes 1 and 2 search the logical page for footers marked as copy-on-overflow and
then determine the upper limit of those footers. That point becomes the lower limit of
the body sections.

As the system checks the body sections to determine if they exceed the lower limit, it
raises the lower limit if there is another footer with a higher limit. This prevents the a
large footer at the bottom of a long logical page from affecting pages on which it does
not appear.

Modes 1 and 2 differ in how they handle an overlap when a footer is encountered that
raises the lower limit above a body section that is already determined to fit on the page.

With mode 1, the system increases the limit and reevaluates the section on that page. It
also lets the second from the last page have a large area reserved with nothing printed.

With mode 2, the system moves the footer to the next page so the footer can appear on
a page by itself.

Parameter Description

Debug If you include this parameter, the system writes debug information about
pagination to the log file.
For performance reasons, you would not typically use this option unless
directed by support.

FooterMode This parameter controls how the footers are treated in regards to pagination.
You can enter 0, 1, or 2. The default is zero (0) which is the standard way the
rule handles footers.

Chapter 3
Job and Form Set Rules Reference

178

With mode zero (0), the default, the system searches the logical page for all footers and
determines the upper limits of the footers. That becomes the lower limit of the body
sections. When a body section exceeds this lower limit, the system splits the logical page
into two pages.

The section that exceeds the limit and all following sections are moved up and to the
second page. Sections on the first page marked as copy-on-overflow are copied to the
second page. Sections on the second page marked as copy-on-overflow are copied back
to the first page. The system then searches the second page for all footers, determines
the upper limit of that footer, and continues the process.

NOTE:Previously, this rule was known as the PaginateAndPropogate rule. You can use
either spelling.

See also CanSplitImage on page 295

Rules Used for 2-up Printing on page 27

Rules Used in Single-Step Processing on page 25

PrintFormset on page 185

JDT Rules Reference on page 30

ParseComment

179

 ParseComment
Use this form set level rule when merging two AFP print streams in a 2-up printing
process. This rule parses the recipient batch record information written as an AFP
comment into each printed page back into the GVM variables associated with the
recipient batch DFD. You would do this, for example, if you need to know whether the
page on the left and right side (as accomplished through 2-up printing) are from the
same transaction.

For this rule to be useful, the appropriate comment records, matching the recipient
batch record DFD, must have been added to the print streams that are being merged in
the 2-up printing process. A rule such as InstallCommentLineCallback is used during
the original print step is an example.

Syntax ParseComment; ;Side;

Example This example shows how to use this rule to access the specific occurrences of RCB
comment records retrieved from AFP files.

;ParseComment;;Left;

;PreTransDal;;MyScript;

;ParseComment;;Right;

;PreTransDAL;;MyScript;

If you include the Side parameter, be sure to finish using the values from one record
before parsing the other record, because this method replaces the primary instance of
the GVM variable data. This example also shows that you can use a DAL script to
manipulate the parsed GVM variables.

If you want to use a DAL script and get data from both sides (omitting the Side
parameter), you would specify two (2) as the optional second parameter to the GVM
function to access the second (right side) set of data.

LeftData = GVM(name)

RightData = GVM(name, 2)

See also InstallCommentLineCallback on page 153

JDT Rules Reference on page 30

Parameter Description

Side You can enter Left or Right or omit this parameter.

Including Left or Right specifies that you want the system to parse the comment
record from either the left or right side. The system parses the data from the
comment record into the first (primary) instance of the associated GVM
variables.
If you omit this parameter, the associated variables from both sides are parsed
and stored. The left side comment data is parsed into the first (primary)
instance of the associated GVM variables. The right side comment data is
parsed into the second instance of the associated GVM variables.

Chapter 3
Job and Form Set Rules Reference

180

 PostTransDAL
Use this form set level rule in the AFGJOB.JDT file to execute a DAL script on the
POST_PROC_A message. The PostTransDAL rule executes after other form set rules
and section level rules.

You can use this rule to handle follow up tasks after form set rules and section rules are
executed. For example, you can use this rule to clear or change GVM and internal DAL
variables.

Syntax ;PostTransDAL;;string;

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution
of a transaction level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot
use this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen
with a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE:To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL
statements, but this character is illegal in the rule data area.

Example ;PostTransDAL;;Call("posttran.dal");

This example executes the Call DAL function which executes the DAL script contained
in the POSTTRAN.DAL file in the DefLib directory specified in your MRL.

;PostTransDAL;;If HaveGVM("main_address") Then
SetGVM("main_address", "25 Brown St.", , “C”, 20)::End;

In this example, the system checks to see if the GVM variable (main_address) exists. If not,
it creates a character array GVM variable (main_address) 20 characters is length and stores
the character string (25 Brown Street) in the array.

Parameter Description

String A character string that contains a DAL function or DAL script.

PostTransDAL

181

Here is another example:

Suppose you want any transaction that contains the following XML tag with a value of
N to be processed and printed, but not archived:

INVOICE/DOCUMENT_ID/ARCHIVE

To accomplish this, add the following to the AFGJOB.JDT file:

;PostTransDAL;;a = {!/INVOICE/DOCUMENT_ID/ARCHIVE 1,1}::If a="N"
Then a="Y":: Else a="N":: End::SetGVM("SentToManualBatch", a, ,"C",
2);

See also PostImageDAL on page 320

PreImageDAL on page 321

PreTransDAL on page 182

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

182

 PreTransDAL
Use this form set level rule in the AFGJOB.JDT file to execute a DAL script on the
PRE_PROC_A message. The PreTransDAL rule executes before other form set rules and
before section rules.

You can use this rule to handle setup tasks which should occur before form set rules and
section rules are executed. For example, you can use this rule to initialize GVM and
internal DAL variables.

Syntax ;PreTransDAL;;string;

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution
of a transaction level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot
use this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen
with a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE:To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL
statements, but this character is illegal in the rule data area.

Example ;PreTransDAL;; trans_id={1,PrePost 1,8}::Chain("pretrans.dal");

This example sets the internal DAL variable, trans_ID, to the first eight-characters from
the transaction record that matches the search mask: 1,PrePost. Then the Chain DAL
function executes the DAL script in the PRETRANS.DAL file in the DefLib directory
specified in your MRL.

;PreTransDAL;;If (HaveGVM("main")) Then SetGVM("main_address", "25
Brown St.", , “C”, 20)::End;

Parameter Description

String A character string that contains a DAL function or script.

PreTransDAL

183

In this example, DAL checks to see if the GVM variable (main_address) exists. If not, it
creates a character array GVM variable (main_address) 20 characters in length and stores
the character string (25 Brown Street) in the array.

See also PostImageDAL on page 320

PostTransDAL on page 180

PreImageDAL on page 321

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

184

 PrintData
Use this form set level rule to print the form set. This rule is used for handling 2-up
printing on AFP and compatible printers.

Syntax ;PrintData;;;

NOTE:The section handler installed by the InitPageBatchedJob rule is called during the
printing stage. If you want to make any modifications to the recipient batch
record, you must do so before this point.

Example ;PrintData;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

PrintFormset

185

 PrintFormset
Use this form set level rule when you use the GenData program by itself to execute
GenTrn and GenPrint processes (single-step processing). In that processing
environment, this rule, when combined with the InitPrint rule, prints form sets.

NOTE:Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes.

Syntax ;PrintFormset;;;

This rule checks the recipients for the form set and then identifies the print batch in
which this form set should be included. It then prints the form set.

This rule has no parameters.

When you use this rule, you must also include a BatchByPageCount or
BatchingByRecipINI rule to produce print batches and the final print stream. If you
omit either of these rules, you’ll get the following error message:

Unable to <PRINTFORMSET>()

NOTE:You must define the BatchingByRecip control group to pass parameters to this
rule. Use this control group to specify the batch names and search criteria
(conditions) for the batches. If you receive this error message, also check the
condition.

Example Here is an example:

;PrintFormset;;;

You can also use the PrintFormset rule to create multiple print files when you run the
GenData program in single-step mode to produce PDF or RTF output with multiple
transactions. This capability is related to running Documaker under IDS (see the
Internet Document Server Guide for more information). To do this, add the
PrintFormset control group and these options to your INI file:

< PrintFormset >

MultiFilePrint = Yes

LogFileType = XML

LogFile = (log file name and path)

Option Description

MultiFilePrint Set this option to Yes to allow multiple file print.

The MultiFilePrint option should only be used with the PDF, RTF, HTML,
and XML print drivers.

LogFileType Specifies the type of the log file. Enter XML for an XML file. Any other entry
results in a text file.

Chapter 3
Job and Form Set Rules Reference

186

NOTE:You must place this rule before the PaginateAndPropagate rule in the Base Form
Set Rules section of the AFGJOB.JDT file when running in single-step mode.
When running in multi-step mode, use the MultFilePrint callback functionality.

The log file that is created is either a semicolon-delimited text file, formatted like the file
created by the MultiFilePrint callback function or an XML file. Here is an example of
the layout of the XML file:

 <?xml version="1.0" encoding="UTF-8" ?>

- <LOGFILE>

- <TRANSACTION INSTANCE="1">

 <BATCH NAME="Logical Batch Name">.\data\BATCH1.BCH</BATCH>

 <GROUP1 NAME="Company">SAMPCO</GROUP1>

 <GROUP2 NAME="Lob">LB1</GROUP2>

 <TRANSACTIONID NAME="PolicyNum">1234567</TRANSACTIONID>

 <TRANSACTIONTYPE NAME="TransactionType">T1</TRANSACTIONTYPE>

 <RECIPIENT NAME="INSURED">INSUREDS COPY</RECIPIENT>

 <FILE>DATA\0rDcP7WxytE8ECp5jexhWXVqkV840Vw_F-GykT_VMfd.PDF</FILE>

 </TRANSACTION>

- <TRANSACTION INSTANCE="2">

 <BATCH NAME="Logical Batch Name">.\data\BATCH2.BCH</BATCH>

 <GROUP1 NAME="Company">SAMPCO</GROUP1>

 <GROUP2 NAME="Lob">LB1</GROUP2>

 <TRANSACTIONID NAME="PolicyNum">1234567</TRANSACTIONID>

 <TRANSACTIONTYPE NAME="TransactionType">T1</TRANSACTIONTYPE>

 <RECIPIENT NAME="COMPANY">COMPANY COPY</RECIPIENT>

 <FILE>DATA\0v3l7pBdVqHceoRL5hf2xqjJ7WMxiRVO9U70iFiIcne.PDF</FILE>

 </TRANSACTION>

</LOGFILE>

Use the options in the DocSetNames control group to determine which XML elements
are created. The values in this control group are the same as those written to a recipient
batch or TRN file.

See also BatchByPageCount on page 48

BatchingByRecipINI on page 69

InitPrint on page 149

Single-Step Processing on page 7

JDT Rules Reference on page 30

PaginateAndPropagate on page 177

LogFile Specifies the name of the log file. Include the full path. If you omit the path,
the system uses DATAPATH. If you omit this option, the system creates a
file named TMP.LOG.

If you enter XML in the LogFileType option and a different extension here,
the system uses XML.

Option Description

ProcessQueue

187

 ProcessQueue
Use this job level rule to process the queue you specify.

Syntax ;ProcessQueue;;(Queue);

This rule loops through the list of functions for the queue you specify and then frees
the queue when finished.

Example ;ProcessQueue;;PostPaginationQueue;

This example tells the system to process the PostPaginationQueue.

See also Single-Step Processing on page 7

Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Parameter Description

Queue The name of the queue you want to process.

Chapter 3
Job and Form Set Rules Reference

188

 ProcessRecord
Use this form set level rule to switch between print files as necessary when printing 2-up
forms on an AFP printer. This rule updates the page count for current print file and
loads and merges the form set.

Syntax ;ProcessRecord;;;

Example ;ProcessRecord;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

ProcessTriggers

189

 ProcessTriggers
Use this form set level rule to process the groups (Key1, Key2 combinations) that exist
in the form set, as opposed to only a single set of keys specified in the TRNFILE.DAT
file.

NOTE:This rule replaces the LoadRcpTbl and RunSetRcpTbl rules. You can replace
those two rules with this one even if you are not using multiple lines of business
(Key2s) in your document.

Syntax ;ProcessTriggers;;;

There are no parameters for this rule.

Place this rule after the BuildFormList rule in your AFGJOB.JDT file. Insert this rule
after any import rule that might be used to create the starter document. For instance,
insert the BuildFormList rule first, followed by your import rule, and then include the
ProcessTriggers rule to add additional forms or assign recipient counts to the forms
included via the import.

This rule does not trigger the Key2 (lines of business), however, if there are multiple lines
of business defined at the point where triggering begins, this rule processes the triggers
in each group. One way to define multiple groups is via an import file.

NOTE:The ProcessTriggers rule was added to support multiple lines of business during
the triggering process. Normally, the RunSetRcpTbl file only supports the main
(Key1+Key2) setting identified with the transaction. The ProcessTriggers rule,
however, will process all defined lines of business (each Key1+Key2
combination) at trigger time. This means if you use an import rule to create the
transaction, you can have multiple lines of business in batch processing and
trigger additional forms and sections. You can use the ProcessTriggers rule with
both Documaker Studio and the legacy tools.

If you are only using the Studio implementation model, you may want to use
the RunTriggers rule.

See also BuildFormList on page 73

LoadRcpTbl on page 160

RunSetRcpTbl on page 215

RunTriggers on page 216

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

190

 PXCandidateList
Use this form set level rule to build the form candidate list, based on the Form
Candidate List DAL Trigger, and determine if the requested DAL script in the
AFGJOB.JDT file should be evaluated.

The PXCandidateList rule acts as a functional equivalent for the PreTransDAL rule. The
PXCandidateList rule executes the DAL script specified in the calling AFGJOB entry.

The DAL script then builds the State Loc table and returns control to the
PXCandidateList rule. This rule next processes each of the State Loc table records against
the FED table to build a Form Candidate list and a Consolidated Form State Loc table.

NOTE:The PXCandidateList and PXTrigger rules support Policy Xpress FED
processing. These rules act as replacements for the PreTransDAL and
DALTrigger rules when you are doing Policy Xpress FED-specific processing.

Syntax PXCandidateList

Example In this example, the rule calls a DAL script named Xpress_create():

;PXCandidateList;;Xpress_create();

The called DAL script then builds the State Loc and Form tables. Using these tables, the
rule then builds a list of all possible forms for a given transaction. This form list is used
by the PXTrigger rule to determine if the requested DAL trigger should be executed.

INI Options
You can use these INI options with this rule:

Option Description

StateLocTable (Optional) Enter the name of the state location table. The default is
T_St_Loc.

FormLocTable (Optional) Enter the name of the form location table. The default is
T_FM_Loc.

FedTable (Optional) Enter the name of the FED table. The default is T_F_List.

FedTable (Optional) Enter the name of the FED table. The default is pxfed.

StatLocTableDFD (Optional) Enter the name of the state location table DFD file. If you
omit the path, the file is written to the deflib directory. The default is
T_St_Loc.dfd.

FormTableDFD (Optional) Enter the name of the form table DFD file. If you omit the
path, the file is written to the deflib directory. The default is T_F_List.

FedTableDFD (Optional) Enter the name of the FED table DFD file. If you omit the
path, the file is written to the deflib directory. The default is pxfed.dfd.

CLDebug (Optional) This option turns on debugging. The default is No.

PXCandidateList

191

Form_List Use this control group to enable form list processing.

XPTranslateLOB The LOB (GROUP NAME 2) determines the type (Commercial Auto, Property Lines,
Personal Lines) of FED processing. If you are using a non-standard LOB, use the
XPTranslateLOB control group to translate the LOB to a standard LOB code. Here are
the standard LOB codes:

See also PXTrigger on page 192

Input Tables on page 194

The Policy Xpress FED Processing Flow on page 195

CLDebugFile (Optional) Enter the name of the debug file. If you omit the path, the
file is written to the data directory. The default is cldebug.dat.

DumpCandList (Optional) Enter Yes to have the system write the form candidate list
details into the debug file. The default is No.

To enable this option, you must also set the CLDebug option to Yes.

DumpFrmStTable (Optional) Enter Yes to tell the system to write the Form-State Loc table
records to the debug file. The default is No.
To enable this option, you must also set the CLDebug option to Yes.

DumpFrmStLocEnt (Optional) This tells the system to write the unloaded (by the PXTrigger
rule) State Loc entries for the form. The default is No.

To enable this option, set the CLDebug option to Yes.

DBTable:”Table” (Optional) Enter the name of the table handler. The default table
handler for all tables is MEM.

Fed_Processing (Optional) Enter No to bypass FED processing. The default is Yes.

Option Description

Option Description

Form_List (Optional) Enter Yes to enable form list processing. The default is No.

Line of Business Code

Commercial Auto CA, CU, GL, CRIM, PR, BM, INMARC

Property Lines BP, CP, CM

Personal Lines HO, PP, DFire, DL, UMBRP, INMRP, PM

Chapter 3
Job and Form Set Rules Reference

192

 PXTrigger
Use this form set level rule to execute a DAL script if certain conditions are met. The
PXTrigger rule replaces the DALTrigger rule. This rule is executed as part of
RunSetRcpTable processing.

NOTE:The PXCandidateList and PXTrigger rules support Policy Xpress FED
processing. These rules act as replacements for the PreTransDAL and
DALTrigger rules when you are doing Policy Xpress FED-specific processing.

This rule does not call the requested DAL script unless the requested form is in the form
candidate list. The rule performs a look up using the requested SetRecip entry form
name against the Form Candidate List table.

If the form is not found, the requested DAL script is not executed and the rule returns
a trigger count of zero (0).

If the form is found, the rule unloads from the Consolidate Form State Loc table the
StateLoc records into the FormStateLoc memory table based on the SetRecip entry form
name.

Once the records are unloaded, the PXTrigger rule executes the requested DAL script. If
the appropriate debug options are set, the FormStateLoc table and FormsList are
unloaded to flat files.

Syntax ;DOCU;CA;CAINIT;;NBS;INSURED(1);;0;0;0;1;;PXTrigger;CAINIT;

PXTrigger

193

PXTrigger

Form
Candidate List

Consolidated
Form State
Loc Table

Request DAL
Script

PXTrigger

Returns Trigger Count
(0 for not triggered)

Form State
Loc Table

RunSetRcpTbl

Chapter 3
Job and Form Set Rules Reference

194

Input Tables

State loc table Here are the required fields for the state location table.

FED table Here are the required fields for the FED table.

Field Type Length Notes

Form Char 36

State Char 8

PolicyEffectiveDate Char 10 CCYY-MM-DD

PolicyWrittenDate Char 10 CCYY-MM-DD

ControllingState Char 2

Location Char 8

SubLocation Char 8

LocationAddrDate Char 10 CCYY-MM-DD

TransactionEffectiveDate Char 10 CCYY-MM-DD

ProgramCd Char 6

Field Type Length Notes

FormNumber Char 36

FormProcessingType Char 1

EffectiveDateSourceCD Char 2 “PE” or “PW”

EffectiveDate Char 10 CCYY-MM-DD

WithdrawalDate Char 10 CCYY-MM-DD

PXTrigger

195

The Policy Xpress FED Processing Flow

FED processing For each State Loc Record, a query is executed against the FED table using the LOB,
State, and, if populated, the ProgramCd. Each of the returned FED records are then
evaluated to determine if they are valid for the current State Loc table row.

FED record validation For form list processing, the FED record must have a FormProcessingType of R.

The FED record validation date compares are based on the LOB groups defined above.
If a LOB is not found in the standard groups (and is not translated to a standard LOB)
the Commercial Auto compare is executed by default. The specific date validation/
compares are explained below.

Rules Processor
AFGJOB

Xpress_create()

Execute DAL
Script

State Loc
Table

PXCandidateList

PXCandidateList FED Table

Consolidated
Form State
Loc Table

Form
Candidate List

Return Control

Chapter 3
Job and Form Set Rules Reference

196

For each FED record that passes validation, its FormNumber is added to the form
candidate list (if the form does not already exist) and a row is inserted into the Form
State Loc table (FormNumber plus the current State Loc Record).

See also PXCandidateList on page 190

Validation Description

Commercial
auto validation

If the Transaction Type is PCH, the date evaluation is executed using the
State Loc record's TransactionEffectiveDate.If the Transaction Type is not
equal to PCH, the date evaluation is based on the FED records
EffectiveDateSourceCd value.

If the EffectiveDate SourceCd is PE, the date evaluation is executed using
the State Loc record's PolicyEffectiveDate. Otherwise, the date evaluation is
executed using the State Loc Record's PolicyWrittenDate.

Personal lines
validation

If the EffectiveDate SourceCd is PE, the date evaluation is executed using
the State Loc record's PolicyEffectiveDate. Otherwise, the date evaluation is
executed using the State Loc Record's PolicyWrittenDate.

Property lines
validation

If the Transaction Type is PCH, the date evaluation is executed using the
State Loc record's LocationAddrDate. If the transaction type is not equal to
PCH, the date evaluation is based on the FED records
EffectiveDateSourceCd value.

If the EffectiveDate SourceCd is PE, the date evaluation is executed using
the State Loc record's PolicyEffectiveDate. Otherwise, the date evaluation is
executed using the State Loc Record's PolicyWrittenDate.

Date
validation/
compare

The passed date is subjected to a trivial date validation.
The date must be in a CCYY-MM-DD format. The day can not be zero (0)
or greater than 31. The month can not be zero (0) or greater than 12. The
year can not be zero (0).
If the passed date passes validation, the system compares it to the Fed Entries
Withdrawal Date and the Effective Date. If the passed date is falls before the
Withdrawal Date and after the Effective Date, the date compare is passed.

RegionalDateProcess

197

 RegionalDateProcess
Use this job level rule to execute regional date processing (RDP) rules on forms. You
create the RDP rules via Documaker Studio.

NOTE:See the Documaker Studio User Guide for more information on creating RDP
rules.

In the U.S. insurance industry, certain forms must comply with a regional authority
(usually a state) to be approved for use within that area. The process of getting approval
to use forms in each location is often referred to as submitting for state compliance.

Because of the various jurisdictions involved, you may have a form which is accepted by
some states, but not by others. Alternatively, the form might be accepted by multiple
states, but as of different dates. And to add another layer of complexity, states specify
which document date must be used when activating this form.

To understand this last point, consider that almost all insurance policies have a date
when coverage becomes effective – typically referred to as the policy effective date. Likewise, a
policy usually has a written date that identifies when the document was actually drawn
up. It is not unusual for the written date to be different from the policy effective date.
For instance, you might buy your hurricane insurance today (the written date), but the
policy does not become effective for 30 (or more) days. Each regional authority specifies
which date determines the compliance of a given form.

This necessity to only activate the use of a form in a given region after a specific date
complicates the creation of trigger conditions. Not only do you have to consider the
typical transaction information that would cause you to include the form, you also have
to calculate the various details to comply with the regional authorities described above.

To help you more easily manage this process, Studio lets you define regional date
processing (RDP) rules that you can assign to each form. Part of the support is
accomplished in Studio by defining the appropriate regional tests for each form. The
remaining part occurs during the batch transactional process via the
RegionalDateProcess rule.

Syntax RegionalDateProcess;;;

There are no parameters for this rule.

Place this rule before any rule that calls the base triggering functionality, such as the
RunSetRcpTbl rule. RDP rules operate as a filter that aids the normal triggering process
by eliminating forms which do not meet the necessary criteria.

RDP rules are defined in group form files and assigned to individual forms. RDP rules
are optional and only those forms containing one or more such rules are subject to this
filtering process.

Chapter 3
Job and Form Set Rules Reference

198

If a form has one or more RDP rules defined, these are evaluated during execution of
this rule. The execution proceeds like this:

First, the system locates and evaluates the date search token associated with the rule.
The resulting date value obtained from the transaction data is compared against the
date range provided in the rule. If the date value is out of range, the form is flagged
for possible elimination and execution moves to the next RDP rule.

If the date value is within the valid range, the next step is to iterate through the
region search tokens associated with the rule and evaluate each. Each region search
token might yield multiple hits. The system cross-references this list of values
against the inclusion and exclusion list provided in the rule. If there is an
intersection between the two lists, the rule is considered satisfied and the system
moves to the next RPD rule. If the search token results in no matches for the list,
then the system continues with the next search token until all search tokens are
exhausted.

If the rule completes execution of the regional search tokens without finding any
matches for the defined set, the form is flagged for possible elimination.

Each RDP rule executes in this manner which means that at the point where one rule
considers the form eligible, no further RDP rules are execute on that form. Instead, RDP
processing will immediately move to the next form.

If all RDP rules for a given form consider the form ineligible, then the form remains
flagged with this state and is skipped during the subsequent triggering job rule process.

INI options You can enter Yes for the RegionalDateProcess option to turn on debugging if you run
into problems. Here is an example:

< Debug_Switches >

RegionalDateProcess = Yes

Here's an example trace file produced by setting the RegionalDateProcess option to Yes:

1. Thu Sep 11 14:38:14.678 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION> IS excluded.

2. Thu Sep 11 14:38:14.678 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION 06152008> IS excluded.

3. Thu Sep 11 14:38:14.866 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION> IS excluded.

4. Thu Sep 11 14:38:14.866 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION 06152008> IS excluded.

5. Thu Sep 11 14:38:14.975 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION> IS excluded.

6. Thu Sep 11 14:38:14.975 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION 06152008> IS excluded.

7. Thu Sep 11 14:38:14.991 2008 pid=00029776 RDP Form <MEDICAL

HISTORY USING MEDBODY1> IS excluded.

RegionalDateProcess

199

Example Here is an example of how you would use this rule:

<Base Form Set Rules>

;NoGenTrnTransactionProc;2; single step;

;ResetOvFlw;2;;

;BuildFormList;2;;

;RegionalDateProcess;2;;

;RunSetRcpTbl;2;;

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;PaginateAndPropagate;2;;

See also Documaker Studio User Guide

Chapter 3
Job and Form Set Rules Reference

200

 ReplaceNoOpFunc
Use this job level rule to register the MapFromImportData rule which the system will
then use in place of the NoOpFunc rule.

Syntax ;ReplaceNoOpFunc;;;

There are no parameters for this rule. You typically use this rule with the following
import rules:

• ImportFile

• ImportExtract

• ImportNAPOLFile

• ImportNAPOLExtract

NOTE:Use this rule if any of the DDT files for your sections are set to use the
NoOpFunc rule. If you use the MapFromImportData rule instead of the
NoOpFunc rule, you do not have to use this rule.

See also MapFromImportData on page 379

NoOpFunc on page 407

ImportFile on page 119

ImportExtract on page 114

RULNestedOverFlowProc on page 206

ImportNAPOLExtract on page 124

ImportNAPOLFile on page 129

JDT Rules Reference on page 30

RequiredFieldCheck

201

 RequiredFieldCheck
Use this form set level rule to have the GenData program send a transaction to WIP
when it sees that a field designated as Required does not contain data.

If you include this rule in the AFGJOB.JDT file and the system finds a required field
with no data...

• You receive a message (Warning 20030) that lists the fields that are missing data —
or as many as will fit into the message.

• The GenData program sends the transaction to manual batch (WIP)

• You receive a message indicating the transaction has been assigned to a manual
batch

You can see the results on the console when using Documaker Server or in the Output
are when using Studio’s Test manager. Here is an example from Studio’s Output area,
which shows the GenData Errors tab:

Keep in mind the RequiredFieldCheck rule ignores these fields:

• A field defined with the No User Edit attribute

• An X or Space field, because having no data is valid in this case

• A page number field or another print-time generated field that has a name that
begins with a tilde (~)

• A Send Copy To field

Syntax ;RequiredFieldCheck;;;

There are no parameters for this rule.

Example Place this rule in the AFGJOB.JDT file so it runs after the data is mapped but before
batch assignments are made, similar to how you would place the IfRecipUsed rule.

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;LoadExtractData;;;

;RunTriggers;;;

;UpdatePOLFile;;;

;WriteNaFile;;;

;BatchingByRecipINI;;;

;RequiredFieldCheck;;;

;PaginateAndPropogate;;;

This message lists the fields
missing data.

This message tells you the
transaction is being sent to
manual batch

Chapter 3
Job and Form Set Rules Reference

202

 ResetDocSetNames
Use this form set level rule to reset the pRPS structure after the GVM variables have been
remapped.

Syntax ;ResetDocSetNames;;;

Normally, after it loads the transaction, the system uses the options in the DocSetNames
and Trn_Fields control groups to map GVM variables into the pRPS structure for
GroupName1, GroupName2, and TransactionID. There are other fields, but
GroupName1, GroupName2, and TransactionID are the primary ones.

When you use the MergeWIP rule, or an rule that imports the document field
information normally mapped by the transaction rule, you may need to use the
GVM2GVM rule to map the options in the Trigger2WIP control group back to GVM
variables. Because the names of the Key1 and Group1 fields sometimes differ, this means
the mapping occurs too late to also be mapped to the pRPS structure member.
Therefore, you must use the ResetDocSetNames rule to reset the pRPS structure after the
GVM variables have been remapped.

When you use the EXT2GVM rule to get the values for GroupName1, GroupName2,
and GroupName3, especially in an XML implementation, be sure to include the
MapBeforeReset parameter to re-map the RPS structures. With the parameter, this rule
gets the GroupName values from global memory and converts them into the long values
using the Key1Table andKey2Table control groups. This is typically used to convert
company codes to company names and so on.

Here is an example:

;UseXMLExtract;;;

;Ext2GVM;;!/Forms/Key1 1,10,Company;

;Ext2GVM;;!/Forms/Key2 1,15,LOB;

;ResetDocSetNames;;ConvertBeforeReset;

To avoid using this rule, make sure the primary keys are defined the same way in these
DFD files:

• TRNDFDFL.DFD

• RCBDFDFL.DFD

• WIP.DFD

Example Here is an example:

< Base Form Set Rules >

;WIPTransactions;;BATCHPRINT;

;GVM2GVM;;Trigger2Wip;

;ResetDocSetNames;;;

See also Ext2GVM on page 94

GVM2GVM on page 110

MergeWIP on page 165

JDT Rules Reference on page 30

ResetOvFlw

203

 ResetOvFlw
Use this form set level rule to reset the overflow feature.

Syntax ;ResetOvFlw;;;

This rule resets or reinitializes all of the overflow variables. In general, the overflow
symbol will keep track of record counts as the extract is processed. When an overflow
variable is defined, the system adds it to an overflow symbols list. This list contains
several attributes for each symbol. This rule resets those attributes to the default values
assigned when you initially defined the overflow symbol.

Example ;ResetOvFlw;;;

See also InitOvFlw on page 147

IncOvSym on page 317

OvActPrint on page 408

OvPrint on page 409

WriteOutput on page 252

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

204

 RestartJob
Use this job level rule to open the restart file (RSTFILE) and reset the EXTRFILE,
TRNFILE, NEWTRN, NAFILE, POLFILE, and batch files at the broken transaction.
The RestartJob should be first base rule.

NOTE:If the restart file does not exist, the system skips this rule.

Syntax ;RestartJob;;;

You can set up the GenData program to restart itself at a particular transaction if it
encounters a failure. To accomplish this, the system uses a restart file. You use INI
options to set up the restart file.

NOTE:This rule does not apply if you are using single-step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it isolates
the transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of
a GenData run, the system assumes a restart is necessary and will open and read the file.
The checkpoint information lets the system set internal pointers and output files in such
a way that it can begin at that transaction.

You also use the RULCheckTransaction rule to restart the GenData program.

To use the restart feature, you should also set the following INI options:

< GenDataStopOn >

BaseErrors = Yes

TransactionErrors = Yes

ImageErrors = Yes

FieldErrors = Yes

Example Here is an example:

;RestartJob;1;Always the first base rule;

See also RULCheckTransaction on page 205

GenPrint on page 104

JDT Rules Reference on page 30

RULCheckTransaction

205

 RULCheckTransaction
Use this form set level rule to save the files necessary for restarting the GenData
program. This rule should be the first base form set rule.

Syntax ;RULCheckTransaction;;;

The rule saves the EXTRFILE offset, TRNFILE offset, NEWTRN offset, NAFILE offset,
POLFILE offset, and batch file offsets into a restart (RSTFILE) file. You can set up the
GenData program to restart at a particular transaction if it encounters a failure. To
accomplish this, the system uses a restart file. Use INI options to set up the restart file.

NOTE:This rule does not apply if you are using single-step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it isolates
the transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of
a GenData run, the system assumes a restart is necessary and will open and read the file.
The checkpoint information lets the system set internal pointers and output files in such
a way that it can begin at that transaction. You also use the RestartJob rule to restart the
GenData program.

INI options These offsets are updated in the post process after a specific number of transactions. You
specify the number of transactions using the CheckCount option. You define the
Restart file and the and check count in the Restart control group:

< Restart >

RstFile =

CheckCount =

Example Here is an example:

;RULCheckTransaction;2;Always the first form set rule;

See also RestartJob on page 204

JDT Rules Reference on page 30

Option Description

RstFile Enter the name of the restart file. If you omit this option, the system uses
RSTFILE.RST (DD:RSTFILE for z/OS) as the file name.

The system uses the DataPath option in the Data control group to determine
where to create the restart file. The default is the current working directory.

CheckCount Enter a number to specify the number of transactions to process before
updating the offsets. For instance, if you specify two hundred (200), the system
processes two hundred transactions, updates the offsets, processes two hundred
more transactions, and so on. The default is 100.

You can also use the /cnt command line option with the GenData program to
override the CheckCount option. Here is an example:

gendaw32 /cnt=10

Chapter 3
Job and Form Set Rules Reference

206

 RULNestedOverFlowProc
Use this form level rule to nest overflow within overflow. The nested overflow can occur
on as many levels as necessary. This lets you use the system as a reporting tool. The only
requirement is that the data occur in order.

This rule lets you create groups that contain group headers (lead sections), subordinate
sections (list sections), and group footers (following sections).

Syntax ;RULNestedOverFlowProc;;;

Insert this rule in the AFGJOB.JDT file just after the RunSetRcpTbl rule.

To specify how the nesting occurs, you must create a file named OVERFLOW.DAT. You
can create this file using any ASCII editor. By default, the system looks for this file in
the DefLib directory, however, you can specify a different path and file name as the
second parameter. Here is an example:

;RULNestedOverFlowProc;;c:\fap\dll\newfile.dat;

OVERFLOW.DAT file
format

The file format for the OVERFLOW.DAT file is as follows:

;LeadIMG;LeadMask;ListIMGInfo;ListMask;FollIMGInfo;

Parameter Description

LeadIMG The group header inserted by normal triggering rules or by a previous call to
the NestedOverflowProc rule. The group header is the section name without
the extension of the lead section.

LeadMask The search mask that originally triggered the lead section, in this syntax:

Offset,Record

Offset is the offset into the extract file. Record is the specific search key.

ListIMGInfo Information about the subordinate section that overflows beneath the group
header section. The format is the same as is in the FORM.DAT file:

SecName|SecAtts<Recip1(CpyCnt),Recip2(CpyCnt),…>

SecName is the name of the section without the extension.
SecAtts are the attributes of the section (using the flags used in the FORM.DAT
file such as D=data entry and print, S=same page, W=can grow, and so on.

RECIP1 is the recipient name.

CPYCNT is the recipient copy count.
Normally, you should set the attributes to DS. (D=data entry and print and
S=same page). This information should not exceed 255 characters.

ListMask (Optional) The search mask which triggers occurrences of the subordinate
section beneath the group header section. Use this syntax:

Offset, Record

Where...

Offset is the offset into the extract file.

Record is the specific search key.
If you omit this parameter, only one section is inserted.

RULNestedOverFlowProc

207

Before this rule is called, the lead section should already be in the form set—either
through normal section triggering or by placing another call to this rule on a previous
line.

The system begins by reading the OVERFLOW.DAT file line by line. The system finds
the first occurrence of the lead section in the form set and then finds the first occurrence
of the lead mask in the extract file.

It then counts the number of list masks between the first and second lead mask. Next,
the system inserts the number of list sections after the first lead section and then inserts
the follow section.

The system continues going through the form set inserting the number of list sections
in between the nth and (n+1)th lead sections, according to the number of list masks in
the extract file in between the (n)th and (n+1)th lead masks.

When it reaches the last lead section, the system counts the remaining list section masks
after the last lead mask and inserts the appropriate number of list sections. Lastly, it
inserts the following section, if specified.

NOTE:The following section and the list masks are optional. If there is no list mask, only
one list section will be inserted.

Example This example shows how to generate list sections subordinate to lead sections. In this
example Record1 is the lead mask, and Record2 is the list mask.

LeadImage is the lead section and ListImage is the list section. The rule would count three
Record2s between the two Record1s. If Record1 is actually the fifth Record1 in the extract file
for the current transaction, the system would find the fifth LeadImage in the form set
and insert three ListImages after this LeadImage.

Also, there is only one recipient, Recip1.

.

.

.

000000001RECORD1 data1

000000001RECORD2 data2

000000001RECORD2 data3

FollIMGInfo (Optional) Information about the group footer section which, if specified, is
inserted after the last subordinate section for the current group. The format is
the same as is in the FORM.DAT file:

SecName|SecAtts<Recip1(CpyCnt),Recip2(CpyCnt),…>

SecName is the name of the section without the extension.

SecAtts are the attributes of the section (using the flags used in the FORM.DAT
file such as D=data entry and print, S=same page, W=can grow, and so on.

RECIP1 is the recipient name.

CPYCNT is the recipient copy count.
Normally, you should set the attributes to DS. (D=data entry and print and
S=same page). This information should not exceed 255 characters.

Parameter Description

Chapter 3
Job and Form Set Rules Reference

208

000000001RECORD3 data4

000000001RECORD4 data5

000000001RECORD4 data6

000000001RECORD2 data7

000000001RECORD1 data8

. . . .

. . . .

. . . .

The example below shows the line in the overflow file. In the first example, the
corresponding line in the overflow file for the previous example would appear as shown
here:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DS<RECIP1(1)>;10,RECORD2;;

The next example shows how to add a following section. If a following section was
needed, the line from the file would look as shown here. Assume the following section
is named FOLLOWIMAGE:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DS<RECIP1(1)>;10,RECORD2;FOLLOWIMAG
E|DS<RECIP1(1)>;

This following example shows how to add another recipient. If a second recipient (with
copy count of 3) was specified for the list section but not for the following section, the
line would appear as shown here. Assume the second recipient is Recip2:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DS<RECIP1(1),RECIP2(3)>;10,RECORD2;
FOLLOWIMAGE|DS<RECIP1(1)>;

This example shows how to change the section attributes. So far the section attributes
were set as DS—data entry and print and same page. If the list section was dynamic, you must
add the W (can grow) attribute. The line would now look as shown here:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DSW<RECIP1(1),RECIP(2)>;10,RECORD2;
FOLLOWIMAGE|DS<RECIP1(1)>;

The example also shows nested/recursive functionality by iteration because this rule
builds upon previous lines. This lets you have unlimited amounts of overflow within
overflow.

Here are some points to consider concerning insertion logic:

• Reverse insertion logic when inserting different list sections after the same lead
section.

Because of the nature of insertions, if two lines in the overflow file use the same
lead section, the list section in the second line is inserted before the list section on
the first line. This requires a sort of reverse logic when creating the overflow.

• In order insertion below the lead section.

Consider two different sections triggered by two different masks that occur in the
extract file and the overflow file in the following manner:

(extract file)

000000001LEADREC

000000001LISTREC1

000000001LISTREC2

000000001LISTREC1

(overflow file: note reverse insertion logic)

;LEADIMAGE;10,LEADREC;LISTIMAGE2|DSW<RECIP(1);;

RULNestedOverFlowProc

209

;LEADIMAGE;10,LEADREC;LISTIMAGE1|DSW<RECIP(1);;

The sections would be inserted after LEADIMAGE in the following order:

LISTIMAGE2…LISTIMAGE1…LISTIMAGE1

However the POLFILE.DAT file would look as follows:

…/LEADIMAGE|DSW<RECIP>/LISTIMAGE1|DSW<RECIP>/LISTIMAGE1|DSW

<RECIP>/LISTIMAGE2|DSW<RECIP>/...

This excerpt demonstrates that the sections are not inserted in the order of list
search masks in the extract file but in the reverse order of the occurrence of list
sections in the overflow file.

NOTE:If while processing the rule the system encounters invalid lines in the overflow
file, it ignores those lines and adds log entries into the log file. The system then
continues processing.

See also RunSetRcpTbl on page 215

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

210

 RULStandardFieldProc
You must include this form set level rule in the AFGJOB.JDT file as the first field rule.
This rule tells the system to process each field on all of the sections triggered by the
SETRCPTB.DAT file.

NOTE:This rule is used in multi-step processing. The StandardFieldProc rule is used in
single-step processing.

Syntax ;RULStandardFieldProc;;;

There are no parameters for this rule.

Example ;RULStandardFieldProc;;;

See also Using the Job Definition Table on page 6

JDT Rules Reference on page 30

RULStandardImageProc

211

 RULStandardImageProc
You must include this form set level rule in the AFGJOB.JDT file as the first section rule.
This rule tells the system to process each section triggered by the SETRCPTB.DAT file.

NOTE:This rule is used in multi-step processing. The StandardImageProc rule is used
in single-step processing.

Syntax ;RULStandardImageProc;;;

There are no parameters for this rule.

Example ;RULStandardImageProc;;;

See also Using the Job Definition Table on page 6

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

212

 RULStandardJobProc
You must include this rule as the first job level rule in the AFGJOB.JDT file.

Syntax ;RULStandardJobProc;;;

There are no parameters for this rule.

Example ;RULStandardJobProc;;;

See also ServerJobProc on page 220

JDT Rules Reference on page 30

RULStandardTransactionProc

213

 RULStandardTransactionProc
You must include this form set level rule in the AFGJOB.JDT file as the first transaction
level rule. This rule tells the system to process each transaction listed in the extract file.

NOTE:Do not use this rule if you are using single-step processing. You only use this
rule if you are not using the NoGenTrnTransactionProc rule.

Syntax ;RULStandardTransactionProc;;;

There are no parameters for this rule.

Example ;RULStandardTransactionProc;;;

See also Single-Step Processing on page 7

NoGenTrnTransactionProc on page 171

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

214

 RULTestTransaction
Use this form set level debugging rule before the RULStandardTransactionProc rule to
have the system look for an INI group like the one shown below and execute only the
transactions specified there.

Syntax ;RULTestTransaction;;;

The numbers shown below are sequence numbers, not transaction IDs. If you define the
Test control group, the system will skip any transaction number not specified in the
control group.

< Test >

TransactionRecordNumber = 1 ; do transaction 1

TransactionRecordNumber = 5 ; and transaction 5

Example ;RULTestTransaction;;;

See also RULStandardTransactionProc on page 213

JDT Rules Reference on page 30

RunSetRcpTbl

215

 RunSetRcpTbl
Use this form set level rule to run all entries in the set recipient table which pertain to
the current GroupName1, GroupName2, and TransactionType to generate the form set
for the current transaction.

NOTE:You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

For more information on setting recipients and copy counts, see the Documaker
Administration Guide.

Syntax ;RunSetRcpTbl;;;

Place this rule in the AFGJOB.JDT file, after the BuildFormList rule.

Example ;BuildFormList;;;

;RunSetRcpTbl;;;

This example tells the system to process the SETRCPTB.DAT file to determine which
forms and sections it should include in the POLFILE.DAT file for each recipient.

See also BuildFormList on page 73

LoadFormsetFromArchive on page 157

LoadRcpTbl on page 160

Using the Job Definition Table on page 6

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

216

 RunTriggers
Use this form set level rule to replace the LoadRcpTbl and RunSetRcpTbl rules in
implementations created by Documaker Studio.

Syntax ;RunTriggers;;;

There are no parameters for this rule.

NOTE:This rule is only available if you are running Documaker Studio. If you do not
use Documaker Studio, see the discussion of the ProcessTriggers rule.

The RunTriggers rule represents an improved triggering process tailored for the file
structure implemented with Documaker Studio. This process removes some of the
complexity and improves performance.

For instance, in the old triggering process, if your form trigger asked for three copies of
a form and then you processed the section triggers, only the last copy of the form was
affected by the section triggers. The first two copies, would have been static based upon
the default section configuration in the FORM.DAT file. Using the RunTriggers rule,
each copy of the form will process section triggers. This means each form can differ
from the prior one — assuming your section triggers check unique information to
achieve that goal.

See also LoadRcpTbl on page 160

RunSetRcpTbl on page 215

ProcessTriggers on page 189

JDT Rules Reference on page 30

RunUser

217

 RunUser
Use this job level rule to execute a user function. You can use this rule to run a user
function such as GetRecsUsed, IncRecsUsed, or ResetRecsUsed, to manipulate an
overflow variable. This rule lets you manipulate an overflow variable without
immediately making use of it in a field mapping.

Syntax ;RunUser;;;

Example Overflow variables are variables you can use when a rule is searching an extract record
using a search mask. You can use the overflow variable to vary the occurrence of the
record you are searching for.

Typically, the AFGJOB.JDT file contains this rule:

;ResetOvFlw;;;

which resets all overflow variables to zero at the beginning of each transaction. The
RunUser rule lets you reset to zero at any time during field processing by running the
ResetRecsUsed user function via the RunUser rule.

See also ResetOvFlw on page 203

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

218

 ServerFilterFormRecipient
Use this form set level rule with the DPSPrint object in IDS to generate a print file that
contains a set of forms which will be filtered by

• Form name

• Form description

• Recipient name

Syntax ;ServerFilterFormRecipient;;;

The following attachment variables are created if these properties of the DPSPrint object
are not null, in other words...

• DPSPrint.Forms creates DPRFORMNAME

• DPSPrint.FormDescription creates DPRFORMDESCRIPTION

• DPSPrint.Recipients creates DPRRECIPIENTNAME

The input can be a list, with items separated by commas. Here are the search conditions
you can use:

• End with * , STARTS WITH

• Start with *, CONTAINS

• Text alone, EQUALS

While executing the DPSPRT request from the DPSPrint object, the RPDCreateJob rule
creates the DPRFORMNAME, DPRFORMDESCRIPTION, and DPRRECIPIENT tags
in the job ticket.

< ReqType:DPSPRT >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,CUSTOMERBATCH,
O,PRINTOUTPUTFILE,O

function = rpdw32->RPDCheckRPRun

function = rpdw32->RPDCreateJob

function = rpdw32->RPDProcessJob

Once job ticket is created, Documaker processes the job. Documaker reads the job ticket
and creates a GVM variable with this name:

DPRFORMNAME, DPRFORMDESCRIPTION, and DPRRECIPIENTNAME.

The ServerFilterFormRecipient rule looks for the GVM name DPRFORMNAME,
DPRFORMDESCRIPTION, and DPRRECIPIENTNAME and filters out the mismatch
condition.

Here is an example in Visual Basic:

Private Sub CmdPrint_Click()

Dim oDPSVar As New DPSPrint

Dim oDPSIDS As New DPSIDS

ServerFilterFormRecipient

219

oDPSVar.inputFile = FldInputFile.Text

oDPSVar.configurationName = FldConfig.Text

oDPSVar.outputFile = FldOutputFile.Text

oDPSVar.outputPath = FldOutputPath.Text

oDPSVar.printerType = FldPrinterType.Text

oDPSVar.Forms = "ABC,DEF*,*XYZ"

oDPSIDS.send oDPSVar

FinalOutput.Text = oDPSVar.outputPath + oDPSVar.outputFile

End Sub

All form names that equal ABC or start with DEF or contain XYZ are included in the
final print file.

If all inputs (DPRFORMNAME, DPRFORMDESCRIPTION and
DPRRECIPIENTNAME) exist, the recipient name is evaluated first and the form name
and form description are evaluated later.

NOTE:Include this rule in the AFGJOB.JDT file after the LoadRcpTbl rule.

Here is an excerpt from the AFGJOB.JDT file:

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;required to combine gentrn/gendata into
single step;

;BuildFormList;;;

;LoadRcpTbl;;;

;ServerFilterFormRecipient;;;

;RunSetRcpTbl;;;

;PrintFormset;;required to combine gendata/genprint into single
step;

;WriteOutput;;;required to combine gentrn/gendata into single step;

;WriteNaFile;;;required to combine gentrn/gendata into single step;

;BatchingByPageCountINI;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;FooterMode(2) Debug;

Example ;ServerFilterFormRecipient;;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

220

 ServerJobProc
Use this job level rule when you use the Internet Document Server (IDS) to run
Documaker. This rule replaces the RULStandardJobProc rule.

NOTE:You must have a license to both IDS and Documaker to use this rule. For more
information on setting up IDS and Documaker, see the Internet Document
Server Guide.

