

Oracle® Enterprise Single Sign-on
Logon Manager

How-To: Understanding the ESSO-LM

Event Notification API

Release 11.1.1.2.0

20414-01

December 2010

 2

Oracle Enterprise Single Sign-on Logon Manager How-To: Understanding the ESSO-LM Event Notification API

Release 11.1.1.2.0

20414-01

Copyright © 2010, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under

a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other

intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the

extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation,

please report them to us in writing. This document is not warranted to be error-free.

Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the

United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.

Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal

Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth

in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,

Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous

applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to

ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages

caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names

may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not

responsible for the availability of, or any content provided on, third-party Web sites.

You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party,

the relationship is directly between you and the third party. Oracle is not responsible for:

(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,

including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not

responsible for any loss or damage of any sort that you may incur from dealing with any third party.

 3

Table of Contents

Table of Contents .. 3

Introduction .. 4

About This Guide ... 4

Prerequisites ... 4

2BTerms and Abbreviations .. 4

3BAccessing ESSO-LM Documentation ... 4

Understanding the ESSO-LM Notification Service API ... 5

Overview ... 5

Event Handling Tasks .. 5

The SSONotificationService Co-Class... 6

Sending Data (Producer) ... 6

Producer Identification ... 6

Event Notification ... 7

Security Measures ... 8

Receiving Data (Consumer) ... 8

Receiving Data in a “Push” Model .. 8

Receiving Data in a “Pull” Model .. 10

 4

Introduction

About This Guide

This document describes the ESSO-LM Event Notification Service API. The service allows the sending and

receiving of event-based information to and from Oracle ESSO applications. This guide is intended to aid

developers writing third-party software that needs to exchange data with one or more Oracle ESSO

applications.

Prerequisites

Readers of this document should have a thorough understanding of software development using the

Microsoft .NET framework, including the Component Object Model (COM) technology, and related

concepts.

2BTerms and Abbreviations

The following table describes the terms and abbreviations used throughout this guide:

Term or Abbreviation Description

ESSO-LM Enterprise Single Sign-On Logon Manager

Agent ESSO-LM client-side software

Console ESSO-LM Administrative Console

3BAccessing ESSO-LM Documentation

We continually strive to keep ESSO-LM documentation accurate and up to date. For the latest version of

this and other ESSO-LM documents, visit http://download.oracle.com/docs/cd/E15624_01/index.htm.

http://download.oracle.com/docs/cd/E15624_01/index.htm

 5

Understanding the ESSO-LM
Notification Service API

Overview

The ESSO-LM Notification Service (referred to as “the service” for the remainder of this document)

allows the sending and receiving of event data between Oracle ESSO applications. The service runs

as a Windows system service and acts as a global events repository and an event router.

The service runs as a Windows system service and distinguishes between the following application roles:

 Producer – an application that sends events to other applications

 Consumer – an application that receives events from other applications

Event Handling Tasks

The service handles events as follows:

 Store events received from producers. The service enumerates and retains 1000 latest events

received for each producer and each running session. Once the event buffer is full, the oldest

event is discarded for each new event that enters the buffer. Each event can be uniquely

identified by producer GUID, session GUID, and its consecutive position in the buffer.

 Transmit events to consumers. The service uses the following interface to transmit events:

[

 object,

 uuid(DD9E48CA-63D2-4106-876D-4DDEAA063B6F),

 dual,

 nonextensible,

 helpstring("Allows Consumers to access to the information about event"),

 pointer_default(unique)

]

interface ISSONotificationEvent: IDispatch

{

 [propget, id(1), helpstring("Gets event order number")]

 HRESULT Number([out, retval] ULONG* pVal);

 [propget, id(2), helpstring("Gets notification event code")]

 HRESULT NotificationCode([out, retval] ULONG* pVal);

 [propget, id(3), helpstring("Gets progress value")]

 HRESULT Progress([out, retval] LONG* pVal);

 [propget, id(4), helpstring("Gets event importance level")]

 HRESULT Level([out, retval] ULONG* pVal);

 6

[propget, id(5), helpstring("Gets additional data")]

 HRESULT AdditionalData([out, retval] BSTR* pVal);

 [propget, id(6), helpstring("Gets event time")]

 HRESULT Time([out, retval] DATE* pVal);

};

The SSONotificationService Co-Class

The following IDL code describes the service’s co-class used by producers and consumers:

[

 uuid(FBB13217-02AB-42DF-8867-69B8DD935BA9),

 helpstring("SSO Notification Service class")

]

coclass SSONotificationService

{

 // Allows Consumers to subscribe for event notifications:

 [default] interface ISSONotificationService;

 // Allows Consumers to access to the information about events:

 interface ISSONotificationEventReader;

 // Allows Producers to obtain ISSONotificationEventWriter pointer for event

raising:

 interface ISSOWriterManager;

};

Sending Data (Producer)

Producers should follow the guidelines below to properly interface with the service.