Syntax ;ServerJobProc;;;

Insert this rule in the AFGJOB.JDT file as the first rule.

This rule looks for a job ticket file in the current working directory and loads it as an
XML file. All of the values on the XML tree are added to or updated in the INI options.
After Documaker finishes processing, the rule checks the status. If there are errors, it
returns a no more bases return code on the next iteration. This terminates Documaker.

This rule uses a polling technique—sleep a while and check for the file existence— which
you can configure using INI options. The rule loads the job ticket and sets INI options
used when running subsequent rules. On the post message, this rule creates a job log
XML tree and writes it to disk. If any necessary values are missing from the XML job
ticket, these values are generated and changed (or appended) in the INI context.

On RP_PRE_PROC_B, this rule creates a semaphore (gendata), which makes it possible
for the IDS RPDCheckRPRun rule to detect the status of Documaker when the next
processing job starts.

This rule stays in waiting status and checks for the existence of job ticket file
(JOBTICKET.XML) and the rpdrunrp semaphore. As soon as the job ticket file is detected,
this rule loads it onto the XML tree and uses the contents of the XML tree to update
INI options in memory.

If the rule does not detect the rpdrunrp semaphore, the rule terminates Documaker by
returning a msgNO_MORE_BASES return code. It also creates a GVM variable
(DSISERV) so the CUSInitPrint rule can re-initialize printers after the job process is
complete. This GVM variable can be used by any of the Documaker rules to detect if the
Documaker is running under IDS, if different logic is needed.

On RP_POST_PROC_B, the rule writes out the job log file and removes the job ticket
file. If the RULServerJobPRoc option is set to Yes, a copy of the file will be obtained for
debugging purposes.

INI options < Data >

DataPath =

ExtrFile =

MsgFile =

ErrFile =

LogFile =

DBLogFile =

NAFile =

POLFile =

NewTrn =

ServerJobProc

221

< PrinterInfo >

Printer =

< Printer >

Port =

< Print_Batches >

Batch1 = batch1.bch

< IDSServer >

SleepingTime =

GENSemaphoreName =

RPDSemaphoreName =

< Debug >

RULServerJobProc =

< PrintFormSet >

MultiFilePrint =

LogFileType =

LogFile =

Option Description

Data control group

DataPath Used as the default path if you omit PrintPath.

ExtrFile Enter the name and path of the extract file.

MsgFile Enter the name and path of the message file.

ErrFile Enter the name and path of the error file.

LogFile Enter the name and path of the log file.

DBLogFile Enter the name and path of the DB log file.

NAFile Enter the name and path of the NA file.

POLFile Enter the name and path of the POL file.

NewTrn Enter the name and path of the NewTrn file.

PrinterInfo control group

Printer Enter the designated printers for print batches.

Printer control group

Port Enter the name of the print batch file for each designated printer.
Note the group name is defined by the printer option in the
PrinterInfo control group.

Print_Batches control group

Batch1 Then name of the batch file.

IDSServer control group

SleepingTime Enter the amount of time in milliseconds you want the system to
wait before it checks for a job ticket. The default is 1000 (1 second).

Chapter 3
Job and Form Set Rules Reference

222

Input file JOBTICKET.XML

Output file JOBLOG.XML

See also RULStandardJobProc on page 212

JDT Rules Reference on page 30

GENSemaphoreName Enter the name of the semaphore. The default is gendata.

RPDSemaphoreName Enter the name of the semaphore. The default is rpdrunrp.

Debug control group

RULServerJobProc Enter Yes to get a copy of the job ticket file before the system
removes it.

PrintFormSet control group

MultiFilePrint Enter Yes to generate multiple print files which use 46-byte unique
names.

To identify which recipients are in which print batch, enter No or
omit this option.This causes the PrintFormSet rule to save the
printer for the print batch along with its recipient information. The
ServerJobProc rule then adds three new tags for each print batch file
and adds them to the JOBLOG.XML file.
For example, for the print batch file on PRINTER1, the system
creates these new tags:

<PRINTER1RECIP>Insured</PRINTER1RECIP>

<PRINTER1CODE>001</PRINTER1CODE>

<PRINTER1DESC>Insured Copy</PRINTER1DESC>

The MultiFilePrint option should only be used with the PDF, RTF,
HTML, and XML print drivers.

LogFileType Specify the type of print log file, such as XML or TEXT.

LogFile Enter the name and path of the print log file. If you omit the
extension, the system uses the LogFileType option to determine the
extension.

Option Description

SetErrHdr

223

 SetErrHdr
Use this job level rule to define the header information used in the error file if an error
occurs during the processing of a transaction. You can use any global variable (GVM)
in the text defined to the system.

Syntax ;SetErrHdr;;Token:Text;

NOTE:Use a colon (:) to separate the token from the text. You must use a token even
if there are no embedded global variables in the text string.

Example ;SetErrHdr;;***: Transaction: ***PolicyNum***;

;SetErrHdr;;***:Company Name: ***Company***;

This example substitutes the global variables, PolicyNum and Company, into the error file
header information. If the global variable PolicyNum was equal to MVF10002 and
Company was equal to ABC Insurance Company, the text output to the error file would be:

Transaction: MVF10002

Company Name: ABC Insurance Company

To add lines to the header, use the rule multiple times. Each time you use the rule, the
system adds a line to the header, which you will see in the error file (ERRFILE.DAT).

NOTE:The global variable names must be spelled exactly as they are defined to the
system.

See also JDT Rules Reference on page 30

Parameter Description

Token A string of characters used to denote the beginning and end of a global variable
name. Use a colon (:) to terminate the token string of characters. To substitute
a global variable into the text, surround the name of the global variable with
the token string. Be sure to use a string of unique characters for the token that
are not defined in the text. For example, you could use '***'. You cannot use a
colon (:) in the TOKEN string.

Text A text string. The text string may include embedded tokens and global variables.
Do not start the text string with a colon (:).

Chapter 3
Job and Form Set Rules Reference

224

 SetOutputFromExtrFile
Use this form set level rule to extract a print batch name from an extract file for each
transaction. This capability is typically used with the MultiFilePrint callback function
so you can get a print batch name from the extract file for one or more recipients per
transaction.

Syntax ;SetOutputFromExtrFile;;RecordMask PrintBatchName;

You must include the BatchingByRecipINI or the IfRecipUsed rule before this rule in
the AFGJOB.JDT file. If you include the BatchingByRecipINI rule, also include these
options:

< BatchingByRecip >

Batch_Recip_Name = 39,FILENAME001;"Batch1";INVESTOR

Batch_Recip_Name = 39,FILENAME002;"Batch2";COMPANY

Batch_Recip_Name = 39,FILENAME003;"Batch3";AGENT

Make sure that FILENAME001,FILENAME002 and FILENAME003 exist at offset=39
in the records. You can see that the mask FILENAME001 is composed of FILENAME
and Recipient code 001. So make sure INI control group is set.

To use multiple recipients, each transaction records should contain print multiple print
batch names. Here is an example:

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/INVESTOR_ID\JPMP0355 98PL X

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/
FILENAME001\JPMP0355\JPMP035598PRP031501.pdf

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/
FILENAME002\JPMP0356\JPMP035598PRP031502.pdf

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/
FILENAME003\JPMP0357\JPMP035598PRP031503.pdf

The record mask should match the parameters for the SetOutputFromExtrFile rule and
the INI options. The setup for this rule varies, depending on the mode you are running
in.

3-step (GenTran,
GenData, and

GenPrint)

When processing using the GenTran, GenData, and GenPrint programs, you must set
the INI options for the GenPrint program as shown here:

< Print >

RCBDFDField = PDFNAME

CallBackFunc = MultiFilePrint

MultiFileLog = ..\data\MFP.LOG

You can use the CUSMultiFilePrint function instead of the MultiFilePrint function, if
you want to control the file name.

Parameter Description

RecordMask This tells the system to locate a specific record line.

PrintBatchName This tells the system to get the print batch name that begins in a specific
location and save it to a global variable.

SetOutputFromExtrFile

225

The CUSMultiFilePrint function is a print callback function that creates a new output
file for each recipient and creates a log record of each. This is similar to the
MultiFilePrint callback function in GenPrint except it gives you more control over the
name of the file and supports long file names.

The system assumes you will use a built-in INI function to create a unique file name
each time. This is important because the callback function cannot assign the first file
name. You can use a DAL function to assign the first file name. Here is an example of
the INI options:

< Printer1 >

Port = ~DALRUN Batch1Files.dal

< Print >

CallbackFunc = CUSMultiFilePrint

Here is an example of a DAL script:

#counter = #counter

file_name = "cusmultifileprint" & #counter & ".pdf"

#counter = #counter+1

return (file_name)

Please note that this function is used for multi-step processing only.

2-step (Single-step
processing without the

PrinfFormset rule and
with GenPrint)

When you use single-step processing but omit the PrintFormset rule and instead use the
GenPrint program, you must include the Print control group options:

< Print >

RCBDFDField = PDFNAME

CallBackFunc = MultiFilePrint

MultiFileLog = ..\data\MFP.LOG

Here is an example of the AFGJOB.JDT file you would use:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;WriteRCBFiles;2;;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

;BatchingByRecipINI;2;;;

;SetOutputFromExtrFile;2;35,FILENAME 47,128,PDFNAME;

;WriteOutput;2;;

;WriteNaFile;2;;

;ProcessQueue;2;PostPaginationQueue;

;PaginateAndPropagate;2;;

Be sure to include the WriteOutput, WriteNAFile, and WriteRCBFiles rules.

Chapter 3
Job and Form Set Rules Reference

226

Single-step (GenData
only)

When you use single-step processing, the system does not use a callback function.
Instead, it uses the MultiFilePrint INI option in the PrintFormset control group.

In single-step mode, you must have these INI options:

< PrintFormset >

RCBDFDField = PDFNAME

MultiFilePrint = Yes

LogFileType = Text (or XML)

LogFile = mfp.log

NOTE:The MultiFilePrint option should only be used with the PDF, RTF, HTML, and
XML print drivers.

Here is an example of the AFGJOB.JDT file you would use:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

;SetOutputFromExtrFile;2;35,FILENAME 47,128,PDFNAME;

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;PrintFormset

Example ;SetOutputFromExtrFile;2;39,FILENAME 51,128,PDFNAME;

In this example, 39,FILENAME is a record mask which tells the system to locate the
record line that includes string FILENAME at offset 39. The text, 51,128,PDFNAME
tells the system to get the print batch file name at offset 51 in maximum length of 128
and save it to a global variable named PDFNAME. Note that PDFNAME must be
defined in the RCBDFDFL.DFD file as a field.

See also JDT Rules Reference on page 30

Single-Step Processing on page 7

BatchingByRecipINI on page 69

IfRecipUsed on page 111

WriteNAFile on page 251

WriteOutput on page 252

WriteRCBFiles on page 253

WriteRCBWithPageCount on page 254

SetOverflowPaperTray

227

 SetOverflowPaperTray
Use this form set level rule with the FormName INI option to change the printer tray
selection during transaction processing.

This rule lets you print the first page of a form set on a special paper and the rest on
different stock. For example, the first page of a utility bill is typically printed on
perforated stock while the rest of the bill is printed on non-perforated stock.

Syntax ;SetOverflowPaperTray;;

There are no parameters for this rule.

The FormName option is required:

< OverflowPaperTray >

FormName = Tray#

Here is an example:

< OverflowPaperTray >

Gas Bills = Tray4

Water Bills = Tray4

Elec Bills = Tray4

Keep in mind...

• You must include the PaginateAndPropagate rule in your AFGJOB.JDT file for the
SetOverflowPaperTray rule to work correctly.

• When running in single- or two-step mode, place these rules in this order after the
WriteOutput and WriteNAFile rules:.

; SetOverflowPaperTray;;

;PaginateAndPropagate;;

When running multi-step mode, although UpdatePOLFile rule does pagination,
you must still include the PaginateAndPropagate rule in your AFGJOB.JDT file, as
pagination is needed before the SetOverflowPaperTray rule executes and before the
NA and POL files are updated. Here is how the rules should be placed:

;UpdatePolfile;;

;SetOverflowPaperTray;;

;PaginateAndPropagate;;

• In duplex printing mode, the first page prints on stock from the original specified
paper tray (for instance, containing perforated paper). If an overflow condition
occurs and additional pages are printed; because you are duplexing, the first
overflow page will print on the backside of the first page (on the perforated paper).
The system redirects any additional overflow pages (pages 3, 4, and so on) to the
paper tray you specify using the OverflowPaperTray control group.

Option Description

FormName Enter the name of the form on the left and the tray you want used for the
subsequent pages on the right. To specify the tray, you can only enter trays 1-
9. See the example below.

Chapter 3
Job and Form Set Rules Reference

228

• In simplex printing mode, the first page prints on stock from the original specified
paper tray (for instance, pre-printed color letter head). If an overflow condition
occurs, additional pages are printed on stock from the redirected paper tray you
specify using the OverflowPaperTray control group.

• This rule will not work when printing in duplex mode and the first page is set as a
back page.

Example Let’s assume your FORM.DAT file specifies duplex printing, tray 2 for all sections, and
this INI option:

< OverflowPaperTray >

UtilBill = tray4

This tells the system to use stock from tray 2 to print the first two pages (duplex) and
stock from tray 4 for the subsequent pages 3 and 4 (duplex). Here are examples of the
FORM.DAT and POLFILE.DAT files:

FORM.DAT file:

;RP10;CIS;UtilBill;Utility;N;;\

 billhdrp|FDLONX <Customer(1)>/\

 billsum |RDLS <Customer(1)>/\

 billftr |RDLS <Customer(1)>/\

 billrwtr|RDLS <Customer(1)>/\

 billsere|RDLS <Customer(1)>/\

 billstbr|RDLS <Customer(1)>/\

 billrswr|RDLS <Customer(1)>/\

 billcwt3|RDLS <Customer(1)>/\

 blchart |RDLS <Customer(1)>;

POLFILE.DAT file:

;RP10;CIS;UtilBill;Utility;R;;\

 billhdrp|FDLONX <Customer>/\ page 1 - from Lower/tray 2 (L)

 billsum |RDLSN <Customer>/\

 billftr |RDLSN <Customer>/\

 billhdrp|RDLONX <Customer>/\ page 2 - from Lower/tray 2 (L)

 billrwtr|RDLSN <Customer>/\

 billsere|RDLS <Customer>/\

 billstbr|RDLSN <Customer>/\

 billhdrp|RD4ONX <Customer>/\ page 3 - from tray 4 (4)

 billrswr|RDLSN <Customer>/\

 billcwt3|RDLSN <Customer>/\

 billhdrp|RD4ONX <Customer>/\ page 4 - from tray 4 (4)

 blchart |RDLS <Customer>;

\ENDDOCSET\ BillHead

Here is a simplex printing example:

Assume your FORM.DAT file specifies simplex printing, lower/tray 2 for all sections,
and this INI control group:

< OverflowPaperTray >

InsurBill = tray4

This tells the system to use the stock from tray 2 to print the first page and stock in tray
4 for the subsequent pages 2 and 3. Here are examples of the FORM.DAT and
POLFILE.DAT files:

SetOverflowPaperTray

229

FORM.DAT file:

;RP10;CIS;InsurBill;NW Company;N;;\

 insuhdr |DLONX <Customer(1)>/\

 insuintr|DLS <Customer(1)>/\

 insurate|DLOS <Customer(1)>/\

 insusign|DLS <Customer(1)>;

POLFILE.DAT file:

;RP10;CIS;InsurBill;NW Company;R;;\

 insuhdr |FDLONX <Customer>/\ page 1 - from Lower/tray 2 (L)

 insuintr|DLS <Customer>/\

 insurate|DLOS <Customer>/\

 insuhdr |FD4ONX <Customer>/\ page 2 - from tray 4 (4)

 insurate|DLOS <Customer>/\

 insuhdr |FD4ONX <Customer>/\ page 3 - from tray 4 (4)

 insusign|DLS <Customer>/\

\ENDDOCSET\ InsurHead

See also PaginateAndPropagate on page 177

WriteNAFile on page 251

WriteOutput on page 252

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

230

 SetOvFlwSym
Use this job level rule to define an overflow variable for the overflow feature for use by
the various field level rules using overflow. This rule adds the specified overflow variable
to the overflow symbols list. You must use the InitOvFlw rule before you use this rule.

Syntax ;SetOvFlwSym;;OverflowSymbol, SectionName, MaxRecords;

Example ;SetOvFlwSym;;Symbol,SectionName,10;

This example tells the system to define an overflow variable named Symbol for use with
the section named SectionName, which has a maximum records per page of 10.

Another example of this rule is:

;SetOvFlwSym;;CGDECBDOVF,Q1GDBD,5;

This example tells the system to define an overflow variable named CGDECBDOVF for
use with the form Q1GDBD, which has the maximum records per section set to five.

See also WriteOutput on page 252

InitOvFlw on page 147

ResetOvFlw on page 203

IncOvSym on page 317

OvActPrint on page 408

OvPrint on page 409

SetOvFlwSym on page 230

JDT Rules Reference on page 30

Parameter Description

OverflowSymbol Name of the overflow symbol defined in the SetOvFlwSym rule.

SectionName Name of the section that contains the fields on which overflow processing
will occur.

MaxRecords Defines the maximum number of overflow records to be processed for the
section per page of output.

SetRecipCopyCount

231

 SetRecipCopyCount
Use this form set level rule in the AFGJOB.JDT file to set the number of copies for a
particular recipient for all forms except those specified.

Syntax ;SetRecipCopyCount;;;

This rule includes these parameters:

;RULE;LEVEL;RECIPIENT,COPYCOUNT,FORM1,FORM2,...FORMn;

Where FORM1, FORM2, and FORMn are the names of the forms to exclude from the
copy count you specify using this rule.

NOTE:This rule tests to see if the parameter value is a constant number. If not, it
assumes the parameter names a GVM variable. It then uses the GVM variable to
get the copy count.

Example ;SetRecipCopyCount;;IO,,DOC016,DOC018;

;SetRecipCopyCount;;I,3,DOCERR;

See also SetRecipCopyCount2 on page 232

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

232

 SetRecipCopyCount2
Use this form set level rule in the AFGJOB.JDT file to set the copy count for a particular
recipient for all forms specified.

NOTE:Version 10.1, Patch 109 changes the way the SetRecipCopyCount2 rule handles
copy counts. Before this patch, the rule excluded the forms specified in the
rule's parameters. With this patch and in subsequent versions, this rule includes
those forms and changes the forms' copy counts.

Syntax: ;SetRecipCopyCount2;;(parameters);

You must place this rule after the BuildFormList rule in the AFGJOB.JDT file.

NOTE:This rule tests to see if the parameter value is a constant number. If not, it
assumes the parameter names a GVM variable. It then uses the GVM variable to
get the copy count.

Example ;SetRecipCopyCount2;;Customer,2,QADesc1,QADesc2,QADesc3;

The copy count for recipient, Customer, is set to two (2) for forms: QADesc1, QADesc2,
and QADesc3.

< Base Rules >

;RULStandardJobProc;;;

…

…

<Base Form Set Rules>

;RulStandardTransactionProc;;;

…

…

;BuildFormList;;;

;SetRecipCopyCount2;;CUSTOMER,2,Patch399;

…

…

See also SetRecipCopyCount on page 231

JDT Rules Reference on page 30

Parameter Description

Recipient Enter the name of the recipient for whom the copy count will be set.

Number Enter the number you want to set the copy count to.

Name Enter the name of the forms for which the copy count should be set. If you have
multiple forms, separate each name with a comma.

SortBatches

233

 SortBatches
Use this job level rule to sort RCB batches before they are printed. This rule provides a
way for you to call an external sort program to rearrange the order of the recipient batch
files (RCB files).

NOTE:The SortBatches rule is not available for z/OS implementations.

Syntax ;SortBatches;;;

The SortBatches rule provides two ways to sort batches:

• Single key

This is the default sort for running under Windows. This sort command uses the
Windows command line sort and builds an RCB file with a prepended sort key. Use
this method if the external sort program uses a single sort field.

• Multiple keys

Use this method when you need to create a sort command with a repeating pattern
for each sort field.

NOTE:Sorting with multiple keys is not available for the Windows platform.

Depending on the size of the recipient batch file, performance can be affected. The
larger the input file, the slower the performance.

The SortBatches rule performs the required initial logic before the main job execution
and executes the external sort program after execution. Place this rule immediately
before the JobInit1 rule in your AFGJOB.JDT file, as shown here:

;RULStandardJobProc;;Always the first job level rule;

;SetErrHdr;;***:--;

...

;SortBatches;;;

;JobInit1;;;

Specifying Key fields
Define the key fields for the sort in SortBatches control group. Any field defined in the
RCB DFD file can be used as a sort field. Each batch can have its own sort fields defined.
You can also define a default sort (“SortDefault)”. If you do not define a default sort,
you must define a sort for each batch file written.

Here is the format of a SortBatches INI entry:

Batch Abbreviation = Field Name (A or D; Ascending or Descending)

Separate field references with semi-colons (;).

Here is an example:

< SortBatches >

Chapter 3
Job and Form Set Rules Reference

234

SortDefault = ACCOUNT_NUMBER(A);COMPANY(A);FEAT_DESCR (A)

RegPrt = FEAT_DESCR(A);ACCOUNT_NUMBER(A)

In this example, the batch RegPrt will be sorted by CUSTOMER_NAME,
FEAT_DESCR and ACCOUNT_NUMBER. All other batches will be sorted by
COMPANY, FEAT_DESCR and ACCOUNT_NUMBER.

Sorting with a Single Key
To make it easier to set up and to support external sorts with only one key, a sort file
with the with single key prepended is written and sorted by the external sort program
when you use the BuildSortKey option. The batch file is written in the specified order
without the prepended keys. The descending option (d) does not work with an external
sort that does not support binary sorting.

Here is an example of how to set up your INI options for a single key sort. You specify
the format of the external sort command using the options in the SortBatchOptions
control group. This example calls the Windows command line sort:

< SortBatchOptions >

BuildSortKey = Yes

SortCommand = SORT **SourceFile** /t **WorkPath** /o
TargetFile

NOTE:The default for the BuildSortKey option is Yes on Windows and No on other
platforms.

This is the default sort for running under Windows. “**SourceFile** /t **WorkPath**
/o **TargetFile**” are replacement strings that are replaced with the appropriate values
when the command line string is created. See Replacement Strings on page 236 for a
complete list of available replacement strings.

These SortBatchOptions would produce the following sort command:

SORT .\data\REGPRT.tmp /t .\data\ /o .\data\REGPRT.wrk

Sorting with Multiple Keys
When you sort with multiple keys, the system does not use an interim file with a
prepended key. Instead it writes a temporary batch file for input into the external sort.
The SortCommand specified here calls a GNU Sort:

< SortBatchOptions >

BuildSortKey = No

SortCommand = sort -o **TargetFile** *{[[]] -k **FieldOffset**,
FieldLength }* **SourceFile**

The data between the “*{“ and “}*” (in bold) is replicated for each sort field specified
in the sort batches entry. The data between the “[[“ and “]]” is used as a field separators.

SortCommand = sort -o **TargetFile** *{[[]] -k **FieldOffset**,
FieldLength }* **SourceFile**

FieldOffset and **FieldLength** are replacement strings you can use inside a
repeating section. See Replacement Strings on page 236 for a complete list of available
replacement strings.

SortBatches

235

Given the sample INI values defined above and the sample RCB DFD file definition,
the generated sort command would appear as follows:

sort -o .\data\AGENT.wrk -k 1,22 -k 23,4 -k 27,45 .\data\AGENT.tmp

Sorting with an
OptTech Sort

OTSort by OptTech is a third-party sort utility. Here is an example of how you could
set the SortCommand options to execute OTSort with the SortBatches rule:

< SortBatchOptions >

BuildSortKey = No

SortCommand = OTSW32D **SourceFile** **TargetFile** /
S(*{[[,]]**FieldOffset**,**FieldLength**,**FieldType**,**SortType**
}*)

INI Options
You can use these INI options with this rule:

< SortBatches >

BatchFileName =

SortDefault =

< SortBatchesOptions >

BuildSortKey =

SortCommand =

LogSortCommand =

KeepOrgFile =

ZeroBasedOffsets =

< SortBatchSortTypes >

a =

b =

< SortBatchFieldTypes >

Long =

Char_Array =

Defining the sort Use the options in the SortBatches control group to specify the name of the batch file and the
fields you want to sort by.

Sorting options You specify all processing options for the SortBatches rule in the SortBatchOptions
control group.

< SortBatchOptions >

BuildSortKey =

LogSortCommand =

KeepOrgFile =

ZeroBasedOffsets =

Option Description

BatchFileName Enter the name of the batch file.

SortDefault Enter the fields you want to sort by plus A for an ascending sort or D
for a descending sort. The default is:

ACCOUNT_NUMBER(A);COMPANY(A);FEAT_DESCR (A)

Chapter 3
Job and Form Set Rules Reference

236

Overriding the sort
type

By default, the field-level sort type is written as a for ascending and d for descending.
You can override these default values using the SortBatchSortTypes control group:

< SortBatchSortTypes >

a = Replacement_Ascending_Type

d = Replacement_Descending_Type

Overriding the field
type

Field types are based on the internal field type defined in the RCB DFD (INT_TYPE).
By default their types are set to c for character fields or n for numeric fields, but you can
override these values. In the example below, fields defined as LONG have a field type of
“num” and fields defined as CHAR_ARRAY have a field type of “char”.

< SortBatchFieldTypes >

Long = num

Char_Array = char

Replacement Strings
Here is a list of the non-repeating section replacement strings:

Here is a list of the repeating section replacement strings:

Option Description

BuildSortKey Enter Yes to specify single key processing. The default on Windows is
Yes. The default on UNIX is No.

LogSortCommand Enter Yes to send a copy of the sort command and associated sort
options to the trace log file. The default is No.

KeepOrgFile Enter Yes to write the original batch files in an unmodified format. The
sorted batch files are written with an SRT extension. The default is No.

ZeroBasedOffsets Enter Yes to use zero based offsets. The default is No.

Replacement string Description

TargetFile The sort target file.

SourceFile The source file name.

Key Length The sort field length.

BeginOffset The sort field begin offset.

EndOffset The sort field end offset.

WorkPath The location for temporary file (uses DataPath).

Replacement string Description

FieldOffset The field offset in the RCB file.

FieldLength The field length.

SortBatches

237

RCB file layout Here is the RCB file layout used in these examples:

< FIELDS >

 FIELDNAME = ACCOUNT_NUMBER

 FIELDNAME = FEAT_DESCR

 FIELDNAME = COMPANY

 FIELDNAME = APPLICATION

 FIELDNAME = CUSTOMER_NAME

 FIELDNAME = TRN_Offset

 FIELDNAME = X_Offset

 FIELDNAME = NA_Offset

 FIELDNAME = POL_Offset

 ...

< FIELD:COMPANY >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 5

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 4

 KEY = Y

 REQUIRED = Y

< FIELD:APPLICATION >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 4

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 3

 KEY = Y

 REQUIRED = Y

< FIELD:ACCOUNT_NUMBER >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 23

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 22

 KEY = Y

 REQUIRED = Y

< FIELD:FEAT_DESCR >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 46

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 45

 KEY = N

 REQUIRED = N

< FIELD:CUSTOMER_NAME >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 37

FieldType The field type (c or n based on INT_TYPE, values can be overridden).

SortType The Sort type (a or d, values can be overridden).

Replacement string Description

Chapter 3
Job and Form Set Rules Reference

238

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 36

 KEY = N

 REQUIRED = N

...

See also JDT Rules Reference on page 30

StandardFieldProc

239

 StandardFieldProc
You must include this form set level rule in the AFGJOB.JDT file if you are running in
single-step mode. The StandardFieldProc rule should be the first field level rule in your
AFGJOB.JDT file.

This rule tells the system to process each field on all of the sections triggered by the
SETRCPTB.DAT file.

NOTE:If you use StandardFieldProc in your AFGJOB.JDT file, you must also include
the WriteNAFile rule.

This rule is used in single-step processing. The RULStandardFieldProc rule is
used in multi-step processing.

Syntax ;StandardFieldProc;;;

There are no parameters for this rule.

If the field has not yet been loaded, this rule loads it and then determines what type of
field it is. If the field is not a text area, this rule sets the field data. If field is not a bar
code or a text area, the rule sets field text.

If the field is a bar code, this rule validates and stores the bar code data. If there is an
error with the data, the system writes a warning message to the error file, sends the
transaction to the manual batch and continues the processing run.

Example ;StandardFieldProc;;;

See also Single-Step Processing on page 7

WriteNAFile on page 251

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

240

 StandardImageProc
This rule is a form set level rule which you must include in the AFGJOB.JDT file. This
rule is used when you are using running in single-step mode and should be the first
section level rule.

This rule tells the system to process each section triggered by the SETRCPTB.DAT file.

NOTE:This rule is used in single-step processing. The RULStandardImageProc rule is
used in multi-step processing.

Syntax ;StandardImageProc;;;

There are no parameters for this rule.

This rule sets the next section. If there are no more sections, the system returns the
message; msgNO_MORE_IMAGES.

If an error occurs, the system writes the following message in the error file and returns
an error code:

Error in StandardImageProc(): Unable to SetNextImage(pRPS).

If it finds another section, the rule checks to see if the section has a corresponding DDT
file and, if so, loads into memory the section and field rules included in that file.

Example ;StandardImageProc;;;

See also Single-Step Processing on page 7

JDT Rules Reference on page 30

TicketJobProc

241

 TicketJobProc
Use this job level rule to run Documaker Server from another application by providing
an XML job ticket. The results are returned in an XML job log file. The layout of these
XML files is the same as those used by Docupresentment to run Documaker.

Specify the name of the job ticket to the GenData program on the command line using
this parameter:

/jticket=

The default is JOBTICKET.XML. To prevent the job ticket file from being removed
once the system finishes processing, include this INI option:

< Debug >

TicketJobProc = Yes

Specify the name of the resulting job log file using this command line parameter:

/jlog=

The default is JOBLOG.XML.

Syntax ;TicketJobProc;;;

There are no parameters for this rule. You must include this rule as the first job level
rule in the AFGJOB.JDT file. This rule replaces the RULStandardJobProc rule.

NOTE:Documaker must be set up in single step mode. Only the GenData program is
executed.

For a single-transaction job process, you receive recipient information if you have this
option set:

< PrintFormset >

MultiFilePrint = No

Example ;TicketJobProc;;;

See also RULStandardJobProc on page 212

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

242

 TranslateErrors
Use this rule to extract error information from the message file and translate it into an
error file using the message INI file, named TRANSLAT.INI, with group standard as the
translation key. The system reads errors from the MSGFILE.DAT file, translates them,
and places the translated error messages in the ERRFILE.DAT file.

NOTE:Using this rule can slow processing by creating additional tasks for the system
to perform at the end of the processing cycle.

Syntax ;TranslateErrors;;;

Example ;TranslateErrors;;;

See also JDT Rules Reference on page 30

UpdatePOLFile

243

 UpdatePOLFile
Use this form set level rule to write the names of the forms to the POLFILE.DAT file.
This list of forms, and the sections that comprise those forms, is sometimes called the
POL set.

NOTE:Do not use this rule when you are doing 2-up printing on AFP printers. In that
situation, you use the PaginateAndPropagate and WriteOutput rules instead.

Do not use this rule when you use the GenData program by itself to execute the
GenTrn, GenData, and GenPrint steps.

Syntax ;UpdatePOLFile;;;

This rule writes the POL set to the POLFILE.DAT file, deletes the duplicate form set,
updates the TRN file, and updates the recipients.

Example ;UpdatePOLFile;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

244

 UseXMLExtract
Use this form set level rule when the extract list loaded by the transaction is also the
source of the XML tree.

NOTE:The extract list and the XML tree are separate items. Even if you are only using
an XML file as the source of the transaction, there will be two copies of the
information in memory — one as the extract list and one as the XML tree.

If you are running Documaker from IDS, use the ImportXMLExtract rule to
bring in XML in standard Documaker XML format, such as from Documaker
workstation or iDocumaker. Use the UseXMLExtract rule to convert a loaded
extract file into an XML tree, which you can then use to query data.

Syntax ;UseXMLExtract;;

Each XML transaction must begin with the XML declaration. The system assumes each
transaction is a separate entity and requires that each transaction begin with an XML
declaration.

Keep in mind that you will not be able to load this appended file as one large XML file.
The system does not load the entire file before it processes the first transaction. Instead,
it loads one transaction and then processes that transaction. Make sure there are line
feeds between transactions. The line feed requirement is not an XML issue, but rather
tells the system where one transaction ends and the next begins.

You place the rule in different locations in the AFGJOB.JDT file, depending on the
mode in which you are running. For multi-step mode, place the XMLFileExtract rule
after the LoadExtractData rule, as shown here:

;LoadExtractData;;

;UseXMLExtract;;;

For single or two-step mode, place the XMLFileExtract rule after the
NoGenTrnTransactionProc rule, as shown here:

;NoGenTrnTransactionProc;;

;UseXMLExtract;;;

Remember that the system decides whether to search the extract list or the XML tree by
checking to see if the search mask starts with an exclamation mark (!). The exclamation
mark indicates that this is an XML path string. The system ignores the exclamation mark
when it performs the XML path search.

To preserve the space when mapping data, use two exclamation marks (!!). Otherwise,
the system assumes it should remove the leading white space.

Use these INI options with this rule:

• In the TRN_File control group, set the MaxExRecLen option to the optimal read
size for your system. If you set this too large, it will consume too many resources.
If you set it too small, it will perform too many reads. Check with your system
administrator for guidance on setting this option.

< TRN_File >

MaxExRecLen =

UseXMLExtract

245

• In the Data control group, make sure the ExtrFile option points to the location of
your XML file. Here is an example:

< Data >

ExtrFile = .\extract\Sample.xml

• In the ExtractKeyField control group, set the SearchMask option as shown here:

< ExtractKeyField >

SearchMask = 1,<?xml

• In the RunMode control group, include the XMLExtract option as shown here:

< RunMode >

XMLExtract = Yes

• When running NoGenTrnTransactionProc (single or two-step mode) and the INI
option is set to load the XML file, so there is no need to place XMLFileExtract rule
in the AFGJOB.JDT file. Doing so makes the system load the XML file twice.

Mapping Fields
You can map TRN_Fields fields using the Ext2GVM rule or by using XPath.

Using Ext2GVM When you use the Ext2GVM rule to get key information, make sure you only include
the Key1, Key2, and KeyID options it the TRN_Fields control group. Set these options
to dummy data, because the GVM variables are set to the data values during GenData
processing.

To re-map these values from the global variables you get using Ext2GVM rule to the RPS
structures (GroupName1, GroupName2, and GroupName3), include this rule in the
AFGJOB.JDT file:

ResetDocsetNames;;ConvertBeforeReset;

The ConvertBeforeReset parameter gets the GroupName values from global memory
and converts them to the long values using the Key1Table and Key2Table control
groups.

Here is an example of the INI options:

< TRN_File >

Company = 3,3,N

LOB = 3,3,N

PolicyNum = 3,3,N

Here is an excerpt from the AFGJOB.JDT file:

;Ext2GVM;;!/Forms/Key1 1,10,Company;

;Ext2GVM;;!/Forms/Key2 1,15,LOB;

;Ext2GVM;;!/Forms/PolicyNum 1,12,PolicyNum;

;ResetDocsetNames;;ConvertBeforeReset ;

Using XPath When you use XPath to map to the fields in the TRN_Fields control group, be sure to
place an exclamation mark (!) in front of the XPath. Here is example:

< TRN_Fields >

Company = !/Forms/Key1

LOB = !/Forms/Key2

PolicyNum = !/Forms/PolicyNum

Chapter 3
Job and Form Set Rules Reference

246

RunDate = !/Forms/RunDate;DM-4;D4

The format for the options in the TRN_Fields control group is:

(Field in the transaction DFD file) = XPath;Field Format

Although the exclamation mark (!) is not part of the actual search routine, the XML path
search must begin with an exclamation mark. Do not specify whether a field is a key.
The system does not support a multiple (search) keys with the XML implementation.

To selectively exclude transactions, place the XPath with a leading exclamation mark of
what you want to exclude in your exclude file. Here is an example:

!/Forms[PolicyType="OLD"]

Overflow in XML
Here is how overflow works in XML. First, the system scans the search text to see if a
replacement is needed for the overflow value. Here is one approach:

@GETRECSUSED,IMAGE1,STARS/!/Forms/Form/Car[****]/Driver

The system inserts the current overflow value, then performs the actual XML search for
the requested XPath.

With the following approach, you can omit the use of @GETRECSUSED to declare
which overflow variable to use and instead include the overflow name directly into the
XPath, as shown here:

!/Forms/Form/Car[**INDEX**]/Driver

This method lets you support overflow within overflow.

Be aware that with either method, you still have to declare and use the overflow variables.
The difference is that for the second method [**OverFlowSymbol**], the form name has
to be XML, while for the first example [****], the form name is the actual name of the
section for which you created the overflow symbol.

Also, remember to include the IncOvSym rules at the section level to increment the
values to the next index. When doing overflow within overflow, you may also have to
include an additional dummy section to do the IncOvSym for the symbol that
represents the outer-most loop index.

See also Ext2GVM on page 94

LoadExtractData on page 156

IncOvSym on page 317

XMLFileExtract on page 256

JDT Rules Reference on page 30

WIPFieldProc

247

 WIPFieldProc
Use this form set level rule in place of the RULStandardFieldProc or StandardFieldProc
rule in the AFGJOB.JDT file when you are using GenData WIP Transactions Processing.
Using this rule tells the GenData program to bypass normal field processing.

NOTE:You cannot include in the AFGJOB.JDT file this rule and the
RULStandardFieldProc or StandardFieldProc rule.

These other rules are also used when you run WIP Transaction Processing:

• WIPTransactions – This rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rules in the AFGJOB.JDT file. This rule starts GenData
WIP Transaction Processing at the form set level. It also identifies the status codes
for the transactions in the WIP file that are processed. The status codes can be a
subset or all of the status codes identified on the MergeWIP rule or none.

• GVM2GVM - This rule copies GenData execution data from the Trigger2WIP INI
control group.

• WIPImageProc – This rule replaces the RULStandardImageProc or
StandardImageProc rule.

• MergeWIP - This rule initializes GenData execution of WIP Transaction Processing
at the job level. It creates a memory list and adds the transactions from the WIP file
that match the status codes in its parameters.

Using these rules in a simplified AFGJOB.JDT file and with appropriate INI files,
GenData WIP transaction processing adds the transactions from a WIP file to a
transaction memory list. It then processes the transactions from the memory list,
appending the data from the WIP file to the MRL recipient batch, NewTrn, NA, and
POL files. If these files do no exist, it creates them. Each transaction in the memory list
is deleted from the WIP file after it is processed.

Syntax ;WIPFieldProc;;;

There are no parameters for this rule.

Example ;WIPFieldProc;;;

See also GVM2GVM on page 110

MergeWIP on page 165

WIPImageProc on page 248

WIPTransactions on page 249

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

248

 WIPImageProc
Use this form set level rule in place of the RULStandardImageProc or
StandardImageProc rule in the AFGJOB.JDT file when you are using GenData WIP
transactions processing. Using this rule tells the GenData program to bypass normal
section processing.

NOTE:You cannot include in the AFGJOB.JDT file this rule and the
RULStandardImageProc or StandardImageProc rule.

These other rules are also used when you run WIP Transaction Processing:

• WIPTransactions – This rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rules in the AFGJOB.JDT file. This rule starts GenData
WIP Transaction Processing at the form set level. It also identifies the status codes
for the transactions in the WIP file that are processed. The status codes can be a
subset or all of the status codes identified on the MergeWIP rule or none.

• GVM2GVM - This rule copies GenData execution data from the Trigger2WIP INI
control group.

• MergeWIP - This rule initializes GenData execution of WIP Transaction Processing
at the job level. It creates a memory list and adds the transactions from the WIP file
that match the status codes in its parameters.

• WIPFieldProc – This rule replaces the RULStandardFieldProc or StandardFieldProc
rule.

Using these rules in a simplified AFGJOB.JDT file and with appropriate INI files,
GenData WIP Transaction Processing adds the transactions from a WIP file to a
transaction memory list. It then processes the transactions from the memory list,
appending the data from the WIP file to the MRL recipient batch, NewTrn, NA, and
POL files. If these files do no exist, it creates them. Each transaction in the memory list
is deleted from the WIP file after it is processed.

Syntax ;WIPImageProc;;;

There are no parameters for this rule.

Example ;WIPImageProc;;;

See also GVM2GVM on page 110

MergeWIP on page 165

WIPFieldProc on page 247

WIPTransactions on page 249

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

WIPTransactions

249

 WIPTransactions
Use this form set level rule to process WIP transactions (manually approved or rejected
in Documaker Workstation) in place of the RULStandardTransactionProc or
NoGenTrnTransactionProc rules.

This rule processes WIP transactions and places them into batch files for GenPrint and
GenArc processing. To specify which transactions, you use codes which you define in
the Status_CD control group. If a WIP transaction has a status code that is not among
the list of codes to be processed, the system deletes the transaction and WIP file.

The parameters for this rule are the status codes for which the user needs to process WIP
transactions. The codes are located in the Status_CD control group. If you are using
more than one status code, separate the codes with commas, as shown here:

Approved,Accepted

NOTE:Do not use this rule with the RULStandardTransactionProc or
NoGenTrnTransactionProc rule.

The following rules are also used with this rule:

• MergeWIP - specifies the codes to look for

• GVM2GVM - copies the data from one GVM variable to another

• WIPImageProc - used in place of RULStandardImageProc or StandardImageProc

• WIPFieldProc - used in place of RULStandardFieldProc or StandardFieldProc

Using these rules in a simplified AFGJOB.JDT file and with INI options, you can input
or merge WIP transactions (manually approved or rejected in Documaker Workstation)
into a GenData processing run as new data or data appended to an existing GenData
processed MRL (one that already has NEWTRN.DAT, NAFILE.DAT, and
POLFILE.DAT files). These new or merged transactions can then be printed, archived,
or both.

For instance, a typical use of these rules would is to take the results of a GenData run
(NEWTRN.DAT, NAFILE.DAT, POLFILE.DAT, and print batch files) and process
those files using the GenWIP program. You then open in the Documaker Workstation
transactions sent to WIP and manually approve or reject them. Next, you run those WIP
transactions (form sets) through the GenData process. The result is files ready for the
GenPrint and GenArc programs.

Syntax ;WIPTransactions;;StatusCode1,StatusCode2,...;

Use the StatusCode parameters to define the status codes you want the system to use as it
selects the WIP transactions to process.

After a transaction is processed, the system deletes it from the WIP list.

If you include a slash (/) before the StatusCode parameter, it tells the system not to
delete the transactions with that status after it processes then, but instead assign them a
new status. Here is an example:

;WIPTransactions;;APPROVED,FINAL,/PRINTED;

Chapter 3
Job and Form Set Rules Reference

250

In this example, the slash (/) tells the system to process WIP transactions with an
APPROVED or FINAL status and then change their status to PRINTED. The WIP
transactions are not deleted.

Example ;WIPTransactions;;Approved;

Here is an example of how to define the codes in the Status_CD control group:

< Status_CD >

Approved = AP

Rejected = RJ

If the batch system does not need to process transactions with a certain code, such as
Rejected, omit that code from the parameter list for this rule. When the system encounters
a code not on the list, it deletes that transaction.

See also GVM2GVM on page 110

MergeWIP on page 165

WIPFieldProc on page 247

WIPImageProc on page 248

GenData WIP Transaction Processing on page 9

Changing the WIP Status on page 168

JDT Rules Reference on page 30

WriteNAFile

251

 WriteNAFile
Use this form set level rule to append the NAFILE.DAT file data records for the current
form set into an existing NAFILE.DAT file.

When you use the NoGenTrnTransactionProc rule, which replaces the
RULStandardProc rule in the performance JDT, you must include the WriteNAFile rule
to write the data (records) to the NAFILE during the GenData step.

In addition, you must also include the WriteOutput rule to write the data (records) to
the POLFILE.DAT and NEWTRN.DAT files during the GenData step.

Syntax ;WriteNAFile;;;

There are no parameters for this rule.

Example ;WriteNAFile;;;

If an error occurs, the system returns this message:

Error in WriteNaFile: Unable to PurgeOutput(pRPS).

See also WriteOutput on page 252

SetOutputFromExtrFile on page 224

NoGenTrnTransactionProc on page 171

Single-Step Processing on page 7

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

252

 WriteOutput
Use this form set level rule to create the POL file when executing single and two-step
processing.

You also use this rule when you are using the GenData program by itself to execute the
GenTrn, GenData, and GenPrint processing steps.

Syntax ;WriteOutput;;;

NOTE:If you use this rule, do not use the UpdatePOLFile rule.

Example ;WriteOutput;;;

See also Rules Used for 2-up Printing on page 27

UpdatePOLFile on page 243

SetOutputFromExtrFile on page 224

Single-Step Processing on page 7

JDT Rules Reference on page 30

WriteRCBFiles

253

 WriteRCBFiles
Use this form set level rule to create the recipient batches when running in two-step
mode. This mode is similar to single-step processing but omits the PrintFormset rule
and instead uses the GenPrint program.

NOTE:Studio includes the WriteRCBFiles rule in the default AFGJOB.JDT file that
Test manager produces.

Syntax ;WriteRCBFiles;;;

There are no parameters for this rule.

Example ;WriteRCBFiles;;;

Here is an example of a AFGJOB.JDT file you could use:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;WriteRCBFiles;2;;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

;BatchingByRecipINI;2;;;

;SetOutputFromExtrFile;2;35,FILENAME 47,128,PDFNAME;

;WriteOutput;2;;

;WriteNaFile;2;;

;ProcessQueue;2;PostPaginationQueue;

;PaginateAndPropagate;2;;

Be sure to include the WriteOutput and WriteNAFile rules.

See also SetOutputFromExtrFile on page 224

WriteNAFile on page 251

WriteOutput on page 252

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

254

 WriteRCBWithPageCount
Use this form set level rule to write the page count for each recipient. This rule is
typically use for handling 2-up printing on AFP and compatible printers. This rule is
also used for multi-mail processing.

Syntax ;WriteRCBWithPageCount;;;

There are no parameters for this rule.

You must include the following data in your RCBDFDFL.DFD file when you use this
rule:

< Fields >

....

....

FieldName = CurPage

FieldName = TotPage

FieldName = AccumPage

......

......

< FIELD:CurPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

< FIELD:TotPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

< FIELD:AccumPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

Example ;WriteRCBWithPageCount;;;

This rule gets a pointer to the global variable NA_Offset. If the pointer is NULL, the
system returns this message to the error file:

Error in WriteRCBWithPageCount: RCB field NA_Offset not found.

The rule then assigns the pointer it retrieved to the pRPS->POL_Offset and gets a handle
to the print batch list. It then loops through this list to free the contents of the
corresponding PRINT_BATCH structure if that print batch has been assigned a
recipient.

The rule then checks the handle to the counter list. This handle is a global handle created
by the PageBatchStage1InitTerm rule. If the handle is equal to VMMNULLHANDLE,
the system returns this message to the error file:

Error in WriteRCBWithPageCount: PageBatchStage1InitTerm has not been
called

JDT Rules Reference

255

The rule then checks the handle to the list of transaction records for the current batch.
This handle is a global handle also created by the PageBatchStage1InitTerm rule. If this
handle is equal to VMMNULLHANDLE, the system returns this message to the error
file:

Error in WriteRCBWithPageCount: PageBatchStage1InitTerm has not been
called

The rule then sets recipient page counts. If an error occurs, the system returns this
message to the error file:

Error in WriteRCBWithPageCount:Failed to set recipient page counts

Next, the rule gets the handle of the global recipient list for the current form set and
loops through the recipient list to add page counts to the GVM. The rule also gets the
pointer to global variable TotPage. If this pointer is NULL, the system returns this
message to the error file:

Error in WriteRCBWithPageCount: RCB field TotPage not found

Then rule then gets the handle to the print batch and recipient lists and loops through
these lists. Finally, the rule loops through the list of page counts. If it cannot get the
handle to the given page count, the system returns this message to the error file:

Error in WriteRCBWithPageCount: Cannot locate batch <Batch Name>.

See also Rules Used for 2-up Printing on page 27

BatchByPageCount on page 48

BatchingByPageCountINI on page 50

PageBatchStage1InitTerm on page 176

SetOutputFromExtrFile on page 224

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

256

 XMLFileExtract
Use this form set level rule when the extract list loaded by the transaction contains the
name of an external file source for the XML tree.

NOTE:The extract list and the XML tree are separate items. Even if you are only using
an XML file as the source of the transaction, there will be two copies of the
information in memory — one as the extract list and one as the XML tree.

Syntax ;XMLFileExtract;;parameter;

For the parameter, you can use one of the following:

• FILE=<filename>

Where filename is the name of the XML file, including path information.

• INI=group,option

Where group and option are defined in the INI files

• SCH=offsetofmask,<searchmask> offsetofdata,lengthofdata

• GVM=<globalvariablename>

Where globalvariablename is the name of a GVM that contains the file name.

Here are examples of how you can use this rule:

;XMLFileExtract;2;FILE=SAMPCO.XML;

;XMLFileExtract;2;INI=Group,Option;

;XMLFileExtract;2;SCH=11,FILENAME 20,20;

;XMLFileExtract;2;GVM=FileNameVar;

Keep in mind...

• Begin each XML transaction with the XML declaration.

• In the RunMode control group, set the XMLExtract option as shown here:

< RunMode >

XMLExtract = Yes

• You place the rule in different locations in the AFGJOB.JDT file, depending on the
mode in which you are running. For multi-step mode, place the XMLFileExtract
rule after the LoadExtractData rule, as shown here:

;LoadExtractData;;

;XMLFileExtract;2;FILE=SAMPCO.XML;

Parameter Description

offsetofmask the offset of the search mask

offsetofdata the offset where the path and the file name start

lengthofdata the length of the file name

JDT Rules Reference

257

For single or two-step mode, place the XMLFileExtract rule after the
NoGenTrnTransactionProc rule, as shown here:

;NoGenTrnTransactionProc;;

;XMLFileExtract;2;FILE=SAMPCO.XML;

• Remember that the system decides whether to search the extract list or the XML tree
by checking to see if the search mask starts with an exclamation mark (!). The
exclamation mark indicates that this is an XML path string. The system ignores the
exclamation mark when it performs the XML path search.

To preserve the space when mapping data, use two exclamation marks (!!).
Otherwise, the system assumes it should remove the leading white space.

• When running NoGenTrnTransactionProc (single or two-step mode) and the INI
option is set to load the XML file, so there is no need to place XMLFileExtract rule
in the AFGJOB.JDT file. Doing so makes the system load the XML file twice.

Mapping Fields
You can map the fields listed in the TRN_Fields control group using either offset/
length, XPath, or a combination of both methods. In the RunMode control group, be
sure to set these INI options:

Here is an example:

< RunMode >

XMLExtract = Yes

XMLFileExtract = Yes

XMLFileExtractName = SCH=1,XML 20,60

Also set the TRN_Fields options as shown in this example:

< TRN_Fields >

Company = !/Forms/Key1

PolicyNum = !/Forms/PolicyNum

RunDate = !/Forms/RunDate;DM-4;D4

LOB = 30,15,N

Cust_Name = 46,30,N

The format for the options IN the TRN_Fields control group is:

(Field in the transaction DFD file) = XPath;Field Format

(Field in the transaction DFD file) = offset, length, Key;Field Format

Option Description

XMLExtract Enter Yes to tell the system you are using the XML file.

XMLFileExtract Enter Yes to tell the system your extract file contains a list of
pointers pointing to the XML file to be processed.

XMLFileExtractName Use this option to tell the system how to find your XML file. Enter
the method you use to point to your XML file. This should be
exactly the same as how you would set up the rule parameter for the
XMLFileExtract rule in your AFGJOB.JDTfile.

Chapter 3
Job and Form Set Rules Reference

258

An XML path search must begin with an exclamation mark (!). The exclamation mark is
not part of the actual search routine. Do not specify whether a field is a key. The system
does not support a multiple (search) keys with the XML implementation.

To selectively exclude transactions, use either an offset/SearchMask, the XPath, or a
combination of the two in your exclude file. Here is an example:

!/Forms[PolicyType="OLD"]

20,ABC

Overflow in XML
Here is how overflow works in XML. First, the system scans the search text to see if a
replacement is needed for the overflow value. Here is one approach:

@GETRECSUSED,IMAGE1,STARS/!/Forms/Form/Car[****]/Driver

The system inserts the current overflow value, then performs the actual XML search for
the requested XPath.

With the following approach, you can omit the use of @GETRECSUSED to declare
which overflow variable to use and instead include the overflow name directly into the
XPath, as shown here:

!/Forms/Form/Car[**INDEX**]/Driver

This method lets you support overflow within overflow.

Be aware that with either method, you still have to declare and use the overflow variables.
The difference is that for the second method [**OverFlowSymbol**], the form name has
to be XML, while for the first example [****], the form name is the actual name of the
section for which you created the overflow symbol.

Also, remember to include the IncOvSym rules at the section level to increment the values
to the next index. When doing overflow within overflow, you may also have to include an
additional dummy section to do the IncOvSym for the symbol that represents the outer-
most loop index.

See also LoadExtractData on page 156

IncOvSym on page 317

UseXMLExtract on page 244

JDT Rules Reference on page 30

259

Chapter 4

Adding Section and Field
Rules

This chapter discusses adding section and field level
rules. These rules link the section's variable fields to
external data.

NOTE:You create variable fields using Documaker
Studio. For more information, see the
Documaker Studio User Guide.

The section and field level rules are executed during data
generation and merger procedures. This occurs in
Documaker Server.

In this chapter you will find information about:

• Storing Rule Information on page 260

• Formatting Data on page 261

• Search Criteria on page 273

• Overflow and User Functions on page 274

For reference information on individual rules, see
Section Rules Summary on page 276 and Section Rules
Summary on page 276.

Chapter 4
Adding Section and Field Rules

260

STORING RULE
INFORMATION

Documaker Studio stores sections in a FAP file, along with the section and field rule
assignments you assign to it. This differs from the way rule information was stored
using the older document creation tool, Image Editor.

Image Editor stored sections in a FAP file which only contain the section’s objects and
object attributes. The Image Editor stored section and field rule assignments in a separate
file, called a data definition table (DDT) file. While DDT files originally offered high
performance, advanced formatting needs made it necessary for the FAP files to be
available at runtime to handle dynamic composition.

With the release of version 11.0 and the introduction of Documaker Studio’s FOR file,
section and field-level rules previously stored in the DDT file are, in Studio
implementations, either unnecessary or are stored in the FAP file. Having section level
rules (such as SetOrigin) in the FOR file makes it easier to do visual form design. Having
field level rules in the FAP file eliminates synchronization issues.

NOTE:With the release of version 12.0, support for Image Editor and other legacy
development tools ended.

Formatting Data

261

FORMATTING
DATA

The system provides several ways to format dates and numbers using the FmtDate,
RunDate, SysDate, DateFmt, and FmtNum rules. The system includes several pre-
defined formats from which you can choose and you can set up format arguments to handle
any special needs.

The following topics explain your options.

NOTE:The DateFmt rule accepts a mask which includes an input and an output format.
See DateFmt on page 361, for more information.

USING PRE-DEFINED DATE FORMATS

In this example...

d,"1/4",

…the d indicates it is a date format, as opposed to a number format (n). The first digit (1)
indicates the date format (MM/DD/YY). The forward slash (/) indicates the separator
character (/) and the third digit (4) indicates the number of digits in the year. See
DateFmt on page 361 for the complete list of date formats.

NOTE:Because of year 2000 considerations, use four-digit years.

In cases where you do not need a separator, such as format 4 or B, you can specify the
date as “4/2” for format 4 with a two-digit year. The system ignores the slash (/).

NOTE:This example shows the date format as it looks in the FAP file. The easiest way
to enter date formats is through Studio, on the field’s Properties window.

Studio will then create the date format in the FAP file for you.

Choose Date Format in the Type
field. Then choose the date
format you want.

Chapter 4
Adding Section and Field Rules

262

When you choose Date Format as the type, you can choose from this list of date formats.
The table also shows the corresponding date format code Studio creates in the FAP file:

In the Format field,
select this format

To see this code
in the FAP file

To get dates formatted as shown below (all
examples are for January 2, 2013)

MM/DD/YY 1 01/02/13 (default)

DD/MM/YY 2 02/01/13

YY/MM/DD 3 13/01/02

Month D, Yr 4 January 2, 2013

M/D/YY 5 1/2/13

D/M/YY 6 2/1/13

YY/M/D 7 13/1/2

bM/bD/YY 8 1/ 2/13 (space before 1/ and 2/)

bD/bM/YY 9 2/ 1/13 (space before 2/ and 1/)

YY/bM/bD A 13/ 1/ 2

MMDDYY B 010213

DDMMYY C 020113

YYMMDD D 130102

MonDDYY E Jan0213

DDMonYY F 02Jan13

YYMonDD G 13Jan02

DAY/YY H 002/13

YY/DAY I 13/002

D Month, Yr J 02 January, 2013

Yr, Month D K 2013, January 02

Mon-DD-YYYY L Jan-02-2013

DD-Mon-YYYY M 02-Jan-2013

YYYY-Mon-DD N 2013-Jan-02

Mon DD, YYYY O Jan 02, 2013

DD Mon, YYYY P 02 Jan, 2013

Formatting Data

263

Here is a list of the separators you can choose from in the Separators field on the
Attributes tab of the variable field’s Properties window.

In the Year Size field on the Attributes tab of the variable field’s Properties window, you
can choose from these options...

YYYY, Mon DD Q 2013, Jan 02

(hexadecimal) X Eight-character hexadecimal representation
of the system date. Valid dates range from 12/
31/1969 to 01/18/2038. Valid dates may
differ depending on the type of machine (PC
or host) and the type of CPU chip.

These date formats affect processing in Documaker Workstation, not Documaker Server.

In the Separator field, choose... To use this character as the separator...

00/00/00 (default) / (a slash appears in the FAP file)

00-00-00 - (a dash appears in the FAP file)

00.00.00 . (a period appears in the FAP file)

00,00,00 , (a comma appears in the FAP file)

00 00 00 blank (a “b” appears in the FAP file)

To use... Select...

A two-digit year such as 01/01/13 (use only if
the year is in current century)

2 (a “2” appears in the FAP file)

Only a two-digit year such as 01/01/13 (if you
enter anything other than a two-digit year,
you will receive an error)

3 (a “3” appears in the FAP file)

A four-digit year such as 01/01/2013 4 (a “4” appears in the FAP file)

Only a four-digit year such as 01/01/2013 (if
you enter anything other than a four-digit
year, you will receive an error)

5 (a “5” appears in the FAP file)

The year as entered without changing it Default (a blank space appears in the FAP file)

In the Format field,
select this format

To see this code
in the FAP file

To get dates formatted as shown below (all
examples are for January 2, 2013)

Chapter 4
Adding Section and Field Rules

264

NOTE:You can force 2-digit years when you use the FmtDate rule, even if doing so
means the date may not be interpreted correctly when it is compared to the
century cut-off date. To force a 2-digit year, you must specify the output format
as “1/3” instead of “1/2”. Here is an example:

;0;0;DRVR-BIRTH-DT;1022;8;DRVR-BIRTH-DT;0;8;d,"B4",d,"1/3";
FmtDate;5,DRVRREC01,;N;N;N;N;3367;3600;11011;

The 3 is a format mask (normally used for input) which means 2-digits and only
2-digits.

NOTE:The century cut-off date is used to determine the century for 2-digit years. This
date defaults to 50, but you can change it using this INI option:

< Control >

DateFMT2To4Year =

Anything less than or equal to the cut-off year is considered to fall in the current
century. For instance using the default of 50, 13 would be interpreted as 2013.
Anything greater than the cut-off year is considered to fall in the previous
century. For instance, again using the default of 50, 88 would be interpreted as
1988.

This is important when you have to determine the years or days between two
dates.

There is a scenario where the system overrides a 2-digit year output. This only
happens when the input has 4-digits and the output has 2-digits and the resulting
2-digit output does not yield the same results when read in again.

For instance, suppose your input is 01/01/1927 and the cutoff year is 50.
Normally any 2-digit year with a value less than 50 is considered part of the
current century. So if the system outputs the data as 01/01/27 and then tries to
read this date back in, you would get 01/01/2025 and not 01/01/1927.

The system changes its normal behavior because it is designed to be able to read
its own output and come up with the result originally provided in the original
input.

If, however, you specifically tell the system you only want two digits, you will get
that output, but the system may not be able to read it back in and get the same
results.

Formatting Data

265

USING PRE-DEFINED NUMERIC FORMATS

For numbers, you can use these format masks:

You determine whether the minus (-) or plus (+) signs appear before or after the amount
when you choose the field's format on the field’s Properties window in Studio.

When you choose the format in Studio, the system lets you choose from a list of
examples, such as:

+$ZZZZZZZZZ9.99

$$ZZ,ZZZ,ZZZ,ZZZ

$ZZZZZZZZZ9.99CR

$*ZZZZZZZZZZZ.ZZ

Suppressing decimals
with the FmtNum Rule

The FmtNum rule can use a pre-defined numeric format to suppress decimals. The
format is 0 (zero). You can only use this format after the decimal and at the end of the
value. You cannot place format code 9 or Z after you specify the zero (0) format code.

Here are some examples of how the Z format and the zero (0) format work together.

To... Use...

Place a number in that space (0-9) 9

Place any number except a zero Z

Indicate the number is an amount $

Place a currency symbol to the right of the amount (the second
$indicates which symbol)

$$

Place a minus sign (-) beside the amount if it is negative -

Place a minus (-) or plus (+) sign beside the amount +

Indicate a credit (accounting format) CR

Indicate a debit (accounting format) DB

Indicate a debit (accounting format) ()

Include an asterisk ($*999) *

Place a percent sign (%) after the number %

Format Z,ZZZ.0Z Format: Z,ZZZ.00 Format Z,ZZZ.Z0

Input = 9999.00 Input = 9999.00 Input = 9999.00

Output = 9,999 Output = 9,999 Output = 9,999

Input = 9999.90 Input = 9999.90 Input = 9999.9

Output = 9,999.90 Output = 9,999.9 Output = 9,999.9

Chapter 4
Adding Section and Field Rules

266

If you have decimals and you want to see two decimal places, you should use the first
format style shown (ZZZ.0Z). With this format style, an input value of 1.1 will yield 1.10.

If you use ZZZ.00 and input 1.1, you will get 1.1. In most cases, the values using format
Z will be displayed. However, if you are using Z,ZZZ.0Z format, Z will be suppressed if
the Z value contains zero and if the value next to the decimal is suppressed.

The values using the zero (0) format will be displayed unless it is zero. However, the zero
will be displayed if it is followed by another decimal position with a format of Z. If there
is another decimal position that follows and it has a format of zero (0) and the value is
also zero, both zeros will be suppressed along with the decimal. Lastly, if the input value
contains more decimal places than the output value, the number will be truncated.

Using the ZeroText
option with the

FmtNum Rule

Use the ZeroText option to insert text you define instead of the zero value, if the result
is zero.

Add the ZeroText option after the search mask. It should be preceded by a space. Place
the text you want to print inside quotation marks and parentheses, as shown in the
excerpt.

SETTING UP FORMAT ARGUMENTS

The FmtDate, RunDate, and SysDate rules let you design the format of the output. You
tell the system how to format the output using format arguments. Format arguments
consists of one or more codes, separated by a percent sign (%).

Characters that do not begin with a percent sign are copied unchanged to the output
buffer. This lets you include static text. Any character following a percent sign that is not
a format code is copied unchanged to the destination. For example, to include a percent
sign in the output, add two percent signs (%%).

You can enter up to 80 characters in the mask and you can use these format codes:

Input = 9999.09 Input = 9999.09 Input = 9999.09

Output = 9,999.09 Output = 9,999.09 Output = 9,999.09

Format Z,ZZZ.0Z Format: Z,ZZZ.00 Format Z,ZZZ.Z0

Code Description

%A Name of the weekday, such as Tuesday

%w Number of the weekday, (Sunday is 1, Saturday is 7)

%b Month abbreviation, such as Mar

%m Month number, (January is 1, December is 12)

%B Month name, such as November

%d Number of the day of the month (01 – 31)

Formatting Data

267

NOTE:Keep in mind the system can only work with the information it receives as input.

The formats for week, hour, minute, AM, and PM (%A,%w,%H,%I,%M,%S,
%p) are useful with the SysDate rule, but do not make sense for RunDate and
FmtDate rules since those rules seldom see week or time information as an input.

Furthermore, you would not want to use the zero suppress format option (#) on
input—especially if there are no separators in the data. For instance, the date
indicated by 010109 or 1/1/09 is clear, but 1109 could indicate several things.

%j Number of the day of the year (001 – 366)

%Y Year with the century, such as 2013

%y Year without the century, such as 13

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01 – 12)

%M Minute (00 – 59)

%S Second (00 – 59)

%p Current locale's AM/PM indicator for 12-hour clock

%@xxx xxx identifies the locale. For example, %@CAD%A might produce mardi, the
Canadian French word for Tuesday. The default locale is USD, which is US
English. Once it finds a local format, the system uses that locale until it finds
another locale indicator.

Suppress leading zeros for the following format codes. The system recognizes
this flag only with these formats:

%#d, %#H, %#I, %#j, %#m, %#M, %#S, %#w

> Uppercase the resulting text. The system recognizes this flag only with these
formats:

%>p, %>A, %>b, %>B

< Lowercase the resulting text. The system recognizes this flag only with these
formats:
%<p, %<A, %<b, %<B

<> Capitalize the first letter of the resulting text. The system recognizes this flag
only with these formats:

%<>p, %<>A, %<>b, %<>B

* - This flag only affects the format code that specifies it. Any subsequent codes that have text
are not affected unless they also include the flag.

Code Description

Chapter 4
Adding Section and Field Rules

268

For example, assume the date is 03-01-2009, which was a Monday, and the time is 11:57
am. This table shows you results using various formats.

Example Output

%m-%d-%Y 03-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 03/01/09 at 11:57 AM

%d 01

%#d 1

%A Monday

%>A MONDAY

%b Mar

%<b mar

%p AM

%<>p Am

 %A, %B %d Monday, March 01

%@CAD%A %@CAD%A, %B %d lundi, mars 01

%A, %@CAD%B %d Monday, mars 01

%@CAD%A, %@USD%B %d lundi, March 01

Formatting Data

269

FIELD FORMAT TYPES (FETYPES)
An fetype defines the field format type. You can have an input and an output fetype. For
example, an input fetype with the FmtNum rule tells the system where the decimal goes
in the number. The output fetype tells the system how to format the output amount. An
fetype can consist of either one or four characters.

NOTE:In Studio, enter this information in the Locale field on the field’s Properties
window. For the Locale field, you pick from a list of countries/languages,
instead of entering one of the codes shown in the following table. The Locale
field only appears if you chose Date Format, Numeric, or (Y)es or (N)o format
in the Type field.

The first character of an fetype defines the field format type. There are several types
defined in the system such as a d for dates and an n for numbers. You can add three
additional characters to override the default locale, which is the United States (English).
Here is a list of the currently supported localities:

For this country And this language Use this code in the FAP file:

Argentina Spanish ARS

Australia English AUD

Austria German ATS

Belgium Dutch BED

Belgium French BEF

Bolivia Spanish BOB

Brazil Portuguese BRC

Canada English CAN

Canada French CAD

Chile Spanish CLP

Columbia Spanish COP

Denmark Danish DKK

Ecuador Spanish ECS

European Union English EUR

France French FRF

Finland Finnish FIM

Germany German DEM

Chapter 4
Adding Section and Field Rules

270

Guatemala Spanish GTQ

Iceland Icelandic ISK

Indonesia Indonesian IDR

Italy Italian ITL

Ireland English IEP

Liechtenstein German CHL

Luxembourg French FLX

Luxembourg German LUF

Mexico Spanish MXN

The Netherlands Dutch NLG

New Zealand English NZD

Norway Norwegian NOK

Panama Spanish PAB

Paraguay Spanish PYG

Peru Spanish PES

Portugal Portuguese PTE

South Africa English ZAR

Spain Spanish ESP

Sweden Swedish SEK

Switzerland German CHF

Switzerland French CHH

Switzerland Italian CHI

United Kingdom English GBP

United States English USD

Uruguay Spanish UYU

Venezuela Spanish VEB

For this country And this language Use this code in the FAP file:

Formatting Data

271

FORMATTING DATA WITH THE = OPERATOR

You can include an equals sign (=) in the data area of field-level rules, such as Move_It
and MoveNum, so those rules can format data returned by the = operation.

NOTE:The system lets you use the = operator to reference GVM and DAL expressions
before it rebuilds XPath search masks.The format is as follows:

=XXX(expression)

where XXX is one of the supported ways of finding data from a symbol, such as
DAL or GVM.

This table shows your options:

Here are some examples:

=(....)

This usage Tells the system to

=() Return the contents of the DAL variable named the same as the root
name of the current source name of the current field-level rule.

=("constant") Return the value of the DAL variable that is named by the string
constant.

=GVM(variable) Return the value of the DAL variable whose name is stored in the
specified DAL variable.

=(expression) Resolve the DAL expression and use the result as the name of a DAL
variable to access and return the value

=GVM() Return the value of the GVM variable named the same as the root name
of the current source name of the current field-level rule.

=GVM("constant") Return the value of the DAL variable that is named by the string
constant.

=(variable) Return the value of the GVM variable specified by the contents of the
named DAL variable.

=GVM(expression) Resolve the DAL expression and then use the result as the name of a
GVM variable to access and return the value.

=DAL() Execute a DAL script named the same as the root name of the current
source name of the current field-level rule and return the results.

=DAL("constant") Execute the DAL script named by the string constant and return the
results.

=DAL(variable) Execute the DAL script named by the contents of the specified DAL
variable and then return the results.

=DAL(expression) Resolve the DAL expression and use the results as the name of a DAL
script to execute, and then return the results in XPATH.

Chapter 4
Adding Section and Field Rules

272

Retrieves the value of a DAL variable specified by a DAL expression

=("ABC")

Returns the contents of the DAL variable ABC.

=(ABC)

Returns the contents of some other DAL variable that is specified by the contents of the
DAL variable ABC.

=("A" & "B" & "C")

Returns the same result as the ABC example — the contents of the DAL variable ABC.

=()

This retrieves the contents of a DAL variable that is, by default, the root name of the
source name of the current field. For example, assume, the current field has destination
name MYFIELD #003 and the source name MYFIELD #003, then...

=()

Means to return the contents of the DAL variable MYFIELD. This is useful because it
lets you write general purpose XDB rules.

=DAL(...)

Returns the results returned by DAL script named by the expression. For example,
assume a DAL script named ABC.DAL contains:

MYVARIABLE = 100

RETURN(MYVARIABLE)

Then, =DAL(“ABC”) returns 100.

Formatting imported
data

The system lets you load data from a standard import file in XML, V2, or DS format.
During this process, the system creates a form set and loads the imported data onto the
fields on the appropriate forms.

To be able to use the various formatting rules when you have no extract file, include the
following rule mask symbolic lookup operators. These operators, which begin with an
equals sign (=), provide a way to access the contents of a variable field as if it were found
in an extract file. For instance...

NOTE:For more information, see also information about the @ function in the DAL
Reference.

This operator Tells the system to

=@() Return the contents of the variable field that is the same as the current
source field name.

=@(expression) Evaluate the DAL expression to get the name of the variable field and
then get its contents.

Search Criteria

273

SEARCH
CRITERIA

The GetRecord function lets the system get data records from an extract list. It searches
the extract list for particular records based on search criteria formatted as shown here:

offset,data offset,data (and so on)

The search criteria is defined by one or more pairs of offsets and data. The number of
pairs is limited by the size of the data field in a MEM_DDT_REC. All offsets are based
on the first character in a record being character 1 (base 1)—not character zero (0).

It is not necessary for offsets to increase from left to right, but it makes for better
readability. It is necessary, however, to specify your search string in the correct case.
Searches are performed in a case-sensitive manner.

Because many of the section and field rules use calls to GetRecord, search criteria is often
needed wholly or as part of the data field.

Here are some examples:

This search criteria Finds the record...

20,HeaderRec With the text HeaderRec starting at offset 20.

10,ABC 50,XYZ With ABC at offset 10 and XYZ at offset 50.

11,~ABC 25,Header That has a string starting at offset 11 which is not equal (~) to ABC
and is equal to Header at offset 25

11,(Electric,Pwr) That has a string starting at offset 11 which is equal to Electric or Pwr.

Chapter 4
Adding Section and Field Rules

274

OVERFLOW AND
USER

FUNCTIONS

Many of the rules support the use of overflow symbols and user functions which work
together. An overflow symbol can be thought of as a block of memory that holds a
counter. This counter, or overflow variable, tracks the number of records processed
which helps the system determine which record to start with after it handles an overflow
situation.

To use overflow, you must include specific data. This overflow data consists of the…

• @GetRecsUsed function

• Name of the form

• Overflow symbol

The @GetRecsUsed function is a function the rule runs to access information about a
pre-defined overflow symbol. The overflow symbol is stored with the field level rules.
You must define all overflow symbols using the SetOvFlwSym rule, which is a job level
rule stored in the AFGJOB.JDT file.

The second part is the name of a form, which is retrieved from the form file (FOR)
specified in the INI file.

The third part is the overflow symbol itself.

NOTE:The first three data items are separated by commas. These items are separated
from the rest of the data that the rule requires by a forward slash (/).

Here is an example:

@GETRECSUSED,DETAILS,Symbolnm/11,DETAILREC;N;N;N;

275

Chapter 5

Section Rules Reference

Section rules help you control how data is processed
and generated to fill a field on a form.

NOTE:This chapter serves as a reference to the section
rules. For information on the rules which
apply to fields, see Field Rules Reference on
page 341. For information on the rules which
apply to jobs and form sets, see Adding Job and
Form Set Rules on page 5.

This chapter discusses rules included in the base system
and supported by the Oracle Documaker support staff.
For information on custom rules, contact your Services
representative.

For a summary of these rules, see Section Rules
Summary on page 276.

Chapter 5
Section Rules Reference

276

SECTION RULES
SUMMARY

The following pages list and explain the various section rules you can use. The rules are
discussed in alphabetical order on the pages following this table.

NOTE:You can also see information about the section rules while using Studio when
you select the rule on the Rule Properties window.

The following table lists the rules discussed in this chapter.

When you select a rule,
information about that
rule appears here:

To… Use this rule AFGJOB Files INI Overflow

Add a page break before the system begins
processing the current section

PaginateBeforeThisImage
on page 319

no no no na

Add PDF or TIFF files as bitmap images AddMultiPageBitmap on
page 279

no yes yes na

Add sections to the current form set based on
conditions in the SETRCPTB.DAT file

SetRecipFromImage on
page 337

no yes no na

Add TIFF images contained in a single TIFF file
to a form set

* AddMultiPageTIFF on
page 288

no yes yes na

* - Indicates this is a legacy rule that may be found in older implementations.
INI - Indicates if there are INI options associated with this rule. AFGJOB - Indicates if there are AFGJOB.JDT file implications
to this rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. Overflow - Indicates
if this rule supports overflow. XML - Indicates if this rule accepts XML input.

Section Rules Summary

277

Allow a chart’s series data to be retrieved via
reference to variable fields defined on the same
section

FieldVarsToChartSeries on
page 308

no no no na

Check to see if the FAP file is loaded, and if not,
load the FAP file

* CheckImageLoaded on
page 298

no yes yes na

Create a GVM variable from fields in a section Field2GVM on page 307 no no no na

Create a temporary extract list which contains
similar records in a transaction

CreateSubExtractList on
page 303

no no no na

Create custom axis labels for a chart SetCustChartAxisLabels
on page 328

no no no na

Define the first section in a group of sections GroupBegin on page 309 no no no yes

Define the last section in a group of sections GroupEnd on page 316 no no no yes

Delete a page from a form set DontPrintAlone on page
306

no no no na

Delete a specific occurrence of a section DelImageOccur on page
305

yes no no na

Execute a DAL script PostImageDAL on page
320

yes yes no na

Execute a DAL script PreImageDAL on page
321

yes yes no na

Get data from extract records and include it as
series data in a chart

CreateChartSeries on page
302

no yes no na

Identify the segments of sections that can be
dynamically split.

CanSplitImage yes no no na

Increment an overflow variable

(AFGJOB is used in legacy implementations)
IncOvSym on page 317 no no no yes

Merge data for embedded variable fields in a text
area with text

* TextMergeParagraph on
page 339

no no yes na

Move and align field text so the data elements
are connected.

ConnectFields on page 300 no no no na

To… Use this rule AFGJOB Files INI Overflow

* - Indicates this is a legacy rule that may be found in older implementations.

INI - Indicates if there are INI options associated with this rule. AFGJOB - Indicates if there are AFGJOB.JDT file implications
to this rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. Overflow - Indicates
if this rule supports overflow. XML - Indicates if this rule accepts XML input.

Chapter 5
Section Rules Reference

278

Move sections from the current page to a page
you specify

MoveMeToPage on page
318

yes no no na

Remove a series from a chart if the series
contains no data

PurgeChartSeries on page
322

no no no na

Remove series data from the series you specify DeleteDefaultSeriesData
on page 304

no no no na

Remove the white space from between fields
(works with XML input)

RemoveWhiteSpace on
page 323

no no no na

Reset an overflow variable ResetOvSym on page 326 yes no no yes

Reset section dimensions ResetImageDimensions on
page 324

no no yes na

Set group options SetGroupOptions on
page 329

no no no yes

Set the dimensions of a section * SetImageDimensions on
page 330

no no no na

Set the section overlay/page segment X and Y
coordinates using FAP units

SetOrigin on page 331 no no no na

Set the section overlay/page segment X and Y
coordinates using inches

SetOriginI on page 333 no no no na

Set the section overlay/page segment X and Y
coordinates using millimeters

SetOriginM on page 335 no no no na

Set the send copy to variable SetCpyTo on page 327 no no no na

Span a field’s width between two other fields,
filling in with a fill character

SpanAndFill on page 338 no no no na

To… Use this rule AFGJOB Files INI Overflow

* - Indicates this is a legacy rule that may be found in older implementations.

INI - Indicates if there are INI options associated with this rule. AFGJOB - Indicates if there are AFGJOB.JDT file implications
to this rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. Overflow - Indicates
if this rule supports overflow. XML - Indicates if this rule accepts XML input.

Section Rules Summary

279

 AddMultiPageBitmap
Use this section level rule to import files as bitmap images. If the file consists of multiple
pages, the system inserts the first page on the triggering form or section. For each
subsequent page in the file, the system generates additional pages and appends them to
the form after the triggering section.

See Using the Type Option on page 284 for information on importing specific file types.

NOTE:When you use this rule with TIFF files, it performs the same task and works just
like the AddMultiPageTIFF rule. The first TIFF in the file is inserted on the
triggering form/section. Subsequent TIFF images trigger additional pages which
are appended to the form after the page which contains the first TIFF image.

Syntax AddMultiPageBitmap (Options)

For the Options parameter, this table describes your choices:

Option Description

Opt (Optional) Enter Yes to indicates this rule is optional and you do not want
error messages generated if the file naming parameters fail to produce a
valid name. The default is No.

This option lets you use multiple named parameters. The first parameter
that provides a usable file name is used.

Make this option the first rule parameter.

Use one of the following options (DAL, File, GVM, or SRCH) to specify the file name.

File(file name) Enter the name and path of the file you want to import.

See Using the File Option on page 282 for more information.

DAL(script
name)

Enter the name of the DAL script you want to execute to return the name
of the file you want to import. You must enter the name of a script file or
DAL library routine. Do not include DAL statements.

See Using the DAL Option on page 283 for more information.

SRCH(search
criteria name
data)

The name and path of the file you want to import is contained in a record
in the file specified by the ExtrFile option in the Data control group.
The search criteria are one or more comma-delimited data pairs, offsets, and
character strings, used to as the search mask to find the record in the file
you specified.
The name data is a comma-delimited data pair that defines the offset and
length of the file name in the record defined by the search criteria.

Separate the search criteria and name data by a space.
See Using the SRCH Option on page 284 for more information.

GVM(variable
name)

Enter the GVM variable name that contains the name and path of the file
you want to import. The GVM variable data is mapped by some other
means before this rule is executed.
See Using the GVM Option on page 284 for more information.

Chapter 5
Section Rules Reference

280

Embed (Optional) If you are importing TIFF or PDF files, include Embed to add
the image data into the NA file. This is necessary when the file that contains
the scanned images is temporary and you need to archive the NA/POL
information. Upon retrieval, if you have not embedded the bitmap
information directly into the form set, you will not be able to view or
reprint the original images. The default is No.

Keep in mind that embedding bitmap data can make the resulting NA file
much larger and also affects the size of the archives generated.
The Embed option is automatically set for files that are not in TIFF or PDF
format.

Only (Odd or
Even)

(Optional) By default, all images in the file are included. Only include this
option to specify that you want only the odd or even numbered images. You
can use this option to reduce the size of the output when you know blank
pages are included in the scanned images on every other page.

Choose Odd when you know that the first image is not blank. This includes
images 1, 3, 5, and so on.

Choose Even to start with the second image. This includes images 2, 4, 6,
and so on.
If you include both Only (Odd) and Only (Even), you exclude all images.

IN(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps,
in inches.

The default is position 0,0 within the image.

MM(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps,
in millimeters.
The default is position 0,0 within the image.

Top(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps,
in FAP units (2400 per inch).

The default is position 0,0 within the image.

Type Optional) If you are importing TIFF or PDF files, enter T (TIFF) or P (PDF).
If you omit this option, the system first looks for TIFF files. If it cannot
find a TIFF file, it looks for a PDF file. If the system cannot find a TIFF or
PDF file, it attempts to automatically detect the file type. Including this
option will speed processing.

You can also include this option if the target directory contains both TIFF
and PDF files. For instance, if the directory contains import1.tif and
import1.pdf, the TIFF file is included by default. If you want to include the
PDF file, use the Type option.

See Using the Type Option on page 284 for more information.

Scale(height[in|
mm],width[in|
mm])

(Optional) Use this option to resize the loaded graphics while maintaining
the aspect ratio (height to width), so the graphic fits within the provided
height and width dimensions.
If you only provide the height or width, the system sizes the graphic to fit
that dimension and automatically calculates the other dimension to
preserve the aspect ratio.
See Using the Scale Option on page 286 for more information.

Option Description

Section Rules Summary

281

Keep in mind:

• In z/OS environments, you can import TIFF files or import only the bitmap data
contained in PDF files. Under z/OS, this rule imports the bitmaps contained in the
PDF file, puts them at the position you specified with the position options (IN,
MM, or TOP) and scales them to fit the page.

Importing bitmap data from inside PDF files is useful because some fax drivers take
TIFF data and place it inside a PDF file. Therefore, by reading the bitmap data from
the PDF file, you are importing all the valuable information in that file.

• You can specify several AddMultiPageBitmap rules, but realize that each subsequent
rule reuses the document pages added by previous rules.

For instance, suppose you have declared two rules. The first has a 4-page file. The
second has a 5-page file.

After executing the two rules, there will be five pages in the form. The first four
pages will have two images each (one from the first rule and one from the second)
and the final page will contain the last image from the 5-page file.

Be aware that the placement of those bitmap images on the page can make them
overlap.

NOTE:This rule supports long file names on 32-bit Windows operating systems.

• The system supports these types of TIFF images:

• When importing TIFF or PDF files, keep in mind you can only include one of the
image positioning parameters, Top, In, or MM. The value specified is relative to the
FAP file's origin as specified by a SetOrigin rule. If there are more than one
positioning parameters, subsequent definitions override prior ones.

Crop(height[in|
mm],width[in|
mm])

(Optional) Use this option to remove all parts of the graphic that extend
beyond the specified distances from the top left corner. If you omit one of
the arguments, the graphic is not modified in that dimension.

See Using the Crop Option on page 287 for more information.

Type Description

Type 1 uncompressed

Type 2 Huffman

Type 3 CCITT group 3 FAX

Type 4 CCITT group 4 FAX

Type 5 LZW

Type 32773 Packbits

Option Description

Chapter 5
Section Rules Reference

282

If you omit the positioning parameters, the default top/left coordinate is taken from
the margin defined for the FAP file. If the FAP file is not loaded and the margins are
unknown, the default is 0,0 (aligned with the top of the image).

• For TIFF files, if either the LoadFAPBitmap option or the Embed parameter are set
to Yes, the bitmap is loaded into memory. If neither are enabled, the system opens
the file to get the bitmap size, resolution, and number or pages, but the bitmap data
is not loaded. The system then assumes all of the bitmap images are the same size as
the first image in the file.

For single step mode, set LoadFAPBitmap option to Yes.

• Use the following options to set the resolutions at which files are imported.

< BitmapLoaders >

PDFImportDPI =

WMFImportDPI =

VectorGraphicImportDPI =

Example These examples show how you can define the file to import when you use this rule.
Assume that your MRL has these sub-directories which contain these PDF files:

Using the File Option
This example imports the A_FILE.PDF file from the PDF_File directory. Using this file,
the GenData program adds the PDF images contained in the single PDF file to the form
set. Each image in the PDF file causes a duplicate of the original FAP image to be
appended to the form. This duplicate contains the bitmap image.

Option Description

PDFImportDPI Enter the resolution in dots per inch (DPI) at which you
want to import PDF files. The default is 100 DPI.

WMFImportDPI (Optional) Enter the DPI (dots per inch) at which you want
to import raster graphics. The default is 100. The maximum
DPI is 2400.

VectorGraphicImportDPI (Optional) Enter the DPI (dots per inch) at which you want
to import vector graphics. The default is 100. The
maximum DPI is 2400.

A higher DPI gives you better fidelity, but the import process will take longer and the
output files will be larger.

Directory File name

PDF_DAL A_DAL.PDF

PDF_File A_FILE.PDF

PDF_GVM A_GVM.PDF

PDF_SRCH A_SRCH.PDF

AddMultiPageBitmap

283

NOTE:Keep in mind that if the OPT option is set to No, which is the default, the
system expects you to provide a file name, otherwise you get an error.

If you set the OPT option to Yes, this tells the system that if the data for the file
name is not provided it should skip to the next rule without creating an error
message. Setting OPT to Yes simply tells the system that if no file name is
provided, regardless of the mapping method you are using, it should not be
considered an error.

You get no error if the PDF record does not exist in the extract file or if there
is PDF record but as offset 10 for 25 bytes, there is nothing but spaces. If the
OPT(Y) option is omitted, you get one of these messages, depending on your
situation:

SRCH() A record matching the search mask <1,PDFF> could not be

 located.

SRCH() Filename location within search record <1,PDF> is blank.

 Offset <10,> Length <25>.

Here is an example:

AddMultiPageBitmap OPT(Y), GVM(PDF_GVM)

If PDF_GVM contains no data and the OPT(Y) option is specified, you get no
error. If the OPT(Y) option is omitted, the system generates an error similar to
this one:

 GVM(<PDF_GVM>) Global variable does not exist or is empty.

Here is another example:

AddMultiPageBitmap OPT(Y), DAL(AddPDF.dal)

If processing the AddPDF.dal script results in an empty string and the OPT(Y)
option is specified, you get no error. If the OPT(Y) option is omitted, the system
generates an error similar to this one:

DAL(<AddPDF.dal>) script returned no result or result was blank.

The thing to remember is that if no data exists and the OPT option is set to Yes,
no error message appears.

Using the DAL Option
This example executes the PDF_NAME.DAL DAL script which returns the file name,
F_DAL.PDF. Using this file name, the GenData program adds the images contained in
the single PDF file to the form set. Each image in the PDF file causes a duplicate of the
original FAP file to be appended to the form. This duplicate contains the bitmap image.
Only the odd images in the PDF file are included because the Only option is set to Odd.

Chapter 5
Section Rules Reference

284

Using the SRCH Option
This example imports PDF files (F_SCH1.PDF, F_SCH2.PDF, and F_SCH3.PDF) based
on the content of lines in the file designated by the ExtrFile option in the Data control
group. Using this file, the GenData program adds the images contained in the three PDF
files to the form set. Each image in the PDF file causes a duplicate of the original FAP
file to be appended to the form. This duplicate contains the bitmap image. The bitmap
images are embedded in the NA file because the Embed option is set to Yes.

Here is an example of the extract file records pointed to by the ExtrFile option:

0 1

1 1

SCOxxxxxxxHEADERREC

…

…

PDF_File_Name .\PDF\F_SCH1.PDF

…

…

NOTE:This option lets you import and process multiple PDF files because of the way
the file name and path are specified — one file per entry in the file pointed to by
the ExtrFile option.

Using the GVM Option
This example imports a PDF file based on file name contained in the GVM variable called
PDF_File_GVM. Using the PDF file name and path in the GVM variable, the GenData
program adds the PDF images contained in the single PDF file to the form set. Each
image in the PDF file causes a duplicate of the original FAP file to be appended to the
form. This duplicate contains the bitmap image.

NOTE:Keep in mind you can use any valid GVM variable, no matter how it is created or
assigned.

To create the PDF_File_GVM variable, you would include the following INI option in
your FSISYS.INI file and add its definition in the TRNDFDFL.DFD file.

< GenTrnDummyFields >

PDF_File_GVM = .\PDF_gvm\A_GVM

Using the Type Option
Use the Type option to specify the type of file you want to import to speed processing.
Enter T (TIFF) or P (PDF). If you omit this option, the system first looks for TIFF files.
If it cannot find a TIFF file, it looks for a PDF file.

The system also automatically detects and imports the following file types:

AddMultiPageBitmap

285

Keep in mind:

• Pages imported from a PDF file are placed at coordinates (0,0) in the output by
default. You can use the position options (IN, MM, or TOP) to specify another
position.

Description Extension

Adobe Flash 6.x and 7.x “text only” .SWF

Adobe Photoshop .PSD

Adobe Postscript (PS) .PS

CCITT Group 3 Fax .FAX

CompuServe Graphic Interchange Format .GIF

Encapsulated PostScript .EPS

Extensible Markup Language .XML

HP Graphics Language .HPG

Hypertext Markup Language .HTM, .HTML

Microsoft Excel .XLS

Microsoft Outlook Messages .MSG

Microsoft Powerpoint .PPT

Microsoft Word .DOC

MIME-encoded email .EML

OS/2 and Windows bitmap, cursor, and icon files .BMP

Paintbrush .DCX .PCX

Portable Bitmap/Graymap/Pixmap .PBM, .PGM, .PPM

Portable Network Graphics .PNG

Rich Text Format .RTF

Text, including ANSI, UTF-8, and EBCDIC .TXT

Windows Enhanced Metafile .EMF

Windows Metafile .WMF

X-Windows Pixmap .XPM

The level of support varies from format to format.

Chapter 5
Section Rules Reference

286

• You can specify several AddMultiPageBitmap rules, as shown here, but realize that
each subsequent rule reuses the document pages added by previous rules. Here is an
example:

AddMultiPageBitmap DAL(PDF_DAL.dal),Only(ODD),TYPE(P)

AddMultiPageBitmap DAL(PDF_DAL.dal),Only(ODD),TYPE(P)

Assume the first PDF file contains four pages and the second PDF file contains five
pages.

After executing the two rules, there will be five pages in the form. The first four
pages will have two images each (one from the first rule and one from the second)
and the final page will contain the last image from the 5-image PDF file.

Be aware that the placement of those bitmap images on the page can make them
overlap.

NOTE:This rule supports long file names on 32-bit Windows operating systems. The full
list of supported formats is not yet available on Windows 64-bit systems or on z/
OS. On AIX and HPUX, you must have an X Window System available.

Using the Scale Option
The Scale option resizes the loaded graphics, maintaining the aspect ratio (height to
width), so the graphic fits within the provided height and width dimensions. If you only
provide the height or width, the system sizes the graphic to fit that dimension and
automatically calculates the other dimension to preserve the aspect ratio. For example
(assuming the imported graphic is originally 8 ½” x 11”), this rule...

AddMultiPageBitmap SRCH(1,AddMultiPageBitmap,40,.\tif_srch 40,19),
SCALE(4in)

tells the system to scale the graphic so that it is 4 inches high and 3.09 inches wide. This
rule...

AddMultiPageBitmap SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),SCALE(4in,3in)

tells the system to scale the graphic to 3.88 inches tall and 3 inches wide, because if it
scaled the height to be 4 inches, while maintaining the aspect ratio, the width would
exceed the specified 3 inches. This rule...

AddMultiPageBitmap SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),SCALE(,5in)

tells the system to scale the graphic to 6.47 inches tall and 5 inches wide.

Keep in mind...

• If you omit the height, you must include a comma (,) as a placeholder.

• If no units, such as inches (in) or millimeters (mm), are provided, the system
assumes your entry is in FAP units (2400 per inch).

• Do not include both the Scale and Crop options. If you include both options, the
system ignores the Crop option and only uses the Scale option.

AddMultiPageBitmap

287

Using the Crop Option
The Crop option removes all parts of the graphic that extend beyond the specified
distances from the top left corner. If you omit one of the arguments, the graphic is not
modified in that dimension. For example, this rule...

AddMultiPageBitmap SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),CROP(100mm,80mm)

tells the system to only include in the print stream an area of the graphic that is 100 mm
tall by 80 mm wide, beginning in the top, left corner.

This rule...

AddMultiPageBitmap SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),CROP(12000)

tells the system to only include the top five inches (12000 FAP units) of the full-width
graphic in the print stream.

Keep in mind...

• If no units, such as inches (in) or millimeters (mm), are provided, the system
assumes your entry is in FAP units (2400 per inch).

• Do not include both the Scale and Crop options. If you include both options, the
system ignores the Crop option and only uses the Scale option.

See also Section Rules Summary on page 276

— 80mm —

|
100mm

|

|
5 inches

|

Chapter 5
Section Rules Reference

288

 AddMultiPageTIFF

NOTE:Beginning with version 11.3, the AddMultiPageTIFF rule was replaced by the
AddMultiPageBitmap rule. If the system comes across the AddMultiPageTIFF
rule, it auto ma ti ally runs the AddMultiPageBitmap rule.

See AddMultiPageBitmap on page 279 for more information.

Use this section level rule to include multiple TIFF images contained in a single TIFF
file in a form set. The first TIFF in the file is inserted on the triggering form/section.
Subsequent TIFF images trigger additional pages which are appended to the form after
the page which contains the first TIFF image.

This rule can also extract TIFF, JPEG, or bitmap images from PDF files. For instance, if
you have a PDF file that includes scanned images, typically in TIFF format, you can use
this rule to extract those images from the PDF file.

NOTE:For more information on using this rule to extract TIFF, JPEG, or bitmaps
images from PDF files, see Using the Type Option on page 292.

Syntax AddMultiPageTIFF (Options)

For the Options parameter, you have these options:

Option Description

Opt (Optional) Enter Yes to indicates this rule is optional and you do not want
error messages generated if the file naming parameters fail to produce a
valid name. The default is No.

This option lets you use multiple named parameters. The first parameter
that provides a TIFF file name is used, but if the name of the TIFF file
returned by the search criteria is blank, the system ignores it and does not
generate an error.
Make this option the first rule parameter.

DAL(script
name)

Enter the name of the DAL script you want to execute to return the name
of the TIFF file you want to import. You must enter the name of a script
file or DAL library routine. Do not include DAL statements.

File(file name) Enter the name and path of the TIFF file to import.

GVM(variable
name)

Enter the GVM variable name that contains the name and path of the TIFF
file. The GVM variable data is mapped by some other means before this rule
is executed.

AddMultiPageTIFF

289

Keep in mind:

• The system supports these types of TIFF images:

SRCH(search
criteria name
data)

The name and path of the TIFF file is contained in a record in the file
specified by the ExtrFile option in the Data control group.
The search criteria are one or more comma-delimited data pairs, offsets, and
character strings, used to as the search mask to find the record in the file
you specified.
The name data is a comma-delimited data pair that defines the offset and
length of the file name in the record defined by the search criteria.

Separate the search criteria and name data by a space.

Embed (Optional) Include Embed to add the image data in the NA file. This is
necessary when the file that contains the scanned images is temporary and
you need to archive the NA/POL information. Upon retrieval, if you have
not embedded the bitmap information directly into the form set, you will
not be able to view or reprint the original images. The default is No.

Keep in mind that embedding bitmap data can make the resulting NA file
much larger and also affects the size of the archives generated.

Only (Odd or
Even)

By default, all images in the multipage TIFF file are included. Only include
this option to specify that you want only the odd or even numbered images.
You can use this option to reduce the size of the output when you know
blank pages are included in the scanned images on every other page.
Choose Odd when you know that the first image is not blank. This includes
images 1, 3, 5, and so on.

Choose Even to start with the second image. This includes images 2, 4, 6,
and so on.
If you include both Only (Odd) and Only (Even), you exclude all images.

IN(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps,
in inches.

MM(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps,
in millimeters.

Top(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps,
in FAP units (2400 per inch).