Producer Identification

A producer must implement the ISSOProducerInfo interface to uniquely identify itself to the service:

[

 object,

 uuid(4961B340-D358-4A0E-B8FB-6E2A4BF2DFDD),

 dual,

 nonextensible,

 helpstring("Provides information about Producer"),

 pointer_default(unique)

]

interface ISSOProducerInfo : IDispatch

{

 [propget, id(1), helpstring("Gets Terminal Services session identifier")]

 HRESULT SessionId([out, retval] ULONG* pVal);

 [propget, id(2), helpstring("Gets Producer GUID")]

 HRESULT ProducerGuid([out, retval] BSTR* pVal);

 [propget, id(3), helpstring("Gets Producer description")]

 HRESULT ProducerDescription([out, retval] BSTR* pVal);

 7

};

Event Notification

When an event occurs, the producer passes the event data to the service via the

ISSONotificationEventWriter COM interface:

[

 object,

 uuid(72A23F33-927D-4e01-8B50-759262519076),

 dual,

 nonextensible,

 helpstring("Allows Producers to raise new events"),

 pointer_default(unique)

]

interface ISSONotificationEventWriter : IDispatch

{

 [id(1), helpstring("Raises new event")]

 HRESULT AddEvent([in] ULONG nNotificationCode, [in] LONG nProgress, [in] ULONG

nLevel, [in] BSTR sAdditionalData);

};

To obtain a pointer to this interface, the producer must implement the ISSOProducerInfo interface

mentioned earlier and pass its pointer into the GetWriter method of the service’s

ISSOWriterManager interface shown below:

[

 object,

 uuid(4490B430-81FD-48f5-BCD9-F9F0A82C6832),

 dual,

 nonextensible,

 helpstring("Allows Producers to obtain ISSONotificationEventWriter pointer for

event raising"),

 pointer_default(unique)

]

interface ISSOWriterManager : IDispatch

{

 [id(1), helpstring("Returns ISSONotificationEventWriter pointer for specified

Producer")]

HRESULT GetWriter([in] IDispatch* pProducerInfo, [out,retval] IDispatch**

pEventWriter);

};

 8

Security Measures

The service only accepts events from producers whose executables have been signed by Oracle.

A producer requesting a pointer to the ISSONotificationEventWriter using the

ISSOWriterManager::GetWriter method is validated as follows:

1. The producer’s process identifier (PID) is obtained (based on the producer’s
ISSOProducerInfo data passed into the method via the CoGetServerPID function).

2. The signature of the producer executable corresponding to the retrieved PID is checked against
the information stored in the Windows registry or through the COM Security Initialization
process.

Note: The service cannot guarantee a valid signature check when the producer

executable is remote.

Additionally, Oracle highly recommends that producers and consumers validate the service’s signature

as follows:

1. Obtain the service’s PID using the CoGetServerPID function from one of the

ISSONotificationService sub-interfaces (ISSONotificationEventReader,

ISSOWriterManager, ISSONotificationEventWriter, or ISSONotificationEvent).

2. Check the signature of the executable corresponding to the retrieved PID.

Receiving Data (Consumer)

Consumers can receive data using either the “push” or “pull” model.

Receiving Data in a “Push” Model

In the “push” model, consumers must do the following to receive event data:

1. Implement the _ISSONotificationServiceEvents interface to handle events:

 [

 uuid(88AD71A0-0A9A-4916-BE26-E82C4F41BF3F),

 helpstring("Sink interface to handle events")

]

 dispinterface _ISSONotificationServiceEvents

 {

 properties:

 methods:

 [id(1), helpstring("Handles notification event")]

 HRESULT HandleEvent([in] IDispatch* pEvent);

 };

 9

The pEvent parameter referenced above stores the pointer to the object implementing the

ISSONotificationEvent and ISSOProducerInfo interfaces described earlier:

 [

 uuid(C8DCA6F1-2009-4A04-9E4C-BA7CB4CBA86C),

 helpstring("SSO Event class")

]

 coclass SSONotificationEvent

 {

 [default] interface ISSONotificationEvent;

 interface ISSOProducerInfo;

 };

2. Subscribe to the service event stream by passing the _ISSONotificationServiceEvents
event handler interface into the method of the ISSONotificationService interface:

[

 object,

 uuid(079F0093-99CB-4FCF-900E-18DAD87ED316),

 dual,

 nonextensible,

 helpstring("Allows Consumers to subscribe and unsubscribe for events"),

 pointer_default(unique)

]

interface ISSONotificationService : IDispatch

{

 [id(1),

 helpstring("Subscribes event handler to events from specified producer and user

and returns subscription cookie")]

 HRESULT SubscribeToEvents([in] ULONG nSessionId, [in] BSTR sProducerGuid, [in]

IUnknown* pEventHandler, [out,retval] ULONG* pCookie);

 [id(2),

 helpstring("Unsubscribes event handler from events from specified producer and

user using cookie returned by SubscribeToEvents method")]

 HRESULT UnsubscribeFromEvents([in] ULONG nSessionId, [in] BSTR sProducerGuid, [in]

ULONG nCookie);

};

When a new event arrives, the service transmits the event data to all subscribed consumers.

 10

Receiving Data in a “Pull” Model

In the “pull” model, a consumer receives the latest events from a producer using the service’s

ISSONotificationEventReader interface:

[

 object,

 uuid(5C4C57D9-D0B1-46AC-A45C-E41C55A7FEF8),

 dual,

 nonextensible,

 helpstring("Allows Consumers to get the information about latest events"),

 pointer_default(unique)

]

interface ISSONotificationEventReader : IDispatch

{

 [id(1), helpstring("Gets the latest event from specified producer and user")]

 HRESULT GetLastEvent([in] ULONG nSessionId, [in] BSTR sProducerGuid, [out, retval]

IDispatch** pVal);

 [id(2), helpstring("Returns array containing specified number of latest events

from specified producer and user")]

 HRESULT GetLatestEventsList([in] ULONG nSessionId, [in] BSTR sProducerGuid, [in]

ULONG nCount, [out, retval] VARIANT* eventsArray);

};

The service returns event data as pointer (or a safe array of pointers) to the implementations of the

ISSONotificationEvent interface described earlier.

	About This Guide
	Prerequisites
	Terms and Abbreviations
	Accessing ESSO-LM Documentation
	Overview
	Event Handling Tasks
	The SSONotificationService Co-Class

	Sending Data (Producer)
	Producer Identification
	Event Notification
	Security Measures

	Receiving Data (Consumer)
	Receiving Data in a “Push” Model
	Receiving Data in a “Pull” Model