Type (Optional) Enter T (TIFF) or P (PDF). If you omit this option, the system
first looks for TIFF files. If it cannot find a TIFF file, it looks for a PDF file.

Including this option will speed processing. You can also include this
option if the target directory contains both TIFF and PDF files.

Type Description

Type 1 uncompressed

Type 2 Huffman

Type 3 CCITT group 3 FAX

Option Description

Chapter 5
Section Rules Reference

290

• You can only include one of the section positioning parameters, Top, In, or MM.
The value specified is relative to the FAP file's origin as specified by a SetOrigin. If
there are more than one positioning parameters, subsequent definitions override
prior ones.

If you omit the positioning parameters, the default top/left coordinate is taken
from the margin defined for the FAP file. If the FAP file is not loaded and the
margins are unknown, the default is 0,0 (aligned with the top of the section).

• If either the LoadFAPBitmap option or the Embed parameter are set to Yes, the
bitmap is loaded into memory. If neither are enabled, the system opens the TIFF
file to get the bitmap size, resolution, and number or pages, but the bitmap data is
not loaded. The system then assumes all of the bitmap images will be the same size
as the first image in the file.

For single step mode, set the LoadFAPBitmap option to Yes.

• If you include several options that serve similar purposes, the last one to provide a
result is used.

• You can specify several AddMultiPageTIFF rules, as shown here, but realize that
each subsequent rule reuses the document pages added by previous rules. For
instance, suppose you have declared two rules. The first has a 4-page TIFF. The
second has a 5-page TIFF.

After executing the two rules, there will be five pages in the form. The first four
pages will have two images each (one from the first rule and one from the second)
and the final page will contain the last image from the 5-page TIFF.

Be aware that the placement of those bitmap images on the page can make them
overlap.

NOTE:This rule supports long file names on 32-bit Windows operating systems.

Using the File Option
This example imports the T_FILE.TIF file from the TIF_File directory. Using this file,
the GenData program adds the TIFF images contained in the single TIFF file to the form
set. Each image in the TIFF file causes a duplicate of the original FAP file to be appended
to the form. This duplicate contains the bitmap image.

Type 4 CCITT group 4 FAX

Type 5 LZW

Type 32773 Packbits

Type Description

AddMultiPageTIFF

291

NOTE:Keep in mind that if the OPT option is set to No, which is the default, the system
expects you to provide a file name, otherwise you get an error.

If you set the OPT option to Yes, this tells the system that if the data for the file
name is not provided it should skip to the next rule without creating an error
message. Setting OPT to Yes simply tells the system that if no file name is
provided, regardless of the mapping method you are using, it should not be
considered an error. Here is an example:

AddMultiPageTiff OPT(Y), SRCH(1,TIFF 10,25)

You get no error if the TIFF record does not exist in the extract file or if there is
TIFF record but as offset 10 for 25 bytes, there is nothing but spaces. If the
OPT(Y) option is omitted, you get one of these messages, depending on your
situation:

SRCH() A record matching the search mask <1,TIFF> could not be
 located.

SRCH() Filename location within search record <1,TIFF> is blank.
 Offset <10,> Length <25>.

Here is another example:

AddMultiPageTiff OPT(Y), GVM(TIFF_GVM)

If TIFF_GVM contains no data and the OPT(Y) option is specified, you get no
error. If the OPT(Y) option is omitted, the system generates an error similar to
this one:

 GVM(<TIFF_GVM>) Global variable does not exist or is empty.

Here is another example:

AddMultiPageTiff OPT(Y), DAL(AddTiff.dal)

If processing the AddTiff.dal script results in an empty string and the OPT(Y)
option is specified, you get no error. If the OPT(Y) option is omitted, the system
generates an error similar to this one:

DAL(<AddTiff.dal>) script returned no result or result was blank.

The thing to remember is that if no data exists and the OPT option is set to Yes,
no error message appears.

Using the DAL Option
This example executes the TIF_NAME.DAL DAL script which returns the file name,
F_DAL.TIF. Using this file name, the GenData program adds the TIFF images
contained in the single TIFF file to the form set. Each image in the TIFF file causes a
duplicate of the original FAP file to be appended to the form. This duplicate contains
the bitmap image. Only the odd images in the TIFF file are included because the Only
option is set to Odd.

Chapter 5
Section Rules Reference

292

Using the SCH Option
This example imports TIFF files (F_SCH1.TIF, F_SCH2.TIF, and F_SCH3.TIF) based
on the content of lines in the file designated by the ExtrFile option in the Data control
group. Using this file, the GenData program adds the TIFF images contained in the
three TIFF files to the form set. Each image in the TIFF file causes a duplicate of the
original FAP file to be appended to the form. This duplicate contains the bitmap image.
The bitmap images are embedded in the NA file because the Embed option is set to Yes.

Here is an example of the extract file records pointed to by the ExtrFile option:

0 1

1 1

SCOxxxxxxxHEADERREC

…

…

TIF_File_Name .\tiff\F_SCH1.tif

…

…

NOTE:This option lets you import and process multiple TIFF files because of the way
the file name and path are specified—one file per entry in the file pointed to by
the ExtrFile option.

Using the GVM Option
This example imports a TIFF file based on file name contained in the GVM variable
called TIFF_File_GVM. Using the TIFF file name and path in the GVM variable, the
GenData program adds the TIFF images contained in the single TIFF file to the form
set. Each image in the TIFF file causes a duplicate of the original FAP image to be
appended to the form. This duplicate contains the bitmap image. Note the Top option
is set to 0,400. This sets the top/left coordinate for each bitmap to 0,400 FAP units.

NOTE:Keep in mind you can use any valid GVM variable, no matter how it is created
or assigned.

To create the TIFF_File_GVM variable, you would include the following INI option in
your FSISYS.INI and add its definition in the TRNDFDFL.DFD file.

< GenTrnDummyFields >

TIFF_File_GVM = .\tif_gvm\T_GVM

Using the Type Option
Use the Type option to tell the AddMultiPageTIFF rule that the target image is a PDF
file which contains TIFF, JPEG, or bitmap images. The first image found in the PDF file
is inserted on the triggering form or image. Subsequent images in the PDF file trigger
additional pages which are appended in the order in which they appear in the PDF file.

AddMultiPageTIFF

293

NOTE:If the PDF file contains anything else, such as text, those items will be discarded.
Only TIFF, JPEG, and bitmap images are added.

Keep in mind...

• The images in the PDF file are sized to fit the defined page dimensions for the form,
beginning at coordinates 0,0 in the output.

• If you include several options that serve similar purposes, the last one to provide a
result is used.

• You can specify several AddMultiPageTIFF rules, as shown here, but realize that
each subsequent rule reuses the document pages added by previous rules. Here is an
example:

AddMultiPageTIFF DAL(PDF_DAL.dal),Only(ODD),TYPE(P)

AddMultiPageTIFF DAL(PDF_DAL.dal),Only(ODD),TYPE(P)

Assume the first PDF file contains four TIFF images. The second PDF file contains
five TIFF images.

After executing the two rules, there will be five pages in the form. The first four
pages will have two TIFF images each (one from the first rule and one from the
second) and the final page will contain the last TIFF image from the 5-image PDF
file.

Be aware that the placement of the images on the page can make them overlap.

NOTE:This rule supports long file names on 32-bit Windows operating systems.

Using the File option
with the Type option

This example imports the T_FILE.PDF file from the PDF_File directory. Using this file,
the GenData program adds the images in the PDF file to the form set. Each image in
the PDF file causes a duplicate of the original FAP file to be appended to the form. This
duplicate contains the image from the PDF file. If the T_FILE.PDF file does not exist,
no error messages appear because the OPT option is set to Yes.

Using the DAL option
with the Type option

This example executes the PDF_NAME.DAL DAL script which returns the file name,
F_DAL.PDF. Using this file name, the GenData program adds the images contained in
the PDF file to the form set. Each image in the PDF file causes a duplicate of the original
FAP file to be appended to the form. This duplicate contains the image from the PDF
file. Only the odd-numbered images in the PDF file are included because the Only
option is set to Odd.

Using the SCH option
with the Type option

This example imports PDF files (F_SCH1.PDF, F_SCH2.PDF, and F_SCH3.PDF)
based on the content of lines in the file designated by the ExtrFile option in the Data
control group. Using this file, the GenData program adds the images contained in the
three PDF files to the form set. Each image in each PDF file causes a duplicate of the
original FAP file to be appended to the form. This duplicate contains the image from
the PDF file. The images from the PDF files are embedded in the NA file because the
Embed option is set to Yes.

Chapter 5
Section Rules Reference

294

Here is an example of the extract file records pointed to by the ExtrFile option:

0 1

1 1

SCOxxxxxxxHEADERREC

…

…

PDF_File_Name .\PDF\F_SCH1.PDF

…

…

NOTE:This option lets you import and process multiple PDF files because of the way
the file name and path are specified—one file per entry in the file pointed to by
the ExtrFile option.

Using the GVM option
with the Type option

This example imports a PDF file based on file name contained in the GVM variable
called PDF_File_GVM. Using the PDF file name and path in the GVM variable, the
GenData program adds the images contained in the PDF file to the form set. Each image
in the PDF file causes a duplicate of the original FAP file to be appended to the form.
This duplicate contains the image from the PDF file.

NOTE:Keep in mind you can use any valid GVM variable, no matter how it is created
or assigned.

To create the PDF_File_GVM variable, you would include the following INI option in
your FSISYS.INI and add its definition in the TRNDFDFL.DFD file.

< GenTrnDummyFields >

PDF_File_GVM = .\PDF_gvm\T_GVM

See also AddMultiPageBitmap on page 279

Section Rules Summary on page 276

CanSplitImage

295

 CanSplitImage
Use this section level rule to identify the segments of sections (images) that can be
dynamically split.

Syntax CanSplitImage (Debug)

Keep in mind:

• You must include the PaginateAndPropagate rule in the AFGJOB.JDT file. The
PaginateAndPropagate rule looks for the CanSplitImage indicator. Without this
rule, sections are paginated normally.

• If the print driver produces output for a non-edge printer, such as PCL, you must
have a header and footer that are copied on overflow. Otherwise, the data that falls
into the non-print area is lost.

• Text area objects must be flagged as Can span pages or the section is not split.

• Text area sections that are greater 26,400 FAP units must be defined as Custom in
the Paper Type field on the Page Properties tab. To add information to one of these
sections, increase the paper height on the Page Properties tab to accommodate the
increased size before you add the new information. Otherwise, the system may
create a multipage section, which is not supported.

• Text areas that are multipage sections are not supported.

• This rule cannot split a section that includes a text area with an inserted file object.

• This rule is not supported when you are using a group rule. The group pagination
logic does not check for split sections, nor does it call the section split logic.

This table shows how each type of object is handled within a text area:

Parameter Description

Debug Optional. Include this parameter to tell the system to include debug information
about when and how the section is split in the LOG.DAT file.

Object Supported

Different fonts Yes

Borders Yes.

Background shading Yes

Bullets or numbers No

Columns Yes

Boxes Yes *

Fields Yes

Files No

Chapter 5
Section Rules Reference

296

Here is how the system splits the section:

1 The system loads the section and flags it as inline.

2 The system duplicates the section. The new section follows the original section.

3 The system moves up the bottom of the original section to just above the footer.

4 The system moves the objects from the original section to the new section if the
bottom of the object extends beyond the bottom of the original section.

5 If the object is a text area and is defined as Can Span, the system splits the text area,
as described here:

The system makes sure the original section is not set to Can Grow.

The system creates the new text area in the new section and copies the object
from the original text area into the new text area.

The system creates a list of the text areas to divide and repositions all objects
moved to the new section. All objects are moved up as much as possible but
maintain their relative positions.

The system then moves the section down as far as the objects are moved up.
This preserves the relative position of the objects.

The system turns on the Can grow and shrink attribute and turns off the Can span
pages attributes in the text areas earlier saved in the list. It then resizes the new
section to its minimum size and turns the Can Span attribute back on.
Pagination continues as usual with two sections, instead of one.

Here are some examples that show what happens when a text area with a border is split:

Graphics (LOG, BMP, TIF, and PNG files) Yes *

Charts Yes *

Vectors Yes *

Shaded areas Yes

Bar codes Yes *

Lines Yes *

Boxes Yes *

* If the object falls on the page to be split, the system moves it to the next page.

Object Supported

CanSplitImage

297

 Shaded areas are split in a similar manner:

See also PaginateAndPropagate on page 177

Section Rules Summary on page 276

Line 1 - This text
area has a border

Footer

Line 1 - This text
area has a border

Header

Page 1

Page 2

Line 1 - This text
area has a border

Footer

Line 1 - This text
area has a border

Header

Page 1

Page 2

Chapter 5
Section Rules Reference

298

 CheckImageLoaded
Use this section level rule to see if the FAP file is loaded, and if not, load the FAP file.
You would typically use this rule if there is information needed in the FAP file that is
not present in the DDT file, such as bar code information, or variable field rotation
information.

NOTE:This rule is not necessary if you are developing resources in Documaker Studio.
This rule was created for and used in the older, legacy Documaker development
tools. In a Studio environment, the system manages the functionality
implemented via these rules automatically and offers improved performance. If
you are importing a legacy MRL that includes this rule, Studio will ignore it.

By default, the GenData program loads FAP files. If the LoadCordFAP option is turned
on, the GenData program loads all FAP files. Avoid turning on this INI option as it
slows performance. For example, make sure this option is set in the FSISYS.INI file as
follows:

< RunMode >

LoadCordFAP = No

The GenData program should only write information about dynamic data, such as
variables, into the NAFILE.DAT file from the DDT files. You can do this more
efficiently by loading the DDT files instead of the FAP files.

There are, however, situations which require you to load FAP files. This rule and the
TextMergeParagraph rule handle these situations. These rules let you load data for a
single FAP file. Keep in mind that the TextMergeParagraph rule affects a single FAP file
while the LoadCordFAP option affects all FAP files.

Since, in some cases, you must load FAP files, the system includes utilities which let you
pre-compile FAP files and FXR files. By pre-compiling these files into CFA (FAP) and
CFX (FXR) files, you can speed performance by eliminating parsing operations. The
system is set up to use pre-compiled FAP and FXR files. You can see this setting in the
FSISYS.INI file:

< RunMode >

CompiledFAP = Yes

To turn off this setting, change the Yes to No. For best results leave it set to Yes.

NOTE:Using this rule slows performance. Use only as necessary.

Syntax CheckImageLoaded ()

The CheckImageLoaded rule checks to see if the FAP file associated with the DDT file
has already been loaded into memory. If the FAP file has not been loaded, the
CheckImageLoaded rule loads it.

Rotated fields If you have a section (FAP file) which contains four variable fields, each with a different
rotation and the fields are not rotated when you run the GenPrint program, make sure
you include the CheckImageLoaded rule. This rule is required in this situation.

CheckImageLoaded

299

Bar code variables If you are using the EAN (European Article Numbering) system to represent bar code
variables and you are using the Move_It rule to map the bar code variable field to your
data, include the CheckImageLoaded rule if your LoadCordFAP option is set to No.

See also TextMergeParagraph on page 339

Section Rules Summary on page 276

Chapter 5
Section Rules Reference

300

 ConnectFields
Use this section level rule to move and align field text so the data elements appear to be
connected.

NOTE:Previously, this rule was known as the ConcatFields rule. You can use either
spelling.

Syntax ConnectFields (F=FixedField,L=LeftField,R=RightField)

You must enter a fixed field and at least one field to move to the left or right side of the
fixed field. By default, the system places the other fields one space character from the
fixed field, unless you indicate that you do not want spacing between the fields.

NOTE:Include the word No after the movement parameters (L or R) to tell the system
not to add spacing between the two fields. For example,

F=FIELD1,RNO=FIELD2

tells the system to place the contents of FIELD2 immediately after to the end of
FIELD1 with no intervening spaces.

As the system places another field next to the fixed field, the fixed rectangle grows. This
lets you define additional fields based upon where the last field was added.

Keep in mind...

• This rule does not move fields vertically. Fields are only moved horizontally.

• This rule loads the section (FAP or compiled FAP) if it is not already loaded.

• If you use the Move_It rule, or other rules that support right justification by
padding the data with spaces, your results will be incorrect. This rule calculates the
width of a field based upon its entire contents and does not remove any white space
in the field.

• If you specify a field which does not contain data or is invalid, then no space, or
space holder, is included.

• Do not try to move the same field multiple times. The final location of a given
field's data is determined by the last movement of that field.

Parameter Description

F Enter the name of the field you want used as the fixed field. The system will move
the other fields in relation to this field. The system does not move the fixed field.
The first field you list in the rule’s parameters is always considered the fixed field.

L Enter the names of the fields you want moved to the left of the fixed field.

R Enter the names of the fields you want moved to the right of the fixed field.

ConnectFields

301

• The field you specify as the fixed field, cannot be included as one of the fields to
be moved.

• This rule does not work with bar code or multiline text fields. If you try to name
such a field, you will get an error. This rule does not handle rotated fields.

See also Move_It on page 392

SpanAndFill on page 338

Section Rules Summary on page 276

Chapter 5
Section Rules Reference

302

 CreateChartSeries
Use this section level rule to get data from extract records and include it as series data
in a chart. The system uses the data exactly as it exists in the extract record. There is a
syntax you can use to create a search mask which will search for and get an extract
record. You can also specify where in that record the data resides. Additionally, you must
specify the chart and series to which the data will be added.

Typically, you will use the DeleteDefaultSeriesData rule, on page 304 before you use this
rule. You should always use the PurgeChartSeries rule, on page 322 after you use this rule.

Syntax CreateChartSeries (Chart,Series,SearchMask,DataDefinitions)

See also FieldVarsToChartSeries on page 308

Search Criteria on page 273

Section Rules Summary on page 276

Parameter Description

Chart The name of the chart (as defined in the FAP file) to which the series data
will be added.

Series The name of the series that data is to be added to. If the series is not defined
in the FAP, a default series is created.

SearchMask The search mask to be used to find the extract record from which data is
retrieved. The search mask should contain one or more offset,data pairings.
For example, if you want to find the extract record with the text
HEADERREC at offset 20 (base 1), the search mask would be
20,HEADERREC. Additional offset length pairings can be appended. For
example:

20,HEADERREC,50,XYZ

means find the record with HEADERREC at offset 20 and XYZ at offset
50. See the topic Search Criteria on page 273 for more information.

DataDefinitions One or more offset,length pairings used to obtain data values from the extract
record defined by the search mask. For example, if five data values existed
at offsets 110, 120, 130, 140 and 150 each one 10 characters in length, the
DataDefinitions field would look like this:

110,10 120,10 130,10 140,10 150,10.

There is a space between each offset,length pair, unlike the SearchMask which
has all its offset,data pairs separated by a comma (,).

CreateSubExtractList

303

 CreateSubExtractList
Use this section level rule to process multiple items of the same type within a single
transaction. This rule produces a temporary extract list which contains each record of
the same type within a transaction.

The temporary extract list is based on the search mask and key you define. The system
can then populate variable fields using the data in the temporary extract list.

NOTE:The CreateSubExtractList rule is used with the SetRecipFromImage rule.

Syntax CreateSubExtractList (Search,Keys)

CreateSubExtractList (From,To)

CreateSubExtractList (Drop)

CreateSubExtractList (Append)

See also SetRecipFromImage on page 337

Section Rules Summary on page 276

Parameter Description

Search Defines a search criteria; see Search Criteria on page 273.

Keys This variable defines the scope of the search:

Keys((offset1,length1),(offset2,length2),….(offsetN,
lengthN))

From() To () The From(mask) includes the record specified in the from mask. The To(mask)
indicates where to stop. The To(mask) does not include the record specified in
the To(mask).

Drop This parameter drops the temporary sub-extract list that was created and
removes the records from the cached extract records for that transaction. You
will no longer have access to these records.

Append This parameter adds the temporary sub-extract list that was created to the end
of the extract list.

Chapter 5
Section Rules Reference

304

 DeleteDefaultSeriesData
This section level rule removes all unnamed series data from the specified set of series
in a chart. If there are no series specified, this rule removes all series for the chart.

This rule is designed for the special circumstance where unnamed series data may have
been defined for the chart during composition, but this series data is not used in every
production. In other words, the series data is dynamically created as the result of
running rules such as the CreateChartSeries or FieldVarsToChartSeries rules.

Syntax DeleteDefaultSeriesData (Chart,Series,...;

The first semicolon-delimited field contains the rule name. The second semicolon-
delimited field should contain one or more comma-delimited items. The first item must
always be a chart name. Any successive items must be series names that belong to that
chart.

See also CreateChartSeries on page 302

FieldVarsToChartSeries on page 308

Section Rules Summary on page 276

DelImageOccur

305

 DelImageOccur
Use this section level rule to delete a specific occurrence of a section on a form.

Syntax DelImageOccur (Occurrence,Form,KillSpace)

To use this rule, you must also add the following rule to the AFGJOB.JDT file:

;ProcessQueue;;PostPaginationQueue;

Add this rule after the RunSetRcpTbl rule. You can omit the rule level number.

See also ProcessQueue on page 187

RunSetRcpTbl on page 215

Section Rules Summary on page 276

Parameter Description

Occurrence The section occurrence to delete. Positive numbers indicate the count is from
the beginning. Negative numbers indicate the count is from the end.

Form The form name. If there are multiple sections, separate the section names with
commas, such as

form1,form2,form3

If you specify a form name, the rule only works on those forms. If you omit
the form names, the rule affects all forms that include the section.

KillSpace (Optional) If you include this parameter, the system removes the space after
the specified occurrence of the section.

If you include this parameter, you must include it before the form name. Here
is an example:

DelImageOccur 1,KillSpace

DelImageOccur 1,KillSpace,Form1

Any form specified before the KillSpace parameter is not affected by this
parameter. Consider this example:

DelImageOccur 1,Form1,KillSpace,Form2,Form3

The first occurrence of the current section in Form1 is removed but the space
where this section was placed is not removed. However, the first occurrence of
the current section is removed from From2 and From3. Furthermore, the
system also removes the space after the specified occurrence of the section.

Chapter 5
Section Rules Reference

306

 DontPrintAlone
Use this section level rule if you need to delete a page from a form set and there is only
one section on that page.

Syntax DontPrintAlone ()

If, when the system determines pagination, it determines the section is the only section
on the page, the system omits the page from the printed output.

See also PaginateBeforeThisImage on page 319

Section Rules Summary on page 276

Field2GVM

307

 Field2GVM
Use this section level rule to create a GVM variable from the fields in the current section.
For instance, you can use this rule to store the system date for later use.

Syntax Field2GVM (FieldName,GVMName)

You can use this rule to output data into one of the batches or the NEWTRN.DAT file
if the GVM variable name matches the field name in the DFD file.

GVM variables are essential part of Documaker Server. For example, the fields in the
NEWTRAN.DAT file, or in recipient batch records are all GVM variables during
runtime. This rule lets you take data from a field and place the data into a GVM variable.
If that GVM variable happened to be one of the fields in a recipient batch record, it
would be written out to the RCB file.

You can also use the \O parameter to identify fields the system should consider as
optional.To flag a field as optional, include \O at the end of the field name. Here is an
example:

Field2GVM Date\O,CurrentDate,DTE_CLOSED,DTEACCTCLSD

This example will not generate an error if Date cannot be located on the section. An error
will be generated if DTE_CLOSED is missing.

If the system cannot find a field marked as optional, it will not change the destination
GVM variable. This behavior supports situations where you map any of several fields
that could be generated to the same GVM variable.

Note, that this rule creates a GVM variable if necessary. Therefore, be sure to check the
spelling of the GVM variable name if you intend to use one created by a prior process.
Otherwise, a new variable is created.

Keep in mind...

• If the GVM variable you specify does not exist, it will be created. This differs from
other rules which expect you to have defined the GVM variable by some other
means. This means that if you misspell the variable name, you will not get an error
because a GVM variable will be created for that name.

• Designating a field as optional does not change the value of the GVM variable if
the field is missing. The system does not clear the GVM variable of data just because
a field is missing.

See also Section Rules Summary on page 276

Parameter Description

FieldName Name of the field on the current section from which the data is retrieved.

GVM name Name of the GVM variable in which the retrieved data will be stored.

Chapter 5
Section Rules Reference

308

 FieldVarsToChartSeries
Use this section level rule to allow a chart's series data to be retrieved via references to
the section’s variable fields. Since Documaker Server does no field propagation, as would
an entry system, you must handle field propagation.

You can assign a name for the series data in the FAP file definition. You can then use
the series data name to associate the series with a variable field with the same name. This
rule propagates data mapped to a variable field into series data with the same name.
What this rule does that the CreateChartSeries rule cannot is manipulate extract data
before it is assigned to a series.

Syntax FieldVarsToChartSeries ()

Typically, you will need to use the DeleteDefaultSeriesData rule before you use this rule.
Always use the PurgeChartSeries rule after you use this rule, as a means of cleanup. If you
find incorrect data in a chart, you may be missing one of these rules.

NOTE:Use Studio to select the fields the system will then use to assign the minimum,
maximum, increment/label, and tick mark values. See the Documaker Studio
User Guide.

See also CreateChartSeries on page 302

DeleteDefaultSeriesData on page 304

PurgeChartSeries on page 322

Move_It on page 392

MoveNum on page 398

Section Rules Summary on page 276

GroupBegin

309

 GroupBegin
Use this section level rule to define the first section in a group of sections. A group is a
set of sections delimited by a begin section and an end section that is processed as a single
unit.

Using this rule, you specify which sections are grouped on the printed pages. Each
GroupBegin rule must have a corresponding GroupEnd rule. With these rules you can:

• Expand boxes to surround a section group with user-defined margins

• Keep a group of sections together on a page

• Paginate vertically with headers, footers, and overflow sections at the group level

• Paginate horizontally with left and right margins that can contain lists

• Format fields with currently used rules

• Create nested groups

• Vary row heights by the tallest field size or set a standard height for all rows

• Pre-define the spacing between rows

• Set a minimum number of lines to be left on the first or last page

• Create a columnar layout

Syntax GroupBegin (GroupFunction(parameters(sub parameters)))

The group functions include:

• Box

• GroupPagination

• List

• StayTogether

• Column

Using the Box Function
Use this function to expand the first box defined in the group to fit around all sections
in the group. The Margin parameter lets you define the extra space to be added between
the edge of the section and the box edges. The Margin sub parameters are:

Parameter Description

Left Left margin size in FAP units

Top Top margin size in FAP units

Right Right margin size in FAP units

Bottom Bottom margin size in FAP units

Chapter 5
Section Rules Reference

310

Here is an example:

GroupBegin Box(Margin(20,20,20,20))

The section would look like this:

The section must include a box that will be expanded by the GroupBegin rule’s Box
function around the text, as shown below:

This example expands the box around a section group and sets the margin to 20 FAP
units between the outer edge of the section and the outer edge of the box. There are 2400
FAP units per inch.

Using the GroupPagination Function
Use this group function to define the requirements for keeping certain sections (groups)
together on pagination. The GroupPagination parameters are:

GroupBegin

311

The following example requires that a minimum of two sections appear on the current
page, and a minimum of three sections appear on any subsequent pages. This example
also requires that the next page be checked to confirm that the entire group cannot fit
on the next page before splitting can occur. In addition, the second section is defined
as the header for the group and is to be copied on overflow. Plus the fourth section is
defined as the footer for this group.

Using the List Function
A list is a column of data on a section that is populated by the BldGrpList rule.

The List function works with the BldGrpList rule to print sections containing lists, or
columns, side by side in rows. The tallest field in the row and the GroupBegin:List
parameters, MinSpacing and AddSpacing, determine the row height. The List sub
parameters are:

Parameter Description

MinImagesOnCurrent Defines the minimum number of sections required on the current
page. The default is zero (0).

This rule counts all sections triggered in the group, even if a section
has no size. It totals the section sizes to determine the minimum
number of sections which can be placed in the remaining space on
the page.
If a section has no size or is flagged as view only, the section is placed
on the page.

MinImagesOnNext Defines the minimum number of sections required for new and next
page. The default is one (1).

NeverSplit Requires that all sections within the group must remain together on
same page—pagination can never occur within the group. The default
is No.

CheckNextPage Requires that the next page be checked to confirm that the entire
group cannot fit on the next page before splitting can occur. The
default is No.

Parameter Description

AddSpacing Adds additional spacing in FAP units between rows of data. There are 2400
FAP units per inch.

MinSpacing Defines the minimum size in FAP units for each row of data.

MinLines Defines the minimum number of lines to be printed on the first page of a
section. When pagination occurs, if the number of lines printed on the first
page is less than the MinLines amount, the entire section is moved to the
second page.

MinLinesCont Defines the minimum number of lines to be printed on the last page of a
section. When pagination occurs, if the number of lines printed on the last
page is less than the MinLinesCont amount, lines are taken from the
preceding page to meet the minimum.

Chapter 5
Section Rules Reference

312

Using the StayTogether Function
Use this function if you do not want the group of sections to be split between pages and
overflow onto a new page if there is room on the current page for the entire group. The
dimensions of the group of sections cannot be larger than the dimensions of the page.

NOTE:Also keep in mind that you cannot nest a StayTogether with a column to keep
the column section together. If you try to use a StayTogether over all the
sections you want to organize into columns, the results will not be what you
expect.

Using the Column Function
Use the Column group function to create wrapping or and straight columns.

Creating wrapping
columns

Use the Wrap parameter to create newspaper style columns where the column contents
flow from the top of a column to the bottom and then to the top of the next column.
All columns have the same width and the same amount of space between them. There
are a fixed number of columns on the page.

Creating straight
columns

Use the Straight parameter to create columns whose contents do not flow from one
column to the next. Instead, these columns are not connected and run parallel to one
another. Straight columns are paginated independently. If the contents of one column
exceed the page, the remaining contents appear in that same column on a second page.
All the usual overflow, header, and footer considerations still apply.

The contents of this
column flows into the next
column as necessary.

These columns are
sometimes called

newspaper columns. You
can see examples of these
columns in newspapers or
magazines.

GroupBegin

313

Column function
parameters

Here is a list of the parameters you can use with the Column function.

The contents of this
column never flow into the
next column.

When you fill all of the
space available to this
column on a page,

These two columns run
parallel to one another.

They are sometimes called

any remaining content
flows to the next page.

parallel columns or side-by
side columns.

Page 1

Page 2

Parameter Description

Wrap Indicates the text in the columns will wrap. No other parameters are
required. Wrapping is done by default, unless you use the Multiple or
Straight parameter.

Straight Indicates the text will not be wrapped from one column to the next. No
other parameters are required.
The section definition controls the width and separation of the columns.
When you use straight columns, you define the starting columns with a
GroupBegin and the ending column with an GroupEnd.

Chapter 5
Section Rules Reference

314

Keep in mind that...

• Wrap and Straight are mutually exclusive.

• Multiple and Single are mutually exclusive.

• Straight is mutually exclusive with Balanced, ColCount, ColWidth, and
ColSeparation.

• Multiple is mutually exclusive with Wrap, Straight, Balanced, ColCount,
ColWidth, and ColSeparation.

• You cannot nest a Wrap within a Wrap, Straight, or Multiple.

• You cannot nest a Straight within a Wrap or Straight.

• You cannot nest a Straight within a Multiple.

• You cannot nest a Multiple within a Multiple.

Balanced() The balanced sub-parameters determine how sections are processed if there
is less than a full page of sections. The default is Left.
Left
Use this sub-parameter to equally divide the sections between the columns
on the page. If there is a remainder, the left most column will be the
longest column.

Unbalanced
Use this sub-parameter to add sections to a column until there is no more
room in that column on that page. The system then places remaining
sections in the second column of that same page. The system repeats this
process until all columns on the page are filled. The system then places any
remaining sections in the first column of the next page and continues
filling the columns in this manner.

ColCount() Defines how many columns will be on a page. You must enter a positive
number.

ColSeparation() Defines, in FAP units, how much space is between columns. You must
enter a positive number. The default is zero. There are 2400 FAP units per
inch.

ColWidth() Defines, in FAP units, the width of each column. If you omit the width,
the system uses the width of the widest section in the group. You cannot
enter a negative number. There are 2400 FAP units per inch.

Single Indicated there will be a single straight column on the page. Single is the
default unless you specify Multiple.

Multiple Indicates there will be multiple straight columns on the page. You must
embed the straight groups within a group. You do this using the Multiple
group parameter.

Debug Use this parameter to write column-processing information into the log
file for debugging purposes.

Parameter Description

GroupBegin

315

Keep in mind these requirements and restrictions when defining groups:

• Each GroupBegin section must have a corresponding GroupEnd section. Either of
these sections can be a blank section.

• If you are using conditional sections, make sure the triggers in the SETRCPTB.DAT
file for the GroupBegin and GroupEnd sections are the same.

• Group footers do not have to be defined as the first section as form footers in the
form definition file (FORM.DAT).

• Do not use an absolute Y coordinate for a group header or group footer.

• When a section contains both a GroupBegin rule and a SetGroupOptions rule, the
GroupBegin rule must come first.

• When a section contains both a GroupEnd rule and a SetGroupOptions rule, the
SetGroupOptions rule must come first.

• Variable field data inside overflow group header sections will propagate to the new
page during group pagination if the field scope is set to Form.

You must set all group pagination section options (footer, header, and copyonoverflow)
using the SetGroupOptions rule.

See also GroupEnd on page 316

BldGrpList on page 352

SetGroupOptions on page 329

Section Rules Summary on page 276

Chapter 5
Section Rules Reference

316

 GroupEnd
Use this section level rule to define the last section in a group of sections. This rule
triggers the formatting of gathered data into section lists, or columns. Vertical
pagination occurs while the system processes this rule.

Syntax GroupEnd ()

There are no parameters for this rule.

See also GroupBegin on page 309

SetGroupOptions on page 329

Section Rules Summary on page 276

IncOvSym

317

 IncOvSym
Use this section level rule to increment an overflow variable. The overflow variable is a
counter that tracks of the number of overflow values processed for a section. This
overflow variable is incremented as records are processed and as the overflow increases.

This rule increments the overflow symbol you specify in the data field. Use the
ResetOvSym rule to reset the variable for the next transaction that might overflow.

Syntax IncOvSym (OverflowVAR,SectionName,X)

Use the X parameter to limit the IncOvSym rule to a single execution and also determine
when the rule is executed. You control the execution of the rule by including the X
parameter, as shown here:

If the requesting section is not a multipage section, the system ignores this parameter.
If you enter a character other than F, L, or 0-9, an error message appears. If you enter
zero (0), nothing happens because there is never a page zero.

NOTE:Be sure to thoroughly test your environment when you use this parameter.
Different results are created depending on the number of pages in the FAP file,
the type of overflow, when pagination occurs, and type of data fields on the
different pages in the FAP file.

See also Overflow and User Functions on page 274

PurgeChartSeries on page 322

SetImageDimensions on page 330

ResetOvSym on page 326

Section Rules Summary on page 276

Parameter Description

OverflowVAR Specify the overclow symbol.

SectionName Specify the name of the section.

X (Optional) Here you specify when the system should execute the IncOvSym
rule by choosing one of these options:

F - Tells the system to execute the IncOvSym rule after the first page.

L - Tells the system to execute the IncOvSym rule after the last page.
1-9 - Tells the system to execute the IncOvSym rule after the corresponding
page. For instance, enter 3 to tell the system to execute the rule after the third
page.
Keep in mind you can enter only one option. If you enter more than one
character, the system evaluates the first character and ignores the rest.

Chapter 5
Section Rules Reference

318

 MoveMeToPage
Use this section level rule to move the entire page the section resides on to a designated
page.

Syntax MoveMeToPage (PageNumber)

If you use the rule, you must have the following set in the AFGJOB.JDT:

;ProcessQueue;;PaginationQueue;

This rule only works with forms that have multiple pages.

See also Section Rules Summary on page 276

Parameter Description

PageNumber Page number to which the sections will be moved. To move sections to the
last page, enter zero (0).

PaginateBeforeThisImage

319

 PaginateBeforeThisImage
Use this section level rule to force the system to perform a pagination before it processes
this section. Normally, pagination does not occur until the system has finished
processing the entire form set - meaning that all data is complete.

If pagination occurs because an earlier section exceeded a page boundary, the internal
references for page coordinates are reset for the page that now contains this section.

This rule makes it possible for a section or field rule that occurs later to know what page
the section (or field) occupies. You can also use this rule if you want to know how much
of the page is occupied so you can conditionally include or exclude data. If you waited
until normal pagination would occur, it would be after all normal section and field level
rules had been executed and it would be too late.

Syntax PaginateBeforeThisImage ()

There are no parameters for this rule. This rule is sometimes used with the
ResetImageDimensions and DontPrintAlone rules.

See also ResetImageDimensions on page 324

DontPrintAlone on page 306

Section Rules Summary on page 276

Chapter 5
Section Rules Reference

320

 PostImageDAL
Use this section level rule to execute a DAL script on the POST_PROC_B message. The
PostImageDAL rule executes after all field level rules are run.

You can use this rule to handle follow-up tasks after the section and field level rules are
executed.

Syntax PostImageDAL (String)

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution
of a section level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot
use this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen
with a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE:To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL
statements, but this character is illegal in the rule data area.

See also PreImageDAL on page 321

PostTransDAL on page 180

PreTransDAL on page 182

Section Rules Summary on page 276

Parameter Description

String A character string that contains a DAL function or DAL script.

PreImageDAL

321

 PreImageDAL
Use this section level rule to execute a DAL script on the PRE_PROC_B message. The
PreImageDAL rule executes before section or field level rules.

You can use this rule to handle setup tasks which should occur before section and field
level rules are executed.

Syntax PreImageDAL (String)

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution
of a section level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot
use this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen
with a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE:To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL
statements, but this character is illegal in the rule data area.

See also PostImageDAL on page 320

PostTransDAL on page 180

PreTransDAL on page 182

Section Rules Summary on page 276

Parameter Description

String A character string that contains a DAL function or DAL script.

Chapter 5
Section Rules Reference

322

 PurgeChartSeries
Use this section level rule to remove a series from a chart which contains no series data.
The cleanup performed by this rule affects all charts on the section. If a series is defined
for a chart, but there is no data to fill that series, in most cases you would not want to
include the empty series in the chart.

A series may exist but contain no series data because you may need to add series data on
an as provided basis. For instance, the customer extract data may contain a variable
number of records containing data that goes into a chart. Each of these records may
contain data for a single series.

The FAP file would be designed to accommodate the maximum number of series that
could be included. If the extract data does not contain records to build the maximum
number of series the chart can accommodate, you may want to exclude those series from
the chart. This eliminates white space on the chart.

Syntax PurgeChartSeries ()

You typically use this rule with the CreateChartSeries or FieldVarsToChartSeries rules.
Always place this rule after any rule which gathers chart data.

See also CreateChartSeries on page 302

FieldVarsToChartSeries on page 308

Section Rules Summary on page 276

RemoveWhiteSpace

323

 RemoveWhiteSpace
Use this section level rule to remove the white space from between fields. This rule works
similarly to the SetAddr rules, but is not address specific.

Syntax RemoveWhiteSpace (Field1,Field2,Field3;/NoWarning)

The parameters to this rule should include a list of fields that should exist on the section.
Because fields are typically not created when no data maps, you must load the section
to make sure the empty fields exist.

Separate the fields in the list with commas. Each subsequent field with data will be
mapped into the earliest named prior field that did not contain data.

This rule moves field data from one field to a prior named field to compress out the space
between the fields. Typically, you would use this rule to compress the vertical space, as
in address lines, but the rule does not really care whether the space is vertical or
horizontal.

Unlike the SetAddr type rules, this rule does not actually map the original data. You
must use field mapping rules, like Move_It, to do that. Also note that only the data
moves between the fields. The location of each physical field remains the same.

Also, unlike the SetAddr rules, you do not have to compress the space up. If you specify
the fields in the reverse vertical order, you can compress the space down.

Using the NoWarning
parameter

If the system cannot locate the field, you get a warning. If you include the NoWarning
parameter, however, you can suppress the warning. Add this parameter after the last field
in the list. Use a forward slash (/) to separate it from the previous parameter and end it
with a semicolon (;). This parameter is optional. Here is an example:

RemoveWhiteSpace PAGE1_FIELD1,PAGE1_FIELD2,PAGE1_FIELD3,
PAGE1_FIELD4/NoWarning

The warning message includes addition information to help you resolve the problem:

DM10190: Warning in <REMOVEWHITESPACE>: Unable to locate field
<FieldName> in image <ImageName>.

This rule does not work with bar code fields or multiline text fields.

If the system cannot locate the listed field and the section is a multipage section and you
omitted the NoWarning parameter, you get message DM10189. If you included the
NoWarning parameter, you get message DM10190. Here are some examples:

DM10189: Warning in <REMOVEWHITESPACE>: Unable to locate field
<FieldName> on page <PageNo> of a multi-page image <ImageName>.

DM10190: Warning in <REMOVEWHITESPACE>: Unable to locate field
<FieldName> in image <ImageName>.

NOTE:Naming the same field to move more than once in the parameters may cause
unreliable results. The final location of a field's data is determined by the last
movement of that field.

Also, this rule does not work with bar code type fields or multiline text fields.

See also Section Rules Summary on page 276

Chapter 5
Section Rules Reference

324

 ResetImageDimensions
Use this section level rule to reset the top or bottom dimensions of the current section
based on the parameters you specify. This rule makes the objects on the section fit under
the bottom of the header, over the top of the footer, or compresses the section to the
smallest height possible, including all of its objects.

Syntax ResetImageDimensions (NewSize)

The parameters are not case sensitive.

In legacy implementations, where only DDT files were loaded and not FAP files, fields
are the only objects on a section the ResetImageDimension rule recognizes. That meant
section bottoms were most likely being assigned at the last mapped field. In subsequent
releases and because of new features and the new Studio model of development, FAP
files are loaded during batch runs. Therefore, to get behavior similar to what you had in
legacy implementations, you must either change the ResetImageDimension rules to use
the LastField parameter, or use the RID_LastMapField INI option to change the
behavior of the MinHeight parameter.

When you use the LastField option, the bottom of the section is moved to a position
below the lowest mapped field on the section. This is what you want in situations where
the next section should be placed immediately below where the last field was mapped.
For instance, assume you have a small section used for addresses. It can contain up to
eight lines, but depending upon the address only two or three lines might be used and
you would like to set the bottom of the section below where the last field was mapped.
Here is an example:

ResetImageDimension LastField

NOTE:Depending upon your print or display method, changing the bottom of the
section with this parameter could mean that any objects below this point will
not be visible and may not print. Or it could mean those objects will simply
overprint the next section in sequence on the same page.

You can also use the RID_LastMapField INI option to change the MinHeight parameter
to work like the new LastField option described above.

< RunMode >

Parameter Description

NewSize Choose one of these options:

FooterTop - Makes the objects on the section fit over the top of the footer by
resetting the bottom dimensions.

HeaderBottom - Makes the objects on the section fit under the bottom of the
header by resetting the top dimensions.
MinHeight - Resizes the section to occupy the least amount of space. No objects
are omitted or resized, but unused space is removed.

LastField - Resizes the section to occupy the least amount of space. Only the
fields with data are examined when the system looks for the lowest point on the
section. Use this option on sections that have only fields or no objects lower
than the last few fields you expect to map

ResetImageDimensions

325

RID_LastMapField = Yes

(RID is an abbreviation for ResetImageDimension.)

The default is No. Enter Yes if you want to modify the behavior of the MinHeight
parameter on all sections that would use the ResetImageDimension rule.

NOTE:Depending upon your print or display method, changing the bottom of the
section with this option could mean that any objects below this point will not
be visible and may not print. Or it could mean those objects will simply
overprint the next section in sequence on the same page.

Also note that the term last field refers to the lowest field mapped on a section and not the
physical sequence in which the fields are mapped. The lowest field is the one that is the
greatest distance from the top of the section.

See also SetImageDimensions on page 330

PaginateBeforeThisImage on page 319

Section Rules Summary on page 276

Chapter 5
Section Rules Reference

326

 ResetOvSym
Use this section level rule to reset an overflow variable during the processing of a
document set. Use this rule on the section level if you can not wait until the job level
rule, ResetOvFlw, resets the entire set of overflow variables.

Syntax ResetOvSym (OverflowSymbol,SectionName)

See also PurgeChartSeries on page 322

IncOvSym on page 317

OvActPrint on page 408

OvPrint on page 409

SetImageDimensions on page 330

Section Rules Summary on page 276

Parameter Description

OverflowSymbol The name of the overflow symbol defined in the SetOvFlwSym rule.

SectionName The name of the section that contains the fields on which overflow
processing will occur.

SetCpyTo

327

 SetCpyTo
Use the section level rule to set the value of the SendCopyTo variable to a field in the
FAP file that definitely contains data.

Syntax SetCpyTo (FieldName)

If the SendCopyTo variable contains a value, the GenPrint program will print at the
bottom of a form the following text:

Send copy to ######

where ###### is the current recipient name.

Since the field you specify for this rule must contain data for the system to print the
text Send copy to on the form, you will typically map the field with the Mk_Hard rule.

See also Mk_Hard on page 389

Section Rules Summary on page 276

Chapter 5
Section Rules Reference

328

 SetCustChartAxisLabels
Use this section level rule to take data values that have been mapped to variable fields
and use them as custom axis labels on a chart.

Syntax SetCustChartAxisLabels (ChartName,FieldNames)

This rule tells you if there are discrepancies in the number of axis labels you create using
this rule and the number the system would create on its own.

NOTE:The system creates place holder labels if you do not specify enough labels and
ignores others if you specify to many.

See also Section Rules Summary on page 276

Parameter Description

ChartName Name of the chart

FieldNames Names of the variable fields you want to use as custom axis labels

SetGroupOptions

329

 SetGroupOptions
Use this section level rule to set group options similar to forms. This rule lets you define
the section as a header or footer and lets you specify whether or not the section should
be copied onto the overflow section if overflow occurs.

Syntax SetGroupOptions (Header,Footer,CopyOnOverFlow)

NOTE:The header and footer parameters are mutually exclusive.

Keep in mind...

• When a section contains both a GroupBegin rule and a SetGroupOptions rule, the
GroupBegin rule must come first.

• When a section contains both a GroupEnd rule and a SetGroupOptions rule, the
SetGroupOptions rule must come first.

• You must set all group pagination section options (footer, header, and
CopyOnOverflow) using the SetGroupOptions rule.

See also GroupBegin on page 309

GroupEnd on page 316

Section Rules Summary on page 276

Parameter Description

Header Defines the sections that appear before the group.

Footer Defines the sections that appear after the group.

CopyOnOverflow Defines the sections that are copied to the new page if group pagination
splits the group.

Chapter 5
Section Rules Reference

330

 SetImageDimensions
Use this section level rule on forms which are made up of floating sections.

NOTE:This rule is not necessary if you are developing resources in Documaker Studio.
This rule was created for and used in the older, legacy Documaker development
tools.

In a Studio environment, the system manages the functionality implemented
via these rules automatically and offers improved performance. If you are
importing a legacy MRL that includes this rule, Studio will ignore it.

The system automatically inserts this rule for you if you save your DDT file in Image
Editor. If you later resize the section, go to Image Editor and save the DDT file again to
have the system update the section dimensions.

If you used the SetOrigin rule, the system automatically includes this rule in the section
level rules section of your DDT file.

NOTE:Always let the system take care of this rule for you.

See also SetOrigin on page 331

ResetImageDimensions on page 324

Section Rules Summary on page 276

SetOrigin

331

 SetOrigin
Use this section level rule to set the section overlay/page segment X and Y coordinates.
Using this rule, you specify where the page segment will be placed on the printed page.

NOTE:You can also use the SetOriginI and SetOriginM rules. SetOriginI works just
like SetOrigin except you enter X and Y coordinate information in inches,
instead of FAP units. There are 2400 FAP units per inch.

SetOriginM works just like SetOrigin except you enter X and Y coordinate
information in millimeters. There are approximately 98 FAP units per
millimeter.

Use the SetOrigin rule if you prefer to enter these coordinates in FAP units.

Syntax ;SetOrigin (Fixed,X,Y,Form,Store,ImageName)

The X and Y coordinates are specified using a combination of the following parameter
prefixes plus the addition or subtraction of FAP units. There are 2400 FAP units per
inch. Here are the prefixes you can use:

Parameter Description

FIXED (Optional) Anchors the section at the specified X and Y coordinates. This must
be the first parameter listed. See Fixing a section’s position on page 332 for
more information.

X Sets the X coordinate. This determines the section’s horizontal position.

Y Sets the Y coordinate. This determines the section’s vertical position.

Form (Optional) The form name on which the section exists. This parameter lets you
define more than one SetOrigin rule for a section and specify which one
applies based on the name of the form.

Store() (Optional) This parameter lets you store the current section coordinates in
prefix-name variables for later use. The syntax is:

Store(prefix-name variable)

For Windows, the coordinates are stored in:

prefix-name.left, prefix-name.right, prefix-name.top,
and prefix-name.bottom

The stored coordinates can be referenced by any subsequent SetOrigin rule
used to place a section on the same form.

Prefix Description

Abs Absolute page position based on 2400 units per inch. (supports overflow)

Rel Relative to the last section’s top left coordinate. (supports overflow)

Max Relative to the last section’s maximum edge. For example, Rel+0,Max+600 would
position the current section ¼ inch below the last section. (supports overflow)

Chapter 5
Section Rules Reference

332

Fixing a section’s
position

The SetOrigin rule lets you designate a section as a fixed section. Fixed sections cannot
be moved from their set position.

You declare a section to be fixed by including FIXED as the first parameter of the
section's SetOrigin rule. Regardless of when the section is triggered, it will keep the
coordinates assigned to it throughout pagination.

Fixed sections can also be designated as CopyOnOverflow sections. This will cause the
fixed section to be copied onto subsequent pages at the same coordinates as those used
for the first page.

The SetOrigin rule should always define the X,Y coordinates as an absolute position or
a position relative to a section that will always be on the page. Do not anchor the fixed
section relative to a section that can overflow onto a new page. If you do, the fixed
section will never move to the second page. Instead, it will always appear on the first
page with coordinates that place it below the bottom of the page.

Here is an example of how you would use the FIXED parameter:

;SetOrigin;Fixed,X,Y,Form,Store(),ImageName;;

NOTE:You must use the SetImageDimensions rule when you use this rule.

See also SetOriginI on page 333

SetOriginM on page 335

SetImageDimensions on page 330

Section Rules Summary on page 276

Mpg Relative to any section at the maximum edge. For example, Abs+0,Mpg+600 places
the current section ¼ inch below the lowest object currently on the page. (does not
support overflow)

T2T Top edge is placed relative to the last section’s top edge. (Similar to Rel)

T2B Top edge is placed relative to the last section’s bottom edge. (Similar to Max+)

B2T Bottom edge is placed relative to the last section’s top edge. (Similar to Max-)

 B2B Bottom edge is placed relative to the last section’s bottom edge.

L2L Left edge is placed relative to the last section’s left edge. (Similar to Rel)

L2R Left edge is placed relative to the last section’s right edge. (Similar to Max+)

R2L Right edge is placed relative to the last section’s left edge. (Similar to Max-)

R2R Right edge is placed relative to the last section right edge.

Ctr X/Y dimensions are centered on the last section’s X/Y dimensions.

Prefix Description

SetOriginI

333

 SetOriginI
Use this section level rule to set the section overlay/page segment X and Y coordinates.
Using this rule, you specify where the page segment will be placed on the printed page.

NOTE:You can also use the SetOrigin and SetOriginM rules. SetOrigin works just like
this rule except you enter X and Y coordinates in FAP units, instead of inches.
There are 2400 FAP units per inch.

SetOriginM works just like this rule except you enter X and Y coordinates in
millimeters. There are approximately 25.4 millimeters per inch.

Syntax SetOriginI (Fixed,X,Y,Form,Store(),ImageName)

Specify the X and Y coordinates using a combination of the following parameter prefixes
plus the addition or subtraction of measurements you specify in inches. Here are the
prefixes you can use:

Parameter Description

FIXED (Optional) Anchors the section at the specified X and Y coordinates. This must
be the first parameter listed. See Fixing a section’s position on page 332 for more
information.

X Sets the X coordinate for a section. This determines the section’s horizontal
position.

Y Sets the Y coordinate for a section. This determines the section’s vertical
position.

Form (Optional) The form name on which the section exists. This parameter lets you
define more than one SetOrigin rule for a section and specify which one applies
based on the name of the form.

Store() (Optional) This parameter lets you store the current section coordinates in
prefix-name variables for later use. The syntax is:

Store(prefix-name variable)

For Windows, the coordinates are stored in:

prefix-name.left, prefix-name.right, prefix-name.top,
and prefix-name.bottom

The stored coordinates can be referenced from any page in the form set.

Prefix Description

Abs Absolute page position based on inches. (supports overflow)

Rel Relative to the last section’s top left coordinate. (supports overflow)

Max Relative to the last section’s maximum edge. For example, Rel+0,Max+.25 would
position the current section ¼ inch below the last section. (supports overflow)

Chapter 5
Section Rules Reference

334

See also SetOrigin on page 331

SetOriginM on page 335

SetImageDimensions on page 330

Section Rules Summary on page 276

Mpg Relative to any section at the maximum edge. For example, Abs+0,Mpg+.25 places
the current section ¼ inch below the lowest object currently on the page. (does not
support overflow)

T2T Top edge is placed relative to the last section’s top edge. (Similar to Rel)

T2B Top edge is placed relative to the last section’s bottom edge. (Similar to Max+)

B2T Bottom edge is placed relative to the last section’s top edge. (Similar to Max-)

 B2B Bottom edge is placed relative to the last section’s bottom edge.

L2L Left edge is placed relative to the last section’s left edge. (Similar to Rel)

L2R Left edge is placed relative to the last section’s right edge. (Similar to Max+)

R2L Right edge is placed relative to the last section’s left edge. (Similar to Max-)

R2R Right edge is placed relative to the last section right edge.

Ctr X/Y dimensions are centered on the last section’s X/Y dimensions.

Prefix Description

SetOriginM

335

 SetOriginM
Use this section level rule to set the section overlay/page segment X and Y coordinates.
Using this rule, you specify where the page segment will be placed on the printed page.

NOTE:You can also use the SetOrigin and SetOriginI rules. SetOrigin works just like
this rule except you enter X and Y coordinates in FAP units, instead of
millimeters. There are approximately 98 FAP units per millimeter.

SetOriginI works just like this rule except you enter X and Y coordinates in
inches. There are approximately 25.4 millimeters per inch.

Syntax SetOriginM (Fixed,X,Y,Form,Store(),ImageName)

Specify the X and Y coordinates using a combination of the following parameter prefixes
plus the addition or subtraction of measurements you specify in millimeters. Here are
the prefixes you can use:

Parameter Description

FIXED (Optional) Anchors the section at the specified X and Y coordinates. This must
be the first parameter listed. See Fixing a section’s position on page 332 for
more information.

X Sets the X coordinate for a section. This determines the section’s horizontal
position.

Y Sets the Y coordinate for a section. This determines the section’s vertical
position.

Form (Optional) The form name on which the section exists. This parameter lets you
define more than one SetOrigin rule for a section and specify which one
applies based on the name of the form.

Store() (Optional) This parameter lets you store the current section coordinates in
prefix-name variables for later use. The syntax is:

Store(prefix-name variable)

For Windows, the coordinates are stored in:

prefix-name.left, prefix-name.right, prefix-name.top,
and prefix-name.bottom

The stored coordinates can be referenced from any page in the form set.

Prefix Description

Abs Absolute page position based on millimeters. (supports overflow)

Rel Relative to the last section’s top left coordinate. (supports overflow)

Max Relative to the last section’s maximum edge. For example, Rel+0,Max+1 would
position the current section 1 millimeter below the last section. (supports overflow)

Chapter 5
Section Rules Reference

336

See also SetOrigin on page 331

SetOriginI on page 333

SetImageDimensions on page 330

Section Rules Summary on page 276

Mpg Relative to any section at the maximum edge. For example, Abs+0,Mpg+1 places the
current section 1 millimeter below the lowest object currently on the page. (does not
support overflow)

T2T Top edge is placed relative to the last section’s top edge. (Similar to Rel)

T2B Top edge is placed relative to the last section’s bottom edge. (Similar to Max+)

B2T Bottom edge is placed relative to the last section’s top edge. (Similar to Max-)

B2B Bottom edge is placed relative to the last section’s bottom edge.

L2L Left edge is placed relative to the last section’s left edge. (Similar to Rel)

L2R Left edge is placed relative to the last section’s right edge. (Similar to Max+)

R2L Right edge is placed relative to the last section’s left edge. (Similar to Max-)

R2R Right edge is placed relative to the last section right edge.

CTR X/Y dimensions are centered on the last section’s X/Y dimensions.

Prefix Description

SetRecipFromImage

337

 SetRecipFromImage
Use this section level rule to conditionally add sections to the current form set based on
conditions in the SETRCPTB.DAT file. You set up parameters which instruct the rule
to generate a new set of keys (Key1, Key2, and TranID).

A new set of items from the current SETRCPTB.DAT file is generated and those items
are run through the RunSetRcp feature to generate a temporary form set. This
temporary form set is merged with the current form set to create the final form set.

NOTE:With version 11.3, Documaker Studio lets you create subforms. Using subforms
you can include forms within forms which eliminates the need to use the
SetRecipFromImage rule. This simplifies triggering and populating data on
sections when you are processing repeating patterns of hierarchical or nested
data. Previously, you had to use the SetRecipFromImage rule, the sub extract
rules, and overflow symbols to achieve the same result.

Syntax SetRecipFromImage (Key1,Key2,TranID,AtEnd)

The string $(Key1) within value equals the current transaction’s Key1 value. $(Key2) equals
the current transaction’s Key2 value. $(TranID) equals the current transaction ID.

See also CreateSubExtractList on page 303

Section Rules Summary on page 276

Parameter Description

Key1 Value

Key2 Value

TranID Value to set new key values

AtEnd If you set this parameter to True, the system adds the forms in the order you
listed in your FORM.DAT file. The default is False, which tells the system to
load the form backwards from the way it is referenced in the FORM.DAT file.

Chapter 5
Section Rules Reference

338

 SpanAndFill
Use this section level rule to take a field and span its width between two other fields,
filling the field with a fill character.

Syntax SpanAndFill (SpanField,LeftField,RightField)

NOTE:This rule does not move the field vertically. Only the width and horizontal
location are changed.

The filler character is used to span the width between the end of the text in the left field
and the beginning of the text in the right field. If either field is empty, the left coordinate
of the field is used.

You can use any rule to map the fill character into the SpanField. For example, you can
use the HardExst rule to map a character such as a period or asterisk. Only the first
character of the mapped data is used as the filler character. If no data is found in the
SpanField, the system uses periods (.) as the fill character.

NOTE:You may want to use the JustFld rule on your right-most field to make sure the
field is right justified.

Keep in mind...

• If you use the Move_It rule, or other rules that support right justification by
padding the data with spaces, your results will be incorrect. This rule calculates the
width of a field based upon the entire contents and will not remove space from the
fields.

• This rule loads the section (FAP or compiled FAP) if it is not already loaded.

• The font ID assigned to the SpanField is used for calculating the number of
characters required to fill the width of the field.

• If there is fractional space remaining, the system place the extra white space to the
left of the SpanField.

See also ConnectFields on page 300

Section Rules Summary on page 276

Parameters Description

SpanField Enter the name of the field you want to span. This field must be the first
parameter.

LeftField Enter the field you want to be on the left.

RightField Enter the field you want to be on the right.

TextMergeParagraph

339

 TextMergeParagraph
Use this section level rule to merge data for embedded variable fields in a text area with
text. The Move_It or MoveNum rules are most often used with this rule to move data
from the extract file into embedded variable fields. The system then rewraps the text area

NOTE:This rule is not necessary if you are developing resources in Documaker Studio.
This rule was created for and used in the older, legacy Documaker development
tools. In a Studio environment, the system manages the functionality
implemented via these rules automatically and offers improved performance. If
you are importing a legacy MRL that includes this rule, Studio ignores it.

The system writes the FAP information into the NAFILE.DAT file, which is used by the
GenPrint program. If a section includes this rule, the Can Grow attribute setting in the
section’s FORM.DAT file must match the text area’s Can Grow attribute in the FAP file.

NOTE:If you include the Can Grow attribute for a multiline text field, be aware the
field can both grow and shrink, depending on the data. If you do not want the
text area to change sizes, turn off the Can Grow attribute.

Using this rule can slow performance, so use it only as necessary. If you must use this
rule, it is better not to mix other objects with the text area in this FAP file. The more
objects are mixed, the worse your performance, because all of the information about
these objects will be written to NAFILE.DAT file also. If these objects are separated into
another FAP file, they can be part of the compiled overlay and need not be loaded into
the NAFILE.DAT file.

Performance is affected even more if you include graphics in the FAP file and you are
sending the data stream to an AFP printer. This is because the LoadFAPBitmap option
in the RunMode control group is set to Yes and is needed to print the graphics. This
INI option also affects performance. Avoid it as much as possible.

NOTE:System variables, such as Send Copy To, cannot be used as an embedded
variable field text area.

Syntax TextMergeParagraph()

No parameters are necessary. Only include this rule if your section has embedded
variable fields in a text area.

See also CheckImageLoaded on page 298

Move_It on page 392

MoveNum on page 398

Section Rules Summary on page 276

Chapter 5
Section Rules Reference

340

341

Chapter 6

Field Rules Reference

Field rules help you control how data is processed and
generated to fill a field on a form.

NOTE:This chapter serves as a reference to the field
rules. For information on the rules which
apply to sections, see Section Rules Reference
on page 275. For information on the rules
which apply to jobs and form sets, see Adding
Job and Form Set Rules on page 5.

This chapter discusses rules included in the base system
and supported by the Oracle Documaker support staff.
For information on custom rules, contact your Services
representative.

For a summary of these rules, see Field Rules Summary
on page 342.

Chapter 6
Field Rules Reference

342

FIELD RULES
SUMMARY

The following pages list and explain the various field rules you can use. The rules are
discussed in alphabetical order on the pages following this table.

NOTE:You can also see information about the field rules while using Studio when you
select the rule on the field’s Properties window.

The following table lists the rules discussed in this chapter.

Select the field rule here. Click here to display Help
information about the rule.

To… Use this rule AFGJOB Section Files INI Overflow XML

Add a placeholder which
causes no operation to
occur (used in testing)

NoOpFunc on page 407 no no no no na no

Add a variable from more
than one occurrence of a
particular record type

AccumulateVariableTotal
on page 347

no no no no na no

Add two or more fields
and insert the result into
a new field

MoveSum on page 405 no no yes yes na yes

Call a DAL function If on page 371 no no yes yes no no

* - Indicates this is a legacy rule that may be found in older implementations.
AFGJOB - Indicates if there are AFGJOB.JDT file implications to this rule. Section - Indicates if this rule depends on a section
rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. INI - Indicates if there are
INI options associated with this rule.Overflow - Indicates if this rule supports overflow. XML - Indicates if this rule accepts XML
input.

Field Rules Summary

343

Concatenate strings and
place the result in the
field you specify

ConCat on page 357 no no no no yes no

Copy alphanumeric data
from a table using the
source record field as a
key

TblLkUp on page 425 no no yes yes yes no

Copy and format
numeric data in an
extract record

MoveNum on page 398 no no no no yes yes

Copy data from an
external record into the
output buffer

Move_It on page 392 no no no no yes yes

Copy data from an SAP
Raw Data Interface (RDI)
extract file

SAPMove_It on page 416 no no yes no yes yes

Copy data from the table
list of records into the
output buffer

MovTbl on page 406 no no no yes na no

Copy data if a source
record exists

MoveExt on page 397 no no yes no yes no

Count the total number
of overflow records that
could be processed per
transaction

OvPrint on page 409 no yes no no yes no

Create lists of data for
populating section lists
or columns

BldGrpList on page 352 yes no no no na no

Display the difference
between two dates

DateDiff on page 359 no no no no na no

Draw an underline
beneath a variable field

UnderlineField on page 429 no yes no no yes no

Emulate TerSub entry
functionality

TerSubstitute on page 428 no no no no yes no

To… Use this rule AFGJOB Section Files INI Overflow XML

* - Indicates this is a legacy rule that may be found in older implementations.
AFGJOB - Indicates if there are AFGJOB.JDT file implications to this rule. Section - Indicates if this rule depends on a section
rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. INI - Indicates if there are
INI options associated with this rule.Overflow - Indicates if this rule supports overflow. XML - Indicates if this rule accepts XML
input.

Chapter 6
Field Rules Reference

344

Execute the MoveNum
rule if an external record
is found

MNumExt on page 390 no no yes no yes no

Force a transaction to
manual batch (WIP)

KickToWip on page 377 no no no yes na yes

Force a transaction to
manual batch (WIP)

PowType on page 410 no no no yes na no

Format a date * DateFmt on page 361 no no yes no yes no

Format a date * MoveDate on page 396 no no yes no yes yes

Format a date (for
international localities)

FmtDate on page 365 no no no no yes yes

Format a number FmtNum on page 366 no no no no yes yes

Format the system date SysDate on page 423 no no no no yes no

Get a text table item
based on a key from the
source field name
concatenated with data
retrieved from the source
record

TblText on page 427 yes no yes yes yes yes

Get data from an extract
record, look up the data
in a table, and copy the
table data to the
destination field

LookUp on page 378 yes no yes yes na no

Get information from an
extract file based on
conditions you specify

DAL on page 358 no no yes yes yes yes

Get information from an
extract file based on
conditions you specify

If on page 371 no no yes yes no no

Get the current system
date

FfSysDte on page 364 no no no no yes no

To… Use this rule AFGJOB Section Files INI Overflow XML

* - Indicates this is a legacy rule that may be found in older implementations.
AFGJOB - Indicates if there are AFGJOB.JDT file implications to this rule. Section - Indicates if this rule depends on a section
rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. INI - Indicates if there are
INI options associated with this rule.Overflow - Indicates if this rule supports overflow. XML - Indicates if this rule accepts XML
input.

Field Rules Summary

345

Get the run date from the
TRNFILE.DAT file and
format it using the mask
you specify

RunDate on page 414 no no yes no na no

Have the system format
the data when it maps it
to a field

AnyToAny on page 349 no no no no na no

Insert a specific value Mk_Hard on page 389 no no no no na no

Insert a value in a field
only if a record is found
in the extract data using
the search criteria you
specify

HardExst on page 369 no no no no yes no

Justify a field (right, left,
or center)

JustFld on page 374 no no no yes yes yes

Map fields in the XDB
database

* XDB on page 430 no no yes no na no

Map fields in the XDD
database

XDD on page 433 no no yes yes na yes

Print information in a
field if the data matches
the numeric value you
specify

PrtIfNum on page 412 no no yes no na no

Print information in a
field if the data matches
the string you specify

PrintIf on page 411 no no yes no yes no

Process multipage
sections

* EjectPage on page 363 no no no no na no

Replace the NoOpFunc
rule

MapFromImportData
on page 379

no no no yes na no

Report the actual number
of overflow records that
could be processed per
transaction

OvActPrint on page 408 no no no no yes no

To… Use this rule AFGJOB Section Files INI Overflow XML

* - Indicates this is a legacy rule that may be found in older implementations.

AFGJOB - Indicates if there are AFGJOB.JDT file implications to this rule. Section - Indicates if this rule depends on a section
rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. INI - Indicates if there are
INI options associated with this rule.Overflow - Indicates if this rule supports overflow. XML - Indicates if this rule accepts XML
input.

Chapter 6
Field Rules Reference

346

Retrieve a message from
an extract file

MessageFromExtr on page
382

no no yes yes yes no

Retrieve and format a
string

StrngFmt on page 422 no no yes no yes no

Select the largest value of
multiple packed decimal
fields located on the same
record to populate a
variable field

CompBin on page 355 no no no no na no

Speed the processing of
fields used repeatedly
throughout a form set

GlobalFld on page 367 no no yes no na no

Store and retrieve
subsequent lines of a
multiple line address

SetAddr on page 417 no no no no yes no

Store and retrieve
subsequent lines of a
multiple line address and
also format the city, state,
and 10-digit postal code

SetAddr2 on page 418 no no no no yes no

Store and retrieve
subsequent lines of a
multiple line address and
combine address lines
two and three

SetAddr3 on page 419 no no no no yes no

Tell the system the field
has been mapped to the
master DDT file

Master on page 381 no no yes no na no

Translate a numeric ISO
state code into the actual
state name

SetState on page 421 no no yes no yes no

To… Use this rule AFGJOB Section Files INI Overflow XML

* - Indicates this is a legacy rule that may be found in older implementations.
AFGJOB - Indicates if there are AFGJOB.JDT file implications to this rule. Section - Indicates if this rule depends on a section
rule. Files - Indicates if external supporting files (other than extract records) can be used with this rule. INI - Indicates if there are
INI options associated with this rule.Overflow - Indicates if this rule supports overflow. XML - Indicates if this rule accepts XML
input.

Field Rules Summary

347

 AccumulateVariableTotal
Use this field level rule when you need to sum a variable from more than one occurrence
of a particular record type. This rule only works with the Record Dictionary.

Syntax (output format) AccumulateVariableTotal (Record,Variable,Cond)

To format the output, you can also include any of the following format options in the
Mask field on the field’s Properties window in Studio. Separate each option with a
comma.

Parameter Description

Record Name of the record pointer defined in the Records group of the Record
Dictionary file (entitled DataDict). This record pointer defines the column to
search, the text to look for in the starting column, and option flags.

Variable Name of the variable pointer defined in the Variables group of the Record
Dictionary. This variable pointer defines offset into the record where the data
to be accumulated is located, the length and type of the data, and formatting
flags.

Cond (Optional) Name of the condition defined in the Conditions group of the
Condition table. The condition consist of combinations of comparisons,
parenthesis, ANDs, and ORs to verify the correct results.

Option Description

- (one
dash)

If the number is negative, this option places a minus sign (-) in the left most
position. For example, if the format mask is (9.2,12.2,C,$,-), the result is: “-
$2,100.00”.

- - (two
dashes)

If the number is negative, this option places a minus sign (-) immediately before
the amount. For example, if the format equal is (9.2,12.2,C,$,--), the result is “ -
$2,100.00”, with a full length of 12.

+ Tells the system to always include a sign with all numbers.

% Appends a percent sign (%) at the end of the number.

$ Adds a dollar sign. Cannot be the first character in the format mask. This
limitation arises from the Move_It format option, where a dollar sign ($) in the
first character of the mask means to perform a sprintf.

C Adds commas.

C** Adds commas if in US English format or spaces if in Canadian French format.

CR Appends CR to the end of the number.

CS1
CS2

CS731

Enter one of these options to indicate the checksum method.
The system appends a check digit (mod 10) of 0 through 9 to the end of the
number. This is typically used in accounting to make sure a number, such as an
account number, is correct by performing a formula on each digit. For details, see
the discussion on page 402.

Chapter 6
Field Rules Reference

348

See also Using Condition Tables on page 438

Using the Record Dictionary on page 441

Field Rules Summary on page 342

D Dollars (a combination of B, C, and $. You must modify
GEN_FMT_FmtMaskSaysBinary to recognize this format.)

E Stops a calculation if the search condition is false. The Move_It rule may return
a null output buffer if:

- no record was found; a record was found, but the search mask contained a
pairing (offset,data) which extended past the end of the record
- a record was found, but the mapped data was blank.

F Adds a dollar sign ($) and places it in the first position. If the value is negative, it
moves the minus sign (-) to the last position.

L Left justifies the number.

-L (or --) Tells the system to use a floating negative sign on negative values.

+L (or++) Tells the system to use a floating sign and to always show that sign.

Lang Selects a language for spelling out the number. This flag is used with the V flag
and mask parameters. Here is an example: US, CFR.

M Money (This format is a combination of formats C and $.)

N Leaves the output buffer blank if the number is zero or negative.

NM Adds a minus sign (-) to the number.

P Print leading zeros. You cannot use this format with $, -, C, and F.

P** Prints leading zeros if used without character or symbol enclosed with single
quote.

SLZ Suppresses leading zeros. For example, 00.25 becomes .25.

T Used with the NegText, Text, and ZeroText data options. Adds text before or after
a number. Use the less than (<) symbol for inserting before, the greater than (>)
symbol for inserting after. Use the comma as a separator. You can also use this
option to place currency symbols before or after amounts. For instance, T>£
places the British pound sterling symbol (ALT+0163) before an amount.

V Spells out the numeric value in US English.

X Adds an x before the number.

Z Prints a number even if it is zero.

Z2 Prints two zeros.

Option Description

AnyToAny

349

 AnyToAny
Use this field level rule to have the system format the data when it maps it to a field.
This rule uses XDD (Extract Data Dictionary) format as the source format and whatever
you specify as the target field format for the output.

Compared with prior mapping rules, using this rule reduces development effort as the
data for a given field in the extract file only requires one instance in the XDD, regardless
of its output formatting requirements. Using this rule also enhances performance
because data for each field only has to be loaded once, rather than multiple times if
multiple output formats are needed.

For example, in version 11.5 you must define two fields in the XDD if you want to
display a date as both MM/DD/YYYY and Month Day, Year in the MRL. In version
12.0 and later, you can use this rule to handle both formats. This lets you define the
Date field once in the XDD, describing the format of the data found in the extract. Any
field used on a section that uses the AnyToAny rule and maps from this single XDD
member is then formatted based on what you specified as the format of the field.

NOTE:When you use this rule, the system uses the locale of the destination field. For
instance, if you have a date field that specifies a locale of CAD (French
Canadian), the resulting text will be in French. If the destination field has a
locale of EUR and a currency symbol is needed, the system uses the Euro ().

Syntax AnyToAny ()

There are no parameters for this rule.

You can use this rule several ways. For instance, you can...

• Create a field using the AnyToAny rule and specify the XDD member to link to
using the Source Name field.

• Use the XDD rule and then set the Rule field in the XDD member to AnyToAny.

Regardless of how you use the AnyToAny rule, it must be linked to an XDD member.
The XDD member must then contain the mapping information, data type, and format.

The rule maps data as shown in this table. The top row represents the input data type
defined in the XDD while the first column shows the destination field type.

Destination Field
Type

Input Data Type

Alphanumeric Numeric Date Time

Alphabetic Removes non-alphabetic
characters

Not supported1

Alphanumeric Mapped without changes

1 Use another rule to map the field. If you use the AnyToAny rule in this scenario, the field will be blank and you will get a warning
message.

Chapter 6
Field Rules Reference

350

Numeric Changes to numeric, omits
non-numeric characters.

Converts to the format
specified for the field.

Not supported1

(Y)es (N)o The Yes and No values are
mapped, other values are
ignored.

0 (zero) = No, anything else
= Yes.

Can only have numeric
characters in the input data.
Only looks at the first
character of input data.

Not supported1

Bar code The input data must match the selected bar code type. Not supported1

Date The input data must match the destination format. Converts to the
format specified
for the field.

Not supported1

Int'l alphabetic Removes non-alphabetic
characters

Not supported1

Int'l alphanumeric Mapped without changes

Int'l alphabetic
uppercase

Removes non-alphabetic
characters and uppercases the
alphabetic characters.

Not supported1

Int'l alphanumeric
uppercase

Uppercases the alphabetic
characters

Mapped without changes Uppercases the
alphabetic
characters

Mapped without
changes

Multiline Mapped without changes

Table only Checks the input value against those defined for the table. Not supported1

Time The input data must match destination format. Not supported1 Converts to the
format specified for
the field.

Upper alphabetic Removes non-alphabetic
characters and uppercases the
alphabetic characters.

Not supported1

Upper
alphanumeric

Uppercases the alphabetic
characters

Mapped without changes Uppercases the
alphabetic
characters

Mapped without
changes

Destination Field
Type

Input Data Type

Alphanumeric Numeric Date Time

1 Use another rule to map the field. If you use the AnyToAny rule in this scenario, the field will be blank and you will get a warning
message.

AnyToAny

351

Example AnyToAny ()

See also XDD on page 433

Field Rules Summary on page 342

X or Space The X and Space values are
mapped. All other values are
ignored.

0 (zero) = Space, anything
else = X.

Can only have numeric
characters in the input data.
Only looks at the first
character of input data.

Not supported1

Custom Not supported1

Destination Field
Type

Input Data Type

Alphanumeric Numeric Date Time

1 Use another rule to map the field. If you use the AnyToAny rule in this scenario, the field will be blank and you will get a warning
message.

Chapter 6
Field Rules Reference

352

 BldGrpList
Use this field level rule to build lists of data you can use to populate section lists or
columns during GroupEnd processing for each transition. This rule lets you specify
which data will be collected in the list for GroupEnd processing.

Syntax BldGrpList (ListFunction(ListParameter(ListSubParameter)),Rule
(FieldRule),Data(FieldRuleParameters);

This rule lets you use one of these list functions:

• Array

• MultiArray

• MultiOccur

For each list function you can specify the Rule() and Data(). These parameters let you
specify any standard field level rule that can be used to format the data gathered with
this rule, such as the MoveNum and Move_It rules.

NOTE:You must include the following rule in the AFGJOB.JDT file to clear the queues
created by the BldGrpList rule after it processes each transaction:

;ProcessQueue;;PostPaginationQueue;

For more information, see ProcessQueue on page 187.

Using the Array
function

This list function retrieves data from the first extract record encountered that meets the
search mask criteria in a transaction. The data defined as an array in the record is used
to populate fields on the section. The sub parameters for this function are:

Here is an example of the Array function:

BldGrpList Array (Search (31, CWIARRAY), Count (39, 2), Entry (41,
5)) Rule (MoveNum) Data ()

Parameter Description

Search Search masks used to locate the extract record which contains the array of data.

Count The offset and length of the field which contains the number of entries in the
array.

Entry The offset for the start of the array data and length of each data entry in the
array.

Parameter Description

BldGrpList; Array Calls the BldGrpList rule using the Array function.

Search(31, 68, 14, 2) Searches for an extract record with 68 in offset 31 and 2 in offset
14.

BldGrpList

353

Here is an example of a record from a transaction:

31 39 41

RG00000028030219281501 CWIARRAY0400.0011.1122.2233.3344.44

Using the MultiArray
function

Use this function to retrieve data from multiple extract records that meet the search
mask criteria. The multiple records define the array data that is used to populate fields
on the section. The MultiArray sub parameters are:

Here is an example of the MultiArray function:

BldGrpList MultiArray (Search (1, CWIARRAY, 14, ~90), Count (38, 1),
Entry (41, 11)) Rule (MoveNum) Data ()

Here is an example of a record from a transaction:

31 39 41

Count(39, 2) The field at offset 39 for a length of 2 in the extract record
contains the number of entries in the array.

Entry(41, 11) The array starts in offset 41 in the extract record and each entry is
11 characters long.

Rule(MoveNum) Data() The MoveNum rule is called using the parameters defined by Data
(). If there are no Data parameters, you do not have to define a
Data sub parameter.

Parameter Description

Parameter Description

Search Search masks used to locate the extract records which contain the array of data.

Count The offset and length of the field which contains the number of entries in the
array.

Entry The offset for the start of the array data and length of each data entry in the
array.

Parameter Description

BldGrpList;MultiArray Calls the BldGrpList rule using the MultiArray function.

Search(1, CWIARRAY, 14, ~90) Searches the extract records for each transaction with
CWIARRAY in offset 1 and which is not equal to (~) 90
in offset 14.

Count(38, 1) The field at offset 38 for a length of 1 in the extract record
contains the number of entries in the array

Entry(41, 11) The array starts in offset 41 in the extract record and each
entry is 11 characters long.

Rule (MoveNum) Data () Calls the MoveNum rule using the sub parameters defined
by Data (). If there are no Data parameters, you do not have
to define a Data sub parameter.

Chapter 6
Field Rules Reference

354

RG00000028030219281501 CWIARRAY0400.0011.1122.2233.3344.44

RG00000028030219281501 CWIARRAY0499.9688.4534.2176.4504.05

Using the MultiOccur
function

Use this function to retrieve data from multiple extract records that meet the search
criteria for each transition, which is used to populate the fields on the section. The
MultiOccur sub parameters are:

Here is an example of the MultiOccur function:

BldGrpList
MultiOccur(Search(31,CWICURR,39,~90,39,~95,39,~99),Field(41,38))Rul
e(Move_It)

Here is an example of records from a transaction:

31 39 41

RG00000022030219281501 CWICURR 02 ENERGY CHARGE 4.93

RG00000023030219281501 CWICURR 03 FIXED CHARGE 14.00

RG00000024030219281501 CWICURR 04 REVENUE FEE 2.10

RG00000025030219281501 CWICURR 90 21.03

RG00000026030219281501 CWICURR 95 1.47

RG00000027030219281501 CWICURR 99 22.50

See also GroupBegin on page 309

GroupEnd on page 316

Move_It on page 392

MoveNum on page 398

ProcessQueue on page 187

Field Rules Summary on page 342

Parameter Description

Search Search masks used to locate the extract records that contain the data to
populate the field.

Field The offset and length of the data in the extract record.

Parameter Description

BldGrpList;MultiOccur Calls BldGrpList rule using the MultiOccur function.

(Search(31,CWICURR,39,~
90,39,~95,39,~99)

Searches the extract records for CWICURR at offset 31 and
offset 39 which is not equal to 90, 95, or 99 for each transaction.

Field(41, 38) Collects data from extract record starting at offset 41 for 38
positions.

Rule(Move_It) Calls the Move_It rule to collect the data.

CompBin

355

 CompBin
Use this field level rule to select the largest value of multiple packed decimal fields
located on the same record to populate a variable field.

For each given offset in the data section, the source offset is set and the MoveNum rule
is called. The highest value is kept in a buffer. After comparing all numbers, the system
copies the highest number into the variable field. There are two optional parameters:

• Compare the largest value with the given value. If it is larger, return it. If smaller,
use option two.

• Take the field with the index specified in the next parameter. If the second
parameter is not specified, return a SKIP message.

NOTE:The system ignores the fields of the entry which usually contain the source
offset and the source length. Instead, the system uses the offset and length
specified in the data section. The search criteria and the extract field descriptors
must be delimited by a single space. No other spaces are allowed.

Example You could make the following entries in Studio in the Rule section of the field’s
Properties window:

In this field... Enter...

Rule CompBin

Destination offset 1

Source name REC-MAXFINE

Source offset 45

File *

Length 6

Record *

Required *

Overflow
Multiplier

*

Overflow *

Mask 11.0,18.0,B

Data 100,XYZ 45,4,67,4

* no entry required for this field in this example

Chapter 6
Field Rules Reference

356

The rule compares the packed decimals on the locations 45-4 bytes and 67-4 bytes in the
record identified by a XYZ at location 100 and returns the highest value.

See also Field Rules Summary on page 342

ConCat

357

 ConCat
Use this field level rule to concatenate two or more text strings contained in an extract
record and place the result in a field you specify. This rule supports overflow.

See also Field Rules Summary on page 342

Chapter 6
Field Rules Reference

358

 DAL
Use this field level rule to get information from an extract file if certain conditions are
met. In addition, this rule lets you call most of the DAL functions.

NOTE:Version 11.4 changed the way entries that specify a DAL rule are processed in
the Extract Dictionary (XDD).

Normally, the ancestry Data fields are appended together to form a complete
data representation for a field. When using the DAL rule, this behavior was
often undesired. Now, the system assumes that the entry specifying the DAL
rule contains all the data information required to resolve the necessary field
value and ignores any values specified by an ancestor.

The DAL rule is similar to the IF rule except it returns only data, not another rule. For
more information, see If on page 371.

You can specify a DAL script name by adding Call ("scriptname") in the Data field. It
would look like this:

Call ("script.dal")

It is also possible to specify the rule data for the DAL rule in an external file. Name the
file to include with a leading ampersand (&) in the data area, as shown here:

&data.inc

This loads the file, data.inc, from the current directory and inserts its contents into the
rule’s data area. Note that the file should contain a single line, just as it would appear if
you had typed the data directly into the rule data parameter. Also, if the include file is
not in the current directory, the name must specify the correct path to locate the file.

NOTE:If the include file is in DefLib, then change &data.inc to &deflib\data.inc.

If you encounter this error message:

DM10558: Error in GetFieldRuleData(): Condition exceeds buffer length

This means the content of your include file is too large to fit into the rule data area. To
resolve this problem, place the data in a DAL script file and use the CALL or CHAIN
command to execute the DAL script.

See also If on page 371

Field Rules Summary on page 342

DateDiff

359

 DateDiff
This field level rule lets you display the difference between two dates. The dates do not
have to be in the same format in the extract file, but the format of each must be
supported. (The valid formats 1,7,10,11 will be described later.)

The dates and their formats are separated by a comma (,) and are defined in the Data
field of the rule. For formats supporting a two-digit year, the 20th century (19xx) is
assumed for date difference calculations. Date differences as a result of using this rule
are not true in the sense that they are calculated under the following guidelines. These
are sometimes referred to as bankers dates.

• Month = 30 days

• Year = 360 days

You must also specify the output format and output format data in the format mask of
the rule. (The only valid format and data currently supported is 1 3 / 3.)

Syntax FORMATMASK;rule;RULEDATA;...

The FormatMask must be in the form of:

OUTPUTFORMAT OUTPUTFORMATDATA

where OUTPUTFORMATDATA varies, depending on the output format. You must
separate these parameters with a space.

OUTPUTFORMAT. Shows the difference between the two dates, in months and days.
The only output format is 1. You must separate these parameters with a space.

OUTPUTFORMATDATA. The OutputFormatData must be in the form of:

MONTHLENGTH SEPARATORSTRING DAYLENGTH

For example, if you enter 3 / 3 and there are 365 days difference, the output would be
012/005. Here is an example:

1 3 / 3 (1 is OUTPUTFORMAT)

The RULEDATA consists of two groups of search criteria and extract field descriptors
for the two dates. These two groups of data are separated by a colon (:). Within each
group, search criteria and extract field descriptors are separated by a single space. Within
search criteria, offset and length are separated by a comma (,). Extract field descriptors
are also separated by a comma (,).

The RULEDATA must be in this form:

RECOFFSET1,RECDATA1 OFFSET1,LENGTH1,DATEFORMAT1:RECOFFSET2,RECDATA2
OFFSET2,LENGTH2,DATEFORMAT2

Parameter Description

RECOFFSET1 The record offset of first date.

RECDATA1 The search data for record of first date.

0FFSET1 The offset of first date in record.

LENGTH1 The length of first date in record.

Chapter 6
Field Rules Reference

360

You can use these formats:

NOTE:The data for the two dates is separated by a colon (:). Here is a RULEDATA
example: 1,TRANS 73,10,7:1,TRANS 83,10,7

See also Field Rules Summary on page 342

*DATEFORMAT1 The format of first date.

RECOFFSET2 The record offset of second date

RECDATA2 The search data for record of second date

OFFSET2 The offset of second date in record

LENGTH2 The length of second date in record

*DATEFORMAT2 The format of second date

* The format you specify here must be supported.

Enter For this format:

1 MM/DD/YY

7 YYYY-MM-DD

8 Julian_AD date 1 through 1000034 (01/01/0001 – 12/31/2738)

10 Month Date, Year (such as February 17, 2002)

11 MMDDYYYY

Parameter Description

DateFmt

361

 DateFmt

NOTE:You should use the FmtDate rule, on page 365, instead of this rule. This rule is
included in this version of the system only for legacy system support.

Use this field level rule to format a date retrieved from an extract record based on the
mask you select. A list of date masks appears below. This rule supports overflow.

Date masks
ID Source Destination Also supported by FmtDate

1 YYMMDD MMDDYY yes

2 YYYYMMDD MMDDYYYY yes

3 YYYYMMDD MMDDYY yes

4 YYMMDD MM-DD-YY yes

5 YYMMDD MM/DD/YY yes

6 YYYYMMDD MM-DD-YY yes

7 YYYYMMDD MM/DD/YY yes

8 MMDDYY MM-DD-YY yes

9 MMDDYY MM/DD/YY yes

10 YYYMMDD MM/DD/YY yes

11 MMDDYYYY Month D, YYYY yes

12 MMDDYYYY Mon D, YYYY no

13 MMDDYYYY MONTH D, YYYY no

14 YYYY-MM-DD Month D, YYYY yes

15 YYYY-MM-DD Mon D, YYYY no

16 YYYY-MM-DD MM/DD/YY yes

17 DD/MM/YY Mon D, YYYY no

18 DD/MM/YY Month D, YYYY yes

19 DD/MM/YY MM/DD/YY yes

21 YYYY-MM-DD Month DD, YYYY no

Chapter 6
Field Rules Reference

362

Destination formats with a single letter, such as D, indicate that the system will omit
leading zeros or spaces. Also, please note that Month indicates both upper- and lowercase
letters will be used while MONTH indicates only uppercase letters will be used. Mon
indicates the month will be abbreviated, in upper- and lowercase letters.

See also FmtDate on page 365

Formatting Data on page 261

Field Rules Summary on page 342

22 DD/MM/YY Month DD, YYYY no

23 MM/DD/YY Month DD, YYYY no

24 YYMM MM/YY no

25 MM/DDYY Month DD, YYYY no

26 DD/MM/YY Mon DD, YYYY yes

27 YYYY-MM-DD MM/DD/YYYY yes

ID Source Destination Also supported by FmtDate

EjectPage

363

 EjectPage

NOTE:This rule is only included in this version of the system for legacy system
support. Master resource libraries (MRLs) created with Documaker Studio do
not need this rule.

Use this field level rule to process multi-page FAP files (sections). With multi-page
sections, when the section is added to the form set only one section object is created.
When the section gets loaded, the system creates the other sections.

Syntax EjectPage()

This rule makes sure the pre- and post-section level processing is run for each section of
the multi-page FAP file, not just the pre-processing on the first section and the
postprocessing on the last.

When you run the FAP2MET utility on a multi-page FAP file, the utility creates a MET
file for each page. In the DDT file, you should then make an entry for the FAP file and
add an EjectPage rule for each additional page that makes up the form. The system
knows by the EjectPage rules to look for additional FAP files for this form.

See also Field Rules Summary on page 342

Chapter 6
Field Rules Reference

364

 FfSysDte
Use this field level rule to get the current date from the system and place that date in
the destination field. This rule supports overflow.

There are several output formats you can specify by entering a format ID in the rule’s
Data field. Here's a list of the format IDs you can use:

NOTE:Place the format ID immediately after the rule. This differs from other rule
masks.

See also SysDate on page 423

Formatting Data on page 261

Field Rules Summary on page 342

ID Output Format

M month only, output formatted as MM

D day only, output formatted as DD

Y year only, output formatted as YY

MS month spelled out

MS1 month spelled out, followed by the two-digit year. (24 June 02)

MS2 month spelled out, followed by the date and a four-digit year (February 17, 2002)

Default no option specified in the data field, will use the format MM/DD/YY

FmtDate

365

 FmtDate
Use this field level rule to format dates for different localities. This rule supports
overflow. The mask for the FmtDate rule takes these values:

• input fetype

• input format mask

• output fetype

• output format mask

NOTE:There are two types of format masks, pre-defined types 1-9 and A-Q and user-
defined format arguments. If the pre-defined formats meet your needs, use
them, otherwise, create a user-defined format. For information on using pre-
defined format types, see Using Pre-defined Date Formats on page 261.

User-defined format arguments consist of one or more codes, each preceded by
a percent sign (%). For more information on user-defined format masks, see the
Setting Up Format Arguments on page 266.

You can enter up to 80 characters in the mask.

See also DateFmt on page 361

Formatting Data on page 261

Field Format Types (fetypes) on page 269

Field Rules Summary on page 342

Chapter 6
Field Rules Reference

366

 FmtNum
Use this field level rule to format amounts for different localities. This rule supports
overflow. The mask area takes these values:

• input fetype

• output fetype

• output format mask

An fetype defines the field format type. You can have an input and an output fetype. For
example, an input fetype with the FmtNum rule tells the system where the decimal goes
in the number. The output fetype tells the system how to format the output amount.
An fetype can consist of either one or four characters.

The first character of an fetype defines the field format type. There are several types
defined in the system such as a d for dates and an n for numbers. You can add three
additional characters to override the default locale, which is USD (United States,
English). Please see Field Format Types (fetypes) on page 269 for a list of the supported
localities. If your defined fetype is not one that is supported, the system uses USD.

Left justifying numbers You can include the L parameter to left justify numbers after they have been formatted.
This parameter is the fourth optional flag in the Mask field. For example, if you have
this format mask

n,n,"z,zzz,zzz,zzz,zz9.99",L

and the extract data has an amount such as 123456.99, the system uses this rule to read
the amount and formats this number to produce the result, 123,459.99. The rule will
then left justify the field. Below is an example of the result with and without the L
parameter.

Without the L parameter:

n,n,"z,zzz,zzz,zzz,zz9.99"

 123,456.99

With the L parameter:

n,n,"z,zzz,zzz,zzz,zz9.99",l

123,456.99

Like the Move_It and MoveNum rules, this type of left justification simply removes
leading spaces. It does not provide a positional justification as is provided by the JustFld
rule.

See also Using Pre-defined Numeric Formats on page 265

Field Rules Summary on page 342

Suppressing decimals with the FmtNum Rule on page 265

Using the ZeroText option with the FmtNum Rule on page 266

JustFld on page 374

GlobalFld

367

 GlobalFld
Use this field level rule to speed the processing of fields used repeatedly throughout a
form set.

Frequently a field rule is called to retrieve the same record over and over, which slows
batch processing. Using this rule helps you avoid unnecessary repetition and therefore
speeds processing.

NOTE:The name of the field in the FAP file (the field name in the XDB file) and the
source name of the field in the XDB file must be identical for this rule to work
correctly.

Syntax GlobalFld ()

To use this rule, you must have an XDB.DBF file. You set up the XDB file as shown in
the examples below.

The Record field column in an XDB record can be just about anything. If you are
importing the fields from a file, the system defaults the record field to the name of the
source file you are importing.

If you import the fields from a COBOL Copybook, the record column field is assigned
the name of the higher level group that owns the field.

Keep in mind that you cannot use the GlobalFld rule if the field data is not going to be
global in scope. For instance, overflow and sub-extract situations where you expect the
next occurrence of the field to get a different result are not candidates for the GlobalFld
rule.

The SourceFile record member is not used in looking up XDB records. XDB records are
looked up by the destination field name alone.

NOTE:When using the GlobalFld Rule, the XDB record replaces the entire record.
Remember, it is a global field, therefore the assumption is that all references to
the field are identical.

If you want to make common rule definitions, but override certain members in
individual files, use the MASTER.DDT file instead of the GlobalFld rule.

When the system executes this rule, it first checks the Dictionary rule by the field name
key. If the record exists, it returns the value — here InsuredName. If not, it looks into
XDB and gets the original field rule, such as Move_It.

Then the system executes the field rule to get the value and returns it. Finally, it stores
the record in the dictionary. The next time that record is required, the system gets the
value from the dictionary.

NOTE:After you run the GlobalFld rule, you must run the Dictionary rule to terminate
the XDB and free memory.

Chapter 6
Field Rules Reference

368

See also Dictionary on page 80

Field Rules Summary on page 342

HardExst

369

 HardExst
Use this field level rule to place a value into a field only if a record is found in the extract
data using the search criteria you specify in the data field. This rule supports overflow.

Syntax HardExst ()

For instance, you could use this rule to see if there is a record in an extract file that
corresponds to a field designating whether or not the applicant is a home owner. If the
data exists in the extract record, the rule could then place an X in the Home Owner field.

You can use these format flags:

The system justifies the data by adding spaces in front of the text. If you are using a
proportional font, do not use these flags to align the data. Use the JustFld rule for that.

Search masks and
overflow

Overflow affects how the search mask is used. Keep in mind that the rule uses the entire
search mask, not just part of it. In this way, the HardExst rule differs from the PrintIf
rule.

For example, if you specify this search mask:

11,DETAILREC,28,Y

it appears that the system checks to see if the record contains a Y in the 28th position.
Instead, this mask really tells the system to find a row with DETAILREC at offset 11
and with a Y in the 28th position. This may sound like the same thing, but it is not.

Before the rule supported overflow, the answer could only be Yes or No—either you have
such a record in your extract file or you don’t. For example, suppose you have these rows
in an extract file:

HEADERREC0

DETAILREC0Y

And, suppose you specify the HardExst rule without overflow and with this search mask

1,DETAILREC,11,Y

In this case, the answer would be Yes — you do have such a record.

Now suppose you have these rows in your extract file and you are still not using overflow
with the rule:

HEADERREC0

DETAILREC0N

DETAILREC0Y

The HardExst rule, even without overflow, will find the record that matches the search
mask. Therefore, the answer is still Yes—you do have a row with DETAILREC at offset
1 and a Y in offset 11.

Flag Description

C Center

R Right justify

Chapter 6
Field Rules Reference

370

If you introduce overflow the result does not change. There is still only one record that
has DETAILREC at offset 1 and a Y in offset 11. The first overflow variable will have
the value you assign, while all the rest will not.

Although it may seem like you are searching for DETAILREC and you want to know
if there is a Y in the 11th position, this is not what you are specifying. You are specifying
that a row must have both criteria to match.

That is the difference between the PrintIf rule (which also now supports overflow) and
the HardExst rule. For the PrintIf rule, you would use a less specific search mask of
1,DETAILREC and then use the if part of the rule to determine if the row contains the
value you want. There are two records that match the less specific search mask of
1,DETAILREC. The first does not have a Y in the designated position, but the second
does.

What you have to note is that the HardExst rule, like any other rule, uses the entire
search mask to find matching rows—not just part of the mask. Therefore, only use the
HardExst rule in overflow conditions to determine how many matching rows are
found—rather than to try to find out if a row does or does not match the criteria.

How data is returned The HardExst rule with overflow does not return data in the same order that the search
criteria appears in the extract file. For example, suppose you would like to return the
value X in a variable field named CHECKBX based on this search criteria:

11,AUTOREC,40,CHECKBX

The variable field is set up for overflow.

;0;1;CHECKBX;0;0;CHECKBX;0;0;;hardexst;@GETRECSUSED,OVFSYM1,MYIMAGE
/11,AUTOREC,40,CHECKBX X;;;;

In the extract file, assume there are five occurrences of 11,AUTOREC. The first, third,
and fifth occurrence of 11,AUTOREC does not have CHECKBX in offset 40 but the
second and fourth occurrence of 11,AUTOREC does have CHECKBX at offset 40.

SCO12345678AUTOREC

SCO12345678AUTOREC CHECKBX

SCO12345678AUTOREC

SCO12345678AUTOREC CHECKBX

SCO12345678AUTOREC

The system does not leave the first, third, and fifth occurrences of the variable field
blank and populate the second and fourth occurrence. The system finds the two
occurrences of 11,AUTOREC,40,CHECKBX, populates the first two occurrences of the
variable field with X, and leaves the last three occurrences of the field blank.

See also JustFld on page 374

Mk_Hard on page 389

Search Criteria on page 273

Field Rules Summary on page 342

If

371

 If
Use this field level rule to get information from an extract file if certain conditions are
met. In addition, the IF rule lets you call most of the DAL functions. For more
information, see the FieldRule function in the DAL Reference.

You can specify a file name by adding &filename in the Data field.

The IF rule supports the FieldRule function to call every field rule in the IF rule. The
FieldRule function requires as many parameters as are required for a field level rule. Not
all fields must contain data, but you must include the correct number of delimiters.

Here is a list of field rule parameters. An asterisk indicates the parameter is generally
required, depending on the rule you are using. If you leave a parameter blank, be sure
to include two colons as delimiters (::) to indicate the parameter is blank.

Parameter Description

File number (required by TblLkUp)

Record number (required for overflow)

Source field name (required by TblText)

Source field offset *

Source field length *

Destination field name *

Destination field offset

Destination field length *

Format mask *

Field rule name *

Rule parameters * (also called “data”)

Flag1 (also called “not required”)

Flag2 (also called “host required”)

Flag3 (also called “operator required”)

Flag4 (also called “either required”)

X position

Y position

Font ID

Chapter 6
Field Rules Reference

372

The IF rule and
overflow

You can use overflow variables if the field level rule you used supports overflow.
Generally, the IF rule does not support overflow—it can only be supported through the
use of the FieldRule function. Here is an example. Suppose you want to move multiple
lines of text from N number of specific external extract records to the output buffer
when the HEADERREC record (at offset 11) contains an F in position 1.

For this scenario, you could use the FieldRule function to call the MoveExt rule and use
the standard IF rule to do the rest. The DAL script for this example would look like this:

CON={11,HEADERREC 1,1}:: A=FIELDRULE("::0::1::E::45::4::PREM/OPS
RATE1::0::4::::moveext::@GETRECSUSED,QCPVR5,OVSYM1/
11,CLSSCDREC::N::N::N::N::::::::")::if(CON='F')::return("^" & A &
"^")::end ;N;N;Y;N;12461;2119;16010

Overflow variables used in the search mask have a syntax which looks like this:

@GETRECSUSED,CPDEC1,CPDEC1OVF/11,CLSSCDREC

Writing DAL scripts Keep in mind that writing DAL scripts is like coding rules. You must write the script
using the correct syntax and make sure you correctly handle the variables you use. This
table shows the different types of variables:

In an IF condition, the data type of the variable on the left side of the operator
determines the data type used during the comparison. This means the variable/number/
string on the right is converted to the data type of the variable/number/string on the
left. After this conversion occurs, the comparison is performed.

If you encounter this error message:

DM10558: Error in GetFieldRuleData(): Condition exceeds buffer length

Use this statement:

CALL("logo.dal")

Type Description

A String variable. Use quotation marks for comparisons with this variable.

$A Numeric variable with decimal places. Omit the quotation marks and include only
numbers.

#A Numeric variable without decimal places. Omit the quotation marks and include
only numbers.

If

373

NOTE:You can use curly braces { } to tell the system to apply a search mask before
executing the DAL script. Here is an example:

$A = {11,AUTONUREC 25,9}::

The use of curly braces is not part of DAL syntax, but rather is a Documaker
Server notation that is preprocessed before the DAL script is executed.

Please note that you can only use curly braces in this manner if the DAL script
is written into the rule data area. External DAL script files cannot contain such
syntax. To retrieve extract data within an external DAL script file, you have to
use the GETDATA function.

For more detailed information on writing DAL scripts and using DAL
functions, see the DAL Reference.

See also DAL on page 358

Field Rules Summary on page 342

Chapter 6
Field Rules Reference

374

 JustFld
Use this field level rule to justify (left, right, or center) a variable field by modifying its
field coordinates.

Syntax JustFld (Mode,Cord,XPos,Achr,Rota,Font,NoClip,Rule)

This rule calls either the Move_It, MoveNum, FmtDate, FfSysDte, MoveSum, ConCat,
TblLkUp, SAPMove_It, MoveExt, FmtNum, TblText, Mk_Hard, StrngFmt rules, or
other similar rules.

The first parameter used by the JustFld rule must be the Mode parameter. Here is a
discussion of the parameters:

Parameter Description

Mode Enter L (left), R (right), or C (center). If you omit this parameter, this rule
will call the Move_It rule and generate an error message.

You must also include the Cord or Xpos parameter. The other parameters are
optional.
The mode parameters (left, right, and center) tell the system to remove
leading and trailing blanks before it justifies the data. Use the NoClip
parameter if you do not want the system to do this.

Cord Enter the top, bottom, left, and right coordinates to define where the field
appears on the page.

In Studio, you specify a field’s coordinates on the field’s Properties window.
The coordinates are specified as shown here:

• The top coordinate is specified in the Vertical field. The bottom
coordinate is the entry in the Vertical field, plus the entry in the Height
field.

• The left coordinate is specified in the Horizontal field. The right
coordinate is the entry in the Horizontal field, plus the entry in the
Width field.

XPos Enter the X coordinate used to align the field. If Mode=R this will be the
right most position of the field, likewise if Mode=C this will be the center of
the field. Here is an example:

MODE=R,XPOS=5000

If the data is 12345, character 5 will be at position 5000.

Achr Enter a string of characters found in the data and used to align the field.
When you use this parameter, you must define the XPos parameter, otherwise
the system ignores the Achr parameter. With the correct setup, the rule aligns
the field so the characters you specify in this parameter overlay the XPos. You
can include up to 10 characters in the string. Here is an example:

MODE=R, XPOS=5000, ACHR=.

If the data is 123.45, the decimal will be at position 5000.

Rota Specifies the field rotation. Enter 0,90,180, or 270. For example:

ROTA=270

This tells the system to rotate the field 270 degrees.

JustFld

375

Be sure to separate the parameters in the data area with commas.

Essentially, you first define the necessary information as though you were not using the
JustFld rule, but were going to use the underlying rule to get the data. Then, at the end
of the list of parameters, add the Mode parameter and follow with any other JustFld rule
parameters you need—including the Rule parameter if you want to use a rule other than
Move_It.

Errors If the call to the rule fails, this rule returns an error. If you omit the Mode parameter,
this rule calls the Move_It rule and generates an error. The Mode parameter separates
the portion of the data parameter passed to the specified rule.

Using the
LoadCordFAP option

Use of the LoadCordFAP option also affects the JustFld rule. The following table shows
how this INI option affects this rule:

See also ConCat on page 357

FfSysDte on page 364

FmtDate on page 365

FmtNum on page 366

Mk_Hard on page 389

Move_It on page 392

MoveExt on page 397

MoveNum on page 398

Font Specifies the font ID. Here is an example:

FONT=11010

NoClip Tells the system not to remove trailing spaces from the field.

Rule Enter the name of the rule you want to use to load the data from the extract
file. If you omit this parameter, the system uses the Move_It rule.
You can choose from any of the date function rules, such as FmtDate,
FfSysDte, MoveSum, ConCat, TblLkUp, SAPMove_It, MoveExt, FmtNum,
TblText, Mk_Hard, StrngFmt, and so on.
For instance, enter MoveNum to have the JustFld rule call the MoveNum
rule. This lets you use the formatting capabilities of the MoveNum rule. Here
is an example:

MODE=R,XPOS=5000,RULE=MoveNum,FONT=11010

Parameter Description

If set to... Then...

Yes The system gets the coordinates (Cord), font (Font), and rotation (Rota) from the
FAP file.

No You must define the coordinates, font, and rotation using the Cord, Font, and
Rota parameters. Otherwise the field will not be positioned properly.

Chapter 6
Field Rules Reference

376

MoveSum on page 405

SAPMove_It on page 416

StrngFmt on page 422

TblLkUp on page 425

TblText on page 427

Overflow and User Functions on page 274

Field Rules Summary on page 342

KickToWip

377

 KickToWip
Use this field level rule to force a transaction to manual batch (WIP). You can use the
KickToWIP rule for situations when data is not available in the extract file or the data
changes, requiring entry by a data entry operator. This rule makes those fields available
for entry.

Syntax KickToWip ()

Use the ShowWIPWarning option to suppress the Sent to Manual Batch warning
messages:

< RunMode >

ShowWIPWarning = No

See also Field Rules Summary on page 342

Option Description

ShowWIPWarning Enter No to suppress warning messages included the error logs when
using the KickToWIP or POWType rules, or the KickToWIP DAL
function.
The default is Yes, which tells the system to include the messages in the
error logs.

Chapter 6
Field Rules Reference

378

 LookUp
Use this field level rule to take data from an extract record. Next, use the data as a key
name to look up the key data in a table. Then, copy the table data to the destination
field. You must specify the offset of the key name in the data field, as well as the offset
and length of the key data in the data field. This rule uses the same table as the MovTbl
rule.

Syntax LookUp ()

You can use one or more files to keep the tables used by this rule. You must list each
table (file) in the TABLEFILE.DAT file. The table list file must be in the following
format:

TABLEFILENAME1.EXT <crlf>

TABLEFILENAME2.EXT <crlf>

where each table is listed on a single line followed by a carriage return/line feed.

The format of the tables is key name followed by key data. The key need not be a specific
length. The data can also be any length, which allows a single table or group of table
files to contain table entries of varying lengths.

You specify the table list file using the TblFile option under the Data control group in
the FSISYS.INI file.

For example, suppose a form contains the names and numbers of agents for calling
purposes, but these names and numbers change on a regular basis. For this situation you
could create a text table called AGENTS.TBL which contains entries such as...

AGENT001 JOE MILLER <crlf>

and another table, called AGENTPHO.TBL, with phone number entries such as...

AGENT001PHONE404 111-2222 <crlf>

You could then make these tables available to Documaker Server by including them in
the files specified in the Data control group of the FSISYS.INI file, as shown here:

< Data >

TblFile=.\deflib\TblFile.Dat

You must load the tables into memory before the system can use them. To do this,
include these rules in the AFGJOB.JDT file:

;CreateGlbVar;1;TblLstH,PVOID;

;LoadTblFiles;1;;

See also MovTbl on page 406

TblLkUp on page 425

Field Rules Summary on page 342

MapFromImportData

379

 MapFromImportData
Use this field level rule to map imported data from an internal dictionary to a field, as
opposed to mapping from an extract file. Normally, you use this rule with either the
ImportFile or ImportExtract rules, however, you can use this rule with any preceding
rule that fills in field dictionary values.

By default, this rule checks for a dictionary value starting with the section dictionary,
then the form dictionary, and finally the form set (global) dictionary. The search ends
as soon as the rule finds a value for the field.

If no dictionary entry is found for the field, the field remains blank. Use the Required
flags in the rule definition to control whether an empty field is considered an error.

NOTE:For some legacy implementations, this rule was registered under the name
NoOpImp.

If you do not use this rule, you must use the ReplaceNoOpFunc rule and make sure that
all of the fields for each file are set to NoOpFunc.

Syntax MapFromImportData ()

You can use the optional INDEX parameter to specify a particular dictionary instance
of the field to use. This is only useful if you use the ImportFile or ImportExtract rules
to import form set data.

For the ImportFile rule, to support field instances you must include this INI option:

< ImportFile >

IndexDuplicateFields = Yes

For the ImportExtract rule, to support field instances you must include this INI option:

< ImportExtract >

IndexDuplicateFields = Yes

Normally, duplicate field entries found in the import file are ignored. If, however, you
enter Yes, each instance is stored in a separate dictionary entry.

NOTE:Field instance (indexing) only applies to field data stored in the form set (global)
dictionary.

The parameter value to specify indexing has this syntax:

INDEX(option,...)

Where option is a keyword that indicates how to calculate the dictionary instance to use
or a constant value to use as the index.

Chapter 6
Field Rules Reference

380

Here is a list of the keywords you can use:

A successful return does not indicate whether the field was assigned a value.

See also NoOpFunc on page 407

ReplaceNoOpFunc on page 200

ImportExtract on page 114

ImportFile on page 119

Field Rules Summary on page 342

Keyword Description

FORM Use the occurrence of this form as the instance index. For example, if this field
is contained on the second copy of this form, then get the second instance of
field data.

IMG Use the occurrence of this section within the current form as the instance index.
For example, if this field is contained on the third copy of section on the current
form, then get the third instance of field data.

IMGFSET Use the occurrence of this section within the entire form set as the instance
index. For example, if this is the fifth occurrence of this section within the form
set (without considering what forms contain the other copies of this section),
then get the fifth instance of field data.

FLD Use the occurrence of this field within the current form as the instance index.
For example, if this field is the third occurrence within the same form, then get
the third instance of field data.

FLDFSET Use the occurrence of this field within the entire form set as the instance index.
For example, if this is the tenth occurrence of this field within the entire form
set (without considering what forms and sections contain the other copies of
this field), then get the tenth instance of field data.

Master

381

 Master
Use this field level rule to tell the system the field has been mapped in the
MASTER.DDT (data definition table) file. Use this rule when you have variable fields
which are used on multiple sections.

Instead of mapping these identical variable fields, like Name and Address, each time
they are used, you can map them once in the MASTER.DDT file and then map the
individual fields to the Master rule. This tells the system to look in the MASTER.DDT
file for the complete mapping information for those variable fields.

Syntax Master ()

See also Field Rules Summary on page 342

Chapter 6
Field Rules Reference

382

 MessageFromExtr
Use this field level rule to retrieve a message from an extract file and place the message
into a field on the form. Default formatting information comes from the definition of
the field which you set up using Studio. Specific formatting information is embedded
within the message using tags. This rule can also contain variable blocks of text.

For this rule, the main components are the message, the message tags, the Record Definition
Dictionary, and the INI options. These components are discussed in the following topics.

Creating Messages
The message is the text retrieved from the extract file. This text can contain message tags
which control how the text is formatted. The tags control the justification, spacing, font,
variable insertion and other functions. All formatting information is contained in the
tags, which serve as a mark-up language. The message itself is straight text. The message
is a single line or record with a maximum length of 2000 bytes.

Setting up the field You attach this rule to a field in the section. In the section (FAP file), you define the
field to which the message is attached as a multiline text field.

If you also select the Can Grow option for the field, the system combines all messages
with the same group code in this field, letting the field grow to accommodate the entire
message. If you do not select the Can Grow option, the system only includes the
messages that fit within the defined area for the field. Messages that would not fit are
ignored.

Adding messages The system adds messages in the order they appear in the extract file or database. It tests
every message to see if the message fits in the available space. All the messages of a group
must fit in the available space or none of the messages appear.

Grouping messages You can group and format messages as a single message by including a group code. You
define grouping codes in the Record Dictionary. For more information about the
Record Dictionary, see Using the Record Dictionary on page 441. All the messages in a
group are treated as a single message. Group codes cannot be blank. All messages
comprising a group must be located together in the extract list.

Formatting messages The formatting information you select for the field serves as the default formatting
information for all messages, so make sure you set up the field in the section (FAP file)
to use the default font you want for all messages.

Message tags override the default formatting you set up for the field and let you control
the appearance of the message text. You can add tags to the text of the message to
describe and control the justification, spacing, fonts and other formatting information.
The tags affect all text which follows the tag. You can also use message tags to insert
variable data fields.

NOTE:Place the variable (VAR) tag within the text where you want the system to insert
the variable.

MessageFromExtr

383

Tags are enclosed within brackets (< >). The text between the brackets describes the
formatting action or the reference to the variable name referenced in the Record
Dictionary. The tag itself does not appear in the formatted text.

The following table describes the tags you can use:

Tag Description

<Justify:value> You can enter Left, Right, or Center to have the system left, right, or center-
justify the text. If you omit the value, the system uses the previously
defined justification. You can abbreviated tags if the line size is limited.

For example, <J:L> or <Justify:L> provides left justification and <J:C>
or <Justify:C> provides center justification.

Note: If the justification tag is in the message — not the first entry on the
line — then you must insert the carriage return tag before the justification
tag. For example, this message places the word, age, to the right of the
second line:

<CR><Justify:Right>Age

<Font:value> You can enter any valid font ID (00000-99999) or Default. The value is a
numeric reference to the font cross reference file (FXR) font ID. If the
value is left blank, the system uses the previously defined font ID.

For example, <Font:16210> changes the text to the font identified with
font ID 16210 in the FXR file while changes the font back to the
default font as font defined in the FAP file.

Do not abbreviate this tag.

<Var:var-name> var-name refers to a variable name defined in a Record Dictionary. The
Definition Dictionary describes the variable data. The description
defines each record and the fields within each record, such as the record
name, offset, length, format, and so on. It does not include formatting
information, such as the font ID.

You can abbreviate this tag as <V:var-name>.
For example, <V:DTAT> references the variable DTAT as defined in the
Record Dictionary and <VAR:DTV1> references the variable DTV1 as
defined in the Record Dictionary

<Spacing:value> You can enter Single, Double, or a numeric value in FAP units (2400 per
inch in place of value). Single indicates the following text should be
single-spaced. Double indicates the following text should be double-
spaced. A numeric value tells the system the number of FAP units to use
for spacing. If you omit the value, the system returns to the previously
defined spacing.

Do not abbreviate this tag.
The spacing option you choose applies to the entire message grouping.
You cannot change spacing within a grouping (a single message).

For example, <Spacing:Double> tells the system to double space the
message lines within the message or message group while <Spacing>
returns the spacing to the default format.

Note: If you change spacing in the text of a message—not the first items
in the message—you must insert a carriage return tag before the spacing
tag. For example, this changes spacing to double lines:

<CR><Spacing:Double>

Chapter 6
Field Rules Reference

384

Here are some examples using the Tab tag…

<CR><T:9600,Left,nolead>Tabbing in 4 inches with no leader.

<CR><T:9600,Left,dash>Tabbing in 4 inches with dashes.

<CR><T:9600,Left,period>Tabbing in 4 inches with periods.

<CR><T:9600,Left,underline>Tabbing in 4 inches with underline.

0 1 2 3 4 5 6 7 8

 Tabbing in 4 inches with no leader.

-----------------Tabbing in 4 inches with dashes.

……………………………………………Tabbing in 4 inches with periods.

_________________Tabbing in 4 inches with underline.

<CR><T:9600,C,D>4"dashes & text centered.

<CR><T:9600,R,P>4"periods & text right.

0 1 2 3 4 5 6 7 8

----------------4" dashes & text centered.

.…………………………………….4" periods & text right.

Here is another example. The following tags...

<Justifiy:Center><Font:23712>Example<CR><Justify>This is a
sample message.<CR>Name<Justify:Right>Age

... produce this message:

<Tab> Use the Tab tag to have the system indent the text from the left margin
by a specified number of FAP units. You can abbreviate the tag to <T>
if the line size is limited.

You can justify the text relative to the tabbed position by specifying Left,
Center, or Right. You can abbreviate the tags by using the first character
(L, C, or R) if the line size is limited. The default is to left justify the text.

You can also use different types of fill (leader) characters if the text does
not fill the entire space. You can use these leader characters: no leader
(spaces), dashes (---), periods (…), or underlines (___). Except for no
leader, you can abbreviate the tags using the first character if the line size
is limited. For no leader, you must use the word nolead for spaces. Spaces
are the default fill characters.

<CR> This tag tells the system to insert a hard return (carriage return), or forced
line break. For example, Residential <CR> rate will look like this:

Residential

rate

Do not abbreviate this tag.

Example

This is a sample message.

Name Age

Tag Description

MessageFromExtr

385

Using the Record Dictionary
The Record Dictionary provides the information for identifying and locating records
and fields within records. The Record Dictionary is an ASCII file you can create using
any ASCII editor. Used with the Condition table, any variable in the Record Dictionary
can be used in a conditional evaluation. For more information about the Condition
table, see Using Condition Tables on page 438.

Record Dictionary information is divided into two sections:

• Record section, which describes the records

• Variable Definition section, which describes the fields contained in the records

For more information about the Record Dictionary, see Using the Record Dictionary
on page 441.

Record definition
syntax

Record Name = Search(Column, Search Mask) {Repeating}

Here are some examples:

< Records >

Message = Search(61,01) Repeating

Account = Search(61,02)

Parameter Description

Record Name The name the record will use in the future. A record name begins with an
alpha character and can have a maximum of 30 characters. You can have
only one description for a given record name. Record names are not case
sensitive — you cannot define both BASE and Base.

Search Keyword

Column Starting column number to search.

Search Mask Text to search for in the record columns.

Repeating (Optional) Keyword used to indicate there may be multiple records of that
type in a transaction.

Chapter 6
Field Rules Reference

386

Variable definition
syntax

Variable = Record(name) Offset(n) Length(n) Type(x)

Variable = GVM(name) Offset(n) Length(n) Type(x)

Variable = Record(name) Offset(n) Length(n) Type(x) Rule(name)
Format(flags)

Variable = Record(name) Offset(n) Length(n) Type(x) Format(flags)
Precision(n)

Here are some examples:

< Variables >

MSGTYPE = Record(Message)Offset(41) Length(1) Type(Char)

MSGGID = Record(Message)Offset(37) Length(2) Type(Zone)

GRPHID = Record(Graph) Offset(31) Length(8) Type(Packed)

PRTCOND1 = Record(Graph1) Offset(31) Length(8) Type(Num) Format(C)

PRTCOND2 = Record(Graph2) Offset(31)Length(8)Type(Num)Precision(5)

Total = Record(Address)Offset(50)Length(50)Rule(SetAddr2)

* OMR

RCBBATCH = GVM(RCBBatchName)Length(32)Type(Char)

INI options You must use the Name option to define the name of the Record Dictionary.

Parameter Description

Variable The name future references to this variable will use. A variable name begins
with an alpha character and can have a maximum of thirty (30) characters.

Record(name) (Optional) Identifies the record in which this variable will be found. This
parameter is mutually exclusive when using GVM.

GVM(name) (Optional) The name of the global variable to use. This parameter is
mutually exclusive when using Record. Also keep in mind a rule is not
necessary with the global variable.

Offset The offset into the record where the data is located.

Length The length of the data.

Type(x) (Optional) May be either Char, Num, Zone, or Packed.
Char is character data. Can be any string of alphanumeric characters and
symbols.
Num is numeric data. Can have a sign in front and a decimal place.

Zone is zoned decimal. Looks like a numeric value except the sign is added
to the last digit.
Packed is packed decimal. A binary format used mainly on z/OS systems.

Format(flags) (Optional) Similar to the flags used with the MoveNum rule except the
input flags (such as input length and precision, S, and B) are not needed.

Rule(name) (Optional) You can include any field rule such as DateFmt or SetAddr2. The
Move_It and MoveNum rules are inherent to the Record Dictionary, so you
do not need to call them. If you omit a rule, the Move_It rule functionality
is the default.

Precision(n) (Optional) The number of decimal places for a numeric variable.

MessageFromExtr

387

< DataDictionary >

Name = (file name of the Record Dictionary)

Place the Record Dictionary file in your DEFLIB directory.

Sample Record
Dictionary

Here is a sample Record Dictionary definition:

*

* This is the Record Dictionary

*

* These are the Records

* The only parameter is the record search mask. This can only be

* used for non-repeating records.

<Records>

Message = Search(61,01) Repeating

Account = Search(61,02)

MeterRead = Search(61,03) Repeating

Detail = Search(61,18) Repeating

*

*

* These are the variable definitions

* The required fields:

* Record name defined in the above section

* Offset into the record where the data begins

* Length of the data

* Optional fields:

* Formatting routine (data as is will be the default)

* Type or input format (not currently used)

<Variables>

***** The following are examples. All white space is ignored. ****

*

* AcctNum = Record(Header) Offset(4) Length(15) Type(Char)

* MessageText = Record(Message) Offset(53) Length(38) Type(Char)

* CompanyCode = Record(Header) Offset(24) Length(2) Type(Char)

* CustomerName = Record(Client) Offset(22) Length(21) Type(Char)

* NoticeDate = Record(Client) Offset(79) Length(8) Type(Num)
Rule(Date) Format()

* CashReceived = Record(Client) Offset(313) Length (10) Type(Zone)
Rule(MoveNum) Format(10.2,13.2,$,S-)

*

ACSA = Record(Account) Offset(487) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

ACSC = Record(Account) Offset(497) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

ACBB = Record(Account) Offset(436) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

BMV1 = Record(Message) Offset(159) Length(15) Type(Char)

BMV2 = Record(Message) Offset(174) Length(15) Type(Char)

BMV3 = Record(Message) Offset(189) Length(15) Type(Char)

BMV4 = Record(Message) Offset(204) Length(15) Type(Char)

BMV5 = Record(Message) Offset(219) Length(15) Type(Char)

DTAT = Record(Detail) Offset(163) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

DTV1 = Record(Detail) Offset(181) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTV2 = Record(Detail) Offset(199) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

Chapter 6
Field Rules Reference

388

DTV3 = Record(Detail) Offset(217) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTV4 = Record(Detail) Offset(235) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTV5 = Record(Detail) Offset(253) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTVM1 = Record(Detail) Offset(271) Length(15) Type(Char)

DTVM2 = Record(Detail) Offset(286) Length(15) Type(Char)

DTVM3 = Record(Detail) Offset(301) Length(15) Type(Char)

*

***The following is the grouping that is defined for messaging*

*

MsgLinePriority = Record(Message) Offset(96) Length(5) Type(Zone)

*

*

==

See also Using Condition Tables on page 438

Using the Record Dictionary on page 441

Field Rules Summary on page 342

Mk_Hard

389

 Mk_Hard
Use this field level rule to insert or hard code a value into a variable field. For instance,
you can use this rule to place an X in a check box or to insert the text Same as above in
a field on a form.

Syntax Mk_Hard ()

See also HardExst on page 369

SetCpyTo on page 327

Field Rules Summary on page 342

Chapter 6
Field Rules Reference

390

 MNumExt
Use this field level rule to perform the function of the MoveNum rule if an external
record is found. Enter the external record search criteria after the MoveNum search
criteria in the Data field. You can also enter a calculation after the external search
criteria. This rule supports overflow.

The format mask must contain the input numeric format, followed by the output
numeric format. These formats are in the form of X.Y, where X is the size of the
number, including any commas, currency symbols, and decimal points, and Y
represents the number of digits after the decimal point, such as:

10.2,12.2

The first pairing of X.Y describes the input. The second pairing describes the output. In
this example, 10.2 is the description of the data in the extract record and the output for
this would be 12 digits before and two digits after the decimal.

The format mask can contain any of these formats after the output numeric format:

NOTE:You cannot use the dollar sign ($) as the first character in the format mask
because this conflicts with the use of this character in the Move_It rule.

The data may contain a calculation to be performed upon the number obtained from
the extract record. The calculation must be separated from the search criteria by a space,
enclosed in parentheses, and contain spaces to separate each element (including
parentheses) in the equation string.

An X in the calculation is replaced by the value moved from the extract file. You must
place parentheses around each operator and its accompanying operands.

NOTE:This rule does not support an OR condition in the search mask. You can,
however, run multiple searches.

Format Description

L Left justify the number

C Add commas

B Translate BCD number to decimal

Z Print number even if it equals zero (0)

$ Add a dollar sign ($)

MNumExt

391

See also MoveNum on page 398

Using Pre-defined Numeric Formats on page 265

Field Rules Summary on page 342

Chapter 6
Field Rules Reference

392

 Move_It
Use this field level rule to move text from an extract record to the output buffer. This
rule supports overflow. The format mask can contain these options:

Format Description

B Used for mapping a large data buffer with more than 1024 bytes into a multiline
text field.
In flat file (non-XML) extract data, the size of the data buffer is limited to the value
in the MaxExtRecLen option in your INI file.

Here is an example, based on mapping data from an XML extract file:

;0;0;FIELD;0;1024;FIELD;0;1024;B;move_it;!/

descendant::My_Extract_Data/

FIELD.xml();N;N;N;N;3715;2899;11010;

C Centers the data.

D Converts the data returned by the rule into lowercase.

F Converts to sentence style where the first character is capitalized and the remaining
characters are lowercased.

G If you include this flag, the system always returns the data at the source length and
ignores the destination length.

If you omit the G flag, the Move_It rule returns data truncated to either the source
or destination length, whichever is shorter.

For instance, if you use the Move_It rule with a source length of 20 and a
destination length of 19, including the G flag returns 20 characters. Omitting the G
flag returns 19 characters.

If you include the ChkDestLenExceeded option in the RunMode control group and
set the option to Yes, the system reports any occurrence where the destination length
is less than the source length.

L Left justifies the data.

K Removes leading and tailing spaces.

N Searches for the next record in the transaction list instead of starting with the first
record. For example, assume the current transaction has five records (A, B, C, D,
and E) and the last record processed is C. If the next rule is Move_It and it has the
N flag set, the D record will be searched instead of starting at the top (record A).
When you include the Move_It rule and you are using overflow (@UserFuncName
options) do not use the N flag.

R Right justifies the data (for non-proportional fonts only).

SR Same record flag. This flag is similar to the N (next record) flag except it assumes
the data is in the record returned by the previous Move_it rule.

Note that SR only applies to the prior execution of a Move_It rule. You must have
at least one Move_It rule without the SR flag before you can add a Move_It rule
which uses this flag.

Move_It

393

NOTE:Before version 10.0, this rule did not permit multiple flags. Beginning with
version 10.0, flags are executed in sequence, thus the particular order may cause
a difference in the formatted string output. When you use multiple format mask
flags, use a comma as a separator.

Do not use C, R, or L with K. The system intentionally skips K after C, R, or L
is mapped. If K occurs before C, R, or L, it will not affect C, R, or L mapping.

For example, if a K flag occurs first, the system clips the heading and tailing spaces and
then formats the string. If a K flag occurs second in the format string, the system formats
the string and then clips the heading and trailing spaces.

You can do some interesting things by handling the flags in sequence, you can clip (K)
the input data, format ($) the string, right justify (R) the result, and format ($) it again.

On the other hand, you can do some things that don't make sense, like center justify (C)
the data and then clip (K) the result. This sequence negates the center justification. The
same applies to right (R) and left justification (L) if you put a K in the format afterwards.

Furthermore, what order would you expect R, C, and L applied especially when mixed
with the format ($)? Just like the clip flag (K), if you right justify (R) first and then
format ($), you will likely get different results than if you format ($) first and then right
justify (R).

NOTE:If you apply this rule to a multiline variable field, make sure destination length
is greater than one (1). Otherwise, no data will be mapped. This happens because
when you create a multiline variable field, its length is zero (0) and its
destination length is also set to zero. While some rules, such as the Mk_Hard
rule, map data even if the destination length is zero, the Move_It rule will not.

Handling currency
symbols

Let’s assume you have variable fields that represent amounts. The extract data is pre-
formatted as character text (left justified), which represents the correct currency format.
Unfortunately, the extract data does not include the currency symbol. You have to add
the currency symbol.

T Include this flag to format the text in title case. This flag tells the system to capitalize
the first letter in each word in the string and lowercase the rest of the letters in each
word. See the example on page 394 for more information

U Converts the data returned by the rule into uppercase.

$ A string proceeded by a dollar sign ($) is used as a sprintf format for the output data.

8 Indicates the extract data for this field is stored in UTF-8 format. UTF-8 (Unicode
Transformation Format, 8-bit encoding form) is a format for writing Unicode data
in text files. See Using Unicode Support for more information.

Blank Default, trims trailing spaces.

Format Description

Chapter 6
Field Rules Reference

394

Depending on the nationality, the currency symbol can appear at the beginning of the
amount, like the dollar sign, or it can appear at the end of the amount, such as FF for
French Francs.

Beginning with version 10.0, you can use a format of K,$%sFF to add the currency
symbol.

The K would come first to indicate the space before and after the input data should be
removed, then FF would be appended.

So K,$%sFF is not the same as $%sFF,K. The former clips the input data before the format
is applied. The latter clips the data after the format has been applied.

For currency symbols that appear at the beginning of the data, such as British pound
sterling, you could use the Move_It rule with a format mask of $£%s. This works
because trailing spaces are trimmed. For currency symbols at the end of the data, this
will not work.

User functions The Move_It rule supports the use of @UserFuncName functions. User functions let
you move data from the source record to the output buffer based on the outcome of a
user-defined function. User functions and their parameters are specified in the data field
before the search criteria.

Example Here is an example of how you can specify the T (title case) format flag in an extract
dictionary definition:

You can also specify this format flag in the field's rule mapping in the Section manager.

Add the T format flag in the
Mask field.

Be sure to separate multiple
format flags with commas.

Move_It

395

NOTE:The Section manager example shows the T format flag used with the XDD rule.
The presumption is that when the dictionary element is found, the resulting
rule will be the Move_It rule. Adding the T format flag here overrides any mask
defined in the XDD definition.

Here are some examples of what happens when you include the T format flag:

Keep in mind:

• In some cases, the use of this formatting flag can result in unwanted changes.

• The T format flag will work on Unicode text that has upper and lower equivalents.
If the text characters are for a language that does not have such distinctions, like
certain Asian character sets, then those Unicode characters will not be modified.

• You can enter several format flags in the Mask field of the Move_It rule. If you
include conflicting format flags, the last one determines the results. For instance, if
you specify both this flag and the Uppercase format flag (T,U) in that order, the
result is upper cased, because the U is the last flag specified.

See also MoveExt on page 397

Extracting data on page 403

Search Criteria on page 273

Field Rules Summary on page 342

Add the T format flag in the
Mask field.

This text Is changed to

11 paces ferry road 11 Paces Ferry Road

SAM DOE Sam Doe

Marquis de Lafayette Marquis De Lafayette

George O’Brien George O’brien

This is the Title Case Option This Is The Title Case Option

Chapter 6
Field Rules Reference

396

 MoveDate

NOTE:You should use the FmtDate rule, on page 365, instead of this rule. This rule is
included in this version of the system only for legacy system support.

Use this field level rule to format a date retrieved from an extract record based on the
mask you select. A list of date masks appears below. This rule supports overflow.

This rule supports these format masks:

Here is an example of the format string syntax:

Input format.output format

Here is an example:

1.2

This converts a date in MM/DD/YY format into MM/DD format.

Format Description

1 MM/DD/YY

2 MM/DD

3 S9(10) - 00YYYYMMDD. Here are some examples:

001994010A = 19940101

001994030A = 19940301

4 MONTH, such as January

5 DD

6 YYYY

7 YYYY-MM-DD

8 JULIAN_AD. This refers to the number of days since first day AD, where first
day Anno Domini equals one (1). This is useful for date calculations.

9 YYYYYMMMDDD

10 January 10, 1995

11 MMDDYYYY

MoveExt

397

 MoveExt
Use this field level rule to move text from a specific external extract record to the output
buffer if a specific external record is found. This rule calls the Move_It rule if the
specified extract record is found. This rule supports overflow.

A string in the format mask that is preceded by a dollar sign ($) is used as a sprintf
format for output data. You cannot use this feature with a format mask ID.

User functions let data move from the source record to the output buffer based on the
outcome of a user-defined function. User functions and their parameters are specified
in the data field before the search criteria, and follow the syntax described below.

In this example the user function name is GetRecsUsed. It has two parameters
FormName, and VAR. The slash (/) denotes the end of the parameter list and the start
of the search criteria.

MoveExt @GETRECSUSED,FormName,VAR/17,00,15,B

See also Move_It on page 392

Search Criteria on page 273

Field Rules Summary on page 342

Chapter 6
Field Rules Reference

398

 MoveNum
Use this field level rule to move numeric data from an extract record to the output field
and, if necessary, reformat the data. This rule supports overflow.

NOTE:The numeric data this rule handles is limited to 15 significant digits. This is a
total of all the digits, both to the right and left of the decimal. Here are some
examples:

999,999,999,999,999.

.999,999,999,999,999

999,999,999.999,999

The system tries to honor almost any format you supply, but when a conversion
has to occur, it can only guarantee 15 significant digits in the result.

The first part of the format mask must contain the input numeric format (X.Y) followed
by the output numeric format (X.Y), where X is the size of the number, including any
commas, currency symbols, and decimal places, and Y is the number of digits after the
decimal. For example, a simple format mask can look like this:

10.2,15.2

This tells the system the input string consists of ten characters and the last two characters
are decimals, such as 1234567890. The output string should consist of 15 characters,
including two decimals.

To format the output, you can also include any of the following format options after
the output numeric format (separate each option with a comma).

Format mask
Mask Description

- (one dash) If the number is negative, this option places a minus sign (-) in the left
most position. For example, if the format mask is (9.2,12.2,C,$,-), the result is: “-
$2,100.00”.

-- (two dashes) If the number is negative, this option places a minus sign (-)
immediately before the amount. For example, if the format is (9.2,12.2,C,$,--), the
result is “ -$2,100.00”, with a full length of 12.

+ Tells the system to always include a sign with all numbers.

% Appends a percent sign (%) at the end of the number.

$ Adds a dollar sign. The dollar sign cannot be the first character in the format
mask. This limitation arises from the Move_It format option, where a dollar
sign ($) in the first character of the mask means to perform a sprintf.

MoveNum

399

A Removes the trailing spaces after an extract value if the input data type is
neither BCD nor Packed Decimal. For example, assume the data value is
“100000 “ (a one followed by five zeros and two spaces).

If you omit this flag and select a 12.2 output format with commas, the value
generated will be “ 100,000.00”. If you include this flag, the result will be “
1,000.00”.

B Translates a BCD number into a decimal. If the data is in EBCDIC format, use
this flag instead of the BA flag.

BA Translates a BCD number into a decimal. Use this flag for ASCII signed
numbers.

C Adds commas to the output.

C** Adds commas if the data is in US English format or spaces if the date is in
Canadian French format.

CR Appends CR (credit) to the end of the number.

CS1

CS2

CS731

Enter one of these options to indicate the checksum method.

The system appends a check digit (mod 10) of 0 through 9 to the end of the
number. This is typically used in accounting to make sure a number, such as
an account number is correct by performing a formula on each digit. For
details, see the discussion on page 402.

D Dollars (a combination of B, C, and $). You must modify
GEN_FMT_FmtMaskSaysBinary to recognize this format.

E Stops a calculation if the search condition is false. The Move_It rule may return
a null output buffer if: no record was found; a record was found, but the search
mask contained a pairing (offset,data) which extended past the end of the
record; or a record was found, but the mapped data was blank.

F Add a dollar sign ($) and place it in the first position. If the value is negative,
move the minus sign (-) to the last position.

G Tells the MoveNum rule not to use the Move_It rule to get the data from the
extract file. See Extracting data on page 403 for more information.

L Left justifies the number in the variable field.

-L (or --) Tells the system to use a floating negative sign on negative values.

+L (or
++)

Tells the system to use a floating sign and to always show that sign.

Lang Selects a language for spelling out the number. This flag is used with the V flag
and mask parameters. Here is an example: US, CFR.

M Money (This format is a combination of formats C and $.)

Mask Description

Chapter 6
Field Rules Reference

400

N Leave the output buffer blank if the number is zero or negative.

NM Adds a minus sign (-) to the number.

-O Places a negative sign outside the right side of the field definition. This allows
positive and negative numbers to right align on the page if you use a fixed font.
Here is an example using this input format: 10.2,10.2,-O:

input data: 0000009.99

 -000012.25

output: 12345678901234567890

 9.99

 12.25-

On Sets the output field size to n and overrides the output size of the field. Here
is an example using this input format: 10.2,10.2,O8:

input data: 0000009.99

 -000012.25

 output: 12345678901234567890

 9.99

 -12.25

input format: 10.2,10.2,O12

input data: 0000009.99

 -000012.25

 output: 12345678901234567890

 9.99

 -12.25

P Print leading zeros. You cannot use this format with $, -, C, and F.

Pn Pads the output zeroes to n total width. This parameter only works with whole
numbers, not decimals. Here is an example using this input format:
10.0,10.0,P4:

input data: 0000000001

 0000000025

 0000012345

output: 12345678901234567890

 0001

 0025

 12345

P** Prints leading zeros if used without character or symbol enclosed with single
quote.

R Tells the system to retain the minus sign (-) if the result is less than zero. Use
with signed numbers.

Mask Description

MoveNum

401

For example…

This example tells the system to take a ten-character input string with two decimals (10.2)
and output it as a 15-character string with two decimals (15.2), commas (C), a dollar sign
($), and left-justified (L).

This rule respects the number of decimals in the source. For instance, if you have the
number “ 1.2" defined as using a mask of 6.2, the system outputs 1.20 instead of 0.12.

-R Places a negative sign on the right side of the field (within the field). Here is an
example using this input format: 10.2,10.2,-R:

input data: 0000009.99

 -000012.25

output: 12345678901234567890

 9.99

 12.25-

R** Retains the sign when translating a signed data value into decimal. Use with the
S flag.

S Translates signed data to a decimal.

SLZ Suppress leading zeros. For example, 00.25 becomes .25.

T Adds text before or after a number. Use the less than (<) symbol for inserting
before, the greater than (>) symbol for inserting after. Use the comma as a
separator.

Use with the NegText, Text, and ZeroText data options.

You can also use this option to place currency symbols before or after amounts.
For instance, T>£ places the British pound sterling symbol (ALT+0163) before
an amount.

TA Same as T>

TB Same as T<

SP Same as E

V Spells out the numeric value in US English.

X Adds X to the front of the number.

Z Print a number even if it is zero.

Z2 Prints two zeros.

Input string Format mask Output string

1234567890 10.2,15.2,C,$,L $12,345,678.90

Mask Description

Chapter 6
Field Rules Reference

402

NOTE::The MoveNum and AccumulateVariableTotal rules support three checksum
methods. These methods only work on the integer portion of a number. The
system ignores the decimal portion of the number.

CS1 works from right to left. CS2 works from left to right. These two algorithms
are exactly the same except for the direction in which they work. The calculation
works like this:

The odd number digits are multiplied by 2. If that result is greater than 9, then
9 is subtracted from the value. The result is added to the sum. The even number
digits are simply added to the sum.

Once all the digits values have been summed, the total is divided by 10. The
remainder of this division is subtracted from 10 and that becomes the check-digit.
If the resulting value is 10, then zero (0) will be the check-digit.

Here are some examples. In all cases, assume the value is 346,100.99. The CS1
calculation works like this: (notice the digits are addressed backwards)

(0 x 2) + 0 + (1 x 2) + 6 + (4 x 2) + 3

0 + 0 + 2 + 6 + 8 + 3 = 19

(19 mod 10) = 9

10 - 9 = 1

The resulting number will be 346,100.991.

The CS2 calculation works like this:

(3 x 2) + 4 + ((6 x 2)-9) + 1 + (0 x 2) + 0

6 + 4 + 3 + 1 + 0 = 14

(14 mod 10) = 4

10 - 4 = 6

The resulting number will be 346,100.996

Note that in the CS1 example, the third digit—an odd number digit—is
multiplied by 2 and exceeds 9. Therefore 9 is subtracted from that result before
proceeding to the next number).

CS731 is the other checksum method. This method works from left to right.
Unlike the other two methods which use an even/odd multiplier, this method
has three multipliers. The first digit is multiplied by 7, the next by 3, and the
next by 1. This process is repeated until all digits have been multiplied. Unlike
the other methods, it does not matter if a the result of a digit multiplication
exceeds 9.

CS731 calculation works like this:

(3 x 7) + (4 x 3) + (6 x 1) + (1 x 7) + (0 x 3) + (0 x 1)

21 + 12 + 6 + 7 + 0 + 0 = 46

(46 mod 10) = 6

10 - 6 = 4

The resulting number will be 346,100.994

MoveNum

403

Data The data can contain a calculation to be performed on the number in the extract record.
Separate the calculation from the search criteria with a space, enclosed in parentheses.
Use spaces to separate each element (including parentheses) in the equation string.

An X in the calculation is replaced by the value moved from the extract record. You
must place parentheses around each operator and its accompanying operands.

NOTE:If you have zeros in your extract file, the MoveNum rule converts these zeros into
blanks unless you include the Z option.

Extracting data Typically, the MoveNum rule uses the Move_It rule to get numeric data from the extract
record before formatting the numeric data. The Move_It rule only copies the least
number of characters possible. If the destination length is shorter than the source length,
this means that the destination length is used instead of the source.

Normally, this is fine with numeric processing because extract files typically contain
unformatted data. For example, you might pick up 123456 and turn it into
$$$$$1,234.56 or some other valid format. In these cases, the destination is almost
always longer than the source length.

There are cases, however, where the extract data is already formatted in some fashion
that’s longer than the expected destination. For example 00000001234 might appear in
the extract and yet the desired format expected for output is known to never exceed 6.2,
such as 9999.99.

In this case, if you use the Move_It rule to get the data the result would be 0000000
because the destination length is only seven characters—shorter than the 11 character
source length.

The G flag tells the MoveNum rule not to call the Move_It rule and instead use an
alternate function that retrieves the entire source length before it formats the data for
the destination length.

NOTE:You can use format E to stop the calculation when the search condition is false.

See also MNumExt on page 390

Option Description

NegText If the value is negative, this option lets you insert user-defined text before and/or
after the negative value.

RPN (x) Allows a calculation to be performed using reverse Polish notation.

Text Lets you print text before and after the number.

X Adds X to the front of the number.

ZeroText If the result is zero, this option lets you insert user-defined text instead of the zero
value.

Chapter 6
Field Rules Reference

404

Search Criteria on page 273

Field Rules Summary on page 342

MoveSum

405

 MoveSum
Use this field level rule to add two or more fields and insert the result into a new field.

This rule uses the Record Dictionary table to get the search criteria, offset, length and
type for the variables specified in the Data field. It then performs an addition on the
information retrieved from extract file. The output sum is formatted according to the
format specified in the format mask.

To apply this rule, you must define the record, offset, length, and type for the variables
in the Record Dictionary table. For more information about the Record Dictionary, see
Using the Record Dictionary on page 441. An example of the Record Dictionary table
is as follows:

* This is the Record Dictionary table

<Records>

Account= Search(PMSP0200,17)

<Variables>

TBAL = Record(Account) Offset(18) Length(12) Type(Zone) Precision(2)

TBAL2 = Record(Account) Offset(38) Length(8) Type(Zone) Precision(2)

The name of the data dictionary file must be defined in the DataDictionary control
group as shown here:

< DataDictionary >

Name = DataDict.Tbl

The path for the table files must also be defined in the MasterResource control group
as shown here:

< MasterResource >

TablePath = .\MstrRes\TblLib\

See also Field Rules Summary on page 342

Chapter 6
Field Rules Reference

406

 MovTbl
This field level rule works similarly to the Move_It rule, except records are taken from
the table list of records stored in memory instead of the extract records list from which
many of the other rules get data.

One or more files may be used to keep tables used by this rule. Each table (file) must be
listed in the table list file specified in the Data control group with the name TBLFILE.
This table file list file must be in the following format:

TABLEFILENAME1.EXT <crlf>

TABLEFILENAME2.EXT <crlf>

Each table file name is listed on a single line followed by a carriage return/line feed. The
format of the table itself is a key name followed by key data. The key need not be a
specific length nor the data, which allows for a single table or group of table files to
contain table entries of varying lengths.

For example, suppose a form contains the names and numbers of agents for calling
purposes, but these names and numbers change on a regular basis, this situation lends
itself to the use of text tables. A table might be created called AGENTS.TBL that
contains table entries such as the following:

AGENT001 JOE MILLER <crlf>

and another table called agentpho.tbl with phone number entries such as:

AGENT001PHONE404 111-2222 <crlf>

You could then make these tables available to Documaker Server by including them in
the file specified by the TblFile setting in the FSISYS.INI file.

You specify the table file name in the Data control group of the FSISYS.INI file as
follows:

< Data >

TblFile = .\deflib\TblFile.Dat

These tables must first be loaded into memory before the system can use them. To do
so, the following rules must be in the AFGJOB.JDT file:

;CreateGlbVar;1;TblLstH,PVOID;

;LoadTblFiles;1;;

See also Move_It on page 392

LookUp on page 378

TblLkUp on page 425

Field Rules Summary on page 342

NoOpFunc

407

 NoOpFunc
This field level rule is useful when you are developing new forms because it lets you map
all fields and systematically test each field by replacing the NoOpFunc rule with the
actual rule you want to use.

If a particular field level rule keeps failing, you can use NoOpFunc to temporarily
replace the original rule and process the form without error until you can evaluate and
solve the problem.

NOTE:The field on the form will be blank after processing with this rule.

See also Field Rules Summary on page 342

Chapter 6
Field Rules Reference

408

 OvActPrint
Use this field level rule to report the actual number of overflow records that could be
processed per transaction for the overflow section.

Syntax OvActPrint (Section,OvSymbol)

For instance, assume an overflow section can handle five overflow records before being
forced to another page and a transaction contains seven overflow records. This rule
would state the output as 7—five for the first page, plus two for the second page.

This rule supports only automatic overflow.

See also Overflow and User Functions on page 274

PurgeChartSeries on page 322

SetImageDimensions on page 330

Field Rules Summary on page 342

Parameter Description

Section Name of the overflow section

OvSymbol Name of the overflow symbol defined by the SetOvFlwSym rule

OvPrint

409

 OvPrint
Use this field level rule to report the maximum number of overflow records that could be
processed per transaction for the overflow section.

Syntax OvPrint (Section,OvSymbol)

For instance, assume an overflow section can handle five overflow records before being
forced to another page and a transaction contains seven overflow records. This rule
would state the output as 10—five for the first page, plus five for the second page.

This rule works with the IncOvSym rule.

See also IncOvSym on page 317

SetImageDimensions on page 330

Field Rules Summary on page 342

Parameter Description

Section Name of the overflow section

OvSymbol Name of the overflow symbol defined by the SetOvFlwSym rule

Chapter 6
Field Rules Reference

410

 PowType
Use this field level rule to force a transaction to manual batch (WIP). The PowType rule
sets the manual batch flag to true. To edit the field associated with the PowType rule in
the Entry system, you must set the required flag to operator for the field.

Syntax PowType ()

Use the ShowWIPWarning option to suppress the Sent to Manual Batch warning
messages:

< RunMode >

ShowWIPWarning = No

See also Field Rules Summary on page 342

Option Description

ShowWIPWarning Enter No to suppress warning messages included the error logs when
using the KickToWIP or POWType rules, or the KickToWIP DAL
function.
The default is Yes, which tells the system to include the messages in the
error logs.

PrintIf

411

 PrintIf
Use this field level rule to determine what text should be placed into the output buffer.
The PrintIf rule compares a character string from the extract record to the character
string specified in the user-defined condition contained in the data field.

This rule does not support comparison of data strings that contain all numeric
characters. This rule does supports overflow.

NOTE:The PrtIfNum rule does support comparison of data strings that contain all
numeric characters.

The user-defined condition is comprised of one or more user-defined definitions
separated by a colon (:). A user-defined definition is comprised of two parameters
separated by an equal sign (=). User-defined definition parameters contains the...

• Character string to be compared against

• Character string to be placed in the output buffer, if the comparison is true

Here are some examples:

Inc=Extra premium due to age is included.

Exc=Age premium has been excluded.

Y=Age premium is not applicable.

Inc=Age premium is included.:Exc=Age premium excluded.:Y=N/A

You can use these format flags:

The system justifies the data by adding spaces in front of the text. If you are using a
proportional font, do not use these flags to align the data. Use the JustFld rule for that.

See also JustFld on page 374

PrtIfNum on page 412

Field Rules Summary on page 342

Flag Description

C Center

R Right justify

Chapter 6
Field Rules Reference

412

 PrtIfNum
This field level rule is similar to the PrintIf rule. The difference is the PrtIfNum rule
compares the data to a number while PrintIf compares data to a character string.

A MoveNum action is performed on the value from the extract record and the resulting
value is compared to the value in the user-defined conditions to determine what text
should be placed in the output buffer. This rule supports overflow processing.

A user-defined condition is comprised of one or more user-defined definitions separated
by a colon (:). A user-defined definition is comprised of these two items separated by an
equal sign (=):

• This item is comprised of a logical operator and numeric value to be used in the
comparison. The logical operators supported are:

• Character string (inside quotation marks) to be placed in the output buffer if the
comparison is true.

Here are some examples of user-defined conditions:

=40="He is forty years old."

The logical operator is equal to, the numeric value is 40, and the character string if the
comparison is true is He is forty years old.

>50="He is greater than 50 years old."

The logical operator is greater than, the numeric value is 50, and the character string if the
comparison is true is He is greater than 50 years old.

<30="He is less than 30 years old."

The logical operator is less than, the numeric value is 30, and the character string if the
comparison is true is He is less than 30 years old.

<>20="He is not 20 years old."

The logical operator is not equal to, the numeric value is 20 and the character string if the
comparison is true is He is not 20 years old.

=40.0="Forty years old.":>50="Greater than 50":<30="Less than

30.":<>20.00="Is not 20.":29="29 years old."

This user-defined condition is comprised of five user-defined definitions.

• If the value from the extract record is equals to 40.0, the string Forty years old. is
moved to the output buffer.

Operator Description

= equal to

> greater than

< less than

<> not equal to

Blank (default) No comparison occurs, text is moved to output buffer

PrtIfNum

413

• If the value from the extract record is greater than 50, the string Greater than 50 is
moved to the output buffer.

• If the value from the extract record is less than 30.0, the string Less than 30 is moved
to the output buffer.

• If the value from the extract record is not equal to 20.00, the string Is not 20 is moved
to the output buffer.

• In this definition, the logical operator does not exist so no comparison is made. If
one of the other four user-defined condition is not true, the string 29 years old. is
moved to the output buffer.

NOTE:You must define the MoveNum parameters (format mask) in the PrtIfNum rule
mask field. As a minimum, you must define the MoveNum input numeric
format (X.Y) followed by the output numeric format (X.Y).

If data (offset, length) does not exist for the search mask, the value returned to
PrtIfNum for the comparison is zero (0). Therefore, you may want to include a
zero compare in the user-defined conditions.

For example, suppose you left the No check box blank if the data is three and
an X if the data is a one, two, or four. These user-defined conditions...

 =3=” “: <>3=”X”

would not produce the desired results if the data was missing (blank). These
conditions...

 =0=” “:=3=” “: <>3=”X”

 would insert a blank if the data was missing.

See also MoveNum on page 398

PrintIf on page 411

Field Rules Summary on page 342

Chapter 6
Field Rules Reference

414

 RunDate
Use this field level rule to get the run date from the transaction data (TRNFILE.DAT
file) and format that date using the mask you specify.

The mask on the RunDate rule supports the following syntax:

A number (between 1 and 10 for compatibility with prior releases) and this format:
DinFmt:outFmt

The D indicates a date conversion using the new method. Here is a list of the date
formats you can choose:

For compatibility with prior releases, masks (1 through 10) and the destination formats
with a single letter, such as D, indicate the system will omit leading zeros or spaces. Also,
please note that Month indicates both upper- and lowercase letters are used while
MONTH indicates only uppercase letters are used. Mon indicates the month will be
abbreviated in upper- and lowercase letters.

Using locales If you use one of the standard formats, use the @XXX (without the percent). For
example, D44@CAD is the standard format for Month DD, YYYY in Canadian French.
If you are creating your own format, use %@???. For instance, D%@CAD%B %#d, %Y
yields the same result as the standard format D44@CAD.

Keep in mind that the run date is typically stored in YYYYMMDD format and therefore
does not require any locale information on the input format.

Enter To take a date in this format... And output it in this format...

1 YYMMDD MMDDYY

2 YYYYMMDD MMDDYYYY

3 YYYYMMDD MMDDYY

4 YYMMDD MM-DD-YY

5 YYMMDD MM/DD/YY

6 YYYYMMDD MM-DD-YY

7 YYYYMMDD MM/DD/YY

8 MMDDYY MM-DD-YY

9 MMDDYY MM/DD/YY

10 YYYMMDD MM/DD/YY

D inFmt is one of the standard date
formats which consists of a format
character, optional date separator, and
an optional year size (2 or 4).

outFmt is also a standard date format for the
destination field and is separated from the
inFmt by a colon (:).

RunDate

415

See also Formatting Data on page 261

Field Rules Summary on page 342

Chapter 6
Field Rules Reference

416

 SAPMove_It
Use this field level rule for a Move_It type of operation on an SAP Raw Data Interface
(RDI) extract file. This rule supports overflow.

Format mask The format mask can consist of these options:

C Center the text

R Right justify the text (for non-proportional fonts only)

See also Move_It on page 392

Field Rules Summary on page 342

SetAddr

417

 SetAddr
Use this field level rule to store and retrieve subsequent lines of a multiple line address.
This rule is useful if you are setting up an address which may have three or four lines of
information. For instance, some addresses include a suite or apartment number. If one
of the middle address lines is missing, the SetAddr rule will format the address to omit
any white space or blank lines. This rule supports overflow.

The first time the rule is called, the format mask field must contain an F. This initializes
the function and loads the address lines into an array. The system then returns the first
line of the address data. Subsequent address variable fields should contain an N in the
format mask field and return the next available non blank address line from the array.

The data element should contain the parameters necessary to get the multiple lines that
make up the entire address record. Use of overflow with this rule only pertains to calls
which have the format mask field set to F.

The data element has two parts, the first is the search criteria to get the extract record
which contains the address information. The second part, separated from the first by a
space, consists of offset,length pairs of address information.

When the address table is built, if one of the address lines consists of all blanks no entry
is made in the address table. This lets you remove blank lines in an address.

Here are the optional format mask parameters you can use:

See also SetAddr2 on page 418

SetAddr3 on page 419

Field Rules Summary on page 342

Parameter Description

C Converts to sentence style where the first character is capitalized and the
remaining characters are lowercased.

S Suppresses the state from the last address line.

U Converts the data returned by the rule into uppercase.

Chapter 6
Field Rules Reference

418

 SetAddr2
Use this field level rule to store and retrieve subsequent lines of a multiple line address.
This rule is similar to the SetAddr rule in that it also omits blank lines from an address.
The SetAddr2 rule, however, also formats the city, state, and postal code and adds a dash
if you have a 10-digit ZIP code (ZIP+4). For instance, this rule automatically formats the
city, state, and ZIP code as follows:

AtlantaGA 30333 (one space between state and ZIP code)

You can also specify additional formatting. For instance '^,','^' in the Data field (where
^ represents a space) tells the system to format the text as shown here:

Atlanta, GA 30333 (one space between the comma and the state, two spaces between
the state and ZIP code)

In addition, you can also specify an S flag in the Data field to tell the system to suppress
the state from the last address line. If you include this flag, the text is formatted as shown
here:

Atlanta, 30333 (state code is suppressed)

The first time you call this rule, the format mask field must contain an F. This initializes
the function and loads the lines of the address into an array. The system then returns
the first line of the address data. Subsequent address variable fields should contain an
N in the format mask field and return the next available non blank address line from
the array.

The data element contains the parameters necessary to get the address record. The last
three fields (city, state, postal code) are stored in one field. The various address data
element mapping comes from the first record's data element (after the record mapping).
This rule supports overflow.

NOTE:An address line cannot exceed 256 characters.

Here are the optional format mask parameters you can use:

See also SetAddr on page 417

SetAddr3 on page 419

Field Rules Summary on page 342

Parameter Description

C Converts to sentence style where the first character is capitalized and the
remaining characters are lowercased.

D Converts the data returned by the rule into lowercase.

U Converts the data returned by the rule into uppercase.

SetAddr3

419

 SetAddr3
Use this field level rule to handle a three-line address with six components, as shown
here:

• Address1 (placed on line 1)

• Address2 (placed on line 2)

• Address3 (placed on line 2)

• City (placed on line 3)

• State (placed on line 3)

• ZIP (placed on line 3)

Address1 is required. Address1 is handled using the Move_It rule.

Address2 and Address3 are placed on line 2. The components of line 2 can vary. If both
Address2 and Address3 exist, both are placed on line 2 with the delimiter passed in by
the rule. If only one exists, no delimiter is used. If neither Address2 or Address3 exists,
the line 3 (City, State and ZIP) is moved up to line 2.

Line 3 contains the City, State and ZIP code with a comma placed between the city and
state, and a space added after the state and before the ZIP code. The ZIP code is
formatted based on the format flag.

This rule is similar to the SetAddr2 rule. If Address2 or Address3 are not applicable, the
remaining lines move up into their places. The City, State, and ZIP always remain on
the same line.

NOTE:An address line cannot exceed 256 characters.

The format mask must contain one of these options:

The various address data element mappings come from the first field rule record's Data
element (after the record mapping).

The rule expects five fields to be mapped. If one is missing you will receive an error. This
rule also assumes all address components are in the same record.

Option Description

F Initializes the function, fills the addr_ln array with the address components, builds
the address lines, and returns the first line from the addr_ln array. The first time
you call this rule the format mask field must contain an F.

N Returns the next available non-blank address line from the addr_ln array. This mask
is required for all subsequent SetAddr3 calls.

Chapter 6
Field Rules Reference

420

Here are the format parameters you can use:

See also SetAddr on page 417

SetAddr2 on page 418

Field Rules Summary on page 342

Parameter Description

C Converts to sentence style where the first character is capitalized and the
remaining characters are lowercased.

D Converts the data returned by the rule into lowercase.

U Converts the data returned by the rule into uppercase.

SetState

421

 SetState
Use this field level rule to translate a numeric ISO code retrieved from an extract record
into its equivalent state text. This rule supports overflow.

State table

See also Field Rules Summary on page 342

Code State Code State Code State

01 Alabama 54 Alaska 02 Arizona

03 Arkansas 04 California 05 Colorado

06 Connecticut 07 Delaware 08 District of
Columbia

09 Florida 10 Georgia 52 Hawaii

11 Idaho 12 Illinois 13 Indiana

14 Iowa 15 Kansas 16 Kentucky

17 Louisiana 18 Maine 19 Maryland

20 Massachusetts 21 Michigan 22 Minnesota

23 Mississippi 24 Missouri 25 Montana

90 Nationwide 26 Nebraska 27 Nevada

28 New Hampshire 29 New Jersey 30 New Mexico

31 New York 32 North
Carolina

33 North Dakota

34 Ohio 35 Oklahoma 36 Oregon

37 Pennsylvania 58 Puerto Rico 38 Rhode Island

39 South Carolina 40 South Dakota 41 Tennessee

42 Texas 43 Utah 44 Vermont

45 Virginia 46 Washington 47 West Virginia

48 Wisconsin 49 Wyoming

Chapter 6
Field Rules Reference

422

 StrngFmt
Use this field level rule to format a string retrieved from an extract record, based on a
given format string. The StrngFmt rule is useful for formatting Social Security numbers
and phone numbers. This rule supports overflow.

See also Field Rules Summary on page 342

SysDate

423

 SysDate
Use this field level rule to format the system date. Using this rule you can format the
system date for different localities. This rule supports overflow.

The mask area for the SysDate rule takes these values:

• output fetype

• output format mask

NOTE:There are two types of format mask, pre-defined types 1-9 and A-Q and user-
defined format arguments. If the pre-defined formats meet your needs, use
them, otherwise, create a user-defined format. For information on using pre-
defined format types, see Using Pre-defined Date Formats on page 261.

User- defined format arguments consist of one or more codes, each preceded by
a percent sign (%). For more information on user-defined format masks, see the
Setting Up Format Arguments on page 266.

Example Assume the system date is 03-01-2009, which is a Monday, and the time is 11:57 am.

The format mask of:

d, “4/4

formats the system date using format 4, with month spelled out, such as March 1, 2009.

To produce a Canadian French date, such as mars 1, 2009, use the following format
mask:

DCAD, “4/4

The following format, which uses format arguments, will produce the same output:

dCAD, “%B %#d, %Y

Format arguments let you include the day of the week, hour, minute, second, and so on.
This table shows you the results using various formats:

Format Result

%m-%d-%Y 03-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 03/01/09 at 11:57 am

%d 01

%#d 1

%A Monday

%>A MONDAY

%b Mar

Chapter 6
Field Rules Reference

424

See also FfSysDte on page 364

Field Format Types (fetypes) on page 269

Formatting Data on page 261

Field Rules Summary on page 342

%<b mar

%p AM

%<>p Am

 %A, %B %d Monday, March 01

%@CAD%A %@CAD%A, %B %d lundi, mars 01

%A, %@CAD%B %d Monday, mars 01

%@CAD%A, %@USD%B %d lundi, March 01

Format Result

TblLkUp

425

 TblLkUp
Use this field level rule to find the record in a table file that matches the first
specification you supply. After the system finds that record, it uses the offset you specify
to get a key. It then uses the key to look up a final record and return the result.

Specify the table file you want to use in the FSISYS.INI file, as shown here:

< Data >

TblFile=.\deflib\TBLFILE.DAT

Keep in mind that all tables you specify in the TBLFILE.DAT file are loaded into
memory sequentially. This is then used to search for the final record. If your search mask
and key are not unique, you may end up with an incorrect result.

For instance, in the TBLFILE.DAT file you could see a list of the files similar to this one:

.\deflib\ADETAILS.TBL

.\deflib\AGENTINFO.TBL

.\deflib\AQUESTION.TBL

.\deflib\FDETAILS.TBL

Specify the source file you want the system to search in the File field by entering a
number that represents the position of the file in the list. For instance, if you want a
field to look something up in the AGENTINFO.TBL file, you would enter two (2) in
the File field.

NOTE:The Record property is not part of the XDD layout. If you leave the File
property equal to zero (0), the system uses the table index value in the XDD.

Here is an example:

Chapter 6
Field Rules Reference

426

You can use the Mask field to specify a default look up value. It is not a standard mask
like that used in the Move_It rule.

NOTE:The size of a table row is set in the MaxExtRecLen option in the Trn_File
control group. The maximum size is 1024 characters.

To use this rule, these rules must be in the AFGJOB.JDT file:

;CreateGlbVar;1;TblLstH,PVOID;

;LoadTblFiles;1;;

See also LookUp on page 378

MovTbl on page 406

XDD on page 433

Field Rules Summary on page 342

TblText

427

 TblText
Use this field level rule to get a text table item based on a key built from the source field
name concatenated with the data retrieved from the source record. This rule supports
overflow. Keep in mind these considerations, which pertain to the external ASCII text
table referenced by this rule.

• Keys can be up to 12 characters in length.

• The key begins in position 1 in the text file.

• The returned text begins in position 14 in the text file.

• Only the first occurrence of the match is returned to the caller.

Each data line in the text table file must follow the following format:

KEY;ENTRY

where KEY is a value of up to 12 characters, padded right with spaces. ENTRY is the
text data associated with the key entry.

NOTE:All support for this rule resides in a single table file. You specify the name of
this file in the FSISYS.INI file in the TEXTTBL option in the Data control
group.

See also Field Rules Summary on page 342

Chapter 6
Field Rules Reference

428

 TerSubstitute
Use this field level rule to emulate TerSub entry functionality. You add this rule to a
multiline text field that has been designated as one which can grow.

Syntax TerSubstitute (Key1,Key2,FormName,Recipient)

NOTE:For all parameters, you can use the names of GVM variables instead of actual
values.

The text to include in TerSubstitution is stored in the text areas of the sections. The
sections are listed in the FORM.DAT file under a dummy Key1, Key2, and FormName.
The rule finds the entry in the FORM.DAT file for the Key1,Key2,FormName
parameters and uses the text from any sections with the supplied recipient.

See also Field Rules Summary on page 342

Parameter Description

Key1 Enter the name of Key1, such as Key1=AccountNo.

Key2 Enter the name of Key2, such as Key2=Name.

FormName Enter the name of the form, such as FormName=XYZ.fap

Recipient Enter the name of the recipient, such as Recipient=Agent.

UnderlineField

429

 UnderlineField
Use this field level rule to draw an underline beneath a variable field.

The system does not store the line in the NAFILE.DAT file. Instead, it turns on the
underline attribute (U) in the option field of the NAFILE record. You will not see the
underline in the NAFILE.DAT file.

Syntax UnderlineField (FieldName)

To underline multiple variable fields, you must make an entry for each field.

NOTE:This rule does not work with sections which have the copy on overflow attribute
enabled.

See also Field Rules Summary on page 342

Chapter 6
Field Rules Reference

430

 XDB
Use this field level rule to tell the system the field has been mapped in the XDB database.
Use this rule when you have variable fields which are used on multiple sections.

NOTE:You should use the XDD rule, on page 433, instead of this rule. This rule is
included in this version of the system only for legacy system support.

Syntax XDB ()

Instead of mapping these identical variable fields, like Name and Address, each time
they are used, you can map them once in the XDB database and then map the individual
fields to the XDB rule. This tells the system to look in the XDB database for the
complete mapping information for those variable fields.

Keep in mind, however, that these fields do not exist in the dictionary:

• SrcFile (source file)

• SrcRec (source record number)

The SrcFile is saved as a number, not an actual file name. It is used in the TblLkup rule
and becomes the index to use to find the table you want to look into for this rule.

So, if you want to use the TblLkup rule, you must define this source file variable within
the field map definition.

Similarly, to reference a specific source record, you must define SrcRec in the field’s
mapping. For example, you may have an overflow detail record which is identified by
1,Detail. For a certain field, however, you want the data from the second detail record to
be mapped. In this case, the mapping for this particular field must contain a SrcRec.
Otherwise, the data from the first record will be used.

Mapping You can include an asterisk (*) to tell the system to add a space before it concatenates
the search masks. This makes the XDB and token lookup more flexible and lets you use
XML for parent/child mapping.

The child can also be another search mask or XPath, instead of just being the rule
parameter. To maintain the same search mask for the Child as that shown in the above
example, however, you must add an asterisk (*) in front of the Child's data if it was used
as a rule parameter.

You must also set up a correct search mask (XPath) syntax if a child's parent references
another parent.

NOTE:The use of an asterisk was added in version 11.0. Prior to this change, the system
automatically added a comma for you. To make this work for all
implementations, the system cannot assume a comma is always needed. For
example, an XML implementation would not want a comma added before the
two XPaths are appended together.

Field Rules Summary

431

Child1 - 1,HEADREC,20,ABC A=Accident:C=Casualty

Because there is no asterisk in Child2's data, the complete search mask for Child2
becomes:

1,HEADREC,35,ZZZ.

Here is an example for the XML implementation:

In this example, the mapping for Child1 becomes:

!/ABC/DEF A=Accident:C=Casualty

The mapping for Child2 becomes:

!/ABC/JHI

In addition, you can name a parent within each child. The way you specify this is similar
to the way used for token lookup — the Data field contains necessary information. Here
is an example:

?Child/Parent

For the XDB rule, the source field name would contain this set up without a question
mark. Here is an example:

;0;0;Child/Parent1;0;0;Child;0;20;;XDB;;N;N;N;N;7577;2273;11114;

The mapping for Child/Parent1 is:

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It ,35,ZZZ

Parent2 Parent1 ,20,ABC

Parent1 1,HEADREC

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It /JHI

Parent1 !/ABC

Parent2 Parent1 /DEF

Name Parent Rule Data

Child Parent1 PrintIf *A=Accident:C=Casualty

Child Parent2 Move_It /JHI

Parent1 !/ABC

Parent2 !/ABC/DEF

Chapter 6
Field Rules Reference

432

!ABC A=Accident:C=Casualty

The mapping for Child/Parent2 is:

!/ABC/DEF/JHI

See also Formatting Data with the = Operator on page 271

TblLkUp on page 425

XDD on page 433

Field Rules Summary on page 342

Field Rules Summary

433

 XDD
Use this field level rule to tell the system the field has been mapped in the XDD database.
Use this rule when you have variable fields which are used on multiple sections.

NOTE:The XDD and XDB rules are synonymous. When encountered in a Studio MRL,
the XDD is used from the library. If these rules are used in a MRL that is legacy-
based, the XDB database is used.

Syntax XDD ()

Instead of mapping these identical variable fields, like Name and Address, each time
they are used, you can map them once in the XDD database and then map the individual
fields to the XDD rule. This tells the system to look in the XDD database for the
complete mapping information for those variable fields.

Mapping You can include an asterisk (*) to tell the system to add a space before it concatenates
the search masks. This makes the XDD rule and the token lookup more flexible and lets
you use parent/child mapping.

The child can also be another search mask or XPath, instead of just being the rule
parameter. To maintain the same search mask for the Child as that shown in the above
example, however, you must add an asterisk (*) in front of the Child's data if it was used
as a rule parameter.

You must also set up a correct search mask (XPath) syntax if a child's parent references
another parent.

NOTE:The use of an asterisk was added in version 11.0. Prior to this change, the system
automatically added a comma for you. To make this work for all
implementations, the system cannot assume a comma is always needed. For
example, you would not want a comma added before the two XPaths are
appended together.

Child1 - 1,HEADREC,20,ABC A=Accident:C=Casualty

Because there is no asterisk in Child2's data, the complete search mask for Child2
becomes:

1,HEADREC,35,ZZZ.

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It ,35,ZZZ

Parent2 Parent1 ,20,ABC

Parent1 1,HEADREC

Chapter 6
Field Rules Reference

434

Here is an example:

In this example, the mapping for Child1 becomes:

!/ABC/DEF A=Accident:C=Casualty

The mapping for Child2 becomes:

!/ABC/JHI

In addition, you can name a parent within each child. The set up is similar to that used
for token lookup. When using token lookup, the data's portion contains the set up for
this. Here is an example:

?Child/Parent

For the XDD rule, the source field name would contain this set up without a question
mark.

The mapping for Child/Parent1 is:

!ABC A=Accident:C=Casualty

The mapping for Child/Parent2 is:

!/ABC/DEF/JHI

Example You could make the following entries in Studio in the Rule section of the Field Options
panel:

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It /JHI

Parent1 !/ABC

Parent2 Parent1 /DEF

Name Parent Rule Data

Child Parent1 PrintIf *A=Accident:C=Casualty

Child Parent2 Move_It /JHI

Parent1 !/ABC

Parent2 !/ABC/DEF

In this field... Enter...

Rule XDD

Destination Offset *

Source Name Name

Field Rules Summary

435

The source file is saved as a number, not an actual file name. It is used in the TblLkup
rule and becomes the index to use to find the table you want to look into for this rule.
So, if you want to use the TblLkup rule, you must define the source file using the File
field under Rule properties.

NOTE:The Record property is not part of the XDD layout. If you leave the File
property equal to zero (0), the system uses the table index value in the XDD.

Similarly, to reference a specific source record, you must define SrcRec in the field’s
mapping. For example, you may have an overflow detail record which is identified by
1,Detail. For a certain field, however, you want the data from the second detail record to
be mapped. In this case, the mapping for this particular field must contain a SrcRec.
Otherwise, the data from the first record will be used.

NOTE:SrcRec is only necessary if you know the specific instance of the data that you
wish to use. Typical overflow can be mapped in the XDD and does not involve
the SrcRec mapped at the field level.

See also Formatting Data with the = Operator on page 271

TblLkUp on page 425

Field Rules Summary on page 342

Source Offset *

File *

Length *

Record *

Required *

Overflow Multiplier *

Overflow *

Mask *

Data *

* No entry is required unless you intend to override the setting that will be inherited when the
source field is found in the XDD.

Chapter 6
Field Rules Reference

436

437

Appendix A

Using Condition Tables
and the Record Dictionary

In this appendix you will find information about...

• Using Condition Tables on page 438

• Using the Record Dictionary on page 441

• Record Dictionary Rules on page 445

Appendix A
Using Condition Tables and the Record Dictionary

438

USING
CONDITION

TABLES

Condition tables provide a simple and efficient way to set conditions. The system reads
the conditions from an input file and then uses those conditions to trigger sections. When
the system receives a file of conditions which are used by the rules, it then...

• Compiles the conditions for evaluation

• Evaluates the conditions for each transaction

SETTING UP THE INI FILES

To use the Condition tables, you must make these changes to your FSISYS.INI file.

• Enter the path for your table files in the MasterResource control group. Use the
TablePath option to define your table files path:

< MasterResource >

TablePath = \T4\UtilTest\MstrRes\TblLib\

• Enter the name of your Condition table file in the Tables control group. Use the
Conditions option to define the Condition table’s file name:

< Tables >

Conditions = CondTbl.tbl

USING A RECORD DICTIONARY FILE

Condition tables use the Record Dictionary to resolve variables. See the Using the
Record Dictionary on page 441 for more information.

Here is an example from the Record Dictionary:

* These are the Record definitions

<Records>

Account = Search(61,02)

MeterRead = Search(61,03) Repeating

Detail = Search(61,18) Repeating

* These are the variable definitions

<Variables>

ACSA = Record(Account) Offset(487) Length(10) Type(Zone)
Format(14.2,C)

BMV1 = Record(Message) Offset(159) Length(15) Type(Char)

DTV1 = Record(Detail) Offset(181) Length(18) Type(Zone)
Format(18.2,C)

CustomerType = Record(Detail) Offset(100) Length(1) Type(Char)

BIGTEST = Record(Detail) Offset(253) Length(18) Type(Zone)
Format(18.2,C)

 RPN(BIGTEST 5 * 30.55 + DTV3 + DTV5 -)

Using Condition Tables

439

CREATING A CONDITIONS FILE

Conditions consist of combinations of comparisons, parentheses, and ANDs, and ORs
to verify the correct results. Conditions are stated in this format:

ConditionName : {valid conditions}

Conditions can use the following:

• Variable names from the Record Dictionary

• Quoted strings

• Numeric constants

• Comparison operators, such as <, >, =, <=, >=, <>, !=, !<, and !>

• ANDs

• ORs

• Parentheses ()

• Reserved words, such as ZERO and SPACES

Here are some examples:

Cond1 : ACSA > 9900 OR (ACSC = 4173 AND DTAT = ZERO)

Cond2 : (DTV1 = 3936.50 OR DTAT > 1) AND (DTV1 > -2 OR DTAT = 0)

Cond3 : (BMV1 <> SPACES AND (DTVM1 = "CREDIT" OR DTAT > 0 AND BMV1
= "PAYMENT"

Cond4 : CustomerType = "A"

NOTE:The variables used above are defined in the Record Dictionary example.

Appendix A
Using Condition Tables and the Record Dictionary

440

Occurrence Counting
Occurrence counting uses the following format:

OccurName : OCCURRENCE(RecordName,ConditionName) MAX(Count)

Here is an example:

Occur1 : OCCURRENCE(Detail,Cond4)

The record Detail and the condition Cond4 are used above as defined in the previous
examples. The occurrence condition Occur1 is driven by the record named Detail. The
record must be of Repeating type.

The condition Cond4 references the variable CustomerType. CustomerType is defined on the
Detail record. There must be a connection between the record and a variable in the
condition for the occurrence count to work correctly.

<Conditions>

MSG1 : LNPRTY < 10000

MSG2 : LNPRTY >= 10000

MSGTRGR1 : Occurrence(Message, MSG1)

totcurrchrg: DTLSECTION = "01" and LNPRIORITY != 00625

totamtdb : TOTAL >= 0 AND BBFLAG = "N"

env : EDIVERT ="0"

emitgrapha : GRAPHTRUE = "28" AND SCALETRUE = "29" AND BUDBLTRUE =
"N"

*Triggers grouping for Tariff, Rider and Detail records

IAMBDTLA : DTLKeyProd = TARKeyProd and DTLTarSeqNo = TARTarSeqNo

REMAINDER : USAGEREM != 0

REGTARIFF : Occurrence(Tariff, REGBUS)

REGBUS : CDBUS != "0700" and CDBUS != "0100"

Setting a maximum
count to return

Include the MAX parameter if you want to set a maximum count to be returned. Here is
an example of the format for occurrence counting. Here is an example:

Occur1 : OCCURRENCE(Detail,Cond4) MAX(5)

Assume Cond4 is defined as shown here:

Cond4 : CustomerType = "A"

The occurrence condition Occur1 is driven by the record named Detail. The record must
be of Repeating type.

Condition tables and
the RecipCondition rule

One example of using Condition tables is to call the RecipCondition rule. In the
SETRCPTB.DAT file, call the rule, as shown here:

;ORACLE;REGION2;REG;;01;;;M0;0;0;0;;RecipCondition;Cond1;

;ORACLE;REGION2;REG;;01;;;M0;0;0;0;;RecipCondition;Occur1;

Using the Record Dictionary

441

USING THE
RECORD

DICTIONARY

The Record Dictionary lets you define and access variables easily and efficiently. Variables
are loaded from the extract file according to their definitions in the Record Dictionary file.
You can use the Record Dictionary any time you need data from the extract list. The data
can be in a numeric, character, or date format.

The Record Dictionary definitions are loaded from a text file. The variables can be
referenced by name once the dictionary file has been loaded. For instance, used with
Condition tables, any variable in the Record Dictionary can be used in a conditional
evaluation.

SETTING UP THE RECORD DICTIONARY

Enter the path for your table files under the MasterResource control group in the
FSISYS.INI file. Use the TablePath option to define your table files path:

< MasterResource >

TablePath = \T4\UtilTest\MstrRes\TblLib\

Enter the name of your Record Dictionary file in the DataDictionary control group. Use
the Name option to define the Record Dictionary file name:

< DataDictionary >

Name = DataDict.Tbl

Record Dictionary File
The Record Dictionary must be populated with the variables you want to use. The file
consists of two parts:

• <Records> section

• <Variables> section

Records The record parameters are defined in the format:

RecordName = SEARCH(Column,SearchMask) {Repeating}

Parameter Description

RecordName The name that future references to this record will use.

Column The column number that will be searched.

SearchMask The text to look for in the column.

Repeating (Optional) Can be set for any record that is of repeating type. You must set
this flag when you are using the pointer to reference multiple records.

Appendix A
Using Condition Tables and the Record Dictionary

442

Variables The variable parameters are defined using this format:

VariableName = Record(RecordName) GVM(GVM_Variable) Offset(Offset)
Length(Length) Type(TypeVariable) Format(FormatFlags)
Rule(RuleName) Data(RuleData) Precision(Precision)
RPN(RPN Equation)

NOTE:Include a single space between variable parameters. A carriage return indicates
the end of the variable definition. If you omit the length of a GVM-based Record
Dictionary variable in the Record Dictionary entry, the system uses the length of
the source GVM variable.

Parameter Description

VariableName The name future references to this variable will use. A variable name begins
with an alpha character and can consist of up to 30 characters.

RecordName The previously defined record (from the Record section) on which this
variable will be found.

GVM_Variable The name of the global variable to use.

The RecordName and GVM_Variable parameters are mutually exclusive.

Offset The offset into the record where the data is located.

Length The length of the data.

TypeVariable (Optional) Char, Num, Zone, or Packed.
Char is character data. Character data can be any string of alphanumeric
characters and symbols.

Num is numeric data. Numeric data can have a sign in front and a decimal
place.
Zone is zoned decimal. Zoned decimal looks like a numeric value except the
sign is added to the last digit.

Packed is packed decimal. Packed decimal is a binary format used mainly
on z/OS systems.

FormatFlags (Optional) Similar to the flags used with MoveNum rule except the input
flags, such as input length and precision, S, and B, are not needed.

RuleName (Optional) You can include any field rule such as DateFmt or SetAddr2. The
Move_It and MoveNum rules are inherent to the Record Dictionary, so you
do not need to specify them. If you omit the rule, the Move_It rule
functionality is the default.

RuleData (Optional) Any required rule data for the RuleName entry.

Precision (Optional) The number of decimal places for a numeric variable.

RPN Equation Reverse Polish Notation function. See the RPN Function section below.

Using the Record Dictionary

443

RPN Function
The RPN (Reverse Polish Notation) function handles mathematical operations in the
Record Dictionary. The RPN function is used as a parameter of a variable in the Record
Dictionary. Use Reverse Polish Notation to express your equation. Any variables that are
referenced must be previously defined in the Record Dictionary.

• Compile the RPN equation into a linked list.

• Retrieve information from Record Dictionary for each variable.

• Evaluate the equation and return the resulting value.

Use the format:

RPN(valid RPN equation)

A valid RPN equation can include: variables, numeric constants, arithmetic operators
(+,-,*,/,%), and several functions (MOD, ABS, DUP, SWAP, POW, SQRT, CEIL,
FLOOR). When using a function, place a ‘#’ sign before the function name (example:
#MOD). This distinguishes a function name from a variable name.

RPN can also be used with date format variables. This can be useful when adding to a date
or calculating an age. Here are some examples:

• BIGTEST = Record(Detail) Offset(253) Length(18) Type(Zone) Format(18.2,C)
RPN(BIGTEST 5 * 30.55 + DTV3 + DTV5 -)

• LittleTEST = Type(NUM) RPN(BIGTEST 5 *) Format(18.2,C)

• SumTest = Type(num) RPN(BigTest LittleTest + #ABS)

RPN or Reverse Polish Notation is an arithmetic method that performs calculations from
left to right. A stack is created to hold numeric values until an operation is performed. For
instance, a simple equation such as “ 1 + 2 ” would be represented as “ 1 2 + ”. During
computation, the stack would first hold “1”, then it would be given “2”. When the “+” is
reached, the “1” and “2” are taken off the stack and added together. A slightly more
complicated equation such as “ (1 + 2) * 5 “ would be represented as “ 1 2 + 5 * ”.

NOTE:No parentheses are needed in RPN logic.

Appendix A
Using Condition Tables and the Record Dictionary

444

Available RPN
functions

These are the available functions in RPN. When using them, remember to place a “#”
sign in front of the function name. This distinguishes a function name from a variable
name.

Function Description

ABS References the most recent value and returns the absolute value of that number.

CEIL Returns the next largest integer value of a number (round up).

DUP Creates a duplicate of the top value in the stack.

FLOOR Returns the next smallest integer value of a number (round down).

MAX Compares the top two values on the stack and returns the larger.

MIN Compares the top two values on the stack and returns the smaller.

MOD Performs a division with the top two values on the stack and returns the
remainder.

POW Removes the top two values in the stack. Calculates the first to the power of the
second.

SQRT Returns the square root of the number.

SWAP Removes the top two values in the stack and replaces them in reverse order.

Record Dictionary Rules

445

RECORD
DICTIONARY

RULES

You can use the following rules to reference the Record Dictionary and its contents. The
system loads variables from the extract file based on the variable definitions in the Record
Dictionary file.

You can use the Record Dictionary any time you need data from the extract list. The data
can be in a numeric, character, or date format.

Base_FromDataDictToGVM
Use this rule to copy a Record Dictionary value into a global variable. Place this rule in
the AFGJOB.JDT file.

Syntax ;Base_FromDataDictToGVM;; GVM(GlobalVariableName)
DATA(DataDictVariableName);

Example ;Base_FromDataDictToGVM;;GVM(STATION1) DATA(OMR1);

FromDataDict
Use this rule to get data from variable fields from the Record Dictionary.

Syntax ;FromDataDict;DataDictVariableName {MoreOptionalVariables};;

Example ;0;0;KWH-ON-COM;0;0;KWH-ON-COM;0;10;;FromDataDict;ComkWh "and "
ComkWh2;N;N;N;N;2446;1218;16229;

FromDataDictToGVM
Use this rule to copy a Record Dictionary value into a global variable. Place this rule in
the JDT file.

Syntax ;Base_FromDataDictToGVM;; GVM(GlobalVariableName)
DATA(DataDictVariableName);

Example ;Base_FromDataDictToGVM;;GVM(STATION1) DATA(OMR1);

Image_FromDataDictToGVM
Use this section level rule to copy a Record Dictionary value into a global variable.

Syntax ;Base_FromDataDictToGVM;;
GVM(GlobalVariableName)DATA(DataDictVariableName);;

Example ;Base_FromDataDictToGVM;;GVM(STATION1)DATA(OMR1);;

Appendix A
Using Condition Tables and the Record Dictionary

446

IncDataDictRecPtr
Use this section level rule to increment to the next occurrence of a Record Dictionary
record.

Syntax ;IncDataDictRecPtr;RecordName {,MoreOptionalRecords};;

Example ;IncDataDictRecPtr;Tariff , Tarriff2;;

PosDataDictRecPtr
Use this section level rule to advance the record pointer until the condition is true.

Syntax ;PosDataDictRecPtr;Record(RecordName) Cond(ConditionName);;

Example ;PosDataDictRecPtr;Record(Meter) Cond(CompareMeterTariff);;

PostIncDataDictRecPtr
Use this section level rule to increment to the next occurrence of a Record Dictionary
record.

Syntax ;PostIncDataDictRecPtr;RecordName {,MoreOptionalRecords};;

Example ;PostIncDataDictRecPtr;Tariff , Tarriff2;;

PostPosDataDictRecPtr
Use this section level rule to advance the record pointer until the condition is true.

Syntax ;PosDataDictRecPtr;Record(RecordName) Cond(ConditionName);;

Example ;PostPosDataDictRecPtr;Record(Meter) Cond(CompareMetrTarif);;

PreIncDataDictRecPt
Use this section level rule to increment to the next occurrence of a Record Dictionary
record.

Syntax ;PreIncDataDictRecPtr;RecordName {,MoreOptionalRecords};;

Example ;PreIncDataDictRecPtr;Tariff , Tarriff2;;

Record Dictionary Rules

447

PrePosDataDictRecPtr
Use this section level rule to advance the record pointer until the condition is true.

Syntax ;PosDataDictRecPtr;Record(RecordName) Cond(ConditionName);;

Example ;PrePosDataDictRecPtr;Record(Meter)Cond(CompareMeterTariff);;

ResetDataDictRecPtr
Use this rule to reset the pointer of a Record Dictionary record.

Syntax ;ResetDataDictRecPtr;RecordName;;

Example ;ResetDataDictRecPtr;Meter;;

Appendix A
Using Condition Tables and the Record Dictionary

448

449

Index

- (minus signs) 398

Symbols

(octothorp) and the RPN function 444

: (colons) 371

= (equals sign) 271

@GetRecsUsed function 274

£ (British pound sterling) 394, 401

Numerics

2-up printing
BatchByPageCount rule 48
ForceNoImages rule 99
InstallCommentLineCallback rule 153
OMR marks 27, 172
ParseComment rule 179
rules used for 27

A

ABS
and the Record Dictionary 444

AccumulateVariableTotal rule
checksum methods 402
defined 39, 347

Index

450

adding
job and form set rules 5
MoveSum rule 405
section and field rules 259

AddLine rule
defined 39

AddMultiPageBitmap rule
defined 279

AddMultiPageTIFF rule
defined 288

addresses
formatting 417, 418, 419

AddTextLabel rule
defined 40

Adobe Acrobat 2

AFGJOB.JDT files
ImportExtract rule 115
ImportNAPOLExtract rule 125
MergeWIP rule 165
WIP transaction processing 9
WIPFieldProc rule 247
WIPImageProc rule 248

AFP
comment records 148
OMR marks 27, 172
record list and the AddTextLabel rule 27

AllocDebug rule
defined 42

AnyToAny
defined 349

AppendedExport option
DocumentExport rule 81

AppendGblToExtr rule
defined 43

Archive rule
defined 44

archives
extracting a form set 157

Array function
BldGrpList rule 352
example 352

AssignBatWithTbl rule
defined 45

AssignToBatch rule
defined 46

axis labels
SetCustChartAxisLabels rule 328

B

bankers dates 359

bar code information 298

Base_FromDataDictToGVM rule 445

BaseErrors option 204

Batch name option 52

Batch_Recip_Def option 50, 51, 70

BatchByPageCount rule
defined 48
PrintFormset rule 185

BatchFileName control group 52

BatchingByPageCountINI rule
BatchingByRecipINI rule 54
defined 50
example 53

BatchingByPageCountPerRecipINI rule
defined 56

BatchingByRecip control group 19
and the BatchingByRecipINI rule 19
BatchingByPageCountINI rule 50, 52
PrintFormset rule 185

BatchingByRecipINI rule
defined 69
MergeWIP rule 165
PrintFormset rule 185
SetOutputFromExtrFile rule 224

BCD numbers 399

BldGrpList rule
defined 352
List function 311

BoldKey2 option 101

bottom dimensions
ResetImageDimensions rule 324

451

Box function
GroupBegin rule 309

boxes
expanding 309
GroupBegin rule 309

braces
use of 373

British pound sterling 394, 401

BuildExcludeList rule
defined 72

BuildFormList rule
defined 73
ImportExtract rule 115
ImportNAPOLExtract rule 125
ImportXMLFile rule 138

BuildMasterFormList rule
defined 74

C

CallBackFunc option 224, 225

Can Grow attribute 339

Can Grow option 382

CanSplitImage indicator 177

CanSplitImage rule
defined 295

CEIL
and the Record Dictionary 444

century
cut-off 264

charts
removing a series 322
SetCustChartAxisLabels rule 328

CheckCount option 205

check-digits 402

CheckImageLoaded rule
defined 298

checksum methods
defined 402

CheckZeroFontID rule 75
defined 75

ChkDestLenExceeded option 392

COBOL copybooks 367

colons
IF rule 371

ColumnFormat option 102

columns
populating 352

CompBin rule
defined 355

CompiledFAP option 298

compiling
FAP and FXR files 298

ConCat rule
defined 357

ConcatFields rule
defined 300

condition tables
creating a conditions file 438
FSISYS.INI changes 438
OMR marks 172
overview 438

Conditions group 347

Conditions option
Conditions table 438
OMR marks 173

ConnectFields rule
defined 300

ConvertWIP rule
defined 76
InitConvertWIP rule 145

coordinates
SetOrigin rule 331
SetOriginI rule 333
SetOriginM rule 335

CreateChartSeries rule
defined 302

CreateGlbVar rule
defined 77

CreateRecordList rule
defined 78

Index

452

CreateSubExtractList rule
defined 303

currency symbols
MNumExt rule 390
Move_It rule 393
MoveNum rule 398, 401

CUSMultiFilePrint function 224

D

DAL expressions= operator 271

DAL rule
defined 358

DAL scripts
braces 373
date order 84
FormDescription rule 100
PostImageDAL rule 320
PostTransDAL rule 180
PreImageDAL rule 321
PreTransDAL rule 182
PXTrigger rule 192
PXXCandidateList rule 190
separators 86
writing 372
year length 86

DALRun function 11

DALTrigger rule
and the PXTrigger rule 192

DAPINSTANCE 143

DAPOPTIONS 143

data
formatting 261

Data control group 378, 427
GetCo rule 106
GetLOB rule 107
ImportExtract rule 114
ImportNAPOLExtract rule 124

data dictionaries
MultipleDataDictionaryFiles rule 169

DataDict file 347

DataDictionary control group
and the Record Dictionary 441
MoveSum rule 405

DataPath option 220

Date Order 84

DateDiff rule
defined 359

DateFmt rule
defined 361, 396

DateFMT2To4Year option 264

dates
century cut-off 264
formatting 365

DBLogFile option 220

DDT 125, 330

debugging
RULTestTransaction rule 214

decimals
suppressing 265

DefaultBatch option 50, 52

DelayedFileWrite option 105

DeleteDefaultSeriesData rule
defined 304

deleting
a page 306

DelExtRecords rule
defined 79

DelImageOccur rule
defined 305

demand feed
OMR marks 172

destination length
Move_It rule 392

Dictionary rule
defined 80
GlobalFld rule 367

digits
MoveNum rule 398

dimensions
ResetImageDimensions rule 324

DivertOMR option 174

DivertOpt option 174

453

DocSetNames control group
ResetDocSetNames rule 202

Documaker Workstation
ConvertWIP rule 76
export files 114
ImportNAPOLExtract rule 124
WIP transaction processing 9

DocumentExport rule
defined 81

Docupresentment
TicketJobProc rule 241

dollar signs 390, 394, 398, 399, 401

DontPrintAlone rule
defined 306

DumpExtList rule
defined 91

DumpExtractListToFile rule
defined 92

DUP
and the Record Dictionary 444

duplex printing
OMR marks 174

E

EBCDIC format 399

EjectPage rule
defined 363

equals sign 271

ErrFile option 220

ERRFILE.DAT file
AllocDebug rule 42

Error2Manual control group 93

ErrorHandler rule
defined 93

errors
unable to print form set message 185

European Union 269

ExcludeForm option 102

export files 133

export information
DocumentExport rule 81

Ext option
DocumentExport rule 81

Ext2GVM rule
defined 94
ResetDocSetNames rule 202
UseXMLExtract rule 245

extract files
Ext2GVM rule 94
formatting numeric data 398
ImportExtract rule 114
ImportNAPOLExtract rule 124
maximum record length 43
MoveSum rule 405
retrieving messages 382

extract lists
CreateSubExtractList rule 303

extract records
Array function 352
MultiArray function 353

ExtractKeyField control group
ImportExtract rule 114
ImportNAPOLExtract rule 124

ExtrFile option 220
ImportExtract rule 114
ImportNAPOLExtract rule 124
ImportNAPOLFile rule 130, 132
ImportXMLFile rule 140
UseXMLExtract rule 245

F

FAP files
and DDT files 260

FED table 194

fetypes 269

FfSysDte rule
defined 364

field format types (fetypes) 269

field level rules 3

Index

454

field rules
reference 276, 342

Field2GVM rule
defined 307

FieldErrors option 204

FieldRule function
IF rule 372

fields
formatting 309
JustFld rule 374
mapping 430, 433
processing fields used repeatedly 367
removing white space 323
rotating 298
UnderlineField rule 429

FieldVarsToChartSeries rule
defined 308

File option
DocumentExport rule 81

FilterForm rule
defined 95

FilterRecip rule
defined 97

floating images 330

FLOOR
and the Record Dictionary 444

FmtDate rule
2-digit years 264
defined 365

FmtNum Rule
using the ZeroText option 266

FmtNum rule
defined 366
suppressing decimals 265

following images 206

following sections 208

font IDs
checking 75

fonts
AddTextLabel rule 40
MessageFromExtr rule 382

footers
group 206
ResetImageDimensions rule 324
SetGroupOptions rule 329

ForceNoImages rule
defined 99
ImportNAPOLExtract rule 125

form candidate list 190

Form Description Line fields 100

Form option 11

form set level rules 3

form sets
extracting from archive 157
loading 73
PrintFormset rule 25
removing forms 95, 97

FORM.DAT file
TerSubstitute rule 428

FORM.DAT files
BuildMasterFormList rule 74
RULNestedOverFlowProc rule 206
single-step processing 25

Form_Sched_POL_Type field 159

format
data 261, 349

format arguments
FmtDate rule 365, 423

format masks
MoveNum rule 398

FormDescription rule
defined 100

FormDescTable control group 100

FormName option
SetOverflowPaperTray rule 227

forms
assigning recipients 164

French Francs 394

FromDataDict rule 445

FromDataDictToGVM rule 445

455

FSISYS.INI file
and Condition tables 438
and the Record Dictionary 441
OMR marks 172
WIP transaction processing 17

FSIUSER.INI file
OMR marks 172
WIP transaction processing 17

G

GenArc program
Archive rule 44
InitArchive rule 144

GenData program
GVM2GVM rule 110
hierarchy of rules 3
MergeWIP rule 165
restarting 204, 205
WIP transaction processing 9
WIPFieldProc rule 247
WIPImageProc rule 248

GenDataStopOn control group
ErrorHandler rule 93
RestartJob rule 204

GenPrint rule
defined 104

GENSemaphoreName option 221

GenWIP program
WIP transaction processing 9

GetCo rule
defined 106
ImportExtract rule 115
ImportNAPOLExtract rule 125

GetLOB rule
defined 107
ImportExtract rule 115
ImportNAPOLExtract rule 125

GetRCBRec rule
defined 108

GetRecord function 273

GetRecord search criteria
GetCo rule 106

GetRunDate
defined 109

GlobalFld rule
defined 367
Dictionary rule 80

graphics
InlineImagesAndBitmaps rule 151

GroupBegin rule
defined 309

GroupEnd rule
defined 316
GroupBegin rule 309

GroupPagination function
GroupBegin rule 310

groups
codes (MessageFromExtr rule) 382
creating nested 309
defining the first image in a group 309
footers 206
headers 206
setting options 329

GVM function
ParseComment rule 179

GVM option 135

GVM variable= operator 271

GVM variables
defined 307
Field2GVM rule 307
GVM2GVM rule 110
InstallCommentLineCallback rule 153
ParseComment rule 179
ResetDocSetNames rule 202
WIP transaction processing 10

GVM2GVM rule
defined 110
ResetDocSetNames rule 202

Index

456

H

HardExst rule
defined 369
returning data 370
SpanAndFill rule 338

headers
group 206
ResetImageDimensions rule 324
SetGroupOptions rule 329

hexadecimal values
date formats 263

I

IF rule
defined 371
overflow 372
use of colons 371

IfRecipUsed rule
defined 111
SetOutputFromExtrFile rule 224

Image option 11

image rules
overview 3
reference 342

Image_FromDataDictToGVM rule 445

ImageErrors option 204

ImageMapImportData rule
defined 112

ImpExpCombined control group 81

Import_File option
ImportFile rule 121
ImportNAPOLFile rule 131
ImportXMLFile rule 140

ImportExtract rule
defined 114
ImageMapImportData rule 112

ImportFile rule
defined 119
ImageMapImportData rule 112

ImportNAPOLExtract rule
defined 124

ImportNAPOLFile rule
defined 129

ImportXMLExtract rule
defined 134

ImportXMLFile rule
defined 137

ImportXMLFile_GVM option 141

in order insertion 208

IncDataDictRecPtr rule 446

inches
SetOriginI rule 333, 335

IncludeDuplicateForms option 101

IncludeFormDesc option 102

IncludeFormName option 101

IncludeKey2 option 101

IncOvSym rule
defined 317
OvPrint rule 409
UseXMLExtract rule 246
XMLFileExtract rule 258

InitArchive rule
defined 144

InitConvertWIP rule
defined 145

InitMerge rule
defined 146

InitOvFlw rule
defined 147

InitPageBatchedJob rule
defined 148

InitPrint rule
and the NoGenTranTransactionProc rule 25
defined 149

InitSetRecipCache rule
defined 150

inline images 296

457

InlineImagesAndBitmaps rule
defined 151

InsNaHdr rule
defined 152

InstallCommentLineCallback rule
defined 153

Internet Document Server
PrintFormset rule 185
ServerJobProc rule 220

Introduction 1

J

job level rules 3

JobInit1 rule
defined 154

Julian dates 360

JustFld rule
defined 374
SpanAndFill rule 338

K

key fields
SetRecipFromImage rule 337

Key option
ImportExtract rule 114
ImportNAPOLExtract rule 124

Key1Table control group 106

Key2PostInc option 101

Key2Prefix option 101

Key2Table control group 107

KickToWIP rule
defined 377
WIP transaction processing 23

KickToWip rule
defined 377

L

labels
SetCustChartAxisLabels rule 328

languages
spelling out numbers 399

lead images 206

leading
zeros 400

leaks
AllocDebug rule 42

Library Manager
InlineImagesAndBitmaps rule 151

lines
setting a minimum number 309

List function
GroupBegin rule 311

list sections 206

LoadCordFAP option
CheckImageLoaded rule 298
InlineImagesAndBitmaps rule 151
JustFld rule 375

LoadDDTDefs rule
defined 155

LoadExtractData rule
defined 156

LoadFAPBitmap option
AddMultiPageBitmap rule 282
AddMultiPageTIFF rule 290
InlineImagesAndBitmaps rule 151
TextMergeParagraph rule 339

LoadFormsetFromArchive rule
defined 157

LoadListFromTable rule
defined 159

LoadRcpTbl rule
defined 160
ImportExtract rule 115
ImportFile rule 119
ImportNAPOLExtract rule 125

LoadTblFiles rule
defined 161

Index

458

LoadTextTbl rule
defined 162

locales
DocumentExport rule 89
RunDate rule 414
SysDate rule 423

LogFile option 185, 220, 221, 226

LOGFILE.DAT file
AllocDebug rule 42

LogFileType option 185, 221, 226

LookUp rule
defined 378

M

manual batch
ErrorHandler rule 93

MapBeforeReset parameter 202

MapFromImportData rule
defined 379
ImageMapImportData rule 112
ImportFile rule 119
ImportNAPOLExtract rule 125
ImportNAPOLFile rule 129
ReplaceNoOpFunc rule 200

mapping fields
XDB rule 430
XDD rule 433

Margin parameter 309

Mask field
AccumulateVariableTotals rule 347

masks
formatting dates 365, 423

Master DDT Editor 367

Master rule
defined 381

MasterResource control group
and Condition tables 438
and the Record Dictionary 441
MoveSum rule 405
OMR marks 173

MAX
and the Record Dictionary 444

MaxExtRecLen option 426
AppendGblToExtr rule 43
ImportExtract rule 114
ImportNAPOLFile rule 130
ImportXMLExtract rule 135
ImportXMLFile rule 138
TblLkUp rule 426

memory
AllocDebug rule 42
freeing 80

MergeAFP rule
AddTextLabel rule 40
defined 163

MergeRecipsFromForm rule
defined 164

MergeWIP
RunGenPrint rule 104

MergeWIP rule
checking dates 166
defined 165
ResetDocSetNames rule 202

message tags
MessageFromExtr rule 382

MessageFromExtr rule
defined 382

MIN
and the Record Dictionary 444

minus signs 398, 400

Mk_Hard rule
defined 389
SetCpyTo rule 327

MNumExt rule
defined 390

MOD
and the Record Dictionary 444

MODE parameter
errors 375
order of 374

459

Move_It rule
= operator 271
BldGrpList rule 352
ConcatFields rule 300
defined 392
JustFld rule 374
MoveNum rule 399, 403
SpanAndFill rule 338
TextMergeParagraph rule 339

MoveDate rule
defined 396

MoveExt rule
defined 397
FieldRule function 372

MoveIt rule
defined 392

MoveMeToPage rule
defined 318

MoveNum rule
= operator 271
BldGrpList rule 352
checksum methods 402
defined 398
JustFld rule 374
TextMergeParagraph rule 339

MoveSum rule
defined 405

MovTbl rule
defined 406

MsgFile option 220

MultFilePrint callback functionality 186

MultiArray function
BldGrpList rule 353
example 353

MultiDataDict control group 169

MultiFileLog option 224

MultiFilePrint
callback function 224

MultiFilePrint function 224

MultiFilePrint option 185, 221, 226, 241

multi-line text fields
MessageFromExtr rule 382
TerSubstitute rule 428

multi-mail processing
BatchByPageCount 176
BatchByPageCount rule 48
PageBatchState1InitTerm rule 176
WriteRCBWithPageCount rule 254

MultiOccur function
BldGrpList rule 354

MultipleDataDictionaryFiles rule
defined 169

N

NAFILE.DAT file
DocumentExport rule 81
InsNaHdr rule 152
WriteNAFile rule 26, 251

Name option
and the Record Dictionary 441

NAUnload option 152

negative amounts
MoveNum rule 398

nesting information 206

NoGenTrnTransactionProc rule
defined 171
ImportXMLExtract rule 135
ImportXMLFile rule 138
WIP transaction processing 10

NoOpFunc rule
defined 407
ImageMapImportData rule 112
ImportExtract rule 115
ImportFile rule 119
ImportNAPOLExtract rule 125
ImportNAPOLFile rule 129
ReplaceNoOpFunc rule 200

NoOpImp rule
defined 379

NoWarning parameter 323

Index

460

numeric data
formatting 398

O

offsets and data
GetRecord search criteria 273

OMR marks
AddLine rule 27
defined 172

OMR_Params control group 173

OMRMarks rule
defined 172

Opt option 11

OvActPrint rule
defined 408

overflow
keeping images together 312
nesting 206
ResetOvSym rule 326
user functions 274

OVERFLOW.DAT file
file format 206
use of 207

OvPrint rule
defined 409

P

page count
BatchingByPageCountPerRecipINI rule 56

page segments
positioning 331, 333, 335

PageBatchStage1InitTerm rule
defined 176

PageRange option 52

pages
DontPrintAlone rule 306
position of images 331, 333, 335

PaginateAndPropagate rule
CanSplitImage rule 295
defined 177
FormDescription rule 100
OMRMarks rule 172
SetOverflowPaperTray rule 227
UpdatePOLFile rule 243

PaginateBeforeThisImage rule
defined 319

parent//child mapping 433

ParseComment rule
defined 179

Path option
DocumentExport rule 81

PDF files
PrintFormset rule 185

PDF format 2

PDFImportDPI option 282

percent signs 398

performance 8
compiling FAP and FXR files 298
InlineImagesAndBitmaps rule 151
TextMergeParagraph rule 339

performance mode JDT file 8

phone numbers 422

POLFILE.DAT file
DocumentExport rule 81
RULNestedOverFlowProc rule 209
UpdatePOLFile rule 243
WriteOutput rule 26, 252

Port option 52, 225

PosDataDictRecPtr rule 446

PostImageDAL rule
defined 320

PostIncDataDictRecPtr rule 446

PostPosDataDictRecPtr rule 446

PostTransDAL rule
defined 180

POW
and the Record Dictionary 444

PowType rule
defined 410

461

PreImageDAL rule
defined 321

PreIncDataDictRecPt rule 446

PrePosDataDictRecPtr rule 447

PreTransDAL rule
defined 182

print batch names
SetOutputFromExtrFile rule 224

Print Preview
ConvertWIP rule 76

Print_Batches control group 52

PrintData rule
defined 184

PrintedOutputFile control group 52

Printer option 52

printer trays
changing 227

PrinterInfo control group 52

PrintFormset
and RunGenPrint 104

PrintFormset control group 185

PrintFormset rule
defined 185
NoGenTranTransactionProc rule 25

PrintIf rule
defined 411
HardExst rule 369, 370

printing
InitPrint rule 149
PrintFormset rule 25
unable to print form set message 185

processing rules
adding 5, 29
adding image and field rules 259

ProcessQueue rule
defined 187
DelImageOccur rule 305

ProcessRecord rule
defined 188

ProcessTriggers rule 189

pRPS structure 202

PrtIfNum rule
defined 412

PRTLIB data 25

PurgeChartSeries rule
defined 322

PXCandidateList rule
defined 190

PXTrigger rule
defined 192

Q

queues
ProcessQueue rule 26, 187

R

RCB comment records
Create RecordList rule 78
InitMerge rule 146
MergeAFP rule 163
ParseComment rule 179

RCBDFDField option 224, 226

RCBDFDFL.DAT file 11
OMR marks 174

RCBMapFromINI function 12

RDI extract files 416

RecipCondition rule
and Condition tables 440

recipient batch records 11

Index

462

recipients
adding 208
batching by 69
BatchingByPageCountPerRecipINI rule 56
IfRecipUsed rule 111
MergeRecipsFromForm rule 164
page count for all recipients 48
removing forms by recipient 97
RunGenPrint rule 104
send copy to 327
specifying a print batch file 45

RecipMap2GVM control group 11, 104

Record Dictionary
and Condition tables 438
file 347
file format 441
MessageFromExtr rule 382, 385
MoveSum rule 405
overview 441
rules 445
sample 387

regional date processing 197

RegionalDateProcess option 198

RegionalDateProcess rule 197

RemoveWhiteSpace rule
defined 323

ReplaceNoOpFunc rule
defined 200
ImportExtract rule 115
ImportFile rule 119, 120
ImportNAPOLExtract rule 125
ImportNAPOLFile rule 129, 130

reporting tool
RULNestedOverFlowProc rule 206

Req option 11

RequiredFieldCheck
defined 201

ResetDataDictRecPtr rule 447

ResetDocSetNames rule
defined 202

ResetImageDimensions rule
defined 324

ResetOvFlw rule
defined 203
ResetOvSym rule 326

ResetOvSym rule
defined 326

Restart control group 205

restarting GenData 205

RestartJob
RunGenPrint rule 104

RestartJob rule
defined 204

reverse insertion logic 208

Reverse Polish Notation
and the Record Dictionary 443

RID_LastMapField option 324

row heights
adjusting 309

RPDSemaphoreName option 221

RstFile option 205

RTF files
PrintFormset rule 185

RULCheckTransaction rule
defined 205

rules
FAP and DDT files 260
field level rules 3
for 2-up printing 27
for single-step processing 25
form set level rules 3
hierarchy 3
image and field rules reference 275, 276, 341, 342
image level rules 3
JDT rules reference 30
job level rules 3

RULNestedOverFlowProc rule
defined 206

RULServerJobProc option 221

RULStandardFieldProc rule
defined 210
WIP transaction processing 10
WIPFieldProc rule 247

RULStandardImageProc 125

463

RULStandardImageProc rule
defined 211
WIP transaction processing 10
WIPImageProc rule 248

RULStandardJobProc rule
defined 212
TicketJobProc 241

RULStandardTransactionProc rule
defined 213
WIP transaction processing 10

RULTestTransaction rule
defined 214

run date
GetRunDate rule 109

RunDate rule
defined 414

RunMode control group 339, 392

RunSetRcpTbl rule 215
BuildMasterFormList rule 25
defined 215
DelImageOccur rule 305
ImportExtract rule 115
ImportNAPOLExtract rule 125
RULNestedOverFlowProc rule 206

RunTriggers rule 216

RunUser rule
defined 217

S

SAPMove_It rule
defined 416

ScheduleDate field 166

Script option 102

search criteria
GetRecord search criteria 273
PrintFormset rule 185

search masks
HardExst rule 369
in the OVERFLOW.DAT file 206

SearchMask option
ImportExtract rule 114
ImportNAPOLExtract rule 124
ImportNAPOLFile rule 130, 132
UseXMLExtract rule 245

sections
changing attributes 206, 208
defining the first in a group 309
defining the last in a group 316
DelImageOccur rule 305
DontPrintAlone rule 306
following 206
ForceNoImages rule 99
group 206
keeping together 309, 312
populating lists 352
positioning 331, 333, 335
SetRecipFromImage rule 337
subordinate 206
WIPImageProc rule 248

Separator option
DocumentExport rule 84

separators 86

series data
removing 322

ServerFilterFormRecipient rule 218

ServerJobProc rule
defined 220

SetAddr rule
defined 417

SetAddr2 rule
defined 418

SetAddr3 rule
defined 419

SetCpyTo rule
defined 327

SetCustChartAxisLabels rule
defined 328

SetErrHdr rule
defined 223

SetGroupOptions rule
defined 329

Index

464

SetImageDimensions rule
defined 330
SetOrigin rule 332

SetOrigin rule
defined 331

SetOriginI rule
defined 333

SetOriginM rule
defined 335

SetOutputFromExtrFile rule
defined 224

SetOverflowPaperTray rule
defined 227

SetOvFlwSym rule
defined 230
overflow and user functions 274

SETRCPTB.DAT file
and Condition tables 440
loading entries 160
SetRecipFromImage rule 337
StandardFieldProc rule 26
StandardImageProc rule 26

SetRecipCopyCount rule
defined 231

SetRecipCopyCount2 rule
defined 232

SetRecipFromImage rule
CreateSubExtractList rule 303
defined 337

SetState rule
defined 421

ShowWIPWarning option 377, 410

significant digits 398

single-step mode
RunGenPrint rule 104

single-step processing
WriteOutput rule 26, 252
WriteRCBFiles rule 253

SleepingTime option 221

Social Security numbers 422

SortBatches rule
defined 233

source length
Move_It rule 392

spacing
pre-defining 309

SpanAndFill rule
defined 338

SQRT
and the Record Dictionary 444

StandardFieldProc rule
defined 239
WIP transaction processing 10
WIPFieldProc rule 247
WriteNAFile rule 26

StandardImageProc rule
defined 240
WIP transaction processing 10
WIPImageProc rule 248

StartFromFirstForm option 101

state compliance 197

state location table 194

status codes
MergeWIP rule 165
WIP transaction processing 9

StayTogether function 312

StrngFmt rule
defined 422

subordinate images 206

sum
variables 347

suppressing
decimals 265

SWAP
and the Record Dictionary 444

symbolic lookup operators 272

SysDate rule
defined 423

system date 423

465

T

table index value 425, 435

table row sizes 426

TablePath option
and Condition tables 438
and the Record Dictionary 441
MoveSum rule 405
OMR marks 173

Tables control group
and Condition tables 438
OMR marks 173

TablesPath field 159

TblFile option 161, 378

TblLkUp rule
defined 425
XDD rule 430, 435

TblLkup rule
and XDD rule 435

TblText rule
defined 427

temporary extract lists
CreateSubExtractList rule 303

TerSubstitute rule
defined 428

Test control group 214

testing
RULTestTransaction rule 214

text tables 378

TextMergeParagraph rule
CheckImageLoaded rule 298
defined 339

TEXTTBL option 427

TextTbl option 162

TicketJobProc option 241

TicketJobProc rule
defined 241

TIFF files
AddMultiPageTIFF rule 288

token lookup 433

top dimensions
ResetImageDimensions rule 324

trailing spaces
MoveNum rule 399

TransactionErrors option 204

TransErrCode option 168

TranslateErrors rule
defined 242

tray selection
SetOverflowPaperTray rule 227

Trigger2Archive control group
Archive rule 44
InitArchive rule 144

Trigger2WIP control group 10
DocumentExport rule 81
GVM2GVM rule 110
ResetDocSetNames rule 202

triggers
assigning recipients 164

Trn_Fields control group
ImportExtract rule 115
ImportNAPOLExtract rule 125
ResetDocSetNames rule 202

Trn_File control group
ImportExtract rule 114

TrnFile option 171

TRNFILE.DAT file
Ext2GVM rule 94
ImportExtract rule 115

TwoUp control group
OMR marks 174

U

unable to print form set message 185

UnderlineField rule
defined 429

Unicode
Move_It rule 393

Index

466

UpdatePOLFile rule
defined 243
FormDescription rule 100
WriteOutput rule 252

user functions
and overflow 274

UseXMLExtract rule
defined 244

V

VAR tag 382

variable fields
UnderlineField rule 429

Variables group 347

VectorGraphicImportDPI option 282

W

warning messages
suppressing 323

WarnOnLocate option 12

white space
removing 323

widows and orphans 309, 311

WIP
changing the status 168

WIP transaction processing
GVM2GVM rule 110
MergeWIP rule 165
overview 6, 9
RequiredFieldCheck rule 201
WIPFieldProc rule 247
WIPImageProc rule 248

WIP/NA/POL export data
ImportNAPOLExtract rule 124

WIPFieldProc rule
defined 247
ImageMapImportData rule 112

WIPHeader option
DocumentExport rule 84

WIPImageProc rule
defined 248

WIPTransactions rule
defined 249

WIPWarnOnEmpty option 167

WMFImportDPI option 282

WriteNAFile rule
defined 251
SetOutputFromExtrFile rule 225
StandardFieldProc rule 26
WriteRCBFiles rule 253

WriteOutput rule
defined 252
SetOutputFromExtrFile rule 225
UpdatePOLFile rule 243
WriteRCBFiles rule 253

WriteRCBFiles rule
defined 253
SetOutputFromExtrFile rule 225

WriteRCBWithPageCount rule
defined 254

X

XDB files
GlobalFld rule 367
MultipleDataDictionaryFiles rule 169
records 367

XDB rule
defined 430

XDD rule
defined 433

XML files
importing 137
importing transactions 133
PostTransDAL rule 181
UseXMLExtract rule 244
XMLFileExtract rule 256

467

XMLExtract option
UseXMLExtract rule 245
XMLFileExtract rule 256, 257

XMLFileExtract option
XMLFileExtract rule 257

XMLFileExtract rule
defined 256

XMLFileExtractName option
XMLFileExtract rule 257

XMLTags2GVM control group 135, 138

XPath
UseXMLExtract rule 245
XMLFileExtract rule 257

Y

years
forcing 2-digit 264
length 86

Z

zero format 265

ZeroText option 266

ZIP codes
OMR marks 172

Index

468

	Start
	Notice
	Contents
	Introduction
	2 Rules Overview
	3 Types of Rules

	Adding Job and Form Set Rules
	6 Using the Job Definition Table
	6 Multi-Step Processing
	7 Single-Step Processing
	9 GenData WIP Transaction Processing
	11 Writing Unique Data Into Recipient Batch Records
	17 Sample AFGJOB.JDT Files and INI Options

	22 Processing Import Files
	25 Rules Used in Single-Step Processing
	27 Rules Used for 2-up Printing

	Job and Form Set Rules Reference
	30 JDT Rules Reference
	59 INI File Examples
	81 Defining Export Options
	81 Defining the Export Record
	83 Format Flags
	84 Defining the Export Record Header
	84 Date Formats
	87 Freeform Formats
	89 Using Locale Information
	89 Format Specification Flags
	139 Using the TF Option
	139 Using the File Option
	140 Using the INI Option
	140 Using the SCH Option
	141 Using the GVM Option
	142 XML File Format
	190 INI Options
	194 Input Tables
	195 The Policy Xpress FED Processing Flow
	233 Specifying Key fields
	234 Sorting with a Single Key
	234 Sorting with Multiple Keys
	235 INI Options
	236 Replacement Strings
	245 Mapping Fields
	246 Overflow in XML
	257 Mapping Fields
	258 Overflow in XML

	Adding Section and Field Rules
	260 Storing Rule Information
	261 Formatting Data
	261 Using Pre-defined Date Formats
	265 Using Pre-defined Numeric Formats
	266 Setting Up Format Arguments
	269 Field Format Types (fetypes)
	271 Formatting Data with the = Operator

	273 Search Criteria
	274 Overflow and User Functions

	Section Rules Reference
	276 Section Rules Summary
	282 Using the File Option
	283 Using the DAL Option
	284 Using the SRCH Option
	284 Using the GVM Option
	284 Using the Type Option
	286 Using the Scale Option
	287 Using the Crop Option
	290 Using the File Option
	291 Using the DAL Option
	292 Using the SCH Option
	292 Using the GVM Option
	292 Using the Type Option
	309 Using the Box Function
	310 Using the GroupPagination Function
	311 Using the List Function
	312 Using the StayTogether Function
	312 Using the Column Function

	Field Rules Reference
	342 Field Rules Summary
	382 Creating Messages
	385 Using the Record Dictionary

	Using Condition Tables and the Record Dictionary
	438 Using Condition Tables
	438 Setting Up the INI Files
	438 Using a Record Dictionary File
	439 Creating a Conditions File
	440 Occurrence Counting

	441 Using the Record Dictionary
	441 Setting Up the Record Dictionary
	441 Record Dictionary File
	443 RPN Function

	445 Record Dictionary Rules
	445 Base_FromDataDictToGVM
	445 FromDataDict
	445 FromDataDictToGVM
	445 Image_FromDataDictToGVM
	446 IncDataDictRecPtr
	446 PosDataDictRecPtr
	446 PostIncDataDictRecPtr
	446 PostPosDataDictRecPtr
	446 PreIncDataDictRecPt
	447 PrePosDataDictRecPtr
	447 ResetDataDictRecPtr

	Introduction
	Rules Overview
	Types of Rules

	Adding Job and Form Set Rules
	Using the Job Definition Table
	Multi-Step Processing
	Single-Step Processing
	GenData WIP Transaction Processing
	Writing Unique Data Into Recipient Batch Records
	Sample AFGJOB.JDT Files and INI Options

	Processing Import Files
	Rules Used in Single-Step Processing
	Rules Used for 2-up Printing

	Job and Form Set Rules Reference
	JDT Rules Reference
	AddLine
	AddTextLabel
	AllocDebug
	AppendGblToExtr
	Archive
	AssignBatWithTbl
	AssignToBatch
	BatchByPageCount
	BatchingByPageCountINI
	BatchingByPageCountPerRecipINI
	INI File Examples

	BatchingByRecipINI
	BuildExcludeList
	BuildFormList
	BuildMasterFormList
	CheckZeroFontID
	ConvertWIP
	CreateGlbVar
	CreateRecordList
	DelExtRecords
	Dictionary
	DocumentExport
	Defining Export Options
	Defining the Export Record
	Format Flags
	Defining the Export Record Header
	Date Formats
	Freeform Formats
	Using Locale Information
	Format Specification Flags

	DumpExtList
	DumpExtractListToFile
	ErrorHandler
	Ext2GVM
	FilterForm
	FilterRecip
	ForceNoImages
	FormDescription
	GenPrint
	GetCo
	GetLOB
	GetRCBRec
	GetRunDate
	GVM2GVM
	IfRecipUsed
	ImageMapImportData
	ImportExtract
	ImportFile
	ImportNAPOLExtract
	ImportNAPOLFile
	ImportXMLExtract
	ImportXMLFile
	Using the TF Option
	Using the File Option
	Using the INI Option
	Using the SCH Option
	Using the GVM Option
	XML File Format

	InitArchive
	InitConvertWIP
	InitMerge
	InitOvFlw
	InitPageBatchedJob
	InitPrint
	InitSetRecipCache
	InlineImagesAndBitmaps
	InsNaHdr
	InstallCommentLineCallback
	JobInit1
	LoadDDTDefs
	LoadExtractData
	LoadFormsetFromArchive
	LoadListFromTable
	LoadRcpTbl
	LoadTblFiles
	LoadTextTbl
	MergeAFP
	MergeRecipsFromForm
	MergeWIP
	MultipleDataDictionaryFiles
	NoGenTrnTransactionProc
	OMRMarks
	PageBatchStage1InitTerm
	PaginateAndPropagate
	ParseComment
	PostTransDAL
	PreTransDAL
	PrintData
	PrintFormset
	ProcessQueue
	ProcessRecord
	ProcessTriggers
	PXCandidateList
	INI Options

	PXTrigger
	Input Tables
	The Policy Xpress FED Processing Flow

	RegionalDateProcess
	ReplaceNoOpFunc
	RequiredFieldCheck
	ResetDocSetNames
	ResetOvFlw
	RestartJob
	RULCheckTransaction
	RULNestedOverFlowProc
	RULStandardFieldProc
	RULStandardImageProc
	RULStandardJobProc
	RULStandardTransactionProc
	RULTestTransaction
	RunSetRcpTbl
	RunTriggers
	RunUser
	ServerFilterFormRecipient
	ServerJobProc
	SetErrHdr
	SetOutputFromExtrFile
	SetOverflowPaperTray
	SetOvFlwSym
	SetRecipCopyCount
	SetRecipCopyCount2
	SortBatches
	Specifying Key fields
	Sorting with a Single Key
	Sorting with Multiple Keys
	INI Options
	Replacement Strings

	StandardFieldProc
	StandardImageProc
	TicketJobProc
	TranslateErrors
	UpdatePOLFile
	UseXMLExtract
	Mapping Fields
	Overflow in XML

	WIPFieldProc
	WIPImageProc
	WIPTransactions
	WriteNAFile
	WriteOutput
	WriteRCBFiles
	WriteRCBWithPageCount
	XMLFileExtract
	Mapping Fields
	Overflow in XML

	Adding Section and Field Rules
	Storing Rule Information
	Formatting Data
	Using Pre-defined Date Formats
	Using Pre-defined Numeric Formats
	Setting Up Format Arguments
	Field Format Types (fetypes)
	Formatting Data with the = Operator

	Search Criteria
	Overflow and User Functions

	Section Rules Reference
	Section Rules Summary
	AddMultiPageBitmap
	Using the File Option
	Using the DAL Option
	Using the SRCH Option
	Using the GVM Option
	Using the Type Option
	Using the Scale Option
	Using the Crop Option

	AddMultiPageTIFF
	Using the File Option
	Using the DAL Option
	Using the SCH Option
	Using the GVM Option
	Using the Type Option

	CanSplitImage
	CheckImageLoaded
	ConnectFields
	CreateChartSeries
	CreateSubExtractList
	DeleteDefaultSeriesData
	DelImageOccur
	DontPrintAlone
	Field2GVM
	FieldVarsToChartSeries
	GroupBegin
	Using the Box Function
	Using the GroupPagination Function
	Using the List Function
	Using the StayTogether Function
	Using the Column Function

	GroupEnd
	IncOvSym
	MoveMeToPage
	PaginateBeforeThisImage
	PostImageDAL
	PreImageDAL
	PurgeChartSeries
	RemoveWhiteSpace
	ResetImageDimensions
	ResetOvSym
	SetCpyTo
	SetCustChartAxisLabels
	SetGroupOptions
	SetImageDimensions
	SetOrigin
	SetOriginI
	SetOriginM
	SetRecipFromImage
	SpanAndFill
	TextMergeParagraph

	Field Rules Reference
	Field Rules Summary
	AccumulateVariableTotal
	AnyToAny
	BldGrpList
	CompBin
	ConCat
	DAL
	DateDiff
	DateFmt
	EjectPage
	FfSysDte
	FmtDate
	FmtNum
	GlobalFld
	HardExst
	If
	JustFld
	KickToWip
	LookUp
	MapFromImportData
	Master
	MessageFromExtr
	Creating Messages
	Using the Record Dictionary

	Mk_Hard
	MNumExt
	Move_It
	MoveDate
	MoveExt
	MoveNum
	MoveSum
	MovTbl
	NoOpFunc
	OvActPrint
	OvPrint
	PowType
	PrintIf
	PrtIfNum
	RunDate
	SAPMove_It
	SetAddr
	SetAddr2
	SetAddr3
	SetState
	StrngFmt
	SysDate
	TblLkUp
	TblText
	TerSubstitute
	UnderlineField
	XDB
	XDD

	Using Condition Tables and the Record Dictionary
	Using Condition Tables
	Setting Up the INI Files
	Using a Record Dictionary File
	Creating a Conditions File
	Occurrence Counting

	Using the Record Dictionary
	Setting Up the Record Dictionary
	Record Dictionary File
	RPN Function

	Record Dictionary Rules
	Base_FromDataDictToGVM
	FromDataDict
	FromDataDictToGVM
	Image_FromDataDictToGVM
	IncDataDictRecPtr
	PosDataDictRecPtr
	PostIncDataDictRecPtr
	PostPosDataDictRecPtr
	PreIncDataDictRecPt
	PrePosDataDictRecPtr
	ResetDataDictRecPtr

	Index
	- (minus signs) 398
	Symbols
	# (octothorp) and the RPN function 444
	: (colons) 371
	= (equals sign) 271
	@GetRecsUsed function 274
	£ (British pound sterling) 394, 401

	Numerics
	2-up printing

	A
	ABS
	AccumulateVariableTotal rule
	adding
	AddLine rule
	AddMultiPageBitmap rule
	AddMultiPageTIFF rule
	addresses
	AddTextLabel rule
	Adobe Acrobat 2
	AFGJOB.JDT files
	AFP
	AllocDebug rule
	AnyToAny
	AppendedExport option
	AppendGblToExtr rule
	Archive rule
	archives
	Array function
	AssignBatWithTbl rule
	AssignToBatch rule
	axis labels

	B
	bankers dates 359
	bar code information 298
	Base_FromDataDictToGVM rule 445
	BaseErrors option 204
	Batch name option 52
	Batch_Recip_Def option 50, 51, 70
	BatchByPageCount rule
	BatchFileName control group 52
	BatchingByPageCountINI rule
	BatchingByPageCountPerRecipINI rule
	BatchingByRecip control group 19
	BatchingByRecipINI rule
	BCD numbers 399
	BldGrpList rule
	BoldKey2 option 101
	bottom dimensions
	Box function
	boxes
	braces
	British pound sterling 394, 401
	BuildExcludeList rule
	BuildFormList rule
	BuildMasterFormList rule

	C
	CallBackFunc option 224, 225
	Can Grow attribute 339
	Can Grow option 382
	CanSplitImage indicator 177
	CanSplitImage rule
	CEIL
	century
	charts
	CheckCount option 205
	check-digits 402
	CheckImageLoaded rule
	checksum methods
	CheckZeroFontID rule 75
	ChkDestLenExceeded option 392
	COBOL copybooks 367
	colons
	ColumnFormat option 102
	columns
	CompBin rule
	CompiledFAP option 298
	compiling
	ConCat rule
	ConcatFields rule
	condition tables
	Conditions group 347
	Conditions option
	ConnectFields rule
	ConvertWIP rule
	coordinates
	CreateChartSeries rule
	CreateGlbVar rule
	CreateRecordList rule
	CreateSubExtractList rule
	currency symbols
	CUSMultiFilePrint function 224

	D
	DAL expressions= operator 271
	DAL rule
	DAL scripts
	DALRun function 11
	DALTrigger rule
	DAPINSTANCE 143
	DAPOPTIONS 143
	data
	Data control group 378, 427
	data dictionaries
	DataDict file 347
	DataDictionary control group
	DataPath option 220
	Date Order 84
	DateDiff rule
	DateFmt rule
	DateFMT2To4Year option 264
	dates
	DBLogFile option 220
	DDT 125, 330
	debugging
	decimals
	DefaultBatch option 50, 52
	DelayedFileWrite option 105
	DeleteDefaultSeriesData rule
	deleting
	DelExtRecords rule
	DelImageOccur rule
	demand feed
	destination length
	Dictionary rule
	digits
	dimensions
	DivertOMR option 174
	DivertOpt option 174
	DocSetNames control group
	Documaker Workstation
	DocumentExport rule
	Docupresentment
	dollar signs 390, 394, 398, 399, 401
	DontPrintAlone rule
	DumpExtList rule
	DumpExtractListToFile rule
	DUP
	duplex printing

	E
	EBCDIC format 399
	EjectPage rule
	equals sign 271
	ErrFile option 220
	ERRFILE.DAT file
	Error2Manual control group 93
	ErrorHandler rule
	errors
	European Union 269
	ExcludeForm option 102
	export files 133
	export information
	Ext option
	Ext2GVM rule
	extract files
	extract lists
	extract records
	ExtractKeyField control group
	ExtrFile option 220

	F
	FAP files
	FED table 194
	fetypes 269
	FfSysDte rule
	field format types (fetypes) 269
	field level rules 3
	field rules
	Field2GVM rule
	FieldErrors option 204
	FieldRule function
	fields
	FieldVarsToChartSeries rule
	File option
	FilterForm rule
	FilterRecip rule
	floating images 330
	FLOOR
	FmtDate rule
	FmtNum Rule
	FmtNum rule
	following images 206
	following sections 208
	font IDs
	fonts
	footers
	ForceNoImages rule
	form candidate list 190
	Form Description Line fields 100
	Form option 11
	form set level rules 3
	form sets
	FORM.DAT file
	FORM.DAT files
	Form_Sched_POL_Type field 159
	format
	format arguments
	format masks
	FormDescription rule
	FormDescTable control group 100
	FormName option
	forms
	French Francs 394
	FromDataDict rule 445
	FromDataDictToGVM rule 445
	FSISYS.INI file
	FSIUSER.INI file

	G
	GenArc program
	GenData program
	GenDataStopOn control group
	GenPrint rule
	GENSemaphoreName option 221
	GenWIP program
	GetCo rule
	GetLOB rule
	GetRCBRec rule
	GetRecord function 273
	GetRecord search criteria
	GetRunDate
	GlobalFld rule
	graphics
	GroupBegin rule
	GroupEnd rule
	GroupPagination function
	groups
	GVM function
	GVM option 135
	GVM variable= operator 271
	GVM variables
	GVM2GVM rule

	H
	HardExst rule
	headers
	hexadecimal values

	I
	IF rule
	IfRecipUsed rule
	Image option 11
	image rules
	Image_FromDataDictToGVM rule 445
	ImageErrors option 204
	ImageMapImportData rule
	ImpExpCombined control group 81
	Import_File option
	ImportExtract rule
	ImportFile rule
	ImportNAPOLExtract rule
	ImportNAPOLFile rule
	ImportXMLExtract rule
	ImportXMLFile rule
	ImportXMLFile_GVM option 141
	in order insertion 208
	IncDataDictRecPtr rule 446
	inches
	IncludeDuplicateForms option 101
	IncludeFormDesc option 102
	IncludeFormName option 101
	IncludeKey2 option 101
	IncOvSym rule
	InitArchive rule
	InitConvertWIP rule
	InitMerge rule
	InitOvFlw rule
	InitPageBatchedJob rule
	InitPrint rule
	InitSetRecipCache rule
	inline images 296
	InlineImagesAndBitmaps rule
	InsNaHdr rule
	InstallCommentLineCallback rule
	Internet Document Server
	Introduction 1

	J
	job level rules 3
	JobInit1 rule
	Julian dates 360
	JustFld rule

	K
	key fields
	Key option
	Key1Table control group 106
	Key2PostInc option 101
	Key2Prefix option 101
	Key2Table control group 107
	KickToWIP rule
	KickToWip rule

	L
	labels
	languages
	lead images 206
	leading
	leaks
	Library Manager
	lines
	List function
	list sections 206
	LoadCordFAP option
	LoadDDTDefs rule
	LoadExtractData rule
	LoadFAPBitmap option
	LoadFormsetFromArchive rule
	LoadListFromTable rule
	LoadRcpTbl rule
	LoadTblFiles rule
	LoadTextTbl rule
	locales
	LogFile option 185, 220, 221, 226
	LOGFILE.DAT file
	LogFileType option 185, 221, 226
	LookUp rule

	M
	manual batch
	MapBeforeReset parameter 202
	MapFromImportData rule
	mapping fields
	Margin parameter 309
	Mask field
	masks
	Master DDT Editor 367
	Master rule
	MasterResource control group
	MAX
	MaxExtRecLen option 426
	memory
	MergeAFP rule
	MergeRecipsFromForm rule
	MergeWIP
	MergeWIP rule
	message tags
	MessageFromExtr rule
	MIN
	minus signs 398, 400
	Mk_Hard rule
	MNumExt rule
	MOD
	MODE parameter
	Move_It rule
	MoveDate rule
	MoveExt rule
	MoveIt rule
	MoveMeToPage rule
	MoveNum rule
	MoveSum rule
	MovTbl rule
	MsgFile option 220
	MultFilePrint callback functionality 186
	MultiArray function
	MultiDataDict control group 169
	MultiFileLog option 224
	MultiFilePrint
	MultiFilePrint function 224
	MultiFilePrint option 185, 221, 226, 241
	multi-line text fields
	multi-mail processing
	MultiOccur function
	MultipleDataDictionaryFiles rule

	N
	NAFILE.DAT file
	Name option
	NAUnload option 152
	negative amounts
	nesting information 206
	NoGenTrnTransactionProc rule
	NoOpFunc rule
	NoOpImp rule
	NoWarning parameter 323
	numeric data

	O
	offsets and data
	OMR marks
	OMR_Params control group 173
	OMRMarks rule
	Opt option 11
	OvActPrint rule
	overflow
	OVERFLOW.DAT file
	OvPrint rule

	P
	page count
	page segments
	PageBatchStage1InitTerm rule
	PageRange option 52
	pages
	PaginateAndPropagate rule
	PaginateBeforeThisImage rule
	parent//child mapping 433
	ParseComment rule
	Path option
	PDF files
	PDF format 2
	PDFImportDPI option 282
	percent signs 398
	performance 8
	performance mode JDT file 8
	phone numbers 422
	POLFILE.DAT file
	Port option 52, 225
	PosDataDictRecPtr rule 446
	PostImageDAL rule
	PostIncDataDictRecPtr rule 446
	PostPosDataDictRecPtr rule 446
	PostTransDAL rule
	POW
	PowType rule
	PreImageDAL rule
	PreIncDataDictRecPt rule 446
	PrePosDataDictRecPtr rule 447
	PreTransDAL rule
	print batch names
	Print Preview
	Print_Batches control group 52
	PrintData rule
	PrintedOutputFile control group 52
	Printer option 52
	printer trays
	PrinterInfo control group 52
	PrintFormset
	PrintFormset control group 185
	PrintFormset rule
	PrintIf rule
	printing
	processing rules
	ProcessQueue rule
	ProcessRecord rule
	ProcessTriggers rule 189
	pRPS structure 202
	PrtIfNum rule
	PRTLIB data 25
	PurgeChartSeries rule
	PXCandidateList rule
	PXTrigger rule

	Q
	queues

	R
	RCB comment records
	RCBDFDField option 224, 226
	RCBDFDFL.DAT file 11
	RCBMapFromINI function 12
	RDI extract files 416
	RecipCondition rule
	recipient batch records 11
	recipients
	RecipMap2GVM control group 11, 104
	Record Dictionary
	regional date processing 197
	RegionalDateProcess option 198
	RegionalDateProcess rule 197
	RemoveWhiteSpace rule
	ReplaceNoOpFunc rule
	reporting tool
	Req option 11
	RequiredFieldCheck
	ResetDataDictRecPtr rule 447
	ResetDocSetNames rule
	ResetImageDimensions rule
	ResetOvFlw rule
	ResetOvSym rule
	Restart control group 205
	restarting GenData 205
	RestartJob
	RestartJob rule
	reverse insertion logic 208
	Reverse Polish Notation
	RID_LastMapField option 324
	row heights
	RPDSemaphoreName option 221
	RstFile option 205
	RTF files
	RULCheckTransaction rule
	rules
	RULNestedOverFlowProc rule
	RULServerJobProc option 221
	RULStandardFieldProc rule
	RULStandardImageProc 125
	RULStandardImageProc rule
	RULStandardJobProc rule
	RULStandardTransactionProc rule
	RULTestTransaction rule
	run date
	RunDate rule
	RunMode control group 339, 392
	RunSetRcpTbl rule 215
	RunTriggers rule 216
	RunUser rule

	S
	SAPMove_It rule
	ScheduleDate field 166
	Script option 102
	search criteria
	search masks
	SearchMask option
	sections
	Separator option
	separators 86
	series data
	ServerFilterFormRecipient rule 218
	ServerJobProc rule
	SetAddr rule
	SetAddr2 rule
	SetAddr3 rule
	SetCpyTo rule
	SetCustChartAxisLabels rule
	SetErrHdr rule
	SetGroupOptions rule
	SetImageDimensions rule
	SetOrigin rule
	SetOriginI rule
	SetOriginM rule
	SetOutputFromExtrFile rule
	SetOverflowPaperTray rule
	SetOvFlwSym rule
	SETRCPTB.DAT file
	SetRecipCopyCount rule
	SetRecipCopyCount2 rule
	SetRecipFromImage rule
	SetState rule
	ShowWIPWarning option 377, 410
	significant digits 398
	single-step mode
	single-step processing
	SleepingTime option 221
	Social Security numbers 422
	SortBatches rule
	source length
	spacing
	SpanAndFill rule
	SQRT
	StandardFieldProc rule
	StandardImageProc rule
	StartFromFirstForm option 101
	state compliance 197
	state location table 194
	status codes
	StayTogether function 312
	StrngFmt rule
	subordinate images 206
	sum
	suppressing
	SWAP
	symbolic lookup operators 272
	SysDate rule
	system date 423

	T
	table index value 425, 435
	table row sizes 426
	TablePath option
	Tables control group
	TablesPath field 159
	TblFile option 161, 378
	TblLkUp rule
	TblLkup rule
	TblText rule
	temporary extract lists
	TerSubstitute rule
	Test control group 214
	testing
	text tables 378
	TextMergeParagraph rule
	TEXTTBL option 427
	TextTbl option 162
	TicketJobProc option 241
	TicketJobProc rule
	TIFF files
	token lookup 433
	top dimensions
	trailing spaces
	TransactionErrors option 204
	TransErrCode option 168
	TranslateErrors rule
	tray selection
	Trigger2Archive control group
	Trigger2WIP control group 10
	triggers
	Trn_Fields control group
	Trn_File control group
	TrnFile option 171
	TRNFILE.DAT file
	TwoUp control group

	U
	unable to print form set message 185
	UnderlineField rule
	Unicode
	UpdatePOLFile rule
	user functions
	UseXMLExtract rule

	V
	VAR tag 382
	variable fields
	Variables group 347
	VectorGraphicImportDPI option 282

	W
	warning messages
	WarnOnLocate option 12
	white space
	widows and orphans 309, 311
	WIP
	WIP transaction processing
	WIP/NA/POL export data
	WIPFieldProc rule
	WIPHeader option
	WIPImageProc rule
	WIPTransactions rule
	WIPWarnOnEmpty option 167
	WMFImportDPI option 282
	WriteNAFile rule
	WriteOutput rule
	WriteRCBFiles rule
	WriteRCBWithPageCount rule

	X
	XDB files
	XDB rule
	XDD rule
	XML files
	XMLExtract option
	XMLFileExtract option
	XMLFileExtract rule
	XMLFileExtractName option
	XMLTags2GVM control group 135, 138
	XPath

	Y
	years

	Z
	zero format 265
	ZeroText option 266
	ZIP codes

	Oracle Insurance
	Oracle Suppport
	Related Documents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

